
LANSA	Composer
LANSA	Composer	Guide
	

What's	New	in	this	Version?
Introducing	LANSA	Composer
Define	Integration	Components
Activities
Activities	by	Group
Configurations
Trading	Partners
Transformation	Maps
Processing	Sequences
Transaction	Document	Processing
Using	aXes	Terminal	Server	with	LANSA	Composer
Deploying	Solutions	for	LANSA	Composer
Operations
Administration	and	Housekeeping
Develop	Custom	Activities	for	LANSA	Composer
LANSA	Composer	Tutorials
Appendix	A.	Install	LANSA	Composer
LANSA	Composer	Server	on	IBM	i
LANSA	Composer	Server	on	Windows
LANSA	Composer	Client	on	Windows
Uninstall	LANSA	Composer	Client	on	Windows
Appendix	B.	License	LANSA	Composer
Appendix	C.	The	Mapping	Tool
Appendix	D.	Commands	to	Invoke	LANSA	Composer
Appendix	E.	Using	LANSA	Composer	with	LANSA	Applications
Appendix	F.	The	LANSA	Composer	Request	Server

its:lansa091.chm::/lansa/intengc0_0010.htm
its:LANSA091.CHM::/lansa/intengc1_0010.htm
its:lansa091.chm::/lansa/intengc2_0010.htm
its:lansa091.chm::/lansa/intengc2_0015.htm
its:lansa091.chm::/Lansa/IntEngC2_0405.htm
its:LANSA091.CHM::/lansa/intengc2_0020.htm
its:LANSA091.CHM::/lansa/intengc2_0025.htm
its:LANSA091.CHM::/lansa/intengc2_0195.htm
its:lansa091.chm::/lansa/intengc3_0010.htm
its:lansa091.chm::/lansa/intengc3b_0010.htm
its:lansa091.chm::/lansa/intengc3c_0010.htm
its:lansa091.chm::/lansa/intengc4_0010.htm
its:lansa091.chm::/lansa/intengc5_0010.htm
its:lansa091.chm::/lansa/intengc6_0010.htm
its:lansa091.chm::/lansa/intengc7_0010.htm
its:lansa091.chm::/lansa/intengc8_0010.htm
its:lansa091.chm::/lansa/intengc9_0010.htm
its:lansa091.chm::/lansa/Intengc9_0025.htm
its:lansa091.chm::/lansa/Intengc9_0280.htm
its:lansa091.chm::/lansa/Intengc9_0030.htm
its:lansa091.chm::/lansa/Intengc9_0190.htm
its:lansa091.chm::/lansa/intengc9_0185.htm
its:lansa091.chm::/lansa/intengc9_0015.htm
its:lansa091.chm::/lansa/intengc9_0230.htm
its:lansa091.chm::/lansa/intengc9_0240.htm
its:lansa091.chm::/lansa/intengc9_0475.htm

Appendix	G.	National	Language	and	Multilingual	Support	in	LANSA
Composer

	
Edition	Date	April	29,	2014
This	edition	applies	to	Version	5.0	of	LANSA	Composer.
©	LANSA
	

its:lansa091.chm::/lansa/intengc9_0650.htm

About	this	Guide
LANSA	Composer	is	a	design	and	execution	platform	for	integrating	business
activities	involving	transport	and	transformation	of	data	along	with	custom
business	processing.		This	guide	describes	the	features	and	functions	of	LANSA
Composer.
It	is	intended	for	use	by	business	analysts	who	will	use	the	application	to	design
and	implement	solutions	to	business	integration	problems.
The	text	in	this	guide	is	available	while	using	the	LANSA	Composer	design
environment	by	selecting	the	Help	command	from	the	Help	menu	on	the
LANSA	Composer	main	window	or	by	pressing	F1.
The	LANSA	Integrator	Guide	is	also	provided	with	LANSA	Composer	and
provides	more	in-depth	technical	information	on	the	LANSA	Integrator	services
that	are	used	by	many	of	the	supplied	LANSA	Composer	activities	or	that	you
may	use	in	your	own	custom	activities.

How	to	use	this	Guide
This	guide	is	designed	to	get	you	started	with	the	LANSA	Composer	software
as	quickly	as	possible.	However,	you	will	need	to	know	some	of	the	basic
structures	and	windows	of	Composer	before	you	begin.	Please	review	Getting
Started	with	LANSA	Composer	which	includes	a	Quick	Tour	and	Functional
Components	for	an	overview	of	LANSA	Composer's	components.
Sample	configurations	for	supported	transport	protocols	have	been	provided.
You	only	need	to	refer	to	the	description	and	specifications	of	the	protocol	that
you	will	be	using,	and	these	are	described	in	Configurations.
LANSA	Composer	is	supplied	with	a	number	of	Activities	that	will	perform
transport,	file	management	and	other	common	business	integration	functions	for
you.	Refer	to	Activities	for	details.
Should	you	wish	to	develop	some	custom	activities,	you	will	find	notes	on	how
to	do	this	in	Develop	Custom	Activities	for	LANSA	Composer.

its:LANSA091.CHM::/lansa/intengc1_0025.htm
its:LANSA091.CHM::/lansa/intengc1_0020.htm
its:LANSA091.CHM::/lansa/intengc2_0020.htm
its:LANSA091.CHM::/lansa/intengc2_0015.htm
its:LANSA091.CHM::/lansa/intengc7_0010.htm

What's	New	in	LANSA	Composer	Version	5.0?
LANSA	Composer	version	5.0	introduces	many	new	features	and
enhancements.		The	highlights	are	described	in	the	following	sections:

Licensing
Installation
New	SQL	Database	Activities
Other	New	and	Enhanced	Activities
Extended	Duration	Processing	Sequences
Cross	References
Deployment
Audit	Trail
Events
Parameter	Classes
LANSA	Composer	Client	User-interface	Enhancements
Transformation	Maps
Transaction	Document	Support
System	Settings
Database	Housekeeping
Browsers	for	Server	Files	and	Folders
Other	New	and	Enhanced	Features

Note:	Some	features	have	been	previously	made	available	in	hotfixes
for	LANSA	Composer	version	4.0.

Licensing

IMPORTANT	NOTE:
Due	to	changes	in	the	licensing	implementation,	all	LANSA
Composer	customers	upgrading	from	LANSA	Composer	version	4.0
must	request	and	obtain	new	LANSA	Composer	server	licenses	before
upgrading	to	LANSA	Composer	version	5.0.		Prior	to	upgrading	to
Version	5.0,	you	should	send	your	CPU	details	to	LANSA	Licensing
for	new	Version	5.0	licenses.		For	more	information	refer	to	Appendix
B:	License	LANSA	Composer.

its:LANSA091.CHM::/lansa/Intengc9_0185.htm

Installation
LANSA	Composer	Client
The	LANSA	Composer	Windows	client	installer	now	offers	the	option	of
installing	the	LANSA	Web	Administrator	program.		(LANSA	Web
Administrator	can	be	used,	if	necessary,	to	change	the	LANSA	for	the	Web
configuration	on	the	LANSA	Composer	server.)
Altova	MapForce	version	2014	release	2	(2014R2)	is	provided	on	the	media.		It
is	strongly	recommended	that	MapForce	is	upgraded	to	this	level	on	all	LANSA
Composer	clients.

LANSA	Composer	Server	on	IBM	i
The	LANSA	Composer	installation	on	IBM	i	servers	now	supports	installation
into	independent	auxiliary	storage	pools	(IASP),	if	required.

LANSA	Composer	Server	on	Windows
The	Windows	server	installation	of	LANSA	Composer	has	been	completely
revised.		It	is	now	uses	"standard"	Windows	installer/MSI	technology,	which
will	make	future	patches	and	upgrades	simpler	and	more	flexible.		It	also
appears	as	a	separate	item	in	the	Control	Panel	Programs	and	Features	and	can
be	uninstalled	in	the	usual	way.
Only	a	single	copy	of	the	LANSA	Composer	server	may	be	installed	on	a
Windows	server.
LANSA	Composer's	database	tables	are	now	installed	using	a	new	and	constant
database	schema/collection/owner	(LC_DTA),	meaning	that	in	future	versions,
the	post-installation	task	to	"cleanup"	the	previous	collection	will	no	longer	be
necessary	(it	is	necessary	for	this	version,	however).
More	of	the	post-installation	tasks	are	now	automated	-	in	particular	the
installation	of	LANSA	Composer's	data	directory	and	files.		On	the	Windows
server,	the	first	client	to	connect	will	no	longer	need	to	complete	the	Server
Initialization	wizard.

LANSA	Runtime	Version	Information
LANSA	Composer	version	5.0	is	built	with	LANSA	version	13SP1	at	EPC	level
131100	and	requires	a	run-time	environment	at	least	at	that	level.		In	addition	it
requires	LANSA	Integrator	at	EPC	level	131300.		This	is	of	concern	only	to
existing	users	who	have	installed	LANSA	Composer	in	an	existing	LANSA
system.		The	upgrade	of	standard	LANSA	Composer	installations	(in	their	own

LANSA	run-time	system)	will	upgrade	all	the	necessary	components.

New	SQL	Database	Activities
This	version	of	LANSA	Composer	introduces	a	new	suite	of	twelve	activities
for	performing	SQL	operations	on	a	database	identified	by	a	LANSA	Composer
database	configuration.		The	databases	can	be	on	any	network	addressable
server.		So,	for	example,	LANSA	Composer	on	an	IBM	i	server	could	address
an	MS	SQL	Server	database	on	a	Windows	server,	or	vice-versa..
Typically	in	LANSA	Composer,	most	database	activity	is	accomplished	through
the	use	of	Transformation	Maps.		However,	these	new	activities	provide	another
option	for	performing	limited	database	query	and	update	operations	on	an	SQL
database.		In	addition,	they	provide	a	means	of	invoking	SQL	stored	procedures
in	the	target	database.
The	SQL	database	activities	are	not	intended	for	high-throughput,	high-volume
database	operations.		Rather	they	provide	a	simple	means	to	complete	a	business
process	integration	solution	that	may	not	otherwise	have	been	possible,	with
some	simple,	low-volume	database	access	and/or	maintenance.
The	new	SQL	database	activities	comprise:

Activities	to	establish	or	disconnect	an	SQL	database	connection:

SQL_CONNECT Connect	to	database	using	SQL

SQL_DISCONNECT Disconnect	from	database	using	SQL

	

Activities	to	query	the	database:

SQL_QUERY Query	database	using	SQL

SQL_QUERYTOCSV Query	database	using	SQL	to	output	CSV	file

	

Activities	to	perfom	insert,	update	and	delete	operations	in	the	database:

SQL_UPDATE Update	database	using	SQL

	

its:LANSA091.CHM::/lansa/AT_SQL_CONNECT.htm
its:LANSA091.CHM::/lansa/AT_SQL_DISCONNECT.htm
its:LANSA091.CHM::/lansa/AT_SQL_QUERY.htm
its:LANSA091.CHM::/lansa/AT_SQL_QUERYTOCSV.htm
its:LANSA091.CHM::/lansa/AT_SQL_UPDATE.htm

Activities	to	execute	an	SQL	stored	procedure	in	the	database:

SQL_CALL Execute	an	SQL	stored	procedure

SQL_CALLQRYCSV Query	database	using	an	SQL	stored	procedure	to
CSV

SQL_CALLQUERY Query	database	using	an	SQL	stored	procedure

	

Activities	to	implement	transaction	control	relating	to	any	database	insert,
update	or	delete	operations	you	have	performed:

SQL_COMMIT Commit	a	database	transaction	using	SQL

SQL_ROLLBACK Rollback	a	database	transaction	using	SQL

	

Activities	to	set	parameter	values	for	an	SQL	operation:

SQL_PARAMS Set	parameter	values	for	SQL	operation

SQL_PARAMSCSV Set	parameter	values	for	SQL	operation	from	CSV

	

	

its:LANSA091.CHM::/lansa/AT_SQL_CALL.htm
its:LANSA091.CHM::/lansa/AT_SQL_CALLQRYCSV.htm
its:LANSA091.CHM::/lansa/AT_SQL_CALLQUERY.htm
its:LANSA091.CHM::/lansa/AT_SQL_COMMIT.htm
its:LANSA091.CHM::/lansa/AT_SQL_ROLLBACK.htm
its:LANSA091.CHM::/lansa/AT_SQL_PARAMS.htm
its:LANSA091.CHM::/lansa/AT_SQL_PARAMSCSV.htm

Other	New	and	Enhanced	Activities
In	addition	to	the	New	SQL	Database	Activities,	this	version	of	LANSA
Composer	is	supplied	with	a	range	of	other	new	and	revised	Activities	that
deliver	new	and	powerful	capabilities:

New	Activities
Revised	Activities

New	Activities
The	following	new	Activities	are	added	in	this	version	of	LANSA	Composer:

The	new	BASE64_ENCODE	and	BASE64_DECODE	activities	will	base64
encode	or	decode	the	contents	of	a	specified	file	and	write	the	encoded	or
decoded	content	to	another	file.		Base64	encoding	is	commonly	used	when
there	is	a	need	to	encode	binary	data	that	needs	to	be	stored	and	transferred
over	media	or	transports	that	are	designed	to	deal	with	textual	data.	This	is	to
ensure	that	the	data	remains	intact	without	modification	during	transport.	
Base64	encoding	is	commonly	used	in	a	number	of	applications	including
email	via	MIME,	and	storing	complex	data	in	XML.
The	new	COUNTLIST	activity	counts	the	entries	in	a	variable	list	used	in	a
Processing	Sequence.		Previously	it	would	have	been	necessary	to	iterate	the
list	entries	with	a	LOOP	directive	in	order	to	count	the	entries.
The	new	DTAQ_CLEAR,	DTAQ_RECEIVE	and	DTAQ_SEND	activities
provide	support	for	sending	and	receiving	data	to	and	from	IBM	i	data
queues	and	to	emulated	data	queues	on	Windows	servers.
The	new	FOR_EACH_OBJECT	activity	iterates	for	each	object	in	an	IBM	i
server	library	that	matches	a	specified	object	name	and/or	object	type.		The
activity	is	only	supported	on	IBM	i	servers.
The	new	HASH_FILE	activity	generates	a	hash	value	of	the	contents	of	the
specified	file	according	to	a	known	algorithm.		The	hash	value	is	a	fixed-
length	(according	to	the	chosen	algorithm),	non-reversible	representation	of
the	contents	of	the	file.		Such	hash	values	have	many	uses	in	information
security,	including	as	a	means	of	detecting	(accidental	or	intentional)
changes	to	or	corruption	of	the	source	data.
The	new	JSM_RECLAIM	activity	reclaims	LANSA	Integrator	JSM
resources	by	initiating	garbage	collection	in	the	JSM's	Java	Virtual	Machine
instance.		In	some	particular	instances,	a	delay	in	garbage	collection	can	lead
to	functional	issues	in	subsequent	processing	when	certain	resources,	such	as

its:LANSA091.CHM::/lansa/AT_BASE64_ENCODE.htm
its:LANSA091.CHM::/lansa/AT_BASE64_DECODE.htm
its:LANSA091.CHM::/lansa/AT_COUNTLIST.htm
its:LANSA091.CHM::/lansa/AT_DTAQ_CLEAR.htm
its:LANSA091.CHM::/lansa/AT_DTAQ_RECEIVE.htm
its:LANSA091.CHM::/lansa/AT_DTAQ_SEND.htm
its:LANSA091.CHM::/lansa/AT_FOR_EACH_OBJECT.htm
its:LANSA091.CHM::/lansa/AT_HASH_FILE.htm
its:LANSA091.CHM::/lansa/AT_JSM_RECLAIM.htm

files,	might	remain	locked	awaiting	garbage	collection	of	Java	objects	that
reference	them.		The	JSM_RECLAIM	activity	may	help	to	avoid	issues	of
this	nature.
The	new	QUERY_CCSID	activity	returns	the	IBM	i	CCSID	for	a	specified
file.		The	activity	is	only	supported	on	IBM	i	servers.
The	new	WATCH_DTAQ,	WATCH_MSGQ	and	WATCH_DIRECTORY
iterator	activities	provide	a	means	of	iteratively	watching	a	data	queue,
message	queue	or	a	file	system	directory	for	new	items	(and/or	changed	or
deleted	items	in	the	case	of	WATCH_DIRECTORY)	for	further	processing.	
The	WATCH_MSGQ	activity	is	only	supported	on	IBM	i	servers.
The	new	WAIT_FILESREADY	activity	is	intended	for	use	in	processing
sequences	that	identify	and	process	newly-discovered	files.		For	example,	a
processing	sequence	that	uses	the	new	WATCH_DIRECTORY		activity	may
need	to	use	this	activity.		It	provides	file	cache	services	designed	to	allow
LANSA	Composer	solutions	to	control	the	processing	of	newly-discovered
files	to	avoid	contention	issues	with	applications	that	may,	for	example,	still
be	writing	to	a	file	when	it	is	"discovered"	by	the	LANSA	Composer
solution.
The	new	XML_QUERY	activity	permits	a	LANSA	Composer	solution	to
selectively	interrogate	values	contained	in	an	XML	document	using	XML
Path	Language	(XPath)	expressions.		The	activity	is	intended	for	selective
interrogation	of	a	limited	number	of	particular	values	from	the	XML
document,	perhaps	to	determine	how	to	further	process	the	XML	document
as	a	whole.
The	new	XML_VALIDATE	activity	validates	an	XML	document	file.		At
the	minimum,	the	activity	will	verify	that	the	XML	document	is	well-
formed.		If	the	XML	document	contains	or	references	a	DTD	or	an	XML
schema	and	the	DTD	or	schema	can	be	accessed,	then	the	document	content
will	be	validated	against	the	DTD	or	schema.

Revised	Activities
Several	previously	supplied	Activities	have	been	revised	to	add	functionality
and/or	to	support	other	new	and	revised	functionality	in	this	version	of	LANSA
Composer:

The	COPY_FILE,	MOVE_FILE,	RENAME_FILE	and	DELETE_FILE
activities	have	been	revised	to	provide	more	diagnostic	information	in	the
event	of	failure	on	IBM	i	servers.

its:LANSA091.CHM::/lansa/AT_QUERY_CCSID.htm
its:LANSA091.CHM::/lansa/AT_WATCH_DTAQ.htm
its:LANSA091.CHM::/lansa/AT_WATCH_MSGQ.htm
its:LANSA091.CHM::/lansa/AT_WATCH_DIRECTORY.htm
its:LANSA091.CHM::/lansa/AT_WAIT_FILESREADY.htm
its:LANSA091.CHM::/lansa/AT_WATCH_DIRECTORY.htm
its:LANSA091.CHM::/lansa/AT_XML_QUERY.htm
its:LANSA091.CHM::/lansa/AT_XML_VALIDATE.htm
its:LANSA091.CHM::/lansa/AT_COPY_FILE.htm
its:LANSA091.CHM::/lansa/AT_MOVE_FILE.htm
its:LANSA091.CHM::/lansa/AT_RENAME_FILE.htm
its:LANSA091.CHM::/lansa/AT_DELETE_FILE.htm

The	COPY_FILE	activity	provides	a	new	AUT	parameter	that	specifies	the
method	used	to	assign	authority	information	to	copied	objects	on	IBM	i
servers.
The	DIRECTORY_LIST	activity	provides	new	CONTENT	and
MAXDEPTH	parameters	that	allow	it	to	list	either	sub-directories	or	files
contained	in	the	specified	directory,	and,	optionally,	to	include	the	contents
of	child	or	descendant	directories.
The	FTP	configurations	and	the	supplied	FTP	activities,	such	as
FTP_INBOUND	have	been	enhanced	to	provide	support	both	for	SSH
compression	and	for	SFTP	public	key	authentication.
The	SMTP	and	POP3	configurations	and	the	supplied	email	activities	such
as		MAIL_SEND	and		MAIL_RECEIVE	have	been	enhanced	to	provide
support	for	explicit	SSL/TLS.
A	new	BACKIMAGEPATH	and	related	parameters	for	the	SPLF_TO_PDF
activity	permits	a	background	image	to	be	specified	for	inclusion	in	the
generated	PDF	file.		The	SPLF_TO_PDF	activity	is	only	supported	on	IBM	i
servers.
A	new	DOCCCSID	parameter	for	the	SPLF_TO_TEXT	activity	permits	the
solution	to	specify	the	IBM	i	CCSID	with	which	the	output	text	document	is
created.		The	SPLF_TO_TEXT	activity	is	only	supported	on	IBM	i	servers.
The	SYSTEM_COMMAND	activity	has	been	revised	to	provide	more
diagnostic	information	including	captured	joblog	messages	in	the	event	the
command	execution	is	unsuccessful	on	IBM	i	servers.

its:LANSA091.CHM::/lansa/AT_COPY_FILE.htm
its:LANSA091.CHM::/lansa/AT_DIRECTORY_LIST.htm
its:LANSA091.CHM::/lansa/AT_FTP_INBOUND.htm
its:LANSA091.CHM::/lansa/AT_MAIL_SEND.htm
its:LANSA091.CHM::/lansa/AT_MAIL_RECEIVE.htm
its:LANSA091.CHM::/lansa/AT_SPLF_TO_PDF.htm
its:LANSA091.CHM::/lansa/AT_SPLF_TO_TEXT.htm
its:LANSA091.CHM::/lansa/AT_SYSTEM_COMMAND.htm

Extended	Duration	Processing	Sequences
A	number	of	new	features	and	enhancements	are	designed	to	further	facilitate
creation	and	management	of	extended	duration	Processing	Sequences	–	for
example,	Processing	Sequences	that	are	intended	to	run	indefinitely,	perhaps
monitoring	a	file	system	directory,	data	queue	or	message	queue	for	new	items
to	process.		These	changes	include:

New	activities	mentioned	previously:	WATCH_DTAQ,	WATCH_MSGQ,
WATCH_DIRECTORY	and	WAIT_FILESREADY.
A	new	example	Processing	Sequence,	EXAMPLE_WATCH01,	provides	an
example	of	a	process	using	the	new	WATCH_DIRECTORY	and
WAIT_FILESREADY	activities.		It	demonstrates	some	suggested	design
techniques	for	extended	duration	Processing	Sequences.
New	documentation	in	the	LANSA	Composer	Guide	provides	tips	and
suggestions	for	designing	extended	duration	Processing	Sequences	in
LANSA	Composer.		It	can	be	found	under	the	heading	Considerations	for
Extended	Duration	Processing	Sequences.
Large	processing	sequence	logs	will	usually	load	faster	and	more	reliably.	
LANSA	Composer	reduces	the	initial	loaded	log	size	by	"collapsing"	detail
associated	with	COMPLETED	iterations	for	LOOP,	WHILE/UNTIL
directives	and	iterator	activities,	the	premise	being:

-	that	a	long-running	process	will	almost	invariable	involve	iteration	in	some
form,	and;
-	that	the	users	interest	when	viewing	the	log	will	most	often	be	on	the	latest
or	last	iterations

Collapsed	items	will	still	be	capable	of	being	expanded,	on	demand.
Associated	with	the	previous	item,	the	Processing	Sequence	Log	window	has
been	enhanced	to	have	a	better	organized,	consistent	and	simpler	user
interface.
The	Processing	Sequence	Log	window	more	clearly	identifies	a	processing
sequence	run	that	is	active	and	now	allows	"controlled	end"	to	be	initiated
for	the	run.		Note	the	processing	sequence	must	be	designed	to	check	and	act
on	the	value	of	the	new	*SHUTDOWN	built-in	variable	for	such	requests	to
be	effective.
When	Print	is	selected	in	the	Processing	Sequence	Log	window,	LANSA

its:LANSA091.CHM::/lansa/AT_WATCH_DTAQ.htm
its:LANSA091.CHM::/lansa/AT_WATCH_MSGQ.htm
its:LANSA091.CHM::/lansa/AT_WATCH_DIRECTORY.htm
its:LANSA091.CHM::/lansa/AT_WAIT_FILESREADY.htm
its:LANSA091.CHM::/lansa/IntEngC7b_0205.htm

Composer	will	print	the	log	as	displayed	–	that	is	with	detail	log	messages
shown	or	not	and	with	items	collapsed	or	expanded	as	they	presently	are	in
the	Processing	Sequence	Log	window.

Cross	References
A	new	Cross	references	command	tab	provides	comprehensive	cross	reference
information	for	most	definition	types	in	LANSA	Composer,	including:

Activities
Transformation	Maps
Processing	sequences
All	types	of	transport	and	database	Configurations

Using	the	cross	reference	information	provided	by	LANSA	Composer,	you	can
quickly	identify:

Other	definitions	that	the	subject	definition	uses	or	refers	to.		For	example,
for	a	Processing	Sequence,	this	would	include	Activities,	Transformation
Maps	and	configurations	that	are	used	in	the	Processing	Sequence.
Other	definitions	that	use	or	refer	to	the	subject	definition.		For	example,	for
an	FTP	configuration,	this	would	include	Trading	Partners	and	Processing
Sequences	that	use	the	FTP	configuration.

The	cross	reference	information	includes	the	much-requested	references	to
configurations,	providing	the	references	are	to	a	specific,	fixed	configuration.	
(References	to	configurations	and	other	definitions	using	variables	or	built-in
variables	are	resolved	at	run-time	and	cannot	be	cross-referenced.)
This	new	support	provides	a	new	level	of	impact	analysis	capability	while
maintaining	your	business	process	integration	(BPI)	solutions.		In	addition,	it
facilitates	deployment	of	those	solutions,	for	example,	from	a	design
environment	to	production.
(The	Cross	references	tab	applies	to	most	definition	types	and	it	replaces	the
Where	Used	tab	that	was	previously	available	for	Activities	and	Transformation
maps	only.)

its:LANSA091.CHM::/lansa/IntEngC1_0240.htm#IntEngC1_0245

Deployment
This	version	of	LANSA	Composer	provides	persistent	and	more	detailed	and
informative	logging	for	export	and	import	tasks.
The	logs	for	each	export	and	import	task	are	retained	in	the	LANSA	Composer
database	and	can	be	retrieved	and	viewed	at	any	time	through	the	LANSA
Composer	client	software	by	clicking	the	History	tab.

From	the	History	tab,	you	can	also	print	an	Export	Manifest	that	lists	all
exported	items	along	with	their	last-changed	dates,	times	and	users.

In	addition,	a	number	of	other	new	and	revised	features	enhance	the	reliability
and	useability	of	the	existing	LANSA	Composer	export	and	import	capability.	
They	include:

Export	and	import	of	System	Properties	is	now	supported,	including	the
option	to	preserve	existing	system	property	values	on	the	importing	system,
if	applicable
Import	provides	the	option	to	preserve	the	existing	security	credentials	(user
names	and	passwords)	when	importing	configurations	that	already	exist	on
the	importing	system.
Import	now	updates	the	last-changed	dates,	times	and	user	information	for
the	imported	definitions	on	the	importing	system	to	match	the	values	with
which	the	definitions	were	exported.		This	enables	the	information	to	be
compared	with	a	manifest	or	with	the	definitions	on	a	source	LANSA
Composer	system.

Audit	Trail
LANSA	Composer	now	maintains	an	audit	trail	of	significant,	usually
modifying	events	to	most	definitions,	including	Activities,	Transformation
Maps,	Processing	Sequences	and	all	types	of	configurations.		This	enables	you
to	trace	when	changes	were	made	to	definitions	and	by	whom.
Events	that	are	recorded	include:

Create,	change,	delete
Opened	for	editing
Saved	(Processing	Sequences)
Prepared	(Transformation	Maps)
Archived	version	restored,	deleted	or	purged	(Processing	sequences	and
Transformation	Maps)
Exported,	Imported

Information	that	is	recorded	for	each	event	includes:
The	identity	of	item	affected
Timestamp
Related	log,	where	applicable	(export,	import)
Job	name,	user	and	number
Computer	name

Note	that	the	audit	records	do	NOT	record	what	actually	changed	in	the	item
definition,	only	that	the	event	occurred.
The	existing	Audit	command	tab	for	each	of	the	definition	types	has	been
substantially	revised	to	display	the	audit	trail	events	for	the	selected	item
(instead	of	just	the	last	changed	date,	time	and	user	information	that	was	shown
before):

its:LANSA091.CHM::/lansa/IntEngC1_0240.htm#IntEngC1_0225

In	addition,	there	is	also	a	new	Audit	trail	option	appearing	in	the	Navigator,
under	Administration	and	Housekeeping,	that	permits	interrogation	and	viewing
of	the	audit	records	across	all	definitions	and	types	by	various	criteria:

Events
LANSA	Composer's	Event	Maintenance	now	permits	you	to	add	multiple	event
notifications	for	a	single	event.		For	example,	one	event	may	now	both	send	an
email	and	send	a	message	to	an	IBM	i	message	queue.

In	addition,	an	event	can	now	use	any	one	or	more	of	the	following	notification
methods	to	provide	the	notification	of	the	event:

Send	an	email
Send	an	SMS
Send	a	message	to	an	IBM	i	message	queue	(IBM	i	servers	only)
Run	a	specified	processing	sequence
Execute	a	specified	function

(Previously	one	and	only	one	of	email	and	SMS	options	could	be	chosen.)
You	can	specify	more	than	one	instance	of	each	notification	method	if	you	wish.
Further	enhancements	to	the	event	support	include:

You	can	now	specify	a	list	of	email	addresses	for	any	of	the	TO,	CC	or	BCC
addresses	for	an	email	notification.
A	new	Test	button	in	the	Event	Maintenance	window	now	permits	you	to
quickly	test	the	notifications	for	your	event	without	having	to	contrive	to	run
a	failing	processing	sequence	to	do	so.

its:LANSA091.CHM::/lansa/IntEngC6_0025.htm
its:LANSA091.CHM::/lansa/IntEngC6_0025.htm

Parameter	Classes
This	version	of	LANSA	Composer	implements	support	for	parameter	classes	for
activity,	transformation	map	and	processing	sequence	parameters.
Each	parameter	can	have	a	class	associated	with	it	that	can	specify	what	type	of
information	is	specified	by	the	parameter.		The	available	parameter	classes
include:

File	path
Folder	path
Trading	partner
Transformation	map
Processing	sequence
Event	handler
Configurations	of	all	types

If	none	of	the	above	classes	apply,	then	a	default	class	of	General	is	used.
For	the	most	part,	you	need	not	be	greatly	concerned	with	the	parameter	classes,
because:

For	supplied	Activities,	the	parameter	classes	are	shipped	already	set
appropriately;
For	Transformation	Maps,	the	parameter	classes	are	inferred	from	the	map
definition	during	the	Prepare	step.

(However,	you	may	wish	to	set	parameter	classes	appropriately,	where
applicable,	for	your	own	Processing	Sequences	or	for	your	own	custom
Activities.)
The	important	point	to	note	is	that	this	enhancement	brings	to	LANSA
Composer	several	important	benefits:

The	use	of	parameter	classes	has	facilitated	more	thorough	and	complete
Cross	References	in	LANSA	Composer,	most	notably	for	configurations.
The	use	of	parameter	classes	provides	in-place	prompting	for	file	and	folder
paths,	configurations	and	other	items,	either	when	editing	a	Processing
Sequence,	or	when	you	run	an	Activity	or	Processing	Sequence	through	the
LANSA	Composer	client	software	user-interface.

Conversely,	you	should	also	note:

The	parameter	classes	are	(deliberately)	not	used	for	validation	of	parameter
values.		They	do	not	restrict	the	values	that	can	be	entered	for	a	parameter.	
(So	you	can	still,	for	example,	enter	the	name	of	an	FTP	configuration	that
you	have	yet	to	create.)
The	parameter	classes	do	not	impose	any	additional	processing	sequence
run-time	overhead.

To	illustrate,	the	following	partial	screenshot	from	the	Processing	Sequence
Editor	shows	the	parameters	for	the	FTP_INBOUND	activity	in	the	detailer.	
You	can	see:

The	parameter	class	for	each	FTP_INBOUND	activity	parameter	is	shown	in
the	column	on	the	right.
A	button	for	in-place	parameter	value	prompting	is	visible	in	the	currently
active	parameter,	FTPCONFIG.		When	clicked,	the	button	will	allow	the
user	to	choose	from	a	list	of	existing	FTP	inbound	configurations.

LANSA	Composer	Client	User-interface	Enhancements
This	version	of	LANSA	Composer	offers	easier,	faster	and	more	flexible
location	and	selection	of	the	definitions	in	LANSA	Composer	that	you	wish	to
work	with.		At	the	same	time,	it	can	free	up	space	in	the	LANSA	Composer
window	by	allowing	you	to	hide	the	instance	lists	when	not	in	use.
To	accomplish	this,	the	Filters	and	Instance	lists	used	in	previous	versions	have
been	replaced	with	unified	Instance	lists	that	integrate	the	filter/find	features
within	them.		This	provides	a	more	effective	user-interface	that	is:

More	visually	effective	and	appealing;
Provides	quicker	access	to	search	and	locate	items;
Provides	a	greater	range	of	means	and	search	criteria	to	locate	items;
Integrates	recently-visited,	recently-modified	and	user-defined	working
lists;
Implements	much	faster	searches;
Supports	copy,	delete	and	print	on	multiple	selections;
Capable	of	being	"unpinned"	and	scrolled	out	of	the	way	when	not	in	use
to	provide	more	useable	screen	area	for	command	handlers.		In	this
unpinned	state,	the	Instance	list	can	slide	back	into	view	on	demand,	at	the
click	of	a	button	or	with	a	single	shortcut	keystroke.

For	more	information,	refer	to	Locating	and	selecting	items	in	the	Instance
Lists.

its:LANSA091.CHM::/lansa/IntEngC1_0110.htm
its:LANSA091.CHM::/lansa/IntEngC1_0230.htm

Transformation	Maps
There	are	several	enhancements	to	the	Transformation	Map	support	in	this
version	of	LANSA	Composer:

Parameter	Classes	are	automatically	inferred	for	a	Transformation	Map
during	the	Prepare	step.
LANSA	Composer	creates	better	human-readable	Transformation	Map
parameter	descriptions	during	the	Prepare	step.
LANSA	Composer	is	fully	compatible	with	the	latest	(at	time	of	release)
MapForce	versions,	especially	for	"catalogued"	map	information.
Transformation	Map	Prepare	provides	better	diagnostic	information,
including	date/time	in	the	Prepare	log,	logging	the	server	JSM	instance	path,
and	access	to	the	IBM	i	server	joblog	when	run	against	LANSA	Composer
server	running	on	IBM	i.

In	addition,	if	you	update	to	the	latest	version	of	the	mapping	tool	(Altova
MapForce	version	2014	release	2),	the	following	new	capabilities	will	be
available	(relative	to	MapForce	version	2012SP1):

User-defined	component	names;
Extended	SQL-Where	functionality:	ORDER_BY;
MapForce	supports	logical	files	of	the	IBM	i	database	and	shows	them	as
views;
Support	for	SELECT	statements	with	parameters
Timeout	settings	for	web	service	function	calls	and	database	execution
Support	for	XML	wildcards	(xs:any	and	xs:anyAttribute)
Support	for	comments	and	processing	instructions	in	output	XML
Support	for	CDATA	generation	in	XML	files
User-defined	end-of-line	settings	for	output	files	(*)
Greater	control	over	the	output	of	quote	marks	surrounding	values	in	CSV
files
New	function	to	calculate	age	based	on	a	birthdate
New	functions	for	processing	and	generating	sequences
A	new	option	for	keeping	useful	connections	after	deleting	a	component
Automatic	highlighting	of	mandatory	items	in	target	components
Improved	mapping	validation	and	editing	help

its:LANSA091.CHM::/lansa/INTENGC2_0195.htm

Support	for	Informix	11.7	databases	and	extended	support	for	other
databases;

(*)	Refer	to	Changed	behaviour	for	text	output	files	in	MapForce	2013	Release
2	on	IBM	i	servers	for	important	information	on	the	impact	of	this	change	on
existing	maps	for	LANSA	Composer	running	on	IBM	i	servers.

http://www.lansa.com.au/support/notes/p0428.htm

Transaction	Document	Support
LANSA	Composer's	supplied	Transaction	Document	Processing	Framework	has
been	extended	to	better	cover	the	inbound	and	outbound	transport	operations:

For	inbound	transport,	the	supplied	"model"	processing	sequences	(*)	have
been	extended	to	include	a	call	to	a	new	TXDOC_RCV	processing	sequence
for	receiving	transaction	document	files.		That	processing	sequence,	in	turn,
is	set	up	to	delegate	to	a	processing	sequence	(modeled	as
TXDOC_RCV_TP)	that	is	specific	to	the	Trading	Partner.
For	outbound	transport,	the	supplied	"model"	processing	sequences	(*)	have
been	extended	to	include	a	call	to	a	new	TXDOC_SEND	processing
sequence	for	sending	transaction	document	files.		That	processing	sequence,
in	turn,	is	set	up	to	delegate	to	a	processing	sequence	(modeled	as
TXDOC_SEND_TP)	that	is	specific	to	the	Trading	Partner.
Trading	partner	support	has	been	extended	to	permit	the	trading	partner
specific	receive	and	send	processing	sequences	to	be	specified	individually
for	each	trading	partner	and	new	trading	partner	built-in	variables	are
provided	for	accessing	these	values.

Together,	these	changes	make	the	Transaction	Document	Processing
Framework,	as	supplied,	a	better	fit	for	accommodating	the	varied	transports
associated	with	a	range	of	trading	partners,	and	should	reduce	the	need	to
modify	the	framework	solution	for	this	purpose.
(*)	The	changes	are	to	the	supplied	processing	sequences.		Existing
implementations	will	most	usually	have	copied	the	supplied	processing
sequences	and	modified	them	to	suit	the	specific	implementation.		In	this	case,
the	existing	implementation	may	need	to	be	revised	to	take	advantage	of	this
new	support.
Other	changes	related	to	transaction	document	support	include:

The	LANSA	Composer	Document	Manager	provides	a	Resend	button	for	a
completed	outbound	transaction	document	envelope.		When	clicked,	the
completed	transaction	document	file	will	be	sent	again	to	the	trading	partner
by	means	of	executing	a	Processing	Sequence	identified	by	a	new	system
setting.		By	default,	the	supplied	TXDOC_SEND	processing	sequence	is

its:LANSA091.CHM::/lansa/IntEngC3b_0015.htm
its:LANSA091.CHM::/lansa/INTENGC2_0025.htm

used,	which	in	turn	delegates	to	the	processing	sequence	specified	for	the
Trading	Partner,	if	any.
New	*txdoc.*	built-in	variables	provide	access	to	transaction	document
envelope	attributes	in	a	Processing	Sequence.
A	new	application	program	interface	(API)	to	replicate	the	functionality	of
TXDOC_REGISTER	and	TXDOC_STATUS	customer	application	code.

System	Settings
Modifications	to	System	Settings	include:

The	Server	network	path	system	setting	has	been	renamed	to	Home	path.
A	new	value	introduced	for	Home	path	relative	to	server	provides	reliable
path	conversion	where	necessary	between	client-relative	and	server-relative
forms.

In	addition,	LANSA	Composer	now	provides	an	option	to	print	the	current
system	settings.		You	may	be	asked	to	do	this	in	the	context	of	a	support	call,	for
example.
System	Settings	now	provides	a	new	System	information	tab	that	provides
information	about	the	LANSA	run-time	environment	in	which	LANSA
Composer	is	running	on	your	LANSA	Composer	server,	including	LANSA
listener	and	JSM	port	numbers.

its:LANSA091.CHM::/lansa/IntEngC6_0015.htm

Database	Housekeeping
Changes	to	Database	Housekeeping	facilitate	the	integration	of	this	task	into
your	scheduled	operations,	extend	the	housekeeping	task	with	new	sub-tasks,
and	reduce	the	time	taken	for	the	typical	housekeeping	task	to	complete:

A	command	line	interface	is	now	provided	for	invoking	the	database
housekeeping	task	on	Windows	servers.		(Equivalent	functionality	was
already	available	for	IBM	i	servers	via	the	COMPOSER	command.)
A	new	Save	button	in	the	user	interface	permits	the	housekeeping	options	to
be	saved	without	having	to	submit	the	task.		These	two	changes	facilitate	the
integration	of	this	task	into	your	scheduled	operations.
The	database	housekeeping	task	now	optionally	includes	purging	database
records	associated	with	the	new	Audit	Trail.
The	database	housekeeping	task	now	optionally	includes	clearing	the	JSM
trace	and	temporary	files.		These	are	temporary	files	that	may	have	been
created	by	the	LANSA	Integrator	JSM	(Java	Service	Manager)	in	the	course
of	normal	operations.
LANSA	Composer	now	provides	persistent	and	more	detailed	and
informative	logging	for	database	housekeeping	tasks.		The	logs	for	each
database	housekeeping	task	are	retained	in	the	LANSA	Composer	database
and	can	be	retrieved	and	viewed	at	any	time	through	the	LANSA	Composer
client	software	by	clicking	the	History	tab.

The	database	reconcile	and	reorganize	tasks	have	now	been	separated	in	the
user	interface	such	that	each	can	be	individually	selected.
The	database	reconcile	task	is	unselected	by	default.		In	normal	operations,
this	step	should	not	be	necessary	and	excluding	it	will	significantly	reduce
the	time	to	complete	the	database	housekeeping	job.

its:LANSA091.CHM::/lansa/IntEngC6_0030.htm
its:LANSA091.CHM::/lansa/Intengc9_0485.htm
its:LANSA091.CHM::/lansa/Intengc9_0480.htm

Browsers	for	Server	Files	and	Folders
The	LANSA	Composer	client	application	now	allows	for	much	easier	and	more
reliable	selection	or	specification	of	server-side	file	and	folder	selections.		This
is	achieved	by	implementing	new	browser	windows	that	permit	the	user	to
browse	the	server	file	system	directly.

The	new	browsers	are	used	in	a	number	of	places	in	LANSA	Composer,
including:

In	the	Server	Initialization	wizard	and	in	System	Settings;
In	various	configurations	to	select	server-side	folder	and	file	locations;
To	provide	browsing	support	in	connection	with	new	Activity,
Transformation	Map	and	Processing	Sequence	Parameter	Classes	support
where	the	File	path	or	Folder	path	parameter	classes	are	used.

Other	New	and	Enhanced	Features
Amongst	other	revisions	in	this	version	of	LANSA	Composer	are:

The	FTP	configurations	user	interface	has	been	reorganized	for	better	clarity
and	simplicity.
The	FTP	configurations	and	activities	now	support	connection	timeout	and
response	timeout	values,	specified	in	milliseconds.
HTTP	Outbound	configurations	support	a	range	of	new	values	for	the
Content	Type	that	applies	to	the	file	being	sent	by	the	HTTP_POST	activity.	
The	new	values	include	the	special	value	Automatic	that	specifies	that	the
activity	should	determine	an	appropriate	content	type	according	to	the	file
extension	of	the	file	being	sent.		Automatic	is	now	the	default	value	for	new
HTTP	configurations.
The	HTTP_GET	and	HTTP_POST	activities	will	now	retrieve	the	response
content	file,	if	requested,	even	when	an	error	status	is	returned	by	the	remote
HTTP	server.		This	enables	the	solution	to	receive	and	examine	the	response
content	to	determine	the	details	of	the	error,	if	applicable.
A	new	Test	button	in	Database	Configurations	provides	a	means	to	test	the
database	configuration	using	the	currently	entered	database	configuration
values	(not	necessarily	saved	values)	-	in	a	similar	fashion	to	that	already
provided	for	FTP	and	some	other	configuration	types.
The	Processing	Sequence	Editor	now	supports	drag-and-drop	re-ordering	of
the	processing	sequence	items.
The	Processing	Sequence	Editor	previously	had	an	option	to	show	tree	lines
that	more	clearly	show	the	relationship	between	processing	sequence	items.	
This	option	is	now	on	by	default,	and	the	tree	lines	are	also	available	in	the
Processing	Sequence	Log	window	and	in	printing	support	for	both	the
Processing	Sequence	and	the	Processing	Sequence	Log.
Improvements	to	processing	sequence	run-time	performance	have	been
achieved	by	eliminating,	reducing	or	deferring	some	types	of	database
operations	and	by	other	processing	changes.
Several	groups	of	new	built-in	variables	provide	access	to:

-	pending	controlled	end	request	(*SHUTDOWN)
-	transaction	document	envelope	attributes;
-	trading	partner	send	and	receive	processing	sequences;

-	lists	of	trading	partners	by	trading	partner	groups;
-	timezone	description	and	UTC	offset	values.
LANSA	Composer	now	provides	a	web	service	(SOAP)	interface	for
running	Processing	Sequences.
When	connected	to	an	IBM	i	server,	the	LANSA	Composer	client	now
provides	direct	access	to	the	IBM	i	joblog	for	the	associated	LANSA	server
job	from	the	client	user	interface	in	several	places,	including	from	the	Tools
menu,	from	the	Transformation	Maps	Prepare	Log	window	and	from	the
Processing	Sequence	Log	display	(when	shown	in	connection	with
processing	sequence	runs	initiated	through	the	LANSA	Composer	client).
On	IBM	i	servers,	the	COMPOSER	REQUEST(ABOUT)	command	will
now	list	the	LANSA	listener,	HTTP	listener	and	JSM	port	numbers	in	use.

1.	Introducing	LANSA	Composer
1.1	What	Is	LANSA	Composer?
1.2	Functional	Components
1.3	Getting	Started	With	LANSA	Composer

1.1	What	Is	LANSA	Composer?
LANSA	Composer	is	a	design	and	execution	platform	for	integrating	business
activities	involving	transport	and	transformation	of	data	along	with	custom
business	processing.	It	satisfies	these	three	key	requirements	of	a	business
process	integration	(BPI)	solution:

Transport
LANSA	Composer	provides	ready-to-use	Activities	supporting	widely-used
transport	protocols	including:

FTP	Inbound	(file	transfer	protocol)
FTP	Outbound	(file	transfer	protocol)
HTTP	Inbound	(hypertext	transfer	protocol)
HTTP	Outbound	(hypertext	transfer	protocol)
POP3	for	inbound	e-mail	(post	office	protocol)
SMTP	for	outbound	e-mail	(simple	mail	transfer	protocol)
Inbound	and	outbound	via	message	brokering	systems	such	as	IBM	MQ
Series

To	use	these	transport	Activities	with	LANSA	Composer,	you	simply	need	to
provide	configurations	that	specify	the	variable	information	required	to	connect
or	communicate	with	the	other	parties	involved.	There	is	no	programming
involved.
Using	the	supplied	transport	Activities,	you	can	exchange	business	information
such	as	orders	and	invoices	with	other	parties,	including	external	trading
partners	and	internal	business	units,	using	agreed	standards-based	protocols	as
appropriate	for	each	party.

Transformation
LANSA	Composer	includes	powerful	visual	mapping	that	allows	you	to	define
how	to	map	data	between	disparate	formats	including:

XML	documents
EDI	documents
Microsoft	Excel	2010	(XLSX)	files
Text	files	(for	example	comma-separated	values)

Web	service	functions
A	wide	range	of	databases,	including	IBM	DB2	Universal	Database	for
IBM	i.

The	maps	created	with	the	visual	mapping	tool	can	be	directly	integrated	into
your	business	processes	along	with	transport	and	other	Activities.
With	the	transformation	capabilities	you	can	transform	business	information
between	external	and	internal	formats	as	it	is	received	or	before	it	is	sent.	In	this
way	you	can	readily	extract	information	from	corporate	databases	to	send	as,
say,	XML	conforming	to	a	schema	agreed	with	your	trading	partner.	Similarly
you	can	transform	in-coming	XML	documents	and	write	them	directly	to	your
corporate	database	for	further	processing	by	your	existing	applications.

Process	Orchestration
LANSA	Composer	provides	a	simple	but	powerful	process	orchestration
capability	that	allows	you	to	combine	transport,	transformation	and	custom
business	processing	with	processing	Directives	that	provide	conditional,
iterative	and	other	capabilities.	A	complete	business	process	consisting	of	a
number	of	steps	may	be	defined,	executed	and	managed	as	a	single	processing
unit	of	work,	without	programming.

Also	see
1.1.1	Extensible	And	Customizable
1.1.2	Who	Can	Use	LANSA	Composer?
1.1.3	What	Can	I	Do	With	LANSA	Composer?
1.1.4	Transaction	Document	Processing	with	LANSA	Composer
1.1.5	How	Is	LANSA	Composer	different	to	LANSA	Integrator?
	

1.1.1	Extensible	And	Customizable
LANSA	Composer	can	be	extended	and	customized	to	accommodate
organization-specific	requirements.	A	simple	interface	is	provided	to	enable	you
to	"wrap"	your	specific	business	logic	as	Activities	that	may	then	be	combined
with	transport	and	transformation	provided	by	Composer	into	a	single	business
process.

1.1.2	Who	Can	Use	LANSA	Composer?
LANSA	Composer	is	designed	to	be	used	by	business	analysts	to	design	and
implement	solutions	to	integration	problems.	It	is	not	necessary	to	write
program	code	to	use	Composer	in	solutions	that	involve	standard	transport	and
transformation	activities.	The	implementation	of	the	transport	and
transformation	activities	and	the	orchestration	of	them	in	business	processes	is
all	accomplished	using	highly-visual	graphical	interfaces.
LANSA	Composer	can,	however,	be	extended	to	encompass	custom	business
processing.	Doing	so	will	require	Activity	processes	to	be	written	to	encapsulate
the	custom	processing.	Once	these	are	defined	in	Composer	as	Activities,	they
are	orchestrated	in	the	same	way	as	supplied	transport	activities	and
transformations.
So,	LANSA	Composer	lends	itself	well	to	an	environment	in	which	the
implementation	of	the	custom	business	processing	can	be	delegated	to	a	services
development	group,	while	the	combination	and	orchestration	of	the	Activities	is
performed	by	business	analysts.

1.1.3	What	Can	I	Do	With	LANSA	Composer?
LANSA	Composer	enables	you	to:

Exchange	business	information	and	transactions	in	common	and	agreed
formats	with	trading	partners,	internal	business	units	and/or	other	business
applications	on	the	same	or	different	computing	platforms.
Transform	business	information	between	XML,	EDI,	Microsoft	Excel	2007
(XSLX),	text	and	database	formats,	including	the	capability	to	invoke	web
services,	whether	they	be	publicly	available,	published	by	trading	partners	or
within	your	organization	for	internal	consumption
Orchestrate	the	transport,	transformation	and	other	activities,	pass	variable
data	between	them	and	apply	conditional	and	structural	Directives	to	create
multi-step	business	processes	that	can	be	executed	and	managed	as	a	single
unit

These	things	can	be	entirely	accomplished	in	a	graphical,	drag-and-drop
environment	by	business	analysts	without	having	to	write	program	code.

A	Simple	Example
Consider	the	simple	stereotypical	scenario	illustrated	in	the	diagram:

In	this	scenario,	your	organization	is	required	to	periodically	retrieve	orders	in
an	agreed	XML	format	from	your	trading	partner	using	file	transfer	protocol
(FTP).	More	than	one	order	document	may	be	retrieved.	Your	application	must
process	each	order	document	to	transform	it	from	the	XML	format	to	your	in-
house	received	orders	database.
Such	a	scenario	might	be	very	easily	implemented	in	LANSA	Composer	in
three	steps:

1.Create	an	FTP	configuration	that	specifies	the	addressing	details	and
security	credentials	necessary	to	communicate	with	the	trading	partner	via
FTP.

2.Create	a	Transformation	Map	that	specifies	how	to	map	from	the	orders	in
XML	format	to	the	internal	database.

3.Create	a	Processing	Sequence	that	combines	the	supplied	FTP_INBOUND
Activity	with	a	loop	that	executes	the	Transformation	Map	for	each
received	order	document.

In	LANSA	Composer,	the	finished	Processing	Sequence	for	this	simple	scenario
might	look	like	this:

This	Processing	Sequence	may	then	be	invoked	from	your	own	applications	or
scheduled	to	run	periodically	through	your	job	scheduler	of	choice	as	described
in	Run	a	Processing	Sequence.

Extend	The	Example	Scenario
You	can	take	and	extend	this	scenario	in	many	ways	and	still	accomplish	the
result	using	LANSA	Composer:

Add	custom	business	processing	to	validate	and	accept	the	incoming	orders
Generate	acknowledgement	documents	in	an	agreed	XML	format	and	FTP
them	to	the	trading	partner
Implement	similar	processes	for	other	types	of	business	information	such	as
inventory	and	price	enquiries,	purchasing,	invoicing	and	more
Use	other	transport	protocols	such	as	HTTP,	IBM	MQ	Series	or	e-mail	or
implement	different	FTP	configurations	for	different	trading	partners
Design	business	processes	that	perform	such	processing	repetitively	for	a
range	of	trading	partners

its:LANSA091.CHM::/lansa/intengc3_0035.htm

1.1.4	Transaction	Document	Processing	with	LANSA	Composer
LANSA	Composer's	transport,	transformation	and	process	orchestration	features
provide	an	infinitely	flexible	and	adaptable	framework	that	can	be	used	to	solve
almost	any	type	of	business	process	integration	challenge.
However,	many	typical	business	process	integration	requirements	follow	a
similar	and	familiar	pattern	involving	the	exchange	of	transaction	documents,
usually	in	standard	forms	such	as	XML	or	EDI,	with	known	Trading	Partners
and	transformations	between	those	transaction	document	formats	and	an	internal
application	database.
Because	this	pattern	is	so	typical,	LANSA	Composer	provides	a	ready-made
framework	solution	that	you	can	easily	adapt	and	extend	to	encompass	the
exchanges	and	document	types	that	are	specific	to	your	organization.		As	a	part
of	this	framework	solution,	LANSA	Composer	provides	a	transaction	document
registration	database	and	the	LANSA	Composer	Document	Manager	application
that	can	be	used	to	monitor	and	manage	your	inbound	and	outbound	document
flows.
LANSA	Composer's	transaction	document	processing	framework	and	the
LANSA	Composer	Document	Manager	can	support	virtually	any	type	of
transaction	document	exchange.		However,	particular	support	is	provided	for
EDI	X12	and	EDIFACT	transaction	document	formats.

1.1.5	How	Is	LANSA	Composer	different	to	LANSA	Integrator?
LANSA	Integrator	is	a	developer	toolkit	that	enables	integration	of	application-
to-application	(A2A)	and	business-to-business	(B2B)	transactions	through	XML
and	Java	services.	Most	uses	of	LANSA	Integrator	require	a	developer	to	write
program	code	to	access	the	integration	services.
LANSA	Composer	uses	LANSA	Integrator	services.
While	performing	very	similar	processes,	LANSA	Composer	is	designed	for	use
by	business	analysts	without	the	need	to	employ	programming	skills.	A	business
analyst,	with	no	programming	skills,	can	compose	business	processes	consisting
of	combinations	of	standard	transport,	transformations	and	other	activities.
Many	of	the	supplied	Activities	(including	supplied	transport	activities)	and	the
run-time	execution	of	Transformation	Maps	make	use	of	LANSA	Integrator
services	but,	using	Composer,	no	program	code	is	required	to	take	advantage	of
them.
LANSA	Integrator	is	designed	to	handle	high-volume,	high-throughput
scenarios,	so	a	custom	application	using	LANSA	Integrator	services	may	offer
the	best	performance	characteristics	for	that	type	of	application.

1.2	Functional	Components
The	major	functional	components	of	LANSA	Composer	correspond	to	the	key
integration	requirements	of	transport,	transformation	and	orchestration.	They
are:

1.2.1	Activities
1.2.2	Transformation	Maps
1.2.3	Processing	Sequences

Other	components	of	LANSA	Composer	support	and	extend	these	to	provide
greater	implementation	flexibility:

1.2.4	Configurations
1.2.5	Trading	Partners

1.2.1	Activities
Activities,	along	with	Transformation	Maps,	implement	specific	business
functions	that	are	executed	by	LANSA	Composer	Processing	Sequences.
Examples	of	Activities	include:

Performing	a	file	transfer	via	FTP	(file	transfer	protocol)
Zipping	a	file	or	folder
Deleting	a	file

LANSA	Composer	is	supplied	with	a	set	of	Activities	that	provide	transport,	file
management	and	zip/unzip	capabilities.	Refer	to	Supplied	Activities	for	a
complete	list	and	description	of	the	supplied	Activities.
You	can	use	LANSA	Composer	straight	away	with	the	supplied	Activities.	If
required,	you	can	extend	LANSA	Composer	with	custom	Activities	of	your
own.

its:LANSA091.CHM::/lansa/intengc2_0085.htm

1.2.2	Transformation	Maps
Transformation	maps	define	how	to	transform	or	map	data	between	disparate
formats	including	XML,	EDI,	Microsoft	Excel	2010	(XSLX),	text	files,	web
service	functions	and	database	tables.
Typically	most	of	your	structured	corporate	data	is	held	in	database	tables,	while
information	is	exchanged	with	external	parties	in	open	formats	such	as	XML
documents.		Commonly	you	will	have	the	need	to	transform	data	between	your
internal	database	table	representation	and	external	exchange	formats	such	as
XML	that	you	agree	with	your	trading	partners.		Examples	of	transformation
requirements	include:

Receiving	incoming	sales	orders	in	agreed	XML	format	and	mapping	to
the	received	orders	database
Generating	invoices	in	agreed	XML	format	directly	from	your	accounts
receivable	database	tables
Transferring	information	between	internal	applications	(perhaps	from
different	vendors)	that	are	not	directly	integrated.

Transformation	Maps	created	using	LANSA	Composer	can	be	directly
integrated	into	your	business	processes	along	with	transport	and	other
Activities.

1.2.3	Processing	Sequences
Processing	sequences	allow	you	to	combine	Activities	and	transformations	with
processing	directives	such	as	loops	and	conditions	to	complete	a	business
process.	Combining	these	elements	with	variable	transport	and	database
configurations	and	trading	partner	information	permits	great	flexibility	to
accomplish	complex	multi-step	processing	without	programming.
Processing	sequences	are	defined	visually	in	LANSA	Composer	using	the
Processing	Sequence	Editor.	A	typical	Processing	Sequence	might	be	visualized
in	the	editor	like	this:

Refer	to	Processing	Sequences	for	further	information.

its:LANSA091.CHM::/lansa/intengc3_0010.htm

1.2.4	Configurations
Configurations	encapsulate	the	variable	information	required	for	common
transport	Activities	and	for	database	connections.	Typically	configurations
encapsulate	information	such	as:

Source	and	target	identification	and	addressing	and
Security	credentials

By	encapsulating	the	implementation-specific	information	in	configurations,
LANSA	Composer	allows	a	single	Activity	and	often	a	single	Processing
Sequence	to	be	used	with	multiple	variations	of	a	business	process	(such	as	for
multiple	trading	partners).
Specific	configuration	types	support	the	supplied	transport	activities.	They	are:

FTP	Configurations
HTTP	Configurations
SMTP	Server	Configurations
SMTP	Mail	Details
POP3	Configurations
SMS	Configurations
Messaging	Configurations

In	addition,	the	special	type	of	Database	Configuration	is	provided	to	support
encapsulating	database	details	for	databases	used	with	Transformation	Maps.

1.2.5	Trading	Partners
Trading	partners	are	an	optional	feature	of	LANSA	Composer	that	can	be	used
to	link	variable	information	such	as	folders,	configurations	and	Transformation
Maps	with	specific	trading	partners.
Trading	partners	are	particularly	useful	for:

Organizing	files	into	directories	(typically	for	inbound	and	outbound
transport),
Sharing	common	activities	and	Processing	Sequences	with	different	source
and	target	locations	by	using	variable	inputs	associated	with	the	trading
partner
Performing	iterative	processing	for	multiple	trading	partners

1.3	Getting	Started	With	LANSA	Composer
System	Requirements
Refer	to	LANSA	Composer	Requirements.

Installation
Installation	instructions	are	in	Install	LANSA	Composer.
As	part	of	the	install	process,	you	need	to	set	your	required	paths,	defaults	and
codes	as	described	in	Administration	and	Housekeeping.
Once	you	have	LANSA	Composer	installed	and	configured,	you	are	ready	to
1.3.1	Start	LANSA	Composer.

its:LANSA091.CHM::/lansa/intengc9_0020.htm
its:LANSA091.CHM::/lansa/intengc9_0010.htm
its:LANSA091.CHM::/lansa/intengc6_0010.htm

1.3.1	Start	LANSA	Composer
To	start	the	LANSA	Composer	design	environment,	select	the	LANSA
Composer	shortcut	that	was	installed	on	your	start	menu.		LANSA	Composer
displays	the	Connect	to	LANSA	Composer	server	window.

Usually	you	simply	need	to	type	your	User	name	and	Password,	type	or	select
the	server	with	which	you	want	to	work	(if	more	than	one	server	is	available	to
you)	and	click	the	Connect	button.		In	some	cases,	you	may	need	to	enter
additional	connection	attributes	the	first	time	you	connect	to	your	LANSA
Composer	server.		Refer	to	Connect	to	LANSA	Composer	Server	for	more
information	about	this	window.
If	you	are	the	first	client	to	connect	to	your	LANSA	Composer	server,	you	will
see	the	LANSA	Composer	Server	Initialization	window.		Refer	to	Step	1.
LANSA	Composer	Server	Initialisation	for	information	if	required.
Once	you	have	successfully	connected,	the	LANSA	Composer	Start	Here
window	is	displayed.

its:LANSA091.CHM::/lansa/intengc9_0120.htm

The	Getting	Started	window	provides	quick	access	to	some	of	the	main	areas	of
the	LANSA	Composer	design	environment,	and,	in	particular,	to	those	areas	that
you	may	wish	to	access	as	you	are	getting	started	with	the	software.

Connect	to	LANSA	Composer	Server
The	Connect	to	LANSA	Composer	server	window	lets	you	specify	all	the
information	necessary	to	make	a	connection	to	your	LANSA	Composer	server.	
In	many	cases	you	need	enter	only	your	password	and	click	Connect.		However
the	first	time	you	connect	to	your	LANSA	Composer	server,	you	may	need	to
enter	additional	information	in	order	to	complete	the	connection	successfully.
The	Connect	to	LANSA	Composer	server	window	is	divided	into	three	sections.	
The	LANSA	Composer	server	and	Server	connection	attributes	sections	may	be
collapsed	and	hidden	when	not	in	use	or	expanded	when	required	by	clicking
the	up	or	down	arrow	buttons.		LANSA	Composer	will	remember	the	state	of
the	window	and	the	values	used	when	you	last	connected	(except	the	password)
and	present	the	window	the	same	way	the	next	time	you	start	LANSA
Composer.
Refer	to	the	following	headings	for	more	information:

Type	the	User	name	and	Password
Type	or	Select	the	LANSA	Composer	server
Specify	Connection	Attributes
Specify	Windows	Server	Database	Connection	Attributes
Define	Additional	Servers	Using	the	LANSA	Communications
Administrator

In	the	event	of	difficulties	or	errors	completing	the	connection	to	your	LANSA
Composer	server,	please	refer	to	the	following:

Troubleshooting	Connection	Errors

Type	the	User	name	and	Password
In	the	User	and	Password	fields,	you	should	type	the	user	name	and	password
assigned	to	you	for	connecting	to	your	LANSA	Composer	server.
Alternatively,	you	can	check	the	box	labeled	Use	Windows	credentials	to	use	a
Windows	user	profile	and	password	when	connecting	to	the	LANSA	Composer
server.		The	server	must	have	been	configured	for	Single	Sign	On	and	the	user
enrolled	first.

If	you	connect	to	more	than	one	LANSA	Composer	server,	you	may	need	to	use
a	different	user	name	and/or	password	for	each	server.
When	connecting	to	a	new	default	installation	of	LANSA	Composer	server	on
IBM	i,	you	can	usually	use	the	following	credentials:

User LICPGMLIB	(the	default	user	name	is	the	same	as	the	<program-
library>	name	in	which	LANSA	Composer	server	was	installed	on
IBM	i)

Password Lansa

Note:		If	you	wish	to	create	and	use	your	own	user	profiles	to	connect
to	your	IBM	i	server,	refer	to	Creating	Further	User	Profiles	for	Use
with	LANSA	Composer.

When	connecting	to	a	new	default	installation	of	LANSA	Composer	server	on
Windows,	you	can	usually	use	the	User	Id	(and	its	password)	that	you	entered	in
the	User	Id	for	Visual	LANSA	for	Web	Configuration	during	the	LANSA
Composer	Server	forWindows	installation.		For	example:

User PCXUSER

Password PCXUSER

Note:		You	may	need	to	grant	permissions	to	the	database	for	the	user
in	the	database	management	system	(for	example,	MS	SQL	Server)	on
the	Windows	server	computer.		This	applies	particularly	if	the
database	connection	is	using	trusted	connections	and	you	are	not
separately	specifying	a	database	user	and	password	in	the	Server
exceptional	arguments	entry	box.

Type	or	Select	the	LANSA	Composer	server
If	the	Server	connection	name	and	Partition	fields	are	not	shown,	expand	the
dialog	by	clicking	this	line:

its:LANSA091.CHM::/lansa/intengc9_0715.htm

When	you	start	LANSA	Composer	for	the	first	time,	the	COMPOSER01
connection	entry	is	pre-selected	for	you	to	connect	to	the	LANSA	Composer
server	system	whose	name	and	port	number	you	specified	during	installation	of
the	LANSA	Composer	client.

If	LANSA	Composer	server	is	installed	in	a	partition	other	than	the	one	shown,
type	the	correct	partition	name.		LANSA	Composer	initially	shows	the	default
partition	name,	LIC.
If	you	wish	to	connect	to	a	different	LANSA	Composer	server	system,	do	one	of
the	following:

Select	the	desired	Server	connection	name	from	the	drop-down	list	(if	you
have	connected	this	LANSA	Composer	client	to	the	desired	server	before)
and	change	the	partition	name	if	necessary
Type	the	name	of	a	different	Server	connection	name	that	is	defined	in	the
LANSA	Communications	Administrator	and	change	the	partition	name	if
necessary.		If	the	connection	is	successful,	the	new	Server	connection	name
will	be	added	to	the	drop-down	list	the	next	time	you	start	LANSA
Composer.		(You	can	remove	entries	that	you	no	longer	use	by	clicking	the
remove	button	in	the	Connection	attributes	section	of	the	window.)

Refer	to	Define	Additional	Servers	Using	the	LANSA	Communications
Administrator	for	more	information.

Specify	Connection	Attributes
If	the	Server	connection	attributes	fields	are	not	shown,	expand	the	dialog	by
clicking	this	line	(you	will	need	to	expand	the	LANSA	Composer	server	section
first	if	it	is	not	already	expanded):

The	Server	connection	attributes	section	lets	you	specify	values	that	affect	how
LANSA	Composer	connects	to	the	LANSA	Composer	server.

In	most	cases	you	will	not	need	to	change	values	of	these	fields.		One	notable
exception,	however,	is	when	connecting	to	a	LANSA	Composer	server	for
Windows,	you	may	need	to	specify	values	in	the	Server	exceptional	arguments
field	that	identify	the	server	database/DSN	(and	credentials	if	applicable)	used
by	the	LANSA	Composer	server.		These	values	depend	on	choices	made	when
LANSA	Composer	server	is	installed.

Refer	to	LANSA	documentation	topic	X_Run	Parameter	Summary	for
complete	information	concerning	all	the	possible	keywords	and	arguments
values	you	can	use	in	the	Server	exceptional	arguments	field.
Refer	to	Specify	Windows	Server	Database	Connection	Attributes	below
for	more	information	concerning	the	database	connection	keywords	and
arguments	you	might	need	to	specify	to	successfully	connect	to	a	LANSA
Composer	server	on	Windows
If	in	doubt,	refer	to	your	system	administrator	for	the	correct	values	to	use
for	your	system.

Specify	Windows	Server	Database	Connection	Attributes

NOTE:		This	section	concerns	connections	to	a	LANSA	Composer
server	on	Windows.		If	you	are	connecting	to	LANSA	Composer
server	on	an	IBM	i	server	you	do	not	need	to	read	this	section.

The	following	example	shows	default	and	typical	values	used	in	the	Server
exceptional	arguments	field	when	connecting	to	a	LANSA	Composer	Windows
server	that	uses	an	MS	SQL	Server	database:

NOTE:		In	the	above	example	no	database	user	credentials	were
supplied	because	the	MS	SQL	Server	database	was	configured	to	use
Windows	authentication.		Depending	on	your	configuration,	you	may
need	to	specify	DBUS=	and	PSWD=	keywords	and	values	in	the
Server	exceptional	arguments	string	to	provide	database	user
authentication	credentials.

In	many	cases,	the	default	values	shown	will	be	sufficient	to	successfully
connect	to	your	LANSA	Composer	server	database.		However,	in	exceptional
cases,	you	may	need	to	alter	the	Server	exceptional	arguments	database	values
to	suit	your	particular	server	configuration.
The	server	exceptional	arguments	that	most	usually	are	used	to	connect	to	the
LANSA	Composer	server	database	are	listed	in	the	table.		You	should	refer	to
LANSA	documentation	topics	X_Run	Parameter	Summary	and	DBID,	DBUT,
DBII	and	DBIT	Parameters	for	more	complete	information.
Keyword Description Examples
DBID= Specifies	the	database/DSN	id	of	the

LANSA	Composer	database	on	the
Windows	server.

Usually	you	can	use	the	special	value
*SERVER	to	specify	that	the
database/DSN	name	is	specified	the
x_lansa.pro	file	on	the	server,	which
can	be	found	in	the
.\X_WIN95\X_LANSA	folder	of	the
Windows	server	application
installation.

DBID=*SERVER

or

DBID=LCDB01

DBII= Specifies	the	database/DSN	id	of	the DBII=*SERVER

LANSA	Composer	database	containing
the	LANSA	internal/repository
database	tables.		Normally,	this	should
be	the	same	as	the	DBID=	value.

(NOTE:		LANSA	Composer	does	use
certain	LANSA	internal	tables	for
messages,	locking	and	other	purposes.	
Certain	LANSA	Composer	operations
will	not	succeed	if	the	DBII=	value	is
not	specified	correctly.)

or

DBII=LCDB01

DBUT=
DBIT=

These	keywords	may	be	provided	to
specify	the	type	of	the	database
specified	by	the	DBID=	and	DBII=
keywords,	respectively.

The	default	value	is	MSSQLS	(for	a
Microsoft	SQL	Server	database).		If
your	LANSA	Composer	Windows
server	database	is	of	another	type	you
may	specify:

ORACLE
SQLANYWHERE

DBUT=SQLANYWHERE
DBIT=	SQLANYWHERE

DBUS=
PSWD=

These	keywords	may	be	provided	to
specify	the	user	name	and	password	for
the	database	login.

If	your	MS	SQL	Server	database	is
configured	to	use	integrated	login,	you
usually	do	not	need	to	specify	these
keywords	(but	instead,	you	must	ensure
that	the	user	is	configured	in	the
database	to	enable	the	integrated	login
to	succeed).

In	other	cases,	the	DBUS=	and/or

DBUS=DBA	PSWD=SQL

PSWD=	keywords	may	already	be
specified	in	the	x_lansa.pro	file	on	the
server,	which	can	be	found	in	the
.\X_WIN95\X_LANSA	folder	of	the
Windows	server	application
installation.		If	this	is	the	case,	you
usually	do	not	need	to	specify	them
again	here.

	
What	follows	is	additional	information	concerning	the	way	in	which	the	server
exceptional	arguments	affecting	the	database	connection	are	used	in	LANSA
Composer:

When	the	LANSA	Composer	client	starts	(and	before	it	connects),	the
DBID=	value	is	initially	*NONE	and	the	other	values	have	LANSA	default
values	(usually).		This	is	appropriate	for	the	execution	of	the	client	software,
but	it	usually	means	that	the	DBID=	keyword	must	be	explicitly	specified	(at
least	as	DBID=*SERVER)	for	the	connection	to	the	LANSA	Composer
server.

Note	that	the	DBID=	keyword	value	may	be	affected	by	the	contents	of	the
LANSA	Composer's	dxstart.cfg	file,	which	can	be	found	in	the
.\X_WIN95\X_LANSA\Execute	folder	of	the	client	application	installation.

(An	exception	to	the	preceding	occurs	for	the	default	installation	of	the
offline	client	used	as	part	of	the	LANSA	Composer	Windows	server
installation	-	in	this	case,	the	dxstart.cfg	file	is	usually	pre-configured	with
database	values	appropriate	for	direct	access	by	the	offline	client.)
For	the	server	connection,	LANSA	Composer	pre-fills	the	Server
exceptional	arguments	with	the	following	defaults:

DBID=*SERVER	DBII=*SERVER

In	most	cases	this	is	appropriate	and	will	cause	the	LANSA	Composer	server
connection	to	use	values	specified	in	the	x_lansa.pro	file	on	the	server,
which	can	be	found	in	the	.\X_WIN95\X_LANSA	folder	of	the	Windows
server	application	installation.
Depending	on	your	specific	configuration,	the	DBII=	keyword	and	argument

value	can	be	important	for	the	successful	operation	of	LANSA	Composer
and	should	usually	be	specified	in	addition	to	DBID=	(they	should	usually
have	the	same	value).

LANSA	Composer	does	use	certain	LANSA	internal	tables	for	messages,
locking	and	other	purposes.		Certain	LANSA	Composer	operations	will	not
succeed	if	the	DBII=	value	is	not	specified	correctly.
Depending	on	your	specific	configuration	and	choices,	the	contents	of	the
x_lansa.pro	file	on	the	server	may	be	crucial	to	the	success	of	the	LANSA
Composer	Windows	server	connection.		If	you	use	the	special	value
*SERVER	for	any	of	the	keywords,	or,	in	some	cases,	if	you	omit	the
keywords,	the	applicable	values	will	be	retrieved	from	the	x_lansa.pro	file
on	the	server.		The	x_lansa.pro	file	can	be	found	in	the
.\X_WIN95\X_LANSA	folder	of	the	Windows	server	application	installation.

	
The	following	table	shows	example	values	for	Server	exceptional	arguments
when	connecting	to	the	specified	databases.		You	will	need	to	alter	these	to	suit
your	database	or	DSN	names,	system	configuration	and	environment.		You
should	refer	to	LANSA	documentation	of	the	X_RUN	parameters	for	more
information.
MS	SQL
Server

DBID=*SERVER	DBII=*SERVER

ORACLE DBID=LX_LANSA	DBUT=ODBCORACLE
DBUS=PCXUSER	PSWD=PCXUSER

Sybase	SQL
Anywhere

DBID=LX_LANSA	DBUT=SQLANYWHERE
DBUS=PCXUSER	PSWD=PCXUSER

Define	Additional	Servers	Using	the	LANSA	Communications
Administrator
If	you	have	more	than	one	installation	of	LANSA	Composer	server,	you	can
create	new	Server	connection	name	entries	in	the	LANSA	Communications
Administrator	for	each	server.		Once	each	is	defined	in	the	LANSA
Communications	Administrator,	you	can	choose	the	server	to	connect	to	when
starting	LANSA	Composer	as	described	in	Type	or	Select	the	LANSA
Composer	server.
To	define	additional	servers	using	the	LANSA	Communications	Administrator,

follow	these	steps:
1.		Fully	expand	the	Connect	to	LANSA	Composer	server	window,	if	not	already
expanded.

2.		Click	the	Open	LANSA	Communications	Administrator	button.
3.		In	the	LANSA	Communications	Administrator	window,	click	New.

4.		Complete	the	fields	in	the	Host	Route	Information	window	as	follows:

Partner
LU	Name

Type	a	symbolic	name	that	you	wish	to	use	as	the	new	Server
connection	name.		For	example,	you	might	use	COMPOSER02
as	the	name	for	your	second	LANSA	Composer	server.

Fully
Qualified
Name	of
the	Host

Type	the	DNS	name	or	the	IP	address	of	the	server	system
containing	the	required	LANSA	Composer	server	installation.	
For	example,	SERVER02	or	192.168.192.2.

Connection
Identifier

Type	the	port	number	used	for	the	LANSA	listener	in	the
required	LANSA	Composer	server	installation.		For	example,
4545.

5.		Click	OK	to	save	the	new	Host	Route	Information	details	and	then	close	the
LANSA	Communications	Administrator	window.

6.		In	the	Connect	to	LANSA	Composer	server	window,	type	the	new	Server
connection	name	using	the	name	you	specified	in	the	Partner	LU	Name
above.		Then	type	the	partition	name	and	any	further	server	connection
attributes	necessary	to	connect	to	that	LANSA	Composer	server.

7.		Type	the	User	and	Password	that	apply	to	the	new	Server	connection	name
and	click	Connect.

If	the	connection	is	successful,	the	new	Server	connection	name	will	be
available	in	the	drop-down	list	the	next	time	you	start	LANSA	Composer.

Troubleshooting	Connection	Errors
Common	errors	that	may	occur	during	the	connection	to	the	LANSA	Composer
server	are	discussed	under	the	following	headings:

Could	Not	Logon	to	LANSA	Composer	server
Could	Not	Connect	to	LANSA	Composer	server
LANSA	Composer	Database	Access	Not	Available
Possible	LANSA	Composer	Server	Configuration	Problem

Could	Not	Logon	to	LANSA	Composer	server
When	you	attempt	to	connect	to	your	LANSA	Composer	server,	you	may	see	a
message	like	this:

Usually	this	error	simply	means	that	the	user	name	and	password	you	typed	at
the	Connect	to	LANSA	Composer	server	window	are	not	correct	for	the	server
system.
You	should	check	the	following:

Did	you	type	the	user	name	correctly?		Is	the	user	name	correct	for	the	server
system?		If	necessary	check	with	your	system	administrator.
Did	you	type	the	password	correctly?		On	some	systems,	the	user	name
and/or	password	are	case-sensitive.		If	this	is	the	case,	check	that	you	typed
the	details	in	the	correct	case	and	that	the	Caps	Lock	is	not	on.

On	some	systems,	especially	on	IBM	i	servers,	the	user	may	become	disabled
for	various	reasons	-	including	repeated	failed	logon	attempts.		Check	on	the
server	system	that	this	has	not	occurred	for	the	user	with	which	you	are	trying	to

connect.

Could	Not	Connect	to	LANSA	Composer	server
When	you	attempt	to	connect	to	your	LANSA	Composer	server,	you	may	see	a
message	like	this:

If	you	have	not	connected	using	the	specified	details	before,	then	you	should
first	check:

that	the	Server	connection	name	specified	matches	the	Partner	LU	name	of
an	entry	in	the	LANSA	Communications	Administrator.
that	the	host	route	information	specified	in	the	LANSA	Communications
Administrator	is	correct,	especially	the	Fully	qualified	name	of	the	host
(address)	and	the	Connection	identifier	(port	number).

Refer	to	Define	Additional	Servers	Using	the	LANSA	Communications
Administrator	for	more	information.
If	you	are	still	having	difficulties,	check	that:

the	communications	link	is	operational	(is	your	computer	connected	to	the
network?)
the	LANSA	listener	for	the	LANSA	Composer	server	system	is	active	on	the
server.

For	information	on	starting	the	LANSA	listener	for	LANSA	Composer	on	an
IBM	i	server,	refer	to:

Subsystems	and	Jobs
For	information	on	starting	the	LANSA	listener	for	LANSA	Composer	on	a
Windows	server,	refer	to:

its:LANSA091.CHM::/lansa/intengc9_0075.htm

Services	used	by	the		LANSA	Composer	Windows	Server

LANSA	Composer	Database	Access	Not	Available
When	you	attempt	to	connect	to	your	LANSA	Composer	server,	you	may	see	a
message	like	this:

This	message	means	that	the	LANSA	Composer	client	successfully	established
the	communications	link	to	the	LANSA	Composer	server	but	not	the	connection
to	the	LANSA	Composer	server	database.		You	must	correct	the	condition	that
prevented	the	database	connection	in	order	to	complete	the	connection	to	the
LANSA	Composer	server.
Some	possible	causes	of	this	error	may	be:

The	credentials	used	to	connect	to	the	database	are	not	correct.		If	you	are
using	an	MS	SQL	Server	database	with	integrated	login	configured	and	you
have	not	provided	database	credentials	by	means	of	the	DBUS=	and	PSWD=
keywords	of	the	Server	exceptional	arguments,	then	this	may	mean	that	the
user	has	not	been	configured	in	the	MS	SQL	Server	database	to	allow	the
integrated	login.
The	database	connection	has	not	been	correctly	specified	in	either	the	Server
exceptional	arguments	or	the	x_lansa.pro	file	on	the	server.
The	database	is	not	presently	accessible	or	the	server-side	service	or	process
that	provides	the	database	access	has	not	been	started.

For	more	information	refer	to	the	following	topics:
Specify	Connection	Attributes
Specify	Windows	Server	Database	Connection	Attributes

its:LANSA091.CHM::/lansa/intengc9_0575.htm

Possible	LANSA	Composer	Server	Configuration	Problem
When	you	attempt	to	connect	to	your	LANSA	Composer	server,	you	may	see	a
message	like	this:

This	message	means	that	the	LANSA	Composer	client	successfully	established
the	communications	link	to	the	LANSA	Composer	server	and	was	able	to	access
the	LANSA	Composer	server	database,	but	it	could	not	exchange	BLOB	data
with	the	server	or	perform	database	operations	involving	BLOB	data.		You	must
correct	the	condition	that	prevented	the	BLOB	operation	in	order	to	complete
the	connection	to	the	LANSA	Composer	server.
(BLOBs	are	"binary	large	objects".		LANSA	Composer	uses	BLOB	support	to
save	and	access	file	attachments	for	LANSA	Composer	definitions	of	all	types.	
In	particular,	this	support	is	also	used	to	catalogue	Transformation	Map
definition	(*.mfd)	and	implementation	(*.jar)	files	when	various	operations	are
performed	on	Transformation	Maps.)
The	most	usual	cause	of	this	error	is	that	the	designated	server	temporary	file
location	used	for	sending	and	receiving	the	BLOB	files	is	incorrect	or	the	user
on	the	server	does	not	have	the	necessary	permissions.		For	example,	in	a
default	configuration,	the	LANSA	Composer	server	may	be	attempting	to	use
C:\Windows\Temp	as	the	temporary	file	location	for	BLOB	files,	but	if	the	user
on	the	server	does	not	have	the	necessary	permissions	to	create	and/or	read
folders	and	files	in	this	location	then	the	BLOB	operations	will	fail.		If	this	is
the	issue,	there	are	two	suggested	remedies:

Grant	the	necessary	permissions	to	the	designated	server	temporary	file

location	used	for	sending	and	receiving	the	BLOB	files;	OR
Designate	an	alternate	server	temporary	file	location	(with	the	necessary
permissions)	to	be	used	for	sending	and	receiving	the	BLOB	files.		One	way
to	do	this	is	to	add	a	line	specifying	the	'LPTH='	parameter	to	the
x_lansa.pro	file	in	the	LANSA	Composer	Server	installation.

The	x_lansa.pro	file	may	be	found	in	the	x_win95\x_lansa	directory	of	the
LANSA	Composer	Server	installation	–	for	example,
C:\Program	Files\LANSA\LANSA	Composer	Server\x_win95\x_lansa.		To
modify	this	file,	open	it	in	a	plain	text	editor,	such	as	notepad.exe.
In	order	to	designate	C:\Temp	as	the	alternate	server	temporary	file	location,
you	could	add	a	line	like	this	to	the	x_lansa.pro	file,	save	your	changes	and	then
stop	and	restart	the	LANSA	Composer	listener	service.
LPTH=C:\Temp

	

1.3.2	Composer	Quick	Tour
LANSA	Composer	presents	a	consistent	interface	in	which	many	of	the	main
user	interface	elements	are	common	across	most	of	the	major	functions	of	the
program.	The	following	screen	picture	shows	the	LANSA	Composer	window
when	Processing	Sequences	are	selected	in	the	Navigator.

Like	most	Windows	applications,	LANSA	Composer	offers	menus	and	tool	bar
buttons	near	the	top	of	the	window	for	quick	access	to	functions	of	the	program
or	to	perform	common	editing	operations.	At	the	bottom,	there	is	a	status	bar
that	displays	messages	and	status	information,	including	the	connected	state.	In
the	main	body	of	the	window,	you	will	usually	find:

Navigator
Instance	Lists
Command	Handlers

Refer	also	to	the	following	headings:
Locating	and	Selecting	Items	in	the	Instance	Lists
	

Navigator
The	Navigator	provides	access	to	the	major	functional	areas	of	LANSA
Composer.	You	can	simply	click	on	an	item	in	the	tree	to	switch	to	working	in
that	area	of	LANSA	Composer.

Note:	Some	items	in	the	Navigator	may	not	be	displayed	due	to	access
restrictions.	Refer	to	Configure	User	Access	for	more	information.

its:LANSA091.CHM::/lansa/intengc6_0105.htm

Instance	Lists
The	Instance	Lists	show	items	of	the	type	selected	in	the	Navigator	(for
example,	Processing	Sequences)	and	allow	you	to	select	an	item	to	work	with.

For	more	information	about	using	the	Instance	Lists,	refer	to	the	following
heading:

Locating	and	Selecting	Items	in	the	Instance	Lists

Command	Handlers
The	command	handler	area	is	where	you	work	with	an	item	after	selecting	it	in
one	of	the	instance	lists.	Typically	you	will	work	with	the	Details	for	the	item
but	you	can	choose	different	commands	for	the	item	using	the	context	menus,
toolbar	buttons	or	the	tabs	across	the	top	of	the	command	handler	area.		When
the	focus	is	in	the	command	handler	area,	you	can	also	use	Alt+PageUp	and
Alt+PageDown	keyboard	shortcuts	to	quickly	switch	between	the	available
tabs.

Note	that	some	types	of	items	display	a	lot	of	information.	In	some	cases
(depending	on	screen	and	window	dimensions)	you	may	have	to	scroll	the
command	handler	area	to	see	all	the	information.

Locating	and	Selecting	Items	in	the	Instance	Lists
The	Instance	Lists	and	the	associated	Find	support	provide	a	great	deal	of
flexibility	to	find	items	that	you	wish	to	work	with.		This	section	provides	an
overview	of	the	features	in	the	following	sections:

Organization	of	the	Instance	Lists
Selecting	a	Current	Item	to	Work	With
Pinning	or	Unpinning	the	Instance	Lists
Finding	Items	Using	the	Quick	Find	Box
Finding	items	Using	the	Find	window
Using	Working	Lists

Organization	of	the	Instance	Lists
Several	lists	are	available	(depending	on	the	definition	type	selected	in	the
Navigator)	that	are	organized	in	various	ways,	providing	a	very	flexible	means
of	locating	and	selecting	the	items	with	which	you	wish	to	work.		For	example:

The	Recent	tab	shows	items	(of	the	current	type)	of	recent	interest	in	two
groups:
-	the	Recently	visited	group	shows	items	that	you	have	recently	displayed	in
the	LANSA	Composer	client	at	this	computer.		Whenever	you	make	an	item
the	"current"	item,	the	item	will	move	to	the	top	of	this	group.
-	the	Recently	modified	group	shows	items	that	have	been	recently	created	or
modified	on	the	LANSA	Composer	server	(that	is,	at	any	client	computer).
The	Working	lists	tab	shows	one	or	more	working	lists	of	items	that	you	can
build	yourself	by	adding	items	that	appear	on	other	tabs.
When	you	use	the	Find	or	Quick	Find	features,	the	matching	items	will	be
shown	in	the	Find	results	tab.		(The	Find	results	tab	is	not	shown	until	you
perform	a	find.)
The	All	<items>	tab	shows	all	the	available	items	in	alphabetical	groups.

Depending	on	the	type	of	definition	you	are	working	with,	additional	tabs	may
be	available.		For	example,	when	working	with	Activities,	an	Activities	by	group
tab	is	shown.
While	the	input	focus	is	on	the	instance	lists,	you	can	press	Alt+PageUp	and
Alt+PageDown	keyboard	shortcuts	to	quickly	switch	between	the	available
tabs.		Of	course,	you	can	also	click	on	the	tabs	with	your	mouse.

Selecting	a	Current	Item	to	Work	With
The	item	that	is	currently	selected	(the	"current"	item)	is	identified	in	the
instance	lists	in	bold	and	with	a	different	(right-arrow)	icon.

Note	that	the	"current"	item	may	not	always	be	present	in	the	particular	instance
list	you	are	working	with.		In	this	case	it	is	not	specifically	identified	in	that	list,
but	you	can	still	identify	it	by	looking	at	the	bar	above	the	command	handler
area.

To	work	with	an	item	that	you	have	located	in	the	Instance	Lists,	you	need	to
make	it	the	"current"	item.
By	default	you	do	this	by	simply	selecting	it	(click	it	with	the	mouse	or	use	the
up	and	down	arrow	keys	until	the	desired	item	is	select).
If	you	prefer,	you	can	configure	LANSA	Composer	such	that	an	item	becomes
the	"current"	item	only	after	you	select	it	and	press	Enter,	or	after	you	double-
click	the	item.		To	do	this,	right-click	in	the	instance	lists,	select	Options	from
the	popup	menu,	and	then	select	Set	current	item	immediately	to	select	or
deselect	this	option.

Either	way,	when	you	make	a	new	item	the	current	item,	information	relating	to
the	item	will	be	shown	in	the	command	handler	area.	

Pinning	or	Unpinning	the	Instance	Lists
When	they	are	first	shown,	the	Instance	Lists	will	be	pinned	open.		This	means
they	permanently	occupy	space	above	the	command	handlers.		In	this	state,	you
can	resize	the	instance	lists	by	clicking	and	dragging	in	the	space	between	the
instance	lists	and	the	command	handler	area.
The	pinned	open	state	is	indicated	by	this	button	in	the	tool	buttons	to	the	left	of
the	instance	lists:

If	you	wish,	you	can	unpin	the	instance	lists	to	free	up	more	space	on	your
screen	for	information	shown	in	the	command	handler	area.		To	do	this,	click
the	pin	button	(or	use	the	corresponding	context	menu	item).		The	instance	lists
will	be	removed	from	the	screen,	leaving	only	this	visible:

In	this	unpinned	state,	you	can	temporarily	display	the	instance	lists	at	any	time
by	using	the	Ctrl+F11	keyboard	shortcut	or	by	clicking	this	button:

When	you	display	the	instance	lists	in	an	unpinned	state,	they	will	be
automatically	hidden	again	as	soon	as	the	input	focus	moves	away	from	the
instance	lists,	for	example,	if	you	click	in	the	Navigator	or	in	the	command
handler	areas	or	if	you	switch	to	another	application.
To	pin	the	instance	lists	open,	click	the	pin	button	again.

Finding	Items	Using	the	Quick	Find	Box
If	you	know	part	or	all	of	the	name	or	description	of	an	item	you	wish	to	work
with,	you	can	find	it	very	quickly	using	the	Quick	Find	box.
To	access	the	Quick	Find	box,	use	the	Ctrl+Shift+F	keyboard	shortcut	or	click
in	the	Quick	Find	box:

Type	some	text	that	you	expect	to	find	in	the	names	or	descriptions	of	the	items
you	wish	to	locate	and	press	Enter.		Any	matching	items	will	be	displayed	on
the	Find	results	tab.

If	only	one	item	matched,	then	it	will	be	automatically	selected	as	the	"current"
item	and	the	details	will	be	shown	in	the	command	handler	area.

Finding	items	Using	the	Find	window
You	can	use	the	Find	window	to	find	items	using	a	more	extensive	set	of	search
criteria	than	just	the	name	and	description.
To	access	the	Find	window,	use	the	Ctrl+	F	keyboard	shortcut	or	click	this
button::

The	Find	window	provides	a	text	search	similar	to	Quick	Find,	but	also
provides	a	range	of	other	search	criteria	in	groups	that	you	can	expand	and
collapse	according	to	your	requirements	and	interest.

The	groups	of	search	criteria	vary	a	little	depending	on	the	type	of	definition
you	are	working	with.		For	example,	when	working	with	Activities,	a	group	is
provided	to	allow	you	to	find	activities	that	belong	to	a	specified	activity	group.
If	you	specify	more	than	one	search	criterion,	they	must	all	be	satisfied	in	order
for	an	item	to	be	matched.
When	you	have	specified	your	search	criteria,	click	the	Find	button.		Any
matching	items	will	be	displayed	on	the	Find	results	tab.

Using	Working	Lists
You	can	build	your	own	static	working	lists	of	items	of	interest	to	you.		These
working	lists	are	stored	only	on	your	computer.
To	add	a	selected	item	(or	items)	to	a	working	list,	click	this	button	in	the	tool
buttons	to	the	left	of	the	instance	lists:

LANSA	Composer	lets	you	choose	an	existing	working	list	to	add	the	item(s)
to,	or	you	can	specify	the	name	for	a	new	working	list.

Note:		The	working	list	names	are	common	across	all	LANSA
Composer's	definition	types.		So	if	you	create	a	new	working	list	name
for	Activities,	then	the	same	working	list	name	will	be	added	to	the
Working	lists	tab	for	Trading	Partners	and	other	definition	types.

To	display	your	working	lists	and	the	items	contained	in	them,	click	the	Working
lists	tab:

For	further	options	to	maintain	your	working	lists,	including	options	to	remove
items	and	delete	lists,	use	the	context	(right-click)	menu	at	the	Working	lists	tab.
	

Working	with	Definition	Items
Using	LANSA	Composer	you	can	create,	maintain,	and	delete	any	number	of
definitions	of	the	following	types	according	to	your	application's	needs:

All	the	major	definition	types	comprising	Activities,	Trading	Partners,
Transformation	Maps	and	Processing	Sequences;
All	configuration	types	(for	example,	FTP	configurations	and	HTTP
configuration)
Export	Lists
Document	types	and	standards
Event	definitions

To	work	with	any	of	these	definition	types,	simply	click	the	entry	in	the
Navigator	for	the	desired	type.
The	Instance	Lists	for	that	type	will	be	shown.		Refer	to	Locating	and	Selecting
Items	in	the	Instance	Lists.
Each	definition	type	is	described	in	more	detail	elsewhere	in	this	guide,	but
many	of	the	ways	in	which	you	work	with	your	definitions	are	common	to	all
definition	types.		These	are	briefly	described	in	this	section	under	the	following
headings:

Create	a	New	Definition
Copy	or	Delete	Definitions
Review	or	Change	a	Definition
Print	Definitions	and	Lists	of	Definitions
Review	Cross	references
Maintain	Attachments
Define	or	Review	Notes
Review	Audit	Details

Create	a	New	Definition
Use	the	Ctrl+N	shortcut	or	click	the	New	button	on	the	toolbar	to	create	a	new
definition.	Then	complete	the	details	for	the	new	definition	as	described
elsewhere	in	this	guide	for	the	definition	type.		Remember	to	click	Save	before
switching	elsewhere	in	LANSA	Composer	to	save	the	details	of	your	new
definition.

Copy	or	Delete	Definitions
You	can	copy	or	delete	one	or	more	definitions	at	a	time.		Select	one	or	more
items	in	the	Instance	Lists	and	then	click	the	Copy	or	Delete	buttons	or	use	the
provided	menu	items	or	shortcuts.
LANSA	Composer	will	show	a	list	of	the	selected	items	and	wait	for	you	to
confirm	the	copy	or	delete	request.		For	a	copy	request,	you	must	type	a	new
name	for	each	item	to	be	copied	before	proceeding.

(If	no	item	is	selected	in	the	current	instance	list	when	you	request	Copy	or
Delete,	LANSA	Composer	will	prompt	you	to	copy	or	delete	the	"current"	item
–	that	is	the	item	for	which	details	are	presently	shown	in	the	command	handler
area).

NOTE:	when	you	copy	items	that	contain	security	credentials	(user
names	and/or	passwords),	LANSA	Composer	will	copy	the	user
names	but	will	not	copy	the	passwords.		You	will	need	to	revise	each
copied	definition	to	enter	the	correct	security	credentials	as	required.

Review	or	Change	a	Definition
To	work	with	an	item	that	you	have	located	in	the	Instance	Lists,	simply	select	it
(depending	on	instance	list	options	chosen,	you	may	need	to	press	Enter,	or
double-click	the	item).		Information	relating	to	the	item	will	be	shown	in	the
command	handler	area.
Often	the	Details	command	handler	tab	will	be	presented	first,	showing	the
basic	identifying	information	and	definition	for	the	item,	but	other	command
tabs	may	be	shown.		The	command	handler	tabs	that	are	common	to	all
definition	types	are	briefly	described	under	the	following	headings:

Maintain	Attachments

Define	or	Review	Notes
Review	Audit	Details

In	addition,	other	command	handler	tabs	may	be	available	depending	on	the
type	of	definition	with	which	you	are	working.		Refer	to	the	description	for	the
definition	type	elsewhere	in	this	guide	for	specific	information.
While	the	input	focus	is	in	the	command	handler	area,	you	can	press
Alt+PageUp	and	Alt+PageDown	keyboard	shortcuts	to	quickly	switch	between
the	command	handler	tabs	available	for	the	definition	type	you	are	working
with.		Of	course,	you	can	also	click	on	the	tabs	with	your	mouse.

Print	Definitions	and	Lists	of	Definitions
You	can	print	the	definitions	of	most	definition	types	in	LANSA	Composer,
including:

Activities
Transformation	Maps
Processing	sequences
All	types	of	transport	and	database	Configurations

You	have	several	printing	options:
1.		To	print	the	definition	of	an	item	with	which	you	are	currently	working,	click
the	Print	button	in	the	toolbar	or	use	the	Ctrl+P	keyboard	shortcut.

2.		To	print	the	definitions	of	several	items	at	once,	select	the	items	in	the
Instance	Lists,	click	the	Print	button	on	the	Instance	List	and	then	select	Print
all	selected	definitions	from	the	popup	menu.

3.		To	print	just	a	list	of	items	shown	on	the	current	Instance	Lists	tab,	click	the
Print	button	on	the	Instance	List	and	then	select	Print	this	list	from	the	popup
menu.

Depending	on	the	current	print	options	(which	can	be	changed	using	the	Print
Options	command	from	the	File	menu),	the	output	is	shown	in	the	Presentation
Viewer	window	(as	shown	below),	or	in	print	preview	mode,	printed
immediately	or	shown	in	your	web	browser.
When	the	Presentation	Viewer	window	is	open,	you	can	use	the	menu
commands	and	toolbar	buttons	to	change	the	format	and/or	level	of	detail
shown,	and	to	save,	print	or	preview	the	output	or	to	open	the	output	in	your
web	browser.

	

Review	Cross	references
LANSA	Composer	provides	comprehensive	cross	reference	information	for
most	definition	types	in	LANSA	Composer,	including:

Activities

Transformation	Maps
Processing	sequences
All	types	of	transport	and	database	Configurations

Using	the	cross	reference	information	provided	by	LANSA	Composer,	you	can
quickly	identify:

Other	definitions	that	the	subject	definition	uses	or	refers	to.		For	example,
for	a	Processing	Sequence,	this	would	include	Activities,	Transformation
Maps	and	configurations	that	are	used	in	the	Processing	Sequence.
Other	definitions	that	use	or	refer	to	the	subject	definition.		For	example,	for
an	FTP	configuration,	this	would	include	Trading	Partners	and	Processing
Sequences	that	use	the	FTP	configuration.

NOTE:	only	static	references	in	a	Processing	Sequence	are	cross-
referenced.		If	a	Processing	Sequence	refers	to	an	Activity,
Transformation	Map	or	a	configuration	using	a	variable	or	a	built-in
variable,	then	such	references	are	resolved	at	run-time	and	cannot	be
cross	referenced.

To	review	cross	reference	information	for	a	definition	such	as	a	Processing
Sequence:
1.		Select	the	definition	type	in	the	Navigator.
2.		Use	the	Instance	Lists	to	locate	and	select	the	item	whose	cross	references
you	wish	to	review.

3.		Click	the	Cross	references	tab	to	display	the	cross	references	window.

You	can	print	or	refresh	the	cross	reference	information	by	clicking	the
appropriate	buttons.
You	can	switch	directly	to	one	of	the	listed	items	by	double-clicking	the	item	or
by	selecting	it	and	pressing	Enter	or	clicking	the	Go	to	button.

Maintain	Attachments
You	can	attach	files	to	most	definition	types	in	LANSA	Composer,	including:

Activities
Transformation	Maps
Processing	sequences
All	types	of	transport	and	database	Configurations

You	can	attach	any	kind	of	file	that	you	can	access	through	the	file	system	of
your	computer.		LANSA	Composer	will	hold	the	file	attachment(s)	in	its
database,	permanently	associated	with	the	specific	definition	to	which	you
attached	it.		When	you	export	and	import	your	LANSA	Composer	definitions,
the	attachments	will	be	included	(subject	to	export	and	import	options).
You	might	use	this	feature	to	attach	such	things	as:

A	copy	of	an	XML	Schema	used	in	a	Transformation	Map;
A	description	of	operating	procedures	relating	to	a	Processing	Sequence;
Contact	information	and/or	pictures	or	copies	of	trading	agreements	with	a
Trading	Partner.

To	review,	add,	change	or	delete	attachments	associated	with	a	definition	such
as	a	Processing	Sequence:
1.		Select	the	definition	type	in	the	Navigator.
2.		Use	the	Instance	Lists	to	locate	and	select	the	item	whose	attachments	you
wish	to	work	with.

3.		Click	the	Attachments	tab	to	display	the	attachments	window.

					Remember	to	Save	your	changes	when	you	are	finished	and	before	switching
elsewhere	in	LANSA	Composer.

Define	or	Review	Notes
You	can	create	notes	for	most	definition	types	in	LANSA	Composer,	including:

Activities
Transformation	Maps
Processing	sequences
All	types	of	transport	and	database	Configurations

Notes	can	be	used	to	expand	upon	the	short	description	of	an	item	to	further
describe	its	intended	purpose	and	use.	For	example	you	can	describe	the
function	of	a	custom	Activity	and	the	purpose	and	requirements	for	its
parameters.
The	notes	can	later	be	reviewed	to	remind	you	or	others	of	when	and	how	to	use
the	item.	Notes	for	Activities,	Processing	Sequences,	Transformation	Maps	and
Configurations	can	be	displayed	when	editing	Processing	Sequences	in	the
Processing	sequence	editor.
Notes	are	supplied	for	most	of	the	Activities,	Configurations	and	other
definitions	that	are	shipped	with	LANSA	Composer.

To	review	or	change	the	notes:
1.		Select	the	definition	type	in	the	Navigator.
2.		Use	the	Instance	Lists	to	locate	and	select	the	item	for	which	you	wish	to
access	the	notes.

3.		Click	the	Notes	tab	or	the	Notes	button	on	the	toolbar	to	display	the	notes
window.

					The	notes	window	displays	the	existing	notes,	if	any.	You	can	edit	the	notes
as	required.

					Remember	to	Save	your	changes	when	you	are	finished	and	before	switching
elsewhere	in	LANSA	Composer.

Note:	You	can	display	but	you	cannot	change	the	notes	for	Activities
supplied	with	LANSA	Composer.

Review	Audit	Details
Most	definition	types	in	LANSA	Composer	have	audit	information	that	records
by	whom	and	when	the	item	was	changed	and	when	other	significant	operations
were	performed,	such	as	importing	and	exporting	the	item.
To	review	the	audit	information	for	an	item:
1.		Select	the	definition	type	in	the	Navigator
2.		Use	the	Instance	Lists	to	locate	and	select	an	item.

3.		Select	the	Audit	tab	or	the	Audit	button	on	the	toolbar	to	display	the	audit
information	window.

The	audit	information	window	displays	the	following	information:
Internal	Identifier
You	assign	a	human-readable	identifier	(name)	to	definition	items	such	as
Activities	and	Configurations.	But	internally,	LANSA	Composer	assigns	a
unique	internal	identifier	to	help	to	ensure	that	components	can	be	transferred
between	systems	irrespective	of	whether	the	user-assigned	identifiers	exist	on
the	target	system.		For	most	purposes,	you	do	not	need	to	know	or	use	this
internal	identifier.
Audit	events
Shows	a	list	of	the	changes	and	significant	events	for	this	item.
	

You	can	also	interrogate	and	view	the	audit	trail	across	all	definition
types	and	items	using	the	Audit	Trail	option	under	Administration	and
Housekeeping	in	the	Navigator.

2.	Define	Integration	Components
2.1	Activities
2.2	Activities	by	Group
2.3	Configurations
2.4	Trading	Partners
2.5	Transformation	Maps

2.1	Activities
Activities	encapsulate	individual	units	of	work	or	business	processes	that	can	be
combined	with	Transformations	in	a	Processing	Sequence.	Activities,	along
with	Transformations,	implement	the	business	functions	that	are	executed	by
LANSA	Composer	Processing	Sequences.	Examples	of	Activities	include:

Performing	a	file	transfer	via	FTP	(file	transfer	protocol)
Zipping	a	file	or	folder
Deleting	a	file

Two	key	aspects	of	the	definition	of	an	Activity	support	their	implementation
and	use	along	with	other	Activities	and	Transformations	to	orchestrate	a
complete	business	process:

Activity	ProcessorThis	is	a	LANSA	re-useable	part	that	implements	the
function	of	the	Activity.	LANSA	Composer	invokes	the	processor	as
required	in	order	to	execute	the	Activity.	The	Activity	Processor	is
provided	for	all	supplied	Activities.	If	you	extend	LANSA	Composer	with
your	own	Activities,	you	will	write	their	Activity	Processors	according	to
your	requirements.
Activity	parameters	
The	inbound	and	outbound	parameters	for	an	Activity	provide	the	variable
information	necessary	for	an	Activity	to	complete	its	work.	More	than	that
though,	they	provide	the	communication	between	different	Activities	and
Transformations	that	are	orchestrated	together	in	a	single	Processing
Sequence.	Thus,	the	output	(outbound	parameters)	from	one	Activity
might	provide	the	input	(inbound	parameters)	for	the	next.

LANSA	Composer	is	supplied	with	a	set	of	ready-to-use	Activities	that	provide
transport,	file	management	and	zip/unzip	capabilities.	Refer	to	2.2.17	All
Supplied	Activities	for	a	complete	list	and	description	of	the	supplied	Activities
or	to	2.2	Activities	by	Group	for	a	quick	reference	list	of	the	Activities	you	may
need	for	a	particular	task.
You	can	use	LANSA	Composer	straight	away	with	the	supplied	Activities.	If
required,	you	can	extend	LANSA	Composer	with	custom	Activities	of	your
own.	Refer	to	Develop	Custom	Activities	for	LANSA	Composer	for
information	on	developing	your	own	custom	Activities.
Iterator	Activities

its:LANSA091.CHM::/lansa/intengc7_0010.htm

Iterator	Activities	are	a	special	form	of	Activity	that	can	be	used	to	perform
iterative	processing	in	a	Processing	Sequence.
It	is	possible	to	perform	iterative	processing	using	standard	Processing
Sequence	directives	such	as	LOOP,	WHILE	and	UNTIL.		Iterative	processing
performed	in	this	way	is	controlled	by:

The	extent	of	a	variable	list	(LOOP	directive)
A	conditioning	expression	(WHILE	or	UNTIL	directives)

Iterator	Activities	extend	this	capability	to	enable	iterative	processing	controlled
by	any	application-defined	data,	rule	or	condition.		When	you	add	an	Iterator
Activity	to	a	Processing	Sequence,	it	becomes	a	"block"	item	(similar	to	a
LOOP	for	example)	under	which	you	can	nest	further	Processing	Sequence
directives,	Activities	or	Transformation	Maps	that	are	to	be	executed	for	each
iteration	of	the	Iterator	Activity.
Some	of	the	Activities	supplied	with	LANSA	Composer	are	Iterator	Activities.
They	include:

FOR_EACH_CSVROW Iterate	for	each	row	in	a	CSV	file

FOR_EACH_INDEX Iterate	for	each	index	in	a	range

FOR_EACH_TXDOCO Iterate	for	each	pending	outbound	transaction	doc

You	can	extend	LANSA	Composer	with	your	own	Iterator	Activities.		Such
Iterator	Activities	might	be	driven	by	data	in	your	own	applications.		For
example,	you	might	define	and	implement	Iterator	Activities	that	iterate	for:

Each	division	in	your	organization
Each	of	your	products	in	a	specified	product	group
Each	product	delivery	scheduled	on	a	given	date

If	you	define	your	own	Iterator	Activities.	you	must	implement	the	Activity
Processor	in	a	particular	way	such	that	it	supports	the	iterative	behavior.		Refer
to	Develop	a	Custom	Activity	Processor	for	more	information.
If	there	is	any	problem	with	any	supplied	activity,	refer	to	Restore	Supplied
Definitions	for	information	on	how	to	restore	them.

its:LANSA091.CHM::/lansa/intengc7_0040.htm
its:LANSA091.CHM::/lansa/intengc4_0030.htm

2.1.1	Work	With	Activities
Using	LANSA	Composer	you	can	create,	maintain,	and	delete	Activity
definitions	according	to	your	application's	needs.
To	work	with	Activities,	expand	Definitions	in	the	Navigator	and	click
Activities.	To	find	out	how	to	locate	and	select	Activities	to	work	with,	refer	to:

Locating	and	selecting	items	in	the	Instance	Lists
For	information	on	common	tasks	associated	with	Activities	(such	as	creating,
copying,	deleting	and	printing	definitions)	refer	to:

Working	with	definition	items
For	information	on	tasks	associated	specifically	with	Activities,	refer	to	the
following	headings:

Review	or	change	2.1.3	Activity	Parameters	for	your	activity
Review	or	change	2.1.4	Activity	Groups	to	which	your	activity	is	assigned
Run	an	Activity
Display	the	Run	History	of	an	Activity

Note:	You	can	review	the	definitions	of	Activities	that	are	supplied
with	LANSA	Composer,	but	you	cannot	change	most	of	the
information.	You	cannot	delete	supplied	Activities.

Note:	If	you	create	your	own	custom	Activities,	you	must	also	supply
an	Activity	Processor	that	implements	the	custom	processing.	Refer	to
Develop	a	Custom	Activity	Processor	for	information	on	developing
your	own	custom	Activity	Processor.

Run	an	Activity
You	can	run	an	existing	Activity	directly,	without	having	to	first	create	a
Processing	Sequence	containing	the	Activity.
To	do	so,	select	the	required	item	in	the	Activities	list.	Details	of	the	selected
Activity	will	be	displayed.		Click	the	Run	button	to	run	the	activity.		LANSA
Composer	will	display	a	window	like	the	Run	Processing	Sequence	window	in
which	you	can	enter	the	input	parameter	values	for	the	activity.
Refer	to	Run	a	Processing	Sequence	from	LANSA	Composer.for	further
information	on	using	the	Run	Processing	Sequence	window.

its:LANSA091.CHM::/lansa/intengc1_0230.htm
its:LANSA091.CHM::/lansa/intengc1_0240.htm
its:LANSA091.CHM::/lansa/intengc7_0040.htm
its:LANSA091.CHM::/lansa/intengc3_0105.htm

Running	an	Activity	in	this	way	is	very	much	like	running	a	Processing
Sequence	containing	just	that	Activity.		LANSA	Composer	will	automatically
log	the	input	and	output	parameter	values	in	the	Processing	Sequence	log
(subject	to	the	logging	level	currently	in	effect).
Display	the	Run	History	of	an	Activity
To	display	available	Run	History	for	an	Activity,	select	the	required	item	in	the
Activities	list	and	select	the	Run	History	tab.	A	list	of	processing	sequence	runs
(including	direct	runs	of	the	Activity)	that	used	the	selected	Activity	will	be
displayed.
Select	an	item	and	click	the	View	button	to	display	the	Processing	Sequence	log
or	the	Print	button	to	print	the	Processing	Sequence	log	for	the	run.
If	a	prior	Processing	Sequence	run	has	ended	in	error,	you	may	be	able	to	use
the	Restart	button	to	restart	it	from	the	point	of	failure.		Refer	to	Restart	a
Processing	Sequence	Run	for	more	information.

Note:		The	completeness	of	the	Run	History	is	subject	to	the	logging
level	that	was	in	force	for	each	run.		Only	at	more	detailed	levels	of
logging	is	the	log	information	sufficient	to	identify	each	and	every
Activity	run.		In	addition,	Processing	Sequence	run	history	can	be
purged	using	the	Database	Housekeeping	function.		The	run	history
for	Processing	Sequence	runs	that	have	been	purged	is	no	longer
available.

its:LANSA091.CHM::/lansa/intengc3_0270.htm
its:LANSA091.CHM::/lansa/intengc6_0030.htm

2.1.2	Activity	Details
The	Details	tab	identifies	the	Activity	and	contains	basic	information.

ID An	identifier	to	uniquely	identify	this	Activity.
Description This	should	describe	the	Activity.
Status Active	or	Inactive.	Activities	cannot	be	used	in	a	processing

sequence	while	they	are	in	inactive	status	–	the	processing
sequence	will	end	in	error	if	it	attempts	to	use	an	activity	that	has
inactive	status.

Activity
Processor

Specifies	the	name	of	the	re-useable	part	that	implements	this
Activity.	For	a	supplied	Activity,	this	specifies	a	re-useable	part
that	is	shipped	with	LANSA	Composer.	
If	you	define	your	own	custom	Activities,	you	must	supply	your
own	Activity	Processor	that	implements	the	custom	processing
and	you	must	name	it	here.

Supplied
Activity

Yes	or	No.	You	cannot	change	this	value.	
Yes	indicates	Activities	that	are	supplied	with	LANSA
Composer.	
No	indicates	Activities	that	you	define	yourself.

Keep
Active

Yes	or	No.		Use	this	value	to	optimize	the	performance	for
Activities	that	have	a	significant	cost	of	initialization.	

Yes	indicates	the	Activity	Processor	will	normally	be	loaded	and
unloaded	once	for	each	Processing	Sequence	run.	
No	indicates	the	Activity	Processor	will	be	loaded	and	unloaded
each	time	it	is	used	in	a	Processing	Sequence.

If	you	define	your	own	Activity	Processor,	it	must	be
implemented	such	that	it	supports	this	setting,	if	used.		Refer	to
Develop	a	Custom	Activity	Processor	for	more	information.

Restartable Yes	or	No.	This	value	determines	whether	a	Processing	Sequence
run	that	fails	while	executing	this	activity	can	be	restarted	(if	it	is
otherwise	eligible).	

Yes	indicates	the	activity	can	be	restarted.	
No	indicates	that	this	activity	cannot	be	restarted.		A	Processing
Sequence	that	fails	on	this	Activity	will	not	be	eligible	to	be
restarted.	

If	you	define	your	own	Activity	Processor,	it	must	be
implemented	such	that	it	supports	this	setting,	if	used.		Refer	to
Develop	a	Custom	Activity	Processor	for	more	information.

Iterator
Activity

Yes	or	No.	This	value	signifies	whether	this	Activity	is	an
Iterator	Activity	-	a	special	form	of	Activity	that	can	be	used	to
perform	iterative	processing	in	a	Processing	Sequence.		Refer	to
2.3	Configurations	for	more	information	about	this	type	of
Activity.	

Yes	indicates	that	this	is	an	Iterator	Activity.	
No	indicates	that	this	is	not	an	Iterator	Activity.	

If	you	define	your	own	Activity	Processor,	it	must	be
implemented	such	that	it	supports	this	setting,	if	used.		Refer	to
Develop	a	Custom	Activity	Processor	for	more	information.

Supported
on

If	the	activity	processor	is	not	valid	or	supported	across	all	server
platforms	supported	by	LANSA	Composer,	you	can	check	and

its:LANSA091.CHM::/lansa/intengc7_0040.htm
its:LANSA091.CHM::/lansa/intengc7_0040.htm
its:LANSA091.CHM::/lansa/intengc7_0040.htm

uncheck	the	boxes	to	indicate	which	servers	this	activity	does
support.

2.1.3	Activity	Parameters
This	tab	lists	the	inbound	and	outbound	parameters	that	have	been	defined	for
the	Activity.	Parameters	provide	the	variable	information	necessary	for	an
Activity	to	complete	its	work.	They	also	provide	the	communication	between
different	Activities	and	Transformations	that	are	orchestrated	together	in	a
single	Processing	Sequence.	Thus,	the	output	(outbound	parameters)	from	one
Activity	might	provide	the	input	(inbound	parameters)	for	the	next.

For	each	parameter,	you	can	specify	the	following	information:

Direction Inbound,	outbound	or	both.	This	specifies	whether	the	Activity
Processor	requires	this	parameter	as	input	(using	the	GetVariable
method)	or	will	set	its	value	as	output	(using	the	PutVariable
method).

Required
or
Optional

This	applies	only	to	inbound	parameters	and	its	value	provides	a
visual	indication,	when	using	the	Activity	in	the	Processing
sequence	editor,	of	whether	the	parameter	is	required.

Parameter
Name

Specifies	a	name	for	the	parameter.	By	default,	this	will	become
the	name	of	the	corresponding	variable	in	the	variable	pool	for	a
Processing	Sequence	that	uses	this	Activity,	though	the	name	can
be	overridden	in	the	Processing	sequence	editor.

Parameter
Description

This	should	describe	the	purpose	or	use	of	the	parameter.

Parameter
Class

You	can	choose	a	class	for	the	parameter	from	the	options	shown
in	the	drop-down	list.		The	parameter	class	does	not	limit	or
validate	the	values	that	can	be	entered	for	the	parameter,	but	if
you	choose	a	class,	other	than	the	default	General,	LANSA
Composer	will	provide	appropriate	browsing	support	for	the

parameter	value	when	entered	through	the	LANSA	Composer
client	software.		For	example,	if	you	choose	Trading	Partner,
LANSA	Composer	will	automatically	support	browsing	and
selecting	from	a	list	of	defined	Trading	Partners.		Or	if	you
choose	File	path,	LANSA	Composer	will	automatically	provide
support	for	browsing	and	selecting	from	files	in	the	server	file
system.

Parameter
Is	a	List?

Yes	or	No.	If	the	Activity	Processor	references	this	parameter	as
a	list	(by	using	multiple	and	indexed	references	to	it),	you	should
set	this	value	to	Yes.	This	provides	a	visual	indication	in	the
Processing	sequence	editor	that	the	associated	variable	is	a	list.

Default
Value

If	required,	you	can	specify	a	default	value	for	the	parameter.

2.1.4	Activity	Groups
This	tab	lists	the	available	Activity	groups	–	the	groups	to	which	this	Activity
has	been	assigned	have	a	checkmark	next	to	their	name.	Activity	groups	are
used	to	group	related	Activities	so	they	can	be	easily	located.	You	can	define
your	own	groups	in	addition	to	or	instead	of	the	groups	supplied	with	LANSA
Composer.

Here	you	can	assign	Activities	to	Activity	groups	or	remove	them	from	Activity
groups.	You	can	do	this	both	for	supplied	Activities	and	for	custom	Activities
that	you	define	yourself.
To	add	an	Activity	to	an	Activity	group,	check	the	box	next	to	the	desired
group.	To	remove	an	Activity	from	an	Activity	group,	uncheck	the	box.
Remember	to	click	Save	before	switching	elsewhere	in	LANSA	Composer.

2.2	Activities	by	Group
LANSA	Composer	is	supplied	with	a	range	of	ready-to-use	Activities	that
perform	transport,	file	management	and	other	tasks.
These	Activities	are	supplied	complete,	including,	of	course,	the	Activity
Processors.	However	you	may	need	to	create	one	or	more	Configurations	for
use	with	the	transport	Activities.	Refer	to	each	Activity's	description	for	details.
The	supplied	Activities	should	not	be	changed.	Future	upgrades	to	LANSA
Composer	may	completely	replace	the	supplied	Activities,	overwriting	any
changes	you	may	make.	If	you	wish	to	adapt	the	supplied	Activities	for	your
own	purposes,	you	should	create	your	own	copy	of	the	Activity	definition	and
the	Activity	Processor	and	adapt	them	to	your	needs.
Refer	to	the	list	of	2.2.17	All	Supplied	Activities
or
refer	to	the	following	quick	reference	lists	of	functionally-related	activities:

2.2.1	Design,	Test	and
Debug

2.2.6	Iterator	activities 2.2.11	Terminal	Server
Activities

2.2.2	Email 2.2.7	Messaging
Transport

2.2.12	Transaction	Document
Processing

2.2.3	File	Management 2.2.8	Processing 2.2.13	Transformations

2.2.4	FTP	Transport
Activities

2.2.9	Spooled	File
Management

2.2.14	Transport

2.2.5	HTTP	Transport
Activities

2.2.10	SQL	Database
Activities

2.2.15	Variable	manipulation

	 	 2.2.16	Zip	Activities

Some	Activities	from	previous	versions	of	LANSA	Composer	have	been
deprecated	in	this	version.		Refer	to	2.2.18	Deprecated	Activities	for
information	on	deprecated	Activities	and	suggested	alternatives.

2.2.1	Design,	Test	and	Debug

Activity	ID Description

FOR_EACH_VAR Iterate	for	each	processing	sequence	variable

LOGLIST Creates	entries	in	the	processing	sequence	log	that
contain	a	variable	list's	values.

LOGVARIABLE Creates	an	entry	in	the	processing	sequence	log	that
contains	a	variable's	value.

NULL This	activity	does	nothing	but	can	be	useful	as	a
placeholder	during	the	design	of	your	processing
sequence.

	

2.2.2	Email

Activity	ID Description

MAIL_RECEIVE Retrieves	a	single	email	message	from	the	mail
server.

MAIL_RECEIVEALL Retrieves	multiple	email	messages	for	a	user	from	the
mail	server.

MAIL_SEND Sends	an	email	by	SMTP.

SMS_SEND Send	an	SMS	message	to	a	mobile	number	using	an
email	service	provided	by	a	third-party	SMS	provider

	

2.2.3	File	Management

Activity	ID Description

BASE64_DECODE Base64	decode	the	contents	of	a	specified	file.

BASE64_ENCODE Base64	encode	the	contents	of	a	specified	file.

COPY_FILE Copies	a	file	from	one	directory	to	another	using	the
file	names,	source	directory	and	the	target	directory.

DELETE_FILE Deletes	a	flat	file	from	a	directory	using	the
provided	file	name	and	full	path.

DIRECTORY_LIST Lists	the	contents	of	a	directory.

FOR_EACH_TXTLIN Iterate	for	each	line	in	a	text	file.

FOR_EACH_OBJECT Iterate	for	each	object	in	an	IBM	i	server	library

HASH_FILE Generate	a	hash	value	for	a	specified	file

LOAD_PSVSET Load	processing	sequence	variables	from	a	PSV
file.

MOVE_FILE Moves	a	file	from	one	directory	to	another	using	the
file	names,	source	directory	and	the	target	directory.

PATHMAKE Constructs	a	file	path	from	folder	path	and	file
name.

PATHSPLIT Splits	a	file	path	into	its	constituent	components.

QUERY_CCSID Returns	the	IBM	i	CCSID	for	a	specified	file

RENAME_FILE Renames	a	file.

SAVE_PSVSET Save	processing	sequence	variables	to	a	PSV	file.

SYSTEM_COMMAND Executes	an	operating	system	command.

TEXT_SUBSTITUTE Reads	a	skeleton	text	file	and	replaces
%%parm.parmeter%%	references	in	the	text	with
the	current	parameter	value	and	writes	the	expanded
text	file.

WAIT_FILESREADY Cache	operations	for	files	waiting	for	"ready"

WATCH_DIRECTORY Watch	a	directory	for	new	or	changed	files

XML_SPLIT Split	XML	document	file.

XML_QUERY Query	value(s)	in	an	XML	document	file.

XML_VALIDATE Validate	an	XML	document	file.

XSL_TRANSFORM Executes	an	XSL	transformation

ZIP_DIRECTORIES Zips	a	list	of	directories	and	places	the	contents	in	a
zip	archive.

ZIP_FILES Zips	a	list	of	files	and	places	them	in	a	zip	archive.

ZIP_LIST Lists	the	contents	of	a	zip	archive.

ZIP_UNZIP Lists	the	contents	of	a	zip	archive.

	

2.2.4	FTP	Transport	Activities

Activity	ID Description

FTP_COMMANDLIST Connects	to	the	FTP	host	specified	in	the	FTP
Configuration	and	then	executes	FTP	commands
from	a	command	list	file.

FTP_DIRLIST List	all	the	available	files	in	a	remote	directory	as
specified	by	the	FTP	configuration..

FTP_INBOUND Retrieves	a	list	of	files	from	a	remote	host	using
FTP.

FTP_OUTBOUND Transfers	files	from	the	local	machine	to	a	remote
host	by	FTP.

FTP_SCRIPT Execute	an	FTP	script	using	the	native	IBM	i5/OS
FTP	client

	

2.2.5	HTTP	Transport	Activities

Activity	ID Description

HTTP_GET Retrieves	a	document	from	an	HTTP	server.

HTTP_INBOUND Handles	an	inbound	HTTP	message	and	saves	it	to	a
specific	directory.

HTTP_POST
Sends	data	to	an	HTTP	server	and/or	receives	response
data	from	the	server.

	

	

2.2.6	Iterator	activities

Activity	ID Description

FOR_EACH_CSVROW Iterate	for	each	row	in	a	CSV	file

FOR_EACH_INDEX Iterate	for	each	index	in	a	range

FOR_EACH_OBJECT Iterate	for	each	object	in	an	IBM	i	server	library

FOR_EACH_TXDOCO Iterate	for	each	pending	outbound	transaction	doc

FOR_EACH_TXDOCT Iterate	for	each	transaction	set	(message)	registered
for	a	transaction	document

FOR_EACH_TXTLIN Iterate	for	each	line	in	a	text	file

FOR_EACH_VAR Iterate	for	each	processing	sequence	variable

LOAD_PSVSET Load	processing	sequence	variables	from	a	PSV
file.

WATCH_DIRECTORY Watch	a	directory	for	new	or	changed	files

WATCH_DTAQ Watch	a	data	queue	for	new	entries

WATCH_MSGQ Watch	a	message	queue	for	new	messages

	

2.2.7	Messaging	Transport

Activity	ID Description

DTAQ_CLEAR Clear	a	named	data	queue

DTAQ_RECEIVE Receive	data	from	a	named	data	queue

DTAQ_SEND Send	data	to	a	named	data	queue

MSG_RECEIVE Receives	a	message	from	a	supported	message	brokering
system	such	as	IBM	MQ	Series.

MSG_SEND Sends	a	file	through	a	supported	message	brokering
system	such	as	IBM	MQ	Series.

MSGQ_RECEIVE Receive	a	message	from	a	message	queue

MSGQ_SEND Send	a	message	to	a	message	queue

WATCH_DTAQ Watch	a	data	queue	for	new	entries

WATCH_MSGQ Watch	a	message	queue	for	new	messages

	

2.2.8	Processing

Activity	ID Description

BLANKCONCAT Concatenates	one	or	more	strings,	removing	trailing
blanks	and	inserting	a	single	blank	between	each
string.

CALCULATE Perform	a	simple	arithmetic	calculation.

CALL_3GL Calls	an	RPG,	COBOL	or	other	3GL	program	on
IBM	i	servers.

CALL_FUNCTION Calls	a	LANSA	function.

CALL_JAVA Calls	a	Java	program.

CLEARLIST Clears	a	variable	list.

CLEARVARIABLE Clears	a	variable.

COMPOSER_RUN Run	a	LANSA	Composer	Processing	Sequence

CONCAT Concatenates	one	or	more	strings,	removing	trailing
blanks	from	each.

COUNTLIST Counts	the	entries	in	a	variable	list.

FIND_TPMAP Find	linked	transformation	map(s)	for	a	trading
partner

GET_DTAARA Read	a	value	from	a	data	area

JSM_RECLAIM Reclaim	LANSA	Integrator	JSM	resources.

JSM_SCRIPT Execute	a	LANSA	Integrator	JSM	script.

LOAD_PSVSET Load	processing	sequence	variables	from	a	PSV	file.

LOGLIST Creates	entries	in	the	processing	sequence	log	that
contain	a	variable	list's	values.

LOGUSERINFO Creates	an	impromptu	entry	in	the	processing
sequence	log.

LOGVARIABLE Creates	an	entry	in	the	processing	sequence	log	that

contains	a	variable's	value.

LOWERCASE Converts	uppercase	characters	to	lowercase.

NEXTNUMBER Generates	the	next	number	in	a	series.

NOTIFYEVENT Trigger	an	event	notification

PUT_DTAARA Write	a	value	to	a	data	area

RANDOMNUMBER Generates	a	pseudo-random	number.

SAVE_PSVSET Save	processing	sequence	variables	to	a	PSV	file.

SLEEP Suspend	processing	for	a	specified	time	interval

SUBSTITUTE Formats	an	input	string	with	variable	substitution.

SUBSTITUTE_VAR Formats	an	input	string	with	variable	substitution.

SUBSTRING Extracts	a	portion	of	a	string.

UNIQUEID Generate	a	unique	identifier.

UPPERCASE Converts	lowercase	characters	to	uppercase.

WAIT_FILESREADY Cache	operations	for	files	waiting	for	"ready"

	

2.2.9	Spooled	File	Management

Activity	ID Description

DELETE_SPLF Deletes	an	IBM	i	spool	file.

LAST_SPLF Retrieve	identity	of	the	last	spooled	file	created	in	the
current	job

MOVE_SPLF Moves	an	IBM	i	spool	file	to	a	specified	output	queue.

SPLF_LIST Lists	IBM	i	spool	files	in	an	output	queue	that	meet
specified	selection	criteria.

SPLF_TO_PDF Converts	an	IBM	i	spool	file	to	a	PDF	document.

SPLF_TO_TEXT Converts	an	IBM	i	spool	file	to	a	text	document

	

2.2.10	SQL	Database	Activities

SQL_CALL Execute	an	SQL	stored	procedure

SQL_CALLQRYCSV Query	database	using	an	SQL	stored	procedure	to
CSV

SQL_CALLQUERY Query	database	using	an	SQL	stored	procedure

SQL_COMMIT Commit	a	database	transaction	using	SQL

SQL_CONNECT Connect	to	database	using	SQL

SQL_DISCONNECT Disconnect	from	database	using	SQL

SQL_PARAMS Set	parameter	values	for	SQL	operation

SQL_PARAMSCSV Set	parameter	values	for	SQL	operation	from	CSV

SQL_QUERY Query	database	using	SQL

SQL_QUERYTOCSV Query	database	using	SQL	to	output	CSV	file

SQL_ROLLBACK Rollback	a	database	transaction	using	SQL

SQL_UPDATE Update	database	using	SQL

	

2.2.11	Terminal	Server	Activities

Activity	ID Description

TS_CAPTURE Capture	aXes	5250	terminal	session	screen	image

TS_CONNECT Connect	to	aXes	5250	terminal	session

TS_DISCONNECT Disconnect	from	aXes	5250	terminal	session

TS_EXECUTE Execute	an	aXes	terminal	operations	script

TS_GET Get	aXes	terminal	session	attributes

TS_GETBYNAME Get	aXes	5250	terminal	session	value	by	name

TS_GETBYPOS Get	aXes	5250	terminal	session	value	by	position

TS_GETFIELD Get	aXes	5250	terminal	session	field	attributes

TS_SEND Send	data	to	aXes	5250	terminal	session

TS_SETBYNAME Set	aXes	5250	terminal	session	value	by	name

TS_SETBYPOS Set	aXes	5250	terminal	session	value	by	position

TS_SETCURSOR Set	aXes	5250	terminal	session	cursor	position

	

2.2.12	Transaction	Document	Processing

Activity	ID Description

DISCOVER_DOC Discover	the	document	type	for	a	document	file

DISCOVER_EDI Discover,	catalogue	and	validate	EDI	document	file

DISCOVER_MAP Discover	attributes	associated	with	map

DISCOVER_XML Discover	the	root	element	name	of	an	XML
document

EDI_SPLIT Split	EDI	document	file

FOR_EACH_TXDOCO Iterate	for	each	pending	outbound	transaction	doc

FOR_EACH_TXDOCT Iterate	for	each	transaction	set	(message)	registered
for	a	transaction	document

TXDOC_ALLOCCTRL Allocate	transaction	document	control	number(s)

TXDOC_EXPORT Export	transaction	data	to	staging	files

TXDOC_IMPORT Import	transaction	data	from	staging	files

TXDOC_KEYS Retrieve	staging	file	keys	for	a	pending	outbound
transaction	document

TXDOC_REGISTER Register	transaction	document

TXDOC_REGOUTBND Register	pending	outbound	transaction	document

TXDOC_REGOUTEDI Register	pending	outbound	EDIFACT	transaction
document

TXDOC_REGOUTX12 Register	pending	outbound	EDI	X12	transaction
document

TXDOC_STATUS Update	transaction	document	status

XML_SPLIT Split	XML	document	file.

XML_QUERY Query	value(s)	in	an	XML	document	file.

XML_VALIDATE Validate	an	XML	document	file.

	

2.2.13	Transformations

Activity	ID Description

BASE64_DECODE Base64	decode	the	contents	of	a	specified	file.

BASE64_ENCODE Base64	encode	the	contents	of	a	specified	file.

FIND_TPMAP Find	linked	transformation	map(s)	for	a	trading	partner

TRANSFORM Runs	a	transformation	map	(used	as	an	alternative	to
the	Transform	processing	sequence	directive	where	the
identifier	of	the	transformation	map	to	run	is	variable
and	determined	at	run-time)

XSL_TRANSFORM Executes	an	XSL	transformation

	

2.2.14	Transport

Activity	ID Description

FTP_COMMANDLIST Connects	to	the	FTP	host	specified	in	the	FTP
Configuration	and	then	executes	FTP	commands
from	a	command	list	file.

FTP_INBOUND Retrieves	a	list	of	files	from	a	remote	host	using
FTP.

FTP_OUTBOUND Transfers	files	from	the	local	machine	to	a	remote
host	by	FTP.

FTP_SCRIPT Execute	an	FTP	script	using	the	native	IBM	i5/OS
FTP	client

HTTP_GET Retrieves	a	document	from	an	HTTP	server.

HTTP_INBOUND Handles	an	inbound	HTTP	message	and	saves	it	to	a
specific	directory.

HTTP_POST Sends	data	to	an	HTTP	server	and/or	receives
response	data	from	the	server..

MAIL_RECEIVE Retrieves	a	single	email	message	from	the	mail
server.

MAIL_RECEIVEALL Retrieves	multiple	email	messages	for	a	user	from
the	mail	server.

MAIL_SEND Sends	an	email	by	SMTP.

MSG_RECEIVE Receives	a	message	from	a	supported	message
brokering	system	such	as	IBM	MQ	Series.

MSG_SEND Sends	a	file	through	a	supported	message	brokering
system	such	as	IBM	MQ	Series.

SMS_SEND Send	an	SMS	message	to	a	mobile	number	using	an
email	service	provided	by	a	third-party	SMS
provider

	

2.2.15	Variable	manipulation

Activity	ID Description

BLANKCONCAT Concatenates	one	or	more	strings,	removing	trailing
blanks	and	inserting	a	single	blank	between	each
string.

CALCULATE Perform	a	simple	arithmetic	calculation.

CLEARLIST Clears	a	variable	list.

CLEARVARIABLE Clears	a	variable.

CONCAT Concatenates	one	or	more	strings,	removing	trailing
blanks	from	each.

COUNTLIST Counts	the	entries	in	a	variable	list.

FOR_EACH_VAR Iterate	for	each	processing	sequence	variable

LOAD_PSVSET Load	processing	sequence	variables	from	a	PSV	file.

LOGLIST Creates	entries	in	the	processing	sequence	log	that
contain	a	variable	list's	values.

LOGVARIABLE Creates	an	entry	in	the	processing	sequence	log	that
contains	a	variable's	value.

LOWERCASE Converts	uppercase	characters	to	lowercase.

NEXTNUMBER Generates	the	next	number	in	a	series.

PATHMAKE Constructs	a	file	path	from	folder	path	and	file	name.

PATHSPLIT Splits	a	file	path	into	its	constituent	components.

RANDOMNUMBER Generates	a	pseudo-random	number.

SAVE_PSVSET Save	processing	sequence	variables	to	a	PSV	file.

SORT_LISTS Sort	one	or	more	variable	lists	in	"parallel"

SUBSTITUTE Formats	an	input	string	with	variable	substitution.

SUBSTITUTE_VAR Formats	an	input	string	with	variable	substitution.

SUBSTRING Extracts	a	portion	of	a	string.

UNIQUEID Generate	a	unique	identifier.

UPPERCASE Converts	lowercase	characters	to	uppercase.

	

2.2.16	Zip	Activities

Activity	ID Description

ZIP_DIRECTORIES Zips	a	list	of	directories	and	places	the	contents	in	a	zip
archive.

ZIP_FILES Zips	a	list	of	files	and	places	them	in	a	zip	archive.

ZIP_LIST Lists	the	contents	of	a	zip	archive.

ZIP_UNZIP Lists	the	contents	of	a	zip	archive.

	

2.2.17	All	Supplied	Activities
This	is	a	list	of	all	the	supplied	Activities.	There	is	a	quick	reference	list	of
Activities	in	2.2	Activities	by	Group.

Activity	ID Description

BASE64_DECODE Base64	decode	the	contents	of	a	specified	file.

BASE64_ENCODE Base64	encode	the	contents	of	a	specified	file.

BLANKCONCAT Concatenates	one	or	more	strings,	removing
trailing	blanks	and	inserting	a	single	blank	between
each	string.

CALCULATE Perform	a	simple	arithmetic	calculation.

CALL_3GL Calls	an	RPG,	COBOL	or	other	3GL	program	on
IBM	i	servers

CALL_FUNCTION Calls	a	LANSA	function.

CALL_JAVA Calls	a	Java	program.

CLEARLIST Clears	a	variable	list.

CLEARVARIABLE Clears	a	variable.

COMPOSER_RUN Run	a	LANSA	Composer	Processing	Sequence

CONCAT Concatenates	one	or	more	strings,	removing
trailing	blanks	from	each.

COPY_FILE Copies	a	file	from	one	directory	to	another	using
the	file	names,	source	directory	and	the	target
directory.

COUNTLIST Counts	the	entries	in	a	variable	list.

DELETE_FILE Deletes	a	flat	file	from	a	directory	using	the
provided	file	name	and	full	path.

DELETE_SPLF Deletes	an	IBM	i	spool	file.

DIRECTORY_LIST Lists	the	contents	of	a	directory.

DISCOVER_DOC Discover	the	document	type	for	a	document	file

DISCOVER_EDI Discover,	catalogue	and	validate	EDI	document	file

DISCOVER_MAP Discover	attributes	associated	with	map

DISCOVER_XML Discover	the	root	element	name	of	an	XML
document

DTAQ_CLEAR Clear	a	named	data	queue

DTAQ_RECEIVE Receive	data	from	a	named	data	queue

DTAQ_SEND Send	data	to	a	named	data	queue

EDI_SPLIT Split	EDI	document	file

FIND_TPMAP Find	linked	transformation	map(s)	for	a	trading
partner

FOR_EACH_CSVROW Iterate	for	each	row	in	a	CSV	file

FOR_EACH_INDEX Iterate	for	each	index	in	a	range

FOR_EACH_OBJECT Iterate	for	each	object	in	an	IBM	i	server	library

FOR_EACH_TXDOCO Iterate	for	each	pending	outbound	transaction	doc

FOR_EACH_TXDOCT Iterate	for	each	transaction	set	(message)	registered
for	a	transaction	document

FOR_EACH_TXTLIN Iterate	for	each	line	in	a	text	file

FOR_EACH_VAR Iterate	for	each	processing	sequence	variable

FTP_COMMANDLIST Connects	to	the	FTP	host	specified	in	the	FTP
Configuration	and	then	executes	FTP	commands
from	a	command	list	file.

FTP_DIRLIST Connect	to	the	host	specified	via	FTP	and	then
returns	a	list	of	files	available	in	the	remote
directory.

FTP_INBOUND Retrieves	a	list	of	files	from	a	remote	host	using
FTP.

FTP_OUTBOUND Transfers	files	from	the	local	machine	to	a	remote

host	by	FTP.

FTP_SCRIPT Execute	an	FTP	script	using	the	native	IBM	i5/OS
FTP	client

GET_DTAARA Read	a	value	from	a	data	area

HASH_FILE Generate	a	hash	value	for	a	specified	file

HTTP_GET Retrieves	a	document	from	an	HTTP	server.

HTTP_INBOUND Handles	an	inbound	HTTP	message	and	saves	it	to
a	specific	directory.

HTTP_POST Sends	data	to	an	HTTP	server	and/or	receives
response	data	from	the	server..

JSM_RECLAIM Reclaim	LANSA	Integrator	JSM	resources.

JSM_SCRIPT Execute	a	LANSA	Integrator	JSM	script

LAST_SPLF Retrieve	identity	of	the	last	spooled	file	created	in
the	current	job

LOAD_PSVSET Loads	processing	sequence	variables	from	one	or
more	PSV	sets	into	a	PSV	file.

LOGLIST Creates	entries	in	the	processing	sequence	log	that
contain	a	variable	list's	values.

LOGUSERINFO Creates	an	impromptu	entry	in	the	processing
sequence	log.

LOGVARIABLE Creates	an	entry	in	the	processing	sequence	log	that
contains	a	variable's	value.

LOWERCASE Converts	uppercase	characters	to	lowercase.

MAIL_RECEIVE Retrieves	a	single	email	message	from	the	mail
server.

MAIL_RECEIVEALL Retrieves	multiple	email	messages	for	a	user	from
the	mail	server.

MAIL_SEND Sends	an	email	by	SMTP.

MOVE_FILE Moves	a	file	from	one	directory	to	another	using
the	file	names,	source	directory	and	the	target
directory.

MOVE_SPLF Moves	an	IBM	i	spool	file	to	a	specified	output
queue.

MSG_RECEIVE Receives	a	message	from	a	supported	message
brokering	system	such	as	IBM	MQ	Series.

MSG_SEND Sends	a	file	through	a	supported	message	brokering
system	such	as	IBM	MQ	Series.

MSGQ_RECEIVE Receive	a	message	from	a	message	queue

MSGQ_SEND Send	a	message	to	a	message	queue

NEXTNUMBER Generates	the	next	number	in	a	series.

NOTIFYEVENT Trigger	an	event	notification

NULL This	activity	does	nothing	but	can	be	useful	as	a
placeholder	during	the	design	of	your	processing
sequence.

PATHMAKE Constructs	a	file	path	from	folder	path	and	file
name.

PATHSPLIT Splits	a	file	path	into	its	constituent	components.

PUT_DTAARA Write	a	value	to	a	data	area

QUERY_CCSID Returns	the	IBM	i	CCSID	for	a	specified	file

RANDOMNUMBER Generate	a	pseudo-random	number

RENAME_FILE Renames	a	file.

SAVE_PSVSET Saves	processing	sequence	variables	and	their
values	to	a	PSV	file.

SLEEP Suspend	processing	for	a	specified	time	interval

SMS_SEND Send	an	SMS	message	to	a	mobile	number	using
an	email	service	provided	by	a	third-party	SMS

provider

SORT_LISTS Sort	one	or	more	variable	lists	in	"parallel"

SPLF_LIST Lists	IBM	i	spool	files	in	an	output	queue	that	meet
specified	selection	criteria.

SPLF_TO_PDF Converts	an	IBM	i	spool	file	to	a	PDF	document.

SPLF_TO_TEXT Converts	an	IBM	i	spool	file	to	a	text	document

SQL_CALL Execute	an	SQL	stored	procedure

SQL_CALLQRYCSV Query	database	using	an	SQL	stored	procedure	to
CSV

SQL_CALLQUERY Query	database	using	an	SQL	stored	procedure

SQL_COMMIT Commit	a	database	transaction	using	SQL

SQL_CONNECT Connect	to	database	using	SQL

SQL_DISCONNECT Disconnect	from	database	using	SQL

SQL_PARAMS Set	parameter	values	for	SQL	operation

SQL_PARAMSCSV Set	parameter	values	for	SQL	operation	from	CSV

SQL_QUERY Query	database	using	SQL

SQL_QUERYTOCSV Query	database	using	SQL	to	output	CSV	file

SQL_ROLLBACK Rollback	a	database	transaction	using	SQL

SQL_UPDATE Update	database	using	SQL

SUBSTITUTE Formats	an	input	string	with	variable	substitution.

SUBSTITUTE_VAR Formats	an	input	string	with	variable	substitution.

SUBSTRING Extracts	a	portion	of	a	string.

SYSTEM_COMMAND Executes	an	operating	system	command.

TEXT_SUBSTITUTE Reads	a	skeleton	text	file	and	replaces
%%parm.parmeter%%	references	in	the	text	with
the	current	parameter	value	and	writes	the

expanded	text	file.

TRANSFORM Runs	a	transformation	map	(used	as	an	alternative
to	the	Transform	processing	sequence	directive
where	the	identifier	of	the	transformation	map	to
run	is	variable	and	determined	at	run-time)

TS_CAPTURE Capture	aXes	5250	terminal	session	screen	image

TS_CONNECT Connect	to	aXes	5250	terminal	session

TS_DISCONNECT Disconnect	from	aXes	5250	terminal	session

TS_EXECUTE Execute	an	aXes	terminal	operations	script

TS_GET Get	aXes	terminal	session	attributes

TS_GETBYNAME Get	aXes	5250	terminal	session	value	by	name

TS_GETBYPOS Get	aXes	5250	terminal	session	value	by	position

TS_GETFIELD Get	aXes	5250	terminal	session	field	attributes

TS_SEND Send	data	to	aXes	5250	terminal	session

TS_SETBYNAME Set	aXes	5250	terminal	session	value	by	name

TS_SETBYPOS Set	aXes	5250	terminal	session	value	by	position

TS_SETCURSOR Set	aXes	5250	terminal	session	cursor	position

TXDOC_ALLOCCTRL Allocate	transaction	document	control	number(s)

TXDOC_EXPORT Export	transaction	data	to	staging	files

TXDOC_IMPORT Import	transaction	data	from	staging	files

TXDOC_KEYS Retrieve	staging	file	keys	for	a	pending	outbound
transaction	document

TXDOC_REGISTER Register	transaction	document

TXDOC_REGOUTBND Register	pending	outbound	transaction	document

TXDOC_REGOUTEDI Register	pending	outbound	EDIFACT	transaction
document

TXDOC_REGOUTX12 Register	pending	outbound	EDI	X12	transaction

document

TXDOC_STATUS Update	transaction	document	status

UNIQUEID Generate	a	unique	identifier.

UPPERCASE Converts	lowercase	characters	to	uppercase.

WAIT_FILESREADY Cache	operations	for	files	waiting	for	"ready"

WATCH_DIRECTORY Watch	a	directory	for	new	or	changed	files

WATCH_DTAQ Watch	a	data	queue	for	new	entries

WATCH_MSGQ Watch	a	message	queue	for	new	messages

XML_SPLIT Split	XML	document	file.

XML_QUERY Query	value(s)	in	an	XML	document	file.

XML_VALIDATE Validate	an	XML	document	file.

XSL_TRANSFORM Executes	an	XSL	transformation.

ZIP_DIRECTORIES Zips	a	list	of	directories	and	places	the	contents	in	a
zip	archive.

ZIP_FILES Zips	a	list	of	files	and	places	them	in	a	zip	archive.

ZIP_LIST Lists	the	contents	of	a	zip	archive.

ZIP_UNZIP Lists	the	contents	of	a	zip	archive.

	

BASE64_DECODE
This	activity	will	base64	decode	the	contents	of	a	specified	file	and	write	the
decoded	content	to	another	file.
Base64	encoding	is	commonly	used	when	there	is	a	need	to	encode	binary	data
that	needs	to	be	stored	and	transferred	over	media	that	are	designed	to	deal	with
textual	data.	This	is	to	ensure	that	the	data	remains	intact	without	modification
during	transport.		Base64	encoding	is	commonly	used	in	a	number	of
applications	including	email	via	MIME,	and	storing	complex	data	in	XML.
INPUT	Parameters:

BASE64SOURCE	:	Required
This	parameter	must	specify	the	full	path	and	file	name	of	the	file	whose
contents	are	to	be	base64	decoded.
BASE64TARGET	:	Optional
This	parameter	may	specify	the	full	path	and	file	name	for	the	file	to	which
the	decoded	file	contents	are	to	be	written.		The	default,	if	not	specified,	is
the	special	value	*AUTO.
If	the	special	value	*AUTO	is	used,	the	activity	will	use	the	path	and	file
name	specified	in	the	BASE64SOURCE	parameter	but	replacing	the	file
extension	with	an	extension	of	'.decode'.		For	example,	if	you	specify
/myfolder/myfile.dat	in	the	BASE64SOURCE	parameter,	then	the	activity
will	write	the	decoded	contents	to	the	file	/myfolder/myfile.decode.
BASE64REPLACE	:	Optional
This	parameter	specifies	what	the	activity	should	do	if	the	output	file	already
exists.		The	default	value	*NO	will	cause	the	activity	to	end	in	error	if	the
output	file	already	exists.		Alternatively	you	can	specify	*YES	to	cause	the
existing	file	to	be	replaced.

OUTPUT	Parameters:
BASE64DECODED	:
Upon	successful	completion,	this	parameter	will	contain	the	actual	path	and
file	name	of	the	output	file	containing	the	decoded	contents	of	the	file
specified	by	the	BASE64SOURCE	parameter.

BASE64_ENCODE
This	activity	will	base64	encode	the	contents	of	a	specified	file	and	write	the
encoded	content	to	another	file.
Base64	encoding	is	commonly	used	when	there	is	a	need	to	encode	binary	data
that	needs	to	be	stored	and	transferred	over	media	that	are	designed	to	deal	with
textual	data.	This	is	to	ensure	that	the	data	remains	intact	without	modification
during	transport.		Base64	encoding	is	commonly	used	in	a	number	of
applications	including	email	via	MIME,	and	storing	complex	data	in	XML.
INPUT	Parameters:

BASE64SOURCE	:	Required
This	parameter	must	specify	the	full	path	and	file	name	of	the	file	whose
contents	are	to	be	base64	encoded.
BASE64TARGET	:	Optional
This	parameter	may	specify	the	full	path	and	file	name	for	the	file	to	which
the	encoded	file	contents	are	to	be	written.		The	default,	if	not	specified,	is
the	special	value	*AUTO.
If	the	special	value	*AUTO	is	used,	the	activity	will	use	the	path	and	file
name	specified	in	the	BASE64SOURCE	parameter	but	replacing	the	file
extension	with	an	extension	of	'.base64'.		For	example,	if	you	specify
/myfolder/myfile.dat	in	the	BASE64SOURCE	parameter,	then	the	activity
will	write	the	encoded	contents	to	the	file	/myfolder/myfile.base64.
BASE64FOLD	:	Optional
This	parameter	specifies	whether	the	activity	should	fold	the	encoded
contents	onto	separate	lines.		The	default	value	*NO	will	not	insert	any	line
breaks	in	the	encoded	contents.		Alternatively	you	can	specify	*YES	to	cause
the	activity	to	insert	a	carriage-return	and	line-feed	(CRLF)	after	every	76
characters	of	encoded	output.
BASE64REPLACE	:	Optional
This	parameter	specifies	what	the	activity	should	do	if	the	output	file	already
exists.		The	default	value	*NO	will	cause	the	activity	to	end	in	error	if	the
output	file	already	exists.		Alternatively	you	can	specify	*YES	to	cause	the
existing	file	to	be	replaced.

OUTPUT	Parameters:
BASE64ENCODED	:

Upon	successful	completion,	this	parameter	will	contain	the	actual	path	and
file	name	of	the	output	file	containing	the	encoded	contents	of	the	file
specified	by	the	BASE64SOURCE	parameter.

BLANKCONCAT
This	activity	concatenates	one	or	more	strings,	removing	trailing	blanks	and
inserting	a	single	blank	between	each	input	string.	At	least	two	and	up	to	9	input
strings	may	be	specified,	either	as	literals	or	variables	or	a	mixture	of	both.
INPUT	Parameters:

STRINGIN1	:	Required
This	parameter	specifies	the	first	string	to	be	trimmed	and	concatenated.
STRINGIN2	:	Required
This	parameter	specifies	the	second	string	to	be	trimmed	and	concatenated.
STRINGIN3STRINGIN4
STRINGIN5
STRINGIN6
STRINGIN7
STRINGIN8
STRINGIN9	:	Optional
These	parameters	may	be	used	to	specify	further	strings	to	be	blank
concatenated.	If	used,	they	must	be	specified	contiguously	(the	activity	stops
looking	after	the	first	parameter	whose	value	is	not	specified).

OUTPUT	Parameters:
STRINGOUT	:
Upon	completion,	this	parameter	will	contain	the	blank	concatenated	string.

CALCULATE
This	activity	performs	a	simple	arithmetic	calculation,	given	an	operator	and
two	operands.		It	is	intended	for	simple	calculations,	usually	using	integer
values.		The	calculation	for	the	modulo	(remainder)	operator	assumes	integer
values	are	specified.
All	calculations	are	performed	using	a	precision	of	30,9.		If	any	inputs	or
intermediate	or	final	results	exceed	the	number	of	significant	or	decimal	digits,
then	loss	of	precision	will	result	without	warning	or	error.
Note:		Intensive	calculations,	especially	when	relating	to	application	data	(as
opposed	to	variables	that	control	the	process	orchestration)	should	be	done	in
compiled	code	units	(such	as	custom	activities,	Java	or	IBM	i	3GL	programs	or
LANSA	functions)	that	are	called	from	the	processing	sequence.
INPUT	Parameters:

NUMBERIN1	:	Required
This	parameter	specifies	the	first	operand	for	the	calculation.		The	value
specified	must	be	numeric.
OPERATOR	:	Required
This	parameter	must	specify	the	arithmetic	operator	to	be	used	for	the
calculation.		You	must	specify	one	of	the	following	values:
+		(addition)
-		(subtraction)
*		(multiplication)
/		(division)
%		(modulo,	remainder)
NUMBERIN2	:	Required
This	parameter	specifies	the	second	operand	for	the	calculation.		The	value
specified	must	be	numeric.		Further,	for	operators	/	and	%	(division	and
modulo	operations),	the	value	cannot	be	zero.

OUTPUT	Parameters:
NUMBEROUT	:
Upon	successful	completion,	this	output	parameter	contains	the	result	of	the
specified	calculation.

CALL_3GL
This	activity	calls	a	program.	The	program	may	be	an	RPG,	COBOL	or	Control
Language	program	or	written	using	some	other	3GL	supported	on	IBM	i.	This
activity	is	only	supported	on	IBM	i	servers.
The	activity	can	pass	and	receive	up	to	9	parameters,	according	to	the
requirements	of	the	specified	program.	All	parameters	are	passed	as	A(256).
The	called	program	should	treat	the	parameters	as	character	data	and	must	not
attempt	to	address	more	than	256	bytes	for	each	parameter.
It	is	the	user's	responsibility:
-	to	ensure	that	the	program	is	available	in	the	library	list	at	execution	time
-	to	ensure	that	the	executing	job	has	the	necessary	authorities	to	make	the	call
-	to	specify	at	least	the	number	of	parameters	expected	by	the	called	program
-	to	ensure	that	the	called	program	is	appropriate	for	the	purpose.
INPUT	Parameters:

PGM	:	Required
This	parameter	specifies	the	name	of	the	program	to	call.
LIB	:	Optional
This	parameter	can	specify	the	name	of	the	library	containing	the	program	to
call.	If	it	is	not	specified,	the	processing	sequence	will	use	the	library	list	to
locate	the	program.

INPUT	and	OUTPUT	Parameters:
PARM01PARM02
PARM03
PARM04
PARM05
PARM06
PARM07
PARM08
PARM09	:	Optional
These	parameters	can	be	used	to	pass	and	receive	up	to	nine	parameters
to/from	the	called	program.	The	parameters	are	passed	and	received	as
character	variables	of	length	256.	The	activity	will	pass	and	receive	the
number	of	parameters	(up	to	nine)	for	which	you	specify	values	or	alternate
variable	names.	If	used,	they	must	be	specified	contiguously	(the	activity

stops	looking	after	the	first	parameter	whose	value	is	not	specified).

CALL_FUNCTION
This	activity	calls	a	named	LANSA	function.		The	LANSA	function	may	be
contained	in	another	LANSA	configuration	on	the	same	or	a	different	(*)
server.			The	activity	can	pass	and	receive	up	to	seven	values	via	the	LANSA
exchange	list.	All	parameters	are	passed	as	A(256).
(*	Note	a	LANSA	Composer	Remote	Request	Server	license	is	required	for	the
remote	server	in	order	to	call	a	LANSA	function	on	a	different	server	system.)
It	is	the	user's	responsibility:

To	ensure	that	the	function	is	available	in	the	necessary	LANSA	system	and
partition
To	ensure	that	the	executing	job	(*)	has	the	necessary	authorities	to	make	the
call
To	ensure	that	the	called	function	is	appropriate	for	the	purpose.

(*)	Depending	on	the	request,	the	executing	job	will	usually	be	a	job	submitted
by	the	LANSA	Composer	Request	Server.
Further	important	information	about	the	CALL_FUNCTION	activity	is
provided	under	the	following	headings	later	in	these	notes:

LANSA	programming	considerations	for	the	called	function
Calling	a	function	in	the	same	system	and	partition	as	LANSA	Composer
Calling	a	function	in	another	LANSA	system	or	partition
Function	calls	executed	through	the	LANSA	Composer	Request	Server

You	should	also	refer	to:
2.3.10	LANSA	System	Configuration
Appendix	F.	The	LANSA	Composer	Request	Server

INPUT	Parameters:
LANSACONFIG	:	Optional
This	parameter	specifies	the	name	of	a	LANSA	system	configuration	that
identifies	the	LANSA	system	and	partition	containing	the	function	to	be
called	and	the	connection	details,	if	required,	to	connect	to	the	server	system
on	which	the	LANSA	system	resides.		The	partition	containing	the	function
to	be	called	must	be	a	multilingual	partition.
PROCESS	:	Optional
This	parameter	specifies	the	name	of	the	process	containing	the	function	to

call.		If	not	specified,	the	activity	assumes	*DIRECT.		If	*DIRECT	is
specified	or	assumed,	the	function	must	be	defined	with	FUNCTION
OPTIONS(*DIRECT).		On	Windows	servers	the	process	name	(not
*DIRECT)	must	be	specified	for	requests	that	will	be	processed	through	the
request	server.
FUNCTION	:	Required
This	parameter	specifies	the	name	of	the	function	to	call.		The	function	name
must	always	be	specified.
SYNCHRONOUS	:	Optional
This	parameter	specifies	whether	the	activity	waits	for	the	function	call	to
complete.		It	defaults	to	YES,	which	means	the	activity	does	wait.		If	any
other	value	is	specified,	the	activity	posts	the	function	call	request	and
completes	immediately.		Note	that	the	activity	can	only	receive	values
returned	from	the	called	function	(in	the	EXCH01	...	EXCH07	input/output
parameters)	if	this	parameter	is	YES.
SYNCHTIMEOUT	:	Optional
This	parameter	specifies	the	number	of	seconds	the	activity	waits	for	a
synchronous	call	to	complete	when	executed	through	the	request	server.		If
not	specified,	a	default	of	30	seconds	is	used.		If	the	timeout	is	exceeded,	the
activity	ends	with	an	error.		Note	the	timeout	ONLY	applies	to	requests
executed	through	the	request	server.
EXPIRES	:	Optional
On	IBM	i	servers	only,	this	parameter	specifies	the	number	of	seconds,	after
it	is	posted	to	the	request	server,	that	the	request	remains	effective.		If	more
than	the	specified	interval	has	elapsed	before	the	request	server	begins	to
process	the	request,	the	request	server	will	consider	the	request	to	have
expired	and	will	not	process	it.		If	not	specified,	a	default	of	zero	(0)	is	used,
which	means	that	no	expiry	applies	to	the	request.		Note	that	the	expiry
ONLY	applies	to	requests	executed	through	the	request	server	for	IBM	i
servers.		No	expiry	applies	when	running	on	Windows	servers.
LANSASYS	:	Optional	(deprecated)
This	parameter	specifies	the	name	of	the	program	library	for	the	LANSA
system	containing	the	function	to	call.		If	not	specified,	the	activity	assumes
the	same	LANSA	system	as	is	executing	LANSA	Composer.		This	parameter
is	only	used	on	IBM	i	servers	and	is	provided	for	backwards	compatibility.	
On	Windows	servers	(and	for	new	solutions	on	IBM	i	servers)	you	should

specify	a	LANSA	system	configuration	name	in	the	LANSACONFIG
parameter.		If	a	LANSA	system	configuration	is	named	in	the
LANSACONFIG	parameter,	the	value	of	this	parameter	is	not	used.
PARTITION	:	Optional	(deprecated)
This	parameter	specifies	the	name	of	the	partition	containing	the	function	to
call.		If	not	specified,	the	activity	assumes	the	same	partition	in	which
LANSA	Composer	is	executing.		This	parameter	is	only	used	on	IBM	i
servers	and	is	provided	for	backwards	compatibility.		On	Windows	servers
(and	for	new	solutions	on	IBM	i	servers)	you	should	specify	a	LANSA
system	configuration	name	in	the	LANSACONFIG	parameter.		If	a	LANSA
system	configuration	is	named	in	the	LANSACONFIG	parameter,	the	value
of	this	parameter	is	not	used.		The	partition	containing	the	function	to	be
called	must	be	a	multilingual	partition.

INPUT	and	OUTPUT	Parameters:
EXCH01EXCH02
EXCH03
EXCH04
EXCH05
EXCH06
EXCH07	:	Optional
These	parameters	can	be	used	to	pass	and	receive	up	to	seven	values	to/from
the	called	function	via	the	LANSA	exchange	list.	The	parameters	are	placed
on	and	received	from	the	exchange	list	as	character	variables	of	length	256
using	the	variable	names	EXCH01	...	EXCH07.
The	called	function	must	also	use	the	variables	names	EXCH01	...	EXCH07
in	order	to	receive	the	parameter	values.	If	the	called	function	needs	to	return
values	via	these	variables,	it	must	execute	the	EXCHANGE	command	at	the
appropriate	point.
The	activity	will	place	on	and	receive	from	the	exchange	list	the	number	of
parameters	(up	to	seven)	for	which	you	specify	values	or	alternate	variable
names.	If	used,	they	must	be	specified	contiguously	(the	activity	stops
looking	after	the	first	parameter	whose	value	is	not	specified).
Note	that	the	activity	can	only	receive	values	returned	from	the	called
function	when	executed	synchronously	-	see	the	description	of	the
SYNCHRONOUS	parameter.
Refer	to	the	description	of	the	EXCHANGE	RDML	command	in	the
LANSA	product	documentation	for	further	information	on	exchanging

information	via	the	exchange	list.

LANSA	programming	considerations	for	the	called	function
The	following	LANSA	programming	considerations	apply	to	the	way	in	which
the	called	function	must	be	defined:

If	*DIRECT	is	specified	or	assumed	for	the	PROCESS	parameter,	the
function	must	be	defined	with	FUNCTION	OPTIONS(*DIRECT)
Called	functions	may	be	RDML	or	they	may	be	fully	RDMLX	enabled.
The	partition	containing	the	function	to	be	called	must	be	a	multi-lingual
partition.
The	function	must	define	fields	EXCH01	...	EXCH07	in	order	to	receive
values	(via	the	exchange	list)	that	are	specified	in	the	corresponding
CALL_FUNCTION	activity	parameters.
The	function	must	use	the	EXCHANGE	command	with	fields	EXCH01	...
EXCH07	in	order	to	return	values	(via	the	exchange	list)	for	variables	that
are	specified	in	the	corresponding	CALL_FUNCTION	activity	parameters.
On	IBM	i	servers	only,	if	the	CALL_FUNCTION	activity	will	execute	via
the	LANSA	Composer	request	server,	position	487	of	LANSA	data	area
DC@A01	must	be	set	to	'Y'	before	compiling	the	function.		If	this	condition
is	not	met,	the	called	function	will	not	correctly	receive	or	return	the
EXCH01	...	EXCH07	variable	values.

Refer	to	LANSA	documentation	for	more	information	on	LANSA	features
referred	to	above.
Depending	on	all	the	requirements,	these	considerations	may	sometimes
necessitate	that	your	programming	staff	write	functions	specifically	for	the
purpose.		However,	even	if	this	is	necessary,	the	functions	can	frequently	be
simple	"stub"	functions	that	call	other	existing	functions	in	the	LANSA
application.

Calling	a	function	in	the	same	system	and	partition	as	LANSA
Composer
If	you	want	to	call	a	function	that	is	available	in	the	same	LANSA	system	and
partition	as	LANSA	Composer,	you	only	need	to	specify	the	function	name	in
the	FUNCTION	parameter,	and	any	values	to	be	exchanged	with	the	function	in
the	EXCH01	...	EXCH07	parameters.		You	do	not	need	to	specify	values	for	the
LANSACONFIG,	PROCESS	or	SYNCHRONOUS	parameters	(nor	the
deprecated	LANSASYS	and	PARTITION	parameters).

Providing	(1)	*DIRECT	is	specified	or	assumed	for	the	PROCESS	parameter,
and	(2)	YES	is	specified	or	assumed	for	the	SYNCHRONOUS	parameter,	the
function	call	will	be	performed	directly	from	the	activity	processor,	in	the	same
job	and	context.		When	the	CALL_FUNCTION	activity	runs	in	this	mode,	the
value	of	the	SYNCHTIMEOUT	parameter	is	ignored.
Functions	called	in	this	way	must	be	defined	with	FUNCTION
OPTIONS(*DIRECT).

Calling	a	function	in	another	LANSA	system	or	partition
You	can	call	a	function	that	is	available	in	a	different	LANSA	system	and/or
partition	than	LANSA	Composer	on	the	same	or	a	different	server	system.		To
do	this,	you	should:
a)create	a	LANSA	system	configuration	in	LANSA	Composer	that	identifies	the
LANSA	system	and	partition	you	wish	to	use,	and

b)specify	the	LANSA	system	configuration	name	on	the	LANSACONFIG
parameter.

Such	requests	offer	greater	flexibility,	including	the	ability	to	call	the	required
function	through	a	specified	process	(instead	of	with	*DIRECT)	and
synchronously	or	asynchronously	processing	the	request.		These	types	of
function	calls	will	execute	through	the	LANSA	Composer	Request	Server,	and
some	special	considerations	apply.

Function	calls	executed	through	the	LANSA	Composer	Request
Server
The	CALL_FUNCTION	activity	will	seek	to	execute	the	function	call	through
the	LANSA	Composer	request	server	if	any	of	the	following	are	true:

You	specify	a	LANSA	system	configuration	name	using	the
LANSACONFIG	parameter

(OR	on	IBM	i	servers	only,	the	values	specified	for	the	LANSASYS	and
PARTITION	parameters	identify	a	LANSA	system	and/or	partition	that	is
not	the	same	as	for	the	LANSA	Composer	system.)
You	specify	a	process	name	(other	than	*DIRECT)	in	the	PROCESS
parameter.
You	specify	a	value	other	than	YES	for	the	SYNCHRONOUS	parameter.

When	executed	this	way,	the	function	call	executes	in	another	process	or	job
(the	request	server).		LANSA	Composer	and	the	request	server	process	or	job

communicate	cooperatively	to	execute	the	request	and	return	the	results.
Some	special	considerations	apply	to	this	mode	of	execution,	including
considerations	related	to:

User	profiles,	authorities	and	execution	environment
IBM	i	work	management	(jobs	and	subsystems)
The	way	in	which	the	called	function	must	be	compiled

You	should	refer	to	Appendix	F	(The	LANSA	Composer	Request	Server)	in	the
LANSA	Composer	guide	for	detailed	information	about	considerations	for
requests	executed	through	the	LANSA	Composer	Request	Server.

CALL_JAVA
This	activity	calls	a	named	Java	program,	and	can	pass	up	to	9	command-line
parameter	(or	argument)	values.		It	cannot	receive	parameter	values	back	from
the	Java	program,	however.
It	is	the	user's	responsibility	to	ensure	the	program	and	all	required	supporting
components	are	available	in	the	default	or	specified	classpath	at	execution	time
and	that	the	executing	job	has	the	necessary	authorities	to	make	the	call.
The	CALL_JAVA	activity	will	use	a	Java	environment	with	system	default
execution	attributes.		There	is	no	means	by	which	you	can	specify	or	override
the	Java	VM	version	or	other	parameters	such	as	those	affecting	JVM	garbage
collection.
Depending	on	the	operating	environment,	load	and	capacity,	the	overhead	of
starting	a	JVM	for	each	execution	of	the	CALL_JAVA	activity	may	become
excessive	in	some	applications.		The	CALL_JAVA	activity	is	intended	mostly
for	relatively	infrequent	non-intensive	use.		If	your	application	calls	for
intensive	use	(for	example,	executing	a	Java	program	repeatedly	in	a	tight	loop),
then	you	should	consider	and	test	the	performance	characteristics	before
commiting	to	this	activity	as	a	solution.		Some	applications	may	be	better	served
with	a	custom	solution.
INPUT	Parameters:

CLASS	:	Required
This	parameter	specifies	the	name	of	the	Java	class	to	be	run.		The	class
name	may	be	qualified	by	one	or	more	package	names.		Each	package	name
must	be	followed	by	a	period.		For	example	'pkg1.pkg2.myClass'.		You	may
specify	the	special	value	'*VERSION'	to	have	Java	run	with	the	-version
switch	and	list	the	JVM	version	information	in	the	processing	sequence	log
(when	run	with	sufficient	logging	in	effect).		Alternatively,	you	may	specify
the	name	of	a	jar	file	in	which	the	startup	class	is	indicated	by	the	Main-
Class	specified	in	the	manifest.
CLASSPATH	:	Optional
This	parameter	can	specify	the	path	used	to	locate	Java	classes.		Directories
are	separated	by	colons.		If	not	specified,	the	classpath	will	be	determined	by
the	operating	environment.
PARM01PARM02
PARM03

PARM04
PARM05
PARM06
PARM07
PARM08
PARM09	:	Optional
These	parameters	can	be	used	to	pass	up	to	nine	command-line	parameter	(or
argument)	values	to	the	called	Java	program.		The	activity	will	pass	the
number	of	parameters	(up	to	nine)	for	which	you	specify	values	or	alternate
variable	names.		If	used,	they	must	be	specified	contiguously	(the	activity
stops	looking	after	the	first	parameter	whose	value	is	not	specified).

OUTPUT	Parameters:
There	are	no	output	parameters.

CLEARLIST
This	activity	clears	the	variable	list	specified	in	the	parameter.
INPUT	Parameters:

LIST	:	Required
This	parameter	specifies	the	variable	list	to	be	cleared.
You	should	always	specify	a	variable,	not	a	literal	value,	for	this	parameter.	
The	variable	list's	values	are	not	used	by	this	activity	-	rather	the	variable	list
specified	is	cleared	of	all	values.

OUTPUT	Parameters:
There	are	no	output	parameters.

CLEARVARIABLE
This	activity	clears	the	value	of	the	variable	specified	in	the	parameter.
For	most	purposes,	this	is	functionally	equivalent	to	assigning	an	empty	value	to
the	variable	using	an	ASSIGN	processing	sequence	directive.
INPUT	Parameters:

VARIABLE	:	Required
This	parameter	specifies	the	variable	whose	value	is	to	be	cleared.
You	should	always	specify	a	variable,	not	a	literal	value,	for	this	parameter.	
The	variable's	value	is	not	used	by	this	activity	-	rather	the	variable	is	cleared
of	its	value.

OUTPUT	Parameters:
There	are	no	output	parameters.

COMPOSER_RUN
This	activity	runs	a	named	LANSA	Composer	processing	sequence.		It	can	pass
up	to	five	named	parameter	values	to	the	processing	sequence.		The	processing
sequence	to	be	run	does	not	have	to	be	and	usually	is	not	in	the	same	LANSA
Composer	configuration	or	even	on	the	same	server	(*)	system	as	the	activity
that	initiates	the	run.		The	processing	sequence	can	be	run	synchronously	or
asynchronously.
(*	Note	a	LANSA	Composer	Remote	Request	Server	license	is	required	for	the
remote	server	in	order	to	run	a	Processing	Sequence	on	a	different	server
system.)
NOTE:
The	COMPOSER_RUN	activity	will	run	the	specified	processing	sequence
through	the	LANSA	Composer	Request	Server.		This	means	that	the	processing
sequence	runs	in	another	process	or	job	(the	request	server).		LANSA	Composer
and	the	request	server	communicate	cooperatively	to	execute	the	request	and
return	the	results.
As	a	consequence,	some	particular	considerations	apply,	including
considerations	related	to:

User	profiles,	authorities	and	the	execution	environment
IBM	i	work	management	(jobs	and	subsystems)

Refer	to	2.3.10	LANSA	System	Configuration	for	information	about	the
LANSA	system	configurations	that	are	used	in	conjunction	with	this	activity
and	with	the	CALL_FUNCTION	activity.
Refer	to	Appendix	F.	The	LANSA	Composer	Request	Server	in	the	LANSA
Composer	guide	for	detailed	information	about	considerations	for	requests
executed	through	the	LANSA	Composer	request	server.
INPUT	Parameters:

LANSACONFIG	:	Optional
This	parameter	specifies	the	name	of	a	LANSA	system	configuration	that
identifies	the	LANSA	system	and	partition	containing	the	processing
sequence	to	run	and	the	connection	details,	if	required,	to	connect	to	the
server	system	on	which	the	LANSA	system	resides..		This	parameter	is
required	on	Windows	servers	and	recommended	on	IBM	i	servers.
PSEQ	:	Required

This	parameter	identifies	the	processing	sequence	to	run.		Either	the	external
identifier	(name)	or	the	internal	identifier	(as	shown	on	the	Audit	tab)	may
be	specified.
SYNCHRONOUS	:	Optional
This	parameter	specifies	whether	the	activity	waits	for	the	processing
sequence	run	to	complete.		It	defaults	to	YES,	which	means	the	activity	does
wait.		If	any	other	value	is	specified,	the	activity	posts	the	processing
sequence	run	request	and	completes	immediately.
SYNCHTIMEOUT	:	Optional
This	parameter	specifies	the	number	of	seconds	the	activity	waits	for	a
synchronous	run	to	complete.		If	not	specified,	a	default	of	30	seconds	is
used.		If	the	timeout	is	exceeded,	the	activity	ends	with	an	error.
EXPIRES	:	Optional
On	IBM	i	servers	only,	this	parameter	specifies	the	number	of	seconds,	after
it	is	posted	to	the	request	server,	that	the	request	remains	effective.		If	more
than	the	specified	interval	has	elapsed	before	the	request	server	begins	to
process	the	request,	the	request	server	will	consider	the	request	to	have
expired	and	will	not	process	it.		If	not	specified,	a	default	of	zero	(0)	is	used,
which	means	that	no	expiry	applies	to	the	request.		No	expiry	applies	when
running	on	Windows	servers.
PARMNAME01,	PARMVALUE01PARMNAME02,	PARMVALUE02
PARMNAME03,	PARMVALUE03
PARMNAME04,	PARMVALUE04
PARMNAME05,	PARMVALUE05	:	Optional
These	parameters	can	be	used	to	pass	up	to	five	processing	sequence
parameter	name	and	value	pairs	to	the	processing	sequence.
PARMNAME01	(…	PARMNAME05)	should	contain	the	parameter	name
as	defined	in	the	processing	sequence	to	be	run
PARMVALUE01	(…	PARMVALUE05)	should	contain	the	value	that	is	to
be	passed	to	the	processing	sequence	for	the	corresponding	parameter
name.		The	maximum	value	length	that	can	be	passed	is	200.

If	used,	they	must	be	specified	contiguously	(the	activity	stops	looking	after
the	first	parameter	name/value	pair	that	is	not	specified).
LANSASYS	:	Optional	(deprecated)
This	parameter	specifies	the	name	of	the	program	library	for	the	LANSA
system	containing	the	processing	sequence	to	run.		If	not	specified	or	if

*CURRENT	is	specified,	the	activity	assumes	the	same	LANSA	system	as	is
executing	LANSA	Composer.		This	parameter	is	only	used	on	IBM	i	servers
and	is	provided	for	backwards	compatibility.		On	Windows	servers	(and	for
new	solutions	on	IBM	i	servers)	you	should	specify	a	LANSA	system
configuration	name	in	the	LANSACONFIG	parameter.		If	a	LANSA	system
configuration	is	named	in	the	LANSACONFIG	parameter,	the	value	of	this
parameter	is	not	used.
PARTITION	:	Optional	(deprecated)
This	parameter	specifies	the	name	of	the	partition	containing	the	processing
sequence	to	run.		If	not	specified	or	if	*CURRENT	is	specified,	the	activity
assumes	the	same	partition	in	which	LANSA	Composer	is	executing.		This
parameter	is	only	used	on	IBM	i	servers	and	is	provided	for	backwards
compatibility.		On	Windows	servers	(and	for	new	solutions	on	IBM	i	servers)
you	should	specify	a	LANSA	system	configuration	name	in	the
LANSACONFIG	parameter.		If	a	LANSA	system	configuration	is	named	in
the	LANSACONFIG	parameter,	the	value	of	this	parameter	is	not	used.

OUTPUT	Parameters:
There	are	no	output	parameters.

CONCAT
This	activity	concatenates	one	or	more	strings,	removing	trailing	blanks	from
each	string	as	it	does	so.	At	least	two	and	up	to	9	input	strings	may	be	specified,
either	as	literals	or	variables	or	a	mixture	of	both.
INPUT	Parameters:

STRINGIN1	:	Required
This	parameter	specifies	the	first	string	to	be	trimmed	and	concatenated.
STRINGIN2	:	Required
This	parameter	specifies	the	second	string	to	be	trimmed	and	concatenated.
STRINGIN3STRINGIN4
STRINGIN5
STRINGIN6
STRINGIN7
STRINGIN8
STRINGIN9	:	Optional
These	parameters	may	be	used	to	specify	further	strings	to	be	concatenated.
If	used,	they	must	be	specified	contiguously	(the	activity	stops	looking	after
the	first	parameter	whose	value	is	not	specified).

OUTPUT	Parameters:
STRINGOUT	:
Upon	completion,	this	parameter	will	contain	the	concatenated	string.

COPY_FILE
This	Activity	will	copy	a	file	from	one	directory	to	another.
When	executed	on	a	Windows	platform	a	system	copy	command	is	executed.
When	executed	on	an	IBM	i	platform	an	i5/OS	CPY	command	is	executed.
Note	that	files	in	the	integrated	file	system	are	copied	–	if	you	want	to	copy
objects	in	the	QSYS	file	system,	you	must	use	IFS	file	system	notation	to	do	so.
When	executed	on	an	IBM	i	platform,	this	activity	is	capable	of	performing	data
conversion	between	different	CCSIDs	during	the	copy	operation.		For	example,
to	convert	the	data	in	a	text	file	from	its	original	encoding	to	UTF-8	you	could
use	the	parameter	values	TOCCSID(1208)	DTAFMT(*TEXT).
INPUT	Parameters:

FROMFULLNAME	:	Required
This	parameter	should	contain	the	full	path	and	name	of	the	file	to	be	copied
For	example:			Windows			C:\dir1\myfile.txt
IBM	i			/indir/myfile.txt
TODIRECTORY	:	Optional	(*)
This	parameter	may	contain	the	full	directory	path	of	the	destination
directory.		If	specified,	the	file	will	be	copied	to	this	new	location	using	the
same	name	and	extension	as	the	original	file.		If	not	specified,	you	must
provide	a	value	for	the	TOFULLNAME	parameter.
TOFULLNAME	:	Optional	(*)
This	parameter	may	specify	the	path	of	the	directory	the	object	is	to	be
copied	to	AND	the	new	name	of	the	object.		If	specified,	the	file	will	be
copied	to	this	new	location	using	the	new	file	name	and	extension	specified.	
If	not	specified,	you	must	provide	a	value	for	the	TODIRECTORY
parameter.
FROMCCSID	:	Optional,	IBM	i	servers	only
This	parameter	may	specify	the	method	for	obtaining	the	coded	character	set
identifier	(CCSID)	for	the	source	of	the	copy	operation.	This	CCSID	will	be
used	for	data	conversion,	if	requested.
This	parameter	corresponds	directly	to	the	FROMCCSID	parameter	of	the
IBM	i	CPY	command	and	you	may	use	any	values	that	are	defined	for	the
CPY	command.		At	IBM	i	V7R1	the	possible	values	include	*OBJ,
*PCASCII,	*JOBCCSID	or	a	CCSID	value	in	the	range	1-65533.		Refer	to

the	IBM	documentation	for	the	CPY	command	for	more	information.
The	special	(default)	value	*DEFAULT	specifies	that	the	FROMCCSID
parameter	will	not	be	specified.		Note	that	this	parameter	applies	only	when
LANSA	Composer	is	running	on	an	IBM	i	server.
TOCCSID	:	Optional,	IBM	i	servers	only
This	parameter	may	specify	the	data	coded	character	set	identifier	(CCSID)
for	the	target	of	the	copy	operation.
This	parameter	corresponds	directly	to	the	TOCCSID	parameter	of	the	IBM	i
CPY	command	and	you	may	use	any	values	that	are	defined	for	the	CPY
command.		At	IBM	i	V7R1	the	possible	values	include	*OBJ,	*CALC,
*PCASCII,	*STDASCII,	*JOBCCSID	or	a	CCSID	value	in	the	range	1-
65533.		Refer	to	the	IBM	documentation	for	the	CPY	command	for	more
information.
The	special	(default)	value	*DEFAULT	specifies	that	the	TOCCSID
parameter	will	not	be	specified.		Note	that	this	parameter	applies	only	when
LANSA	Composer	is	running	on	an	IBM	i	server.
DTAFMT	:	Optional,	IBM	i	servers	only
This	parameter	may	specify	the	format	of	the	data	in	the	file	to	be	copied..
This	parameter	corresponds	directly	to	the	DTAFMT	parameter	of	the	IBM	i
CPY	command	and	you	may	use	any	values	that	are	defined	for	the	CPY
command.		At	IBM	i	V7R1	the	possible	values	are	*TEXT	and	*BINARY.	
Refer	to	the	IBM	documentation	for	the	CPY	command	for	more
information.
The	special	(default)	value	*DEFAULT	specifies	that	the	DTAFMT
parameter	will	not	be	specified.		Note	that	this	parameter	applies	only	when
LANSA	Composer	is	running	on	an	IBM	i	server.
AUT	:	Optional,	IBM	i	servers	only
This	parameter	may	specify	the	method	used	to	assign	authority	information
to	copied	objects.
This	parameter	corresponds	directly	to	the	AUT	parameter	of	the	IBM	i	CPY
command	and	you	may	use	any	values	that	are	defined	for	the	CPY
command.		At	IBM	i	V7R1	the	possible	values	are	*OBJ,	*INDIR	and
*INDIROBJ.		Refer	to	the	IBM	documentation	for	the	CPY	command	for
more	information.
The	special	(default)	value	*DEFAULT	specifies	that	the	AUT	parameter
will	not	be	specified.		Note	that	this	parameter	applies	only	when	LANSA

Composer	is	running	on	an	IBM	i	server.
OUTPUT	Parameters:
FULLNAMEOUT

Upon	successful	completion,	this	parameter	will	contain	the	full	path	and	file
name	of	the	resulting	destination	file.

COUNTLIST
This	activity	counts	the	entries	in	the	variable	list	specified	in	the	parameter.
INPUT	Parameters:

LIST	:	Required
This	parameter	specifies	the	variable	list	to	be	counted.
You	should	always	specify	a	variable,	not	a	literal	value,	for	this	parameter.

OUTPUT	Parameters:
COUNT	:
Upon	successful	completion,	this	output	parameter	contains	the	number	of
entries	in	the	specified	variable	list.

DELETE_FILE
This	Activity	will	delete	a	flat	file	from	a	directory.
The	full	path	and	name	of	the	file	must	be	provided.
When	executed	on	a	Windows	platform	a	system	del	command	is	executed.
When	executed	on	an	IBM	i	platform	an	i5/OS	DEL	command	is	executed.
Note	that	files	in	the	integrated	file	system	are	deleted	–	if	you	want	to	delete
objects	in	the	QSYS	file	system,	you	must	use	IFS	file	system	notation	to	do	so.
INPUT	Parameters:

FILENAME	:	Required
This	parameter	should	contain	the	full	path	and	name	of	the	file	to	be	deleted
For	example:			Windows			c:\mydir\myfile.txt
IBM	i				/dirabc/file.txt

OUTPUT	Parameters:
There	are	no	output	parameters.

DELETE_SPLF
This	activity	will	delete	a	spool	file	on	an	IBM	i	server.		It	is	only	supported	on
IBM	i	servers.
The	input	parameters	must	fully	identify	the	spool	file	to	be	deleted.		You	must
specify	the	SPLFNUMBER	parameter	if	there	is	more	than	one	spool	file	of	the
name	specified	by	the	SPLFNAME	parameter	for	the	job	specified	by	the	first
three	parameters
INPUT	Parameters:

JOBNAME	:	Required
This	parameter	specifies	the	name	of	the	job	that	created	the	spool	file	to	be
deleted.
JOBUSER	:	Required
This	parameter	specifies	the	user	profile	name	of	the	job	that	created	the
spool	file	to	be	deleted.
JOBNUMBER	:	Required
This	parameter	specifies	the	job	number	of	the	job	that	created	the	spool	file
to	be	deleted.
SPLFNAME	:	Required
This	parameter	specifies	the	name	of	the	spool	file	to	be	deleted.
SPLFNUMBER	:	Optional
This	parameter	specifies	the	number	of	the	spool	file	to	be	deleted	and	is
only	required	if	there	is	more	than	one	spool	file	of	the	name	specified	by	the
SPLFNAME	parameter	for	the	job	specified	by	the	first	three	parameters.		If
not	specified,	a	default	special	value	of	*ONLY	is	used.		You	may	specify
special	values	*ONLY	or	*LAST.		Otherwise	specify	the	number	of	the	job's
spooled	file	that	is	to	be	deleted.

OUTPUT	Parameters:
There	are	no	output	parameters.

DIRECTORY_LIST
This	activity	will	list	the	contents	of	a	directory.		Using	this	activity	you	can	list
either	the	files	or	the	directories	contained	in	the	specified	directory.		You	can
also	specify	whether	the	list	should	include	contents	of	nested	sub-directories
contained	in	the	specified	directory.
Optionally,	files	(but	not	sub-directories)	may	be	filtered	using	the	FILENAME
and/or	EXTENSION	parameters.		If	neither	parameter	is	specified,	all	available
files	will	be	included	in	the	file	list	(when	the	content	requested	is	*FILES).
Activities	that	populate	list	variables	are	often	followed	by	a	LOOP	processing
sequence	directive	or	other	constructs	to	process	the	contents	of	the	list.		Refer
to	Variables	and	Lists	for	more	information	about	the	use	of	list	variables.
INPUT	Parameters:

DIRECTORY	:	Required
This	parameter	should	contain	the	full	path	of	the	directory	whose	contents
are	to	be	listed.
For	example:			Windows			C:\mydirectory
IBM	i					/orders/January
CONTENT	:	Optional
This	parameter	specifies	whether	files	or	directories	contained	in	the
specified	directory	are	to	be	listed.		You	may	specify	one	of	the	following
values:
*FILES		(to	list	the	files)
*DIRECTORIES		(to	list	the	directories)
(The	alias	value	*FOLDERS	may	also	be	used	as	an	alternative	to
*DIRECTORIES)
If	this	parameter	is	not	specified,	a	default	of	*FILES	is	assumed.
MAXDEPTH	:	Optional
This	parameter	specifies	whether	the	content	of	sub-directories	of	the
specified	directory	should	be	included,	and,	if	so,	the	nested	depth	to	which
this	should	apply.		You	may	specify	one	of	the	following	values:
1		(lists	only	the	files	or	directories	that	are	immediate	children	of	the
specified	directory)
n		(list	files	or	directories	to	the	nesting	depth	specified	by	the	integer	value)
*MAX		(lists	files	or	directories	contained	in	the	specified	directory	and	all

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm

descendant	directories)
If	this	parameter	is	not	specified,	a	default	of	1	(one)	is	assumed.
Note	that	in	order	to	avoid	unintended	"runaway"	processing,	the	special
value	*MAX	actually	limits	the	nesting	depth	to	9	(nine),	which	would	be
reasonable	for	most	circumstances.		If	you	wish	to	process	directory	contents
to	a	nesting	depth	greater	than	this,	then	you	may	do	so	by	explicitly
specifying	an	appropriate	integer	value.
CAUTION:		Use	this	parameter	with	care.		It	is	very	easy	to	inadvertently
make	a	request	much	larger	than	you	might	have	anticipated.		Specifying	a
value	greather	than	1	(one)	in	conjunction	with	a	directory	that	contains
many	files	or	sub-directories	may	lead	to	an	unexpectedly	long	processing
time	for	the	activity	and/or	to	processing	limits	being	exceeded.
FILENAME	:	Optional
This	parameter	may	be	specified	when	you	wish	to	list	files	that	match	a
specified	file	name	and/or	extension	pattern.		This	parameter	only	applies
when	the	content	requested	(in	the	CONTENT	parameter)	is	*FILES.
The	filter	matching	is	not	case	sensitive.		For	example	a	value	of	'abc*.txt'
will	result	in	only	files	with	an	extension	of	.TXT	or	.txt	and	with	names
beginning	with	'ABC'	or	'abc'	being	returned	in	the	file	list.
When	constructing	the	file	name	mask,	you	may	use	the	following
placeholder	characters:

	
?
Will	match	any	single	character	at	the	specified	position	of	the	name	or
extension	of	the	file	name

	
*
Will	generically	match	any/all	remaining	characters	in	the	name	or
extension	component	of	the	file	name

Within	either	the	name	or	extension	component	of	the	file	name	mask,	any
characters	after	the	first	'*'	are	not	effective	and	will	be	ignored.		If	there	is
no	extension	component,	then	files	of	any	(or	no)	extension	will	be	matched.
Examples:

. Will	list	all	files	(equivalent	to	omiting	this	parameter	value)

ab*.* Will	list	all	files	whose	names	begin	with	'ab'	and	with	any	(or	no)
file	extension

???
d*.csv

Will	list	all	files	whose	names	contain	'd'	in	the	4th	position	and	that
have	an	extension	of	'csv'

.xm Will	list	all	files	whose	file	extension	begins	with	'xm'
	

EXTENSION	:	Optional
This	parameter	may	be	specified	when	you	wish	to	list	only	files	with	a
certain	extension.		This	parameter	only	applies	when	the	content	requested
(in	the	CONTENT	parameter)	is	*FILES.
The	filter	matching	is	not	case	sensitive	and	does	not	require	the	'.'	prefix.	
For	example	a	value	of	'xml'	will	result	in	only	files	with	an	extension	of
.XML	or	.xml	being	returned	in	the	file	list.
This	parameter	provides	better	performance	than	the	FILENAME	parameter
alone	if	you	only	want	to	select	files	by	file	extension.		(This	is	because	it	is
implemented	at	the	LANSA	Integrator	XMLFileService	level,	rather	than	as
a	post-processing	step).		You	may	specify	both	the	FILENAME	and
EXTENSION	parameters	-	the	value	of	the	EXTENSION	parameter	is
applied	first	and	matching	files	are	then	tested	aainst	the	FILENAME	mask,
if	provided.
ORDERBY	:	Optional
This	parameter	allows	you	to	specify	the	order	in	which	the	files	will	be
listed	in	the	FILELIST	output	parameter.		You	may	specify	one	value	from
each	of	the	following	two	groups	(each	value	should	be	separated	by	at	least
one	space):
1.		*NONE	|	*NAME	|	*MODIFIED
2.		*ASCEND	|	*DESCEND
You	must	specify	quote	marks	around	the	value(s)	to	distinguish	them	from
built-in	variable	names.
The	values	are	described	further	below.		If	you	specify	more	than	one	value
from	each	group,	the	last-specified	value	is	effective.		If	you	do	not	specify
this	parameter,	the	default	values	is	*NONE,	meaning	that	no	explicit
ordering	is	performed	(in	this	case	the	actual	order	is	undefined	by	LANSA
Composer	but	may	be	subject	to	operating	environment	factors).
1.		*NONE	|	*NAME	|	*MODIFIED
These	values	specify	the	file	attribute	that	is	used	to	order	the	list	of	files.	
Specify	*NAME	to	have	the	list	ordered	by	file	path.		Specify	*MODIFIED
to	have	the	list	ordered	by	the	date	last	modified	for	each	file.
2.		*ASCEND	|	*DESCEND

These	values	specify	the	ordering	to	apply.		Specify	*ASCEND	to	list	the
files	in	ascending	order	or	*DESCEND	for	descending	order.		If	not
specified,	the	default	is	*ASCEND.
For	example,	specify	'*MODIFIED	*DESCEND'	to	have	the	files	listed	in
descending	order	of	the	last-modified	date.
NOTE:		The	ORDERBY	parameter	applies	whether	the	content	requested	(in
the	CONTENT	parameter)	is	*FILES	or	*DIRECTORIES.		If	the
MAXDEPTH	parameter	specifes	a	value	greater	than	1	(one),	ORDERBY
affects	the	order	of	files	or	directories	within	each	directory	listed.

OUTPUT	Parameters:
FILELIST

Specifies	the	name	of	a	list	variable	that,	upon	successful	completion,	will
contain	a	list	of	the	files	or	directories	that	match	the	request.
The	list	will	contain	the	full	path	and	file	or	directory	name.		If	you	specify	a
value	other	than	*NONE	for	the	ORDERBY	parameter,	the	list	entries	will
be	ordered	as	specified	(within	each	sub-directory,	if	applicable).
For	example:		Windows			C:\mydirectory\file1.txt
IBM	i				/orders/January/ord01.xml

DISCOVER_DOC
This	activity	determines	the	document	type	(as	defined	in	LANSA	Composer's
Document	types)	corresponding	to	a	specified	transaction	document	file.
INPUT	Parameters:	

DOCFILE	:	Required
This	parameter	specifies	the	path	and	name	of	the	transaction	document	file.
DOCTYPEGROUP	:	Optional
This	parameter	may	specify	the	name	of	a	document	type	group	that	will
limit	the	document	type	definitions	against	which	the	specified	transaction
document	file	is	matched.		The	document	type	groups	provide	a	further
means	for	you	to	qualify	the	document	discovery	process	according	to	the
context	in	which	it	is	running.

OUTPUT	Parameters:
DOCTYPE	:
Upon	successful	completion,	this	parameter	will	contain	the	name	of	the
document	type	that	applies	to	the	specified	transaction	document	file.		If	a
matching	document	type	is	not	found,	this	parameter	will	contain	the	special
value	'*UNKNOWN'.
DOCPSEQ	:
Upon	successful	completion,	this	parameter	will	contain	the	name	of	the
processing	sequence	associated	with	the	document	type	(if	specified	for	the
document	type).		Your	processing	sequence	can	invoke	the	processing
sequence	using	the	Processing	Sequence	directive	(the	processing	Sequence
directive	allows	you	to	specify	a	processing	sequence	variable	that	contains
the	processing	sequence	identifier).

DISCOVER_EDI
This	activity	processes	an	EDI	transaction	document	file	to	discover	more
information	about	its	contents.		If	the	document	has	already	been	registered	in
the	transaction	document	register,	the	activity	will	update	the	register	with
information	extracted	from	the	document.
The	functions	of	this	activity	include:

determining	the	EDI	document	standard,	version	and	the	transaction	type;
matching	the	EDI	transaction	document	to	a	LANSA	Composer	trading
partner	definition,	and	updating	the	transaction	document	register
accordingly;
populating	the	trading	partner	agreements	(interchanges),	groups	and
transactions	(messages)	sections	of	the	transaction	document	register	with
initial	information	about	the	contents	of	the	EDI	transaction	document;
optionally	validating	the	EDI	transaction(s)	(if	specified	for	the	matching
trading	partner,	and	if	a	SEF	file	is	specified	for	the	matching	LANSA
Composer	document	standard	and	version).

INPUT	Parameters:
EDINUMBER	:	Required
This	parameter	specifies	the	transaction	document	envelope	number	for	the
transaction	document.		This	number	is	normally	assigned	by	the
TXDOC_REGISTER	activity.
If	the	document	has	not	been	registered,	you	can	specify	the	special	value
'*NONE'.		If	you	specify	'*NONE',	the	activity	will	not	attempt	to	use	or
update	the	transaction	document	register	with	information	gleaned	from	the
document.
EDIFILE	:	Required
This	parameter	specifies	the	path	and	name	of	the	EDI	transaction	document
file.
EDIDIR	:	Required
This	parameter	specifies	the	direction	(I=inbound,	O=outbound)	for	the
document	exchange.

OUTPUT	Parameters:
EDISTD	:
Upon	successful	completion,	this	parameter	will	contain	the	document

standard	id	(as	defined	in	LANSA	Composer's	Document	types)	that	applies
to	the	EDI	transaction	document.
EDIVER	:
Upon	successful	completion,	this	parameter	will	contain	the	document
standard	version	id	(as	defined	in	LANSA	Composer's	Document	types)	that
applies	to	the	EDI	transaction	document.
EDITYPE	:
Upon	successful	completion,	this	parameter	will	contain	the	EDI	transaction
type	(eg:	850	or	INVOIC)	of	the	EDI	transaction(s)	contained	in	the	EDI
transaction	document.
EDIPRODTEST	:
Upon	successful	completion,	this	parameter	will	contain	P	if	the	EDI
transaction	is	a	production	transaction	or	T	if	it	is	a	test	transaction.
EDIVALID:
Upon	successful	completion,	this	parameter	indicates	whether	the	transaction
is	deemed	to	be	valid	(Y)	or	not	(N),	if	the	transaction	was	validated
according	to	the	LANSA	Composer	settings	in	effect	for	the	applicable
trading	partner	and	document	standard.
EDIMATCHTP	:
Upon	successful	completion,	this	parameter	will	contain	the	identifier	of	the
trading	partner	that	matches	the	EDI	transaction	document.

DISCOVER_MAP
This	activity	retrieves	attributes	(including	many	data	interchange	attributes)
associated	with	a	specified	transformation	map	definition.
INPUT	Parameters:

MAPID	:	Required
This	parameter	specifies	the	identifier	of	the	transformation	map	whose
attributes	are	to	be	retrieved.		You	may	specify	the	special	value
*TRANSFORM	to	retrieve	attributes	for	the	current	transformation	map	(the
transformation	map	identified	by	the	*TRANSFORM	built-in	value).

OUTPUT	Parameters:
MAPTYPE	:
Upon	successful	completion,	this	parameter	will	contain	the	transformation
map	type	code	value	that	applies	to	the	specified	transformation	map.
DOCTYPE	:
Upon	successful	completion,	this	parameter	will	contain	the	name	of	the
document	type	(if	any)	associated	with	the	specified	transformation	map.
DIRECTION	:
Upon	successful	completion,	this	parameter	will	contain	the	map	direction	(I,
O)	that	applies	to	the	specified	transformation	map.
STANDARD	:
Upon	successful	completion,	this	parameter	will	contain	the	name	of	the
document	standard	that	applies	to	the	specified	transformation	map.
VERSION	:
Upon	successful	completion,	this	parameter	will	contain	the	name	of	the
document	standard	version	that	applies	to	the	specified	transformation	map.
TRANSACTIONID	:
Upon	successful	completion,	this	parameter	will	contain	the	transaction	type
that	applies	to	the	specified	transformation	map.
DOCEXTN	:
Upon	successful	completion,	this	parameter	will	contain	the	file	extension
associated	with	the	document	type.
DOCPSEQIN	:
Upon	successful	completion,	this	parameter	will	contain	the	identifier	of	the

inbound	processing	sequence	associated	with	the	document	type.		Your
processing	sequence	can	invoke	the	processing	sequence	using	the
Processing	Sequence	directive.
DOCPSEQOUT	:
Upon	successful	completion,	this	parameter	will	contain	the	identifier	of	the
outbound	processing	sequence	associated	with	the	document	type.		Your
processing	sequence	can	invoke	the	processing	sequence	using	the
Processing	Sequence	directive.

DISCOVER_XML
This	activity	interrogates	an	XML	document	to	discover	the	type	of	information
it	contains.		A	processing	sequence	might	use	the	output	from	this	activity	to
determine	how	to	process	different	types	of	XML	documents	-	for	example,
what	type	of	transformation	to	run	for	them.
If	the	activity	fails	to	load	or	parse	the	document,	it	will	set	an	error	return	code.

For	performance	reasons,	this	activity	performs	simplified	parsing	of
the	XML	document.		It	does	NOT	load	the	entire	document	and	cannot
assert	that	the	XML	document	is	well-formed	or	valid.		In	some	cases,
it	may	return,	without	error,	a	root	element	name	for	invalid	or	badly-
formed	XML	documents.

INPUT	Parameters:
XMLFILE	:	Required
This	parameter	specifies	the	path	and	name	of	the	XML	document.

OUTPUT	Parameters:
XMLROOT	:
Upon	successful	completion,	this	parameter	will	contain	the	name	of	the	root
element	of	the	specified	XML	document.		The	namespace	prefix,	if	present,
has	been	removed.
XMLROOTUPPER	:
Upon	successful	completion,	this	parameter	will	contain	the	same	value	as
the	XMLROOT	output	parameter,	but	with	lowercase	characters	translated	to
uppercase.
Note:		XML	tags	are	strictly	case-sensitive.		The	uppercase	version	of	the
document	root	element	name	is	provided	for	your	convenience,	but	it	is	your
responsibility	to	ensure	that	using	this	converted	name	is	valid	and
appropriate	for	your	application.
XMLNAMESPACE	:
Upon	successful	completion,	this	parameter	will	contain	the	namespace	URI
associated	with	the	root	element,	if	any.
XMLNAMESPACEUPPER	:
Upon	successful	completion,	this	parameter	will	contain	the	same	value	as
the	XMLNAMESPACE	output	parameter,	but	with	lowercase	characters

translated	to	uppercase.
Note:		XML	tags	are	strictly	case-sensitive.		The	uppercase	version	of	the
namespace	URI	is	provided	for	your	convenience,	but	it	is	your
responsibility	to	ensure	that	using	this	converted	name	is	valid	and
appropriate	for	your	application.

DTAQ_CLEAR
This	activity	clears	a	named	data	queue.
Refer	also	to	the	companion	DTAQ_RECEIVE,	DTAQ_SEND	and
WATCH_DTAQ	activities	that	allows	you	to	send	and	receive	data	to	and	from
a	named	data	queue.

Note:	Data	queues	are	persistent	objects	but	their	data	content	can	be
lost	or	corrupted	during	a	system	failure.		Backup,	recovery	and
maintenance	of	data	queues	used	in	your	LANSA	Composer	solution
is	your	responsibility	–	you	should	make	provision	for	this	in	your
implementation	plans.

IBM	i	Platform	Notes
Data	queues	are	a	native	operating	system	feature	on	the	IBM	i	server.		The	full
range	of	capabilities	of	this	activity	may	only	be	available	on	IBM	i	servers.
(The	implementation	of	this	activity	on	an	IBM	i	server	uses	the	QCLRDTAQ
system	API.)
Refer	to	the	description	of	the	DTAQ_SEND	activity	for	more	complete	IBM	i
Server	Platform	Notes	relating	to	the	suite	of	DTAQ	activities.		Refer	to	IBM	i
documentation	concerning	data	queues	for	further	information	about	the
operating	system	features	upon	which	this	activity	depends.
Windows	Server	Platform	Notes
Although	data	queues	are	a	native	feature	of	the	IBM	i	server,	this	activity	and
the	companion	DTAQ_RECEIVE,	DTAQ_SEND	and	WATCH_DTAQ
activities	are	available	on	Windows	servers	too,	but	with	a	reduced	feature	set
and	with	other	restrictions	and	caveats.
The	following	notes	and	restrictions	apply	to	using	this	activity	on	a	Windows
server:

The	DTAQLIB	parameter	is	not	used	and	its	value	will	be	ignored.		(You
may	use	the	DTAQPATH	parameter	to	specify	a	location	for	the	data	queue,
if	required.)
Data	queues	are	stored	in	pairs	of	files	in	the	Windows	server	file	system
with	.EDQ	and	.LDQ	file	extensions.		The	.EDQ	file	contains	the	data	queue
definition	and	entries.		The	.LDQ	files	are	used	to	logically	lock	the	data
queue	during	receive	operations.		The	file	names	are	determined	by	the
LANSA	run-time	support	used	by	this	activity.		This	activity	clears	the	data

queue	by	deleting	these	files.
The	location	of	the	.EDQ	and	.LDQ	data	queue	storage	files	is	determined
by	the	value	of	the	DTAQPATH	parameter.		Refer	to	that	parameter
description	for	further	information.
Refer	to	the	description	of	the	DTAQ_SEND	activity	for	more	complete
Windows	Server	Platform	Notes	relating	to	the	suite	of	DTAQ	activities.

INPUT	Parameters:
DTAQ	:	Required
This	parameter	must	specify	the	name	of	the	data	queue	that	is	to	be	cleared.
DTAQLIB:	Optional
When	running	on	IBM	i	servers,	this	parameter	may	specify	the	name	of	the
library	containing	the	data	queue.		If	not	specified,	a	default	of	*LIBL	is	used
which	means	the	library	list	is	used	to	locate	the	named	data	queue.
When	running	on	a	Windows	server,	this	parameter	is	not	used	and	its	value
is	ignored.		You	may	use	the	DTAQPATH	parameter	to	specify	the	location
for	the	data	queue,	if	required.
DTAQPATH:	Optional
When	running	on	Windows	servers,	this	parameter	may	specify	the	path	to
the	directory	in	which	the	data	queue	.EDQ	and	.LDQ	files	are	stored.		If	not
specified,	the	default	location	is	determined	by	the	LANSA	run-time
according	to	the	effective	value	of	the	DPTH=	X_RUN	parameter.
When	running	on	an	IBM	i	server,	this	parameter	is	not	used	and	its	value	is
ignored.		You	may	use	the	DTAQLIB	parameter	to	specify	the	location	for
the	data	queue,	if	required.

OUTPUT	Parameters:
There	are	no	output	parameters

DTAQ_RECEIVE
This	activity	receives	data	from	a	named	data	queue.
This	activity	treats	data	received	from	a	data	queue	as	character	data.		Using	this
activity	to	interact	with	applications	that	send	or	receive	binary	data	to	or	from
the	data	queue	is	not	supported.
When	the	activity	receives	an	entry	from	the	named	data	queue,	the	data	content
(and	possibly	sender	information)	is	available	through	the	output	parameters	of
the	activity.
When	no	data	is	available	to	be	received	(after	waiting	for	the	interval	specified
by	the	DTAWAIT	parameter,	if	used),	the	activity	ends	normally	but	the	output
parameters	are	not	filled.		The	value	of	the	RCVCOUNT	output	parameter	may
be	used	to	determine	whether	an	entry	was	received.
Refer	also	to	the	companion	DTAQ_CLEAR,	DTAQ_SEND	and
WATCH_DTAQ	activities	that	allows	you	to	send	and	receive	data	to	and	from
and	to	perform	other	operations	on	a	named	data	queue.

Note:	Data	queues	are	persistent	objects	but	their	data	content	can	be
lost	or	corrupted	during	a	system	failure.		Backup,	recovery	and
maintenance	of	data	queues	used	in	your	LANSA	Composer	solution
is	your	responsibility	–	you	should	make	provision	for	this	in	your
implementation	plans.

IBM	i	Platform	Notes
Data	queues	are	a	native	operating	system	feature	on	the	IBM	i	server.		The	full
range	of	capabilities	of	this	activity	is	only	available	on	IBM	i	servers.
(The	implementation	of	this	activity	on	an	IBM	i	server	uses	the	QRCVDTAQ
system	API.)
Use	of	keyed	data	queues	with	this	activity	is	not	presently	supported.
Refer	to	the	description	of	the	DTAQ_SEND	activity	for	more	complete	IBM	i
Server	Platform	Notes	relating	to	the	suite	of	DTAQ	activities.		Refer	to	IBM	i
documentation	concerning	data	queues	for	further	information	about	the
operating	system	features	upon	which	this	activity	depends.
Windows	Server	Platform	Notes
Although	data	queues	are	a	native	feature	of	the	IBM	i	server,	this	activity	and
the	companion	DTAQ_CLEAR,	DTAQ_SEND	and	WATCH_DTAQ	activities

are	available	on	Windows	servers	too,	but	with	a	reduced	feature	set	and	with
other	restrictions	and	caveats.
(The	implementation	of	this	activity	on	a	Windows	server	uses	the	emulated
data	queue	support	in	the	LANSA	run-time,	using	the
RCV_FROM_DATA_QUEUE	built-in	function.)
The	following	notes	and	restrictions	apply	to	using	this	activity	on	a	Windows
server:

The	DTAQLIB	parameter	is	not	used	and	its	value	will	be	ignored.		(You
may	use	the	DTAQPATH	parameter	to	specify	a	location	for	the	data	queue,
if	required.)
Data	queues	are	stored	in	pairs	of	files	in	the	Windows	server	file	system
with	.EDQ	and	.LDQ	file	extensions.		The	.EDQ	file	contains	the	data	queue
definition	and	entries.		The	.LDQ	files	are	used	to	logically	lock	the	data
queue	during	receive	operations.		The	file	names	are	determined	by	the
LANSA	run-time	support	used	by	this	activity.		The	files	can	be	manually
cleared	or	deleted	by	deleting	the	associated	files.		Alternatively	the
DTAQ_CLEAR	activity	may	be	used	for	this	purpose.
The	location	of	the	.EDQ	and	.LDQ	data	queue	storage	files	is	determined
by	the	value	of	the	DTAQPATH	parameter.		Refer	to	that	parameter
description	for	further	information.
Refer	to	the	description	of	the	DTAQ_SEND	activity	for	more	complete
Windows	Server	Platform	Notes	relating	to	the	suite	of	DTAQ	activities.

NOTE:		On	Windows	servers,	the	specific	implementation	used	means
that	the	activity	is	unable	to	handle	certain	types	of	exceptions	that
may	be	considered	unexceptional	in	other	circumstances.		In	such
cases	the	processing	sequence	containing	the	activity	may	simply	end
abnormally	without	logging	diagnostic	information	in	the	Processing
Sequence	log.		This	behavior	differs	from	most	other	LANSA
Composer	activities	and	from	the	IBM	i	implementation	of	this
activity.

You	should	be	aware	of	this	possibility	and	be	prepared	to	diagnose
such	issues	in	other	ways.		For	example,	the	x_err.log	generated	by	the
LANSA	run-time	may	assist	with	diagnosing	such	conditions.

INPUT	Parameters:

DTAQ	:	Required
This	parameter	must	specify	the	name	of	the	data	queue	from	which	the	data
is	to	be	received.
DTAQLIB:	Optional
When	running	on	IBM	i	servers,	this	parameter	may	specify	the	name	of	the
library	containing	the	data	queue.		If	not	specified,	a	default	of	*LIBL	is	used
which	means	the	library	list	is	used	to	locate	the	named	data	queue.
When	running	on	a	Windows	server,	this	parameter	is	not	used	and	its	value
is	ignored.		You	may	use	the	DTAQPATH	parameter	to	specify	the	location
for	the	data	queue,	if	required.
DTAQPATH:	Optional
When	running	on	Windows	servers,	this	parameter	may	specify	the	path	to
the	directory	in	which	the	data	queue	.EDQ	and	.LDQ	files	are	stored.		If	not
specified,	the	default	location	is	determined	by	the	LANSA	run-time
according	to	the	effective	value	of	the	DPTH=	X_RUN	parameter.
When	running	on	an	IBM	i	server,	this	parameter	is	not	used	and	its	value	is
ignored.		You	may	use	the	DTAQLIB	parameter	to	specify	the	location	for
the	data	queue,	if	required.
DTAWAIT:	Optional
Specifies	the	length	of	time	(in	seconds)	that	the	activity	will	wait	for	data	to
arrive	on	the	data	queue	if	no	data	is	immediately	available	when	the	activity
is	processed.
The	default	value	is	0	(zero)	which	means	that	the	activity	does	not	wait	for
the	arrival	of	an	entry	if	one	is	not	immediately	available	when	the	activity	is
processed.
You	may	also	specify	the	special	value	*MAX	which	means	that	the	activity
waits	indefinitely	for	data	to	arrive.		You	should	understand	that	this	value
may	cause	the	activity	and	hence	the	processing	sequence	in	which	it	is
contained	to	stall	indefinitely	if	no	data	is	sent	to	the	data	queue.		Other	than
by	the	arrival	of	data,	such	a	processing	sequence	run	may	only	be
terminated	by	terminating	the	job,	the	subsystem	in	which	the	job	is	running
or	the	system.		If	you	wish	a	process	to	wait	indefinitely	for	data	to	arrive	on
a	data	queue,	the	WATCH_DTAQ	activity	may	provide	a	more	suitable
solution.
DTARMV:	Optional
Specifies	whether	the	data	received	by	the	activity	is	removed	from	the	data

queue.		The	default	is	*YES,	which	means	the	data	is	removed.		You	may
specify	*NO	to	cause	the	data	not	to	be	removed	from	the	data	queue.		If	you
do	so,	the	data	can	be	received	again	by	this	activity	in	the	same	or	another
Processing	Sequence.
DTAQELEN:	Optional
On	an	IBM	i	server,	this	parameter	is	not	required	and	its	value	will	be
ignored.
On	a	Windows	server,	this	parameter	is	required	and	it	must	specify	the
length	of	the	data	queue	entries.		The	activity	supports	data	lengths	between
1	and	1024	inclusive.
On	a	Windows	server,	the	first	send	(DTAQ_SEND)	operation	for	a	data
queue	will	automatically	create	the	data	queue	and	will	set	its	entry	length.	
The	length	specified	for	subsequent	operations	to	the	same	data	queue	must
match	the	length	specified	on	the	initial	operation	that	created	the	data
queue.		(On	Windows	servers,	LANSA	Composer	will	actually	use	the	next
greatest	multiple	of	256	–	for	example,	if	you	specify	700	for	this	parameter,
LANSA	Composer	will	actually	use	the	value	768.)

OUTPUT	Parameters:
RCVCOUNT:
The	received	entry	count.		If	data	is	received	successfully,	the	value	will	be
one	(1).		Otherwise	the	value	will	be	zero	(0).		The	activity	ends	normally
when	no	message	is	available	to	receive	after	waiting	for	the	interval
specified	by	the	DTAWAIT	parameter.
RCVDATALEN:
If	data	is	received,	this	parameter	contains	the	length	of	the	data	received.
(On	a	Windows	server,	the	activity	cannot	determine	the	actual	data	length
received,	and	the	value	returned	in	this	parameter	is	the	same	as	the	value
provided	in	the	DATAQELEN	input	parameter.)
RCVDATARCVDATA02
RCVDATA03
RCVDATA04:
If	data	is	received,	this	parameter	contains	the	data.		Each	parameter	receives
up	to	256	bytes	of	data.		The	first	parameter,	RCVDATA,	contains	the	first
up	to	256	bytes	of	data.		The	remaining	parameters	are	filled	only	if	you	are
using	data	queue	entries	of	length	greater	than	256,	512	and	768	respectively.
SENDJOB

SENDUSER
SENDJOBNBR:
If	data	is	received,	these	output	parameters	may	contain	the	job	name,	user
name	and	the	job	number	of	the	job	that	sent	the	data	to	the	data	queue.
On	an	IBM	i	server,	these	values	will	be	available	only	if
SENDERID(*YES)	was	specified	when	the	data	queue	was	created	using	the
CRTDTAQ	(Create	Data	Queue)	command.
On	a	Windows	server,	the	sending	job	information	is	not	available	and	these
parameters	will	not	be	filled.

DTAQ_SEND
This	activity	sends	data	to	a	named	data	queue.
This	activity	treats	data	sent	to	a	data	queue	as	character	data.		Using	this
activity	to	interact	with	applications	that	send	or	receive	binary	data	to	or	from
the	data	queue	is	not	supported.
Refer	also	to	the	companion	DTAQ_RECEIVE,	DTAQ_CLEAR	and
WATCH_DTAQ	activities	that	allows	you	to	receive	data	from	and	to	perform
other	operations	on	a	named	data	queue.

Note:	Data	queues	are	persistent	objects	but	their	data	content	can	be
lost	or	corrupted	during	a	system	failure.		Backup,	recovery	and
maintenance	of	data	queues	used	in	your	LANSA	Composer	solution
is	your	responsibility	–	you	should	make	provision	for	this	in	your
implementation	plans.

IBM	i	Platform	Notes
Data	queues	are	a	native	operating	system	feature	on	the	IBM	i	server.		The	full
range	of	capabilities	of	this	activity	are	only	available	on	IBM	i	servers.
(The	implementation	of	this	activity	on	an	IBM	i	server	uses	the	QSNDDTAQ
system	API.)
Data	queues	referenced	by	this	activity	must	already	exist	on	the	IBM	i	server.	
You	can	create	a	data	queue	on	the	IBM	i	server	using	the	CRTDTAQ
command.		For	example,	the	following	command	creates	a	data	queue	named
MYDATAQ	in	library	QGPL	that	can	receive	data	entries	of	up	to	256
characters:
CRTDTAQ	DTAQ(QGPL/MYDATAQ)	MAXLEN(512)

Use	of	keyed	data	queues	with	this	activity	is	not	presently	supported.
Refer	to	IBM	i	documentation	concerning	data	queues	for	further	information
about	the	operating	system	features	upon	which	this	activity	depends.
Windows	Server	Platform	Notes
Although	data	queues	are	a	native	feature	of	the	IBM	i	server,	this	activity	and
the	companion	DTAQ_CLEAR,	DTAQ_RECEIVE	and	WATCH_DTAQ
activities	are	available	on	Windows	servers	too,	but	with	a	reduced	feature	set
and	with	other	restrictions	and	caveats.
(The	implementation	of	this	activity	on	a	Windows	server	uses	the	emulated

data	queue	support	in	the	LANSA	run-time,	using	the
SND_TO_DATA_QUEUE	built-in	function.)
The	following	notes	and	restrictions	apply	to	using	this	activity	on	a	Windows
server:

The	TODTAQLIB	parameter	is	not	used	and	its	value	will	be	ignored.		(You
may	use	the	TODTAQPATH	parameter	to	specify	a	location	for	the	data
queue,	if	required.)
Data	queues	are	automatically	created	when	they	are	first	referenced.
The	first	reference	not	only	creates	the	data	queue,	but	also	permanently	sets
the	entry	size	for	the	data	queue	according	to	the	value	of	the	DTALEN
parameter.
Data	queues	are	stored	in	pairs	of	files	in	the	Windows	server	file	system
with	.EDQ	and	.LDQ	file	extensions.		The	.EDQ	file	contains	the	data	queue
definition	and	entries.		The	.LDQ	files	are	used	to	logically	lock	the	data
queue	during	receive	operations.		The	file	names	are	determined	by	the
LANSA	run-time	support	used	by	this	activity.		The	files	can	be	manually
cleared	or	deleted	by	deleting	the	associated	files.		Alternatively	the
DTAQ_CLEAR	activity	may	be	used	for	this	purpose.
The	location	of	the	.EDQ	and	.LDQ	data	queue	storage	files	is	determined
by	the	value	of	the	TODTAQPATH	parameter.		Refer	to	that	parameter
description	for	further	information.
If	you	have	the	Visual	LANSA	documentation	available	to	you,	you	can	find
further	information	pertinent	to	the	Windows	implementation	of	this	and
related	activities	in	the	description	of	the	SND_TO_DATA_QUEUE	built-in
function,	in	the	LANSA	Technical	Reference	Guide.

NOTE:		On	Windows	servers,	the	specific	implementation	used	means
that	the	activity	is	unable	to	handle	certain	types	of	exceptions	that
may	be	considered	unexceptional	in	other	circumstances.		In	such
cases	the	processing	sequence	containing	the	activity	may	simply	end
abnormally	without	logging	diagnostic	information	in	the	Processing
Sequence	log.		This	behavior	differs	from	most	other	LANSA
Composer	activities	and	from	the	IBM	i	implementation	of	this
activity.

You	should	be	aware	of	this	possibility	and	be	prepared	to	diagnose
such	issues	in	other	ways.		For	example,	the	x_err.log	generated	by	the

LANSA	run-time	may	assist	with	diagnosing	such	conditions.

INPUT	Parameters:
TODTAQ	:	Required
This	parameter	must	specify	the	name	of	the	data	queue	to	which	the	data	is
sent.
TODTAQLIB:	Optional
When	running	on	IBM	i	servers,	this	parameter	may	specify	the	name	of	the
library	containing	the	data	queue.		If	not	specified,	a	default	of	*LIBL	is	used
which	means	the	library	list	is	used	to	locate	the	named	data	queue.
When	running	on	a	Windows	server,	this	parameter	is	not	used	and	its	value
is	ignored.		You	may	use	the	TODTAQPATH	parameter	to	specify	a	location
for	the	data	queue,	if	required.
TODTAQPATH:	Optional
When	running	on	Windows	servers,	this	parameter	may	specify	the	path	to
the	directory	in	which	the	data	queue	.EDQ	and	.LDQ	files	are	to	be	stored.	
If	not	specified,	the	default	location	is	determined	by	the	LANSA	run-time
according	to	the	effective	value	of	the	DPTH=	X_RUN	parameter.
When	running	on	an	IBM	i	server,	this	parameter	is	not	used	and	its	value	is
ignored.		You	may	use	the	TODTAQLIB	parameter	to	specify	a	location	for
the	data	queue,	if	required.
DTALEN:	Required
This	parameter	must	specify	the	number	of	characters	of	data	to	be	sent	to
the	data	queue.		The	activity	supports	data	lengths	between	1	and	1024
inclusive.
On	an	IBM	i	server,	this	value	must	be	consistent	with	the	length	specified
when	the	data	queue	was	created	using	the	CRTDTAQ	command.
On	a	Windows	server,	the	first	send	operation	for	a	data	queue	will
automatically	create	the	data	queue	and	will	set	its	entry	length.		The	length
specified	for	subsequent	operations	to	the	same	data	queue	must	match	the
length	specified	on	the	initial	operation	that	created	the	data	queue.		(On
Windows	servers,	LANSA	Composer	will	actually	use	the	next	greatest
multiple	of	256	–	for	example,	if	you	specify	700	for	this	parameter,	LANSA
Composer	will	actually	use	the	value	768.)
SNDDATASNDDATA02
SNDDATA03

SNDDATA04:	Optional
These	parameters	specify	the	data	to	be	sent	to	the	data	queue.		Each
parameter	specifies	up	to	256	bytes	of	data.		The	first	parameter,	SNDDATA
is	required.		The	remaining	parameters	are	optional	and	only	need	be
specified	if	you	are	using	data	queue	entries	of	length	greater	than	256,	512
and	768	respectively.

OUTPUT	Parameters:
There	are	no	output	parameters

EDI_SPLIT
This	activity	can	split	a	composite	EDI	transaction	document	file	into	one	or
more	EDI	transaction	documents	each	containing	no	more	than	the	specified
number	of	transactions.		This	splitting	can	be	important	or	necessary	for	two
main	reasons	concerning	further	processing	of	the	EDI	transaction	document:

later	standard	LANSA	Composer	EDI	document	processing,	such	as	the
DISCOVER_EDI	activity	is	founded	on	assumptions	that	the	transactions
contained	in	EDI	document	are	for	the	same	trading	partner	and/or	are	of	the
same	EDI	transaction	type;
when	very	large	EDI	transaction	documents	are	expected,	splitting	them	into
smaller	documents	optimises	their	further	processing,	especially	in	any
mapping	steps.

INPUT	Parameters:
EDIFILE	:	Required
This	parameter	specifies	the	path	and	name	of	the	EDI	transaction	document
file	to	be	split.
EDILIMIT	:	Optional
This	parameter	specifies	the	maximum	number	of	transactions	to	be
contained	in	each	of	the	resulting	split	EDI	transaction	documents.		If	not
specified,	a	default	of	1	(one)	is	assumed.		The	value	for	this	parameter	can
be	taken	from	the	value	specified	for	the	exchange	trading	partner	associated
with	the	EDI	transaction	document	file	using	the	*tradingpartner.edi.splitmax
built-in	variable.
EDIIGNORECRLF	:	Optional
When	Y	(yes)	is	specified,	carriage	return	/	line	feeds	in	the	source	EDI
transaction	document	file	are	ignored	when	parsing	the	document.		If	not
specified,	a	default	of	N	(no)	is	used.		The	value	for	this	parameter	can	be
taken	from	the	value	specified	for	the	exchange	trading	partner	associated
with	the	EDI	transaction	document	file	using	the
*tradingpartner.edi.splitignorecr	built-in	variable.

OUTPUT	Parameters:
EDISPLITLIST	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the	resulting
EDI	transactions	documents.		The	individual	split	documents	in	the	list	are
typically	further	processed	using	the	LOOP	directive.

FIND_TPMAP
This	activity	finds	the	transformation	map(s)	linked	to	the	specified	trading
partner	that	match	the	criteria	specified.		Transformation	maps	are	considered	in
order	of	the	sequence	(within	map	type)	specified	when	the	maps	are	linked	to
the	trading	partner.
Depending	on	the	transformation	maps	linked	to	the	trading	partner	and	the
criteria	specified	in	the	parameters	to	this	activity,	more	than	one	matching	map
may	be	found.		Consequently,	the	output	parameter	is	a	list	of	transformation
map	identifiers.		If	you	want	or	intend	that	only	one	matching	map	be	found,
then	you	must:
a)	link	only	the	appropriate	maps	to	the	trading	partner
b)	ensure	that	the	linked	maps	have	appropriate	attributes,	including	the
applicable	Data	Interchange	attributes
c)	specify	appropriate	values	for	the	activity	parameters.
If	more	than	one	matching	map	is	found,	the	output	parameters	MAPID	and
MAPACK	will	be	treated	as	a	list	variable,	each	containing	an	entry	for	each
matching	transformation	map	that	was	found.		Activities	that	populate	list
variables	are	often	followed	by	a	LOOP	processing	sequence	directive	or	other
constructs	to	process	the	contents	of	the	list.		Refer	to	Variables	and	Lists	for
more	information	about	the	use	of	list	variables.
INPUT	Parameters:

TRADINGPARTNER	:	Required
Specifies	the	identifier	of	the	trading	partner	whose	linked	transformation
maps	are	to	be	considered.		If	you	are	using	this	activity	inside	a	processing
sequence	loop	that	is	controlled	by	the	*TRADINGPARTNERS	built-in
variable	list,	then	you	should	usually	specify	the	*TRADINGPARTNER
built-in	variable	for	this	parameter.		You	may	also	use	the
*TRADINGPARTNER	built-in	variable	if,	in	your	processing	sequence,	you
have	previously	explicitly	set	its	value.		Otherwise,	you	should	specify	a
variable	or	literal	that	contains	the	required	trading	partner	ID.
PRODTEST	:	Optional
Specifies	whether	the	transformation	map	must	be	linked	to	the	trading
partner	for	production	(P)	or	test	(T)	transactions	in	order	to	be	considered.	
If	not	specified,	then	the	selection	of	matching	linked	transformation	map	is
not	affected	by	that	attribute.

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm

MAPTYPE	:	Optional
Specifies	the	transformation	map	type	code	value	that	is	to	be	matched
against	the	type	of	transformation	maps	linked	to	the	trading	partner.		If	not
specified,	then	the	selection	of	matching	linked	transformation	map	is	not
affected	by	that	attribute.
DOCTYPE	:	Optional
Specifies	the	transaction	document	type	identifier	that	is	to	be	matched
against	the	transaction	document	types	associated	with	transformation	maps
linked	to	the	trading	partner.		If	not	specified,	then	the	selection	of	matching
linked	transformation	map	is	not	affected	by	that	attribute.
DIRECTION	:	Optional
Specifies	the	map	direction	that	is	to	be	matched	against	the	map	direction
associated	with	transformation	maps	linked	to	the	trading	partner.		You
should	specify	'I'	for	inbound	maps	or	'O'	for	outbound	maps.		If	not
specified,	then	the	selection	of	matching	linked	transformation	map	is	not
affected	by	that	attribute.
STANDARD	:	Optional
Specifies	the	document	standard	"match	agency"	value	that	is	to	be	matched
against	that	specified	for	the	document	standard	associated	with
transformation	maps	linked	to	the	trading	partner	(for	example,	you	would
specify	'X'	for	X12	maps).		If	not	specified,	then	the	selection	of	matching
linked	transformation	map	is	not	affected	by	that	attribute.
VERSION	:	Optional
Specifies	the	document	standard	"match	version"	value	that	is	to	be	matched
against	that	specified	for	the	document	standard	associated	with
transformation	maps	linked	to	the	trading	partner	(for	example,	you	would
specify	'004010'	for	X12	version	004010	maps).		If	not	specified,	then	the
selection	of	matching	linked	transformation	map	is	not	affected	by	that
attribute.
TRANSACTIONID	:	Optional
Specifies	the	map	transaction	ID	that	is	to	be	matched	against	the	map
transaction	ID	associated	with	transformation	maps	linked	to	the	trading
partner.		For	example,	you	might	specify	'850'	for	maps	that	process	X12
transaction	850.		If	not	specified,	then	the	selection	of	matching	linked
transformation	map	is	not	affected	by	that	attribute.
VERSION	:	Optional

Specifies	the	map	standard	version	that	is	to	be	matched	against	the	map
standard	version	associated	with	transformation	maps	linked	to	the	trading
partner.		If	not	specified,	then	the	selection	of	matching	linked
transformation	map	is	not	affected	by	that	attribute.

OUTPUT	Parameters:
MAPCOUNT

Upon	completion,	this	variable	will	contain	a	count	of	the	number	of
matching	transformation	maps	found.		(This	will	be	the	same	as	the	number
of	items	in	the	MAPID	list).

MAPID
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the
identifiers	(names)	of	transformation	maps	linked	to	the	specified	trading
partner	that	match	the	specified	criteria.		In	many	cases,	you	might	expect
one	matching	map	(but	this	is	subject	to	appropriate	entry	of	map	attributes
and	activity	parameter	values).		In	such	cases,	you	simply	refer	to	the	first
(and	assumed	to	be	the	only)	entry	in	the	list.		In	other	cases,	you	may	expect
more	than	one	matching	linked	transformation	map.		In	that	event,	you
should	process	the	resulting	list	in	this	parameter	using	a	LOOP	directive	in
the	processing	sequence.
Note	that	you	can	assign	the	value(s)	contained	in	this	parameter	to	the
*TRANSFORM	built-in	variable.		You	can	then	directly	access	further
attributes	of	the	map	using	the	supported	qualified	forms	of	the
*TRANSFORM	built-in	variable.

MAPACK
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the
"acknowledgement	required"	flags	corresponding	to	the	matching
transformation	maps	identified	in	the	MAPID	parameter	list.		This	value
(Y/N)	comes	from	the	"Linked	Transformation	Maps"	definition	for	the
trading	partner	and	transformation	map	and	specifies	whether	the	transaction
processed	by	the	transformation	map	for	the	trading	partner	requires	an
acknowledgement	to	be	sent.

FOR_EACH_CSVROW
This	is	an	iterator	activity.	It	will	read	each	row	in	a	CSV	file	and	on	each
iteration	output	first	50	column	values	found	in	the	row.		The	processing	logic
nested	beneath	FOR_EACH_CSVROW	activity	is	repeated	for	each	row	read.
This	activity	supports	reading	up	to	999	rows	and	outputs	the	value	for	up	to	50
columns.		It	is	not	intended	for	routine	processing	of	large	volumes	of	data.		It
can	be	useful	however	for	transferring	limited	amounts	of	information	between
activities,	transformation	maps	and	the	processing	sequence	variable	pool.
Note:
This	activity	will	read	only	CSV	file	format.
This	activity	will	read	only	the	first	999	rows	of	a	CSV	file	and	the	remaining
rows	are	ignored.
This	activity	will	output	up	to	50	columns	of	a	CSV	file	and	the	remaining
columns	are	ignored.
INPUT	Parameters:

CSVFILEPATH	:	Required
This	parameter	must	contain	the	path	of	the	file	to	be	read.
This	activity	reads	only	CSV	file	format.
eg	C:\order.csv
or	/orders/order_jan.csv
SEPARATOR:	Optional
If	a	non-comma	separator	is	used,	this	value	should	contain	the	separator
character.	The	separator	should	be	1	character	in	length	and	can	consist	of
any	character.

OUTPUT	Parameters:
CSVCOLUMN1CSVCOLUMN2
…
CSVCOLUMN50
These	output	parameters	will	contain	the	value	for	the	corresponding	column
for	each	CSV	row	read,	up	to	the	number	of	columns	present	in	the	data	or	a
maximum	of	50	columns.

FOR_EACH_INDEX
This	is	an	iterator	activity.		It	will	iterate	for	each	index	value	in	the	range
specified	by	the	input	parameters.		The	processing	logic	nested	beneath	the
activity	is	repeated	for	each	index	value.
INPUT	Parameters:

INDEXFROM	:	Optional
This	parameter	specifies	the	starting	index	value.		If	not	specified	a	default
value	of	1	(one)	is	used.
INDEXTO	:	Required
This	parameter	specifies	the	ending	index	value.		Iteration	ends	when	the
current	index	value	exceeds	the	value	of	this	parameter.
INDEXSTEP	:	Optional
This	parameter	specifies	the	value	by	which	the	index	is	incremented	for
each	iteration.		If	not	specified	a	default	value	of	1	(one)	is	used.

OUTPUT	Parameters:
INDEXOUT

This	parameter	contains	the	current	index	value	during	each	iteration.

FOR_EACH_OBJECT
This	is	an	iterator	activity	that	iterates	for	each	object	matching	specified	criteria
in	a	named	IBM	i	server	library.		The	processing	sequence	directives	nested
beneath	the	activity	are	repeated	for	each	matching	object	found.		This	activity
is	supported	only	on	IBM	i	servers.
INPUT	Parameters:

LIB	:	Required
This	parameter	must	specify	the	name	of	the	library	containing	the	objects	to
be	iterated.
You	may	also	specify	one	of	the	special	values	*ALL,	*ALLUSR,
*CURLIB,	*LIBL,	*USRLIBL.
You	should	be	very	careful	if	you	specify	some	of	these	special	values	that
will	enumerate	more	than	one	library,	especially	the	*ALL	or	*ALLUSR
values,	as	the	request	may	take	a	considerable	time	to	process.
OBJ	:	Optional
This	parameter	specifies	which	objects	in	the	specified	library	or	libraries	are
to	be	iterated.		You	may	use	the	default	value	*ALL	or	you	may	specify	the
name	or	generic	name	of	the	objects	required.		A	generic	name	is	specified	as
a	character	string	that	contains	one	or	more	characters	followed	by	an
asterisk	(*).		For	example,	the	value	ABC*	selects	all	objects	whose	names
begin	with	the	characters	'ABC'	that	exist	in	the	specified	library	or	libraries
and	that	also	match	the	object	type	specified	by	the	OBJTYPE	parameter.
OBJTYPE	:	Optional
This	parameter	specifies	the	object	type	of	the	objects	in	the	specified	library
or	libraries	that	are	to	be	iterated.		You	may	use	the	default	value	*ALL	or
you	may	specify	a	particular	IBM	i	object	type	such	as	*PGM,	*FILE	etc.

OUTPUT	Parameters:
OBJOUT

Upon	each	iteration,	this	parameter	will	contain	the	name	of	the	current
object.

LIBOUT
Upon	each	iteration,	this	parameter	will	contain	the	name	of	the	library
containing	the	current	object.		In	most	cases,	this	will	be	the	same	value	as
specified	on	the	LIB	input	parameter,	unless	you	used	one	of	the	special
values	on	the	LIB	parameter	that	do	not	identify	a	particular	library	name

such	as	*ALL	or	*ALLUSR.
OBJTYPEOUT

Upon	each	iteration,	this	parameter	will	contain	the	object	type	of	the	current
object	–	for	example,	*PGM	or	*FILE.

OBJATTROUT
Upon	each	iteration,	this	parameter	will	contain	the	attribute	of	the	current
object	–	for	example,	an	object	of	type	*FILE	might	have	one	of	several
possible	attributes	including	PF,	LF	or	SAVF.

OBJSIZEOUT
Upon	each	iteration,	this	parameter	will	contain	the	size	of	the	current	object.

OBJTEXTOUT
Upon	each	iteration,	this	parameter	will	contain	the	text	description	of	the
current	object.

FOR_EACH_TXDOCO
This	is	an	iterator	activity.		It	will	iterate	for	each	pending	outbound	transaction
document	in	LANSA	Composer's	document	register	that	matches	the	criteria
specified	by	the	parameter	values.		For	each	iteration,	it	provides	the	transaction
document	envelope	number	in	the	DOCNUMBER	output	parameter.
Typically	a	process	using	this	activity	specifies	further	processing	directives
nested	beneath	this	iterator	activity	to	extract	or	export,	transform	and	send	the
pending	outbound	transaction	document.
INPUT	Parameters:

TRADINGPARTNER	:	Required
Specifies	the	trading	partner	whose	pending	outbound	transaction	documents
are	to	be	processed.
MAPID	:	Required
Specifies	the	transformation	map	identifier	associated	with	pending
outbound	transaction	documents	to	be	processed.
PRODTEST	:	Optional
This	parameter	specifies	whether	production	(P)	or	test	(T)	pending
outbound	transaction	documents	are	to	be	processed.		If	not	specified,	a
default	of	production	(P)	is	used.
DOCTYPE	:	Optional
This	parameter	specifies	additional	restriction	on	which	pending	outbound
transaction	documents	are	to	be	processed.	If	specified,	only	documents	of	a
specific	type	will	be	processed.
DOCSTD	:	Optional
This	parameter	specifies	additional	restriction	on	which	pending	outbound
transaction	documents	are	to	be	processed.	If	specified,	only	documents	of	a
specific	standard	will	be	processed.
DOCSTDVER	:	Optional
This	parameter	specifies	additional	restriction	on	which	pending	outbound
transaction	documents	are	to	be	processed.	If	specified,	only	documents
registered	as	of	a	certain	standard	version	will	be	processed.
DOCCONTENTTYPE	:	Optional
This	parameter	specifies	additional	restriction	on	which	pending	outbound
transaction	documents	are	to	be	processed.	If	specified,	only	documents

registered	as	having	a	certain	content	type	will	be	processed.
DOCDATAKEY01DOCDATAKEY02
DOCDATAKEY03
DOCDATAKEY04
DOCDATAKEY05
DOCDATAKEY06	:	Optional
These	parameters	refer	to	application	defined	"keys"	that	may	have	been
specified	when	douments	were	registered.	If	specified,	only	those	documents
registered	with	matching	key	will	be	processed.

OUTPUT	Parameters:
DOCNUMBER	
Upon	each	iteration,	this	parameter	will	contain	the	transaction	document
envelope	number	of	a	pending	outbound	transaction	document	that	matched
the	criteria	specified.		This	number	is	typically	referenced	in	further
processing	directives	nested	beneath	this	iterator	activity	to	extract	or	export,
transform	and	send	the	pending	outbound	transaction	document.
DOCTYPEOUT	
Upon	each	iteration,	this	parameter	will	contain	the	document	type	of	a
pending	outbound	transaction	document	that	matched	the	criteria	specified.
DOCSTDOUT	
Upon	each	iteration,	this	parameter	will	contain	the	document	standard	of	a
pending	outbound	transaction	document	that	matched	the	criteria	specified.
DOCSTDVEROUT	
Upon	each	iteration,	this	parameter	will	contain	the	document	standard
version	of	a	pending	outbound	transaction	document	that	matched	the	criteria
specified.
DOCPRODTESTOUT	
Upon	each	iteration,	this	parameter	will	contain	P	for	production	usage	or	T
for	test	usage.
DOCCONTENTTYPEOUT	
Upon	each	iteration,	this	parameter	will	contain	the	document	content	type	of
a	pending	outbound	transaction	document	that	matched	the	criteria	specified.
DOCDATAKEY01OUT
DOCDATAKEY02OUT
DOCDATAKEY03OUT

DOCDATAKEY04OUT
DOCDATAKEY05OUT
DOCDATAKEY06OUT	
Upon	each	iteration,	these	parameters	will	contain	the	application	defined
"keys"	of	a	pending	outbound	transaction	document	that	matched	the	criteria
specified.	If	there	are	multiple	sets	of	keys,	only	the	first	will	be	retrieved
(see	note	below).
Note:	It	is	possible	for	a	single	pending	oubound	transaction	document	to
contain	multiple	individual	messages,	each	of	which	may	have	their	own	set
of	staging	database	key	values.		This	typically	happens,	for	example,	for	a
complex	outbound	EDI	transaction.		The	output	parameters	containing	the
staging	database	keys	will	only	contain	the	values	for	the	FIRST	message	in
this	case.		This	consideration	does	not	apply	to	documents	that	are	registered
using	the	TXDOC_REGOUTBND,	TXDOC_REGOUTEDI	or
TXDOC_REGOUTX12	activities,	which	permit	only	one	message	and
therefore	only	one	set	of	staging	database	keys	to	be	registered.

FOR_EACH_TXDOCT
This	is	an	iterator	activity.		It	will	iterate	for	each	transaction	set	(or	message)
registered	for	the	specified	transaction	document.		For	each	iteration,	it	provides
the	control	numbers	and	transaction	document	register	staging	file	keys	that
identify	the	transaction	set	(or	message).
Typically	a	process	using	this	activity	specifies	further	processing	directives
nested	beneath	this	iterator	activity	to	perform	further	processing	related	to	the
transaction	set	(or	message).
INPUT	Parameters:

DOCNUMBER	:	Required
Specifies	the	transaction	document	envelope	number	whose	registered
transaction	sets	(messages)	are	to	be	iterated.

OUTPUT	Parameters:
CTRLNUMBER_IC	:
Upon	each	iteration,	this	parameter	will	contain	the	interchange	control
number	for	the	current	transaction	set	(message).
CTRLNUMBER_GP	:
Upon	each	iteration,	this	parameter	will	contain	the	group	control	number	for
the	current	transaction	set	(message).
CTRLNUMBER_MS	:
Upon	each	iteration,	this	parameter	will	contain	the	the	transaction	set
(message)	control	number	for	the	current	transaction	set	(message).
DOCNUMBER_IC	:
Upon	each	iteration,	this	parameter	will	contain	the	the	internal	document
interchange	sequence	number	for	the	current	transaction	set	(message).		This
value	corresponds	to	the	key	field	DXXINTID	in	the	staging	database	files
DXX2IN,	DXX3GP	and	DXX4MS.
DOCNUMBER_GP	:
Upon	each	iteration,	this	parameter	will	contain	the	the	internal	document
group	sequence	number	for	the	current	transaction	set	(message).		This	value
corresponds	to	the	key	field	DXXGRPID	in	the	staging	database	files
DXX3GP	and	DXX4MS.
	
DOCNUMBER_MS	:

Upon	each	iteration,	this	parameter	will	contain	the	the	internal	document
transaction	set	(message)	sequence	number	for	the	current	transaction	set
(message).		This	value	corresponds	to	the	key	field	DXXMSGID	in	the
staging	database	file	DXX4MS.
DOCDATAKEY01DOCDATAKEY02
DOCDATAKEY03
DOCDATAKEY04
DOCDATAKEY05
DOCDATAKEY06	:
Upon	each	iteration,	these	parameters	will	contain	the	"application-defined"
staging	file	key	values	for	the	current	transaction	set	(message).

FOR_EACH_TXTLIN
This	is	an	iterator	activity.	It	will	read	each	line	(*)	from	a	text	file	and	on	each
iteration	output	the	text	line.		The	processing	logic	nested	beneath
FOR_EACH_TXTLIN	activity	is	repeated	for	each	line	read.
This	activity	is	not	intended	for	routine	processing	of	large	volumes	of	data.		It
can	be	useful	however	for	transferring	limited	amounts	of	information	between
activities,	transformation	maps	and	the	processing	sequence	variable	pool.
(*)	Any	of	the	line	terminators	(CR,	CRLF,	LF,	NL	or	LFCR)	will	be	used	to
indicate	the	end	of	a	line.
INPUT	Parameters:

TXTFILEPATH	:	Required
This	parameter	must	contain	the	path	of	the	text	file	to	be	read.
eg	C:\memo.txt
or	/memos/memo1.txt

OUTPUT	Parameters:
TXTLINE

For	each	iteration,	this	output	parameter	will	contain	the	value	of	the	current
text	line	read.

FOR_EACH_VAR
This	is	an	iterator	activity.	It	will	iterate	for	each	processing	sequence	variable
extant	in	the	variable	pool.		The	iteration	does	NOT	include	built-in	variables	or
internal	variables.		On	each	iteration	the	output	parameters	provide	the	variable
name,	index	and	variable	value.		Because	it	is	an	iterator	activity,	you	may	nest
processing	sequence	directives	beneath	the	FOR_EACH_VAR	activity	that	will
be	executed	for	each	iteration.
This	activity	is	mainly	intended	for	diagnostic	purposes.		It	would	not	normally
be	used	in	live,	completed	BPI	solutions.		As	a	diagnostic	aid,	it	will	log	the
variable	name,	index	and	value	into	the	processing	sequence	log	for	each
iteration.		It	may	not	be	necessary,	therefore,	to	include	any	processing	sequence
directives	nested	beneath	this	activity	-	the	provided	logging	may	be	sufficient
for	your	diagnostic	purposes.		NB:		the	Processing	Sequence	Editor	will	give	a
warning	that	the	iterator	item	is	empty,	but	this	warning	may	be	ignored.
The	activity	takes	a	"snapshot"	of	the	state	of	the	variable	pool	before	beginning
the	iteration.		The	following	applies	to	any	changes	that	occur	during	the
iteration	as	a	result	of	executing	other	activities	or	processing	sequence
directives:

processing	sequence	variables	that	are	added	will	not	be	included	in	the
iteration
processing	sequence	variables	that	are	removed	or	cleared	will	still	be
included	in	the	iteration

However,	changes	to	the	VALUES	of	processing	sequence	variables	WILL	be
reflected	in	the	iteration	if	they	occur	BEFORE	the	affected	variable	is	iterated.
INPUT	Parameters:

There	are	no	input	parameters.
OUTPUT	Parameters:

VARNAME	:
This	output	variable	provides	the	name	of	the	current	processing	sequence
variable.
VARINDEX	:
This	output	variable	provides	the	index	of	the	current	processing	sequence
variable.		If	the	variable	is	not	part	of	a	list,	the	value	will	be	1	(one).
VARVALUE	:

This	output	variable	provides	the	value	of	the	processing	sequence	variable
for	the	current	index.

FTP_COMMANDLIST
This	Activity	connects	to	the	FTP	host	specified	in	the	FTP	Configuration	and
then	executes	FTP	commands	from	a	command	list	file.	The	command	list	file
may	be	specified	on	the	FTP	Configuration	or	overridden	by	the
COMMANDLISTFILE	parameter.	The	command	list	file	is	a	text	file.
An	email	Event	notification	named	FTPCMDLSTFAILED	is	available	in	this
Activity.	If	this	event	is	active	and	a	failure	occurs	in	this	Activity,	then	an	email
will	be	sent.	Refer	to	Event	Maintenance	for	setting	up	Event	notifications.
INPUT	Parameters:

FTPCONFIG	:	Required
This	parameter	should	contain	the	name	of	an	FTP	Configuration	with	the
type	of	Command	List.	This	Configuration	can	be	created	and	maintained
using	the	FTP	Configuration	option	in	the	Navigator.
If	this	parameter	is	not	provided	or	is	not	found,	this	Activity	will	return	an
error	and	processing	will	be	abandoned.
COMMANDLISTFILE	:	Optional
If	it	contains	a	non-blank	value	it	will	be	used	for	the	command	list.	If	this
parameter	is	not	provided,	then	the	command	list	file	from	the	FTP
Configuration	will	be	used.	Refer	to	the	2.3.2	FTP	Configuration	for	a
description	and	examples	of	command	formats.

OUTPUT	Parameters:
There	are	no	output	parameters.

Processing
This	Activity	uses	either	the	LANSA	Integrator	FTPService	or	SFTPService
(depending	on	FTP	configuration	choices).
It	uses	the	Connection	information	from	the	FTP	Configuration	to	connect	to	the
remote	host.
The	command	list	file	is	read,	one	line	at	a	time.	The	line	terminator	may	be	a
carriage	return,	line	feed,	new	line,	carriage	return	line	feed	or	line	feed	carriage
return.	Lines	with	a	first	character	of	#	are	considered	to	be	comments	and	are
ignored.	All	other	lines	should	contain	a	single	FTP	command	which	can	be
used	by	the	LANSA	Integrator	FTPService	or	SFTPService.	These	commands
are	executed	using	the	LANSA	Integrator	service	and	must	conform	to	that
format.

its:LANSA091.CHM::/lansa/intengc6_0025.htm

Any	failure	encountered	when	executing	the	commands	will	attempt	to	invoke
the	email	Notification	event,	FTPCMDLSTFAILED.	If	this	event	is	active	then
an	email	will	be	sent	to	the	specified	email	address	with	a	notification	of	the
failure.

FTP_DIRLIST
This	Activity	retrieves	a	list	of	files	from	a	remote	host	using	FTP.	It	connects	to
the	remote	FTP	host	and	retrieves	the	names	of	files	from	a	directory	on	the
remote	host.	Details	of	the	remote	host	and	directories	is	taken	from	an	FTP
Configuration.	A	list	of	the	files	retrieved	is	output.	The	list	is	output	in	two
formats	-	one	containing	just	the	file	names,	the	other	containing	the	full	local
path	and	file	name.
Activities	that	populate	list	variables	are	often	followed	by	a	LOOP	processing
sequence	directive	or	other	constructs	to	process	the	contents	of	the	list.		Refer
to	Variables	and	Lists	for	more	information	about	the	use	of	list	variables.
An	email	Event	notification	named	FTPDIRLISTFAIL	is	available	in	this
Activity.	If	this	event	is	active	and	a	failure	occurs	in	this	Activity,	then	an	email
will	be	sent.	Refer	to	Event	Maintenance	for	setting	up	Event	notifications.
INPUT	Parameters:

FTPCONFIG	:	Required
This	parameter	should	contain	the	name	of	an	FTP	Configuration.	This
Configuration	can	be	created	and	maintained	using	the	FTP	Configuration
option	in	the	Navigator.
If	this	parameter	is	not	provided	or	is	not	found,	this	Activity	will	return	an
error	and	processing	will	be	abandoned.
REMOTEDIRECTORY	:	Optional
If	it	contains	a	non-blank	value	it	will	be	used	as	the	directory	on	the	remote
host	from	which	the	list	of	files	are	retrieved.	If	this	parameter	is	not
provided,	then	the	remote	host	directory	from	the	FTP	Configuration	will	be
used.	Note	that	this	is	a	required	parameter	if	configuration	of	type	command
list	is	used.
GETLIKE	–	Optional
If	it	contains	a	non-blank	value	it	will	be	used	as	the	pattern	use	to	identify
files	to	be	listed.	Note	that	if	this	is	specified,	only	files	matching	the	given
pattern	will	be	listed.	If	blank,	values	from	the	FTP	Configuration	will	be
used.

OUTPUT	Parameters:
FILELIST

Specifies	the	name	of	a	list	variable	that	will	contain	a	list	of	files	from	the
remote	host.	The	list	will	contain	only	the	file	name.

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm
its:LANSA091.CHM::/lansa/intengc6_0025.htm

For	example:			order5.csv
FILEPATH

Specifies	the	name	of	a	list	variable	that	will	contain	a	list	of	files	from	the
remote	host.	The	list	will	contain	the	full	path	and	file	name.
For	example:			/inftp/order5.csv
This	list	may	be	used	as	an	alternative	to	the	FILELIST

Processing
This	Activity	uses	either	the	LANSA	Integrator	FTPService	or	SFTPService
(depending	on	FTP	configuration	choices).
It	uses	the	Connection	information	from	the	FTP	Configuration	to	connect	to	the
remote	host.
It	changes	directory	on	the	remote	host	to	the	directory	specified	either	in	the
input	parameter	or	the	FTP	Configuration.	It	lists	the	files	in	that	directory.	If
the	parameter	GETLIKE	is	specified	or	if	the	FTP	Configuration	is	an	Inbound
configuration	and	contains	a	Get	files	like	pattern,	then	only	files	which	match
that	pattern	are	listed.	FTP	mode	is	changed	to	Binary	if	required.
The	output	lists	will	contain	each	file	in	the	directory.
Any	failure	encountered	when	executing,	will	attempt	to	invoke	the	email
Notification	event,	FTPDIRLISTFAIL.	If	this	event	is	active	then	an	email	will
be	sent	to	the	specified	email	address	with	a	notification	of	the	failure.

FTP_INBOUND
This	Activity	retrieves	a	list	of	files	from	a	remote	host	using	FTP.	It	connects	to
the	remote	FTP	host	and	retrieves	files	from	a	directory	on	the	remote	host.	The
files	are	placed	in	a	local	directory.	Details	of	the	remote	host	and	directories	is
taken	from	an	FTP	Configuration.	A	list	of	the	files	retrieved	is	output.	The	list
is	output	in	two	formats	-	one	containing	just	the	file	names,	the	other
containing	the	full	local	path	and	file	name.
Activities	that	populate	list	variables	are	often	followed	by	a	LOOP	processing
sequence	directive	or	other	constructs	to	process	the	contents	of	the	list.		Refer
to	Variables	and	Lists	for	more	information	about	the	use	of	list	variables.
An	email	Event	notification	named	FTPINFAILED	is	available	in	this	Activity.
If	this	event	is	active	and	a	failure	occurs	in	this	Activity,	then	an	email	will	be
sent.	Refer	to	Event	Maintenance	for	setting	up	Event	notifications.
INPUT	Parameters:

FTPCONFIG	:	Required
This	parameter	should	contain	the	name	of	an	FTP	Configuration	with	type
of	Inbound.	This	Configuration	can	be	created	and	maintained	using	the	FTP
Configuration	option	in	the	Navigator.
If	this	parameter	is	not	provided	or	is	not	found,	this	Activity	will	return	an
error	and	processing	will	be	abandoned.
REMOTEDIRECTORY	:	Optional
If	it	contains	a	non-blank	value	it	will	be	used	as	the	directory	on	the	remote
host	from	which	files	are	retrieved.	If	this	parameter	is	not	provided,	then	the
remote	host	directory	from	the	FTP	Configuration	will	be	used.
LOCALDIRECTORY	-	Optional
If	it	contains	a	non-blank	value	it	will	be	used	as	the	local	directory	into
which	the	retrieved	files	are	placed.	If	this	parameter	is	not	provided,	then
the	local	directory	from	the	FTP	Configuration	will	be	used.
GETLIKE	–	Optional
This	parameter	may	specify	a	pattern	to	identify	the	files	to	be	retrieved	from
the	remote	host.For	example:		(1)	the	pattern	'*.ord'	will	retrieve	files	with	a
file	extension	of	'ord',	(2)	'ord*'	will	retrieve	files	whose	names	start	with	the
characters	'ord',	irrespective	of	the	file	extension.
If	specified,	the	value	of	this	parameter	overrides	the	specifications	in	the
FTP	inbound	configuration	for	Get	like	pattern.		If	this	parameter	is	not

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm
its:LANSA091.CHM::/lansa/intengc6_0025.htm

specified,	the	values	in	the	FTP	inbound	configuration	for	Get	selection	and
Get	like	pattern	will	apply.

OUTPUT	Parameters:
FILELIST

Specifies	the	name	of	a	list	variable	that	will	contain	a	list	of	files	retrieved
from	the	remote	host.	The	list	will	contain	only	the	file	name.
For	example:			order5.csv

FILEPATH
Specifies	the	name	of	a	list	variable	that	will	contain	a	list	of	files	retrieved
from	the	remote	host.	The	list	will	contain	the	full	path	and	file	name.
For	example:			/inftp/order5.csv
This	list	may	be	used	as	an	alternative	to	the	FILELIST

Processing
This	Activity	uses	either	the	LANSA	Integrator	FTPService	or	SFTPService
(depending	on	FTP	configuration	choices).
It	uses	the	Connection	information	from	the	FTP	Configuration	to	connect	to	the
remote	host.
It	changes	directory	on	the	remote	host	to	the	directory	specified	either	in	the
input	parameter	or	the	FTP	Configuration.	It	lists	the	files	in	that	directory.	If
the	FTP	Configuration	contains	a	Get	files	like	pattern	or	the	GETLIKE
parameter	has	been	specified,	then	only	files	which	match	that	pattern	are	listed.
FTP	mode	is	changed	to	Binary	if	required.	Processing	then	cycles	through	the
list	of	files	to	GET	each	from	the	remote	directory	to	the	local	directory.	If
required	it	deletes	from	the	remote	directory	each	file	successfully	transferred.
The	FTP	session	is	terminated	by	a	QUIT	command.
The	output	lists	will	contain	each	file	retrieved.
Any	failure	encountered	when	executing,	will	attempt	to	invoke	the	email
Notification	event,	FTPINFAILED.	If	this	event	is	active	then	an	email	will	be
sent	to	the	specified	email	address	with	a	notification	of	the	failure.

FTP_OUTBOUND
This	Activity	will	transfer	files	from	the	local	machine	to	a	remote	host	by	FTP.
It	connects	to	the	remote	FTP	host	and	puts	a	copy	of	local	files	onto	the	remote
host.	The	files	to	be	transferred	may	be	provided	in	a	list	or	from	a	local
directory.	Details	of	the	remote	host	and	directories	is	taken	from	an	FTP
Configuration.
An	email	Event	notification	named	FTPOUTFAILED	is	available	in	this
Activity.	If	this	event	is	active	and	a	failure	occurs	in	this	Activity,	then	an	email
will	be	sent.	Refer	to	Event	Maintenance	for	setting	up	Event	notifications.
INPUT	Parameters:

FTPCONFIG	:	Required
This	parameter	must	contain	the	name	of	an	FTP	Configuration	with	type	of
Outbound.	This	Configuration	can	be	created	and	maintained	using	the	FTP
Configuration	option	in	the	Navigator.
If	this	parameter	is	not	provided	or	is	not	found,	this	Activity	will	return	an
error	and	processing	will	be	abandoned.
FILELIST_FTPOUT	:	Optional
If	it	contains	a	non-blank	value	it	will	be	used	to	select	the	files	to	be	FTP'ed
to	the	remote	host.	If	this	parameter	value	is	provided	the
LOCALDIRECTORY	parameter	is	not	used.
The	files	contained	in	this	list	must	be	a	full	path	and	file	name.
For	example:		Windows		c:\mydir\file1.txt
IBM	i				/mydir/subdir/filex.xml
LOCALDIRECTORY	:	Optional
This	parameter	is	checked	for	only	if	the	FILELIST_FTPOUT	parameter
does	not	exist.
If	LOCALDIRECTORY	contains	a	non-blank	value	it	will	be	used	as	the
local	directory	from	which	files	are	copied.	Otherwise,	the	local	directory
from	the	FTP	Configuration	will	be	used.
REMOTEDIRECTORY	:	Optional
If	it	contains	a	non-blank	value	it	will	be	used	as	the	directory	on	the	remote
host	into	which	files	are	put.	If	this	parameter	is	not	provided,	then	the
remote	host	directory	from	the	FTP	Configuration	will	be	used.
ARCHIVEPATHOK	:	Optional

its:LANSA091.CHM::/lansa/intengc6_0025.htm

This	parameter	is	optional.	If	it	contains	a	non-blank	value	it	will	be	used	as
the	archive	directory	path	for	successful	transactions.
If	this	parameter	is	not	provided,	then	the	Local	Archive	Path	(OK)	directory
from	the	FTP	Configuration	will	be	used.
ARCHIVEPATHER	:	Optional
This	parameter	is	optional.	If	it	contains	a	non-blank	value	it	will	be	used	as
the	archive	directory	path	for	transactions	ending	in	error.
If	this	parameter	is	not	provided,	then	the	Local	Archive	Path	(ER)	directory
from	the	FTP	Configuration	will	be	used.

OUTPUT	Parameters:
There	are	no	output	parameters.

Processing
This	Activity	uses	either	the	LANSA	Integrator	FTPService	or	SFTPService
(depending	on	FTP	configuration	choices).
If	no	list	of	files	is	input,	a	list	of	files	in	the	local	directory	is	built.	This		list
may	be	filtered	by	files	with	a	particular	extension	as	specified	in	the	FTP
Configuration.
The	Connection	information	from	the	FTP	Configuration	is	used	to	connect	to
the	remote	FTP	server.
The	processing	changes	directory	on	the	remote	host	to	the	directory	specified
either	in	the	input	parameter	or	the	FTP	Configuration.	It	changes	to	Binary
mode	if	required.
Processing	then	cycles	through	the	list	of	files,	either	input	or	built	from	the
local	directory	contents.	Each	file	is	PUT	onto	the	remote	host	in	the	remote
directory.	The	local	file	is	moved	to	the	appropriate	archive	directory	as
specified	on	the	FTP	Configuration.	If	no	archive	directories	are	specified,	the
local	file	is	not	moved.
The	FTP	session	is	ended	with	a	QUIT	command.
Any	failure	encountered	when	executing,	will	attempt	to	invoke	the	email
Notification	event,	FTPOUTFAILED.	If	this	event	is	active	then	an	email	will
be	sent	to	the	specified	email	address	with	a	notification	of	the	failure.

FTP_SCRIPT
This	activity	will	execute	a	script	of	FTP	subcommands.		It	is	supported	only	on
IBM	i	servers.
The	FTP	script	may	contain	substitution	variables	that	are	replaced	at	run-time
by	the	values	of	Processing	Sequence	variables.		See	below	for	details	on	this
feature.
Other	supplied	FTP	activities	(including	FTP_INBOUND,	FTP_OUTBOUND
and	FTP_COMMANDLIST)	use	the	LANSA	Integrator	FTPService	in	their
implementation.		However,	in	some	cases	it	is	desirable	or	necessary	to	take
advantage	of	IBM	i	QSYS.LIB	file	system	object	support	that	is	provided	by	the
native	IBM	i5/OS	FTP	client	but	NOT	available	through	the	LANSA	Integrator
FTPService.		This	activity	is	provided	for	such	cases.		For	example,	this	activity
can	be	used	for	transferring	IBM	i5/OS	save	files	(*FILE	objects	with	SAVF
attribute)	between	IBM	i	systems.
Notes:
1.		The	script	is	executed	using	the	native	IBM	i5/OS	FTP	client.
2.		The	FTP	script	will	run	to	completion	irrespective	of	any	errors	that	may
occur	during	its	execution.		If	errors	occur	in	the	FTP	operations,	the	activity
does	not	end	in	error	-	see	the	description	of	the	output	parameter
FTPERRORCOUNT	for	more	information.

3.		Because	the	FTP	functions	performed	by	this	activity	are	determined	by	the
user-provided	FTP	script,	it	does	not	inherently	have	any	"inbound"	or
"outbound"	sense.		The	script	can	perform	any	combination	of	FTP
subcommands	supported	by	the	i5/OS	FTP	client,	including	PUT/MPUT,
GET/MGET	or	both.

INPUT	Parameters:
FTPCONFIG	:	Optional
This	parameter	can	contain	the	name	of	an	FTP	configuration.		If	specified,	it
is	recommended	that	you	use	an	FTP	configuration	of	type	'Command	List',
although	you	can	also	specify	an	Inbound	or	Outbound	configuration.		This
activity	will,	at	most,	use	the	following	attributes	of	the	FTP	configuration:
-	Remote	Host
-	Remote	Port	Address
-	Remote	User

-	Remote	Password
-	Command	list	file
You	may	specify	*NONE	for	the	'Remote	Host'.		If	you	do	so,	then	the
'Remote	Port	Address'	will	not	be	used	and	your	script	should	usually
contain	an	FTP	'open'	subcommand	to	establish	the	connection	to	a	remote
host	that	you	specify.
Similarly,	if	the	FTP	configuration	is	not	specified,	then	your	script	must
contain	the	FTP	subcommands	(such	as	'open')	necessary	to	establish	the
required	connection	along	with	the	necessary	credentials.		In	this	case,	you
must	provide	the	remote	host,	port	(if	necessary)	and	credentials	through	the
FTP	subcommands	in	the	script.
FTPSCRIPTFILE	:	Optional
This	parameter	is	optional,	but	if	it	is	not	provided,	then	you	must	provide
the	FTP	subcommand	script	either	through	the	FTPSCRIPTLIST	parameter
or	in	the	'Command	list	file'	field	of	the	FTP	configuration.		If	this	parameter
is	provided,	then	it	must	specify	the	full	path	to	a	text	file	that	contains	the
FTP	subcommand	script	to	be	executed.		See	FTP	Subcommand	Script	below
for	more	information.
FTPSCRIPTLIST	:	Optional
This	parameter	is	optional,	but	if	it	is	not	provided,	then	you	must	provide
the	FTP	subcommand	script	either	through	the	FTPSCRIPTFILE	parameter
or	in	the	'Command	list	file'	field	of	the	FTP	configuration.		If	this	parameter
is	provided,	then	it	must	contain	a	list	of	the	FTP	subcommands	to	be
executed.		See	FTP	Subcommand	Script	below	for	more	information.

OUTPUT	Parameters:
FTPOUTPUT:
Upon	completion,	this	parameter	will	contain	a	list	of	FTP	log	output	lines
generated	by	running	the	FTP	script.		(The	FTP	log	results	are	also	available
in	the	Processing	Sequence	log,	depending	on	the	logging	level	in	effect.)
FTPERRORCOUNT:
Upon	completion,	this	parameter	will	contain	a	count	of	the	lines	in	the	FTP
log	that	the	activity	interprets	as	representing	errors.		This	is	defined	as	lines
that	begin	with	an	FTP	response	code	in	the	range	400-499	and	500-599.
Note	that:
-	the	error	count	will	be	incremented	for	some	"normal"	messages	such	as
'467	bytes	transferred	...'

-	response	codes	counted	as	errors	are	generally	issued	by	the	FTP	server
-	errors	(usually	syntax	errors)	issued	by	the	FTP	client	may	not	have	a
recognisable	response	code	and	so	may	not	be	counted	as	errors
-	in	any	event,	it	may	be	normal	for	some	scripts	to	generate	errors.
For	all	these	reasons,	the	activity	does	NOT	return	an	error	status	if	the
apparent	error	count	is	greater	than	zero.	It	is	up	to	you	to	test	the	output
parameters	to	determine	the	success	of	the	operation	and	to	handle	error
conditions	in	your	Processing	Sequence.

FTP	Subcommand	Script
Whether	you	specify	your	FTP	script	through	the	FTP	configuration,	or	through
the	FTPSCRIPTFILE	or	FTPSCRIPTLIST	parameters,	you	should	compose
your	script	according	to	the	following	guidelines:

Your	script	can	consist	of	any	valid	FTP	subcommands	supported	by	the	FTP
client	software
Each	FTP	subcommand	should	be	on	a	separate	line	or	in	a	separate	list
entry
Lines	or	list	entries	beginning	with	'*'	are	ignored	and	may	contain
comments
If	you	have	specified	an	FTP	configuration	and	the	'Remote	Host'	is	not
*NONE,	then	the	activity	will	insert	the	remote	user	id	and	password	from
the	FTP	configuration	in	the	first	line	of	the	script.		In	this	case,	there	is	no
need	to	specify	the	credentials	inside	your	script	unless	the	remote	FTP
server	requires	additional	account	information	or	unless	your	script	closes
the	connection	and	you	subsequently	wish	to	open	another	connection.

Refer	to	the	documentation	for	the	FTP	client	software	for	information	on	the
FTP	subcommands	supported.		On	IBM	i	servers,	you	can	start	the	FTP	client
by	typing	the	command	FTP	RMTSYS(*NONE)	at	a	command	line.		When	the
FTP	client	has	started	type	the	command	HELP	and	press	Enter	to	access	on-
line	help	about	the	supported	FTP	subcommands.
Substituting	Processing	Sequence	Variables	in	the	FTP	Subcommand	script
The	activity	supports	substitution	variables	in	the	FTP	script.		When	found,	they
will	be	replaced	by	the	value	of	the	named	variable	in	the	Processing	Sequence
variable	pool.
You	can	specify	a	substitution	variable	in	the	following	form:
			%%var.<variable-name>%%

where	<variable-name>	is	the	name	by	which	the	variable	is	known	in	the
Processing	Sequence	variable	pool.		See	the	example	FTP	script	below	for	an
example	of	using	substitution	variables	in	an	FTP	script.
If	you	specify	substitution	variables	in	your	FTP	script,	it	is	your	responsibility
to	ensure	that	the	variables	named	exist	and	have	valid	values	assigned	to	them
in	the	Processing	Sequence	that	uses	the	script.	The	variables	values	may	be	set
by	any	supported	means	-	for	example,	they	might	be	received	as	Processing
Sequence	parameters,	explicitly	set	with	an	ASSIGN	directive,	or	set	as	the
result	of	running	some	other	activity.		If	the	named	variables	do	not	exist	in	the
Processing	Sequence	when	the	FTP	script	is	executed,	this	activity	will	issue	a
warning	but	execution	will	continue	(the	variable	reference	is	removed	from	the
FTP	script).
Note	that	the	following	advanced	forms	of	variable	references	are	NOT
supported	by	this	feature:

1.	Compound	or	qualified	variables	-	for	example:	*tradingpartner.xxx
2.	Indexed	variables	-	for	example:	mylist(3)

Typically	you	could	circumvent	these	limitations,	if	necessary,	by	assigning	the
desired	compound	or	indexed	variables	to	a	simple	variable	name	before
executing	the	script.
Example	FTP	Subcommand	Script
The	following	script	might	be	used	with	a	correctly	configured	FTP
configuration	to	copy	the	contents	of	a	source	library	on	the	source	IBM	i
system	to	a	target	library	on	the	target	IBM	i	system.		The	processing	sequence
must	set	the	value	of	the	processing	sequence	variables	SOURCELIB	and
TARGETLIB	in	order	to	specify	the	respective	library	names.		The	FTP
configuration	used	must	specify	the	remote	host	name	and	the	remote	user	and
password	used	to	connect	to	the	remote	host.

*	This	is	a	sample	FTP	script

BINARY
NAMEFMT	1
SENDEPSV	0
CWD		/QSYS.LIB/%%var.TARGETLIB%%.LIB/
MPUT	/QSYS.LIB/%%var.SOURCELIB%%.LIB/
CLOSE

QUIT

GET_DTAARA
This	activity	reads	a	value	from	a	specified	data	area.		It	is	supported	only	on
IBM	i	servers.
This	activity	can	only	read	from	data	areas	created	with	TYPE(*CHAR)	and	the
starting	position	and	length	specified	must	be	valid	for	the	definition	of	the	data
area	specified.		The	data	area	must	exist	and	the	job	running	the	activity	must
have	the	necessary	authorities.
INPUT	Parameters:

DTAARA	:	Required
This	parameter	specifies	the	name	of	the	data	area.
LIB	:	Optional
This	parameter	can	specify	the	name	of	the	library	containing	the	data	area.	
If	it	is	not	specified,	the	processing	sequence	will	use	the	library	list	to	locate
the	data	area.
START	:	Required
This	parameter	specifies	the	starting	position	in	the	data	area	from	which	to
read	the	value.
LENGTH	:	Required
This	parameter	specifies	the	length	of	the	value	to	be	read.

OUTPUT	Parameters:
STRINGOUT:
Upon	successful	completion,	this	parameter	will	contain	the	value	read	from
the	specified	positions	in	the	specified	data	area.

HASH_FILE
This	activity	generates	a	hash	value	of	the	contents	of	the	specified	file
according	to	a	known	algorithm.
The	hash	value	is	a	fixed-length	(according	to	the	chosen	algorithm),	non-
reversible	representation	of	the	contents	of	the	file.		Such	hash	values	have
many	uses	in	information	security,	including	as	a	means	of	detecting	(accidental
or	intentional)	changes	to	or	corruption	of	the	source	data.
For	example,	you	could	generate	and	store	a	hash	value	for	file	A.		Then,	in
another	place	or	time,	you	could	generate	a	hash	value	(using	the	same
algorithm)	for	a	file	that	purports	to	be	file	A,	and	by	comparing	the	hash	values
you	can	establish	that	the	files	are	the	same	(with	a	very	high	degree	of
certainty,	depending	on	the	algorithm	chosen),	or	not	(with	absolute	certainty).
The	HASH_FILE	activity	returns	the	generated	hash	value	in	string	form,	either
as	a	hexadecimal	representation,	or	in	base64-encoded	form.
Note	that	it	is	NOT	possible	to	derive	the	original	file	contents	from	the	hash
value	–	that	is,	it	is	non-reversible.		You	should	not	seek	to	use	this	activity	as	a
means	of	implementing	reversible	data	encryption.
INPUT	Parameters:

FILEPATH	:	Required
This	parameter	should	contain	the	full	name	and	path	of	the	file	for	which
the	hash	value	is	to	be	generated.
ALGORITHM	:	Optional
This	parameter	can	specify	the	hashing	algorithm	to	be	used	to	generate	the
hash	value.		If	it	is	not	specified,	a	default	of	SHA	is	assumed.		You	can
choose	from	the	following	supported	algorithms:

MD2 The	MD2	Message-Digest	Algorithm	is	optimized	for	8-bit
computers	and	is	no	longer	considered	secure.
It	generates	a	128-bit	digest	(hash)	value,	22	characters	when
*BASE64	encoded,	or	32	characters	when	*HEX	encoded.

MD5 The	MD5	Message-Digest	Algorithm	has	been	employed	in	a	wide
variety	of	security	applications,	and	is	also	commonly	used	to	check
data	integrity.
It	generates	a	128-bit	digest	(hash	value),	22	characters	when
*BASE64	encoded,	or	32	characters	when	*HEX	encoded.

SHA SHA	stands	for	"secure	hash	algorithm",	and	the	SHA	parameter
value	here	implements	the	SHA-1	algorithm	from	the	SHA	family
of	algorithms.
It	generates	a	160-bit	digest	(hash	value),	27	characters	when
*BASE64	encoded,	or	40	characters	when	*HEX	encoded.

SHA256
SHA384
SHA512

SHA256,	SHA384	and	SHA512	are	a	set	of	algorithms	from	the
SHA-2	family.
They	generate	256,	384	or	512-bit	(respectively)	digests	(hash
values),	43,	64	or	86	characters	when	*BASE64	encoded,	or	64,	96
or	128	characters	when	*HEX	encoded.

ENCODING	:	Optional
This	parameter	specifies	the	form	of	encoding	applied	to	the	generated	digest
or	hash	value	(which	is	binary	data)	to	produce	the	string	representation
given	in	the	HASH	output	parameter.		If	not	specified,	a	default	of	*BASE64
is	assumed.		You	can	choose	from	the	following	options:

*BASE64 The	result	is	a	base64-encoded	representation	of	the	generated
hash	value.

*HEX The	result	is	a	hexadecimal	string	representation	of	the	generated
hash	value.

OUTPUT	Parameters:
HASH:
Upon	successful	completion,	this	parameter	will	contain	the	string
representation	of	the	generated	hash	value	of	the	contents	of	the	specified
file,	encoded	according	to	the	value	of	the	ENCODING	parameter.

HTTP_GET
This	activity	may	be	used	to	retrieve	a	document	from	an	HTTP	server	(usually
using	the	HTTP	GET	method).
This	activity	is	used	with	an	HTTP	outbound	configuration	which	can	specify
most	of	the	parameters	necessary	to	establish	the	connection	to	the	HTTP
server.		Selected	attributes	of	the	HTTP	outbound	configuration	may	be
overridden	by	the	parameters	to	this	activity.
A	notification	event	named	HTTPFAILED	is	available	for	this	activity.	If	this
event	is	active	and	a	failure	occurs	in	the	activity,	then	the	notification	event
will	be	fired	to	send	an	email	or	other	supported	form	of	notification.
INPUT	Parameters:

HTTPCONFIG	:	Required
This	parameter	must	specify	the	name	of	an	HTTP	outbound	configuration
that	specifies	most	of	the	parameters	necessary	to	establish	the	connection	to
the	HTTP	server.		Selected	attributes	of	the	HTTP	outbound	configuration
may	be	overridden	by	the	other	parameters	to	this	activity,	as	described
below.
URI	:	Optional
This	parameter	may	specify	an	alternate	value	used	to	override	the	URI	that
is	specified	in	the	HTTP	outbound	configuration.	If	used,	the	value	should
specify	the	URI	to	be	used	to	connect	to	the	remote	host	specified	in	the
HTTP	outbound	configuration.		If	this	parameter	is	not	specified,	then	the
value	will	be	taken	from	the	HTTP	configuration.
RETURNFILEDIR	:	Optional
This	parameter	is	optional.	If	it	contains	a	non-blank	value	it	will	be	used	as
the	directory	on	the	local	server	in	which	return	payload	file	is	saved	(the	file
containing	the	HTTP	response	data	received	from	the	HTTP	server).		If	this
parameter	is	not	provided,	then	the	value	will	be	taken	from	the	Content	File
Directory	specified	in	the	HTTP	outbound	configuration.
RETURNFILENAME	:	Optional
This	parameter	is	optional.	If	it	contains	a	non-blank	value	it	will	be	used	as
the	return	payload	file	name	(the	file	containing	the	HTTP	response	data
received	from	the	HTTP	server).
HTTPMETHOD	:	Optional	(Advanced)
This	parameter	may	specify	the	HTTP	request	method	to	be	used	for	the

outbound	HTTP	request.		The	HTTP	protocol	standard	defines	several
methods	and	user-defined	methods	can	be	used	for	REST	style	applications.	
The	default	value	is	GET	and	that	would	be	the	most	usual	value	when	you
are	using	the	HTTP_GET	activity	to	retrieve	a	document	from	an	HTTP
server.		One	common	alternate	HTTP	method	is	POST	-	you	can	use	the
HTTP_POST	activity	to	issue	POST	requests	-	you	would	use	POST	when
you	need	to	send	data	to	the	HTTP	server	and	optionally	receive	response
data.
HTTPHEADERNAME:	Optional	(Advanced)
HTTPHEADERVALUE	-	Optional	(Advanced)
These	two	parameters	may	optionally	be	used	to	specify	one	or	more	HTTP
header	names	and	corresponding	HTTP	header	values	to	be	added	to	the
HTTP	header	for	the	outbound	request.		Note	that	the	activity	already	adds
several	common	and	"standard"	properties	to	the	request	header.		You	might
use	these	parameters	when	your	application	requires	you	to	specify
additional	HTTP	header	properties	such	as	'AUTHORIZATION'	or	custom
properties	specific	to	the	HTTP	server	application.		The	parameters	are	lists,
allowing	you	to	specify	multiple	values	in	each	list	by	assigning	them	using
a	list	index.		The	activity	will	add	as	many	properties	as	you	specify	in	the
HTTPHEADERNAME	list.		If	used,	it	is	your	responsibility	to	ensure	that
each	HTTPHEADERNAME	list	entry	has	a	corresponding
HTTPHEADERVALUE	list	entry	containing	the	corresponding	HTTP
header	property	value.

OUTPUT	Parameters:
There	are	no	output	parameters.

	

HTTP_INBOUND
This	activity	may	be	used	to	process	an	inbound	HTTP	request.	It	will	receive
the	content	of	the	HTTP	request	and	save	it	to	a	specific	directory.		The	name
and	location	of	the	saved	content	will	be	output	as	a	parameter	value.
Other	identifying	criteria	relating	to	the	HTTP	message	will	be	output	as
parameter	values.
This	activity	is	designed	to	be	invoked	in	the	following	way:
1.		LANSA	Integrator's	JSMDIRECT	CGI	program	is	invoked	to	handle	the	in-
coming	request

2.		JSMDIRECT	uses	the	application	name	specified	in	the	URI	of	the	in-
coming	request	to	determine	the	name	of	a	program	or	LANSA	function	to
process	the	request.		In	the	context	of	the	HTTP	inbound	support	in	LANSA
Composer,	this	is	usually	the	supplied	DXHTFN1	function.

3.		Function	DXHTFN1	uses	the	application	name	specified	in	the	URI	of	the
in-coming	request	to	determine	the	name	of	a	LANSA	Composer	processing
sequence	to	process	the	request.

4.		The	processing	sequence	should	include	this	activity	to	receive	and	save	the
HTTP	content.

In	LANSA	Composer,	the	application	name	specified	in	the	URI	of	the	in-
coming	request	is	associated	with	the	function	(usually	DXHTFN1)	and	the
processing	sequence	by	means	of	an	HTTP	inbound	configuration.		Creating	or
modifying	an	appropriate	HTTP	inbound	configuration	will	also	maintain	the
necessary	entries	in	the	tables	used	by	JSMDIRECT.
This	activity	is	nominally	an	iterator	activity,	although	it	is	unusual	insofar	as	it
iterates	only	once.		It	is	defined	as	an	iterator	activity	in	order	to	allow	any
processing	sequence	directives	nested	beneath	it	to	process	the	received	content
and	prepare	the	response	payload,	if	any.		You	can	nest	transformation	maps,
other	activities	or	whatever	directives	you	need	to	perform	this.		The	activity's
input	parameters	(RESPONSEFILEPATH	and	RESPONSECONTENTTYPE)
that	specify	the	response	payload	are	not	evaluated	until	the	iteration	completes
-	so	your	nested	processing	sequence	directives	can	set	their	values.
INPUT	Parameters:

RESPONSEFILEPATH	:	Optional
This	parameter	can	specify	the	path	and	file	name	of	a	file	containing	content

(of	the	type	specified	in	the	RESPONSECONTENTTYPE	parameter)	that	is
to	be	sent	in	response	to	the	inbound	HTTP	request.		If	specified,	the	content
of	the	file	is	sent	in	response.		If	not	specified,	then	the	activity	sends	a	200
(OK)	response	status	along	with	the	OKHTTP	response	message	specified	in
the	HTTP	configuration	(if	any).
Note	that	this	parameter	is	not	evaluated	until	the	iteration	completes	-	so
your	nested	processing	sequence	directives	can	set	its	value	according	to	the
nature	or	content	of	the	request	received.
RESPONSECONTENTTYPE	:	Optional
If	you	specify	the	RESPONSEFILEPATH	parameter,	then	you	must	specify
the	corresponding	content	type	(eg	*TEXTPLAIN)	for	the	response	content.	
This	parameter	is	not	used	if	the	RESPONSEFILEPATH	parameter	is	not
specified.
Note	that	this	parameter	is	not	evaluated	until	the	iteration	completes	-	so
your	nested	processing	sequence	directives	can	set	its	value	according	to	the
nature	or	content	of	the	request	received.

OUTPUT	Parameters:
HTTP_CONTENT	
This	value	will	contain	the	path	and	file	name	of	the	saved	inbound	HTTP
content.
For	example	:				On	an	IBM	i	server								/inorders/HI25.dat
On	a	Windows	server					C:\order\HI123.dat
The	directory	will	be	taken	from	the	system	setting	HTTP	inbound	payload
directory.
The	file	name	will	be	derived	from	a	prefix	plus	a	unique	number	plus	.dat
extension.	The	prefix	is	taken	from	the	system	setting	HTTP	inbound
filename	prefix.
HTTP_CONTENT_TYPE	
This	value	will	contain	all	the	content	types	which	are	applicable	to	the
content.
For	example,	a	Comma	Separated	file	will	have	a	value	of		*TEXT	*SV
*CSV
Refer	to	the	2.3.3	HTTP	Configuration	for	a	full	list	of	types.
HTTP_CONTENT_TYPE2	
This	is	an	alternate	representation	of	the	content	type.		It	will	contain	the

actual	value	of	the	CONTENT-TYPE	HTTP	header.		For	example,	text/plain.
HTTP_CONTENT_LENGTH	
This	value	will	contain	the	content	length	of	the	content	received	on	the
HTTP	inbound	request.
HTTP_QUERY_STRING	
This	value	will	contain	the	query	string	from	the	URI.
If	the	full	URL	was		http://lansa01:8080/cgi-bin/jsmdirect?ZZorders
then	the	query	string	would	have	a	value	of	ZZorders.
HTTP_REMOTE_ADDRESS	
This	value	will	contain	the	IP	address	of	the	remote	server.
HTTP_REMOTE_USER
This	value	will	contain	the	remote	user	if	available.
HTTP_SERVER_PORT
This	value	will	contain	the	local	port	number	that	serviced	this	inbound
HTTP	message.

Function	DXHTFN1	-	supplied	JSMDirect	function.
Function	DXHTFN1	in	process	DXPROC02	is	supplied	to	be	invoked	by
HTTP	JSMDirect.
This	function	will	retrieve	the	query	string	from	the	URI.	It	will	trim	the
query	string	to	remove	any	additional	parameters.	The	resulting	string	is	used
to	locate	the	Composer	HTTP	Inbound	Configuration	with	the	corresponding
Application	Name.	
The	Processing	Sequence	on	that	Composer	HTTP	Configuration	is	then
launched.	This	Processing	Sequence	should	contain	the	HTTP_INBOUND
Activity	to	retrieve	the	payload	and	information	from	the	inbound	HTTP
transmission.

HTTP_POST
This	activity	may	be	used	to	send	data	to	an	HTTP	server	(usually	using	the
HTTP	POST	method)	and/or	to	receive	response	data	from	the	server.
This	activity	is	used	with	an	HTTP	outbound	configuration	which	can	specify
most	of	the	parameters	necessary	to	establish	the	connection	to	the	HTTP	server
and	to	identify	the	file	to	be	sent	to	the	HTTP	server.		Selected	attributes	of	the
HTTP	outbound	configuration	may	be	overridden	by	the	parameters	to	this
activity.
A	notification	event	named	HTTPFAILED	is	available	for	this	activity.	If	this
event	is	active	and	a	failure	occurs	in	the	activity,	then	the	notification	event
will	be	fired	to	send	an	email	or	other	supported	form	of	notification.
INPUT	Parameters:

HTTPCONFIG	:	Required
This	parameter	must	specify	the	name	of	an	HTTP	outbound	configuration
that	specifies	most	of	the	parameters	necessary	to	establish	the	connection	to
the	HTTP	server	and	to	identify	the	file	to	be	sent	to	the	HTTP	server.	
Selected	attributes	of	the	HTTP	outbound	configuration	may	be	overridden
by	the	other	parameters	to	this	activity,	as	described	below.
URI	:	Optional
This	parameter	may	specify	an	alternate	value	used	to	override	the	URI	that
is	specified	in	the	HTTP	outbound	configuration.	If	used,	the	value	should
specify	the	URI	to	be	used	to	connect	to	the	remote	host	specified	in	the
HTTP	outbound	configuration.		If	this	parameter	is	not	specified,	then	the
value	will	be	taken	from	the	HTTP	configuration.
CONTENTFILEDIR	:	Optional
This	parameter	is	optional.	If	it	contains	a	non-blank	value	it	will	be	used	as
the	directory	on	the	local	server	in	which	the	content	payload	file	is	found
(the	file	containing	the	data	to	be	sent	to	the	HTTP	server).		If	this	parameter
is	not	provided,	then	the	value	will	be	taken	from	the	HTTP	configuration.
CONTENTFILENAME	:	Optional
This	parameter	is	optional.	If	it	contains	a	non-blank	value	it	will	be	used	as
the	content	payload	file	name	(the	file	containing	the	data	to	be	sent	to	the
HTTP	server).		If	this	parameter	is	not	provided,	then	the	value	will	be	taken
from	the	HTTP	configuration.
CONTENTFILETYPE	:	Optional

This	parameter	is	optional.	If	it	contains	a	non-blank	value	it	will	be	used	as
the	content	type.		If	this	parameter	is	not	provided,	then	the	value	will	be
taken	from	the	HTTP	Configuration.
If	the	content	file	type	in	this	parameter	and	in	the	HTTP	configuration	are
blank,	or	specify	the	special	value	*AUTO,	then	the	content	type	will	be
derived	from	the	file	extension	of	the	file	being	sent.		(This	is	achieved	by	a
lookup	on	the	file	filetype.txt	in	the	<system>	directory	of	the	server's	JSM
instance	directory	tree.)
Refer	to	the	2.3.3	HTTP	Configuration,	Outbound,	for	the	format	and
possible	special	"shorthand"	values	you	may	specify	for	this	parameter,	such
as	*XML,	*HTML,	*CSV,	*PDF	and	*ZIP.		However,	you	are	not	limited	to
those	values	–	you	may	explicitly	specify	an	actual	content	type	such	as
application/zip.
RETURNFILEDIR	:	Optional
This	parameter	is	optional.	If	it	contains	a	non-blank	value	it	will	be	used	as
the	directory	on	the	local	server	in	which	return	payload	file	is	saved	(the	file
containing	the	HTTP	response	data	received	from	the	HTTP	server).		If	this
parameter	is	not	provided,	then	the	value	will	be	taken	from	the
CONTENTFILEDIR.
RETURNFILENAME	:	Optional
This	parameter	is	optional.	If	it	contains	a	non-blank	value	it	will	be	used	as
the	return	payload	file	name	(the	file	containing	the	HTTP	response	data
received	from	the	HTTP	server).
HTTPMETHOD	:	Optional	(Advanced)
This	parameter	may	specify	the	HTTP	request	method	to	be	used	for	the
outbound	HTTP	request.		The	HTTP	protocol	standard	defines	several
methods	and	user-defined	methods	can	be	used	for	REST	style	applications.	
The	default	value	is	POST	and	that	would	be	the	most	usual	value	when	you
are	using	the	HTTP_POST	activity	to	"send"	a	file	to	a	remote	server	via
HTTP.		One	common	alternate	HTTP	method	is	GET	-	you	can	use	the
HTTP_GET	activity	to	issue	GET	requests	-	you	would	use	GET	when	you
have	no	content	to	send	but	you	are	using	the	activity	to	receive	content	from
the	remote	HTTP	server.
HTTPHEADERNAME:	Optional	(Advanced)
HTTPHEADERVALUE	-	Optional	(Advanced)
These	two	parameters	may	optionally	be	used	to	specify	one	or	more	HTTP

header	names	and	corresponding	HTTP	header	values	to	be	added	to	the
HTTP	header	for	the	outbound	request.		Note	that	the	activity	already	adds
several	common	and	"standard"	properties	to	the	request	header.		You	might
use	these	parameters	when	your	application	requires	you	to	specify
additional	HTTP	header	properties	such	as	'AUTHORIZATION'	or	custom
properties	specific	to	the	HTTP	server	application.		The	parameters	are	lists,
allowing	you	to	specify	multiple	values	in	each	list	by	assigning	them	using
a	list	index.		The	activity	will	add	as	many	properties	as	you	specify	in	the
HTTPHEADERNAME	list.		If	used,	it	is	your	responsibility	to	ensure	that
each	HTTPHEADERNAME	list	entry	has	a	corresponding
HTTPHEADERVALUE	list	entry	containing	the	corresponding	HTTP
header	property	value.

OUTPUT	Parameters:
There	are	no	output	parameters.

JSM_RECLAIM
This	activity	reclaims	LANSA	Integrator	JSM	resources	by	initiating	garbage
collection	in	the	JSM's	Java	Virtual	Machine	instance.
In	normal	circumstances,	garbage	collection	is	entirely	managed	by	the	JVM
and	it	is	not	necessary	to	intervene.
In	some	instances,	however,	the	delay	in	garbage	collection	can	lead	to
functional	issues	in	subsequent	processing	when	certain	resources,	such	as	files,
might	remain	locked	awaiting	garbage	collection	of	Java	objects	that	reference
them.
For	example,	if	a	Transformation	Map	ends	with	an	exception,	it	can	sometimes
leave	input	or	output	files	locked,	preventing	the	processing	sequence
performing	further	operations	on	them.
In	such	cases,	this	activity,	frequently	executed	conditionally	by	placing	it	in	a
CATCH	block,	may	avoid	the	file	locking	issues.
Excessive	use	of	this	activity	should	be	avoided	as	unnecessarily	pre-empting
normal	garbage	collection	processing	can	adversely	affect	performance	of	your
solution.
INPUT	Parameters:

JSMCOUNT	:	Optional
This	parameter	specifies	the	number	of	iterations	of	garbage	collection	to
initiate	in	the	LANSA	Integrator	JSM's	Java	Virtual	Machine	instance.		More
than	one	may	be	necessary	in	some	instances,	as	each	iteration	simply
triggers	one	"round"	of	garbage	collection	-	it	is	not	necessarily	exhaustive.	
The	value	specified	must	be	numeric.		If	not	specified,	a	default	of	3	(three)
is	assumed.

OUTPUT	Parameters:
There	are	no	output	parameters.

JSM_SCRIPT
This	activity	will	execute	a	script	of	LANSA	Integrator	JSM	commands.
The	JSM	command	script	may	contain	substitution	variables	that	are	replaced	at
run-time	by	the	values	of	Processing	Sequence	variables.		See	below	for	details
on	this	feature.
Note	that	JSM	commands	executed	using	this	activity	are	not	able	to	pass	or
receive	LANSA	variables	or	working	lists	to	or	from	the	LANSA	Integrator
service.		This	fact	will	restrict	the	services	and/or	the	selection	of	service
commands	that	may	usefully	be	executed	using	this	activity.
Due	to	this	restriction	and	limited	error	handling	and	recovery	capabilities,	the
activity	is	intended	only	for	relatively	simple	LANSA	Integrator	service
command	sequences.		You	should	consider	using	one	of	the	purpose-specific
supplied	activities	or	creating	your	own	custom	activity	for	more	advanced
applications.
As	soon	as	this	activity	begins	to	execute	the	JSM	command	script,	the
restartable	flag	is	set	OFF.		It	is	not	possible	to	restart	a	processing	sequence	that
ends	in	error	in	this	activity	after	it	begins	to	execute	the	JSM	command	script.
INPUT	Parameters:

JSMSERVICE	:	Optional
This	parameter	can	contain	the	name	of	the	JSM	service	to	be	loaded.		If
specified,	the	activity	will	load	the	JSM	service	at	the	beginning	of	execution
and	unload	it	when	complete.		If	a	single	service	is	being	used,	this	is	the
preferred	technique	because	it	allows	the	activity	to	respect	and	exploit
applicable	LANSA	Composer	settings	and	functionality,	such	as	LANSA
Composer	features	supporting	LANSA	Integrator	tracing.		If	not	specified,
then	the	JSM	script	must	contain	the	necessary	SERVICE_LOAD	and
SERVICE_UNLOAD	commands	to	load	and	unload	the	required	JSM
service.
JSMSCRIPTFILE	:	Optional
This	parameter	is	optional,	but	if	it	is	not	provided,	then	you	must	provide
the	JSM	command	script	through	the	JSMSCRIPTLIST	parameter.		If	this
parameter	is	provided,	then	it	must	specify	the	full	path	to	a	text	file	that
contains	the	JSM	command	script	to	be	executed.		See	JSM	command	Script
below	for	more	information.
JSMSCRIPTLIST	:	Optional

This	parameter	is	optional,	but	if	it	is	not	provided,	then	you	must	provide
the	JSM	command	script	through	the	JSMSCRIPTFILE	parameter.		If	this
parameter	is	provided,	then	it	must	contain	a	list	of	the	JSM	commands	to	be
executed.		See	JSM	command	Script	below	for	more	information.
JSMERRORACTION	:	Optional
This	parameter	specifies	the	action	the	activity	should	take	if	any	command
in	the	specified	JSM	command	script	results	in	an	error.		You	can	specify	one
of	the	following	values:
*ERROR					:	the	activity	immediately	ends	in	error	without	executing
further	JSM	script	commands
*CONTINUE		:	the	activity	continues	to	attempt	to	execute	remaining	JSM
script	commands,	but	when	complete,	ends	with	a	warning	status
If	not	specified	(or	if	an	unrecognised	value	is	specified),	the	activity
assumes	a	default	value	of	*CONTINUE.

OUTPUT	Parameters:
JSMSTATUS:
Upon	completion,	this	parameter	will	contain	a	list	of	the	JSM	status	codes
(eg:	'OK'	'ERROR'	...)	resulting	from	executing	the	JSM	script	commands.	
Only	status	codes	resulting	from	script	commands	are	included	-	the	list	does
NOT	include	status	codes	resulting	from	opening	or	closing	the	JSM
connection	or	from	loading	or	unloading	the	service	(unless	the	service	load
or	unload	results	from	commands	in	the	JSM	script).		Therefore	the	sequence
of	the	status	codes	in	the	list	corresponds	directly	to	the	sequence	of	the	JSM
commands	executed.
JSMMESSAGE:
Upon	completion,	this	parameter	will	contain	a	list	of	the	JSM	messages
resulting	from	executing	the	JSM	script	commands.		Only	messages	resulting
from	script	commands	are	included	-	the	list	does	NOT	include	messages
resulting	from	opening	or	closing	the	JSM	connection	or	from	loading	or
unloading	the	service	(unless	the	service	load	or	unload	results	from
commands	in	the	JSM	script).		Therefore	the	sequence	of	the	JSM	messages
in	the	list	corresponds	directly	to	the	sequence	of	the	JSM	commands
executed.
JSMERRORCOUNT:
Upon	completion,	this	parameter	will	contain	a	count	of	the	JSM	command
script	commands	that	ended	in	error.		If	*ERROR	is	specified	for	the

JSMERRORACTION	parameter,	this	count	will	always	be	either	zero	or	1
because	the	first	error	terminates	the	JSM	command	script	execution.

JSM	Command	Script
Whether	you	specify	your	JSM	command	script	through	the	JSMSCRIPTFILE
or	JSMSCRIPTLIST	parameters,	you	should	compose	your	script	according	to
the	following	guidelines:

Your	script	can	consist	of	any	JSM	service	commands	valid	for	the	JSM
service	loaded	and	according	to	the	JSM	service	documentation,	providing
that	the	commands	used	do	not	rely	upon	passing	program	variables	or	lists
to	or	from	the	LANSA	Integrator	service
Each	JSM	service	command	should	be	on	a	separate	line	or	in	a	separate	list
entry
Lines	or	list	entries	beginning	with	'*'	are	ignored	and	may	contain
comments

Refer	to	the	LANSA	Integrator	documentation	for	information	about	the
supported	JSM	services	and	service	commands.
Substituting	Processing	Sequence	Variables	in	the	JSM	command	script
The	activity	supports	substitution	variables	in	the	JSM	command	script.		When
found,	they	will	be	replaced	by	the	value	of	the	named	variable	in	the
Processing	Sequence	variable	pool.
You	can	specify	a	substitution	variable	in	the	following	form:
			%%var.<variable-name>%%
where	<variable-name>	is	the	name	by	which	the	variable	is	known	in	the
Processing	Sequence	variable	pool.		See	the	example	JSM	command	script
below	for	an	example	of	using	substitution	variables.
If	you	specify	substitution	variables	in	your	JSM	command	script,	it	is	your
responsibility	to	ensure	that	the	variables	named	exist	and	have	valid	values
assigned	to	them	in	the	Processing	Sequence	that	uses	the	script.	The	variables
values	may	be	set	by	any	supported	means	-	for	example,	they	might	be
received	as	Processing	Sequence	parameters,	explicitly	set	with	an	ASSIGN
directive,	or	set	as	the	result	of	running	some	other	activity.		If	the	named
variables	do	not	exist	in	the	Processing	Sequence	when	the	JSM	command
script	is	executed,	this	activity	will	issue	a	warning	but	execution	will	continue
(the	variable	reference	is	removed	from	the	JSM	command).
Note	that	the	following	advanced	forms	of	variable	references	are	NOT

supported	by	this	feature:
1.	Compound	or	qualified	variables	-	for	example:	*tradingpartner.xxx
2.	Indexed	variables	-	for	example:	mylist(3)

Typically	you	could	circumvent	these	limitations,	if	necessary,	by	assigning	the
desired	compound	or	indexed	variables	to	a	simple	variable	name	before
executing	the	script.
Example	JSM	Command	Script
This	is	a	sample	JSM	command	script	that	is	intended	to	delete	records	from	the
LANSA	Composer	tutorial	orders	database	tables	TUTORDH	and	TUTORDL
using	the	LANSA	Integrator	SQLService.		It	uses	substitution	variables	for	the
database	user	and	password	and	for	the	BCHNUM	database	field	value	that
identifies	the	records	to	be	deleted.		It	is	the	responsibility	of	the	solution
designer	to	ensure	that	corresponding	processing	sequence	variables	exist	with
appropriate	values	before	executing	this	script	using	the	JSM_SCRIPT	activity.
**
*	This	is	a	sample	JSM	command	script
**
CONNECT	DRIVER(TUT)	DATABASE(TUT)
USER(%%var.USER%%)
PASSWORD(%%var.PASSWORD%%)
SET	AUTOCOMMIT(*YES)
EXECUTE	UPDATE("DELETE	FROM	TUTORDL
WHERE	BCHNUM	=	'%%var.BCHNUM%%'")
EXECUTE	UPDATE("DELETE	FROM	TUTORDH
WHERE	BCHNUM	=	'%%var.BCHNUM%%'")
DISCONNECT

Note	that	the	example	above	would	require	entries	similar	to	the	following	to	be
added	to	LANSA	Integrator's	SQLService.properties	file	in	order	to	operate
successfully.		This	is	a	requirement	of	the	particular	JSM	service	and	service
commands	being	used	-	it	does	not	apply	to	the	JSM_SCRIPT	activity	in
general.		You	should	refer	to	the	LANSA	Integrator	documentation	for
information	about	requirements	and	considerations	that	apply	to	the	JSM
service	and	service	commands	that	you	are	using.
#

driver.tut=com.ibm.as400.access.AS400JDBCDriver
database.tut=jdbc:as400://SYSTEM/LICLICLIB;naming=sql;errors=full;date
format=iso;translate	binary=true
#

	

LAST_SPLF
This	activity	retrieves	the	identity	of	the	last	spooled	file	created	for	the	current
job.		This	activity	is	only	supported	on	IBM	i	servers.
You	might	use	this	activity	after	executing	another	activity	that	you	expect	will
have	created	a	spooled	file	in	the	current	job.		For	example,	executing	certain
system	commands	(using	the	SYSTEM_COMMAND	activity),	a	custom
activity	or	calling	a	program	or	LANSA	function	may	create	a	spooled	file.
Note	that	this	activity	will	ONLY	retrieve	the	identity	of	a	spooled	file	created
in	the	same	job	that	executes	the	LAST_SPLF	activity.		This	means	that	there
are	several	common	circumstances	in	which	this	activity	will	NOT	yield	the
desired	information.		For	example:

spooled	files	generated	as	a	consequence	of	executing	a	LANSA	Integrator
service	command
calling	a	LANSA	function,	if	the	request	is	satisfied	through	the	LANSA
Composer	Request	Server

(You	may	use	the	SPLF_LIST	activity	to	list	spooled	files	created	in	another	job
or	by	another	user.)
You	should	check	that	the	spooled	file	is	the	one	you	expect	before	processing	it
further	-	for	example,	you	might	at	least	test	that	the	SPLFNAME	value	is	the
spooled	file	name	that	you	expect.
Note	that	in	some	circumstances	(in	particular	when	the	current	job's	user	name
is	not	the	same	as	the	current	user	profile),	the	job	details	for	the	spooled	file
will	not	match	the	job	name,	user	name	and	job	number	for	the	current	job.		For
example,	you	may	find	that	a	job	named	QPRTJOB	owns	the	spooled	file.		You
should	use	the	details	provided	by	this	activity	or	by	the	SPLF_LIST	activity	if
you	wish	to	perform	further	operations	on	the	spooled	file.
If	no	last	spooled	file	information	is	available,	the	output	parameters	will	be
empty.		The	activity	ends	normally	(without	error)	in	this	case.
INPUT	Parameters:
There	are	no	input	parameters	for	this	activity.
OUTPUT	Parameters:

JOBNAME:
If	successful,	this	parameter	will	contain	the	name	of	the	job	that	owns	the
spool	file.

JOBUSER	:
If	successful,	this	parameter	will	contain	the	user	profile	name	of	the	job	that
owns	the	spool	file.

JOBNUMBER	:
If	successful,	this	parameter	will	contain	the	job	number	of	the	job	that	owns
the	spool	file.

SPLFNAME	:
If	successful,	this	parameter	will	contain	the	name	of	the	spool	file.

SPLFNUMBER	:
If	successful,	this	parameter	will	contain	the	number	of	the	spool	file.

	

LOAD_PSVSET
This	activity	will	load	processing	sequence	variables	from	one	or	more	PSV	sets
(processing	sequence	variables	sets)	contained	in	the	specified	PSV	file.
Because	this	is	an	iterator	activity,	the	processing	logic	nested	beneath	the
LOAD_PSVSET	activity	is	repeated	for	each	PSV	set	loaded.		In	some	valid
usage	scenarios	for	this	activity,	the	process	may	only	expect	to	load	one	PSV
set	-	for	example	when	loading	a	PSV	file	that	was	created	using	the
SAVE_PSVSET	activity.		In	that	instance	it	is	the	process	designer's	choice
whether	or	not	to	nest	the	associated	processing	directives	beneath	this	activity.
There	is	no	inherent	limit	to	the	number	of	PSV	sets	that	can	be	loaded	or	the
number	of	processing	sequence	variables	loaded	from	each	PSV	set.		However,
the	activity	is	not	intended	for	routine	processing	of	large	volumes	of	data	and
performance	may	suffer	if	you	attempt	to	do	so.
The	PSV	files	processed	by	this	activity	may	contain	one	or	more	PSV	sets
(<psvSet>	element).		PSV	files	created	by	the	SAVE_PSVSET	activity	will
always	contain	a	single	PSV	set	(<psvSet>	element).		However,	PSV	files
created	by	other	means	(for	example,	as	the	output	from	a	Transformation	Map)
may	contain	more	than	one	PSV	set	(processing	sequence	variables	set).
For	more	information	about	PSV	files,	refer	to	the	following.

Saving,	Loading	and	Transforming	Processing	Sequence	Variables

NOTE:		This	activity	does	not	clear	any	processing	sequence	variables
or	variable	lists	before	loading	them	from	the	PSV	file.		This	is
particularly	important	for	variable	lists.		If	your	processing	sequence
already	contains	a	list	named	&my_list	containing	30	entries,	and	a
list	of	the	same	name	is	loaded	from	the	PSV	file	with	15	entries,	the
resulting	list	will	still	contain	30	entries	-	the	LOAD_PSVSET	activity
will	replace	the	values	of	only	the	first	fifteen	entries	in	this	instance.	
You	will	need	to	use	the	CLEARLIST	activity	if	you	wish	to	ensure
that	any	loaded	variable	lists	contain	ONLY	the	entries	loaded	from
the	PSV	file.		If	you	are	using	the	iterator	capability	of	this	activity	(to
load	multiple	PSV	sets),	then	the	CLEARLIST	activity	would
typically	need	to	be	repeated	at	the	end	of	each	iteration.

INPUT	Parameters:
PSVFILEPATH	:	Required

its:LANSA091.CHM::/lansa/intengc3_0116.htm

This	parameter	must	specify	the	path	and	file	name	of	the	PSV	file	to	be
read.
PSVSELECT	:	Optional
If	the	PSV	file	read	by	this	activity	contains	more	than	one	PSV	set
(<psvSet>	element),	this	parameter	may	be	used	to	select	a	single	PSV	set
(processing	sequence	variables	set)	to	be	loaded.		To	do	this,	you	may
specify	the	special	value	'*FIRST'	to	select	the	first	processing	sequence
variables	set	in	the	PSV	file	or	you	may	specify	an	id	value	to	be	matched
against	the	value	of	the	id=	attribute	of	the	<psvSet>	element.		If	you	specify
an	id,	the	match	is	case-sensitive.		If	this	parameter	is	not	specified	or	the
default	value	of	'*ALL'	is	used,	then	the	activity	will	iterate	for	each
processing	sequence	variables	set	present	in	the	PSV	file.

OUTPUT	Parameters:
PSVINDEX:
For	each	iteration,	this	output	parameter	will	contain	the	index	of	the	current
PSV	set	in	the	PSV	file.		If	you	specify	an	id	value	for	the	PSVSELECT
parameter,	the	returned	index	may	not	necessarily	be	1	(one)	if	the	selected
PSV	set	was	not	the	first	in	the	file.
PSVSETID:
For	each	iteration,	this	output	parameter	will	contain	the	value	of	the	id=
attribute	of	the	<psvSet>	element	for	the	current	PSV	set.
PSVCOMMENT:
For	each	iteration,	this	output	parameter	will	contain	the	value	of	the
comment=	attribute	of	the	<psvSet>	element	for	the	current	PSV	set.

	

LOGLIST
This	activity	creates	one	or	more	entries	in	the	processing	sequence	log	that
contain	the	values	of	the	variable	list	specified	in	the	parameter.		This	can	be
useful	while	testing	or	debugging	your	processing	sequence.
Note	that	logging	is	subject	to	the	logging	level	in	effect	for	the	processing
sequence	run.
INPUT	Parameters:

LIST	:	Required
Specifies	the	list	values	to	be	logged.		Normally	you	would	specify	a	variable
list	in	this	parameter	-	if	you	do	so,	LANSA	Composer	will	log	the	indexed
variable	name	and	its	value	for	each	item	in	the	list.
(It	is	possible,	but	not	useful,	to	specify	a	literal	value	for	this	parameter.)

OUTPUT	Parameters:
There	are	no	output	parameters.

LOGUSERINFO
This	activity	creates	an	impromptu	entry	in	the	processing	sequence	log	-
subject	to	the	logging	level	in	effect	for	the	processing	sequence	run.
INPUT	Parameters:

LOGTEXT	:	Required
Specifies	the	impromptu	message	text	for	log	entry.	The	activity	will	use	a
maximum	of	512	characters,	but,	in	any	event,	you	should	usually	specify
considerably	less	than	this.
LOGEXTRA	:	Required
Specifies	additional	information	that	supports	the	impromptu	message.	This
might	enumerate	parameter	values	or	a	command	string	that	affect	the
operation	in	progress.	This	information,	if	specified,	can	be	displayed	for	the
log	entry	under	the	heading	additional	information.	The	activity	will	use	a
maximum	of	512	characters	for	this	parameter.

OUTPUT	Parameters:
There	are	no	output	parameters.

LOGVARIABLE
This	activity	creates	an	entry	in	the	processing	sequence	log	that	contains	the
value	of	the	variable	specified	in	the	parameter.	This	can	be	useful	while	testing
or	debugging	your	processing	sequence.
Note	that	logging	is	subject	to	the	logging	level	in	effect	for	the	processing
sequence	run.
INPUT	Parameters:

VARIABLE	:	Required
Specifies	the	value	to	be	logged.	Normally	you	would	specify	a	variable	in
this	parameter	-	if	you	do	so,	LANSA	Composer	will	log	the	variable	name
and	its	value.
(It	is	possible,	but	not	useful,	to	specify	a	literal	value	for	this	parameter.)

OUTPUT	Parameters:
There	are	no	output	parameters.

LOWERCASE
This	activity	returns	the	specified	input	string	with	all	uppercase	characters
converted	to	lowercase.
INPUT	Parameters:

STRINGIN	:	Required
This	parameter	specifies	the	string	to	be	converted.

OUTPUT	Parameters:
STRINGOUT	:
Upon	completion,	this	parameter	will	contain	the	converted	string.

MAIL_RECEIVE
This	Activity	will	retrieve	a	single	email	message	from	the	mail	server	using
LANSA	Integrator's	POP3MailService.	It	will	retrieve	the	first	email	message
for	a	particular	user.	The	user	details	and	other	criteria	must	be	specified	in	a
POP3	Mail	Configuration.
Information	about	the	email,	the	mail	text	and	attachments	will	be	output.
If	the	"Remove	from	server	after	read"	is	set	to	Yes	on	the	POP3	Mail
Configuration,	then	the	next	execution	of	this	Activity	will	retrieve	the	next
email	message.
An	email	Event	notification	named	POP3FAILED	is	available	in	this	Activity.	If
this	event	is	active	and	a	failure	occurs	in	this	Activity,	then	a	notification	email
will	be	sent.	Refer	to	Event	Maintenance	for	setting	up	Event	notifications.
INPUT	Parameters:

POP3CONFIG	:	Required
This	parameter	must	contain	the	name	of	a	POP3	Mail	Configuration.	This
Configuration	can	be	created	and	maintained	using	the	POP3	Mail
Configuration	option	in	the	Navigator.
If	this	parameter	is	not	provided	or	is	not	found,	this	Activity	will	return	an
error	and	processing	will	be	abandoned.
SAVEDIRECTORY	:	Optional
This	parameter	may	be	used	if	the	POP3	Configuration	requires	mail	text	or
attachments	to	be	saved.	If	it	contains	a	non-blank	value	it	will	be	used	as	the
directory	into	which	the	email	message	text	and	attachments	will	be	saved.
If	this	parameter	is	not	provided,	and	text	or	attachments	are	to	be	saved,
then	the	directory	from	the	POP3	Configuration	will	be	used.

OUTPUT	Parameters:
POP3COUNT
Upon	completion,	this	value	will	contain	a	count	of	the	email	messages
received.		Because	this	activity	receives	a	maximum	of	one	message,	this
value	will	be	either	zero	or	one.
FROMADDRESS
This	value	will	contain	the	from	address	from	the	retrieved	email	message.

SUBJECT
This	value	will	contain	the	Subject	from	the	received	email	message.

its:LANSA091.CHM::/lansa/intengc6_0025.htm

SENTDATE
This	value	will	contain	the	date	on	which	the	received	email	message	was
sent.

ATTACHMENTNO
This	will	contain	the	number	of	attachments	on	the	received	email	message.

TEXTFILE
If	the	POP3	Configuration	requires	the	email	text	to	be	saved,	then	this	value
will	contain	the	path	and	file	name	of	the	email	text	which	has	been	saved.
For	example:			Windows				c:\messages\mailtext.txt
IBM	i					/email/mailtext.txt

ATTACHMENTLIST
If	the	POP3	Configuration	requires	the	email	attachments	to	be	saved,	this
will	contain	a	list	of	full	path	and	file	name	which	have	been	saved	from	the
received	email.	
The	attachments	will	be	saved	in	the	directory	specified	in	the	POP3	Mail
Configuration	or	the	input	parameter	SAVEDIRECTORY.

MAIL_RECEIVEALL
This	Activity	will	retrieve	multiple	email	messages	for	a	user	from	the	mail
server	using	LANSA	Integrator's	POP3MailService.
Information	about	the	email,	the	mail	text	and	attachments	from	the	retrieved
emails	will	be	saved	to	a	local	directory.	A	directory	will	be	created	for	each
email	retrieved.	A	list	of	the	directories	created	will	be	output	by	this	Activity.
The	parent	directory	for	these	created	directories	may	be	specified	in	the	POP3
Mail	Configuration	or	in	the	input	parameter	SAVEDIRECTORY.
Activities	that	populate	list	variables	are	often	followed	by	a	LOOP	processing
sequence	directive	or	other	constructs	to	process	the	contents	of	the	list.		Refer
to	Variables	and	Lists	for	more	information	about	the	use	of	list	variables.
An	email	Event	notification	named	POP3FAILED	is	available	in	this	Activity.	If
this	event	is	active	and	a	failure	occurs	in	this	Activity,	then	a	notification	email
will	be	sent.	Refer	to	Event	Maintenance	for	setting	up	Event	notifications.
INPUT	Parameters:

POP3CONFIG	:	Required
This	parameter	must	contain	the	name	of	a	POP3	Mail	Configuration.	This
Configuration	can	be	created	and	maintained	using	the	POP3	Mail
Configuration	option	in	the	Navigator.
If	this	parameter	is	not	provided	or	is	not	found,	this	Activity	will	return	an
error	and	processing	will	be	abandoned.
SAVEDIRECTORY	:	Optional
If	this	parameter	contains	a	non-blank	value	it	will	be	used	as	the	home
directory	into	which	the	sub	directory	to	contain	the	email	details	is	created.
The	details	of	the	email	message,	the	message	text	and	attachments	will	be
saved	into	this	sub	directory.	If	this	parameter	is	not	provided,	then	the
directory	from	the	POP3	Configuration	will	be	used.
POP3MAX	:	Optional
If	this	parameter	contains	a	number,	it	will	be	used	as	the	maximum	number
of	emails	that	this	activity	will	retrieve.	A	special	value	of	*NOMAX	can	be
used	to	indicate	that	there	be	no	maximum.	In	this	case,	all	emails	that	have
not	been	deleted	will	be	retrieved.		If	this	parameter	is	not	provided,	then	a
default	limit	of	50	will	be	used.

OUTPUT	Parameters:

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm
its:LANSA091.CHM::/lansa/intengc6_0025.htm

POP3COUNT
Upon	completion,	this	value	will	contain	a	count	of	the	email	messages
received.		The	value	may	be	zero	if	no	mail	was	available	to	receive.
STOREDIRECTORY
Specifies	the	name	of	a	list	variable	that	will	contain	a	list	of	sub	directories
which	have	been	created	within	the	SAVEDIRECTORY.
The	full	path	will	be	held.
For	example:			Windows					\savedir\subdir
IBM	i				/savedir/subdir
The	name	of	the	sub-directory	will	be	generated	from	the	system	setting
POP3	save	sub-directory	name	prefix	plus	a	unique	number.	For	example	:	
MS123
This	sub-directory	will	contain:
Mail	attachments	(if	required	to	be	saved)
Mail	text	(if	required	to	be	saved)	as	file	named	mailtext.txt
Mail	information	in	file	named	mailinfo.txt	
Format	of	this	mailinfo.txt	is:
	
#	Created	by	DXACTP302	on	20060216	11:32:00
FROMADDRESS=xxxxxxxxxxxxxxxxx
SUBJECT=zzzzzzzzzzzz
SENTDATE=dddddddddd
#

MAIL_SEND
This	Activity	will	send	an	email	with	or	without	attachments	to	one	or	more
recipients.
The	details	for	the	email	must	be	specified	in	an	SMTP	mail	details
configuration.		Selected	details	of	the	configuration	may	be	overridden	using	the
activity	parameters.
To	use	this	Activity	you	must	have	an	SMTP	mail	server	available.		The	activity
will	send	the	email	through	the	SMTP	server	identified	in	the	specified	or
system	default	SMTP	server	configuration.
An	email	Event	notification	named	SMTPFAILED	is	available	in	this	Activity.
If	this	event	is	active	and	a	failure	occurs	in	this	Activity,	then	an	email	will	be
sent.	Refer	to	Event	Maintenance	for	setting	up	Event	notifications.
INPUT	Parameters:

SMTPMESSAGEDETAILID	:	Required
This	parameter	should	contain	the	name	of	an	SMTP	Message	Detail
configuration	that	specifies	details	of	the	e-mail	message	to	be	sent.		If	this
parameter	is	not	provided	or	is	not	found,	an	error	will	be	returned	and
processing	abandoned.
SMTPSERVERID	:	Optional
This	parameter	may	contain	the	name	of	SMTP	server	Configuration	that
will	be	used	to	send	the	e-mail.		If	this	parameter	is	not	provided	then	the
default	SMTP	server	configuration	set	in	System	Settings	will	be	used	as	the
mail	server.
TOADDRESS	:	Optional
This	parameter	may	contain	the	email	address(es)	to	be	used	for	the	TO
email	address.		If	not	specified,	then	the	TO	email	address(es)	from	the	detail
configuration	will	be	used	as	the	TO	email	address.		You	may	specify	a
single	email	address	(eg:	'me@here.com')	or	a	list	of	email	addresses
separated	by	commas	(eg:	'me@here.com,you@there.com').
CCADDRESS	:	Optional
This	parameter	may	contain	the	email	address(es)	to	be	used	for	the	CC
(copy	to)	email	address.		If	not	specified,	then	the	CC	email	address	from	the
detail	configuration	will	be	used	as	the	CC	email	address.		You	may	specify	a
single	email	address	(eg:	'me@here.com')	or	a	list	of	email	addresses
separated	by	commas	(eg:	'me@here.com,you@there.com').

its:LANSA091.CHM::/lansa/intengc6_0025.htm

BCCADDRESS	:	Optional
This	parameter	may	contain	the	email	address(es)	to	be	used	for	the	BCC
(blind	copy	to)	email	address.		If	not	specified,	then	the	BCC	email	address
from	the	detail	configuration	will	be	used	as	the	BCC	email	address.		You
may	specify	a	single	email	address	(eg:	'me@here.com')	or	a	list	of	email
addresses	separated	by	commas	(eg:	'me@here.com,you@there.com').
FROMADDRESS	:	Optional
This	parameter	may	contain	an	email	address	to	be	used	for	the	FROM	email
address.		If	not	specified,	then	the	FROM	email	address	from	the	detail
configuration	will	be	used	as	the	FROM	email	address.
NB:		SMTP	mail	servers	may	enforce	certain	rules	about	the	FROM
addresses	that	can	be	specified,	in	order	to	prevent	abusive	practices	such	as
mail	relay.
FROMDISPLAYNAME	:	Optional
This	parameter	may	contain	the	FROM	display	name.		If	not	specified,	then
the	FROM	display	name	from	the	detail	configuration	will	be	used	as	the
FROM	display	name.
SMTPSUBJECT	:	Optional
This	parameter	may	contain	the	email	subject	line.		If	not	specified,	then	the
subject	from	the	configuration	will	be	used	as	the	email	subject	line.
MAILBODYTEXT:Optional
This	parameter	may	contain	the	location	and	file	name	to	be	used	as	the	body
text.	
If	parameter	values	are	available,	it	will	be	used	for	the	body	text	of	the
email	message.
If	no	parameters	exist	and	a	value	exists	on	the	detail	Configuration,	it	will
be	used	for	the	body	text.
MAILATTACHMENT	:	Optional
Mail	attachments	may	be	provided	as	a	list.
If	parameter	values	are	available,	they	will	be	added	as	attachments.
If	no	parameters	exist	and	a	value	exists	on	the	detail	Configuration,	it	will
be	used	to	add	an	attachment.
MAILATTACHMENTZIP	:	Optional
If	some	mail	attachments	were	found,	they	may	be	attached	as	a	zip.	The
name	of	the	zip	will	be	retrieved	from	the	parameters.	If	a	parameter	does
not	exist	but	a	value	for	the	zip	exists	in	the	details	Configuration	that	name

will	be	used.
If	no	zip	name	is	provided,	as	parameter	or	in	Configuration,	then
attachments	are	added	unzipped.

OUTPUT	Parameters:
There	are	no	output	parameters.

MOVE_FILE
This	Activity	will	move	a	file	from	one	directory	to	another.
When	executed	on	a	Windows	platform	a	system	move	command	is	executed.
When	executed	on	an	IBM	i	platform	an	i5/OS	MOV	command	is	executed.
Note	that	files	in	the	integrated	file	system	are	moved	–	if	you	want	to	move
objects	in	the	QSYS	file	system,	you	must	use	IFS	file	system	notation	to	do	so.
After	the	move	the	file	will	not	exist	in	the	original	directory.
When	executed	on	an	IBM	i	platform,	this	activity	is	capable	of	performing	data
conversion	between	different	CCSIDs	during	the	move	operation.		For	example,
to	convert	the	data	in	a	text	file	from	its	original	encoding	to	UTF-8	you	could
use	the	parameter	values	TOCCSID(1208)	DTAFMT(*TEXT).
INPUT	Parameters:

FROMFULLNAME	:	Required
This	parameter	should	contain	the	full	path	and	name	of	the	file	to	be	moved
For	example:			Windows			C:\dir1\myfile.txt
IBM	i			/indir/myfile.txt
TODIRECTORY	:	Optional	(*)
This	parameter	may	contain	the	full	directory	path	of	the	destination
directory.		If	specified,	the	file	will	be	moved	to	this	new	location	using	the
same	name	and	extension	as	the	original	file.		If	not	specified,	you	must
provide	a	value	for	the	TOFULLNAME	parameter.TOFULLNAME	:
Optional	(*)
This	parameter	may	specify	the	path	of	the	directory	the	object	is	to	be
moved	to	AND	the	new	name	of	the	object.		If	specified,	the	file	will	be
moved	to	this	new	location	using	the	new	file	name	and	extension	specified.	
If	not	specified,	you	must	provide	a	value	for	the	TODIRECTORY
parameter.
FROMCCSID	:	Optional,	IBM	i	servers	only
This	parameter	may	specify	the	method	for	obtaining	the	coded	character	set
identifier	(CCSID)	for	the	source	of	the	move	operation.	This	CCSID	will	be
used	for	data	conversion,	if	requested.
This	parameter	corresponds	directly	to	the	FROMCCSID	parameter	of	the
IBM	i	MOV	command	and	you	may	use	any	values	that	are	defined	for	the
MOV	command.		At	IBM	i	V7R1	the	possible	values	include	*OBJ,

*PCASCII,	*JOBCCSID	or	a	CCSID	value	in	the	range	1-65533.		Refer	to
the	IBM	documentation	for	the	MOV	command	for	more	information.
The	special	(default)	value	*DEFAULT	specifies	that	the	FROMCCSID
parameter	will	not	be	specified.		Note	that	this	parameter	applies	only	when
LANSA	Composer	is	running	on	an	IBM	i	server.
TOCCSID	:	Optional,	IBM	i	servers	only
This	parameter	may	specify	the	data	coded	character	set	identifier	(CCSID)
for	the	target	of	the	move	operation.
This	parameter	corresponds	directly	to	the	TOCCSID	parameter	of	the	IBM	i
MOV	command	and	you	may	use	any	values	that	are	defined	for	the	MOV
command.		At	IBM	i	V7R1	the	possible	values	include	*OBJ,	*CALC,
*PCASCII,	*STDASCII,	*JOBCCSID	or	a	CCSID	value	in	the	range	1-
65533.		Refer	to	the	IBM	documentation	for	the	MOV	command	for	more
information.
The	special	(default)	value	*DEFAULT	specifies	that	the	TOCCSID
parameter	will	not	be	specified.		Note	that	this	parameter	applies	only	when
LANSA	Composer	is	running	on	an	IBM	i	server.
DTAFMT	:	Optional,	IBM	i	servers	only
This	parameter	may	specify	the	format	of	the	data	in	the	file	to	be	moved..
This	parameter	corresponds	directly	to	the	DTAFMT	parameter	of	the	IBM	i
MOV	command	and	you	may	use	any	values	that	are	defined	for	the	MOV
command.		At	IBM	i	V7R1	the	possible	values	are	*TEXT	and	*BINARY.	
Refer	to	the	IBM	documentation	for	the	MOV	command	for	more
information.
The	special	(default)	value	*DEFAULT	specifies	that	the	DTAFMT
parameter	will	not	be	specified.		Note	that	this	parameter	applies	only	when
LANSA	Composer	is	running	on	an	IBM	i	server.

OUTPUT	Parameters:
FULLNAMEOUT

Upon	successful	completion,	this	parameter	will	contain	the	full	path	and	file
name	of	the	resulting	destination	file.

MOVE_SPLF
This	activity	will	move	a	spool	file	on	an	IBM	i	server	to	a	specified	output
queue.		It	is	only	supported	on	IBM	i	servers.
The	input	parameters	must	fully	identify	the	spool	file	to	be	moved.		You	must
specify	the	SPLFNUMBER	parameter	if	there	is	more	than	one	spool	file	of	the
name	specified	by	the	SPLFNAME	parameter	for	the	job	specified	by	the	first
three	parameters
INPUT	Parameters:

JOBNAME	:	Required
This	parameter	specifies	the	name	of	the	job	that	created	the	spool	file	to	be
moved.
JOBUSER	:	Required
This	parameter	specifies	the	user	profile	name	of	the	job	that	created	the
spool	file	to	be	moved.
JOBNUMBER	:	Required
This	parameter	specifies	the	job	number	of	the	job	that	created	the	spool	file
to	be	moved.
SPLFNAME	:	Required
This	parameter	specifies	the	name	of	the	spool	file	to	be	moved.
SPLFNUMBER	:	Optional
This	parameter	specifies	the	number	of	the	spool	file	to	be	moved	and	is	only
required	if	there	is	more	than	one	spool	file	of	the	name	specified	by	the
SPLFNAME	parameter	for	the	job	specified	by	the	first	three	parameters.		If
not	specified,	a	default	special	value	of	*ONLY	is	used.		You	may	specify
special	values	*ONLY	or	*LAST.		Otherwise	specify	the	number	of	the	job's
spooled	file	that	is	to	be	moved.
TOOUTQ	:	Required
Specifies	the	name	of	the	destination	output	queue	the	spool	file	is	to	be
moved	to.
TOOUTQLIB	:	Optional
Specifies	the	name	of	the	library	containing	the	destination	output	queue.	
The	default	value	is	*LIBL	meaning	the	library	list	is	used	to	locate	the
named	destination	output	queue.

OUTPUT	Parameters:

There	are	no	output	parameters.

MSG_RECEIVE
This	Activity	will	receive	a	message	from	a	supported	message	brokering
system	such	as	IBM	MQ	Series.	Refer	to	2.3.9	Messaging	Configuration	for
further	information	on	this	Activity	and	the	pre-requisites	for	using	it.
The	MSGCONFIG	parameter	specifies	the	name	of	a	messaging	configuration
that	identifies,	amongst	other	things,	the	address	of	and	credentials	for	the
messaging	system	and	queue	from	which	the	messageis	to	be	received.
The	message	contents	are	received	into	a	file.	The	location	and	name	of	the
received	file	is	determined	by	the	configuration	in	conjunction	with	the
parameter	values.
In	addition,	message	properties	can	be	received	in	comma-separated	form	into	a
second	file.	The	location	and	name	of	the	CSV	file	is	determined	by	the
configuration	in	conjunction	with	the	parametervalues.
In	all	cases,	parameter	values,	if	specified,	override	values	in	the	configuration.
When	no	message	is	available	to	be	received	(after	waiting	for	the	interval
specified	by	the	WAITTIME	parameter,	if	used),	the	activity	ends	normally	but
the	output	parameters	containing	message	attributes	are	not	filled.		The	value	of
the	MSGRCVCOUNT	output	parameter	may	be	used	to	determine	whether	a
message	was	received.
INPUT	Parameters:

MSGCONFIG	:	Required
This	parameter	must	contain	the	name	of	a	messaging	configuration.	This
configuration	can	be	created	and	maintained	using	the	Messaging
Configurations	option	in	the	LANSA	Composer	client	software.	Amongst
other	things,	the	messaging	configuration	specifies	the	address,	queue	name
and	security	credentials	to	be	used	with	the	message	broker	system.	If	this
parameter	is	not	provided	or	is	not	foundor	is	Inactive,	this	Activity	will
return	an	error	and	processing	will	be	abandoned
WAITTIME:	Optional
Specifies	the	length	of	time	(in	milliseconds)	that	the	activity	will	wait	for	a
qualifying	message	to	arrive	in	the	message	queue	if	one	is	not	immediately
available	when	the	activity	is	processed.
The	default	value	is	-1	which	means	that	the	activity	does	not	wait	for	the
arrival	of	a	message	if	one	is	not	immediately	available	when	the	activity	is
processed.

You	may	also	specify	a	special	value	of	0	(zero)	which	means	that	the
activity	waits	indefinitely	for	a	message	to	arrive.		You	should	understand
that	this	value	may	cause	the	activity	and	hence	the	processing	sequence	in
which	it	is	contained	to	stall	indefinitely	if	no	message	is	sent	to	the	message
queue.		Other	than	by	the	arrival	of	a	message,	such	a	processing	sequence
run	may	only	be	terminated	by	terminating	the	job,	the	subsystem	in	which
the	job	is	running	or	the	system.
ENCODING:	Optional
Use	the	ENCODING	when	the	received	message	is	a	Unicode	TextMessage.
The	default	value	is	UTF-8.
MSGFOLDER:	Optional
Use	the	MSGFOLDER	to	specify	the	folder	to	which	the	file	containing	the
received	message	contents	will	be	written.	If	specified,	this	parameter
overrides	the	Receive	folder	value	in	the	messaging	configuration.
You	can	leave	this	parameter	unspecified	and	specify	a	fully	qualified
MSGFILENAME.
When	neither	the	folder	nor	the	MSGFILENAME	are	specified,	the	file	will
be	created	in	\x_lansa.
MSGFILENAME:	Optional
The	name	to	be	given	to	the	file	containing	the	received	message	contents.
Use	in	conjunction	with	MSGFOLDER	or	the	Receive	folder	in	the
configuration.	If	specified,	this	parameter	overrides	the	Receive	file	name
value	in	the	messaging	configuration.
When	a	filename	is	not	specified,	the	file's	name	will	be	auto	generated	in
the	format:
<system	setting	prefix><number>
PTYFILENAME:	Optional
The	name	to	be	given	to	the	file	containing	the	received	message	properties.
When	this	parameter	has	no	value	but	message	properties	are	received,	the
file	will	have	the	same	name	as	the	MSGFILENAMEwith	the	extension	CSV
appended	to	it.
The	file	will	be	created	in	the	Message	Properties	Receive	file	path,	if
specified	in	the	messaging	configuration	(Message	Properties	tab).	If	not,	it
will	be	created	in	the	MSGFOLDER.	Otherwise	itwill	be	created	in	\x_lansa.
SELECTOR:	Optional

A	message	selector	to	be	passed	to	the	MQSeries	system.	Only	valid	for
MQSeries	message	queue	on	an	IBM	i	server.	The	message	selector	is	used
to	select	which	message	is	to	be	received	by	the	activity.	If	specified,	only
messages	matching	the	specified	criteria	will	be	received	by	the	activity.
Otherwise,	messages	will	not	be	filtered.

OUTPUT	Parameters:
MESSAGEID:
The	message	ID	of	the	received	message	as	returned	by	the	message	broker
system.
MSGRCVCOUNT:
The	received	message	count.		If	a	message	is	received	successfully,	the	value
will	be	one	(1).		Otherwise	the	value	will	be	zero	(0).
MSGFILENAMEOUT:
The	full	path	and	file	name	of	the	file	to	which	the	received	message
contents	were	written.
PTYFILENAMEOUT:
The	full	path	and	file	name	of	the	file	to	which	the	received	message
properties	were	written.

MSG_SEND
This	Activity	will	send	a	file	through	a	supported	message	brokering	system
such	as	IBM	MQ	Series.	Refer	to	2.3.9	Messaging	Configuration	for	further
information	on	this	Activity	and	the	pre-requisites	for	using	it.
The	MSGCONFIG	parameter	specifies	the	name	of	a	messaging	configuration
that	identifies,	amongst	other	things,	the	address	of	and	credentials	for	the
messaging	system	and	queue	to	which	the	message	is	to	be	sent.
There	are	different	ways	to	specify	what	file	or	files	to	send.	Which	way	to
choose	depends	entirely	on	your	requirements.

	 MSGFILENAME MSGFOLDER MSGFILEEXTENSION

Send	a	file
located	in	a
folder

Unqualified	File
name

Fully	qualified
folder	name

N/A

Send	a	file
located	in	a
folder

Fully	qualified	file
name

Blank N/A

Send	all
files	in	a
folder

Blank Fully	qualified
folder	name

Use	default	*.*

Send	all
files	in	a
folder	with
extension
gif

Blank Fully	qualified
folder	name

Gif

	

Note:	the	MSGFOLDER	and	MSGFILENAME	parameters	in	this	activity
override	the	Send	folder	and	Send	file	name	in	the	messaging	configuration.	If
they	rarely	change	you	can	specify	them	at	the	configuration	level	and	leave	the
MSGFOLDER	and	MSGFILENAME	parameters	blank.
INPUT	Parameters:

MSGCONFIG	:	Required

This	parameter	must	contain	the	name	of	a	messaging	configuration.	This
configuration	can	be	created	and	maintained	using	the	Messaging
Configurations	option	in	the	LANSA	Composer	client	software.	Amongst
other	things,	the	messaging	configuration	specifies	the	address,	queue	name
and	security	credentials	to	be	used	with	the	message	broker	system.	If	this
parameter	is	not	provided	or	is	not	found	or	is	Inactive,	this	Activity	will
return	an	error	and	processing	will	be	abandoned.
MSGTYPE	:	Optional
Set	the	MSGTYPE	to	*BINARY	to	send	the	file	contents	as	a	binary	bytes.
Set	the	MSGTYPE	to	*TEXT	to	send	the	file	contents	as	a	text	message.The
default	value	is	*BINARY.
ENCODING:	Optional
Used	when	the	MSGTYPE	is	set	to	*TEXT,	the	value	of	this	parameter	is
used	to	convert	the	file	content	into	a	Unicode	string	that	will	be	sent	as	the
text	message.	The	default	value	is	UTF-8.
MSGFOLDER:	Optional
Use	in	conjunction	with	the	MSGFILENAME	or	MSGFILEEXTENSION
parameters.	It	must	contain	the	fully	qualified	path	to	the	folder	containing
the	file	or	files	to	send.
Use	the	appropriate	format	depending	on	the	operating	system.	For	example:
Windows		<drive>:\mydir\
IBM	i					/mydir/subdir/
MSGFILENAME:	Optional
Use	in	conjunction	with	the	MSGFOLDER	parameter	or	the	Send	folder
specified	in	the	messaging	configuration.
When	specifying	the	folder,	MSGFILENAME	must	contain	the	name	of	a
file	found	in	that	folder.
When	the	folder	is	not	specified,	MSGFILENAME	must	contain	a	fully
qualified	file	name.
Use	the	appropriate	format	depending	on	the	operating	system.	For	example:
Windows		<drive>:\mydir\file1.txt
IBM	i					/mydir/subdir/filex.xml
MSGFILEEXTENSION:	Optional
This	parameter	can	specify	a	file	extension	filter	used	to	select	files	to	be

sent	from	the	folder	specified	in	the	MSGFOLDER	parameter	or	in	the
messaging	configuration.	The	filtering	is	done	without	regard	to	the	case	of
the	filter	value	or	file	extension.	For	example,	you	might	specify	a	value	of
'XML'	for	this	parameter	to	select	all	files	with	an	XML	file	extension.	This
parameter	is	ignored	if	a	file	name	is	specified	in	the	MSGFILENAME
parameter.
PTYFILENAME:	Optional
This	parameter	may	specify	the	name	of	a	file	containing	message	properties
that	are	to	be	merged	with	any	specified	in	the	messaging	configuration	and
sent	with	the	message(s).
If	the	Message	Properties	Send	file	path	is	specified	in	the	messaging
configuration,	this	parameter	(if	used)	must	specify	the	name	of	a	file	found
in	that	folder.
If	the	Message	Properties	Send	file	path	is	NOT	specified	in	the	messaging
configuration,	this	parameter	(if	used)	must	have	the	fully	qualified	file
name.
Refer	to	2.3.9	Messaging	Configuration	for	information	on	the	expected
format	of	the	message	properties	comma-separated	file.

OUTPUT	Parameters:
MESSAGEID:
The	message	IDs	of	the	sent	message(s)	returned	by	the	message	broker
system.
If	the	parameter	values	used	result	in	more	than	one	file/message	being	sent,
then	this	outbound	parameter	contains	a	list	of	the	message	ids	for	each
message	sent.

MSGQ_RECEIVE
This	activity	receives	a	message	from	a	named	message	queue	on	the	IBM	i
server.		It	is	supported	only	on	IBM	i	servers.
When	the	activity	receives	a	message	from	the	named	message	queue,	a	range
of	attributes	of	the	message	are	available	through	the	output	parameters	of	the
activity,	including	message	text,	message	data,	message	identifier	and	sender
information.
When	no	message	is	available	to	be	received	(after	waiting	for	the	interval
specified	by	the	MSGWAIT	parameter,	if	used),	the	activity	ends	normally	but
the	output	parameters	containing	message	attributes	are	not	filled.		The	value	of
the	RCVCOUNT	output	parameter	may	be	used	to	determine	whether	a
message	was	received.
Refer	also	to	the	companion	MSGQ_SEND	and	WATCH_MSGQ	activities	that
allow	you	to	send	a	message	to	a	named	message	queue	or	to	iteratively	wait	on
messages	arriving	at	a	message	queue.		Refer	to	IBM	i	documentation
concerning	message	queues,	message	descriptions	and	message	files	for	further
information	about	the	operating	system	features	upon	which	this	activity
depends.
INPUT	Parameters:

MSGQ	:	Required
This	parameter	must	specify	the	name	of	the	message	queue	from	which	the
message	is	to	be	received.
MSGQLIB:	Optional
This	parameter	may	specify	the	name	of	the	library	containing	the	message
queue.		If	not	specified,	a	default	of	*LIBL	is	used	which	means	the	library
list	is	used	to	locate	the	named	message	queue.
MSGPOS:	Optional
You	may	specify	this	parameter	to	control	which	message	is	to	be	received
from	the	message	queue	or	to	receive	messages	that	are	"old"	(that	is,
messages	that	have	previously	been	received	without	being	removed).
The	usual	(and	default)	value,	*NEW,	specifies	that	the	activity	will	receive	a
"new"	message,	that	is	one	that	has	not	been	previously	received	(without
being	removed).		When	this	value	is	specified	(or	assumed)	the	messages	are
received	in	FIFO	(first-in,	first-out)	order.
Alternatively	you	may	use	the	values	*FIRST	or	*LAST	to	specify	that	the

first	or	last	message	on	the	message	queue	is	to	be	received.		These	values
permit	"old"	messages	to	be	received	again,	but	will	also	receive	"new"
messages	where	applicable.
MSGWAIT:	Optional
Specifies	the	length	of	time	(in	seconds)	that	the	activity	will	wait	for	a
message	to	arrive	in	the	message	queue	if	one	is	not	immediately	available
when	the	activity	is	processed.
The	default	value	is	0	(zero)	which	means	that	the	activity	does	not	wait	for
the	arrival	of	a	message	if	one	is	not	immediately	available	when	the	activity
is	processed.
You	may	also	specify	the	special	value	*MAX	which	means	that	the	activity
waits	indefinitely	for	a	message	to	arrive.		You	should	understand	that	this
value	may	cause	the	activity	and	hence	the	processing	sequence	in	which	it	is
contained	to	stall	indefinitely	if	no	message	is	sent	to	the	message	queue.	
Other	than	by	the	arrival	of	a	message,	such	a	processing	sequence	run	may
only	be	terminated	by	terminating	the	job,	the	subsystem	in	which	the	job	is
running	or	the	system.		If	you	wish	a	process	to	wait	indefinitely	for	a
message	to	arrive,	the	WATCH_MSGQ	activity	may	provide	a	more	suitable
solution.
MSGRMV:	Optional
Specifies	whether	the	message	received	by	the	activity	is	removed	from	the
message	queue.		The	default	is	*YES,	which	means	the	message	is	removed.	
You	may	specify	*NO	to	cause	the	message	not	to	be	removed	from	the
message	queue.		If	you	do	so,	the	system	considers	the	message	to	be	"old"
and	it	will	not	be	received	again	by	this	activity	except	by	specifying	*FIRST
or	*LAST	for	the	MSGPOS	parameter.		If	your	processing	sequence	leaves
"old"	messages	on	the	message	queue,	it	is	your	responsibility	to	remove
them	by	other	means	such	as	by	executing	the	CLRMSGQ	operating	system
command.

OUTPUT	Parameters:
RCVCOUNT:
The	received	message	count.		If	a	message	is	received	successfully,	the	value
will	be	one	(1).		Otherwise	the	value	will	be	zero	(0).		The	activity	ends
normally	when	no	message	is	available	to	receive	after	waiting	for	the
interval	specified	by	the	MSGWAIT	parameter.
RCVMSGSEV:

If	a	message	is	received,	this	parameter	contains	the	severity	code	of	the
received	message.		Impromptu	messages	sent	by	the	MSGQ_SEND	activity
will	usually	have	a	severity	code	of	'00'.		For	pre-defined	messages,	the
severity	code	is	defined	by	the	message	description.
RCVMSGTYPE:
If	a	message	is	received,	this	parameter	contains	the	message	type	of	the
received	message.		Messages	sent	by	the	MSGQ_SEND	activity	will	have	a
message	type	of	*INFO.		For	messages	sent	by	other	means,	the	message
type	is	specified	by	the	sending	program.
RCVMSGID:
If	a	message	is	received,	this	parameter	contains	the	message	identifier	of	the
received	message.		An	impromptu	message	has	no	message	identifier.	
Otherwise,	this	value	identifies	the	message	description	in	the	message	file
identified	by	the	RCVMSGF	and	RCVMSGFLIB	parameters.
RCVMSGF:
If	a	message	is	received,	this	parameter	contains	the	name	of	the	message	file
of	the	received	message.		An	impromptu	message	has	no	message	file	name.	
Otherwise,	this	value	identifies	the	message	file	name	containing	the
message	description	used	to	send	the	message.
RCVMSGFLIB:
If	a	message	is	received,	this	parameter	contains	the	name	of	the	library
containing	the	message	file,	if	any.
RCVMSGTXT:
If	a	message	is	received,	this	parameter	contains	the	first	level	message	text
of	the	received	message.		For	a	pre-defined	message,	this	includes	the
message	data	fields	that	were	substituted	for	substitution	variables	in	the	text
before	the	message	was	sent.		A	maximum	of	256	characters	of	the	first	level
text	will	be	returned.
RCVSECLVL:
If	a	message	is	received,	this	parameter	contains	the	second	level	message
text	of	the	received	message,	if	any.		An	impromptu	message	has	no	second
level	message	text.		For	a	pre-defined	message,	this	includes	the	message
data	fields	that	were	substituted	for	substitution	variables	in	the	second	level
text	before	the	message	was	sent.		A	maximum	of	256	characters	of	the
second	level	text	will	be	returned.
RCVMSGDTA:

If	a	message	is	received,	this	parameter	contains	the	message	data	field
values	of	the	received	msg.		An	impromptu	message	has	no	message	data.	
Otherwise	this	contains	a	single	string	of	the	message	data	values	used	to
send	the	message.		A	maximum	of	256	characters	of	message	data	will	be
returned.
SENDJOB:
If	a	message	is	received,	this	parameter	contains	the	name	of	the	job	that	sent
the	message.
SENDUSER:
If	a	message	is	received,	this	parameter	contains	the	user	name	of	the	job	that
sent	the	message.
SENDJOBNBR:
If	a	message	is	received,	this	parameter	contains	the	job	number	of	the	job
that	sent	the	message.
SENDDATE:
If	a	message	is	received,	this	parameter	contains	the	date	that	the	message
was	sent.		The	date	is	in	ISO	format	-	that	is,	CCYY-MM-DD.
SENDTIME:
If	a	message	is	received,	this	parameter	contains	the	time	that	the	message
was	sent.		The	time	is	in	ISO	format	-	that	is,	HH:MM:SS.

MSGQ_SEND
This	activity	sends	a	message	to	a	named	message	queue	on	the	IBM	i	server.		It
is	supported	only	on	IBM	i	servers.
You	can	use	this	activity	to	send	an	impromptu	message	or	a	pre-defined
message.
An	impromptu	message	is	one	for	which	the	message	text	is	entirely	supplied	at
run-time.		To	send	an	impromptu	message,	specify	the	message	text	in	the	MSG
parameter	value.		The	MSGID,	MSGF,	MSGFLIB	and	MSGDTA	parameter
values	are	ignored	if	MSG	is	specified.
A	pre-defined	message	uses	a	message	description	contained	in	a	message	file
to	provide	the	text	for	the	message.		To	send	a	pre-defined	message,	do	not
provide	a	value	for	the	MSG	parameter	but	instead	specify	the	message
identifier	in	the	MSGID	parameter	and	specify	the	message	file	that	contains	the
message	description	in	the	MSGF	parameter	(and	the	MSGFLIB	parameter,	if
necessary).		When	using	a	pre-defined	message	you	may	also	provide	message
substitution	values	using	the	MSGDTA	parameter	for	messages	that	are	defined
to	use	them.
The	message	is	always	sent	with	a	message	type	of	*INFO.
Refer	also	to	the	companion	MSGQ_RECEIVE	and	WATCH_MSGQ	activities
that	allow	you	to	receive	messages	from	a	named	message	queue.		Refer	to	IBM
i	documentation	concerning	message	queues,	message	descriptions	and	message
files	for	further	information	about	the	operating	system	features	upon	which	this
activity	depends.
INPUT	Parameters:

TOMSGQ	:	Required
This	parameter	must	specify	the	name	of	the	message	queue	to	which	the
message	is	sent.
TOMSGQLIB:	Optional
This	parameter	may	specify	the	name	of	the	library	containing	the	message
queue.		If	not	specified,	a	default	of	*LIBL	is	used	which	means	the	library
list	is	used	to	locate	the	named	message	queue.
MSG:	Optional
This	parameter	may	specify	the	message	text	for	an	impromptu	message.		If
message	text	is	specified	in	this	parameter,	any	values	specified	in	the
MSGID,	MSGF,	MSGFLIB	and	MSGDTA	parameters	are	ignored.

MSGID:	Optional
Specifies	the	message	identifier	for	a	pre-defined	message	description
contained	in	the	message	file	named	in	the	MSGF	parameter.		The	message
identifier	is	an	alphanumeric	value	of	seven	characters	and	numbers.		For
example,	CPF9898	is	the	message	identifier	for	a	general-purpose	message
description	supplied	with	the	IBM	i	operating	system	in	message	file
QCPFMSG.		This	value	is	ignored	if	impromptu	message	text	is	specified	in
the	MSG	parameter.
MSGF:	Optional
Specifies	the	name	of	the	message	file	containing	the	pre-defined	message
description	identified	by	the	MSGID	parameter.		For	example,	QCPFMSG	is
the	name	of	a	message	file	supplied	with	the	IBM	i	operating	system,	but
you	may	use	message	files	of	your	own	as	well.		This	value	is	ignored	if
impromptu	message	text	is	specified	in	the	MSG	parameter.
MSGFLIB:	Optional
This	parameter	may	specify	the	name	of	the	library	containing	the	message
file	identified	by	the	MSGF	parameter.		If	not	specified,	a	default	of	*LIBL	is
used	which	means	the	library	list	is	used	to	locate	the	named	message	file.	
This	value	is	ignored	if	impromptu	message	text	is	specified	in	the	MSG
parameter.
MSGDTA:	Optional
When	using	a	pre-defined	message,	this	parameter	may	specify	a	string
containing	one	or	more	substitution	values	that	are	used	as	message	data
fields	within	the	pre-defined	message.		This	value	is	ignored	if	impromptu
message	text	is	specified	in	the	MSG	parameter.

OUTPUT	Parameters:
There	are	no	output	parameters

NOTIFYEVENT
This	activity	can	be	used	to	trigger	any	event	that	is	defined	to	LANSA
Composer	(in	event	maintenance).
Usually	events	are	triggered	automatically	by	the	activities	that	are	associated
with	them.		However,	using	this	activity,	you	can	define	your	own	events	(or	re-
use	the	supplied	event	definitions)	and	trigger	them	explicitly	where	appropriate
in	your	processing	sequences.
INPUT	Parameters:

EVENTID	:	Required
This	parameter	must	contain	the	name/identifier	of	an	event	defined	in	Event
Maintenance.		This	can	be	one	of	ths	shipped	events	or	any	event	that	you
defined.

OUTPUT	Parameters:
None.

NEXTNUMBER
This	activity	generates	the	next	number	in	a	series	that	is	identified	by	the	two
"key"	values	that	can	be	specified	in	the	input	parameters.	It	may	be	suitable	in
some	applications	for	generating	sequential	batch	numbers	or	similar	for
processed	data.
The	series	from	which	the	number	is	generated	is	determined	by	the	two	number
"keys"	specified	in	the	parameters.	You	can	use	the	keys	to	generate	a	sequence
number	identified	appropriately	for	your	purpose	or	application.	For	example,
you	might	specify	"ORDER_IN"	as	the	first	key	and	"BATCHNUMBER"	as	the
second	key.	The	first	time	the	activity	runs	(in	any	processing	sequence)	with
these	keys,	the	number	1	(one)	is	returned.	Each	subsequent	invocation	with
these	keys	(in	any	processing	sequence)	returns	the	next	number	in	the
ORDER_IN/BATCHNUMBER	series.
The	numbers	generated	have	a	maximum	precision	of	30,	0.	When	the	number
reaches	its	maximum	capacity	it	will	roll-over	to	zero.	The	numbers	and	the
keys	are	held	in	a	Composer	database	file.
This	activity	may	not	meet	the	standards	for	data	integrity	and	security	required
for	some	applications.	You	should	consider	the	requirements	of	your	application
carefully	before	using	this	activity.
INPUT	Parameters:

NUMBERKEY1	:	Optional
This	is	the	first	of	two	optional	"keys"	that	are	used	to	uniquely	identify	the
series	from	which	the	next	sequential	number	will	be	generated.	If	this
parameter	is	not	specified,	the	activity	will	use	the	internal	identifier	of	the
containing	processing	sequence	(a	unique	32	character	string).	This	results	in
a	series	of	numbers	unique	to	that	processing	sequence.	But	two	instances	of
the	activity	in	the	same	processing	sequence	would	generate	numbers	from
the	same	series	(unless	you	specify	a	value	for	the	NUMBERKEY2
parameter).
NUMBERKEY2	:	Optional
This	is	the	second	of	two	optional	"keys"	that	are	used	to	uniquely	identify
the	series	from	which	the	next	sequential	number	will	be	generated.	This
parameter	has	no	default	-	if	not	specified,	a	blank	key	value	will	be	used.

OUTPUT	Parameters:
NUMBEROUT	:

Upon	completion,	this	parameter	contains	the	next	sequential	number	in	the
series	identified	by	the	specified	(or	assumed)	"keys".

NULL
This	activity	does	nothing.
Clearly	this	isn't	useful	in	a	production	environment,	but	it	can	sometimes	be
useful	as	a	placeholder	during	the	design	of	your	processing	sequence.
INPUT	Parameters:

None.
OUTPUT	Parameters:

None.

PATHMAKE
This	activity	receives	a	folder	path	and	a	file	name	and	extension	and	constructs
and	returns	the	full	file	path.
The	activity's	behavior	is	subject	to	the	operating	environment.	For	example,	it
uses	or	looks	for	a	path	delimiter	of	'\'	or	'/'	according	to	whether	the	processing
sequence	engine	is	running	on	a	Windows	or	IBM	i	server.
INPUT	Parameters:

PATHIN	:	Required
This	parameter	specifies	the	folder	path	-	that	is	the	portion	of	the	path	left	of
the	file	name	and	extension.	It	may	include	a	drive	name	or	network
location.	It	may	or	may	not	include	the	terminating	folder	separator	('\'	or	'/'
according	to	operating	environment).	If	it	does	not,	the	activity	will	append
it.
FILEIN	:	Optional
This	parameter	specifies	the	file	name.	It	may	include	the	file	extension,	in
which	case	the	EXTENSIONIN	parameter	should	not	be	specified.
EXTENSIONIN	:	Optional
This	parameter	specifies	the	file	extension,	if	required.	If	specified,	the
activity	will	append	this	to	the	file	path.	It	may	or	may	not	include	the	period
(.)	separator	-	if	it	does	not,	the	activity	will	add	it.

OUTPUT	Parameters:
PATHOUT	:
Upon	completion,	this	parameter	will	contain	the	full	file	path.

PATHSPLIT
This	activity	receives	a	file	path	and	extracts	the	constituent	components
including	the	folder	path,	file	name	and	extension.
The	activity's	behavior	is	subject	to	the	operating	environment.	For	example,	it
uses	or	looks	for	a	path	delimiter	of	'\'	or	'/'	according	to	whether	the	processing
sequence	engine	is	running	on	aWindows	or	IBM	i	server.
INPUT	Parameters:

PATHIN	:	Required
This	parameter	specifies	the	file	path	to	be	split.

OUTPUT	Parameters:
PATHOUT	:
Upon	completion,	this	parameter	will	contain	the	folder	path	-	that	is	the
input	file	path	minus	the	file	name	and	extension.
FILEOUT	:
Upon	completion,	this	parameter	will	contain	the	file	name	if	one	is	found	in
the	input	file	path.
FILEXOUT	:
Upon	completion,	this	parameter	will	contain	the	file	name	and	extension	if
one	is	found	in	the	input	file	path.
EXTENSIONOUT	:
Upon	completion,	this	parameter	will	contain	the	file	extension	(not
including	the	period)	if	one	is	found	in	the	input	file	path.

PUT_DTAARA
This	activity	writes	a	value	to	the	specified	data	area.		It	is	supported	only	on
IBM	i	servers.
This	activity	can	only	write	to	data	areas	created	with	TYPE(*CHAR)	and	the
starting	position	and	length	specified	must	be	valid	for	the	definition	of	the	data
area	specified.		The	data	area	must	exist	and	the	job	running	the	activity	must
have	the	necessary	authorities.
INPUT	Parameters:

DTAARA	:	Required
This	parameter	specifies	the	name	of	the	data	area.
LIB	:	Optional
This	parameter	can	specify	the	name	of	the	library	containing	the	data	area.	
If	it	is	not	specified,	the	processing	sequence	will	use	the	library	list	to	locate
the	data	area.
START	:	Required
This	parameter	specifies	the	starting	position	in	the	data	area	to	which	to
write	the	value.
LENGTH	:	Required
This	parameter	specifies	the	length	of	the	value	to	be	written.
STRINGIN	:	Required
This	parameter	specifies	the	value	to	be	written	to	the	specified	positions	in
the	specified	data	area.

OUTPUT	Parameters:
There	are	no	output	parameters

QUERY_CCSID
This	activity	returns	the	IBM	i	CCSID	for	the	specified	file.		The	activity	is	only
supported	on	IBM	i	servers.
A	CCSID	is	a	coded	character	set	identifier	that	identifies	a	specific	encoding	of
a	specific	code	page	on	IBM	i	servers	and	other	IBM	platforms	and	software.		It
is	crucial	that	a	file	containing	textual	data	has	the	correct	CCSID	that
represents	its	encoding	of	that	data	–	otherwise	programs	cannot	successfully
interpret	the	file.		For	more	information	on	CCSIDs,	refer	to	relevant	IBM
documentation.
INPUT	Parameters:

FILEPATH	:	Required
This	parameter	should	contain	the	full	name	and	path	of	the	file	whose
CCSID	is	to	be	queried.

OUTPUT	Parameters:
CCSID	:
If	successful,	this	parameter	will	contain	the	CCSID	for	the	specified	file.

RANDOMNUMBER
This	activity	generates	a	pseudo-random	number	in	the	range	specified	by	the
LOWERBOUND	and	UPPERBOUND	input	parameters.		For	example,	if	the
default	values	of	1	(one)	and	100	(one	hundred)	are	used	for	the
LOWERBOUND	and	UPPERBOUND	parameters,	the	resulting	pseudo-
random	number	will	be	in	the	range	1	to	100	inclusive.
Typically	(but	not	invariably),	each	use	of	the	RANDOMNUMBER	activity
will	yield	a	result	different	to	the	previous	and	frequent	use	will	yield	results
that	will	be	evenly	spread,	on	average,	over	the	range	specified	by	the
LOWERBOUND	and	UPPERBOUND	input	parameters.
Technical	note:		The	implementation	of	the	RANDOMNUMBER	activity	uses
the	LANSA	RANDOM_NUM_GENERATOR	built-in	function	with	a	stream
index	value	of	77.		Refer	to	LANSA	documentation	for	more	information	on
this	built-in	function.
INPUT	Parameters:

LOWERBOUND	:	Optional
This	optional	parameter	specifies	the	lower	bound	of	the	range	of	the
resulting	pseudo-random	number.		If	not	specified,	a	default	value	of	1	(one)
is	used.
UPPERBOUND	:	Optional
This	optional	parameter	specifies	the	upper	bound	of	the	range	of	the
resulting	pseudo-random	number.		If	not	specified,	a	default	value	of	100
(one	hundred)	is	used.

OUTPUT	Parameters:
NUMBEROUT	:
Upon	completion,	this	parameter	contains	the	generated	pseudo-random
number	in	the	range	specified	by	the	LOWERBOUND	and	UPPERBOUND
input	parameters.

RENAME_FILE
This	activity	will	rename	a	file.
When	executed	on	a	Windows	platform	a	system	rename	command	is	executed.
When	executed	on	an	IBM	i	platform	an	i5/OS	REN	command	is	executed.
INPUT	Parameters:

FROMFULLNAME	:	Required
This	parameter	should	contain	the	full	path	and	name	of	the	file	to	be
renamied.
For	example:			Windows			C:\dir1\myfile.txt
IBM	i			/indir/myfile.txt
TONAME	:	Required
This	parameter	should	contain	the	new	name	(and	optional	extension)	of	the
file.		Note	that	you	cannot	specify	a	new	drive	or	path	for	the	destination
file.		The	file	is	renamed	in	the	same	directory	containing	the	existing	object.

OUTPUT	Parameters:
There	are	no	output	parameters.

SAVE_PSVSET
This	activity	saves	processing	sequence	variables	and	their	values	to	a	PSV	file.	
The	variables	and	their	values	may	subsequently	be	loaded	into	the	same	or	a
different	processing	sequence	using	the	LOAD_PSVSET	activity	or
transformed	using	a	Transformation	Map.		Built-in	variables	(and	other
variables	used	internally	by	LANSA	Composer)	are	not	saved.
If	no	processing	sequence	variables	are	selected,	the	activity	completes
normally	and	a	valid	PSV	file	is	created	(containing	no	<psVariable>	elements).	
The	value	of	the	PSVCOUNT	output	parameter	will	be	zero	in	this	case.
The	PSV	file	created	by	this	activity	will	always	contain	a	single	PSV	set
(<psvSet>	element).		However,	PSV	files	created	by	other	means	(for	example,
as	the	output	from	a	Transformation	Map)	may	contain	more	than	one	PSV	set
(processing	sequence	variables	set)	and	the	LOAD_PSVSET	activity	is	capable
of	processing	files	containing	one	or	more	PSV	sets.
For	more	information	about	PSV	files,	refer	to	the	following.

Saving,	Loading	and	Transforming	Processing	Sequence	Variables
INPUT	Parameters:

PSVFILEPATH	:	Required
This	parameter	must	specify	the	path	and	file	name	of	the	PSV	file	to	be
created.		By	convention,	we	suggest	using	a	file	extension	of	'.PSV',	though
this	is	not	a	requirement.		If	the	specified	file	already	exists,	it	will	be
replaced	by	this	activity.
PSVSELECT	:	Optional
This	parameter	may	optionally	specify	a	generic	name	of	the	processing
sequence	variables	to	be	saved.		For	example,	specify	'ORDER'	to	save	the
processing	sequence	variables	whose	names	begin	with	the	characters
'ORDER'.		Note	that	processing	sequence	variable	names	are	case-
insensitive.		It	does	not	matter	whether	you	specify	the	generic	name	using
upper	or	lowercase	characters,	or	a	mixture	of	both.		If	the	generic	name
specified	ends	with	'*'	(a	common	"generic"	notation),	the	trailing	asterisk	is
removed	before	performing	the	comparisons.	If	this	parameter	is	not
specified,	a	default	value	of	'*ALL'	is	assumed.		Values	of	'*',	'*ALL'	or
blank	will	result	in	all	processing	sequence	variables	being	selected.
PSVSETID	:	Optional
This	parameter	may	optionally	specify	a	value	to	be	written	to	the	'id='

its:LANSA091.CHM::/lansa/intengc3_0116.htm

attribute	of	the	<psvSet>	element	in	the	PSV	file.		The	value	of	this	atribute
will	be	available,	if	required,	to	the	processing	sequence	that	loads	the
variable	set	using	the	LOAD_EACHPSVSET	activity.
PSVCOMMENT	:	Optional
This	parameter	may	optionally	specify	a	value	to	be	written	to	the
'comment='	attribute	of	the	<psvSet>	element	in	the	PSV	file.		The	value	of
this	atribute	will	be	available,	if	required,	to	the	processing	sequence	that
loads	the	variable	set	using	the	LOAD_EACHPSVSET	activity.

OUTPUT	Parameters:
PSVCOUNT:
Upon	successful	completion,	this	output	parameter	will	contain	a	count	of
the	processing	sequence	variables	saved.
	

SLEEP
This	activity	will	suspend	processing	for	a	time	interval	specified	by	the
INTERVAL	parameter.		When	the	specified	time	interval	has	elapsed,	the
activity	ends	and	processing	continues	with	the	next	directive	in	the	processing
sequence.
When	used	on	LANSA	Composer	IBM	i	Server,	the	specified	interval	is
rounded	up	to	the	nearest	1000	milliseconds	(one	second).
INPUT	Parameters:

INTERVAL	:	Optional
This	parameter	specifies	the	interval	in	milliseconds	to	suspend	processing.	
If	not	specified,	the	activity	assumes	a	default	of	1000	milliseconds	(one
second).		When	used	on	LANSA	Composer	IBM	i	Server,	the	value	specified
is	rounded	up	to	the	nearest	1000	milliseconds	(one	second).

OUTPUT	Parameters:
There	are	no	output	parameters

SMS_SEND
This	activity	will	send	an	SMS	to	a	mobile	number	using	an	e-mail-based
service	provided	for	the	purpose	by	a	third	party	SMS	provider.		Such	services
require	you	to	hold	an	account	with	them	(usually	paid).		Once	you	have	an
account,	your	application	sends	an	e-mail	to	the	provider	in	a	specified	format.	
The	SMS_SEND	activity	uses	an	e-mail	format	used	by	www.streetdata.com.au
and	other	providers	in	which	the	key	features	are:

the	telephone	number	for	the	receiver	is	specified	left	of	the	'@'	sign	in	the
e-mail	address	(for	example,	04001234567@streetdata.com.au)
the	subject	specifies	the	account	holder's	assigned	user	name	and
password
the	e-mail	body	contains	the	message	text	to	be	sent

To	use	this	Activity	you	must	have	an	SMTP	mail	server	available	and	an	SMS
provider.	If	your	SMS	provider	expects	email	in	a	format	different	to	that
generated	by	this	Activity,	then	the	activity	processor	for	the	activity	may	need
to	be	modified	to	accommodate	it.

Details	for	connecting	to	and	using	the	SMS	provider	service	and	for	the
SMS	message	destination	and	content	may	be	specified	in	an	2.3.7	SMS
Configuration.		Refer	to	the	description	of	2.3.7	SMS	Configuration	for
additional	information.

INPUT	Parameters:
SMSCONFIGID	:	Optional
This	parameter		may	contain	the	name	of	an	SMS	Configuration	to	be	used
to	send	the	SMS	message.	This	Configuration	can	be	created	and	maintained
using	the	SMS	Configuration.			If	the	specified	SMS	configuration	is	not
found	or	not	active,	the	Activity	will	return	an	error	and	processing	will	be
abandoned.	If	the	SMS	configuration	name	is	not	provided	then	the	default
SMS	configuration	set	in	System	Settings	will	be	used.
SMSTONUM	:	Optional
This	parameter	may	contain	the	SMS	number	to	which	the	message	is	to	be
sent.		If	specified	here,	it	overrides	the	value	specified	in	the	SMS
configuration.		If	not	specified	here,	then	the	SMS	number	must	be	specified
in	the	SMS	configuration.
SMSMSG	:	Optional

http://www.streetdata.com.au

This	parameter	may	contain	the	SMS	message	text	to	be	sent.		If	specified
here,	it	overrides	the	value	specified	in	the	SMS	configuration.		If	not
specified	here,	then	the	SMS	message	text	must	be	specified	in	the	SMS
configuration.		Most	SMS	providers	restrict	the	SMS	message	length	to	a
maximum	number	of	characters,	for	example	160	characters.		It	is	your
responsibility	to	ensure	the	message	text	does	not	exceed	the	maximum
imposed	by	the	service	you	are	using.

OUTPUT	Parameters:
There	are	no	output	parameters.

SORT_LISTS
This	activity	will	sort	one	or	more	variable	lists	in	"parallel"	into	the	order	of
the	values	in	the	list	specified	by	the	SORTLIST1	parameter.
In	the	simplest	case,	where	you	want	to	sort	one	list,	simply	specify	the	required
variable	list	on	the	SORTLIST1	parameter.
You	might	specify	more	than	one	list	in	cases	where	you	have	variable	lists	that
are	linked.		For	example,	you	have	two	variable	lists	ORDERS	and
CUSTOMERS	that	contain	an	order	number	and	customer	number	respectively
for	a	list	of	ORDERS.		For	every	entry	in	ORDERS,	there	is	also	an	entry	in
CUSTOMERS	that	contains	the	customer	number	for	the	corresponding	order.
To	sort	the	two	lists	in	"parallel"	into	the	sequence	of	the	order	numbers,	you
could	specify	ORDERS	as	the	list	for	the	SORTLIST1	parameter	and
CUSTOMERS	as	the	list	for	the	SORTLIST2	parameter.
If	you	specify	more	than	one	list,	all	the	lists	must	have	the	same	number	of	list
items.		Otherwise,	the	activity	will	end	in	error.
NOTE:		This	activity	imposes	a	maximum	number	of	list	items	that	can	be
sorted.		If	the	variable	list	contains	more	than	the	maximum,	the	activity	will
end	in	error.		The	maximum	is	usually	9,999.		However,	using	variable	lists	of
this	extent	is	generally	NOT	recommended	in	the	context	of	this	activity	or	any
other	aspect	of	LANSA	Composer	variable	list	processing.
INPUT	Parameters:

SEQUENCE	:	Optional
This	parameter	specifies	whether	the	variable	list(s)	should	be	sorted	in
ascending	(*ASCEND)	or	descending	(*DESCEND)	order	of	the	values	in
the	list	specified	by	the	SORTLIST1	parameter.

INPUT	and	Output	Parameters:
SORTLIST1	:	Required
Specifies	the	first	variable	list	to	be	sorted.		If	more	than	one	list	is	specified,
it	is	the	values	in	THIS	list	that		are	used	to	sort	ALL	the	lists	in	parallel.	
This	parameter	must	be	specified.
SORTLIST2SORTLIST3
SORTLIST4
SORTLIST5	:	Optional
You	may	specify	up	to	four	additional	variable	lists	to	be	sorted	in
"parallel".		If	you	use	these	parameters	you	must	specify	them	contiguously	-

LANSA	Composer	will	stop	looking	after	the	first	unused	parameter.		Each
list	specified	here	must	have	exactly	the	same	number	of	list	items	as	the	list
specified	in	the	SORTLIST1	parameter	-	otherwise	the	activity	will	end	in
error.

	

SPLF_LIST
This	activity	fills	the	output	lists	with	details	of	all	or	selected	spool	files	in	a
specified	output	queue.		Spool	files	in	the	output	queue	can	be	selected	by	user,
user	data	or	form	type	by	specifying	values	for	the	corresponding	parameters.
Entries	in	each	output	list	correspond	by	index	to	entries	in	the	other	lists	for	the
same	spool	file.
Activities	that	populate	list	variables	are	often	followed	by	a	LOOP	processing
sequence	directive	or	other	constructs	to	process	the	contents	of	the	list.		Refer
to	Variables	and	Lists	for	more	information	about	the	use	of	list	variables.
INPUT	Parameters:

OUTQ	:	Required
This	parameter	specifies	the	name	of	the	output	queue	from	which	the	spool
files	are	listed.
OUTQLIB	:	Optional
This	parameter	specifies	the	library	containing	the	output	queue	from	which
the	spool	files	are	listed.		If	not	specified,	a	default	value	of	*LIBL	is	used,
meaning	the	library	list	is	searched	to	find	the	output	queue	named	in	the
OUTQ	parameter.
SELECTUSER	:	Optional
If	this	parameter	is	specified,	the	output	lists	will	include	only	the	spool	files
for	the	specified	user	(that	also	meet	other	selection	criteria).		If	not
specified,	spool	files	for	all	users	are	eligible	to	be	included.
SELECTUSERDATA	:	Optional
If	this	parameter	is	specified,	the	output	lists	will	include	only	the	spool	files
whose	user	data	(USRDTA)	matches	the	user	data	specified	(and	that	also
meet	other	selection	criteria).		If	not	specified,	all	spool	files	are	eligible	to
be	included	irrespective	of	their	user	data.
SELECTFORMTYPE	:	Optional
If	this	parameter	is	specified,	the	output	lists	will	include	only	the	spool	files
whose	form	type	(FORMTYPE)	matches	the	form	type	specified	(and	that
also	meet	other	selection	criteria).		If	not	specified,	spool	files	of	any	form
type	are	eligible	to	be	included.

OUTPUT	Parameters:
SPLFNAMELIST	:

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm

Upon	successful	completion,	this	parameter	will	contain	a	list	of	the	spool
file	names	for	spool	files	that	were	selected	from	the	specified	output	queue.
SPLFNUMBERLIST	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the	spool
file	numbers	for	spool	files	that	were	selected	from	the	specified	output
queue.
JOBNAMELIST	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the	job
names	for	spool	files	that	were	selected	from	the	specified	output	queue.	
The	job	names	apply	to	the	job	that	created	the	spool	files.
JOBUSERLIST	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the	user
profile	names	for	spool	files	that	were	selected	from	the	specified	output
queue.		The	user	profile	names	apply	to	the	job	that	created	the	spool	files.
JOBNUMBERLIST	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the	job
numbers	for	spool	files	that	were	selected	from	the	specified	output	queue.	
The	job	numbers	apply	to	the	job	that	created	the	spool	files.

SPLF_TO_PDF
This	activity	converts	the	spooled	file	identified	by	the	job	and	spool	file	input
parameters	into	a	PDF	document.		The	PDF	document	is	written	to	the	file	name
and	path	specified	by	the	DOCPATH	parameter.
Additional	input	parameters	allow	basic	formatting	and	layout	of	the	PDF
document	to	be	specified.		The	MOREATTRIBUTES	parameter	is	provided	for
advanced	use	to	specify	additional	PDF	document	attributes.
INPUT	Parameters:

DOCPATH	:	Required
This	parameter	specifies	the	path	and	file	name	for	the	PDF	document	that
will	be	generated	by	this	activity.		If	the	specified	file	already	exists,	by
default	it's	contents	will	be	replaced,	but	this	behavior	can	be	altered	by	the
APPEND	parameter.
APPEND	:	Optional
This	optional	parameter	only	applies	if	the	specified	PDF	document	path	and
file	name	already	exists.	It	takes	a	value	of	Y	(yes)	or	N	(no).		If	Y	(yes)	is
specified,	the	converted	spool	file	pages	will	be	appended	to	the	existing
PDF	document.		If	N	(no)	is	specified	or	assumed,	the	existing	PDF
document	will	be	replaced.		If	this	parameter	is	not	specified,	a	default	of	N
(no)	is	assumed.
JOBNAME	:	Required
This	parameter	specifies	the	name	of	the	job	that	created	the	spool	file	from
which	the	PDF	document	is	to	be	created.
JOBUSER	:	Required
This	parameter	specifies	the	user	profile	name	of	the	job	that	created	the
spool	file	from	which	the	PDF	document	is	to	be	created.
JOBNUMBER	:	Required
This	parameter	specifies	the	job	number	of	the	job	that	created	the	spool	file
from	which	the	PDF	document	is	to	be	created.
SPLFNAME	:	Required
This	parameter	specifies	the	name	of	the	spool	file	from	which	the	PDF
document	is	to	be	created.
SPLFNUMBER	:	Optional
This	parameter	specifies	the	number	of	the	spool	file	from	which	the	PDF

document	is	to	be	created.		If	not	specified,	a	default	value	of	1	is	used.
Otherwise	specify	the	number	of	the	job's	spooled	file	from	which	the	PDF
document	is	to	be	created.
PAGES	:	Required
This	parameter	can	specify	a	comma-separated	list	of	page	numbers	and/or
page	ranges	that	are	to	be	included	in	the	conversion	to	PDF.		For	example
the	value	'2,5,10-15'	will	select	single	pages	2	and	5	and	pages	10	to	15.		If
this	parameter	is	not	specified,	all	pages	in	the	spool	file	will	be	converted	to
PDF.
PAGETYPE	:	Required
According	to	the	value	of	this	parameter,	the	converted	PDF	document	may
consists	of	PDF	text	pages	or	PDF	TIFF	G4	image	pages.		The	value	*TEXT
may	be	used	for	SCS	type	spooled	files	and	*IMAGE	may	be	used	for	both
SCS	and	AFPDS	type	spooled	files.		*TEXT	is	faster	but	can	only	convert
SCS	spool	files.		*IMAGE	is	slower	but	can	be	used	for	both	SCS	and
AFPDS	file	types.		If	this	parameter	is	not	specified,	*TEXT	is	assumed.
PAGESIZE	:	Optional
Specifies	the	page	size	for	the	generated	PDF	document.		The	default	value
is	*A4.		Other	valid	values	include:
-	*A0	to	*A10
-	*B0	to	*B5
-	*LETTER
-	*HALFLETTER
-	*LEDGER
-	*LEGAL
-	*NOTE
ORIENTATION	:	Optional
Specifies	the	page	orientation	as	*PORTRAIT	or	*LANDSCAPE.		The
default	value	is	*LANDSCAPE.
BACKIMAGEPATH	:	Optional
This	parameter	may	specify	the	path	and	file	name	of	an	image	file	(such	as
a	corporate	logo	or	letterhead)	to	be	included	in	the	background	of	the
generated	PDF	file.		If	specified,	the	image	is	included	and	positioned
according	to	the	values	of	the	BACKIMAGEPAGES	and
BACKIMAGEPOS	parameters.

When	this	feature	is	used,	the	image	is	placed	on	the	PDF	page	and	the	spool
file	text	is	placed	over	it.		The	position	or	layout	of	the	spool	file	text	is	not
altered	to	accommodate	the	image.		Therefore,	you	should	choose	an	image
file	and/or	position	or	size	the	image	to	avoid	obscuring	the	spooled	file
text.		For	example,	choose	an	image	file	that	uses	mainly	light	colours.
	
BACKIMAGEPAGES	:	Optional
This	parameter	applies	only	when	a	background	image	file	is	specified	using
the	BACKIMAGEPATH	parameter.		It	specifies	the	pages	of	the	PDF	file
that	are	to	include	the	image.		You	can	use	the	value	*ALL	to	include	the
image	on	every	page	of	the	generated	PDF	file,	or	you	can	use	the	value
*FIRST	to	include	the	image	only	on	the	first	page	of	the	PDF	file.		The
default	value	is	*ALL.
BACKIMAGEPOS	:	Optional
This	parameter	applies	only	when	a	background	image	file	is	specified	using
the	BACKIMAGEPATH	parameter.		It	specifies	the	size	and	position	of	the
image	on	each	affected	page	of	the	PDF	file.		It	must	be	specified	as	four
numeric	values	separated	by	commas.		The	four	values	specify	respectively
the	x	(left)	and	y	(top)	coordinates	and	the	width	and	height	of	the	image.	
All	values	are	specified	in	points	–	each	point	is	1/72	inches.		If	not
specified,	the	default	values	1,	1,	80,	80	are	used.
MOREATTRIBUTES	:	Optional
This	parameter	is	provided	for	advanced	use.		It	allows	additional	PDF
document	attributes	to	be	specified	using	the	syntax:

keyword(value)	{keyword(value)	...}
Refer	to	LANSA	Integrator	documentation	for	the	CREATE	service
command	of	the	PDFSpoolFileService	for	details	of	the	keywords	and	values
that	may	be	specified.

OUTPUT	Parameters:
There	are	no	output	parameters.

SPLF_TO_TEXT
This	activity	will	convert	the	spooled	file	identified	by	the	job	and	spool	file
input	parameters	into	a	text	document.		The	text	document	is	written	to	the	file
name	and	path	specified	by	the	DOCPATH	parameter.		The	FORMAT	parameter
allows	you	to	choose	the	format	that	is	applied	to	the	spooled	file	data	when	it	is
written	to	the	text	document.
Amongst	other	things,	you	may	be	able	to	use	this	activity	to	mine	data
contained	in	spooled	files	by	combining	the	activity	with	a	Transformation	Map
that	parses	and	extracts	information	from	the	generated	text	document	using	the
FlexText	component	of	the	mapping	tool.
The	implementation	of	this	activity	uses	the	IBM	i	CPYSPLF	command.		Some
spooled	files,	for	example	spooled	files	that	contain	only	advanced	function
printing	data	stream	(AFPDS)	data	cannot	be	processed	by	the	CPYSPLF
command.		Refer	to	IBM	i	documentation	of	the	CPYSPLF	command	for	more
information.
INPUT	Parameters:

DOCPATH	:	Required
This	parameter	specifies	the	path	and	file	name	for	the	text	document	that
will	be	generated	by	this	activity.		If	the	specified	file	already	exists,	its
contents	will	be	replaced.
JOBNAME	:	Required
This	parameter	specifies	the	name	of	the	job	that	owns	the	spool	file	from
which	the	text	document	is	to	be	created.
JOBUSER	:	Required
This	parameter	specifies	the	user	profile	name	of	the	job	that	owns	the	spool
file	from	which	the	text	document	is	to	be	created.
JOBNUMBER	:	Required
This	parameter	specifies	the	job	number	of	the	job	that	owns	the	spool	file
from	which	the	text	document	is	to	be	created.
SPLFNAME	:	Required
This	parameter	specifies	the	name	of	the	spool	file	from	which	the	text
document	is	to	be	created.
SPLFNUMBER	:	Optional
This	parameter	specifies	the	number	of	the	spool	file	from	which	the	text

document	is	to	be	created.		It	is	required	only	if	there	is	more	than	one	spool
file	of	the	name	specified	by	the	SPLFNAME	parameter	for	the	job
specified.		If	not	specified,	a	default	special	value	of	*ONLY	is	used.		You
may	specify	special	values	*ONLY	or	*LAST.		Otherwise	specify	the
number	of	the	job's	spooled	file	that	is	to	be	converted.
DOCCCSID	:	Optional
This	parameter	allows	you	to	specify	the	IBM	i	CCSID	with	which	the
output	text	document	is	created.
If	the	parameter	is	not	specified,	a	default	of	*DEFAULT	is	assumed,	which
instructs	the	activity	to	create	the	output	text	document	using	the	CCSID	for
the	job	in	which	the	activity	is	executing.		(You	can	also	specify	the	special
value	of	*JOB	which	has	the	same	effect.)
Otherwise,	you	should	specify	the	numeric	CCSID	value	required.		For
example,	a	value	of	1208	means	UTF-8.		Refer	to	IBM	i	documentation	for	a
complete	list	and	description	of	the	available	CCSIDs.
NOTE:		the	assumed	or	explicit	CCSID	is	applied	only	when	the	specified
output	file	does	NOT	already	exist.		If	the	specified	output	file	already	exists
and	is	being	replaced	or	appended-to	by	this	activity,	then	its	CCSID	will	not
be	changed.
FORMAT	:	Optional
This	parameter	allows	you	to	choose	the	format	that	is	applied	to	the	spooled
file	data	when	it	is	written	to	the	text	document.		You	may	specify	one	value
from	each	of	the	following	three	groups	(each	value	should	be	separated	by
at	least	one	space):
1.		*SPOOLDATA	|	*PRTCTL	|	*PAGELINE
2.		*FIXED	|	*CSV
3.		*BLANKLINES	|	*NOBLANKLINES	|	*CONDENSEBLANKLINES
You	must	specify	quote	marks	around	the	value(s)	to	distinguish	them	from
built-in	variable	names.
The	options	in	each	of	the	three	groups	are	described	further	below.		If	you
specify	more	than	one	value	from	each	group,	the	last-specified	value	is
effective.		If	you	do	not	specify	this	parameter,	the	default	values	are
'*SPOOLDATA	*FIXED	*BLANKLINES'.
1.		*SPOOLDATA	|	*PRTCTL	|	*PAGELINE
These	values	specify	what	data	items	to	include	in	each	output	line.		The
default	is	*SPOOLDATA,	which	includes	only	the	spooled	file	line	contents.	

Specify	*PRTCTL	to	include	skip	before	and	space	before	values	before
each	spooled	file	line	contents.		Specify	*PAGELINE	to	include	page
number	and	line	number	values	before	each	spooled	file	line	contents.		Note
that	the	page	and	line	numbers	are	calculated.		In	some	cases,	they	may	not
match	exactly	the	page	and	line	numbers	in	the	original	spooled	file.
2.		*FIXED	|	*CSV
These	values	specify	how	the	data	items	on	each	output	line	are	formatted.
The	default	is	*FIXED,	which	includes	the	data	items	in	fixed-length
columns.
For	FORMAT('*PRTCTL	*FIXED'),	the	skip	before	value	will	occupy
columns	1-3,	the	space	before	value	will	occupy	column	5	and	the	spooled
file	line	contents	will	begin	in	column	7.
For	FORMAT('*PAGELINE	*FIXED'),	the	page	number	value	will	occupy
columns	1-7,	the	line	number	value	will	occupy	columns	9-11	and	the
spooled	file	line	contents	will	begin	in	column	13.
Specify	*CSV	to	have	the	data	items	output	in	comma-separated	form
instead.
For	FORMAT('*SPOOLDATA'),	the	*FIXED	or	*CSV	formatting	values	do
not	apply	and	have	no	effect.
3.		*BLANKLINES	|	*NOBLANKLINES	|	*CONDENSEBLANKLINES
These	values	specify	whether	blanks	lines	are	output	to	the	text	document.	
The	default	is	*BLANKLINES	which	will	include	all	blank	lines	that	occur
in	the	spooled	file	up	to	the	last	non-blank	line	on	each	page.
Specify	*NOBLANKLINES	to	have	blank	lines	suppressed	altogether.		Note
that	this	option	does	not	change	the	generated	page	and	line	number	values
written	for	the	non-blank	lines	(that	is	to	say,	the	blank	lines	are	still	counted
for	this	purpose).
Specify	*CONDENSEBLANKLINES	to	have	only	the	first	in	each	group	of
consecutive	blank	lines	written	to	the	text	document.		Again,	this	option	does
not	change	the	generated	page	and	line	number	values	written	for	the	non-
blank	lines	(that	is	to	say,	the	blank	lines	are	still	counted	for	this	purpose).

OUTPUT	Parameters:
There	are	no	output	parameters.

SQL_CALL
This	activity	executes	a	stored	procedure	on	the	target	database.		Use	this
activity	when	your	stored	procedure	does	not	return	a	result	set.		It	may,
optionally	return	a	single	result	that	can	be	received	in	the	SQLRESULT	output
parameter	of	this	activity.
If	your	stored	procedure	returns	a	result	set,	then	you	should	use	the
SQL_CALLQUERY	or	SQL_CALLQRYCSV	activity	instead.
This	activity	supports	the	use	of	SQL	parameter	markers	(usually	designated	by
a	question	mark)	in	the	SQL	statement.		If	your	solution	uses	this	capability,	you
must	first	execute	one	of	the	following	activities	to	supply	the	parameter
value(s):

SQL_PARAMS Set	parameter	values	for	SQL	operation

SQL_PARAMSCSV Set	parameter	values	for	SQL	operation	from	CSV

	

	
Note	that	only	input	(IN)	parameters	for	an	SQL	stored	procedure	are	presently
supported.		You	cannot	pass	or	receive	OUT	and	INOUT	stored	procedure	call
parameters.
For	more	information	about	the	SQL	database	activities,	refer	to	the	description
of	the	SQL_CONNECT	activity.		For	a	list	of	supplied	working	(*)	examples
using	the	SQL	database	activities,	refer	to:

Example	Processing	Sequences	using	the	SQL	database	activities
INPUT	Parameters:

SQLHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
SQL	connection	upon	which	this	activity	should	operate.		The	connection
handle	value	is	returned	by	the	SQL_CONNECT	activity.
SQLCALL	:	Required
This	parameter	must	specify	the	name	of	the	stored	procedure	(which	may	be
qualified	with	a	library	or	schema	name)	along	with	any	parameters	(or
parameter	markers)	that	it	requires.		The	CALL	keyword	should	not	be
included.		It	should	usually	be	in	the	form:

<library	or	schema>.procedure(<parameters>)

OR

<library	or	schema>/procedure(<parameters>)
(depending	on	the	syntax	used	by	your	database	and	JDBC	driver.)
The	SQL	statement	may	make	use	of	parameter	markers	(usually	designated
by	a	question	mark).		You	must	use	either	the	SQL_PARAMS	or	the
SQL_PARAMSCSV	activity	before	this	activity,	to	supply	the	parameter
values.		Note	that	the	SQL_CALL	activity	will	make	use	of	only	one	set	(or
"row")	of	parameter	values.
The	following	is	an	example	that	might	be	specified	in	this	parameter	to	call
the	SQL	stored	procedure	DXTUTSQL01,	passing	it	two	parameter	values
that	have	previously	been	supplied	using	either	the	SQL_PARAMS	or	the
SQL_PARAMSCSV	activity:
DXTUTSQL01(?,	?)
SQLRETURNING	:	Optional
This	parameter	specifies	the	expected	data	type	of	the	return	value,	if	any,
from	the	stored	procedure.		You	can	choose	from	the	following	values:
*NONE
*CHAR
*STRING
*SMALLINT
*INTEGER
*FLOAT
*DOUBLE
*DECIMAL
*NUMERIC
However,	the	datatypes	possible	depend	on	what	your	target	database	and
JDBC	driver	can	support.		And,	in	any	particular	instance,	of	course,	it
depends	on	the	definition	of	the	stored	procedure.
The	default	value	is	*INTEGER.		If	your	database	is	on	an	IBM	i	server,
note	that	presently	the	IBM	i	database	only	supports	a	data	type	of	integer	for
values	returned	from	a	stored	procedure.		If	your	stored	procedure	does	not
return	a	value,	then	you	can	specify	*NONE	to	signify	this.

OUTPUT	Parameters:

SQLRESULT	:
If	successful,	this	output	parameter	will	contain	the	return	value,	if	any,	from
the	stored	procedure.

SQL_CALLQRYCSV
This	activity	executes	a	stored	procedure	on	the	target	database,	receives	a	result
set	and	writes	the	result	set	directly	into	the	specified	file	in	CSV	format.
If	your	stored	procedure	does	not	return	a	result	set,	then	you	should	use	the
SQL_CALL	activity	instead.		Refer	also	to	the	description	of	the
SQL_CALLQUERY	activity	for	an	alternate	way	to	receive	the	result	set	from	a
stored	procedure	call.
This	activity	supports	the	use	of	SQL	parameter	markers	(usually	designated	by
a	question	mark)	in	the	SQL	statement.		If	your	solution	uses	this	capability,	you
must	first	execute	one	of	the	following	activities	to	supply	the	parameter
value(s):

SQL_PARAMS Set	parameter	values	for	SQL	operation

SQL_PARAMSCSV Set	parameter	values	for	SQL	operation	from	CSV

	

	
Note	that	only	input	(IN)	parameters	for	an	SQL	stored	procedure	are	presently
supported.		You	cannot	pass	or	receive	OUT	and	INOUT	stored	procedure	call
parameters.
For	more	information	about	the	SQL	database	activities,	refer	to	the	description
of	the	SQL_CONNECT	activity.		For	a	list	of	supplied	working	(*)	examples
using	the	SQL	database	activities,	refer	to:

Example	Processing	Sequences	using	the	SQL	database	activities
INPUT	Parameters:

SQLHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
SQL	connection	upon	which	this	activity	should	operate.		The	connection
handle	value	is	returned	by	the	SQL_CONNECT	activity.
SQLCALL	:	Required
This	parameter	must	specify	the	name	of	the	stored	procedure	(which	may	be
qualified	with	a	library	or	schema	name)	along	with	any	parameters	(or
parameter	markers)	that	it	requires.		The	CALL	keyword	should	not	be
included.		It	should	usually	be	in	the	form:

<library	or	schema>.procedure(<parameters>)

OR

<library	or	schema>/procedure(<parameters>)
(depending	on	the	syntax	used	by	your	database	and	JDBC	driver.)
The	SQL	statement	may	make	use	of	parameter	markers	(usually	designated
by	a	question	mark).		You	must	use	either	the	SQL_PARAMS	or	the
SQL_PARAMSCSV	activity	before	this	activity,	to	supply	the	parameter
values.		Note	that	the	SQL_CALLQRYCSV	activity	will	make	use	of	only
one	set	(or	"row")	of	parameter	values.
The	following	is	an	example	that	might	be	specified	in	this	parameter	to	call
the	SQL	stored	procedure	DXTUTSQL01,	passing	it	two	parameter	values
that	have	previously	been	supplied	using	either	the	SQL_PARAMS	or	the
SQL_PARAMSCSV	activity:
DXTUTSQL01(?,	?)
SQLFILEPATH	:	Required
This	parameter	must	specify	the	path	and	file	name	of	the	CSV	file	to	be
created	or	appended	by	this	activity.		If	the	file	already	exists	(and	NO	is
specified	or	assumed	for	the	SQLAPPEND	parameter),	then	the	file	will	be
overwritten	by	this	activity.
SQLAPPEND	:	Optional
If	the	specified	output	file	already	exists,	then	you	can	specify	YES	for	this
parameter	to	cause	the	activity	to	append	the	new	results	to	the	end	of	the
existing	contents	of	the	file.		Otherwise	the	file	is	replaced	with	the	new
contents.		If	the	specified	output	file	does	not	already	exist,	then	this
parameter	is	ignored.
SQLCCSID	:	Optional
This	parameter	applies	only	on	IBM	i	servers.		It	allows	you	to	specify	the
IBM	i	CCSID	with	which	the	output	CSV	file	is	created.
If	the	parameter	is	not	specified,	a	default	of	*DEFAULT	is	assumed,	which
instructs	the	activity	to	create	the	output	text	file	using	the	CCSID	for	the	job
in	which	the	activity	is	executing.		(You	can	also	specify	the	special	value	of
*JOB	which	has	the	same	effect.)
Otherwise,	you	should	specify	the	numeric	CCSID	value	required.		For
example,	a	value	of	1208	means	UTF-8.		Refer	to	IBM	i	documentation	for	a

complete	list	and	description	of	the	available	CCSIDs.
NOTE:		the	assumed	or	explicit	CCSID	is	applied	only	when	the	specified
output	file	does	NOT	already	exist.		If	the	specified	output	file	already	exists
and	is	being	replaced	or	appended-to	by	this	activity,	then	its	CCSID	will	not
be	changed.
SQLCOLUMNS	:	Optional
This	parameter	must	specify	the	number	of	columns	from	the	expected	result
set	that	are	to	be	written	to	the	CSV	file,	up	to	a	maximum	of	25.		This,	of
course,	will	depend	on	the	stored	procedure	that	you	are	calling.
You	may	specify	fewer	columns	than	returned	from	your	stored	procedure
call.		However,	if	you	specify	more,	then	a	run-time	error	will	occur,	for
example

ERROR	–	Descriptor	index	not	valid,	or
ERROR	–	The	index	10	is	out	of	range
COLSEPARATOR	:	Optional
You	may	specify	the	separator	character	that	is	used	to	separate	the	column
values	in	each	line	of	the	CSV	output	file.		The	most	common	form	of	CSV
uses	a	comma	as	the	separator,	and	that	is	the	default	value	for	this	parameter
if	you	do	not	specify	it.
If	a	non-comma	separator	is	specified,	it	should	be	1	character	in	length	and
can	consist	of	any	character.
COLHEADINGS	:	Optional
If	you	wish	the	first	row	of	the	output	CSV	file	to	contain	comma-separated
column	headings,	you	may	specify	the	heading	line	in	this	parameter.		Note
you	should	specify	the	entire	string,	including	the	separators,	as	a	single
value	–	for	example:
Heading1,Heading2,Heading3
If	you	do	not	specify	a	value	for	this	parameter,	then	no	heading	row	will	be
written	to	the	CSV	file.		If	you	specified	YES	for	the	SQLAPPEND
parameter,	then	the	COLHEADINGS	value	is	not	used.
SQLMAXROWS	:	Optional
This	parameter	may	specify	a	maximum	number	of	rows	to	be	returned.	
This	guards	against	the	possibility	of	stored	procedure	calls	that	select	much
more	data	than	was	intended.
If	not	specified,	a	default	value	of	100	(one	hundred)	is	used.		Remember

that	the	SQL	database	activities	are	not	intended	and	not	usually	suitable	for
high-throughput,	high-volume	database	operations.		If	you	expect	that	your
stored	procedure	will	return	a	large	number	of	records,	then	you	should
possibly	consider	an	alternate	implementation,	such	as	using	a
Transformation	Map.

OUTPUT	Parameters:
SQLROWS	:
Upon	successful	completion,	this	parameter	will	contain	the	actual	number
of	rows	returned	by	the	stored	procedure	call	and	written	to	the	CSV	file.

SQL_CALLQUERY
This	activity	executes	a	stored	procedure	on	the	target	database.		Use	this
activity	when	your	stored	procedure	returns	a	result	set.
If	your	stored	procedure	does	not	return	a	result	set,	then	you	should	use	the
SQL_CALL	activity	instead.		Refer	also	to	the	description	of	the
SQL_CALLQRYCSV	activity	for	an	alternate	way	to	receive	the	result	set	from
a	stored	procedure	call.
This	activity	supports	the	use	of	SQL	parameter	markers	(usually	designated	by
a	question	mark)	in	the	SQL	statement.		If	your	solution	uses	this	capability,	you
must	first	execute	one	of	the	following	activities	to	supply	the	parameter
value(s):

SQL_PARAMS Set	parameter	values	for	SQL	operation

SQL_PARAMSCSV Set	parameter	values	for	SQL	operation	from	CSV

	

	
Note	that	only	input	(IN)	parameters	for	an	SQL	stored	procedure	are	presently
supported.		You	cannot	pass	or	receive	OUT	and	INOUT	stored	procedure	call
parameters.
For	more	information	about	the	SQL	database	activities,	refer	to	the	description
of	the	SQL_CONNECT	activity.		For	a	list	of	supplied	working	(*)	examples
using	the	SQL	database	activities,	refer	to:

Example	Processing	Sequences	using	the	SQL	database	activities
INPUT	Parameters:

SQLHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
SQL	connection	upon	which	this	activity	should	operate.		The	connection
handle	value	is	returned	by	the	SQL_CONNECT	activity.
SQLCALL	:	Required
This	parameter	must	specify	the	name	of	the	stored	procedure	(which	may	be
qualified	with	a	library	or	schema	name)	along	with	any	parameters	(or
parameter	markers)	that	it	requires.		The	CALL	keyword	should	not	be
included.		It	should	usually	be	in	the	form:

<library	or	schema>.procedure(<parameters>)

OR

<library	or	schema>/procedure(<parameters>)
(depending	on	the	syntax	used	by	your	database	and	JDBC	driver.)
The	SQL	statement	may	make	use	of	parameter	markers	(usually	designated
by	a	question	mark).		You	must	use	either	the	SQL_PARAMS	or	the
SQL_PARAMSCSV	activity	before	this	activity,	to	supply	the	parameter
values.		Note	that	the	SQL_CALLQUERY	activity	will	make	use	of	only	one
set	(or	"row")	of	parameter	values.
The	following	is	an	example	that	might	be	specified	in	this	parameter	to	call
the	SQL	stored	procedure	DXTUTSQL01,	passing	it	two	parameter	values
that	have	previously	been	supplied	using	either	the	SQL_PARAMS	or	the
SQL_PARAMSCSV	activity:
DXTUTSQL01(?,	?)
SQLMAXROWS	:	Optional
This	parameter	may	specify	a	maximum	number	of	rows	to	be	returned.	
This	guards	against	the	possibility	of	stored	procedure	calls	that	select	much
more	data	than	was	intended.
If	not	specified,	a	default	value	of	100	(one	hundred)	is	used.		Remember
that	the	SQL	database	activities	are	not	intended	and	not	usually	suitable	for
high-throughput,	high-volume	database	operations.		If	you	expect	that	your
stored	procedure	will	return	a	large	number	of	records,	then	you	should
possibly	consider	an	alternate	implementation,	such	as	using	a
Transformation	Map.

OUTPUT	Parameters:
SQLROWS	:
Upon	successful	completion,	this	parameter	will	contain	the	actual	number
of	rows	returned	by	the	stored	procedure	call.
SQLCOLUMN1
SQLCOLUMN2
…
SQLCOLUMN25
These	output	lists	will	contain	a	list	of	the	values	for	the	corresponding
column	for	each	row	returned	by	the	stored	procedure	call.

You	should	specify	the	name	of	a	variable	list	that	will	contain	the	values	for
each	column	returned	by	your	stored	procedure,	up	to	a	maximum	of	25.
You	may	specify	fewer	output	lists	than	returned	from	your	stored	procedure
call.		However,	if	you	specify	more,	then	a	run-time	error	will	occur,	for
example

ERROR	–	Descriptor	index	not	valid,	or
ERROR	–	The	index	10	is	out	of	range
	

SQL_COMMIT
This	activity	commits	a	database	transaction	performed	by	one	or	more	prior
SQL	database	activities	such	as	SQL_UPDATE.
For	more	information	about	the	SQL	database	activities,	refer	to	the	description
of	the	SQL_CONNECT	activity.		For	a	list	of	supplied	working	(*)	examples
using	the	SQL	database	activities,	refer	to:

Example	Processing	Sequences	using	the	SQL	database	activities
INPUT	Parameters:

SQLHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
SQL	connection	upon	which	this	activity	should	operate.		The	connection
handle	value	is	returned	by	the	SQL_CONNECT	activity.

OUTPUT	Parameters:
There	are	no	output	parameters.

SQL_CONNECT
This	activity	establishes	a	connection	to	an	SQL	database	and	returns	a	"handle"
that	can	be	used	to	identify	this	database	connection	for	use	in	other	SQL
database	activities.
Typically	in	LANSA	Composer,	most	database	activity	is	accomplished	through
the	use	of	Transformation	Maps.		However,	this	activity	along	with	its	related
SQL	database	activities	provides	another	option	for	performing	limited	database
query	and	update	operations	on	an	SQL	database,	as	well	as	a	means	of
invoking	SQL	stored	procedures	in	the	database.
The	SQL_CONNECT	activity	establishes	the	database	connection	using	a
database	configuration	whose	name	you	provide	in	the	DBCONFIG	parameter.	
The	database	configuration	contains	the	implementation-specific	database
connection	information	and	user	credentials.		Because	the	connections	use
JDBC,	like	transformation	maps,	the	SQL	activities	are	capable	of	addressing
any	compatible	database	that	is	network-addressable	from	the	server	system
running	LANSA	Composer,	if	a	suitable	JDBC	driver	is	available.		This	means
that	a	LANSA	Composer	system	running	on	an	IBM	i	server,	for	example,	could
address	an	SQL	server	database	running	on	a	Windows	server	in	the	same
network,	or	vice-versa.
More	than	one	SQL	database	connection	may	be	active	at	one	time	in	a	single
Processing	Sequence.
The	SQL	database	activities	are	not	intended	and	not	usually	suitable	for	high-
throughput,	high-volume	database	operations.		Rather	they	provide	a	simple
means	to	complete	a	business	process	integration	solution	that	may	not
otherwise	have	been	possible,	with	some	simple,	low-volume	database	access
and/or	maintenance.

NOTE:		LANSA	Composer	does	not	guarantee	that	any	form	of	SQL
statement	that	is	valid	for	your	target	database	can	successfully	be
executed	through	the	SQL	database	activities,	nor	that	every	form	of
SQL	stored	procedure	can	successfully	be	executed.

Nor	will	it	be	possible	to	successfully	address	every	possible	data	type
in	your	database.		Since	processing	sequence	variables	that	might	be
used	to	pass	or	receive	data	to	the	SQL	database	are	untyped,	not	all
conversions	can	be	successful	or	yield	useful	results.		It	is	your

responsibility	to	ensure	that	any	data	passed	through	the	SQL	database
suite	of	activities	is	in	a	form	that	can	be	accepted	and	processed	by
both	the	JDBC	driver	and	the	target	database.

It	is	recommended	that	you	keep	your	SQL	operations	through	these
activities	as	simple	as	possible.

Example	Processing	Sequences	using	the	SQL	database	activities
Refer	to	the	following	example	processing	sequences	supplied	with	LANSA
Composer	for	working	(*)	examples	that	use	the	SQL	database	activities.		(*)	
Note	that	some	setup	will	be	required	on	your	system	to	enable	these	examples
to	execute	successfully.		Refer	to	the	notes	accompanying	the	example
processing	sequences	for	details:

EXAMPLE_SQL01:	Example	of	using	the	SQL_QUERY	activity
EXAMPLE_SQL02:	Example	of	using	the	SQL_UPDATE	activity
EXAMPLE_SQL03:	Example	of	using	the	SQL_CALLQRYCSV	activity

Related	SQL	database	activities
The	SQL_CONNECT	activity	returns	a	"handle"	that	can	then	be	passed	on	to
the	other	SQL	database	activities	to	accomplish	a	range	of	database	tasks.		The
full	suite	of	SQL	database	activities	are	briefly	described	below:

Use	the	following	activities	to	establish	or	disconnect	an	SQL	database
connection:

SQL_CONNECT Connect	to	database	using	SQL

SQL_DISCONNECT Disconnect	from	database	using	SQL

	

Use	the	following	activities	to	query	the	database:

SQL_QUERY Query	database	using	SQL

SQL_QUERYTOCSV Query	database	using	SQL	to	output	CSV	file

	

Use	the	following	activities	to	perfom	insert,	update	and	delete	operations	in
the	database:

SQL_UPDATE Update	database	using	SQL

	

Use	the	following	activities	to	execute	an	SQL	stored	procedure	in	the
database:

SQL_CALL Execute	an	SQL	stored	procedure

SQL_CALLQRYCSV Query	database	using	an	SQL	stored	procedure	to
CSV

SQL_CALLQUERY Query	database	using	an	SQL	stored	procedure

	

Use	the	following	activities	to	implement	transaction	control	relating	to	any
database	insert,	update	or	delete	operations	you	have	performed:

SQL_COMMIT Commit	a	database	transaction	using	SQL

SQL_ROLLBACK Rollback	a	database	transaction	using	SQL

	

Use	the	following	activities	to	set	the	parameter	values	for	an	SQL
operation:

SQL_PARAMS Set	parameter	values	for	SQL	operation

SQL_PARAMSCSV Set	parameter	values	for	SQL	operation	from	CSV

	

	

Eligibility	for	Processing	Sequence	Restart
When	a	LANSA	Composer	Processing	Sequence	run	ends	in	error,	it	is	often

possible	to	restart	it	from	the	point	of	failure—once	the	cause	of	the	failure	has
been	corrected.	This	is	a	very	powerful	feature	of	LANSA	Composer.
For	a	LANSA	Composer	solution	using	the	SQL	database	activities,	processing
sequence	restart	is	supported,	but	needs	to	be	heavily	qualified	by	exactly	what
database	operations	are	being	performed.
LANSA	Composer	restart	support	remembers	and	can	re-establish	a	previously-
established	SQL	connection,	but	whether	a	particular	process	can	effectively	be
restarted	depends	on	the	types	of	database	operations	that	are	being	performed
and	in	particular	whether	they	are	dependent	on	earlier	SQL	database	operations
that	may	have	completed	before	the	restart.
For	example,	a	process	that	performs	database	updates	under	transaction	control
may	not	be	restartable	in	practice,	depending	on	where	the	failure	occurs.		On
the	other	hand	a	solution	that	exclusively	performs	SQL	query	operations	will
usually	be	capable	of	being	successfully	restarted.
Therefore	this	decision	is	left	to	the	solution	designer	by	means	of	the
RESTARTELIGIBLE	parameter	to	the	SQL_CONNECT	activity.
If	your	solution	uses	the	SQL	database	activities	in	such	a	way	that	restart
eligibility	cannot	be	assured	for	the	life	of	the	database	connection,	then	you
should	specify	NO	for	this	parameter.
In	any	event,	to	maximize	the	benefit	of	LANSA	Composer's	restart	capability,
you	should	complete	your	SQL	database	operations	and	execute	the
SQL_DISCONNECT	activity	at	the	earliest	opportunity.	Once	the	SQL	database
connection	has	been	closed,	normal	restart	eligibility	resumes.
INPUT	Parameters:

DBCONFIG	:	Required
This	parameter	must	specify	the	name	of	a	2.3.8	Database	Configuration	that
specifies	the	details	necessary	to	establish	the	database	connection.
RESTARTELIGIBLE	:	Optional
This	parameter	specifies	whether	the	LANSA	Composer	processing
sequence	that	contains	this	activity	should	remain	eligible	for	restart	while
the	SQL	database	connection	remains	open.		The	default	value	is	YES.
If	your	solution	uses	the	SQL	database	activities	in	such	a	way	that	restart
eligibility	cannot	be	assured	for	the	life	of	the	database	connection,	then	you
should	specify	NO	for	this	parameter.
For	more	information	refer	to	Eligibility	for	Processing	Sequence	Restart
above.

OUTPUT	Parameters:
SQLHANDLE	:
If	successful,	the	value	of	this	output	parameter	identifies	the	SQL
connection	established	by	this	instance	of	the	SQL_CONNECT	activity.		The
same	value	must	be	specified	as	the	SQLHANDLE	input	parameter	value	for
all	subsequent	SQL	database	activities	that	are	to	operate	on	the	same	SQL
database	connection.

SQL_DISCONNECT
This	activity	closes	an	SQL	database	connection	previously	established	using
the	SQL_CONNECT	activity.
Once	the	database	connection	has	been	closed,	the	connection	handle	value	is
no	longer	valid	and	cannot	be	used	again	in	further	SQL	database	activities.
If	you	do	not	execute	the	SQL_DISCONNECT	activity	for	an	open	SQL
database	connection	before	the	end	of	your	processing	sequence,	LANSA
Composer	will	automatically	disconnect	it.		However,	it	is	recommended	that
you	explicitly	disconnect	using	this	activity	as	soon	as	the	SQL	database
connection	is	no	longer	required.		For	more	information	on	this,	refer	to:

Eligibility	for	Processing	Sequence	Restart
For	more	information	about	the	SQL	database	activities,	refer	to	the	description
of	the	SQL_CONNECT	activity.		For	a	list	of	supplied	working	(*)	examples
using	the	SQL	database	activities,	refer	to:

Example	Processing	Sequences	using	the	SQL	database	activities
INPUT	Parameters:

SQLHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
SQL	connection	upon	which	this	activity	should	operate.		The	connection
handle	value	is	returned	by	the	SQL_CONNECT	activity.

OUTPUT	Parameters:
There	are	no	output	parameters.

SQL_PARAMS
This	activity	sets	parameter	values	to	be	used	subsequently	by	one	of	the
following	SQL	database	activities:

SQL_CALL Execute	an	SQL	stored	procedure

SQL_CALLQRYCSV Query	database	using	an	SQL	stored	procedure	to
CSV

SQL_CALLQUERY Query	database	using	an	SQL	stored	procedure

SQL_UPDATE Update	database	using	SQL

	

	
The	parameter	values	are	used	in	the	SQL	statement	used	by	one	of	the	above
activities	in	place	of	any	parameter	markers	(usually	designated	by	a	question
mark)	that	are	specified	in	the	SQL	statement.
Note	that	any	parameter	values	that	have	been	set	will	be	cleared	after	executing
any	of	the	above	activities	or	the	SQL_QUERY	or	SQL_QUERYTOCSV
activities.		If	you	need	to	use	the	same	set	of	parameters	more	than	once,	then
you	will	need	to	repeat	this	activity	before	each	activity	that	uses	the
parameters.
Refer	also	to	the	description	of	the	SQL_PARAMSCSV	activity,	which
performs	a	similar	function	but	permits	the	parameter	values	to	be	supplied
from	a	CSV	file.
For	more	information	about	the	SQL	database	activities,	refer	to	the	description
of	the	SQL_CONNECT	activity.
INPUT	Parameters:

SQLHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
SQL	connection	upon	which	this	activity	should	operate.		The	connection
handle	value	is	returned	by	the	SQL_CONNECT	activity.
SQLPARAM1SQLPARAM2
…
SQLPARAM25:	Optional

Use	these	parameters	to	supply	one	or	more	variable	lists,	up	to	a	maximum
of	25,	each	"row"	of	which	supplies	one	set	of	the	parameter	values	to	be
used.		Each	of	the	lists	supplied	should	have	the	same	number	of	entries.
A	subsequent	SQL_CALL,	SQL_CALLQRYCSV	or	SQL_CALLQUERY
will	use	only	one	set	(or	"row)	of	parameter	values.
In	the	case	of	a	subsequent	SQL_UPDATE	activity,	the	requested	operation
(such	as	insert,	update	or	delete)	specified	for	the	activity	will	be	performed
once	for	each	set	of	entries	(or	"row")	of	parameter	values.

OUTPUT	Parameters:
There	are	no	output	parameters.

SQL_PARAMSCSV
This	activity	sets	parameter	values	to	be	used	subsequently	by	one	of	the
following	SQL	database	activities	,	using	values	from	a	specified	CSV	file:

SQL_CALL Execute	an	SQL	stored	procedure

SQL_CALLQRYCSV Query	database	using	an	SQL	stored	procedure	to
CSV

SQL_CALLQUERY Query	database	using	an	SQL	stored	procedure

SQL_UPDATE Update	database	using	SQL

	

	
The	parameter	values	are	used	in	the	SQL	statement	used	by	one	of	the	above
activities	in	place	of	any	parameter	markers	(usually	designated	by	a	question
mark)	that	are	specified	in	the	SQL	statement.
Note	that	any	parameter	values	that	have	been	set	will	be	cleared	after	executing
any	of	the	above	activities	or	the	SQL_QUERY	or	SQL_QUERYTOCSV
activities.		If	you	need	to	use	the	same	set	of	parameters	more	than	once,	then
you	will	need	to	repeat	this	activity	before	each	activity	that	uses	the
parameters.
Refer	also	to	the	description	of	the	SQL_PARAMS	activity,	which	performs	a
similar	function	but	using	processing	sequence	variables	instead	of	a	CSV	file.
For	more	information	about	the	SQL	database	activities,	refer	to	the	description
of	the	SQL_CONNECT	activity.		For	a	list	of	supplied	working	(*)	examples
using	the	SQL	database	activities,	refer	to:

Example	Processing	Sequences	using	the	SQL	database	activities
INPUT	Parameters:

SQLHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
SQL	connection	upon	which	this	activity	should	operate.		The	connection
handle	value	is	returned	by	the	SQL_CONNECT	activity.
SQLFILEPATH	:	Required
This	parameter	must	specify	the	path	and	file	name	of	the	CSV	file

containing	the	values	to	be	used.		The	CSV	file	should	contain	one	or	more
columns,	up	to	a	maximum	of	25,	each	"row"	of	which	supplies	one	set	of
the	parameter	values	to	be	used.
A	subsequent	SQL_CALL,	SQL_CALLQRYCSV	or	SQL_CALLQUERY
will	use	only	one	set	(or	"row)	of	parameter	values.
In	the	case	of	a	subsequent	SQL_UPDATE	activity,	the	requested	operation
(such	as	insert,	update	or	delete)	specified	for	the	activity	will	be	performed
once	for	each	set	of	entries	(or	"row")	of	parameter	values.
COLSEPARATOR	:	Optional
You	may	specify	the	separator	character	that	is	used	to	separate	the	column
values	in	each	line	of	the	CSV	file.		The	most	common	form	of	CSV	uses	a
comma	as	the	separator,	and	that	is	the	default	value	for	this	parameter	if	you
do	not	specify	it.
If	a	non-comma	separator	is	specified,	it	should	be	1	character	in	length	and
can	consist	of	any	character.
HEADINGSROW	:	Optional
If	the	first	row	of	the	CSV	file	contains	column	headings,	you	should	specify
YES	for	this	parameter.		If	this	parameter	specifies	YES,	then	the	activity
will	ignore	the	first	row	read.		The	default	value	is	NO,	which	will	cause	the
activity	to	process	every	row	contained	in	the	CSV	file.

OUTPUT	Parameters:
There	are	no	output	parameters.

SQL_QUERY
This	activity	queries	a	database	using	an	SQL	SELECT	statement	and	receives
the	results	into	processing	sequence	variable	lists.
This	activity	does	not	support	the	use	of	SQL	parameter	markers	(usually
designated	by	a	question	mark)	in	the	SQL	statement.		If	you	need	the	SQL
statement	to	be	variable	(for	example,	selection	values	in	a	WHERE	clause),
then	you	must	dynamically	construct	the	SQL	statement	to	include	the	variable
values	as	constants.
For	more	information	about	the	SQL	database	activities,	refer	to	the	description
of	the	SQL_CONNECT	activity.		For	a	list	of	supplied	working	(*)	examples
using	the	SQL	database	activities,	refer	to:

Example	Processing	Sequences	using	the	SQL	database	activities
INPUT	Parameters:

SQLHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
SQL	connection	upon	which	this	activity	should	operate.		The	connection
handle	value	is	returned	by	the	SQL_CONNECT	activity.
SQLQUERY	:	Required
This	parameter	must	specify	the	SQL	SELECT	statement	that	will	execute
on	the	target	database	for	the	query.		The	following	are	examples	of	SQL
SELECT	statements	that	might	be	specified	in	this	parameter:
select	distinct	bchnum	from	tutordh
select	bchnum,	ordnum,	cusnum,	orddat	from	tutordh
where	bchnum	=	'12345687890'
Since	processing	sequence	variables	are	restricted	to	256	characters,	a	single
value	may	not	be	sufficiently	large	to	hold	some	queries.		For	this	reason,
this	parameter	is	defined	as	a	variable	list.		This	means	that	you	can	split
your	long	SQL	statement	into	more	than	one	part	and	provide	the	parts	in
this	parameter	using	a	variable	list.		If	you	do	this,	then	the	SQL_QUERY
activity	will	re-assemble	them	into	a	single	statement	before	execution.
SQLMAXROWS	:	Optional
This	parameter	may	specify	a	maximum	number	of	rows	to	be	returned.	
This	guards	against	the	possibility	of	SELECT	statements	that	select	much
more	data	than	was	intended.

If	not	specified,	a	default	value	of	100	(one	hundred)	is	used.		Remember
that	the	SQL	database	activities	are	not	intended	and	not	usually	suitable	for
high-throughput,	high-volume	database	operations.		If	you	expect	that	your
query	will	return	a	large	number	of	records,	then	you	should	possibly
consider	an	alternate	implementation,	such	as	using	a	Transformation	Map.

OUTPUT	Parameters:
SQLROWS	:
Upon	successful	completion,	this	parameter	will	contain	the	actual	number
of	rows	returned	by	the	query.
SQLCOLUMN1
SQLCOLUMN2
…
SQLCOLUMN25
These	output	lists	will	contain	a	list	of	the	values	for	the	corresponding
column	for	each	row	selected	by	the	query.
You	should	specify	the	name	of	a	variable	list	that	will	contain	the	values	for
each	column	used	in	your	query,	up	to	a	maximum	of	25.
You	may	specify	fewer	output	lists	than	in	your	query,	however,	if	you
specify	more,	then	a	run-time	error	will	occur,	for	example

ERROR	–	Descriptor	index	not	valid,	or
ERROR	–	The	index	10	is	out	of	range
	

SQL_QUERYTOCSV
This	activity	queries	a	database	using	an	SQL	SELECT	statement	and	writes	the
results	in	CSV	format	into	the	specified	file.
This	activity	does	not	support	the	use	of	SQL	parameter	markers	(usually
designated	by	a	question	mark)	in	the	SQL	statement.		If	you	need	the	SQL
statement	to	be	variable	(for	example,	selection	values	in	a	WHERE	clause),
then	you	must	dynamically	construct	the	SQL	statement	to	include	the	variable
values	as	constants.
For	more	information	about	the	SQL	database	activities,	refer	to	the	description
of	the	SQL_CONNECT	activity.		For	a	list	of	supplied	working	(*)	examples
using	the	SQL	database	activities,	refer	to:

Example	Processing	Sequences	using	the	SQL	database	activities
INPUT	Parameters:

SQLHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
SQL	connection	upon	which	this	activity	should	operate.		The	connection
handle	value	is	returned	by	the	SQL_CONNECT	activity.
SQLQUERY	:	Required
This	parameter	must	specify	the	SQL	SELECT	statement	that	will	execute
on	the	target	database	for	the	query.		The	following	are	examples	of	SQL
SELECT	statements	that	might	be	specified	in	this	parameter:
select	distinct	bchnum	from	tutordh
select	bchnum,	ordnum,	cusnum,	orddat	from	tutordh
where	bchnum	=	'12345687890'
Since	processing	sequence	variables	are	restricted	to	256	characters,	a	single
value	may	not	be	sufficiently	large	to	hold	some	queries.		For	this	reason,
this	parameter	is	defined	as	a	variable	list.		This	means	that	you	can	split
your	long	SQL	statement	into	more	than	one	part	and	provide	the	parts	in
this	parameter	using	a	variable	list.		If	you	do	this,	then	the	SQL_QUERY
activity	will	re-assemble	them	into	a	single	statement	before	execution.
SQLFILEPATH	:	Required
This	parameter	must	specify	the	path	and	file	name	of	the	CSV	file	to	be
created	or	appended	by	this	activity.		If	the	file	already	exists	(and	NO	is
specified	or	assumed	for	the	SQLAPPEND	parameter),	then	the	file	will	be
overwritten	by	this	activity.

SQLAPPEND	:	Optional
If	the	specified	output	file	already	exists,	then	you	can	specify	YES	for	this
parameter	to	cause	the	activity	to	append	the	new	results	to	the	end	of	the
existing	contents	of	the	file.		Otherwise	the	file	is	replaced	with	the	new
contents.		If	the	specified	output	file	does	not	already	exist,	then	this
parameter	is	ignored.
SQLCCSID	:	Optional
This	parameter	applies	only	on	IBM	i	servers.		It	allows	you	to	specify	the
IBM	i	CCSID	with	which	the	output	CSV	file	is	created.
If	the	parameter	is	not	specified,	a	default	of	*DEFAULT	is	assumed,	which
instructs	the	activity	to	create	the	output	text	file	using	the	CCSID	for	the	job
in	which	the	activity	is	executing.		(You	can	also	specify	the	special	value	of
*JOB	which	has	the	same	effect.)
Otherwise,	you	should	specify	the	numeric	CCSID	value	required.		For
example,	a	value	of	1208	means	UTF-8.		Refer	to	IBM	i	documentation	for	a
complete	list	and	description	of	the	available	CCSIDs.
NOTE:		the	assumed	or	explicit	CCSID	is	applied	only	when	the	specified
output	file	does	NOT	already	exist.		If	the	specified	output	file	already	exists
and	is	being	replaced	or	appended-to	by	this	activity,	then	its	CCSID	will	not
be	changed.
SQLCOLUMNS	:	Optional
This	parameter	must	specify	the	number	of	columns	from	the	expected	result
set	that	are	to	be	written	to	the	CSV	file,	up	to	a	maximum	of	25.		This,	of
course,	will	depend	on	the	SELECT	statement	you	are	using.
You	may	specify	fewer	columns	than	in	your	query,	however,	if	you	specify
more,	then	a	run-time	error	will	occur,	for	example

ERROR	–	Descriptor	index	not	valid,	or
ERROR	–	The	index	10	is	out	of	range
COLSEPARATOR	:	Optional
You	may	specify	the	separator	character	that	is	used	to	separate	the	column
values	in	each	line	of	the	CSV	output	file.		The	most	common	form	of	CSV
uses	a	comma	as	the	separator,	and	that	is	the	default	value	for	this	parameter
if	you	do	not	specify	it.
If	a	non-comma	separator	is	specified,	it	should	be	1	character	in	length	and
can	consist	of	any	character.

COLHEADINGS	:	Optional
If	you	wish	the	first	row	of	the	output	CSV	file	to	contain	comma-separated
column	headings,	you	may	specify	the	heading	line	in	this	parameter.		Note
you	should	specify	the	entire	string,	including	the	separators,	as	a	single
value	–	for	example:
Heading1,Heading2,Heading3
If	you	do	not	specify	a	value	for	this	parameter,	then	no	heading	row	will	be
written	to	the	CSV	file.		If	you	specified	YES	for	the	SQLAPPEND
parameter,	then	the	COLHEADINGS	value	is	not	used.
SQLMAXROWS	:	Optional
This	parameter	may	specify	a	maximum	number	of	rows	to	be	returned.	
This	guards	against	the	possibility	of	SELECT	statements	that	select	much
more	data	than	was	intended.
If	not	specified,	a	default	value	of	100	(one	hundred)	is	used.		Remember
that	the	SQL	database	activities	are	not	intended	and	not	usually	suitable	for
high-throughput,	high-volume	database	operations.		If	you	expect	that	your
query	will	return	a	large	number	of	records,	then	you	should	possibly
consider	an	alternate	implementation,	such	as	using	a	Transformation	Map.

OUTPUT	Parameters:
SQLROWS	:
Upon	successful	completion,	this	parameter	will	contain	the	actual	number
of	rows	returned	by	the	query	and	written	to	the	CSV	file.

SQL_ROLLBACK
This	activity	rolls	back	a	database	transaction	performed	by	one	or	more	prior
SQL	database	activities	such	as	SQL_UPDATE.
For	more	information	about	the	SQL	database	activities,	refer	to	the	description
of	the	SQL_CONNECT	activity.		For	a	list	of	supplied	working	(*)	examples
using	the	SQL	database	activities,	refer	to:

Example	Processing	Sequences	using	the	SQL	database	activities
INPUT	Parameters:

SQLHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
SQL	connection	upon	which	this	activity	should	operate.		The	connection
handle	value	is	returned	by	the	SQL_CONNECT	activity.

OUTPUT	Parameters:
There	are	no	output	parameters.

SQL_UPDATE
This	activity	executes	a	specified	SQL	statement	to	update	a	database.	
Typically,	this	will	be	an	INSERT,	DELETE	or	UPDATE	statement.
This	activity	supports	the	use	of	SQL	parameter	markers	(usually	designated	by
a	question	mark)	in	the	SQL	statement.		If	your	solution	uses	this	capability,	you
must	first	execute	one	of	the	following	activities	to	supply	the	parameter
value(s):

SQL_PARAMS Set	parameter	values	for	SQL	operation

SQL_PARAMSCSV Set	parameter	values	for	SQL	operation	from	CSV

	

	
For	more	information	about	the	SQL	database	activities,	refer	to	the	description
of	the	SQL_CONNECT	activity.		For	a	list	of	supplied	working	(*)	examples
using	the	SQL	database	activities,	refer	to:

Example	Processing	Sequences	using	the	SQL	database	activities
INPUT	Parameters:

SQLHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
SQL	connection	upon	which	this	activity	should	operate.		The	connection
handle	value	is	returned	by	the	SQL_CONNECT	activity.
SQLUPDATE	:	Required
This	parameter	must	specify	the	SQL	statement	that	will	execute	to	update
the	target	database.		Typically,	this	will	be	an	INSERT,	DELETE	or
UPDATE	statement.
The	SQL	statement	may	make	use	of	parameter	markers	(usually	designated
by	a	question	mark).		You	must	use	either	the	SQL_PARAMS	or	the
SQL_PARAMSCSV	activity	before	this	activity,	to	supply	the	parameter
values.
Where	the	SQL_PARAMS	or	the	SQL_PARAMSCSV	activity	have	been
used	to	supply	parameter	values,	the	SQL	statement	will	be	prepared	before
executing	it	repeatedly	for	each	supplied	set	(or	"row")	of	parameter	values.	
The	following	is	an	example	of	such	an	SQL	update	statement	that	contains

parameter	markers:
update	tutordh	set	orddat	=	?	where	bchnum	=	?
Where	parameter	values	are	not	supplied,	the	statement	is	not	prepared
before	it	is	executed	and	it	will	execute	only	once.	The	following	is	an
example	of	such	an	SQL	update	statement	that	does	NOT	contain	parameter
markers:
update	tutordh	set	orddat	=	'2014-01-01'	where	bchnum	=	'1234567890'
Since	processing	sequence	variables	are	restricted	to	256	characters,	a	single
value	may	not	be	sufficiently	large	to	hold	your	SQL	statement.		For	this
reason,	this	parameter	is	defined	as	a	variable	list.		This	means	that	you	can
split	your	long	SQL	statement	into	more	than	one	part	and	provide	the	parts
in	this	parameter	using	a	variable	list.		If	you	do	this,	then	the
SQL_UPDATE	activity	will	re-assemble	them	into	a	single	statement	before
preparing	and	executing	it.

OUTPUT	Parameters:
SQLROWS	:
If	parameter	values	are	not	supplied	for	use	with	the	SQL	statement,	then	this
parameter	will	contain	the	count	of	the	number	of	database	rows	affected	by
the	SQL	statement.
If	parameter	values	are	supplied	(and	the	statement	is	consequently	prepared
before	being	executed),	then	the	activity	cannot	return	the	affected	rows
count	and	this	parameter	is	not	used.

SUBSTITUTE
This	activity	formats	an	input	string,	replacing	variable	placeholders	in	the	form
&1,	&2	...	&9	with	specified	values,	which	may	be	specified	as	literals	or
variables.
NB:		This	activity	performs	a	very	similar	function	to	the	SUBSTITUTE_VAR
activity	but	uses	a	different	means	of	specifying	the	variable	data	to	be
substituted	into	the	string.		You	can	use	either	activity	according	to	your
requirements	or	preference.
INPUT	Parameters:

STRINGIN	:	Required
This	parameter	specifies	the	string	that	is	to	be	formatted.		The	string	may
contain	placeholders	in	the	form	&1,	&2	...	&9	that	will	be	replaced	by	the
values	of	the	corresponding	variable	parameters.
For	example,	if	you	specify	the	string	"&1	files	processed	from	&2",	the
placeholders	&1	and	&2	will	be	replaced	by	the	values	of	the	VARIABLE1
and	VARIABLE2	parameters	in	the	resulting	formatted	string.
VARIABLE1VARIABLE2
VARIABLE3
VARIABLE4
VARIABLE5
VARIABLE6
VARIABLE7
VARIABLE8
VARIABLE9	:	Optional
These	parameters	may	be	used	to	specify	the	values	that	are	to	replace	the
variable	placeholders	in	the	format	string.		For	example,	the	value	of
VARIABLE1	will	replace	each	instance	of	&1	in	the	format	string,	while	the
value	of	VARIABLE2	will	replace	each	instance	of	&2	and	so	on.		You	only
need	to	specify	values	for	as	many	variables	as	you	have	specified	variable
placeholders	in	the	format	string.		However,	they	must	be	specified
contiguously	(the	activity	stops	looking	after	the	first	parameter	whose	value
is	not	specified).

OUTPUT	Parameters:
STRINGOUT	:
Upon	completion,	this	parameter	will	contain	the	formatted	string.

	

SUBSTITUTE_VAR
This	activity	formats	an	input	string,	replacing	embedded	references	to
processing	sequence	variables	and/or	built-in	variables	with	their	current	values.
NB:		This	activity	performs	a	very	similar	function	to	the	SUBSTITUTE
activity	but	uses	a	different	means	of	specifying	the	variable	data	to	be
substituted	into	the	string.		You	can	use	either	activity	according	to	your
requirements	or	preference.
INPUT	Parameters:

STRINGIN	:	Required
This	parameter	specifies	the	string	that	is	to	be	formatted.		The	string	may
contain	embedded	references	to	processing	sequence	variables	(eg:	&myvar)
and/or	built-in	variables	(eg:	*tradingpartner)	that	will	be	replaced	by	the
current	variable	values.		Support	for	indexed	variable	references	(eg:
&myvar(2)	OR	&myvar(&myindex))	is	provided.
For	example,	if	you	specify	the	string	"&MYCOUNT	files	processed	from
&MYFOLDER(&MYINDEX)	at	*now_local",	the	variable	and	built-in
variable	references	&MYCOUNT,	&MYFOLDER(&MYINDEX)	and
*now_local	will	be	replaced	by	the	values	of	the	variables	that	they
represent.
In	most	cases,	a	reference	to	a	processing	sequence	variable	or	built-
invariable	must	be	followed	by	a	space	(or	certain	special	characters	or	the
end	of	the	string)	in	order	for	the	reference	to	be	correctly	identified	and
substituted.
If	two	ampersands	(&&)	or	two	asterisks	(**)	appear	together	in	the	string,
they	are	reduced	to	a	single	ampersand	or	asterisk	and	not	considered	for
substitution.

OUTPUT	Parameters:
STRINGOUT	:
Upon	completion,	this	parameter	will	contain	the	formatted	string.

	

SUBSTRING
This	activity	extracts	a	portion	of	the	input	string.	The	portion	extracted	is
determined	by	the	specified	starting	position	and	length.
INPUT	Parameters:

STRINGIN	:	Required
This	parameter	specifies	the	string	from	which	the	substring	is	to	be
extracted.
START	:	Required
This	parameter	specifies	the	starting	position	in	the	source	string	from	which
to	extract	the	substring.
LENGTH	:	Required
This	parameter	specifies	the	length	of	substring	to	be	extracted.

OUTPUT	Parameters:
STRINGOUT	:
Upon	completion,	this	parameter	will	contain	the	extracted	substring.

SYSTEM_COMMAND
This	activity	executes	an	operating	system	command.	Command	execution	is
synchronous	-	the	processing	sequence	waits	until	the	command	completes
before	proceeding.	The	parameters	specify	the	command	string	to	be	executed
and	the	response	or	result	code	from	the	operating	system	is	returned	in	the
RESPONSE	parameter.
Notes:
*	By	using	this	activity,	you	are	introducing	an	operating	system	dependency
into	your	processing	sequence.
*	The	specific	commands	you	can	use	and	their	format	and	syntax	are
determined	by	the	operating	system.	Refer	to	relevant	operating	system
documentation.
*	The	command	must	be	eligible	to	be	executed	in	the	environment	in	which	the
processing	sequence	will	run,	including	with	respect	to	the	required	authorities.
*	If	the	command	does	not	execute	successfully,	this	is	indicated	by	the
response	code.	The	activity	ends	normally.	If	you	wish	to	treat	the	failure	as	an
error,	you	must	test	the	RESPONSE	parameter.
*	You	cannot	call	the	LANSA	X_RUN	entry	point	(to	execute	LANSA	RDMLX
applications)	using	this	activity.
INPUT	Parameters:

COMMAND01	:	Required
This	parameter	must	contain	the	command	to	be	executed.	The	command
names	and	the	format	and	syntax	of	the	command	string	is	operating	system-
defined.	Up	to	256	characters	may	be	specified.	If	the	required	command
string	is	longer	than	this,	you	may	specify	the	remainder	of	the	command
string	in	the	COMMAND02	and	COMMAND03	parameters.
This	parameter	is	required.	If	it	is	not	provided,	the	acivity	will	return	an
error.
COMMAND02	COMMAND03	:	Optional
These	parameters	can	contain	optional	parts	2	and	3	of	the	command	string.
This	can	be	used	in	the	event	that	the	command	string	is	longer	than	the
maximum	supported	256	characters	for	the	COMMAND01parameter.	If
present,	the	values	of	these	parameters	are	appended	to	the	command	string
before	executing	it.	Trailing	blanks	are	trimmed	from	the	command	string
before	appending	these	values	-	this	means	that	if	you	need	a	blank	space

between	the	command	strings	in	parts	1	and	2	or	parts	2	and	3,	then	the	blank
space	must	be	present	at	the	beginning	of	the	second	of	the	two	parts.

OUTPUT	Parameters:
RESPONSE	:
Upon	completion,	this	parameter	contains	the	response	code	from	the
operating	system	arising	from	executing	the	specified	system	command.	A
response	code	of	zero	indicates	successful	execution.	On	IBM	i	servers,	a
response	code	of	1	indicates	failure.	On	Windows	servers,	one	of	a	range	of
Win32	error	codes	may	be	returned	in	the	event	of	an	error.

TEXT_SUBSTITUTE
This	Activity	reads	a	skeleton	text	file	and	replaces	%%parm.parmeter%%
references	in	the	text	with	the	current	parameter	value	and	writes	the	expanded
text	file.
This	Activity	can	be	used	to	create	a	skeleton	text	for	such	things	as	email	body
text	or	email	attachments.	The	complete	text	can	then	be	resolved	at	execution
time	with	the	current	execution	parameter	values.
Skeleton	file	contents	example:
Thank	you	%%PARM.CUSNAME%%	for	your	order.
Your	order,	numbered		%%parm.orderno%%	has	been	dispatched	via	carrier
%%parm.CARRIER%%.
	

If	parameter	values	were:
CUSNAME								John	Brown
ORDERNO								AB0015
CARRIER								FEDEX
	

then	the	resulting	text	file	would	be:
Thank	you	John	Brown	for	your	order.
Your	order,	numbered	AB0015	has	been	dispatched	via	carrier	FEDEX.
	

INPUT	Parameters:
TEXTSKELETON	:	Required
Path	and	file	name	of	the	skeleton	text	file.
For	example:			c:\mydir\emailtext.txt
TEXTFILE	:	Required
Path	and	file	name	of	the	text	file	to	be	created.
For	example:			c:\mail\orderemail.txt
TEXTCCSID	:	Optional
This	parameter	applies	only	on	IBM	i	servers.		It	allows	you	to	specify	the
IBM	i	CCSID	with	which	the	output	text	file	is	created.
If	the	parameter	is	not	specified,	a	default	of	*SKELETON	is	assumed,
which	instructs	the	activity	to	create	the	output	text	file	using	the	same

CCSID	as	the	skeleton	text	file.
You	can	also	specify	special	values	of	*DEFAULT	or	*JOB	which	cause	the
activity	to	use	the	default	CCSID	for	the	job	in	which	the	activity	is
executing.
Otherwise,	you	should	specify	the	numeric	CCSID	value	required.		For
example,	a	value	of	1208	means	UTF-8.		Refer	to	IBM	i	documentation	for	a
complete	list	and	description	of	the	available	CCSIDs.
NOTE:		the	assumed	or	explicit	CCSID	is	applied	only	when	the	specified
output	file	does	NOT	already	exist.		If	the	specified	output	file	already	exists
and	is	being	replaced	by	this	activity,	then	its	CCSID	will	not	be	changed.

OUTPUT	Parameters:
There	are	no	output	parameters.

TRANSFORM
This	activity	executes	a	transformation	map.	The	parameters	specify	the
identifier	(or	name)	of	the	transformation	map	to	run	and	up	to	ten
transformation	map	parameters.
Usually	you	will	use	the	Transform	directive	from	the	palette	to	run	a
transformation	map	in	a	processing	sequence.	This	is	the	easiest	way	when	you
know	at	design	time	the	identity	of	the	transformation	map	you	wish	to	use
because	the	processing	sequence	editor	shows	the	exact	parameters	that	you
must	provide.
However,	you	can	execute	a	transformation	map	using	this	activity	when	the
identity	of	the	transformation	map	is	variable.	For	example,	you	might	use	this
to	execute	transformation	maps	that	are	linked	to	trading	partner	definitions.
Refer	to	2.4.7	Link	Transformation	Maps	to	a	Trading	Partner	for	more
information.

Note:	When	you	use	this	activity	to	execute	a	transformation	map,
you	must	ensure	that	the	parameters	specified	are	correct	and
appropriate	for	every	different	map	that	might	be	executed	by	the
activity.	You	need	to	take	care	when	editing	the	transformation	maps
to	ensure	that	this	is	the	case.

INPUT	Parameters:
TRANSFORMID	:	Required
This	parameter	must	specify	the	identity	of	the	transformation	map	to	be	run.
TRANSFORMP1…
TRANSFORMP10	:	Optional
These	parameters	provide	up	to	ten	parameters	for	the	transformation	map.
You	must	make	sure	that	you	specify	parameters	that	are	appropriate	for
every	transformation	map	that	the	activity	might	run.

OUTPUT	Parameters:
There	are	no	output	parameters.

TS_CAPTURE
The	TS_CAPTURE	activity	captures	a	representation	of	the	current	aXes
Terminal	Server	screen	and	returns	it	in	the	AXCAPTURE	list.		The	screen
capture	is	a	simple	text	representation.		5250	display	attributes	(such	as
underlining	of	input	fields)	are	not	represented.
The	most	common	use	for	the	TS_CAPTURE	activity	is	for	diagnostic
purposes,	especially	while	designing	a	process	that	uses	the	aXes	terminal
server.		You	can	use	the	LOGLIST	activity	with	the	list	returned	in	the
AXCAPTURE	parameter	to	include	the	screen	capture	in	the	processing
sequence	log.
INPUT	Parameters:

AXHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
aXes	terminal	server	session	from	which	the	screen	representation	is
captured.		The	connection	handle	value	is	returned	by	the	TS_CONNECT
activity.

OUTPUT	Parameters:
AXSCREEN	:
Upon	successful	completion	this	parameter	contains	the	current	aXes	5250
screen	name	or	signature.		The	screen	name	is	the	user-defined	name	if	an
aXes	project	name	was	specified	on	the	TS_CONNECT	activity	and	a	name
was	assigned	to	the	screen.		Otherwise	the	screen	signature	is	returned.
AXCAPTURE	:
Upon	successful	completion,	this	parameter	provides	a	list	of	captured	aXes
screen	image	lines.		The	number	of	lines	in	the	list	depends	on	the	display
attributes	of	the	current	5250	screen	shown	in	the	aXes	terminal	server
session,	but	is	most	commonly	24	or	27.

TS_CONNECT
The	TS_CONNECT	activity	is	used	to	connect	to	an	aXes	terminal	server	and
signon	the	5250	session	using	the	server	identification	and	user	credentials
provided.
It	is	possible	to	use	more	than	one	aXes	terminal	server	session	at	a	time	in	your
processing	sequence.		The	value	of	the	AXHANDLE	output	parameter
identifies	the	session	created	by	this	instance	of	the	TS_CONNECT	activity.	
The	same	value	must	be	specified	as	the	AXHANDLE	input	parameter	value
for	all	subsequent	aXes	terminal	server	activities	(such	as	TS_SETBYNAME	or
TS_SEND)	that	are	to	operate	on	the	same	terminal	server	session.
NOTE:		The	processing	sequence	containing	the	TS_CONNECT	activity
becomes	ineligible	to	be	restarted	in	the	event	of	any	failure	for	the	duration	of
the	aXes	terminal	server	session	-	that	is,	until	the	TS_DISCONNECT	activity
is	executed.
INPUT	Parameters:

HOST	:	Required
This	parameter	must	specify	the	host	name	or	IP	address	of	the	machine
hosting	the	aXes	terminal	server	to	which	you	wish	to	connect.
PORT	:	Optional
This	parameter	may	specify	the	port	number	to	be	used	to	connect	to	the
aXes	terminal	server.		If	not	specified,	a	default	value	of	80	is	assumed.
USER	:	Required
This	keyword	must	specify	the	user	name	used	to	connect	to	the	aXes
terminal	server.		This	must	be	the	name	of	an	authorised	i/OS	user	profile.
PASSWORD	:	Required
This	parameter	must	specify	the	password	for	the	user	name	specified	in	the
USER	keyword.
AXPROJECT	:	Optional
This	parameter	may	be	used	to	set	the	aXes	project	to	use	for	this	session.	A
project	contains	user	assigned	definitions	of	screens	and	fields.	For	example,
you	can	assign	a	name	to	a	screen	or	a	field,	and	later	use	that	name	to	refer
to	the	screen	or	the	field	in	other	aXes	terminal	server	activities.		Although
aXes	projects	can	either	be	stored	in	a	file	on	the	file	system	or	on	the	aXes
server,	you	may	only	specify	here	an	aXes	server-based	project.

AXEXTENDEDTRACE	:	Optional
If	you	specify	YES	for	this	parameter,	LANSA	Composer	will	use	additional
LANSA	Integrator	aXesTerminalService	tracing	options	that	will	create
additional	Java	Service	Manager	(JSM)	tracing.		The	additional	tracing	will
include	terminal	session	screen	captures	at	appropriate	points	as	well	as
creating	an	additional	aXes-specific	trace	file	in	the	JSM	trace	directory.		The
additional	tracing	may	help	in	diagnosing	interactions	with	the	aXes	terminal
server	and	so	may	be	useful	in	the	design	and	testing	stage	of	your	LANSA
Composer	solution.		However,	there	is	additional	processing	overhead
associated	with	the	the	extra	tracing	and	you	may	wish	NOT	to	use	it	in	a
performance-sensitive	production	environment.		The	effect	of	this	parameter
is	subject	to	standard	LANSA	Composer	logging	and	tracing	system	settings
being	in	effect.		The	default	for	this	parameter,	if	not	specified,	is	NO.

OUTPUT	Parameters:
AXHANDLE	:	Required
If	successful,	the	value	of	this	output	parameter	identifies	the	session	created
by	this	instance	of	the	TS_CONNECT	activity.		The	same	value	must	be
specified	as	the	AXHANDLE	input	parameter	value	for	all	subsequent	aXes
terminal	server	activities	that	are	to	operate	on	the	same	terminal	server
session.
AXSCREEN	:
Upon	successful	completion	this	parameter	contains	the	resulting	aXes	5250
screen	name	or	signature.		The	screen	name	is	the	user-defined	name	if	an
aXes	project	name	was	specified	in	the	AXPROJECT	parameter	and	a	name
was	assigned	to	the	screen.		Otherwise	the	screen	signature	is	returned.

TS_DISCONNECT
The	TS_DISCONNECT	activity	disconnects	the	specified	aXes	terminal	server
session.
INPUT	Parameters:

AXHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
aXes	terminal	server	session	that	should	be	disconnected.		The	connection
handle	value	is	returned	by	the	TS_CONNECT	activity.

OUTPUT	Parameters:
There	are	no	output	parameters	for	this	activity.

TS_EXECUTE
The	TS_EXECUTE	activity	executes	a	specified	routine	in	an	aXes	terminal
operation	script.		Refer	to	the	LANSA	Composer	guide	for	more	information
about	aXes	terminal	operations	scripts.
INPUT	Parameters:

AXHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
aXes	terminal	server	session	upon	which	the	aXes	terminal	operations	script
should	operate.		The	connection	handle	value	is	returned	by	the
TS_CONNECT	activity.
AXSCRIPTFILE	:	Required
This	parameter	must	specify	the	full	path	to	a	file	that	contains	the	aXes
terminal	operations	script	routine	to	be	executed.		The	aXes	terminal
operations	script	must	be	in	a	comma-separated	format	as	described	in	the
LANSA	Composer	guide.
AXROUTINE	:	Optional
This	parameter	may	specify	the	name	of	a	routine	in	the	aXes	terminal
operation	script.		If	not	specified,	a	blank	routine	name	is	assumed.		If	your
script	does	not	contain	named	routines	you	do	not	need	to	specify	this
parameter.
AXRELOAD	:	Optional
You	may	specify	YES	in	this	parameter	to	force	the	aXes	terminal	operations
script	to	be	re-loaded	from	the	file	specified	in	the	AXSCRIPTFILE
parameter.		In	normal	operation,	the	activity	loads	an	aXes	terminal
operations	script	file	once	and	then	uses	the	loaded	copy	if	the	same	script	is
specified	again	in	subsequent	TS_EXECUTE	activity	executions.		However,
if	your	processing	sequence	"generates"	the	script	file	in	response	to	other
inputs	(by	using	a	Transformation	Map,	for	example),	then	you	may	need	to
force	the	TS_EXECUTE	activity	to	reload	the	script	after	your	processing
sequence	has	changed	it.		In	that	case	you	should	specify	YES	for	this
parameter.		If	not	specified,	the	default	for	this	parameter	is	NO.

OUTPUT	Parameters:
AXSCREEN	:
Upon	successful	completion	this	parameter	contains	the	resulting	aXes	5250
screen	name	or	signature.		The	screen	name	is	the	user-defined	name	if	an

aXes	project	name	was	specified	on	the	TS_CONNECT	activity	and	a	name
was	assigned	to	the	screen.		Otherwise	the	screen	signature	is	returned.

TS_GET
The	TS_GET	activity	retrieves	attributes	associated	with	the	specified	aXes
terminal	session.
INPUT	Parameters:

AXHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
aXes	terminal	server	session	whose	attributes	are	to	be	retrieved.		The
connection	handle	value	is	returned	by	the	TS_CONNECT	activity.

OUTPUT	Parameters:
AXCURSORROWOUT	:
If	successful,	this	parameter	will	contain	the	row	number	component	of	the
current	screen	cursor	position.
AXCURSORCOLOUT	:
If	successful,	this	parameter	will	contain	the	column	number	component	of
the	current	screen	cursor	position.
AXSYSTEM	:
If	successful,	this	parameter	will	contain	the	i/OS	system	name	for	the
current	aXes	terminal	session.
AXDEVICE	:
If	successful,	this	parameter	will	contain	the	5250	device	name	used	by	the
current	aXes	terminal	session.
AXJOBUSER	:
If	successful,	this	parameter	will	contain	the	user	name	portion	of	the	i/OS
job	name	for	the	current	aXes	terminal	session.
AXJOBNUMBER	:
If	successful,	this	parameter	will	contain	the	job	number	portion	of	the	i/OS
job	name	for	the	current	aXes	terminal	session.
AXSCREENWIDTH	:
If	successful,	this	parameter	will	contain	the	current	screen	width	for	the
aXes	terminal	session.		Note	that	this	value	refers	to	the	screen	currently
displayed,	not	maximum	device	capabilities.
AXSCREENHEIGHT	:
If	successful,	this	parameter	will	contain	the	current	screen	height	for	the

aXes	terminal	session.		Note	that	this	value	refers	to	the	screen	currently
displayed,	not	maximum	device	capabilities.
AXSCREEN	:
Upon	successful	completion	this	parameter	contains	the	current	aXes	5250
screen	name	or	signature.		The	screen	name	is	the	user-defined	name	if	an
aXes	project	name	was	specified	on	the	TS_CONNECT	activity	and	a	name
was	assigned	to	the	screen.		Otherwise	the	screen	signature	is	returned.

TS_GETBYNAME
The	TS_GETBYNAME	activity	retrieves	the	value	of	a	field	on	the	current
aXes	terminal	screen	by	reference	to	the	field	name	(and	an	optional	index	for	a
subfile	field).
INPUT	Parameters:

AXHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
aXes	terminal	server	session	from	which	the	screen	field	value	is	to	be
retrieved.		The	connection	handle	value	is	returned	by	the	TS_CONNECT
activity.
AXNAME	:	Required
This	parameter	must	specify	the	name	of	the	field	whose	value	is	to	be
retrieved.		The	name	may	be	a	user-defined	name	(if	an	aXes	project	name
was	specified	on	the	TS_CONNECT	activity)	or	an	aXes	field	identifier.
AXINDEX	:	Optional
If	the	field	is	contained	in	a	subfile,	this	parameter	may	specify	the	index	of
the	instance	on	the	current	screen	of	the	field	whose	value	is	to	be	retrieved.	
The	first	instance	on	the	current	screen	has	an	index	of	1,	irrespective	of	the
scroll	position	of	the	subfile.		If	your	processing	sequence	needs	to	process
fields	in	subfiles,	it	must	do	so	a	screen	at	a	time	and	send
ROLL_UP/ROLL_DOWN	using	the	TS_SEND	activity	(just	like	a	5250
terminal	user	would	have	to	do).

OUTPUT	Parameters:
AXSCREENVALUE	:
Upon	successful	completion,	this	parameter	will	contain	the	value	for	the
specified	screen	field.

TS_GETBYPOS
The	TS_GETBYPOS	activity	retrieves	the	value	of	a	field	on	the	current	aXes
terminal	screen	by	reference	to	the	screen	row	and	column	number.
INPUT	Parameters:

AXHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
aXes	terminal	server	session	from	which	the	screen	field	value	is	to	be
retrieved.		The	connection	handle	value	is	returned	by	the	TS_CONNECT
activity.
AXSCREENROW	:	Required
This	parameter	must	specify	the	screen	row	number	of	the	required	field.	
The	row	and	column	together	must	refer	to	the	first	position	of	the	required
field.
AXSCREENCOL	:	Required
This	parameter	must	specify	the	screen	column	number	of	the	required	field.	
The	row	and	column	together	must	refer	to	the	first	position	of	the	required
field.

OUTPUT	Parameters:
AXSCREENVALUE	:
Upon	successful	completion,	this	parameter	will	contain	the	value	for	the
specified	screen	field.

TS_GETFIELD
The	TS_GETFIELD	activity	retrieves	the	attributes	of	a	field	on	the	current
aXes	terminal	screen	by	reference	to	either	the	field	name	(and	an	optional
index	for	a	subfile	field)	or	to	the	screen	row	and	column	number	of	the	field.
INPUT	Parameters:

AXHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
aXes	terminal	server	session	from	which	the	screen	field	attributes	are	to	be
retrieved.		The	connection	handle	value	is	returned	by	the	TS_CONNECT
activity.
AXNAME	:	Optional
This	parameter	may	specify	the	name	of	the	field	whose	attributes	are	to	be
retrieved.		The	name	may	be	a	user-defined	name	(if	an	aXes	project	name
was	specified	on	the	TS_CONNECT	activity)	or	an	aXes	field	identifier.		If
this	parameter	is	not	specified,	then	values	must	be	specified	for	the
AXSCREENROW	and	AXSCREENCOL	parameters.
AXINDEX	:	Optional
If	a	field	identified	by	name	(the	AXNAME	parameter)	is	contained	in	a
subfile,	this	parameter	may	specify	the	index	of	the	instance	on	the	current
screen	of	the	field	whose	attributes	are	to	be	retrieved.		The	first	instance	on
the	current	screen	has	an	index	of	1,	irrespective	of	the	scroll	position	of	the
subfile.		If	your	processing	sequence	needs	to	process	fields	in	subfiles,	it
must	do	so	a	screen	at	a	time	and	send	ROLL_UP/ROLL_DOWN	using	the
TS_SEND	activity	(just	like	a	5250	terminal	user	would	have	to	do).
AXSCREENROW	:	Optional
This	parameter	may	specify	the	screen	row	number	of	the	required	field.	
The	row	and	column	together,	if	used,	must	refer	to	the	first	position	of	the
required	field.		The	value	of	this	keyword	is	ignored	if	a	value	is	specified
for	the	AXNAME	parameter.		Conversely,	if	AXNAME	is	not	specified,	then
AXSCREENROW	and	AXSCREENCOL	parameter	values	must	be
supplied.
AXSCREENCOL	:	Optional
This	parameter	may	specify	the	screen	column	number	of	the	required	field.	
The	row	and	column	together,	if	used,	must	refer	to	the	first	position	of	the
required	field.		The	value	of	this	keyword	is	ignored	if	a	value	is	specified

for	the	AXNAME	parameter.		Conversely,	if	AXNAME	is	not	specified,	then
AXSCREENROW	and	AXSCREENCOL	parameter	values	must	be
supplied.

OUTPUT	Parameters:
AXNAMEOUT	:
If	successful,	this	parameter	will	contain	the	user-defined	name	of	the	field
(if	an	aXes	project	name	was	specified	on	the	CONNECT	command)	or	the
aXes	field	identifier	if	no	project	was	specified	or	no	name	has	been	defined
for	the	field.
AXINDEXOUT	:
If	successful,	this	parameter	will	contain	the	index	of	the	instance	on	the
current	screen	of	the	field.		The	first	instance	on	the	current	screen	has	an
index	of	1,	irrespective	of	the	scroll	position	of	the	subfile.
AXSCREENROWOUT	:
If	successful,	this	parameter	will	contain	the	screen	row	number	of	the	field.
AXSCREENCOLOUT	:
If	successful,	this	parameter	will	contain	the	screen	column	number	of	the
field.
AXSCREENCOUNT	:
If	successful	and	the	specified	field	is	contained	in	a	subfile,	this	parameter
will	contain	the	number	of	instances	on	the	current	screen	for	the	field	(the
number	of	subfile	records	displayed	on	the	current	screen).		For	reliability,
you	should	use	this	activity	for	a	field	that	is	never	conditioned	on	the	subfile
display	-	such	as	the	option	entry	field	in	a	"Work	with	..."	style	display.
AXSCREENVALUE	:
If	successful,	this	parameter	will	contain	the	value	for	the	specified	screen
field.

TS_SEND
The	TS_SEND	activity	sends	the	current	aXes	screen	data	to	the	aXes	terminal
server.		It	is	analogous	to	pressing	the	ENTER	key	(by	default)	or	a	function	key
at	a	5250	terminal.
INPUT	Parameters:

AXHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
aXes	terminal	server	session	upon	which	this	activity	should	operate.		The
connection	handle	value	is	returned	by	the	TS_CONNECT	activity.
AXKEY	:	Optional
This	parameter	may	specify	the	function	key	to	send.		You	may	use	any	of
the	values	listed	below.		If	not	specified,	*ENTER	is	sent.

		*ENTER
		*F1		-	*F9
		*F10	-	*F24
		*PAGE_UP,	*PAGE_DOWN
		*ROLL_UP,	*ROLL_DOWN
		*HELP,	*PRINT
AXCURSORROW	:	Optional
This	parameter	may	specify	the	screen	cursor	row	number	to	send.		If
AXCURSORROW	and	AXCURSORCOL	are	not	both	specified,	the	screen
cursor	position	is	unchanged.
AXCURSORCOL	:	Optional
This	parameter	may	specify	the	screen	cursor	column	number	to	send.		If
AXCURSORROW	and	AXCURSORCOL	are	not	both	specified,	the	screen
cursor	position	is	unchanged.

OUTPUT	Parameters:
AXSCREEN	:
Upon	successful	completion	this	parameter	contains	the	resulting	aXes	5250
screen	name	or	signature.		The	screen	name	is	the	user-defined	name	if	an
aXes	project	name	was	specified	on	the	TS_CONNECT	activity	and	a	name
was	assigned	to	the	screen.		Otherwise	the	screen	signature	is	returned.

TS_SETBYNAME
The	TS_SETBYNAME	activity	sets	the	value	of	a	field	on	the	current	aXes
terminal	screen	by	reference	to	the	field	name	(and	an	optional	index	for	a
subfile	field)	and	may	(optionally)	send	the	current	aXes	screen	data	to	the	aXes
terminal	server.		It	is	analogous	to	typing	at	a	5250	terminal.
INPUT	Parameters:

AXHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
aXes	terminal	server	session	upon	which	this	activity	should	operate.		The
connection	handle	value	is	returned	by	the	TS_CONNECT	activity.
AXNAME	:	Required
This	parameter	must	specify	the	name	of	the	field	whose	value	is	to	be	set.	
The	name	may	be	a	user-defined	name	(if	an	aXes	project	name	was
specified	on	the	TS_CONNECT	activity)	or	an	aXes	field	identifier.
AXINDEX	:	Optional
If	the	field	is	contained	in	a	subfile,	this	parameter	may	specify	the	index	of
the	instance	on	the	current	screen	of	the	field	whose	value	is	to	be	set.		The
first	instance	on	the	current	screen	has	an	index	of	1,	irrespective	of	the
scroll	position	of	the	subfile.		If	your	processing	sequence	needs	to	process
fields	in	subfiles,	it	must	do	so	a	screen	at	a	time	and	send
ROLL_UP/ROLL_DOWN	using	the	TS_SEND	activity	(just	like	a	5250
terminal	user	would	have	to	do).
AXSCREENVALUE	:	Required
This	parameter	must	specify	the	value	to	be	set	for	the	specified	screen	field.
AXKEY	:	Optional
This	parameter	may	optionally	specify	a	function	key	to	send	the	current
aXes	screen	data	to	the	aXes	terminal	server.		You	may	use	any	of	the	values
listed	below.		If	not	specified,	no	send	is	performed.

		*ENTER
		*F1		-	*F9
		*F10	-	*F24
		*PAGE_UP,	*PAGE_DOWN
		*ROLL_UP,	*ROLL_DOWN
		*HELP,	*PRINT

OUTPUT	Parameters:
AXSCREEN	:
Upon	successful	completion	this	parameter	contains	the	resulting	aXes	5250
screen	name	or	signature.		The	screen	name	is	the	user-defined	name	if	an
aXes	project	name	was	specified	on	the	TS_CONNECT	activity	and	a	name
was	assigned	to	the	screen.		Otherwise	the	screen	signature	is	returned.	
(NB:		The	5250	screen	that	is	presently	shown	can	be	affected	or	changed	by
executing	this	activity	ONLY	if	a	function	key	value	is	specified	in	the
AXKEY	parameter.)

TS_SETBYPOS
The	TS_SETBYPOS	command	sets	the	value	of	a	field	on	the	current	aXes
terminal	screen	by	reference	to	the	screen	row	and	column	number	and	may
(optionally)	send	the	current	aXes	screen	data	to	the	aXes	terminal	server.		It	is
analogous	to	typing	at	a	5250	terminal.
INPUT	Parameters:

AXHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
aXes	terminal	server	session	upon	which	this	activity	should	operate.		The
connection	handle	value	is	returned	by	the	TS_CONNECT	activity.
AXSCREENROW	:	Required
This	parameter	must	specify	the	screen	row	number	of	the	required	field.	
The	row	and	column	together	must	refer	to	the	first	position	of	the	required
field.
AXSCREENCOL	:	Required
This	parameter	must	specify	the	screen	column	number	of	the	required	field.	
The	row	and	column	together	must	refer	to	the	first	position	of	the	required
field.
AXSCREENVALUE	:	Required
This	parameter	must	specify	the	value	to	be	set	for	the	specified	screen	field.
AXKEY	:	Optional
This	parameter	may	optionally	specify	a	function	key	to	send	the	current
aXes	screen	data	to	the	aXes	terminal	server.		You	may	use	any	of	the	values
listed	below.		If	not	specified,	no	send	is	performed.

		*ENTER
		*F1		-	*F9
		*F10	-	*F24
		*PAGE_UP,	*PAGE_DOWN
		*ROLL_UP,	*ROLL_DOWN
		*HELP,	*PRINT

OUTPUT	Parameters:
AXSCREEN	:
Upon	successful	completion	this	parameter	contains	the	resulting	aXes	5250

screen	name	or	signature.		The	screen	name	is	the	user-defined	name	if	an
aXes	project	name	was	specified	on	the	TS_CONNECT	activity	and	a	name
was	assigned	to	the	screen.		Otherwise	the	screen	signature	is	returned.	
(NB:		The	5250	screen	that	is	presently	shown	can	be	affected	or	changed	by
executing	this	activity	ONLY	if	a	function	key	value	is	specified	in	the
AXKEY	parameter.)

TS_SETCURSOR
The	TS_SETCURSOR	activity	sets	the	position	of	the	cursor	on	the	current
aXes	terminal	screen.		It	is	analogous	to	using	the	arrow	or	tab	keys	to	move	the
cursor	at	a	5250	terminal.		Some	5250	applications	or	screens	are	sensitive	to
the	cursor	position	and	may	exhibit	different	functionality	dependent	upon	it.
INPUT	Parameters:

AXHANDLE	:	Required
This	parameter	must	specify	the	connection	handle	value	that	identifies	the
aXes	terminal	server	session	upon	which	this	activity	should	operate.		The
connection	handle	value	is	returned	by	the	TS_CONNECT	activity.
AXCURSORROW	:	Required
This	parameter	must	specify	the	cursor	row	number	to	set.
AXCURSORCOL	:	Required
This	parameter	must	specify	the	cursor	column	number	to	set.

OUTPUT	Parameters:
There	are	no	output	parameters	for	this	activity.

TXDOC_ALLOCCTRL
This	activity	allocates	one	or	more	control	numbers	for	outbound	transaction
documents.		It	can	allocate:

zero,	one	or	more	interchange	control	numbers
zero,	one	or	more	group	control	numbers
zero,	one	or	more	transaction	set	(message)	control	numbers

The	control	number(s)	are	allocated	from	the	series	that	apply	to	the	specified
trading	partner,	as	can	be	seen	on	the	Outbound	Numbering	tab	of	the	Trading
Partner	definition,	and	the	"next"	numbers	for	the	series	are	incremented
accordingly.
If	the	outbound	numbering	domain	for	the	trading	partner	specifies	that
outbound	control	numbers	are	allocated	by	transaction	id,	then	the
DOCCONTENTTYPE	parameter	must	specify	the	transaction	type	of	the	series
from	which	the	control	numbers	are	to	be	allocated.

NOTE	(1)	-	When	using	the	API	supplied	with	LANSA	Composer	for
registering	pending	outbound	documents,	the	necessary	interchange,
group	and	transaction	set	control	numbers	are	automatically	allocated
by	LANSA	Composer.		You	do	not	need	to	use	this	activity	in	that
event.		The	same	usually	applies	when	using	an	export	processor
associated	with	a	transformation	map	for	an	outbound	transaction
document	process	(although	this	will	depend	on	the	specific
implementation	of	the	export	processor).

NOTE	(2)	-	There	is	no	means	to	de-allocate	or	free	control	numbers
once	allocated.		If	your	trading	environment	or	trading	agreements
requires	sequential	control	numbering	or	auditability	of	allocated
control	numbers,	then	it	is	your	responsibility	to	satisfy	those
requirements	when	using	this	activity	to	allocate	control	numbers.

INPUT	Parameters:
TRADINGPARTNER	:	Required
Specifies	the	trading	partner	for	which	the	control	numbers	are	allocated.	
This	parameter	is	required.
DOCCONTENTTYPE	:	Optional
This	parameter	may	be	used	to	specify	the	document	content	type	for	which

the	control	numbers	are	allocated.		It	is	required	if	the	outbound	numbering
domain	for	the	trading	partner	specifies	that	outbound	control	numbers	are
allocated	by	transaction	id.		However,	if	the	outbound	numbering	domain	for
the	trading	partner	specifies	that	outbound	control	numbers	are	allocated
across	all	transaction	ids,	then	the	value	of	the	DOCCONTENTTYPE
parameter	will	be	ignored.
ALLOCATE_IC	:	Optional
Specifies	how	many	interchange	control	numbers	to	allocate.		The	allocated
interchange	control	numbers	will	be	placed	in	the	CTRLNUMBER_IC
output	list	parameter.
ALLOCATE_GP	:	Optional
Specifies	how	many	group	control	numbers	to	allocate.		The	allocated	group
control	numbers	will	be	placed	in	the	CTRLNUMBER_GP	output	list
parameter.
ALLOCATE_MS	:	Optional
Specifies	how	many	transaction	set	(message)	control	numbers	to	allocate.	
The	allocated	transaction	set	control	numbers	will	be	placed	in	the
CTRLNUMBER_MS	output	list	parameter.

OUTPUT	Parameters:
CTRLNUMBER_IC	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	zero,	one	or
more	allocated	interchange	control	numbers,	according	to	the	value	specified
in	the	ALLOCATE_IC	parameter.
CTRLNUMBER_GP	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	zero,	one	or
more	allocated	group	control	numbers,	according	to	the	value	specified	in	the
ALLOCATE_GP	parameter.
CTRLNUMBER_MS	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	zero,	one	or
more	allocated	transaction	set	(message)	control	numbers,	according	to	the
value	specified	in	the	ALLOCATE_MS	parameter.

TXDOC_EXPORT
This	activity	exports	transaction	data	for	out-going	transactions	by	executing	the
re-useable	part	specified	as	the	export	processor	(the	export	processor	is
typically	associated	with	the	transformation	map	that	will	be	used	to	transform
the	data	to	its	out-going	transaction	document	format).
Refer	to	the	supplied	processing	sequence	TXDOC_IEDI090	as	an	example	of
using	this	activity	in	the	course	of	generating	an	outbound	EDI	X12	997
acknowledgement	in	response	to	an	in-coming	EDI	document.
INPUT	Parameters:

DOCEXPORTPROCESSOR	:	Required
This	parameter	specifies	the	name	of	the	transaction	data	export	processor
component	name.		This	must	be	the	name	of	a	re-useable	part	derived	from
the	supplied	ancestor	class	DXXEXPBAS.		This	component	must	be	written
to	be	capable	of	performing	the	required	processing	to	export	the	transaction
data	identified	by	the	transaction	data	identifiers,	typically	into	staging	files
that	will	subsequently	be	used	by	the	associated	transformation	map	to	create
an	outbound	transaction	document	file	containing	the	data.
DOCPRODTEST	:	Optional
This	parameter	specifies	whether	the	transaction	document	will	be	for
production	(P)	or	test	(T)	use.		It	is	up	to	the	specific	export	processor
implementation	how	it	makes	use	of	this	value	-	for	EDI	X12	transactions,	it
would	typically	be	used	to	fill	the	ISA15	(use)	field	of	the	interchange
header.
DOCDATAKEY1DOCDATAKEY2	:	Optional
These	parameters	are	used	to	identify	to	the	export	processor	the	set	of
transaction	data	to	be	exported.		For	example,	they	may	be	used	to	identify	a
sales	order,	an	invoice	or	another	transaction	document	envelope	to	which
this	is	generating	a	response	or	acknowledgement.		The	meaning	and
interpretation	of	these	values	is	up	to	the	implementation	of	the	particular
export	processor	being	used.		The	values	supplied	must	be	appropriate	for
the	use	in	that	export	processor.

OUTPUT	Parameters:
DOCNUMBERLIST	:
Upon	successful	completion,	this	will	contain	a	list	of	one	or	more
transaction	document	envelope	numbers	generated	by	the	activity.

TXDOC_IMPORT
This	activity	imports	transaction	data	for	incoming	transactions	by	executing	the
re-useable	part	specified	as	the	import	processor	(the	import	processor	is
typically	associated	with	the	transformation	map	used	to	transform	the	in-
coming	data).
Refer	to	the	supplied	processing	sequence	TXDOC_IEDI020	as	an	example	of
using	this	activity	in	the	course	of	processing	an	in-coming	EDI	document.
INPUT	Parameters:

DOCNUMBER	:	Required
This	parameter	must	specify	the	transaction	document	envelope	number	for
the	transaction	document	whose	data	is	being	imported.		This	number	is
normally	assigned	by	the	TXDOC_REGISTER	activity.
DOCCONTENTTYPE	:	Required
This	parameter	specifies	the	document	content	type	for	the	transaction
document.		The	content	type	can	be	any	string	that	identifies	the	content	type
-	for	example,	you	might	use	the	EDI	transaction	type	(eg:	'850')	for	an	EDI
document	or	the	XML	document	root	element	name	for	an	XML	document.
DOCIMPORTPROCESSOR	:	Required
This	parameter	specifies	the	name	of	the	transaction	data	import	processor
component	name.		This	must	be	the	name	of	a	re-useable	part	derived	from
the	supplied	ancestor	class	DXXIMPBAS.		This	component	must	be	written
to	be	capable	of	performing	the	required	processing	to	import	the	transaction
data	for	this	transaction	document,	typically	from	staging	files	that	have	been
populated	by	the	associated	transformation	map.

OUTPUT	Parameters:
There	are	no	output	parameters	for	this	activity.

TXDOC_KEYS
This	activity	retrieves	the	control	numbers	and	staging	file	key	values	for	each
transaction	set	(message)	applicable	to	the	specified	pending	outbound
transaction	document.
This	can	optionally	be	used	as	an	alternate	means,	for	example,	of	passing	the
staging	file	key	values	to	the	outbound	transformation	map.
Refer	also	to	the	description	of	the	FOR_EACH_TXDOCT	activity	which
performs	a	similar	function,	but	implemented	as	an	iterator	activity.
INPUT	Parameters:

DOCNUMBER	:	Required
Specifies	the	transaction	document	envelope	number	whose	control	numbers
and	staging	file	key	values	are	to	be	retrieved.

OUTPUT	Parameters:
CTRLNUMBER_IC	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the
interchange	control	numbers	for	each	transaction	set	(message)	registered	for
the	document.
CTRLNUMBER_GP	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the	group
control	numbers	for	each	transaction	set	(message)	registered	for	the
document.
CTRLNUMBER_MS	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the
transaction	set	(message)	numbers	for	each	transaction	set	(message)
registered	for	the	document.
DOCNUMBER_IC	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the	internal
document	interchange	sequence	numbers	for	each	transaction	set	(message)
registered	for	the	document.		These	values	correspond	to	the	key	field
DXXINTID	in	the	staging	database	files	DXX2IN,	DXX3GP	and	DXX4MS.
DOCNUMBER_GP	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the	internal
document	group	sequence	numbers	for	each	transaction	set	(message)
registered	for	the	document.		These	values	correspond	to	the	key	field

DXXGRPID	in	the	staging	database	files	DXX3GP	and	DXX4MS.
DOCNUMBER_MS	:
Upon	successful	completion,	this	parameter	will	contain	a	list	of	the	internal
document	transaction	set	(message)	sequence	numbers	for	each	transaction
set	(message)	registered	for	the	document.		These	values	correspond	to	the
key	field	DXXMSGID	in	the	staging	database	file	DXX4MS.
DOCDATAKEY01DOCDATAKEY02
DOCDATAKEY03
DOCDATAKEY04
DOCDATAKEY05
DOCDATAKEY06	:
Upon	successful	completion,	these	parameters	will	contain	lists	of	the
"application-defined"	staging	file	key	values	for	each	transaction	set
(message)	registered	for	the	document.

TXDOC_REGISTER
This	activity	registers	an	in-coming	or	out-going	transaction	document	in	the
transaction	document	register.		Normally	this	should	be	done	as	soon	as	the
document	becomes	available	to	the	process	and	before	significant	processing	is
done	for	it.
After	registering	the	document,	and	as	the	processing	sequence	proceeds	to
process	the	transaction	document,	it	records	its	progress	and	updates	the	status
in	the	transaction	document	register	using	the	TXDOC_STATUS	activity.
INPUT	Parameters:

TRADINGPARTNER	:	Optional
Specifies	the	identifier	of	the	trading	partner	for	which	the	transaction
document	is	being	registered.		If	not	specified,	the	activity	will	use	the	value
of	the	*TRADINGPARTNER	built-in	variable.		Otherwise,	you	should
specify	a	variable	or	literal	that	contains	the	required	trading	partner	ID.		The
trading	partner	is	required	by	this	activity,	so	if	you	do	not	provide	a	valid
trading	partner	identifier	and	the	*TRADINGPARTNER	built-in	variable	is
not	set,	the	activity	will	end	in	error.
DOCDIR	:	Optional
Specifies	the	direction	(I/O)	for	the	transaction	document	exchange.
DOCFILE	:	Required
This	parameter	specifies	the	path	and	name	of	the	transaction	document	file.
DOCTYPE	:	Optional
This	parameter	may	be	used	to	specify	the	document	type	for	the	transaction
document.		If	(as	is	frequently	the	case)	the	document	type	is	not	known	at
the	time	the	transaction	document	is	registered,	it	can	be	specified	at	a	later
point	using	the	TXDOC_STATUS	activity.		If	specified,	the	document	type
should	be	a	document	type	identifier	as	defined	in	LANSA	Composer's
Document	types	definitions,	for	example	'EDI'.
DOCCONTENTTYPE	:	Optional
This	parameter	may	be	used	to	specify	the	document	content	type	for	the
transaction	document.		If	(as	is	frequently	the	case)	the	document	content
type	is	not	known	at	the	time	the	transaction	document	is	registered,	it	can	be
specified	at	a	later	point	using	the	TXDOC_STATUS	activity.		If	specified,
the	content	type	can	be	any	string	that	identifies	the	content	type	-	for
example,	you	might	use	the	EDI	transaction	type	(eg:	'850')	for	an	EDI

document	or	the	XML	document	root	element	name	for	an	XML	document.
DOCPARENT	:	Optional
If	applicable,	this	parameter	can	specify	an	existing	registered	transaction
document	number	that	represents	the	parent	of	this	transaction	document.	
This	is	typically	applied	in	cases	where	an	in-coming	compound	transaction
document	is	split	into	individual	transaction	documents	before	further
processing.
DOCRESPONSETO	:	Optional
If	applicable,	this	parameter	can	specify	an	existing	registered	transaction
document	number	to	which	this	transaction	document	is	a	response.		For
example,	when	generating	an	acknowledgement	for	an	in-coming
transaction.
DOCNUMBERPREASSIGNED	:	Optional
If	a	transaction	document	envelope	number	has	already	been	assigned	to	the
new	transaction	document	(by	some	other	process	or	activity),	then	it	should
be	specified	in	this	parameter.		Otherwise	the	activity	will	assign	a	new
transaction	document	envelope	number.

OUTPUT	Parameters:
DOCNUMBER	:
Upon	successful	completion,	this	parameter	will	contain	the	transaction
document	envelope	number	assigned	to	the	new	transaction	document.		This
number	should	be	saved	and	specified	on	subsequent	TXDOC_STATUS
activity	calls	relating	to	this	transaction	document.

TXDOC_REGOUTBND
This	activity	registers	a	pending	outbound	transaction	document	for	later
processing	by	an	outbound	process	such	as	the	supplied	TXDOC_OUTBOUND
process.
Note	that	this	registers	the	necessity	for	the	outbound	document	-	the
application	typically	uses	this	activity	(or	one	of	the	functionally	equivalent
APIs)	upon	an	event	occurring	that	will	require	an	outbound	transaction
document	to	be	generated.
To	put	this	another	way,	the	outbound	document	is	typically	not	existing	when
this	activity	is	run,	but,	rather,	it	is	created	by	the	subsequent	outbound
transaction	document	process.		(The	activity	FOR_EACH_TXDOCO	is
provided	for	use	in	the	outbound	transaction	document	process	for	identifying
the	pending	outbound	transaction	documents).
INPUT	Parameters:

TRADINGPARTNER	:	Required
Specifies	the	trading	partner	for	which	the	pending	outbound	transaction
document	is	registered.		This	parameter	is	required.
DOCTYPE	:	Required
This	parameter	specifies	the	document	type	for	the	pending	outbound
transaction	document.		The	document	type	must	be	a	document	type
identifier	as	defined	in	LANSA	Composer's	Document	types	definitions,	for
example	'EDI'.
DOCSTD	:	Required
This	parameter	specifies	the	transaction	document	standard	for	the	pending
outbound	transaction	document.		The	document	standard	must	be	a
document	standard	identifier	as	defined	in	LANSA	Composer's	Document
standards	definitions,	for	example	'X12'.
DOCSTDVER	:	Required
This	parameter	specifies	the	transaction	document	standard	version	for	the
pending	outbound	transaction	document.		The	document	standard	version
must	be	a	document	standard	version	identifier	as	defined	in	LANSA
Composer's	Document	standards	definitions,	for	example	'004020'.
DOCPRODTEST	:	Optional
This	parameter	specifies	whether	the	transaction	document	will	be	for
production	(P)	or	test	(T)	use.		It	is	up	to	the	specific	export	processor

implementation	how	it	makes	use	of	this	value	-	for	EDI	X12	transactions,	it
would	typically	be	used	to	fill	the	ISA15	(use)	field	of	the	interchange
header.
DOCCONTENTTYPE	:	Required
This	parameter	specifies	the	document	content	type	for	the	pending	outbound
transaction	document.		The	content	type	can	be	any	string	that	identifies	the
content	type	-	for	example,	you	might	use	the	EDI	transaction	type	(eg:	'850')
for	an	EDI	document	or	the	XML	document	root	element	name	for	an	XML
document.
DOCDATAKEY01	:	Required
This	parameter	specifies	application-defined	"key"	information	that	will
allow	the	export	processor	to	identify	the	application	data	associated	with	the
pending	outbound	transaction	document.
DOCDATAKEY02	DOCDATAKEY03	
DOCDATAKEY04	
DOCDATAKEY05
DOCDATAKEY06	:	Optional
These	parameters	may	be	used	to	specify	further	application-defined	"key"
information.

OUTPUT	Parameters:
DOCNUMBER	:
Upon	successful	completion,	this	parameter	will	contain	the	transaction
document	envelope	number	assigned	to	the	new	pending	outbound
transaction	document.

TXDOC_REGOUTEDI
This	activity	is	a	specialised	extension	of	the	TXDOC_REGOUTBND	activity
that	provides	additional	parameters	to	facilitate	registering	pending	outbound
EDIFACT	transaction	documents.		It	registers	the	pending	outbound	transaction
document	for	later	processing	by	an	outbound	process	such	as	the	supplied
TXDOC_OUTBOUND	process.
Note	that	this	registers	the	necessity	for	the	outbound	document	-	the
application	typically	uses	this	activity	(or	one	of	the	functionally	equivalent
APIs)	upon	an	event	occurring	that	will	require	an	outbound	transaction
document	to	be	generated.
To	put	this	another	way,	the	outbound	document	is	typically	not	existing	when
this	activity	is	run,	but,	rather,	it	is	created	by	the	subsequent	outbound
transaction	document	process.		(The	activity	FOR_EACH_TXDOCO	is
provided	for	use	in	the	outbound	transaction	document	process	for	identifying
the	pending	outbound	transaction	documents).
INPUT	Parameters:

TRADINGPARTNER	:	Required
Specifies	the	trading	partner	for	which	the	pending	outbound	transaction
document	is	registered.		This	parameter	is	required.
DOCTYPE	:	Required
This	parameter	specifies	the	document	type	for	the	pending	outbound
transaction	document.		The	document	type	must	be	a	document	type
identifier	as	defined	in	LANSA	Composer's	Document	types	definitions,	for
example	'EDI'.
DOCSTD	:	Required
This	parameter	specifies	the	transaction	document	standard	for	the	pending
outbound	transaction	document.		The	document	standard	must	be	a
document	standard	identifier	as	defined	in	LANSA	Composer's	Document
standards	definitions,	for	example	'EDIFACT'.
DOCSTDVER	:	Required
This	parameter	specifies	the	transaction	document	standard	version	for	the
pending	outbound	transaction	document.		The	document	standard	version
must	be	a	document	standard	version	identifier	as	defined	in	LANSA
Composer's	Document	standards	definitions,	for	example	'D06A'.
DOCPRODTEST	:	Optional

This	parameter	specifies	whether	the	transaction	document	will	be	for
production	(P)	or	test	(T)	use.		It	is	up	to	the	specific	export	processor
implementation	how	it	makes	use	of	this	value	-	for	EDIFACT	transactions,
it	would	typically	be	used	to	populate	and/or	condition	the	UNB11	(test
indicator)	field	of	the	interchange	header.
DOCCONTENTTYPE	:	Required
This	parameter	specifies	the	document	content	type	for	the	pending	outbound
transaction	document.		The	content	type	can	be	any	string	that	identifies	the
content	type	-	for	example,	you	might	use	the	EDI	transaction	type	(eg:
'INVOIC')	for	an	EDI	document	or	the	XML	document	root	element	name
for	an	XML	document.
DOCGROUP	:	Optional
This	parameter	specifies	whether	a	functional	group	(UNG	/	UNE	segments)
is	to	be	included	in	the	outbound	transaction	document.		It	defaults	to	'N'
(no).
Although	the	activity	records	this	value	in	LANSA	Composer's	document
register	(in	field	DXXGPABS	in	file	DXX3GP),	it	is	your	responsibility	to
design	your	outbound	Transformation	Map	to	read	and	respect	the	value	in
order	to	include	or	exclude	the	functional	group	from	the	resulting	EDI
document.
(If	a	single	EDIFACT	document	includes	messages	of	different	types,	each
different	type	is	placed	into	a	group	introduced	by	a	UNG	Functional	Group
Header	segment	and	terminated	by	a	UNE	Functional	Group	Trailer
segment.		In	practice,	there	is	no	need	in	most	EDIFACT	applications	to	mix
different	message	types	in	a	single	transmission,	and	the	Group	level	is	not
generally	used.		Specifically,	it	is	never	used	in	book	trade	and	library
applications.)
DOCCTY	DOCISA11	
DOCISA12	
DOCISA14	
DOCGS01
DOCTRVR
DOCTRRL
DOCTRCA	
DOCTRAC	:	Optional
These	parameters	may	be	used	to	specify	values	for	selected	EDI	interchange
header	(UNB),	group	header	(UNG)	and	message	segments.		These	values,	if

specified,	will	be	written	to	LANSA	Composer's	document	register	in	the
files	DXX2IN,	DXX3GP	and	DXX4MS	and	can	subsequently	be	accessed	in
the	Transformation	Map	for	the	outbound	document	to	write	the	values
directly	to	the	resulting	EDI	document.		It	is	not	mandatory	that	you	provide
all	these	values	-	depending	on	the	particulars	of	your	implementation,	you
may	derive	some	or	all	of	these	values	in	an	export	processor	and/or
outbound	Transformation	Map	before	or	in	the	course	of	preparing	the
outbound	EDI	document.
DOCDATAKEY01	
DOCDATAKEY02	
DOCDATAKEY03	
DOCDATAKEY04	
DOCDATAKEY05
DOCDATAKEY06	:	Optional
These	parameters	may	be	used	to	specify	application-defined	"key"
information	that	will	allow	the	export	processor	and/or	outbound
Transformation	Map	to	identify	the	application	data	associated	with	the
pending	outbound	transaction	document.

OUTPUT	Parameters:
DOCNUMBER	:
Upon	successful	completion,	this	parameter	will	contain	the	transaction
document	envelope	number	assigned	to	the	new	pending	outbound
transaction	document.

TXDOC_REGOUTX12
This	activity	is	a	specialised	extension	of	the	TXDOC_REGOUTBND	activity
that	provides	additional	parameters	to	facilitate	registering	pending	outbound
EDI	X12	transaction	documents.		It	registers	the	pending	outbound	transaction
document	for	later	processing	by	an	outbound	process	such	as	the	supplied
TXDOC_OUTBOUND	process.
Note	that	this	registers	the	necessity	for	the	outbound	document	-	the
application	typically	uses	this	activity	(or	one	of	the	functionally	equivalent
APIs)	upon	an	event	occurring	that	will	require	an	outbound	transaction
document	to	be	generated.
To	put	this	another	way,	the	outbound	document	is	typically	not	existing	when
this	activity	is	run,	but,	rather,	it	is	created	by	the	subsequent	outbound
transaction	document	process.		(The	activity	FOR_EACH_TXDOCO	is
provided	for	use	in	the	outbound	transaction	document	process	for	identifying
the	pending	outbound	transaction	documents).
INPUT	Parameters:

TRADINGPARTNER	:	Required
Specifies	the	trading	partner	for	which	the	pending	outbound	transaction
document	is	registered.		This	parameter	is	required.
DOCTYPE	:	Required
This	parameter	specifies	the	document	type	for	the	pending	outbound
transaction	document.		The	document	type	must	be	a	document	type
identifier	as	defined	in	LANSA	Composer's	Document	types	definitions,	for
example	'EDI'.
DOCSTD	:	Required
This	parameter	specifies	the	transaction	document	standard	for	the	pending
outbound	transaction	document.		The	document	standard	must	be	a
document	standard	identifier	as	defined	in	LANSA	Composer's	Document
standards	definitions,	for	example	'X12'.
DOCSTDVER	:	Required
This	parameter	specifies	the	transaction	document	standard	version	for	the
pending	outbound	transaction	document.		The	document	standard	version
must	be	a	document	standard	version	identifier	as	defined	in	LANSA
Composer's	Document	standards	definitions,	for	example	'004020'.
DOCPRODTEST	:	Optional

This	parameter	specifies	whether	the	transaction	document	will	be	for
production	(P)	or	test	(T)	use.		It	is	up	to	the	specific	export	processor
implementation	how	it	makes	use	of	this	value	-	for	EDI	X12	transactions,	it
would	typically	be	used	to	fill	the	ISA15	(use)	field	of	the	interchange
header.
DOCCONTENTTYPE	:	Required
This	parameter	specifies	the	document	content	type	for	the	pending	outbound
transaction	document.		The	content	type	can	be	any	string	that	identifies	the
content	type	-	for	example,	you	might	use	the	EDI	transaction	type	(eg:	'850')
for	an	EDI	document	or	the	XML	document	root	element	name	for	an	XML
document.
DOCCTY	DOCISA11	
DOCISA12	
DOCISA14	
DOCGS01
DOCISA01
DOCISA02	
DOCISA03	
DOCISA04	:	Optional
These	parameters	may	be	used	to	specify	values	for	selected	EDI	X12
interchange	header	(ISA)	and	group	header	(GS)	segments.		These	values,	if
specified,	will	be	written	to	LANSA	Composer's	document	register	in	the
files	DXX2IN	and	DXX3GP	and	can	subsequently	be	accessed	in	the
Transformation	Map	for	the	outbound	document	to	write	the	values	directly
to	the	resulting	EDI	document.		It	is	not	mandatory	that	you	provide	all	these
values	-	depending	on	the	particulars	of	your	implementation,	you	may
derive	some	or	all	of	these	values	in	an	export	processor	and/or	outbound
Transformation	Map	before	or	in	the	course	of	preparing	the	outbound	EDI
document.
DOCDATAKEY01	
DOCDATAKEY02	
DOCDATAKEY03	
DOCDATAKEY04	
DOCDATAKEY05
DOCDATAKEY06	:	Optional
These	parameters	may	be	used	to	specify	application-defined	"key"
information	that	will	allow	the	export	processor	and/or	outbound

Transformation	Map	to	identify	the	application	data	associated	with	the
pending	outbound	transaction	document.

OUTPUT	Parameters:
DOCNUMBER	:
Upon	successful	completion,	this	parameter	will	contain	the	transaction
document	envelope	number	assigned	to	the	new	pending	outbound
transaction	document.

TXDOC_STATUS
This	activity	updates	the	status	of	a	transaction	document	in	the	transaction
document	register	and	records	its	progress	in	the	transaction	document	log.
INPUT	Parameters:

DOCNUMBER	:	Required
This	parameter	must	specify	the	transaction	document	envelope	number	for
the	transaction	document	whose	status	is	being	updated.		This	number	is
normally	assigned	by	the	TXDOC_REGISTER	activity.
DOCSTATUS	:	Required
Specifies	the	new	transaction	document	status.		It	can	be	specified	either	as
one	of	a	range	of	pre-defined	values	(listed	below),	OR	as	a	user-specified
status	string	value.
DOCFILE	:	Optional
This	parameter	may	be	used	to	specify	a	new	path	and	name	for	the
transaction	document	file.		This	is	typically	used	when	the	transaction
document	is	moved	and/or	renamed	in	the	course	of	processing.
DOCTYPE	:	Optional
This	parameter	may	be	used	to	specify	a	new	document	type	for	the
transaction	document.		This	is	typically	used	after	"discovering"	the
document	type	during	the	course	of	processing.		The	document	type	should
be	a	document	type	identifier	as	defined	in	LANSA	Composer's	Document
types	definitions,	for	example	'EDI'.
DOCCONTENTTYPE	:	Optional
This	parameter	may	be	used	to	specify	a	new	document	content	type	for	the
transaction	document.		This	is	typically	used	after	"discovering"	the
document	content	type	during	the	course	of	processing.		If	specified,	the
content	type	can	be	any	string	that	identifies	the	content	type	-	for	example,
you	might	use	the	EDI	transaction	type	(eg:	'850')	for	an	EDI	document	or
the	XML	document	root	element	name	for	an	XML	document.

OUTPUT	Parameters:
There	are	no	output	parameters	for	this	activity.

Pre-defined	Transaction	Document	Status	Values
The	following	is	a	list	of	pre-defined	transaction	document	status	code	values
that	may	be	specified	in	the	DOCSTATUS	parameter	of	the	TXDOC_STATUS

activity:

Status	code Meaning

*REGISTERED Registered	transaction	document

*DOCUMENTTYPEOK Discovered	document	type

*DOCUMENTTYPEUNK Unrecognised	document	type

*DOCSPLITOK Document	split	successfully

*SPLITDOCSOK Split	dpocuments	processed	successfully

*CONTENTMATCHTPOK Matched	trading	partner	to	document	content

*CONTENTTYPEOK Discovered	content	type

*CONTENTTYPEUNK Unrecognised	content	type

*CONTENTVALID Validated	document	content	successfully

*CONTENTINVALID Invalid	document	content

*TRANSFORMFOUNDOK Found	transformation	map	for	document

*TRANSFORMNOTFOUND No	matching	transformation	map	for
document

*TRANSFORMEDOK Transformation	successful	for	document

*TRANSFORMFAILED Transformation	failed	for	document

*IMPORTEDOK Imported	transaction	data	successfully	for
transaction	document

*IMPORTFAILED Import	failed	for	transaction	document

*ACKNOWLEDGEDOK Acknowledgement	completed	for	transaction
document

*ACKNOWLEDGEFAILED Acknowledgement	failed	for	transaction
document

*READYTOSENDOK Ready	to	send	transaction	document

*COMPLETEOK Successfully	completed	processing	transaction
document

*COMPLETEERROR Error(s)	occurred	while	processing	transaction
document

	

UNIQUEID
This	activity	generates	a	unique	(*)	identifier.		The	identifier	might	be	suitable
for	use	as	a	database	surrogate	key,	file	name,	message	identifier	or	for	many
other	purposes.
The	generated	identifier	is	a	thirty-two	character	string	consisting	entirely	of
digits	0-9	and	characters	A-F.		For	example:
31EC378D30074175B15212E11ACEAF0C.
(*)	For	almost	all	purposes	and	circumstances	the	generated	identifier	will	be
unique	in	space	and	in	time	-	that	is	across	all	other	instances	generated	by	this
activity	at	any	time	on	the	same	or	different	servers.
INPUT	Parameters:

None.
OUTPUT	Parameters:

UNIQUEID	:
Upon	completion,	this	parameter	contains	the	generated	32	character
identifier.

UPPERCASE
This	activity	returns	the	specified	input	string	with	all	lowercase	characters
converted	to	uppercase.
INPUT	Parameters:

STRINGIN	:	Required
This	parameter	specifies	the	string	to	be	converted.

OUTPUT	Parameters:
STRINGOUT	:
Upon	completion,	this	parameter	will	contain	the	converted	string.

WAIT_FILESREADY
This	activity	is	intended	for	use	in	processing	sequences	that	identify	and
process	newly-discovered	files.		For	example,	a	processing	sequence	that	uses
the	WATCH_DIRECTORY	activity	may	need	to	also	use	this	activity.
Such	applications	may	not	be	able	to	safely	assume	that	the	file	just	discovered
is	immediately	available	for	further	processing.		On	the	contrary,	the	detection
of	a	new	file	will	frequently	precede	the	file's	availability	for	further	processing
–	often	because	the	application	that	created	the	file	is	still	writing	its	contents.
The	WAIT_FILESREADY	activity	provides	services	designed	to	allow	LANSA
Composer	solutions	to	address	these	issues	and	prevent	contention	conditions
that	may	otherwise	arise.		These	services	include:

Providing	a	cache	of	files	awaiting	"ready"	status;
Permitting	the	solution	to	add	newly-discovered	files	to	the	cache;
Performing	periodic	checks	on	the	status	and	selected	metrics	of	each
cached	file	to	determine	its	"ready"	status;
Notifying	the	solution	when	a	cached	file	is	considered	"ready"	for	further
processing.
The	file	cache	that	the	WAIT_FILESREADY	activity	provides	is	"global"
to	the	Processing	Sequence.		In	other	words,	multiple	instances	of	the
WAIT_FILESREADY	activity	in	one	processing	sequence	will	refer	to
the	same	cache.

This	is	a	specialized	and	advanced	activity	that	behaves	in	a	different	way	to
many	other	LANSA	Composer	activities	that	you	may	be	more	used	to.		You
should	ensure	you	thoroughly	understand	the	activity	before	designing	your
solution	to	use	it.
This	activity	will	usually	appear	in	some	sort	of	loop	in	a	processing	sequence	–
for	example	inside	the	block	associated	with	an	instance	of	the
WATCH_DIRECTORY	activity:

When	executed	inside	the	loop,	the	processing	sequence	usually	wants	to
add	a	newly-discovered	file	to	the	cache	provided	by	the
WAIT_FILESREADY	activity.	
It	will	usually	request	that	the	activity	also	return	a	file	that	is	considered
"ready"	for	further	processing,	if	there	is	one.
Both	these	operations	can	be	done	in	one	call	to	WAIT_FILESREADY	when

you	use	the	default	*PUTGET	value	for	the	OPERATION	parameter.
It	is	vital	to	understand	that	in	that	one	execution	of	the	WAIT_FILESREADY
activity	like	this,	the	file	path	added	to	the	cache	and	the	file	path	retrieved	from
the	cache	(if	any)	will	NEVER	refer	to	the	same	file.		Furthermore,	there	will
ALWAYS	be	a	delay	between	adding	a	file	to	the	cache	and	a	later	execution	of
WAIT_FILESREADY	reporting	that	it	has	reached	"ready"	state	–	indeed	this
delay	is	a	part	of	the	very	intention	of	this	activity.
If	you	have	understood	this,	then	you	will	most	likely	also	appreciate	that	at	any
point	in	time	there	may	well	be	one	or	more	files	in	the	cache	that	have	not	yet
been	assessed	as	"ready"	and	that	await	further	processing.		Understanding	this
is	very	important,	because	when	your	processing	sequence	completes	the	loop
that	contains	the	WAIT_FILESREADY	activity,	it	has	not	necessarily	processed
all	the	files	that	were	added	to	the	cache.
Once	you	have	understood	these	two	things,	then	you	are	a	well	on	the	path	to
being	able	to	implement	the	WAIT_FILESREADY	activity	successfully	in	your
solution.
You	can	refer	to	the	EXAMPLE_WATCH01	Processing	Sequence	for	an
example	of	using	the	WAIT_FILESREADY	activity.

Note:	This	activity	requires	that	the	LANSA	Integrator	JSM	is
executing	on	a	JVM	at	Java	7	or	above.

Note:	the	file	status	and	metrics	checked	by	the	WAIT_FILESREADY
activity	to	determine	"ready"	state	will	be	sufficient	for	many
solutions.		However	some	applications	may	call	for	checks	that	are	not
performed	by	WAIT_FILESREADY.		You	should	make	sure	you
understand	the	characteristics	of	the	environment	in	which	you
propose	to	use	WAIT_FILESREADY	to	make	sure	that	the	activity	is
suitable	for	your	purpose.

Restarting	the	WAIT_FILESREADY	activity
The	WAIT_FILESREADY	activity	supports	processing	sequence	restart	if	an
error	occurs	while	it	is	active.		However,	the	contents	of	the	files	cache	are	not
automatically	restored.		Consequently,	it	is	possible	that	some	previously	cached
files	may	have	been	lost	when	the	activity	restarts.		Your	solution	may	need	to
take	account	of	this.		Often,	when	used	with	the	WATCH_DIRECTORY	iterator
activity	with	*YES	specified	for	the	EXISTINGCONTENTS	parameter,	for
example,	the	loss	of	the	cache	will	not	be	significant,	and	no	special	action	will

be	required.
INPUT	Parameters:

OPERATION:	Optional
This	parameter	specifies	the	action(s)	that	the	activity	is	to	perform.		The
default	value	used	is	*PUTGET.
You	may	specify	one	of	the	following:
		*PUT:	adds	the	file	specified	by	the	FILEPATHPUT	parameter	to	the	cache,
using	the	values	specified	by	the	INTERVALS,	READYREPEATS	and
EVALUATE	parameters	as	the	values	that	will	apply	to	determing	the
"ready"	status	of	this	file.
		*GET:	retrieves	the	next	available	file	from	the	files	cache	that	has	reached
"ready"	status	(if	there	is	one),	removes	it	from	the	cache	and	puts	its	file
path	into	the	FILEPATHGET	output	parameter.
		*PUTGET:	combines	the	functions	of	both	the	*PUT	and	*GET	operation
		*GETNOTREADY:	retrieves	a	file	from	the	files	cache	without	evaluating
its	"ready"	status	(if	there	is	one),	removes	it	from	the	cache	and	puts	its	file
path	into	the	FILEPATHGET	output	parameter.		When	this	operation	is	used,
the	files	are	retrieved	in	FIFO	order.		You	might	use	this	operation	in	a	loop
(while	COUNTWAITING	is	not	zero,	for	example)	when	a	processing
sequence	is	ending	to	take	some	action	of	your	choosing	for	any	files	that
remain	in	the	files	"ready"	cache.
		*LOG:	writes	a	processing	sequence	log	entry	for	each	file	remaining	in	the
cache.		The	log	entry	identifies	the	file	and	a	value	that	indicates	the	last
reason	that	the	file	was	evaluated	to	be	not	"ready".		This	operation	is
intended	for	use	during	the	design	phase	of	your	solution	–	it	should	not
normally	remain	in	a	completed	solution.
FILEPATHPUT:	Optional
If	*PUT	or	*PUTGET	is	specified	for	the	OPERATION	parameter,	this
parameter	must	specify	the	full	path	to	the	file	that	is	to	be	added	to	the	files
cache.
INTERVALS:	Optional
If	*PUT	or	*PUTGET	is	specified	for	the	OPERATION	parameter,	this
parameter	may	specify	the	intervals	(in	seconds)	at	which	the	file's	"ready"
status	will	be	evaluated.		In	other	words,	the	file's	status	will	not	be	evaluated
until	at	least	this	number	of	seconds	has	elapsed	since	the	file	was	added	or
since	the	last	status	check	was	performed.

If	you	do	not	specify	a	value,	the	default	value	used	is	40	(seconds).
READYREPEATS:	Optional
If	*PUT	or	*PUTGET	is	specified	for	the	OPERATION	parameter,	this
parameter	may	specify	the	number	of	consecutive	times	the	file	must	be
assessed	as	"ready"	before	it	is	finally	released	from	the	cache	in	response	to
a	*GET	or	*PUTGET	operation.
If	you	do	not	specify	a	value,	the	default	value	used	is	3	(three).		Note	that,
when	used	with	the	default	value	of	40	for	the	INTERVALS	parameter,	this
will	result	in	at	least	two	minutes	elapsed	before	the	activity	will	consider	the
file	as	having	reached	"ready"	status,	even	if	no	changes	to	the	file	occurred
after	it	was	added	to	the	files	cache.
EVALUATE:	Optional
If	*PUT	or	*PUTGET	is	specified	for	the	OPERATION	parameter,	this
parameter	specifies	the	criteria	or	file	attributes	that	are	considered	when
subsequently	evaluating	the	file's	"ready"	status.		You	may	specify	one	or
more	of	the	following	values	(each	value	should	be	separated	by	at	least	one
space):
		*ZEROLEN:		this	test	stipulates	that	a	zero-length	file	will	NOT	be
considered	to	be	"ready".
		*SIZE:	this	test	requires	that	the	file's	size	must	not	have	changed	between
consecutive	status	checks	in	order	for	the	file	to	be	eligible	for	"ready"	state.
		*LASTCHANGED:		this	test	requires	that	the	file's	last-modified	date	and
time	must	not	have	changed	between	consecutive	status	checks	in	order	for
the	file	to	be	eligible	for	"ready"	state.
		*READABLE:		this	test	checks	that	a	file	exists	and	that	the	job	has
appropriate	privileges	that	would	allow	it	to	open	the	file	for	reading.
		*LOCKABLE:		this	test	attempts	to	acquire	an	exclusive	lock	on	the	file
(the	lock	is	immediately	released,	if	obtained).		If	the	lock	cannot	be
acquired	the	file	will	NOT	be	considered	to	be	"ready".
The	default	value	includes	all	the	criteria	listed	above.		All	the	specified
criteria	must	be	satisfied	for	the	file	to	be	considered	"ready"	and	therefore
eligible	to	be	released	from	the	cache	on	a	*GET	or	*PUTGET	operation.
NB:	You	must	specify	quote	marks	around	the	list	of	value(s)	to	distinguish
them	from	built-in	variable	names.

OUTPUT	Parameters:
RESULTPUT:

If	*PUT	or	*PUTGET	is	specified	for	the	OPERATION	parameter,	this
output	parameter	will	contain	the	result	of	the	*PUT	operation.		It	will
contain	one	of	the	following	values:
		OK:		the	file	was	successfully	added	to	the	files	cache.
		ER:		an	error	occurred	while	attempting	to	add	the	file	to	the	files	cache.
Note	that	the	error	condition	does	not	result	in	the	activity	ending	with	an
error	status	–	in	other	words,	a	CATCH	processing	sequence	directive	will
not	be	fired	for	this	condition.		You	need	to	test	the	value	of	the
RESULTPUT	operation	if	you	wish	to	specifically	handle	the	'ER'	case.
RESULTGET:
If	*GET,	*PUTGET	or	*GETNOTREADY	is	specified	for	the	OPERATION
parameter,	this	output	parameter	will	contain	the	result	of	the	*GET	or
*GETNOTREADY	operation.		It	will	contain	one	of	the	following	values:
		OK:		a	file	in	the	cache	was	evaluated	as	"ready"	(*GET	and	*PUTGET
operations	only),	removed	from	the	cache	and	its	file	path	was	put	into	the
FILEPATHGET	output	parameter.
		EMPTY:		no	file	was	retrieved	from	the	cache	because	the	files	cache	is
presently	empty.
		NOTREADY:		no	file	was	retrieved	from	the	cache	because	no	files	in	the
cache	were	evaluated	as	"ready"	(*GET	and	*PUTGET	operations	only).
Your	processing	sequence	should,	at	the	minimum,	test	for	the	'OK'	result
code	and	treat	it	as	the	trigger	for	further	processing	of	the	file	that	was
retrieved.
FILEPATHGET:
If	*GET,	*PUTGET	or	*GETNOTREADY	is	specified	for	the	OPERATION
parameter	and	if	the	RESULTGET	output	parameter	contains	'OK',	then	this
output	parameter	will	contain	the	file	path	of	the	file	that	was	retrieved	from
the	cache.
REASONNOTREADY:
If	*GETNOTREADY	is	specified	for	the	OPERATION	parameter	and	if	the
RESULTGET	output	parameter	contains	'OK',	then	this	output	parameter
will	contain	a	value	that	indicates	the	reason	that	the	file	was	last	evaluated
to	be	not	"ready".		The	reason	codes	can	include	*NOTEVALUATED.
*ZEROLEN,	*SIZE,	*LASTCHANGED,	*READABLE,	*LOCKABLE	and
*READYREPEATS.
COUNTWAITING:

Irrespective	of	the	requested	operation	or	its	result,	this	output	parameter	will
contain	a	count	of	the	number	of	files	remaing	in	the	files	cache.

WATCH_DIRECTORY
This	is	an	iterator	activity	that	watches	a	specified	directory	for	new,	changed
and/or	deleted	files	and	sub-directories.		Upon	each	iteration,	it	will	output
details	of	the	file	or	sub-directory	affected,	if	any.
The	processing	logic	nested	beneath	the	WATCH_DIRECTORY	activity	is
repeated	each	time	that	a	file	or	sub-directory	is	added,	changed	or	deleted	or
each	time	the	specified	wait	time	(WAIT	parameter)	is	exceeded.
A	stereotypical	application	of	this	activity	is	where	you	have	a	particular
directory	in	which	other	users	or	applications	can	place	new	files	that	need	to	be
processed	by	your	solution	–	a"dropbox"	directory.		This	activity	enables	you	to
implement	such	a	solution	by	watching	that	directory	and	receiving	notifications
when	a	file	is	added.
There	remains	an	important	consideration	for	any	application	that	performs	this
type	of	processing,	and	especially	when	doing	so	without	complete
understanding	and/or	control	over	the	other	users	or	applications	that	are
submitting	files	for	processing.	
Your	solution	will	receive	a	notification	of	a	*CREATE	event,	for	example,	as
soon	as	a	file	is	added	to	the	watched	directory.		But	that	does	not	necessarily
mean	the	file	is	ready	or	available	for	your	solution	to	process.		For	example,
the	source	application	may	still	be	writing	it,	or	even	may	have	created	it	with	a
temporary	file	name	before	renaming	it	when	the	file	is	complete.		Your	solution
may	need	a	means	to	decide	when	a	new	(or	changed)	file	is	ready	for	it	to
process.
LANSA	Composer	provides	the	WAIT_FILESREADY	activity	to	assist	with
many	such	situations.		If	you	are	using	the	WATCH_DIRECTORY	activity,	you
may	need	to	use	it	in	conjunction	with	the	WAIT_FILESREADY	activity	for	a
robust	solution.
You	can	refer	to	the	EXAMPLE_WATCH01	Processing	Sequence	for	an
example	of	using	the	WATCH_DIRECTORY	activity	in	conjunction	with	the
WAIT_FILESREADY	activity.

Note:	This	activity	requires	that	the	LANSA	Integrator	JSM	is
executing	on	a	JVM	at	Java	7	or	above.

Note:	Unlike	many	other	iterator	activities,	this	activity	will	iterate
indefinitely	unless	you	take	specific	action	in	the	iterator	block	to	exit

the	iteration.		It	is	designed	to	be	used	in	a	potentially	long	running
processing	sequence	that	perpetually	waits	on	a	message	arriving	at
the	specified	message	queue	and	then	processes	the	message	or
initiates	another	processing	sequence	to	process	the	message.		For
more	information	refer	to	Considerations	for	Extended	Duration
Processing	Sequences.

Restarting	the	WATCH_DIRECTORY	activity
The	WATCH_DIRECTORY	activity	supports	processing	sequence	restart	if	an
error	occurs	while	it	is	active.		However,	it	is	possible	that	some	previously
queued	file	system	events	may	have	been	lost	when	the	activity	restarts.		Your
solution	may	need	to	take	account	of	this.
If	your	solution	uses	the	"drop-box"	approach	where	the	directory	should
always	be	empty	of	anything	but	unprocessed	files,	then	you	will	probably
specify	*YES	for	the	EXISTINGCONTENTS	parameter.		In	this	case	the
existing	contents	of	the	specified	directory	will	be	enumerated	and	iterated
when	the	processing	sequence	restarts,	and	you	will	usually	need	to	take	no
further	action	with	respect	to	the	processing	sequence	restart	support.
INPUT	Parameters:

DIRECTORY:	Required
This	parameter	must	specify	the	full	path	to	the	directory	to	be	watched.
RECURSIVE:	Optional
This	parameter	specifies	whether	descendant	directories	of	the	specified
directory	are	also	watched.		The	default	value	is	*NO	which	means	that
descendant	directories	are	not	watched.		You	may	specify	*YES	if	you	want
the	activity	to	watch	the	descendant	directories.		If	you	specify	*YES	and
you	are	watching	for	*CREATE	events	(see	the	WATCHEVENTS
parameter),	then	any	new	sub-directories	that	are	created	while	this	iterator
activity	is	active	will	also	be	watched.
EXISTINGCONTENTS:	Optional
This	parameter	specifies	whether	the	activity	enumerates	and	iterates	for	the
existing	contents	of	the	specified	directory	when	the	activity	starts	up	or
when	it	is	restarted.
The	default	value	is	*YES	which	means	that	the	existing	directory	contents
will	be	processed	and	an	*EXISTS	event	generated	for	each	existing	file	or
sub-directory.		If	your	solution	uses	the	"drop-box"	approach	where	the
directory	should	always	be	empty	of	anything	but	unprocessed	files,	then	this

is	the	behaviour	you	probably	will	want.
Alternatively,	specify	*NO	if	you	do	not	want	the	activity	to	process	the
existing	directory	contents.		In	this	case,	your	solution	will	receive
notifications	only	for	files	that	are	added,	changed	or	deleted	after	the
iterator	activity	begins	processing.
WAIT:	Optional
Specifies	the	length	of	time	(in	seconds)	that	the	activity	will	wait,	on	each
iteration,	for	a	watched	event	to	occur	in	the	specified	directory.
The	default	value	is	20	(twenty)	seconds.		This	default	value	has	been	chosen
to	be	less	than	the	default	controlled	end	delay	times	used	on	IBM	i	system
commands	such	as	ENDJOB	(End	Job).		You	should	consider	also	the
corresponding	delay	times	used	with	IBM	i	system	commands	such	as
ENDSBS	(End	Subsystem)	or	PWRDWNSYS	(Power	Down	System).		This
enables	your	processing	sequence	to	have	the	opportunity	to	check	the	value
of	the	*SHUTDOWN	built-in	variable	and	end	in	a	controlled	fashion	if	one
of	those	commands	is	issued.
You	may	specify	the	special	value	of	0	(zero)	which	means	that	the	activity
does	not	wait	for	a	watched	event	to	occur	in	the	specified	directory..		Instead
the	next	iteration	is	performed	immediately.		Use	of	this	value	is	not
generally	recommended	with	the	WATCH_DIRECTORY	activity	as	it	may
result	in	your	long-running	processing	sequence	being	heavily	CPU
intensive,	instead	of	simply	entering	an	idle/wait	state	when	it	has	no	work	to
perform.
WATCHEVENTS:	Optional
This	parameter	specifies	the	types	of	file	system	events	that	the	activity
watches	for	in	the	specified	directory.		The	default	value	is	*CREATE	which
means	that	the	activity	watches	only	for	new	files	or	sub-directories.
Alternatively	you	may	specify	one	or	more	of	the	following	values	(each
value	should	be	separated	by	at	least	one	space):
		*CREATE
		*MODIFY
		*DELETE
You	must	specify	quote	marks	around	the	value(s)	to	distinguish	them	from
built-in	variable	names.
Note	that	if	you	specify	*YES	for	the	EXISTINGCONTENTS	parameter,
then	your	solution	may	also	receive	*EXISTS	events,	irrespective	of	your

choices	for	the	WATCHEVENTS	parameter.
OUTPUT	Parameters:

EVENTOUT:
Upon	each	iteration,	the	value	of	this	output	parameter	will	indicate	whether
a	watched	file	system	event	occurred,	and,	if	so,	the	type	of	event.		It	may
have	one	of	the	following	values:
*NONE:	indicates	that	no	watched	event	occurred.		This	value	is	returned
whenever	the	wait	time	specified	on	the	WAIT	parameter	elapsed	with	no
watched	file	system	events	for	the	specified	directory.
*EXISTS:	indicates	that	the	remaining	output	parameter	values	refer	to	a	file
or	sub-directory	that	exists	in	the	specified	directory	when	the	activity	starts
up	or	when	it	is	restarted.		This	value	will	occur	only	if	you	specify	*YES	for
the	EXISTINGCONTENTS	parameter.
*CREATE:		indicates	that	the	remaining	output	parameter	values	refer	to	a
new	file	or	sub-directory	that	has	been	created	in	the	specified	directory.
*MODIFY:		indicates	that	the	remaining	output	parameter	values	refer	to	a
file	or	sub-directory	that	has	changed	in	the	specified	directory.
*DELETE:		indicates	that	the	remaining	output	parameter	values	refer	to	a
file	or	sub-directory	that	has	been	deleted	in	the	specified	directory.		Only	the
value	of	the	FILEPATHOUT	parameter	is	valid	for	this	event.
*OVERFLOW:		indicates	that	the	file	system	may	have	reported	events
faster	than	they	can	be	retrieved	or	processed	by	this	activity.		In	this	case,
some	events	may	have	been	lost.		If	you	process	this	event,	you	might	use	it
to	re-examine	the	contents	of	the	directory	being	watched.		The	remaining
output	parameters	values	are	not	filled	when	this	event	occurs.		Your	solution
may	receive	this	event	irrespective	of	the	value(s)	specified	for	the
WATCHEVENTS	parameter.
FILEPATHOUT:
Upon	each	iteration,	for	events	*EXISTS,	*CREATE,	*MODIFY	and
*DELETE,	this	parameter	will	contain	the	full	path	of	the	file	or	sub-
directory	affected.
ISDIROUT:
Upon	each	iteration,	for	events	*EXISTS,	*CREATE	and	*MODIFY,	this
parameter	will	contain	'Y'	if	the	event	refers	to	a	sub-directory.		Otherwise
the	event	refers	to	a	file.
SIZEOUT:

Upon	each	iteration,	for	events	*EXISTS,	*CREATE	and	*MODIFY,	this
parameter	will	contain	the	size	in	bytes	of	the	affected	file	or	sub-directory.
LASTMODOUT:
Upon	each	iteration,	for	events	*EXISTS,	*CREATE	and	*MODIFY,	this
parameter	will	contain	the	last	modified	date	and	time	for	the	affected	file	or
sub-directory.

WATCH_DTAQ
This	is	an	iterator	activity.	It	will	repeatedly	attempt	to	receive	data	from	a
named	data	queue	and	on	each	iteration	output	the	data	received,	if	any.
The	processing	logic	nested	beneath	the	WATCH_DTAQ	activity	is	repeated
each	time	that	data	is	received	or	each	time	the	specified	wait	time	(DTAWAIT
parameter)	is	exceeded	(if	no	data	is	available	to	receive).
This	activity	treats	data	received	from	a	data	queue	as	character	data.		Using	this
activity	to	interact	with	applications	that	send	or	receive	binary	data	to	or	from
the	data	queue	is	not	supported.
Upon	each	iteration	in	which	the	activity	receives	an	entry	from	the	named	data
queue,	the	data	content	(and	possibly	sender	information)	is	available	through
the	output	parameters	of	the	activity.
When	no	data	is	available	to	be	received	(after	waiting	for	the	interval	specified
by	the	DTAWAIT	parameter,	if	used),	the	activity	iterates	normally	but	the
output	data	parameters	are	not	filled.		The	value	of	the	RCVCOUNT	output
parameter	may	be	used	to	determine	whether	an	entry	was	received.		This
behavior	allows	your	solution	to	perform	processing	periodically	whether	data
is	received	or	not.		For	example,	your	processing	sequence	might	check	the
value	of	the	*SHUTDOWN	built-in	variable	in	order	to	permit	the	long	running
process	to	be	ended	in	a	controlled	fashion.
Refer	also	to	the	companion	DTAQ_CLEAR,	DTAQ_RECEIVE	and
DTAQ_SEND	activities	that	allows	you	to	send	and	receive	data	to	and	from
and	to	perform	other	operations	on	a	named	data	queue.

Note:	Data	queues	are	persistent	objects	but	their	data	content	can	be
lost	or	corrupted	during	a	system	failure.		Backup,	recovery	and
maintenance	of	data	queues	used	in	your	LANSA	Composer	solution
is	your	responsibility	–	you	should	make	provision	for	this	in	your
implementation	plans.

Note:	Unlike	many	other	iterator	activities,	this	activity	will	iterate
indefinitely	unless	you	take	specific	action	in	the	iterator	block	to	exit
the	iteration.		It	is	designed	to	be	used	in	a	potentially	long	running
processing	sequence	that	perpetually	waits	on	a	message	arriving	at
the	specified	message	queue	and	then	processes	the	message	or
initiates	another	processing	sequence	to	process	the	message.		For

more	information	refer	to	Considerations	for	Extended	Duration
Processing	Sequences	.

IBM	i	Platform	Notes
Data	queues	are	a	native	operating	system	feature	on	the	IBM	i	server.		The	full
range	of	capabilities	of	this	activity	is	only	available	on	IBM	i	servers.
(The	implementation	of	this	activity	on	an	IBM	i	server	uses	the	QRCVDTAQ
system	API.)
Use	of	keyed	data	queues	with	this	activity	is	not	presently	supported.
Refer	to	the	description	of	the	DTAQ_SEND	activity	for	more	complete	IBM	i
Server	Platform	Notes	relating	to	the	suite	of	DTAQ	activities.		Refer	to	IBM	i
documentation	concerning	data	queues	for	further	information	about	the
operating	system	features	upon	which	this	activity	depends.
Windows	Server	Platform	Notes
Although	data	queues	are	a	native	feature	of	the	IBM	i	server,	this	activity	and
the	companion	DTAQ_CLEAR,	DTAQ_RECEIVE	and	DTAQ_SEND	activities
are	available	on	Windows	servers	too,	but	with	a	reduced	feature	set	and	with
other	restrictions	and	caveats.
(The	implementation	of	this	activity	on	a	Windows	server	uses	the	emulated
data	queue	support	in	the	LANSA	run-time,	using	the
RCV_FROM_DATA_QUEUE	built-in	function.)
The	following	notes	and	restrictions	apply	to	using	this	activity	on	a	Windows
server:

The	DTAQLIB	parameter	is	not	used	and	its	value	will	be	ignored.		(You
may	use	the	DTAQPATH	parameter	to	specify	a	location	for	the	data	queue,
if	required.)
Data	queues	are	stored	in	pairs	of	files	in	the	Windows	server	file	system
with	.EDQ	and	.LDQ	file	extensions.		The	.EDQ	file	contains	the	data	queue
definition	and	entries.		The	.LDQ	files	are	used	to	logically	lock	the	data
queue	during	receive	operations.		The	file	names	are	determined	by	the
LANSA	run-time	support	used	by	this	activity.		The	files	can	be	manually
cleared	or	deleted	by	deleting	the	associated	files.		Alternatively	the
DTAQ_CLEAR	activity	may	be	used	for	this	purpose.
The	location	of	the	.EDQ	and	.LDQ	data	queue	storage	files	is	determined
by	the	value	of	the	DTAQPATH	parameter.		Refer	to	that	parameter
description	for	further	information.

Refer	to	the	description	of	the	DTAQ_SEND	activity	for	more	complete
Windows	Server	Platform	Notes	relating	to	the	suite	of	DTAQ	activities.

NOTE:		On	Windows	servers,	the	specific	implementation	used	means
that	the	activity	is	unable	to	handle	certain	types	of	exceptions	that
may	be	considered	unexceptional	in	other	circumstances.		In	such
cases	the	processing	sequence	containing	the	activity	may	simply	end
abnormally	without	logging	diagnostic	information	in	the	Processing
Sequence	log.		This	behavior	differs	from	most	other	LANSA
Composer	activities	and	from	the	IBM	i	implementation	of	this
activity.

You	should	be	aware	of	this	possibility	and	be	prepared	to	diagnose
such	issues	in	other	ways.		For	example,	the	x_err.log	generated	by	the
LANSA	run-time	may	assist	with	diagnosing	such	conditions.

INPUT	Parameters:
DTAQ:	Required
This	parameter	must	specify	the	name	of	the	data	queue	from	which	the	data
is	to	be	received.
DTAQLIB:	Optional
When	running	on	IBM	i	servers,	this	parameter	may	specify	the	name	of	the
library	containing	the	data	queue.		If	not	specified,	a	default	of	*LIBL	is	used
which	means	the	library	list	is	used	to	locate	the	named	data	queue.
When	running	on	a	Windows	server,	this	parameter	is	not	used	and	its	value
is	ignored.		You	may	use	the	DTAQPATH	parameter	to	specify	the	location
for	the	data	queue,	if	required.
DTAQPATH:	Optional
When	running	on	Windows	servers,	this	parameter	may	specify	the	path	to
the	directory	in	which	the	data	queue	.EDQ	and	.LDQ	files	are	stored.		If	not
specified,	the	default	location	is	determined	by	the	LANSA	run-time
according	to	the	effective	value	of	the	DPTH=	X_RUN	parameter.
When	running	on	an	IBM	i	server,	this	parameter	is	not	used	and	its	value	is
ignored.		You	may	use	the	DTAQLIB	parameter	to	specify	the	location	for
the	data	queue,	if	required.
DTAWAIT:	Optional
Specifies	the	length	of	time	(in	seconds)	that	the	activity	will	wait,	on	each

iteration,	for	data	to	arrive	on	the	data	queue.
The	default	value	is	20	(twenty)	seconds.		This	default	value	has	been	chosen
to	be	less	than	the	default	controlled	end	delay	times	used	on	IBM	i	system
commands	such	as	ENDJOB	(End	Job).		You	should	consider	also	the
corresponding	delay	times	used	with	IBM	i	system	commands	such	as
ENDSBS	(End	Subsystem)	or	PWRDWNSYS	(Power	Down	System).		This
enables	your	processing	sequence	to	have	the	opportunity	to	check	the	value
of	the	*SHUTDOWN	built-in	variable	and	end	in	a	controlled	fashion	if	one
of	those	commands	is	issued.
You	may	specify	the	special	value	of	0	(zero)	which	means	that	the	activity
does	not	wait	for	the	arrival	of	an	entry	if	one	is	not	immediately	available
when	the	activity	is	processed.		Instead	the	next	iteration	is	performed
immediately.		Use	of	this	value	is	not	generally	recommended	with	the
WATCH_DTAQ	activity	as	it	may	result	in	your	long-running	processing
sequence	being	heavily	CPU	intensive,	instead	of	simply	entering	an
idle/wait	state	when	it	has	no	work	to	perform.
You	may	also	specify	the	special	value	*MAX	which	means	that	the	activity
waits	indefinitely	for	data	to	arrive.		Use	of	this	value	is	not	generally
recommended	with	the	WATCH_DTAQ	activity	as	it	will	prevent	any
possibility	of	effecting	controlled	end	of	the	processing	sequence.
DTARMV:	Optional
Specifies	whether	the	data	received	by	the	activity	is	removed	from	the	data
queue.		The	default	is	*YES,	which	means	the	data	is	removed.		You	may
specify	*NO	to	cause	the	data	not	to	be	removed	from	the	data	queue.		If	you
do	so,	the	data	can	be	received	again	by	this	activity	in	the	same	or	another
Processing	Sequence.		You	should	take	care	using	*NO	with	the
WATCH_DTAQ	activity	–	unless	you	design	your	solution	to	prevent	it,	your
processing	sequence	will	loop,	repeatedly	processing	the	same	data	queue
entry.
DTAQELEN:	Optional
On	an	IBM	i	server,	this	parameter	is	not	required	and	its	value	will	be
ignored.
On	a	Windows	server,	this	parameter	is	required	and	it	must	specify	the
length	of	the	data	queue	entries.		The	activity	supports	data	lengths	between
1	and	1024	inclusive.
On	a	Windows	server,	the	first	send	(DTAQ_SEND)	operation	for	a	data
queue	will	automatically	create	the	data	queue	and	will	set	its	entry	length.	

The	length	specified	for	subsequent	operations	to	the	same	data	queue	must
match	the	length	specified	on	the	initial	operation	that	created	the	data
queue.		(On	Windows	servers,	LANSA	Composer	will	actually	use	the	next
greatest	multiple	of	256	–	for	example,	if	you	specify	700	for	this	parameter,
LANSA	Composer	will	actually	use	the	value	768.)

OUTPUT	Parameters:
RCVCOUNT:
The	received	entry	count.		Upon	each	iteration,	if	data	is	received
successfully,	the	value	will	be	one	(1).		Otherwise	the	value	will	be	zero	(0).	
RCVDATALEN:
Upon	each	iteration,	if	data	is	received,	this	parameter	contains	the	length	of
the	data	received.
(On	a	Windows	server,	the	activity	cannot	determine	the	actual	data	length
received,	and	the	value	returned	in	this	parameter	is	the	same	as	the	value
provided	in	the	DATAQELEN	input	parameter.)
RCVDATARCVDATA02
RCVDATA03
RCVDATA04:
Upon	each	iteration,	if	data	is	received,	these	parameters	contains	the	data.	
Each	parameter	receives	up	to	256	bytes	of	data.		The	first	parameter,
RCVDATA,	contains	the	first	up	to	256	bytes	of	data.		The	remaining
parameters	are	filled	only	if	you	are	using	data	queue	entries	of	length
greater	than	256,	512	and	768	respectively.
SENDJOB
SENDUSER
SENDJOBNBR:
Upon	each	iteration,	if	data	is	received,	these	output	parameters	may	contain
the	job	name,	user	name	and	the	job	number	of	the	job	that	sent	the	data	to
the	data	queue.
On	an	IBM	i	server,	these	values	will	be	available	only	if
SENDERID(*YES)	was	specified	when	the	data	queue	was	created	using	the
CRTDTAQ	(Create	Data	Queue)	command.
On	a	Windows	server,	the	sending	job	information	is	not	available	and	these
parameters	will	not	be	filled.

WATCH_MSGQ
This	is	an	iterator	activity.	It	will	repeatedly	attempt	to	receive	a	message	from	a
named	message	queue	on	the	IBM	i	server	and	on	each	iteration	output	the
details	of	the	message	received,	if	any.	It	is	supported	only	on	IBM	i	servers.
The	processing	logic	nested	beneath	the	WATCH_MSGQ	activity	is	repeated
each	time	that	a	message	is	received	or	each	time	the	specified	wait	time
(MSGWAIT	parameter)	is	exceeded	(if	no	message	is	available	to	receive).
Upon	each	iteration	in	which	the	activity	receives	a	message	from	the	named
message	queue,	a	range	of	attributes	of	the	message	are	available	through	the
output	parameters	of	the	activity,	including	message	text,	message	data,
message	identifier	and	sender	information.
When	no	message	is	available	to	be	received	(after	waiting	for	the	interval
specified	by	the	MSGWAIT	parameter,	if	used),	the	activity	iterates	normally
but	the	output	parameters	containing	message	attributes	are	not	filled.		The
value	of	the	RCVCOUNT	output	parameter	may	be	used	to	determine	whether	a
message	was	received.		This	behavior	allows	your	solution	to	perform
processing	periodically	whether	a	message	is	received	or	not.		For	example,
your	processing	sequence	might	check	the	value	of	the	*SHUTDOWN	built-in
variable	in	order	to	permit	the	long	running	process	to	be	ended	in	a	controlled
fashion.
Refer	also	to	the	companion	MSGQ_RECEIVE	and	MSGQ_SEND	activities
that	allows	you	to	send	and	receive	single	messages	to	or	from	a	named
message	queue.		Refer	to	IBM	i	documentation	concerning	message	queues,
message	descriptions	and	message	files	for	further	information	about	the
operating	system	features	upon	which	this	activity	depends.

Note:	Unlike	many	other	iterator	activities,	this	activity	will	iterate
indefinitely	unless	you	take	specific	action	in	the	iterator	block	to	exit
the	iteration.		It	is	designed	to	be	used	in	a	potentially	long	running
processing	sequence	that	perpetually	waits	on	a	message	arriving	at
the	specified	message	queue	and	then	processes	the	message	or
initiates	another	processing	sequence	to	process	the	message.		For
more	information	refer	to	Considerations	for	Extended	Duration
Processing	Sequences	.

INPUT	Parameters:
MSGQ	:	Required

This	parameter	must	specify	the	name	of	the	message	queue	from	which	the
messages	are	to	be	received.
MSGQLIB:	Optional
This	parameter	may	specify	the	name	of	the	library	containing	the	message
queue.		If	not	specified,	a	default	of	*LIBL	is	used	which	means	the	library
list	is	used	to	locate	the	named	message	queue.
MSGWAIT:	Optional
Specifies	the	length	of	time	(in	seconds)	that	the	activity	will	wait,	on	each
iteration,	for	a	message	to	arrive	in	the	message	queue.
The	default	value	is	20	(twenty)	seconds.		This	default	value	has	been	chosen
to	be	less	than	the	default	controlled	end	delay	times	used	on	IBM	i	system
commands	such	as	ENDJOB	(End	Job).		You	should	consider	also	the
corresponding	delay	times	used	with	IBM	i	system	commands	such	as
ENDSBS	(End	Subsystem)	or	PWRDWNSYS	(Power	Down	System).		This
enables	your	processing	sequence	to	have	the	opportunity	to	check	the	value
of	the	*SHUTDOWN	built-in	variable	and	end	in	a	controlled	fashion	if	one
of	those	commands	is	issued.
You	may	specify	the	special	value	of	0	(zero)	which	means	that	the	activity
does	not	wait	for	the	arrival	of	a	message	if	one	is	not	immediately	available
when	the	activity	is	processed.		Instead	the	next	iteration	is	performed
immediately.		Use	of	this	value	is	not	generally	recommended	with	the
WATCH_MSGQ	activity	as	it	may	result	in	your	long-running	processing
sequence	being	heavily	CPU	intensive,	instead	of	simply	entering	an
idle/wait	state	when	it	has	no	work	to	perform.
You	may	also	specify	the	special	value	*MAX	which	means	that	the	activity
waits	indefinitely	for	a	message	to	arrive.		Use	of	this	value	is	not	generally
recommended	with	the	WATCH_MSGQ	activity	as	it	will	prevent	any
possibility	of	effecting	controlled	end	of	the	processing	sequence.
MSGRMV:	Optional
Specifies	whether	each	message	received	by	the	activity	is	removed	from	the
message	queue.		The	default	is	*YES,	which	means	the	message	is	removed.	
You	may	specify	*NO	to	cause	the	message	not	to	be	removed	from	the
message	queue.		If	you	do	so,	the	system	considers	the	message	to	be	"old"
and	it	will	not	be	received	again	by	this	activity.		If	your	processing	sequence
leaves	"old"	messages	on	the	message	queue,	it	is	your	responsibility	to
remove	them	by	other	means	such	as	by	executing	the	CLRMSGQ	operating
system	command.

OUTPUT	Parameters:
RCVCOUNT:
The	received	message	count.				Upon	each	iteration,	if	data	is	received
successfully,	the	value	will	be	one	(1).		Otherwise	the	value	will	be	zero	(0).	
RCVMSGSEV:
If	a	message	is	received,	this	parameter	contains	the	severity	code	of	the
received	message.		Impromptu	messages	sent	by	the	MSGQ_SEND	activity
will	usually	have	a	severity	code	of	'00'.		For	pre-defined	messages,	the
severity	code	is	defined	by	the	message	description.
RCVMSGTYPE:
If	a	message	is	received,	this	parameter	contains	the	message	type	of	the
received	message.		Messages	sent	by	the	MSGQ_SEND	activity	will	have	a
message	type	of	*INFO.		For	messages	sent	by	other	means,	the	message
type	is	specified	by	the	sending	program.
RCVMSGID:
If	a	message	is	received,	this	parameter	contains	the	message	identifier	of	the
received	message.		An	impromptu	message	has	no	message	identifier.	
Otherwise,	this	value	identifies	the	message	description	in	the	message	file
identified	by	the	RCVMSGF	and	RCVMSGFLIB	parameters.
RCVMSGF:
If	a	message	is	received,	this	parameter	contains	the	name	of	the	message	file
of	the	received	message.		An	impromptu	message	has	no	message	file	name.	
Otherwise,	this	value	identifies	the	message	file	name	containing	the
message	description	used	to	send	the	message.
RCVMSGFLIB:
If	a	message	is	received,	this	parameter	contains	the	name	of	the	library
containing	the	message	file,	if	any.
RCVMSGTXT:
If	a	message	is	received,	this	parameter	contains	the	first	level	message	text
of	the	received	message.		For	a	pre-defined	message,	this	includes	the
message	data	fields	that	were	substituted	for	substitution	variables	in	the	text
before	the	message	was	sent.		A	maximum	of	256	characters	of	the	first	level
text	will	be	returned.
RCVSECLVL:
If	a	message	is	received,	this	parameter	contains	the	second	level	message

text	of	the	received	message,	if	any.		An	impromptu	message	has	no	second
level	message	text.		For	a	pre-defined	message,	this	includes	the	message
data	fields	that	were	substituted	for	substitution	variables	in	the	second	level
text	before	the	message	was	sent.		A	maximum	of	256	characters	of	the
second	level	text	will	be	returned.
RCVMSGDTA:
If	a	message	is	received,	this	parameter	contains	the	message	data	field
values	of	the	received	msg.		An	impromptu	message	has	no	message	data.	
Otherwise	this	contains	a	single	string	of	the	message	data	values	used	to
send	the	message.		A	maximum	of	256	characters	of	message	data	will	be
returned.
SENDJOB:
If	a	message	is	received,	this	parameter	contains	the	name	of	the	job	that	sent
the	message.
SENDUSER:
If	a	message	is	received,	this	parameter	contains	the	user	name	of	the	job	that
sent	the	message.
SENDJOBNBR:
If	a	message	is	received,	this	parameter	contains	the	job	number	of	the	job
that	sent	the	message.
SENDDATE:
If	a	message	is	received,	this	parameter	contains	the	date	that	the	message
was	sent.		The	date	is	in	ISO	format	-	that	is,	CCYY-MM-DD.
SENDTIME:
If	a	message	is	received,	this	parameter	contains	the	time	that	the	message
was	sent.		The	time	is	in	ISO	format	-	that	is,	HH:MM:SS.

XML_SPLIT
This	activity	can	split	an	XML	document	into	multiple	documents	at	a	specified
element	name,	with	certain	constraints	and	caveats	as	further	described	below.
For	most	routine	XML	document	processing,	this	approach	is	NOT	necessary	or
recommended.		This	activity	is	provided	primarily	for	use	in	cases	involving
XML	documents	that	are	so	exceptionally	large	that	they	cannot	be	efficiently
processed	in	one	step	due	to	memory	constraints.		An	exceptionally	large	XML
file	will	still	take	a	long	time	to	process	with	this	activity	-	you	should	verify	the
performance	with	your	files	and	in	your	operating	environment	before	designing
a	solution	that	relies	on	this	activity.
In	order	to	optimise	the	activity,	it	processes	the	source	XML	document	without
reference	to	any	associated	schema	or	DTD.		The	split	documents	created	by
this	activity	should	be	well-formed	(*)	XML	(providing	the	source	XML
document	is	well-formed).		However,	it	cannot	be	guaranteed	that	the	split
documents	are	valid	(*)	with	reference	to	the	source	document	schema	or	DTD.	
In	addition,	depending	on	the	structure	of	the	source	+document	and	upon	the
split	element	specified,	the	split	documents	may	not	always	contain	all	the
available	data	in	the	source	document.

(*)	This	description	assumes	you	understand	the	distinction	between
the	terms	"well-formed"	and	"valid"	in	relation	to	XML	documents.		If
in	doubt,	please	refer	to	appropriate	XML	references.

In	addition,	please	understand	that	XML	is	capable	of	representing	an	infinite
variety	of	document	structures.		This	activity	may	not	be	capable	of	splitting
every	source	document	in	the	way	that	you	intended	or	expected.		In	order	to
keep	the	activity	simple	to	use	while	enabling	it	to	be	useful	for	the	largest
range	of	likely	scenarios,	the	activity	makes	certain	assumptions	about	how	to
split	documents	and	what	antecedent	data	to	retain	or	duplicate	in	the	split
documents.		You	should	thoroughly	test	it	with	representative	samples	of	the
XML	documents	with	which	you	intend	to	use	it	before	designing	a	solution
that	relies	on	this	activity.
In	addition,	you	must	be	aware	of	the	following	further	limitations	and	caveats:

The	DOCTYPE	of	the	source	XML	document	(for	XML	documents	that
reference	a	DTD)	is	NOT	output	to	the	split	documents.
Certain	other	parts	of	an	XML	document	may	similarly	NOT	be	output	to	the
split	documents,	in	particular	CDATA	sections.

White	space	(including	line	feeds	and	carriage-returns)	in	the	source	XML
document	will	be	lost	from	the	split	documents.		In	most	cases,	this	simply
makes	the	XML	less-readable	when	viewed	with	a	non-XML	aware	text
editor	or	viewer.
Finally,	it	should	be	evident	that	the	XML_SPLIT	activity	cannot	and	does
not	adjust	any	XML	element	or	attribute	values	that	represents	an
aggregation	of	other	data	in	the	source	XML	document.		For	example,	if	an
<ORDERS>	element	includes	values	that	represent	an	aggregation	of	the
order	lines	contained	within	it	(for	example,	a	count	of	the	number	of	order
lines	or	a	total	of	the	order	quantities	or	values),	then	that	data	would	be
repeated	without	modification	in	each	split	document	that	arises	from	that
<ORDERS>	element.

The	output	split	document	paths	and	names	are	generated	according	to	the
values	specified	or	assumed	for	the	XMLSPLITPATH	and	XMLSPLITROOT
parameters.		If	documents	of	the	generated	name(s)	exist	in	the	target	location,
they	will	be	replaced	by	this	activity.
INPUT	Parameters:

XMLFILE	:	Required
This	parameter	specifies	the	path	and	name	of	the	XML	document	file	to	be
split.
XMLSPLITELEMENT	:	Optional
This	parameter	may	specify	the	name	of	the	XML	element	at	which	the
source	XML	document	is	to	be	split.		If	not	specified,	a	default	of	*FIRST	is
assumed.		*FIRST	means	the	name	of	the	first	XML	element	INSIDE	the
root	element	(ie:	NOT	the	root	element)	is	used	as	the	split	element	name.
Note	that,	for	convenience,	the	element	name	comparisons	are	performed
without	regard	to	case.		(In	strict	XML	terms,	this	is	potentially	ambiguous
as	XML	element	names	are	case-sensitive.)		Also	the	undecorated	element
name	is	used	for	comparisons	-	that	is,	excluding	any	namespace	qualifiers.
Each	instance	of	an	element	(other	than	the	root	element)	that	matches	the
specified	name	(and	that	is	not	contained	within	another	instance	of	an
element	with	the	same	name)	may	trigger	a	new	split	XML	document,
according	to	the	value	specified	for	the	XMLSPLITELEMENTSMAX
parameter.		Each	split	document	will	contain	an	XML	structure	that	includes:
all	the	antecedent	elements	of	the	split	element	and	all	preceding	elements
that	they	contain

PRECEDING	sibling	elements,	ie:	elements	(other	than	preceding
instances	of	the	split	element)	with	the	same	parent	element
the	instance(s)	of	the	split	element	and	all	elements	that	they	contain.

XMLSPLITELEMENTSMAX	:	Optional
This	parameter	may	specify	the	maximum	number	of	split	element	instances
per	split	document.		If	not	specified,	a	default	of	1	is	assumed.		The	activity
will	place	"sibling"	instances	of	the	split	element	into	the	same	split
document,	up	to	the	number	specified	by	this	parameter.		When	the	parent
element	is	closed,	the	split	document	is	closed	whether	or	not	the	maximum
is	reached.		Further	instances	of	the	split	element	will	trigger	another	split
document	for	which	the	count	restarts	at	one.
XMLSPLITPATH	:	Optional
This	parameter	may	specify	the	path	in	which	the	split	XML	document	files
are	to	be	created.		If	not	specified,	a	default	of	*SAME	is	assumed.		*SAME
means	the	split	XML	document	files	will	be	created	in	the	same	location	as
the	input	XML	document	file.
XMLSPLITROOT	:	Optional
This	parameter	may	specify	the	root	file	name	and	the	file	extension	for	the
split	XML	document	files.		If	not	specified,	a	default	of	*SAME	is	assumed.	
*SAME	means	the	activity	will	use	the	file	name	and	extension	of	the	input
XML	document	file	as	the	root	file	name	and	the	file	extension	for	the	split
XML	document	files.		The	activity	will	append	a	sequential	number	to	the
root	file	name	to	make	each	split	XML	document	file	name.		For	example,	if
you	specify	'ORDER.xml'as	the	value	for	this	parameter	and	the	input	file	is
split	into	three	XML	document	files,	then	they	would	have	the	names
'ORDER1.xml',	'ORDER2.xml'	and	'ORDER3.xml'.
XMLSPLITNOTRACE	:	Optional
This	activity	uses	LANSA	Integrator's	XMLReaderService	and
XMLWriterService.		These	services	may	generate	particularly	large	LANSA
Integrator	trace	files,	especially	as	this	activity	is	typically	used	to	process
exceptionally	large	XML	files.		More	so	than	many	activities,	the
performance	of	this	activity	will	be	dramatically	improved	if	LANSA
Integrator	tracing	is	not	in	effect	while	it	is	executing.		The	default	value	for
this	parameter,	if	not	specified,	turns	the	LANSA	Integrator	tracing	OFF.
If	you	want	to	use	LANSA	Integrator	tracing,	then	specify	'NO'	for	this
parameter.		You	are	advised	to	do	this	only	during	design	and	testing	and

only	with	relatively	small	sample	input	XML	files.		Note	that	this	does	NOT
necessarily	enable	tracing	-	it	simply	makes	it	subject	once	more	to	LANSA
Composer's	System	Settings.

OUTPUT	Parameters:
XMLSPLITCOUNT:
Upon	successful	completion	this	parameter	will	contain	the	count	of	split
documents	created.
XMLSPLITLIST:
Upon	successful	completion	this	parameter	will	contain	a	list	of	the	full	file
paths	of	the	split	documents	created.

XML_QUERY
The	XML_QUERY	activity	permits	a	LANSA	Composer	solution	to	selectively
interrogate	values	contained	in	an	XML	document	using	XML	Path	Language
(XPath)	expressions.
XPath	is	an	industry-standard	syntax	for	constructing	path	expressions	to	select
nodes	in	an	XML	document.		It	is	beyond	the	scope	of	this	document	to	provide
a	detailed	description	of	XPath	syntax.		However,	you	can	refer	to	the	following
heading	for	an	introduction	and	examples:

Quick	Guide	to	XPath	expressions	for	use	with	the	XML_QUERY	activity
The	XML_QUERY	activity	is	not	suitable	or	intended	for	and	usually	would	not
be	used	to	process	the	entire	contents	of	an	XML	document.		Rather	it	is
intended	for	limited	and	selective	interrogation	of	particular	values	from	the
XML	document.		In	some	applications,	for	example,	it	may	be	necessary	for
your	LANSA	Composer	solution	to	determine	certain	key	values	from	the	XML
document	in	order	to	decide	how	to	proceed	with	further	processing	or	for	use
in	the	course	of	further	processing.
As	an	example,	suppose	you	are	building	a	solution	that	receives	and	processes
sales	orders	in	an	agreed	XML	format.
One	part	of	your	solution	might	process	the	sales	order	XML	document	in	its
entirety,	probably	using	a	LANSA	Composer	Transformation	Map	to	read	the
contents	and	update	your	application	database.
However,	in	a	separate	step,	your	solution	is	required	to	email	an
acknowledgement	of	the	order.		In	order	to	do	so,	the	most	convenient	means	to
access	the	customer's	return	email	address	is	directly	from	the	corresponding
element	value	in	the	original	sales	order	XML	document.
In	such	circumstances,	your	solution	could	use	the	XML_QUERY	activity	to
selectively	and	efficiently	address	and	retrieve	just	the	value	of	the	element	(or
attribute)	in	the	sales	order	XML	document	that	contains	the	customer's	return
email	address	and	then	pass	that	to	the	MAIL_SEND	activity	or	whatever
means	your	solution	uses	to	generate	and	send	the	acknowledgement.

NOTE:		The	XML_QUERY	activity	loads	the	entire	XML	document
into	memory	when	processing	your	queries.		Application	performance
can	degrade	when	used	with	exceptionally	large	XML	files.

The	supplied	processing	sequence	EXAMPLE_XML01	implements	the

XML_QUERY	activity	to	interrogate	the	supplied	tutorial	orders	XML	file,
TUTorder.xml.		This	is	a	working	example	that	you	may	wish	to	use	as	a
starting	point	for	your	exploration	of	the	XML_QUERY	activity.
INPUT	Parameters:

XMLFILE	:	Required
This	parameter	specifies	the	path	and	name	of	the	XML	document	file	whose
contents	are	to	be	queried.
Note	that	the	XML_QUERY	activity	is	optimised	to	avoid	reloading	the
XML	document	if	it	is	the	same	as	the	preceding	usage	in	the	same
Processing	Sequence.
XMLOPTIONS	:	Optional	(Advanced)
This	parameter	allows	you	to	specify	options	that	affect	the	way	the	XML
document	is	loaded	and	queried.
You	may	specify	one	or	more	of	the	values	described	below.		Each	value
should	be	separated	by	at	least	one	space,	and	you	must	specify	quote	marks
around	the	complete	string	of	value(s)	to	distinguish	them	from	built-in
variable	names.
1.		*VALIDATE
By	default	the	XML	document	is	parsed	WITHOUT	validating	it	against	any
DTD	or	schema	it	may	reference.		In	this	mode,	the	XML	document	is
required	to	be	well-formed,	but	conformance	to	the	DTD	or	schema	is	NOT
checked.		For	many	typical	applications	of	the	XML_QUERY	activity,
validation	is	an	unnecessary	overhead.		However,	you	can	specify	this	option
if	you	require	validation	to	be	performed.
2.		*NAMESPACEAWARE
By	default	the	XML	document	is	parsed	in	a	non-namespace-aware	mode.	
For	most	cases,	this	simplifies	the	form	of	the	XPath	expressions	necessary
to	perform	a	given	query.
In	some	more	complex	documents	(and	especially	for	documents	in	which
more	than	one	namespace	is	referenced)	it	may	be	necessary	to	specify	this
option	in	order	to	load	the	document	in	namespace-aware	mode.
Note	that	specifying	this	option	will	affect	the	form	of	XPath	expressions
necessary	to	successfully	perform	a	given	query.		For	more	information,	refer
to:
XML	Namespaces	and	How	They	Affect	XPath	Expressions	for	the
XML_QUERY	Activity

NOTE:		If	the	XML	document	specified	by	the	XMLFILE	parameter
is	already	loaded	by	the	preceding	use	of	the	XML_QUERY	activity
in	the	same	processing	sequence,	the	options	specified	in	the
XMLOPTIONS	parameter	will	not	be	effective	even	if	they	changed
from	the	earlier	use.

CURRENTNODE	:	Optional	(Advanced)
This	parameter	can	be	used	to	set	the	"current"	node	in	the	presently	loaded
XML	document.		The	"current"	node	is	the	node	to	which	the	XPath
expression	in	the	QUERYNODES	parameter	will	apply.
By	default,	the	current	node	is	the	document	node.		The	special	value	(and
default)	*DOCUMENT	specifies	the	document	node.	Providing	the	XPath
expression	used	in	the	QUERYNODES	parameter	is	formulated
appropriately,	it	can	be	executed	against	the	document	node,	and	in	many
cases	this	will	be	all	that	is	needed.
However,	in	more	complex	applications	of	the	XML_QUERY	activity,
particularly	when	used	iteratively,	you	may	specify	an	XPath	expression	that
identifies	a	single	node	that	is	to	be	the	current	(context)	node	for	the
QUERYNODES	expression.		In	particular,	the	XPath	expressions	generated
when	the	special	*XPATH	or	*XPATH_CONCISE	values	are	used	(in	the
QUERYNODESVALUE1	through	QUERYNODESVALUE5	parameters)
may	be	used	in	subsequent	iterations	as	the	current	node	for	further	queries.
If	you	use	this	parameter,	you	should	specify	an	appropriately	formulated
XPath	expression	that	identifies	a	single	node	in	the	document	that	is	to	be
the	"current"	node.		For	more	information	about	XPath	expressions	used	with
the	XML_QUERY	activity,	refer	to:
Quick	Guide	to	XPath	expressions	for	use	with	the	XML_QUERY	activity

QUERYNODES	:	Required
The	QUERYNODES	parameter	must	specify	an	appropriately	formulated
XPath	expression	that	identifies	one	or	more	nodes	in	the	document	for
which	values	are	to	be	returned.
The	XPath	expression	is	evaluated	in	the	context	of	the	"current"	node.		By
default	the	"current"	node	is	the	document	node	but	it	may	be	altered	using
the	CURRENTNODE	parameter.
For	more	information	about	XPath	expressions	used	with	the	XML_QUERY
activity,	refer	to:

Quick	Guide	to	XPath	expressions	for	use	with	the	XML_QUERY	activity
Note	that	if	no	nodes	are	selected	when	the	XPath	expression	is	evaluated,	it
is	not	treated	as	an	error.		Instead	the	RESULTCOUNT	output	parameter	will
be	set	to	zero	(0)	and	the	RESULTVALUES1	through	RESULTVALUES5
output	parameters	will	not	be	filled.
QUERYNODESVALUE1	:	Optional
The	QUERYNODESVALUE1	parameter	identifies	the	first	of	up	to	five
values	that	are	to	be	returned	in	the	RESULTVALUES1	through
RESULTVALUES5	output	parameters	for	each	"selected"	node	(that	is,	each
node	"selected"	by	evaluating	the	XPath	expression	specified	in	the
QUERYNODES	parameter).
This	parameter	is	optional.		If	the	XPath	expression	specified	in	the
QUERYNODES	parameter	fully	identifies	a	set	of	elements	or	attributes
whose	value(s)	are	to	be	returned,	there	is	no	need	to	specify	the
QUERYNODESVALUE1	parameter.		The	default	value	of	*NODEVALUE
specifies	that	the	value	of	the	context	node	(in	this	case,	each	"selected"
node)	is	to	be	used.
If	you	specify	this	keyword,	you	should	specify	a	further	XPath	expression
that	will	be	evaluated	in	the	context	of	each	"selected"	node	and	that	will
identify	a	single	element	or	attribute	value	relative	to	that	node	whose	value
is	to	be	returned.
For	more	information	about	XPath	expressions	used	with	the	XML_QUERY
activity,	refer	to:
Quick	Guide	to	XPath	expressions	for	use	with	the	XML_QUERY	activity

Alternatively,	you	may	specify	one	of	the	following	special	values:
*LOCALNAME:	returns	the	node	name	(usually	an	element	or	attribute
name)	of	the	"selected"	node,	without	any	namespace	prefix,	if	present;
*NAMESPACEPREFIX:	returns	the	namespace	prefix	of	the	"selected"
node;
*NAMESPACEURI:	returns	the	namespace	URI	of	the	"selected"	node;
*NODENAME:	returns	the	node	name	(usually	an	element	or	attribute
name)	of	the	"selected"	node;
*NODEVALUE:	returns	the	value	of	the	"selected"	node,	equivalent	to	using
an	XPath	expression	of	'.';
*XPATH:	

*XPATH_CONCISE:	These	values	both	return	a	generated	XPath	expression
that	uniquely	identifies	the	"selected"	node	within	the	XML	document.		The
generated	XPath	expressions	mostly	use	ordinal	notation,	and	so	are	valid
only	for	the	specific	node	instance	in	the	specific	document	instance.		Such
generated	expressions	can	be	used,	however,	to	iteratively	process	a
document	using	further	QUERY	commands.		The	second	form	generates	an
expression	that	is	more	concise	(though	less	human-readable),	particularly
when	the	document	is	being	processed	in	namespace-aware	mode.		The
concise	form	may	be	necessary	for	use	with	very	complex	XML	documents
that	may	otherwise	generate	XPath	expressions	that	are	longer	than	can	be
held	in	a	processing	sequence	variable.
QUERYNODESVALUE2
QUERYNODESVALUE3
QUERYNODESVALUE4
QUERYNODESVALUE5	:	Optional
The	parameters	QUERYNODESVALUE2	through	QUERYNODESVALUE5
are	optional,	but,	if	specified,	they	function	similarly	to	the
QUERYNODESVALUE1	parameter.
They	allow	you	to	specify	further	XPath	expressions	that	(with	the
QUERYNODESVALUE1	parameter)	identify	up	to	five	separate	values
relative	to	each	"selected"	node	to	be	returned	in	the	RESULTVALUES1
through	RESULTVALUES5	output	parameters	for	each	"selected"	node.
Unlike	the	QUERYNODESVALUE1	keyword,	these	keywords	have	no
default.		If	you	do	not	specify	them,	they	will	not	be	used	and	the
corresponding	output	parameter	is	not	filled.
If	you	do	specify	these	parameters,	you	must	do	so	contiguously.		The
activity	will	stop	looking	after	the	first	parameter	that	is	not	used.		For
example,	if	you	specify	QUERYNODESVALUE1	and
QUERYNODESVALUE3,	then	the	latter	will	be	ignored	because
QUERYNODESVALUE2	was	not	used.

OUTPUT	Parameters:
RESULTCOUNT:
Upon	successful	completion	this	parameter	will	contain	the	count	of	nodes
selected	by	the	XPath	expression	specified	in	the	QUERYNODES	parameter.
RESULTVALUES1:
Upon	successful	completion	this	parameter	will	contain	a	list	of	the	values,
for	each	"selected"	node,	specified	by	QUERYNODESVALUE1	parameter.

RESULTVALUES2
RESULTVALUES2
RESULTVALUES4
RESULTVALUES5:
Upon	successful	completion	these	parameters	will	contain	lists	of	the	values,
for	each	"selected"	node,	specified	by	the	corresponding
QUERYNODESVALUE2	through	QUERYNODESVALUE5		parameter,	if
used.

Quick	Guide	to	XPath	expressions	for	use	with	the	XML_QUERY
activity
There	are	many	XPath	resources	available	on	the	web.		To	get	you	started,	you
could	try	the	following:

For	one	quick	and	easy	introduction	to	XPath:	XPath	Tutorial
Another	XPath	tutorial	can	be	found	here:	XPath	Tutorial
XML	in	a	Nutshell	–	A	Desktop	Quick	Reference:	Chapter	9	XPath
For	a	description	of	the	XPath	standard:	XML	Path	Language	(XPath)
Version	1.0

This	document	does	not	intend	to	provide	a	definitive	description	of	or
reference	to	XPath	expression	syntax.		However,	for	those	readers	who	have	not
used	XPath	expressions	before,	following	is	a	brief	overview	and	examples	that
might	help	you	get	started	with	the	XML_QUERY	activity.		Refer	to	the
following	headings:

Example	XML
Introduction	to	XML	Path	Language	(XPath)
XPath	Examples	for	use	with	the	XML_QUERY	Activity
XML	Namespaces	and	How	They	Affect	XPath	Expressions	for	the
XML_QUERY	Activity

Example	XML
The	examples	provided	later	in	this	section	will	refer	to	the	following	simple
example	XML	document:
<?xml	version="1.0"	encoding="UTF-8"?>
	
<!DOCTYPE	Orders	SYSTEM	"http://www.lansa.com/schemas/tutorder.dtd"	
>
	
<Orders>
	
						<SalesOrder	SONumber="12345">
	
									<Customer	CustNumber="543">
												<CustName>ABC	Industries</CustName>
												<Street>123	North	St.</Street>

http://www.w3schools.com/xpath/default.asp
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://oreilly.com/catalog/xmlnut/chapter/ch09.html
http://www.w3.org/TR/xpath/

												<City>Bankstown</City>
												<State>NSW</State>
												<PostCode>2087</PostCode>
									</Customer>
	
									<OrderDate>2012-11-19</OrderDate>
	
									<Line	LineNumber="1">
												<Part	PartNumber="123">
															<Description>Gasket	Paper</Description>
															<Price>9.95</Price>
												</Part>
												<Quantity>10</Quantity>
									</Line>
	
									<Line	LineNumber="2">
												<Part	PartNumber="456">
															<Description>Glue</Description>
															<Price>13.27</Price>
												</Part>
												<Quantity>5</Quantity>
									</Line>
	
						</SalesOrder>
	
</Orders>

Introduction	to	XML	Path	Language	(XPath)
XPath	is	a	syntax	for	constructing	path	expressions	to	select	nodes	in	an	XML
document.		To	some	extent,	these	path	expressions	look	very	similar	to	path
expressions	you	use	when	working	with	the	file	system	on	your	computer.
In	general,	XPath	recognises	seven	types	of	nodes,	viz.	element,	attribute,	text,
namespace,	processing-instruction,	comment,	and	document	nodes.		In	the
context	of	the	XMLQueryService	we	are	chiefly	concerned	with	the	element
and	attribute	nodes	and	of	course,	the	document	node.	
In	the	example	XML	document	shown	above,	some	of	the	elements	are
<Orders>,	<SalesOrder>,	<Customer>,	<OrderDate>,	<Line>	and	<Part>,	while
the	attributes	include	SONumber=,	CustNumber=,	LineNumber=	and

PartNumber=.
The	following	is	an	example	XPath	expression	that	will	select	the	PartNumber=
attribute	of	the	first	<Part>	element	in	the	second	<Line>	element	in	the	first
<SalesOrder>	element	of	the	example	XML	document:
/Orders/SalesOrder[1]/Line[2]/Part[1]/@PartNumber

Note	that	the	selection	of	the	<SalesOrder>,	<Line>	and	<Part>	elements	in	the
above	example	are	by	ordinal	index.		In	particular,	the	selection	of	the	<Line>
element	does	NOT	refer	to	the	value	of	the	LineNumber=	attribute	(although
that	is	possible	too,	as	you	will	see	later).
XPath	provides	a	large	number	of	built-in	functions	that	can	manipulate	and
compare	values	in	a	variety	of	ways	for	more	advanced	usage.		For	example,	the
following	expression	uses	the	contains	built-in	function	to	select	all	<Part>
elements	(wherever	they	occur)	whose	<Description>	element	contains	the
string	"Paper":
//Part[contains(Description,	"Paper")]

In	XPath,	you	select	a	node	or	set	of	nodes,	by	following	a	path	or	steps.		Your
XPath	expression	will	often	include	one	or	more	of	the	following:
nodename Selects	all	nodes	with	the	specified	name.
/ Selects	from	the	root	node
// Selects	nodes	in	the	document	from	the	current	node	that

match	the	selection	no	matter	where	they	are
. Selects	the	current	node
.. Selects	the	parent	of	the	current	node

@nodename Selects	attributes	with	the	specified	name

In	XPath,	a	predicate	is	a	sub-expression	contained	in	square	brackets	that	is
used	to	select	a	specific	node	or	a	node	that	contains	a	specific	value.		The
following	are	some	examples	of	XPath	expressions	that	use	predicates:

/Orders/SalesOrder[1] Selects	the	first	<SalesOrder>	element	that	is	a
child	of	the	<Orders>	element.

/Orders/SalesOrder[last()] Selects	the	last	<SalesOrder>	element	that	is	a
child	of	the	<Orders>	element.		(In	the	particular
instance	of	the	example	XML	document	shown,

there	is	only	one	<SalesOrder>	element	and	so	the
result	will	be	the	same.)

//Part[Price<=10.00] Selects	<Part>	elements,	wherever	they	occur,
whose	<Price>	element	has	a	value	less	than	or
equal	to	10.00.

There	is	much	more	to	know	about	XPath	expressions.		If	you	would	like	more
information,	you	could	start	by	referring	to	some	of	the	links	provided	above.

Important	note:		XML	node	names	are	case	sensitive.		Your	XPath
expressions	must	specify	the	correct	case	when	specifying	element
and	attribute	names.		For	example,	the	expression	'//salesorder'	is	NOT
the	same	as	'//SalesOrder'.		When	used	with	the	example	XML
document	shown	above,	the	former	expression	will	FAIL	to	select
ANY	nodes,	while	the	latter	will	select	all	<SalesOrder>	elements,
wherever	they	occur	in	the	document.

XPath	Examples	for	use	with	the	XML_QUERY	Activity
The	following	examples	use	XPath	expressions	in	the	parameters	of	the
XML_QUERY	activity	to	select	values	from	the	example	XML	document
shown	above.
1.This	example	will	select	nothing	because	XML	and	XPath	are	case-sensitive
and	the	wrong	case	is	used	to	select	the	<SalesOrder>	elements:
XML_QUERYXMLFILE('TUTorder.xml')
QUERYNODES('//SALESORDER')
QUERYNODESVALUE1('@SONumber')

2.These	two	examples	use	alternate	implementations	to	select	all	<SalesOrder>
elements,	and	return	the	sales	order	number	for	each.		Functionally,	they	are
equivalent	(when	used	with	the	example	XML	document):
XML_QUERYXMLFILE('TUTorder.xml')
QUERYNODES('//SalesOrder/@SONumber')
	
XML_QUERYXMLFILE('TUTorder.xml')
QUERYNODES('//SalesOrder')
QUERYNODESVALUE1('@SONumber')

3.Selects	all	<SalesOrder>	elements,	and	returns	the	customer	number	for	each:
XML_QUERYXMLFILE('TUTorder.xml')

QUERYNODES('//SalesOrder')
QUERYNODESVALUE1('Customer/@CustNumber')

4.Selects	<Customer>	elements	that	have	a	value	of	'543'	for	their	customer
number	and	returns	the	sales	order	number	of	the	parent	<SalesOrder>
element:
XML_QUERYXMLFILE('TUTorder.xml')
QUERYNODES('//Customer[@CustNumber="543"]')
QUERYNODESVALUE1('../@SONumber')

5.Selects	all	<Part>	elements	for	the	<SalesOrder>	element(s)	with	the	order
number	specified	and	returns	the	part	number	and	quantity	for	each:
XML_QUERYXMLFILE('TUTorder.xml')
QUERYNODES('//SalesOrder[@SONumber="12345"]/Line/Part')
QUERYNODESVALUE1('@PartNumber')
QUERYNODESVALUE2('../Quantity')

6.Selects	all	<Part>	elements	with	a	price	greater	than	2.99	and,	for	each,
returns	the	order	number,	the	part	number,	the	price,	the	quantity	and
calculates	and	returns	the	extended	value	(price	*	quantity):
XML_QUERYXMLFILE('TUTorder.xml')
QUERYNODES('//Part[Price>2.99]')
QUERYNODESVALUE1('../../@SONumber')
QUERYNODESVALUE2('@PartNumber')
QUERYNODESVALUE3('Price')
QUERYNODESVALUE4('../Quantity')
QUERYNODESVALUE5('Price*../Quantity')

NOTE:	the	above	examples	are	used	in	the	supplied	processing
sequence	EXAMPLE_XML01.		This	is	a	working	example	that	you
may	wish	to	use	as	a	starting	point	for	your	exploration	of	the
XML_QUERY	activity.

XML	Namespaces	and	How	They	Affect	XPath	Expressions	for
the	XML_QUERY	Activity
The	examples	used	so	far	operate	on	an	XML	document	that	contains	no	explicit
namespace	declarations	and	does	not	make	use	of	namespace	prefixes.		This	is
the	simplest	case,	but	frequently	does	not	reflect	the	real	world.
Consider	this	minor	alteration	to	the	example	XML	document	that	specifies	a
default	namespace	for	the	XML	document:

<?xml	version="1.0"	encoding="UTF-8"?>
	
<!DOCTYPE	Orders	SYSTEM	"http://www.lansa.com/schemas/tutorder.dtd"	
>
	
<Orders	xmlns="urn:schemas-lansa-com:tutorder.dtd">
	
…	etc	…
	
</Orders>

Where	a	document	makes	use	a	single	default	namespace	like	this,	the	easiest
approach	to	formulating	XPath	expressions	for	use	with	it	is	usually	to	disregard
the	namespace.		Since	only	one	namespace	is	used	and	there	are	no	namespace
prefixes	present	on	the	node	names,	you	can	usually	use	the	same	expressions	as
you	would	use	with	the	earlier	example.		Each	of	the	following	queries	work
successfully	with	the	example	document	that	declares	the	default	namespace,
providing	the	document	is	not	loaded	in	namespace-aware	mode:
XML_QUERYXMLFILE('TUTorderNamespaceDefault.xml')
QUERYNODES('//SalesOrder/@SONumber')
	
XML_QUERYXMLFILE('TUTorderNamespaceDefault.xml')
QUERYNODES('//SalesOrder')
QUERYNODESVALUE1('Customer/@CustNumber')
	
XML_QUERYXMLFILE('TUTorderNamespaceDefault.xml')
QUERYNODES('//Customer[@CustNumber="543"]')
QUERY	NODESVALUE1('../@SONumber')
	
XML_QUERYXMLFILE('TUTorderNamespaceDefault.xml')
QUERYNODES('//SalesOrder[@SONumber="12345"]/Line/Part')
QUERY	NODESVALUE1('@PartNumber')
QUERY	NODESVALUE2('../Quantity')
	
XML_QUERYXMLFILE('TUTorderNamespaceDefault.xml')
QUERYNODES('//Part[Price>2.99]')
QUERY	NODESVALUE1('../../@SONumber')
QUERY	NODESVALUE2('@PartNumber')
QUERY	NODESVALUE3('Price')

QUERY	NODESVALUE4('../Quantity')
QUERY	NODESVALUE5('Price*../Quantity')

However,	in	XML	documents	that	use	more	than	one	namespace	and/or
implement	namespace	prefixes,	things	can	get	a	little	more	complicated.	
Consider	the	following	alternate	example	XML	document	and	contrast	it	to	the
earlier	example:
<?xml	version="1.0"	encoding="UTF-8"?>
	
<!DOCTYPE	Orders	SYSTEM	"http://www.lansa.com/schemas/tutorder.dtd"	
>
	
<tut:Orders	xmlns:tut="urn:schemas-lansa-com:tutorder.dtd">
	
						<tut:SalesOrder	SONumber="12345">
	
									<tut:Customer	CustNumber="543">
												<tut:CustName>ABC	Industries</tut:CustName>
												<tut:Street>123	North	St.</tut:Street>
												<tut:City>Bankstown</tut:City>
												<tut:State>NSW</tut:State>
												<tut:PostCode>2087</tut:PostCode>
									</tut:Customer>
	
									<tut:OrderDate>2012-11-19</tut:OrderDate>
	
									<tut:Line	LineNumber="1">
												<tut:Part	PartNumber="123">
															<tut:Description>Gasket	Paper</tut:Description>
															<tut:Price>9.95</tut:Price>
												</tut:Part>
												<tut:Quantity>10</tut:Quantity>
									</tut:Line>
	
									<tut:Line	LineNumber="2">
												<tut:Part	PartNumber="456">
															<tut:Description>Glue</tut:Description>
															<tut:Price>13.27</tut:Price>
												</tut:Part>

												<tut:Quantity>5</tut:Quantity>
									</tut:Line>
	
						</tut:SalesOrder>
	
</tut:Orders>

This	document	contains	a	namespace	declaration	and	uses	the	associated
namespace	prefix	on	the	element	names.		The	use	of	namespace	features	and
especially	of	namespace	prefixes	can	complicate	the	syntax	of	the	XPath
expressions	necessary	for	a	given	query.
Again	you	should	refer	to	the	many	resources	available	on	the	web	concerning
XML	namespaces	and	how	they	affect	XPath.		One	such	reference	is:

XML	Namespaces	and	How	They	Affect	XPath	and	XSLT
The	easiest	approach	to	formulating	XPath	expressions	for	use	with	such	an
instance	document	is	to	disregard	the	namespace(s).		If	the	document	is	loaded
WITHOUT	the	namespace-aware	option	(the	default	mode),	then	you	can	use
nearly	the	same	expressions	as	you	would	use	with	the	earlier	example.		Each	of
the	following	queries	work	successfully	with	the	namespace	prefixed	version	of
the	document	as	shown	above	(note	that	the	namespace	prefix	is	omitted
entirely	from	the	XPath	expressions):
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
QUERYNODES('/Orders/SalesOrder/@SONumber')
	
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
QUERYNODES('/Orders/SalesOrder')
QUERYNODESVALUE1('Customer/@CustNumber')
	
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
QUERYNODES('/Orders/SalesOrder/Customer[@CustNumber="543"]')
QUERY	NODESVALUE1('../@SONumber')
	
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
QUERYNODES('/Orders/SalesOrder[@SONumber="12345"]/Line/Part')
QUERY	NODESVALUE1('@PartNumber')
QUERY	NODESVALUE2('../Quantity')
	
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
QUERYNODES('/Orders/SalesOrder/Line/Part[Price>2.99]')

http://developers.slashdot.org/story/02/05/30/002252/xml-namespaces-and-how-they-affect-xpath-and-xslt

QUERY	NODESVALUE1('../../@SONumber')
QUERY	NODESVALUE2('@PartNumber')
QUERY	NODESVALUE3('Price')
QUERY	NODESVALUE4('../Quantity')
QUERY	NODESVALUE5('Price*../Quantity')

If,	however,	your	document	declares	more	than	one	namespace,	and,	especially
where	there	would	be	a	namespace	collision	without	the	use	of	the	namespaces,
it	may	be	necessary	to	load	the	document	in	namespace-aware	mode.		This	is
done	by	specifying	the	*NAMESPACEAWARE	keyword	in	the	XMLOPTIONS
parameter	of	the	XML_QUERY	activity.		For	example:
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
XMLOPTIONS('*NAMESPACEAWARE')
QUERYNODES('//tut:SalesOrder/@SONumber')

However,	once	the	document	is	loaded	in	namespace-aware	mode,	the	example
queries	shown	up	to	this	point	will	no	longer	function	because	now	the
namespace	forms	a	part	of	the	identification	of	nodes	in	the	XML	document.
There	are	a	variety	of	ways	to	formulate	your	XPath	expressions	such	that	they
will	function	in	the	way	you	require	in	namespace-aware	mode	and	it	is	well
beyond	the	scope	of	this	document	to	attempt	to	cover	all	the	options.		However,
here	are	a	few	examples	that	might	help	to	get	you	started:
1.This	example	uses	the	local-name	XPath	built-in	function	to	select	nodes
based	on	their	local	name	(the	node	name	WITHOUT	the	namespace	prefix):
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
XMLOPTIONS('*NAMESPACEAWARE')
QUERYNODES('//*[local-name()	=	"SalesOrder"]')
QUERYNODESVALUE1('@SONumber')

2.If	multiple	namespaces	are	used	and	'SalesOrder'	is	ambiguous	in	this	context,
then	you	can	extend	the	previous	example	to	use	the	namespace-uri	XPath
built-in	function:
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
XMLOPTIONS('*NAMESPACEAWARE')
QUERYNODES('//*[local-name()	=	"SalesOrder"
and	namespace-uri()	=	"urn:schemas-lansa-com:tutorder.dtd"]')
QUERYNODESVALUE1('@SONumber')

3.Alternatively,	if	you	know	that	all	instances	of	the	XML	document	will	use	the
same	namespace	prefixes	(which,	you	should	understand,	is	NOT	strictly
necessary	for	them	to	be	valid,	even	though	it	may	commonly	be	the	case	in

practice),	then	you	can	include	the	namespace	prefixes	in	your	XPath
expressions	(provided	the	document	is	loaded	in	namespace-aware	mode):
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
XMLOPTIONS('*NAMESPACEAWARE')
QUERYNODES('//tut:SalesOrder')
QUERYNODESVALUE1(@SONumber)

In	summary,	each	of	the	following	queries	work	successfully	with	the
namespace	prefixed	version	of	the	document	as	shown	above,	providing	the
document	is	loaded	in	namespace-aware	mode	AND	providing	the	actual
namespace	prefix	used	in	the	XML	document	matches	that	assumed	in	the
queries:
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
XMLOPTIONS('*NAMESPACEAWARE')
QUERYNODES('//tut:SalesOrder/@SONumber')
	
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
XMLOPTIONS('*NAMESPACEAWARE')
QUERYNODES('//tut:SalesOrder')
QUERYNODESVALUE1('tut:Customer/@CustNumber')
	
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
XMLOPTIONS('*NAMESPACEAWARE')
QUERYNODES('//tut:Customer[@CustNumber="543"]')
QUERYNODESVALUE1('../@SONumber')
	
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
XMLOPTIONS('*NAMESPACEAWARE')
QUERYNODES('//tut:SalesOrder[@SONumber="12345"]/tut:Line/tut:Part')
QUERYNODESVALUE1('@PartNumber')
QUERYNODESVALUE2('../tut:Quantity')
	
XML_QUERYXMLFILE('TUTorderNamespacePrefixed.xml')
XMLOPTIONS('*NAMESPACEAWARE')
QUERYNODES('//tut:Part[tut:Price>2.99]')
QUERYNODESVALUE1('../../@SONumber')
QUERYNODESVALUE2('@PartNumber')
QUERYNODESVALUE3('tut:Price')
QUERYNODESVALUE4('../tut:Quantity')

QUERYNODESVALUE5('tut:Price*../tut:Quantity')

XML_VALIDATE
This	activity	validates	an	XML	document	file.		If	the	document	is	found	to	be
invalid,	the	activity	ends	in	error	–	you	may	wish	to	use	a	CATCH	directive	in
your	Processing	Sequence	immediately	after	this	activity	in	order	to	handle	any
errors	that	result.
At	the	minimum,	the	activity	will	verify	(by	its	successful	completion)	that	the
XML	document	is	well-formed.		If	the	XML	document	contains	or	references	a
DTD	or	an	XML	schema	and	the	DTD	or	schema	can	be	accessed,	then	the
document	content	will	be	validated	against	the	DTD	or	schema.
INPUT	Parameters:

XMLFILE	:	Required
This	parameter	specifies	the	path	and	name	of	the	XML	document	file	to	be
validated.

OUTPUT	Parameters:
There	are	no	output	parameters	for	this	activity.

XSL_TRANSFORM
This	activity	applies	a	user-specified	and	provided	XSL	1.0	stylesheet	to	the
specified	source	file	to	create	a	transformed	result	file.		For	example,	an	XSL
stylesheet	might	be	used	to	transform	an	XML	file	to	HTML	or	PDF	for
viewing	or	printing.

NOTE:		The	transformation	is	performed	using	LANSA	Integrator's
XMLParserService.		This	uses	Apache	Xalan-J	as	the	XSL
transformation	engine.		This	implementation	presently	supports	XSL
version	1.0	compliant	stylesheets.

INPUT	Parameters:
XSLSOURCE	:	Required
Specifies	the	path	to	the	source	XML	file	to	be	transformed.
For	example:
c:\dir1\myfile.xml,	OR

/mydir1/myfile.xml
XSLTARGET	:	Required
Specifies	the	path	to	the	target	file	that	will	contain	the	result	of	the
transformation.
For	example:
c:\dir1\myfile.html,	OR

/mydir1/myfile.html
XSLSTYLESHEET	:	Required
Specifies	the	path	to	the	XSL	stylesheet	file	that	contains	the	XSL	1.0
instructions	that	determine	how	the	transformation	is	performed.
For	example:
C:\dir1\myxmlTOmyhtml.xslt,	OR

/mydir1/myxmlTOmyhtml.xslt
OUTPUT	Parameters:

There	are	no	output	parameters	for	this	activity.

ZIP_DIRECTORIES
This	Activity	will	zip	a	list	of	directories	and	place	the	contents	of	the
directories,	and	any	sub-directories	into	a	zip	archive.	The	directories	to	be
included	may	be	specified	in	a	list.	The	name	of	the	zip	archive	may	be
specified	or	a	default	name	may	be	created.
The	location	for	the	zip	archive	must	be	specified.	If	the	zip	archive	already
exists,	it	may	be	overwritten	or	added	to.	If	the	zip	archive	does	not	exist	it	will
be	created.
Other	Activities	for	zip	processing:

ZIP_FILES Zips	a	list	of	files	and	adds	them	to	a	zip	archive.

ZIP_LIST Lists	the	contents	of	an	existing	zip	archive.

ZIP_UNZIP Extracts	a	single	file	or	the	entire	contents	of	a	zip	archive.

INPUT	Parameters:
DIRECTORYLIST	:	Required
This	parameter	should	contain	a	list	of	directories.	The	list	must	contain	at
least	one	entry.
Each	entry	in	the	list	should	be	the	full	directory	path.
The	contents	of	any	sub-directories	will	also	be	included	in	the	resulting	zip
archive.	The	base	directory	will	be	included	with	each	entry	added	to	the	zip
archive.
For	example:		Windows		C:\mydirectory
IBM	i				/orders
ZIPARCHIVEDIRECTORY	:	Required
This	value	should	contain	the	full	path	to	be	used	for	the	location	of	the	zip
archive	file	that	will	be	created.
For	example:		Windows					C:\zipdirectory
IBM	i				/savedorders
ZIPARCHIVENAME	:	Optional
This	optional	value	may	contain	the	full	name	of	the	zip	file	to	be	created.	
If	this	value	is	not	provided,	a	name	will	be	generated	using	the	System
Setting	value,	Zip	File	Name	Prefix,	plus	a	unique	number	and	a	.zip
extension.	
For	example:			ZP147.zip

CLEARARCHIVE	:	Optional
This	optional	value	may	contain	YES	or	NO.	If	this	value	is	not	provided	it
defaults	to	YES.
If	YES,	the	zip	archive	file	created	is	cleared	before	adding	new	entries.
If	NO,	the	zip	archive	is	not	cleared	before	adding	new	entries.	Therefore,	if
the	zip	archive	already	exists,	the	contents	will	be	extended	by	the	additional
entries.

OUTPUT	Parameters:
ZIPARCHIVENAME

Upon	successful	completion,	this	parameter	will	contain	the	name	of	the	zip
archive	actually	used.	This	may	be	the	same	as	the	value	input	or	may	be	the
name	generated	by	the	activity.

ZIPARCHIVEPATH
Upon	successful	completion,	this	parameter	will	contain	the	full	path	and
name	of	the	zip	archive.

ZIP_FILES
This	Activity	will	zip	a	list	of	files	and	place	them	in	a	zip	archive.	The	files	to
be	included	may	be	specified	in	a	file	list.	The	name	of	the	zip	archive	may	be
specified	or	a	default	name	may	be	created.
The	location	for	the	zip	archive	must	be	specified.	If	the	zip	archive	already
exists,	it	may	be	overwritten	or	added	to.	If	the	zip	archive	does	not	exist	it	will
be	created.
Other	Activities	for	zip	processing:

TEXT_SUBSTITUTE Zips	a	list	of	directories	and	adds	them	to	a	zip
archive.

ZIP_LIST Lists	the	contents	of	an	existing	zip	archive.

ZIP_UNZIP Extracts	a	single	file	or	the	entire	contents	of	a	zip
archive.

INPUT	Parameters:
FILELIST	:	Required
This	parameter	should	contain	a	list	of	files.	The	list	must	contain	at	least
one	entry.
Each	entry	in	the	list	should	be	the	full	directory	path	and	file	name.
For	example:		Windows				C:\mydirectory\ord1.xml
IBM	i					/orders/OrdJan.csv
ZIPARCHIVEDIRECTORY	:	Required
This	value	should	contain	the	full	path	to	be	used	for	the	location	of	the	zip
archive	file	that	will	be	created.
For	example:		Windows					C:\mydirectory
IBM	i				/orders
ZIPARCHIVENAME	:	Optional
This	value	may	contain	the	full	name	of	the	zip	file	to	be	created.	
If	this	value	is	not	provided,	a	name	will	be	generated	using	the	system
setting	ZIP	archive	file	name	prefix,		plus	a	unique	number	and	a	.zip
extension.	
For	example:			ZP147.zip
CLEARARCHIVE	:	Optional

This	value	may	contain	YES	or	NO.	The	default	is	YES.
If	YES,	the	zip	archive	file	created	is	cleared	before	adding	new	entries.
If	NO,	the	zip	archive	is	not	cleared	before	adding	new	entries.	Therefore,	if
the	zip	archive	already	exists,	the	files	in	the	FILELIST	will	be	added	to	the
existing	archive.

OUTPUT	Parameters:
ZIPARCHIVENAME

Upon	successful	completion,	this	parameter	will	contain	the	name	of	the	zip
archive	actually	used.	This	may	be	the	same	as	the	value	input	or	may	be	the
name	generated	by	the	activity.

ZIPARCHIVEPATH
Upon	successful	completion,	this	parameter	will	contain	the	full	path	and
name	of	the	zip	archive.

ZIP_LIST
This	Activity	will	list	the	contents	of	a	zip	archive.	
The	path	and	name	of	the	zip	archive	must	be	specified.
The	contents	of	the	zip	archive	are	output	in	a	list.
This	Activity	uses	the	LANSA	Integrator	ZipService.
Other	Activities	for	zip	processing:

ZIP_FILES Zips	a	list	of	files	and	adds	them	to	a	zip	archive.

ZIP_DIRECTORIES Zips	a	list	of	directories	and	adds	them	to	a	zip	archive.

ZIP_UNZIP Extracts	a	single	file	or	the	entire	contents	of	a	zip
archive.

	
INPUT	Parameters:

ZIPARCHIVE	:	Required
This	value	should	contain	the	full	path	and	name	of	the	zip	archive	whose
contents	are	to	be	listed.
For	example:			Windows					C:\savedirectory\orders.zip
IBM	i				/saveorders/sav.zip

OUTPUT	Parameters:
FILELIST

This	parameter	will	contain	a	list	of	files	in	the	zip	archive.	
A	maximum	of	5,000	entries	may	be	listed.
The	format	of	each	entry	will	depend	upon	how	the	zip	archive	was	created.
The	base	directory	information	will	be	included	in	each	entry	name	if	it	was
captured	in	the	original	zip.
For	example,	if	the	base	directory	was	captured	by	the	original	zip	an	entry
might	be		mydirectory\january\ord1.xml	
If	no	directory	was	captured	in	the	zip	an	entry	will	contain	just	the	file
name,	such	as		ord1.xml	

ZIP_UNZIP
This	Activity	will	unzip	the	contents	of	a	zip	archive.	
The	path	and	name	of	the	zip	archive	must	be	specified.
The	contents	of	the	zip	archive	are	output	in	a	list.
This	Activity	uses	the	LANSA	Integrator	ZipService.
Other	Activities	for	zip	processing:

ZIP_FILES Zips	a	list	of	files	and	adds	them	to	a	zip	archive.

ZIP_DIRECTORIES Zips	a	list	of	directories	and	adds	them	to	a	zip	archive.

ZIP_LIST Lists	the	contents	of	an	existing	zip	archive.
	
INPUT	Parameters:

ZIPARCHIVE	:	Required
This	value	should	contain	the	full	path	and	name	of	the	zip	archive	from
which	a	single	file	or	the	complete	contents	are	to	be	extracted.
For	example:			Windows			C:\savedirectory\orders.zip
IBM	i			/saveorders/sav.zip
UNZIPTOPATH	:	Required
This	parameter	must	contain	the	destination	directory	into	which	the
extracted	files	are	placed.
For	example:			Windows				c:\mydirectory
IBM	i		/inbound/orders
UNZIPFILENAME	:	Optional
If	this	parameter	contains	a	value,	it	should	be	the	name	of	the	single	file
which	is	to	be	extracted	from	the	zip	archive.
If	this	parameter	does	not	contain	a	value,	then	the	complete	contents	of	the
zip	archive	are	extracted.
The	extracted	file/s	will	be	placed	in	the	directory	specified	in	the
UNZIPTOPATH	parameter.
KEEPDIRSTRUCTURE	:	Optional
This	parameter	may	have	a	value	of	YES	or	NO.	Default	value	is	NO.
If	this	parameter	is	YES,	then	the	directory	structure	in	the	zip	archive	is
preserved.	This	means	that	sub	directories	will	be	created	in	the

UNZIPTOPATH	directory	to	match	those	in	the	zip	archive.
Note:	If	a	conflict	of	directory	name	occurs	then	the	unzip	will	be
abandoned.
If	this	parameter	is	NO,	then	all	entries	in	the	zip	archive	will	be	placed	in
the	UNZIPTOPATH	directory.

OUTPUT	Parameters:
There	are	no	output	parameters.

2.2.18	Deprecated	Activities
Some	Activities	from	previous	versions	of	LANSA	Composer	have	been
deprecated	in	this	version.
In	most	cases,	the	deprecated	Activities	are	renamed	and	a	replacement	Activity
is	provided	with	new	or	different	features	or	behavior.		New	Processing
Sequences	should	use	the	suggested	alternate	Activity.
Unless	otherwise	indicated,	the	deprecated	Activities	are	still	supplied,	but	are
hidden	for	normal	use	such	that	they	cannot	be	used	in	new	or	revised
Processing	Sequences.		This	preserves	the	behavior	of	existing	Processing
Sequences	that	used	the	original	activity.
The	deprecated	Activities	are:

ZZARCHIVE_FILE
ZZARCHIVE_FILE2
ZZCALL_FUNCTION
ZZDELETE_FILE
ZZFTP_INBOUND
ZZMSG_RECEIVE
ZZTUT_03_AT

	

ZZARCHIVE_FILE
Original	Activity	Name: ARCHIVE_FILE

Alternate	Activity	name: MOVE_FILE
	
This	activity	was	deprecated	for	the	following	reasons:

Because	it	did	not	properly	set	the	error	result	code	when	the	file	move	fails.
Because	its	parameters	specify	the	file	and	path	to	be	moved	in	a	way	that	is
inconsistent	with	other	supplied	activities

	

ZZARCHIVE_FILE2
Original	Activity	Name: ARCHIVE_FILE2

Alternate	Activity	name: MOVE_FILE
	
This	activity	was	deprecated	because	it	did	not	properly	set	the	error	result	code
when	the	file	move	fails.
	

ZZCALL_FUNCTION
Original	Activity	Name: CALL_FUNCTION

Alternate	Activity	name: CALL_FUNCTION
	
This	activity	was	deprecated	because	the	CALL_FUNCTION	activity	was
enhanced	with	the	ability	to	call	functions	in	a	different	LANSA	system	and/or
partition.		In	doing	so,	the	number	of	supported	exchange	parameters	was
reduced	to	seven	(7).		The	deprecated	version	of	the	activity	preserves	support
for	nine	(9)	exchange	parameter	values	for	existing	Processing	Sequences	that
may	use	them	(but	does	not	provide	the	enhanced	capabilities	of	the	new
CALL_FUNCTION	activity).
	

ZZDELETE_FILE
Original	Activity	Name: DELETE_FILE

Alternate	Activity	name: DELETE_FILE
	
This	activity	was	deprecated	because	it	did	not	properly	set	the	error	result	code
when	the	file	delete	fails.
	

ZZFTP_INBOUND
Original	Activity	Name: FTP_INBOUND

Alternate	Activity	name: FTP_INBOUND
	
This	activity	was	deprecated	because	of	incorrect	behavior	with	respect	to	the
use	of	the	local	target	directory	used	by	the	activity.		When	this	deprecated
version	was	used	with	some	FTP	servers	(especially	Linux	servers),	then	parts

of	the	remote	directory	path	may	have	been	added	to	the	target	directory	path.	
This	behavior	was	INCORRECT	and	has	been	corrected	in	the	revised
FTP_INBOUND.		However	because	existing	implementations	may	have	relied
on	this	behavior,	this	deprecated	version	maintains	the	previous	behavior.
	

ZZMSG_RECEIVE
Original	Activity	Name: MSG_RECEIVE

Alternate	Activity	name: MSG_RECEIVE
	
This	Activity	was	deprecated	because	it	ends	with	an	error	status	when	no
message	is	available	to	receive.		The	new	version	of	the	Activity	ends	with	a
normal	(OK)	status	in	this	case,	but	a	new	output	parameter	contains	a	count	of
the	messages	received,	allowing	Processing	Sequences	that	use	it	to	better
handle	this	case.
	

ZZTUT_03_AT
Original	Activity	Name: TUT_03_AT

Alternate	Activity	name: NEXTNUMBER
	
This	activity	was	used	in	the	tutorial	exercise	LIC004	provided	with	LANSA
Composer	version	2.0	and	earlier.		The	tutorials	supplied	with	LANSA
Composer	version	3.0	and	later	use	the	supplied	NEXTNUMBER	activity
instead.

2.3	Configurations
Configurations	encapsulate	the	variable	information	required	for	supplied
transport	Activities	and	for	database	connections	used	with	Transformation
Maps.	Typically	Configurations	encapsulate	information	such	as:

Source	and	target	identification	and	addressing	and
Security	credentials

By	encapsulating	the	implementation-specific	information	in	Configurations,
LANSA	Composer	allows	a	single	Activity	and	often	a	single	Processing
Sequence	to	be	used	with	different	inputs	and	outputs	to	serve	different	source
and	target	-	for	example,	for	use	with	multiple	trading	partners.
Specific	Configuration	types	support	the	supplied	transport	Activities.	They	are:

2.3.2	FTP	Configuration
2.3.3	HTTP	Configuration
2.3.4	SMTP	Server	Configuration
2.3.5	SMTP	Mail	Details	Configuration
2.3.6	POP3	Mail	Configuration
2.3.7	SMS	Configuration
2.3.9	Messaging	Configuration
2.3.10	LANSA	System	Configuration

In	addition,	the	special	type	of	2.3.8	Database	Configuration	is	provided	to
support	encapsulating	database	details	for	databases	used	with	Transformation
Maps.

2.3.1	Work	With	Configurations
Using	LANSA	Composer	you	can	create,	maintain,	and	delete	any	number	of
Configurations	according	to	your	application's	needs.
To	work	with	Configurations,	expand	Configurations	in	the	Navigator	and	click
the	Configuration	type	that	you	wish	to	work	with.	To	find	out	how	to	locate
and	select	Configurations	to	work	with,	refer	to:

Locating	and	selecting	items	in	the	Instance	Lists
For	information	on	common	tasks	associated	with	Configurations	(such	as
creating,	copying,	deleting	and	printing	definitions)	refer	to:

Working	with	definition	items
For	information	on	tasks	associated	specifically	with	Configurations,	refer	to	the
following	headings:

Test	a	Configuration
For	information	specific	to	particular	configuration	types,	refer	to	the	following
headings:

2.3.2	FTP	Configuration
2.3.3	HTTP	Configuration
2.3.4	SMTP	Server	Configuration
2.3.5	SMTP	Mail	Details	Configuration
2.3.6	POP3	Mail	Configuration
2.3.7	SMS	Configuration
2.3.9	Messaging	Configuration
2.3.8	Database	Configuration
2.3.10	LANSA	System	Configuration

Test	a	Configuration
Some	configurations	will	have	a	Test	button.	When	clicked,	it	will	run	an
activity	that	is	used	to	check	the	validity	of	the	configuration	parameters.	The
parameters	tested	will	differ	depending	on	the	type	of	configuration.	At	the	end
of	the	test,	a	processing	sequence	log	will	be	shown	to	indicate	whether
connection	has	been	successful	and	the	error	that	has	occurred.
	
	
	

its:LANSA091.CHM::/lansa/intengc1_0230.htm
its:LANSA091.CHM::/lansa/intengc1_0240.htm

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

2.3.2	FTP	Configuration
The	FTP	Configuration	may	be	used	to	set	details	of	how	you	wish	to	send	and
retrieve	files	using	file	transfer	protocols.	Activities	to	make	use	of	these
configurations	are	provided.	These	include:

FTP_INBOUND
FTP_OUTBOUND
FTP_COMANDLIST

Information	for	an	FTP	Configuration	is	in	three	sections:
Identification	–	identifies	the	FTP	Configuration	and	contains	basic
information.
Connection	–	information	about	the	remote	FTP	Host	and	how	to	connect
to	that	host.
Details	–	specific	details	relating	to	the	type	of	FTP	Configuration	being
set	up.

Identification
This	identifies	the	FTP	Configuration	and	contains	basic	information.

ID An	identifier	to	uniquely	identify	this	configuration
Description This	should	describe	the	configuration.
FTP	type Inbound,	Outbound	or	Command	List.
Status Active	or	Inactive.	Configurations	cannot	be	used	in	a	processing

sequence	while	they	are	in	inactive	status	–	supplied	activities
will	end	in	error	if	they	attempt	to	use	a	configuration	that	has
inactive	status.

Connection
Following	is	information	about	the	remote	FTP	Host	and	how	to	connect	to	that
host.

Remote
host

You	must	specify	the	name	of	the	remote	FTP	server.	It	may	be
specified	as	an	IP	address	(nnn.nnn.nnn.nnn:port)	or	domain
name.	The	default	value	for	the	port	is	21	or	22	(if	SFTP	is
selected)	or	990	(for	an	FTPS	connection	using	implicit
TLS/SSL).

Remote
user

Must	be	specified	and	contains	the	user	profile	to	connect	to	the
remote	host.

Remote
password

The	password	that	is	used	along	with	the	remote	user	to	connect
to	the	remote	host.	This	value	is	held	encrypted.	
NOTE:	the	remote	password	will	be	ignored	if	you	select	SFTP
and	specify	a	Private	key	file.		In	this	case	the	private	and	public
keys	are	used	for	authentication	instead	of	the	password.

Connection
timeout

This	field	can	specify	a	timeout	for	the	remote	host	connection	to
be	established,	in	milliseconds.		For	example,	specify	5000	for	a
timeout	value	of	five	seconds.		If	zero	(or	a	negative	value)	is
specified,	then	no	connection	timeout	applies.

Response
timeout

This	field	can	specify	a	timeout	for	the	response	(socket	read)
wait,	in	milliseconds.		For	example,	specify	5000	for	a	timeout
value	of	five	seconds.		If	zero	(or	a	negative	value)	is	specified,
then	no	response	timeout	applies.		If	communications	with	the
remote	host	are	unreliable,	you	should	specify	a	timeout	value
here	to	prevent	the	FTP	operation	apparently	"hanging"	if	the
communications	link	is	broken	in	the	middle	of	an	operation.

	

	

Use
protocol
and
security

There	are	a	number	of	protocols	and	security	layers	associated	with
what	is	collectively	known	as	'FTP'.		This	field	allows	you	to	specify
the	particular	protocol	and	security	layer	that	you	wish	to	use.		You
may	choose	from	the	options	that	are	further	described	below:

FTP:	File	transfer	protocol
Standard	FTP,	when	used	alone,	does	not	take	any	precautions	to	protect
information	transmitted	during	a	session.	This	includes	your	username,
password,	and	any	files	transmitted.		In	FTP	all	data	is	passed	back	and	forth
between	the	client	and	server	without	the	use	of	encryption.	This	makes	it
possible	for	an	eavesdropper	to	listen	in	and	retrieve	your	confidential
information	including	login	details.	This	option	may	be	most	suitable	when
used	over	a	controlled	and	secure	private	network	and/or	where	the	data
being	exchanged	is	not	sensitive.		It	usually	runs	over	TCP	port	21.
FTPS:	FTP	over	TLS/SSL	(implicit)
FTPS:	FTP	over	TLS/SSL	(explicit)
FTPS	extends	the	File	Transfer	Protocol	(FTP)	using	TLS/SSL	to	encrypt	the
control	session	and,	if	required,	the	data	session.		TLS	(Transport	Layer
Security)	and	SSL	(Secure	Sockets	Layer)	are	protocols	that	provide	data
encryption	and	authentication	between	applications	in	scenarios	where	that
data	is	being	sent	across	an	insecure	network.
In	explicit	mode,	the	connection	is	initially	made	using	a	plain	socket	in
unsecured	mode	then	the	client	and	the	server	negotiates	a	change	to	a
TLS/SSL	connection	using	the	AUTH	subcommand.		Implicit	mode	requires
a	secure	control	channel	directly	to	the	TLS/SSL	FTP	server	using	a	port
(usually	990)	allocated	specifically	for	such	secure	connections.

SFTP:	SSH	file	transfer	protocol
SFTP	(SSH	file	transfer	protocol)	is	a	secure	replacement	for	FTP	that	runs
over	a	Secure	Shell	(SSH)	session,	usually	on	TCP	port	22.		SFTP	is	a	binary
protocol	that	encrypts	both	commands	and	data	before	sending	over	the	one
connection	(separate	command	and	data	channels	are	not	used).			SFTP	is
becoming	more	popular,	not	least	because	it's	supported	by	Linux	and	UNIX
servers	by	default.

	
When	you	choose	the	SFTP	(SSH	file	transfer	protocol),	the
following.additional	fields	are	presented:

	

Private	key
file

SFTP	(SSH	file	transfer	protocol)	can	use	either	user/password
authentication	or	user	and	public	key	authentication.		To	use
the	latter,	you	usually	will	have	to	generate	(or	be	provided
with)	two	key	files	–	a	private	key	file	(*.pem)	and	a	public	key
file	(*.pub).		They	should	both	be	installed	in	the	server	file
system	in	the	SAME	folder.		You	may	also	need	to	supply	the
public	key	file	to	your	trading	partner.		The	full	path	to	the
private	key	file	should	be	entered	in	this	field.	You	can	click
the	prompt	button	to	browse	for	a	file	on	the	LANSA
Composer	server.		The	FTP	activities	will	expect	to	find	a
public	key	file	with	the	same	name	and	a	".pub"	extension	in
the	same	folder.		When	using	this	mode	of	authentication	the
Remote	password	field	is	not	used	and	will	be	ignored.

Private	key
password

If	the	private	key	file	is	encrypted,	the	password	or	passphrase
to	open	the	file	should	be	entered	in	this	field.		This	password
is	only	used	locally	for	this	purpose	–	it	is	not	sent	to	the
remote	server.

Use	SSH
compression

This	field	specifies	whether	or	not	the	connection	to	the	SFTP
server	uses	SSH	compression.

	
When	you	choose	the	FTP	or	FTPS	options,	the	following.additional	fields	are
presented:

	

Secure
data
channel

When	using	FTPS,	the	control	channel	is	always	secure,	but	a	secure
data	channel	is	not	enabled	by	default.		If	the	data	being	transmitted
has	already	been	encrypted	then	providing	a	further	layer	of
encryption	over	the	data	channel	simply	imposes	additional
overhead.		However,	if	the	data	being	transferred	has	not	already
been	encrypted,	then	you	may	select	Yes	in	this	field	to	specify	that	a
secure	data	channel	should	be	requested.

Data
link
mode

May	be	Passive	or	Active.
Passive	is	the	default.
Active	causes	port	mode	to	be	used	by	inbound	list	and	get
operations	and	by	outbound	put	operations.

Binary
mode

Indicates	if	the	FTP	transfer	should	be	done	in	binary	mode.		This
field	does	not	apply	and	is	not	shown	for	a	Command	List	type	FTP
configuration.

Note:	The	Test	button	can	be	used	to	check	that	the	connection
parameters	are	correct	before	saving.	All	parameters	here	are	tested
except	Data	link	mode	and	Binary	mode.

Details
The	details	section	will	vary	according	to	the	FTP	type	specified	in	the
Identification	section.
Inbound

The	Inbound	FTP	Configuration	is	for	use	in	an	Activity	which	connects	to
the	remote	host	and	uses	the	FTP	GET	command	to	retrieve	files	from	that
remote	host	and	place	the	files	on	the	local	machine.

Local
directory
path

This	value	must	be	specified	and	must	contain	the	directory	on	the
local	machine	where	files	which	are	retrieved	from	the	remote	host
are	placed.		You	can	click	the	prompt	button	to	browse	for	a	folder
location	on	the	LANSA	Composer	server.

Remote
directory
path

The	directory	on	the	remote	host	from	which	files	are	retrieved.	If
not	specified,	files	are	retrieved	from	the	user's	default	director

Remote
file	list
format

The	format	of	the	file	list	which	is	retrieved	from	the	remote	host.
Select	from	the	dropdown	list:	Auto	detect	format	(default),	IBM	i,
Windows,	Linux	or	NAME	(use	the	FTP	NLST	subcommand).

GET
selection

Select	from	the	dropdown	list:
GET	all	files	retrieves	all	the	files	in	the	remote	directory.	
GET	files	like	selectively	retrieves	files	from	the	remote	directory.
A	pattern	specifying	the	type	of	files	to	be	retrieved	must	be
entered	in	the	GET	like	pattern.

GET	like
pattern

This	will	be	available	if	the	GET	files	like	is	selected	for	the	GET
selection.	It	must	contain	a	pattern	to	identify	the	files	to	be
retrieved	from	the	remote	host.
For	example:		*.ord		will	retrieve	files	with	an	extension	of	ord.
ord*	will	retrieve	files	which	start	with	ord.

GET	files
using

This	option	affects	the	local	file	name	and	extension	that	will	be
used	for	files	received	from	the	remote	FTP	server.		You	may	wish
to	alter	this	option	when,	for	example,	the	remote	FTP	server	uses
file	names	and/or	extensions	that	do	not	comply	with	local	file
system	naming	rules.

You	can	choose	from	the	following	options:

Remote	file	name	and	extension
The	same	file	name	and	extension	used	on	the	FTP	server	will	be
used	as	the	local	file	name	on	the	GET	operation.

Generated	file	name,	remote	file	extension
This	causes	the	GET	operation	to	receive	the	file	using	a	generated
local	file	name	but	with	the	same	file	extension	(if	any)	used	for

the	file	on	the	remote	server.

Generated	file	name,	no	extension
This	causes	the	GET	operation	to	receive	the	file	using	a	generated
local	file	name	with	no	file	extension.

After
GET
action

Select	from	Leave	on	remote	host	or	Delete	from	remote	host.
Leave	on	remote	host	leaves	the	files	on	the	remote	host	after	the
GET	action.
Delete	from	remote	host	deletes	the	files	from	the	remote	host
directory	after	the	GET	action.	You	must	have	delete	authority	to
the	remote	host	directory	to	be	able	to	use	this	action.

	
Outbound

The	outbound	FTP	Configuration	is	for	use	in	an	Activity	which	connects	to
the	remote	host	and	uses	the	FTP	PUT	command	to	place	files	from	the	local
machine	into	a	specific	location	on	the	remote	host.

Local
directory
path

This	value	must	contain	the	directory	on	the	local	machine	which
contains	files	which	are	to	be	placed	onto	the	remote	host.		You
can	click	the	prompt	button	to	browse	for	a	folder	location	on	the
LANSA	Composer	server.

Remote
directory
path

The	directory	on	the	remote	host	where	files	will	be	placed.	If	this
is	blank,	files	will	be	placed	in	the	user's	default	directory.

PUT
selection

Select	from	the	dropdown	list:
PUT	all	files	places	all	the	files	found	in	the	Local	Directory	onto
the	remote	host.
Files	with	extension	of	selects	the	files	I	the	local	directory	which
have	a	particular	extension.	The	extension	is	specified	in	the

Extension.
Extension This	will	be	available	if	the	"Files	with	extension	of	"	is	specified

for	the	PUT	selection.	This	should	contain	the	extension	of	the
files	to	be	selected.	The	value	is	case	insensitive	and	no	"."	is
required.

Local
archive
path
(OK)

This	value	is	optional.	It	can	contain	a	directory	path	on	your
machine.	Outbound	files	which	are	successfully	transported	will
be	moved	to	this	directory.		You	can	click	the	prompt	button	to
browse	for	a	folder	location	on	the	LANSA	Composer	server.

Local
archive
path
(ER)

This	value	is	optional.	It	can	contain	a	directory	path	on	your
machine.	Outbound	files	which	are	encounter	errors	during	the
FTP	processing	will	be	moved	to	this	directory.		You	can	click	the
prompt	button	to	browse	for	a	folder	location	on	the	LANSA
Composer	server.

Command	List
The	command	list	FTP	Configuration	is	for	use	in	an	Activity	which
connects	to	the	remote	host	and	executes	the	FTP	commands	which	are
specified	in	a	file.

Command
list	file

This	must	be	specified	and	contains	the	full	path	and	name	of	a
file	which	contains	FTP	commands.
The	standard	Activity	executes	the	FTP	commands	using
LANSA	Integrator.	For	further	information	on	the	FTP
commands	and	the	keywords,	refer	to	FTP	commands.
The	command	list	file	should	contain	only	one	command	per
line.	Comment	lines	should	contain	a	#	as	the	first	character.	The
line	terminator	may	be	carriage	return,	line	feed,	new	line,
carriage	return	line	feed	or	line	feed	carriage	return.

	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

FTP	commands
These	are	some	possible	commands	that	can	be	used	in	FTP	Command	list:

Command Description

CREATE	DIR(<directory>) Create	a
directory	on
the	remote
FTP	host.
A	value
must	be
supplied	for
the
<directory>.

DELETE	DIR(<directory>) Delete	a
directory	on
the	remote
FTP	host.
A	value
must	be
supplied	for
the
<directory>.

DELETE	FILE(<file>) Delete	a	file
on	the
remote	FTP
host.
A	value
must	be
supplied	for
the	<file>.

RENAME		FROM(<fromname>)				TO(<toname>) Rename	a
file	on	the
remote	FTP
host.
Values	must

be	supplied
for
<fromname>
and
<toname>.

CHGDIR			PATH(<new	path>) Change
directory	on
the	remote
FTP	host.
A	value
must	be
provided	for
the
<newpath>.

BINARY Change	to
binary
mode.

ASCII Change	to
ASCII	mode

QUIT End	the	FTP
session.

GET		FROM(<remotepath>)	TO(<localpath>)
CONVERT(*YES/*NO)		FROM_ENCODING(<fromcode>)
TO_ENCODING(<tocode>)
RECORD_DELIMITER(<*NONE/*LF/*CRLF)
RECORD_SIZE(<size>)	DATALINK(*PASV/*PORT)

GET	a	file
from	the
remote	FTP
host	and
place	on	the
local
machine.
Refer	to
GET
command

PUT		FROM(<remotepath>)	TO(<localpath>)
CONVERT(*YES/*NO)		FROM_ENCODING(<fromcode>)
TO_ENCODING(<tocode>)
RECORD_DELIMITER(<*NONE/*LF/*CRLF)

PUT	a	file
from	the
local
machine

RECORD_SIZE(*NOMAX/<size>)
DATALINK(*PASV/*PORT)

onto	the
remote	FTP
host.
Refer	to
PUT
command

	

GET	command

Keyword Value Notes

FROM value Mandatory.	Remote	file	path.
For	example:	/ftp/orders

TO value Mandatory.	Local	file	path.
For	example:	/ftpin/orders

CONVERT *NO
*YES

Optional.	Default	is	*NO	(no
conversion).

FROM_ENCODING value Optional.	Only	used	if
CONVERT(*YES)
This	is	the	encoding	to	convert	the
FROM	file	content	to	an
intermediate	Unicode	string.

TO_ENCODING value Optional.	Only	used	if
CONVERT(*YES)
This	is	the	encoding	to	convert	from
the	intermediate	Unicode	string	to
the	target	encoding.

RECORD_DELIMITER *NONE
*LF
*CRLF

Optional.	Only	used	if
CONVERT(*YES).
This	specifies	the	end	of	record
marker	to	be	added	to	the	end	of	each
converted	record	read.
Default	is	*NONE.

RECORD_SIZE value Optional.	The	read	size	used	on	the
source	stream.
Default	is	1024.

DATLINK *PASV
*PORT

Optional.	
*PORT	-	use	port	mode	when	getting
the	file.
*PASV	-	use	passive	mode	when
getting	the	file.
Default	is	*PASV.

	

	

PUT	command
Keyword Value Notes

FROM value Mandatory.	Local	file	path.
For	example:	/outftp/orders

TO value Mandatory.	Remote	file	path.
For	example:	/orders

CONVERT *NO
*YES

Optional.	Default	is	*NO	(no
conversion).
	

FROM_ENCODING value Optional.	Only	used	if
CONVERT(*YES)
This	is	the	encoding	to	convert	the
FROM	file	content	to	an
intermediate	Unicode	string.

TO_ENCODING value Optional.	Only	used	if
CONVERT(*YES)
This	is	the	encoding	to	convert
from	the	intermediate	Unicode
string	to	the	target	encoding.

RECORD_DELIMITER *NONE
*LF
*CRLF

Optional.	Only	used	if
CONVERT(*YES).
Default	is	*NONE.
This	specifies	the	end	of	record
marker	to	be	added	to	the	end	of
each	converted	record	read.

RECORD_SIZE Value
*NOMAX

The	read	size	used	on	the	source
file.
Optional.	Defaults	to	1024.
*NOMAX	sets	the	read	size	to	the
length	of	the	source	file.

DATLINK *PASV
*PORT

Optional.	Defaults	to	*PASV.
*PORT	-	use	port	mode	when
putting	the	file.
*PASV	-	use	passive	mode	when
putting	the	file.

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

2.3.3	HTTP	Configuration
The	HTTP	Configuration	may	be	used	to	set	details	of	how	you	wish	to	send
and	retrieve	payloads	using	the	http	protocol.	Activities	to	make	use	of	these
Configurations	are	provided.	These	are:

HTTP_INBOUND	for	inbound	HTTP	requests
HTTP_GET	and	HTTP_POST	for	outbound	requests

Information	for	an	HTTP	Configuration	is	in	two	parts:
Identification	–	Identifies	the	HTTP	Configuration	and	contains	basic
information.
Details	–	Specific	details	relating	to	the	type	of	HTTP	Configuration
being	set	up.

Identification
This	identifies	the	HTTP	Configuration	and	contains	basic	information.

HTTP
Configuration
ID

An	identifier	to	uniquely	identify	this	Configuration

Description This	should	describe	the	Configuration.
HTTP
direction

Inbound	or	Outbound

Configuration
Status

Active	or	Inactive.	Configurations	cannot	be	used	in	a
processing	sequence	while	they	are	in	inactive	status	–
supplied	activities	will	end	in	error	if	they	attempt	to	use	a
configuration	that	has	inactive	status.

Details
The	details	section	will	vary	according	to	the	HTTP	direction	specified	in	the

Identification	section.
Inbound

The	Inbound	HTTP	Configuration	will	set	up	details	for	a	JSMDirect
inbound	HTTP.	The	information	entered	will	create	and	maintain	the
function	registry	used	by	JSMDirect.	This	is	the	DC@W29	table	on	IBM	i	or
the	dc_w29.txt	on	Windows.	
Also	the	Processing	Sequence	which	is	to	be	launched	is	entered.

Processing
Sequence
ID

This	must	contain	the	Identity	of	a	Processing	Sequence.	This
Processing	Sequence	should	contain	an	Activity	which	will
process	the	payload	of	the	inbound	HTTP	transmission.	A
standard	Activity	HTTP_INBOUND	is	provided	for	this
purpose.

Application
Name

This	is	the	application	name	which	will	be	registered	on	the
DC@W29/dc_w29.txt	table.	
It	identifies	the	application	to	be	executed	and	is	part	of	the
URL.
For	example:	http://lansa01:8080/cgi-bin/jsmdirect?
ZZORDERS+ABC
where	the	Application	Name	is	ZZORDERS.

Local	Host This	is	the	host	name	which	will	be	registered	on	the
DC@W29/dc_w29.txt	table.
It	will	default	to	*DEFAULT.
It	can	contain	a	value	of	*DEFAULT	or	a	HostName:Port

Handler
Type

Select	from	Function	or	IBM	i	3GL.
The	value	selected	for	this	Type	will	determine	what	next	entry

fields	are	required.
OK	HTTP
response
message

This	optional	entry	may	contain	the	text	which	is	to	be	sent	for
an	OK	response

For	a	Handler	Type	of	Function:
Process
Name

This	must	be	the	process	which	contains	the	Function	specified	in
the	following	parameter.	This	defaults	to	DXPROC02.

Function
Name

This	is	the	function	that	will	be	invoked	by	JSMDirect	when	an
inbound	HTTP	transmission	with	the	specified	Application	Name
in	the	URL	is	received.	
This	defaults	to	DXHTFN1	which	is	a	supplied	function	in	process
DXPROC02.	This	supplied	function	will	match	the	inbound	URL
to	the	Application	Name	on	this	Configuration	and	then	launch	the
Processing	Sequence	specified	on	that	Configuration.
Refer	to	HTTP_INBOUND	for	a	description	of	this	function.

Partition This	must	be	the	LANSA	partition	which	contains	the	function	to
be	invoked.

Language This	must	contain	the	LANSA	execution	language.
	
For	a	Handler	Type	of	IBM	i	3GL:

3GL
Program

This	should	contain	the	program	name	when	a	Handler	Type	of
IBM	i	3GL	is	selected.

Outbound
The	outbound	HTTP	Configuration	is	for	use	in	an	Activity	which	sends
HTTP	requests	to	a	remote	HTTP	server	.
If	applicable,	the	payload	is	specified	as	a	directory	path	plus	the	file	name
of	the	content	file.	The	content	type	may	also	need	to	be	specified.

Remote	Host This	must	contain	the	remote	HTTP	server	and	port.	The
format	is	host:port
For	example		lansa01:8080			or		10.2.1.456:88
If	the	port	is	not	supplied,	it	will	default	to	80.

URI This	must	contain	the	remainder	of	the	URI	to	be	used	to
connect	to	the	remote	server.

Content	File
Directory

Enter	the	local	directory	path	which	contains	the	content	file.	
You	can	click	the	prompt	button	to	browse	for	a	folder
location	on	the	LANSA	Composer	server.

Content	File
Name

Enter	the	content	file	name.	This	file	will	be	used	as	the
payload	of	the	HTTP	transmission.

Proxy	Server If	a	proxy	server	is	being	used,	enter	the	proxy	server	name.
Secure
Protocol

Select	Yes	to	use	HTTPS	(secure	protocol)	for	the	HTTP
connection.		Select	No	to	use	use	standard	HTTP	protocol.

Authentication
User

If	authentication	is	required,	this	contains	the	basic
authentication	user.

Authentication
password

If	authentication	is	required,	this	contains	the	password
which	is	used	with	the	Authentication	user.

Wait	for
response

Select	from	Yes	or	No.	Select	yes	if	you	want	the	HTTP
connection	to	wait	for	a	response.

Response
timeout

If	you	specified	Yes	for	the	Wait	for	response,	then	this	field
can	specify	a	timeout	for	the	response	wait,	in	milliseconds.	
For	example,	specify	5000	for	a	timeout	value	of	five
seconds.		If	zero	(or	a	negative	value)	is	specified,	then	no
response	timeout	applies.

Connection
timeout

This	field	can	specify	a	timeout	for	the	host	connection	to	be
established,	in	milliseconds.		For	example,	specify	5000	for	a
timeout	value	of	five	seconds.		If	zero	(or	a	negative	value)	is
specified,	then	no	connection	timeout	applies.

Content	Type You	may	select	the	content	type	of	the	payload	which	will	be
sent:

*XML application/xml

*TEXTXML text/xml

*TEXTPLAIN text/plain

*SOAP application/soap+xml

*HTML text/html

*XHTML application/xhtml+xml

*CSV application/comma-separated-values

*TEXTCSV text/	x-comma-separated-values

*TSV application/comma-separated-values

*TEXTTSV text/	x-tab-separated-values

*X12 application/edi-x12

*EDIFACT application/edifact

*STREAM application/octet-stream

*PDF application/pdf

*JSON application/json

*EXCEL application/vnd.ms-excel

*ZIP application/zip

*GIF image/gif

*PNG image/png

*JPEG image/jpeg

*MPEG audio/mpeg

*MPEG4 video/mpeg4
	
	 Most	often,	however,	you	may	leave	the	default	Automatic	setting,

which	will	result	in	the	HTTP_POST	activity	setting	an
appropriate	content	type	according	to	the	file	extension	of	the	file
being	sent.		(This	is	achieved	by	a	lookup	on	the	file	filetype.txt	in
the	<system>	directory	of	the	server's	JSM	instance	directory	tree.)

Encoding You	may	enter	an	encoding	which	will	be	used	to	convert	the
content	to	Unicode.

Note:	A	Test	button	can	be	used	to	check	the	validity	of	the	parameters
for	Outbound	HTTP	Configuration.	The	parameters	tested	are:	Remote
Host,	Proxy	Server,	Secure	Protocol,	Authentication	User	and
Password,	and	Connection	and	Response	timeout	values,	if	applicable.

2.3.4	SMTP	Server	Configuration
The	SMTP	Server	Configuration	may	be	used	to	identify	the	SMTP	server	to	be
used	when	an	email	is	sent	using	the	SMTP	protocol.	Typically	you	will	have	a
single	SMTP	Server	Configuration	that	identifies	your	SMTP	server.
A	standard	Activity	named	SEND_MAIL	is	provided	to	send	emails.	This
standard	Activity	uses	the	information	in	the	SMTP	Server	Configuration	to
identify	which	email	server	is	to	be	used.

ID An	identifier	to	uniquely	identify	this	Configuration 	

Description This	should	describe	the	Configuration. 	

Status Active	or	Inactive.	Configurations	cannot	be	used	in	a
processing	sequence	while	they	are	in	inactive	status	–	supplied
activities	will	end	in	error	if	they	attempt	to	use	a	configuration
that	has	inactive	status.
	

	

SMTP
Server

This	is	the	IP	address	or	domain	name	of	the	SMTP	mail	server.
This	value	must	be	provided.

	

SMTP
server	user
profile

This	optional	value	is	the	user	profile	name	used	to	login	to	the
SMTP	server.

	

SMTP 	

server
password

This	optional	value	is	the	password	used	for	login	to	the	SMTP
server.

TCP/IP
port

This	value	is	optional.	The	default	value	is	port	25	(or	465	for	a
secure	connection	using	Implicit	SSL/TLS).

	

Use	secure
connection
(SSL/TLS)

Specifies	whether	to	use	a	secure	connection	to	the	specified
SMTP	server.		You	can	choose	one	of	the	following:
Explicit	SSL/TLS	attempts	to	establish	a	secure	connection	in
explicit	mode.	This	initially	connects	in	unsecured	mode
(typically	on	port	25)	then	negotiates	a	change	to	a	SSL/TLS
connection	using	the	STARTTLS	protocol	command.
Implicit	SSL/TLS	requires	secure	control	channel	directly	to
SSL/TLS	SMTP	server	using	a	port	(usually	465)	allocated
specifically	for	such	secure	connections.	
No	will	result	in	an	unsecured	connection	being	attempted	(some
servers	may	refuse	or	limit	such	a	connection).

Mail
Domain

This	value	is	optional	and	may	contain	the	mail	domain	issued
by	the	SMTP	HELO	subcommand.

	

Character
set

This	value	is	optional.	It	may	contain	the	character	set	set
encoding	of	the	body	text	and	subject.

	

Signer This	value	is	optional.	It	consists	of	2	components,
name:password.
These	values	are	used	as	keyword	to	identify	entries	in	the
LANSA	Integrator	SMTPMailService	properties	file.
The	X509	certificate	file	is	obtained	form	the	signer.certificate.
{name}	property.
The	PKCS8	keystore	file	is	obtained	from	the	signer.keystore.
{name}	property.	The	keystore	password	is	used	for	the
password.
Refer	to	documentation	of	the	SEND	command	of	the
SMTPMailService	in	the	LANSA	Integrator	Guide	for	further
information	on	the	configuration	and	use	of	this	value.

	

Encryption
algorithm

This	value	is	optional.	It	may	contain	*DES,	*DES-EDE3,
*RC2-	40,	*RC2S-64	or	*RC2-128.
Refer	to	documentation	of	the	SEND	command	of	the

	

SMTPMailService	in	the	LANSA	Integrator	Guide	for	further
information	on	the	configuration	and	use	of	this	value.

Note:	A	Test	button	can	be	used	to	test	the	server	configurations.	The
values	tested	are:	SMTP	Server,	SMTP	Server	User,	SMTP	Server
Password,	TCP/IP	port,	Use	secure	connection	(SSL)	and	Mail
Domain.

	

2.3.5	SMTP	Mail	Details	Configuration
The	SMTP	mail	details	Configuration	may	be	used	to	set	up	information	for	an
email	that	is	to	be	sent	using	the	SMTP	mail	protocol.
A	standard	SMTP	email	Activity	named	SMTP_EMAIL	is	provided.	This
standard	Activity	uses	the	information	in	the	SMTP	Mail	Details	Configuration
to	provide	basic	details	for	the	email	to	be	sent.	Also	some	of	the	details	that	are
to	be	used	on	the	email	may	be	provided	at	execution	time.	Consequently	a
SMTP	Mail	Details	Configuration	may	be	set	up	with	the	basic,	unchanging
values	and	the	remainder	of	the	mail	information	provided	at	execution	time.
For	example	you	could	set	up	a	Mail	Details	Configuration	for	the	standard
order	acknowledgement	email.	This	standard	acknowledgment	email	could	then
be	sent	with	minor	variations.
The	standard	SMTP	Activity	uses	LANSA	Integrator.

ID An	identifier	to	uniquely	identify	this	email	Configuration
Description This	should	describe	the	Configuration.
Status Active	or	Inactive.	Configurations	cannot	be	used	in	a

processing	sequence	while	they	are	in	inactive	status	–	supplied
activities	will	end	in	error	if	they	attempt	to	use	a	configuration
that	has	inactive	status.
	

TO	email
address

This	value	must	be	provided.	It	should	contain	a	valid	email
address,	or	a	list	of	email	addresses	separated	by	commas.		Click
the	adjacent	prompt	button	to	enter	or	maintain	the	list	of	email
addresses.

CC	email
address

This	optional	value	specifies	the	CC	(copy	to)	address.		It	can
contain	a	single	email	address,	or	a	list	of	email	addresses
separated	by	commas.		Click	the	adjacent	prompt	button	to	enter
or	maintain	the	list	of	email	addresses.

Blind	copy
email
address

This	optional	value	specifies	the	BCC	(blind	copy)	address.		It
can	contain	a	single	email	address,	or	a	list	of	email	addresses
separated	by	commas.		Click	the	adjacent	prompt	button	to	enter
or	maintain	the	list	of	email	addresses.

From	email
address

This	value	must	be	provided.	It	will	default	to	the	email	address
specified	in	the	system	setting	SMTP	From	e-mail	address.

From	email
display
name

This	value	is	optional.	It	may	provide	a	value	for	the	From	Name
as	it	is	displayed	to	the	email	recipient.	It	will	default	to	the
email	address	specified	in	the	system	setting	SMTP	From	e-mail
display	name.

Email
subject

This	value	is	optional.	It	may	contain	the	standard	subject	for
this	email.

Attachment This	optional	value	may	contain	the	path	and	file	name	of	a	file
that	is	to	be	attached	to	the	email.	The	attachment	may	be	added
to	the	email	unzip	or	zipped.	It	will	be	zipped	and	attached	to	the
email	if	a	value	is	specified	in	the	Zip	file	attachment.		You	can
click	the	prompt	button	to	browse	for	a	file	name	and	location	on
the	LANSA	Composer	server.

Zip
attachment
as

This	optional	value	may	contain	a	path	and	file	name.	If	a	value
is	provided,	then	the	attachment	file	specified	in	the	preceding
field	will	be	zipped	as	per	this	value.	It	will	then	be	attached	to
the	email.		You	can	click	the	prompt	button	to	browse	for	a	file

name	and	location	on	the	LANSA	Composer	server.
Body	text
file

This	optional	value	may	contain	the	path	and	file	name	of	a	file
that	contains	the	body	text	for	the	email.		You	can	click	the
prompt	button	to	browse	for	a	file	name	and	location	on	the
LANSA	Composer	server.

Content
type

This	value	is	optional.	It	defaults	to	text/plain.	Possible	values
are	*PLAIN,	*HTML	or	a	specific	value.

Encoding This	optional	keyword	may	be	used	to	specify	the	encoding	that
is	to	be	applied	when	converting	the	body	text	file	contents	to
Unicode	before	it	is	passed	to	JavaMail.

2.3.6	POP3	Mail	Configuration
The	POP3	mail	Configuration	may	be	used	to	specify	details	of	your	email
server	and	how	emails	are	to	be	retrieved	from	that	email	server	using	the	POP3
protocol.
Two	standard	POP3	email	Activities	are	provided.	They	are	MAIL_RECEIVE
and	MAIL_RECEIVEALL.	These	Activities	retrieve	emails	from	the	email
server.	Details	of	the	email	server	can	be	set	up	in	this	Configuration

ID An	identifier	to	uniquely	identify	this	Configuration
Description This	should	describe	the	Configuration.
Status Active	or	Inactive.	Configurations	cannot	be	used	in	a

processing	sequence	while	they	are	in	inactive	status	–	supplied
activities	will	end	in	error	if	they	attempt	to	use	a	configuration
that	has	inactive	status.

POP3	Mail
Server

This	is	the	IP	address	of	your	mail	server.	If	this	value	is	not
provided	on	this	Configuration,	it	must	be	specified	in	the
LANSA	Integrator	POP3MailService	properties	file.

POP3 This	is	the	user	profile	to	be	used	to	connect	to	your	mail	server.

MailServer
user	profile

If	this	value	is	not	provided	on	this	Configuration,	it	must	be
specified	in	the	LANSA	Integrator	POP3MailService	properties
file.

POP3
MailServer
password

This	is	the	password	which	is	used	with	the	user	profile	to
connect	to	your	mail	server.	If	this	value	is	not	provided	on	this
Configuration,	it	must	be	specified	in	the	LANSA	Integrator
POP3MailService	properties	file.

POP3	port This	value	is	optional.	The	default	value	is	110	(or	995	for	a
secure	connection	using	Implicit	SSL/TLS)

Use	secure
connection
(SSL)

Specifies	whether	to	use	a	secure	connection	to	the	specified
POP3	mail	server.		You	can	choose	one	of	the	following:
Explicit	SSL/TLS	attempts	to	establish	a	secure	connection	in
explicit	mode.	This	initially	connects	in	unsecured	mode
(typically	on	port	110)	then	negotiates	a	change	to	a	SSL/TLS
connection	using	the	STLS	POP3	protocol	command.
Implicit	SSL/TLS	requires	secure	control	channel	directly	to
SSL/TLS	POP3	mail	server	using	a	port	(usually	995)	allocated
specifically	for	such	secure	connections.	
No	will	result	in	an	unsecured	connection	being	attempted
(some	servers	may	refuse	or	limit	such	a	connection).

Public	key
name

This	value	is	optional.	It	may	be	used	to	decrypt	secure
messages	that	have	been	encrypted	with	the	recipient's	public
key.	This	value	is	used	to	access	the	appropriate	private	key
store	in	the	LANSA	Integrator	POP3	service	properties.

Public	key
password

This	value	is	optional.	It	is	used	with	the	Public	key	name	as	the
password	component.

Save	mail
text

Yes	or	No.	If	Yes	is	specified	the	text	of	the	emails	is	to	be
saved	to	directory	specified	in	Save	directory.

Save	mail
attachments

Yes	or	No.	If	Yes	is	specified	the	email	attachments	are	to	be
saved	to	directory	specified	in	Save	directory.

Save
directory

This	must	be	specified	if	the	mail	text	or	mail	attachments	are	to
be	saved.		You	can	click	the	prompt	button	to	browse	for	a
folder	location	on	the	LANSA	Composer	server.

Remove Yes	or	No.	If	No	is	specified,	then	the	emails	that	are	read	are

from	server
after	read

left	on	the	email	server.	This	means	that	a	subsequent	connect	to
the	email	server	and	read	will	retrieve	the	same	emails.	It	is
usual	to	remove	emails	from	the	server	after	they	have	been	read
and	the	text	and	attachments	saved.

Note:	A	Test	button	can	be	used	to	test	the	validity	of	the
configuration	parameters.	The	values	tested	are:	POP3	Mail	Server,
POP3	MailServer	user	profile,	POP3	MailServer	password,	POP3
port,	Use	secure	connection	(SSL),	Public	key	name,	Public	key
password.

2.3.7	SMS	Configuration
The	SMS	Configuration	may	be	used	to	specify	the	SMTP	e-mail	and	other
details	necessary	to	send	SMS	messages	via	e-mail	using	a	suitable	SMS
provider.		It	can	also	specify	the	destination	number	and	SMS	message	text.
This	configuration	type	is	used	by	the	SMS_SEND	activity.		Refer	to	the
description	of	that	Activity	for	further	information.

ID An	identifier	to	uniquely	identify	this	Configuration
Description This	should	describe	the	Configuration.
Status Active	or	Inactive.	Configurations	cannot	be	used	in	a

processing	sequence	while	they	are	in	inactive	status	–
supplied	activities	will	end	in	error	if	they	attempt	to	use	a
configuration	that	has	inactive	status.

SMTP You	can	choose	from	the	drop-down	list	an	existing	SMTP

Configuration
ID

configuration	which	contains	SMTP	server,	domain	and	port
details	that	are	used	when	sending	e-mails	to	the	SMS
provider.	SMTP	configuration	ID	can	also	be	set	as		the
default	SMTP	configuration	ID	set	in	System	Settings	by
choosing	(Default)	from	the	drop	down.		If	you	do	not	choose
an	existing	SMTP	configuration,	then	you	may	specify	the
SMTP	server,	domain	and	port	details	in	the	following	fields.

SMTP	server If	you	do	not	choose	an	existing	SMTP	configuration,	then
this	field	must	specify	the	IP	address	or	domain	name	of	the
SMTP	mail	server	used	to	send	e-mails	to	the	SMS	provider.

TCP/IP	port If	you	do	not	choose	an	existing	SMTP	configuration,	then
this	field	can	specify	the	port	number	of	the	SMTP	mail	server
used	to	send	e-mails	to	the	SMS	provider.	If	not	specified,	the
default	value	used	is	port	25	(or	465	for	a	secure	connection
using	implicit	SSL/TLS).

Use	secure
connection
(SSL)

If	you	do	not	choose	an	existing	SMTP	configuration,	then
this	field	can	specify	whether	to	use	a	secure	connection	to	the
specified	SMTP	server.		You	can	choose	one	of	the	following:
Explicit	SSL/TLS	attempts	to	establish	a	secure	connection
in	explicit	mode.	This	initially	connects	in	unsecured	mode
(typically	on	port	25)	then	negotiates	a	change	to	a	SSL/TLS
connection	using	the	STARTTLS	protocol	command.
Implicit	SSL/TLS	requires	secure	control	channel	directly	to
SSL/TLS	SMTP	server	using	a	port	(usually	465)	allocated
specifically	for	such	secure	connections.	
No	will	result	in	an	unsecured	connection	being	attempted
(some	servers	may	refuse	or	limit	such	a	connection).

Mail	Domain If	you	do	not	choose	an	existing	SMTP	configuration,	then
this	field	can	specify	the	mail	domain	of	the	SMTP	mail
server	used	to	send	e-mails	to	the	SMS	provider.

SMS	user
profile

This	is	the	user	name	provided	by	the	SMS	service	provider.
The	SMS_SEND	activity	will	place	the	user	name	and
password,	if	specified,	in	the	subject	line	of	the	generated
email	address	in	the	form	user+password.		If	your	SMS
provider	uses	a	different	e-mail	format,	the	activity	processor
for	the	SMS_SEND	activity	may	need	to	be	modified	to

accommodate	it.

SMS
password

This	is	the	password	for	the	user	provided	by	the	SMS	service
provider.

Character
set

This	value	is	optional.	It	may	contain	the	character	set
encoding	of	the	body	text	and	subject.

Encoding This	value	may	be	used	to	specify	the	encoding	that	is	to	be
applied	when	converting	the	byte	string.

Mobile
domain

This	is	the	mobile	domain	of	the	SMS	provider.
The	SMS_SEND	Activity	will	prepend	the	SMS	number
specified	to	this	domain	to	form	the	email	address	to	which	to
send	the	SMS	message.		For	example	if	the	SMS	number	is
specified	as	'04001234567'	and	the	mobile	domain	is
'streetdata.com.au'	then	the	email	will	be	sent	to
'04001234567@streetdata.com.au'.
The	resulting	email	address	must	conform	to	the	form
specified	by	your	SMS	provider.		If	your	SMS	provider	uses	a
different	e-mail	format,	the	activity	processor	for	the
SMS_SEND	activity	may	need	to	be	modified	to
accommodate	it.

From	email
address

This	is	the	email	address	from	where	the	SMS	will	be	sent.	
Your	SMS	provider	may	send	confirmations	or	other
responses	to	this	e-mail	address	or	may	require	a	particular
email	address	be	used	for	authentication	and	billing	purposes.	
Refer	to	your	SMS	provider	for	information.

To	SMS
number

This	is	the	SMS	number	to	which	the	SMS	will	be	sent.		If	not
specified	here,	it	must	be	specified	in	the	parameters	to	the
SMS_SEND	Activity.
Refer	to	the	description	of	the	Mobile	domain	field	above	for
information	on	how	this	value	is	used	to	construct	the
destination	email	address.

SMS	message This	value	can	contain	the	SMS	message	text	to	be	sent.		If
not	specified	here,	it	must	be	specified	in	the	parameters	to	the
SMS_SEND	Activity.		Most	SMS	providers	restrict	the	SMS
message	length	to	a	maximum	number	of	characters,	for

example	160	characters.		It	is	your	responsibility	to	ensure	the
message	text	does	not	exceed	the	maximum	length	imposed
by	the	service	you	are	using.

2.3.8	Database	Configuration
The	database	configuration	is	used	to	contain	the	details	necessary	for
establishing	a	database	connection	for	use	with	the	2.2.10	SQL	Database
Activities	or	with	a	Transformation	Map.
In	the	case	of	a	Transformation	Map,	if	the	map	makes	use	of	a	database	as
input	or	output,	its	parameters	will	include	one	for	the	database	connection.	You
provide	the	connection	to	the	required	database	by	specifying	a	database
configuration	name	in	this	parameter.
Refer	to	2.5	Transformation	Maps	for	more	information	on	defining	and	using
Transformation	Maps.
For	more	information	about	establishing	database	connections	for	use	with
LANSA	Composer,	refer	to	Connecting	to	Databases	in	Transformation	Maps.

The	information	that	must	be	supplied	for	a	database	configuration	is	described
below:

ID An	identifier	to	uniquely	identify	this	Configuration.	To	make	use	of	a
database	Configuration,	you	will	specify	this	name	as	the	value	for	the
DBCONFIG	parameter	of	the	SQL_CONNECT	activity	or	for	the
database	connection	parameter	for	a	Transformation	Map.

Description This	should	describe	the	Configuration.
Status Active	or	Inactive.	Configurations	cannot	be	used	in	a	processing

sequence	while	they	are	in	inactive	status	–	supplied	activities	will	end	in

its:LANSA091.CHM::/lansa/intengc9_0135.htm

error	if	they	attempt	to	use	a	configuration	that	has	inactive	status.
Database
connection
string	

Specifies	the	JDBC	connection	string	necessary	to	connect	to	the	required
database	from	the	environment	in	which	the	Processing	Sequence	will	run.
The	following	is	an	example	of	a	JDBC	connection	string:
jdbc:as400://SYSNAME/LIBNAME;naming=sql;errors=full;date
format=iso;true	autocommit=true;translate	binary=true

Note:	When	your	transformation	map	uses	database	components	that
connect	to	IBM	DB2	for	i5/OS	database	tables,	LANSA	Composer
will	remove	the	library	qualifier	from	the	generated	Java	code	when
you	prepare	the	transformation	map.		You	must	setup	your	database
configuration	so	that	the	required	files	can	be	found	at	run-time.	
Usually	this	is	done	by	specifying	the	library	name	as	part	of	the	URL
in	the	JDBC	connection	string	-	in	the	example	shown,	LIBNAME
represents	the	library	name.		For	more	information,	refer	to	Additional
Considerations	for	Transformation	Maps	Using	IBM	DB2	for	i5/OS	.

Database
driver	class

Identifies	the	Java	class	name	of	the	JDBC	driver	used	with
this	connection.	The	following	is	an	example	class	name	for
the	driver	commonly	used	to	access	IBM	i	databases.
com.ibm.as400.access.AS400JDBCDriver

Database
user

If	authentication	is	required,	this	contains	the	authentication
user	name.

Database
password

If	authentication	is	required,	this	contains	the	password	which
is	used	with	the	database	user.

Commit
automatically

This	indicates	if	information	should	be	automatically
committed	to	the	database	using	auto-commit	support	in	the
driver	and/or	database	server.		Depending	on	the	particular
database	and	driver,	auto-commit	in	effect	can	make	every
SQL	statement	a	transaction.		Note	that	this	can	effectively
defeat	transaction	control	implemented	at	the	application	layer,
for	example,	if	the	Use	Transactions	option	is	checked	in	the
mapping	tool.
Commitment	control	can	also	be	affected	or	controlled	using
options	in	the	transformation	map	definition	and	in	the	JDBC

its:LANSA091.CHM::/lansa/intengc9_0365.htm

connection	string.	You	would	usually	only	use	this	setting
when	transaction	control	has	not	been	implemented	in	the
transformation	map	definition.	These	considerations,	however,
can	vary	according	to	the	database	system	and	the	JDBC
database	driver.

Transaction
isolation

The	level	of	transaction	isolation	to	be	applied	to	the	database
connection.
None	No	transaction	isolation	applies.	All	uncommitted	data	is
readable	from	any	connection.
Read	uncommitted	
All	uncommitted	data	is	readable	from	any	connection.	This	is
the	same	as	not	having	any	isolation	(None).
Read	committed	
This	prevents	dirty	reads	but	does	not	prevent	phantoms	or
non-repeatable	reads.	Using	this	isolation	level,	only	data
committed	before	the	current	transaction	began	will	be
available.	Any	dirty	data	or	changes	made	by	concurrent
transactions	will	not	be	available.
This	level	is	obviously	more	restrictive	than	the	Read
uncommitted.
Repeatable	read	
This	prevents	dirty	and	non-repeatable	reads	but	does	not
prevent	phantom	rows.	This	means	the	probability	of	other
transactions	having	to	wait	for	this	one	are	increased	when
compared	to	Read	uncommitted	and	Read	committed
This	is	more	restrictive	than	Read	committed.
Serializable	
Serializable	provides	the	highest	transaction	isolation.	When	a
transaction	is	isolated	at	the	Serializable	level,	only	data
committed	before	the	transaction	began	is	available.	Neither
dirty	data	nor	concurrent	transaction	changes	committed
during	transaction	execution	are	available.	This	level	emulates
serial	transaction	execution,	as	transactions	will	effectively	be
executed	one	after	another	rather	than	concurrently.

2.3.9	Messaging	Configuration
The	Messaging	Configuration	is	used	to	set	details	of	how	you	wish	to	send	and
retrieve	files	using	a	supported	messaging	brokering	system	such	as	IBM	MQ
Series.
Activities	to	make	use	of	this	Configuration	are	provided.	These	are:

MSG_SEND
MSG_RECEIVE

Note:	These	activities	make	use	of	the	JMSFileService	of	LANSA	Integrator.
This	service	uses	the	Java	Message	Service	JMS	1.1	specification.	Refer	to
http://java.sun.com/products/jms/docs.html
This	service	supports	four	message	brokering	systems:	IBM	MQ	Series,
ActiveMQ,	SonicMQ	and	TibcoMQ.	You	need	to	separately	install	the	message
brokering	system	vendor's	implementation	of	JMS	1.1.	If	you're	using:

MQSeries,	then	you	require	the	IBM	MQ	Series	Client	for	Java	JMS	jar
files.
SonicMQ,	then	you	require	the	Sonic	JMS	jar	file.
ActiveMQ	then	you	require	the	ActiveMQ	JMS	jar	file.
TibcoMQ	then	you	require	the	TibcoMQ	JMS	jar	file.

You	will	need	to	know	how	to	use	the	enterprise	messaging	system	selected	for
use	with	this	JMSFileService.	The	setting	up	and	configuring	of	either
messaging	system	is	beyond	the	scope	of	this	guide.
Information	for	a	Messaging	Configuration	is	on	two	tabs:

The	Details	tab	contains	information	that	mostly	applies	and	is	set	when
establishing	a	connection	with	the	host	and	can	contain	information	about
the	folders	and	file	names	that	are	used	when	sending	and	receiving	files.
The	Message	Properties	tab	can	be	used	to	specify	message	properties	that
are	to	be	set	when	sending	messages	and	where	to	receive	message	property
information	when	receiving	messages.

http://java.sun.com/products/jms/docs.html

Details
The	Details	command	has	5	sections:

IdentificationThis	identifies	the	Messaging	Configuration	and	contains
basic	information.
Messaging	System	–Information	about	the	messaging	system	host	and
how	to	connect	to	that	host.
Queue	and	Channel	–	Specifies	the	queue	and	channel	that	are	to	be	used
when	sending	and	receiving	messages	through	the	message	brokering
system.
Send	Details	–	Contains	information	used	by	the	MSG_SEND	activity.
Some	of	the	details	may	be	overridden	by	activity	parameters.
Receive	Details	–	Information	used	by	the	MSG_RECEIVE	activity.
Some	of	the	details	may	be	overridden	by	activity	parameters.

Identification
This	identifies	the	Messaging	Configuration	and	contains	basic	information.

ID An	identifier	to	uniquely	identify	this	Configuration
Description This	should	describe	the	Configuration.
Status Active	or	Inactive.	Configurations	cannot	be	used	in	a	processing

sequence	while	they	are	in	inactive	status	–	supplied	activities
will	end	in	error	if	they	attempt	to	use	a	configuration	that	has
inactive	status.

Messaging	System
This	is	used	to	specify	information	about	the	messaging	system	host	and	how	to
connect	to	that	host.

Messaging
system

Choose	from	the	supported	message	brokering	systems.	The
default	when	creating	a	new	configuration	is	MQSeries.

Messaging
system
host

Name	of	the	remote	host.	If	the	host	is	the	same	as	the	one	you	are
connected	to	when	running	the	activity,	the	default	value	of
localhost	should	be	valid.	Otherwise,	specify	a	host	value.	It	may
be	specified	as	an	IP	address		(nnn.nnn.nnn.nnn:port)	or	domain
name	(xxxxxxxxxxxx:port).

Messaging
system
port

Optionally	specify	the	remote	port.	If	not	specified,	the	default
value	differs	according	to	the	specified	message	brokering	system
as	follows:
IBM	MQ	Series:	1414
SonicMQ:	2506
ActiveMQ:	61616
TibcoMQ:	7500

Messaging
system
user

Optionally	specify	a	valid	user	id	to	connect	to	the	host.

Messaging
system
password

The	password	that	is	used	along	with	the	Remote	user	to	connect
to	the	host.	This	value	is	held	encrypted.

Queue	and	Channel
Specify	the	queue	and	channel	that	are	to	be	used	when	sending	and	receiving
messages	through	the	message	brokering	system.

Queue	Name Mandatory.	The	name	of	the	queue.
Channel Mandatory	(IBM	MQSeries	only).
Queue	Manager Optional	(IBM	MQSeries	only).
Client	ID Optional.	Client	identifier.

Send	Details
Specify	information	relevant	when	sending	messages.

Send
folder

A	fully	qualified	folder	name	where	to	pick	the	files	to	send.		You
can	click	the	prompt	button	to	browse	for	a	folder	location	on	the
LANSA	Composer	server.
May	be	overridden	using	the	parameters	to	the	MSG_SEND	activity
or	by	specifying	a	fully	qualified	file	name.

Send	file
name

Name	of	file	to	be	sent.	When	also	specifying	a	Send	folder,	this	file
will	have	to	exist	in	that	folder.	Otherwise,	it	can	be	fully	qualified.
May	be	overridden	using	the	parameters	to	the	MSG_SEND
activity.

Message
delivery

Determines	whether	the	message,	once	sent,	will	persist	when	the
queue	is	shut	down	and	restarted.	Default	is	*PERSISTENT.

Message
priority

Determines	the	default	priority	of	the	sent	message.	Default	is	4.
This	value	may	be	overridden	on	a	message	basis	using	the
JMSPriority	message	property.

Message
time	to
live

Determines	the	expiration	of	the	message	in	milliseconds.	The
default	value	is	0	meaning	it	never	expires.

Receive	Details
Specify	relevant	information	when	messages	are	–received.

Receive
folder

A	fully	qualified	folder	name	where	the	received	message	will	be
placed.		You	can	click	the	prompt	button	to	browse	for	a	folder
location	on	the	LANSA	Composer	server.
May	be	overridden	using	the	parameters	to	the	MSG_RECEIVE
activity.

Receive
file
name

The	name	given	to	the	received	file.	When	also	specifying	a	Receive
folder,	this	file	will	placed	in	that	folder.	Otherwise,	it	can	be	fully
qualified.
May	be	overridden	using	the	parameters	to	the	MSG_RECEIVE
activity.

Message	Properties
Use	this	tab	to	specify	message	properties	to	attach	to	sent	messages	and	to
specify	where	to	receive	message	properties	(if	required)	for	received	messages.

There	are	two	ways	to	send	message	properties:
1.		In	the	configuration.
2.		In	a	comma-separated	file.	The	MSG_SEND	activity	expects	such	a	file
to	be	formatted	like	this:	type,	name,	value

Type String,	length	1:
J	–	use	this	type	only	for	JMSxxxxxx	properties.	Failure	to	observe	this
rule	will	result	in	abnormal	termination	of	the	activity.
S	–for	a	property	of	type	string.
I	–	for	a	property	of	type	integer.	The	valid	range	for	integers	is
-2147483648	to	2147483647	(inclusive).
B	–	for	a	property	of	type	bool.
H	–	for	a	property	of	type	short.	The	valid	range	for	short	is	–	32,768	to
32,767	(inclusive).
L	–	for	a	property	of	type	long.	The	valid	range	for	long	is
-9,223,372,036,854,775,808	to	+9,223,372,036,854,775,807

(inclusive).
F	–	for	a	property	of	type	float.	The	valid	range	for	float	is
1.40129846432481707e-45	to	3.40282346638528860e+38	(positive	or
negative).
D	–	for	a	property	of	type	double.	The	valid	range	for	double	is
4.94065645841246544e-324d	to	1.79769313486231570e+308d
(positive	or	negative).

Name String,	length	32.
Value String,	length	10000.

Likewise,	the	MSG_RECEIVE	activity	can	write	the	message	properties
contained	in	a	received	message	to	a	file	formatted	as	above.
Typically	you	might	specify	message	properties	and	their	values	directly	in	the
configuration	for	message	properties	that	will	have	a	static	value	(the	same
value	for	each	message	sent	using	this	configuration).	For	message	properties
whose	value	varies	for	each	sent	message,	you	would	use	the	comma-separated
files	to	specify	the	message	properties	and	their	values.
When	the	same	property	is	specified	in	both	the	configuration	and	in	the
comma-separated	file,	the	latter	takes	precedence.

Message	Properties	File	Paths
Optionally	specify	the	location	of	the	comma-separated	files	where	to	get	the
message	properties	from	(MSG_SEND	activity)	and	where	to	output	the
message	properties	(MSG_RECEIVE	activity).
Send A	fully	qualified	folder	name	where	the	MSG_SEND	activity	will

look	for	a	file	containing	a	set	of	properties	to	attach	to	the	sent
message.

Receive A	fully	qualified	folder	name	where	the	MSG_RECEIVE	activity
will	output	the	received	message	properties.

Message	Properties
Specify	values	for	pre-defined	(JMSFileService)	message	properties	and/or	to
specify	the	names	and	values	for	user-defined	message	properties.

Pre-defined	message	properties

The	list	is	initially	pre	filled	with	message	properties	that	are	common	across	all
message	brokering	systems	when	used	through	the	JMSFileService	of	LANSA
Integrator.	The	names	of	these	properties	start	with	JMS.
You	cannot	remove	the	pre-defined	properties.	However	you	can	set	the	value	to
blank.	The	MSG_SEND	activity	will	not	use	properties	with	a	blank	value.

User	defined	properties

You	can	add	and	remove	user-defined	properties	to	be	sent	with	messages	when
using	this	configuration.
To	add	a	property,	click	the	Add	button	and	then	type	the	property	name	and
value	and	select	the	property	type.
To	remove	a	property,	click	the	property	name	in	the	list	and	click	the	Remove
button.	Note	that	you	cannot	remove	the	pre-defined	properties.

2.3.10	LANSA	System	Configuration
The	LANSA	system	configuration	is	used	to	contain	the	details	necessary	to
connect	to	another	LANSA	system	to	run	a	LANSA	function	or	a	LANSA
Composer	processing	sequence	in	that	system.		It	is	used	in	conjunction	with	the
CALL_FUNCTION	and	COMPOSER_RUN	activities.		For	more	information
concerning	the	usage	of	the	LANSA	system	configuration,	you	may	wish	to
refer	to:

CALL_FUNCTION
COMPOSER_RUN
Appendix	F.	The	LANSA	Composer	Request	Server

Common	information	that	must	be	supplied	for	any	LANSA	system
configuration	is	described	below:

ID An	identifier	to	uniquely	identify	this	Configuration.	To	make
use	of	a	LANSA	system	configuration,	you	will	specify	this
name	as	the	value	for	the	LANSACONFIG	parameter	of	the
CALL_FUNCTION	or	COMPOSER_RUN	activities.

Description This	should	describe	the	Configuration.
Status Active	or	Inactive.	Configurations	cannot	be	used	in	a	processing

sequence	while	they	are	in	inactive	status	–	supplied	activities
will	end	in	error	if	they	attempt	to	use	a	configuration	that	has
inactive	status.

Additional	information	specific	to	this	configuration	type	is	in	two	parts.
1.	LANSA	Composer	connects	to	the	request	server	using:
2.	The	request	server	connects	to	the	other	LANSA	system	using:

1.	LANSA	Composer	connects	to	the	request	server	using:
The	first	part	of	the	LANSA	system	configuration	specifies	how	LANSA
Composer	contacts	the	LANSA	Composer	request	server	that	will	execute	the
task	(CALL_FUNCTION	or	COMPOSER_RUN)	in	the	other	LANSA	(or
LANSA	Composer)	system.
If	LANSA	Composer,	the	request	server	and	the	other	LANSA	system	all	reside
on	the	same	server,	then	you	should	simply	select	On	local	system	in	the
Connect	to	request	server	drop-down.		You	do	not	need	to	enter	any	further
information.

If,	however,	the	other	LANSA	system	resides	on	a	different	server	(*),	then	you
should	select	On	remote	system	in	the	Connect	to	request	server	drop-down	and
complete	the	additional	information	as	described	below.

*	Note	a	LANSA	Composer	Remote	Request	Server	license	is
required	for	the	remote	server	in	order	to	call	a	LANSA	function	or
run	a	Processing	Sequence	on	a	different	server	system.

	

Note:		At	time	of	writing	(with	reference	to	LANSA	V12SP1),
connection	from	one	IBM	i	server	to	another	IBM	i	server	is	not
supported.		This	restriction	may	be	lifted	in	future	LANSA	versions.

Note:	LANSA	Composer	must	be	installed	on	the	remote	server
system	in	order	to	use	this	support,	so	that	LANSA	Composer	on	the
source	system	can	communicate	with	components	of	the	LANSA
Composer	request	server	on	the	remote	system.		Additional	software
licenses	may	be	required.		Refer	to	Connecting	to	the	LANSA
Composer	Request	Server	on	a	Remote	System	for	further	details.

Keep
connection
active

If	your	processing	sequence	will	make	multiple	requests
(CALL_FUNCTION	or	COMPOSER_RUN)	using	the	same
LANSA	system	configuration,	then	you	may	wish	to	specify	Yes
in	this	field	in	order	to	keep	the	connection	active	between	the

requests.		If	you	specify	No,	then	a	new	communications	session
to	the	remote	system	will	be	started	and	ended	for	each	request.

Server
type

Choose	the	server	type	(IBM	i	or	Windows)	that	applies	to	the
remote	system.		Note	that	the	values	that	you	must	supply	in	the
second	configuration	part	vary	according	to	your	choice	here.

Server	LU
partner
name

Specifies	the	Server	LU	partner	name	that	identifies	the	network
name,	port	and	other	information	necessary	to	connect	to	the
target	system.
If	LANSA	Composer	is	running	on	a	Windows	server,	this	is	the
name	as	defined	in	the	LANSA	Communications	Administrator.
If	LANSA	Composer	is	running	on	an	IBM	i	server,	this	is	the
name	as	defined	in	LANSA's	Work	with	Communications
Routing	Records	screen.
Notes:
1.	The	LANSA	Communications	routing	record	that	defines	the
Server	LU	partner	name	for	this	purpose	is	defined	on	the
LANSA	Composer	server.		You	cannot	use	the	LANSA
Communications	Administrator	on	your	client	computer	to	define
this.
2.	The	connection	information	must	refer	to	the	LANSA
Composer	configuration	on	the	target	system	that	contains	the
LANSA	Composer	request	server	software
3.	The	LANSA	listener	for	that	system	needs	to	be	active	when
LANSA	Composer	attempts	to	establish	the	connection.

Server
partition

Specifies	the	partition	name	in	the	LANSA	Composer
configuration	on	the	target	system	that	contains	the	LANSA
Composer	request	server	software.		In	a	standard	LANSA
Composer	installation	on	the	target	system,	the	name	will	be	LIC.

Use
Windows
credentials

Check	this	box	to	specify	that	LANSA	Composer	should	use	the
credentials	of	the	job	running	the	LANSA	Composer	processing
sequence	to	connect	to	the	LANSA	Composer	request	server	on
the	target	system.		The	target	system	must	have	been	configured
for	Single	Sign	On	and	the	user	enrolled	in	order	to	use	this
option.

User	and

password Specifies	the	user	name	and	password	that	LANSA	Composer
uses	to	connect	to	the	LANSA	Composer	request	server	on	the
target	system.

Client-
server	and
Server-
client
translation
tables

Specifies	the	Client-to-Server	and	Server-to-Client	conversion
table	names	to	be	used.		No	library	name	can	be	specified.		If	not
specified,	these	values	default	to	*JOB,	meaning	the	translation
table	will	be	generated	based	on	the	client	code	page	and	the
IBM	i	server	job's	CCSID.
If	this	argument	is	*JOB	then	the	Server-to-Client	table	must	also
be	*JOB.
These	values	do	not	apply	when	the	target	system	resides	on	a
Windows	server

Server
exceptional
arguments

This	may	be	used	to	specify	a	string	of	further	X_RUN	parameter
names	and	values	required	to	connect	to	the	LANSA	Composer
request	server	on	the	target	system.		You	should	refer	to	LANSA
documentation	of	the	X_RUN	parameters	for	more	information.

	

2.	The	request	server	connects	to	the	other	LANSA	system	using:
The	second	part	of	the	LANSA	system	configuration	specifies	how	the	LANSA
Composer	request	server	connects	to	the	other	LANSA	(or	LANSA	Composer)
system.
The	information	required	varies	according	to	whether	the	other	system	resides
on	an	IBM	i	server	or	a	Windows	server.

LANSA	Composer	server	for	IBM	i
The	additional	information	necessary	to	connect	to	the	other	LANSA	(or
LANSA	Composer)	system	for	an	IBM	i	server	is:

LANSA
program
library
name

Specifies	the	name	of	the	LANSA	program	library	in	the	LANSA
system	that	is	to	be	used.		For	example:	DC@PGMLIB

LANSA
partition
name

Specifies	the	name	of	the	LANSA	partition	in	the	specified	LANSA
system	that	is	to	be	used.		For	example:	SYS.		The	partition	must	be
multi-lingual	enabled.

LANSA
language
code

Optionally	specifies	the	LANSA	language	code	used	to	start
LANSA	or	LANSA	Composer	in	the	target	system.		If	not
specified,	or	if	the	special	value	'*'	is	used,	then	the	language	code
being	used	by	LANSA	Composer	will	be	used	to	start	LANSA	in
the	target	system.

LANSA	Composer	server	for	Windows
The	additional	information	necessary	to	connect	to	the	other	LANSA	(or
LANSA	Composer)	system	for	a	Windows	server	is	described	below.		Most	of
these	parameters	correspond	directly	to	LANSA	X_RUN	parameters	used	to
make	the	connection	to	the	LANSA	system.		You	should	refer	to	LANSA
documentation	of	the	X_RUN	parameters	for	more	information.

LANSA
system
path

Specifies	the	path	to	the	X_WIN95	folder	in	the	LANSA	system	to
be	used.		For	example:
C:\Program	Files\LANSA\X_WIN95\

LANSA
partition
name

Specifies	the	name	of	the	LANSA	partition	in	the	specified
LANSA	system	that	is	to	be	used.		For	example:	SYS.

LANSA
language
code

Optionally	specifies	the	LANSA	language	code	used	to	start
LANSA	or	LANSA	Composer	in	the	target	system.		If	not
specified,	or	if	the	special	value	'*'	is	used,	then	the	language	code

being	used	by	LANSA	Composer	will	be	used	to	start	LANSA	in
the	target	system.

User
name

Specifies	the	user	name	used	to	connect	to	the	LANSA	system.
(This	value	corresponds	to	the	X_RUN	parameter	USER=.)

Password Specifies	the	password	used	to	connect	to	the	LANSA	system.	
(This	value	corresponds	to	the	X_RUN	parameter	PSPW=.)

Database
name

This	parameter	identifies	the	user	database	used	with	the	specified
LANSA	system.	
(This	value	corresponds	to	the	X_RUN	parameter	DBID=.)

Database
type

Specifies	the	type	of	database	specified	in	the	previous	parameter.	
(This	value	corresponds	to	the	X_RUN	parameter	DBUT=.)

Database
user

Specifies	the	user	name	for	the	database	login,	if	required.	
(This	value	corresponds	to	the	X_RUN	parameter	DBUS=.)

Database
password

Specifies	the	password	for	the	database	login,	if	required.
(This	value	corresponds	to	the	X_RUN	parameter	DBPW=.)

LANSA
system
overrides

This	may	be	used	to	specify	a	string	of	further	X_RUN	parameter
names	and	values	required	to	connect	to	the	specified	LANSA
system.		You	should	refer	to	LANSA	documentation	of	the
X_RUN	parameters	for	more	information.

2.4	Trading	Partners
Trading	partners	are	an	optional	feature	of	LANSA	Composer.	They	are
particularly	useful	for	organizing	files	into	directories	(typically	for	inbound	and
outbound	transport),	for	sharing	common	Activities	and	Processing	Sequences
with	different	source	and	target	locations	by	using	variable	inputs	associated
with	the	trading	partner	and	for	performing	iterative	processing.
Trading	partners	may	be	registered	and	transport	Configurations	and
Transformation	Maps	linked	to	the	trading	partner.	A	directory	structure	may	be
used	where	each	trading	partner	has	a	group	of	directories	used	for	different
types	of	files.	This	gives	a	structure	to	the	data	that	makes	for	easier	and	better
management	of	the	multitude	of	files.
In	addition,	application-specific	properties	of		trading	partner	may	be	globally
defined	and	values	for	those	properties	entered	for	each	trading	partner.		This
makes	the	trading	partner	functionality	extensible	to	accommodate	custom
requirements.
The	trading	partner	information	may	be	referenced	at	run-time	(in	a	Processing
Sequence)	in	two	ways:

When	processing	is	being	performed	for	a	particular	trading	partner,	the
trading	partner	attributes	and	properties,	the	linked	directories,
Transformation	Maps	and/or	Configurations	can	be	accessed	through	built-in
variables	and	used	as	variable	inputs	to	the	Activities	and	Transformation
Maps	to	be	executed.
A	Processing	Sequence	may	contain	a	loop	based	on	the	built-in
*TRADINGPARTNERS	variable	to	iteratively	perform	the	same	processing
for	all	defined	trading	partners.

For	more	information	on	dynamically	accessing	trading	partner	variables	in
your	processing	sequence,	refer	to	Using	the	Trading	Partner	Built-in	Variables.
The	trading	partner	features	may	not	be	necessary	or	applicable	in	all	cases.

Also	see
2.4.1	Work	With	Trading	Partners
2.4.2	Trading	Partner	Details
2.4.3	Trading	Partner	Groups
2.4.4	Trading	Partner	Properties
2.4.5	Trading	Partner	Data	Interchange	Attributes

2.4.6	Link	Directories	to	a	Trading	Partner
2.4.7	Link	Transformation	Maps	to	a	Trading	Partner
2.4.8	Link	Configurations	to	a	Trading	Partner
2.4.9	Outbound	Numbering
	

2.4.1	Work	With	Trading	Partners
You	can	create,	maintain,	and	delete	trading	partner	definitions	according	to
your	application's	needs.
To	work	with	trading	partners,	expand	Definitions	in	the	Navigator	and	click
Trading	partners.	To	find	out	how	to	locate	and	select	trading	partners	to	work
with,	refer	to:

Locating	and	selecting	items	in	the	Instance	Lists
For	information	on	common	tasks	associated	with	trading	partners	(such	as
creating,	copying,	deleting	and	printing	definitions)	refer	to:

Working	with	definition	items
For	information	on	tasks	associated	specifically	with	trading	partners,	refer	to
the	following	headings:

2.4.2	Trading	Partner	Details
2.4.3	Trading	Partner	Groups
2.4.4	Trading	Partner	Properties
2.4.5	Trading	Partner	Data	Interchange	Attributes
2.4.6	Link	Directories	to	a	Trading	Partner
2.4.7	Link	Transformation	Maps	to	a	Trading	Partner
2.4.8	Link	Configurations	to	a	Trading	Partner
2.4.9	Outbound	Numbering

	
	
	
	
	
	
	
	
	
	
	
	

its:LANSA091.CHM::/lansa/intengc1_0230.htm
its:LANSA091.CHM::/lansa/intengc1_0240.htm

	
	
	
	
	
	
	
	
	
	
	
	
	

2.4.2	Trading	Partner	Details
The	details	for	a	trading	partner	definition	consist	of	basic	identification	and
status	information	and	basic	contact	details:

Basic	identification	and	status	information	for	a	trading	partner	definition	is:

Identifier An	identifier	to	uniquely	identify	this	trading	partner.
Description This	should	describe	the	trading	partner	definition.
Status Active	or	Inactive.	Trading	partner	definitions	cannot	be	used	in

a	processing	sequence	while	they	are	in	inactive	status,	and	they
will	not	be	included	in	processing	sequence	loops	that	specify	the
*TRADINGPARTNERS	built-in	variable.

The	trading	partner	definition	can	hold	basic	contact	details.	These	details	are
largely	for	reference.		LANSA	Composer	does	not	automatically	make	use	of
any	of	these	fields.		However	your	Processing	Sequences	can	use	them	in	any
way	you	see	fit	by	referencing	the	corresponding	built-in	variables.		The	contact
information	is:

Contact The	name	of	a	contact	at	the	trading	partner's	organization.
Address
1,	2,	3

The	street	address	for	the	trading	partner.

Email, These	fields	can	specify	email	addresses	used	with	this	trading

2,	3 partner.		Each	field	can	specify	a	single	email	address	or	a	list	of
email	addresses	separated	by	commas.		Click	the	adjacent	prompt
button	to	enter	or	maintain	the	list	of	email	addresses.

Phone
number

The	telephone	number	for	the	trading	partner.

Fax
number

The	fax	number	for	the	trading	partner.

The	trading	partner	definition	can	specify	specific	processing	sequences
associated	with	the	trading	partner	in	connection	with	LANSA	Composer's
transaction	document	processing	and	framework:

Receive
processing
sequence

Specifies	the	name	of	a	processing	sequence	that	is	used	to
receive	inbound	transaction	documents	for	this	trading	partner.	
This	processing	sequence,	if	specified,	will	be	called	by	the
supplied	TXDOC_RCV	processing	sequence	to	perform	inbound
processing	specific	to	this	trading	partner.		You	can	use	it	in	your
own	processing	sequences	too,	by	referencing	the	associated
trading	partner	built-in	variable	(refer	to	TXDOC_RCV	for	an
example	of	doing	this).

Send
processing
sequence

Specifies	the	name	of	a	processing	sequence	that	is	used	to	send
outbound	transaction	documents	for	this	trading	partner.		This
processing	sequence,	if	specified,	will	be	called	by	the	supplied
TXDOC_SEND	processing	sequence	to	perform	outbound
processing	specific	to	this	trading	partner.		You	can	use	it	in	your
own	processing	sequences	too,	by	referencing	the	associated
trading	partner	built-in	variable	(refer	to	TXDOC_SEND	for	an
example	of	doing	this).

2.4.3	Trading	Partner	Groups
This	tab	lists	the	available	Trading	Partner	groups	–	the	groups	to	which	this
Trading	Partner	has	been	assigned	have	a	checkmark	next	to	their	name.
Trading	Partner	groups	are	used	to	group	related	Trading	Partners	so	they	can	be
easily	located.	You	can	define	your	own	groups	in	addition	to	or	instead	of	the
groups	supplied	with	LANSA	Composer.

Here	you	can	assign	Trading	Partners	to	Trading	Partner	groups	or	remove	them
from	Trading	Partner	groups.
To	add	a	Trading	Partner	to	a	Trading	Partner	group,	check	the	box	next	to	the
desired	group.	To	remove	a	Trading	Partner	from	a	Trading	Partner	group,
uncheck	the	box.	Remember	to	click	Save	before	switching	elsewhere	in
LANSA	Composer.

2.4.4	Trading	Partner	Properties
Installation-specific	properties	for	Trading	Partners	can	be	defined	in		Code
Maintenance.				If	your	installation	has	defined	custom	properties	for	Trading
Partners,	then	you	can	enter	values	for	those	properties	for	each	Trading	Partner.
To	review	or	change	the	property	values	for	a	Trading	Partner,	select	the
required	trading	partner	in	the	trading	partners	list	and	then	click	the	Properties
tab	in	command	handler	area.

To	modify	a	Property	value,	type	the	new	value.		Remember	to	click	Save	when
complete	to	save	your	changes.
For	information	about	accessing	property	values	for	a	trading	partner	in	a
processing	sequence,	refer	to	Trading	Partner	(*TRADINGPARTNER)	Built-in
Variable	Qualifiers.

its:LANSA091.CHM::/lansa/intengc6_0020.htm

2.4.5	Trading	Partner	Data	Interchange	Attributes
LANSA	Composer	defines	and	stores	a	set	of	data	interchange	attributes	for
each	Trading	Partner.		These	are	defined	to	accommodate	some	of	the	attributes
commonly	used	in	EDI	and	other	forms	of	data	interchange.
While	LANSA	Composer	pre-defines	fields	to	hold	these	attributes,	the	program
performs	only	limited	validation	or	enforcement	of	their	entry	and	values..		To
permit	maximum	implementation	flexibility,	LANSA	Composer	leaves	the	use
and	values	of	these	attributes	largely	to	you	according	to	your	own
circumstances	and	conventions.
Some	of	these	values	are,	however,	important	for	the	operation	of	the
transaction	document	framework	as	supplied.		Refer	to	Trading	Partner	Data
Interchange	Attributes	for	more	information.
To	review	or	change	the	data	interchange	attributes	for	a	Trading	Partner,	select
the	required	trading	partner	in	the	trading	partners	list	and	then	click	the	Data
interchange	tab	in	the	command	handler	area.

its:LANSA091.CHM::/lansa/intengc3b_0095.htm

To	modify	a	value,	type	the	new	value.		Remember	to	click	Save	when	complete
to	save	your	changes.
For	information	about	accessing	data	interchange	attribute	values	for	a	trading
partner	in	a	processing	sequence,	refer	to	Trading	Partner
(*TRADINGPARTNER)	Built-in	Variable	Qualifiers.

2.4.6	Link	Directories	to	a	Trading	Partner
To	review	or	change	the	directories	linked	to	a	trading	partner	definition,	select
the	required	trading	partner	in	the	trading	partners	list	and	then	click	the	Linked
Directories	tab	in	the	command	handler	area.

You	can	add,	remove	or	modify	linked	directories:
To	add	a	linked	directory	type,	press	the	Add	button.		Refer	to	Add	Linked
Directories	for	more	information.
To	remove	a	linked	directory	type	for	this	trading	partner,	highlight	the	line
to	be	removed	and	press	the	Remove	button.
Select	the	Directory	Path	column	to	specify	or	modify	the	path	for	the
directory	that	applies	to	this	trading	partner.

Remember	to	Save	your	details	before	switching	elsewhere	in	LANSA
Composer.
Refer	to	Code	Maintenance	for	information	on	defining	directory	types	to	be
used	with	LANSA	Composer.
For	information	about	accessing	linked	directory	names	for	a	trading	partner	in
a	processing	sequence,	refer	to	Trading	Partner	(*TRADINGPARTNER)	Built-
in	Variable	Qualifiers.

its:LANSA091.CHM::/lansa/intengc6_0020.htm

Add	Linked	Directories
When	creating	or	copying	a	Trading	Partner	or	when	adding	Linked	Directories
to	an	existing	Trading	Partner,	LANSA	Composer	displays	the	Add	Linked
Directories	window.		This	window	shows	the	directory	types	that	are	not
already	linked	to	the	Trading	Partner	and:

Automatically	generates	suggested	directory	paths	according	to	system
settings
Allows	selection	of	multiple	directory	types	to	be	added	in	a	single	operation
Can	optionally	create	the	generated	or	specified	directory	on	the	server

Click	the	checkbox	nex	to	each	directory	type	that	you	wish	to	add	for	this
Trading	Partner.		Type	the	directory	path	if	you	do	not	wish	to	accept	the
suggested	directory	path.		Click	OK	when	complete.		LANSA	Composer	will
link	the	selected	directory	types	to	the	Trading	Partner.		LANSA	Composer	may
also	create	the	directories	if	they	do	not	exist,	according	to	the	setting	of	the
checkbox	near	the	bottom	of	the	window.

2.4.7	Link	Transformation	Maps	to	a	Trading	Partner
To	review	or	change	the	Transformation	Maps	linked	to	a	trading	partner
definition,	select	the	required	trading	partner	in	the	trading	partners	list	and	then
click	the	Linked	Maps	tab	in	the	command	handler	area.

You	can	add,	remove	or	modify	linked	Transformation	Maps:
To	add	(or	replace)	a	linked	Transformation	Map,	press	the	Add	button.	Then
select	the	Map	Type	and	Transformation	Map	ID	from	the	pop-up	list	and
click	OK.

Note:	You	can	add	any	number	of	linked	Transformation	Maps	for
any	one	defined	map	type.	If	you	add	more	than	one	map	of	the	same
type,	then	the	value	entered	in	the	Sequence	column	will	affect	the
evaluation	order	when	you	refer	to	Trading	Partner	linked
Transformation	Maps	in	a	Processing	Sequence	using	the	Trading
Partner	built-in	variables	or	using	the	FIND_TPMAP	activity.

To	remove	a	linked	Transformation	Map	for	this	trading	partner,	select	the
line	to	be	removed	and	then	press	the	Remove	button.

Remember	to	Save	before	switching	elsewhere	in	LANSA	Composer.
Refer	to	Code	Maintenance	for	information	on	defining	transformation	map
types	to	be	used	with	LANSA	Composer.
For	information	about	accessing	linked	TransformationMaps	for	a	trading
partner	in	a	processing	sequence,	refer	to	Trading	Partner
(*TRADINGPARTNER)	Built-in	Variable	Qualifiers.

Note:	To	execute	a	Transformation	Map	linked	to	a	trading	partner	in
a	processing	sequence	you	must	use	the	supplied	TRANSFORM
activity.	Refer	to	TRANSFORM	for	information	on	this	activity.

its:LANSA091.CHM::/lansa/intengc6_0020.htm

2.4.8	Link	Configurations	to	a	Trading	Partner
To	review	or	change	the	Configurations	linked	to	a	trading	partner	definition,
select	the	required	trading	partner	in	the	trading	partners	list	and	then	click	the
Linked	Configurations	tab	in	the	command	handler	area.

You	can	add,	remove	or	modify	linked	Configurations:
To	add	(or	replace)	a	linked	Configuration	type,	press	the	Add	button.	Then
select	the	Configuration	Type	and	Configuration	ID	from	the	pop-up	list	and
click	OK.

Note:	You	can	only	add	one	linked	configuration	for	each
configuration	type.	If	you	select	a	configuration	type	that	is	already
linked	to	the	trading	partner,	your	selection	simply	replaces	the
existing	instance	for	that	configuration	type.

To	remove	a	linked	Configuration	Type	for	this	trading	partner,	select	the
line	to	be	removed	and	then	press	the	Remove	button.

Remember	to	Save	before	switching	elsewhere	in	LANSA	Composer.
For	information	about	accessing	linked	Configurations	for	a	trading	partner	in	a
processing	sequence,	refer	to	Trading	Partner	(*TRADINGPARTNER)	Built-in
Variable	Qualifiers.

2.4.9	Outbound	Numbering
To	review	or	change	the	outbound	numbering	for	a	trading	partner	definition,
select	the	required	trading	partner	in	the	trading	partners	list	and	then	click	the
Outbound	Numbering	tab	in	the	command	handler	area.

Outbound	numbering	is	used	to	allocate	control	numbers	for	outbound
transaction	documents.		As	supplied,	LANSA	Composer's	transaction	document
processing	framework	uses	outbound	numbering	as	follows:

The	TXDOC_ALLOCCTRL	activity	uses	the	outbound	numbering	values
for	the	specified	trading	partner	to	allocate	the	requested	control	numbers.
Supplied	export	processors	for	selected	EDI	transactions	(currently	just	X12
997	acknowledgement)	use	the	outbound	numbering	values	for	the	trading
partner	to	allocate	interchange,	group	and	transaction	control	numbers	for
the	outbound	transaction(s).

The	API	for	allocating	the	control	numbers	is	available	for	custom	export
processors	to	use.
When	a	pending	outbound	transaction	document	is	registered	using	the
TXDOC_REGOUTBND	or	TXDOC_REGOUTX12	activities	or	the
supplied	APIs,	LANSA	Composer	uses	the	outbound	numbering	values	for
the	trading	partner	to	allocate	the	necessary	control	numbers.

Using	the	Outbound	numbering	domain	drop-down	list,	you	can	choose,	by
trading	partner,	to	allocate	outbound	transaction	document	control	numbers	in
one	of	two	ways:

By	trading	partner	(all	transactions):		control	numbers	for	this	trading
partner	are	allocated	from	the	one	series	irrespective	of	the	transaction	type.

When	you	choose	this	option,	the	grid	underneath	changes	to	have	a	single
line	for	transaction	type	All	and	you	cannot	add	or	remove	entries.
By	transaction	type	for	the	trading	partner:		control	numbers	for	this

trading	partner	are	allocated	from	a	separate	series	for	each	transaction	type
for	which	control	numbers	are	requested.

When	you	choose	this	option,	the	grid	underneath	changes	to	show	a	line	for
each	transaction	type	for	which	outbound	control	numbers	have	previously
been	requested	(there	may	be	none).

You	may	use	the	Add	and	Remove	buttons	to	explicitly	add	entries	for
specified	transaction	types.		Note,	however,	that	it	is	only	necessary	to	do	so
if	you	wish	the	numbering	to	begin	at	a	value	other	than	1	(one).		Otherwise
LANSA	Composer	will	automatically	add	entries	when	outbound	control
numbers	are	requested	for	a	new	transaction	type.

The	grid	allows	you	to	alter	the	next	interchange,	group	and	transaction	number
values	one	each	line.		Click	in	the	required	box	and	type	the	new	value	to
change	the	values.
If	you	made	any	changes,	remember	to	click	Save	before	switching	elsewhere	in
LANSA	Composer.

Note:		You	should	be	fully	aware	of	any	auditing	requirements	or	the
requirements	of	your	trading	agreements	with	your	trading	partners
before	altering	the	next	outbound	control	numbers.

2.5	Transformation	Maps
Transformation	Maps	define	how	to	transform	or	map	data	between	disparate
formats	including:

XML	documents
EDI	documents
Microsoft	Excel	2007	(XLSX)	files
Text	files	(for	example,	comma-separated	values)
Web	service	functions
A	wide	range	of	databases,	including	IBM	DB2	Universal	Database	for
IBM	i

The	usual	procedure	for	creating	and	using	a	Transformation	Map	is	as	follows:
1.		Create	a	Transformation	Map	definition	in	LANSA	Composer	as	described
in	Create	or	Copy	a	Transformation	Map	in	2.5.2	Work	With	Transformation
Maps.

2.		Edit	the	Transformation	Map	in	the	mapping	tool	to	perform	the	mapping
required	for	your	application	as	described	in	Edit	Transformation	Map.

3.		Prepare	the	Transformation	Map	for	use	in	a	processing	sequence	as
described	in	Prepare	Transformation	Map.

You	can	then	use	the	Transformation	Map	in	processing	sequences.

Also	see
2.5.1	Understand	Transformation	Maps	and	the	Mapping	Tool
2.5.2	Work	With	Transformation	Maps
2.5.3	Transformation	Map	Details
2.5.5	Edit	And	Prepare	Transformation	Map

2.5.1	Understand	Transformation	Maps	and	the	Mapping	Tool
LANSA	Composer	includes	Altova	MapForce,	a	powerful	visual	mapping	tool,
for	defining	these	transformations.	The	Transformation	Maps	created	with	the
visual	mapping	tool	can	be	directly	integrated	into	your	business	processes
along	with	transport	and	other	activities.
Here's	how	LANSA	Composer	and	Altova	MapForce	combine	to	define	and	use
Transformation	Map:

When	you	edit	your	Transformation	Maps,	LANSA	Composer	will	start
MapForce	to	provide	the	visual	mapping	tools.	You	use	the	tools	in
MapForce	to	visually	define	source	and	target	components	and	connections
between	the	data	items	in	each.
When	you	prepare	your	Transformation	Maps,	LANSA	Composer	silently
and	invisibly	invokes	MapForce	to	generate	the	Java	code	for	the	map,	and
then	LANSA	Composer	compiles	the	code	and	installs	it	ready	for	use.
When	a	Processing	Sequence	executes	your	Transformation	Maps,	it	simply
invokes	the	generated	and	compiled	Java	code	via	a	LANSA	Integrator
service	provided	for	the	purpose.	Neither	Altova	MapForce,	nor	any	other
Altova	software	need	be	installed	on	the	server	computer	at	run-time.

Note:	LANSA	Composer	uses	only	specific	MapForce	functionality
and	user	interface	options.	Please	refer	to	Unsupported	MapForce
Functionality	for	a	list	of	unsupported	functionality.	Should	you	use	an
unsupported	function,	Transformation	Map	definitions	that	make	use
of	these	functions	may	not	integrate	correctly	with	LANSA	Composer.

its:LANSA091.CHM::/lansa/intengc9_0115.htm

2.5.2	Work	With	Transformation	Maps
You	can	create	and	maintain	as	many	Transformation	Maps	as	your	applications
need.
To	work	with	Transformation	Maps,	expand	Definitions	in	the	Navigator	and
select	Transformation	maps.	To	find	out	how	to	locate	and	select
Transformation	Maps	to	work	with,	refer	to:

Locating	and	selecting	items	in	the	Instance	Lists
For	information	on	common	tasks	associated	with	Transformation	Maps	(such
as	creating,	copying,	deleting	and	printing	definitions)	refer	to:

Working	with	definition	items
For	information	on	tasks	associated	specifically	with	Transformation	Maps,
refer	to	the	following	headings:

2.5.5	Edit	And	Prepare	Transformation	Map
Run	a	Transformation	Map
Review	Transformation	Map	Parameters
Display	Catalogued	Transformation	map	Information
Work	with	Transformation	Map	Version	History
	Display	the	Run	History	of	a	Transformation	Map
2.5.3	Transformation	Map	Details
2.5.4	Transformation	Map	Data	Interchange	Attributes

Run	a	Transformation	Map
You	can	run	an	existing	Transformation	Map	directly,	without	having	to	first
create	a	Processing	Sequence	containing	the	Transformation	Map.
To	do	so,	select	the	required	item	in	the	Transformation	Maps	list.	Details	of	the
selected	Transformation	Map	will	be	displayed.		Click	the	Run	button	to	run	the
Transformation	Map.		LANSA	Composer	will	display	a	window	like	the	Run
Processing	Sequence	window	in	which	you	can	enter	the	input	parameter	values
for	the	Transformation	Map.
Refer	to	Run	a	Processing	Sequence	from	LANSA	Composer.for	further
information	on	using	the	Run	Processing	Sequence	window.
Running	a	Transformation	Map	in	this	way	is	very	much	like	running	a
Processing	Sequence	containing	just	that	Transformation	Map.		LANSA
Composer	will	automatically	log	the	input	and	output	parameter	values	in	the

its:LANSA091.CHM::/lansa/intengc1_0230.htm
its:LANSA091.CHM::/lansa/intengc1_0240.htm
its:LANSA091.CHM::/lansa/intengc3_0105.htm

Processing	Sequence	log	(subject	to	the	logging	level	currently	in	effect).

Review	Transformation	Map	Parameters
To	review	the	parameters	for	an	existing	Transformation	Map,	select	the
required	item	in	the	Transformation	Maps	list	and	select	the	Parameters	tab.	A
list	of	the	parameters	expected	for	the	transformation	map	will	be	displayed.

The	parameter	information	is	derived	from	the	map	definition	once	you	have
fully	prepared	the	Transformation	Map.	It	is	provided	for	information	and	can
only	be	altered	by	editing	the	map.	When	you	include	the	Transformation	Map
in	a	processing	sequence,	you	will	need	to	provide	values	for	each
Transformation	Map	parameter.
Parameters	provide	the	variable	information	necessary	for	the	Transformation
Map	to	complete	its	work.	They	also	provide	the	communication	between
activities	and	transformations	that	are	orchestrated	together	in	a	single
processing	sequence.	Thus,	the	output	(outbound	parameters)	from	an	activity
might	provide	the	input	(inbound	parameters)	for	a	Transformation	Map.
LANSA	Composer	derives	the	parameter	information	from	the	generated	source
code	for	the	map.	Consequently	the	parameter	names	and	parameter
descriptions	shown	may	not	be	very	meaningful.	It	is	a	good	idea	to	define	notes
for	the	Transformation	Map	to	clearly	describe	the	expected	input	parameters,
and	to	do	this	immediately	after	defining	the	Transformation	Map,	while	its
definition	is	fresh	in	your	mind.

Display	Catalogued	Transformation	map	Information
When	a	Transformation	Map	is	prepared,	LANSA	Composer	collects	and
catalogues	a	selection	of	information	about	the	map.		This	includes:

The	date	and	time	and	user	name	when	the	map	was	prepared;
LANSA	Composer,	Java	and	Altova	MapForce	version	information
relating	to	the	Prepared	map;
File	size	and	checksum	information	pertaining	to	the	map	definition	file(s)
and	the	generated	Java	executable	file;

The	map	definition	file(s)	and	the	generated	Java	executable	file	at
Prepare	time	are	saved	in	the	LANSA	Composer	database	(and	can	be
restored	if	required);
Selected	mapping	information	collected	from	the	Altova	MapForce	map
definition,	including	the	components	used	and	the	database	table
selections	for	database	components.

To	review	the	information	catalogued	for	an	existing	Transformation	Map,
select	the	required	item	in	the	Transformation	Maps	list	and	select	the
Catalogued	tab.

You	can	press	Check	to	compare	the	file	sizes	and	checksums	of	the	current
Transformation	Map	definition	and	executable	files	against	those	catalogued
when	the	map	was	last	prepared.

Work	with	Transformation	Map	Version	History
LANSA	Composer	can	store	multiple	versions	of	the	definition	of	a
Transformation	Map.		This	permits	the	flexibility	to	restore	and	run	an	earlier
version	of	the	Transformation	Map	if	required.
When	a	Transformation	Map	is	successfully	prepared,	the	prior	(prepared)
version	is	archived	(subject	to	the	corresponding	system	setting).				The	archived
version	contains	the	complete	definition	and	executable	form	of	the
Transformation	Map,	but	does	not	include	the	attachments	or	notes.

To	review	the	the	available	prior	versions	for	an	existing	Transformation	Map,
select	the	required	item	in	the	Transformation	Maps	list	and	select	the	Version
History	tab.		You	can	delete	or	restore	the	archived	versions	using	the	buttons
provided.

	Display	the	Run	History	of	a	Transformation	Map
To	display	available	Run	History	for	a	Transformation	Map,	select	the	required
item	in	the	Transformation	Maps	list	and	select	the	Run	History	tab.	A	list	of
processing	sequence	runs	(including	direct	runs	of	the	Transformation	Map)	that
used	the	selected	Transformation	Map	will	be	displayed.	You	can	double-click
an	item	in	the	list	to	view	the	Processing	Sequence	Log.
Select	an	item	and	click	the	View	button	to	display	the	Processing	Sequence	log
or	the	Print	button	to	print	the	Processing	Sequence	log	for	the	run.
If	a	prior	Processing	Sequence	run	has	ended	in	error,	you	may	be	able	to	use
the	Restart	button	to	restart	it	from	the	point	of	failure.		Refer	to	Restart	a
Processing	Sequence	Run	for	more	information.

Note:		The	completeness	of	the	Run	History	is	subject	to	the	logging
level	that	was	in	force	for	each	run.		Only	at	more	detailed	levels	of
logging	is	the	log	information	sufficient	to	identify	each	and	every
Activity	run.		In	addition,	Processing	Sequence	run	history	can	be
purged	using	the	Database	Housekeeping	function.		The	run	history
for	Processing	Sequence	runs	that	have	been	purged	is	no	longer
available.

	

its:LANSA091.CHM::/lansa/intengc3_0270.htm
its:LANSA091.CHM::/lansa/intengc6_0030.htm

2.5.3	Transformation	Map	Details
The	details	of	a	Transformation	Map	consist	of	basic	identification	and	status
information:

Basic	identification	and	status	information	for	a	Transformation	Map	definition
is	as	follows:
ID
An	identifier	to	uniquely	identify	this	Transformation	Map.
Description
This	should	describe	the	purpose	or	use	of	the	Transformation	Map.
Map	Type
You	can	assign	a	map	type	to	the	Transformation	Map	using	the	dropdown	list	.
Note:	Transformation	Map	types	are	used	to	group	and	categorize
transformation	maps	that	have	a	similar	function	or	purpose,	particularly	for
when	transformation	maps	are	linked	to	trading	partner	definitions.		Map	types
are	user-defined.	The	dropdown	list	will	contain	Transformation	Map	types	only
if	you	have	defined	types	in	LANSA	Composer.	Refer	to	Code	Maintenance	for
information	on	defining	map	types.
Restartable
Yes	or	No.	This	value	determines	whether	a	Processing	Sequence	run	that	fails
while	executing	this	Transformation	Map	can	be	restarted	(if	it	is	otherwise
eligible).	

Yes	indicates	the	Transformation	Map	can	be	restarted.	
No	indicates	that	this	Transformation	Map	cannot	be	restarted.		A	Processing
Sequence	that	fails	on	this	Transformation	Map	will	not	be	eligible	to	be
restarted.

its:LANSA091.CHM::/lansa/intengc6_0020.htm

Status
Active	or	Inactive.	Transformation	Maps	cannot	be	used	in	a	processing
sequence	when	they	are	Inactive.

2.5.4	Transformation	Map	Data	Interchange	Attributes
LANSA	Composer	defines	and	stores	a	set	of		data	interchange	attributes	for
each	Transformation	Map.		These	are	defined	to	accommodate	some	of	the
attributes	commonly	used	in	EDI	and	other	forms	of	data	interchange.
While	LANSA	Composer	pre-defines	fields	to	hold	these	attributes,	the	program
does	not	enforce	the	entry	of	the	fields,	nor	does	it	validate	values	entered.		To
permit	maximum	implementation	flexibility,	LANSA	Composer	leaves	the	use
and	values	of	these	attributes	to	you	according	to	your	own	circumstances	and
conventions.
Some	of	these	values	are,	however,	important	for	the	operation	of	the
transaction	document	framework	as	supplied.		Refer	to	Transformation	Map
Data	Interchange	Attributes	for	more	information.
To	review	or	change	the	data	interchange	attributes	for	a	Transfomation	Map,
select	the	required	Transfomation	Map	in	the	Transfomation	Maps	list	and	then
click	the	Data	interchange	tab	in	the	command	handler	area.

To	modify	a	value,	type	the	new	value.		Remember	to	click	Save	when	complete
to	save	your	changes.
For	information	about	accessing	data	interchange	attribute	values	for	a
Transformation	Map	in	a	processing	sequence,	refer	to	Transformation	Map
(*TRANSFORM)	Built-in	Variable	Qualifiers.

its:LANSA091.CHM::/lansa/intengc3b_0120.htm

2.5.5	Edit	And	Prepare	Transformation	Map
Beyond	entering	details	in	the	LANSA	Composer,	there	are	two	steps	necessary
to	define	a	Transformation	Map	before	it	can	be	used	in	a	processing	sequence:
1.		Press	Edit	at	the	Transformation	Map	Details	to	proceed	to	edit	the
Transformation	Map	in	the	mapping	tool	to	perform	the	mapping	required	for
your	application.	Refer	to	Edit	Transformation	Map	for	further	information.

2.		Press	Prepare	at	the	Transformation	Map	Details	after	you	have	finished
editing	your	map	and	its	definition	has	been	saved.	This	step	will	generate
and	build	the	executable	implementation	of	the	map	that	will	be	included	in	a
Processing	Sequence.	Refer	to	Prepare	Transformation	Map	for	further
information.

When	you	have	successfully	completed	these	steps,	the	Parameters	tab	will
show	the	new	parameter	information	for	the	map,	and	you	can	define	and	run
Processing	Sequences	that	use	the	Transformation	Map.
	

Edit	Transformation	Map
When	you	Edit	your	Transformation	Maps,	LANSA	Composer	will	start
MapForce	to	provide	the	visual	mapping	tools.	Following	is	brief	overview	of
the	essential	steps	to	define	a	typical	Transformation	Map	using	the	mapping
tool.	To	make	effective	use	of	this	tool,	refer	to	Learn	about	the	Mapping	Tool
for	the	tutorials	and	documentation	that	may	help	you.

Supported	Functionality	Reminder
Before	MapForce	starts	you	may	see	the	window	shown	below.	This	window
reminds	you	that	not	all	MapForce	functions	are	supported	for	use	with	LANSA
Composer.

For	more	information	about	what	functions	are	or	are	not	supported	for	use	with
LANSA	Composer,	refer	to	Supported	Functionality	of	the	Mapping	Tool.
The	first	time	you	edit	a	Transformation	Map	you	will	see	this	window.
However,	you	are	given	the	option	to	bypass	this	window.	You	may	choose	to
hide	it	for	subsequent	use	by	selecting	the	Don't	show	this	again	option.

Specifying	Source	and	Target	Components	in	the	Mapping	Tool
When	you	add	source	and	target	components	to	your	map	in	the	mapping	tool,	it
is	a	good	idea	to	identify	the	locations	of	the	components	or	the	connection
details	in	a	way	that	applies	universally	in	your	organization.	For	example,	you
should	identify	the	location	of	components	from	the	file	system	using	a	network
path	or	a	mapped	drive	that	is	accessible	to	all	clients.	When	adding	database

its:LANSA091.CHM::/lansa/intengc9_0035.htm
its:LANSA091.CHM::/lansa/intengc9_0045.htm

components	use	standard	drivers,	DSN	and	other	details	that	will	be	available
on	all	your	client	computers.
Following	these	suggestions	will	ensure	that	if	someone	else	needs	to	open	the
map	to	review	or	change	it,	they	will	be	able	to	do	so	without	error	and	avoid
having	to	re-locate	the	components	used	in	the	map.

Prepare	Transformation	Map
After	you	have	created	or	changed	the	definition	of	your	Transformation	Map
using	the	mapping	tool,	you	need	to	prepare	it	for	use	before	it	can	be	executed
in	a	processing	sequence.
To	do	this,	simply	click	the	Prepare	button	at	the	Transformation	Map	Details.
and	then	click	Prepare	in	the	Prepare	Transformation	Map	window.	Preparing
your	map	may	take	a	few	minutes.

You	may	briefly	see	the	MapForce	window	during	the	Prepare,	as	LANSA
Composer	loads	and	processes	your	Transformation	Map	to	generate	code	that
will	execute	the	mapping.		This	is	normal	and	you	should	wait	for	the	MapForce
window	to	close	again	and	the	Prepare	to	continue.
When	the	Compile	code	for	transformation	map	step	completes	successfully
you	will	see	a	window	like	this:

You	should	click	OK	to	allow	the	remaining	steps	to	proceed.
When	preparation	is	complete,	you	may	click	the	Show	Log	button	to	display	a
detailed	log	of	the	steps	completed.		The	log	will	be	useful	for	diagnosing

failures	in	the	preparation..

What	Does	Prepare	Do?
The	main	steps	are:

Generates	Java	code	that	implements	the	Transformation	Map	as	defined	in
the	mapping	tool.		(You	may	briefly	see	the	MapForce	window	appear
during	this	step).
Compiles	the	generated	Java	code.
Determines	the	parameters	that	the	Transformation	Map	requires	and
catalogues	information	about	the	map.

When	it	is	complete,	LANSA	Composer	places	the	resulting	.jar	(Java	archive)
file	in	the	/composer/<partition>/map	directory	of	the	LANSA	Integrator
instance.	This	is	the	executable	implementation	of	the	Transformation	Map.

Note:	When	your	transformation	map	uses	database	components	that
connect	to	IBM	DB2	for	i5/OS	database	tables,	LANSA	Composer
will	remove	the	library	qualifier	from	the	generated	Java	code	when
you	prepare	the	transformation	map.		You	must	setup	your	database
configuration	so	that	the	required	files	can	be	found	at	run-time.		For
more	information,	refer	to	Additional	Considerations	for
Transformation	Maps	Using	IBM	DB2	for	i5/OS	.

When	you	have	successfully	prepared	your	Transformation	Map,	the	new	or
revised	parameters	for	the	Transformation	Map	can	be	reviewed	on	the
Parameters	tab.	The	actual	parameters	shown	for	the	Transformation	Map
depend	upon	the	map	definition	in	the	mapping	tool.		The	catalogued
information	for	the	map	can	be	viewed	on	the	Catalogued	tab.
	

its:LANSA091.CHM::/lansa/intengc9_0365.htm

3.	Processing	Sequences
Processing	sequences	allow	you	to	combine	Activities	and	Transformations
with	Processing	Directives	such	as	Loops	and	conditions	to	complete	a	business
process.	Combining	these	elements	with	Variable	Transport,	Database
Configurations	and	Trading	Partner	information	permits	great	flexibility	in
accomplishing	complex	multi-step	processing	without	programming.

3.1	Anatomy	of	a	Processing	Sequence
3.2	Work	With	Processing	Sequences
3.4	Use	the	Processing	Sequence	Editor
3.5	Run	a	Processing	Sequence
Maintain	Attachments
Define	or	Review	Notes
Review	Audit	Details

its:LANSA091.CHM::/lansa/IntEngC1_0240.htm#IntEngC1_0215
its:LANSA091.CHM::/lansa/IntEngC1_0240.htm#IntEngC1_0220
its:LANSA091.CHM::/lansa/IntEngC1_0240.htm#IntEngC1_0225

3.1	Anatomy	of	a	Processing	Sequence
The	following	screen	picture	shows	some	of	the	major	concepts	supporting	a
Processing	Sequence.	The	numbers	refer	to	the	following	paragraphs	that
elaborate	on	the	highlighted	concepts:

1.	Activities	and	Transformation	Maps	provide	the	business
functionality
The	main	purpose	of	Processing	Sequences	in	LANSA	Composer	is	to	run	one
or	more	Activities	and	Transformation	Maps	in	a	defined	order.	The	simplest
Processing	Sequences	might	simply	perform	a	single	Activity	or
Transformation.

More	typically	a	Processing	Sequence	will	combine	one	or	more	Activities
and/or	Transformation	Maps	in	order	to	complete	a	business	process.	Refer	to
3.1.1	Activities	and	Transformation	Maps	for	information.

2.	Variables	provide	Communication	between	Activities
In	any	non-trivial	Processing	Sequence,	it	will	probably	be	necessary	to
communicate	information	between	the	Activities	and	Transformation	Maps	that
make	up	the	Processing	Sequences.	LANSA	Composer	provides	the	Processing
Sequence	variable	pool	for	this	purpose.	Refer	to	3.1.2	Variables	and	3.1.3
Built-in	Variables	for	details.

3.	Processing	Sequence	Directives	provide	Powerful	Orchestration
In	order	to	perform	complex	multi-step	business	processes,	it	is	not	enough	to
simply	string	a	sequence	of	Activities	or	Transformations	together.	You	need
some	means	of	controlling	their	execution	with	loops,	conditioning	and	other
constructs.

LANSA	Composer	provides	a	set	of	Processing	Sequence	Directives	for	this
purpose.	Refer	to	3.1.4	Processing	Directives	for	more	information.

4.	Processing	sequence	parameters	for	Run-Time	Flexibility
Processing	sequences	can	receive	parameters	that	become	variables	in	the
variable	pool.	The	use	of	parameters	enhances	the	flexibility	of	Processing
Sequences	by	permitting	the	use	of	a	single	Processing	Sequence	with	different
inputs	to	satisfy	multiple	variations	of	a	business	process	case.	Refer	to	3.1.5
Parameters	for	more	information.

Also	see
3.1.1	Activities	and	Transformation	Maps
3.1.2	Variables
3.1.3	Built-in	Variables
3.1.4	Processing	Directives
3.1.5	Parameters
3.2	Work	With	Processing	Sequences

3.1.1	Activities	and	Transformation	Maps
You	can	use	any	shipped	or	custom	Activities	and	Transformation	Maps	in	a
Processing	Sequence.	The	simplest	Processing	Sequences	might	simply	perform
a	single	Activity	or	Transformation.

When	you	add	an	Activity	or	Transformation	Map	to	a	Processing	Sequence,
the	detailer	window	in	the	Processing	sequence	editor	shows	the	parameters	that
are	defined	for	the	Activity	or	Transformation.

In	this	window	you	can	specify	values	that	are	to	be	used	for	the	parameters	in
two	ways:

1.		You	can	enter	a	numeric	or	alphanumeric	(according	to	the	use	of	the
parameter)	literal	value.	If	you	enter	an	alphanumeric	literal	value	you	can
surround	it	with	quote	marks.	The	quote	marks	do	not	become	part	of	the
parameter	value	that	the	Activity	receives.	If	you	need	to	embed	quote
marks	in	the	parameter	value,	you	should	surround	the	value	with	quote
marks	and	double-up	the	embedded	quote	marks.

If	the	parameter	class	is	other	than	General,	you	can	press	F4	or	click	the
adjacent	Prompt	(…)	button	to	browse	and	choose	from	a	list	of	possible
values.		For	example,	if	the	parameter	class	is	Trading	Partner,	LANSA
Composer	will	display	a	list	of	defined	Trading	Partners.		Or	if	the
parameter	class	is	File	path,	LANSA	Composer	will	allow	you	to	browse
and	choose	from	files	present	in	the	server	file	system.

2.		You	can	specify	the	name	of	a	variable	or	built-in	variable	that	supplies	or
receives	the	value	for	the	parameter.	To	specify	a	variable,	precede	the
variable	name	with	an	ampersand	(&)	–	for	example	&VARIABLE1.	To
specify	a	built-in	variable,	enter	the	name,	including	the	asterisk,	as	shown

on	the	Built-ins	tab	–	do	not	precede	a	built-in	variable	name	with
ampersand.

If	the	variable	you	wish	to	use	is	already	known	to	the	Processing
Sequence,	you	can	simply	drag	it	from	the	Variables	tab.

Each	parameter	for	an	Activity	(or	the	variable	specified	for	it)	becomes	part	of
a	pool	of	variables	that	are	available	to	all	Activities,	Transformation	Maps	and
Processing	Directives	in	the	Processing	Sequence.	In	this	way	any	parameters
that	are	output	from	one	Activity	might	be	used	as	input	to	another	Activity	or
Transformation	Map	later	in	the	same	Processing	Sequence.

3.1.2	Variables
The	Processing	Sequence	contains	a	pool	of	variables	that	may	be	used	as
parameters	to	Activities	and	Transformation	Maps	and	may	be	tested	and
manipulated	using	Processing	Sequence	Directives.
Variables	may	be	displayed	and	accessed	using	the	Variables	tab	in	the
Processing	sequence	editor.

Some	important	points	to	note	about	Processing	Sequence	variables:
Variables	implicitly	become	available	in	the	variable	pool	when	they	are
used	or	referenced	as	parameters	or	in	Processing	Sequence	Directives.
There	is	no	explicit	definition	of	variables	in	the	Processing	Sequence.
Variable	names	are	not	case-sensitive	–	for	example	&ftpconfig	and
&FTPCONFIG	reference	the	same	variable.
Variables	are	loosely-typed	–	it	is	the	responsibility	of	the	Activity	and
Processing	Sequence	designers	to	ensure	that	values	in	variables	are
appropriate	for	their	intended	use.
Variables	may	be	used	as	"lists"	simply	by	indexing	references	to	them.	
Refer	to	Lists	for	further	information.

Variable	Usage
Variables	can	be	used	to	maintain	state	and	to	pass	information	from	one
Activity	to	a	later	Activity	in	the	Processing	Sequence.	For	example,	the
FTP_INBOUND	shipped	Activity	returns	a	list	of	files	retrieved	by	the	FTP
operation.	This	list	may	be	used	to	control	later	Directives	and	Activities	in	the
Processing	Sequence.
Mostly,	processing	sequence	variables	are	used	to	hold	variable	data	that	is	used

to	orchestrate	the	process	-	for	example,	paths	to	transaction	documents	that	are
being	processed.
It	is	less	common	that	the	processing	sequence	variables	are	used	to	hold
application	data	items,	such	as	the	current	order	or	customer	number.		Most
typically,	this	type	of	data	is	and	should	be	processed	by	the	Activities	and
Transformation	maps	used	in	the	Processing	Sequence	and/or	LANSA	functions
and/or	Java	or	3GL	programs	called	by	the	Processing	Sequence.
Sometimes,	however,	it	is	desirable	or	necessary	to	fill	a	processing	sequence
variable	or	variable	lists	with	such	application	data	items.		For	example,	after
transforming	a	transaction	document	containing	an	in-coming	sales	order,	it	may
be	necessary	that	the	Processing	Sequence	"know"	an	identifying	key	such	as	a
batch	or	order	number	or	the	customer	number,	in	order	to	pass	it	as	a	parameter
to,	say,	a	LANSA	function	that	will	further	process	the	order.
There	are	several	techniques	available	to	accomplish	this.		Some	of	the	most
common	include:

using	a	transformation	map,	extract	the	required	data	from	the	transaction
document	file	or	from	a	database	to	a	CSV	(comma-separated	variables)	file
use	the	FOR_EACH_TXTLIN	or	FOR_EACH_CSVROW	activities	to	read
the	contents	of	a	text	or	CSV	file
write	a	function,	program	or	custom	activity	to	extract	and	return	the
required	information
on	IBM	i	servers,	you	can	use	data	areas	and	message	queues	to	exchange
information	with	other	programs	or	processes	using	supplied	activities	such
as	GET_DTAARA	and	PUT_DTAARA	or	MSGQ_SEND	and
MSGQ_RECEIVE.

In	addition,	LANSA	Composer	defines	an	XML	file	format	and	provides
activities	for	saving	and	loading	processing	sequence	variables	and	for
transforming	application	data	to	or	from	that	file	format.		For	more	information,
refer	to:

Save,	Load	and	Transform	Processing	Sequence	Variables

Lists
References	to	variables	in	the	variable	pool	may	be	indexed.	In	this	way,
variable	lists	may	be	created.	The	lists	may,	in	turn,	be	processed	iteratively
using	a	Loop	Processing	Directive.
For	example,	the	FTP_INBOUND	shipped	Activity	defines	an	output	parameter
FILEPATH	which	contains	a	list	of	the	paths	and	file	names	of	all	files	retrieved
in	the	FTP	operation.	The	Activity	Processor	is	written	to	make	indexed
references	to	the	&FILEPATH	variable	in	order	to	build	up	the	list.	The	entire
list	of	FILEPATHs	is	then	available	to	subsequent	Activities	and	Processing
Directives	using	indexed	references	to	the	&FILEPATH	variable.
The	Processing	Sequence	example	shown	below	uses	the	FTP_INBOUND
Activity	and	then	executes	a	Transformation	Map	in	a	loop	for	each	file
received.

Any	variable	may	be	used	as	a	list	simply	by	indexing	references	to	it.	However,
Activity	parameters	may	be	explicitly	flagged	as	being	lists	and	will	be
represented	by	a	different	icon	in	the	Variables	tab	in	the	Processing	sequence
editor.
Indexed	references	to	variables	should	use	contiguous	indices	starting	from	1.
The	Loop	Directive	and	the	supplied	Activities	will	only	process	instances	that
meet	this	condition.

Save,	Load	and	Transform	Processing	Sequence	Variables
LANSA	Composer	defines	a	document	format	and	provides	activities	for	saving
and	loading	processing	sequence	variables	and	for	transforming	application	data
to	or	from	that	format.		This	support	provides	a	further	means	to	populate	and
exchange	data	in	processing	sequence	variables.		It	facilitates	solutions	to
scenarios	such	as:

The	Processing	Sequence	needs	access	to	certain	variable	data	from	a
transaction	document	file

Using	a	Transformation	Map,	the	transaction	data	can	be	mapped	to	the
format	of	LANSA	Composer's	Process	Sequence	Variables	(PSV)	Files.	
Then	using	the	LOAD_PSVSET	activity,	the	Processing	Sequence	can	load
the	required	variables	from	the	PSV	file.
Certain	variable	data	originating	in	the	Processing	Sequence	needs	to	be
written	to	a	transaction	document	file

The	Processing	Sequence	may	save	the	variable	data	using	the
SAVE_PSVSET	activity	and	then	execute	a	Transformation	Map	that
transforms	the	variable	data	from	the	format	of	LANSA	Composer's	Process
Sequence	Variables	(PSV)	Files	to	the	transaction	document	file	or	database.
One	Processing	Sequence	performs	Activities	that	populate	a	set	of
Processing	Sequence	variables	and/or	variable	lists	that	are	then	used	in	a
second	Processing	Sequence

The	first	Processing	Sequence	may	save	the	variable	data	using	the
SAVE_PSVSET	activity	and	then	start	or	submit	the	second	Processing
Sequence	which	will	load	the	variable	data	using	the	LOAD_PSVSET
activity.

The	following	headings	provide	further	information	about	saving,	loading	and
transforming	Processing	Sequence	variables:

Process	Sequence	Variables	(PSV)	Files
Save	and	Load	a	PSV	File
Transform	To	or	From	a	PSV	File

Process	Sequence	Variables	(PSV)	Files
LANSA	Composer	defines	a	document	format	to	hold	or	receive	Processing
Sequence	variables	and	variable	lists.		Documents	that	conform	to	LANSA
Composer's	format	may	be	used	with	the	LOAD_PSVSET	and	SAVE_PSVSET
activities	and	in	Transformation	Maps.
The	document	format	is	actually	XML	and	it	is	described	in	a	Document	Type
Definition	(DTD)	that	can	be	found	at
http://www.lansa.com/schemas/lc3psv.dtd.		A	copy	of	the	DTD,	along	with	a
sample	PSV	file	is	also	installed	with	LANSA	Composer.
This	DTD	defines	LANSA	Composer's	Processing	Sequence	Variables	(PSV)
file	format.		The	'PSV'	file	extension	is	only	a	suggestion,	not	a	requirement.
The	following	is	a	sample	of	a	PSV	file:
<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	psVariables	SYSTEM
"http://www.lansa.com/schemas/lc3psv.dtd">
<psVariables>
			<psvSet	id="1"	comment="List	containing	the	names	of	the	colours	of	the
rainbow	in	English">
						<psVariable	name="rainbow"	index="1"	value="Violet"/>
						<psVariable	name="rainbow"	index="2"	value="Indigo"/>
						<psVariable	name="rainbow"	index="3"	value="Blue"/>
						<psVariable	name="rainbow"	index="4"	value="Green"/>
						<psVariable	name="rainbow"	index="5"	value="Yellow"/>
						<psVariable	name="rainbow"	index="6"	value="Orange"/>
						<psVariable	name="rainbow"	index="7"	value="Red"/>
		</psvSet>
			<psvSet	id="2"	comment="List	containing	the	names	of	the	colours	of	the
rainbow	in	French">
						<psVariable	name="rainbow"	index="1"	value="Violet"/>
						<psVariable	name="rainbow"	index="2"	value="Indigo"/>
						<psVariable	name="rainbow"	index="3"	value="Bleu"/>
						<psVariable	name="rainbow"	index="4"	value="Vert"/>
						<psVariable	name="rainbow"	index="5"	value="Jaune"/>
						<psVariable	name="rainbow"	index="6"	value="Orange"/>
						<psVariable	name="rainbow"	index="7"	value="Rouge"/>
		</psvSet>

</psVariables>
Some	points	to	note	about	the	PSV	file	format:

Like	any	XML	file,	the	root	element	<psVariables>	can	occur	only	once	in
the	file.
The	<psVariables>	root	element	must	contain	at	least	one	or	more
Processing	Sequence	Variable	"sets"	defined	by	a	<psvSet>	element.

The	possibility	for	a	PSV	file	to	contain	more	than	one	PSV	Set	is	important
in	connection	with	the	LOAD_PSVSET	activity,	which	has	iterator
capabilities.
Within	each	<psvSet>	element	there	may	be	one	or	more	<psVariable>
elements,	each	of	which	defines	a	Processing	Sequence	variable,	its	value
and	an	optional	index	for	use	with	variable	lists.

A	Processing	Sequence	Variables	(PSV)	file	does	not	contain	built-in	variables
or	their	values.

Save	and	Load	a	PSV	File
LANSA	Composer	provides	the	following	activities	specifically	for	saving	and
loading	Processing	Sequence	Variables	in	the	format	of	LANSA	Composer's
Process	Sequence	Variables	(PSV)	Files.

Activity	ID Description

LOAD_PSVSET Load	processing	sequence	variables	from	a	PSV	file.

SAVE_PSVSET Save	processing	sequence	variables	to	a	PSV	file.

	

Refer	to	the	activity	descriptions	for	further	details.

its:LANSA091.CHM::/lansa/AT_LOAD_PSVSET.htm
its:LANSA091.CHM::/lansa/AT_SAVE_PSVSET.htm

Transform	To	or	From	a	PSV	File
Because	LANSA	Composer's	Process	Sequence	Variables	(PSV)	Files	are	XML
files,	you	can	use	them	as	the	source	or	target	of	a	Transformation	Map.
To	use	a	PSV	file	in	a	Transformation	Map:
1.		Select	XML	Schema/File	from	the	Insert	menu	in	the	mapping	tool;
2.		In	the	Open	dialogue,	navigate	to	and	select	the	supplied	lc3psv.dtd	file	or
the	lc3sample.psv	file,	or	type	the	URL	of	the	DTD	file:
http://www.lansa.com/schemas/lc3psv.dtd;

3.		You	can	then	map	to	or	from	the	PSV	file	component	in	the	usual	way.

Note:		When	using	the	PSV	file	component	as	the	target	of	a	mapping
and	you	wish	to	map	more	than	one	variable,	you	will	usually	need	to
use	the	Duplicate	Input	command	in	the	mapping	tool	to	create
multiple	instances	of	the	psVariable	element	node	that	you	can	map
to.		In	the	example	above	you	can	see	the	node	()	psVariable	(2)	was
defined	this	way	in	order	to	map	the	second	variable
("TUT_CUSNUM").

	

3.1.3	Built-in	Variables
LANSA	Composer	provides	a	set	of	special	built-in	variables	that	can	be
referenced	in	any	Processing	Sequence.	Built-in	variables	may	be	displayed	and
accessed	using	the	Built-ins	tab	in	the	Processing	sequence	editor.

The	built-in	variables	that	LANSA	Composer	provides	are	listed	below.	Those
built-in	variables	that	have	Yes	in	the	Writeable	column	(below)	may	be	used	as
the	receiving	variable	in	an	Assign	Directive.	All	other	built-in	variables	are
read-only.

Name Description

*ACTIVITY_RC The	return	code	from	the	last	executed	Activity.

*ACTIVITY_SEV The	severity	corresponding	to	the	return	code
from	the	last	executed	Activity.

*JOBMODE Current	job	mode	(B=batch,	I=inter)
(Derived	directly	from	the	LANSA	system
variable	of	the	same	name)

*JOBNAME Current	job	name

(Derived	directly	from	the	LANSA	system
variable	of	the	same	name)

*JOBNUMBER Current	job	number
(Derived	directly	from	the	LANSA	*JOBNBR
system	variable)

*JOBUSER Current	job	user	name
(On	an	IBM	i	server,	this	may	be	different	to
the	*USER	built-in	variable	value	if	the	current
user	for	the	job	changed	since	the	job	was
started.)

*LANGUAGE Current	LANSA	language	code
(Derived	directly	from	the	LANSA	system
variable	of	the	same	name)

*LANSADTALIB LANSA	system	data/file	library
(Derived	directly	from	the	LANSA	system
variable	of	the	same	name)

*LANSAPGMLIB LANSA	system	program	library
(Derived	directly	from	the	LANSA	system
variable	of	the	same	name)

*LASTERROR.ID The	message	id	of	the	error	message	following
the	last	error.
(This	is	intended	for	use	in	Catch	blocks	to
support	further	interrogation	of	the	error
condition.		The	"last"	error	message	is	defined
as	the	FIRST	error	message	logged	after	an
activity	sets	the	error	(ER)	result	status,)

*LASTERROR.TX1 The	first	level	message	text	of	the	error
message	following	the	last	error.
(This	is	intended	for	use	in	Catch	blocks	to
support	further	interrogation	of	the	error
condition.		The	"last"	error	message	is	defined
as	the	FIRST	error	message	logged	after	an
activity	sets	the	error	(ER)	result	status,)

*LASTERROR.TX2 The	second	level	message	text	of	the	error
message	following	the	last	error.
(This	is	intended	for	use	in	Catch	blocks	to
support	further	interrogation	of	the	error
condition.		The	"last"	error	message	is	defined
as	the	FIRST	error	message	logged	after	an
activity	sets	the	error	(ER)	result	status,)

*NOW_UTC
*NOW_LOCAL

The	current	UTC	and	local	date	and	time
formatted	in	ISO	format	with	up	to	three
decimal	positions:
YYYY-MM-DD	hh:mm:ss.nnn

*PARTITION Current	LANSA	partition
(Derived	directly	from	the	LANSA	system
variable	of	the	same	name)

*PARTDTALIB Current	LANSA	partition's	data/file	library
(Derived	directly	from	the	LANSA	system
variable	of	the	same	name)

*PARTPGMLIB Current	LANSA	partition's	program	library
(Derived	directly	from	the	LANSA	system
variable	of	the	same	name)

*PROCESS_ID The	identifier	or	name	of	the	running
Processing	Sequence

*PROCESS_II The	unique	internal	identifier	of	the	running
Processing	Sequence.	(The	internal	identifier	is
a	32	character	value	uniquely	assigned	by
LANSA	Composer.	You	can	see	the	unique
identifier	for	a	Processing	Sequence	on	the
Audit	tab.)

*PROCESS_LOGLEVEL The	logging	level	in	effect	for	the	processing
sequence	run.		Initially,	the	logging	level	is
taken	from	the	System	Settings	but	may	vary
during	the	run,	either	automatically	following
an	error	or	by	explicit	assignment	of	a	new

logging	level.		This	variable	can	contain	or	be
set	to	values	corresponding	to	the	logging
levels	that	can	be	selected	as	the	default	in
System	Settings:	*AUTO	(Automatic),	*MIN
(Minimum),	*NORMAL	(Normal)	or	*MAX
(Maximum).

*PROCESS_JSMTRACE Specifies	(Y/N)	whether	LANSA	Integrator
tracing	is	in	effect	for	the	processing	sequence
run.		Initially,	the	value	is	taken	from	the
System	Settings	but	may	vary	during	the	run	by
explicit	assignment	of	a	new	value	to	this	built-
in	variable.		Note	that	changes	to	the	value	will
only	affect	LANSA	Integrator	sessions	begun
after	the	change	is	effected.		Many	activities
processors	remain	active	and	possibly	keep	a
JSM	session	open	for	subsequent	use	of	the
same	activity.		To	be	sure	of	affecting	such
cases,	the	change	to	the	built-in	value	variable
needs	to	be	made	before	the	first	use	of	the
affected		activity

*PROCESS_NEST The	nested	level	of	the	running	processing
sequence.		Usually	the	value	of	this	is	1.		When
a	processing	sequence	is	run	from	another
processing	sequence	using	the	Processing
Sequence	directive,	the	value	reflects	the	level
of	such	nesting.

*PROCESS_RC The	return	code	for	the	Processing	Sequence.

*PROCESS_RUN The	run	number	assigned	to	the	current
Processing	Sequence	run.

*PROCESS_RSM_UTC
*PROCESS_RSM_LOCAL

The	UTC	and	local	date	and	time	of	the	last
restart	for	the	current	Processing	Sequence	run
formatted	in	ISO	format	with	up	to	three
decimal	positions:	
YYYY-MM-DD	hh:mm:ss.nnn

*PROCESS_SEV The	severity	corresponding	to	the	return	code

for	the	Processing	Sequence.

*PROCESS_STR_UTC
*PROCESS_STR_LOCAL

The	UTC	and	local	start	date	and	time	for	the
current	Processing	Sequence	run	formatted	in
ISO	format	with	up	to	three	decimal	positions:	
YYYY-MM-DD	hh:mm:ss.nnn

*SHUTDOWN The	*SHUTDOWN	built-in	variable	yields	a
value	of	'Y'	when	one	of	the	following	is	true:
1)	the	system,	or	the	subsystem	or	the	job	in
which	the	processing	sequence	is	executing	is
subject	to	a	controlled	end	request	-	for
example,	by	PWRDWNSYS,	ENDSBS	or
ENDJOB	commands	or	equivalent	with
OPTION(*CNTRLD)		NB:	This	applies	on
IBM	i	servers	only.		There	is	no	equivalent
support	on	Windows	servers	for	this	type	of
"shutdown"	request.
2)	A	LANSA	Composer	user	has	requested
"controlled	end"	for	an	"active"	processing
sequence	run,	for	example,	by	using	the	"End"
command	or	toolbutton	in	the	Processing
Sequence	Log	window
The	processing	sequence	controller	does	NOT
automatically	respect	such	requests.		It	is	up	to
the	solution	designer	to	build	in	such	support
where	appropriate	by	reference	to	this	new
*SHUTDOWN	built-in	variable.		It	may	not
always	be	necessary,	but	it	is	advised	for
processing	sequences	that	are	intended	to	be
long-running	processes.		This	would	usually
include,	for	example,	any	processing	sequence
that	uses	the	new	WATCH_MSGQ,
WATCH_DIRECTORY	or	WATCH_DTAQ
activities,	or	one	that	implements	similar
"monitor"	style	processing	using	LOOPs	or
other	constructs.

*SYS_DEFAULT_DIR The	path	specified	in	the	LANSA	Composer

system	settings	for	the	default	trading	partner
linked	directory.

*SYSTEMTYPE The	server	system	type	(AS400,	WINNT	or
UNIX)
(Derived	directly	from	the	LANSA
*CPUTYPE	system	variable)

*TRADINGPARTNER The	current	trading	partner	identifier.	This
built-in	variable	may	be	extended	with	a	range
of	qualifiers	to	access	attributes	and	linked
directories,	Configurations	and	Transformation
Maps	for	the	trading	partner.
Note	that	while	the	*TRADINGPARTNER
built-in	variable	is	writeable,	the	qualified
forms	that	provide	access	to	the	attributes	of
the	current	trading	partner	are	not	writeable.
Refer	to	Using	the	Trading	Partner	Built-in
Variables	for	more	information.

*TRADINGPARTNERS The	list	of	active	trading	partner	identifiers.
This	built-in	variable	may	optionally	be
extended	with	trading	partner	group	qualifiers
to	access	subsets	of	the	trading	partners	list.	
For	example,
*TRADINGPARTNERS.GROUP.CUSTOMER
would	provide	the	list	of	active	trading	partners
that	belong	to	the	CUSTOMER	trading	partner
group.
This	built-in	variable	(or	its	qualified	forms)
may	be	used	as	the	list	name	for	a	Loop
Directive	to	create	a	loop	that	performs
processing	for	all	defined	trading	partners	(or
subsets	of	trading	partners).
Refer	to	Using	the	Trading	Partner	Built-in
Variables	for	more	information

*TRANSFORM The	current	transformation	map	identifier.	This
built-in	variable	may	be	extended	with	a	range

of	qualifiers	to	access	attributes	of	the
transformation	map.
Note	that	while	the	*TRANSFORM	built-in
variable	is	writeable,	the	qualified	forms	that
provide	access	to	the	attributes	of	the	current
transformation	map	are	not	writeable.
Refer	to	Using	the	Transformation	Map	Built-
in	Variables	for	more	information.

*TXDOC The	current	transaction	document	identifier
(number).		This	built-in	variable	may	be
extended	with	a	range	of	qualifiers	to	access
attributes	of	the	transaction	document
envelope.
Note	that	while	the	*TXDOC	built-in	variable
is	writeable,	the	qualified	forms	that	provide
access	to	the	attributes	of	the	current
transaction	document	envelope	are	not
writeable.
Refer	to	Using	the	Transaction	Document
Built-in	Variables	for	more	information.

*TZ_ABBR On	IBM	i	servers,	this	built-in	variables
provides	the	short	name	of	the	time	zone	used
by	the	job	–	for	example,	AEST.		On	Windows
servers,	the	description	for	the	current	time
zone	is	provided	(the	same	value	as
*TZ_DESC	and	*TZNAME).

*TZ_DESC On	IBM	i	servers,	this	built-in	variables
provides	the	time	zone	description	used	to
calculate	job	time	–	for	example,
QP1000AES3.		On	Windows	servers,	the
description	for	the	current	time	zone	is
provided	(the	same	value	as	*TZ_ABBR	and
*TZNAME).

*TZ_NAME On	IBM	i	servers,	this	built-in	variables
provides	the	long	name	of	the	time	zone	used

by	the	job	–	for	example,	Australian	Eastern
Standard	Time.		On	Windows	servers,	the
description	for	the	current	time	zone	is
provided	(the	same	value	as	*TZ_ABBR	and
*TZDESC).

*TZ_OFFSET The	current	offset	from	Coordinated	Universal
Time	(UTC),	formatted	as	a	string	in	the	form
+HH:MM	–	for	example,	+10:00.

*TZ_OFFSETMM The	current	offset	from	Coordinated	Universal
Time	(UTC),	in	minutes	–	for	example,	600.

*USER Current	user	ID
(Derived	directly	from	the	LANSA	system
variable	of	the	same	name)

	

Also	see
Using	the	System	Property	Built-in	Variables
Using	the	Trading	Partner	Built-in	Variables
Trading	Partner	(*TRADINGPARTNER)	Built-in	Variable	Qualifiers
Using	the	Transformation	Map	Built-in	Variables
Transformation	Map	(*TRANSFORM)	Built-in	Variable	Qualifiers
Using	the	Transaction	Document	Built-in	Variables
Transaction	Document	(*TXDOC)	Built-in	Variable	Qualifiers

Using	the	System	Property	Built-in	Variables
Values	of	installation-defined	system	properties	may	be	accessed	(or	assigned	if
defined	as	writeable)	by	using	the	following	built-in	variable	form:
*SYSTEM.PROPERTY.<property	name>
					where	<property	name>	is	the	name	of	the	installation-defined	system
property.		Refer	to	System	Properties	for	information	on	defining	system
properties.

In	the	following	example,	the	*system.property.myproperty	form	is	used	in	the
details	for	an	activity	to	access	the	value	of	the	installation-defined	system
property	named	myproperty:

Note:		The	use	and	values	of	these	properties	is	subject	to	your	own
circumstances	and	conventions.		LANSA	Composer	does	not	enforce
the	entry	of	the	fields	corresponding	to	these	properties,	nor	does	it
validate	any	values	entered.

	

its:LANSA091.CHM::/lansa/intengc6_0018.htm

Using	the	Trading	Partner	Built-in	Variables
The	trading	partner	information	may	be	referenced	at	run-time	(in	a	Processing
Sequence)	in	several	ways:

When	processing	is	being	performed	for	a	particular	trading	partner,	the
linked	directories,	Transformation	Maps	and/or	Configurations	can	be
accessed	through	qualified	forms	of	the	*TRADINGPARTNER	built-in
variable	and	used	as	variable	inputs	to	the	Activities	and	Transformation
Maps	to	be	executed.	Refer	to	Trading	Partner	(*TRADINGPARTNER)
Built-in	Variable	Qualifiers	for	more	information.
A	Processing	Sequence	may	contain	a	loop	based	on	the	built-in
*TRADINGPARTNERS	variable	(or	one	of	the
*TRADINGPARTNERS.GROUP.xxx	variables)	to	iteratively	perform	the
same	processing	for	all	defined	trading	partners	(or	trading	partners	that
belong	to	the	specified	trading	partner	group).

If	you	wish	to	process	a	single	trading	partner	in	your	Processing	Sequence
but	still	require	access	to	the	trading	partner	information	using	the	qualified
forms	of	the	*TRADINGPARTNER	variable	then	you	must	first	assign	a
value	to	the	*TRADINGPARTNER	built-in	variable.	The	value	you	assign
must	be	the	identifier	of	a	trading	partner	defined	in	the	LANSA	Composer
system.

In	order	to	successfully	use	the	*TRADINGPARTNER	built-in	variable	and	its
qualified	forms,	a	valid	value	must	have	been	assigned	to	it	in	one	of	the	above
ways.

Trading	Partner	(*TRADINGPARTNER)	Built-in	Variable
Qualifiers
The	*TRADINGPARTNER	built-in	variable	may	be	extended	with	a	range	of
qualifiers	to	access	the	attributes	and	properties	of	the	trading	partner	and	the
directories,	Transformation	Maps	and/or	Configurations	linked	to	the	trading
partner.		The	available	qualified	forms	of	the	*TRADINGPARTNER	built-in
variable	may	be	displayed	and	accessed	by	expanding	the	corresponding	item
listed	on	the	Built-ins	tab	in	the	Processing	sequence	editor.

Note:	While	the	*TRADINGPARTNER	built-in	variable	is	writeable,
the	qualified	forms	that	provide	access	to	the	attributes	of	the	current
trading	partner	are	not	writeable.

Trading	Partner	Attributes
The	base	attributes	for	the	current	trading	partner	may	be	accessed	using	the
following	qualifiers	with	the	*TRADINGPARTNER	variable:

Qualifier Description

.II The	unique	internal	identifier	of	the	trading	partner.
(The	internal	identifier	is	a	32	character	value
uniquely	assigned	by	LANSA	Composer.	You	can
see	the	unique	identifier	for	a	trading	partner	on	the
Audit	tab.)

.ID The	identifier	or	name	of	the	trading	partner
definition

This	is	the	value	returned	for	the
*TRADINGPARTNER	built-in	variable	if	no
qualifier	is	specified.		In	other	words	*
TRADINGPARTNER	yields	the	same	value	as
*TRADINGPARTNER.ID.

.STATUS The	status	code	(A=active,	I=inactive)	of	the
current	trading	partner.

Note:		When	processing	Trading	Partners	in	a	loop
using	the	*TRADINGPARTNERS	list	variable,

only	active	Trading	Partners	are	processed.	
However,	if	you	explicitly	set	the	trading	partner
using	the	*TRADINGPARTNER	variable,	you	can
use	this	attribute	to	check	the	status	of	the	Trading
Partner.

.NM The	description	of	the	trading	partner	definition.

.A1

.A2

.A3

The	street	address	lines	1,	2	and	3	for	the	trading
partner.

.PH The	telephone	number	for	the	trading	partner.

.FX The	fax	number	for	the	trading	partner.

.EM

.EM2

.EM3

The	email	addresses	for	the	trading	partner.

.TXDOC_RECEIVE The	identifier	(name)	of	a	processing	sequence
associated	with	this	trading	partner	to	send
outbound	transaction	documents,	if	specified.

.TXDOC_SEND The	identifier	(name)	of	a	processing	sequence
associated	with	this	trading	partner	to	receive
inbound	transaction	documents,	if	specified.

	

In	the	following	example,	the	*tradingpartner.id	form	is	used	in	an	If	condition
to	condition	a	part	of	the	Processing	Sequence:

Trading	Partner	Properties
Values	of	installation-defined	properties	for	a	Trading	Partner	may	be	accessed
by	using	the	following	qualified	forms	of	the	*TRADINGPARTNER	built-in
variable:
*TRADINGPARTNER.PROPERTY.<property	name>
					where	<property	name>	is	the	name	of	the	installation-defined	Trading

Partner	property.		Refer	to	Code	maintenance	for	information	on	defining
Trading	Partner	properties.

In	the	following	example,	the	*tradingpartner.property.myproperty	form	is	used
in	the	details	for	an	activity	to	access	the	value	of	the	installation-defined
property	named	myproperty	for	the	current	Trading	Partner:

Note:		The	use	and	values	of	these	properties	is	subject	to	your	own
circumstances	and	conventions.		LANSA	Composer	does	not	enforce
the	entry	of	the	fields	corresponding	to	these	properties,	nor	does	it
validate	any	values	entered.

Trading	Partner	Data	Interchange	Attributes
The	data	interchange	attributes	for	the	current	trading	partner	may	be	accessed
using	the	following	qualifiers	with	the	*TRADINGPARTNER	variable:

Qualifier Description

.EDI.CA Communication	agreement

.EDI.IAP Inbound	archive	file	prefix

.EDI.IRA Inbound	receiver	routing	address

.EDI.IRI Inbound	receiver	ID

.EDI.IRQ Inbound	receiver	qualifier

.EDI.ISA Inbound	sender	routing	address

.EDI.ISI Inbound	sender	ID

.EDI.ISQ Inbound	sender	qualifier

.EDI.OAP Outbound	archive	file	prefix

.EDI.OAR Outbound	application	receiver

its:LANSA091.CHM::/lansa/intengc5_0020.htm

.EDI.OAS Outbound	application	sender

.EDI.ORA Outbound	receiver	routing	address

.EDI.ORI Outbound	receiver	ID

.EDI.ORQ Outbound	receiver	qualifier

.EDI.OSA Outbound	sender	routing	address

.EDI.OSI Outbound	sender	ID

.EDI.OSQ Outbound	sender	qualifier

.EDI.RPQ Recipient's	password	qualifier

.EDI.RPW Recipient's	password

.EDI.SPLITIGNORECR EDI	split	ignore	carriage	returns

.EDI.SPLITMAX EDI	split	maximum	transactions

.EDI.XTP Exchange	trading	partner

	

Note:		The	use	and	values	of	these	attributes	is	subject	to	your	own
circumstances	and	conventions.		LANSA	Composer	does	not	enforce
the	entry	of	the	fields	corresponding	to	these	attributes,	nor	does	it
validate	any	values	entered.

Trading	Partner	Linked	Directories
Directories	linked	to	a	trading	partner	may	be	accessed	using	the	following
qualified	form	of	the	*TRADINGPARTNER	built-in	variable:
*TRADINGPARTNER.DIR.<directory	type>
					where	<directory	type>	is	a	directory	type	code	defined	for	the	system.	Refer
to	Code	maintenance	for	information	on	defining	directory	types.

In	the	following	example,	the	*tradingpartner.dir.iftp	form	is	used	in	the	details
for	an	FTP_INBOUND	Activity	to	access	the	inbound	FTP	directory	for	the
current	trading	partner:

its:LANSA091.CHM::/lansa/intengc5_0020.htm

Trading	Partner	Linked	Transformation	Maps
Transformation	maps	linked	to	a	trading	partner	may	be	accessed	using	the
following	qualified	form	of	the	*TRADINGPARTNER	built-in	variable:
*TRADINGPARTNER.MAP.<map	type>
					where	<map	type>	is	a	map	type	code	defined	for	the	system.	Refer	to	Code
Maintenance	for	information	on	defining	map	types.

In	the	following	example,	the	*tradingpartner.map.orderin	form	is	used	in	the
details	for	a	TRANSFORM	Activity	to	access	the	Transformation	Map	of	type
orderin	linked	to	the	current	trading	partner:

Notes:

1.	To	execute	a	Transformation	Map	linked	to	a	trading	partner	you
must	use	the	supplied	TRANSFORM	activity.	Refer	to	TRANSFORM
for	information	on	this	activity.

2.	More	than	one	Transformation	Map	of	the	same	type	may	be	linked
to	a	Trading	Partner.		This	form	of	the	*TRADINGPARTNER	built-in
variable	yields	the	first	Transformation	Map	of	the	specified	type.		A
more	flexible	and	powerful	means	of	identifying	a	Transformation
Map	linked	to	a	Trading	Partner	is	provided	by	the	supplied
FIND_TPMAP	activity.	Refer	to	FIND_TPMAP	for	information	on
this	activity.

	

its:LANSA091.CHM::/lansa/intengc6_0020.htm
its:LANSA091.CHM::/lansa/AT_TRANSFORM.htm
its:LANSA091.CHM::/lansa/AT_FIND_TPMAP.HTM

Trading	Partner	Linked	Configurations
Configurations	linked	to	a	trading	partner	may	be	accessed	using	the	following
qualified	forms	of	the	*TRADINGPARTNER	built-in	variable:

Qualifier Description

.DB The	database	Configuration	linked	to	the	trading	partner
definition.

.FTPIN The	FTP	inbound	Configuration	linked	to	the	trading
partner	definition.

.FTPOUT The	FTP	outbound	Configuration	linked	to	the	trading
partner	definition.

.FTPCMDS The	FTP	command	list	Configuration	linked	to	the
trading	partner	definition.

.HTTPIN The	HTTP	inbound	Configuration	linked	to	the	trading
partner	definition.

.HTTPOUT The	HTTP	outbound	Configuration	linked	to	the	trading
partner	definition.

.MSG The	Messaging	Configuration	linked	to	the	trading
partner	definition.

.LANSASYS The	LANSA	system	Configuration	linked	to	the	trading
partner	definition.

.POP3 The	POP3	mail	Configuration	linked	to	the	trading
partner	definition.

.SMS The	SMS	configuration	linked	to	the	trading	partner
definition.

.SMTPMAIL The	SMTP	mail	Configuration	linked	to	the	trading
partner	definition.

.SMTPSERVER The	SMTP	server	Configuration	linked	to	the	trading
partner	definition.

	

In	the	following	example,	the	*tradingpartner.ftpin	form	is	used	in	the	details
for	an	FTP_INBOUND	Activity	to	access	the	inbound	FTP	directory	for	the
current	trading	partner:

Using	the	Transformation	Map	Built-in	Variables
Transformation	map	information	may	be	referenced	at	run-time	(in	a	Processing
Sequence)	in	several	ways:

When	processing	is	being	performed	for	a	particular	Transformation	Map,
the	attributes	of	the	Transformation	Map	can	be	accessed	through	qualified
forms	of	the	*TRANSFORM	built-in	variable	and	used	as	variable	inputs	to
the	Activities	and	Transformation	Maps	to	be	executed.	Refer	to
Transformation	Map	(*TRANSFORM)	Built-in	Variable	Qualifiers	for	more
information.
In	order	to	access	the	Transformation	Map	attributes	using	the	qualified
forms	of	the	*TRANSFORM	variable	you	must	first	explicitly	assign	a	value
to	the	*TRANSFORM	built-in	variable.	The	value	you	assign	must	be	the
identifier	of	a	Transformation	Map	defined	in	the	LANSA	Composer
system.		The	most	common	case	is	to	assign	the	identifier	of	a
Transformation	Map	that	is	linked	to	a	Trading	Partner.		Your	Processing
Sequence	might	obtain	the	Transformation	Map	identifier	to	assign	to
*TRANSFORM	in	one	of	these	ways:
1.		Using	the	*TRADINGPARTNER.MAP.<map	type>	built-in
variable.

					Refer	to	Trading	Partner	(*TRADINGPARTNER)	Built-in	Variable
Qualifiers	for	more	information	about	the	*TRADINGPARTNER.MAP.
<map	type>	form	of	the	*TRADINGPARTNER	built-in	variable.

2.		2.		From	the	result	of	running	the	supplied	FIND_TPMAP	activity.
					Refer	to	FIND_TPMAP	for	information	on	this	activity.
3.		By	"hard-coding"	the	identifier	of	a	known	Transformation	Map.
In	order	to	successfully	use	the	*TRANSFORM	built-in	variable	and	its
qualified	forms,	a	valid	value	must	have	been	assigned	to	it	in	one	of	the	above
ways.

its:LANSA091.CHM::/lansa/AT_FIND_TPMAP.HTM

Transformation	Map	(*TRANSFORM)	Built-in	Variable
Qualifiers
The	*TRANSFORM	built-in	variable	may	be	extended	with	a	range	of
qualifiers	to	access	the	attributes	of	the	Transformation	Map.		The	available
qualified	forms	of	the	*TRANSFORM	built-in	variable	may	be	displayed	and
accessed	by	expanding	the	corresponding	items	listed	on	the	Built-ins	tab	in	the
Processing	sequence	editor.

Note:	While	the	*TRANSFORM	built-in	variable	is	writeable,	the
qualified	forms	that	provide	access	to	the	attributes	of	the	current
transformation	map	are	not	writeable.

Transformation	Map	Attributes
The	base	attributes	for	the	current	transformation	map	may	be	accessed	using
the	following	qualifiers	with	the	*TRANSFORM	variable:

Qualifier Description

.II The	unique	internal	identifier	of	the	Transformation	Map.	(The
internal	identifier	is	a	32	character	value	uniquely	assigned	by
LANSA	Composer.	You	can	see	the	unique	identifier	for	a
Transformation	Map	on	the	Audit	tab.)

.ID The	identifier	or	name	of	the	Transformation	Map	definition

This	is	the	value	returned	for	the	*TRANSFORM	built-in
variable	if	no	qualifier	is	specified.		In	other	words
*TRANSFORM	yields	the	same	value	as	*TRANSFORM.ID.

.STATUS The	status	code	(A=active,	I=inactive)	of	the	current
Transformation	Map.

.TYPE The	map	type	code	for	the	Transformation	Map	definition.

	

Transformation	Map	Data	Interchange	Attributes
The	data	interchange	attributes	for	the	current	Transformation	Map	may	be

accessed	using	the	following	qualifiers	with	the	*TRANSFORM	variable:

Qualifier Description

.EDI.DIR The	direction	(I	=	inbound,	O	=	outbound)	of	the	current
transformation	map

.EDI.EXP The	transaction	data	export	processor	for	the	current
transformation	map

.EDI.IMP The	transaction	data	import	processor	for	the	current
transformation	map

.EDI.TID The	transaction	ID	associated	with	the	current	transformation
map

	

Note:		The	use	and	values	of	these	attributes	is	subject	to	your	own
circumstances	and	conventions.		LANSA	Composer	does	not	enforce
the	entry	of	the	fields	corresponding	to	these	attributes,	nor	does	it
validate	any	values	entered.

Using	the	Transaction	Document	Built-in	Variables
Transaction	document	information	may	be	referenced	at	run-time	(in	a
Processing	Sequence)	in	several	ways:

When	processing	is	being	performed	for	a	particular	transaction	document,
the	attributes	of	the	transaction	document	can	be	accessed	through	qualified
forms	of	the	*TXDOC	built-in	variable.	Refer	to	Transaction	Document
(*TXDOC)	Built-in	Variable	Qualifiers	for	more	information.
In	order	to	access	the	transaction	document	attributes	using	the	qualified
forms	of	the	*TXDOC	variable	you	must	first	explicitly	assign	a	value	to	the
*TXDOC	built-in	variable.	The	value	you	assign	must	be	the	identifier
(number)	of	a	transaction	document	envelope	defined	in	the	LANSA
Composer	transaction	document	register.

Transaction	Document	(*TXDOC)	Built-in	Variable	Qualifiers
The	*TXDOC	built-in	variable	may	be	extended	with	a	range	of	qualifiers	to
access	the	attributes	of	the	transaction	document.		The	available	qualified	forms
of	the	*TXDOC	built-in	variable	may	be	displayed	and	accessed	by	expanding
the	corresponding	items	listed	on	the	Built-ins	tab	in	the	Processing	sequence
editor.

Note:	While	the	*TXDOC	built-in	variable	is	writeable,	the	qualified
forms	that	provide	access	to	the	attributes	of	the	current	transaction
document	are	not	writeable.

Qualifier Description

.ID The	identifier	or	number	of	the	transaction	document
envelope.

This	is	the	value	returned	for	the	*TXDOC	built-in
variable	if	no	qualifier	is	specified.		In	other	words
*TXDOC	yields	the	same	value	as	*TXDOC.ID.

.PID The	identifier	for	the	parent	transaction	document	(if
any).

.RID The	identifier	for	the	document	to	which	this	is	the
response	(if	any).

.DIR The	direction	(I,	O)	for	the	transaction	document.

.TPID The	exchange	trading	partner	identifier	for	the
transaction	document.

.DATETIME_UTC The	exchange	date	and	time	for	the	transaction
document	as	Universal	Coordinated	Time	(UTC).

.DATETIME_LOCAL The	exchange	date	and	time	for	the	transaction
document	as	local	time.

.RESULT The	result	code	from	processing	the	transaction
document.

.STATUS The	current	status	code	for	the	transaction	document.

.STATUSTEXT The	current	status	description	for	the	transaction
document.

.DOCPATH The	last	recorded	file	location	for	the	transaction
document.

.DOCORIGINAL The	original	file	location	for	the	transaction
document.

.DOCSIZE The	transaction	document	file	size	in	bytes.

.DOCTYPE The	document	type	identifier	for	the	transaction
document.

.CONTENTTYPE The	content	type	for	the	transaction	document.

	

3.1.4	Processing	Directives
As	well	as	defining	when	and	how	to	run	Activities	and	Transformation	Maps,
Processing	Sequence	Directives	may	be	used	to	orchestrate	their	execution	by
the	use	of	loops,	conditioning	and	other	constructs.
The	Palette	tab	in	the	Processing	sequence	editor	shows	the	Processing
Sequence	Directives	that	may	be	used.

Detailed	information	on	the	Processing	Sequence	Directives	follows:
Loop
While	And	Until
Leave
Continue
Switch,	Case	And	Otherwise

If,	ElseIf	And	Else
Activity	And	Transform
Processing	Sequence
Catch
Assign
Suspend	and	Terminate
Comment

Loop
The	Loop	Processing	Directive	executes	the	block	of	its	child	items	iteratively
for	each	instance	of	the	list	variable	named	for	it.	Refer	to	3.1.2	Variables	and
Lists	for	more	information	about	the	use	of	list	variables.

You	can	specify	the	following	details	for	a	Loop	Directive:

List
name

Required.	The	List	name	specifies	the	name	of	the	list	variable
associated	with	this	loop.	When	the	loop	is	executed	it	will	iterate
once	for	each	contiguous	indexed	instance	of	the	specified	variable
starting	at	index	number	1.

Loop
variable

Optional.	If	specified,	the	Loop	variable	specifies	the	name	of	a
variable	that	will	receive	the	indexed	value	of	the	list	variable	upon
each	iteration	of	the	loop.

Index
variable

Optional.	If	specified,	the	Index	variable	specifies	the	name	of	a
variable	that	will	receive	the	index	value	for	each	iteration	of	the
loop.

While	And	Until
The	While	and	Until	Processing	Directives	execute	the	block	of	their	child
items	iteratively	subject	to	the	specified	condition.
The	While	Directive	tests	the	condition	at	the	start	of	the	block.		If	the	condition
is	not	true	when	the	While	Directive	is	encountered,	the	block	is	not	executed.
The	Until	Directive	tests	the	condition	at	the	end	of	the	block.		Therefore,	when
it	is	reached,	the	Until	block	will	always	execute	at	least	once.
You	can	specify	the	following	details	for	a	While	or	Until	Directive:

Condition Required.	Specifies	the	condition	to	be	tested	for	this	While	or
Until	block.	Refer	to	Conditioning	Expressions	for	information
about	the	syntax	of	conditioning	expressions.

Index
variable

Optional.	If	specified,	the	Index	variable	specifies	the	name	of	a
variable	that	will	receive	the	index	value	for	each	iteration	of	the
While	or	Until	block.

Maximum
Iterations

Optional.		This	value	is	intended	to	prevent	unintentional
"runaway"	loops.		If	the	value	specified	is	greater	than	zero,	the
While	or	Until	block	stops	executing	once	the	specified	number	of
iterations	have	been	processed,	irrespective	of	the	conditioning
expression.
The	default	value	is	999.		It	is	not	expected	that	Processing
Sequences	will	usually	use	long-running	loops.		When	a	While	or
Until	block	ends	prematurely	due	to	reaching	the	maximum
iterations	an	error	is	raised	in	the	Processing	Sequence.

Leave
The	Leave	Processing	Directive	causes	processing	to	immediately	leave	the
closest	enclosing	Loop,	While	or	Until	Directive	or	Iterator	Activity.		The
enclosing	loop	terminates	irrespective	of	any	list	or	condition	to	which	it	is
otherwise	subject	and	processing	continues	with	the	next	logical	directive	after
the	end	of	the	enclosing	Loop,	While	or	Until	block.
You	can	specify	the	following	details	for	a	Leave	Directive:

Condition Optional.		Leave	is	unconditional	if	no	condition	is	specified.	
Alternatively	you	can	specify	a	condition	that	must	be	satisfied	for
the	Leave	Directive	to	be	effective.	Refer	to	Conditioning
Expressions	for	information	about	the	syntax	of	conditioning
expressions.

Continue
The	Continue	Processing	Directive	causes	processing	to	immediately	resume
with	the	next	iteration	of	the	closest	enclosing	Loop,	While	or	Until	Directive	or
Iterator	Activity	without	executing	further	directives	contained	within	the	block
for	the	current	iteration.
You	can	specify	the	following	details	for	a	Continue	Directive:

Condition Optional.		Continue	is	unconditional	if	no	condition	is	specified.	
Alternatively	you	can	specify	a	condition	that	must	be	satisfied	for
the	Continue	Directive	to	be	effective.	Refer	to	Conditioning
Expressions	for	information	about	the	syntax	of	conditioning
expressions.

Switch,	Case	And	Otherwise
The	Switch,	Case	and	Otherwise	Directives	can	be	used	together	to	construct
one	or	more	blocks	of	items	to	be	executed	conditionally.	For	any	one	Switch
block,	one	and	only	one	of	the	Case	or	Otherwise	blocks	will	be	executed.	The
block	executed	will	be	the	first	Case	block	whose	associated	condition	is	true	or
the	Otherwise	block	(if	specified)	if	none	of	the	Case	conditions	are	true.
There	are	no	additional	details	to	complete	in	the	detailer	window	for	the	Switch
and	Otherwise	Directives.
For	the	Case	Directive,	you	must	specify	the	condition	that	is	to	be	tested	in	the
detailer	window.

Condition Required.	Specifies	the	condition	to	be	tested	for	this	Case	block.
Refer	to	Conditioning	Expressions	for	information	about	the
syntax	of	conditioning	expressions.

If,	ElseIf	And	Else
The	If,	ElseIf	and	Else	Directives	can	be	used	together	to	construct	one	or	more
blocks	of	items	to	be	executed	conditionally.	For	any	one	If	Directive,	one	and
only	one	of	the	If,	ElseIf	or	Else	blocks	will	be	executed.	The	block	executed
will	be	the	first	If	or	ElseIf	block	whose	associated	condition	is	true	or	the	Else
block	(if	specified)	if	none	of	the	conditions	are	true.
There	are	no	additional	details	to	complete	in	the	detailer	window	for	the	Else
Directive.
For	the	If	and	ElseIf	Directives,	you	must	specify	the	condition	that	is	to	be
tested	in	the	detailer	window.

Condition Required.	Specifies	the	condition	to	be	tested	for	this	If	or	ElseIf
block.		Refer	to	Conditioning	Expressions	for	information	about
the	syntax	of	conditioning	expressions.

Activity	And	Transform
The	Activity	and	Transform	Processing	Directives	execute	the	Activity	or
Transformation	Map	specified	for	the	item.
You	must	identify	the	specific	Activity	or	Transformation	Map	that	is	to	be
executed.	Usually	you	do	this	by	dragging	items	from	the	Activities	or
Transformations	tab	directly	into	the	Processing	Sequence.	However,	you	may
also	change	the	Activity	or	Transformation	Map	for	an	existing	Processing
Sequence	item	by	dragging	an	item	from	the	Activities	or	Transformations	tab
into	the	detailer	window	for	the	item.
The	Details	tab	of	the	detailer	window	identifies	the	Activity	or	Transformation
Map	that	is	specified	for	this	item.

The	Parameters	tab	of	the	detailer	window	shows	the	parameters	received	or
returned	by	the	Activity	or	Transformation	Map.

* An	asterisk	in	the	second	column	denotes	an	inbound
parameter	that	is	flagged	as	being	required.	This	means
that	a	variable	or	value	must	be	specified	for	it	if	its
value	has	not	already	been	set	by	a	preceding	Directive
such	as	an	Assign	or	another	Activity.

InboundOutbound The	second	column	of	the	list	shows	whether	the
associated	parameter	is	inbound	(received	by	the
Activity	or	Transformation	Map),	outbound	(returned	by
the	Activity	or	Transformation	Map)	or	both.	An	asterisk

in	the	second	column	denotes	an	inbound	parameter	that
is	flagged	as	being	required.

Variable	or	value
for	parameter

Optional.	Specifies	the	name	of	a	variable	or	a	numeric
or	alphanumeric	literal	that	is	to	be	used	for	the
parameter.	Refer	to	3.1.1	Activities	and	Transformation
Maps	for	more	information	on	specifying	values	for
Activity	or	Transformation	Map	parameters,

Parameter	Name
Parameter
Description

These	columns	show	the	parameter	names	and	parameter
descriptions	as	specified	in	the	Activity	or
Transformation	Map	definition.	The	parameter	names
shown	are	added	to	the	variable	pool	for	the	Processing
Sequence	for	use	in	this	and	other	Processing	Sequence
items.

Processing	Sequence
The	Processing	Sequence	Processing	Directive	executes	the	Processing
Sequence	specified	for	the	item.		In	this	way,	one	Processing	Sequence	can
execute	another	Processing	Sequence.

Note:		While	LANSA	Composer	imposes	no	inherent	limit	on	the
level	of	nesting	of	Processing	Sequences	that	can	be	achieved	in	this
way,	it	is	strongly	recommended	that	you	do	not	nest	Processing
Sequences	to	a	depth	greater	than	two	or	three.

The	LANSA	run-time	environment	used	by	LANSA	Composer	does
limit	the	degree	of	nesting	either	within	a	single	Processing	Sequence
and/or	when	nesting	Processing	Sequences.		In	any	event,	excessive
degrees	of	nesting	may	adversely	impact	the	performance	of	your
business	process	integration	solutions.

You	can	identify	the	specific	Processing	Sequence	that	is	to	be	executed.
Usually	you	do	this	by	dragging	items	from	the	Processing	Sequences	tab
directly	into	the	Processing	Sequence.	However,	you	may	also	change	the
Processing	Sequence	for	an	existing	Processing	Sequence	item	by	dragging	an
item	from	the	Processing	Sequences	tab	into	the	detailer	window	for	the	item.
If	you	wish,	you	can	specify	a	variable	name	whose	value	will	be	used	at	run-
time	to	determine	the	Processing	Sequence	to	execute.		If	you	specify	the
Variable	for	Processing	Sequence,	it	will	override	the	specific	Processing
Sequence	identified	above	it.		(However,	you	may	still	wish	to	provide	a
specific	Processing	Sequence	to	be	used	as	a	model	to	allow	you	to	enter
parameter	values	for	the	Processing	Sequence).
The	Details	tab	of	the	detailer	window	identifies	the	Processing	Sequence	that	is
specified	for	this	item	and,	optionally,	the	name	of	the	variable	that	will	contain
the	Processing	Sequence	name	or	identity	at	run-time..

The	Parameters	tab	of	the	detailer	window	shows	the	parameters	received	or
returned	by	the	Processing	Sequence.

Note:		When	the	nested	Processing	Sequence	runs,	it	has	its	own
independent	variable	pool.		Variables	in	the	containing	Processing
Sequence	are	not	accessible	to	the	nested	Processing	Sequence,	nor
vice-versa.		Communication	of	variables	is	only	possible	through	the
Processing	Sequence	parameters.

* An	asterisk	in	the	second	column	denotes	an	inbound	parameter
that	is	flagged	as	being	required.	This	means	that	a	variable	or
value	must	be	specified	for	it	if	its	value	has	not	already	been	set
by	a	preceding	Directive	such	as	an	Assign	or	an	Activity.

Inbound
Outbound

The	second	column	of	the	list	shows	whether	the	associated
parameter	is	inbound	(received	by	the	Processing	Sequence),
outbound	(returned	by	the	Processing	Sequence)	or	both.

Variable	or
value	for
parameter

Optional.	Specifies	the	name	of	a	variable	or	a	numeric	or
alphanumeric	literal	that	is	to	be	used	for	the	parameter.	Refer	to
3.1.1	Activities	and	Transformation	Maps	for	more	information
on	specifying	values	for	Processing	Sequence	parameters,

Parameter
Name
Parameter
Description

These	columns	show	the	parameter	names	and	parameter
descriptions	as	specified	in	the	Processing	Sequence	definition.
The	parameter	names	shown	are	added	to	the	variable	pool	for
the	Processing	Sequence	for	use	in	this	and	other	Processing
Sequence	items.

Catch
You	can	place	one	or	more	Catch	Processing	Directives	after	an	Activity,
Transformation	Map	or	Processing	Sequence	directive.		For	each	Activity,
Transformation	Map	or	Processing	Sequence	directive,	a	maximum	of	one	and
only	one	of	the	Catch	blocks	(if	specified)	will	be	executed.		The	block	executed
will	be	the	first	that	matches	the	result	code	from	the	Activity,	Transformation
Map	or	Processing	Sequence	directive.	
Each	Catch	Directive	can	itself	have	child	items	that	are	executed	when	the
Catch	item	is	activated.		If	a	Catch	block	is	activated,	any	error	condition	is
handled	and	the	activation	of	the	Catch	block	will	prevent	the	error	from	ending
the	Processing	Sequence.		If	you	wish,	you	may	explicitly	end	the	Processing
Sequence	(with	or	without	error)	by	including	a	Terminate	Directive	in	the
Catch	block.
You	can	specify	the	following	details	for	Catch	Directives:

Result
code

Specifies	the	condition	that	will	activate	the	CATCH	directive.		If	you
select	'Errors',	the	CATCH	directive	will	be	activated	when	the
Activity	return	code	signifies	an	error	('ER').		If	you	select	'OK',	the
CATCH	directive	will	be	activated	when	the	Activity	ends	without
error.		(The	latter	case	is	less	usual,	but	it	allows	you	to	specify
alternate	error	handling	and	normal	completion	actions.)

	

Assign
The	Assign	Processing	Directive	assigns	a	value	to	a	variable	in	the	variable
pool	for	the	Processing	Sequence.	In	many	cases	variable	and	variable	list
values	are	set	by	running	Activities,	but	this	directive	permits	a	value	to	be
directly	assigned.		Refer	to	3.1.2	Variables	for	more	information.

Expression Required.	Specifies	the	assignment	expression.	Refer	to
Assignment	Expressions	for	information	about	the	syntax	of
assignment	expressions.

Suspend	and	Terminate
The	Suspend	and	Terminate	Processing	Directives	terminate	the	Processing
Sequence.		Suspend	terminates	the	Processing	Sequence	with	an	error	('ER')
condition,	such	that	it	can	subsequently	be	restarted.		The	Terminate	directive
terminates	the	Processing	Sequence	with	the	specified	result	code	(but,	in	any
event,	the	Processing	Sequence	cannot	be	restarted).		Either	directive	would
typically	be	used	subject	to	a	condition	specified	on	the	directive	itself	or	in	an
enclosing	conditional	block	such	as	Case,	Otherwise,	If,	Elseif	or	Else.
You	can	specify	the	following	details	for	Suspend	and	Terminate	Directives:

Condition Optional.		The	directives	are	unconditional	if	no	condition	is
specified.		Alternatively	you	can	specify	a	condition	that	must
be	satisfied	for	the	Directive	to	be	effective.	Refer	to
Conditioning	Expressions	for	information	about	the	syntax	of
conditioning	expressions.

Result	code (Applies	to	Terminate	directive	only)		Specifies	the	result	code
with	which	the	Processing	Sequence	will	end.		Select	'OK'	if
the	Processing	Sequence	should	end	normally	or	'Errors'	if	the
Processing	Sequence	should	end	with	an	error	('ER')	condition.

Message
Text

Optional.		You	may	specify	message	text	that	will	appear	in	the
Processing	Sequence	log	if/when	the	Suspend	or	Terminate
item	is	executed.		You	may	specify	a	short	message	and/or
extended	(detailed)	message	text.

Perform
variable
substitution?

If	this	box	is	checked,	then	the	message	text	specified	in	the
preceding	fields	may	contain	embedded	references	to
processing	sequence	variables	and/or	built-in	variables	which

will	be	replaced	at	run-time	with	the	corresponding	variable
values.
For	example,	if	you	specify	the	string	"&MYCOUNT	files
processed	from	&MYFOLDER(&MYINDEX)	at	*now_local",
the	variable	and	built-in	variable	references	&MYCOUNT,
&MYFOLDER(&MYINDEX)	and	*now_local	will	be
replaced	by	the	values	of	the	variables	that	they	represent.
In	most	cases,	a	reference	to	a	processing	sequence	variable	or
built-invariable	must	be	followed	by	a	space	(or	certain	special
characters	or	the	end	of	the	string)	in	order	for	the	reference	to
be	correctly	identified	and	substituted.
If	two	ampersands	(&&)	or	two	asterisks	(**)	appear	together
in	the	string,	they	are	reduced	to	a	single	ampersand	or	asterisk
and	not	considered	for	substitution.

	

Comment
The	Comment	Processing	Directive	allows	you	to	annotate	the	processing
sequence	with	comments.		Comment	Directives	are	not	executed	and	have	no
other	effect	on	the	processing	sequence	definition	or	execution.
When	you	add	or	select	a	Comment	Directive	in	your	processing	sequence,	the
detailer	window	provides	an	edit	box	in	which	you	can	enter	or	edit	one	or	more
lines	of	comments.

	

Assignment	Expressions
The	assignment	expression	used	in	the	ASSIGN	directive	consists	of	the
following	parts:

Left
Operand

The	name	of	a	variable	or	built-in	variable	that	receives	the	value
specified	by	the	right	operand.

To	specify	a	variable,	precede	the	variable	name	with	an	ampersand
(&)	–	for	example	&VARIABLE1.		To	specify	an	indexed	variable,
specify	a	variable	or	numeric	literal	that	specifies	the	index	value	in
parentheses	immediately	following	the	variable	name	–	for	example
&VARIABLE1(&INDEX1).

Note:	The	variable	specified	by	the	left	operand	does	not	have	to
have	been	previously	defined	in	the	variable	pool.	If	it	does	not
exist,	the	Assign	Processing	Directive	implicitly	defines	it.

To	specify	a	built-in	variable,	enter	the	name,	including	the	asterisk,
as	shown	on	the	Built-ins	tab	–	do	not	precede	a	built-in	variable
name	with	ampersand.	Note	only	certain	built-in	variables	are	valid
as	the	target	of	an	assignment	expression.	Refer	to	3.1.3	Built-in
Variables	for	information.

Operator An	assignment	operator	used	to	assign	a	value	to	the	variable
specified	by	the	left	operand.	It	may	be	one	of	the	following:
=		assigns	the	value	of	the	right	operand	to	the	variable	specified	by
the	left	operand
+=	adds	the	numeric	value	of	the	right	operand	to	the	numeric	value
of	the	variable	specified	by	the	left	operand
-=	subtracts	the	numeric	value	of	the	right	operand	from	the
numeric	value	of	the	variable	specified	by	the	left	operand

When	+=	or	-=	assignment	operators	are	used	the	values	of	the	left
and	right	operands	are	evaluated	as	numeric	if	possible.		If	either
operand	does	not	contain	a	numeric	value,	then	zero	is	used	as	the
value	for	that	operand.

Right The	value	that	is	assigned	to	the	variable	specified	by	the	left

Operand operand.	The	value	can	be	specified	in	one	of	two	ways:
1.	A	numeric	or	alphanumeric	literal	value.	If	you	enter	an
alphanumeric	literal	value	you	must	surround	it	with	quote	marks.
The	quote	marks	do	not	become	part	of	the	value	that	is	assigned.	If
you	need	to	embed	quote	marks	in	the	value,	you	double-up	the
embedded	quote	marks.
2.	The	name	of	a	variable	or	built-in	variable	that	supplies	the	value
for	the	assignment.	To	specify	a	variable,	precede	the	variable	name
with	an	ampersand	(&)	–	for	example	&VARIABLE1.	To	specify	a
built-in	variable,	enter	the	name,	including	the	asterisk,	as	shown	on
the	Built-ins	tab	–	do	not	precede	a	built-in	variable	name	with
ampersand.	To	specify	an	indexed	variable,	specify	a	variable	or
numeric	literal	that	specifies	the	index	value	in	parentheses
immediately	following	the	variable	name	–	for	example
&VARIABLE1(&INDEX1).

Examples
This	expression	assigns	the	numeric	value	3	to	the	variable	named
MYNUMBER:
&MYNUMBER	=	3
This	expression	adds	1	to	the	numeric	value	of	the	variable	named
MYNUMBER:
&MYNUMBER	+=	1
This	expression	adds	the	numeric	value	of	the	variable	named
OTHERNUMBER	to	the	numeric	value	of	the	variable	named	MYNUMBER:
&MYNUMBER	+=	&OTHERNUMBER
This	expression	assigns	the	alphanumeric	value	ABC	to	the	variable	named
MYSTRING:
&MYSTRING	=	'ABC'

These	three	assignment	expressions	populate	the	first	three	instances	of	the
MYLIST	variable	list	with	the	first	three	letters	of	the	alphabet:
&MYLIST(1)	=	'A'
&MYLIST(2)	=	'B'
&MYLIST(3)	=	'C'

This	expression	assigns	the	value	of	the	third	instance	of	the	MYLIST	variable
list	to	the	MYLETTER	variable:
&MYLETTER	=	&MYLIST(3)
This	expression	is	similar	but	the	MYINDEX	variable	specifies	which	instance
of	the	MYLIST	variable	list	to	use:
&MYLETTER	=	&MYLIST(&MYINDEX)
This	expression	assigns	trading	partner	identifier	ATLAS	to	the
*TRADINGPARTNER	built-in	variable:
*TRADINGPARTNER	=	'ATLAS'

This	expression	assigns	the	identifier	of	the	FTP	Inbound	Configuration	linked
to	the	current	trading	partner	to	the	variable	MYFTPCONFIG:
&MYFTPCONFIG	=	*TRADINGPARTNER.FTPIN

Conditioning	Expressions
The	conditioning	expression	used	in	WHILE,	UNTIL,	CASE,	IF	and	ELSEIF
directives	consists	of	the	following	parts:

Left
Operand

The	name	of	a	variable	or	Built-in	variable	whose	value	is	tested	by
the	expression.

To	specify	a	variable,	precede	the	variable	name	with	an	ampersand
(&)	–	for	example	&VARIABLE1.	To	specify	an	indexed	variable,
specify	a	variable	or	numeric	literal	that	specifies	the	index	value	in
parentheses	immediately	following	the	variable	name	–	for	example
&VARIABLE1(&INDEX1).

To	specify	a	built-in	variable,	enter	the	name,	including	the	asterisk,
as	shown	on	the	Built-ins	tab	–	do	not	precede	a	built-in	variable
name	with	ampersand.

Operator A	comparison	operator	used	to	compare	the	value	of	the	left	and
right	operands.	It	may	be	one	of	the	following:
*EQ		=		Equal
*NE		<>		Not	equal
*GT		>		Greater	than
*GE		>=		Greater	than	or	equal
*LT		<		Less	than
*LE		<=		Less	than	or	equal

Right
Operand

The	value	that	is	compared	to	the	variable	specified	by	the	left
operand.	The	value	can	be	specified	in	one	of	two	ways:
1.	A	numeric	or	alphanumeric	literal	value.	If	you	enter	an
alphanumeric	literal	value	you	must	surround	it	with	quote
marks.	The	quote	marks	do	not	become	part	of	the	value	used	for
the	comparison.	If	you	need	to	embed	quote	marks	in	the	value,
you	should	double-up	the	embedded	quote	marks.

2.	The	name	of	a	variable	or	built-in	variable	that	supplies	the	value
used	for	the	comparison.	To	specify	a	variable,	precede	the
variable	name	with	an	ampersand	(&)	–	for	example
&VARIABLE1.	To	specify	a	built-in	variable,	enter	the	name,

including	the	asterisk,	as	shown	on	the	Built-ins	tab	–	do	not
precede	a	built-in	variable	name	with	ampersand.	To	specify	an
indexed	variable,	specify	a	variable	or	numeric	literal	that
specifies	the	index	value	in	parentheses	immediately	following
the	variable	name	–	for	example	&VARIABLE1(&INDEX1).

Examples
This	expression	is	true	when	the	value	of	the	variable	named	MYNUMBER	is
greater	than	3:
&MYNUMBER	*GT	3
This	expression	is	true	when	the	value	of	the	variable	named	MYSTRING:	is
ABC:
&MYSTRING	*EQ	'ABC'

This	expression	is	true	when	the	value	of	the	second	instance	of	the	MYLIST
variable	list	is	B:
&MYLIST(2)	=	'B'

This	expression	is	true	when	the	value	of	the	MYLETTER	variable	is	not	equal
to	the	value	of	the	third	instance	of	the	MYLIST	variable	list:
&MYLETTER	<>	&MYLIST(3)
This	expression	is	similar	but	the	MYINDEX	variable	specifies	which	instance
of	the	MYLIST	variable	list	to	use	for	the	comparison:
&MYLETTER	<>	&MYLIST(&MYINDEX)
This	expression	is	true	when	the	value	of	the	*TRADINGPARTNER	built-in
variable	is	ATLAS:
*TRADINGPARTNER	=	'ATLAS'

3.1.5	Parameters
Processing	sequences	can	be	defined	to	receive	parameters	that	become
variables	in	the	variable	pool.	The	variables	representing	the	parameters	can	be
used	like	any	other	variable	as	input	to	an	Activity	or	Transformation	Map.
Parameters	are	defined	in	the	Parameters	tab	of	the	Processing	sequence	editor
window.	Refer	to	3.4.5	Edit	Processing	Sequence	Parameters	for	more
information.

3.2	Work	With	Processing	Sequences
Using	LANSA	Composer	you	can	create,	maintain,	run	and	delete	any	number
of	Processing	Sequences.
To	work	with	Processing	Sequences,	expand	Definitions	in	the	Navigator	and
click	Processing	sequences.	To	find	out	how	to	locate	and	select	Processing
Sequences	to	work	with,	refer	to:

Locating	and	selecting	items	in	the	Instance	Lists
For	information	on	common	tasks	associated	with	Processing	Sequences	(such
as	creating,	copying,	deleting	and	printing	definitions)	refer	to:

Working	with	definition	items
For	information	on	tasks	associated	specifically	with	Processing	Sequences,
refer	to	the	following	headings:

Display	the	run	history	of	a	Processing	Sequence
Display,	Delete	or	Restore	Prior	Versions	of	a	Processing	Sequence

Display	the	run	history	of	a	Processing	Sequence
To	display	the	run	history	of	a	Processing	Sequence,	select	the	required	item	in
the	Processing	Sequence	list	and	click	the	Run	history	tab.		A	list	of	recorded
prior	runs	of	the	Processing	Sequence	will	be	displayed.
Select	an	item	and	click	the	View	button	to	display	the	Processing	Sequence	log
or	the	Print	button	to	print	the	Processing	Sequence	log	for	the	run.
If	a	prior	Processing	Sequence	run	has	ended	in	error,	you	may	be	able	to	use
the	Restart	button	to	restart	it	from	the	point	of	failure.		Refer	to	3.6	Restart	a
Processing	Sequence	Run	for	more	information.

Note:		Processing	Sequence	run	history	can	be	purged	using	the
Database	Housekeeping	function.		The	run	history	for	Processing
Sequence	runs	that	have	been	purged	is	no	longer	available.

Display,	Delete	or	Restore	Prior	Versions	of	a	Processing	Sequence
To	work	with	prior	versions	of	a	Processing	Sequence,	select	the	item	you	wish
to	delete	in	the	Processing	Sequence	list	and	click	the	Version	history	tab.		A	list
of	available	prior	versions	of	the	Processing	Sequence	will	be	displayed.		Refer
to	3.3	Work	With	Processing	Sequence	Version	History	for	more	information.
	

its:LANSA091.CHM::/lansa/intengc1_0230.htm
its:LANSA091.CHM::/lansa/intengc1_0240.htm
its:LANSA091.CHM::/lansa/intengc6_0030.htm

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

3.3	Work	With	Processing	Sequence	Version	History
LANSA	Composer	can	store	multiple	versions	of	the	definition	of	a	Processing
Sequence.		This	permits	the	flexibility	to	restore	and	run	an	earlier	version	of
the	Processing	Sequence	or	simply	to	review	how	the	definition	of	a	Processing
Sequence	has	developed.
Each	time	you	save	a	Processing	Sequence	definition	using	the	Processing
Sequence	Editor,	the	previous	version	of	the	Processing	Sequence	is	archived
(subject	to	the	corresponding	System	Setting).		The	archived	versions	contain
the	complete	executable	definition	of	a	Processing	Sequence,	but	does	not
include:

The	Processing	Sequence	attachments	or	notes
Any	Activities,	Transformation	Maps,	Trading	Partners,	Configurations	or
other	items	that	do	not	form	part	of	the	Processing	Sequence	definition	but
that	might	be	referenced	by	it.

	
To	review	the	available	prior	versions	of	a	Processing	Sequence:
1.		In	the	Navigator,	expand	Definitions	and	select	Processing	sequences.
2.		Use	the	filter	and	the	items	list	to	locate	and	select	the	Processing	Sequence
that	you	wish	to	review.

3.		Click	the	Version	history	tab.
	
A	list	of	available	prior	versions	of	the	Processing	Sequence	will	be	displayed.	
You	can	then:

View	a	prior	version	of	the	Processing	Sequence
Delete	a	prior	version	of	the	Processing	Sequence
Restore	a	prior	version	of	the	Processing	Sequence

View	a	prior	version	of	the	Processing	Sequence
To	view	the	definition	of	a	prior	version	of	the	Processing	Sequence,	select	the
version	you	wish	to	view	and	click	the	View	button.		LANSA	Composer	will
open	the	prior	version	of	the	Processing	Sequence	definition	in	the	Processing
sequence	editor	window.

Note:		the	Processing	sequence	editor	window	opens	in	read-only
mode	-	you	cannot	make	any	changes	to	the	definition.

Delete	a	prior	version	of	the	Processing	Sequence
To	delete	one	or	more	prior	versions	of	a	Processing	Sequence,	select	the
version(s)	you	wish	to	delete	and	click	the	Delete	button.		A	message	box	will
ask	you	to	confirm	the	deletion.	Click	the	Yes	button	in	the	message	box	to
complete	the	deletion.
Restore	a	prior	version	of	the	Processing	Sequence
To	restore	a	prior	version	of	a	Processing	Sequence,	select	the	version	you	wish
to	restore	and	click	the	Restore	button.		A	message	box	will	ask	you	to	confirm
the	restore.	Click	the	Yes	button	in	the	message	box	to	complete	the	restore.
When	you	restore	a	prior	version,	the	definition	held	in	that	prior	version
becomes	the	current	Processing	Sequence	definition	and	the	current	definition
replaces	the	selected	prior	version	in	the	version	history	(you	can	subsequently
restore	it	if	you	wish).

Note	that	the	Processing	Sequence	attachments	and	notes	are	not	held
as	part	of	the	version	history	and	are	not	affected	by	restoring	a	prior
version.		Nor	are	activities,	transformation	maps,	trading	partners,
configurations	or	other	items	that	do	not	form	part	of	the	Processing
Sequence	definition	but	that	might	be	referenced	by	it.

3.4	Use	the	Processing	Sequence	Editor
You	use	the	Processing	sequence	editor	to	define	the	way	in	which	Activities
and	Transformations	maps	are	to	be	combined	and	executed	in	order	to
complete	a	business	process.
To	edit	a	Processing	Sequence	in	the	Processing	sequence	editor:
1.		In	the	Navigator,	expand	Definitions	and	select	Processing	sequences.
2.		Use	the	filter	and	the	items	list	to	locate	and	select	the	Processing	Sequence
that	you	wish	to	edit.

3.		Press	the	Edit	button	in	the	Details	tab	to	open	the	Processing	Sequence	in
the	Processing	sequence	editor	window.

Also	see
3.4.1	Parts	of	the	Editor	Window

3.4.1	Parts	of	the	Editor	Window
The	Processing	sequence	editor	window	has	these	parts:

You	can	resize	the	parts	by	clicking	and	dragging	in	the	vertical	or	horizontal
space	between	the	major	parts,	as	shown	in	the	illustration.

1.	Resources
The	tabs	in	the	resources	window	provide	easy	access	to	the	components	you
will	use	to	define	your	Processing	Sequence	such	as	Processing	Directives,
Activities	and	Transformation	Maps.
Refer	to	3.4.2	The	Resources	Tabs	for	more	information.

2.	Information
The	tabs	in	the	information	window	provide:

access	to	help	or	notes	for	the	Processing	Sequence	directive,	Activity,
Processing	Sequence,	Transformation	Map	or	Configuration	last	selected
in	the	resources	window
validation	errors	updated	as	you	edit	your	Processing	Sequence

Refer	to	3.4.3	The	Information	Tabs	for	more	information.

3.	Processing	sequence	editor
The	Processing	Sequence	editor	window	visualizes	your	Processing	Sequence
and	allows	you	to	edit	it	by,	for	example,	dragging	and	dropping	items	such	as
Activities	from	the	resources	window.
Refer	to	3.4.4	Edit	Processing	Sequence	Details	for	more	information.

4.	Detailer
The	detailer	window	displays	and	allows	you	to	edit	details	for	the	item	selected
in	the	Processing	Sequence	editor	window.	For	example	you	can	edit	the	values
used	for	an	Activities	parameter.
Refer	to	Review	or	Revise	Item	Details	for	more	information.

			Processing	Sequence	Parameters	Editor
The	Processing	Sequence	parameters	editor	window	displays	and	allows	you	to
edit	the	parameters	that	can	be	passed	to	the	Processing	Sequence.	It	is	not
shown	in	the	illustration,	but	can	be	displayed	by	clicking	the	Parameters	tab.
Refer	to	3.4.5	Edit	Processing	Sequence	Parameters	for	more	information.

			Processing	Sequence	Notes	Editor
The	Processing	Sequence	notes	editor	window	displays	and	allows	you	to	revise
the	notes	associated	with	the	Processing	Sequence.	It	is	not	shown	in	the
illustration,	but	can	be	displayed	by	clicking	the	Notes	tab.
Refer	to	3.4.6	Edit	Processing	Sequence	Notes	for	more	information.

5.	Menu	and	Toolbar
The	drop-down	menus	and	the	toolbar	buttons	provide	access	to	the	major
editing	commands	you	use	to	define	and	modify	your	Processing	Sequence.

3.4.2	The	Resources	Tabs
The	tabs	in	the	resources	window	provide	easy	access	to	the	components	you
will	use	to	define	your	Processing	Sequence.	You	can	drag	and	drop	items	from
these	tabs	into	the	Processing	Sequence	editor	windows	when	you	want	to	add
or	reference	the	item	in	your	Processing	Sequence.	The	following	resources	tabs
are	available:

Palette	tab
Activities	tab
Processing	Sequences	tab
Transformations	tab
Configurations	tab
Variables	tab
Built-ins	tab

Palette	tab
The	Palette	tab	shows	icons	for	each	Processing	Sequence	Directive	you	can
insert	in	your	Processing	Sequence.

To	add	a	Directive	to	your	Processing	Sequence,	click	the	icon	for	the	required
item	and	drag	it	over	to	the	Processing	Sequence	editor	window.	When	you
release	the	mouse,	the	item	will	be	inserted	at	the	highlighted	location.	You	may
then	need	to	complete	details	for	the	item	in	the	Detailer	window.
You	can	also	add	a	Directive	to	the	Processing	Sequence	by	double	clicking	the
icon	for	the	required	Directive	type.	The	new	item	will	be	inserted	at	the	current
selection.
Refer	to	3.1.4	Processing	Directives	for	more	information	about	the	Processing
Sequence	Directives	you	can	use.

Activities	tab
The	Activities	tab	provides	access	to	lists	of	the	Activities	defined	in	LANSA
Composer.	Refer	to	Activities	for	more	information	about	defining	Activities.

You	can	type	a	search	term	in	the	Search	box	at	the	top	of	the	Activities	tab	to
search	for	Activities	that	contain	the	search	term	in	their	name	or	description.
Alternatively,	you	can	expand	the	tree	nodes	on	the	Activities	tab	to	list
Activities	by	group,	or	by	alphabetical	grouping	of	the	Activity	name.

Note:	Activity	groups	are	user-defined.	LANSA	Composer	is	supplied
with	pre-defined	Activity	groups	and	the	supplied	Activities	are
assigned	to	these	Activity	groups.	You	may	define	your	own	Activity
groups	in	addition	to	or	in	place	of	those	supplied	with	LANSA
Composer.	Refer	to	Code	maintenance	for	information	on	defining
activity	groups.

Click	an	Activity	to	display	its	notes	in	the	Assistant	tab.
To	add	an	Activity	to	your	Processing	Sequence,	click	the	required	Activity	and
drag	it	over	to	the	Processing	Sequence	editor	window.	When	you	release	the
mouse,	the	Activity	item	will	be	inserted	at	the	highlighted	location.	You	may
then	need	to	complete	details	for	the	Activity	item	in	the	Detailer	window	–	in
particular,	you	will	need	to	specify	variables	or	values	for	the	Activity
parameters,	if	any.	Refer	to	3.1.1	Activities	and	Transformation	Maps	for	more
information.

its:LANSA091.CHM::/lansa/intengc2_0015.htm
its:LANSA091.CHM::/lansa/intengc5_0020.htm

You	can	also	add	an	Activity	to	the	Processing	Sequence	by	double	clicking	it.
The	new	Activity	item	will	be	inserted	at	the	current	selection.

Processing	Sequences	tab
The	Processing	Sequences	tab	provides	access	to	lists	of	the	Processing
Sequences	defined	in	LANSA	Composer.

You	can	type	a	search	term	in	the	Search	box	at	the	top	of	the	Processing
Sequences	tab	to	search	for	Processing	Sequences	that	contain	the	search	term
in	their	name	or	description.
Alternatively,	you	can	expand	the	tree	nodes	on	the	Processing	Sequences	tab	to
list	Processing	Sequences	by	alphabetical	grouping	of	the	Processing	Sequence
name.
Click	a	Processing	Sequence	to	display	its	notes	in	the	Assistant	tab.
To	add	a	Processing	Sequence,	click	the	required	item	and	drag	it	over	the
Processing	Sequence	editor	window.	When	you	release	the	mouse,	the
Processing	Sequence	item	will	be	inserted	at	the	highlighted	location.	You	may
then	need	to	complete	details	for	the	Processing	Sequence	item	in	the	Detailer
window	–	in	particular,	you	will	need	to	specify	variables	or	values	for	the
Processing	Sequence	parameters,	if	any.	Refer	to	3.1.1	Activities	and
Transformation	Maps	for	more	information.
You	can	also	add	a	Processing	Sequence	by	double	clicking	it.	The	new
Processing	Sequence	item	will	be	inserted	at	the	current	selection.

Transformations	tab
The	Transformations	tab	provides	access	to	lists	of	the	Transformation	Maps
defined	in	LANSA	Composer.	Refer	to	Transformation	Maps	for	information
about	defining	Transformation	Maps.

You	can	type	a	search	term	in	the	Search	box	at	the	top	of	the	Transformations
tab	to	search	for	Transformation	Maps	that	contain	the	search	term	in	their	name
or	description.
Alternatively,	you	can	expand	the	tree	nodes	on	the	Transformations	tab	to	list
Transformation	Maps	by	type,	or	by	alphabetical	grouping	of	the
Transformation	Map	name.

Note:	Transformation	map	types	are	user-defined.	The	dropdown	list
will	contain	Transformation	Map	types	only	if	you	have	defined	types
in	LANSA	Composer.

Click	a	Transformation	Map	to	display	its	notes	in	the	Assistant	tab.
To	add	a	Transformation	to	your	Processing	Sequence,	click	the	required
Transformation	Map	and	drag	it	over	to	the	Processing	Sequence	editor	window.
When	you	release	the	mouse,	the	Transformation	Map	item	will	be	inserted	at
the	highlighted	location.	You	may	then	need	to	complete	details	for	the
Transformation	Map	item	in	the	Detailer	window	–	in	particular,	you	will	need
to	specify	variables	or	values	for	the	Transformation	Map	parameters,	if	any.
Refer	to	3.1.1	Activities	and	Transformation	Maps	for	more	information.

its:LANSA091.CHM::/lansa/intengc2_0195.htm

You	can	also	add	a	Transformation	Map	to	the	Processing	Sequence	by	double
clicking	it.	The	new	Transformation	Map	item	will	be	inserted	at	the	current
selection.

Note:	You	can	also	execute	a	Transformation	Map	using	the	supplied
TRANSFORM	activity.	This	is	intended	for	cases	where	you	do	not
know	the	identifier	of	the	Transformation	Map	to	execute	until	run-
time.	Refer	to	TRANSFORM	for	information	on	this	activity.

its:LANSA091.CHM::/lansa/AT_TRANSFORM.htm

Configurations	tab
The	Configurations	tab	provides	access	to	lists	of	the	transport	and/or	database
Configurations	available	for	you	to	reference	in	your	Processing	Sequence.
Refer	to	Configurations	for	more	information	about	Configurations.

You	can	type	a	search	term	in	the	Search	box	at	the	top	of	the	Configurations
tab	to	search	for	Configurations	that	contain	the	search	term	in	their	name	or
description.
Alternatively,	you	can	expand	the	tree	nodes	on	the	Configurations	tab	to	list
Configurations	by	group,	or	by	alphabetical	grouping	of	the	Configuration
name.
Click	a	Configuration	to	display	its	notes	in	the	Assistant	tab.
You	can	drag	Configurations	to	places	that	specify	a	configuration	name	–	for
example,	to	Activity	parameters	that	specify	a	configuration	name.	The
FTP_INBOUND	shipped	Activity,	for	example,	receives	a	configuration	name
in	its	FTPCONFIG	parameter.

its:LANSA091.CHM::/lansa/intengc2_0020.htm

You	can	also	drag	Configurations	directly	over	the	Processing	Sequence	editor
window.	When	you	release	the	mouse,	a	default	Activity	(according	to	the
Configuration	type)	will	be	inserted	at	the	highlighted	location.		For	example,	if
you	drag	and	drop	an	FTP	inbound	configuration,	LANSA	Composer	will	insert
the	FTP_INBOUND	activity	and	set	the	FTPCONFIG	parameter	value	to	the
name	of	the	FTP	Configuration.

Variables	tab
The	Variables	tab	provides	access	to	variables	available	in	the	variable	pool	for
the	Processing	Sequence.	Variables	are	added	to	or	removed	from	the	pool	and
the	list	on	the	Variables	tab	as	Activities,	Transformation	Maps	and	other
references	to	variables	in	Processing	Sequence	Directives	are	added,	removed	or
modified.
You	can	reference	the	variables	listed	on	the	Variables	tab	in	your	Processing
Sequence.	Refer	to	3.1.2	Variables	for	more	information.

You	can	drag	variables	from	the	Variables	tab	to	places	where	you	can	enter	a
variable	name	including:

Activity	and	Transformation	Map	parameters
Loop	Directive	field	definitions
conditional	and	assignment	expressions
the	Processing	Sequence	Parameters	Editor.

Expand	a	variable	item	in	the	Variables	tab	to	see	references	to	the	variable.	You
can	double	click	the	variable	reference	to	select	the	corresponding	item	in	the
Processing	Sequence	editor.

Built-ins	tab
The	Built-ins	tab	provides	access	to	built-in	variables	defined	by	LANSA
Composer	that	you	can	reference	in	your	Processing	Sequence.	Refer	to	3.1.3
Built-in	Variables	for	more	information.

The	available	built-in	variables	are	shown	in	a	tree,	with	some	of	the	available
variables	functionally	grouped	together.		Click	the	'+'	sign	next	to	a	group	name
to	see	the	available	built-in	variables	in	that	group.
For	more	information	about	a	built-in	variable,	pause	the	mouse	pointer	over	the
variable	until	a	pop-up	"hint"	is	momentarily	displayed.		Alternatively,	click	the
variable	name	to	its	description	in	the	status	bar.
You	can	drag	built-in	variables	from	the	Built-ins	tab	to	places	where	you	can
enter	a	variable	name	including:

Activity	and	Transformation	Map	parameters
conditional	and	assignment	expressions

You	cannot	drag	built-in	variables	to	the	Processing	Sequence	Parameters
Editor.	In	addition,	most	built-in	variables	are	not	valid	in	cases	where	"write"
access	to	the	variable	is	required	–	for	example	as	an	output	parameter	for	an
Activity	or	on	the	left-hand	side	of	an	assignment	expression.

3.4.3	The	Information	Tabs
The	tabs	in	the	information	window	provide	information	to	help	you	as	you
define	your	Processing	Sequence.	The	following	information	tabs	are	available:

Assistant	tab
Errors	tab

Assistant	tab
The	Assistant	tab	displays	help	or	notes	for	the	Processing	Sequence	directive,
Activity,	Processing	Sequence,	Transformation	Map	or	Configuration	last
selected	in	the	resources	window.	This	information	can	help	you	in	choosing
and	correctly	using	the	items	you	use	in	your	Processing	Sequence.

Notes	are	provided	for	all	supplied	Activities.	It	is	your	responsibility	as	a
LANSA	Composer	designer	to	provide	notes	for	Activities,	Transformation
Maps,	Configurations	and	Processing	Sequences	that	you	define.	Refer	to
Define	or	Review	Notes	for	more	information.

its:LANSA091.CHM::/lansa/IntEngC1_0240.htm#IntEngC1_0220

Errors	tab
The	Errors	tab	displays	validation	warnings	and	errors.	The	warnings	and	errors
are	updated	dynamically	as	you	edit	your	Processing	Sequence.

Information	and	Warnings	are	displayed	with	blue	and	orange	icons	and	may
not	require	any	action	from	you.
Errors	are	displayed	with	a	red	icon	and	do	require	action,	though	you	may	not
need	to	action	them	immediately.	Note	that	you	can	save	a	Processing	Sequence
with	errors.	The	errors	will	be	displayed	again	when	you	reload	the	Processing
Sequence	into	the	editor.
If	you	attempt	to	run	a	Processing	Sequence	that	was	saved	with	errors,	it	may
not	run	as	expected	or	it	may	not	run	to	completion.
It	is	normal	for	errors	to	appear	and	disappear	in	the	course	of	editing	your
Processing	Sequence.	For	example,	immediately	after	adding	a	Loop	Processing
Directive	you	will	see	an	error	like	the	third	one	shown.	This	simply	indicates
that	the	definition	is	incomplete.	The	error	will	disappear	when	you	complete
the	associated	definition.

Note:	You	can	double	click	on	an	error	to	select	the	corresponding
item	in	the	Processing	Sequence	editor.

3.4.4	Edit	Processing	Sequence	Details
The	Processing	sequence	editor	visualizes	the	Processing	Sequence	as	a	tree	of
Activities,	Transformation	Maps	and	Processing	Sequence	Directives.		You	can
add	comments	by	using	the	Comment	Processing	Sequence	Directive.

The	relationships	in	the	tree	represent	the	relationships	between	the	items.	For
example,	items	that	are	indented	beneath	a	Loop	item	are	the	items	that	will	be
executed	for	each	iteration	of	the	loop.
Using	the	Processing	sequence	editor,	you	can:

Add	Items	to	the	Processing	Sequence
Delete	Items	from	the	Processing	Sequence
Cut,	Copy	and	Paste	Items	in	the	Processing	Sequence
Re-arrange	Items	in	the	Processing	Sequence
Move	Items	Up	Or	Down
Promote	or	Demote	Items
Enable	or	Disable	Items
Review	or	Revise	Item	Details
Customise	the	view	in	the	Processing	Sequence	Editor

Add	Items	to	the	Processing	Sequence
You	add	items	to	the	Processing	Sequence	by	dragging	them	from	the	Palette,
Activities,	Processing	Sequences,	Transformations	or	Configurations	tabs.
Alternatively,	you	can	double	click	items	on	those	tabs	to	add	them	to	the
Processing	Sequence	or	select	an	option	from	the	Insert	menu.
You	may	then	need	to	complete	details	for	the	item	in	the	Detailer	window.
For	more	information	on	adding	items	to	the	Processing	Sequence,	refer	to:

Palette	tab
Activities	tab
Processing	Sequences	tab
Transformations	tab
Configurations	tab

Note:	When	you	add	items	to	the	Processing	Sequence	in	this	way,
LANSA	Composer	will	attempt	to	guess	the	most	appropriate	level	for
the	item	and	assign	its	parent	accordingly.	The	result	is	that	the	item
will	be	indented	to	that	level.	In	many	cases,	LANSA	Composer's
guess	will	be	correct	and	you	will	not	need	to	re-arrange	the	item.	If	it
is	not	correct	however,	you	should	use	the	features	described	in	Re-
arrange	Items	in	the	Processing	Sequence	to	arrange	the	item	in	the
correct	order	and	at	the	correct	level.

Delete	Items	from	the	Processing	Sequence
To	delete	an	item	from	the	Processing	Sequence:
1.		Select	the	item	or	items	to	be	deleted.
2.		Click	the	Delete	button	on	the	toolbar	or	select	Delete	from	the	Edit	menu.
3.		Confirm	the	deletion	by	clicking	Yes	in	the	message	box.

Note:	When	you	delete	an	item,	any	remaining	child	items	of	that	item
are	promoted	to	the	level	and	position	of	the	deleted	item.

Cut,	Copy	and	Paste	Items	in	the	Processing	Sequence
You	can	cut,	copy	and	paste	items	in	the	Processing	Sequence	using	the	Cut,
Copy	and	Paste	buttons	on	the	toolbar	or	by	selecting	the	corresponding
commands	from	the	Edit	menu.

When	you	cut	or	copy	an	item	or	items	to	the	clipboard,	the	entire	item
definitions	are	copied,	including	any	details	specified	in	the	detailer	window.	
The	item	definitions	remains	available	on	the	clipboard	indefinitely,	until	this	or
some	other	application	copies	something	else	to	the	clipboard.		You	can	paste
copied	or	cut	items	into	the	Processing	Sequence	Editor	for	this	or	another
Processing	Sequence.

Note:	When	you	cut	an	item,	any	remaining	child	items	of	that	item
are	promoted	to	the	level	and	position	of	the	cut	item.

Re-arrange	Items	in	the	Processing	Sequence
You	can	re-arrange	items	by	moving	them	up	or	down	the	Processing	Sequence
or	by	promoting	or	demoting	them.

Move	Items	Up	Or	Down
Moving	items	up	or	down	in	the	Processing	Sequence	changes	the	order	of
items	in	the	Processing	Sequence	and,	therefore,	the	order	in	which	they	will	be
executed	when	the	Processing	Sequence	is	run.
To	move	an	item	up	or	down	the	Processing	Sequence:
1.		Select	the	item	to	be	moved
2.		Click	the	Move	Up	 	or	Move	Down	 	button	on	the	toolbar	(or	select	the
corresponding	command	from	the	Edit	menu)	until	the	item	is	in	the	desired
position.

OR	you	can	also	use	Alt+Up	Arrow	and	Alt+Down	Arrow	keyboard
shortcuts.

OR,	you	can	hold	the	mouse	button	down	and	drag	the	selected	item(s)	to	the
desired	position.

Note:	As	you	move	items	up	or	down	the	Processing	Sequence,	it	will
often	be	necessary	for	LANSA	Composer	to	change	the	item's	parent.
This	will	result	in	the	indentation	level	of	the	item	changing	as	it
moves.

Promote	or	Demote	Items
Promoting	or	demoting	items	changes	their	parent	item	–	that	is,	the	item	to
which	they	belong	and	upon	which	their	execution	is	dependent.	The	visible

effect	of	this	is	to	change	their	indentation	level.
To	promote	or	demote	an	item:
1.		Select	the	item	to	be	promoted	or	demoted.
2.		Click	the	Promote	 	or	Demote	 	button	on	the	toolbar	(or
select	the	corresponding	command	from	the	Edit	menu)	until	the	item	is	at	the
desired	level.		You	can	also	use	Alt+Left	Arrow	and	Alt+Right	Arrow
keyboard	shortcuts.

Note:	Sometimes,	as	you	promote	or	demote	items,	they	will	move	up
or	down	as	well.	This	can	occur,	for	example,	when	you	promote	or
demote	an	item	that	is	in	the	middle	of	a	group	of	items	at	the	same
level.	LANSA	Composer	will	need	to	move	the	item	in	order	to
preserve	the	levels	or	relationships	of	other	items	in	the	group.

Enable	or	Disable	Items
Enabling	or	disabling	items	leaves	the	definition	of	the	item	in	the	Processing
Sequence	but	prevents	it	from	being	executed	if	the	Processing	Sequence	is
run.		This	is	sometimes	useful	for	temporary	changes	or	during	design	and
testing	of	a	Processing	Sequence.
Disable	items	are	shown	with	a	greyed	icon	and	text	in	the	processing	sequence
editor.
To	enable	or	disable	an	item:
1.		Select	the	item	to	be	enabled	or	disabled.
2.		Select	Enable	from	the	Edit	menu.

Note:	Disabling	an	item	also	disables	any	child	items	of	that	item.

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Review	or	Revise	Item	Details
Many	Processing	Sequence	items	have	additional	details	that	affect	their
operation.
For	example,	an	Activity	item	must	specify	which	Activity	is	to	be	performed,
and	may	also	require	that	you	specify	values	for	its	parameters.	Similarly	a
Loop	item	requires	you	to	specify	the	list	variable	name	for	which	the	Loop	is	to
be	executed.
These	details	vary	according	to	the	type	of	Processing	Sequence	item,	but	in	all
cases	they	are	displayed	and	can	be	revised	using	the	detailer	window	below	the
Processing	Sequence	tree.
To	review	or	revise	item	details:
1.		Select	the	item	to	be	reviewed	–	the	details	for	the	item	(if	any)	are	displayed
in	the	detailer	window.

2.		Review	or	revise	the	details	as	required.
Refer	to	3.1.4	Processing	Directives	for	information	on	completing	the	details
that	apply	to	each	type	of	Processing	Sequence	item.

Customise	the	view	in	the	Processing	Sequence	Editor
You	can	change	aspects	of	the	way	the	Processing	sequence	editor	visualizes
the	Processing	Sequence.		You	may	find	that	the	options	provided	permit	you	to
more	clearly	understand	the	relationships	between	items	in	your	Processing
Sequence.
To	customise	the	view	options,	select	Options	from	the	View	menu	and	then
make	your	choices	in	the	Processing	Sequence	Editor	Options	window.

	

3.4.5	Edit	Processing	Sequence	Parameters
The	Parameters	tab	of	the	Processing	sequence	editor	allows	you	to	add,	delete
and	revise	the	definition	of	parameters	that	the	Processing	Sequence	can
receive.

Add	Parameters	to	the	Processing	Sequence
	
To	add	a	parameter:
1.		Click	the	Add	button	on	the	toolbar	or	select	the	Parameter	command	from
the	Insert	menu.		You	can	also	add	a	parameter	by	selecting	a	variable	in	the
Variables	tab	and	dragging	and	dropping	it	over	the	parameters	list.

2.		Enter	or	change	the	parameter	name,	description,	parameter	class	and	default
value	as	required.

Delete	Parameters	from	the	Processing	Sequence
To	delete	a	parameter:
1.		Select	the	parameter	to	be	deleted	in	the	parameters	list.
2.		Click	the	Delete	button	in	the	toolbar	or	select	Delete	from	the	Edit	menu.
3.		Click	Yes	when	prompted	to	confirm	the	deletion.

Cut,	Copy	or	Paste	Parameters	in	the	Processing	Sequence
To	cut	or	copy	a	parameter:
1.		Select	the	required	parameter	in	the	parameters	list.
2.		Click	the	Cut	or	Copy	buttons	in	the	toolbar	or	select	the	corresponding
command	from	the	Edit	menu.

	
To	paste	a	parameter	definition	that	was	previously	cut	or	copied,	click	the
Paste	button	in	the	toolbar	or	select	the	Paste	command	from	the	Edit	menu.

Re-arrange	Parameters
You	can	re-arrange	parameters	by	moving	them	up	or	down	the	parameter	list.
To	move	a	parameter	up	or	down	the	parameter	list:
1.		Select	the	parameter	to	be	moved
2.		Click	the	Move	Up	or	Move	Down	button	on	the	toolbar	(or	select	the
corresponding	command	from	the	Edit	menu)	until	the	parameter	is	in	the
desired	position

Revise	Parameter	Definitions
You	can	revise	the	name,	description	and	default	value	for	each	parameter.	To
revise	the	parameter:
1.		For	the	parameter	to	be	revised,	click	in	the	column	whose	value	you	wish	to
revise.

2.		Type	or	choose	the	new	value	for	the	parameter	name,	description,	parameter
class	or	default	value.

3.4.6	Edit	Processing	Sequence	Notes
The	Notes	tab	of	the	Processing	sequence	editor	allows	you	to	enter	and	revise
notes	associated	with	the	Processing	Sequence.
Notes	can	be	used	to	expand	upon	the	short	description	to	further	describe	the
intended	purpose	and	use	of	the	Processing	Sequence.		For	example	you	can	use
the	notes	to	give	an	overview	of	the	function	of	the	Processing	Sequence	and
when	and	how	to	execute	it.
	

3.4.7	Save	Your	Work
You	can	save	your	work	in	the	Processing	sequence	editor	at	any	time	by
clicking	the	Save	button	on	the	toolbar	or	select	Save	or	Save	As	from	the	File
menu.
If	you	are	creating	a	new	Processing	Sequence	(or	if	you	chose	the	Save	As
command),	the	Save	window	will	be	shown	so	that	you	can	give	the	Processing
Sequence	a	name	and	a	description.

3.5	Run	a	Processing	Sequence
You	can	initiate	running	a	Processing	Sequence	in	several	ways.
While	you	are	designing	and	testing	your	LANSA	Composer	solutions,	you	will
usually	run	a	Processing	Sequence	from	within	the	LANSA	Composer	client
application	or	from	a	"shortcut"	on	the	LANSA	Composer	client	computer.	
Refer	to	the	following	sections	for	more	information:

3.5.1	Run	a	Processing	Sequence	from	the	LANSA	Composer	client
3.5.2	Run	a	saved	Processing	Sequence	"shortcut"	from	a	client	computer

In	a	production	environment,	you	will	usually	run	a	Processing	Sequence
outside	the	LANSA	Composer	client	application.	This	allows	you	to:

Initiate	running	Processing	Sequences	from	your	own	applications
Create	shortcuts	to	run	Processing	Sequences
Submit	Processing	Sequence	runs	as	batch	jobs	on	your	IBM	i	server
Plug-Processing	Sequences	into	your	job	scheduler	of	choice.

Depending	on	your	requirements	and	circumstances,	you	can	choose	from	one
of	several	means	of	initiating	a	Processing	Sequence	run:

3.5.3	Run	a	Processing	Sequence	from	the	Operations	Console
3.5.4	Run	a	Processing	Sequence	using	the	COMPOSER	command
3.5.5	Run	a	Processing	Sequence	using	a	Run	Control	File
3.5.6	Run	a	Processing	Sequence	from	a	LANSA	application
3.5.7	Run	a	Processing	Sequence	by	calling	the	Web	Service	function
3.5.8	Run	a	Processing	Sequence	using	the	DXP1FN1	function

3.5.1	Run	a	Processing	Sequence	from	the	LANSA	Composer
client
During	development	and	testing,	you	will	usually	run	a	Processing	Sequence
from	within	LANSA	Composer.	To	do	this,	perform	the	following	steps:
1.		Expand	Definitions	in	the	Navigator	and	click	Processing	sequences.	Use	the
filters	and	the	Processing	Sequence	list	to	locate	and	select	the	Processing
Sequence	you	wish	to	run.

2.		Click	the	Run	button	on	the	toolbar.	The	Run	processing	sequence	window	is
displayed.

					Note:		there	are	several	other	ways	to	initiate	running	a	Processing	Sequence,
including	using	the	menu	option	on	the	File	menu,	the	shortcut	Ctrl+U,	the
Run	button	in	the	Details	tab,	or	from	within	the	Processing	sequence	editor.

If	there	are	any	parameters	defined	for	the	Processing	Sequence,	the	parameters
are	listed	and	you	can	enter	values	for	them.	If	you	enter	an	alphanumeric	literal
value	you	can	surround	it	with	quote	marks.	The	quote	marks	do	not	become
part	of	the	parameter	value	that	the	Processing	Sequence	receives.	If	you	need
to	embed	quote	marks	in	the	parameter	value,	you	should	surround	the	value
with	quote	marks	and	double-up	the	embedded	quote	marks.
If	the	parameter	class	is	other	than	General,	you	can	press	F4	or	click	the

adjacent	Prompt	(…)	button	to	browse	and	choose	from	a	list	of	possible
values.		For	example,	if	the	parameter	class	is	Trading	Partner,	LANSA
Composer	will	display	a	list	of	defined	Trading	Partners.		Or	if	the	parameter
class	is	File	path,	LANSA	Composer	will	allow	you	to	browse	and	choose	from
files	present	in	the	server	file	system.
When	you	have	entered	the	parameter	values,	click	the	Run	button.

If	the	Submit	to	batch	radio	button	is	checked,	the	Processing	Sequence
run	is	submitted	to	batch	using	the	job	description	specified	in	System
Settings.		When	the	job	completes,	you	can	review	the	result	and	the	log
output	on	the	Run	History	tab.
If	you	selected	the	Run	immediately	button,	the	Processing	Sequence	runs
immediately	and	you	must	wait	for	it	to	complete.	When	the	run	is
complete,	the	Processing	Sequence	Log	window	shows	the	result	code	and
log	output	for	the	Processing	Sequence	run.	The	amount	of	detail	in	the
log	output	depends	on	the	logging	level	in	effect	for	the	Processing
Sequence	run.		For	more	information	on	the	Processing	Sequence	Log
window,	refer	to	3.7.1	Display	the	Processing	Sequence	Log	from	LANSA
Composer.

3.5.2	Run	a	saved	Processing	Sequence	"shortcut"	from	a	client
computer
On	any	computer	where	the	LANSA	Composer	client	is	installed,	you	can	also
run	a	saved	processing	sequence	"shortcut"	file.		You	don't	have	to	start	the
LANSA	Composer	client	application	to	execute	a	saved	processing	sequence
"shortcut".
Refer	to	the	following	topics	for	more	details:

About	Processing	Sequence	"shortcut"	files
Save	a	Processing	Sequence	"shortcut"	file
Run	a	saved	Processing	Sequence	"shortcut"	file

About	Processing	Sequence	"shortcut"	files
A	Processing	Sequence	"shortcut"	file	contains	the	details	necessary	to	run	a
Processing	Sequence	along	with	options	and	any	parameter	values	you	specify.	
Amongst	the	details	included	in	a	Processing	Sequence	"shortcut"	file	are:

The	Processing	Sequence	identity
Any	non-default	Processing	Sequence	parameter	values	you	specify	when
you	save	the	"shortcut"
The	identity	of	the	LANSA	Composer	server	that	contains	the	Processing
Sequence

The	"shortcut"	file	is	saved	as	a	file	with	the	extension	.dxrun.		LANSA
Composer	associates	this	file	extension	with	itself	so	that	when	you	"open"	the
file	in	Windows	Explorer	a	LANSA	Composer	program	(dxstart.exe)	is	started
to	read	the	necessary	details	from	the	"shortcut"	file	and	execute	the	Processing
Sequence	as	required,	connecting	to	the	LANSA	Composer	server	as	required.
The	LANSA	Composer	client	must	be	installed	on	the	computer	that	executes
the	Processing	Sequence	"shortcut"	file.
LANSA	Composer	provides	a	default	folder	for	holding	your	Processing
Sequence	shortcuts,	but	you	can	save	or	copy	them	to	any	folder	you	choose,
including	onto	your	desktop	or	your	Windows	Start	menu.

Note	that	a	Processing	Sequence	"shortcut"	file	is	a	"real"	file	and	not
a	Windows	shortcut	or	link.		You	can	however	create	Windows
shortcuts	to	your	Processing	Sequence	"shortcut"	files	if	you	wish.

Save	a	Processing	Sequence	"shortcut"	file
You	save	a	Processing	Sequence	"shortcut"	file	from	the	Run	processing
sequence	window.		For	information	on	opening	and	using	the	Run	processing
sequence	window	refer	to:

3.5.1	Run	a	Processing	Sequence	from	the	LANSA	Composer	client
To	save	a	Processing	Sequence	"shortcut"	file	from	the	Run	processing
sequence	window,	do	the	following:

1.		Choose	any	run	options	that	you	wish	to	apply	to	the	"shortcut"	file.		For
example,	click	the	Submit	or	Run	immediately	buttons	according	to	the
default	choice	you	wish	to	apply	to	the	"shortcut"	file.

2.		Type	any	non-default	parameter	values	you	wish	according	to	the
parameter	values	you	wish	to	be	used	by	the	"shortcut"	file.

3.		Click	the	Save	shortcut	button	to	display	the	Save	Processing	Sequence
Shortcut	window

4.		Type	or	choose	the	desired	name	and	location	for	the	Processing
Sequence	"shortcut"	file

5.		Click	Save	to	save	the	Processing	Sequence	"shortcut"	file.
Your	Processing	Sequence	"shortcut"	will	be	saved	including	the	options	and
any	non-default	parameter	values	specified	in	the	Run	processing	sequence
window.		The	Run	processing	sequence	window	is	displayed	again.		If	you	are
finished,	you	can	click	Cancel.		(Alternatively	you	can	type	new	values	and	save
a	new	Processing	Sequence	"shortcut"	for	the	same	Processing	Sequence,	or	you
can	proceed	with	the	Run	request	as	normal.)
If	you	saved	your	Processing	Sequence	"shortcut"	file	in	the	default	location
suggested	by	LANSA	Composer,	it	will	appear	in	the	Run	processing	sequence
shortcuts	window	in	the	LANSA	Composer	client	application	(you	may	have	to
click	Refresh	to	see	the	new	shortcut).

Run	a	saved	Processing	Sequence	"shortcut"	file
You	can	run	a	saved	processing	sequence	"shortcut"	file	on	any	computer	where
the	LANSA	Composer	client	is	installed.		You	don't	have	to	start	the	LANSA
Composer	client	application	in	order	to	run	a	saved	processing	sequence
"shortcut".
You	can	run	a	saved	processing	sequence	"shortcut"	file	in	two	general	ways:
1.Because	a	saved	processing	sequence	"shortcut"	file	is	just	a	file	in	the
Windows	files	system	(just	like	a	Microsoft	Word	document	file,	for
example),	you	can	open	(run)	it	in	any	of	the	ways	that	Windows	supports.

For	example	you	can	click	it	or	double-click	it	in	Windows	Explorer,	or	right-
click	and	choose	Open	from	the	pop-up	menu.		If	you	have	saved	the	file	(or
a	Windows	shortcut	to	it)	to	your	desktop	or	your	Start	menu,	you	can	open	it
from	there.		Or	you	can	even	open	it	from	a	command	window.

The	LANSA	Composer	client	application	window	does	not	have	to	be	open
in	order	to	Open	(run)	a	Processing	Sequence	"shortcut"	file	from	Windows.

2.If	the	LANSA	Composer	client	application	is	open	and	your	"shortcut"	file	is
saved	in	the	default	location	suggested	by	LANSA	Composer,	you	can	run	it
as	follows:
a.		Expand	Operations	in	the	Navigator	and	click	Run	processing	sequence
shortcuts.

b.		Double-click	the	desired	"shortcut",	or	select	it	and	click	Run.
Whichever	way	you	choose	to	run	a	saved	processing	sequence	"shortcut"	file,
the	request	will	usually	proceed	as	follows:

LANSA	Composer	displays	the	Connect	to	LANSA	Composer	Server
window
Once	connected	successfully,	LANSA	Composer	displays	the	Run
processing	sequence	window,	populated	with	the	processing	sequence
details,	run	options	and	non-default	parameter	values	specified	in	the
shortcut.
If	the	Submit	to	batch	radio	button	is	checked,	the	Processing	Sequence
run	is	submitted	to	batch	using	the	job	description	specified	in	System
Settings.

If	you	selected	the	Run	immediately	button,	the	Processing	Sequence	runs
immediately	and	you	must	wait	for	it	to	complete.	When	the	run	is
complete,	the	Processing	Sequence	Log	window	shows	the	result	code	and
log	output	for	the	Processing	Sequence	run.

Note:		the	sequence	described	above	may	be	varied	according	to
options	specified	in	the	Processing	Sequence	"shortcut"	file.

3.5.3	Run	a	Processing	Sequence	from	the	Operations	Console
LANSA	Composer	provides	a	web-browser	based	interface	for	operational
monitoring	and	control.		One	of	the	functions	provided	by	the	Operations
Console	is	the	ability	to	display	a	list	of	available	and	active	Processing
Sequences	and	submit	a	run	for	selected	Processing	Sequences.		This	feature
includes	the	ability	to	enter	values	for	Processing	Sequence	parameters,	if
applicable.
For	more	information,	refer	to	Operations	Console	.

its:LANSA091.CHM::/lansa/intengc5_0015.htm

3.5.4	Run	a	Processing	Sequence	using	the	COMPOSER
command

Note:		The	COMPOSER	command	is	provided	only	for	IBM	i
servers.		On	Windows	servers,	you	must	use	one	of	the	other
documented	means	of	initiating	a	Processing	Sequence	run.

LANSA	Composer	provides	the	COMPOSER	command	for	invoking	selected
LANSA	Composer	functionality	on	the	LANSA	Composer	server.		One	of	its
main	functions	is	to	run	a	Processing	Sequence.
On	an	IBM	i	server,	using	the	COMPOSER	command	is	the	easiest	way	to
integrate	your	LANSA	Composer	solutions	into	your	own	applications	and	into
your	routine	system	operations.
The	COMPOSER	command	has	command	parameters	that	allow	you	to	specify:

the	identifier	of	the	Processing	Sequence	to	run
values	for	parameters	received	by	the	Processing	Sequence

For	example,	this	COMPOSER	command	can	be	used	to	run	the	supplied
processing	sequence	TUT_01_P1	and	provide	the	parameter	values	for	the
Processing	Sequence:

<pgmlib>/COMPOSER	REQUEST(RUN)
pseq(TUT_01_P1)
parms((YOURINITIALS	'FS')
(YOURMESSAGE		'Hello	World')
(YOURNAME					'Fred	Smith'))

(where	<pgmlib>	is	the	name	of	the	program	library	for	the	LANSA	system	in
which	LANSA	Composer	is	installed.)
When	connected	to	an	IBM	i	server,	the	LANSA	Composer	client	application
provides	a	sample	COMPOSER	command	for	running	the	Processing	Sequence.
You	can	copy	and	adapt	the	sample	command	for	your	own	use	-	in	particular,
you	will	often	need	to	change	the	parameter	values.	To	access	the	samples,
select	the	Run	commands	tab	when	a	Processing	Sequence	is	selected	in	the
Processing	Sequence	list.

For	more	information	about	using	the	COMPOSER	command,	refer	to:
Appendix	D.	The	COMPOSER	Command

its:LANSA091.CHM::/lansa/intengc9_0230.htm

3.5.5	Run	a	Processing	Sequence	using	a	Run	Control	File
LANSA	Composer	provides	the	DXP1RUN	function	for	running	a	Processing
Sequence	using	a	run	control	file.		The	run	control	file	provides	the	variable
information	necessary	for	the	run,	including	the	Processing	Sequence	identifier
and	any	parameter	values.
You	must	supply	the	Run	Control	File	and	furnish	its	path	and	name	in	the
arguments	to	the	DXP1RUN	function.		Depending	on	the	application
requirements	and	the	Processing	Sequence	parameters,	your	application	may
need	to	write	or	revise	a	run	control	file	for	each	run	with	variable	information
appropriate	for	that	run.
LANSA	Composer	provides	a	sample	command	line	and	sample	contents	of	a
run	control	file	for	running	a	Processing	Sequence	in	this	way.	You	can	copy	the
samples,	complete	the	missing	details	and	otherwise	adapt	them	for	your	own
use.	To	access	the	samples,	select	the	Run	commands	tab	when	a	Processing
Sequence	is	selected	in	the	Processing	Sequence	list.

Run	Control	File
The	run	control	file	is	a	plain	text	file	that	is	used	to	specify:

The	Processing	Sequence	to	run
The	values	to	be	used	for	the	Processing	Sequence	parameters.

Following	is	an	example	of	a	run	control	file:
	
*---
--*
*	LANSA	Composer	run	control	file
*---
--*
	
*	Processing	sequence	id
*	-	use	ONLY	one	of	internal	id	(DXP1II)	or	external	id
(DXP1ID)
	
*	DXP1ID=DEM_ORDER_RCV
		DXP1II=FAEB7C11E1B448FAB0E469D0C0B6E853
	
*	Zero,	one	or	more	Processing	Sequence	parameter	values
specified
*	as	NAME=VALUE.		Quotes	surrounding	alphanumeric
values	are	optional.
	
		[Parameters]
	
		CUSTOMER_TP='ATLAS'
		CUSTOMER_DIR='/neworders'
	
Run	Control	File	Notes
One	of	the	following	MUST	be	provided	as	the	FIRST	non-comment	line:

DXP1II=<id>	where	<id>	is	the	internal	identifier	of	the	Processing
Sequence	to	be	run.
DXP1ID=<id>	where	<id>	is	the	external	identifier	of	the	Processing
Sequence	to	be	run.

Only	the	first	of	these	will	be	processed.
Parameters	may	be	passed	using	<name>-<value>	pairs.	Such	parameters
must	follow	a	'section'	that	begins	with	the	heading	[Parameters].Any
parameters	found	after	this	heading	will	be	written	to	the	variable	pool	for
the	Processing	Sequence	run.	Refer	to	the	example	above.

Some	relevant	points:
only	1	section	heading	or	name-value	pair	can	be	specified	on	each	line.
the	format	of	the	name-value	pairs	is	<name>=<value>
blank	lines	are	ignored.
lines	with	a	*	or	#	as	the	first	non-blank	character	are	comment	lines	and
are	ignored.

The	Run	Command
To	execute	the	Processing	Sequence	you	must	run	the	function	DXP1RUN	in
process	DXCONTROL	and	provide	the	path	to	the	run	control	file	in	the
UDEF=	argument.
On	Windows	servers,	you	run	function	DXP1RUN	by	executing	x_run.exe	with
the	necessary	arguments	to	specify	process,	function,	partition	and	language,	the
UDEF=	argument,	and	any	other	arguments	required	to	specify	database	and
authorisation	details.		A	sample	command	looks	like	this:
"C:\PROGRAM	FILES\LANSA
Composer\X_WIN95\X_LANSA\execute\x_run.exe"
PROC=DXCONTROL	FUNC=DXP1RUN	UDEF=
<run_control_file>	LANG=ENG	PART=LIC
USER=PCXUSER	PSPW=<password>	DBUS=<database
user>	PSWD=<database	password>	DBID=<database
name>	DBUT=<database	type>
LANSA	Composer	provides	a	skeletal	command	on	the	Run	commands	tab.	
You	can	click	the	Copy	button	to	copy	the	command	to	the	clipboard:

On	IBM	i	servers,	you	run	function	DXP1RUN	by	executing	the	LANSA
command	with	the	process,	function,	partition	and	language	parameters.	You
specify	the	UDEF=	argument,	with	the	path	to	the	run	control	file,	in	the
x_runadprm	parameter.		A	sample	command	looks	like	this:
LICPGMLIB/lansa	request(x_run)	process(dxcontrol)
function(dxp1run)	partition(LIC)	language(ENG)
x_runadprm('UDEF=<run_control_file>')
Again	LANSA	Composer	provides	a	skeletal	command	on	the	Run	commands
tab.		You	can	click	the	Copy	button	to	copy	the	command	to	the	clipboard:

Refer	to	LANSA	documentation	for	the	details	of	the	arguments	to	x_run.exe	or
the	parameters	for	the	LANSA	command.

3.5.6	Run	a	Processing	Sequence	from	a	LANSA	application

Refer	to	LANSA	product	documentation	for	detailed	information	on
application	development	with	LANSA.

The	LANSA	development	environment	(as	of	V12SP1)	provides	two	new	built-
in	functions	that	allow	your	LANSA	application	to	quickly	and	easily	execute	a
LANSA	Composer	Processing	Sequence,	either	synchronously	or
asynchronously.		The	built-in	functions	are:

COMPOSER_USE	:	specifies	the	details	necessary	for	your	LANSA
application	to	connect	to	the	nominated	LANSA	Composer	server	system.
COMPOSER_RUN	:	runs	a	LANSA	Composer	Processing	Sequence,	in	the
LANSA	Composer	system	identified	by	the	server	symbolic	name	argument,
through	the	LANSA	Composer	Request	Server.		It	can	pass	up	to	five	named
parameter	values	to	the	processing	sequence.

Refer	to	the	LANSA	Technical	Reference	for	detailed	programming	instructions
for	these	built-in	functions.		For	information	about	the	LANSA	Composer
Request	Server,	refer	to:

Appendix	F.	The	LANSA	Composer	Request	Server
	

3.5.7	Run	a	Processing	Sequence	by	calling	the	Web	Service
function
LANSA	Composer	implements	a	SOAP	web	service	that	provides	a	Run	web
service	operation	for	running	a	Processing	Sequence.
For	further	information,	please	refer	to	the	following:

Before	you	begin
Services	required	for	the	web	service	support
Overview	of	the	Run	web	service	operation
Accessing	the	web	service	from	your	SOAP	client	application

Note:	This	section	assumes	you	already	understand	the	principles	and
operation	of	SOAP	Web	Services	and	how	to	invoke	them	using	your
chosen	software	or	programming	tool	or	language.

Before	you	begin

Note:	This	section	applies	ONLY	to	the	LANSA	Composer	Server	on
IBM	i.		If	your	LANSA	Composer	Server	is	installed	on	Windows,
these	configuration	steps	have	already	been	completed	by	the
installation	program	and	you	can	proceed	directly	to	the	next	section.

During	LANSA	Composer	IBM	i	server	installation	or	upgrade,	the	LANSA
Composer	installer	loads	the	components	necessary	to	support	the	LANSA
Composer	SOAP	web	service.		However,	some	manual	steps	must	be	completed
in	order	to	deploy	and	configure	the	components	before	first	use.

Note:	You	only	need	to	perform	these	steps	once	after	installing	or
upgrading	the	LANSA	Composer	server.

Follow	this	procedure	to	deploy	and	configure	the	LANSA	Composer	SOAP
web	service	components:
1.		Deploy	the	LANSAComposerProcessingSequences.soap.jar	file

Locate	the	LANSAComposerProcessingSequences.soap.jar	file	that
implements	the	service.		This	file	can	be	found	in	the
./WebService/SOAP/Deploy	directory	of	the	LANSA	Composer	data
directory	tree.		For	example,	on	an	IBM	i	server,	it	can	be	found	on	the	IFS
in	a	location	like	this:
/LANSA_Composer_licpgmlib/lic/WebService/SOAP/Deploy
Copy	this	file	to	the	JAR	directory	of	the	JSM	instance	tree	for	the	JSM
installation	associated	with	LANSA	Composer,	replacing	the	existing	file	if
necessary.		For	example,	on	an	IBM	i	server,	the	JAR	directory	can	be	found
on	the	IFS	in	a	location	like	this:
/LANSA_licpgmlib/jsm/instance/JAR

2.		Deploy	the	SOAPServerService	properties
Locate	the	SOAPServerService.properties.		This	file	can	be	found	in	the
./WebService/SOAP/Deploy	directory	of	the	LANSA	Composer	data
directory	tree.		For	example,	on	an	IBM	i	server,	it	can	be	found	on	the	IFS
in	a	location	like	this:
/LANSA_Composer_licpgmlib/lic/WebService/SOAP/Deploy
Open	the	file	in	a	text	editor	(for	example,	in	notepad.exe)	and	copy	the
contents.		Then	locate	the	SOAPServerService.properties	already	present	in

the	properties	directory	of	the	JSM	instance	tree	for	the	JSM	installation
associated	with	LANSA	Composer.		For	example,	on	an	IBM	i	server,	the
SOAPServerService.properties	file	can	be	found	on	the	IFS	in	a	location	like
this:
/LANSA_licpgmlib/jsm/instance/properties/
Open	this	file	in	your	text	editor,	paste/insert	the	copied	lines	into	the	file	and
save	your	changes.		The	altered	file	contents	should	look	similar	to	this:
#!<studio-project	id="20000000-000000"	name="lansa">
#
service.lansacomposerprocessingsequences=com.lansa.composer.pseq.server.soap.LANSAComposerProcessingSequencesService
provider.lansacomposerprocessingsequences=com.lansa.composer.pseq.server.soap.LANSAComposerProcessingSequencesProvider
#
#	SOAPServerService	resources	(Default)
#
message.001=Service	successfully	loaded
message.002=Service	successfully	unloaded

(more	similar	lines	not	shown)
#
#!</studio-project>
#

3.		Create	the	JSMDirect	service	entry
The	LANSA	Composer	SOAP	web	service	will	be	invoked	using	a	URL	in	a
form	similar	to	this:
http://SERVER:80/cgi-bin/jsmdirect?COMPOSER_RUN
As	you	can	see,	the	request	will	be	processed	by	the	CGI	program
JSMDIRECT,	which	is	a	general	purpose	CGI	interface	provided	for	use
with	LANSA	Composer	(as	a	part	of	the	included	LANSA	Integrator).
The	COMPOSER_RUN	service	name	specified	in	the	URL	instructs
JSMDIRECT	exactly	which	service	implementation	will	process	the	request.
JSMDIRECT	uses	service	table	entries	to	associate	the	service	name	(for
example,	COMPOSER_RUN)	with	the	executable	files	that	will	process	the
request.
The	final	step	of	configuration	is	to	create	the	JSMDirect	service	table	entry
for	the	COMPOSER_RUN	service.		There	are	several	ways	to	do	this	–	you
should	refer	to	the	supplied	LANSA	Integrator	guide	for	details.		You	need	to
create	a	service	entry	containing	the	following	details:

4.		Restart	the	Java	Service	Manager	(JSM)
Finally,	you	need	to	restart	the	Java	Service	Manager	(JSM)	in	order	to	make
the	changes	effective.

Services	required	for	the	web	service	support
In	order	for	the	LANSA	Composer	SOAP	web	service	to	respond	to	in-coming
requests,	the	following	services	need	to	be	active	on	your	LANSA	Composer
server:

The	LANSA	listener	for	the	LANSA	Composer	system
The	Web/HTTP	server	instance	associated	with	the	LANSA	Composer
system
The	Java	Service	Manager	(JSM)

For	more	information	about	these	services,	please	refer	to	the	appropriate	one	of
the	following	headings	in	Appendix	A.	Install	LANSA	Composer:

For	an	IBM	i	server:	Subsystems	and	Jobs
For	a	Windows	server:	Services	used	by	the		LANSA	Composer	Windows
Server

Overview	of	the	Run	web	service	operation
The	Run	web	service	operation	allows	your	SOAP	client	application	to	specify
the	processing	sequence	name	and	any	processing	sequence	parameter	names
and	values	necessary	to	run	the	Processing	Sequence.

The	SOAP	response	will	include:
The	result	code	(OK,	ER	…);
The	run	number	assigned	to	the	run	by	LANSA	Composer	(this	can	be	used
to	identify	and	view	the	Processing	Sequence	Log	in	LANSA	Composer,	if
necessary);
The	last	error	message	number	and	text,	if	the	Processing	Sequence	ended	in
error;
The	names	and	values	of	the	Processing	Sequence	output	parameters,	if	any,
unless	the	Processing	Sequence	ended	in	error.

Accessing	the	web	service	from	your	SOAP	client	application
In	order	to	successfully	invoke	the	Run	web	service	operation,	your	SOAP	client
application	needs	to	know	and	implement	the	appropriate	details	in	two
categories.		Refer	to	the	following	headings	for	more	information:

Web	Service	Details
Processing	Sequence	Details

Web	Service	Details
You	need	to	know	about	the	web	service	in	order	to	execute	the	correct
protocols	to	invoke	it.		The	most	important	items	you	need	are:

The	location	of	the	WSDL
LANSA	Composer	provides	the
LANSAComposerProcessingSequencesService.wsdl	file	that	describes	the
service.		This	file	can	be	found	in	the	./WebService/SOAP	directory	of	the
LANSA	Composer	data	directory	tree.		For	example,	on	an	IBM	i	server,	it
can	be	found	on	the	IFS	in	a	location	like	this:
/LANSA_Composer_licpgmlib/lic/WebService/SOAP
The	correct	endpoint	URL	for	your	installation	of	LANSA	Composer
The	correct	endpoint	URL	necessary	to	invoke	the	Run	web	service
operation	will	depend	on	the	specifics	of	the	environment	in	which	LANSA
Composer	server	is	installed.
The	provided	WSDL	specifies	the	endpoint	URL	generically	as	follows:
http://SERVER:80/cgi-bin/jsmdirect?COMPOSER_RUN
You	need	to	revise	this	for	your	system	by:
Replacing	SERVER	with	the	DNS	name	of	your	server	system	on	which
LANSA	Composer	is	installed
Replacing	the	port	number	(80)	with	the	HTTP	listener	port	number
specified	during	the	LANSA	Composer	server	installation.
If	you	are	running	LANSA	Composer	on	a	Windows	server,	you	need	to
replace	jsmdirect	with	jsmdirect.exe.

For	example,	if	LANSA	Composer	is	installed	on	a	Windows	server	named
MYSERVER	and	the	HTTP	listener	port	in	use	is	8082,	then	your	endpoint
URL	might	look	like	this:
http://MYSERVER:8082/cgi-bin/jsmdirect.exe?COMPOSER_RUN

Processing	Sequence	Details
You	need	to	know	about	the	Processing	Sequence	that	you	wish	to	run:

The	Processing	Sequence	name
You	must	specify	the	Processing	Sequence	name	in	the
processingSequenceName	parameter	for	the	Run	web	service	operation.		In
the	illustration	below,	the	Processing	Sequence	name	specified	is
EXAMPLE_AATEST2.
The	Processing	Sequence	input	parameter	names	and	the	values	you	need	to
supply	for	them.
You	must	specify	one	parameterName	and	parameterValue	pair	for	each
Processing	Sequence	parameter	for	which	you	wish	to	specify	a	value.		In	the
illustration	below,	one	Processing	Sequence	parameter	value	is	specified
using	the	name	DIRECTORY	and	the	value	shown.

3.5.8	Run	a	Processing	Sequence	using	the	DXP1FN1	function

IMPORTANT	NOTE:

This	section	describes	a	technique	for	running	a	Processing	Sequence
from	a	LANSA	application	that	is	no	longer	recommended	for	new
solutions.		It	is	only	useful	when	LANSA	Composer	is	installed	in	the
same	LANSA	run-time	system	as	the	LANSA	application.		This	mode
of	installation	is	no	longer	possible	for	new	installations	and	is	not
recommended.		For	new	solutions,	please	refer	to	3.5.6	Run	a
Processing	Sequence	from	a	LANSA	application	instead.

NOTE:		This	section	assumes	sound	knowledge	of	the	applicable
LANSA	development	techniques.		Refer	to	LANSA	product
documentation	for	detailed	information	on	application	development
with	LANSA.

LANSA	Composer	provides	the	DXP1FN1	function	for	running	a	Processing
Sequence	from	a	LANSA	application	executing	in	the	same	LANSA	system	and
partition	as	LANSA	Composer.
Your	LANSA	application	can	call	DXP1FN1	using	the	CALL	RDML	command
with	PROCESS(*DIRECT):

Function	DXP1FN1	must	execute	on	the	LANSA	Composer	server.		Your
application	may,	however,	execute	it	via	the	LANSA	SuperServer
CALL_SERVER_FUNCTION	built-in	function.
Function	DXP1FN1	executes	the	Processing	Sequence	synchronously.		If
you	wish	the	Processing	Sequence	to	run	in	a	batch	job,	then	you	must
submit	the	code	unit	in	your	application	that	calls	function	DXP1FN1.
Your	application	can	pass	the	necessary	variable	information	(the
processing	sequence	identifier	and	any	parameter	values)	using	a
combination	of	the	LANSA	exchange	list	and	by	passing	a	working	list.
Your	application		can	receive	the	result	of	the	processing	sequence	run	via
the	exchange	list.

NOTE:		The	code	unit	in	your	application	that	calls	function
DXP1FN1	must	be	RDMLX	enabled.

Refer	to	the	following	topics	for	more	details:
Exchange	the	Processing	Sequence	identifier
Populate	and	pass	the	Parameters	working	list
Receive	the	result	of	the	Processing	Sequence	run
Example	function	to	run	a	Processing	Sequence

For	general	considerations	about	integrating	your	LANSA	Composer	solution
with	your	LANSA	applications	refer	to:

Appendix	E.	Using	LANSA	Composer	with	LANSA	Applications

its:LANSA091.CHM::/lansa/intengc9_0240.htm

Exchange	the	Processing	Sequence	identifier
Before	calling	function	DXP1FN1,	your	application	must	place	the	Processing
Sequence	identifier	on	the	exchange	list	using	the	EXCHANGE	RDML
command:

you	must	use	the	internal	identifier	shown	on	the	Audit	command	tab	for
the	Processing	Sequence
you	must	assign	the	value	to	field	DXP1II	and	place	it	on	the	exchange
list	immediately	before	the	function	call
field	DXP1II	must	be	defined	as	alphanumeric	with	length	32.

(If	you	have	imported	the	LANSA	Composer	development	package	into
your	Visual	LANSA	development	environment,	the	definition	of	field
DXP1II	will	already	be	present	in	your	LANSA	repository.)

NOTE:		Function	DXP1FN1	can	receive	the	values	of	other	fields
with	names	beginning	with	'DX'	from	the	exchange	list.		Your
application	does	not	need	to	(and	should	not)	exchange	these	other
fields.		To	avoid	interfering	with	the	correct	behavior	of	function
DXP1FN1,	you	should	NEVER	exchange	any	fields	with	names
beginning	with	'DX'	before	the	call,	other	than	the	fields	explicitly
described	here.

For	an	example	of	exchanging	the	Processing	Sequence	identifier	before	calling
function	DXP1FN1	refer	to:

Example	function	to	run	a	Processing	Sequence

Populate	and	pass	the	Parameters	working	list
Function	DXP1FN1	expects	to	receive	a	working	list	containing	zero,	one	or
more	(up	to	100)	entries	defining	processing	sequence	parameter	values	that	are
to	be	used	by	the	processing	sequence	run.		You	must	pass	this	working	list	to
function	DXP1FN1	-	if	your	processing	sequence	does	not	use	any	parameters,
you	must	still	pass	an	empty	working	list.
You	must	define	the	working	list	in	your	program	using	exactly	the	same	names
and	characteristics	as	the	working	list	used	by	function	DXP1FN1.		It	should	be
defined	as	follows:
	
*	---
*	working	list	for	processing	sequence	parameters
*	---
def_list	name(#dxparms)	fields(#dxapnm	#dxpvsq	#dxpvvl)
type(*working)	entrys(100)	
	
If	you	have	imported	the	LANSA	Composer	development	package	into	your
Visual	LANSA	development	environment,	the	definition	of	the	working	list
fields	will	already	be	present	in	your	LANSA	repository.		Otherwise	these	fields
must	be	defined	with	these	essential	characteristics:

Name Description Type

DXAPNM Parameter	name A(20)

DXPVSQ Sequence	number P(5,	0)

DXPVVL Parameter	value A(256)

	

	
Your	application	should	set	the	values	of	the	working	list	fields	and	add	an	entry
to	the	working	list	for	each	parameter	for	which	you	wish	to	provide	a	value.

NOTE:		your	application	should	set	the	value	of	the	DXPVSQ
(sequence	number)	field	to	1	(one)	for	every	working	list	entry.		The
Processing	Sequence	will	not	receive	the	parameter	value	if	you

assign	any	other	value	to	the	DXPVSQ	field.

For	an	example	of	defining	and	populating	the	Parameters	working	list	before
calling	function	DXP1FN1	refer	to:

Example	function	to	run	a	Processing	Sequence

Receive	the	result	of	the	Processing	Sequence	run
When	function	DXP1FN1	completes,	it	places	several	variables	on	the	LANSA
exchange	list	that	identify	the	processing	sequence	run	and	provide	the	result.	
Your	application	may	refer	to	these	fields	immediately	after	the	CALL	to
determine	the	result.
If	you	have	imported	the	LANSA	Composer	development	package	into	your
Visual	LANSA	development	environment,	the	definition	of	the	necessary	fields
will	already	be	present	in	your	LANSA	repository.		Otherwise,	if	you	wish	to
refer	to	them,	these	fields	must	be	defined	with	these	essential	characteristics:

Name Description Type

DXP1RN Run	number P(15,	0)

DXPVRN Run	number
(character	format	as	displayed	in	LANSA	Composer)

A(15)

DXEXRC Execution	result	code A(2)

DXEXSV Execution	result	severity P(3,	0)

	

	
For	an	example	of	receiving	and	testing	the	result	of	the	Processing	Sequence
run	after	calling	function	DXP1FN1	refer	to:

Example	function	to	run	a	Processing	Sequence

Example	function	to	run	a	Processing	Sequence
This	example	function	runs	the	supplied	TUT_01_P1	processing	sequence.		It
demonstrates	all	the	key	aspects	of	running	a	Processing	Sequence	from	a
LANSA	application	by	calling	function	DXP1FN1:,	including:

Exchange	the	Processing	Sequence	identifier
Populate	and	pass	the	Parameters	working	list
Receive	the	result	of	the	Processing	Sequence	run

	
	
*	--
*	This	function	runs	the	supplied	TUT_01_P1	processing
*	sequence,	supplying	parameter	values	as	required
*	--
	
function	options(*direct)
	
*	--
*	working	list	for	processing	sequence	parameters
*	--
def_list	name(#dxparms)	fields(#dxapnm	#dxpvsq	#dxpvvl)	type(*working)
entrys(100)
	
*	--
*	set	and	exchange	the	processing	sequence	identifier
*	(uses	the	internal	identifier	as	shown	on	the	Audit	tab)
*	--
	
#dxp1ii	:=	'2D123D3124F84042AFB1E931838DA90E'
exchange	fields(#dxp1ii)
	
*	--
*	provide	named	parameter	values	for	the	run
*	--
#dxpvsq	:=	1
	
#dxapnm	:=	'YOURINITIALS'

#dxpvvl	:=	'LA'
add_entry	to_list(#dxparms)
	
#dxapnm	:=	'YOURMESSAGE'
#dxpvvl	:=	'This	run	was	initiated	by	my	LANSA	application'
add_entry	to_list(#dxparms)
	
#dxapnm	:=	'YOURNAME'
#dxpvvl	:=	'LANSA	Application'
add_entry	to_list(#dxparms)
	
*	--
*	run	the	processing	sequence
*	--
	
call	process(*direct)	function(DXP1FN1)	pass_lst(#dxparms)
	
*	--
*	test	the	result
*	--
	
if	(#dxexrc	=	'OK')
	
message	msgtxt('Processing	sequence	run	was	successful')
	
else
	
message	msgtxt('Processing	sequence	run	ended	abnormally')
	
endif
	
*	--
*	that's	all	folks!
*	--
	
return
	

3.6	Restart	a	Processing	Sequence	Run
When	a	Processing	Sequence	run	ends	in	error	(including	when	its	execution	is
suspended	explicitly	using	the	SUSPEND	Processing	Sequence	directive),	it
may	be	possible	to	restart	it	from	the	point	of	failure.
For	example,	if	an	FTP_INBOUND	Activity	in	a	Processing	Sequence	fails,
perhaps	because	the	remote	FTP	location	was	unavailable,	it	is	usually	possible
to	restart	the	Processing	Sequence	at	a	later	time,	when	the	communication	error
has	been	resolved.
When	a	failed	Processing	Sequence	restarts:

It	restarts	from	the	point	of	failure,	even	if	the	point	of	failure	was	inside
one	or	more	Processing	Sequence	"blocks",	such	as	a	LOOP	or	WHILE
block,	or	in	a	conditional	block	such	as	IF	or	CASE.
Any	loop	indices	and	all	Processing	Sequence	variables	retain	the	values
they	had	at	the	point	of	failure.
The	Processing	Sequence	executes	the	same	version	of	the	Processing
Sequence	definition	with	the	Processing	Sequence	run	was	started,	even	if
that	is	not	the	current	definition.

Note:		If	the	Processing	Sequence	execution	was	suspended	explicitly
using	the	SUSPEND	Processing	Sequence	directive,	the	Processing
Sequence	restarts	immediately	after	the	SUSPEND	directive.

Conditions	for	restarting	a	Processing	Sequence	run
In	order	for	a	Processing	Sequence	run	to	be	eligible	to	be	restarted,	the
following	conditions	must	be	true:

The	Processing	Sequence	definition	must	specify	that	is	restartable.
The	definition	of	the	Activity	or	Transformation	Map	that	ended	in	error
must	specify	that	it	is	restartable.
There	must	have	been	no	active	aXes	terminal	sessions	active	at	the	point
of	failure.
The	version	of	the	Processing	Sequence	definition	that	ended	in	error	must
still	be	available.
The	run	history	for	the	affected	Processing	Sequence	run	that	ended	in
error	must	still	be	available.

The	error	arose	through	a	Processing	Sequence	error	status	being	raised.	
Processing	Sequence	that	end	in	error	as	a	result	of	abnormal	program
termination	of	a	program	used	by	an	Activity,	Transformation	Map	or	the
Processing	Sequence	engine	cannot	be	restarted.

Note:		Processing	Sequence	run	history	and	version	history	can	be
purged	using	the	Database	Housekeeping	function.		If	the	necessary
information	has	been	purged,	it	will	not	be	possible	to	restart	the
affected	Processing	Sequence	run.

its:LANSA091.CHM::/lansa/intengc6_0030.htm

3.6.1	Restart	a	Processing	Sequence	Run	from	LANSA	Composer
You	can	restart	an	eligible	Processing	Sequence	run	from	within	the	LANSA
Composer	client	application.	To	do	this,	perform	the	following	steps:
1.		Expand	Definitions	in	the	Navigator	and	click	Processing	sequences.	Use	the
filters	and	the	Processing	Sequence	list	to	locate	and	select	the	desired
Processing	Sequence.

2.		Click	the	Run	History	tab.		A	list	of	recorded	prior	runs	of	the	Processing
Sequence	will	be	displayed.

3.		Select	the	run	you	wish	to	restart	and	click	the	Restart	button		(if	the	Restart
button	is	not	enabled,	then	the	run	is	not	eligible	to	be	restarted).		The	Restart
processing	sequence	window	is	displayed.

4.		Click	the	Restart	button.
If	the	Submit	to	batch	radio	button	is	checked,	the	Processing	Sequence
run	is	submitted	to	batch	using	the	job	description	specified	in	System
Settings.		When	the	job	completes,	you	can	review	the	result	and	the	log
output	on	the	Run	History	tab.
If	you	selected	the	Run	immediately	button,	the	Processing	Sequence	runs
immediately	and	you	must	wait	for	it	to	complete.	When	the	run	is
complete,	the	Processing	Sequence	Log	window	shows	the	result	code	and
log	output	for	the	Processing	Sequence	run.	The	amount	of	detail	in	the

log	output	depends	on	the	logging	level	set	in	the	LANSA	Composer
system	settings.

3.6.2	Restart	a	Processing	Sequence	Run	from	the	Operations
Console
LANSA	Composer	provides	a	web-browser	based	interface	for	operational
monitoring	and	control.		One	of	the	functions	provided	by	the	Operations
Console	is	the	ability	to	display	a	list	of	active	and	completed	Processing
Sequences	runs	and	restart	a	failed	run,	if	eligible	for	restarting.
For	more	information,	refer	to	Operations	Console	.
	

its:LANSA091.CHM::/lansa/intengc5_0015.htm

3.7	Review	the	Processing	Sequence	Log
One	of	the	most	powerful	features	of	LANSA	Composer	is	the	logging	for
completed	Processing	Sequence	runs.		The	Processing	Sequence	Logs	can	be
displayed	and	printed	in	a	variety	of	ways	and	with	varying	levels	of	detail.		But
with	default	settings	LANSA	Composer	will	usually	provide	a	view	and	a	level
of	detail	that	is	appropriate	to	your	interest	and	to	the	status	of	the	run	(that	is,
whether	it	completed	successfully	or	not).
While	you	are	designing	and	testing	your	LANSA	Composer	solutions,	you	will
usually	display	the	Processing	Sequence	Log	from	within	the	LANSA
Composer	client	application.		Refer	to	the	following	heading	for	more
information:

3.7.1	Display	the	Processing	Sequence	Log	from	LANSA	Composer
In	a	production	environment,	you	may	monitor	your	Processing	Sequence	runs
from	outside	the	LANSA	Composer	client	application.		Refer	to	the	following
heading	for	more	information:

3.7.2	Display	the	Processing	Sequence	Log	from	the	Operations	Console
	

3.7.1	Display	the	Processing	Sequence	Log	from	LANSA
Composer
When	you	run	or	restart	a	Processing	Sequence	run	from	within	the	LANSA
Composer	client	application	using	the	Immediate	option,	LANSA	Composer
will	automatically	display	the	Processing	Sequence	Log	window	when	the	run
completes.
In	addition	you	can	choose	to	display	the	Processing	Sequence	Log	window	for
previously	completed	Processing	Sequence	runs	in	a	number	of	ways,	including,
for	example,	from	the	Run	History	command	tab.

The	Processing	Sequence	Log	window	lets	you	view	or	print	the	Processing
Sequence	log	in	a	variety	of	ways.		Some	of	the	things	you	can	do	from	this
window	are	described	under	the	following	headings:

Print	the	Processing	Sequence	Log
End	an	active	Processing	Sequence	run
Restart	a	failed	Processing	Sequence	run
Change	the	level	of	logging	detail	shown

Change	your	view	of	the	log	information

Print	the	Processing	Sequence	Log
You	can	click	the	Print	button	or	choose	Print	from	the	File	menu	to	print	the
Processing	Sequence	Log.
When	you	print	the	Processing	Sequence	Log	from	the	Processing	Sequence
Log	window,	LANSA	Composer	will	print	the	log	"as	displayed"	–	that	is,	log
messages	that	are	collapsed	or	expanded	will	be	printed	in	the	same	way.		So	to
print	the	log	exactly	as	you	want	it,	first	expand	and/or	collapse	items	as
required.

Note:	this	differs	from	when	the	Processing	Sequence	Log	is	printed
directly	from	the	Run	History	command	tab.		In	the	latter	case,
LANSA	Composer	decides	how	much	of	the	log	is	collapsed	or
expanded	in	order	to	give	you	the	most	appropriate	view.

End	an	active	Processing	Sequence	run
When	displaying	the	log	for	an	"active"	processing	sequence	run,	you	can	click
the	End	button	or	choose	End	from	the	File	menu	to	request	"controlled	end"	of
the	processing	sequence	run.

Note:	The	processing	sequence	controller	does	NOT	automatically
respect	such	requests.		It	is	up	to	the	solution	designer	to	build	in	such
support,	where	appropriate,	by	reference	to	the	*SHUTDOWN	built-
in	variable.		It	may	not	always	be	necessary,	but	it	is	advised	for
processing	sequences	that	are	intended	to	be	long-running	processes.	
This	would	usually	include,	for	example,	any	processing	sequences
that	use	the	new	WATCH_MSGQ,	WATCH_DIRECTORY	or
WATCH_DTAQ	activities,	or	any	that	implement	similar	"monitor"
style	processing	using	LOOPs	or	other	constructs.

Restart	a	failed	Processing	Sequence	run
If	the	Processing	Sequence	run	ended	in	error	and	can	be	restarted,	you	can
click	the	Restart	button	or	choose	Restart	from	the	File	menu	to	restart	the	run
from	the	point	of	failure.

Change	the	level	of	logging	detail	shown
For	Processing	Sequence	runs	that	have	ended	successfully,	LANSA	Composer
normally	shows	by	default	a	summary	view	of	the	log.		Conversely,	if	the	run

ended	in	error,	LANSA	Composer	will	show	by	default	a	detailed	view	of	the
log	that	normally	contains	more	information	that	can	help	to	diagnose	the	cause
of	the	failure.
In	any	event	(but	subject	to	System	Settings	relating	to	the	logging	level),	you
can	switch	between	the	detailed	and	summary	views	by	clicking	the	Show
Summary	or	Show	Details	buttons	or	using	the	equivalent	options	on	the	View
menu.
In	addition,	and	whether	in	detail	or	summary	view,	LANSA	Composer	may
automatically	collapse	some	log	entries	related	to	prior	successfully	completed
steps.		You	can	click	the	'+'	or	'-'	buttons	beside	the	log	entries	to	expand	log
entries	you	are	interested	in	or	collapse	those	that	you	are	not	interested	in.
You	can	expand	all	entries	in	one	go	by	clicking	the	Expand	All	button	or	using
the	corresponding	View	menu	item.		Note	that	expanding	all	entries	may	take	a
long	time	for	large	Processing	Sequence	logs.

Change	your	view	of	the	log	information
You	can	change	your	view	of	the	Processing	Sequence	log	in	other	ways.
In	particular,	you	can	show	or	hide	log	message	details	either	in	a	popup
window	or	using	a	second	pane	beside	the	log	display.		Use	the	appropriate	View
menu	items	to	do	this.		The	message	details	pane	or	popup	windows	shows
details	for	the	currently	selected	log	entry.

3.7.2	Display	the	Processing	Sequence	Log	from	the	Operations
Console
LANSA	Composer	provides	a	web-browser	based	interface	for	operational
monitoring	and	control.		One	of	the	functions	provided	by	the	Operations
Console	is	the	ability	to	display	a	list	of	active	and	completed	Processing
Sequences	runs	and	to	display	the	Processing	Sequence	Log	for	each.
For	more	information,	refer	to	Operations	Console	.

its:LANSA091.CHM::/lansa/intengc5_0015.htm

4.	Transaction	Document	Processing
LANSA	Composer's	transport,	transformation	and	process	orchestration	features
provide	an	infinitely	flexible	and	adaptable	framework	that	can	be	used	to	solve
almost	any	type	of	business	process	integration	challenge.
Many	typical	business	process	integration	requirements	follow	a	similar	and
familiar	pattern.		This	pattern	is	characterized	by:

Exchanging	transaction	documents	such	as	EDI,	XML	or	CSV	with	trading
partners
Mapping	transaction	information	between	the	transaction	document	and	an
application	database
Executing	application-specific	functionality	to	process	the	transactions
Exchanging	transaction	acknowledgements	with	the	originating	trading
partner

Because	this	pattern	is	so	typical,	LANSA	Composer	provides	a	ready-made
framework	that	you	can	readily	adapt	and	extend	to	encompass	the	exchanges
and	document	types	that	are	specific	to	your	organization.		As	a	part	of	this
framework	solution,	LANSA	Composer	provides	a	transaction	document
registration	database	and	the	LANSA	Composer	Document	Manager	that	can	be
used	to	monitor	and	manage	your	inbound	and	outbound	document	flows.
To	better	understand	the	place	of	the	transaction	document	processing
framework	and	features	in	LANSA	Composer,	you	might	think	of	it	this	way:

LANSA	Composer's	transport,	transformation	and	process
orchestration	tools	can	be	used	to	solve	virtually	any	type	of	business
process	integration	problem.
LANSA	Composer's	transaction	document	processing	frameworks
provide	ready-made	and	adaptable	solutions,	using	those	tools,	for	the	most	
common	business	process	integration	scenario.
Using	the	LANSA	Composer	toolset,	you	can	adapt	the	supplied	framework
to	meet	your	exact	circumstances	and	requirements.

	
Because	EDI	is	a	particularly	specialized	discipline,	the	transaction	document
processing	framework	and	the	LANSA	Composer	Document	Manager	contain
specific	features	applicable	to	EDI	document	exchange.		If	you	do	not	exchange
EDI	documents,	you	can	simply	disregard	those	parts	of	the	provided	solution.

Refer	to	the	following	for	more	information:
4.1	Transaction	Document	Processing	Framework
4.2	LANSA	Composer	Document	Manager

4.1	Transaction	Document	Processing	Framework
The	LANSA	Composer	transaction	document	processing	framework	provides	a
ready-made	and	adaptable	solution	for	the	most	common	business	process
integration	scenarios.
The	following	sections	provide	detailed	information	about	the	transaction
document	processing	framework:

4.1.1	Overview	of	the	Transaction	Document	Processing	Framework
4.1.2	Getting	Started	with	the	Transaction	Document	Processing	Framework
4.1.3	Document	Types	and	Document	Standards
4.1.4	Trading	Partner	support	for	Transaction	Document	Processing
4.1.5	Activities	for	Transaction	Document	Processing
4.1.6	Processing	Sequences	for	Transaction	Document	Processing
4.1.7	Transformation	Maps	for	Transaction	Document	Processing
4.1.8	Pre-built	EDI	X12	solution	components
4.1.9	Application	program	interfaces	(APIs)

4.1.1	Overview	of	the	Transaction	Document	Processing
Framework
LANSA	Composer	provides	a	ready-made	framework	solution	for	transaction
document	processing.		The	framework	can	very	quickly	be	modified	and
extended	to:

Handle	specific	types	of	transaction	documents
Take	account	of	processing	requirements	specific	to	the	customer's	trading
and	processing	environment.

This	framework	encompasses	supplied	LANSA	Composer	definitions	and
features	working	together	to	provide	a	near	ready-to-use	transaction	document
processing	solution.

Document	types	and	standards
LANSA	Composer	provides	support	for	Document	types	and	Document
standards	definitions	that	describe	certain	characteristics	of	transaction
documents	such	that	inbound	and	outbound	document	processing	can	recognize
them,	validate	them	and	invoke	the	appropriate	processing	sequence	to	further
process	them.
A	core	set	of	Document	types	and	Document	standards	definitions	are	supplied
with	LANSA	Composer	for	the	document	types	most	commonly	used,	but	you
can	extend	these	with	your	own	definitions	according	to	your	organizations
requirements	and	trading	relationships.
For	more	information	on	creating	or	modifying	Document	types	and	Document
standards	definitions,	please	refer	to:

4.1.3	Document	Types	and	Document	Standards

Trading	Partners
The	use	of	Trading	Partner	definitions	and	features	is	central	to	the	operation	of
the	supplied	transaction	document	processing	framework.		Trading	Partner
definitions	provide	links	to	directories,	configurations	and	transformation	maps
used	to	process	transaction	documents.		In	addition,	the	Trading	Partner	Data
Interchange	attributes	provide	additional	values	used	in	transaction	document
processing.		For	more	information	refer	to:	4.1.4	Trading	Partner	support	for
Transaction	Document	Processing.

Activities
Of	course,	transaction	document	processing	solutions	can	and	do	make	use	of

any	or	all	of	the	supplied	LANSA	Composer	Activities.
However,	there	is	a	subset	of	Activities	supplied	with	LANSA	Composer	that
are	very	specifically	intended	for	and	associated	with	the	transaction	document
processing	framework.		These	are	listed	in:

4.1.5	Activities	for	Transaction	Document	Processing

Processing	Sequences
A	core	part	of	the	transaction	document	processing	framework	is	the	set	of
processing	sequences	that	have	been	pre-built	and	supplied	with	LANSA
Composer	for	this	purpose.		These	are	listed	and	further	described	in:

4.1.6	Processing	Sequences	for	Transaction	Document	Processing

Transformation	Maps
Transformation	maps	are	almost	always	an	integral	part	of	a	transaction
document	processing	solution.		The	pre-built	processing	sequences	that	are
central	to	the	transaction	document	processing	framework	assume	a	particular
pattern	for	the	transformation	maps	that	it	invokes	and	LANSA	Composer
supplies	"model"	transformation	maps	that	match	this	pattern.		For	more
information	refer	to:

4.1.7	Transformation	Maps	for	Transaction	Document	Processing

Pre-built	EDI	X12	solution	components
LANSA	Composer	is	supplied	with	a	limited	number	of	pre-built	transformation
maps,	staging	database	tables	and	export	and	import	processors	and	document
viewers	for	selected	EDI	X12	transactions.
These	pre-built	components	may	serve	as	a	pro-forma	solution	for	those
transactions,	but	more	especially	as	examples	of	a	completed	solution	upon
which	you	might	base	a	solution	for	other	types	of	transaction	documents	used
by	your	organization.		For	more	information,	refer	to:

4.1.8	Pre-built	EDI	X12	solution	components

Application	program	interfaces	(APIs)
LANSA	Composer	allows	you	to	extend	the	transaction	document	processing
framework	in	several	ways	by	providing	application	program	interfaces	(APIs)
in	the	forms	of	ancestor	components	for	your	own	LANSA	components	and	by
providing	callable	LANSA	interfaces.		These	interfaces	allow	you	to	provide
extended	support	for	specific	transaction	types	and	to	better	integrate	the
solution	into	your	own	applications.		For	more	information,	refer	to:

4.1.9	Application	program	interfaces	(APIs)

4.1.2	Getting	Started	with	the	Transaction	Document	Processing
Framework
This	section	contains	some	tips	and	suggestions	to	guide	you	in	getting	started
with	the	LANSA	Composer	transaction	document	processing	features.
To	begin	with,	you	may	wish	to	Run	a	simple	demonstration	using	the
framework	as	supplied.
Then	you	can	refer	to	the	following	for	further	Getting	Started	tips:

Determine	the	scope	and	subject	of	a	pilot	implementation
Planning	your	implementation
Understand	the	major	implementation	steps

If	you	have	an	existing	solution	that	you	wish	to	adapt	to	use	the	transaction
document	register,	you	can	refer	to:

Adapting	your	own	Solution	to	Use	the	Transaction	Document	Register

Run	a	simple	demonstration
You	can	follow	the	steps	of	this	simple	demonstration	to	simulate	running	an	in-
coming	sales	order	XML	file	through	LANSA	Composer's	transaction	document
processing	framework	and	update	the	tutorial	sales	order	database	with	the
details	contained	in	the	transaction	document.
This	demonstration	assumes	that	you	have	an	understanding	of	the	basics	of
how	to	navigate	and	use	LANSA	Composer's	main	features.		You	may	wish	to
complete	the	LANSA	Composer	tutorials	first.
In	addition	to	the	Trading	Partner	definition	that	you	will	create	as	a	part	of	the
demonstration	and	the	supplied	Activities	used	by	the	processing	sequences,	the
following	supplied	LANSA	Composer	definitions	are	used.		In	order	for	the
demonstration	to	succeed,	these	definitions	should	be	in	their	supplied	form	and,
where	applicable,	they	must	be	Active	status:

IDOC_ARCHIVE	
IDOC_PROCESS	
IDOC_RECEIVE	

Trading	Partner	directory	types
defined	in	Code	Maintenance.

XML	 Document	type	definition

XML/TUTORDERS	 Document	standard	definition

ITUT_ORDERS	 Transformation	map	definition

TXDOC_DATABASE	(*)	 Database	configuration

TXDOC_INBOUND	
TXDOC_IXML010	
TXDOC_RCVTXDOC_RCV_DEMO

Processing	sequences

	

(*)	Note	that	this	demonstration	assumes	that	the	TXDOC
_DATABASE	configuration	has	already	been	modified	to	suit	your
installation	and	that	it	provides	access	to	the	database	schema	or
library	containing	LANSA	Composer's	tutorial	orders	database	tables.	
Refer	to	Modify	the	Supplied	TXDOC_DATABASE	Database
Configuration	for	more	information.

WARNING:	This	demonstration	will	allocate	a	transaction	document
envelope	number	from	LANSA	Composer's	built-in	series	and	will
update	the	transaction	document	register	with	details	of	the
demonstration	transaction	being	processed.		Depending	on	your
organisation's	procedures	and	audit	requirements,	you	may	not	wish	to
execute	this	demonstration	in	a	production	LANSA	Composer
environment.

When	you	are	ready,	follow	these	steps	to	complete	the	demonstration:
1.		Create	a	new	trading	partner	named	iii_PARTNER1,	where	iii	are	your
initials.		Make	sure	you	set	the	status	to	Active.		In	the	Receive	processing
sequence	field,	type	or	select	the	supplied	processing	sequence
TXDOC_RCV_DEMO.

	(The	TXDOC_RCV_DEMO	processing	sequence	that	you	have	associated
with	this	trading	partner	will	"receive"	transaction	document	files	by	copying
the	supplied	tutorial	sales	order	XML	file	(TUTorder.xml)	from	the	tutorial
files	directory	to	the	inbound	receive	directory	for	this	trading	partner.)

					When	prompted,	let	LANSA	Composer	create	the	linked	directories	for	the
Trading	Partner.		(Make	sure	the	Create	directories	if	they	do	not	exist
checkbox	is	checked.)

2.			On	the	Linked	Maps	tab	for	the	Trading	Partner,	add	a	link	for	the	supplied
ITUT_ORDERS	transformation	map.

					(This	map	reads	a	tutorial	sales	order	XML	file	(as	used	in	the	LANSA
Composer	tutorial	exercises)	and	writes	the	contents	to	LANSA	Composer's
tutorial	orders	database.)

3.			Run	the	supplied	inbound	Processing	Sequence,	TXDOC_INBOUND,
specifying	your	trading	partner	id	in	the	first	parameter:

4.			When	the	processing	sequence	has	completed	normally,	amongst	other
things,	you	should	be	able	to	observe:

That	the	inbound	transaction	document	has	been	renamed	and	moved	to
the	IDOC_ARCHIVE	directory	for	the	Trading	Partner.
That	records	have	been	added	to	LANSA	Composer's	tutorial	database
tables	TUTORDH	and	TUTORDL	containing	the	contents	of	the	in-
coming	sales	order	from	the	TUTorder.xml	file.

5.			Start	the	LANSA	Composer	Document	Manager	application	(you	can	use	the
option	from	the	Tools	menu	in	LANSA	Composer	or	the	installed	program
shortcut).		Select	the	Documents	option	from	the	Navigator	and	then	click	the
Search	button	in	the	filter	pane	to	locate	your	transaction	document.		Click
the	History	tab	to	see	the	processing	history	for	the	transaction	document.

Congratulations	…	you	have	successfully	received	your	first
transaction	document	through	LANSA	Composer's	transaction
document	processing	framework!

Determine	the	scope	and	subject	of	a	pilot	implementation
You	should	plan	for	a	pilot	implementation	using	a	limited	but	representative
selection	of	trading	partner(s)	and	transaction	document	types.
This	will	enable	you	to	more	fully	understand	LANSA	Composer's	features	and
the	capabilities	of	the	transaction	document	processing	framework	with	lower
risk	and	provide	the	opportunity	to	adapt	your	implementation	to	best	suit	your
circumstances.

Planning	your	implementation
Amongst	the	tasks	you	need	to	perform	when	planning	your	implementation	is
to	gather	information	about	the	following:
1.	Identify	document	types	and	standards	applying	to	your	implementation

Identify	the	document	types	(for	example,	EDI,	XML,	CSV)	that	your
implementation	will	use	and	how	they	will	be	represented	in	LANSA
Composer.
Identify	the	particular	standards	and/or	versions	that	apply	to	those
document	types	and	how	they	will	be	represented	in	LANSA	Composer.
Locate	and	acquire	the	references	that	your	implementation	will	use	to	effect
mapping	(and	validation,	if	applicable)	of	the	transaction	document	types
and	standards	you	have	implemented.		For	XML	documents,	for	example,
you	will	need	access	to	the	relevant	document	DTD	or	schema.		For	text	or
CSV	documents,	you	will	need	access	to	a	reference	that	completely
describes	the	document	format.		For	EDI	documents,	you	will	need	access	to
the	SEF/LSEF	file	that	describes	the	standard	and	you	will	need	to	connect
that	to	the	applicable	LANSA	Composer	document	standard	for	use	by	EDI-
specific	parts	of	the	framework	such	as	the	DISCOVER_EDI	activity.

2.	Identify	your	trading	partners	and	trading	agreements
Identify	the	trading	partners	with	whom	you	will	exchange	transaction
documents.
Understand	any	trading	agreements	that	may	govern	the	transaction
document	exchange	with	those	trading	partners.
If	applicable,	categorize	your	trading	partners	and	agreements	such	that	you
can	identify	the	processes	that	will	be	common.	Assuming	that	you	interact
with	at	least	some	groups	of	your	trading	partners	in	the	same	ways,	your
objective	should	be	to	build	common	processes	(or	adapt	the	supplied
processes)	such	that	they	can	serve	more	than	one	trading	partner
relationship.		LANSA	Composer	contains	specific	features	to	support	this.
Gather	information	for	each	trading	partner	that	will	enable	you	to
implement	the	agreed	document	exchange.		Of	course	this	includes	the
agreed	document	types	and	standards,	but	also	you	need	to	gather	the
specific	details	that	will	enable	you	to	implement	the	agreed	transport
protocols,	such	as	FTP	address	and	credentials.

3.	Understand	your	application(s)	with	which	the	solution	will	integrate

Identify	your	existing	application(s)	that	will	be	involved	in	the	transaction
document	processing.
Understand	the	relevant	parts	of	the	application's	database	and	any	rules	that
govern	it.
Determine	the	division	of	responsibilities	between	the	application	and	your
transaction	document	processing	solution.	For	example,	define	the	extent	to
which	each	of	them	is	responsible	for	cleaning	and	validating	any	in-coming
transaction	data	in	order	to	meet	the	application's	processing	requirements.
Identify	integration	touch-points.	Clearly	this	must	include	shared	database
access,	but	also	any	program-level	integration.	For	example,	the	inbound
process	may	need	to	call	an	application	program	or	start	an	application
process	on	receipt	of	an	in-coming	transaction.		Or	your	application	may
need	to	start	the	outbound	process	in	response	to	application	events	that
indicate	that	an	outbound	transaction	document	is	to	be	sent.

4.	Determine	the	most	appropriate	approach	to	mapping	transaction	data
Decide	whether	the	transformation	maps	that	you	will	create	for	your
transaction	document	processing	requirements	should	directly	address
existing	application	database	tables	or	instead	should	use	an	intermediate
"staging"	database:
Having	your	transformation	maps	directly	address	the	application
database	tables	is	usually	the	quickest	and	simplest	solution	to
implement.		However,	this	may	not	be	appropriate	if	this	results	in	the
solution	effectively	bypassing	data	cleansing	and	integrity	provisions	of
your	existing	applications.
Using	an	intermediate	"staging"	database	helps	to	insulate	your
application	from	the	interfaces	that	the	transaction	document	processing
solution	opens	to	the	outside	world	and	affords	you	the	opportunity	to
implement	comprehensive	data	cleansing	and	integrity	measures.	
However,	this	approach	is	somewhat	more	complex	and	costly	to
implement	and	may	require	you	to	perform	additional	coding	to	provide
import	and/or	export	processors	that	support	this	approach	(though	it	will
often	be	possible	to	re-use	or	adapt	existing	programs	for	this	purpose).

Integration	with	operational	procedures,	if	necessary
Adapt	your	operational	procedures	to	accommodate	your	transaction
document	processes.		Depending	on	your	trading	partner	agreements,	there
are	a	number	of	ways	in	which	transaction	document	exchange	with	your

trading	partners	may	be	initiated.		Some	possibilities	are	that	you	may	need
to	add	periodic	processes	to	your	operational	task	scheduler	or	batch
processing	streams	to	poll	for	available	inbound	transaction	documents.
Allocate	responsibility	for	monitoring	and	acting	upon	exceptions	that	occur
in	your	transaction	document	flows.		You	may	wish	to	take	advantage	of
LANSA	Composer's	in-built	event	notification	features	to	have	selected
groups	of	users	automatically	notified	of	exceptions	that	occur.

Understand	the	major	implementation	steps
In	LANSA	Composer,	as	by	any	other	means,	there	may	be	a	wide	variety	of
steps	necessary	for	a	successful	transaction	document	processing	solution.		This
section	summarizes	some	of	the	major	steps	and	considerations:

1.		Review	and	revise	LANSA	Composer	system	configuration
Review	and	revise	your	LANSA	Composer	system	settings	if	necessary.		Make
sure	that	you	have	a	fully-functioning	LANSA	Composer	system	before	you
begin	to	implement	a	transaction	document	processing	solution.

2.		Review	and	revise	document	types	and	standards
Review	the	existing	document	types	and	document	standards,	creating	new	ones
or	revising	the	existing	definitions	to	suit	your	implementation.

			Remember:
„		The	DISCOVER_DOC	activity	uses	the	file	extension	associated	with	a
Document	type	to	determine	the	document	type	associated	with	a	transaction
document.

„		The	TXDOC_INBOUND	and	TXDOC_OUTBOUND	processes	use	the
inbound	and	outbound	processing	sequences	associated	with	the	document
type	to	perform	further	processing	of	the	document.

			Remember:
„		For	EDI	documents,	the	DISCOVER_EDI	activity	uses	the	match	agency	and
match	version	values	associated	with	each	document	standard	to	identify	the
LANSA	Composer	document	standard	definition	that	applies	to	the	EDI
transaction	document

„		For	EDI	documents,	the	DISCOVER_EDI	activity	uses	the	SEF	file	name
specified	for	the	document	standard	to	perform	EDI	validation,	if	required.

3.		Create	inbound	and/or	outbound	transformation	maps
Having	identified	the	document	types,	standards	and	transaction	types	that	your
implementation	is	required	to	support,	you	will	need	to	create	transformation
maps	that	can	map	between	the	transaction	data	and	your	staging	database	or
your	application	database,	according	to	the	approach	you	have	chosen.
Remember	that	in	the	standard	inbound	and	outbound	process,	the
transformation	maps	are	assumed	to	have	a	basic	structure	(to	the	extent	that	it

affects	the	parameters	they	receive).		Refer	to	Model	Transformation	Maps	for
Transaction	Document	Processing	for	more	information.
If	you	exchange	the	same	transaction	types	with	more	than	one	trading	partner,
you	should	start	with	the	objective	of	re-using	the	same	transformation	maps	for
each	trading	partner	to	whom	it	applies.		There	may	be	cases	however	where
this	is	not	possible	or	appropriate.		Through	its	trading	partner	Linked	Maps
feature,	LANSA	Composer	supports	either	possibility.

			Remember:
„		LANSA	Composer	uses	the	map	direction,	standard	and	transaction	type
specified	in	the	data	interchange	attributes	for	a	transformation	map	(along
with	information	specified	when	the	map	is	linked	to	a	trading	partner)	to
identify	the	transformation	map	that	applies	to	a	transaction	document	in	the
FIND_TPMAP	activity.

„		The	inbound	process	and	outbound	process	reference	the	import	and	export
processors	associated	with	a	transformation	map	(if	applicable)	by
referencing	the	corresponding	Transformation	Map	built-in	variable	and/or	by
means	of	the	DISCOVER_MAP	activity

4.		Create	trading	partner	definitions	and	transport
configurations
You	will	need	to	create	trading	partner	definitions	for	each	trading	partner	with
whom	you	exchange	transaction	documents.		The	trading	partner	definitions	are
crucial	to	the	operation	of	the	transaction	document	framework,	as	supplied.	
You	may	also	need	to	create	configurations	(for	example	FTP	inbound	or
outbound	configurations)	according	to	the	transport	protocols	you	have	agreed
with	each	trading	partner.
You	can	enter	basic	contact	details	for	each	trading	partner,	although	this	is
mainly	for	documentary	purposes.		Much	more	important	to	the	transaction
document	processing	framework	are	the	data	interchange	attributes,	linked
directories,	maps	and	configurations	and	the	outbound	numbering.

			Remember:
„		For	EDI	documents,	the	DISCOVER_EDI	activity	uses	several	of	the	data
interchange	attributes	to	identify	the	interchange	trading	partner	definition
that	corresponds	to	values	in	the	EDI	document.

„		The	inbound	and	outbound	processes	use	the	linked	directories	associated
with	the	trading	partner	(using	the	built-in	variables)	to	determine	directories

used	to	receive	and	process	inbound	documents	and	to	prepare	and	send
outbound	documents	and	for	archiving	completed	inbound	or	outbound
documents.

„		The	linked	configurations	may	be	used	(via	the	built-in	variables)	to	execute
the	particular	transport	arrangements	agreed	with	the	trading	partner.

„		LANSA	Composer	uses	the	transformation	maps	linked	to	a	trading	partner
(along	with	data	interchange	attributes	specified	for	the	map)	to	identify	the
transformation	map	that	applies	to	a	transaction	document	in	the
FIND_TPMAP	activity.

„		When	you	register	a	pending	outbound	transaction	document	via	the	supplied
APIs	or	using	the	supplied	TXDOC_REGOUTBND	or
TXDOC_REGOUTX12	activities,	LANSA	Composer	uses	(and	updates)	the
information	on	the	Outbound	Numbering	tab	to	determine	the	control
numbers	used	for	the	outbound	document.		The	TXDOC_ALLOCCTRL
activity	also	uses	this	information	(but	it	is	not	used	in	the	supplied
processes).

5.		Copy	and	modify	the	supplied	processing	sequences	as
required
Although	you	may	use	the	inbound	and	outbound	processes	as	supplied,	more
commonly	you	will	copy	them	and	adapt	to	your	own	circumstances.		For
example,	as	supplied,	the	inbound	process	makes	simple	assumptions	about	the
type	of	transport	to	be	used	that	may	not	be	appropriate	for	your	trading
environment.

Adapting	your	own	Solution	to	Use	the	Transaction	Document
Register
The	transaction	document	processing	framework	supplied	with	LANSA
Composer	may	not	exactly	suit	every	circumstance	or	organisation.		You	are,	of
course,	free	to	use	LANSA	Composer's	transport,	transformation	and
orchestration	features	to	design	and	implement	your	own	transaction	document
processing	solution.
If	you	do,	you	may	still	opt	to	use	the	transaction	document	register	and	the
LANSA	Composer	Document	Manager	application	to	record	and	manage	your
inbound	and	outbound	transaction	document	flows.
In	order	to	adapt	an	existing	solution	to	use	the	transaction	document	register,
there	are	just	two	Activities	that	you	need	to	add	to	your	transaction	document
processing	solution:

1.		The	TXDOC_REGISTER	activity	registers	an	in-coming	or	out-going
transaction	document	in	the	transaction	document	register.	Normally	this
should	be	done	as	soon	as	the	document	becomes	available	to	the	process
and	before	significant	processing	is	done	for	it.

2.		After	registering	the	document,	and	as	the	processing	sequence	proceeds
to	process	the	transaction	document,	you	can	record	its	progress	and
update	the	status	in	the	transaction	document	register	using	the
TXDOC_STATUS	activity.

If	you	use	these	activities	appropriately,	you	will	be	able	to	use	the	LANSA
Composer	Document	Manager	to	enquire	upon	and	manage	your	inbound	and
outbound	transaction	document	flows	(although	some	features	may	not	apply).
For	more	information,	refer	to:

4.2	LANSA	Composer	Document	Manager

4.1.3	Document	Types	and	Document	Standards
LANSA	Composer's	Document	types	and	Document	standards	definitions
describe	certain	characteristics	of	transaction	documents	so	that	inbound	and
outbound	document	processing	can	recognize	them,	validate	them	and	invoke
the	appropriate	processing	sequence	to	process	them.
A	core	set	of	Document	types	and	Document	standards	definitions	are	supplied
with	LANSA	Composer	for	recent	EDIFACT	and	X12	document	standards,	but
you	can	extend	these	with	your	own	definitions	according	to	your	organization's
requirements	and	trading	relationships.

Document	Types
Document	type	definitions	identify	categories	of	transaction	documents	of	the
same	type	or	format.		This	is	necessarily	an	imprecise	definition	because	the
nature	of	the	categories	can	be	subject	to	organisational	or	application
requirements.		However,	by	way	of	example,	the	document	types	supplied	with
LANSA	Composer	include:

EDI	(all	EDI	types,	whether	they	be	EDIFACT	or	X12	or	any	of	the	many
versions	that	apply	to	each)
CSV	(comma-separated-value	formatted	text	files)
XML	(extensible	markup	language	of	any	schema)

LANSA	Composer's	document	type	definitions	serve	these	main	purposes:
1.		They	provide	the	link	between	the	transaction	document	file	extension
and	the	LANSA	Composer	document	type	definition	that	matches	it	(when
using	the	DISCOVER_DOC	activity).

2.		They	provide	a	soft-coded	link	to	the	processing	sequence	that	is	used	to
process	inbound	or	outbound	transaction	documents	of	the	matching
document	type	(when	using	the	DISCOVER_DOC	or	DISCOVER_MAP
activities).

3.		They	serve	as	a	logical	container	or	parent	for	document	standard
definitions	(see	below).

4.		The	document	type	for	a	transaction	document	file	can	be	written	to
LANSA	Composer's	transaction	document	register	when	using	the
TXDOC_REGISTER,	TXDOC_REGOUTBND,	TXDOC_REGOUTX12
and	TXDOC_STATUS	activities.		This	supports	categorization	and
interrogation	of	the	transaction	document	register	by	document	type	using

the	LANSA	Composer	Document	Manager	application.

For	more	information	on	creating	and	maintaining	Document	Type	definition,
refer	to:

Document	Type	Maintenance

Document	standards
Document	standard	definitions	belong	to	a	document	type	and	more	precisely
identify	the	type	of	information	in	transaction	documents	associated	with	the
document	standard.		For	example,	LANSA	Composer	supplies	document
standards	belonging	to	the	document	type	EDI	that	identify	the	standard	(X12	or
EDIFACT)	and	the	particular	version	of	the	standard	applying	to	the	EDI
document.
LANSA	Composer's	document	standard	definitions	serve	these	main	purposes:

1.		For	an	EDI	(X12	or	EDIFACT)	transaction	document,	they	provide	the
link	between	the	document	standard	and	version	codes	contained	in	the
transaction	document	itself	and	the	LANSA	Composer	document	standard
definition	that	matches	it	(when	using	the	DISCOVER_EDI	activity).

2.		For	an	EDI	(X12	or	EDIFACT)	transaction	document,	they	identify	the
SEF	(standard	exchange	format)	file	that	is	used	to	validate	EDI
transaction	document	files	that	match	the	document	standard	(when	using
the	DISCOVER_EDI	activity).

For	more	information	on	creating	and	maintaining	Document	Standard
definitions,	refer	to:

Document	Standard	Maintenance

Document	Type	Maintenance
To	reach	the	Document	Types,	expand	Administration	and	Housekeeping	in	the
Navigator	and	then	select	Document	Types.
You	can	use	the	Instance	Lists	to	view	and	select	from	the	available	Document
Types.		Using	the	menu	commands,	toolbar	buttons	or	right-click	menus	you
can:

Create,	copy	and	delete	Document	Types
Print	Document	Type	definitions
Display	and/or	revise	the	details,	attachments	or	notes	for	the	Document
Types

Document	Type	Details

The	following	are	the	details	that	can	be	entered	for	a	Document	Type
definition:
ID A	unique	identifier	for	the	Document	Type.
Description Text	description	for	the	Document	Type.
Group This	is	a	general	purpose	value	that	can	be	used	to	group	various

document	types	according	to	the	context	in	which	they	are	used.
The	DISCOVER_DOC	activity	(if	used)	will	match	this	value
against	a	user-entered	value	for	parameter	DOCTYPEGROUP.
When	processing	a	document,	only	those	document	type	with	the
same	Group	as	the	one	specified	will	be	considered.	When	not

entered,	a	value	of	blank	is	assumed.
Sequence Sequence	of	processing.	The	DISCOVER_DOC	activity	(if	used)

will	compare	incoming	documents	against	Document	types	with
smaller	Document	sequence	number	first.	Once,	a	match	is
found,	comparison	stops	and	the	remaining	Document	types	are
not	considered.
The	behaviour	of	the	DISCOVER_DOC	activity	is	undefined	if
there	are	two	document	types	with	the	same	Group	and	Sequence
number.

Document
file
extension

The	file	extension	that	applies	to	this	document	type.		The
DISCOVER_DOC	activity	(if	used)	will	use	this	value	to
determine	the	document	type	for	a	document	based	on	the	file
extension	of	the	in-coming	document.
For	example,	the	file	'myfile.order.xml'	has	a	file	extension	of
'xml'	and	could	be	eligible	to	be	matched	to	a	document	type
definition	with	that	extension.

Document
secondary
extension

This	field	may	be	used	for	extended	file	extension	matching	for
documents	that	use	more	than	one	file	extension	in	their	name	-
for	example,	'myfile.order.xml'	If	not	blank,	the
DISCOVER_DOC	activity	(if	used)	will	use	this	value	to
determine	the	document	type	for	a	document	based	on	the	second
extension	(the	second	from	the	right)	of	the	incoming	document.
For	example,	the	file	'myfile.order.xml'	has	a	secondary	file
extension	of	'order'	and	could	be	eligible	to	be	matched	to	a
document	type	definition	with	that	secondary	extension.

Document
name	mask

A	string	to	be	compared	against	the	filename.	If	not	blank,	the
DISCOVER_DOC	activity	(if	used)	will	use	the	value	to
determine	the	document	type	for	a	document	based	on	the
filename	of	the	in-coming	document.	If	there	are	more	than	two
extensions,	the	third	extension	onwards	will	be	included	in	the
filename	comparison.
In	constructing	a	Document	name	mask,	the	following
placeholder	characters	may	be	used:
		?		:		will	match	any	single	character	at	the	specified	position	of
the	filename

		*	:		will	generically	match	any/all	remaining	characters	in	the
filename
	
Examples:
			*							-	Will	match	any	file	(equivalent	to	omitting	this
parameter	value)
			ab*					-	will	match	files	whose	names	begin	with	'ab'
			???d*	-	will	match	all	files	whose	names	contain	'd'	in	the	4th
position
Comparison	is	case	insensitive.

Inbound
processing
sequence

Specifies	the	processing	sequence	that	processes	inbound
transaction	documents	of	this	document	type.

The	DISCOVER_DOC	activity	(if	used)	will	return	this
identifier	in	the	DOCPSEQ	output	parameter,	such	that	the
containing	processing	sequence	may	invoke	the	appropriate
processing	for	the	discovered	document	type	of	the	incoming
document.

Similarly	the	DISCOVER_MAP	activity	can	be	used	to	discover
this	processing	sequence	identifier	(providing	the	transformation
map	has	been	linked	to	a	document	type	and	standard	in	the	Data
Interchange	attributes	for	the	map).

Outbound
processing
sequence

Specifies	the	processing	sequence	that	processes	outbound
transaction	documents	of	this	document	type.	

The	DISCOVER_MAP	activity	can	be	used	to	discover	this
processing	sequence	identifier	(providing	the	transformation	map
has	been	linked	to	a	document	type	and	standard	in	the	Data
Interchange	attributes	for	the	map).

Document	Standard	Maintenance
To	reach	the	Document	Standards,	expand	Administration	and	Housekeeping	in
the	Navigator	and	then	select	Document	Standards.
You	can	use	the	Instance	Lists	to	view	and	select	from	the	available	Document
Standards.		Using	the	menu	commands,	toolbar	buttons	or	right-click	menus	you
can:

Create,	copy	and	delete	Document	Standards
Print	Document	Standards	definitions
Display	and/or	revise	the	details,	attachments	or	notes	for	the	Document
Standards

Document	Standard	Details

The	following	are	the	details	that	can	be	entered	for	a	Document	Standard
definition:

Document
Type

Specifies	the	Document	Type	to	which	this	document	standard
belongs.		When	creating	a	new	document	standard,	you	can
choose	from	a	drop-down	list	of	available	Document	Types.		You
must	create	a	Document	Type	before	you	can	create	a	Document
Standard	for	that	document	type.

Standard Specifies	a	name	by	which	this	document	standard	will	be	known
within	LANSA	Composer	transaction	document	processing	and
in	the	LANSA	Composer	Document	Manager.

Version Specifies	a	name	by	which	this	document	standard	version	will
be	known	within	LANSA	Composer	transaction	document
processing	and	in	the	LANSA	Composer	Document	Manager.

Description Text	description	for	the	Document	Standard.
Match
agency

Specifies	the	agency	value	in	the	EDI	transaction	document	that
matches	this	document	standard	and	version.		This	value	(along
with	the	Match	version)	is	used	by	the	DISCOVER_EDI	activity
to	determine	the	Document	Standard	definition	in	LANSA
Composer	that	applies	to	the	subject	EDI	transaction	document
file.

Match
version

Specifies	the	version	value	in	the	EDI	transaction	document	that
matches	this	document	standard	and	version.		This	value	(along
with	the	Match	agency)	is	used	by	the	DISCOVER_EDI	activity
to	determine	the	Document	Standard	definition	in	LANSA
Composer	that	applies	to	the	subject	EDI	transaction	document
file.

SEF	file
name

Specifies	the	name	of	the	SEF	(standard	exchange	format)	file
that	is	used	by	the	DISCOVER_EDI	activity	to	validate	EDI
transaction	document	files.		The	DISCOVER_EDI	activity	will
expect	to	find	the	SEF	file	(if	provided)	in	the	directory	for	SEF
files	specified	in	System	Settings.

4.1.4	Trading	Partner	support	for	Transaction	Document
Processing
The	transaction	document	processing	framework,	as	supplied,	makes	significant
use	of	Trading	Partner	definitions	and	features.		Both	the	inbound	and	outbound
processes	process	transaction	documents	by	Trading	Partner,	in	the	first	place.
Amongst	the	base	attributes	for	a	trading	partner	are	values	that	let	you	identify
specific	processing	sequences	to	perform	receive	and	send	processing	for	that
trading	partner.		This	optional	feature	provides	additional	flexibility	for	you	to
tailor	your	transport	mechanisms	to	your	particular	trading	relationships.		If
specified,	these	processes	are	invoked	from	the	standard	"model"	inbound	and
outbound	processes.
Furthermore,	Trading	Partner	definitions	provide	several	crucial	links:

To	the	directories	used	to	hold	the	inbound	or	outbound	transaction
documents	through	the	various	stages	of	their	processing	(using	the
Linked	Directories	feature	of	a	Trading	Partner	definition)
To	the	configurations	used	for	transport	and	other	activities	that	form	part
of	the	transaction	document	process	(using	the	Linked	Configurations
feature	of	a	Trading	Partner	definition)
To	the	Transformation	Maps	used	to	receive	inbound	transaction
document	data	or	prepare	outbound	transaction	document	data	for	a	given
document	type,	standard,	transaction	type	and	direction	(using	the	Linked
Maps	feature	of	a	Trading	Partner	definition)

In	addition,	the	Trading	Partner	Data	Interchange	Attributes	provide	certain
values	that	facilitate	the	recognition	of	the	source	and	/	or	the	target	of	certain
transaction	document	types	and	specify	aspects	of	how	they	are	to	be	processed.

its:LANSA091.CHM::/lansa/intengc2_0475.htm
its:LANSA091.CHM::/lansa/intengc2_0100.htm
its:LANSA091.CHM::/lansa/intengc2_0095.htm

Trading	Partner	Data	Interchange	Attributes
LANSA	Composer	defines	and	stores	a	set	of	data	interchange	attributes	for
each	Trading	Partner.		These	are	defined	to	accommodate	some	of	the	attributes
commonly	used	in	EDI	and	other	forms	of	data	interchange.
While	LANSA	Composer	pre-defines	fields	to	hold	these	attributes,	the	program
does	not	enforce	the	entry	of	the	fields,	nor	does	it	validate	values	entered.		To
permit	maximum	implementation	flexibility,	LANSA	Composer	leaves	the	use
and	values	of	many	of	these	attributes	to	you	according	to	your	own
circumstances	and	conventions.
Some	of	the	values	are,	however,	important	for	the	operation	of	the	transaction
document	framework	as	supplied.		These	include:

Archive	file
prefix(inbound
and	outbound)

These	values	determine	the	naming	used	when	the	inbound
or	outbound	process	archives	a	transaction	document	file
that	has	been	successfully	processed.

Inbound
receiver	id

Inbound
sender	id

For	an	inbound	EDI	X12	transaction	document	file	these
values	are	matched	against	corresponding	fields	in	the	ISA
segment	of	the	EDI	document.		A	successful	match	enables
LANSA	Composer	to	identify	the	Trading	Partner	definition
to	which	the	EDI	transaction	applies.

This	matching	to	a	Trading	Partner	is	performed	in	the
DISCOVER_EDI	activity	and	a	successful	match	is
necessary	for	further	processing.

Outbound
receiver	id

Outbound
sender	id

For	an	outbound	EDI	X12	transaction	document	file	these
values	are	matched	against	corresponding	fields	in	the	ISA
segment	of	the	EDI	document.		A	sucessful	match	enables
LANSA	Composer	to	identify	the	Trading	Partner	definition
to	which	the	EDI	transaction	applies.

This	matching	to	a	Trading	Partner	is	performed	in	the
DISCOVER_EDI	activity	and	a	successful	match	is
necessary	for	further	processing.

EDI	validation The	DISCOVER_EDI	activity,	having	matched	the	EDI
transaction	document	to	a	Trading	Partner,	uses	the	value	of
this	attribute	for	the	Trading	Partner	to	determine	whether

and	how	to	perform	EDI	document	validation.

If	the	value	is	set	to	None,	no	EDI	document	validation	is
performed.

If	the	value	is	set	to	Errors,	EDI	document	validation	is
performed	and	any	validation	errors	result	in	document
processing	ending	in	error.		Normally,	if	you	are	able	to
correct	the	EDI	transaction	document,	processing	may	be
restarted	and	the	transaction	document	process	run	to
normal	completion.

If	the	value	is	set	to	Warnings,	EDI	document	validation	is
performed	but	document	processing	will	continue
irrespective	of	whether	validation	errors	are	found.

EDI	split
maximum
transactions

EDI	split
ignore
carriage
returns

These	values	are	passed	to	the	EDI_SPLIT	activity	for	an
inbound	EDI	transaction	document	file	to	determine	whether
and	how	the	transaction	document	file	is	split	into	multiple
files	containing	a	subset	of	the	transactions	in	the	original
document.

The	trading	partner	data	interchange	attributes	are	used	in	the	transaction
document	processing	framework,	or	can	be	used	in	your	own	custom	transaction
document	processing	solution.
The	attribute	values	are	accessible	within	a	processing	sequence	by	using	built-
in	variables	such	as	*tradingpartner.edi.iap	(for	the	inbound	archive	file	prefix).	
Refer	to	Trading	Partner	(*TRADINGPARTNER)	Built-in	Variable	Qualifiers
for	more	information.

its:LANSA091.CHM::/lansa/intengc3_0125.htm

4.1.5	Activities	for	Transaction	Document	Processing
The	supplied	transaction	document	processing	framework	is	typical	of	many
business	process	integration	(BPI)	solutions	and	makes	use	of	a	wide	variety	of
the	Activities	that	are	supplied	with	LANSA	Composer.
However,	there	is	a	subset	of	the	supplied	Activities	supplied	that	are	very
specifically	intended	for	and	associated	with	the	transaction	document
processing	framework.		These	are	Activities	that:

Discover	document	and	content	type,	including	Activities	specific	to	EDI
document	discovery.
Establish	connections	between	transaction	document	files	and	the	Trading
Partner	and	Transformation	Maps	that	should	be	used	to	process	them.
Register	transaction	document	files	in	LANSA	Composer's	transaction
document	register	and	update	their	status	as	document	processing
proceeds.
Invoke	customer-defined	processing	to	import	or	export	transaction
document	data	to	or	from	application	database	tables.

This	group	of	supplied	Activities	are	listed	in:
Transaction	Document	Processing

As	supplied,	the	Processing	Sequences	that	implement	the	transaction	document
processing	framework	use	most	of	these	Activities.
However,	if	you	either	modify	the	supplied	solution	or	create	your	own,	you	are
not	compelled	to	use	the	supplied	activities	if	it	is	inappropriate,	in	your
particular	circumstances	to	do	so.
For	example,	the	supplied	TXDOC_INBOUND	Processing	Sequence	uses	the
DISCOVER_DOC	activity	to	associate	a	transaction	document	file	extension
with	the	subsidiary	Processing	Sequence	that	processes	that	type	of	transaction
document	file.		This	provides	the	maximum	flexibility	in	the	supplied	solution,
but	in	many	cases,	with	knowledge	of	your	specific	organization's	requirements,
it	may	be	equally	valid	to	make	assumptions	about	the	type	of	transaction
document	files	that	you	receive	from	a	given	Trading	Partner.
There	are	only	two	Activities	that	are	usually	essential	to	any	solution	in	which
you	wish	to	make	use	of	LANSA	Composer's	transaction	document	register.	
They	are	the	TXDOC_REGISTER	and	TXDOC_STATUS	Activities.		For	more
information,	refer	to:

its:LANSA091.CHM::/lansa/intengc2_0605.htm

Adapting	your	own	Solution	to	Use	the	Transaction	Document	Register

4.1.6	Processing	Sequences	for	Transaction	Document	Processing
LANSA	Composer's	transaction	document	processing	framework	includes	sets
of	processing	sequences	that	have	been	pre-built	for	processing	both	inbound
and	outbound	transaction	document	flows.
You	can	use	these	unchanged	or	you	can	copy	and	adapt	them	to	the	specific
requirements	of	your	organization.		The	following	topics	provide	further
information:

Modify	the	Supplied	TXDOC_DATABASE	Database	Configuration
Copy	the	Supplied	Processing	Sequences	Before	Use
The	Inbound	Process
The	Outbound	Process

	

Modify	the	Supplied	TXDOC_DATABASE	Database
Configuration
As	supplied,	the	inbound	and	outbound	processes	use	the	TXDOC_DATABASE
configuration	when	executing	a	Transformation	Map	involved	in	the	transaction
document	process.
It	is	intended	that	you	should	modify	this	TXDOC_DATABASE	configuration
as	required	to	address	your	own	database.		Alternatively,	you	can	modify	your
own	copies	of	the	inbound	and	outbound	processes	to	use	your	own	database
configuration.

	

Copy	the	Supplied	Processing	Sequences	Before	Use
The	sets	of	Processing	Sequences	supplied	with	LANSA	Composer	for
processing	inbound	and	outbound	transaction	document	flows:

Have	names	beginning	with	TXDOC_	;
Are	supplied	with	their	Supplied	processing	sequence	flag	set	to	Yes.

The	latter	point	means	you	may	not	change	these	definitions,	although	you	may
open	them	in	read-only	mode	and/or	print	their	definitions.		There	is	no
supported	means	to	turn	off	this	flag	such	that	you	can	modify	the	Processing
Sequences.
This	is	deliberately	so.		The	supplied	Processing	Sequences	may	be	updated	and
replaced	with	later	versions	of	LANSA	Composer.		If	LANSA	Composer
allowed	you	to	change	them,	then	your	changes	would	be	lost	when	you
upgrade	to	a	new	version.
If	you	intend	to	use	these	Processing	Sequences,	and	particularly	if	you	wish	to
modify	them,	you	are	strongly	advised	to	make	your	own	copies	and	use	or
modify	the	copies.		When	doing	so,	please	refer	to	the	following	notes.

Copying	the	Supplied	Processing	Sequences
The	supplied	inbound	and	outbound	processes	are	designed	to	be	modular	-	that
is,	they	are	broken	down	into	more	than	one	Processing	Sequence	with	the	main
Processing	Sequence	(TXDOC_INBOUND	or	TXDOC_OUTBOUND)	calling
the	subsidiary	Processing	Sequences	as	required.
If	you	copy	the	Processing	Sequences,	you	will	need	to	modify	any	references
to	subsidiary	Processing	Sequences	to	make	sure	that	your	copies	are	called.	
This	may	involve	one	or	other	of	the	following:

1.		Modifying	a	Document	Type	definition
					The	Document	Type	definition	includes	a	reference	to	the	Processing
Sequence	that	processes	transaction	documents	of	the	type.		For	example,	as
supplied,	the	'EDI'	document	type	is	configured	to	use	Processing	Sequence
TXDOC_IEDI010	to	processing	inbound	transaction	documents,	or
TXDOC_OEDI010	to	processing	outbound	transaction	documents.

					The	supplied	TXDOC_INBOUND	and	TXDOC_OUTBOUND	Processing
Sequences	uses	these	values	to	determine	which	Processing	Sequence	to
execute	for	a	transaction	document	file.

					If	you	have	copied	supplied	Processing	Sequences	that	are	specified	in	a

Document	Type	definition	(EDI	or	another	type),	then	you	should	modify	the
Document	Type	definition	to	call	your	copied	version.

					For	more	information	on	modifying	the	Document	Type	definition,	refer	to
Document	Type	Maintenance.
2.		Modifying	references	within	the	Processing	Sequence	definition

					In	other	cases,	references	to	called	Processing	Sequences	are	embedded
directly	in	the	calling	Processing	Sequence.

					For	example,	for	an	EDI	document,	the	supplied	TXDOC_IEDI010
Processing	Sequence	calls	TXDOC_IEDI020	which	in	turn	may	call
TXDOC_IEDI090.

					In	these	instances,	you	need	to	open	your	copy	of	the	calling	Processing
Sequence	in	the	Processing	Sequence	Editor	and	directly	change	the
reference	to	the	called	Processing	Sequence.

					For	more	information	on	editing	a	Processing	Sequence,	refer	to	Use	the
Processing	Sequence	Editor.

	

its:LANSA091.CHM::/lansa/intengc3_0030.htm

The	Inbound	Process

Note	1:		the	following	descriptions	relate	to	the	inbound	processes	as
supplied	with	LANSA	Composer.		Naturally	it	does	not	take	account
of	modifications	that	may	have	been	made	to	suit	a	particular
installation.

Note	2:		you	are	strongly	advised	to	make	your	own	copies	of	the
supplied	Processing	Sequences	and	use	or	modify	the	copies.		For
further	information,	please	refer	to	Copy	the	Supplied	Processing
Sequences	Before	Use.

The	supplied	inbound	process	is	designed	to	be	modular	-	that	is,	it	is	broken
down	into	more	than	one	Processing	Sequence	with	the	main	Processing
Sequence	calling	the	subsidiary	Processing	Sequences	as	required.
The	main	inbound	Processing	Sequence	is:

TXDOC_INBOUND Processes	inbound	transaction	documents

This	Processing	Sequence	can	be	run	for	one	named	Trading	Partner,	or	for	all
eligible	Trading	Partners	according	to	the	value	of	the	corresponding	parameter.	
It	performs	the	following	main	steps:

Receives	transaction	document	files	from	each	Trading	Partner

Receiving	transaction	document	files	is	accomplished	by	calling	a
separate	processing	sequence,	TXDOC_RCV.		This	processing	sequence,
as	supplied,	includes	provision	for	executing	processing	sequences	that
are	specific	to	one	or	more	trading	partners,	providing	the	possibility	of
tailoring	the	inbound	transport	for	each	trading	partner.
For	each	transaction	document	file,	TXDOC_INBOUND	uses	the
DISCOVER_DOC	Activity	to	determine	the	document	type	and	then	to
call	the	inbound	Processing	Sequence	associated	with	that	document	type.

LANSA	Composer	is	supplied	with	inbound	documents	of	types	EDI	and	XML
configured	to	be	processed	using	the	following	Processing	Sequences:

TXDOC_IEDI010 Processes	inbound	EDI	transaction	document	files

This	Processing	Sequence	calls	the	following	subsidiary

Processing	Sequences:
TXDOC_IEDI020		
TXDOC_IEDI090		

TXDOC_IXML010 Processes	inbound	XML	transaction	document	files

The	Outbound	Process

Note	1:		the	following	descriptions	relate	to	the	outbound	processes	as
supplied	with	LANSA	Composer.		Naturally	it	does	not	take	account
of	modifications	that	may	have	been	made	to	suit	a	particular
installation.	

Note	2:		you	are	strongly	advised	to	make	your	own	copies	of	the
supplied	Processing	Sequences	and	use	or	modify	the	copies.		For
further	information,	please	refer	to	Copy	the	Supplied	Processing
Sequences	Before	Use.

The	supplied	outbound	process	is	designed	to	be	modular	-	that	is,	it	is	broken
down	into	more	than	one	Processing	Sequence	with	the	main	Processing
Sequence	calling	the	subsidiary	Processing	Sequences	as	required.
The	main	outbound	Processing	Sequence	is:

TXDOC_OUTBOUND Processes	outbound	transaction	documents

This	Processing	Sequence	can	be	run	for	one	named	Trading	Partner,	or	for	all
eligible	Trading	Partners	according	to	the	value	of	the	corresponding	parameter.	
Other	parameters	allow	you	to	select	the	document	type,	standard	and/or
transaction	types	that	it	will	process.		It	performs	the	following	main	steps:

Identifies	the	outbound	Transformation	Maps	linked	to	each	Trading
Partner	(that	also	match	the	other	parameter	values	if	specified)
For	each,	it	calls	the	outbound	Processing	Sequence	associated	with	the
document	type	for	the	Transformation	Map.

LANSA	Composer	is	supplied	with	outbound	documents	of	types	EDI	and
XML	configured	to	be	processed	using	the	following	Processing	Sequences:

TXDOC_OEDI010 Processes	outbound	EDI	transaction	document	files
TXDOC_OXML010 Processes	outbound	XML	transaction	document	files

In	each	of	those	processing	sequences,	once	the	outbound	document	file(s)	have
been	prepared,	the	supplied	TXDOC_SEND	processing	sequence	is	executed	to
send	the	document	file	to	the	trading	partner.		This	processing	sequence,	as
supplied,	includes	provision	for	executing	processing	sequences	that	are	specific
to	one	or	more	trading	partners,	providing	the	possibility	of	tailoring	the

outbound	transport	for	each	trading	partner.
Note	that,	as	supplied,	the	TXDOC_SEND	processing	sequence	is	also	used	to
serve	the	Resend	capability	in	the	LANSA	Composer	Document	Manager
application.

4.1.7	Transformation	Maps	for	Transaction	Document	Processing
Transformation	maps	are	almost	always	an	integral	part	of	a	transaction
document	processing	solution:

For	inbound	processing,	they	are	typically	used	to	map	the	data	contained	in
the	inbound	transaction	document	into	the	application	database,	either
directly	or	via	intermediary	"staging"	database	tables.
For	outbound	processing,	they	are	typically	used	to	extract	data	from	the
application	database	and	map	it	into	the	outbound	transaction	document.

The	following	topics	contain	more	information	about	the	use	of	Transformation
Maps	in	the	transaction	document	processing	framework:

Model	Transformation	Maps	for	Transaction	Document	Processing
Transformation	Map	Data	Interchange	Attributes

For	information	about	pre-built	transformation	maps	supplied	for	use	with	the
transaction	document	processing	framework,	refer	to:

4.1.8	Pre-built	EDI	X12	solution	components
For	general	information	concerning	Transformation	Maps,	refer	to:

Transformation	Maps
The	Mapping	Tool

Note		If	you	intend	to	use	Altova	MapForce	to	create	mappings
involving	EDI	X12,	EDIFACT,	HL7	or	certain	other	specialized
transaction	standards,	you	may	need	to	install	additional	configuration
files	for	that	transaction	standard.		These	are	not	installed	by	the
LANSA	Composer	client	installation.
The	additional	installers	for	EDI	X12	and	EDIFACT	for	the	shipped
version	of	Altova	MapForce	are	provided	on	the	LANSA	Composer
client	media.
Configuration	files	for	other	versions	or	standards	may	be	downloaded
from	the	Altova	web-site	at
http://www.altova.com/components_mapforce.html.

its:LANSA091.CHM::/lansa/intengc2_0195.htm
its:LANSA091.CHM::/lansa/intengc9_0015.htm

Model	Transformation	Maps	for	Transaction	Document
Processing
The	pre-built	processing	sequences	that	are	central	to	the	transaction	document
processing	framework	assume	a	particular	pattern	for	the	transformation	maps
that	it	invokes	and	LANSA	Composer	supplies	the	following	"model"
transformation	maps	that	match	this	pattern:

TXDOC_MODEL_IN	(Transaction	document	inbound	model	map)
TXDOC_MODEL_OUT	(Transaction	document	outbound	model	map)

These	maps	cannot	be	used	directly	but	are	supplied	to	serve	as	a	model	from
which	you	can	create	your	own	maps	that	reference	the	database	and	the
transaction	document	types	involved	in	your	organisation's	transaction
document	processing.
The	key	thing	about	these	maps	is	that	they	define	the	number,	order	and
meaning	of	the	parameters	that	your	maps	will	be	assumed	to	receive	when
invoked	by	the	transaction	document	processing	framework,	as	supplied.		Any
maps	you	create	will	need	to	accept	the	same	parameters	in	order	to	be
compatible	with	the	supplied	transaction	document	processing	sequences.
For	inbound	maps,	the	expected	parameters	are:

Name	(*) Description

TXDOC_MODEL_IN_1(TextfileSourceFilename) Specifies	the	path	to	the
inbound	transaction
document	file.

(Adding	a	file	system
source	component	(for
example:	XML,	text,
EDI,	XBRL	or	Excel)
to	your	map	results	in
such	an	input
parameter.)

TXDOC_MODEL_IN_2
(DocNumberSourceParameter)

Specifies	the
transaction	document
envelope	number	that
identifies	the

transaction	document	in
the	transaction
document	register.	
This	value	is	returned
by	the
TXDOC_REGISTER
activity.

(Your	map	may	or	may
not	need	to	reference
this	value,	but	you	must
define	it	as	an	input
parameter	in	your	map
in	any	event	in	order
for	your	map	to	be
compatible	with	the
processing	sequences,
as	supplied,	used	by	the
transaction	document
processing	framework.)

TXDOC_MODEL_IN_3
(TXDOC_DATABASETargetConnection)

Specifies	a	LANSA
Composer	database
configuration	name	that
identifies	the	database
configuration	used	to
connect	to	the	target
database	for	the	map.

(Adding	a	database
target	component	to
your	map	results	in
such	a	parameter.)

(*)	Note	that	your	map	does	not	have	to	(and	will	not)	use	the	same
parameter	names	as	shown	-	it	is	the	number,	order	and	meaning	of	the
transformation	map	parameters	that	is	important	for	this	purpose.

For	outbound	maps,	the	expected	parameters	are:

Name	(*) Description

TXDOC_MODEL_OUT_1
(TXDOC_DATABASESourceConnection)

Specifies	a	LANSA	Composer
database	configuration	name
that	identifies	the	database
configuration	used	to	connect	to
the	source	database	for	the	map.

(Adding	a	database	source
component	to	your	map	results
in	such	a	parameter.)

TXDOC_MODEL_OUT_2
(DocNumberSourceParameter)

Specifies	the	transaction
document	envelope	number	that
identifies	the	transaction
document	in	the	transaction
document	register.		This	value
is	returned	by	the
TXDOC_REGOUTBND	or
TXDOC_REGOUTX12
activities	or	equivalent	APIs
and	by	the
FOR_EACH_TXDOCO
iterator	activity.

(Your	map	may	or	may	not
need	to	reference	this	value,	but
you	must	define	it	as	an	input
parameter	in	your	map	in	any
event	in	order	for	your	map	to
be	compatible	with	the
processing	sequences,	as
supplied,	used	by	the
transaction	document
processing	framework.)

TXDOC_MODEL_OUT_3
(TextfileTargetFilename)

Specifies	the	path	to	the
outbound	transaction	document
file	to	be	created.

(Adding	a	file	system	target
component	(for	example:	XML,
text,	EDI,	XBRL	or	Excel)	to
your	map	results	in	such	an
input	parameter.)

(*)	Note	that	your	map	does	not	have	to	(and	will	not)	use	the	same
parameter	names	as	shown	-	it	is	the	number,	order	and	meaning	of	the
transformation	map	parameters	that	is	important	for	this	purpose.

Transformation	Map	Data	Interchange	Attributes
LANSA	Composer	defines	and	stores	a	set	of	data	interchange	attributes	for
each	Transformation	Map.		These	are	defined	to	accommodate	attributes	that	are
used	by	the	transaction	document	processing	framework	as	follows:

Map
direction

Specifies	the	direction	(inbound	or	outbound)	of	the	transaction
document	processing	flow	to	which	this	map	applies.

When	the	map	is	linked	to	a	Trading	Partner,	this	attribute	is
referenced	to	identify	qualifying	transformation	maps	when	using
the	FIND_TPMAP	activity	with	the	DIRECTION	parameter.

Map
standard

Specifies,	by	selection	from	a	drop-down	list,	the	document	type
and	the	document	standard	to	which	this	map	applies.

When	the	map	is	linked	to	a	Trading	Partner,	this	attribute	is
referenced	to	identify	qualifying	transformation	maps	when	using
the	FIND_TPMAP	activity	with	the	STANDARD	parameter.

Map
transaction
type

Specifies	the	transaction	type	to	which	this	map	applies.		For
example,	'850'	for	an	EDI	X12	purchase	order	transaction	or
'ORDERS'	for	an	EDIFACT	order	transaction.	

When	the	map	is	linked	to	a	Trading	Partner,	this	attribute	is
referenced	to	identify	qualifying	transformation	maps	when	using
the	FIND_TPMAP	activity	with	the	TRANSACTIONID
parameter.

Import
processor

Specifies	the	name	of	the	import	processor	that	imports	inbound
transaction	data	into	an	application	database	after	it	has	been
received,	typically	into	staging	database	tables,	by	this
transformation	map.

This	name	should	be	passed	to	the	TXDOC_IMPORT	activity	in
order	to	execute	the	import	step	for	an	inbound	transaction
document	after	executing	the	associated	transformation	map.

Export
processor

Specifies	the	name	of	the	export	processor	that	extracts
transaction	information	from	an	application	database	and	writes

it,	typically	into	staging	database	tables,	to	be	read	by	this
transformation	map	to	prepare	an	outbound	transaction
document.

This	name	should	be	passed	to	the	TXDOC_EXPORT	activity	in
order	to	execute	the	export	step	for	an	outbound	transaction
document	before	executing	the	associated	transformation	map.

The	transformation	map	data	interchange	attributes	are	used	in	the	transaction
document	processing	framework,	or	can	be	used	in	your	own	custom	transaction
document	processing	solution	in	the	following	ways:

Where	applicable,	the	attribute	values	are	accessible	within	a	processing
sequence	by	using	built-in	variables	such	as	*transform.edi.imp	and
*transform.edi.exp	for	the	import	and	export	processor	names.		You	must
first	have	assigned	a	transformation	map	identifier	to	the	*transform	built-
in	variable	before	you	can	access	its	attribute	values	in	this	way.

Refer	to	Transformation	Map	(*TRANSFORM)	Built-in	Variable
Qualifiers	for	more	information.
LANSA	Composer	refers	to	some	of	the	attribute	values	to	identify
qualifying	transformation	maps	when	using	the	FIND_TPMAP	activity.
Some	of	these	and	other	attributes	relating	to	the	document	type	and
standard	can	be	retrieved	in	a	processing	sequence	using	the
DISCOVER_MAP	activity.

Import	and	Export	Processors
Note	that	the	use	of	import	and	export	processors	is	not	mandatory.		These
attributes	and	this	capability	are	provided	to	support	the	use	of	intermediary
"staging"	database	tables	when	processing	inbound	or	outbound	transaction
documents.		If	you	choose	instead	that	your	transformation	maps	directly	read
from	and	write	to	your	application	database	tables,	then	you	may	not	need	to
separately	define	or	execute	an	import	or	export	step.
For	more	information	about	defining	import	and	export	processors,	refer	to:

4.1.9	Application	program	interfaces	(APIs)
	

its:LANSA091.CHM::/lansa/intengc3_0295.htm

4.1.8	Pre-built	EDI	X12	solution	components
LANSA	Composer	is	supplied	with	a	limited	number	of	pre-built	transformation
maps,	staging	database	tables	and	export	and	import	processors	and	document
viewers	for	selected	EDI	X12	transactions.
These	pre-built	components	may	serve	as	a	pro-forma	solution	for	those
transactions,	but	more	especially	as	examples	of	a	completed	solution	upon
which	you	might	base	a	solution	for	other	types	of	transaction	documents	used
by	your	organization.
The	EDI	X12	transactions	and	the	associated	pre-built	components	are	listed
below:

X12
Transaction
Type

Inbound
and/or
Outbound
Maps

Import	and/or	Export
Processors	and	Document
viewers

Staging
Database
Tables	Supplied

810 O810_4010 n/a Yes	(EDI810*)

850 I850_4010 EDI850IMP
EDI850VWR

Yes	(EDI850*)

855 O855_4010 n/a Yes	(EDI855*)

997 I997_4010
O997_4010

EDI997EXP
EDI997IMP
EDI997VWR

Yes	(EDI997*)

	

For	more	information	on	the	types	of	components	mentioned	above	and	the	role
they	play	in	the	transaction	document	processing	framework,	please	refer	to:

4.1.7	Transformation	Maps	for	Transaction	Document	Processing
Import	and	Export	Processors
EDI	Document	Viewers

Source	code	for	the	pre-built	export	and	import	processors	and	document
viewers	mentioned	above	is	included	in	the	LANSA	Composer	development
package.		For	information	on	finding	and	installing	the	LANSA	Composer
development	package,	please	refer	to	Before	you	begin	your	Custom	Activity	.

its:LANSA091.CHM::/lansa/intengc7_0045.htm

Note		the	supplied	import	and	export	processors	read	from	or	write	to
sample	application	database	tables	installed	with	LANSA	Composer.	
If	you	wish	to	adapt	these	supplied	components	for	use	with	your	own
application,	you	will,	at	the	least,	have	to	replace	the	import	and
export	processors	with	ones	that	reference	your	own	application
database.

4.1.9	Application	program	interfaces	(APIs)
The	supplied	transaction	document	processing	framework	can	be	extended	in
several	ways	to	provide	extended	support	for	specific	transaction	types	and	to
better	integrate	into	your	own	applications.
One	of	the	ways	in	which	LANSA	Composer	supports	such	extensibility	is	by
providing	application	program	interfaces	(APIs)	in	the	forms	of	ancestor
components	for	your	own	LANSA	components	and	by	providing	callable
LANSA	interfaces.
Refer	to	the	following	for	more	information:

Import	and	Export	Processors
EDI	Document	Viewers
Registering	a	Pending	Outbound	Document
Register	a	Transaction	Document	and	Update	Its	Status

Import	and	Export	Processors
You	can	write	your	own	import	and	export	processors	to	handle	the
identification	selection,	validation	and	cleansing	of	data	between	your	own
application	database	and	the	intermediate	staging	database	tables.
Refer	to	the	following	for	more	information:

Develop	an	import	or	export	processor
Connect	your	import	or	export	processor	to	the	transaction	document
processing	framework

NB:		The	need	for	import	and	export	processors	is	predicated	on	your
transaction	document	processing	solution	using	intermediate	"staging"
database	tables	as	the	target	for	inbound	transformation	maps	and/or
the	source	for	outbound	transformation	maps.		This	solution	insulates
your	application	from	the	interfaces	that	the	transaction	document
processing	solution	opens	to	the	outside	world.		However,	the	use	of
"staging	database	tables	may	not	be	necessary	in	all	cases.		If	your
transformation	maps	write	and/or	read	directly	to	or	from	your
application	database,	then	you	may	have	no	need	to	implement	import
and	export	processors.

Develop	an	import	or	export	processor
Your	import	and	export	processors	must	be	implemented	as	LANSA	RDMLX
components	(re-useable	parts)	that	will	reside	and	execute	in	the	same	LANSA
system	and	partition	as	LANSA	Composer.
For	general	considerations	about	integrating	your	custom	LANSA	code	with
your	LANSA	Composer	solution	refer	to:

Appendix	E.	Using	LANSA	Composer	with	LANSA	Applications
You	must	use	DXXBASIMP	as	the	ancestor	of	your	import	processor
component	and	DXXBASEXP	as	the	ancestor	of	your	export	processor
component.
Before	you	begin	development,	you	must	prepare	your	development
environment.	You	will	need	a	correctly	licensed	and	configured	Visual	LANSA
development	environment	at	the	level	defined	in	Install	LANSA	Composer.

Development	of	your	custom	import	and	export	processors	must	be
performed	in	a	partition	that	is	enabled	for	full	RDMLX.

its:LANSA091.CHM::/lansa/intengc9_0240.htm
its:LANSA091.CHM::/lansa/intengc9_0010.htm

You	must	import	the	LANSA	Composer	development	package	into	the
partition	in	which	you	will	develop	your	import	and	export	processors.	This
provides	the	DXXBASIMP	and	DXXBASEXP	ancestor	classes	that	you	will
need	to	compile	your	processors

					The	LANSA	Composer	development	package	can	be	found	in	the	folder
DEV\Import	on	your	LANSA	Composer	software	DVD.

Connect	your	import	or	export	processor	to	the	transaction	document
processing	framework
When	you	have	built	your	import	or	export	processor	and	deployed	it	to	the
LANSA	Composer	server	environment,	you	must	connect	it	to	the	transaction
document	processing	framework	so	that	LANSA	Composer	knows	for	which
type	of	transactions	it	should	invoke	your	processor(s).
This	is	done	by	specifying	the	name	of	the	import	or	export	processor	in	the
appropriate	data	interchange	attribute	field	of	the	Transformation	Map(s)	that
process	the	transaction	type	to	which	it	applies.
For	more	information,	refer	to	Transformation	Map	Data	Interchange	Attributes.

EDI	Document	Viewers
You	can	create	specialized	document	viewers	that	plug-in	to	the	LANSA
Composer	Document	Manager	for	viewing	transaction-specific	data.
Contact	your	LANSA	Composer	supplier	for	more	information	about	this	type
of	extension.

Registering	a	Pending	Outbound	Document
Typically	the	need	to	create	and	send	an	outbound	transaction	document	to	one
of	your	trading	partners	is	triggered	by	an	event	in	your	application	such	as	the
entry	of	a	purchase	order	or	the	fulfillment	of	a	sales	order.
When	such	an	event	occurs,	your	application	needs	to	notify	the	LANSA
Composer	transaction	document	processing	framework	such	that	LANSA
Composer	can	subsequently	generate	and	send	the	outbound	document.
Your	application	can	do	this	by	registering	a	pending	outbound	transaction
document.		Subsequently	the	outbound	process	detects	and	processes	the
pending	outbound	document.
There	are	three	means	provided	for	you	to	register	a	pending	outbound
transaction	document,	described	under	the	following	headings:

Registering	a	pending	outbound	document	using	the
TXDOC_REGOUTBND	activity
Registering	a	pending	outbound	document	using	the	LANSA	function	API
Registering	a	pending	outbound	document	using	the	LANSA	component	API

For	a	more	general	API	that	is	capable	of	registering	both	inbound	AND
outbound	documents,	you	may	wish	to	refer	also	to:

Register	a	Transaction	Document	and	Update	Its	Status

Registering	a	pending	outbound	document	using	the
TXDOC_REGOUTBND	activity
The	simplest	case	is	where	you	have	an	existing	LANSA	Composer	Processing
Sequence	which	is	responsible	for	the	event	that	triggers	the	need	to	generate
and	send	an	outbound	transaction	document.		In	that	event,	your	process	can
include	the	supplied	TXDOC_REGOUTBND	activity	to	register	the	pending
outbound	transaction	document	and	no	programming	is	required.
For	more	information	on	this	activity,	refer	to	TXDOC_REGOUTBND.

LANSA	Composer	also	supplies	a	specialized	form	of	this	activity,
TXDOC_REGOUTX12,	for	registering	pending	outbound	EDI	X12
transactions	documents.

Registering	a	pending	outbound	document	using	the	LANSA
function	API

its:LANSA091.CHM::/lansa/AT_TXDOC_REGOUTBND.htm

Note		This	section	assumes	sound	knowledge	of	the	applicable
LANSA	development	techniques.		Refer	to	LANSA	product
documentation	for	detailed	information	on	application	development
with	LANSA.

LANSA	Composer	provides	the	DXXREGO	function	for	registering	a	pending
outbound	transaction	document	from	a	LANSA	application.

Your	LANSA	application	can	call	DXXREGO	using	the	CALL	RDML
command	with	PROCESS(*DIRECT).		Function	DXXREGO	must	execute
on	the	LANSA	Composer	server.		Your	application	may,	however,	execute	it
via	the	LANSA	SuperServer	CALL_SERVER_FUNCTION	built-in
function.
Your	application	can	pass	the	necessary	variable	information	using	the
LANSA	exchange	list	as	follows:

Name Description Type

DXTPII Trading	partner	internal	or	external	id A(32)

Either
DXXDCTID
DXXDSTID
DXXDSTVR
Or
DXXDSTII

Document	type	name
Document	standard	name
Document	standard	version

Document	standard	internal	identifier

A(15)
A(15)
A(15)

A(32)

DXXTRNTYP Transaction	id	(eg:	'850',	'INVOIC') A(6)

DXXTEST Production	(P)	or	test	(T)	indicator A(1)

DXXKEY01 Staging	file	key	1	(eg:	Company	code) A(32)

DXXKEY02 Staging	file	key	2	(eg:	Division	code) A(32)

DXXKEY03 Staging	file	key	3	(eg:	Department	code) A(32)

DXXKEY04 Staging	file	key	4	(eg:	Invoice	number) A(32)

DXXKEY05 Staging	file	key	5	(eg:	other) A(32)

DXXKEY06 Staging	file	key	6	(eg:	other) A(32)

	

Your	application	can	receive	the	result	of	the	request	via	the	exchange	list	as
follows:

Name Description Type

DXRESULT Result	code	(OK,	ER) A(2)

DXXENVID Transaction	document	envelope	id S(9,	0)

	

Note		If	you	have	imported	the	LANSA	Composer	development
package	into	your	Visual	LANSA	development	environment,	the
definitions	of	the	fields	named	above	will	already	be	present	in	your
LANSA	repository.

Registering	a	pending	outbound	document	using	the	LANSA
component	API

Note		This	section	assumes	sound	knowledge	of	the	applicable
LANSA	development	techniques.		Refer	to	LANSA	product
documentation	for	detailed	information	on	application	development
with	LANSA.

LANSA	Composer	provides	the	DXXREGOUT	re-useable	part	that	provides
several	interfaces	for	registering	a	pending	outbound	transaction	document	from
a	component-based	LANSA	application.
The	application	can	choose	from	two	interfaces:
1.		Method	dxSimpleDocument	allows	the	application	to	create	and	register	a
single	document	envelope	containing	a	single	interchange,	group,	and
transaction	message	in	one	call

2.		An	alternate	set	of	methods	allows	the	application	to	create	and	register	a
more	complex	transaction	document	containing	multiple	interchanges,	groups
and/or	transaction	messages:
dxNewDocument1	OR	dxNewDocument2
dxNewInterchange			(optional)
dxNewGroup												(optional)

dxNewMessage			
dxRegisterDocument			

When	using	either	interface	style,	the	application	can	optionally	handle	the
following	events:
dxValidationError			
dxPreInsert2IN			
dxPreInsert3GP			
dxPreInsert4MS		

The	latter	three	events	offer	an	opportunity	to	customize	the	transaction	data
generated	by	the	API	before	it	is	written	to	the	transaction	document	database.

Note		Once	you	have	imported	the	LANSA	Composer	development
package	into	your	Visual	LANSA	development	environment,	you	can
use	the	feature	help	within	the	Visual	LANSA	IDE	to	review	the	detail
of	the	methods	and	events	exposed	by	the	DXXREGOUT	component.

Register	a	Transaction	Document	and	Update	Its	Status
In	the	previous	section	(Registering	a	Pending	Outbound	Document)	a	set	of
APIS	were	described	for	registering	a	pending	outbound	transaction	document
that	can	then	be	picked	up	and	processed	by	the	usual	outbound	processes.		This
is	by	far	the	most	common	case	where	you	may	need	to	update	LANSA
Composer's	Transaction	Document	register	from	your	own	application	code.
However,	for	more	advanced	uses,	LANSA	Composer	provides	a	more	general
API	that	is	capable	of	both:

Registering	a	transaction	document	(whether	inbound	OR	outbound);	and
Updating	the	status	of	a	registered	transaction	document

These	two	functions	correspond	directly	to	the	functions	of	the
TXDOC_REGISTER	and	TXDOC_STATUS	activities.		(Note	that	they	do	not
provide	the	EDI-particular	features	that	are	provided	by	the	APIs	described	in
Registering	a	Pending	Outbound	Document.)

Note		This	section	assumes	sound	knowledge	of	the	applicable
LANSA	development	techniques.		Refer	to	LANSA	product
documentation	for	detailed	information	on	application	development
with	LANSA.

LANSA	Composer	provides	the	DXXREGDOC	re-useable	part	that	provides
the	interfaces	through	two	methods:
1.		Method	dxDocRegister	allows	the	application	to	register	a	transaction
document	and	is	functionally	equivalent	to	the	supplied	TXDOC_REGISTER
activity.

2.		Method	dxDocStatus	allows	the	application	to	update	the	status	of	a
specified	transaction	document	and	is	functionally	equivalent	to	the	supplied
TXDOC_STATUS	activity.

Note		Once	you	have	imported	the	LANSA	Composer	development
package	into	your	Visual	LANSA	development	environment,	you	can
use	the	feature	help	within	the	Visual	LANSA	IDE	to	review	the	detail
of	the	methods	and	properties	exposed	by	the	DXXREGDOC
component.

4.2	LANSA	Composer	Document	Manager
For	transaction	document	processing	solutions	that	make	use	of	LANSA
Composer's	built-in	transaction	document	register	(via	the
TXDOC_REGISTER,	TXDOC_REGOUTBND,	TXDOC_REGOUTX12	and
TXDOC_STATUS	activities),	LANSA	Composer	provides	a	separate	LANSA
Composer	Document	Manager	application.
The	LANSA	Composer	Document	Manager	provides	the	ability	to	enquire	upon
and	monitor	the	flow	of	inbound	and	outbound	transaction	documents.
The	following	topics	provide	more	information	about	working	with	the	LANSA
Composer	Document	Manager:

4.2.1	Start	the	LANSA	Composer	Document	Manager
4.2.2	Work	with	Transaction	Documents
4.2.3	Work	with	Transaction	Document	Statistics

The	LANSA	Composer	Document	Manager	also	provides	access	to	LANSA
Composer's	Operations	Console	and	Java	Service	Manager	console.		For
information	on	these	refer	to	the	following:

Operations	Console
Java	Service	Manager	Console

its:LANSA091.CHM::/lansa/intengc5_0015.htm
its:LANSA091.CHM::/lansa/intengc5_0020.htm

4.2.1	Start	the	LANSA	Composer	Document	Manager
You	can	start	the	LANSA	Composer	Document	Manager	in	two	ways:

Using	the	shortcut	provided	on	the	Start	menu

When	you	start	the	LANSA	Composer	Document	Manager	this	way,	you
will	see	the	Connect	to	LANSA	Composer	Server	window	to	let	you	specify
all	the	information	necessary	to	make	a	connection	to	your	LANSA
Composer	server.		Refer	to	Connect	to	LANSA	Composer	Server	for	more
information.
From	within	the	LANSA	Composer	client	application	by	using	the	Open
LANSA	Composer	Document	Manager	item	from	the	Tools	menu.		You	do
not	have	to	logon	to	your	LANSA	Composer	server	because	LANSA
Composer	uses	the	details	you	used	to	start	the	LANSA	Composer	client
application.

Once	you	have	successfully	connected,	the	LANSA	Composer	Document
Manager	Start	Here	window	is	displayed.

its:LANSA091.CHM::/lansa/intengc1_0140.htm

4.2.2	Work	with	Transaction	Documents
To	work	with	Transaction	Documents,	expand	Files	in	the	Navigator	and	then
select	Documents.		The	Documents	filter	and	Documents	list	will	be	displayed.	
You	can	then:

Filter	Documents
Work	with	the	Documents	List
View	Document	Details
View	Document	Processing	History
View	other	document	details

Filter	Documents
You	can	filter	transaction	documents	by	a	wide	variety	of	criteria	that	enable
you	to	perform	very	specific	searches.

Remember	to	check	the	Clear	List	checkbox	if	you	wish	the	filtered	items	to
replace	the	existing	list.	If	you	uncheck	the	Clear	List	checkbox,	then	the	items
found	by	your	search	will	be	added	to	the	existing	list	if	not	already	there.
Click	the	Search	button	to	perform	your	search	and	add	the	matching	items	to
the	Documents	list.
Work	with	the	Documents	List
The	Documents	List	displays	the	registered	transaction	documents	that	matched
your	search	criteria.		You	can	select	an	item	to	view	its	details	in	the	bottom
portion	of	the	screen.

The	Documents	list	is	displayed	as	a	tree.		For	EDI	documents,	you	can	expand
the	top-level	entries	to	select	and	review	details	that	apply	at	the	following
levels:

Trading	partner	agreements	(or	interchanges)
Groups
Transactions	(or	messages)

Note		you	can	directly	enquire	upon	and	view	lists	of	documents	at
these	levels	by	expanding	Messages	in	the	Navigator	and	selecting	the
corresponding	option.		These	options	normally	apply	only	to	EDI
transaction	documents.		They	offer	similar	filtering	and	viewing
capabilities	to	those	supplied	by	the	Documents	option.

View	Document	Details
When	you	select	a	transaction	document	in	the	Documents	List,	you	can	click
the	View	tab	to	view	the	registered	details	for	the	transaction	document.

You	can	click	the	View	button	to	display	the	Processing	Sequence	Log	for	the
Processing	Sequence	Run	that	processed	the	transaction	document.		Click	Print

to	print	the	Processing	Sequence	Log.

Note		The	Processing	Sequence	Log	is	not	the	same	as	the	transaction
document	history.		The	latter	can	be	seen	by	selecting	the	History	tab.

If	the	processing	for	a	transaction	document	ended	in	error,	and	you	are	able	to
correct	the	cause	of	the	error,	you	can	restart	the	processing	for	that	document
by	clicking	the	Restart	button.		If	it	is	not	possible	or	appropriate	to	resume
processing	for	the	transaction	document,	click	Abandon	to	mark	the	document
as	complete.
If	the	processing	for	an	outbound	transaction	document	has	completed
successfully,	a	Resend	button	is	available.		In	the	event	that	you	need	to	resend
the	completed	document	to	the	exchange	trading	partner	(and	assuming	the
document	is	still	available	in	the	last	recorded	location	shown),	you	may	click
Resend	to	accomplish	that.
When	you	click	Resend,	LANSA	Composer	will	execute	the	processing
sequence	named	in	the	"Resend"	processing	sequence	system	setting	to	fulfil	the
request.		As	supplied,	this	is	the	TXDOC_SEND	processing	sequence,	but	it
may	have	been	customised	in	your	installation.		That	processing	sequence,	in
turn,	may	invoke	a	processing	sequence	specifically	associated	with	the	trading
partner	for	the	purpose.
View	Document	Processing	History
When	you	select	a	transaction	document	in	the	Documents	List,	you	can	click
the	History	tab	to	view	the	processing	history	for	the	transaction	document.

The	transaction	processing	history	consists	of	a	line	for	each
TXDOC_REGISTER	or	TXDOC_STATUS	activity	that	was	executed
in	the	course	of	processing	the	transaction	document.

	
View	other	document	details
The	Documents	list	is	displayed	as	a	tree.		For	EDI	documents,	you	can	expand
the	top-level	entries	to	select	and	review	details	that	apply	at	the	following
levels:

Trading	partner	agreements	(or	interchanges)
Groups
Transactions	(or	messages)

Note		you	can	directly	enquire	upon	and	view	lists	of	documents	at
these	levels	by	expanding	Messages	in	the	Navigator	and	selecting	the
corresponding	option.		These	options	normally	apply	only	to	EDI
transaction	documents.		They	offer	similar	filtering	and	viewing
capabilities	to	those	supplied	by	the	Documents	option.

If	supported	for	the	document	type,	standard	and	transaction	type,	you	may	also
be	able	to	view:

Validation	Errors
If	available	select	the	Validation	Errors	tab	to	display	details	of	any
validation	errors	detected	for	the	Transaction	Document.		As	supplied,	this
feature	is	available	only	for	EDI	documents	that	were	validated	in	the
DISCOVER_EDI	Activity	and	that	have	a	suitable	SEF	file	against	which	to
validate.
Document	content
If	available	select	the	Contents	tab	to	display	formatted	details	of	the
transaction	document	content.		As	supplied,	this	feature	is	available	only	for
selected	EDI	X12	transactions	for	which	a	viewer	is	supplied.

4.2.3	Work	with	Transaction	Document	Statistics
LANSA	Composer	provides	a	web-browser	based	interface	for	graphically
displaying	management	statistics	about	inbound	and	outbound	transaction
document	flows.
To	work	with	Transaction	Document	Statistics,	expand	Files	in	the	Navigator
and	then	select	Statistics.		If	the	Transaction	Document	Statistics	page	fails	to
display,	this	is	typically	for	one	of	the	following	reasons:

The	web	server	or	listener	is	not	running	on	the	application	server.	If	this
is	the	case,	start	the	web	server	and/or	listener	and	retry.
The	base	URL	for	the	browser	interface	is	not	correct.	Check	and	correct
the	applicable	system	setting	if	necessary.	Refer	to	System	Settings	for
further	information.
If	the	chart	views	do	not	display,	it	may	be	because	the	software
requirements	have	not	been	met.		Refer	to	Requirements	for	Chart
Presentation	in	Transaction	Document	Statistics.

The	Transaction	Document	Statistics	page	initially	displays	a	selection	of	views
in	four	panes.		You	can	change	the	views	by	selecting	from	the	drop-down	list.	
You	can	collapse	and	expand	the	views	by	clicking	the	arrow	buttons.

its:LANSA091.CHM::/lansa/intengc6_0015.htm

Note	You	can	open	the	Transaction	Document	Statistics	in	your	web
browser	(outside	LANSA	Composer).	To	do	this	click	the	Open	in
Web	Browser	button.	When	opened	in	your	web	browser,	you	can	add
the	console	to	your	favourites	or	copy	and	send	the	URL	to	other
users,	such	as	operations	staff.

Extending	or	Customising	Transaction	Document	Statistics
The	Transaction	Document	Statistics	page	as	supplied	offers	a	basic	set	of
charts	and	tables	relating	to	transaction	document	flows	in	LANSA	Composer.	
These	serve	both	as	a	starting	set	and	as	examples	of	what	is	possible.
If	you	wish	to	make	more	extensive	use	of	this	feature	customised	to	your
organisation's	particular	requirements,	it	is	possible	to	develop	and	plug-in
custom	views	to	this	page.		The	available	views	are	defined	in	the	table
DXXDSHF1	in	the	LANSA	Composer	database	on	your	LANSA	Composer

IBM	i	or	Windows	server.		Contact	your	LANSA	support	and	service
representative	for	more	information.

Requirements	for	Chart	Presentation	in	Transaction	Document
Statistics
Four	of	the	supplied	views	for	the	Transaction	Document	Statistics	page	are
capable	of	presenting	transaction	document	flow	volumes	in	chart	form.
These	chart	views	have	requirements	for	additional	software	that	is	not	supplied
or	installed	with	LANSA	Composer.		These	are:

Microsoft	Silverlight	(version	4	recommended)	must	be	installed	on	the
client
Visifire	chart	components	run-time	files	must	be	installed	on	the	server

The	Visifire	chart	components	are	implemented	in	the	Silverlight-based
application	package	file	SL.Visifire.Charts.xap.		To	use	these	chart	views,	you
must	acquire	the	Visifire	chart	components	and	install	the	SL.Visifire.Charts.xap
in	the	webserver\images	folder	of	your	LANSA	Composer	server	installation.	
For	example:

on	an	IBM	i	server,	in	/LANSA_licpgmlib/webserver/images
on	a	Windows	server,	in	C:\Program	Files\LANSA	Composer
Server\WebServer\Images

	

5.	Using	aXes	Terminal	Server	with	LANSA	Composer
aXes	is	a	separately	licensed	LANSA	product	that	Web	enables	5250
applications	by	dynamically	transforming	the	5250	data	stream	into	a	graphical
interface	for	display	in	a	Web	browser.
LANSA	Composer	provides	a	set	of	activities	that	are	designed	to	permit	a
Processing	Sequence	to	connect	to	and	interact	with	an	aXes	Terminal	Server	to
navigate,	populate	and	interrogate	IBM	i	5250	screens.	Using	the	aXes	Terminal
Server	activities,	a	Processing	Sequence	can	interact	directly	with	existing	IBM
i	5250	applications	running	on	the	same	or	a	different	server	system.	The
Processing	Sequence	can	execute	activities	to	perform	such	operations	as:

connect	(and	logon)	and	disconnect	the	5250	session
interrogate	the	values	of	current	screen	identifiers	and	field	values
set	the	values	of	5250	screen	entry	fields
send	function	keys	such	as	ENTER	and	F3
perform	multiple	operations	with	a	single	activity	by	using	aXes	terminal
operation	scripts.

The	aXes	terminal	server	activities	are	individually	described	in:
Terminal	Server	Activities.	
This	chapter	provides	an	overview	and	considerations	for	using	these	activities.

Also	see
5.1	What	can	I	use	the	aXes	Terminal	Server	Activities	for?
5.2	Requirements	for	using	The	aXes	Terminal	Server	Activities
5.3	When	to	use	the	aXes	Terminal	Server	Activities
5.4	Things	you	should	understand	about	the	aXes	Terminal	Server	Activities
5.5	Overview	of	aXes	Terminal	Server	Activities
5.6	Using	aXes	Terminal	Operations	Scripts
5.7	Processing	Sequence	Example

its:LANSA091.CHM::/lansa/intengc2_0607.htm

5.1	What	can	I	use	the	aXes	Terminal	Server	Activities	for?
You	can	use	these	activities	to	allow	your	application	to	interact	with	any	5250
application,	whether	or	not	you	have	source	code	or	specifications	for	the	5250
application.	You	only	need	to	know	how	to	operate	the	application	as	a	5250
terminal	operator	would.
The	following	describes	one	example	scenario	that	might	be	solved	with	a
LANSA	Composer	solution	that	employs	the	aXes	terminal	server	activities.
To	receive	and	enter	sales	orders	electronically	…
When	your	ERP	application	was	developed	and	implemented,	all	sales	orders
were	received	by	telephone	operators	who	entered	the	details	at	5250	screens.
Now,	many	of	your	customers	wish	to	submit	their	sales	orders	electronically	in
XML	format.	Unfortunately,	details	of	the	internals	of	the	ERP	application	for
the	order	entry	screens	are	not	available.
In	order	to	satisfy	the	customer	requirement	without	replacing	the	ERP
application,	you	can	elect	to	implement	a	LANSA	Composer	solution	that	can
receive	the	sales	order	XML	files,	extract	the	details	and	use	the	aXes	terminal
service	activities	to	drive	the	5250	screens	of	the	ERP	order	entry	function.

5.2	Requirements	for	using	The	aXes	Terminal	Server	Activities
The	following	requirements	apply	to	using	the	aXes	Terminal	Server	activities:

A	correctly	installed,	licensed	and	configured	aXes	Terminal	Server	that	is
network	accessible	to	the	LANSA	Composer	installation	is	necessary	to	use
the	aXes	Terminal	Server	activities.
The	aXes	Terminal	Server	is	a	separately	licensed	product.	Additional
software	license	fees	apply.
The	aXes	Terminal	Server	Activities	use	the	LANSA	Integrator
aXesTerminalService
LANSA	Integrator	must	run	JVM	Version	1.5	or	higher	in	order	to	use	the
aXes	Terminal	Server	with	Composer.
The	aXesTerminalService	and	LANSA	Composer's	aXes	Terminal	Server
activities	work	with	aXes	version	2.1	and	above.

5.3	When	to	use	the	aXes	Terminal	Server	Activities
In	general,	preferred	LANSA	Composer	techniques	for	integrating	with	an
existing	IBM	i	application	would	include	direct	integration	with:

the	application's	database	using	Transformation	Maps,	and/or
application	program	interfaces	provided	by	the	application	using
CALL_3GL,	CALL_FUNCTION	or	CALL_JAVA	activities	or	by	creating
custom	activities.

Using	such	techniques	will	generally	provide	the	most	resilient	and	the	best
performing	solution	as	well	as	being	the	easiest	to	maintain.
However,	there	can	be	instances	where	the	above	types	of	integration	are	not
possible.	For	example	when	the	necessary	domain	knowledge	is	NOT	available
or	it	is	NOT	technically	feasible	to:

directly	access	the	application	database	using	transformation	maps.
use	application	program	interfaces	or	such	interfaces	do	not	exist.

In	these	circumstances,	being	able	to	drive	the	5250	screens	may	provide	a	level
of	integration	with	the	application	that	may	not	otherwise	be	possible.	Where
this	is	the	case,	LANSA	Composer's	aXes	terminal	server	activities	can	provide
the	solution.
A	solution	employing	LANSA	Composer's	aXes	terminal	server	activities	will
be	most	suitable	where:

alternative	(preferred)	forms	of	integration	(as	above)	have	been	ruled	out;
the	solution	will	require	a	relatively	limited	amount	of	5250	interaction
the	solution	will	involve	a	manageable	set	of	individual	data	items	(sent	to	or
received	from	the	5250	screens)	that	can	be	transferred	to	and	from	the
LANSA	Composer	processing	sequence	variable	pool	without	excessive
performance	or	maintenance	burden;
the	performance	of	the	5250	interactions	in	relation	to	the	overall	solution	is
not	critical.

If	you	are	unsure	whether	your	solution	will	meet	those	criteria,	there	are
alternative	techniques	you	may	wish	to	consider.	These	can	still	provide	the
benefits	of	both	the	aXes	terminal	server	and	of	LANSA	Composer,	but	provide
reduced	complexity.	They	do,	however,	mean	that	program	code	must	be
written.
For	example,	you	could	code	custom	activities	or	functions	that	use	LANSA

Integrator's	aXesTerminalService	directly	to	complete	all	the	5250	interaction
associated	with	a	known	transaction	in	one	step.	Then	the	custom	activity	or
function	can	be	included	in	the	LANSA	Composer	process	along	with
associated	transport,	transformation	and	other	activities	and	directives	as
required.
Alternatively,	you	could	code	directly	to	an	aXes	API	for	an	even	more	efficient
and	direct	solution.

5.4	Things	you	should	understand	about	the	aXes	Terminal
Server	Activities
A	LANSA	Composer	solution	that	uses	the	aXes	terminal	server	activities
differs	from	other	LANSA	Composer	solutions	in	several	important	ways.	It	is
important	that	you	understand	these	differences	before	committing	yourself	to
this	type	of	solution.
For	a	discussion	of	the	key	differences,	refer	to	the	following:
The	aXes	terminal	server	activities	are	highly	granular
The	Processing	Sequence	requires	greater	access	to	application	data	than	a
typical	BPI	solution
The	solution	may	be	at	risk	of	unanticipated	5250	application	behavior
The	solution	has	limited	eligibility	for	restart	in	the	event	of	failure

The	aXes	terminal	server	activities	are	highly	granular
For	any	given	solution,	each	of	the	LANSA	Composer	aXes	terminal	server
activities	will	do	a	relatively	small	part	of	the	necessary	work	and	your
Processing	Sequence	will	need	to	execute	a	larger	number	of	activities	than
would	be	the	case	with	most	other	LANSA	Composer	solutions.
For	example,	a	simple	application	that	navigates	to	a	data	entry	screen	and
enters	some	values	might	need	to	execute	a	sequence	of	activities	along	these
lines:

1.		TS_CONNECT
2.		A	series	of	activities	including	TS_SETBYPOS	or	TS_SETBYNAME
and/or	TS_SEND	as	required	to	navigate	to	the	data	entry	screen

3.		TS_SETBYPOS	or	TS_SETBYNAME	for	each	of	the	values	/	fields	to
be	filled

4.		TS_SEND	to	send	the	completed	screen	to	the	aXes	Terminal	Server
5.		A	further	series	of	activities	to	navigate	to	a	screen	at	which	the	session
can	be	signed	off	in	a	controlled	fashion

6.		TS_DISCONNECT
The	effect	of	this	may	be	reduced	to	some	degree	by	using	aXes	terminal
operations	scripts	(as	described	in	5.6	Using	aXes	Terminal	Operations	Scripts).
However,	this	runs	against	the	general	rule	that	your	Business	Process
Integration	(BPI)	solution	should	do	most	of	its	work	in	a	smaller	number	of

Activities	and	Transformation	Maps	in	order	to	optimize	performance	of	the
solution.
Therefore	you	should	satisfy	yourself	that	a	solution	employing	the	aXes
terminal	server	activities	will	give	you	the	performance	and	throughput	that
meets	your	requirements.

The	Processing	Sequence	requires	greater	access	to	application
data	than	a	typical	BPI	solution
Mostly,	Processing	Sequence	variables	hold	the	variable	data	that	is	used	to
orchestrate	the	process—for	example,	paths	to	transaction	documents	that	are
being	processed.	In	the	typical	BPI	solution,	most	of	the	transaction	content
(that	is,	the	application	data)	is	handled	by	and	known	only	to	the	Activities	and
Transformation	Maps	that	act	upon	it.
However,	a	LANSA	Composer	solution	that	uses	the	aXes	terminal	server
activities	must	depart	from	this	model.	In	such	a	solution,	the	Processing
Sequence	will	need	access	to	whatever	data	is	sent	to	or	received	from	the	5250
application	screens.
For	example,	if	your	solution	is	required	to	fill	an	order	entry	screen,	then	it	will
need	Processing	Sequence	variables	that	contain	the	data	items	(such	as
customer	number,	order	date,	part	numbers	and	quantities)	that	must	be	passed
as	parameters	to	the	appropriate	aXes	terminal	server	activities.
LANSA	Composer	provides	features	to	facilitate	this,	but	you	should
understand	that	this	adds	steps	and	consequent	complexity	and	overhead	to	your
solution.	For	more	information	refer	to:

Variables
Saving,	Loading	and	Transforming	Processing	Sequence	Variables

The	solution	may	be	at	risk	of	unanticipated	5250	application
behavior
Any	application	that	seeks	to	interact	with	another	application	via	its	5250
screens	(by	any	means)	assumes	risks—for	example,	the	5250	application's
screens	may	change	or	certain	inputs	provided	may	yield	results	that	were	not
anticipated.	These	risks	may	cause	unanticipated	and	unhandled	Processing
Sequence	failures.
You	need	to	understand	the	extent	to	which	your	proposed	solution	may	be
affected	by	such	considerations	and	the	degree	of	exposure	that	is	acceptable	to
you	before	committing	yourself	to	this	approach.

its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0116.htm

The	solution	has	limited	eligibility	for	restart	in	the	event	of
failure
When	a	LANSA	Composer	Processing	Sequence	run	ends	in	error,	it	is	often
possible	to	restart	it	from	the	point	of	failure—once	the	cause	of	the	failure	has
been	corrected.	This	is	a	very	powerful	feature	of	LANSA	Composer.
However,	a	LANSA	Composer	solution	using	the	aXes	terminal	server	activities
cannot	be	restarted	if	a	failure	occurs	during	the	aXes	terminal	server	session—
that	is,	before	the	TS_DISCONNECT	activity	is	executed.
This	is	because	LANSA	Composer	is	unable	to	return	the	terminal	server
session	to	the	state	it	was	in	at	the	point	of	the	failure.
To	maximize	the	benefit	of	LANSA	Composer's	restart	capability,	you	should
complete	your	aXes	terminal	server	interactions	and	execute	the
TS_DISCONNECT	activity	at	the	earliest	opportunity.	Once	all	active	aXes
terminal	sessions	have	been	disconnected,	normal	restart	eligibility	resumes.

5.5	Overview	of	aXes	Terminal	Server	Activities
LANSA	Composer's	aXes	terminal	server	activities	fall	into	several	groups.
These	are:
Connect	and	Disconnect	aXes	Terminal	Server	Sessions

Activity	ID Description

TS_CONNECT Connect	to	aXes	5250	terminal	session

TS_DISCONNECT Disconnect	from	aXes	5250	terminal	session

	

Interrogate	aXes	Terminal	Session	Attributes

Activity	ID Description

TS_CAPTURE Capture	aXes	5250	terminal	session	screen	image

TS_GET Get	aXes	terminal	session	attributes

TS_GETFIELD Get	aXes	5250	terminal	session	field	attributes

	

Get	and	Set	aXes	Terminal	Screen	Field	Values	and	Cursor	Position

Activity	ID Description

TS_GETBYNAME Get	aXes	5250	terminal	session	value	by	name

TS_GETBYPOS Get	aXes	5250	terminal	session	value	by	position

TS_SETBYNAME Set	aXes	5250	terminal	session	value	by	name

TS_SETBYPOS Set	aXes	5250	terminal	session	value	by	position

TS_SETCURSOR Set	aXes	5250	terminal	session	cursor	position

	

Sending	Data	to	the	aXes	Terminal	Server

its:LANSA091.CHM::/lansa/AT_TS_CONNECT.htm
its:LANSA091.CHM::/lansa/AT_TS_DISCONNECT.htm
its:LANSA091.CHM::/lansa/AT_TS_CAPTURE.htm
its:LANSA091.CHM::/lansa/AT_TS_GET.htm
its:LANSA091.CHM::/lansa/AT_TS_GETFIELD.htm
its:LANSA091.CHM::/lansa/AT_TS_GETBYNAME.htm
its:LANSA091.CHM::/lansa/AT_TS_GETBYPOS.htm
its:LANSA091.CHM::/lansa/AT_TS_SETBYNAME.htm
its:LANSA091.CHM::/lansa/AT_TS_SETBYPOS.htm
its:LANSA091.CHM::/lansa/AT_TS_SETCURSOR.htm

Activity	ID Description

TS_SEND Send	data	to	aXes	5250	terminal	session

TS_SETBYNAME Set	aXes	5250	terminal	session	value	by	name

TS_SETBYPOS Set	aXes	5250	terminal	session	value	by	position

TS_SETCURSOR Set	aXes	5250	terminal	session	cursor	position

	

Performing	Multiple	Operations	with	Axes	Terminal	Operations	Scripts
You	can	use	this	activity	to	optimize	performance	and	reduce	complexity	by
performing	multiple	aXes	terminal	operations	defined	in	a	script	file	with	a
single	activity	execution:

Activity	ID Description

TS_EXECUTE Execute	an	aXes	terminal	operations	script

	

its:LANSA091.CHM::/lansa/AT_TS_SEND.htm
its:LANSA091.CHM::/lansa/AT_TS_SETBYNAME.htm
its:LANSA091.CHM::/lansa/AT_TS_SETBYPOS.htm
its:LANSA091.CHM::/lansa/AT_TS_SETCURSOR.htm
its:LANSA091.CHM::/lansa/AT_TS_EXECUTE.htm

5.6	Using	aXes	Terminal	Operations	Scripts
The	set	of	aXes	terminal	server	activities	provided	with	LANSA	Composer
permit	your	solution	to	interact	with	your	5250	application	via	aXes	in	virtually
any	way	necessary.
However,	most	of	the	activities	perform	a	single	operation	amongst	several	to
complete	just	one	screen	interaction.	For	example,	the	TS_SETBYNAME	or
TS_SETBYPOS	activities	let	you	set	the	value	in	a	5250	screen	entry	field,	but
only	a	single	field	for	each	execution.
This	level	of	interface	is	the	most	flexible	for	your	solution.	At	each	and	every
operation,	your	process	remains	in	control,	and	can	perform	different	actions
based	on	the	outcome	of	every	screen	interaction.
On	the	other	hand,	if	every	aXes	terminal	operation	was	to	be	executed	in	this
way,	the	size	and	complexity	of	your	Processing	Sequence	may	become
excessive	in	a	non-trivial	implementation.	As	a	consequence,	the	performance
of	your	solution	may	be	adversely	affected.
To	enable	you	to	choose	the	appropriate	balance	amongst	the	considerations	of
flexibility,	complexity	and	performance,	LANSA	Composer	provides	support
for	aXes	terminal	operations	scripts	that	may	be	executed	using	the
TS_EXECUTE	activity.
Using	this	support,	your	application	can	replace	a	series	of	TS_SETBYNAME
or	TS_SETBYPOS	activities	that	populate	one	entry	screen,	for	example,	with	a
single	TS_EXECUTE	activity.
You	can	optionally	break	your	script	into	separate	routines	that	are	executed
separately.	For	example,	you	may	define	a	script	routine	to	complete	each	5250
data	entry	screen.	For	a	data	entry	screen	containing	a	subfile,	you	might	define
a	routine	to	complete	each	subfile	record	or	line.

Note:	Your	Processing	Sequence	may	mix	the	use	of	aXes	terminal
operations	script	routines,	executed	using	the	TS_EXECUTE	activity,
with	direct	aXes	terminal	server	operations	using	other	activities	such
as	TS_SEND	and	TS_SETBYNAME.	You	do	not	have	to	script	all	of
your	aXes	terminal	server	operations.

For	more	information	refer	to	the	following:
TS_EXECUTE	Activity
5.6.1	aXes	Terminal	Operations	Scripts	Definition

5.6.3	aXes	Terminal	Operations	Scripts	Example

5.6.1	aXes	Terminal	Operations	Scripts	Definition
You	must	provide	an	aXes	terminal	server	operations	script	to	the
TS_EXECUTE	activity	in	the	form	of	a	comma-separated	(CSV)	file.	To	do
this,	you	may	use	common	tools	such	as	a	text	editor	or	a	spreadsheet	program.
Following	is	an	example	of	an	aXes	terminal	operations	script	designed	to	enter
the	details	of	a	received	sales	order.	For	the	benefit	of	illustration,	it	is	displayed
in	a	spreadsheet	program.

A	single	aXes	terminal	server	operations	script	file	may	contain	one	or	more
script	routines.
Each	(non-comment)	row	of	the	comma-separated	script	file	should	contain	a
minimum	of	ten	fields/columns	and	may	contain	up	to	thirteen.	The	purpose	and
meaning	of	each	field/column	that	makes	up	an	aXes	terminal	operations	script
is	described	below.

Note:	Script	lines	beginning	with	a	semi-colon	(;)	or	asterisk	(*)	are
treated	by	LANSA	Composer	as	comments	and	are	not	processed.

1.	Routine
name
(axRN)

Specifies	the	name	of	a	routine	to	which	this	aXes	terminal
operations	script	line	belongs.	Lines	for	a	routine	must	be
specified	contiguously	in	the	script.	The	routine	name	is
optional	-	if	you	leave	it	blank,	then	the	line	implicitly
belongs	to	a	script	routine	with	blank	routine	name.

2.	Label	name
(axLB)

This	column	may	specify	a	unique	(within	a	routine)	label
associated	with	the	line.	This	label	may	be	referenced	as	the
next	action	on	success	or	failure	of	other	lines	in	the	same

routine/script.

3.	Operation
(axOP)

Specifies	the	aXes	terminal	operation	performed	by	this
script	line.	It	may	be	one	of	the	following:
GET	(gets	a	field	value)
SET	(sets	a	field	value)
SEND	(sends	data	to	the	aXes	terminal	server)
Lines	containing	any	other	value	in	the	Operation	column
are	ignored.

4.	Field	name
(axSF)

(GET/SET)		This	column	may	specify	the	name	of	the	screen
field	whose	value	is	to	be	set	or	retrieved.	The	name	may	be
a	user-defined	name	(if	an	aXes	project	name	was	specified
on	the	TS_CONNECT	activity)	or	an	aXes	field	identifier.	If
the	field	name	is	not	specified	for	a	GET	or	SET	operation,
then	the	field	row	and	column	must	be	specified.
NOTE:		LANSA	Composer	supports	the	specification	of	a
Processing	Sequence	variable	name	in	this	column.	Refer	to
5.6.2	aXes	Terminal	Operations	Script	Variables	for	more
information.

5.	Field	index
(axSX)

(GET/SET)		If	the	field	named	in	the	previous	column	is
contained	in	a	subfile,	this	column	may	specify	the	index	of
the	instance	on	the	current	screen	of	the	field	whose	value	is
to	be	set	or	retrieved.	The	first	instance	on	the	current	screen
has	an	index	of	1,	irrespective	of	the	scroll	position	of	the
subfile.	If	your	program	needs	to	process	fields	in	subfiles,	it
must	do	so	a	screen	at	a	time	and	send
ROLL_UP/ROLL_DOWN	using	the	TS_SEND	activity
(just	like	a	5250	terminal	user	would	have	to	do).
NOTE:		LANSA	Composer	supports	the	specification	of	a
Processing	Sequence	variable	name	in	this	column.	Refer	to
5.6.2	aXes	Terminal	Operations	Script	Variables	for	more
information.

6.	Field	row
(axSR)

(GET/SET)		This	column	may	specify	the	screen	row
number	of	the	field	whose	value	is	to	be	set	or	retrieved.	The
row	and	column	together,	if	used,	must	refer	to	the	first
position	of	the	required	field.	The	value	of	this	column	is

ignored	if	the	field	name	is	specified.	Conversely,	if	the	field
name	is	not	specified,	then	the	field	row	and	column	must	be
specified.

7.	Field	column
(axSC)

(GET/SET)		This	column	may	specify	the	screen	column
number	of	the	field	whose	value	is	to	be	set	or	retrieved.	The
row	and	column	together,	if	used,	must	refer	to	the	first
position	of	the	required	field.	The	value	of	this	column	is
ignored	if	the	field	name	is	specified.	Conversely,	if	the	field
name	is	not	specified,	then	the	field	row	and	column	must	be
specified.

8.	Field	value
(literal)	
(axVC)

(SET)		This	column	may	specify	the	literal	value	to	be	set	in
the	specified	field.

9.	Field	value
(field	name)	
(axVX)

(GET/SET)		This	column	may	specify	the	name	of	a
Processing	Sequence	variable	that	will	receive	(GET)	or
provide	(SET)	the	value	for	the	specified	screen	field.	

For	a	GET	operation,	the	Processing	Sequence	variable	name
is	required.

For	a	SET	operation,	you	must	specify	either	the	Processing
Sequence	variable	name	in	this	column	or	the	literal	field
value	in	the	previous	column.

10.	Function
key
(axKY)

(SET/SEND)		If	a	value	is	specified	in	this	column,	the
operation	will	send	the	current	aXes	screen	data	to	the	aXes
terminal	server	using	the	function	key	specified	here	after
setting	the	field	value	for	a	SET	operation	successfully.	You
may	use	any	of	the	function	key	values	shown	for	the
TS_SETBYNAME,	TS_SETBYPOS	and	TS_SEND
activities.	For	a	SET	operation,	if	no	value	is	specified,	no
send	operation	is	performed.	For	a	SEND	operation,	if	no
value	is	specified,	ENTER	is	assumed.

11.	Action	on
success
(axOK)

This	column	may	be	used	to	control	the	next	script	routine
operation	performed	when	this	operation	completes
successfully.	It	may	be	one	of	the	following:

*NEXT	(the	script	proceeds	to	the	next	line	in	the	same
routine)
*ERROR	(the	script	execution	ends	with	an	error	status)
Any	other	non-blank	value	is	interpreted	as	the	Label	name
of	another	script	line	in	the	same	script	routine,	and	the	script
continues	with	the	first	line	in	the	script	routine	that	matches
the	specified	label.
If	no	value	is	specified,	*NEXT	is	assumed.

12.	Action	on
error
(axER)

This	column	may	be	used	to	control	the	next	script	routine
operation	performed	when	this	operation	ends	in	error	(*).	It
may	be	one	of	the	following:
*NEXT	(the	script	proceeds	to	the	next	line	in	the	same
routine)
*ERROR	(the	script	execution	ends	with	an	error	status)
Any	other	non-blank	value	is	interpreted	as	the	Label	name
of	another	script	line	in	the	same	script	routine,	and	the	script
continues	with	the	first	line	in	the	script	routine	that	matches
the	specified	label.
If	no	value	is	specified,	*ERROR	is	assumed.
(*)	An	operation	ends	in	error	when,	for	example,	a	screen
field	is	not	found	at	the	specified	row	or	column	or	with	the
specified	field	name,	or	when	a	field	is	not	input	capable	for
a	SET	operation	or	for	other	cases	where	the	requested	aXes
terminal	server	operation	cannot	be	performed.	However,
such	errors	do	not	include	5250	application	errors.	For
example,	a	validation	error	on	an	entered	value	detected	by
the	5250	application	program	is	not	an	error	for	this	purpose.

13.	Comment
(axComment)

You	may	use	this	column	to	enter	any	comment	text
pertaining	to	the	script,	for	documentary	purposes.	This
column	is	reserved	by	the	LANSA	Composer	aXes	terminal
server	activities	for	this	purpose.

5.6.2	aXes	Terminal	Operations	Script	Variables
You	can	specify	a	Processing	Sequence	variable	name	in	selected	columns	of
the	aXes	Terminal	Operations	script.
Specifically,	the	columns	for	which	you	may	specify	a	Processing	Sequence
variable	are:

4.	Field	name	(axSF)
5.	Field	index	(axSX)
9.	Field	value	(field	name)		(axVX)
(this	column,	when	used,	must	contain	the	name	of	a	Processing	Sequence
variable).

Variable	names	permit	you	to	pass	and	receive	variable	data	between	your
Processing	Sequence	and	the	script	routine	by	referencing	variables	in	your
Processing	Sequence.	The	Processing	Sequence	variables	may	provide	or
receive	screen	values	for	SET	or	GET	operations.	They	may	also	provide	the
aXes	screen	field	name	and/or	index	that	a	SET	or	GET	operation	is	to
reference.
To	specify	the	name	of	a	Processing	Sequence	variable,	specify	the	variable
name	preceded	by	an	ampersand	(&)	–	for	example	&MYVARIABLE1.
A	single	script	routine	may	reference	a	maximum	of	ninety-nine	(99)	different
Processing	Sequence	variables.

Note	that	this	feature	does	not	support	the	following	forms	of	variable
references:
					Built-In	variables
					Compound	or	qualified	variables—for	example:
*tradingpartner.xxx
					Indexed	variables—for	example:	mylist(3)

You	could	circumvent	these	limitations	by	assigning	the	desired
compound	or	indexed	variables	to	a	simple	variable	name	before
executing	the	script.

5.6.3	aXes	Terminal	Operations	Scripts	Example
Following	is	an	example	of	an	aXes	terminal	operations	script	which	is	intended
to	input	the	details	of	a	received	sales	order	into	the	LANSA	Composer	Tutorial
Orders	application.	Although	it	is	defined	in	comma-separated	format,	it	is
shown	here	displayed	in	a	spreadsheet	program.
Script	lines	beginning	with	a	semi-colon	(;)	or	asterisk	(*)	are	treated	by
LANSA	Composer	as	comments	and	are	not	processed.
To	make	this	example	clear,	the	following	script	routine	descriptions	include
5250	screen	pictures	that	show	the	screens	as	if	you	were	doing	the	order	entry
process	manually.
This	example	script	file	is	available	with	the	LANSA	Composer	server	system
as	EXAMPLE_AXES_SCRIPT.csv.

This	example,	contains	four	script	routines,	which	are:
Script	routine:	navToOrderEntry
Script	routine:	enterHeader
Script	routine:	enterDetail
Script	routine:	quitAndSignoff

Some	of	these	example	script	routines	use	screen	row	and	column	numbers	(in
columns	axSR	and	axSC	respectively)	to	refer	to	aXes	screen	fields.	In	general,
we	recommend	using	aXes	screen	field	names	assigned	using	the	aXes
developer	facilities	and	contained	in	an	aXes	project	that	is	named	in	the
TS_CONNECT	activity.

Script	routine:	navToOrderEntry

This	script	routine	is	for	use	immediately	following	the	TS_CONNECT	activity
to	navigate	the	aXes	terminal	server	session	to	the	Received	Order	Entry	screen,
ready	to	enter	the	order	details.	Note	the	following	about	this	script	routine:

At	line	3	you	can	see	the	first	operation	in	the	script	routine	is	SEND.
Nothing	is	specified	in	the	axKY	column	and	so	ENTER	is	assumed	as	the
default	function	key	to	be	sent.	This	line	is	included	to	allow	for	and	handle
the	possibility	of	Display	Program	Messages	screen	being	displayed
following	logon.	The	effect	of	the	SEND	is	to	dismiss	that	screen	if	it	is
displayed.

At	line	4,	the	script	routine	assumes	the	System	i	Main	Menu	is	displayed,
and	it	types	the	command	shown	on	the	command	line	to	start	the	LANSA
Composer	Tutorial	Orders	application.

The	remaining	two	lines	make	menu	selections	in	the	LANSA	Composer
Tutorial	Orders	application	necessary	to	navigate	to	the	Received	Order
Entry	screen.

Script	routine:	enterHeader
This	script	routine	fills	the	order	header	fields	of	the	Received	Order	Entry
screen	using	the	values	contained	in	the	processing	sequence	variables	named	in

the	axVX	column.
The	Processing	Sequence	must	populate	the	processing	sequence	variables
referenced	before	executing	this	script.

Script	routine:	enterDetail
This	script	routine	fills	one	line	of	the	order	details	portion	of	the	Received
Order	Entry	screen	using	the	values	contained	in	the	processing	sequence
variables	named	in	the	axVX	column.
The	Processing	Sequence	variable	&THIS_LININDEX	is	specified	in	the	avSX
column	to	specify	the	index	of	the	instance	on	the	current	screen	of	the	field
whose	value	is	to	be	set—in	other	words,	in	this	case,	the	order	details	line	or
row	number.
The	script	routine	refers	to	the	aXes	screen	fields	by	their	aXes	field	identifier,
such	as	iflda02.	More	usually,	you	would	use	a	user-assigned	screen	field	name
defined	in	the	aXes	project	that	is	named	on	the	TS_CONNECT	activity.
The	Processing	Sequence	must	populate	all	the	processing	sequence	variables
referenced	before	executing	this	script.

Note:		This	example	assumes	that	there	will	not	be	more	than	one
subfile	page	of	order	details.	No	scrolling	is	performed.	Real-world
applications	may	need	to	send	ROLL_UP	using	the	TS_SEND	activity
at	appropriate	points	to	scroll	subfiles	that	are	displayed	by	the	5250

application.

Script	routine:	quitAndSignoff
This	script	routine	sends	function	key	F3	to	quit	the	LANSA	Composer	Tutorial
Orders	application	and	then	signs	off	the	terminal	session.
The	Processing	Sequence	that	executes	this	script	would	usually	execute	the
TS_DISCONNECT	activity	immediately	afterwards.

5.7	Processing	Sequence	Example
LANSA	Composer	supplies	an	example	Processing	Sequence,
EXAMPLE_TS01	that	uses	the	example	aXes	terminal	operations	script
described	in	the	5.6.3	aXes	Terminal	Operations	Scripts	Example	to	populate
data	in	the	LANSA	Composer	Tutorial	Orders	application.
Part	of	the	definition	of	this	Processing	Sequence	follows.	You	can	run	this
Processing	Sequence	if	you	have	all	the	necessary	components	installed	and
configured,	including,	of	course,	the	aXes	Terminal	Server.

	

6.	Deploying	Solutions	for	LANSA	Composer
A	common	implementation	scenario	for	LANSA	Composer	involves	using	two
installations:

1.		One	for	designing	and	testing	LANSA	Composer	Solutions
("development")

2.		One	for	running	LANSA	Composer	Solutions	in	a	live	environment
("production")

Separating	the	'development'	and	'production'	systems	has	many	obvious
advantages	and	is	recommended	for	most	cases.	When	you	maintain	separate
LANSA	Composer	installations,	you	will	need	to	deploy	LANSA	Composer
solutions	between	them.
Following	are	some	considerations	for	deploying	your	systems	and	the	features
LANSA	Composer	provides	to	support	them.	For	more	information,	review	the
following:

6.1	Deployment	Considerations
6.2	Work	with	Export	Lists
6.3	Export	Definitions	from	LANSA	Composer
6.4	Import	Definitions	to	LANSA	Composer

6.1	Deployment	Considerations
When	you	maintain	separate	systems	for	development	and	production	work,	you
must	understand	the	steps	necessary	to	successfully	and	completely	deploy	a
LANSA	Composer	solution	from	one	system	to	the	other.
Composer	provides	export	and	import	features	to	support	your	deployment
needs.	The	export	and	import	features	are	capable	of	largely	automating	most	of
the	work	of	deploying	LANSA	Composer	solutions,	but	there	are	some	steps
that	you	must	perform	yourself	and	some	considerations	you	should	take
account	of.
These	considerations	apply	to:
Activities
Activity	Groups
Trading	Partners
Transformation	Maps
Processing	Sequences
Transport	and	Other	Configurations
Security	Credentials	for	Transport	and	Other	Configurations
Code	Values
System	Properties
System	Settings

Activities
If	you	define	your	own	custom	Activities,	then	you	will	need	to	deploy	them	to
all	systems	on	which	you	wish	to	use	them.
There	are	two	parts	to	a	complete	and	functioning	Activity:

1.		The	Activity	definition	-	you	can	use	LANSA	Composer's	export	and
import	support	to	deploy	the	Activity	definitions.

2.		The	Activity	processor	-	this	is	the	executable	code	(a	LANSA	re-
useable	part)	that	implements	the	Activity.	It	is	your	responsibility	to
deploy	the	Activity	processor	as	required.	You	might	wish	to	use
LANSA's	export	and	import	support	or	the	Visual	LANSA	Deployment
Tool	to	accomplish	this.	Refer	to	your	LANSA	documentation	for
information	about	deploying	LANSA	applications.

You	should	not	normally	need	to	export	or	import	the	definitions	of
Activities	supplied	with	LANSA	Composer	other	than	as	instructed
during	an	installation	or	upgrade	of	LANSA	Composer.	You	should
not	change	the	definitions	of	these	Activities.

Activity	Groups
When	you	export	Activity	definitions,	LANSA	Composer	exports	the	Activity
Groups	to	which	the	Activity	is	assigned	on	the	source	system.
When	you	import	the	Activity	definitions	to	the	target	system,	LANSA
Composer	will	assign	the	Activity	to	the	same	Activity	Groups,	but	only	if	they
already	exist	on	the	target	system.	LANSA	Composer	will	not	create	the
Activity	Group	on	the	target	system.	You	must	deploy	or	define	the	Activity
Groups	to	the	target	system	prior	to	importing	the	Activity	definitions.
Note	that	failing	to	assign	the	Activity	Groups	on	the	target	system	will	not
affect	the	functioning	of	the	Activity	or	of	Processing	Sequences	that	use	it.
Activity	Groups	are	simply	a	means	of	categorizing	the	Activities	for	quick
access	while	maintaining	Activity	definitions	or	when	editing	a	processing
sequence.

Trading	Partners
You	can	deploy	trading	partners	between	LANSA	Composer	installations	using
the	export	and	import	features,	in	the	same	way	as	other	definitions.
If	you	are	using	installation-defined	properties	for	Trading	Partners,	then	the
values	defined	for	those	properties	for	each	Trading	Partner	will	be	included	in
the	export.		When	you	import	the	Trading	Partner	definitions	to	the	target
system,	LANSA	Composer	will	import	the	values	for	the	installation-defined
Trading	Partner	properties,	but	only	if	they	already	exist	on	the	target	system.	
You	must	deploy	or	define	the	Trading	Partner	installation-defined	properties	to
the	target	system	prior	to	importing	the	Trading	Partner	definitions.		The	same
applies	to	Trading	Partner	groups.
When	you	export	trading	partner	definitions,	the	export	includes	the	definition
of	which	configurations,	transformation	maps	and	directories	are	linked	to	the
trading	partner.		However	the	actual	configurations	and	transformation	maps	are
not	automatically	included	-	it	is	your	responsibility	to	ensure	the	configurations
and	transformation	maps	exist	on	the	target	system.		If	they	do,	then	the	trading
partner	import	will	restore	the	links.
With	regard	to	the	linked	directories,	in	particular,	you	may	wish	to	structure	the

directory	paths	such	that	they	are	the	same	on	each	installation.	If	you	don't,	you
may	have	to	manually	alter	this	aspect	of	trading	partner	definitions	on	the
target	system	after	importing	them.

Transformation	Maps
The	complete	definition	of	a	Transformation	map	in	LANSA	Composer	consists
of:
1.		Those	parts	held	in	the	LANSA	Composer	database.		For	a	map	that	has	been
successfully	prepared,	this	includes:

Basic	identifying	information	such	as	the	name	and	description	for	the
map;
Information	about	the	parameters	that	must	be	supplied	to	execute	the
map;
Catalogued	information	about	the	map	including	information	identifying
the	major	components	used	in	the	map	definition;
Catalogued	copies	of	the	map	definition	and	implementation	files	as	at	the
last	successful	prepare.

					When	you	export	Transformation	maps,	all	this	information	is	included	in
the	export,	including	the	map	definition	and	implementation	files	(subject	to
the	options	chosen	in	Export	and	Import	Options).

2.		The	files	held	in	the	file	system	that	are	associated	with	the	Transformation
Map	such	as	the	map	definition	(.mfd)	and	map	executable	(.jar)	files.

					When	you	export	Transformation	maps	that	have	been	successfully	prepared
with	LANSA	Composer	version	4.0	or	later,	LANSA	Composer	exports	the
catalogued	versions	of	the	files	(from	the	LANSA	Composer	database)	in
preference	to	the	files	held	in	the	file	system.		If	the	catalogued	files	do	not
match	those	held	in	the	file	system,	LANSA	Composer	will	issue	a	warning
in	the	export	log,	but	the	catalogued	versions	are	exported	nonetheless.

					If	the	catalogued	versions	of	the	files	are	not	available	(for	example,	if	the
map	has	not	been	prepared	or	if	the	map	was	prepared	with	an	earlier	version
of	LANSA	Composer),	LANSA	Composer	exports	the	versions	of	the	files
held	in	the	file	system.

Some	other	points	to	note	about	deploying	Transformation	maps:

The	Transformation	Map	definition	(.mfd	file)	is	not	required	at	run-time.	It
is	only	required	to	display	or	revise	the	Transformation	Map	using	the

mapping	tool.	Whether	to	copy	and	deploy	these	definitions	is	a	matter	of
source	and	version	control	rather	than	a	deployment	requirement.
LANSA	Composer's	export	and	import	support	can	deploy	the	map
executable	(.jar)	files	as	described	above	and	according	to	the	options	chosen
in	Export	and	Import	Options.		Normally	you	should	deploy	these	files,
since	the	affected	Transformation	Maps	cannot	be	executed	without	them.
When	importing	a	map	for	which	an	MFT	(Flextext	configuration)	file	was
catalogued	and	exported,	the	MFT	file	is	catalogued	in	LANSA	Composer's
file	store	database	on	the	importing	system,	but	it	is	NOT	written	to	the	file
system	(UNLIKE	the	MFD	and	JAR	files).		This	is	deliberately	so,	since
such	files	may	be	(often	will	be)	shared	between	more	than	one	map.		Also,
because	there	is	no	LANSA	Composer-mandated	location	for	such	files	(it	is
specified	in	the	map	definition).

Note:		Including	the	Transformation	Map	executable	files	(the	.jar
files)	in	an	export	will	very	considerably	increase	the	size	of	the
export	file.		For	easiest	handling	and	to	avoid	exceeding	system	limits,
you	may	need	to	modularize	or	separate	the	export	of	individual
Transformation	Maps	or	groups	of	Transformation	Maps	to	allow	for
this.

Processing	Sequences
When	you	export	Processing	Sequence	definitions,	the	exported	definition	does
not	include	the	version	history	for	the	Processing	Sequence.		Only	the	current
definition	is	exported.

Transport	and	Other	Configurations
The	transport	and	other	configurations	feature	of	LANSA	Composer	provides	a
separation	between	the	configuration	information	(which	might	vary	from	one
system	to	another)	and	the	Processing	Sequences	that	use	them.
This	means,	for	example,	that	when	you	deploy	a	Processing	Sequence	from
one	system	to	another,	while	the	Processing	Sequence	uses	a	set	of	named
configurations,	the	actual	definitions	of	the	configurations	can	be	different	on
the	'development'	system	to	the	'production'	system.	Thus	the	same	Processing
Sequence	can	be	executed	on	both	systems	using	the	transport	and	database
configuration	details	appropriate	to	that	system.
If	you	use	Configurations	in	this	way,	then	you	probably	will	not	wish	to	deploy
them	between	systems,	other	than	when	you	initially	create	them.	If	you	do

deploy	them,	you	will	need	to	change	their	definitions	after	importing	them	to
the	target	system.
For	Configurations	that	are	dependent	on	external	files	or	objects	(such	as	the
body	text	file	for	an	SMTP	Mail	Details	Configuration),	it	is	your	responsibility
to	ensure	that	the	external	files	or	objects	are	deployed	to	or	accessible	from	the
target	system.

Security	Credentials	for	Transport	and	Other	Configurations
LANSA	Composer	does	not	export	or	import	passwords	associated	with
security	credentials	contained	in	transport	and	other	configurations.	This	means
that	you	must	manually	change	the	configuration	on	the	target	system	after
importing	it	the	first	time,	to	specify	the	password	(and,	probably,	the	user)	that
applies	on	that	system.
User	names,	where	specified,	are	exported.	However,	it	is	likely	in	many	cases
that	the	user	names	will	also	have	to	be	changed	on	the	target	system.
LANSA	Composer	will	not,	by	default,	replace	the	security	credentials	on	the
importing	system	when	a	configuration	being	imported	already	exists.		This
means	you	can	import	the	configurations	again	without	having	to	re-enter	the
user	and	password	details.		The	Export	and	Import	Options	window	allows	you
to	override	this	behavior,	if	you	wish,	such	that	the	user	names	are	imported	and
the	existing	password	data	is	invalidated	(passwords	will	have	to	be	re-entered).

Code	Values
LANSA	Composer's	export	and	import	support	can	deploy	code	values.		When
you	export	a	group	of	code	values	(for	example,	Activity	Groups),	all	the	code
values	in	that	group	are	exported.		When	you	import	them	to	the	target	system,
they	add	to	or	update	any	code	values	already	present.		Code	values	defined	on
the	target	system	that	are	not	included	in	the	export	are	not	removed.

System	Properties
You	can	deploy	System	Properties	using	LANSA	Composer's	export	and	import
features.
When	you	import	System	Properties,	by	default	LANSA	Composer	will	not
replace	the	value	of	the	System	Property	if	it	already	exists	on	the	importing
system.		The	Export	and	Import	Options	window	allows	you	to	override	this
behavior,	if	you	wish

When	you	deploy	System	Properties	that	are	evaluated	and/or	set	by	means
of	a	call	to	a	user-specified	function,	it	is	your	responsibility	to	deploy	the

required	function(s)	to	the	target	LANSA	Composer	system.

System	Settings
LANSA	Composer	does	not	export	or	import	System	Settings.	It	is	your
responsibility	to	ensure	that	the	System	Settings	are	defined	on	the	target	system
with	values	appropriate	for	that	environment.		You	normally	only	need	to	do	this
once.
	
	
	
	
	
	
	
	
	
	
	
	

its:LANSA091.CHM::/lansa/intengc6_0015.htm

6.2	Work	with	Export	Lists
LANSA	Composer	supports	creating	and	using	Export	Lists	consisting	of	saved
lists	of	any	LANSA	Composer	definitions	eligible	to	be	exported.		By	defining
an	Export	List	you	can	reliably	repeat	the	same	deployment	operation	over	time
or	for	different	targets.		You	can	create,	maintain,	and	delete	any	number	of
Export	Lists	according	to	your	application's	needs.
An	Export	List	can	also	include	other	Export	Lists.		When	such	a	list	is
exported,	LANSA	Composer	will	explode	the	list	(disregarding	any	circular
references)	and	export	the	super-set	of	definitions	contained	in	all	the	referenced
export	lists.
To	work	with	Export	Lists,	expand	Deployment	in	the	Navigator	and	click
Export	lists.	To	find	out	how	to	locate	and	select	Export	Lists	to	work	with,
refer	to:

Locating	and	selecting	items	in	the	Instance	Lists
For	information	on	common	tasks	associated	with	Export	Lists	(such	as
creating,	copying,	deleting	and	printing	definitions)	refer	to:

Working	with	definition	items
For	information	on	tasks	associated	specifically	with	Export	Lists,	refer	to	the
following	headings:

Select	Items	to	be	Included	in	an	Export	List
Select	Items	to	be	Included	in	an	Export	List
To	review	or	change	the	LANSA	Composer	definitions	included	in	an	Export
list,	select	the	required	item	in	the	instance	list	and	then	click	the	Items	tab.		The
window	now	displays	two	further	tabs:

Items:		Expand	the	nodes	to	review	the	available	definitions.		Select
definitions	you	wish	to	include	in	the	Export	list	by	clicking	the	checkbox	to
the	left	of	the	item	so	that	there	is	a	tick	in	the	box.	To	deselect	an	item,	click
the	checkbox	again	so	that	the	tick	mark	is	removed.		You	can	use	the	Select
All	and	Unselect	All	buttons	and	the	checkboxes	next	to	the	nodes	to	select
or	unselect	multiple	items	at	once.
Include:		Select	other	Export	Lists	that	you	wish	to	include	in	this	Export
List	by	clicking	the	checkbox	to	the	left	of	the	item	so	that	there	is	a	tick	in
the	box.		To	deselect	an	item,	click	the	checkbox	again	so	that	the	tick	mark
is	removed.		You	can	use	the	Select	All	and	Unselect	All	buttons	to	select	or
unselect	multiple	items	at	once.

its:LANSA091.CHM::/lansa/intengc1_0230.htm
its:LANSA091.CHM::/lansa/intengc1_0240.htm

Remember	to	click	Save	before	switching	elsewhere	in	LANSA	Composer.

6.3	Export	Definitions	from	LANSA	Composer
To	export	LANSA	Composer	definitions,	perform	the	following	steps:
1.		Expand	Deployment	in	the	Navigator	and	click	Export.
2.		If	you	wish	to	export	LANSA	Composer	definitions	specified	in	an	Export
list,	select	the	Export	list	name	from	the	drop-down	list.		When	you	select	an
Export	list,	the	item	selections	are	changed	according	to	the	contents	of	the
Export	list.		You	can	still	change	the	selections	before	performing	the	export,
if	desired.

3.		If	you	do	not	wish	to	use	an	Export	list,	select	(none)	in	the	Export	list	drop-
down.

4.		On	the	Items	and/or	Include	tabs,	expand	the	nodes	to	review	the	available
definitions.
a.		Select	definitions	you	wish	to	export	by	clicking	the	checkbox	to	the	left
of	the	item	so	that	there	is	a	tick	in	the	box.	To	deselect	an	item,	click	the
checkbox	again	so	that	the	tick	mark	is	removed.

b.		You	can	use	the	Select	All	and	Unselect	All	buttons	and	the	checkboxes
next	to	the	nodes	to	select	or	unselect	multiple	items	at	once.

c.		Whenever	you	wish	to,	you	can	click	Save	list	to	save	the	current
selections	as	an	Export	list	for	re-use	in	the	future.

The	Include	tab	allows	you	to	select	other	Export	Lists	that	you	wish	to
include	in	the	export,	in	addition	to	any	definitions	selected	on	the	Items	tab.

5.		If	necessary	,	click	the	Options	button	to	change	options	affecting	the	export
in	the	Export	and	Import	Options	window.		Click	OK	to	save	your	changes
and	close	the	Export	and	Import	Options	window.

6.		When	you	have	completed	your	selections,	click	the	Export	button.	The
Export	To	window	is	displayed.

7.		Enter	the	file	name	for	the	exported	definitions	in	the	File	name	box.
If	necessary,	navigate	to	the	folder	in	which	you	want	to	save	the	export	file
and	click	the	Open	button.	LANSA	Composer	exports	the	definitions	to	the
file	and	location	specified.

When	the	export	is	completed,	LANSA	Composer	shows	the	Export	Log	which
provides	a	detailed	record	of	the	export	operation	including	any	warnings	or
errors	that	may	have	been	generated.
You	can	display	or	print	logs	for	any	or	all	completed	export	operations	at	any
time	by	clicking	the	History	tab.
From	the	History	tab,	you	can	also	print	an	Export	Manifest	that	lists	all
exported	items	along	with	their	last-changed	dates,	times	and	users.		This	can	be
used	to	compare	with	last-changed	details	shown	in	LANSA	Composer	for
selected	items	on	their	Audit	tab.

NOTE:	LANSA	Composer	does	not	automatically	resolve
dependencies	between	items	when	exporting	their	definitions.	For
example,	it	does	not	automatically	export	Transformation	Map
definitions	used	by	a	Processing	Sequence.	It	is	your	responsibility	to
ensure	that	all	required	definitions	are	exported.

Refer	to	6.1	Deployment	Considerations	for	other	tasks	you	may	have	to
complete	to	successfully	deploy	a	LANSA	Composer	solution.	

6.4	Import	Definitions	to	LANSA	Composer
To	import	definitions,	you	must:

have	LANSA	Composer	installed	on	the	target	PC
an	export	file	previously	created	by	the	Export	feature	of	LANSA	Composer.
Refer	to	6.3	Export	Definitions	from	LANSA	Composer	for	information	on
creating	an	export	file.

To	import	LANSA	Composer	definitions,	perform	the	following	steps:
1.		Expand	Deployment	in	the	Navigator	and	click	Import.
2.		Press	the	Load	button	to	display	the	Import	From	window.
3.		Locate	and	select	the	file	containing	the	definitions	you	wish	to	import	and
click	Open.	LANSA	Composer	reads	the	exported	definitions	and	then	shows
the	available	definitions	in	the	Import	window.

4.		Expand	the	nodes	to	review	the	available	definitions.	Take	note	of	any
warning	messages	that	are	displayed.

5.		Select	definitions	you	wish	to	import	by	clicking	the	checkbox	to	the	left	of
the	item	so	that	there	is	a	tick	in	the	box.	To	deselect	an	item,	click	the
checkbox	again	so	that	the	tick	mark	is	removed.

					You	can	use	the	Select	All	and	Unselect	All	buttons	and	the	checkboxes	next
to	the	nodes	to	select	or	unselect	multiple	items	at	once.

6.		If	necessary	,	click	the	Options	button	to	change	options	affecting	the	import
in	the	Export	and	Import	Options	window.		Click	OK	to	save	your	changes
and	close	the	Export	and	Import	Options	window.

7.		When	you	have	completed	your	selections,	press	the	Import	button	to	import
the	selected	definitions.

When	the	import	is	completed,	LANSA	Composer	shows	the	Import	Log	which
provides	a	detailed	record	of	the	import	operation	including	any	warnings	or
errors	that	may	have	been	generated.
You	can	display	or	print	logs	for	any	or	all	completed	import	operations	at	any
time	by	clicking	the	History	tab.
From	the	History	tab,	you	can	also	print	an	Import	Manifest	that	lists	all
imported	items	along	with	their	last-changed	dates,	times	and	users.		This	can	be
used	to	compare	with	last-changed	details	shown	in	LANSA	Composer	for
selected	items	on	their	Audit	tab.
Refer	to	6.1	Deployment	Considerations	for	other	tasks	you	may	have	to
complete	to	successfully	deploy	a	LANSA	Composer	solution.
For	instructions	on	how	to	restore	shipped	objects,	please	review:
6.4.1	Restore	Supplied	Definitions

6.4.1	Restore	Supplied	Definitions
LANSA	Composer	keeps	a	'master	store'	of	supplied	definitions	with	each
standard	installation	of	the	LANSA	Composer	server.	These	can	be	found	in	the
Imports	directory	of	the	Composer	server	shared	directory.	For	a	default
installation,	this	will	typically	be:
/LANSA_Composer_licpgmlib/lic/Imports.	Otherwise,	it	will	be	the	IFS
file	folder	or	Data	Directory	as	specified	during	the	installation.
To	restore	shipped	objects,	please	use	the	Import	facility	in	LANSA	Composer.
The	objects	that	can	be	imported	are	as	follows:
DX_MASTER_AT.dxexport	for	Activities
DX_MASTER_CFG.dxexport	for	Configurations
DX_MASTER_DOC.dxexport	for	Document	types	and	Document
standards
DX_MASTER_EV.dxexport	for	Event	handlers
DX_MASTER_MP.dxexport	for	Transformation	maps
DX_MASTER_P1.dxexport	for	Processing	Sequence
DX_MASTER_TP.dxexport	for	Trading	partners
DX_MASTER_XL.dxexport	for	Export	List.

In	addition,	the	following	may	also	be	imported.	However,	importing	these	may
override	existing	definitions.
DX_MASTER_CH.dxexport	for	Code	tables
DX_MASTER_SY.dxexport	for	System	Properties.

To	learn	more	about	importing	definitions,	please	refer	to	6.4	Import	Definitions
to	LANSA	Composer.

7.	Operations
LANSA	Composer	provides	a	web-browser	based	interface	for	operational
monitoring	and	control.	It	is	accessible	within	the	LANSA	Composer
environment	by	expanding	Operations	in	the	Navigator.	The	following	options
are	available:

7.1	Console	-	for	submitting	and	monitoring	your	Processing	Sequence	runs
for	errors	or	other	conditions	that	may	require	operator	intervention.
7.2	Java	Service	Manager	Console	-	for	performing	administration	tasks	on
the	java	service	manager	(JSM)	instance	associated	with	this	installation	of
LANSA	Composer

7.1	Console
The	console	allows	you	to	submit	and	restart	Processing	Sequence	runs,	
monitor	your	Processing	Sequence	runs	for	errors	or	other	conditions	that	may
require	operator	intervention	and	to	review	the	Processing	Sequence	logs	for
individual	runs.
To	access	the	console,	expand	Operations	in	the	Navigator	and	select	Console.
If	the	console	fails	to	display,	this	is	typically	for	one	of	the	following	reasons:

The	web	server	or	listener	is	not	running	on	the	application	server.	If	this
is	the	case,	start	the	web	server	and/or	listener	and	retry.
The	base	URL	for	the	browser	interface	is	not	correct.	Check	and	correct
the	applicable	system	setting	if	necessary.	Refer	to	System	Settings	for
further	information.

The	console	initially	displays	the	7.1.1	Run	History	page.	From	the	Run	History
page,	you	can	choose	to	display	the	7.1.2	Processing	Sequence	Log	for	an
individual	Processing	Sequence	run.
You	can	also	display	a	list	of	active	Processing	Sequences	and	submit	runs	for
them	using	the	7.1.3	Processing	Sequences	page.

Note:	You	can	open	the	console	in	your	web	browser	(outside	LANSA
Composer).	To	do	this	click	the	Open	in	Web	Browser	button.	When
opened	in	your	web	browser,	you	can	add	the	console	to	your	favorites
or	copy	and	send	the	URL	to	other	users,	such	as	operations	staff.

its:LANSA091.CHM::/lansa/intengc6_0015.htm

7.1.1	Run	History
By	default,	the	console	initially	displays	the	Run	History	page.		You	can	display
or	return	to	the	Run	History	page	by	clicking	the	Run	History	button	at	the	top
of	the	page.
The	Run	History	page	shows	a	list	of	active	and	completed	Processing
Sequence	runs	in	descending	order	of	their	start	date	and	time.	The	most	recent
runs	are	shown	first.
You	can	filter	the	list	by	entering	or	selecting	values	in	the	boxes	immediately
under	the	Processing	Sequence	ID,	Start	Date	Time	and	Status	column	headings
and	pressing	the	Refresh	button.

The	Run	History	is	shown	one	page	at	a	time.	Click	the	Later	or	Earlier	buttons
to	see	later	or	earlier	Processing	Sequence	run	history.
To	see	the	Processing	Sequence	log	for	a	run	shown	in	the	list,	click	the	icon	or
the	run	number	shown	in	the	Run	Number	column.	Refer	to	7.1.2	Processing
Sequence	Log	for	more	information.

7.1.2	Processing	Sequence	Log
The	Processing	Sequence	Log	shows	the	status	and	log	for	an	individual	run	of
a	Processing	Sequence.

If	there	are	detail	log	entries	available,	you	can	toggle	between	a	detailed	and
summary	view	by	using	the	Show	All	and	Show	Summary	buttons.
You	can	click	on	a	log	entry	in	the	tree	on	the	left	to	see	the	message	details	in
the	panel	on	the	right.
If	the	Processing	Sequence	run	ended	in	error	and	is	eligible	to	be	restarted,	you
can	restart	it	by	clicking	the	Restart	button.				The	Restart	Processing	Sequence
Run	page	is	displayed	at	which	you	can	confirm	and	submit	the	run.

7.1.3	Processing	Sequences
You	can	display	the	Processing	Sequences	page	by	clicking	the	Processing
Sequences	button	at	the	top	of	each		page.
The	Processing	Sequences	page	shows	a	list	of	active	Processing	Sequence
definitions.
You	can	filter	the	list	by	full	or	partial	Processing	Sequence	name	by	entering	a
value	in	the	box	immediately	under	the	Name	column	heading	and	pressing	the
Refresh	button.

The	Processing	Sequences	are	shown	one	page	at	a	time.	Click	the	Previous	or
Next	buttons	to	see	Processing	Sequences	before	or	after	those	presently	shown.
To	display	the	7.1.1	Run	History	of	a	selected	Processing	Sequence,	click	the
icon	shown	in	the	History	column	adjacent	to	the	required	Processing	Sequence.
To	submit	a	run	of	a	selected	Processing	Sequence,	click	the	icon	shown	in	the
Run	column	adjacent	to	the	required	Processing	Sequence.		The	Run	Processing
Sequence	page	is	displayed	at	which	you	can	enter	parameter	values	(if
applicable)	and	submit	the	run.

7.2	Java	Service	Manager	Console
The	Java	Service	Manager	Console	allows	you	to	perform	administration	tasks
on	the	java	service	manager	(JSM)	instance	associated	with	this	installation	of
LANSA	Composer.	When	used	from	within	LANSA	Composer,	this	includes
the	ability	to	stop	and	restart	the	JSM	-	an	operation	that	is	necessary	in	order	to
use	newly	prepared	or	deployed	Transformation	Maps.
To	access	the	Java	Service	Manager	Console,	expand	Operations	in	the
Navigator	and	select	Java	Service	Manager	Console.	If	the	Java	Service
Manager	Console	fails	to	display,	this	is	typically	for	one	of	the	following
reasons:

The	JSM	instance	is	not	running.	If	this	is	the	case,	start	the	JSM	instance
and	retry.
The	URL	for	the	console	for	JSM	instance	is	not	correct.	Check	and
correct	the	applicable	system	setting	if	necessary.	Refer	to	System	Settings
for	further	information.

Note:	You	can	open	the	Java	Service	Manager	Console	in	your	web
browser	(outside	LANSA	Composer).	To	do	this	click	the	Open	in
Web	Browser	button.	When	opened	in	your	web	browser,	you	can	add
the	console	to	your	favorites	or	copy	and	send	the	URL	to	other	users,
such	as	operations	staff.

The	Restart	JSM	button	stops	and	restarts	the	java	service	manager	(JSM).	It

its:LANSA091.CHM::/lansa/intengc6_0015.htm

may	sometimes	be	necessary	to	stop	and	restart	the	JSM	if	new	LANSA
Integrator	solutions	or	other	new	or	revised	Java	code	is	deployed	to	LANSA
Integrator	or	if	certain	changes	are	made	to	LANSA	Integrator	configuration.	
(Note	it	is	no	longer	necessary	to	stop	and	restart	the	JSM	when	you	have
prepared	or	deployed	new	or	revised	Transformation	Maps).
When	you	click	the	Restart	JSM	button,	a	message	box	asks	you	to	confirm	the
request	before	proceeding.	This	is	because	stopping	and	restarting	the	JSM	may
interfere	with	other	applications,	especially	in	a	production	environment.	If	you
are	sure	you	wish	to	proceed,	click	Yes.

Note:	The	Restart	JSM	button	and	adjacent	buttons	are	not	part	of	the
web-browser	interface	for	the	Java	Service	Manager	Console	and	are
not	available	when	you	open	the	Java	Service	Manager	Console	in	a
web	browser.

For	more	information	about	the	Java	Service	Manager	Console,	refer	to	the	Java
Service	Manager	Console	in	the	LANSA	Integrator	Guide.
	
	

8.	Administration	and	Housekeeping
LANSA	Composer	provides	administration	and	housekeeping	functions	for	you
to	manage	system	and	code	values	and	perform	routine	maintenance.
To	access	the	administration	and	housekeeping	functions,	expand
Administration	and	Housekeeping	in	the	Navigator	and	then	select	the	required
function.
The	following	administration	and	housekeeping	functions	are	available:

8.1	Audit	Trail
8.2	System	Settings
8.3	System	Properties
8.4	Code	Maintenance
8.5	Event	Maintenance
8.6	Database	Housekeeping
8.7	User	Access	Configuration
	

8.1	Audit	Trail
Audit	trail	is	available	under	Administration	and	Housekeeping	to	permit
interrogation	and	viewing	the	events	recorded	in	the	audit	trail.
LANSA	Composer	maintains	an	audit	trail	of	significant	(usually	modifying)
events	to	most	definitions	including:

Activities
Trading	Partners
Transformation	Maps
Processing	Sequences
All	configuration	types
Export	Lists
Document	types	and	standards
Event	definitions

Events	that	are	recorded	include:
Create,	change,	delete
Opened	for	editing
Saved	(Processing	Sequences)
Prepared	(Transformation	Maps)
Archived	version	restored,	deleted	or	purged	(Processing	sequences	and
Transformation	Maps)
Exported,	Imported

Information	that	is	recorded	for	each	event	includes:
The	identity	of	item	affected
Timestamp
Related	log,	where	applicable	(export,	import)
Job	name,	user	and	number
Computer	name

Note	that	the	audit	records	do	NOT	record	what	actually	changed	in	the	item
definition,	only	that	the	event	occurred.
The	Audit	trail	option	provides	several	tabs	that	allow	you	to	select	and	view

the	audit	events	in	various	ways.

When	working	with	specific	definition	items	(for	example,	with	a
specific	Processing	Sequence),	you	can	use	the	Audit	command	tab	to
display	the	audit	events	just	for	that	item.

8.2	System	Settings
The	system	settings	enable	you	to	set	values	which	are	used	throughout	the
LANSA	Composer	application.
To	reach	the	system	settings,	expand	Administration	and	Housekeeping	in	the
Navigator	and	then	select	the	required	function.
The	system	settings	are	grouped	into	these	logical	sections	to	make	it	easier	to
locate	and	work	with	the	values:

8.2.1	Logging
8.2.2	Server	File	Locations
8.2.3	File	Locations	Relative	to	Client
8.2.4	Browser
8.2.5	SMTP	Mail	Details	Defaults
8.2.6	HTTP	Inbound	Processing
8.2.7	Transaction	Document	Processing
8.2.8	Default	Configuration
8.2.9	Other	Settings

Each	of	the	system	settings	is	explained	and	an	example	of	a	possible	value	is
included.	The	values	defined	for	your	implementation	of	Composer	will	not
necessarily	be	the	same	as	the	examples.
Several	of	the	system	settings	contain	directory	paths.	The	path	name	directory
delimiters	should	be	appropriate	for	the	operating	environment.	MS	Windows
delimiters	are	backward	slashes	(\)	and	IBM	iare	forward	slashes	(/).	Paths	for
server	directories	should	be	appropriate	for	your	server.	Paths	for	client
directories	should	be	MS	Windows	format.
If	you	use	different	development	and	production	environments	(the
recommended	approach),	you	should	review	and	reset,	as	necessary,	these
settings	when	you	deploy	your	solutions	to	the	production	environment.

Note:	The	names	of	system	settings	that	you	have	changed	but	not	yet
saved	are	shown	in	blue	in	the	system	settings	tree	on	the	left	of	the
tree.	Remember	to	press	the	Save	button	to	save	your	changes.

Systems	Settings	also	provides	a	System	information	tab	that	provides
information	about	the	LANSA	run-time	environment	in	which	LANSA
Composer	is	running	on	your	LANSA	Composer	server,	including	LANSA

listener	and	JSM	port	numbers:

8.2.1	Logging
This	section	contains	values	that	can	be	used	to	limit	the	logging	messages
which	are	captured	during	the	execution	of	a	Processing	Sequence.	Typically	all
messages	would	be	reported	while	you	are	designing	and	testing	your	LANSA
Integrator	solutions,	but	only	summary	and	error	level	messages	would	be
captured	in	a	production	environment.
Note	that	the	settings	in	this	section	do	not	affect	the	logging	of	system	tasks
such	as	Export,	Import	and	Database	Housekeeping.		These	tasks	are	always
logged	at	a	predetermined	level.

Logging	level
This	setting	determines	the	level	of	messages	that	are	included	in	the	Processing
Sequence	log.	You	can	choose	one	of	the	following	from	the	drop-down	list:

Automatic For	a	successful	processing	sequence	run,	the	log	will	record
completion	and	some	other	messages	for	most	activities	and

transformation	maps.		However	detailed	logging	(equivalent	to
the	Maximum	logging	level)	is	held	in	memory	in	a	rolling
cache.		If	an	error	occurs,	the	contents	of	the	cache	are	flushed	to
the	log,	providing	detailed	logging	where	it	is	needed	-	preceding
and	at	the	location	of	the	error.

Minimum A	minimal	level	of	messages	are	included	in	the	log.	For	a
successful	processing	sequence	run,	the	log	will	simply	record
the	start	and	end	of	the	processing	sequence.

Normal Completion	messages	for	most	activities	and	transformation
maps	are	included	in	the	log.

Maximum Extensive	logging	records	the	progress	of	the	processing
sequence	and	each	activity	and	transformation	map..

The	suggested	values	are	Automatic	or	Maximum	during	design	and
testing	and	Automatic	or	Normal	in	a	production	environment.	
Automatic	is	a	good	choice	that	balances	the	performance	impact	of
extensive	logging	against	the	necessity	to	log	sufficient	information	to
enable	problem	diagnosis.

LANSA	Integrator	Tracing
When	enabled,	this	sets	LANSA	Integrator	tracing	on	when	an	Integrator
service	is	started	by	an	Activity	supplied	with	LANSA	Composer.
This	setting	overrides	the	corresponding	trace	properties	specified	in	the
LANSA	Integrator	manager.properties	file	for	supplied	Activities	executed
through	a	LANSA	Composer	Processing	Sequence.

For	supplied	activities	used	at	the	maximum	logging	level,	the	LANSA
Integrator	trace	information	will	be	available	in	the	processing	sequence	log.

If	you	are	developing	your	own	custom	Activity	processor	that	uses	a

LANSA	Integrator	service,	you	can	respect	this	value	by	checking	the
IntegratorTrace	property	of	the	ancestor	class	and	setting	the	TRACE
keyword	of	the	SERVICE_LOAD	command	accordingly.	
Alternatively,	if	you	load	your	service	by	means	of	a	call	to	the
ExecuteJSMLoad	method	provided	by	the	DXACTBAS1	ancestor
class,	the	tracing	will	be	enabled	automatically	for	you.

8.2.2	Server	File	Locations
The	values	in	this	section	specify	directory	paths	used	by	LANSA	Composer	as
defaults,	or	for	locating	or	storing	files.

The	paths	specified	in	this	section	are	used	by	software	running	on	the
LANSA	Composer	server	and	must	be	specified	relative	to	and	in	the
form	appropriate	for	the	server	system.

LANSA	Composer	does	not	validate	the	paths	specified	here.	You	must	make
sure	that	the	paths	are	correct	for	your	installation.	You	can	use	the	Browse
button	to	browse	the	server	file	system	for	a	directory	path.

Tutorial	files
Example:	/LANSA_Composer_licpgmlib/lic/Tutorial
This	value	should	contain	the	location	on	your	server	where	the	tutorial	data	has
been	placed.	Refer	to	Objects	Supplied	for	the	Tutorials	in	the	Tutorial
installation	for	IBM	i	Server	for	the	files	that	this	directory	should	contain.
If	you	intend	to	complete	the	tutorials,	please	check	that	the	value	entered	here
is	correct.
Default	trading	partner	linked	directory
Example:	/LANSA_Composer_licpgmlib/lic/
This	value	is	used	when	a	linked	directory	is	created	for	a	Trading	Partner.	This
should	be	a	directory	on	your	server.	This	value	is	set	as	the	default	and	may	be
changed	or	extended	in	the	Linked	directory	maintenance.	For	example,	the

its:LANSA091.CHM::/lansa/intengc8_0020.htm

base	directory	could	be	/LANSA_Composer_licpgmlib/lic/	and	within	that
there	could	be	sub-directories	for	each	trading	partner	such	as
/LANSA_Composer_licpgmlib/lic/TP1/inbound.

8.2.3	File	Locations	Relative	to	Client
The	values	in	this	section	specify	directory	paths	used	by	LANSA	Composer	as
defaults,	or	for	locating	or	storing	files.

The	paths	specified	in	this	section	are	used	by	software	running	on	the
LANSA	Composer	client	and	must	be	specified	relative	to	and	in	the
form	appropriate	for	the	client	system.

For	several	of	the	paths	in	this	section,	you	can	specify	two	separate	values:
1.		Default	value
					This	is	the	default	value	for	all	client	installations	and	the	value	is	saved	on
the	server	system.		If	all	your	clients	access	the	server	file	system	in	the	same
way	(for	example,	using	a	fixed	mapped	drive	letter	or	UNC	path),	then	you
can	set	this	value	once	and	all	clients	will	use	the	same	value	(unless
overridden	on	that	client).		This	is	the	recommended	approach.

2.		Override	value	for	this	client
					This	value	overrides	the	default	value	for	this	client	installation.		The
override	value	(if	used)	is	stored	only	on	the	client	system	and	can	be
different	on	each	client	system.		If	there	is	no	client	override	value	specified
on	the	current	client,	the	default	value	is	shown.

LANSA	Composer	performs	delayed	validation	on	the	paths	specified	here	and
will	highlight	in	red	paths	that	could	not	accessed.	However,	you	can	save	the
values	entered	whether	LANSA	Composer	could	access	them	or	not.	You	must
make	sure	that	the	paths	are	correct	for	your	installation.
You	can	use	the	Browse	button	to	browse	the	file	system	for	a	directory	path.

Home	paths
The	home	path	relative	to	the	client	defines	a	path	that	the	LANSA	Composer
client	can	use	to	access	a	common	"home"	location	on	the	LANSA	Composer
server.		This	value	is	used	in	the	LANSA	Composer	client	software	for	a
number	of	operations,	including	for	preparing	Transformation	Maps.		(It	is	not
used	at	run-time	on	the	LANSA	Composer	server,	however.)
The	home	path	relative	to	the	server	should	define	the	server	path	to	the	same
location.		The	LANSA	Composer	client	software	uses	this	to	convert	paths
between	client-relative	and	server-relative	form,	where	necessary.		This	permits,
for	example,	direct	opening	from	the	client	application	of	certain	files	whose
paths	are	server-based,	such	as	the	body	text	file	for	an	SMTP	mail	details
configuration.
Example1	(for	LANSA	Composer	on	an	IBM	i	server):
Home	path	relative	to	the	client:	\\qiseries\ifs
Home	path	relative	to	the	server:	/

Example2	(for	LANSA	Composer	on	an	IBM	i	server):
Home	path	relative	to	the	client:
\\qiseries\ifs\LANSA_Composer_licpgmlib\lic
Home	path	relative	to	the	server:	/	LANSA_Composer_licpgmlib/lic

Example3	(for	LANSA	Composer	on	a	Windows	server):

Home	path	relative	to	the	client:	\\server01\LCShare\Data
Home	path	relative	to	the	server:	C:\Program	Files\LANSA	Composer
Server\Data

	
Map	definitions
Example:	\Composer\Map
LANSA	Composer	combines	this	value	with	the	home	path	to	determine	the
location	of	the	Transformation	Map	definitions.	The	resulting	path	must	exist	on
your	application	server.
Map	generate	and	compile
Example:	C:\Temp
This	value	specifies	the	location	where	intermediate	build	files	(such	as	Java
source	and	object	files)	will	be	held	during	the	process	of	preparing	a
transformation	map.	The	default	setting	is	to	use	the	Windows	temporary
directory	for	the	user,	but	you	can	explicitly	specify	a	location	by	clicking	the
second	radio	button.	For	best	performance	while	preparing	transformation	maps,
it	is	recommended	that	a	location	on	the	local	(client)	file	system	is	used.

The	files	in	this	directory	are	only	used	during	the	Prepare	Transformation	Map
process.	Over	a	period	of	use,	a	number	of	directories	and	files	may	accumulate
here.	You	may	clear	the	contents	of	this	directory	to	save	space.	You	may	do
this	at	any	time	providing	no	transformation	maps	are	being	prepared	at	the
time.

8.2.4	Browser
LANSA	Composer	implements	a	web-browser	based	interface	for	operational
monitoring	and	control	of	the	application.	For	convenience	of	the	LANSA
Composer	designer,	however,	the	browser	interface	is	embedded	in	the
Composer	client	software.	The	URLs	in	this	section	are	used	to	display	the
browser	interface	in	the	client	software.
You	can	use	the	Verify	URL	button	to	open	the	specified	URL	in	your	web
browser	in	order	to	verify	that	the	URL	is	correct	and	operating.

Base	URL	for	browser	interface
Example:	http://youriSeries/CGI-BIN/lansaweb?
This	value	specifies	the	base	URL	used	from	the	client	computer	to	access	the
web-browser	based	operations	console	for	LANSA	Composer.	It	is	used	to
construct	the	URL	used	when	the	Console	option	is	chosen	from	the	Operations
section	in	the	Navigator.
URL	for	LANSA	Integrator	(JSM)	console
Example:	http://youriSeries:4561
This	specifies	the	URL	used	from	the	client	computer	to	display	LANSA
Integrator's	Java	Service	Manager	Console.	It	is	used	to	display	the	console
when	the	Java	Service	Manager	Console	option	is	chosen	from	the	Operations
section	in	the	Navigator.
The	URL	is	usually	in	the	form	http://host:port	,	where	host	is	the	name	of	the
application	server	on	which	the	Java	Service	Manager	is	running	and	port	is	the
port	number	specified	for	the	console	in	LANSA	Integrator's	manager.properties
file	(default	4561).	Refer	to	the	Java	Service	Manager	Console	in	the	LANSA
Integrator	Guide	for	more	information.

8.2.5	SMTP	Mail	Details	Defaults
The	values	in	this	section	specify	defaults	that	are	pre-filled	when	a	new	SMTP
mail	detail	configuration	is	created.

From	e-mail	address
Example:	Fred.Smith@yourcompany.com
This	value	is	used	when	an	SMTP	mail	detail	configuration	is	created.	It	is	used
to	set	the	initial	From	email	address.	The	value	may	be	changed	in	individual
SMTP	email	detail	configurations.
From	e-mail	display	name
Example:	Fred	Smith
This	value	is	used	when	an	SMTP	mail	detail	configuration	is	created.	It	is	used
to	set	the	initial	From	email	Name.	The	value	may	be	changed	in	individual
SMTP	email	detail	configurations.

8.2.6	HTTP	Inbound	Processing
The	values	in	this	section	specify	defaults	that	are	used	by	the	supplied	HTTP
Inbound	Activity,	HTTP_INBOUND.

HTTP	inbound	payload	directory
Example:	/Composer/HTTPIN
This	value	is	used	by	the	supplied	HTTP	Inbound	Activity,	HTTP_INBOUND.
It	is	used	to	identify	the	directory	into	which	the	payload	of	HTTP	Inbound
messages	are	saved.	If	you	are	going	to	be	using	Inbound	HTTP	processing,
then	a	directory	on	your	server	must	be	entered.
HTTP	inbound	file	name	prefix
Example:	HI
This	value	is	used	by	the	supplied	HTTP	Inbound	Activity,	HTTP_INBOUND.
It	is	used	as	the	prefix	for	the	name	of	the	saved	payload	of	HTTP	Inbound
messages.	This	prefix	plus	a	sequential	number	will	be	used	as	the	file	name	of
the	saved	payload.	The	file	will	be	saved	in	the	HTTP	Inbound	directory.
For	example:	The	payload	of	an	inbound	HTTP	message	would	be	saved	as
/Composer/HTTPIN/HI00000123.dat

8.2.7	Transaction	Document	Processing
The	values	in	this	section	specify	values	used	in	connection	with	LANSA
Composer's	transaction	document	processing	framework	and	features.

"Resend"	processing	sequence
Example:	TXDOC_SEND
This	value	specifies	the	name	of	the	processing	sequence	that	LANSA
Composer	will	execute	to	service	the	Resend	button,	when	clicked,	in	the
LANSA	Composer	Document	Manager	application.		The	supplied	processing
sequence,	TXDOC_SEND,	is	the	default	choice.		If	you	change	this	to	a
processing	sequence	of	your	own,	then	it	should	be	modeled	on	TXDOC_SEND
with	respect	to	the	parameters	it	receives.		You	may	click	the	adjacent	prompt
button	to	select	from	a	list	of	available	processing	sequences.

8.2.8	Default	Configuration
The	values	in	this	section	identify	transport	configurations	set	as	defaults	for
event	notifications	and	certain	supplied	activities.

SMTP	server	configuration
This	value	specifies	an	SMTP	server	configuration	that	provides	default	SMTP
server	details	for	email	event	notification	and	for	other	supplied	activities	which
may	require	SMTP	server	details.	For	example,	an	SMS	configuration	can	refer
to	the	default	SMTP	server	configuration	by	selecting	(Default)	from	the	drop
down	list	of	available	SMTP	server	configurations.
SMS	configuration
This	value	specifies	an	SMS	configuration	that	provides	default	SMS
configuration	details	for	SMS	event	notification	or	other	SMS	related	activities
such	as	the	supplied	SMS_SEND	activity.

8.2.9	Other	Settings
This	section	contains	various	settings	which	are	used	as	the	default	for	values
throughout	Composer.

Java	version	for	Transformation	Maps
This	setting	determines	the	target	Java	version	used	when	compiling	the
generated	Java	code	for	Transformation	Maps.	You	should	select	the	Java
version	that	is	compatible	both	with	the	version	assumed	by	the	mapping	tool
and	with	the	JVM	and	LANSA	Integrator	on	the	LANSA	Composer	server	that
will	execute	the	Transformation	Maps.
Archive	processing	sequence	versions
When	enabled,	this	setting	causes	LANSA	Composer	to	archive	prior
Processing	Sequence	versions	each	time	a	modified	Processing	Sequence
definition	is	saved	in	the	Processing	Sequence	Editor.	This	enables	the	prior
versions	to	be	restored,	if	required.
Zip	archive	file	name	prefix
Example:	ZP
This	value	is	used	by	the	supplied	Activity	ZIP_LIST,	which	zips	a	list	of	files.
If	a	zip	archive	name	is	not	provided	to	this	Activity,	it	will	create	an	archive
name	consisting	of	this	prefix	plus	a	sequential	number.	For	example:
ZP0000456
POP3	save	sub-directory	prefix
Example:	MS
This	value	is	used	by	the	supplied	Activity	MAILRECEIVE_ALL	which	gets
all	the	email	messages	from	the	mail	server.	The	mail	details	and	attachments

are	saved	into	a	directory	specified	on	the	configuration	or	at	processing	time.
The	information	from	each	mail	is	saved	into	a	sub-directory	which	is	created.
This	sub-directory	is	named	with	this	prefix	plus	a	sequence	number.
From	e-mail	address	for	event	notifications
Example:	Composer.processing@yourcompany.com.au
Emails	sent	by	the	Composer	processing	when	a	failure	is	encountered	and	an
Event	notification	exists	for	that	failure	must	have	a	From	email	address	for
email	validity.	The	value	entered	here	is	used	as	that	From	email	address.
Job	description	for	submitted	jobs
Example:	QBATCH.QGPL
This	value	is	used	as	the	job	description	when	submitting	jobs	such	as
Processing	Sequence	runs	and	Database	Housekeeping.
Show	supplied	definitions	for	export
This	setting	is	disabled	by	default.	When	enabled,	supplied	processing
sequences,	transformation	maps	and	activities	will	be	shown	in	the	LANSA
Composer	export	dialogue.	This	setting	need	to	be	enabled	in	order	to	export
supplied	definitions.

8.3	System	Properties
System	properties	allows	you	to	extend	the	standard	LANSA	Composer
environment	with	properties	that	are	specific	to	your	own	installation,
environment	or	organisation.	Using	system	properties	you	can:

Define	your	own	system	properties	for	use	with	LANSA	Composer
Assign	or	change	values	for	your	system	properties	or	specify	a	LANSA
function	that	will	evaluate	your	system	properties
Optionally,	specify	that	a	system	property	is	writeable,	thereby	permitting
your	Processing	Sequences	to	assign	a	new	value	to	the	system	property.

Having	defined	your	own	system	properties,	you	can	refer	to	them	in	your
Processing	Sequences	using	built-in	variables	of	the	form:
*SYSTEM.PROPERTY.<property	name>
					where	<property	name>	is	the	name	of	the	installation-defined	system
property.

The	Built-ins	tab	in	the	Processing	Sequence	Editor	will	show	built-in	variables
for	any	system	properties	that	you	have	defined	here.

For	information	about	accessing	system	property	values	in	a	processing
sequence,	refer	to	Using	the	System	Property	Built-in	Variables	.
For	information	about	writing	a	system	property	evaluation	function	refer	to
8.3.1	System	Property	Evaluation	Functions.

To	reach	the	system	properties,	expand	Administration	and	Housekeeping	in	the
Navigator	and	then	select	the	required	function.

To	work	with	system	properties,	select	the	required	property	from	the	list.	You
can	use	the	New	or	Delete	buttons	to	add	or	remove	system	properties,	or	you
can	complete	the	following	details	for	new	or	revised	system	property.

Remember	to	press	the	Save	button	to	save	your	changes.

System
property
name

Specifies	a	name	for	the	system	property.		The	name	must	be
unique	amongst	system	properties	in	this	installation	of	LANSA
Composer.			The	name	can	be	up	to	20	characters,	must	begin
with	an	alphabetic	character	in	the	range	A-Z	and	consist	only	of
alphabetic	characters	in	that	range,	digits	0-9	and	underscore	(_).

System
property
description

Specifies	a	text	description	for	the	system	property.	It	can	be	up
to	50	characters.

System
property
value

The	entry	fields	in	this	section	specify	how	the	system	property
value	is	to	be	determined	or	derived.
In	the	drop-down	list	you	can	choose	from	two	evaluation
methods:
Use	this	value:	When	you	select	this	option,	the	second	entry
field	specifies	the	value	for	the	system	property.	It	can	be	up	to
256	characters.
Evaluate	/	set	by	call	to	function:	
When	you	select	this	option,	the	second	entry	field	specifies	the
name	of	a	LANSA	function	that	will	be	called	to	evaluate	the
system	property	value	each	time	it	is	referenced	(and	to	set	its
value	when	a	new	value	is	assigned	to	a	writeable	system
property).
For	information	on	writing	system	property	evaluation	functions
refer	to	8.3.1	System	Property	Evaluation	Functions.

Processing
sequences
can	set	the
value
(writeable)

Check	this	box	to	permit	Processing	Sequences	to	assign	a	new
value	to	the	system	property.

8.3.1	System	Property	Evaluation	Functions
If	you	choose	the	option	to	Evaluate	/	set	by	call	to	function,	then	it	is	your
responsibility	to	create	and	deploy	or	install	the	specified	LANSA	function	that
will	evaluate	(and	set)	your	system	property's	value.

Your	function	may	be	created	using	RDML	or	it	may	be	fully	RDMLX
enabled.
Your	function	must	be	defined	with	function	options(*direct)
Your	function	must	be	created	and	compiled	at	a	LANSA	level	that	is
compatible	with	the	version	of	LANSA	Composer	that	you	are	using
Your	function	must	be	deployed	to	the	partition	module	library	for	the
LANSA	system	and	partition	in	which	LANSA	Composer	is	installed	on
your	LANSA	Composer	server	(for	example	LICLICLIB)

When	LANSA	Composer	calls	your	function	to	evaluate	or	set	a	system
property	value,	it	will	communicate	with	it	using	the	LANSA	exchange	list.
Specifically,	your	function	must	define	(if	necessary)	and	use	the	following
fields	to	identify	the	request	and	to	return	the	result.	In	the	case	of	fields	that	are
indicated	to	be	output	variables,	your	function	must	use	the	EXCHANGE
command	to	place	them	on	the	LANSA	exchange	list	before	returning.

Name Description Type Usage

DXREQUES Request	code.		LANSA	Composer	will	set	this
to	one	of	the	following	values:
'GET'	-	indicates	the	function	should	evaluate
the	specified	system	property	and	place	its
value	in	field	DXSPVL
'SET'	-	indicates	the	function	should	set	the
value	of	the	specified	system	property	using
the	value	provided	in	field	DXSPVL.

A(10) Input

DXSPID System	property	identifier.		Your	function
may	be	used	to	evaluate	or	set	the	values	of
more	than	one	system	property.		If	you	design
your	solution	in	this	way,	your	function	will
need	to	test	this	value	(and/or	the	DXSPII
field	value)	to	determine	which	system
property	it	is	being	requested	to	evaluate	or

A(20) Input

set.

DXSPII System	property	internal	identifier.		This	is	a
unique	internal	identifier	that	LANSA
Composer	assigns	to	each	system	property
definition.

A(32) Input

DXSPVL System	property	value.
For	a	GET	request,	your	function	must	set	the
value	of	this	field	to	contain	the	evaluated
value	of	the	specified	system	property.
For	a	SET	request,	your	function	should	set
the	value	of	the	specified	system	property
using	the	value	provided	in	this	field.

A(256) Input
(SET)
Output
(GET)

DXRESULT Result	code.		If	your	function	completes
normally,	its	should	set	the	value	of	this	field
to	'OK'.		If	the	result	code	contains	any	other
value,	LANSA	Composer	will	assume	that	the
evaluation	request	failed	and	will	not	use	the
returned	system	property	value.

A(2) Output

	

The	following	is	an	example	RDMLX	function	to	evaluate	(and	set)	a	system
property	named	MY_PROPERTY.
	
function	options(*direct)
	
*	---
*	Program	mainline
*	---
	
case	of_field(#dxspid)
	
				when	value_is(=	'MY_PROPERTY')
	
								case	of_field(#dxreques)
	

												when	value_is(=	'GET')
	
																#dxspvl	:=	'MY_PROPERTY_VALUE'
																#dxresult	:=	'OK'
																exchange	fields(#dxspvl	#dxresult)
	
												when	value_is(=	'SET')
	
																*	MY_PROPERTY	is	NOT	intended	to	be	writeable
																#dxresult	:=	'ER'
																exchange	fields(#dxresult)
																abort	msgtxt('System	property	MY_PROPERTY	not	writeable')
	
								endcase
	
				otherwise
	
								abort	msgtxt('System	property	name	not	recognised	by	this	function')
	
endcase
	
return
	

8.4	Code	Maintenance
To	reach	Code	Maintenance,	expand	Administration	and	Housekeeping	in	the
Navigator	and	then	select	the	required	function.
Code	Maintenance	allows	you	to	view	or	modify	various	code	values	that	are
used	in	LANSA	Composer	to	categorize	and	organize	definitions.	The	codes	are
in	these	Groups:

	 Used	for
Activity	groups To	categorize	Activities.

The	groups	to	which	an	Activity	belongs	is	maintained
in	the	Activity	maintenance.	An	Activity	may	belong	to
several	groups.
The	grouping	is	used	within	the	Processing	Sequence
editor	to	make	it	easier	to	find	and	select	Activities.

Transformation
map	types

To	provide	a	grouping	and	plain	language	description	for
Map	Types.
The	groupings	are	used	in	the	maintenance	of	Trading
Partners	Linked	Maps.	Within	Processing	Sequences
you	can	select	specific	types	of	Linked	Maps	for	the
current	Trading	Partner.

Trading
partner	groups

To	categorize	Trading	Partners.
The	groups	to	which	a	Trading	Partner	belongs	is
maintained	in	the	Trading	Partner	maintenance.	A
Trading	Partner	may	belong	to	several	groups.

Trading
partner
directory	types

To	provide	a	grouping	and	plain	language	description	for
Directory	Types.
The	groupings	are	used	in	the	maintenance	of	Trading
Partners	Linked	Directories.	Within	Processing
Sequences	you	can	select	specific	types	of	Linked
Directories	for	the	Trading	Partner	currently	being
processed.

Trading
partner
installation-

To	define	properties	for	Trading	Partners	specific	to
your	organization	and	the	transactions	you	conduct	with
your	Trading	Partners.

defined
properties

Once	Trading	Partner	properties	are	defined,	property
values	can	be	entered	for	each	Trading	Partner.

Transaction
document
status	codes

To	add	user-defined	status	codes	for	use	with	LANSA
Composer	Document	Manager.
Once	a	status	code	have	been	defined,	the	status	code
will	then	be	recognized	in	LANSA	Composer	Document
Manager.

	

Code	Maintenance	allows	you	to	add,	change	and	delete	code	values	in	these
groups.

To	work	with	Code	Values,	select	the	required	Code	Group	and	then	select	the
Code	Value	from	the	code	value	list.	You	can	use	the	New	or	Delete	buttons	to
add	or	remove	code	values,	or	you	can	complete	the	following	details	for	new	or
revised	code	values.	Remember	to	press	the	Save	button	to	save	your	changes.

Code	Value Defines	a	unique	code	value	in	the	selected	group.
Code
Description

Specifies	a	text	description	for	the	code	value.	It	can	be	up	to
50	characters.

The	following	details	apply	only	to	the	Trading	partner	installation-defined

properties	group:

Code	Value
Type

Defines	the	code	value	type	as	Alpha	or	Numeric.

Code	Value
Length

Defines	the	length	of	the	code	value.

Code	Value
Decimals

Defines	the	number	of	decimal	digits	for	a	numeric	type
code	value.

Code	Sequence Defines	the	display	sequence	for	properties	in	Trading
Partner	Properties	tab.

The	following	details	apply	only	to	the	Transaction	document	status	codes:

Resulting
exchange
status

Specifies	if	the	particular	status	signifies	an	error,	that	processing
has	completed,	that	the	document	has	been	abandoned	or	that
processing	is	still	in	progress.

8.5	Event	Maintenance
LANSA	Composer	provides	support	for	event	definitions	that	can	be	"triggered"
during	execution	of	a	Processing	Sequence	and	that	can	provide	notifications	of
the	event,	for	example,	by	email	or	SMS	message	to	a	system	operator.		These
events	can	be	set	up	and	maintained	in	Event	Maintenance	(under
Administration	and	Housekeeping	in	the	LANSA	Composer	Navigator).
There	are	three	ways	that	an	event	definition	can	be	"triggered"	during	the
execution	of	a	Processing	Sequence:
1.		Your	Processing	Sequence	can	explicitly	cause	an	event	to	be	triggered	by
including	the	supplied	NOTIFYEVENT	activity.		You	can	use	this	activity	to
trigger	any	defined	event,	including	those	that	are	supplied	with	LANSA
Composer	and	additional	events	that	you	may	define	yourself.

2.		You	can	associate	a	specific	event	with	a	Processing	Sequence	such	that	the
event	is	triggered	automatically	if	the	Processing	Sequence	ends	in	error.		To
do	this,	enter	the	required	event	definition	name	in	the	Event	identifier	field	at
the	Processing	Sequence	Details	command	tab

3.		Activities	can	be	written	such	that	they	trigger	an	event	in	specific
circumstances.		A	number	of	the	supplied	activities	behave	in	this	way.		For
example,	the	supplied	FTP_INBOUND	activity	can	trigger	the
FTPINFAILED	event	if	an	error	occurs	during	the	FTP	processing.		Refer	to
8.5.1	Supplied	Events	for	a	list	of	the	event	definitions	that	can	be	triggered
by	activities	supplied	with	LANSA	Composer.

If	you	are	creating	your	own	custom	activities,	you	can	employ	this	same
technique	to	trigger	an	event	when	appropriate.		For	more	information	refer	to
Signal	an	event	.

Note:		Both	your	own	event	definitions	and	the	supplied	event
definitions	will	be	triggered	only	if	their	status	is	set	to	Active.	
Supplied	events	have	a	status	of	Inactive	as	installed.		You	must
enable	them	by	setting	their	status	to	Active	if	you	wish	them	to	be
triggered.		Of	course,	if	you	do	this,,	you	should	modify	the	supplied
events	to	notify	you	of	the	associated	event	by	whatever	means	is
appropriate	for	your	organization.

When	an	event	is	triggered	in	any	of	the	above	ways,	the	Processing	Sequence

its:LANSA091.CHM::/lansa/AT_NOTIFYEVENT.htm
its:LANSA091.CHM::/lansa/AT_FTP_INBOUND.htm
its:LANSA091.CHM::/lansa/intengc7_0080.htm

controller	will	notify	the	appropriate	event	to	provide	the	notifications	that	are
defined	for	the	event.
Refer	to	8.5.2	Event	Details	for	information	on	the	basic	details	for	an	event
definition	and	on	adding,	removing	and	organizing	the	notification(s)	for	the
event.
An	event	can	use	one	or	more	of	the	following	notification	methods	to	provide
the	notification	of	the	event:

8.5.3	Send	an	Email
8.5.4	Send	an	SMS
8.5.5	Send	a	Message	to	an	IBM	i	Message	Queue	(IBM	i	servers	only)
8.5.6	Run	a	Specified	Processing	Sequence
8.5.7	Execute	a	Specified	Function

8.5.1	Supplied	Events
The	following	are	the	events	that	are	supplied	with	LANSA	Composer	to	handle
failures	in	supplied	Activities:

Event Description Invoked	by	Activity

FTPCMDLSTFAILED Notification	of	FTP	failure
using	Command	list.

FTP_COMMANDLIST

FTPINFAILED Notification	of	inbound
FTP	failure

FTP_INBOUND

FTPOUTFAILED Notification	of	outbound
FTP	failure

FTP_OUTBOUND

HTTPOUTFAILED Notification	of	outbound
HTTP	failure

HTTP_GET
HTTP_POST

MSGSENDFAILED Notification	of	failure
sending	a	message	through
a	message	brokering
system	such	as	IBM	MQ
Series

MSG_SEND

MSGRCVFAILED Notification	of	failure
receiving	a	message
through	a	message
brokering	system	such	as
IBM	MQ	Series

MSG_RECEIVE

POP3FAILED Notification	of	failure
reading	emails	with	POP3

MAIL_RECEIVE	
MAIL_RECEIVEALL

SMTPFAILED Notification	sending	email
using	SMTP

MAIL_SEND

SMSFAILED Notification	of	failure
while	sending	SMS

SMS_SEND

TRANSFORMFAILED Notification	of	error
executing	a	transformation
map.

TRANSFORM	activity
or	any	Transformation
Map	directive

its:LANSA091.CHM::/lansa/AT_FTP_COMMANDLIST.htm
its:LANSA091.CHM::/lansa/AT_FTP_INBOUND.htm
its:LANSA091.CHM::/lansa/AT_FTP_OUTBOUND.htm
its:LANSA091.CHM::/lansa/AT_HTTP_GET.htm
its:LANSA091.CHM::/lansa/AT_HTTP_POST.htm
its:LANSA091.CHM::/lansa/AT_MSG_SEND.htm
its:LANSA091.CHM::/lansa/AT_MSG_RECEIVE.htm
its:LANSA091.CHM::/lansa/AT_MAIL_RECEIVE.htm
its:LANSA091.CHM::/lansa/AT_MAIL_RECEIVEALL.htm
its:LANSA091.CHM::/lansa/AT_MAIL_SEND.htm
its:LANSA091.CHM::/lansa/AT_SMS_SEND.htm
its:LANSA091.CHM::/lansa/AT_TRANSFORM.htm

	

See	the	Notes	tab	of	the	supplied	events	for	a	description.			You	can	enable	or
disable	these	supplied	events	by	swapping	their	Status	between	Active	and
Inactive.		You	can	modify	the	supplied	events	to	notify	you	of	the	associated
event	in	whatever	way	is	appropriate	for	your	organization.

8.5.2	Event	Details

An	event	may	be	set	up	with:

ID A	unique	name	for	the	event
Description Text	description	for	the	event.
Status Active	or	Inactive.	If	the	event	status	is	not	Active,	then	the

event	will	not	be	triggered.

Define	and	organize	notifications
For	each	event	definition,	you	may	add	one	or	more	notifications.		Use	the	Add,
Remove,	Move	up	or	Move	down	buttons	to	define	and	organize	the
notifications.	
You	can	add	a	notification	but	disable	it	by	unchecking	the	checkbox	next	to	the
notification	in	the	list.
You	can	add	more	than	one	notification	of	the	same	type,	if	you	wish.
When	you	click	the	Add	button,	LANSA	Composer	shows	the	Choose	Event
Notification	Method	window	to	allow	you	to	choose	what	type	of	notification	to
add:

Refer	to	the	following	headings	for	more	information	about	each	notification
type:

8.5.3	Send	an	Email
8.5.4	Send	an	SMS
8.5.5	Send	a	Message	to	an	IBM	i	Message	Queue	(IBM	i	servers	only)
8.5.6	Run	a	Specified	Processing	Sequence
8.5.7	Execute	a	Specified	Function

8.5.3	Send	an	Email
The	following	details	may	be	entered	for	the	Send	an	email	event	notification
method:

TO This	value	must	be	provided.	It	should	contain	a	valid	email
address,	or	a	list	of	email	addresses	separated	by	commas.		Click
the	adjacent	prompt	button	to	enter	or	maintain	the	list	of	email
addresses.

CC This	optional	value	specifies	the	CC	(copy	to)	address.		It	can
contain	a	single	email	address,	or	a	list	of	email	addresses	separated
by	commas.		Click	the	adjacent	prompt	button	to	enter	or	maintain
the	list	of	email	addresses.

BCC This	optional	value	specifies	the	BCC	(blind	copy)	address.		It	can
contain	a	single	email	address,	or	a	list	of	email	addresses	separated
by	commas.		Click	the	adjacent	prompt	button	to	enter	or	maintain
the	list	of	email	addresses.

Subject A	subject	must	be	entered.	This	will	be	the	subject	for	the	email
sent.

Include
Log
reference
in	text

Yes	or	No.	Yes	will	result	in	the	sent	email	containing	a	Log
number	reference	in	the	email	text.	That	Log	reference	can	then	be
used	by	the	email	recipient	to	look	up	the	details	using	the
Processing	Log	Inquiry.

Text You	can	provide	text	for	the	body	of	the	email.	A	short	description
for	the	reason	for	the	email	is	suggested.

Note:	Email	notifications	use	the	LANSA	Integrator	SMTP	email
facilities.	To	use	the	Event	emails	you	must	have	LANSA	Integrator
running	and	a	valid	Default	SMTP	configuration	set	in	System	Settings
that	refers	to	your	SMTP	mail	server.

8.5.4	Send	an	SMS
The	following	details	may	be	entered	for	the	Send	an	SMS	event	notification
method:

TO
SMS
number

This	parameter	may	contain	the	SMS	number	to	which	the	message
is	to	be	sent

SMS
Message

This	parameter	may	contain	the	SMS	message	text	to	be	sent.

Include
Log
reference
in	text

Yes	or	No.	Yes	will	result	in	the	sent	SMS	message	containing	a
Log	number	reference	in	the	message	text.	That	Log	reference	can
then	be	used	by	the	message	recipient	to	look	up	the	details	using
the	Processing	Log	Inquiry.

Note	SMS	notifications	use	the	LANSA	Integrator	SMS	and	SMTP
email	facilities.	To	use	the	event	SMS	you	must	have	LANSA
Integrator	running,	and	a	valid	Default	SMTP	configuration	and
Default	SMS	configuration	set	in	System	Settings	that	refers	to	your
SMTP	mail	server	and	to	your	SMS	provider.	If	your	SMS	provider
expects	email	in	a	format	different	to	that	generated	by	the	standard
LANSA	Composer	SMS	support,	then	you	may	need	to	implement
that	with	a	custom	solution.

8.5.5	Send	a	Message	to	an	IBM	i	Message	Queue

NOTE:		This	notification	method	is	supported	only	when	LANSA
Composer	is	running	on	an	IBM	i	server.

The	following	details	may	be	entered	for	the	Send	a	message	to	an	IBM	i
message	queue	event	notification	method:

Message
text

This	parameter	may	contain	the	message	text	to	be	sent	to	the
specified	message	queue.

Message
queue
name
and
library

Specifies	the	IBM	i	message	queue	to	which	the	message	is	to	be
sent.		You	may	specify	the	special	values	*SYSOPR	or	*HSTLOG
in	the	Message	queue	name	to	send	the	message	to	the	system
operator	message	queue	or	to	the	history	log	respectively.

8.5.6	Run	a	Specified	Processing	Sequence
The	following	details	may	be	entered	for	the	Run	a	specified	processing
sequence	event	notification	method:

LANSA
system
configuration

Specifies	the	name	of	a	LANSA	system	configuration	that
will	be	used	to	run	the	specified	Processing	Sequence
(through	the	LANSA	Composer	Request	Server).		Usually	the
LANSA	system	configuration	should	refer	to	the	same
LANSA	Composer	system	that	contains	the	Processing
Sequence	that	triggered	the	event.

You	can	use	the	prompt	button	to	choose	the	LANSA	system
configuration	from	a	list	of	available	LANSA	system
configurations.

Processing
sequence

Specifies	the	name	of	the	Processing	Sequence	that	the	event
should	run.	

You	can	use	the	prompt	button	to	choose	the	Processing
Sequnce	from	a	list	of	available	Processing	Sequences.

When	the	Processing	Sequence	runs,	LANSA	Composer	will	make	the
following	parameters	available	to	it,	containing	further	information	about	the
event	that	was	triggered	and	the	processing	sequence	and	error	that	triggered	it:

DXEVID Event	name

DXP1ID Processing	sequence	name

DXL1NO Run	number

DXL3SD Short	error	description	(if	any)

DXL3TX Long	error	text	(if	any)

An	example	event	notification	handler	Processing	Sequence	is	supplied	with
LANSA	Composer.		If	you	have	installed	the	supplied	examples,	refer	to	the
Processing	Sequence	EXAMPLE_EVENT01.

Note	The	specified	Processing	Sequence	will	be	run	(synchronously)
through	the	LANSA	Composer	Request	Server	to	ensure	that	it	runs	in
a	separate	process	to	the	Processing	Sequence	that	triggered	the

event.		If	you	haven't	already	done	so,	you	may	need	to	configure	the
LANSA	Composer	Request	Server	for	your	system.		Refer	to
Appendix	F.	The	LANSA	Composer	Request	Server	for	detailed
information	about	considerations	for	requests	executed	through	the
LANSA	Composer	request	server.

8.5.7	Execute	a	Specified	Function
The	following	details	may	be	entered	for	the	Execute	a	specified	function	event
notification	method:

Function
name

Specifies	the	name	of	a	user-defined	function	that	is	to	be
executed.

NOTE:		To	make	use	of	this	notification	method,	you	will	need	access
to	LANSA	development	tools	and	skills	in	order	to	code,	compile	and
install	the	necessary	user-defined	function.

Note	the	following	about	the	function	to	be	called:
The	function	must	be	installed	in	the	LANSA	Composer	server	system	in	the
partition	containing	LANSA	Composer	(normally	LIC).
The	function	must	be	coded	using	RDMLX.
The	function	must	have	been	compiled	in	a	LANSA	development
environment	that	is	at	a	level	that	is	compatible	with	the	LANSA	Composer
system.
The	function	must	be	defined	with	options(*DIRECT).
The	function	must	not	directly	invoke	any	LANSA	Composer	entry	point.	
For	example,	it	must	not	attempt	to	(directly)	execute	another	Processing
Sequence.

Before	the	function	executes,	LANSA	Composer	will	populate	the	exchange	list
with	the	following	fields	that	the	function	may	reference,	if	desired:

DXEVID A(10) Event	name

DXEVII A(32) Event	internal	identifier

DXP1ID A(10) Processing	sequence	name

DXP1II A(32) Processing	sequence	internal	identifier

DXPVRN A(15) Run	number	as	a	character	string

DXL1NO P(15,	0) Run	number

DXL3MN A(7) Last	error	number,	if	any

DXL3SD A(80) Last	error	short	text	description,	if	any

DXL3TX S(512) Last	error	long	text	description,	if	any

An	example	of	a	user-defined	event	handler	function	is	supplied	in	the	LANSA
Composer	development	package	in	process	DXSXTC,	function	DXEVEN1.	
Refer	to	Before	you	begin	your	custom	activity	.for	information	on	how	to
locate	and	import	this	package	into	your	LANSA	development	environment.

its:LANSA091.CHM::/lansa/intengc7_0045.htm

8.6	Database	Housekeeping
Database	Housekeeping	is	available	under	Administration	and	Housekeeping	to
maintain	and	reorganize	the	LANSA	Composer	database.
The	database	housekeeping	screen	displays	when	the	housekeeping	tasks	were
last	run,	as	well	as	permitting	you	to	enter	the	values	to	be	used	for	future
database	housekeeping	tasks.
After	entering	the	required	values,	there	are	two	ways	to	proceed:
1.		Save	the	values	and	submit	the	database	housekeeping	task	from	the
command	line

					This	technique	allows	you	to	integrate	the	database	housekeeping	task	into
your	other	operational	procedures,	for	example,	by	scheduling	it	with	a	job
scheduler.		Remember	that	the	database	housekeeping	task	will	need	to	run	at
a	time	when	exclusive	use	of	the	LANSA	Composer	system	will	be	available
to	it.

You	can	click	the	Save	button	to	save	the	values	that	will	be	used	for	any
future	database	housekeeping	tasks.

Refer	to	Appendix	D	Commands	to	invoke	LANSA	Composer	for
information	about	running	the	database	housekeeping	task	on	your	LANSA
Composer	IBM	i	or	Windows	server	using	an	appropriate	command	line
interface.

2.		Submit	the	task	directly	from	the	LANSA	Composer	client
					Click	the	Submit	button	to	submit	the	task	directly	from	the	LANSA
Composer	client	using	the	values	presently	displayed.

NOTE:		It	is	recommended	that	the	submitted	Database	Housekeeping
job	should	have	exclusive	access	to	the	LANSA	Composer	system.	
For	this	reason,	the	LANSA	Composer	client	application	will	close
after	submitting	the	Database	Housekeeping	task.

The	Database	Housekeeping	job	will	log	the	main	actions	that	it	has	performed
into	the	LANSA	Composer	log	files.		You	can	click	the	History	tab	to	display	or
print	the	logs	for	completed	Database	Housekeeping	tasks.

its:LANSA091.CHM::/lansa/intengc9_0230.htm

Do	you
wish	to
purge	the
logs?

Check	to	confirm.		The	related	fields	(described	below)	that
control	how	the	log	is	purged	apply	only	when	this	box	is
checked.

Last
purged
date	and

Displays,	for	your	information,	when	the		log	was	last	purged

time
Number	of
days	for
which	you
wish	to
retain
records

`You	may	enter	the	number	of	days	for	which	the	records	should
be	retained.		All	entries	older	than	this	number	will	be	purged.

Do	you
want	to
keep
entries	with
error
status?

Select	Yes	to	retain	log	entries	for	Processing	Sequence	runs	or
system	tasks	that	resulted	in	an	error.		Select	No	to	purge	log
entries	irrespective	of	their	error	completion	status	if	they	meet
the	other	purge	criteria.

Do	you
want	to
keep
entries	with
warning
status?

Select	Yes	to	retain	log	entries	for	Processing	Sequence	runs	or
system	tasks	that	resulted	in	a	warning.		Select	No	to	purge	log
entries	irrespective	of	their	warning	completion	status	if	they
meet	the	other	purge	criteria.

	 	

Do	you
wish	to
purge	the
version
history?

Check	to	confirm.				The	related	fields	(described	below)	that
control	how	archived	processing	sequence	and	transformation
map	versions	are	purged	apply	only	when	this	box	is	checked.

Last
purged
date	and
time

Displays,	for	your	information,	when	processing	sequence	and
transformation	map	versions	were	last	purged.

Number	of
days	for
which	you
wish	to
retain
records

You	may	enter	the	number	of	days	for	which	archived
processing	sequences	and	transformation	maps	should	be
retained.		All	archived	versions	older	than	this	number	will	be
purged.

	 	

Do	you
wish	to
purge	the
transaction
document
register?

Check	to	confirm.				The	related	fields	(described	below)	that
control	how	transaction	document	register	entries	are	purged
apply	only	when	this	box	is	checked.

Last
purged
date	and
time

Displays,	for	your	information,	when	transaction	document
register	entries	were	last	purged.

Number	of
days	for
which	you
wish	to
retain
records

You	may	enter	the	number	of	days	for	which	transaction
document	register	entries	should	be	retained.		All	entries	older
than	this	number	will	be	purged.

	 	
Do	you
wish	to
purge	the
audit
records?

Check	to	confirm.				The	related	fields	(described	below)	that
control	how	audit	trail	records	are	purged	apply	only	when	this
box	is	checked.

Last
purged
date	and
time

Displays,	for	your	information,	when	audit	records	were	last
purged.

Number	of
days	for
which	you
wish	to
retain
records

You	may	enter	the	number	of	days	for	which	audit	records
should	be	retained.		All	entries	older	than	this	number	will	be
purged.

	 	
Do	you
wish	to
clear	the

Check	to	confirm.		This	option	will	clear	trace	and	temporary
files	that	have	been	created	by	the	LANSA	Integrator	JSM	(Java
Service	Manager).

JSM	trace
and
temporary
files?
Last
purged
date	and
time

Displays,	for	your	information,	the	last	date	when	the	JSM	trace
and	temporary	files	were	cleared.

	 	
Do	you
wish	to
reorganize
the
database
tables?

Check	to	confirm.		This	option	applies	to	LANSA	Composer	on
IBM	i	servers	only.		It	will	perform	a	physical	reorganization
(RGZPFM)	of	the	LANSA	Composer	database	tables.

Last
reorganized
date	and
time

Displays,	for	your	information,	the	last	date	when	the	database
was	reorganized.

	 	
Do	you
wish	to
reconcile
the
database?

Check	to	confirm.		This	option	will	remove	redundant	entries	in
the	LANSA	Composer	database.

NOTE:		This	step	can	take	a	significant	amount	of	time	to	run
and	should	not	be	necessary	in	the	course	of	normal	operations.	
It	may	become	desirable	if	abnormal	terminations	of	LANSA
Composer	jobs	have	left	orphaned	records	in	your	database,	but
even	then	such	redundant	records	should	not	adversely	affect
LANSA	Composer	operation.		This	option	is	unselected	by
default.

Last
reconciled
date	and
time

Displays,	for	your	information,	the	last	date	when	the	database
was	reconciled.

8.7	User	Access	Configuration
The	'Configure	User	Access'	display	allows	access	restrictions	to	be	set	for	a
specific	user	or	group.	The	LANSA	Composer	and	LANSA	Composer
Document	Manager	applications	each	provide	their	own	interface	for	this	task.

About	User	Access	Configuration
User	Access	Configuration	can	be	used	to	customise	the	functionality	available
for	each	user.	Using	this	feature,	access	rights	can	be	modified	such	that	users
will	only	see	items	relevant	to	them.

What	it	is,	What	it	is	not,	Warnings	and	Caveats
User	Access	Configuration	is	meant	to	be	a	convenient	way	of	simplifying	a
user's	view	of	the	LANSA	Composer	or	LANSA	Composer	Document	Manager
application.	It	is	not	meant	to	be	a	used	as	a	security	mechanism	to	prevent
users	from	viewing	or	modifying	sensitive	information.
Refer	to	the	following	for	more	information:
8.7.1	Using	User	Access	Configuration

8.7.1	Using	User	Access	Configuration
To	access	this	feature,	select	Tools	from	the	menu	bar	and	then	Configure	User
Access	in	either	LANSA	Composer	or	LANSA	Composer	Document	Manager.If
you	do	not	see	this	menu	option,	that	is	usually	because	it	has	been	disabled	by
the	administrator.	If	there	are	issues,	please	contact	the	system	administrator	or
other	relevant	parties.

The	Configure	User	Access	window	is	shown	and	allows	you	to	set	access
restrictions	in	four	simple	steps.	These	steps	are	outlined	below.

1.	Select	a	User

First,	select	a	user	by	typing	in	the	username	in	the	textbox,	followed	by	the
Enter	key	or	the	refresh	button.	Alternatively,	one	can	be	selected	from	the

given	list.	This	user	can	be	refer	to	a	user	profile,	a	group	profile	(on	IBM	i
server)	or	'*PUBLIC'.	A	group	profile	only	applies	to	IBM	i	server	and	will
change	access	rights	for	everyone	in	that	group.	'*PUBLIC'	applies	for	both
Windows	and	IBM	i	server	and	will	modify	settings	for	all	users.	In	the	event
that	a	setting	has	been	set	at	multiple	levels,	settings	for	group	will	override
'*PUBLIC'	setting	while	setting	for	user	profile	will	override	both.

Immediately	to	the	right	of	the	user	selection	area	are	four	checkboxes.	These
checkboxes	controls	global	access	rights	for	the	user.	Their	function	are	as
follows:

The	"User	can	modify	access	rights"	check	box	will	control	whether	said
user	have	access	to	this	interface.
The	"User	access	restrictions	apply	for	this	user"	determines	whether	the
restrictions	set	below	will	take	effect.	With	exception	to	the	above	checkbox,
this	box	needs	to	be	checked	for	any	restriction	set	here	to	take	effect.
The	"User	has	access	to	all	functions"	check	box	is	a	default	setting	for
function	visibility.	Ideally,	this	should	be	unchecked	when	a	majority	of
functions	is	to	be	disabled	and	checked	otherwise.	Access	to	individual
functions	can	then	be	'granted'	or	'denied'	as	necessary.
The	"User	has	access	to	all	commands"	check	box	is	a	default	setting	for	all
commands.	This	should	be	unchecked	if	users	is	to	be	denied	access	to	a
majority	of	commands	and	checked	otherwise.	Access	to	individual
commands	within	each	function	can	then	be	individually	granted	or	denied
as	necessary.	Do	note	that	default	commands	cannot	be	disabled	and	LANSA
Composer	may	re-enable	them	individually	if	necessary.
	

2.	Select	a	Function

Next,	select	a	relevant	function	from	the	tree	on	the	left	hand	side	that	shows	all
the	functions	available	in	the	relevant	application	(LANSA	Composer	or
LANSA	Composer	Document	Manager).	This	will	populate	a	drop	down	on	the
right	and	possibly	also	the	list	view.

3.	Grant	or	deny	access	to	Functions

The	drop	down	will	have	three	entries	by	default	and	will	control	whether	or	not
this	function	will	be	visible	when	the	said	user	logs	in.	The	first,	default	entry
means	that	access	rights	to	this	function	(and	all	functions)	is	controlled
universally	by	the	"User	has	access	to	all	functions"	checkbox.	This	means
access	can	be	'granted'	or	'denied'	for	all	functions	via	said	check	box	except	for

those	that	have	been	explicitly	set.	The	second	and	third	entry	allows	access	to
be	'granted'	or	'denied'	specifically	for	the	function.
	

4.	Grant	or	deny	access	to	commands

Most	functions	will	have	commands	associated	with	them	that	identify	the	range
of	operations	that	can	be	performed	for	that	function	or	for	an	instance	of	that
type	of	definition	(for	example,	for	a	selected	Trading	Partner).	Commands	will
reflect	things	that	users	can	do	usually	through	the	command	tabs	shown	for	the
function	or	by	clicking	one	of	the	toolbar	buttons	or	by	right-clicking	an
instance.	Commands	can	include	such	things	such	as	New	and	,	Copy,	Details,
Parameters	and	Notes,	depending	on	which	of	the	LANSA	Composer	functions
is	selected..
If	there	are	commands	for	the	function,	the	list	below	the	drop	box	will	have
several	entries,	each	with	a	check	box.	Each	item	in	the	list	represents	a
command	for	the	selected	function.	By	toggling	the	checkboxes,	access	rights
can	be	given	or	revoked	accordingly.	By	default,	checkboxes	will	be	grayed,
indicating	that	access	to	commands	is	controlled	(granted	or	revoked)
universally,	using	the	"User	has	access	to	all	commands"	checkbox.
Do	note	that	Default	commands,	as	indicated	by	'(Default)'	tag	cannot	be
disabled.

Save	and	Activate	Changes

To	save	all	changes	so	far,	click	the	save	button.	Note	that	for	these	changes	to
take	effect,	the	User	access	restriction	applies	for	this	user	option	needs	to	be
checked	(selected)	before	saving.	If	not	selected,	users	would	be	exempt	from
an	authority	check,	giving	them	access	to	all	functions	and	commands.
Alternatively,	the	Refresh	button	can	be	used	to	clear	all	unsaved	changes.
Clicking	Refresh	will	reload	currently	saved	settings	for	the	user.	To	undo	all	the
changes	and	stop	modifying	access	rights,	use	the	Close	button.	As	a	safety	net,
a	warning	message	will	pop	up	asking	whether	changes	are	to	be	saved.	To
proceed,	click	No.
You	can	also	delete	both	saved	and	unsaved	changes	using	the	Delete	button.	In
addition	to	clearing	changes	in	the	user	interface,	the	Delete	button	will	also
clear	all	previously	saved	changes.	Data	will	then	be	reloaded	as	per	normal.	As
data	for	the	user	would	have	been	cleared,	loaded	data	will	be	based	on	group
settings,	'*PUBLIC'	settings	and	default	settings,	whichever	ones	may	apply	to
the	user.

9.	Develop	Custom	Activities	for	LANSA	Composer
You	can	define	your	own	custom	Activities	for	use	with	LANSA	Composer.
Once	your	Activity	is	fully-described	to	Composer,	you	can	orchestrate	it	along
with	other	Activities	and	Transformation	Maps	in	a	Processing	Sequence.
You	will	require	Visual	LANSA	software	and	have	the	ability	to	write	Visual
LANSA	RDMLX	programs	in	order	to	create	your	own	Activities.
Developing	a	custom	Activity	should	involve	at	least	the	following	steps:

9.1	Plan	Your	Custom	Activity
9.2	Define	the	Activity	to	LANSA	Composer
9.3	Create	the	Activity	Processor
9.4	Test	your	Activity
9.5	Deploy	your	Custom	Activity

For	general	considerations	about	integrating	your	custom	LANSA	code	with
your	LANSA	Composer	solution	refer	to:

Appendix	E.	Using	LANSA	Composer	with	LANSA	Applications

its:LANSA091.CHM::/lansa/intengc9_0240.htm

9.1	Plan	Your	Custom	Activity
You	should	spend	some	time	planning	your	custom	Activity	before	beginning
development.	Some	of	the	things	you	need	to	think	about	include:

Inputs	and	outputs:	what	variable	information	will	this	Activity	require	as
input	and	create	as	output?

					Your	Activity	Processor	can	receive	variables	and	variable	lists	from	the
variable	pool	for	the	Processing	Sequence	in	which	it	is	running.	Equally,	it
can	place	variables	and	variable	lists	on	the	variable	pool.	Variables	and
variable	lists	are	the	means	by	which	your	Activity	can	"communicate"	with
other	Activities	and	transformations	in	a	Processing	Sequence.	By	receiving
and	returning	variable	information	to	and	from	the	variable	pool,	you	can
make	your	Activity	more	flexible	and	able	to	be	used	for	a	wider	variety	of
cases.
Performance:	how	much	(or	little)	work	should	your	custom	Activity
perform	in	a	single	invocation?

					Think	about	your	Activity	as	a	logical	"unit	of	work"	that	you	may	wish	to
combine	with	other	custom	Activities,	supplied	transport	and	other	Activities
and/or	transformations.

					From	the	performance	point	of	view,	the	more	work	your	custom	Activity
does	the	better.	The	processing	your	custom	Activity	performs	is	typically
much	more	efficient	than	time	spent	in	the	Processing	Sequence	engine
switching	between	Activities.	If	your	custom	processing	will	be	used	in	a
high-volume,	high-throughput	application,	you	should	plan	to	implement	it	in
fewer	Activities.

Exception	handling:	what	exceptions	might	your	Activity	encounter	and
how	should	you	prepare	for	them	and	handle	them?		Can	or	should	your
Activity	implement	support	for	being	restarted?

					You	need	to	understand	the	capabilities	and	limitations	of	the	exception
handling	mechanism	provided	by	the	directive	CATCH.	CATCH	is	included
in	a	LANSA	Composer	Processing	Sequence	and	you	need	to	plan	how	your
Activity	will	interact	with	it.	You	also	need	to	plan	how	you	can	best	use	the
logging	features	in	LANSA	Composer	in	order	to	provide	adequate
diagnostic	information	in	the	event	of	an	exception.

9.2	Define	the	Activity	to	LANSA	Composer
You	must	define	your	custom	Activity	within	LANSA	Composer	before	it	will
be	available	for	use	in	Processing	Sequences.	When	you	define	your	Activity
you	will	specify:

The	name	of	the	Activity	Processor	that	implements	it.
The	parameters	that	your	Activity	will	receive	or	return.
Other	attributes	that	affect	its	execution	or	the	way	in	which	it	can	be
used.

When	complete,	this	definition	allows	you	to	orchestrate	your	Activity	along
with	supplied	Activities	and	transformations	in	Processing	Sequences.
Refer	to	Work	With	Activities	for	information	on	defining	Activities	to	LANSA
Composer.

its:LANSA091.CHM::/lansa/intengc2_0030.htm

9.3	Create	the	Activity	Processor
The	Activity	Processor	is	the	executable	code	that	implements	the	function	of
the	custom	Activity.	LANSA	Composer	invokes	the	processor	as	required	in
order	to	execute	the	Activity.
For	all	Activities	that	are	supplied	with	LANSA	Composer,	the	Activity
Processors	are	also	provided	and	ready	to	use.	For	any	custom	Activities	you
define	to	LANSA	Composer,	you	must	provide	the	Activity	Processor.
The	Activity	Processor	is	implemented	as	a	LANSA	RDMLX	component	(re-
useable	part).	You	will	need	LANSA	development	skills	in	order	to	develop	an
Activity	Processor.	Refer	to	9.6	Develop	a	Custom	Activity	Processor	for	more
information.
NOTE:		LANSA	Composer	can	generate	skeletal	RDMLX	code	for	your
activity	processor	to	get	you	started.		Refer	to	9.6.2	Generate	Skeletal	RDMLX
Code	for	more	information.

9.4	Test	your	Activity
Typically,	you	will	test	your	custom	Activity	by	creating	and	running	Processing
Sequences	containing	it.		(If	it	makes	sense	for	your	activity,	you	can	also	run
the	Activity	directly,	without	creating	a	Processing	Sequence.)
Clearly	you	need	to	test	that	the	custom	processing	performed	by	your	Activity
is	performed	correctly	to	your	specifications	in	all	cases.	You	also	need	to	verify
that	your	custom	Activity	is	a	good	"Processing	Sequence	citizen".	Some	of	the
questions	to	ask	include:

Does	it	correctly	set	the	Activity	return	code	for	normal	and	abnormal
completion	cases?
Does	it	interact	correctly	with	the	variable	pool?	Does	it	clear	any	output
variables	and	lists	early	in	its	processing	to	ensure	that	data	from	earlier
invocations	is	not	left	if	the	current	invocation	ends	prematurely?
Does	it	provide	clear	and	sufficient	log	output	for	normal	operational
monitoring	and	for	diagnostic	purposes	in	the	event	of	an	exception?
If	you	have	chosen	to	permit	your	activity	to	be	restartable,	does	the
implementation	properly	support	the	restart	capability	for	all	possible
exceptions?
Does	your	Activity	exhibit	acceptable	performance	characteristics	for	the
anticipated	usage?		If	you	anticipate	that	the	Activity	will	be	invoked
frequently	in	a	single	Processing	Sequence,	have	you	or	could	you	take
proper	advantage	of	the	Keep	Active	capability?

When	testing	your	custom	Activity,	you	may	find	some	of	the	supplied
Activities	helpful.		For	example,	you	can	use	the	LOG_VARIABLE	activity	to
record	the	values	of	variables	in	the	variable	pool	before	and	after	your	custom
Activity	runs.

9.5	Deploy	your	Custom	Activity
Once	your	custom	Activity	is	complete	and	tested,	you	will	need	to	deploy	it	to
the	production	environment(s)	in	which	it	will	be	run.
You	can	use	the	export	and	import	features	of	LANSA	Composer	to	deploy	the
Activity	definition	and	any	Processing	Sequences	that	use	it.
It	is	your	responsibility	to	deploy	the	Activity	Processor	to	the	necessary	target
execution	environments.	You	may	be	able	to	use	LANSA's	export	and	import
support	or	the	Visual	LANSA	Deployment	Tool	for	this	task,	depending	on	your
server	operating	environment.
Refer	to	Deploying	Solutions	For	LANSA	Composer	for	more	information.

its:LANSA091.CHM::/lansa/intengc4_0010.htm

9.6	Develop	a	Custom	Activity	Processor
Your	Activity	Processor	must	be	implemented	as	a	LANSA	RDMLX
component	(re-useable	part)	that	will	reside	and	execute	in	the	same	LANSA
system	and	partition	as	LANSA	Composer.
For	general	considerations	about	integrating	your	custom	LANSA	code	with
your	LANSA	Composer	solution	refer	to:

Appendix	E.	Using	LANSA	Composer	with	LANSA	Applications
You	must	use	DXACTBAS1	as	the	ancestor	of	your	component.	Component
DXACTSKEL	is	provided	as	a	skeleton	Activity	Processor	that	you	can	copy
and	adapt	to	your	requirements.
DXACTBAS1	and	DXACTSKEL	are	provided	with	the	LANSA	Composer
software.

Also	see
9.6.1	Before	you	Begin	your	Custom	Activity
9.6.2	Generate	Skeletal	RDMLX	Code
9.6.3	Names
9.6.4	The	Ancestor	Class	-	DXACTBAS1
9.6.5	Load	and	Unload
9.6.6	Initialize,	Terminate	and	Execute
9.6.7	Access	the	Variable	Pool
9.6.8	Understand	Activity	Parameters
9.6.9	Implement	an	Activity	Processor	for	an	Iterator	Activity
9.6.10	Supporting	Restartable	Activities
9.6.11	Use	the	Java	Service	Manager
9.6.12	Signal	an	Event
9.6.13	Set	the	Activity	Return	Code
9.6.14	Use	Logging	Services

its:LANSA091.CHM::/lansa/intengc9_0240.htm

9.6.1	Before	you	Begin	your	Custom	Activity
Before	you	begin	development,	you	must	prepare	your	development
environment.	You	will	need	a	correctly	licensed	and	configured	Visual	LANSA
development	environment	at	the	level	defined	in	Install	LANSA	Composer.

Development	of	your	custom	Activity	Processor	must	be	performed	in	a
partition	that	is	enabled	for	full	RDMLX.
You	must	import	the	LANSA	Composer	development	package	into	the
partition	in	which	you	will	develop	your	Activity	Processor.	This	provides:
base	classes	that	you	will	need	to	compile	your	Activity	Processor	and
sample	source	code	you	can	use	to	get	started.

					The	LANSA	Composer	development	package	can	be	found	in	the	folder
DEV\Import	on	your	LANSA	Composer	software	DVD.

To	get	started,	start	the	Visual	LANSA	development	environment	in	the
designated	partition	and	copy	the	DXACTSKEL	component	to	a	new	re-useable
part	for	your	Activity	Processor.

its:LANSA091.CHM::/lansa/intengc9_0010.htm

9.6.2	Generate	Skeletal	RDMLX	Code
LANSA	Composer	can	generate	skeletal	RDMLX	code	for	your	activity
processor	to	get	you	started.		To	do	this	display	the	activity	details	in	the
LANSA	Composer	client,	click	the	Generate	button	and	follow	the	prompts.
You	will	get	the	best	results	from	the	generated	RDMLX	code	if	you	perform
the	generation	when	the	activity	definition	is	as	close	to	final	as	possible.

9.6.3	Names
All	Activity	Processors	supplied	with	LANSA	Composer	have	names	that	begin
with	"DXACT".	Other	components	of	the	LANSA	Composer	software	have
names	that	begin	with	"DX".
Do	not	use	the	DX	prefix	in	your	own	Activity	Processor	names.	If	you	do,
future	versions	of	LANSA	Composer	may	overwrite	them.

9.6.4	The	Ancestor	Class	-	DXACTBAS1
All	Activity	Processors	must	use	DXACTBAS1	as	their	ancestor.

The	ancestor	class	provides	a	set	of	properties,	events	and	methods	that	you	can
reference	in	your	Activity	Processor	that	provide	base	services	including:

Accessing	the	variable	pool
Using	the	Java	Service	Manager
Setting	the	Activity	return	code
Logging	services

Feature	help	is	available	for	the	base	DXACTBAS1	class	and	for	the	logging
helper,	DXPSRLOG1.	Feature	help	provides	brief	descriptions	of	a	LANSA
component's	properties,	methods	and	events.	If	the	feature	help	for	an	item
describes	it	as	for	"internal	use	only",	then	you	should	not	use	that	item	in	your
own	Activity	Processors.
In	the	Visual	LANSA	development	environment,	to	get	started	exploring	the
features	of	the	base	class,	put	your	cursor	on	#DXACTBAS1	in	the
BEGIN_COM	statement	(near	the	top	of	your	Activity	Processor	source	code)
and	press	F2.

9.6.5	Load	and	Unload
You	can	redefine	two	methods	of	the	DXACTBAS1	ancestor	class	to	perform
one-off	tasks	when	your	Activity	Processor	is	loaded	and	unloaded	by	the
Processing	Sequence	controller..	These	methods	are:

ActivityLoad
ActivityUnload

These	methods	may	become	particularly	significant	when	your	Activity	is
defined	with	the	Keep	Active	attribute.		In	this	case,	for	a	Processing	Sequence
that	executes	the	activity	more	than	once,	the	sequence	of	method	calls	in	the
Activity	Processor	is	like	this:

ActivityLoad	(the	first	time	the	Activity	is	executed)
ActivityInit	…	ActivityRun	…	ActivityTerm	(for	each	time	the	Activity	is
executed)
ActivityInit	…	ActivityRun	…	ActivityTerm	(for	each	time	the	Activity	is
executed)
Etc	…

ActivityUnload	(when	the	Processing	Sequence	ends)

Note:		The	Keep	Active	attribute	does	not	guarantee	that	your	Activity
Processor	will	be	loaded	and	unloaded	only	once.		Under	some
circumstances,	including	specifically	when	the	Activity	return	code
indicates	an	exception,	the	Processing	Sequence	controller	will	unload
the	Activity	Processor	(and	reload	it	again,	if	necessary,	for
subsequent	instances	of	the	Activity).

Defining	your	Activity	with	the	Keep	Active	attribute	(and	implementing	your
Activity	Processor	to	support	it)	can	offer	the	potential	of	significant
performance	benefits	for	Activities:

That	are	likely	to	be	used	more	than	once	in	a	Processing	Sequence	run,
and
That	have	a	significant	load	and/or	unload	cost	(in	performance	terms)
that	need	not	be	repeated	for	every	execution	of	the	Activity

For	example,	an	Activity	that	exclusively	uses	a	single	LANSA	Integrator
(JSM)	service	could	be	written	to	load	and	initialize	the	service	and	then	use	the

same	connection	handle	for	all	subsequent	executions	in	the	same	Processing
Sequence.		In	this	event,	it	might	redefine	the	ActivityUnload	method	to	unload
the	JSM	service	and	close	the	JSM	connection.

Note:		The	Activity	Processor	must	be	written	to	fully	support	this
mode	of	execution.		Simply	setting	the	Keep	Active	attribute	for	an
existing	Activity	without	reviewing	and	revising	the	Activity
Processor	may	introduce	unanticipated	bugs.		For	example,	the
Activity	Processor	might	have	been	written	with	the	assumption	that
all	its	variables	were	initialized	for	each	execution	of	the	Activity.	
When	you	set	the	Keep	Active	attribute,	this	assumption	will	no	longer
be	valid.

9.6.6	Initialize,	Terminate	and	Execute
You	can	redefine	two	methods	of	the	DXACTBAS1	ancestor	class	to	perform
initialization	and	termination	processing	for	your	Activity	Processor	for	each
and	every	instance	that	your	Activity	is	executed	in	a	Processing	Sequence.
These	methods	are:

ActivityInit
ActivityTerm.

These	methods	are	a	good	place	to	put	processing	such	as	startup	and
completion	logging	and	initializing,	accessing	or	updating	variables	and	lists	in
the	variable	pool.	You	can	see	that	the	supplied	Activity	Processor	in
DXACTSKEL	has	suggested	implementations	for	these	methods	that	you	can
adapt	to	your	own	requirements.

It	is	important	that	you	understand	the	distinction	between	methods
provided	for	load	and	unload	and	those	provided	for	initialize	and
terminate.		Be	sure	that	you	place	your	logic	in	the	appropriate
method,	having	regard	to	your	choice	for	the	KeepActive	attribute	in
the	Activity	definition.		Refer	to	9.6.5	Load	and	Unload	for	more
information.

A	third	method	of	the	DXACTBAS1	ancestor	class,	ActivityRun,	is	intended	to
be	redefined	in	all	cases	to	perform	the	main	body	of	custom	Activity

processing.

	

9.6.7	Access	the	Variable	Pool
When	a	Processing	Sequence	runs,	it	manages	a	variable	pool	which	is	a	pool	of
loosely	typed	named	variables	and	variable	lists	that	are	shared	across	the
Processing	Sequence,	Activities	and	Transformation	Maps.
Your	Activity	Processor	can	access	the	variable	pool	using	methods	provided	by
the	ancestor	class.

Call	the	following	methods	to:
Clear	lists	and	variables,	you	can	call	these	methods:
ClearList
ClearVariable

Retrieve	the	values	of	variables	from	the	variable	pool:
GetTradingPartner
GetVariable
GetVariableRequired

Change	the	values	of	variables	in	the	variable	pool:
PutVariable

Variable	Lists
References	to	variables	in	the	variable	pool	can	be	indexed.	In	this	way,	variable
lists	may	be	created.	In	a	Processing	Sequence	a	list	can	be	processed	iteratively
using	a	LOOP	Processing	Directive.
Any	variable	can	be	used	as	a	list	simply	by	indexing	references	to	it.	In	your
Activity	Processor,	you	can	index	references	to	variables	using	the	iIndex
parameter	of	the	ClearVariable,	GetVariable	or	PutVariable	methods.
Indexed	references	to	variables	should	use	contiguous	indices	starting	from	1.
The	LOOP	Processing	Directive	will	only	process	instances	that	meet	this
condition.
When	your	Activity	Processor	creates	a	list	with	the	PutVariable	method,	it	will
typically	do	so	inside	a	loop	in	which	you	increment	the	value	of	the	iIndex
parameter	for	each	call.
When	your	Activity	Processor	needs	to	read	an	existing	list,	it	does	so	with	the

GetVariable	method	inside	a	loop.	The	GetVariable	method	defines	an	output
parameter,	oResult,	which	is	set	to	True	if	the	variable	with	the	specified	index
is	found,	or	False	if	not.	Thus	the	list	processing	loop	can	terminate	when	the
oResult	parameter	is	False.

9.6.8	Understand	Activity	Parameters
A	part	of	the	activity	definition	is	the	definition	of	the	parameters	that	the
activity	expects	or	returns.
When	writing	your	activity	processor,	it	will	help	to	understand	that	this	part	of
the	activity	definition	is	more	of	an	advertisement	than	a	contract.	It	is	there	so
that	somebody	using	your	activity	in	a	processing	sequence	may	set	and	receive
values	from	your	activity.
However,	LANSA	Composer	does	not	enforce	the	activity	parameters,	nor	are
they	automatically	"passed"	to	the	activity	processor.	It	is	the	responsibility	of
the	activity	processor	to	retrieve	variable	values	from	the	variable	pool	and
place	or	update	variable	values	in	the	variable	pool	as	necessary.	It	is	good
practice	to	do	this	using	the	names	specified	in	the	activity	parameters
definition,	otherwise	someone	using	your	activity	in	a	processing	sequence	may
not	be	able	to	set	or	retrieve	the	correct	values.

9.6.9	Implement	an	Activity	Processor	for	an	Iterator	Activity
Iterator	Activities	are	a	special	form	of	Activity	that	can	be	used	to	perform
iterative	processing	in	a	Processing	Sequence.		Refer	to		Iterator	Activities	for
more	information.
If	you	define	your	own	Iterator	Activities.		you	must	implement	the	Activity
Processor	in	a	particular	way	such	that	it	supports	the	iterative	behavior.		The
Activity	Processor	for	an	Iterator	Activity	must	stay	active	but	return	control	to
the	Processing	Sequence	controller	for	each	iteration.		It	does	this	by	calling	the
ExecuteIteration	method	provided	by	the	DXACTBAS1	ancestor	class	for	the
purpose.
Before	calling	the	ExecuteIteration	method	it	should	set	any	output	variables,
especially	if	their	values	change	from	one	iteration	to	the	next	(as	would	be
typical	for	an	Iterator	Activity).		Refer	to	9.6.7	Access	the	Variable	Pool	for
information	on	setting	output	variables	values.
Each	time	your	Activity	Processor	executes	the	ExecuteIteration	method,	it
returns	control	temporarily	to	the	Processing	Sequence	controller,	thereby
enabling	the	Processing	Sequence	controller	to	execute	all	the	Processing
Sequence	directives	that	might	be	nested	beneath	the	Iterator	Activity.
The	ExecuteIteration	method	returns	a	Boolean	value	that	indicates	whether
processing	should	continue.		If	the	return	value	is	False,	the	Activity	Processor
must	immediately	end	without	attempting	to	perform	further	iterations.		This
may	occur,	for	example,	where	an	exception	occurred	or	a	LEAVE	Processing
Sequence	directive	was	encountered	while	executing	the	block	of	Processing
Sequence	directives	nested	beneath	the	Iterator	Activity.
The	example	below	shows	how	the	ActivityRun	method	is	implemented	for	the
supplied	FOR_EACH_INDEX	Activity	-	a	very	simple	(but	nevertheless	useful)
example	of	an	Iterator	Activity.

its:LANSA091.CHM::/lansa/intengc2_0020.htm

9.6.10	Supporting	Restartable	Activities
If	an	instance	of	your	Activity	Processor	ends	with	an	exception	return	code	and
if	you	have	defined	the	Activity	with	the	Restartable	attribute,	then	the
Processing	Sequence	run	may	be	eligible	to	be	restarted	from	the	point	of
failure.

Refer	to	Activity	Details	for	information	about	setting	the	Restartable
attribute	in	an	Activity	definition.
Refer	to	Restart	a	Processing	Sequence	Run	for	information	on	conditions
that	affect	the	eligibility	of	a	Processing	Sequence	run	to	be	restarted.

Your	decision	whether	to	allow	your	Activity	to	be	Restartable	will	be
influenced	by	a	number	of	factors	including:

The	risks	of	an	exception	being	returned	by	your	Activity	Processor	that
might	require	a	restart
The	need	for	your	business	process	integration	solution	to	be	able	to
handle	the	restart	in	a	largely	automated	manner,	given	the	risks.
The	nature	of	the	logical	unit	of	work	that	the	Activity	performs
The	nature	of	the	processing	steps	necessary	to	perform	that	work
How	you	choose	to	implement	those	steps	and	whether	sufficient
information	can	and	will	be	available	through	variable	data	in	the	variable
pool	or	by	any	other	means	to	enable	your	implementation	to	accurately
and	reliably	restart	processing	at	any	given	point	of	failure.

Before	making	your	decision,	you	should	understand	that,	in	general,	writing	an
Activity	Processor	to	be	Restartable	requires	greater	skill,	greater	understanding
of	LANSA	Composer	processing	and	is	more	prone	to	error.
Remember,	too:

LANSA	Composer's	ability	to	restart	a	Processing	Sequence	depends	on
an	error	status	having	previously	been	returned	by	the	activity.	
(Processing	Sequences	that	end	in	error	due	to	an	abnormal	program
termination	are	not	restartable.)		Therefore,	if	your	Activity	Processor
does	not	have	any	condition	that	causes	it	to	set	an	error	status	in	the
Activity	return	code	(and	it	is	not	an	Iterator	Activity),	there	is	little	point
in	implementing	the	restart	support.
Many	of	the	common	transport	and	other	Activities	supplied	with	LANSA
Composer	are	supplied	as	restartable.		If	you	were	to	consider	the	risks	of

its:LANSA091.CHM::/lansa/intengc2_0035.htm
its:LANSA091.CHM::/lansa/intengc3_0270.htm

failure	in	your	business	process	integration	solutions,	it	may	be	that	you
would	conclude	that	the	risk	of	failure	in	the	course	of	normal	operation
was	greater	in	those	areas	than	in	the	functions	encapsulated	by	your	own
Activity	Processors.		In	that	case,	the	costs	of	implementing	this	support
in	your	own	Activity	Processors	might	not	be	justified	by	the	benefits.
The	risks	of	an	exception	being	raised	in	the	course	of	executing	an
Iterator	Activity	are	multiplied	somewhat	by	the	likely	or	typical	number
of	iterations	and	the	number	and	nature	of	items	that	may	be	executed	by
the	Processing	Sequence	controller	for	each	iteration.		Because	the	risks
are	often	greater	(and	perhaps	less	certain)	for	an	Iterator	Activity,	you
might	more	strongly	favour	implementing	restartable	support	for	such	an
Activity.

If	you	choose	to	implement	restartable	support	in	your	Activity	Processor:
You	must	implement	your	solution	such	that	your	Activity	Processor	will
have	sufficient	information	available	to	it	from	the	values	of	variables	in	the
variable	pool	or	by	whatever	other	means	you	choose	to	enable	your
implementation	to	accurately	and	reliably	restart	processing	at	any	given
point	of	failure.
You	must	implement	your	solution	to	be	capable	of	reconstructing	its	state
(as	far	as	is	necessary)	such	that	it	can	validly	resume	processing	at	the
appropriate	point.
If	it	is	an	iterator	activity,	then	it	must	be	capable	of	restarting	its	processing
at	the	iteration	in	which	the	failure	occurred.
The	DXACTBAS1	ancestor	class	has	several	properties	that	your	Activity
Processor	can	reference	to	help	determine	whether	restart	processing	is
required	and	at	what	point.		Some	of	these	are	listed	below.		Use	feature	help
in	the	Visual	LANSA	IDE	for	more	information	about	the	individual
properties.
CurrentIteration
Restartable
RestartingChild
RestartingThis

9.6.11	Use	the	Java	Service	Manager
The	DXACTBAS1	ancestor	class	implements	several	methods	specifically	for
loading	and	calling	LANSA	Integrator	services.	The	methods	provided	wrap
and	simplify	the	calls	to	the	Java	Service	Manager	(JSM)	and	perform	much	of
the	necessary	housekeeping,	exception	handling	and	logging.
These	methods	do,	however,	assume	that	you	use	a	single	connection	to	the
JSM.	If	your	Activity	Processor	needs	to	have	multiple	connections	open,	then
you	will	have	to	write	the	code	to	manage	the	second	and	subsequent
connections	yourself.
Your	Activity	Processor	does	not	have	to	use	LANSA	Integrator	services.	If	it
does	not,	you	do	not	need	to	use	these	methods.
For	more	information	about	developing	applications	that	use	LANSA	Integrator
services,	refer	to	the	LANSA	Integrator	Guide.

ExecuteJSMOpen
Opens	a	connection	to	the	Java	Service	Manager	for	executing	LANSA
Integrator	services.	The	result	is	True	if	successful.	Performs	exception	handling
and	logging	as	required.	Sets	the	Activity	return	code	to	error	if	the	open	fails.
A	successful	call	to	ExecuteJSMOpen	will	usually	be	followed	immediately	by
a	call	to	the	ExecuteJSMLoad	method	to	load	the	required	service.

ExecuteJSMLoad
Issues	the	SERVICE_LOAD	service	command	to	load	the	named	JSM	service,
automatically	enabling	tracing	according	to	the	value	specified	in	the	System
Settings,	and	performing	exception	handling	and	logging	as	required.	Sets	the
Activity	return	code	to	error	if	the	service	load	fails.

ExecuteJSMCommand
Executes	a	specified	service	command	through	the	Java	Service	Manager.
Performs	exception	handling	and	logging	as	required.	By	default,	this	sets	the
Activity	return	code	to	error	if	the	command	fails.	However,	if	the	iRecoverable
parameter	is	set	to	True,	the	warning	level	will	be	set	instead.

ExecuteJSMUnload
Issues	the	SERVICE_UNLOAD	service	command.	Performs	exception
handling	and	logging	as	required.	Sets	the	Activity	return	code	to	warning	if	the
command	fails.

ExecuteJSMClose
Closes	the	connection	to	the	Java	Service	Manager,	optionally	unloading	the
currently	loaded	service	first.	Performs	exception	handling	and	logging	as
required.

9.6.12	Signal	an	Event
Your	activity	processor	may	signal	an	event	to	the	processing	sequence
controller	by	using	the	NotifyEvent	method	of	the	ancestor	class.	This	usually
used	to	trigger	a	notification	such	as	an	e-mail	when	an	unrecoverable	condition
occurs	that	might	require	operator	intervention.	By	using	an	event	ID	that
corresponds	to	one	defined	in	Event	Maintenance	you	can	connect	your	event
with	the	definition	of	the	action	that	is	to	be	taken	in	response	to	it.

its:LANSA091.CHM::/lansa/intengc6_0025.htm

9.6.13	Set	the	Activity	Return	Code
When	an	Activity	begins	processing	its	return	code	is	set	to	'OK'	to	indicate	a
normal	completion.	If	your	Activity	Processor	encounters	an	exception	it	should
set	the	return	code	accordingly	by	calling	one	of	the	following	methods	in	the
ancestor	class:

SetCancel	(sets	the	return	code	to	'CN')
SetError	(sets	the	return	code	to	'ER')
SetWarning	(sets	the	return	code	to	'WN')

9.6.14	Use	Logging	Services
The	DXACTBAS1	ancestor	class	implements	the	Logger	property.	Through	the
methods	of	the	logger,	your	Activity	Processor	can	manage	its	output	to	the	log
for	the	Processing	Sequence.

Nesting	Level
The	NestAdd	and	NestSub	methods	of	the	logger	control	the	nesting	level	of	the
log	entries.	The	nesting	level	is	used	as	a	visual	cue	when	displaying	the	log
entries	to	indicate	the	relative	hierarchy	of	the	processing	steps.
Every	call	to	NestAdd	should	be	matched	by	a	later	call	to	NestSub.	It	is	your
responsibility	to	ensure	your	program	code	adheres	to	this	requirement	for	all
possible	code	paths.
In	most	cases	it	is	unnecessary	for	your	Activity	Processor	to	call	these
methods.	The	Processing	Sequence	engine	manages	the	nesting	level	to	reflect
the	structure	of	the	Processing	Sequence.	However,	if	the	processing	in	your
Activity	Processors	is	particularly	structured	and	you	need	to	reflect	that	in	your
log	output,	you	can	call	these	methods.

Write	Log	Entries
The	Processing	Sequence	log	is	held	at	two	levels	of	detail.
Summary	log	entries	are	typically	used	to	indicate	completion	of	major
processing	steps	and	are	intended	for	routine	operational	monitoring.	You	can
create	summary	log	entries	as	required	using	the	following	methods	of	the
logger:

LogUserComp	(completion)
LogUserDiag	(diagnostic)
LogUserError	(error)
LogUserExtra	(subsidiary	log	text)
LogUserInfo	(information)
LogUserWarn	(warning)

Detail	log	entries	are	typically	used	to	provide	deeper	diagnostic	information
and	are	intended	for	problem	diagnosis	and	resolution.	You	can	create	detail	log
entries	as	required	using	the	following	methods	of	the	logger:

LogTechComp	(completion)

LogTechDiag	(diagnostic)
LogTechError	(error)
LogTechExtra	(subsidiary	log	text)
LogTechInfo	(information)
LogTechWarn	(warning)

	
	

10.	Tips	and	Techniques	for	Success	with	LANSA	Composer
This	chapter	offers	some	tips	and	techniques	to	help	you	get	the	most	out	of
LANSA	Composer.		They	are	organised	in	the	following	sections:

10.1	Activities
10.2	Processing	Sequences

	

10.1	Activities
The	following	tips	relate	to	the	use	of	the	Activities	supplied	with	LANSA
Composer:

10.1.1	Experiment	with	Activities	by	Running	Them

10.1.1	Experiment	with	Activities	by	Running	Them
LANSA	Composer	is	supplied	with	a	wide	range	of	Activities.		As	you	explore
and	discover	the	Activities	available,	you	might	find	it	useful	to	simply	run	an
Activity	to	experiment	what	it	can	do.
When	working	with	an	Activity	in	the	LANSA	Composer	client,	you	can	simply
run	the	activity	on	its	own	to	see	what	it	does.		To	do	this,	simply	click	the	Run
button	to	show	the	Run	Activity	window:

The	Run	Activity	window	prompts	you	for	the	input	parameter	values.	
Complete	the	parameters	according	to	the	documentation	for	the	Activity	and
click	Run.		LANSA	Composer	will	execute	the	Activity	on	your	server	just	as
though	you	had	created	a	Processing	Sequence	containing	the	Activity	with	the
parameter	values	you	entered.		When	the	run	has	completed,	LANSA	Composer
displays	the	Processing	Sequence	Log	which	will	show	you	the	input	and	output
parameter	values	and/or	any	execution	errors	that	occurred:

Clearly	not	every	Activity	is	suitable	to	be	used	in	this	way,	but	for	many
Activities,	this	can	be	a	quick	and	easy	way	to	experiment	with	its	capabilities.

10.2	Processing	Sequences
The	following	tips	relate	to	the	design,	implementation	and	management	of
Processing	Sequences	in	LANSA	Composer:

10.2.1	Example	Processing	Sequences
10.2.2	Considerations	for	Extended	Duration	Processing	Sequences

10.2.1	Example	Processing	Sequences
LANSA	Composer	includes	a	number	of	example	Processing	Sequences	that
illustrate	selected	features	and	techniques.
Refer	to	the	following	headings	for	more	information:

Install	the	Example	Processing	Sequences
List	of	Example	Processing	Sequences
Using	the	Example	Processing	Sequences

	

Install	the	Example	Processing	Sequences
If	you	did	not	choose	to	install	the	examples	when	prompted	during	the	Server
Initialisation	Wizard	after	installing	or	upgrading	your	LANSA	Composer
system,	then	the	examples	will	not	be	immediately	available.		In	this	case	you
can	locate	and	import	all	or	selected	examples	from	the	supplied
DX_MASTER_EG.dxexport	import	file.		This	file	should	be	present	in	your
LANSA	Composer	client	installation	in	the	DXImports	folder,	for	example:
C:\Program	Files\LANSA	Composer\X_WIN95\X_LANSA\X_LIC\EXECUTE\DXImports

List	of	Example	Processing	Sequences
The	following	example	Processing	Sequences	are	supplied	with	this	version	of
LANSA	Composer:

Name Description

EXAMPLE_AATEST1 Check	LANSA	Composer	installation

EXAMPLE_AATEST2 Check	LANSA	Integrator	functionality

EXAMPLE_ACTPARM Shows	ways	to	provide	activity	parameter	values

EXAMPLE_CSV01 Example	of	processing	CSV

EXAMPLE_EVENT01 Example	event	notification	handler	processing	seq

EXAMPLE_LOG01 Logging	Example

EXAMPLE_LOOP01 Example	of	processing	multiple	documents.

EXAMPLE_LOOP02 Example	of	processing	multiple	trading	partners.

EXAMPLE_PDF01 Example	of	creating	PDF	using
PDFDocumentService

EXAMPLE_SQL01 Example	of	using	the	SQL_QUERY	activity

EXAMPLE_SQL02 Example	of	using	the	SQL_UPDATE	activity

EXAMPLE_SQL03 Example	of	using	the	SQL_CALLQRYCSV
activity

EXAMPLE_SUSP01 Suspend	Example

EXAMPLE_SWIT01 Terminate,	loop	and	conditional	example

EXAMPLE_TS01 Example	data	entry	using	aXes	terminal	server

EXAMPLE_WATCH01 Example	of	using	WATCH_DIRECTORY,
WAIT_FILESREADY

EXAMPLE_XML01 Example	of	using	the	XML_QUERY	activity

	

Using	the	Example	Processing	Sequences
Here	are	some	suggestions	on	how	to	get	the	most	out	of	the	example
Processing	Sequences:

You	can	open	each	of	the	example	Processing	Sequences	in	the	Processing
Sequence	Editor	to	see	what	it	does	and	how	it	is	defined;
You	can	review	the	Notes	supplied	with	each	Processing	Sequence	for
guidance	on	its	purpose	and	use;
You	can	Run	the	Processing	Sequences	on	your	own	system	–	refer	to	the
Notes	for	any	instructions	for	doing	so;
You	can	copy	and	alter	the	Processing	Sequences	to	experiment	further	with
the	techniques	they	illustrate.

10.2.2	Considerations	for	Extended	Duration	Processing
Sequences
Many	LANSA	Composer	users	implement	solutions	involving	Processing
Sequences	that	run	for	an	extended	duration	–	perhaps	continuously.
Frequently	such	solutions	are	designed	to	monitor	some	source	of	in-coming
data,	such	as	new	files	arriving	in	a	specified	directory,	and	initiate	further
processing	when	an	item	is	detected.
This	style	of	Processing	Sequence	is	very	different	to	one	that	has	a	known	and
finite	unit	of	work	to	perform,	performs	it	and	ends.		Consequently,	some
special	considerations	apply	to	the	design	and	implementation	of	this	type	of
Processing	Sequence.
Below	we	have	listed	some	suggestions	that	you	may	wish	to	consider	when
implementing	such	solutions.		Refer	to	the	following	headings:

Reduce	the	logging	level
Allow	your	processing	sequence	to	frequently	enter	an	idle	or	wait	state
Delegate	transaction	processing
Check	for	controlled	end
Periodically	restart	for	manageability	and	performance

The	supplied	example	Processing	Sequence	EXAMPLE_WATCH01	is	an
example	of	an	extended	duration	processing	sequence	and	implements	some	of
the	suggestions	in	this	article.		You	may	wish	to	examine	and	run
EXAMPLE_WATCH01	to	further	investigate	the	techniques	suggested.		Refer
to	10.2.1	Example	Processing	Sequences	for	more	information.

Reduce	the	logging	level
You	may	wish	to	reduce	the	logging	level	for	your	extended	duration	Processing
Sequences	from	the	values	you	have	specified	in	System	Settings.		In	selected
Processing	Sequences	you	can	override	the	logging	values	specified	in	System
Settings	by	changing	the	values	of	the	*process_loglevel	and	*process_jsmtrace
built-in	variables.		The	processing	sequence	EXAMPLE_WATCH01,	for
example,	contains	the	following	ASSIGN	directives	near	the	beginning	of	its
processing:

Reducing	the	logging	level	in	this	way	will	reduce	the	logging	burden	of	your
extended	duration	Processing	Sequence	without	affecting	the	logging	behavior
of	other	Processing	Sequences	that	you	run.
If	your	System	Settings	specify	Maximum	logging	level	and	LANSA	Integrator
tracing	is	also	selected,	then	an	extended	duration	Processing	Sequence	that
uses	an	activity	that	in	turn	uses	the	LANSA	Integrator	JSM	may	take	a	very
long	time	to	end	after	it	has	completed	its	normal	work.		This	is	usually	due	to
retrieving	and	logging	the	large	LANSA	Integrator	trace	data	that	has	been
generated.		You	can	avoid	this	by	implementing	either	or	both	of	the	logging
overrides	shown	using	the	built-in	variables.

Allow	your	processing	sequence	to	frequently	enter	an	idle	or	wait
state
It	is	usually	a	characteristic	of	extended	duration	processes	that	they	spend	a
great	deal	of	their	time	waiting	for	something	to	happen	–	for	a	file	to	arrive,	for
example,	or	for	a	message	to	be	received	in	a	message	queue.
It	is	important	that	your	implementation	should	allow	the	process	to	enter	an
idle	or	wait	state	and	then	to	stay	in	that	state	for	as	long	as	is	practical.		This
will	reduce	the	impact	the	process	has	on	the	system	and	on	other	jobs	running
on	the	system.
In	many	cases,	activities	used	in	such	Processing	Sequences	have	a	parameter
that	specifies	how	long	the	activity	should	wait	for	the	item	that	it	is	receiving.	
Some	examples	include:

The	DTAWAIT	parameter	of	the	DTAQ_RECEIVE	activity;
The	WAITTIME	parameter	of	the	MSG_RECEIVE	activity;
The	MSGWAIT	parameter	of	the	MSGQ_RECEIVE	activity;
The	WAIT	parameter	of	the	WATCH_DIRECTORY	activity;

You	should	make	sure	that	you	set	those	parameters	appropriately.		If	you
choose	a	value	that	is	too	short	or,	even	worse,	choose	to	specify	a	zero	wait,
then	you	may	find	that	your	Processing	Sequence	expends	a	lot	of	system
resources	doing	very	little	but	looping	endlessly.		Using	a	sensible	wait	value
will	allow	the	Processing	Sequence	to	frequently	enter	an	idle/wait	state	when	it
has	no	work	to	do.

Note	that,	at	the	other	extreme,	specifying	an	indefinite	wait	is	not
always	a	good	idea	either.		Refer	to	Check	for	controlled	end	to	find
out	one	reason	why.

If	your	extended	duration	Processing	Sequence	uses	an	activity,	such	as
MAIL_RECEIVE	or	FTP_INBOUND	for	example,	that	does	not	have	a	built-in
"wait"	function	and	you	are	using	that	activity	to	"poll"	for	in-coming	data,	then
you	should	consider	combining	the	activity	in	a	loop	with	the	SLEEP	activity	to
create	a	similar	effect	to,	for	example,	the	WAIT	parameter	of	the
WATCH_DIRECTORY	activity.

Delegate	transaction	processing
Frequently	extended	duration	Processing	Sequences	are	designed	to	monitor
some	source	of	in-coming	data,	such	as	new	files	arriving	in	a	specified
directory,	and	initiate	further	processing	when	an	item	is	detected.
It	is	usually	good	practice	to	separate	the	former	(the	waiting	and	discovery)
from	the	latter	(the	processing).		The	less	work	that	your	extended	duration
Processing	Sequence	does,	the	better.		As	soon	as	it	"discovers"	a	new	item	to
process,	it	should	usually	initiate	another	asynchronous	process	to	do	the
processing,	while	it	stays	busy	with	waiting	for	further	new	items.
This	approach	has	the	additional	benefit	that	the	processing	of	any	individual
transaction	does	not	create	a	bottleneck	that	prevents	or	delays	the	receipt	and
processing	of	further	transactions.
You	can	use	the	COMPOSER_RUN	activity	in	your	extended	duration
Processing	Sequence	to	initiate	the	secondary	Processing	Sequence	through	the
LANSA	Composer	request	server.		Remember	to	specify	'NO'	for	the
SYNCHRONOUS	parameter	to	make	sure	that	the	first	Processing	Sequence
does	not	have	to	wait	for	the	secondary	Processing	Sequence	to	complete.

Check	for	controlled	end
Frequently,	it	is	the	very	nature	of	an	extended	duration	Processing	Sequence
that	its	task	is	infinite,	or	at	least	indefinite.		That	is,	it	will	continue	monitoring
for	whatever	it	is	that	it	monitors	throughout	the	business	day	and	perhaps	the
night	and	weekends	too.
Activities	such	as	WATCH_DIRECTORY	are	specifically	designed	for	this
indefinite	processing.		This	activity	will	continue	iterating	until	or	unless	your
solution	ends	the	loop	explicitly	or	until	the	job,	subsystem	or	system	end.
Alternatively,	if	your	extended	duration	Processing	Sequence	uses	an	activity,

such	as	MAIL_RECEIVE	or	FTP_INBOUND	in	a	loop	to	monitor	for	new
items,	you	have	probably	designed	the	loop	to	be	indefinite	using	a	LOOP,
WHILE	or	UNTIL	directive.
In	either	event,	it	is	good	practice	to	implement	the	solution	such	that	a
controlled	end	for	it	can	be	externally	triggered.		In	most	cases,	this	can	be	done
by	checking	and	acting	upon	the	value	of	the	*shutdown	built-in	variable	at	an
appropriate	point	in	your	solution.		The	processing	sequence
EXAMPLE_WATCH01,	for	example,	implements	such	a	provision	using	the
condition	specified	on	a	LEAVE	directive:

This	will	allow	you	to	end	the	processing	Sequence	run	using	the	Processing
Sequence	Log	window	in	the	LANSA	Composer	client	or	using	the	Operations
Console.		The	Processing	Sequence	Log	window,	for	example,	provides	an	End
toolbar	button	or	the	End	command	on	the	File	menu	–	these	are	shown	only
when	the	Processing	Sequence	run	is	active.

If	controlled	end	for	a	Processing	Sequence	run	is	requested	in	this	way,	then
the	condition	shown	above	will	be	satisfied.	In	the	case	of
EXAMPLE_WATCH01,	this	will	result	in	the	main	WATCH_DIRECTORY
iterator	loop	ending	and	the	Processing	Sequence	will	then	end	too.
On	IBM	i	servers,	the	test	of	the	*shutdown	built-in	variable	will	also	detect
when	a	controlled	end	has	been	initiated	for	the	IBM	i	job,	subsystem	or	system,
using	the	ENDJOB,	ENDSBS	or	PWRDWNSYS	commands	or	equivalents.
By	placing	a	test	for	controlled	shutdown	in	an	appropriate	place	in	your
extended	duration	Processing	Sequence	in	this	way,	you	can	help	to	ensure	that,
when	the	Processing	Sequence	is	shutdown,	it	is	done	in	a	controlled	fashion
and	at	an	appropriate	transaction	boundary,	thereby	protecting	the	data	integrity
of	your	solution	and	your	application.

Periodically	restart	for	manageability	and	performance
As	already	discussed,	it	is	frequently	in	the	very	nature	of	an	extended	duration
Processing	Sequence	that	its	task	is	infinite,	or	at	least	indefinite.		While	that

may	be	so,	there	are	several	very	good	reasons	that	you	might	not	want	the	task
to	be	served	with	a	single	Processing	Sequence	run	that	runs	over	many	hours	or
even	days.		These	reasons	include:

The	Processing	Sequence	Log	will	become	exceptionally	large,	which	will
make	it	slow	to	load	and	exceptionally	difficult	to	analyse	in	the	event	that
you	have	to	perform	troubleshooting;
Over	an	extended	time,	and	for	various	reasons,	the	system	resources
consumed	by	the	job	containing	the	Processing	Sequence	run	may	gradually
increase,	possibly	impacting	performance	on	the	system	as	a	whole;

It	is	usually	good	practice	to	limit	the	lifetime	of	a	single	Processing	Sequence
run,	allow	it	to	end	and	begin	another	to	resume	and	continue	its	processing.	
Doing	so	is	likely	to	offer	benefits	with	respect	both	to	the	manageability	and
the	performance	of	the	solution.
There	is	more	than	one	way	to	accomplish	this.		The	Processing	Sequence
EXAMPLE_WATCH01	implements	the	following	sequence	of	directives	at	an
appropriate	point	inside	its	main	WATCH_DIRECTORY	iterator	loop	for	this
purpose:

The	COMPOSER_RUN	activity	simply	submits	the	same	Processing	Sequence
again	through	the	LANSA	Composer	Request	Server,	and	then	the	Processing
Sequence	ends.		In	this	instance,	this	occurs	after	999	iterations	(the	value	of	the
variable	&ITERATIONS_MAX	is	set	to	999	earlier	in	the	Processing
Sequence).
This	results	in	multiple	Processing	Sequence	runs,	each	covering	a	specific	time
period,	which	makes	it	much	easier	to	examine	the	logs	and	diagnose	issues,
when	necessary.

LANSA	Composer	Tutorials
The	LANSA	Composer	tutorials	are	designed	to	introduce	the	basic	elements	of
the	LANSA	Composer	application.
This	section	covers	some	important	topics:
How	do	I	use	the	Tutorials?
LANSA	Composer	Server	objects	required	for	the	Tutorials
Resetting	Tutorial	Data
Before	you	begin
In	the	first	six	exercises	of	the	tutorials	you	will	create	a	Composer	Processing
Sequence	that	will	perform	the	following	steps	for	each	Trading	Partner:

Find	xml	files	in	the	"Inbound	Tutorial"	directory	linked	to	the	Trading
Partner
Read	each	xml	file	and	update	a	database	table	with	its	data
Send	an	acknowledgement	email	to	the	trading	partner.

The	following	tutorials	are	included:
LIC001	-	Introduce	Composer	Client	&	Validate	Environment
LIC002	-	Create	a	Processing	Sequence
LIC003	-	Create	a	Transformation	Map
LIC004	-	Add	the	Transformation	to	the	Processing	Sequence
LIC005	-	Set	up	a	Trading	Partner
LIC006	-	Add	Email	Acknowledgement	to	Processing	Sequence
LIC007	-	Extract	Database	to	CSV	File
LIC008	-	Processing	via	Email
LIC009	-	Handle	multiple	requests	via	an	email	attachment
LIC010	-	Calling	a	Processing	Sequence	(Optional)
LIC011	-	Email	notification	service

How	do	I	use	the	Tutorials?
It	is	recommended	that	you	complete	the	tutorials	in	sequence.	The	objects
created	in	the	earlier	tutorials	are	reused	and	extended	in	the	following	tutorials.
If	the	tutorials	have	been	used	previously,	you	should	reset	the	tutorial	data,	as
described	in	Resetting	Tutorial	Data.

Some	sections	of	the	tutorials	will	vary	according	to	the	server	you	are	using.
The	examples	given	in	these	exercises	are	for	an	IBM	i	server.	If	you	are	using	a
Windows	server	you	will	have	to	use	appropriate	values	for	a	Windows	server.
The	sections	which	will	vary	are:

Setting	up	an	ODBC	connection	within	Altova	MapForce	for	the	database
connection.
Setting	up	a	Database	connection	identifier.	This	is	defining	a	JDBC
connection	on	your	server.
Ensuring	the	database	tables	used	in	your	Transformation	are	under
commitment	control.

LANSA	Composer	Server	objects	required	for	the	Tutorials
The	objects	required	for	the	tutorials	are	installed	with	the	LANSA	Composer
server	software.
If	any	of	the	tutorial	objects	have	been	damaged	or	deleted	you	can	find	them:

For	the	IBM	i	server,	in	save	file	DXMASTIFS	in	your	partition	data	library
(for	example,	LICLICLIB).
For	the	Windows	server,	in	file	tutorial.zip	in	your	partition	execute
directory
for	example:	c)

The	tutorial	objects	you	need	are	listed	below:
Database	tables:	
TUTORDH	
TUTORDL	

For	the	IBM	i	server,		the	database	tables	are	supplied	and	installed	as	*FILE
objects	in	your	partition	data	library	(for	example,	LICLICLIB).
For	the	Windows	server,	the	database	tables	are	supplied	and	installed	in	a
Microsoft	Access	database,	TUTORIAL.mdb,	in	your	partition	execute
directory:	for	example,
C:\Program	Files\LANSA\X_WIN95\X_LANSA\X_LIC\Execute
Flat	files	installed	into	a	directory	on	your	server:	
TUTorder.dtd	
TUTorder.xml	
Ack.txt	

TUT_01_SKEL.txt	
TUTORIAL.mdb		(Windows	server	only)
Activities:	
TUT_01_AT	
TUT_02_AT
Processing	Sequence:	
TUT_01_P1	
TUT_01_P2	
FSTUTSEQ	(example	of	the	completed	Processing	Sequence)
System	setting	
The	Tutorial	Files	system	setting	should	be	set	to	the	directory	location
where	the	flat	files	are	installed.
LANSA	system	variable	
*AUTOALP10BATCHNO

Resetting	Tutorial	Data
If	the	tutorials	have	been	used	previously,	it	is	recommended	that	you	clear	the
previous	results	as	follows:

Delete	any	data	in	tables	TUTORDH	and	TUTORDL.	These	tables	will
exist	on	your	server.
If	you	are	using	an	IBM	i	server	they	will	exist	in	the	library	being	used	for
the	LANSA	partition	where	Composer	was	installed	(for	example,
LICLICLIB).
If	you	are	using	a	Windows	server,	they	will	exist	in	a	Microsoft	Access
database,	TUTORIAL.mdb,	in	your	partition	execute	directory,	for	example,
C:\Program	Files\LANSA\X_WIN95\X_LANSA\X_LIC\Execute

Delete	from	the	tutorial	directory	flat	files:	
iii_TUT_01_P1.txt
iii_TUT_01_P2.txt
Note:	There	may	be	several	of	these	files	where	iii	represents	the	initials	entered
by	a	person	who	has	previously	used	the	tutorials.

Do	NOT	delete	TUT_01_SKEL.txt
For	exercises	7,	8,and	9	you	will	also	require	the	LANSA	Personnel
Demonstration	system	installed

Before	you	begin
In	order	to	complete	these	tutorials,	you	must	have	completed	the	following:

Installed	and	configured	Composer	on	your	server.
Installed	and	configured	Composer	Client	on	your	Microsoft	Windows	PC.
Obtained	a	valid	server	user	ID	and	password	to	use	with	Composer.
Installed	and	configured	the	base	LANSA	Integrator	on	your	server.
Install	Altova	MapForce	and	have	a	valid	MapForce	license.
Installed	the	LANSA	Personnel	Demonstration	system

It	is	recommended	that	you	complete	the	tutorials	that	are	provided	with
MapForce	to	familiarize	yourself	with	the	mapping	environment.

Your	Feedback
Your	feedback	regarding	these	tutorials	will	help	us	improve	the	overall	quality
of	the	LANSA	documentation	and	training.	Please	email	your	comments	to
lansatraining@LANSA.com.au

LIC001	-	Introduce	Composer	Client	&	Validate	Environment
Objectives

To	start	the	Composer	Client	and	connect	to	your	server.
To	execute	a	supplied	Composer	Processing	sequence	to	validate	your
installation.
To	execute	a	supplied	Composer	Processing	sequence	which	uses	LANSA
Integrator	to	validate	the	LANSA	Integrator	installation.

Steps
To	achieve	these	objectives,	you	will	complete	the	following:

Step	1.	Locate	and	execute	Composer	Client
Step	2.	Execute	a	Composer	Processing	sequence	to	validate	your
installation
Step	3.	Execute	a	Composer	Processing	sequence	to	validate	the	base
LANSA	Integrator	installation
Summary

Step	1.	Locate	and	execute	Composer	Client
1.		Locate	the	Composer	client:
					When	Composer	was	installed	on	your	PC,	it	created	a	program	group
named	LANSA	Composer	with	a	number	of	icons	in	it.	On	your	desktop	or
under	programs	on	your	Start	menu,	locate	and	open	the	program	group
named	LANSA	Composer.

2.		To	start	the	Composer	client:
					In	the	LANSA	Composer	program	group,	click	or	double-click	the	LANSA
Composer	icon	to	open	the	Connect	to	LANSA	Composer	server	dialog.

3.		Enter	the	User	name	and	password	that	you	will	be	using.	Select	the
Composer	application	server	that	you	want	to	connect	to	and	then	press	the
Connect	button.	For	details	of	the	log	on	procedure,	refer	to	Connect	to
LANSA	Composer	Server.

4.		The	LANSA	Composer	main	window	will	be	displayed.
					Familiarize	yourself	with	the	options	that	are	available	in	the	Navigator	on
the	left.

its:lansa091.chm::/lansa/IntEngC1_0140.htm

Step	2.	Execute	a	Composer	Processing	sequence	to	validate	your
installation
1.		Expand	Definitions	in	the	Navigator,	then	select	Processing	sequences.

2.		Locate	the	Processing	Sequence	with	identity	TUT_01_P1.	You	may
search	for	it	with	a	partial	ID	(such	as	TUT)	or	blank	(to	view	all	IDs).	Select
Processing	Sequence	"TUT_01_P1	Tutorial	01	-	check	environment".

					You	may	view	the	contents	of	this	Processing	Sequence	by	selecting	the	Edit
button.	When	you	do	so,	you	will	see	a	message	box,	informing	you	that	this
is	a	supplied	Composer	processing	sequence,	and	may	be	opened	read	only.	
Close	the	edit	window.

3.		To	execute	the	Processing	Sequence,	click	on	the	 	button.		
4.		The	Run	Processing	Sequence	window	is	shown.	Select	the	Run	immediately
radio	button	to	select	it.		Type	your	own	values	for	the	initials,	message	and
name	parameters.

5.		Click	on	the	Run	button	at	the	bottom	of	this	window.
					When	the	Processing	Sequence	completes,	the	steps	and	results	of	the
processing	are	shown	in	the	Processing	Sequence	Log	window.

					Alternatively,	you	may	view	the	complete	log	information	by	selecting
Console	in	the	Navigator	(under	Operations).	Locate	your	processing
sequence	run	using	the	Processing	Sequence	ID	(TUT_01_P1)	and	date	and
time.	To	view	the	log	information	for	the	execution	of	this	Processing
Sequence,	click	the	magnifying	glass	icon	under	the	Run	Number	heading.

6.		If	successful,	this	Processing	Sequence	took	the	input	values	entered	by	you

and	merged	them	into	a	text	skeleton	to	create	a	text	file.	The	text	skeleton	is
TUT_01_SKEL.txt.	It	is	located	in	the	Tutorial	directory	on	your	server.
The	text	file	created	is	iii_TUT_01_P1.txt	in	the	tutorial	directory	(where	iii
are	the	initials	you	entered).	If	you	do	not	know	what	the	tutorial	directory	is,
it	is	recorded	in	the	Tutorial	Files	system	setting.	To	display	the	value	of	this
system	setting,	expand	Administration	and	Housekeeping	in	the	Navigator,
and	select	System	settings.

					Locate	this	directory	(using	Windows	explorer	or	similar)	and	view	the
contents	of	the	file	iii_TUT_01_P1.txt	(where	iii	is	the	initials	you	entered).	
On	an	IBM	i	server,	you	may	need	to	log	on	to	the	server.

					Your	system	administrator	can	supply	the	IBM	i	domain	name	and	your	IBM
i	User	ID	and	Password.

					This	could	be	your	initial	view:

					The	paths	shown	here	will	depend	on	how	your	network	access	to	the	IBM	i
IFS	(or	Windows	server	computer)	has	been	defined.	Some	of	the	above	paths

may	be	aliases	to	IFS	folders,	for	example,	D11PGMLIB	as	in	this	example.
Others	are	actual	IFS	folders,	such	as	QDLS.

					The	following	screen	picture	shows	the	path	you	are	looking	for	–	in	this
example	as	defined	on	the	IBM	i	server	"EARTH",	with	LANSA	program
library	"D11PGMLIB".

					The	existence	of	this	file	with	your	details	validates	that	you	can	execute	a
Processing	Sequence	using	LANSA	Composer.

Step	3.	Execute	a	Composer	Processing	sequence	to	validate	the
base	LANSA	Integrator	installation
To	execute	this	step	you	must	have	the	base	LANSA	Integrator	installed,
configured	and	running	on	your	server.
1.		Select	the	Processing	Sequence	TUT_01_P2.

2.		Click	the	 	button.
3.		The	Run	Processing	Sequence	window	is	shown.	Select	the	Run	immediately
radio	button.	Type	your	own	values	for	the	initials	and	directory	parameters.

					For	the	directory	parameter,	you	should	type	the	full	path	of	a	directory	on
your	server	as	defined	in	the	system	settings/server	file	locations	(for
example,	for	IBM	i	'/LANSA_Composer_licpgmlib/lic/Tutorial'	or	for
Windows	C:\Composer\lic\Tutorial).

					Refer	to	your	system	administrator	for	the	requisite	directory	path	set	up	for
the	training	environment.

					Reminder:	If	you	are	using	an	IBM	i	server	the	directory	separator	should	be
'/'.	If	you	are	using	a	Windows	server	the	separator	should	be	'\'.

4.		Click	the	Run	button.			When	the	Processing	Sequence	completes,	the	steps
and	results	of	the	processing	are	shown	in	the	Processing	Sequence	Log
window.

					If	successful,	this	Processing	Sequence	listed	the	files	contained	in	the
specified	directory.	This	used	the	LANSA	Integrator	file	client	service.	The

list	of	files	was	read	by	the	second	Activity	in	the	Processing	Sequence,	which
reported	the	first	five	files	paths	and	names	in	a	text	file.	This	text	file	is
named	iii_TUT_01_P2.txt	and	can	be	found	in	the	tutorial	directory
(where	iii	is	the	initials	you	entered).

5.		To	review	the	results.	As	above,	navigate	to	the	tutorial	directory	(using
Windows	explorer	or	similar)	and	view	the	contents	of	the	file
iii_TUT_01_P2.txt	(where	iii	is	the	initials	you	entered).

Summary
Notice	that	there	can	be	multiple	servers	listed	in	the	Log	on	window.	This
allows	Composer	Client	to	work	with	multiple	Composer	Servers.	For
example,	you	may	have	a	production	server	on	which	you	execute	live
processing.	You	may	also	have	a	development	server	on	which	you	develop
and	test	new	processing.
The	successful	execution	of	the	two	supplied	Processing	Sequences	validates
your	installation.

LIC002	-	Create	a	Processing	Sequence
Objective

To	introduce	you	to	creating	your	own	Processing	Sequences.
The	Processing	Sequence	will	initially	find	xml	files	in	the	tutorial	directory.
This	sequence	will	be	extended	in	following	tutorials.

Before	You	Begin
In	order	to	complete	this	tutorial,	you	should	have	completed	the	following:

LIC001	-	Introduce	Composer	Client	&	Validate	Environment
You	may	wish	to	refer	to	Edit	Processing	Sequence	Details	in	the	Composer
User	Guide	for	a	description	of	the	controls	available	to	you.

Steps
To	achieve	these	objectives,	you	will	complete	the	following:

Step	1.	Create	a	Processing	Sequence
Step	2.	Configure	the	Processing	Sequence	Editor
Step	3.	Add	Directory	List	Activity	to	your	Processing	Sequence
Step	4.	Add	TUT_02_AT	Activity	to	Processing	Sequence
Step	5.	Execute	the	Processing	Sequence	you	Created
Summary

its:lansa091.chm::/lansa/intengc3_0090.htm

Step	1.	Create	a	Processing	Sequence
1.		Under	Definitions	in	the	Navigator,	select	Processing	sequences.

2.		Select		 		icon	from	the	tool	bar	or	right	click	and	select	New	to	launch
the	Processing	Sequence	editor	in	a	new	window.

Step	2.	Configure	the	Processing	Sequence	Editor
The	appearance	of	the	Processing	Sequence	editor	can	be	configured	from	the
View	/	Options	menu:

The	options	at	the	top	of	the	Options	dialog	can	be	selected	to	change	the
appearance	of	the	editor	as	shown:

1.		Choose	the	options	to	suit	your	preference.	All	examples	shown	in	this
tutorial	will	have	these	options	turned	off.

Step	3.	Add	Directory	List	Activity	to	your	Processing	Sequence
1.		Select	the	Activities	tab	(top	left)	to	display	a	list	of	Activities.	The	list	may
be	filtered	by	selecting	an	Activity	group	from	the	drop	down	list.

					Note	that	Activities	are	shown	in	groups.
2.		Locate	the	File	Management	group	and	then	locate	the
DIRECTORY_LIST	Activity	and	drag	and	drop	it	on	to	the	sequence
details	panel	(top	right).	Drop	it	on	the	***	End	of	processing	sequence	***
text.	Alternatively,	you	may	add	the	Activity	to	the	sequence	by	double
clicking	on	it.

					The	DIRECTORY_LIST	Activity	is	a	supplied	Activity.	It	will	output	a
list	of	files	in	a	requested	directory.	Optionally,	you	can	filter	the	list	of	files
to	select	only	files	with	a	particular	extension.

3.		Select	the	DIRECTORY_LIST	Activity	in	the	Details	panel	(top	right).	The
details	for	the	Activity	will	be	shown	in	the	panel	bottom	right.

4.		Select	the	Parameters	tab	(bottom	right)	to	view	the	parameters	for	this
Activity.	The	Notes	relating	to	this	Activity	are	shown	in	the	bottom	left	panel.

5.		For	this	tutorial	you	will	select	only	files	with	an	extension	of	xml.	So,	for
the	parameter	EXTENSION	enter	a	value	of	xml	in	the	Variable	or	value	for
parameter	column.	This	means	that	when	this	Processing	Sequence	is
executed	a	value	of	xml	will	be	set	for	the	EXTENSION	parameter.

6.		When	this	Processing	Sequence	is	executed	the	value	for	the	DIRECTORY
parameter	is	going	to	be	provided.	This	parameter	needs	to	be	identified	as	an
input	parameter.	To	do	this	select	the	Variables	tab	(top	left).	The	Variables
tab	lists	all	variables	defined	in	this	Processing	Sequence	and	all	those
required	by	any	of	its	processing	steps.

					Select	the	Parameters	tab	(top	right)	and	drag	and	drop	the	DIRECTORY
parameter	from	the	Variables	tab	into	the	Parameters	tab.

					Note:

		You	have	just	defined	a	runtime	parameter	for	the	Processing
Sequence.

		You	can	define	a	default	value	for	parameters.	This	is	a	useful	if
a	path	and	file	name	is	being	input,	to	avoid	errors	while
testing.

Step	4.	Add	TUT_02_AT	Activity	to	Processing	Sequence
In	this	step	you	will	make	this	processing	sequence	produce	some	output,	by
using	the	supplied	tutorial	activity	TUT_02_AT	which	was	used	in	the	previous
exercise.
The	activity	TUT_02_AT	accepts	two	input	parameters:

YOURINITIALS	–	used	to	prefix	the	output	text	file	name
FILELIST	–	the	name	of	the	list	of	files	produced	by	the	Directory	List
activity.	This	defaults	to	&FILELIST	the	outbound	parameter	from	the
Directory	List	activity.

TUT_02_AT	has	one	outbound	parameter	–	the	output	file	name.	This	defaults
to	iii_TUT_01_P02.txt	where	iii	is	the	input	"initials"	parameter	value.
The	text	produced	by	TUT_02_AT	is	hardcoded	(except	for	the	list	of	files).	In	a
later	module	you	will	see	how	this	type	of	processing	can	use	an	input	text	file.
1.		Select	the	Activities	tab	(left	hand	side)	and	expand	the	Tutorials	group.Drag
and	drop	the	activity	TUT_02_AT	to	the	end	of	the	processing	sequence.

					Note:	The	example	shown	above	has	used	the	search	icon	to	locate	Activities
beginning	"TUT".

2.		In	this	step	you	will	add	the	YOURINITIALS	variable	as	an	input	parameter
to	the	processing	sequence.
a.		Select	the	Variables	tab	(left	hand	side).	On	the	right	hand	side	select	the
Parameters	tab.

b.		Drag	and	drop	the	variable	YOURINITIALS	onto	the	Parameters	tab.

					You	have	now	defined	two	runtime	parameters	for	this	processing	sequence.

3.		Save	the	Processing	Sequence	by	clicking	on	the	 	Save	icon	in	the
toolbar.	A	window	requesting	details	of	your	Processing	Sequence	will
appear.

a.		Enter	a	Name,		iiiTUTSEQ01.	(where	iii	are	your	initials).
b.		Enter	a	Description.	For	example	Fred	Smith	LIC	tutorial	–	LIC002.
c.		For	Status	select	Active	from	the	drop	down	list.

4.		Click	the	Save	button.
5.		Close	the	Processing	Sequence	Editor.

Step	5.	Execute	the	Processing	Sequence	you	Created
1.		Locate	and	select	your	Processing	Sequence.	(You	may	need	to	search	for	it
with	a	full	or	partial	ID	-	such	as	your	initials	(iii),	if	you	have	used	the
suggested	names)

2.		To	execute	the	Processing	Sequence,	click	on	the	 	button.
3.		The	Run	Processing	Sequence	window	is	shown.	Select	the	Run	immediately
radio	button.	Complete	the	parameters	as	follows:
a.		For	the	DIRECTORY	parameter,	enter	the	path	to	the	LANSA	Composer
Tutorial	as	used	in	previous	exercises.

b.		Enter	your	initials

4.		Click	on	the	Run	button	at	the	bottom	of	this	window.
					When	the	Processing	Sequence	completes,	the	steps	and	results	of	the
processing	are	shown	in	the	Processing	Sequence	Log	window.		Verify	that
your	processing	sequence	ended	successfully	by	reviewing	the	log.

5.		Locate	the	tutorial	directory	on	the	server	(using	Windows	explorer	or
similar)	and	view	the	contents	of	the	file	iii_TUT_01_P2.txt	(where	iii	is	the
initials	you	entered).	Your	file	should	look	like	the	following.	Note	that
because	you	added	a	filter	('xml')	to	the	Directory	List	activity,	only	one	file
in	the	directory	has	been	listed.

					You	have	completed	this	exercise.

Summary
You	have	created	a	Processing	Sequence	using	two	supplied	activities.	This
is	where	you	can	set	up	your	own	execution	structures	using	pre-defined
building	blocks	and	your	own	tailored	processing	entities.
The	Processing	Sequence	you	have	created	will	be	extended	in	the	following
tutorials	to	introduce	you	to	additional	features	within	the	Processing
Sequence	structure.
You	have	viewed	the	output	text	file	produced	by	activity	TUT_02_P02
You	have	viewed	the	Processing	Log	which	gives	you	information	on	the
steps	and	result	of	the	processing.

LIC003	-	Create	a	Transformation	Map
Objectives

To	introduce	you	to	creating	a	Transformation	Map.	
The	map	will	input	an	xml	file	and	insert	the	data	into	a	database	table.
To	prepare	the	map	for	use	within	Composer
To	set	up	the	database	Configurations	for	the	map	so	the	database	may	be
accessed	at	execution	time	by	the	Processing	Sequence.

Before	You	Begin
In	order	to	complete	this	tutorial,	you	should	have	completed	the	following
steps:

LIC001	-	Introduce	Composer	Client	&	Validate	Environment
LIC002	-	Create	a	Processing	Sequence

Steps
To	achieve	these	objectives,	you	will	complete	the	following:

Step	1.	Create	a	Transformation	Map	Registration
Step	2.	Edit	the	Transformation	Map
Step	3.	Identify	the	xml	source	for	the	Transformation	Map
Step	4.	Identify	the	Target	Database	for	the	Transformation	Map
Step	5.	Map	the	Input	xml	to	the	Target	Database
Step	6.	Prepare	your	Transformation	Map	for	use	within	Composer
Step	7.	Set	up	the	Database	Configuration
Summary

Check	System	Settings
Before	you	attempt	to	create	and	use	a	Transformation	Map,	you	should	check
that	the	values	of	the	following	system	settings	are	appropriate	for	your
environment:

Server	Network	path:	this	value	defines	the	prefix	that	the	LANSA
Composer	client	software	uses	to	access	files	on	the	server.		It	is	combined
with	the	value	specified	for	Map	definitions	and	so	must	be	correct	for	your
environment	in	order	for	the	Map	definitions	setting	to	be	effective.
Map	definitions:	this	should	specify	the	location	on	your	server	where

Transformation	Map	definitions	will	be	stored	and	accessible	for	all	LANSA
Composer	users
Map	generate	and	compile:.	This	specifies	a	file	system	location	where
intermediate	files	will	be	created	when	the	maps	are	prepared.		Usually	the
default	behavior	(to	use	the	Windows	temporary	directory	for	the	user)	is
acceptable.
LANSA	Integrator	(JSM)	instance:		this	specifies	the	path	from	the	client	to
the	JSM	Instance	folder	on	the	server.	This	controls	where	the	compiled	Java
archive	file	for	a	Transformation	Map	is	placed	when	the	Transformation
Map	is	Prepared	(it	is	placed	in	the	\composer\LIC\map	sub-folder	of	the
path	specified	here,	where	LIC	is	the	LANSA	partition).

Refer	to	System	Settings	for	further	information.
Note:	You	must	login	to	the	IBM	i	server	in	Windows	Explorer	in	order	for
these	mappings	to	work.

its:lansa091.chm::/lansa/intengc6_0015.htm

Step	1.	Create	a	Transformation	Map	Registration
1.		In	the	Navigator,	expand	Definitions	and	select	Transformations	maps.

2.		Select	 	from	the	tool	bar	or	right	click	and	select	New	from	the	context
menu.

3.		In	the	Transformation	map	area:
a.		Enter	ID:	your	initials	plus	TUTMAP	(iiiTUTMAP).
b.		Enter	Description.	For	example	Fred	Smith	LIC	tutorial	Map	1.
c.		Select	a	Map	Type	from	the	drop	down	list.	Map	Type	is	optional	and	is
defined	using	Code	Maintenance.	Map	Types	provide	a	way	to	for	you
organize	your	maps	into	logical	groups.

d.		For	Restartable,	accept	the	default	Yes.	This	specifies	that	a	Processing
Sequence	containing	this	map	is	eligible	to	be	restarted	if	the
Transformation	Map	execution	fails.

e.		For	Status,	select	Active	from	the	drop	down	list.

3.		Click	the	Save	button.

Step	2.	Edit	the	Transformation	Map
This	step	will	create	mapping	from	an	xml	file	to	a	database	table.
1.		Make	sure	that	your	Transformation	Map	is	selected	and	the	Details	tab	is
displayed.

2.		Click	the	Edit	button	on	the	Details	tab.
					A	Warning	window	may	be	displayed.	This	explains	that	in	Altova
MapForce	you	are	able	to	create	some	mappings	that	use	features	that	are	not
supported	with	LANSA	Composer.	The	mapping	you	are	going	to	create	is
from	an	xml	file	to	a	database	table.	These	are	fully	supported	by	LANSA
Composer.	Click	the	Continue	button	to	proceed.

					Note:	After	several	uses,	the	Warning	window	may	be	hidden	by	selecting
the	checkbox	at	the	bottom.	If	you	do	not	see	the	warning	window	it	is
because	you	or	someone	else	using	this	computer	has	previously	hidden	it.

Step	3.	Identify	the	xml	source	for	the	Transformation	Map
1.		Insert	an	XML/Schema	File	component	using	either	the	Insert	XML
Schema/File	toolbar	icon	or	by	selecting	XML	Schema/File	from	the	Insert
menu.	Navigate	to	the	Composer	tutorials	directory	and	select	the
TUTorder.dtd	When	asked	if	you	wish	to	supply	a	sample	xml	file,	reply
Browse	and	select	TUTorder.xml

					If	you	are	not	familiar	with	XML	technology	you	can	easily	learn	more	from
the	Internet.	For	example	http://www.w3schools.com/dtd/default.asp	will
inform	you	that:

					"The	purpose	of	a	DTD	(Document	Type	Definition)	is	to	define	the	legal
building	blocks	of	an	XML	document.	It	defines	the	document	structure	with	a
list	of	legal	elements	and	attributes."

					TUTorder.xml	is	the	model	source	file	for	your	Transformation.	The	target	is
going	to	be	database	tables.

http://www.w3schools.com/dtd/default.asp

Step	4.	Identify	the	Target	Database	for	the	Transformation	Map
1.		Insert	a	Database	component	using	either	the	Insert	Database	toolbar	icon	or
by	selecting	Database	from	the	Insert	menu.	To	connect	to	the	database	you
must	identify	or	set	up	an	ODBC	connection.

					Note:	Altova	MapForce	runs	on	your	PC	and	so,	usually,	the	ODBC
connection	described	here	needs	to	connect	from	your	PC	to	the	server	on
which	your	application	database	resides.

					Altova	MapForce	displays	a	wizard	and	other	panels	that	allow	you	to
establish	the	ODBC	connection	suitable	for	your	server.		You	need	to
complete	these	panels	according	to	the	database	and	drivers	you	are	using.	
Connecting	to	databases	in	Transformation	Maps	in	the	Composer	User
Guide	contains	information	and	examples	for	IBM	i	and	Microsoft	Access
databases	used	in	these	tutorials:

For	the	IBM	i	server,	the	database	tables	are	supplied	and	installed	as
*FILE	objects	in	your	partition	data	library,	for	example,	LICLICLIB.
Refer	to	Example	Database	Connections	for	IBM	DB2	for	i5/OS	for
examples	of	completing	the	ODBC	connection	to	the	tutorial	database	on
your	IBM	i	Server.
For	the	Windows	server,	the	database	tables	are	supplied	and	installed	in
a	Microsoft	Access	database,	TUTORIAL.mdb,	in	the	partition	execute
directory:
for	example,	C:\Program
Files\LANSA\X_WIN95\X_LANSA\X_LIC\Execute
Refer	to	Example	Database	Connections	for	Microsoft	Access	for
examples	of	completing	the	ODBC	connection	to	the	Windows	server
tutorial	database.

2.		The	Select	a	Database,	Connection	Wizard	will	start.	Select	IBM	DB2	and
click	Next	to	accept	the	IBM	DB2	(ODBC)	database.

its:LANSA091.CHM::/lansa/Intengc9_0135.htm
its:LANSA091.CHM::/lansa/Intengc9_0360.htm
its:LANSA091.CHM::/lansa/Intengc9_0370.htm

3.		On	the	next	dialog,	select	ODBC,	and	click	the	Next	button.	(Mapforce	2012
supports	either	JDBC	or	ODBC	database	connection	while	defining	your
map.)

4.		Then	select	the	'Create	a	new	Data	Source	Name'	option.	Click	the	Connect
button.

5.		Enter	a	Data	Source	Name	of	<server>_<library>,	where	<server>	is	the
IBM	i	and	<library>	is	the	specific	library	which	will	be	the	default	for	this
connection.	See	later	note	for	details.

					Do	not	click	OK	at	this	point.

6.Click	the	Connection	Options	button	and	enter	a	default	User	ID:

					Click	OK	to	close	the	dialog.
7.		Select	the	Server	tab.	Enter	an	SQL	default	library	of	<library>	where
<library>	is	the	default	IBM	i	library	to	be	used	to	access	the	required	file(s)
during	the	Prepare	Map	step.

8.		Click	OK	to	connect	to	the	database.
9.Enter	your	IBM	i	User	ID	and	Password	and	click	OK.

					The	Signon	to	iSeries	dialog	may	be	shown	up	to	three	times.	Complete	the
login	in	each	case.

10.	When	you	have	established	your	ODBC	connection,	the	mapping	tool
allows	you	to	choose	the	particular	tables	you	wish	to	use	in	your
transformation	map:

11.	Select	the	arrow	symbol	next	to	the	first	library	shown,	to	display	all	the
IBM	i	libraries	in	a	dropdown

12.	Scroll	down	to	find	the	library	containing	the	files	you	want	to	use	in	your
transformation	map.	The	tutorial	database	tables	can	be	found	in	the	library
for	the	LANSA	partition	in	which	LANSA	Composer	was	installed	-	for
example,	D11LICLIB.

13.	Check	the	box	next	to	files	TUTORDH	and	TUTORDL	to	mark	them	as	the
files	you	wish	to	use	in	your	Transformation	Map..

					Note:	With	a	single	file	selected,	the	Preview	button	will	display	the	file
fields	and	data.	In	the	example	shown	below,	the	file	is	currently	empty:

					Click	OK	to	close	the	dialog.		A	database	component	representing	the
selected	files	is	inserted	in	the	workspace	for	the	map.

Note:	When	used	to	access	IBM	DB2	for	i5/OS	database	tables,	the
library	from	which	you	select	the	files	is	used	only	for	the	purpose	of
defining	the	transformation	map.		LANSA	Composer	will	remove	the
library	qualifier	from	the	generated	Java	code	when	you	prepare	the
transformation	map.		You	must	setup	your	database	configuration	such
that	the	required	files	can	be	found	in	the	desired	library	at	run-time	-
you	will	do	this	in	Step	7.	Set	up	the	Database	Configuration	.

Step	5.	Map	the	Input	xml	to	the	Target	Database
You	now	have	an	input	xml	layout	and	target	database	tables	in	the	mapping
workspace.	In	this	step	you	need	to	make	known	the	connections	between	the
input	and	target	and	to	identify	calculations	and	additional	input.
1.		Connect	the	SalesOrder	to	the	TUTORDH	file.

This	connection	specifies	that	an	order	header	database	record	will	be	created
for	each	<SalesOrder>	element	encountered	in	the	input	XML.	

To	make	the	connection,	click	and	hold	down	the	left-mouse	button	on	the
SalesOrder	element,	drag	the	mouse	to	the	right,	over	the	connector	arrow
adjacent	to	the	TUTORDH	file.		As	you	drag	the	mouse,	a	connector	line
will	be	drawn.		When	the	mouse	is	over	the	TUTORDH	connector,	the
mouse	pointer	will	change.		Release	the	left	mouse	button	to	complete	the
connection.

2.		Similarly,	connect	the	Line	to	the	TUTORDL	file.	

This	connection	specifies	that	an	order	detail	database	record	will	be	created
for	each	<Line>	element	encountered	in	the	input	XML.

3.		Now	connect	the	data	items	as	follows:

4.		The	field	Line	Value	LINVAL	in	table	TUTORDL	is	to	be	derived	by	a
calculation.
a.		Add	a	multiply	function	from	the	Math	functions	shown	on	the	Libraries
tab.

b.		Set	the	inputs	(value	1	and	2)	as	the	Price	and	Quantity	from	the	input
order.

c.		Assign	the	result	to	the	LINVAL	field.

5.		The	field	BCHNUM	in	the	tables	is	a	batch	number.	This	does	not	exist	in
the	input	but	will	be	provided	to	the	Transformation	Map	at	run-time	via	a
parameter	value.
a.		To	set	up	the	mapping	for	this	batch	number,	select	Insert	Input	from	the
Function	menu.

b.		Set	the	Name	to	BatchNumber	and	Type	to	string.	
c.		Give	the	batch	number	a	default	value	of	iii123.	This	will	enable	the
Output	tab	in	MapForce	to	show	a	preview	of	the	transformation.

6.		Connect	the	resulting	BatchNumber	to	the	BCHNUM	in	tables
TUTORDH	and	TUTORDL.

7.		You	may	click	on	the	Output	tab	to	view	how	the	data	from	the	sample	input
would	be	added	to	the	database	tables.	Note	that,	for	the	purpose	of	the
preview,	the	field	BCHNUM	has	the	default	value	you	gave	it	above.	At
execution	time	its	value	will	come	from	a	parameter	value.

8.		Save	your	map	and	exit	from	MapForce.

Step	6.	Prepare	your	Transformation	Map	for	use	within
Composer
This	step	will	generate	Java	from	the	information	within	your	map	and	identify
the	parameters	required	by	the	map.
1.		Make	sure	that	your	Transformation	Map	is	selected	and	the	Details	tab	is
displayed.

2.		Click	the	Prepare	button	on	the	toolbar	or	on	the	Details	tab.
3.The	Prepare	Transformation	Map	dialog	is	displayed,	showing	the	steps	to	be
performed.	Click	the	Prepare	button	to	continue:

					You	may	see	the	MapForce	window	open	briefly	during	the	Prepare	–	this	is
normal	and	it	will	close	by	itself	in	a	few	moments.

4.If	the	Prepare	process	seems	to	be	waiting	as	shown:

					Look	for	a	Signon	dialog,	which	may	be	hidden,	to	continue:

					When	the	preparation	steps	are	completed,	a	Map	compile	has	completed
message	box	is	displayed.	Click	OK.

					The	Catalog	and	Deploy	steps	will	be	completed.	The	final	dialog	may	be
Closed	or	a	detailed	log	displayed,	which	is	helpful	if	your	Prepare	Map	fails
for	some	reason.

					You	will	now	see	the	parameters	from	your	map	have	been	identified	and	can
be	seen	on	the	Parameters	tab	when	your	map	is	selected.

4.		If	you	select	a	different	map	in	the	instance	list	and	then	re-select	your	new
one,	you	will	see	that	the	following	information	panel	has	been	updated,
showing	that	this	map	is	ready	to	be	used.

					The	Check	button	verifies	the	current	status	of	the	transformation	map
definition	and	executable	files.

					The	button	displays	a	dialogue	that	determines	the	file	size	and	a	checksum
for	the	current	versions	of	the	Transformation	Map	files	(in	the	file	system)
and	compares	them	against	the	file	sizes	and	checksums	catalogued	when	the
map	was	last	prepared.		Any	inconsistencies	are	highlighted	and	a	Restore
function	supports	restoring	the	catalogued	version	of	the	file	from	the
LANSA	Composer	database.

5.		A	Catalogued	command	tab	in	the	LANSA	Composer	client	application
provides	the	ability	to	view	the	catalogued	information	for	a	selected
transformation	map,	including:

The	current	Prepared	status
Information	about	when	and	who	prepared	the	map,	and	the	LANSA
Composer,	Java	and	Altova	MapForce	versions	that	were	used

A	visual	tree	representation	of	the	major	components	used	in	the	mapping,
including	database	table	selections.

6.		The	Prepare	step	will	have	generated	a	Java	jar	file	and	placed	it	in	the
\composer\LIC\map	folder	within	the	JSM	Instance	directory	(where	LIC
is	LANSA	partition).

Step	7.	Set	up	the	Database	Configuration
When	the	Transformation	is	used	within	a	Processing	Sequence,	it	will	be
executed	on	your	server.	It	will	use	the	generated	jar	file	and	this	will	use	JDBC
to	connect	to	the	database	tables	you	have	used	within	your	Transformation.	To
enable	this	connection	to	execute	you	need	to	specify	a	database	connection
string	for	use	by	JDBC.	This	is	done	by	creating	a	Database	Configuration.
1.		In	the	Navigator,	expand	Configurations	and	select	Database	configurations.
2.		Select	New	on	tool	bar	or	right	click	and	select	New	from	the	context	menu.

a.		Enter	a	Database	configuration	ID	-	iiiTUTDBID	(where	iii	is	your
initials).

b.		Enter	a	Description	-	such	as	Fred	Smith	Tutorial	database
configuration.

c.		Set	the	Status	to	Active.
3.		Enter	a	Database	connection	string.
					A	connection	string	for	an	IBM	i	server	known	as	MYSERVER	would	be:
					jdbc:as400://MYSERVER/MYLIB;naming=sql;errors=full;
					date	format=iso;
					translate	binary=true

					where	MYSERVER	is	the	name	of	the	IBM	i	server	and	MYLIB	is	the	name
of	the	library	containing	the	database	tables	you	wish	to	access.

					The	following	alternate	form	for	the	connection	string	permits	database
tables	from	more	than	one	library	(or	schema)	to	be	used.	The	JDBC
connection	property	naming=system	must	be	specified	for	this	to	be	effective:

					jdbc:as400://SYSNAME;naming=system;libraries=LIB1,
LIB2,*LIBL;errors=full;date	format=iso;	translate	binary=true					The	tutorial
database	tables	can	be	found	in	the	library	for	the	LANSA	partition	in	which
LANSA	Composer	was	installed	-	for	example,	LICLICLIB.

					The	connection	string	for	the	Microsoft	Access	database	on	a	Windows
server		would	be	similar	to	this:
					jdbc:odbc:;DRIVER=Microsoft	Access	Driver
(*.mdb);DBQ=C:\Composer\Tutorial\Tutorial.mdb

4.		Enter	a	Database	driver	class.
					For	an	IBM	i	server	this	would	usually	be

					com.ibm.as400.access.AS400JDBCDriver
					For	a	Windows	server	this	would	usually	be
					sun.jdbc.odbc.JdbcOdbcDriver

					Refer	to	Database	Configuration	and	supplied	example	database
configurations	for	more	information	and	examples	of	JDBC	connection
strings	and	driver	classes	for	common	databases.

5.		Enter	a	Database	user	and	Database	password.	This	must	be	a	valid	user	on
your	server	which	has	authority	to	the	tables	you	are	using	within	your	map.
(When	using	the	Microsoft	Access	database	on	a	Windows	server,	the
database	user	and	password	should	not	be	necessary.)

					Your	systems	administrator	will	be	able	to	provide	a	User	ID	and	Password.
6.		Set	Commit	automatically	to	No.
Set	Transaction	isolation	to	None

					Your	Database	Configuration	should	now	look	similar	to	the	following:

					The	necessary	settings	for	these	fields	depends	on	options	used	in	the
Transformation	Map	definition	and	in	the	JDBC	connection	string	and	on	the
JDBC	driver	implementation	but	these	are	usually	the	correct	values	when
accessing	the	database	tables	on	IBM	i	using	the	IBM-supplied	JDBC	driver.

7.		Save	your	database	configuration.

Summary
You	have	created	a	Transformation	Map	using	Altova	MapForce.	If	you
haven't	already	done	so,	it	is	worthwhile	working	through	the	tutorials
provided	with	MapForce	to	familiarize	yourself	with	the	features	available	in
the	mapping.
You	have	prepared	your	Transformation	map	so	it	is	available	for	use	within
Composer.
You	have	identified	how	to	connect	to	the	database	tables	used	in	your
Transformation	Map	with	a	Database	Configuration.	This	identifies	the
JDBC	connection	that	will	be	used	by	Composer	when	your	Transformation
Map	is	executed	on	your	server.
Reminder:	The	connect	to	the	Database	tables	within	MapForce	uses	an
ODBC	connect	and	connects	from	your	PC	client	to	your	server.	

The	connect	to	the	Database	tables	when	the	Transformation	Map	is
executed	within	Composer	uses	a	JDBC	connect	and	will	execute	on	the
server.
LANSA	Composer	does	not	provide	the	database	connectivity	components
(ODBC	and	JDBC	drivers).	You	must	ensure	that	you	have	the	appropriate
drivers	for	the	databases	you	wish	to	use	with	Composer	and	documentation
for	the	drivers,	including	how	to	setup	the	connection	strings.	Your	database
software	vendor	will	normally	provide	these.	For	DB2	on	an	IBM	i	server
you	should	refer	to	the	IBM	documentation	for	System	i,	DB2	and	their
JDBC	driver.
Refer	to	Additional	Considerations	for	Transformation	Maps	Using	IBM
DB2	for	i5/OS	in	the	Composer	online	guide	for	more	information.	The
database	connections	string	provided	in	this	example	will	not	require	that
your	physical	files	are	journalled.	If	you	require	the	file	changes	made	via
the	transformation	map	to	be	journalled,	you	should	refer	to	the	information
in	the	guide.

LIC004	-	Add	the	Transformation	to	the	Processing	Sequence
Objective

To	add	your	Transformation	Map	to	the	Processing	Sequence.	
The	Transformation	Map	will	be	applied	and	the	data	added	to	the	database
tables	for	each	xml	file	that	has	been	found	in	the	tutorial	directory.

Before	You	Begin
In	order	to	complete	this	tutorial,	you	should	have	completed	the	following

LIC001	-	Introduce	Composer	Client	&	Validate	Environment
LIC002	-	Create	a	Processing	Sequence
LIC003	-	Create	a	Transformation	Map

Steps
To	achieve	these	objectives,	you	will	complete	the	following:

Step	1.	Set	up	a	Loop	to	Cycle	through	the	List	of	xml	Files
Step	2.	Add	the	Transformation	to	the	Processing	Sequence
Step	3.	Execute	your	Amended	Processing	Sequence
Step	4.	Add	a	Variable	Batch	Number	to	the	Processing	Sequence
Summary

Step	1.	Set	up	a	Loop	to	Cycle	through	the	List	of	xml	Files
1.		Navigate	to	Definitions/Processing	Sequences	and	select	the	Processing
Sequence	you	created	in	tutorial	LIC0002	–	iiiTUTSEQ01.

2.		Press	the	Copy	button	to	create	a	new	processing	sequence	based	on	this	one:

3.		Give	the	new	processing	sequence	an	ID	of	iiiTUTSEQ02	and	click	the	Copy
button.

					When	the	details	for	your	copied	iiiTUTSEQ02	are	shown,	give	the	new
processing	sequence	an	appropriate	description	as	shown:

4.		Save	the	change	to	your	new	processing	sequence.
5.		Click	the	Edit	button	to	open	the	Processing	sequence	editor	window.	Delete
the	activity	TUT_02_AT		from	the	previous	exercise,	so	that	your	sequence
contains	a	single	Activity	DIRECTORY_LIST.	The	Activity	will	output	a
list	of	files	in	a	list	named	FILELIST.

6.		Select	the	Parameters	tab	and	delete	the	YOURINITIALS	input	parameter.
7.		From	the	Palette	tab	select	the	Loop	construct	and	add	it	to	the	sequence	at
the	end.	Your	sequence	will	now	contain	the	Activity	and	then	Loop.	Note
that	the	Error	tab	(bottom	left)	shows	errors	(red	triangle)	and	warnings
(yellow	triangle).	This	is	because	the	details	for	the	Loop	have	yet	to	be
entered.

					If	your	Loop	is	in	the	wrong	place	use	the	 	move	up	and	move	down
buttons	on	the	toolbar	to	reposition	it.

8.		Select	the	Loop.	The	details	of	the	loop	will	be	shown	(bottom	right).
a.		In	the	List	name	enter	FILELIST.
b.		In	the	Loop	variable	enter	THISFILE.	This	means	that	the	loop	will	cycle
through	the	list	of	entries	in	the	FILELIST	and	the	value	of	the	entry
which	is	currently	being	processed	will	be	set	in	the	variable	named
THISFILE.	The	variable	THISFILE	may	be	used	as	an	input	to
subsequent	processing	steps	within	this	loop.

c.		In	the	Index	variable	enter	FILECNT.	The	variable	FILECNT	will
contain	the	number	of	the	entry	which	is	currently	being	processed.

					Note	that	the	previously	displayed	errors	(red	triangle)	have	gone,	though	a
warning	(yellow	triangle)	may	remain	about	the	loop	item	being	empty	-	you

will	deal	with	this	next.

Step	2.	Add	the	Transformation	to	the	Processing	Sequence
The	Transformation	is	to	be	applied	to	each	of	the	xml	files	in	the	FILELIST.
1.		Select	the	Transformations	tab	(top	left).	In	the	list	of	Transformations
shown,	select	your	tutorial	map	(iiiTUTMAP)	and	add	it	to	the	Processing
Sequence	after	the	Loop.	Your	Transformation	should	be	nested	within	the
Loop	construct.	If	you	select	the	***	End	of	processing	sequence	***
text	before	dropping	the	transformation	map	into	the	processing	sequence
editor,	you'll	ensure	the	Loop	is	placed	at	the	end.

					Note:	You	may	use	the	Promote	 	or	Demote	 	buttons	on	the
tool	bar	to	adjust	the	level	of	nesting.

2.		Select	the	Transform	in	the	sequence	details.	The	parameters	for	this
Transformation	will	then	be	shown	in	the	Parameters	tab	(bottom	right).
Against	these	parameters	you	need	to	identify	which	values	and	variables	are
to	be	used.

3.		For	the	SourceFileName,	set	the	Variable	or	value	for	parameter	to
&THISFILE.	You	may	select	a	variable	from	the	Variables	tab	(top	left)	and
drag	and	drop	it	onto	the	Variable	or	value	for	parameter.

4.		For	the	BatchNumberSourceParameter	set	the	Variable	or	value	for
parameter	to	iii123.	For	the	input	Batch	Number	for	this	tutorial,	use	a
constant	value	of	iii123.

5.		For	the	DBTargetConnection	set	the	Variable	or	value	for	parameter	to	the
name	of	the	DataBase	Connection	Id	you	created	in	LIC003,	Step	7.	Set	up
the	Database	Configuration	(iiiTUTDBID).	You	may	also	select	the
configuration	from	the	Configurations	tab	(top	left)	and	drag	and	drop	the
required	configuration	onto	the	Variable	or	value	for	parameter.

6.		Save	your	Processing	Sequence.

Step	3.	Execute	your	Amended	Processing	Sequence
1.		Before	clicking	on	the	Run	icon,	make	a	note	of	the	path	for	the	Composer
Tutorial	files.	You	can	do	this	by	accessing	System	Settings	and	using	Ctrl-C
to	copy	the	value	you	need.

2.		To	execute	the	Processing	Sequence,	click	the	Run	button	on	the	toolbar.
3.		The	Run	Processing	Sequence	window	is	shown.	Select	the	Run	immediately
radio	button.

4.		In	the	DIRECTORY	parameter,	enter	the	path	to	the	LANSA	Composer
Tutorial	as	used	in	previous	exercises.	Note	there	is	no	/	at	the	end	of	this
path.

5.		Click	on	the	Run	button	at	the	bottom	of	this	window.
					When	the	Processing	Sequence	completes,	the	steps	and	results	of	the
processing	are	shown	in	the	Processing	Sequence	Log	window.		Verify	that
your	processing	sequence	ended	successfully	by	reviewing	the	log.

6.		Check	the	database	tables,	TUTORDH	and	TUTORDL.	The	data	from
the	xml	input	file	will	have	been	added	to	the	tables.	The	Batch	number	is
iii123	(from	the	constant	value	you	assigned	to	the	batch	number)	in	Step	2.
Add	the	Transformation	to	the	Processing	Sequence.

					The	following	screen	pictures	show	an	SQL	query	on	files	TUTORDH	and
TUTORDL.

					For	example:	SELECT	*	FROM	LICLICLIB/TUTORDH				

					Order	Header	TUTORDH:

					Order	Lines	TUTORDL:

Step	4.	Add	a	Variable	Batch	Number	to	the	Processing	Sequence
In	this	step,	instead	of	the	constant	value	of	iii123	for	the	Batch	number,	you
will	change	the	Processing	Sequence	to	use	a	next	number	activity.	This	way
you	can	tell	which	is	the	latest	addition	to	the	tables	TUTORDH	and
TUTORDL.
1.			On	the	Activities	tab,	locate	the	NEXTNUMBER	Generate	the	next	number
activity,	in	the	Variable	Manipulation	group.	.

2.	Add	(double-click	or	drag	and	drop)	this	Activity	to	the	sequence	before	the
Transform.	We	will	use	this	Activity	to	assign	a	variable	BATCHNO.

3.		Select	the	NEXTNUMBER	Activity	in	the	sequence.		The	parameters	for	this
Activity	will	then	be	shown	in	the	Parameters	tab	(bottom	right).	Against
these	parameters	you	need	to	identify	which	values	and	variables	are	to	be
used.
a.		For	the	NUMBERKEY1	parameter,	set	the	Variable	or	value	for
parameter	to	'TUTORIAL'.	You	may	type	the	value	with	or	without	the
quote	marks.		If	you	do	not	type	the	quote	marks,	LANSA	Composer	will
add	them	later.

b.		For	the	NUMBERKEY2	parameter,	set	the	Variable	or	value	for
parameter	to	'BATCHNO'.		Using	these	two	"key"	values	means	that	the
batch	number	will	be	generated	from	a	series	that	is	common	to	all
processes	that	use	the	same	values	(that	is,	a	series	that	is	common	to	all
users	of	these	tutorial	exercises).

c.		For	the	NUMBEROUT	parameter,	set	the	Variable	or	value	for	parameter
to	&BATCHNO.	This	means	that	the	number	assigned	by	this	activity
will	be	placed	in	a	processing	sequence	variable	named	BATCHNO.

4.		Select	the	Transform	in	the	sequence.
a.		In	the	Parameters	tab	(bottom	right),	find	the	parameter	iiTUTMAP_2
BatchNumberSourceParameter.

b.		Delete	the	Parameter	value	of	iii123.	For	the	Variable	or	value	for
parameter	enter	&BATCHNO	or	drag	and	drop	from	the	Variables	tab
(top	left).

					This	means	that	the	value	for	BATCHNO	output	by	the	Activity
NEXTNUMBER	will	be	used	as	the	input	value	by	the	Transformation.

5.		Save	your	Processing	Sequence.
6.		Run	your	Processing	Sequence.	Look	at	the	log	(View	Log	tab)	to	check	the
batch	number	allocated:

7.		Check	the	database	tables,	TUTORDH	and	TUTORDL	again,	using
SQL.	You	will	see	that	additional	entries	have	been	added	to	the	tables	and
that	the	Batch	Number	is	a	different	number.

8.		Exit	the	Processing	sequence	editor.

Summary
You	have	used	more	of	the	facilities	available	within	a	Processing	Sequence:
The	flow	control	construct	of	LOOP	to	repeat	a	sub	set	of	processing
steps.
The	technique	of	the	output	from	one	processing	step	being	input	to
another	processing	step.

LIC005	-	Set	up	a	Trading	Partner
Objectives

To	introduce	you	to	Trading	Partner	information.
To	link	directories	to	the	Trading	Partner
To	extend	your	Processing	Sequence	to	use	the	Trading	Partner	structure.

Before	You	Begin
In	order	to	complete	this	tutorial,	you	should	have	completed	the	following:

LIC001	-	Introduce	Composer	Client	&	Validate	Environment
LIC002	-	Create	a	Processing	Sequence
LIC003	-	Create	a	Transformation	Map
LIC004	-	Add	the	Transformation	to	the	Processing	Sequence

Steps
To	achieve	these	objectives,	you	will	complete	the	following:

Step	1.	Create	a	Trading	Partner
Step	2.	Set	up	the	Directories	that	your	Trading	Partner	will	use
Step	3.	Add	the	Trading	Partner	to	your	Processing	Sequence
Step	4.	Execute	your	Processing	Sequence
Summary

Step	1.	Create	a	Trading	Partner
1.		In	the	Navigator	expand	Definitions	and	select	Trading	partners.
2.		Select	New	on	the	tool	bar	or	right	click	and	select	New	from	the	context
menu.

3.		Enter	Trading	Partner	ID	as	iiiTUTTP	(where	iii	are	your	initials).
4.		Enter	Trading	Partner	Name,	for	example	Fred	Smith	Tutorial	Trading
Partner.

5.		Set	the	Status	to	Active.
6.		For	Email	enter	your	own	email	address.	As	you	are	going	to	send	an	email
to	this	address,	it	needs	to	be	an	email	address	that	you	can	access.

7.		You	may	enter	additional	details	such	as	Contact,	Address,	Phone	number,
Fax.

8.		Press	the	Save	button.
9.		Composer	will	now	optionally	create	a	set	of	folders,	suitable	for	storing
documents	which	are	received,	processed	and	sent	to	the	partner.

10.Click	OK	to	create	these	folders.
					These	steps	have	set	up	the	basic	information	about	your	Trading	Partner.

Step	2.	Set	up	the	Directories	that	your	Trading	Partner	will	use
1.		Select	your	tutorial	Trading	Partner.
2.		Select	the	Linked	Directories	tab.	Note	that	the	IDOC_	and	ODOC_	set	of
directories	have	been	create	as	Linked	Directories.

3.		Create	a	new	linked	directory	for	this	Trading	Partner	by	clicking	the	Add
button	on	the	right	of	the	Linked	Directories	tab	to	open	a	separate	dialog
containing	a	list	of	Directory	types.	This	list	of	directory	types	is	built	from
the	Code	Values	(to	view	this	in	the	Navigator	expand	Administration	and
Housekeeping	and	select	Code	Maintenance,	then	Code	group	of	Trading
Partner	directory	types).

4.		From	the	list	of	Directory	Types	select	Tutorial.	To	select,	use	the	checkbox
then	click	OK.

					The	Directory	Types	window	will	close	and	your	selection	will	be	placed	in
the	list	of	linked	directories.

5.		The	Directory	Path	will	be	set	to	a	path	based	on	partner	name	and	the	code
for	the	Directory	Type,	relative	to	the	Default	Trading	Partner	Linked
Directory	in	system	settings.

					For	example:

					/LANSA_Composer_licpgmlib/lic/IIITUTTP/TUT
					Where	iiiTUTTP	is	the	Trading	Partner	name.
6.		Press	the	OK	button	to	save	your	changes.
7.		Copy	the	order	file	TUTORDER.XML	from	the	tutorial	folder.	For	example,
/LANSA_composer_licpgmlib/lic/tutorial,	into	your	trading	partner's

linked	tutorial	folder
/LANSA_composer_licpgmlib/lic/IIITUTTP/TUT

Step	3.	Add	the	Trading	Partner	to	your	Processing	Sequence
In	this	step	you	will	define	a	processing	sequence	to	do	the	following:

Loop	through	all	trading	partners
a.		If	a	trading	partner	tutorial	directory	is	defined	(is	not	equal	to	blank)
b.		If	trading	partner	name	=	iiiTUTTP
		i.		List	XML	files	in	trading	partner	tutorial	directory
		ii.		Loop	through	list	of	XML	files
		iii.		Assign	a	batch	number
		iv.		Transform	XML	file	to	database	files	order	header	(TUTORDH)	and
order	details	(TUTORDL)

1.		In	the	Navigator,	expand	Definitions	and	select	Processing	sequences.	Select
your	Processing	Sequence	iiiTUTSEQ02.	As	before,	create	a	new	processing
sequence	by	copying	this	one.	Save	it	with	an	ID:	of	iiiTUTSEQ03	and
Description:		iii	Tutorial	–	LIC005

2.		Click	the	Edit	button	to	open	the	Processing	Sequence	in	the	editor.
3.		From	the	Palette	tab	select	the	Loop	construct	and	add	it	to	the	sequence	at
the	beginning.

4.		Select	the	new	loop	and	enter	the	Details	(bottom	right).	Enter	List	name
*TRADINGPARTNERS	Note:	This	must	end	with	an	"S".

					Alternatively,	select	the	Built-ins	tab	(top	left)	and	drag	and	drop
*TRADINGPARTNERS	to	the	List	name.

5.		Demote,	using	the	toolbar	icons,	the	other	entries	in	the	sequence	to	be
below	the	Trading	Partners	loop.	This	is	telling	the	processing,	to	loop
through	the	Trading	Partners	and	execute	the	child	entries	for	each	Trading
Partner.

6.		From	the	Palette	tab,	select	the	If	construct	and	add	it	to	the	sequence	after
the	Trading	Partner	loop	and	before	the	Activity	DIRECTORY_LIST.
Demote	the	entries	after	the	inserted	If.	

7.		Filter	the	loop	to	only	review	Trading	Partners	with	your	partner	ID.		Select
the	If	you	just	added	and	in	the	Details	(bottom	right)	enter	the	Condition:

						*TRADINGPARTNER.ID	=		'iiiTUTTP'	(where	iii	are	your	initials)

					Once	again,	note	that	"tradingpartner.id"	can	be	dragged	from	the	Built-ins
tab.	It	is	found	under	Trading	partner	attributes.								

					Your	Processing	Sequence	should	now	look	like	the	following:

					You	now	need	to	adjust	the	Processing	Sequence	to	execute	the	child	entries
only	if	the	Trading	Partner	has	a	linked	tutorial	directory.

8.		From	the	Palette	tab,	select	the	If	construct	and	add	it	to	the	sequence
immediately	after	the	Trading	Partner	loop	and	before	the	If	construct
added	in	6	above.	Demote	the	entries	after	the	inserted	If	you	have	just
inserted.

9.		Select	the	If	you	just	added	and	in	the	Details	(bottom	right)	enter	the
Condition:

						*TRADINGPARTNER.DIR.TUT	*NE	'	'
					Note:	The	*TRADINGPARTNER	does	not	end	with	"S".	This	variable	refers
to	the	current	Trading	Partner	which	is	the	current	entry	of	the
*TRADINGPARTNERS	loop.

10.Select	the	Activity	DIRECTORY_LIST.	For	the	Parameter	DIRECTORY
(bottom	right)	for	the	Variable	or	value	for	parameter	enter	the	value
*TRADINGPARTNER.DIR.TUT

					For	more	information	on	this	entry	refer	to	Processing	sequence	then	the
Built-in	Variable	topic	in	the	Composer	Guide.

11.You	are	now	using	the	directory	linked	to	the	Trading	Partner	as	the
DIRECTORY	in	the	DIRECTORY_LIST.	Previously	this	was	an	input	input

parameter	to	the	processing	sequence.	You	can	now	remove	this	by	selecting
Parameters	tab	(top	right)	and	deleting	the	DIRECTORY		and
YOURINITIALS	entries.	The	initial	Parameters	tab	(top	right)	should	now
contain	no	entries.

					Your	Processing	Sequence	should	now	look	like	this:

12.Save	your	Processing	Sequence.

Step	4.	Execute	your	Processing	Sequence
1.		To	execute	the	Processing	Sequence,	click	the	Run	button	on	the	toolbar.
2.		The	Run	Processing	Sequence	window	is	shown.	Select	the	Run	immediately
radio	button.	Notice	that	you	are	no	longer	requested	to	enter	a	value	for
DIRECTORY.

3.		Click	on	the	Run	button	at	the	bottom	of	this	window.
					When	the	Processing	Sequence	completes,	the	steps	and	results	of	the
processing	are	shown	in	the	Processing	Sequence	Log	window.	
a.		Verify	that	your	processing	sequence	ended	successfully	by	reviewing	the
log.

b.		Click	the	Show	All	button	to	see	full	details	of	all	the	processing	that	was
performed	including	the	loop	instances	that	processed	other	Trading
Partner	definitions.

c.		Check	the	contents	of	the	database	tables	TUTORDH	and	TUTORDL.
You	should	see	additional	entries	have	been	added.

LANSA	Composer	provides	another	way	of	reviewing	the	results	of	your
Processing	Sequences.	The	Operations	Console	can	be	used	by	anybody	with	a
web-browser	and	the	necessary	network	access.

a.		From	the	Navigator,	select	Operations	/	Console.

b.		Open	the	required	processing	sequence	by	selecting	the	Run	Number:
c.		Click	the	Show	All	button	to	display	the	full	processing	sequence	log
information:

Summary
You	have	used	the	Trading	Partner	structure	which	enables	you	to	subset
your	information	-	directories,	Transformation	Maps,	configurations.
You	have	used	the	Trading	Partner	structure	within	your	Processing
Sequence.	This	give	you	access	to	the	pre-defined	variables	associated	with
the	Trading	Partners.
You	are	aware	that	detailed	log	information	for	a	processing	sequence	can	be
accessed	via	the	Operations	/	Console,	and	that	this	facility	is	available	to
users	who	do	not	have	the	LANSA	Composer	client	software	installed.

LIC006	-	Add	Email	Acknowledgement	to	Processing	Sequence
Objective

To	introduce	you	to	configurations	that	can	be	used	within	LANSA	Composer
by	adding	an	email	notification.	The	email	will	be	sent	to	the	email	address
for	the	Trading	Partner.

To	complete	this	tutorial	you	must	be	able	to	email	using	SMTP	from
your	server.

Before	You	Begin
In	order	to	complete	this	tutorial,	you	should	have	completed	the	following:

LIC001	-	Introduce	Composer	Client	&	Validate	Environment
LIC002	-	Create	a	Processing	Sequence
LIC003	-	Create	a	Transformation	Map
LIC004	-	Add	the	Transformation	to	the	Processing	Sequence
LIC005	-	Set	up	a	Trading	Partner

Steps
To	achieve	these	objectives,	you	will	complete	the	following:

Step	1.	To	set	up	the	SMTP	Server	Configuration
Step	2.	Set	up	the	SMTP	mail	detail	configuration
Step	3.	Add	an	Email	acknowledgement	to	your	Processing	Sequence
Step	4.	Execute	your	Processing	Sequence
Summary

Step	1.	To	set	up	the	SMTP	Server	Configuration
The	SMTP	email	within	Composer	uses	the	base	LANSA	Integrator	SMTP	Mail
Services.
The	SMTP	email	facility	within	Composer	consists	of	two	parts:

The	first	part	sets	up	the	SMTP	server	configuration.
The	second	part	sets	up	details	of	individual	email	messages.

1.		To	set	up	the	SMTP	server	configuration,	expand	Configurations	in	the
Navigator	and	select	SMTP	server	configurations.

2.			Select	New	on	tool	bar	or	right	click	and	select	New	from	the	context	menu
to	open	the	Details	tab	in	the	SMTP	window.
a.		Enter	an	SMTP	Mail	Server	ID,	for	example	iiiTUTSMTPID.
b.		Enter	a	Description.
c.		Set	the	Status	to	Active.
d.		Enter	the	SMTP	server.	This	is	the	host	name	of	your	SMTP	server.	(For
example	10.2.1.99	or	MAILSERVER).

					If	necessary	consult	your	systems	administrator	for	the	correct	email
server	to	use.

					The	remaining	the	values	are	optional	and	will	depend	on	the	setup	of	the
mail	server	you	are	using.	Enter	the	values	that	are	required	for	your
environment.

					Your	SMTP	Server	configuration	should	now	look	like	the	following:

3.		Save	your	SMTP	server	configuration.

Note:	If	you	have	previously	used	LANSA	Integrator	SMTP	services,
you	will	have	already	set	up	the	STMP	server	information	within	the
SMTPMailService	properties	file.	You	may	use	this	within	LANSA
Composer.	If	the	MAIL_SEND	Activity	within	Composer	is	used	and
no	SMTP	server	configuration	ID	is	provided	and	there	is	no	default
SMTP	server	configuration	specified	in	the	System	Settings,	then	the
information	from	the	LANSA	Integrator	SMTPMailService	properties
file	will	be	used.

Step	2.	Set	up	the	SMTP	mail	detail	configuration
This	step	sets	up	the	details	of	the	email	message	that	is	to	be	sent.
1.		To	set	up	the	SMTP	mail	detail	configuration,	expand	Configurations	in	the
Navigator	and	select	SMTP	mail	details.

2.		Select	New	on	tool	bar	or	right	click	and	select	New	from	the	context	menu.
a.		Enter	the	Email	detail	ID	as	iiiTUTEMAILACK	where	iii	are	your	initials.
b.		Enter	a	Description.	(For	example	Fred	Smiths	Tutorial	Email
Acknowledgement.)

c.		Set	the	Status	to	Active.
d.		Enter	to@mycompany.com	in	the	To	Email	Address.	(This	e-mail	address
will	not	be	used	in	this	tutorial	-	instead	the	e-mail	address	in	the	trading
partner	definition	will	be	used).

e.		You	could	also	provide	CC	and	a	Blind	copy	email	address,	but	for	this
exercise	leave	them	blank.

3.		The	From	email	address	will	have	already	been	completed	for	you.	This
value	is	taken	from	the	default	value	in	the	system	settings.	For	this	exercise
leave	this	value	unchanged.

4.		Enter	your	name	in	the	From	email	display	name.	If	your	class	is	using	a
common	ToEmail	Address	for	the	Partner,	this	will	make	it	easy	to	find	your
email.

5.		For	the	Email	subject,	enter	Acknowledging	receipt	of	your	order.
6.		For	the	Body	text,	a	sample	file	named	Ack.txt	will	have	been	installed	in	the
tutorial	directory	on	your	server.	Enter	the	full	path	and	file	name	for	this
sample	file.	For	example,
/LANSA_Composer_licpgmlib/lic/Tutorial/Ack.txt.

						If	you	are	using	Composer	on	a	Windows	server,	use	the	prompt	button	to
find	the	file.

7.		Click	Save.

Step	3.	Add	an	Email	acknowledgement	to	your	Processing
Sequence
You	have	set	up	configurations	for	the	SMTP	email.	Now	you	can	add	an	email
acknowledgement	to	your	Processing	Sequence.
1.		In	the	Navigator,	expand	Definitions	and	select	Processing	sequences.
2.		Select	your	Processing	sequence,	iiiTUTSEQ03	and	create	a	new	processing
sequence	by	copying	it.	Save	the	new	one	as	ID:	iiiTUTSEQ04,	Description:
iii	Tutorial	–	LIC006	and	save	it.

					Use	the	Edit	button	to	open	the	new	processing	sequence.	You	want	to	send	a
single	email	to	a	Trading	Partner	if	any	xml	files	were	found	and	transformed
for	that	Trading	Partner.

3.		From	the	Palette	tab	select	the	If	construct	and	add	it	to	the	sequence	at	the
end.	Adjust,	using	Promote,	the	level	of	the	If,	so	it	is	at	the	same	level	as	the
FILELIST	Loop.

4.		Select	the	If	and	in	the	Condition	enter	&FILECNT	*GT	0
5.		From	the	Activities	tab	select	MAIL_SEND	and	add	to	the	sequence	after
the	If	so	that	the	MAIL_SEND	is	within	the	If.	You	can	adjust	the	levels	if
necessary	using	the	Promote/Demote	icons.

6.		Select	the	MAIL_SEND	Activity.	In	the	Parameters	(bottom	right),	enter	a
Variable	or	value	for	parameter	for	SMTPMESSAGEDETAILID	of	the
SMTP	mail	detail	configuration	you	created	in	the	last	step
(iiiTUTEMAILACK)	or	drag	and	drop	it	from	the	Configurations	tab.

7.		Add	the	SMTP	server	configuration	(iiiTUTSMTPID)	you	created	to	the
Variable	or	value	for	parameter	for	SMTPSERVERID.

8.		Enter	a	Variable	or	value	for	parameter	for	parameter	TOADDRESS	of
*TRADINGPARTNER.EM	(that	is	*TRADINGPARTNER	without	an
"S"	plus	a	full	stop	"."	and	EM).,	or	drag	and	drop	it	from	the	Builtins	tab.

					This	means	when	the	Processing	Sequence	is	executed	it	will	assign	the
value	of	the	email	address	from	the	Trading	Partner	to	the	TO	email	address
used	by	the	MAILS_END	Activity.	In	this	way	the	email	will	be	sent	to	the
Trading	Partner	being	processed.

					You	need	to	execute	the	MAIL_SEND	Activity	if	any	entries	were	found	in
the	FILELIST.	Remember	that	FILECNT	is	the	index	for	the	FILELIST.

9.		You	now	need	to	ensure	that	the	FILECNT	is	always	zero	before	building	the
FILELIST.	You	do	not	want	the	FILECNT	to	have	a	value	left	over	from	a
previous	Trading	Partner.	So	you	must	set	FILECNT	to	zero	before	the	list	is
set	up.	To	do	this,	select	an	Assign	from	the	Palette	and	add	to	the	sequence
before	the	Activity	DIRECTORY_LIST.

10.	Select	the	Assign	and	set	the	Expression	to	&FILECNT	=	0
					Your	processing	sequence	should	now	look	like	the	following:

11.	Save	your	changes	to	the	processing	sequence.

Step	4.	Execute	your	Processing	Sequence
1.		Click	the	Run	button.
2.		Review	the	Processing	Log.

3.		Review	the	data	in	tables	TUTORDH	and	TUTORDL.
					Check	the	email	account	you	defined	for	your	Trading	Partner.	You	will
receive	an	acknowledgement	email.	The	text	of	the	email	will	be	taken	from
the	Ack.txt	file.

Summary
You	have	used	more	of	the	conditional	constructs	available	within	the
Processing	Sequence.
You	have	defined	SMTP	configurations	and	used	the	MAIL_SEND	activity
to	send	an	acknowledgement	email	to	a	Trading	Partner.	This	is	just	one	of
the	configurations	that	are	available.	Other	configurations	and	standard
Activities	available	for	use	are	FTP,	POP3	and	HTTP.
Setting	up	a	configuration	enables	you	to	re-use	the	configuration	structure
within	multiple	Processing	Sequences	or	for	multiple	Trading	Partners.
Various	elements	of	the	configurations	may	be	overridden	or	varied	when
executed	within	a	Processing	Sequence.

	

LIC007	-	Extract	Database	to	CSV	File
Objectives
To	extract	a	CSV	file	from	a	physical	file,	with	selection	criteria.	You	will	create
a	transformation	map	and	use	it	in	a	processing	sequence	to	do	the	following:

Extract	employee	data	from	the	Personnel	file	(PSLMST)	into	a	CSV	file
Select	records	based	on	department	code
Input	department	code	as	a	run	time	parameter	to	the	processing	sequence
Input	the	output	CSV	file	name	as	a	run	time	parameter

Steps
To	achieve	these	objectives	you	will	complete	the	following:

Step	1.	Create	Transformation	Map
Step	2.	Define	Transformation	Map
Step	3.	Define	an	SQL	Where	condition	and	input	parameter
Step	4.	Prepare	Transformation	Map
Step	5.	Create	Processing	Sequence
Step	6.	Run	the	Processing	Sequence
Step	7.	Run	Composer	CL	Command	(Optional)
Step	8.	Run	Processing	Sequence	from	a	shortcut	(optional)
Summary

This	exercise	uses	files	from	the	LANSA	Personnel	Demonstration	System.
On	an	IBM	i	server,	the	files	are	in	the	LANSA	Composer	partition	library.		In
an	installation	using	default	names,	the	library	name	will	be	LICLICLIB.
On	a	Windows	server,	the	files	are	in	the	designated	LANSA	Composer
database,	in	schema	or	collection	name	LC_DTA.

Before	You	Begin
In	order	to	complete	this	tutorial,	you	should	complete	the	preceding
tutorials.

Step	1.	Create	Transformation	Map
1.		In	the	Navigator,	select	Transformation	Maps.

2.		Use	the	 	button	on	the	toolbar	to	create	a	new	Transformation	Map
defined	as:

ID iiiTUTMAP02

Description Employee	File	to	CSV	with	Selection

Map	Type Unspecified	Type

Restartable Yes

Status Active

	

3.			Save	it
					Your	new	Transformation	Map	details	will	look	like	the	one	below:

Step	2.	Define	Transformation	Map
In	this	step	you	will	add	the	file	PSLMST	–	Personnel	to	the	map	and	add	a	text
file	(CSV)	and	define	its	fields.	You	will	then	define	the	basic	mapping	between
the	two	objects.

1.		From	the	Details	tab,	use	the	 	Edit	button		to	open	Mapforce.
2.		In	Mapforce,	use	the	Insert	/	Database	menu	option:

3.		Select	IBM	DB/2	(ODBC)	in	the	Connection	Wizard	and	click	the	Next
button.

4.On	the	next	dialog,	select	ODBC:

5.		If	you	already	completed	the	earlier	LIC003	tutorial	exercise,	then	you	will
already	have	defined	a	DSN	that	you	can	again	use	here.		In	that	case,	select
the	'Use	an	existing	Data	Source	Name'	option	and	follow	the	prompts	to
select	the	DSN	you	created	earlier.		Then	proceed	to	step	8.

			Otherwise,	select	the	'Create	a	new	Data	Source	Name'	option.	Click	the
Connect	button.

6.		Enter	a	Data	Source	Name	of	<server>_<library>,	where	<server>	is	the
IBM	i	and	<library>	is	the	specific	library	which	will	be	the	default	for	this
connection	-	this	should	be	the	library	containing	the	Personnel
Demonstration	system	files,	for	example,	LICLICLIB.

					Do	not	click	OK	at	this	point.

7.		Select	the	Server	tab.	Enter	an	SQL	default	library	of	<library>	where
<library>	is	the	library	containing	the	Personnel	Demonstration	system	files,
for	example,	LICLICLIB.

					Then	click	OK.
8.Signon	to	the	iSeries	when	the	login	dialog	appears,	using	your	iSeries	user	id
and	password..	You	may	need	to	signon	three	times	(this	depends	on	the
configuration	of	IBM	i	Access	security	options).

9.		In	the	Insert	Database	Objects	dialog,	the	highlighted	area	shows	the	first
IBM	i	library	or	the	first	database	schema	or	collection.	Select	the	arrow	icon
and	select	the	required	library,	schema	or	collection	from	the	drop	down	list.

As	before,	the	required	IBM	i	library	will	depend	on	the	LANSA	Composer
installation,	for	example,	LICLICLIB.	On	a	Windows	server,	the	schema
name	is	LC_DTA.

10.	Select	the	file	DEPTAB	–	Department	Table.

11.	Then	scroll	down	and	select	file	PSLMST	–	Personnel.

12.	Select	the	Add/Edit	Table	Relations	button	(highlighted	above).
13.	In	the	Add/Edit	Table	Relations	dialog,	begin	by	selecting	the	Add	Relation
button.

14.	In	the	left	hand	Primary/Unique	Key	Table	column,	select	table	DEPTAB
and	then	column	DEPTMENT.	In	the	right	hand	Foreign	Key	Table	column,
select	table	PSLMST	and	then	column	DEPTMENT.

15.	Click	the	OK	button.

16.	Continue	by	clicking	the	OK	button	in	the	Insert	Database	Objects	dialog.
Your	map	should	look	like	the	following:

17.	Add	a	text	file	using	the	Insert	/	Text	File	menu	option.

18.	Select	the	radio	button	–	Use	simple	processing	for	standard	CSV	or	FLF
files	and	click	Continue.

19.	Ensure	the	checkbox	First	row	contains	field	names	is	NOT	checked.
Initially	there	will	be	one	field	only	defined.	Click	in	the	top	line	and	replace
Field	1	with	EmployNumber.

20.	Continue	to	add	new	fields	by	pressing	the	Append	Field	button	and	adding
the	following	fields:
a.		Surname
b.		GivenName
c.		Address1
d.		Address2

e.		Address3
f.		PostCode
g.		Department
h.		DeptDescription

21.Change	the	field	PostCode	to	Integer.
22.Check	the	checkbox	First	row	contains	field	names	.Your	form	should	now
look	like	the	following:

23.	Save	your	changes	by	clicking	the	OK	button.
					Your	form	should	now	look	like	the	following:

24.Click	OK	to	insert	the	text	file.
					Your	map	should	now	look	like	the	following:

25.Expand	the	DEPTAB	table	below	table	PSLMST	and	then	define	the
required	mapping	between	fields	in	tables	PSLMST	and	DEPTAB	and	fields
in	the	text	file.

			When	mapping	the	DEPTDESC	field,	it	is	important	that	you	select	the
instance	of	DEPTAB/DEPTDESC	that	is	nested	below	PSLMST.		This
ensures	that	the	database	table	relation	you	defined	in	step	14	is	effective	and
that	you	pick	up	the	DEPTDESC	value	that	corresponds	to	the	DEPTMENT
(department	code)	that	is	in	PSLMST.

			Your	map	should	now	look	like	the	following:

					Mapforce	will	display	a	message	box,	because	at	this	stage	the	input
database	file	is	not	connected	to	Rows	in	the	output	text	file.	Click	OK	and
continue.		You	will	be	completing	this	link	in	the	next	step.

Note	ODBC	DSN
In	general	MapForce	database	components	are	qualified	with	the	database
schema	name.	On	IBM	i,	this		corresponds	to	the	IBM	i	library	name.
In	the	context	of	LANSA	Composer,	it	would	not	be	satisfactory	for	the	prepared
Transformation	Map	to	contain	hard-coded	references	to	database	tables	in	a
named	library,	which	is	what	would	happen	if	LANSA	Composer	did	nothing
else.
For	LANSA	Composer	version	3.0,	the	map	definition	(the	.mfd	file)	is	modified

BEFORE	MapForce	generates	the	Java	code.	The	modification	(if	found	to	be
necessary)	is	made	to	a	temporary	copy	of	the	map	definition	(.mfd)	file	that	is
used	only	for	the	Prepare	step	(the	original	map	definition	file	is	NOT
changed).		The	nature	of	the	modification	is	to	automatically	switch	on
MapForce's	own	"Strip	schema	names"	option	in	the	database	component,	and
thereby	rely	on	MapForce's	own	code	generator	to	get	the	unqualified	database
references	correct.		(This	MapForce	option	was	not	available	in	earlier
MapForce	versions.)
One	other	consideration	is	that	"strip	schema	names"	may	lead	to	a	"Prepare
Map	failure"	due	to	the	required	file(s)	not	being	found	if:

the	map	uses	SQL	SELECT	and/or	SQL-WHERE	components,	AND
the	ODBC	DSN	in	use	does	not	specify	an	appropriate	library	list.

This	means	that	in	such	cases	it	will	be	necessary	to	use	a	DSN	that	specifies	an
appropriate	SQL	default	library	and/or	library	list.
This	and	related	issues	are	discussed	and	described	more	fully	in	Additional
Considerations	for	Transformation	Maps	Using	IBM	DB2	for	i5/OS	in
Appendix	C	of	the	LANSA	Composer	User	Guide.	It	is	recommended	reading	if
you	work	with	Transformation	maps	that	reference	IBM	i	databases	in	LANSA
Composer	version	3.0	(or	later).

Further	note:

Even	when	MapForce's	own	"Strip	schema	names"	option	is	used	(whether	by
the	map	designer	or	applied	automatically	by	the	Prepare	step	as	described
above),	MapForce	does	NOT	strip	schema	names	from	user-entered	SQL	-	in
other	words,	from	any	SQL	entered	using	MapForce's	SQL	SELECT	feature.

its:lansa091.chm::/lansa/Intengc9_0365.htm

Step	3.	Define	an	SQL	Where	condition	and	input	parameter
This	transformation	map	needs	to	support	the	selection	of	employees	by
department	code	to	be	inserted	into	the	CSV	text	file.	In	this	step	you	will
complete	the	transformation	map	by	adding	an	SQL	Where	Condition,	and	an
input	parameter	linking	the	file	PSLMST	to	the	output	text	file	via	the	SQL
Where	Condition.
1.		Insert	an	SQL	Where	Condition	using	the	Insert	/	SQL-WHERE	Condition
menu	option.

2.		Link	the	PSLMST	file	to	the	table	element	of	the	SQL-Where,	this	will	open
the	SQL-Where	properties	dialog:

3.		Define	the	selection	as	DEPTMENT	=	:Department_In	(note	the	colon	-
and	lack	of	space	-	before	Department_In).	This	will	define	an	input
parameter	–	see	example	below.

					Note:	DEPTMENT	is	the	name	of	the	department	code	field	in	the	file
PSLMST,	which	the	transformation	is	reading.

4.		Click	the	OK	button	to	save	these	changes.	Your	map	window	should	now
look	like	the	following:

5.		Using	the	Function	/	Insert	Input	menu	option	to	define	an	Input	parameter.

6.		Define	a	string	input	called	Department_In		and	click	OK.
					Note:	You	can	also	define	a	default	value	and	use	this	in	Mapforce	to
produce	sample	output.

	
7.		Link	the	Input	function	to	the	SQL-WHERE	Condition	and	link	the
SQL_Where	result	output	to	the	text	file	Rows,	as	shown	below.

8.		Use	the	 	Save	icon	to	save	your	transformation	map.	Note	that	the
messages	area	at	the	bottom	left	of	Mapforce	should	look	like	the	following:

9.		Select	Output	tab.	Provided	you	specified	a	default	value	in	the	Input
parameter,	this	will	show	the	employees	which	will	be	selected.	Note:	this
view	has	been	scrolled	to	the	right,	to	show	the	Department	Description
column	which	has	been	retrieved	from	the	related	table	DEPTAB.

10.Close	Mapforce.

Step	4.	Prepare	Transformation	Map

1.		Use	the	 	Prepare	button	on	the	Details	tab	to	prepare	the	Java
service	on	the	IBM	i	which	will	implement	your	transformation.		At	the
Prepare	Transformation	Map	window,	click	the	Prepare	button	to	confirm
your	request:

					You	may	see	the	MapForce	window	open	briefly	during	the	Prepare	–	this	is
normal	and	it	will	close	by	itself	in	a	few	moments.		If	prompted,	remember	
to	complete	the	IBM	i	Signon	screen	during	the	Prepare	steps,	which	may	not
be	shown	as	the	top	window.

2.		When	this	step	completes	–	and	it	may	take	a	few	minutes,	you	will	see	the
following	message	boxes:

					When	the	remaining	steps	have	completed,	click	Close	to	close	the	Prepare
Transformation	Map	window.

3.		The	jar	file	for	your	transformation	map	has	been	created	and	placed	on	the

server	in	a	folder	such	as:
					/lansa_composer_licpgmlib/jsm/instance/composer/LIC/map
					Where:	licpgmlib	is	your	LANSA	Composer	program	library
					And	LIC	is	the	LANSA	partition	which	Composer	is	using.

Step	5.	Create	Processing	Sequence
In	this	step	you	will	create	a	simple	processing	sequence	which	will	run	your
file	transformation.	It	will	have	two	input	parameters,	Department	Code	and
output	file	name.
Before	you	begin:

a.		Create	a	new	Database	Configuration	(iiiTUTDEMO),	similar	to	the	one
you	created	in	LIC003,	Step	7.	Set	up	the	Database	Configuration.

b.		Copy	the	Database	Configuration	iiiTUTDBID.
c.		Give	the	new	Database	Configuration	a	suitable	Description.
d.		If	necessary,	change	the	Connection	string	to	use	the	library	containing
the	Personnel	Demonstration	System	files	(for	example,	LICLICLIB).

					Note	that	you	must	specify	the	Database	password.	Security	details	are
not	copied.

e.		Save	your	new	database	configuration.

f.		In	the	Navigator	select	Definitions	/	Process	Sequences.	Use	the	
button	to	create	a	new	processing	sequence.	This	will	immediately	open
the	Processing	sequence	editor.

2.		Select	the	Transformations	tab	from	the	top	left	hand	tabs,	and	drag	and	drop
your	transformation	iiiTUTMAP02	at	the	end	of	the	processing	sequence	in
the	right	hand	Details	tab	–	see	below.

					Note:	the	Parameters	tab	(bottom	right)	has	focus	and	shows	the	three

parameters	required	by	this	transformation.	They	are:
EARTHSourceConnection	–	the	name	of	the	DB	Source
Department_InSourceParameter	–	the	department	code	for	which
employees	are	to	be	selected
TextfileTargetFileName	–	the	name	(and	path)	for	the	output	CSV	file.

3.		Select	the	Configurations	tab	(top	left).	Drop	the	iiiTUTDEMO	Database
configuration	which	you	just	created	into	the	EARTHSourceConnection
parameter.

4.		In	this	step	you	will	define	two	input	parameters	for	the	Processing
Sequence.
a.		Select	the	Variables	tab	(top	left)	and	select	the	Parameters	tab	(top
right).

b.		Drag	and	drop	the	variables	iiiTUTMAP02_2	and	iiiTUTMAP02_3	onto
the	Parameters	tab.	You	can	re-sequence	them	using	the	 	toolbar
buttons	if	necessary.

5.		Give	each	of	them	appropriate	descriptions	as	shown	(these	are	displayed	at
run	time).	Select	the	Parameter	Name	iiiTUTMAP02_3	and	rename	it	to
FILENAME.	Note:	you	could	also	provide	a	default	value	for	each
parameter.

6.		Select	the	Activities	tab	(top	left)	and	the	Details	tab	(top	right).	Drag	and
drop	the	PATHMAKE	activity	into	the	processing	sequence	before	the

Transform.	You	can	re-sequence	using	the	 	buttons	if
necessary.

7.		Review	the	Assistant	tab	for	the	PATHMAKE	activity.	These	notes	explain
that	the	activity	will	use	the	correct	separator	depending	on	server	platform
(Windows	or	System	i)	and	will	insert	a	separator	if	not	specified.	In	the	next
steps	you	will	set	up	parameters	for	the	PATHMAKE	activity.

8.Define	the	PATHIN	inbound	parameter	as
'/LANSA_Composer_licpgmlib/lic/Tutorial/'.

					Note:	if	you	do	not	enter	the	string	within	single	quotes,	they	will	be	added
when	you	save	the	changes.

					The	actual	path	for	the	training	system	settings	which	you	are	using	can	be
found	via	the	Navigator,	under	Administration	&	Housekeeping	/	System
Settings	/	Tutorial	Files.

					Note:	the	Processing	sequence	editor	is	non-modal.	This	means	you	can
switch	back	to	the	main	Composer	window	to	review	this	information,
leaving	the	Processing	sequence	editor	open.

9.		Define	the	FILEIN	inbound	parameter	as	&FILENAME.	This	is	the	input
parameter	you	renamed	earlier.	It	contains	the	Output	File	Name.10.Select	the
Variables	tab	(top	left)	and	drag	and	drop	the	variable	iiiTUTMAP02_3	into
the	outbound	PATHOUT	parameter	of	the	PATHMAKE	activity.	This	will
create	/path/filename	variable	iiiTUTMAP02_3	which	is	required	in	the
Transform	output	file	parameter.

10.	Drag	and	drop	a		 	from	the	Palette	tab,	before	the	PATHMAKE
activity	and	add	suitable	comment	text	in	the	multi-line	edit	box	below.	See
example:

11.	Add	an	UPPERCASE	activity	before	the	Transform	Map.	Set	its	input	and
output	parameters	to	IIITUTMAP02_02,	which	is	the	input	department	code.
Since	the	file	extract	uses	SQL,	this	would	fail	to	output	to	the	CSV	file	if	the
user	enters	the	department	code	in	lower	or	mixed	case.

12.	Click	on	the	 	Save	button	to	save	your	processing	sequence.	
Complete	the	form	with	name	(iiiTUTSEQ05),	description	and	Status	set	to
Active.

Step	6.	Run	the	Processing	Sequence

1.		Run	the	processing	using	the	 	Run	button.	Enter	the	required
parameters	Department	(for	example	ADM)	and	Output	File	Name	(for
example	iiiEMPCSV.csv).	Then	click	the	Run	button	to	run	your
processing	sequence.

2.		If	you	have	set	up	the	processing	sequence	successfully,	your	log	should	look
like	the	following.

3.		Use	Windows	Explorer	to	find	your	output	CSV	file.	You	will	need	to	be
signed	into	the	IBM	i	server	in	Explorer	to	do	this.

4.		Double	click	to	open	this	file	in	Excel.	Your	file	should	look	like	the
following:

You	have	completed	this	exercise.	Following	is	an	optional	exercise	if	you	are
using	an	IBM	i	server.

Step	7.	Run	Composer	CL	Command	(Optional)
You	can	complete	this	step	if	you	are	using	an	IBM	i	server.	On	the	Run
Commands	tab,	the	Processing	Sequence	creates	the	COMPOSER	CL	command
string	which	can	be	used	to	execute	the	processing	sequence	directly	on	the
System	i.	For	example	it	could	be	placed	in	a	CL	job	or	it	could	be	used	to	call
the	processing	sequence	from	an	RPG	program.
Note:	if	you	are	a	LANSA	developer,	there	is	a	Composer	program	interface
available	from	an	RMDL	program.	See	the	Composer	online	guide	for	more
information.

1.		Start	a	5250	emulator	session	and	logon	with	your	training	course	IBM	i	user
id	and	password.	Use	CALL	QCMD	to	bring	up	the	command	entry	screen.
Use	F11	to	make	the	command	line	full	screen.

2.		Select	the	Run	commands	tab	shown	above	for	processing	sequence
iiiTUTSEQ05.	Select	the	command	and	paste	it	into	your	5250	emulator
screen	using	the	emulator	Edit/Paste	menu	option:

3.		Press	F4	to	prompt	the	COMPOSER	command:

4.		Set	DEPARTMENT	and	FILENAME	parameter	values	as	appropriate	and
press	enter	to	run	the	COMPOSER	command	which	will	run	your	processing
sequence.

5.		Display	the	output	CSV	file	from	the	….\LANSA_Composer\Tutorial	folder.
6.		Note	that	you	can	review	the	run	log	from	the	Composer	Console.

Step	8.	Run	Processing	Sequence	from	a	shortcut	(optional)
1.		Use	the	Run	button	to	start	processing	sequence	iiiTUTSEQ05.	Note	that	it
contains	a	Save	Shortcut	button.

2.		Click	the	Save	shortcut	button.
3.		Select	Desktop	and	click	the	Save	button

					Note	the	Processing	sequence	shortcut	succesfully	saved	message..

4.		Switch	to	the	desktop.	Click	the	Composer	Run	icon.

5.		Run	the	iiiTUTSEQ05	processing	sequence.	Note	that	you	will	be	prompted
to	logon	and	the	usual	processing	sequence	run	dialog	will	be	shown.

					The	LANSA	Composer	client	must	be	installed	on	the	desktop	in	order	to	run
a	processing	sequence	shortcut.

Summary
You	have	created	a	transformation	map	to	extract	records	from	a	physical
file,	into	a	CSV	format	file.
You	defined	an	SQL	Where	condition	and	input	parameter	for	the
transformation	map.
You	defined	a	processing	sequence	to	run	the	transformation	map,	with	two
input	parameters	for	department	code	and	output	file	name	and	used	the
CONCAT	activity	to	create	the	output	path	and	file	name	information	for	the
transformation.
Optionally,	you	have	used	the	COMPOSER	command	on	the	IBM	i	to
execute	your	processing	sequence	directly	on	the	IBM	i	server.
Optionally,	you	have	created	a	processing	sequence	shortcut	on	the	desktop
and	run	it.

LIC008	-	Processing	via	Email
Objectives
To	extend	the	previous	exercise	to	do	the	following:

retrieve	an	email	request
re-use	the	transformation	map	iiiTUTMAP02	to	produce	a	CSV	file	extract
from	the	Personnel	File	using	information	from	the	email	request
To	send	an	email	response	with	the	CSV	file	as	an	attachment

The	email	subject	line	will	contain	a	department	code,	which	will	be	used	by	the
transform	(Employee	file	to	CSV	file)	to	create	a	CSV	file	of	employees	in	the
department.
This	type	of	processing	sequence	could	be	used	to	handle	many	different	types
of	inquiry	via	email.	For	example,	a	product	enquiry	to	return	price,	stock
availability	or	specification	information.
This	tutorial	requires	two	email	addresses:

Send	a	request	from	your	own	email	account,	with	the	subject	line
containing	a	department	code
Send	the	request	to	another	email	address.	The	processing	sequence	will
use	the	POP3_MAILSINGLE	activity	to	retrieve	and	delete	all	emails
from	this	email	account's	inbox.	You	will	probably	need	to	set	up	this
second	email	account.

Retrieve	from	your	own	email	account.	The	MAIL_RECEIVE	activity	will
retrieve	a	single	email	message	from	the	inbox.	You	will	need	to	send	a	request
to	this	email	account.

Steps
To	meet	these	objectives	you	will	complete	the	following:

Step	1.	Review	Folders	and	Settings
Step	2.	Create	POP3	Email	Configuration
Step	3.	Create	SMTP	Mail	Details
Step	4.	Define	iiiTUTSEQ06	Processing	Sequence
Summary

Before	You	Begin
Before	completing	this	tutorial,	you	should	have	completed	all	the	preceding

tutorials.

Step	1.	Review	Folders	and	Settings
1.		Use	Windows	Explorer	to	display	the	folder:

					\\<iSeries>\LANSA_Composer_LICPGMLIB\LIC\Tutorial\
					Where:

<iSeries>	=	the	training	IBM	i	domain	name
LICPGMLIB	=	the	name	of	the	LANSA	Composer	program	library
LIC	=	the	name	of	the	LANSA	partition	which	Composer	is	using
					Your	folder	should	look	like	the	following:

Note:	the	path	shown	in	Windows	will	depend	on	the	File	Shares	defined	for	the
IBM	i	server.	In	the	above	example,	the	share	\\earth\k12composer,	maps	to
\\earth\lansa_composer_k12pgmlib.
2.		In	this	exercise	you	will	use	these	folders:

_EmailSkeletons	will	contain	a	text	file	which	is	used	to	produce	the
body	of	the	reply	email.

_SentEmail	will	be	used	for	output	and	will	contain	the	reply	email	text
and	Employee	CSV	file.

					If	these	folders	do	not	already	exist,	create	them.

3.		You	will	also	need	to	create	folder	\iii_ReceivedEmail,	using	your	initials.	It
will	be	used	to	save	the	email	message	received	via	POP3.

Step	2.	Create	POP3	Email	Configuration
1.		Navigate	to	Configurations	/	POP3	email	configurations.
2.		Select	the	EXAMPLE_POP3	configuration	and	use	the	Copy	button	to	create
a	new	POP3	Configuration.	This	is	set	up	to	retrieve	email	from	an	external
email	inbox	and	save	email	text	and	attachments.	It	removes	retrieved	email
from	the	server	after	it	is	read.

3.		Enter	or	change	the	following	information	using	your	initials	in	place	of	iii:

ID iiiTUT_POP3
Description iiiTutorial	POP3
POP3	Mail
server

POP3
MailServer
user	profile

POP3
MailServer
password

Save
Directory

/LANSA_Composer_licpgmlib/lic/Tutorial/iii_ReceivedEmail

Status Active

	

					***	Enter	your	email	account,	user	id	and	password.	

4.		Save	your	changes

Step	3.	Create	SMTP	Mail	Details
In	this	step	you	will	define	details	of	the	SMTP	response	email	your	processing
sequence	will	send.

1.		Navigate	to	Configurations	/	SMTP	mail	details	and	use	the	 	button	to
define	the	SMTP	Mail	Details	using	the	following	settings:

ID iii_INQ_EMP
Description iii	Tutorial	Employee	List	Response
Status Active
To	email
address

Use	your	own	email	address	if	accessible	via	the	web*	

From	email
address

Use	your	second	email	account.*	

From	email
Display
Name

iii	Personnel	Services

Email
subject

Tutorial	Employee	Department	List

Body	text
file

'/LANSA_Composer_licpgmlib/lic/Tutorial/iii_EmployeeInfo.txt'

	

					Note:	Once	you	have	created	your	text	file,	you	may	be	able	to	use	the	
Edit	icon	against	the	Body	text	file	parameter	to	open	the	file	in	Notepad,	if
the	file	already	exists	and	if	the	file	path	specified	is	on	the	LANSA
Composer	"home"	path.

2.		Save	your	SMTP	Email	Details	definition

Step	4.	Define	iiiTUTSEQ06	Processing	Sequence
In	this	step	you	will	create	a	processing	sequence	to	do	the	following:

Assign	–	assign	variable	=	OK
While	–	loop	while	variable	=	OK
Activity	–	Get	single	email	from	server	via	POP3
If	&FROMADDRESS	*	NE	''

										-			Transform	–	Extract	Employee	file	to	CSV
										-			Assign	&TONAME	=	'Personnel	Dept	LANSA'
										-			Activity	–	text	substitute	–	build	email	body
										-			Activity	–	Send	email	response	via	SMTP
Else
Terminate

First	you	will	create	a	text	skeleton	which	will	later	be	used	by	a	text	substitute
action	to	create	the	response	email	body	text.
1.		Open	Notepad	and	create	the	response	text	skeleton	shown	below:

2.		Save	this	to	the	IBM	i	IFS	as:
Notes:

Notepad	will	automatically	add	a	txt	filename	extension
This	tutorial	path	can	be	found	under	Administration	&	Housekeeping	/
System	settings	/	Tutorial	files
The	value	%%PARM.TONAME%%	and	%%PARM.DEPARTMENT%%
will	be	replaced	by	the	Text	Substitute	action	you	will	include	in	the

processing	sequence.
3.		On	the	Navigator	panel	select		Definitions	/	Processing	sequences.	Click	the	

	button	to	create	a	new	Processing	Sequence.	The	Processing	sequence
editor	will	open	immediately.

4.		Start	defining	the	processing	sequence	by	selecting	the	Palette	tab	(top	left)
and	dragging	and	dropping	the	Assign	processing	directive	on	to	the	Details
tab.	Assign	the	value	'OK'	to	a	variable	&FLAG_WHILE.	This	will	be	used
to	control	the	While	loop.

5.		Next	drop	a	While	loop	into	the	processing	sequence	following	the	Assign
activity.	Set	the	condition	to	&FLAG_WHILE	=	'OK'.	The	loop	will	later	be
terminated	by	an	If	condition.

					The	While	will	be	highlighted	as	an	error	since	there	is	nothing	inside	the
loop	at	the	moment.

6.		Select	the	Activities	tab	(top	left)	and	drop	the	MAIL_RECEIVE	activity	into
the	processing	sequence.	Locate	MAIL_RECEIVE	in	the	Email	group.

					This	must	be	within	the	While	loop.	You	can	adjust	it	to	the	correct	level	if
necessary,	using	the	 	buttons.

7.		Select	the	Configurations	tab	(top	left)
a.		Drop	the	iiiTUT_POP3	–	Tutorial	POP3	configuration	into	the	Inbound
POP3	Mail	configuration	ID.		You	defined	this	in	Step	2.

b.		Set	the	Subject	of	email	to	a	value	of	&DEPARTMENT.	The	email
subject	line	will	contain	a	department	code	such	as	"ADM"	which	will	be
used	to	select	employees	from	the	file	and	output	to	the	CSV	file.

c.		In	the	FROMADDRESS	parameter,	type	&RCVFROM.

See	below:

8.		 	your	processing	sequence.

					Ignore	the	error	and	warning	messages.	You	will	complete	the	processing
sequence	definition	in	the	following	steps.

9.		Once	again	select	the	Palette	tab	(top	left)	and	drop	an	If	directive	after	the
EMAIL_RECEIVE	activity.	Set	the	condition	to	&RCVFROM	*NE	''.
(i.e.	RCVFROM	is	not	equal	blank)	RCVFROM	is	returned	by
MAIL_RECEIVE.	It	will	be	blank	if	no	email	is	found.

					Your	processing	sequence	should	now	look	like	the	following:
	

10.	Select	the	Transformations	tab	(top	left)
a.		Drop	the	iiiTUTMAP02	which	you	created	earlier	at	the	end	of	the
processing	sequence.	Make	sure	it	is	positioned	within	the	If	loop	and
adjust	if	necessary	using	the	promote/demote	buttons.

b.		Select	the	Configurations	tab	(top	left).	Drop	the	Database	configuration	
iiiTUTDEMO	which	you	created	earlier	into	the
EARTHSourceConnection	parameter.

c.		Select	the	Variables	tab	(top	left)	and	drop	the	DEPARTMENT	variable
into	the	Department_InSourceParameter.	We	used	this	variable	for	the
Subject	line	on	the	MAIL_RECEIVE	activity.

d.		Set	the	TextfileTargetFilename	to

					/LANSA_Composer_licpgmlib/lic/Tutorial/_SentEmail/iii_EmployeeInfo.csv
					Your	processing	sequence	should	now	look	like	the	following:

11.	Save	your	processing	sequence.
12.	Select	the	Palette	tab	(top	left)	and	drop	an	Assign	directive	at	the	end	of
the		processing	sequence.	This	will	be	used	to	set	a	value	to	a	variable
TONAME	which	will	be	merged	into	the	response	email	text.	Complete	the
expression:

					&TONAME	=	'Personnel	Administrator'
					Your	processing	sequence	should	now	look	like	the	following:

	

13.	Select	the	Activities	tab	(top	left)	and	drop	the	TEXT_SUBSTITUTE
activity	at	the	end	of	the	processing	sequence,	as	shown	below:

a.		Complete	the	Path	&	filename	of	skeleton	as:

'/LANSA_Composer_licpgmlib/lic/Tutorial/iii_EmployeeInfo.txt'
b.		Complete	the	Path	&	filename	for	expanded	text	as:

'/LANSA_Composer_licpgmlib/lic/Tutorial/_SentEmail/iii_EmployeeInfo.txt
14.Select	the	Activities	tab	(top	left)	and	drop	the	MAIL_SEND	activity	at	the
end	of	the	processing	sequence.
a.		Select	the	Configurations	tab	(top	left)	and	drop	your	iii_INQ_EMP
SMTP	email	details	configuration	into	the	SMTP	Mail	details
configuration	ID		parameter

b.		Drop	the	iiiSMTPID	Tutorial	SMTP	configuration	into	the	SMTP	mail
server	configuration	parameter.

c.		Set	the	Body	text	path	and	filename	to:

			/LANSA_Composer_licpgmlib/lic/Tutorial/_SentEmail/iii_EmployeeInfo.txt
d.		Set	the	Path	and	filename	for	email	attachments	to:

			/LANSA_Composer_licpgmlib/lic/Tutorial/_SentEmail/iii_EmployeeInfo.csv
eIn	the	TOADDRESS	parameter,	type	&RCVFROM
f.In	the	SMTPSUBJECT	parameter,	type	Employee	List	Request

					Your	processing	sequence	should	now	look	like	the	following:

	

15.	Save	your	processing	sequence.
16.	Select	the	Palette	tab	(top	left)	and	drop	an	Else	processing	directive	into
the	processing	sequence.	Then	drop	a	Terminate	below	the	Else.	Use	the
Promote	/	Demote	buttons	if	necessary	to	position	these	correctly.	Your
Processing	sequence	should	now	look	like	the	following:

17.	Use	the	 	button	to	save	your	processing	sequence.

	

18.	Review	the	Version	History	tab	for	the	Processing	Sequence	iiiTUTSEQ06.
This	will	contain	the	versions	saved	during	this	exercise.	Note:	you	can	View
any	of	these	versions.	Restore	would	make	the	selected	version	the	current
version.

19.	Use	your	email	account	to	send	an	email	request.	In	the	subject	line,	enter	a
department	code	(for	example	ADM,	AUD	or	FLT).	Send	it	to	the	second
email	account	which	you	specified	as	the	FROMADDRESS	in
theEMAIL_RECEIVE	activity.

20.	Use	the	 	button	to	open	the	run	dialogue	and	then	click	the	Run
button	to	run	it.	If	your	processing	sequence	is	correct,	your	log	will	look	like

the	following:

	

21.	Check	the	inbox	for	your	email	account	which	you	specified	in	your
iii_INQ_EMP	SMTP	Email	Configuration.	You	should	have	a	response	email
with	the	file	iii_EmployeeInfo.csv	attached.	Open	this	in	Excel	and	check	that
it	contains	the	expected	list	of	employees.

22.	Send	a	number	of	email	requests	for	different	departments	(for	example,
ADM,	FLT,	AUD)	and	run	your	processing	sequence	again.	Check	your

email	account	inbox,	which	should	contain	a	response	for	each	request,	with	a
CSV	file	attachment	containing	employees	for	the	requested	department.

					You	have	now	completed	this	exercise.

Summary
You	have	created	a	new	processing	sequence	which:

Retrieves	a	single	email	request	using	a	supplied	POP3	Activity
Uses	the	transformation	map	you	created	in	an	earlier	module,	which
extracts	records	from	a	physical	file	into	a	CSV	file
Sent	a	formatted	email	response	with	the	CSV	file	as	an	attachment	using	the
supplied	MAIL_SEND	activity.

LIC009	-	Handle	multiple	requests	via	an	email	attachment
Objectives

To	use	POP3	to	handle	multiple	email	requests
To	create	an	extract	XML	file	from	a	physical	file
use	selection	criteria	received	as	a	CSV	email	attachment
FTP	a	response	to	a	remote	server.

Steps
To	achieve	these	objectives	you	will	complete	the	following:

Step	1.	Create	FTP	configuration
Step	2.	Create	Server	Folders
Step	3.	Create	Request	and	Response	Sample	Files
Step	4.	Create	Transformation	Map
Step	5.	Create	Processing	Sequence
Step	6.	Execute	and	Test	the	Processing	Sequence
Step	7.	Handling	multiple	messages	and	response	xml	files	-	Optional
Summary

Before	You	Begin
You	must	have	access	to	a	POP3	email	account
You	must	have	access	to	an	FTP	server/folder	for	upload.

Before	completing	this	tutorial,	you	should	have	completed	all	the	preceding
tutorials.

Step	1.	Create	FTP	configuration
1.		In	the	Navigator,	select	Configurations,	FTP	configuration

2.		Use	the	 	New	button	on	the	toolbar	to	create	a	new	FTP	configuration
with:

ID: iiiTUTFTPOUT

Description: iii	FTP	Outbound	Configuration

	

3.		Set	other	configuration	details	as	follows:

FTP	Type Outbound
Status Active
Remote	Host Use	your	own	FTP	server	host	name	or	IP	address	if

accessible	via	the	web.*
Remote	User Use	your	own	FTP	user	name.***
Remote
Password

Use	your	own	FTP	password.***

Local	Directory
Path

/LANSA_Composer_licpgmlib/lic
/Tutorial/iiiFTPOUT

Remote
Directory	Path

Use	your	own	FTP	server	folder.*

	

4.		Save	your	configuration.	It	will	look	like	this:

Step	2.	Create	Server	Folders
In	this	step,	you	are	going	to	create	two	folders	on	the	server,	to	hold	your
incoming	and	outgoing	data	files.
1.		From	Windows	Explorer,	navigate	through	the	network	to	LANSA
Composer	server	share,	tutorial	folder.	The	path	will	be	something	like	this:

					\\<SRV400>\LICComposer\lic\Tutorial
					Where:

					<SRV400>	is	the	IBM	i	server	name.

									LIC	is	the	LANSA	partition	which	Composer	is	using.
								LICComposer	is	a	file	share	which	maps	to	an	IBM	i	server	path	such	as:

							/Lansa_composer_licpgmlib
2.		Inside	the	Tutorial	folder,	create	the	following	folders:

iiiFTPOUT
iiiFTPIN
iii_ReceivedEmail	–	you	created	this	folder	in	LIC008.

Step	3.	Create	Request	and	Response	Sample	Files
In	this	step,	you	will	create	three	text	files	and	save	them	in	the	Tutorial	folder:
\\<SRV400>\LICComposer\lic\Tutorial
1.		Use	Notepad	to	create	the	Request	CSV	sample	file.	This	file	will	contain	a
list	of	these	employee	numbers:
					EmployeeNumber
					A0193
					A1003
					A1012
	

2.		Save	the	file	using	the	Save	as	type:	All	Files	option	so	that	you	can	specify
the	CSV	file	extension.	Give	it	a	name	such	as	iiiTUTEMPNO.csv.

					Note:	Although	the	file	is	a	Comma	Separated	File	(CSV),	you	will	not	see
commas	because	there	is	only	one	data	column.

3.		In	a	similar	way,	create	the	Response	XML	sample.	The	contents	of	
iiiTUTEMPDET.xml	will	be	like	this:
<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	Employees	SYSTEM	"iiiTUTEMPDET.dtd"		>
<Employees>
		<Employee>
				<EmployeeNumber>A9999</EmployeeNumber>
				<LastName>Smith</LastName>
				<FirstName>Fred</FirstName>
		</Employee>
		<Employee>
				<EmployeeNumber>A7117</EmployeeNumber>
				<LastName>Doe</LastName>
				<FirstName>John</FirstName>
		</Employee>
</Employees>
	

					Note:	change	the	iii	in	<!DOCTYPE	Employees	SYSTEM
"iiiTUTEMPDET.dtd"		>	to	your	initials.

4		Save	the	file	as	iiiTUTEMPDET.xml.	Once	again	ensure	you	use	the	Save

as	type:	All	Files	option	to	ensure	Notepad	saves	the	file	with	the	.xml
extension.

5.		Create	the	response	DTD	file.	The	DTD	file	is	used	to	describe	the	tags	of
XML	files:

					<!ELEMENT	Employees	(Employee)>
	
<!ELEMENT	Employee
(EmployeeNumber,FirstName,LastName,Address1,Address2,Address3,PostCode,Department)>
	
<!ELEMENT	EmployeeNumber	(#PCDATA)>
<!ELEMENT	LastName	(#PCDATA)>
<!ELEMENT	FirstName	(#PCDATA)>
<!ELEMENT	Address1	(#PCDATA)>
<!ELEMENT	Address2	(#PCDATA)>
<!ELEMENT	Address3	(#PCDATA)>
<!ELEMENT	PostCode	(#PCDATA)>
<!ELEMENT	Department	(#PCDATA)>
	

6.		Save	the	file	as	iiiTUTEMPDET.dtd		ensuring	that	the	filename	extension
is	preserved.

					Note:	This	file's	name	must	be	the	same	name	as	specified	in	the
DOCTYPE	in	the	xml	file	just	created.

Step	4.	Create	Transformation	Map
In	this	step	you	will	create	a	transformation	map	which	will	do	the	following:

Select	records	from	the	Employee	file	(PSLMST)	based	on	the	employee
codes	from	the	file	iiiTUTEMPNO.csv.	Your	processing	sequence	will
receive	the	CSV	file	as	an	email	attachment
Write	the	selected	employee	information	to	the	file	iiiTUTEMPDET.xml

1.		In	the	Navigator,	select	Definitions,	Transformation	maps

2.		Use	the	 	button	on	the	toolbar	to	create	a	new	Transformation	map
with	the	following	details:

ID iiiTUTMAP03

DescriptionEmployee	details	XML	from	CSV	selection	list.

Map	Type Unspecified	Type

Restartable Yes

Status Active

	

3.		Save	the	transformation	map.

4.		Click	the	 	button	to	open	the	MapForce	mapping	tool.
					You	may	get	a	warning	message	stating	that	LANSA	Composer	supports	a
subset	of	MapForce	mapping	functionality.

					Click	Continue	to	proceed	to	MapForce.	You	will	see	an	empty	map.
5.		To	insert	the	Request	CSV	file,	choose	Insert	Text	File	using	the	Insert
menu.	Then	select	Use	simple	processing	for	standard	CSV	...	and	press	the
Continue	button.

6.		In	the	Text	import	/	export	window,	click	the	Input	file	button.	Use	this
dialog	to	navigate	to	select	the	file	\\
<SRV400>\LICComposer\lic\Tutorial\iiiTUTEMPNO.csv	which
you	created	earlier.

7.		Check	First	row	contains	field	names	checkbox.
8.		In	the	Text	enclosed	in	radio	button	group,	select	Not.	Your	selection	will
look	like	this.

9.		Press	OK.	Mapforce	will	display	the	file	iiiTUTEMPNO.csv	visualization.

10.Insert	the	Database	element	using	the	Insert	Menu.

11.Use	the	existing	ODBC	connection	which	you	created	in	an	earlier	module.
a.		Login	using	your	workshop	IBM	i	User	ID	and	Password.	You	may	be
prompted	for	a	number	of	logins.

b.		Upon	successful	connection	to	the	database,	you	will	get	a	Select	Tables,
Views	to	Insert	dialog.

b.		Expand	the	list	of	libraries,	schemas	or	collections	using	the	drop	down
menu	next	to	the	small	arrow.		After	selecting	the	library,	schema	or
collection	containing	the	required	file	(for	example,	LICLICLIB	or
LC_DTA	on	a	Windows	server),	locate	the	file	PSLMST	and	select	it
using	the	check	box.

					Note:	the	library	name	should	be	the	same	one	used	in	the	database
connection	string	used	when	creating	the	Database	configuration
previously.

					jdbc:as400://<SRV400>/<LIBRARY>;naming=sql;errors=full;date
format=iso;true;translate	binary=true

12.Click	OK	to	return	to	the	main	window.	You	will	see	the	PSLMST	table
Visualization	displayed.

13.From	the	Insert	menu,	insert	the	XML	Schema/File.

a.		Use	the	Insert	menu,	XML	Schema/File	...	navigate	to	the\Tutorials
folder	and	select	schema	file	iiiTUTEMPDET.dtd	file.

b.Use	the	Browse	button	to	select	the	XML	file	iiiTUTEMPDET.xml
					Your	XML	file	structure	will	be	displayed	in	the	map.c	.		Rearrange	your
mapping	screen	to	look	like	this.

					The	map	functionality	required	will	select	Employee	Details	from	the
database	only	when	the	Employee	Number	is	listed	in	the	CSV	file.

14.	From	the	toolbar	or	Insert	menu,	insert	an	SQL-WHERE	Condition.
15.	Connect	the	PSLMST	table	to	the	SQL-WHERE	table	input.	This	will	open
SQL-WHERE	properties	window.

16.	In	SQL-WHERE	properties	window,	type	in	the	select	criteria:
EMPNO	=	:inEmpNo

					Press	OK

	

17.Connect	the	EmployeeNumber	output	from	CSV	file	to	the	input	inEmpNo
of	SQL-WHERE	condition.

18.Connect	the	result	output	of	SQL-WHERE	to	the	Employee	input	element	of
the	XML	file.	Your	map	should	look	like	the	following:

19.Finally,	connect	the	data	fields	from	the	database	outputs	to	the
corresponding	XML	file	inputs.
Your	final	map	will	look	like	this:

20.Save	the	map	and	close	MapForce.
21.On	the	Details	tab,	click	Prepare	to	generate	the	transformation	map	code.

					Click	Prepare	on	the	Prepare	Transformation	Map	dialog.
					Remember	to	look	for	an	IBM	i	Signon	which	may	be	hidden	by	other
windows.

					Tip:	Use	Windows	Task	Manager	to	switch	to	the	IBM	i	Signon	dialog.
					Wait	for	the	completion	message	and	Close	the	Prepare	Transformation	Map
dialog.

Step	5.	Create	Processing	Sequence
In	this	step	you	will	create	a	processing	sequence	to	do	the	following:

Assign	a	variable	=	OK
While	variable	=	OK
Retrieve	single	email	using	MAIL_RECEIVE
If	FROMADDRESS	is	not	equal	to	blank	(an	email	was	found)

											-		Loop	through	email	attachment	file	(list)
											-		CONCAT	path	and	filename	create	output	path\filename
											-		Transform	from	file	PSLMST	to	XML,	selecting	EMPNO	form
email	attachment	file

											-		FTP	XML	file	to	remote	host
					Else
											-		Variable	=	END	–	ends	While	loop	next	time	through
											-		Terminate

1.		In	the	Navigator,	select	Definitions,	Processing	sequences

2.		Use	the	 	button	on	the	toolbar	to	create	a	new	Processing	Sequence.
3.		Select	Palette	tab	from	the	left	panel,	then	drag	Assign	and	drop	it	on	the
Details	panel	on	the	right	side.

4.		In	the	Expression	input	field	of	the	Assign	operation,	type	in
&FLAG_WHILE	=	'OK'

5.		From	the	left	panel	Palette	tab,	drag	the	While	operation	and	drop	it	at	the
end	of	the	sequence.	
In	the	Condition	field,	type	&FLAG_WHILE	=	'OK'

6.		From	the	left	panel	Activities	tab,	drag	the	MAIL_RECEIVE	activity	and
drop	it	at	the	end	of	the	sequence.
Use	Promote	/	Demote	buttons	if	necessary	to	position	the	activity	inside	the
While	loop.

7.		Complete	the	POP3CONFIG	parameters	of	the	MAIL_RECEIVE	activity	by
dragging	the	iii_TUTPOP3	from	the	Configurations	tab	on	the	left	panel	or
you	can	simply	type	it	in.

8.		From	the	Palette	tab,	drag	and	drop	an	If	at	the	end	of	the	sequence.	Make
sure	it	is	inside	the	While	loop.

9.		From	the	Variables	tab,	drag	FROMADDRESS	and	drop	it	in	the	IF
Condition	field,	then	complete	the	condition	by	typing	*NE	''	(two	single
quotes,	no	space)

					Note:	The	FROMADDRESS	will	be	blank	when	no	e-mail	is	received.	You

will	use	this	condition	to	change	the	loop	flag	later	on	to	end	the	loop.
					When	the	IF	condition	is	true,	then	you	will	loop	through	the	e-mail
attachments	(in	case	more	than	one	attachment	is	received)	and	send	the
attachment	to	the	transformation	map,	and	FTP	out	the	result.

10.	From	the	Palette	tab,	drag	the	LOOP	directive	and	drop	it	at	the	end	of	the
processing	sequence.	It	must	be	inside	the	IF	condition	block.

11.	Fill	in	the	LOOP	fields	by	dragging	and	dropping	ATTACHMENTLIST
from	the	Variables	tab,	and	by	typing	the	other	fields.

12.	Drag	the	CONCAT	activity	from	the	Activities	tab	and	drop	it	at	the	end	of
the	sequence.	It	must	be	inside	the	LOOP	block.	Use	the	Promote/Demote
buttons	to	correct	the	level	if	necessary.

					You	will	use	this	activity	to	build	the	file	name	of	the	Response	XML	file	as
follows:

STRING	1 File	path '/Lansa_Composer_licpgmlib/lic/Tutorial/iiiFTPOUT
STRING	2 File	Name '/iiiEmployeeDetails'
STRING	3 Attachment

Count
&ATLOOPINDEX

STRING	4 File	Type '.xml'
STRINGOUT ResultString &RESPONSEFILENAME

	

13.	From	the	left	panel	Transformations	tab,	drag	iiiTUTMAP03	and	drop	it	at
the	end	of	the	sequence.	It	must	be	inside	the	LOOP	block.	Use
Promote/Demote	to	correct	the	level	if	necessary.

14.	Fill	in	the	Transform	Inbound	parameters	by	drag	and	drop	from	the
Variables	tab	or	typing:

15.	After	the	transformation	has	run,	the	processing	sequence	will	use	FTP	to
send	the	output	XML	file.
Drag	FTP_OUTBOUND	activity	from	the	Activities	tab	on	the	left	panel.	Set
FTPCONFIG	parameter	to	iiiTUTFTPOUT	by	drag	and	drop	from
Configurations	tab	or	by	typing.

					Your	sequence	will	look	like	this:

16.	From	the	Palette	tab,	drag	Else	and	drop	it	at	the	end	of	the	sequence.	It
must	be	at	the	same	level	as	the	IF	block.

17.	The	ELSE	block	will	be	reached	when	there	is	no	further	e-mail	to	process.
Here	you	will	add	the	logic	to	end	the	While	block.

					From	the	Palette	tab,	drag	Assign	and	drop	it	at	the	end	of	the	sequence.	It
must	be	inside	the	else	block.

					Type	the	assignment	expression:	&FLAG_WHILE	=	'END'
					This	will	end	the	loop	in	the	next	iteration	when	the	While	condition	is
evaluated.

18.	From	the	Palette	tab,	drag	Terminate	and	drop	it	at	the	end	of	the	sequence.
Use	the	Promote	button	to	shift	the	Terminate	to	the	top	level.

					Your	completed	sequence	should	look	like	the	following:

19.	Save	your	processing	sequence	as:

Name: iiiTUTSEQ07

Description: Handle	employee	list	CSV	request		–	LIC009.

Status: Active

	

Step	6.	Execute	and	Test	the	Processing	Sequence
1.		You	will	need	one	or	more	CSV	request	files.		You	can	use	the
iiiTUTEMPNO.CSV	file	you	created	in	Step	3,	or	create	your	own	CSV	files.
The	files	can	contain	any	number	of	EmployeeNumber	entries,	each
EmployeeNumber	must	be	on	a	new	line.

2.		Using	any	e-mail	client	software,	or	web	based	e-mail,	create	an	e-mail	and
attach	the	CSV	test	files.

3.		Send	the	e-mail	to	the	POP3	mailbox	you	are	using	in	the	exercise
4.		In	the	Navigator,	select	Definitions,	Processing	sequences
5.		Click	the	Search	button	to	refresh	the	instance	list.	Select	the	Processing
Sequence	you	have	just	created	-	iiiTUTSEQ07.

6.		Click,	the	Run	button	to	bring	up	the	Run	processing	sequence	dialog.	Click
the	Run	button.

7.		Using	your	preferred	FTP	client	software,	logon	to	your	FTP	server	and
folder	where	you	should	have	uploaded	the	response	files.	If	you	are	using	a
local	server,	use	Windows	Explorer	to	view	the	folder.

					You	should	have	produced	a	number	of	xml	files.	These	are	the	responses
containing	Employee	details.

					The	file	names	will	be	iiiEmployeeDetails1.xml,	iiiEmployeeDetails2.xml
...etc.	The	number	of	xml	response	files	is	equal	to	the	number	of	attachments
you	sent	in	your	e-mail.

8.		Examine	the	contents	of	the	response	files	received.	They	will	contain
employee	details	for	each	employee	number	you	specified	in	each	CSV
request	file.

Step	7.	Handling	multiple	messages	and	response	xml	files	-
Optional
The	exercise	is	designed	to	handle	receiving	multiple	e-mails	and	process	them.
However,	when	processing	the	second	and	subsequent	messages,	the	response
xml	files	would	have	the	same	name	as	the	xml	files	created	for	first	e-mail
response.
Find	a	way	to	keep	all	generated	files,	by	manipulating	the	file	names	being
generated.
Hint:	study	how	the	exercise	is	handling	multiple	attachment	situations,	and	use
a	similar	approach.

Summary
In	this	exercise	you	have:

Created	an	FTP	Configuration
Created	a	POP3	Configuration
Created	DTD	and	XML	file	definitions
Created	a	Transformation	Map	which:
Retrieves	multiple	email	messages
Creates	an	XML	extract	from	the	Employee	File	for	each	the	employee
numbers	listed	in	CSV	files	attached	to	the	email
Created	a	Processing	Sequence	which:
Retrieves	multiple	email	messages
Runs	a	Transformation	Map	for	each	CSV	attachment	file	to	create	an	XML
extract	file
FTPs	the	XML	files	created	for	each	CSV	attachment	file.

LIC010	-	Calling	a	Processing	Sequence	(Optional)
LANSA	Composer	3	introduced	the	ability	for	a	processing	sequence	to	call	a
processing	sequence.	This	feature	enables	reusable	processing		sequences	to	be
developed,	which	can	be	called	from	a	number	of	other	processing	sequences.
To	support	this	feature,	a	processing	sequence	may	now	have	outbound
parameters	defined.

Objectives
To	split	processing	sequence	iiiTUTSEQ07	developed	in	exercise	LIC009
into	two	parts
iiiTUTSEQ07	will	now	call	processing	sequence	iiiTUTSEQ7A	which	will
contain	the	steps	to:
1.		Use	CONCAT	to	produce	output	file	path	and	name
2.		Run	transformation	map	iiiTUTMAP03	to	extract	Employees	to	XML	file
based	on	input	CSV	file	of	employee	numbers

3.		Use	FTP	to	send	output	employee	XML	file	to	output	folder.
Note.	This	is	a	simple	example	of	calling	a	processing	sequence	from	another
processing	sequence.	It	does	not	represent	an	ideal	solution.	For	example,	since
multiple	employee	XML	files	may	be	output	by	each	run	of	iiiTUTSEQ07,	it
would	be	more	efficient	to	include	only	steps	1	and	2	in	processing	sequence
iiiTUTSEQ7A.	After	calling	iiiTUTSEQ7A,	iiiTUTSEQ07	could	use	a
DIRECTORY_LIST	and	FTP	all	output	files	to	the	output	folder.

Steps
To	achieve	these	objectives	you	will	complete	the	following:

Step	1.	Create	Processing	Sequence	iiiTUTSEQ7A
Step	2.	Modify	Processing	Sequence	iiiTUTSEQ07
Step	3.	Test	Processing	Sequence	iiiTUTSEQ07
Summary

Before	You	Begin
You	must	have	completed	exercise	LIC009	in	order	to	complete	this	exercise.

Step	1.	Create	Processing	Sequence	iiiTUTSEQ7A
1.		Create	a	new	processing	sequence.	This	will	immediately	open	the
processing	sequence	editor.

2.		Open	processing	sequence	iiiTUTSEQ07	in	the	editor.	Use	the	editor's	Cut
and	Paste	function	to	copy	the	three	steps	shown,	into	your	new	processing
sequence.

					Note:	Composer	4	enables	you	to	Copy	and	Paste	or	Cut	and	Paste	a	number
of	processing	steps	in	a	single	operation.	Hold	down	the	shift	key	to	select	the
three	activities	required.

					Hint:	Focus	on	***End	of	Processing	Sequence***	in	your	target
(new)	processing	sequence	before	using	Paste.	This	will	ensure	that	you	are
pasting	at	the	end	of	the	sequence.

					Your	new	processing	sequence	should	look	like	the	following:

3.		Select	the	Parameters	tab.		Your	new	processing	sequence	requires	two	input
parameters:

The	file	name	to	be	processed	by	the	transformation	map.
The	loop	index	to	combine	with	the	output	filename	in	the
CONCAT	activity.

4.		Select	the	Variables	tab	and	drag	and	drop	ATTACHMENT	and
ATLOOPINDEX	on	to	the	Processing	Sequence	Parameters	tab.

5.		Change	the	second	column	to	Required	for	both	parameters.
					If	you	wanted	to	run	this	processing	sequence	stand	alone	you	could	also
specify	suitable	parameter	descriptions	to	display	on	the	Run	dialog.

6.		Check	that	the	Parameters	are	defined	as	Inbound.

7.		Save	your	new	processing	sequence	as	iiiTUTSEQ7A	–	Extract	Employees
to	XML	&	FTP

Step	2.	Modify	Processing	Sequence	iiiTUTSEQ07
1.		Switch	to	processing	sequence	iiiTUTSEQ07,	which	should	still	be	open	in
the	editor.

2.		Select	the	Variables	tab	and	drag	and	drop	the	following	variables	onto	the
Processsing	Sequence	Parameters	tab

ATTACHMENT
ATLOOPINDEX

3.		Check	that	both	parameter	are	be	defined	as	Outbound.	If	necessary	select
this	column	for	one	of	the	parameters	and	use	the	drop	down	provided	to
select	Outbound.

4.		Select	the	View	/	Refresh	menu	option	so	that	the	new	processing	sequence,
iiiTUTSEQ07A	will	be	shown	in	this	open	processing	sequence.4.		In	the
editor	for	processing	sequence	iiiTUTSEQ07,	select	the	Processing
sequences	tab,	and	drag	and	drop	iiiTUTSEQ7A	into	the	sequence	inside	the
LOOP	directive.

					Hint:	Focus	on	the	Else	which	follows	the	LOOP	before	performing	the	drag
and	drop.	This	should	ensure	processing	sequence	is	added	in	the	correct
place.	If	necessary	use	the	Promote	and	Demote	buttons	to	position	the
execute	processing	sequence	correctly.

					Your	processing	sequence	should	look	like	the	following:

5.		Save	processing	sequence	iiiTUTSEQ07.

Step	3.	Test	Processing	Sequence	iiiTUTSEQ07
1.		Send	an	email	to	the	address	accessed	by	your	POP3	configuration.	The
email	must	have	an	attachment	of	at	least	one	CSV	file	containing	a	list	of
employee	numbers.

2.		Run	processing	sequence	iiiTUTSEQ07.	It	should	call	iiiTUTSEQ7A	for
each	input	file	retrieved	by	the	POP3	activity.	Check	your	resulting	output
XML	files	containing	a	list	of	employee	details.	The	results	should	be	similar
to	those	obtained	in	exercise	LIC009.

Summary
This	exercise	has	shown	how	one	processing	sequence	can	be	called	from
another.
See	the	LANSA	Composer	guide	for	further	information.
See	also	the	shipped	Transaction	Document	Processing	sequences	such	as
TXDOC_INBOUND.
When	the	nested	processing	sequence	runs,	it	has	its	own	independent
variable	pool.
Communication	of	variables	is	only	possible	through	processing	sequence
parameters.
Nested	processing	sequences	run	under	the	same	job	number	as	the
containing	processing	sequence.
Log	output	is	shown	in	the	log	for	the	containing	processing	sequence.
Restarting	of	failed	processing	sequences	is	fully	supported.

LIC011	-	Email	notification	service
This	is	a	summary	exercise;	you	should	build	your	solution	based	on	the
notes	which	follow.
Suggested	steps	and	hints	are	provided	but	are	not	detailed.

Before	You	Begin
You	must	have	access	to	an	FTP	server/folder	for	download
You	must	have	access	to	an	SMTP	server.
Before	completing	this	tutorial,	you	should	have	completed	all	the	preceding
tutorials.

Scenario
You	are	the	owner	of	a	notification	service.	You	send	e-mail	notifications	to
your	mailing	list	subscribers	to	inform	them	of	new	store	sales	or	special	offers
as	soon	as	they	are	published	by	the	stores.		The	stores	will	publish	their	sales
information	in	xml	files,	and	will	place	them	in	a	special	folder	on	their	FTP
servers	designed	for	your	access.
The	xml	file	structure	is	defined	by	you,	and	same	structure	is	used	by	all	the
stores.	The	xml	file	contains	information	such	as	store	name,	items	on	sale,	each
item	name	and	price,	and	offer	expiration	date.

Objectives
To	pull	the	sales	information	from	each	store's	FTP	server,	process	each	file,	and
make	a	list	of	items	on	sale	in	a	simple	text	file	or	CSV	format.
Send	an	e-mail	to	the	mailing	list	subscribers	with	a	file	containing	the	list	of
items	on	sale	attached.

Steps
In	order	to	achieve	these	objectives	you	will	need	to	complete	the	following:

Step	1	-	Design	the	XML	&	DTD	file	structure
Step	2	-	Create	"local"	and	"remote"	folders
Step	3	-	Create	the	transformation	map
Step	4	-	Define	each	store	as	a	trading	partner.
Step	5	–	Create	an	FTP	configuration	for	each	store
Step	6	-	Define	text	response	file	for	the	email	body
Step	7	-	Create	the	processing	sequence
Step	8	–	Run	processing	sequence	and	test

Guidance
1.		Use	the	XML	&	DTD	created	in	the	previous	exercise	as	a	guide

The	XML	file	will	contain	details	of	products	on	offer	for	a	single	store
Consider	the	following	structure	for	the	XML:

Offers
Store	Name
Offer

					-		Product	Number					-		Product	Description					-		Price					-		Expiry
Date

The	XML	file	contains	a	number	of	lines	for	each	Store	name.
The	dtd	file	should	define	the	structure	of	the	XML	file	and	its	data
elements.	See	earlier	exercise	for	an	example	and	apply	this	to	your	store
offers	XML	file.	The	XML	file	should	refer	to	the	dtd	file.

2.		You	will	need	to	create	these	folders	on	the	server:
an	"iiiEmailAttch"	folder	to	store	your	output	CSV	file
an	"iiiStore_Local"	folder	to	hold	the	XML	files	retrieved	via	FTP
a	"remote"	folder	for	each	trading	partner	to	hold	the	XML	files	which	you
will	retrieve	using	FTP.	For	example	folders	named:	iiiStore1_Remote,
iiiStore2_Remote.

3.		Define	a	Transformation	Map	to	merge	text	with	values	from	the	XML	Store
Offer	file	into	a	CSV	file.	The	CSV	file	design	will	be	done	in	MapForce

The	output	text	file	can	be	created	as	a	CSV	file	with	a	single	column,
where	you	can	concatenate	the	information	into	human	readable	text
strings.
Each	line	should	be	constructed	by	concatenating	text	elements	and
variable	values	from	the	input	XML	file	to	produce	a	readable	text	string.	
For	example,	each	line	of	your	text	file	could	be	similar	to:

Store	XYZ	is	offering	ABC	item	on	sale	for	$999.99	for	a
limited	time	only,	offer	valid	until	DDD.

					where	XYZ,	ABC	and	999.99,	DDD	are	extracted	from	XML	file.
Consider	the	following	steps	toe	define	the	transformation	map	in
MapForce:

					-		Insert	the	XML	Store	Offer	file
					-		Insert	a	text	file	(CSV)	with	a	single	string	column
					-		Insert	constants	containing	each	piece	of	text	required
					-		Use	the	CONCAT	string	function	to	build	each	row	made	up	of
constants	and	values	from	the	XML	file

					-		Link	the	output	from	the	CONCAT	function	to	the	"row"	in	the	CSV
file

					-		Save	and	prepare	your	map.
4.		The	stores	will	be	defined	as	trading	partners.	Create	new	Trading	Partners:
iiiStore1,	iiiStore2.

					Review	Administration	and	Housekeeping	/	Code	Maintenance	/	Trading
partner	installation-defined	properties.	As	shipped,	a	property	"EXAMPLE	–
Example	installation-defined	property"	is	defined.	New	Trading	Partners	will
have	this	property,	See	the	Properties	tab	for	each	trading	partner.

					Put	a	unique	value,	such	as	iiiSTO,	into	each	trading	partner's	Example
property.	Use	this	in	your	processing	sequence	to	loop	through	all	trading
partners	and	select	your	trading	partners	only.

					Do	not	create	default	linked	folders	for	the	new	trading	partners.
5.		You	will	also	need	an	FTP	configuration	for	each	store.	Link	the	FTP
configurations	for	each	store's	FTP	server	to	a	corresponding	store	(trading
partner).

6.		MAIL_SEND:	Assume	the	mailing	list	is	handled	by	the	e-mail	service
com[pany.	You	only	need	to	send	one	email	for	each	xml	file	received.	Send
each	e-mail	to	a	single	address	which	represents	the	mailing	list	service.

7.		Define	a	text	file	which	will	be	the	body	text	in	your	sent	email
8.		Create	a	processing	sequence	to	do	the	following:

Loop	through	all	trading	partners
											-	If	trading	partner	Example	property	=	"iiiSTO"
																-	If	trading	partner	FTPIN	not	equal	blanks
																					-	Retrieve	XML	offer	file	via	FTP	(saving	into	Stores_Local
folder)

Directory	List	of	iiiStores_Local
											-	Loop	through	directory	list
																-	Use	CONCAT	to	build	path/filename	for	CSV	file	to	be	output	by
transform	map

																-	Run	Transform	Map
											-	Directory	list	of	iiiEmailAttch	folder	(contain	output	CSV	files	from
transform	map)

											-	MAIL_SEND	using	text	file.	Attach	CSV	files	based	on	directory

list
											-	Terminate.

Appendix	A.	Install	or	Upgrade	LANSA	Composer
Overview
LANSA	Composer	consists	of	server	and	client	components:

The	server	components	provide	the	run-time	support	for	executing
integration	solutions	designed	with	LANSA	Composer,	as	well	as	the	client
support	for	the	client	software	and	web	support	for	the	browser-based
operational	interface.

You	must	install	or	upgrade	the	server	components	on	a	supported	server
platform.	You	may	wish	to	create	multiple	server	installations,	for	example
to	support	separate	development	and	production	environments.
The	client	components	connect	to	an	installed	server	and	provide	the	design
tools	and	environment	for	designing	and	deploying	LANSA	Composer
solutions.

The	LANSA	Composer	client	software	must	be	installed	on	each	PC	to	be
used	for	designing	LANSA	Composer	solutions.

LANSA	Composer	Requirements
For	information	on	the	system	requirements	for	LANSA	Composer	refer	to
these	headings:

Server	Requirements
Client	Requirements
Database	Connectivity	Requirements	(Server	and	client)

Refer	to	the	Supported	Platforms	and	Versions	document,	for
information	on	supported	server	and	client	platforms	and	software
compatibility.

Server	Requirements
This	release	of	the	LANSA	Composer	server	requires:

An	IBM	i	or	Windows	Server	platform	currently	supported	by	LANSA
For	Windows	Servers	you	will	need	versions	of	the	following	currently
supported	by	LANSA:
Microsoft	Internet	Information	Server	(IIS)
The	Microsoft	MSXML	6.0	XML	parser

A	supported	database	system	to	contain	the	LANSA	Composer	database.		On
IBM	i	servers,	LANSA	Composer	will	use	the	integrated	DB2	for	IBM	i
database.		On	Windows	servers,	you	will	need	to	have	installed	and
configured	one	of	the	database	management	systems	(DBMS)	currently
supported	for	LANSA	software,	for	example,	a	supported	version	of	MS
SQL	Server	or	Oracle.		Refer	to	the	LANSA	Web	site	for	details	of	current
supported	database	systems.
A	Java	Virtual	Machine	(JVM)	currently	supported	by	LANSA	for	use	with
LANSA	Integrator.		In	order	to	run	Transformation	Maps	created	with
Altova	MapForce	version	2013	or	later,	your	JVM	must	be	at	level	1.6	or
higher.		Some	LANSA	Composer	activities	new	in	version	5.0,	require	that
your	JVM	be	at	level	1.7	or	higher.		They	are	WAIT_FILESREADY	and
WATCH_DIRECTORY.		You	can	still	use	LANSA	Composer	with	the	JVM
at	levels	earlier	than	1.7,	but	you	will	not	be	able	to	use	these	activities.

If	you	are	installing	LANSA	Composer	Server	on	a	Windows	Server,	a	32-
bit	JVM	is	required,	even	if	your	operating	system	may	be	a	64-bit	operating

http://www.lansa.com.au/support
http://www.lansa.com.au/support/supportedversions.htm#platforms

system.
The	LANSA	Composer	IBM	i	or	Windows	server	install	will	install	a
complete	LANSA	Composer	server	system	that	includes	the	LANSA	run-
time	components	at	the	necessary	levels.		The	following	LANSA	software
levels	are	used:
LANSA	Version	13	SP1	run-time	at	EPC	level	131100	with	LANSA
Integrator	at	EPC	level	131300	or	later.

Licenses	for	your	LANSA	Server	system	as	described	in	Complete	the
Installation

IMPORTANT	NOTE:
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	you	must
first	request	new	LANSA	Composer	server	licenses.		For	more
information	refer	to	Appendix	B.	License	LANSA	Composer.

In	order	to	use	LANSA	Composer's	browser-based	Operations	Console,	you
will	also	need	software	components	and	configuration	that	supports	LANSA
web	(WAM)	applications.		You	should	refer	to	LANSA	product	documentation
for	complete	information,	but	the	key	requirements	include:

LANSA	for	the	Web	support	installed	and	correctly	configured.		The
LANSA	Composer	server	installation	will	usually	install	and	configure	the
web	support	for	you,	but	some	further	manual	configuration	may	be
necessary.
For	IBM	i	servers	you	will	need	versions	of	the	following	currently
supported	by	LANSA:
IBM	HTTP	Server	powered	by	APACHE	for	CGI

Additional	server	software	is	required	in	order	to	use	the	supplied	chart	views	in
the	Transaction	Document	Statistics	page	of	the	LANSA	Composer	Document
Manager.	Refer	to	Requirements	for	Chart	Presentation	in	Transaction
Document	Statistics	in	Work	with	Transaction	Documents	for	details.

The	Windows	and	IBM	i	server	upgrade	routines	for	this	version	of
LANSA	Composer	are	designed	and	tested	to	upgrade	LANSA
Composer	version	4.0	to	version	5.0.		Upgrading	directly	from	earlier
versions	to	version	5.0	is	not	supported.		You	must	upgrade	first	to
version	4.0	and	then	to	version	5.0.

its:LANSA091.CHM::/lansa/INTENGC3B_0080.htm

Client	Requirements
This	release	of	the	LANSA	Composer	client	software	requires:

A	Windows	client	platform,	currently	supported	by	LANSA,	that	is	capable
of	connecting	to	your	LANSA	Composer	server
Microsoft	Internet	Explorer	at	a	level	currently	supported	by	LANSA.
Altova	MapForce	2014	release	2	(2014R2)	is	supplied	with	this	version	of
LANSA	Composer.		The	LANSA	Composer	client	install	will	install	this
version	if	Altova	MapForce	is	not	already	installed.		Where	Altova
MapForce	is	already	installed,	it	is	strongly	recommended	that	it	be
upgraded	to	at	least	the	2014R2	version	supplied.
A	supported	32-bit	Java	development	kit	(JDK)
Note	that	the	LANSA	Composer	client	install	can	install	the	JDK	if	required.

The	Java	development	kit	(JDK)	must	be	at	a	level	that	is	capable	of
compiling	the	Java	code	for	Transformation	Maps	to	the	required	Java
version	as	determined	by	the	JVM	version	used	by	LANSA	Integrator	on	the
LANSA	Composer	Server.		In	order	to	run	Transformation	Maps	created
with	Altova	MapForce	version	2013	or	later,,	the	JVM	must	be	at	level	1.6
or	higher	on	your	LANSA	Composer	server:
The	Microsoft	XML	Parser,	MSXML6.		This	is	not	installed	with	the
LANSA	Composer	client	software	but	can	be	downloaded	from	the
Microsoft	web-site	if	it	is	not	already	installed	on	your	windows	client
machine.

Microsoft	Silverlight	is	required	to	be	installed	on	the	client	computer	in	order
to	use	the	supplied	chart	views	in	the	Transaction	Document	Statistics	page	of
the	LANSA	Composer	Document	Manager.	Refer	to	Requirements	for	Chart
Presentation	in	Transaction	Document	Statistics	in	Work	with	Transaction
Documents	for	details.
An	installation	of	LANSA	Composer	client	will	require	approximately	250mb
free	disk	space,	plus	approximately	500mb	for	Altova	MapForce	and	250mb	for
the	Java	development	kit	(JDK).

Database	Connectivity	Requirements	(Server	and	client)
If	you	will	be	using	the	mapping	tool	to	map	data	to	or	from	database	tables,
you	will	also	need	to	ensure	you	have	the	necessary	server	(JDBC)	and	client
(ADO,	ODBC	or	JDBC)	database	components	installed.	Refer	to	Database
Connectivity	Components	and	Drivers	for	more	information.

its:LANSA091.CHM::/lansa/INTENGC3B_0080.htm

LANSA	Composer	Server	on	IBM	i

The	latest	information	concerning	this	version	of	LANSA	Composer	is
available	on	the	LANSA	web	site.		We	recommend	that	you	refer	to
this	before	proceeding	with	the	installation	or	upgrade.

When	you	install	the	LANSA	Composer	server	on	your	IBM	i	computer,	you
have	the	choice	of:

installing	a	new	copy	of	LANSA	Composer,	or
upgrading	an	existing	installation	of	LANSA	Composer.

For	a	new	installation,	the	LANSA	Composer	installer	will	install	a	complete
LANSA	run-time,	web	and	integrator	environment.
The	installation	on	the	server	includes	these	steps:
Before	You	Begin	Checklist
Call	the	Installation	Program

Install	LANSA	Composer
or

Upgrade	an	Existing	LANSA	Composer	installation
User	Profiles	Created	by	the	Installation
Creating	Further	User	Profiles	for	Use	with	LANSA	Composer
Complete	the	Installation
Subsystems	and	Jobs

http://www.lansa.com/support/v13news/index.htm#composer5?tabitems=1

Before	You	Begin	Checklist
Before	you	begin	installing	LANSA	Composer,	check	the	following:

Does	your	server	system	meet	the	minimum	hardware	and	software
requirements	specified	in	Server	Requirements	and	in	LANSA's	current
Supported	Platforms	and	Versions?
Do	you	have	the	correct	version	of	the	LANSA	Composer	Server	for	IBM	i
software	media?		(LANSA	Composer	Server	for	IBM	i	is	supplied	on	a
single	DVD	that	also	contains	the	LANSA	Composer	Windows	server	and
Windows	client	software.)
Do	you	know	the	device	name	of	the	IBM	i	optical	drive	(default	is	often
OPT01)	?
Do	you	have	access	to	the	QSECOFR	user	profile?	(This	is	the
recommended	profile	to	be	used	when	installing	the	LANSA	Composer
software.)
Do	you	have	the	necessary	licenses	for	LANSA	Composer	Server	on	IBM	i?
If	you	are	upgrading	an	earlier	version	of	LANSA	Composer,	have	you	(a)
backed	up	your	existing	LANSA	Composer	installation,	and	(b)	run	the
LANSA	Composer	Database	Housekeeping	task?		Both	of	these	steps	are
strongly	recommended.

If	you	answer	Yes	to	all	these	questions,	continue	with	Call	the	Installation
Program.

http://www.lansa.com/support/supportedversions.htm

Call	the	Installation	Program

You	must	use	the	QSECOFR	or	QOTHPRDOWN	profiles	during	the
installation.	The	use	of	other	profiles	or	the	removal	of	the	special
authorities	will	cause	security	and	integrity	alterations	to	the	installed
system.

1.		Sign	on	to	the	IBM	i	as	either	QSECOFR	or	QOTHPRDOWN.	The
QSECOFR	profile	is	recommended.		The	QOTHPRDOWN	profile	is
normally	created	by	LANSA	software	installations	and	will	exist	only	if	you
have	previously	installed	other	LANSA	software.

2.		If	you	are	about	to	upgrade	an	existing	installation	of	LANSA	Composer
from	an	earlier	version,	you	should	make	sure	that	no	jobs	or	users	are	using
the	LANSA	Composer	system.		To	do	this,	use	an	appropriately	authorized
user	profile	(QSECOFR	is	recommended)	to	check	for	system	locks	as
follows:

WRKOBJLCK	<licpgmlib>/DC@A01	*DTAARAWRKOBJLCK
<licdtalib>/DC@F02	*FILE	*FIRST

If	locks	exist,	ask	the	users	to	sign	off	or	wait	until	the	batch	jobs	have	ended
before	continuing	with	the	upgrade.

3.		If	you	are	about	to	upgrade	an	existing	installation	of	LANSA	Composer
from	an	earlier	version,	then	you	should	end	the	HTTP	server,	the	listener	and
the	JSM.		If	LANSA	Composer	is	installed	in	the	default	libraries,	then	you
could	use	commands	like	these	to	end	the	jobs	before	beginning	the	upgrade:

ENDTCPSVR	SERVER(*HTTP)	HTTPSVR(<licpgmlib>)ENDSBS
<licpgmlib>	OPTION(*IMMED)ENDSBS	<licjsmlib>
OPTION(*IMMED)
4.		Insert	the	LANSA	Composer	Server	for	IBM	i	software	disk	into	the	IBM	i	
optical	drive.

5.		If	you	are	about	to	upgrade	an	existing	installation	of	LANSA	Composer
from	an	earlier	version,	then	before	issuing	the	LODRUN	command,	make
sure	you	have	not	previously	invoked	LANSA	Composer	in	the	interactive
job	that	you	are	about	to	use	to	initiate	the	upgrade.		Doing	so	can	leave	locks
on	LANSA	Composer	that	will	prevent	the	upgrade	from	succeeding.

If	in	doubt,	signoff	the	current	session	and	sign	on	again	(as	either
QSECOFR	or	QOTHPRDOWN	as	above)	immediately	before	issuing	the
LODRUN	command.

6.		From	an	OS/400	command	line	(CALL	QCMD),	enter	the	following
command	to	restore	the	software	from	the	CD-ROM:

LODRUN	DEV(*OPT)
7.		After	a	short	delay	the	installation	program	will	display	an	initial	menu:

To	install	a	fresh	copy	of	LANSA	Composer	(into	its	own	LANSA	system),	type
option	1	and	press	Enter.	For	further	details,	refer	to	Install	LANSA	Composer.
To	upgrade	an	existing	installation	of	LANSA	Composer,	type	option	2	and
press	Enter.		For	further	details,	refer	to	Upgrade	an	Existing	LANSA	Composer
installation
	

Install	LANSA	Composer
When	you	choose	to	install	a	new	copy	of	LANSA	Composer,	the	installation
program	prompts	for	details	of	the	new	installation.	In	most	cases,	you	can
accept	the	default	values	suggested.	Otherwise,	complete	the	details	as
described	below.

Prefix	for	library	names
Specifies	the	prefix	that	will	be	used	to	generate	the	library	names	that	will	be
used	for	the	install.	For	example,	the	default	value	will	result	in	libraries	being
created	with	names	including	LICPGMLIB,	LICDTALIB,	LICJSMLIB,
LICCOMLIB	and	LICLICLIB.
IFS	file	folder
Specifies	the	name	of	the	folder	in	the	IFS	into	which	the	IFS	components	of
LANSA	Composer	will	be	installed.	The	installation	program	will	create	the
folder	if	it	does	not	exist.		The	special	value	*DEFAULT	will	cause	the
installation	program	to	generate	a	path	that	is	specific	to	the	LANSA	system	and
partition.		This	is	the	recommended	value.
Listener	Port
Specifies	the	communications	port	number	that	will	be	used	by	the
communications	listener	for	this	system.		This	is	the	communications	port

through	which	LANSA	Composer	client	installations	will	connect	to	this	server.
Web	Instance	Port
Specifies	the	communications	port	number	that	will	be	used	by	web	jobs	to	this
system.
Integrator	TCP	Port
Specifies	the	communications	port	number	that	will	be	used	by	the	LANSA
Integrator	Java	Service	Manager.
Integrator	Admin	TCP	Port
Specifies	the	communications	port	number	that	will	be	used	for	the	LANSA
Integrator	JSM	console.

The	default	port	numbers	suggested	will	usually	be	acceptable	when
no	other	LANSA	systems	are	present.		In	any	event,	but	especially	if
you	have	existing	LANSA	or	LANSA	Composer	systems	installed,
you	should	review	and,	if	necessary,	re-allocate	the	port	numbers	to
avoid	conflict	with	other	LANSA	or	non-LANSA	applications	on	your
system.		If	in	doubt,	you	should	consult	your	network	administrator.

Host	CCSID
Specifies	the	host	CCSID	used	by	the	web	server	for	data	translation	purposes.
Client	CCSID
Specifies	the	client	CCSID	used	by	the	web	server	for	data	translation	purposes.
Auxiliary	Storage	Pool
Specifies	whether	LANSA	Composer	is	installed	to	the	system	ASP	(auxiliary
storage	pool	number	1),	to	a	basic	user	ASP	(ASP	numbers	2	through	32)	or	to
the	ASP	device	named	in	the	next	field	(*ASPDEV).
ASP	device
If	*ASPDEV	is	specified	for	the	Auxiliary	Storage	Pool	field,	this	value
specifies	the	name	of	the	ASP	device	to	which	LANSA	Composer	is	installed.
ASP	group	Name
If	*ASPDEV	is	specified	for	the	Auxiliary	Storage	Pool	field,	this	value
specifies	the	name	of	the	ASP	group	to	which	LANSA	Composer	is	installed.
Job	queue	/	Job	queue	library
Specifies	the	name	and	library	of	the	job	queue	to	which	the	LANSA	Composer

installation	will	be	submitted.
When	you	have	reviewed	and/or	completed	the	necessary	details,	press	Enter	to
proceed.	A	confirmation	screen	will	be	displayed	–	press	F8	to	confirm	your
choices	and	submit	the	installation	job	to	batch.

WARNING:	Do	NOT	attempt	to	use	LANSA	Composer	in	any	way
until	the	installation	or	upgrade	has	completed.		Do	NOT	start	the
HTTP	server,	the	listener	or	the	JSM.		Do	not	attempt	to	connect	a
LANSA	Composer	client	to	the	LANSA	Composer	server.		Do	NOT
attempt	to	use	the	COMPOSER	or	LANSA	commands.

Refer	to	Complete	the	Installation	for	information	on	the	next	steps.
	
	

Upgrade	an	Existing	LANSA	Composer	installation

IMPORTANT	NOTE:
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	you	must
first	request	new	LANSA	Composer	server	licenses.		For	more
information	refer	to	Appendix	B.	License	LANSA	Composer.

If	you	are	upgrading	LANSA	Composer	from	an	earlier	version,	you
must	upgrade	first	to	version	4.0	and	then	to	version	5.0.		Upgrading
directly	from	earlier	versions	to	version	5.0	is	not	supported.

NOTE:	As	with	any	upgrade,	you	are	strongly	advised	to	make	a
backup	of	the	LANSA	Composer	server	installation	before	proceeding
with	the	upgrade.		You	should	also	run	the	LANSA	Composer
Database	Housekeeping	task	to	cleanup,	maintain	and	reorganize	the
LANSA	Composer	database.

The	LANSA	Composer	installation	program	presents	a	list	of	LANSA
Composer	systems	found	on	the	IBM	i	computer.	Type	a	2	next	to	the	system	to
which	you	wish	to	apply	the	upgrade.

The	installation	program	prompts	for	the	name	of	the	partition	in	that	system

that	contains	the	installation	of	LANSA	Composer	that	is	to	be	upgraded.		In	a
standard	LANSA	Composer	installation,	there	will	be	only	one	partition	named
LIC.		To	proceed,	complete	the	details	as	described	below.

Job	queue	/	Job	queue	library
Specifies	the	name	and	library	of	the	job	queue	to	which	the	LANSA	Composer
upgrade	will	be	submitted.
LANSA	Partition	Details
In	a	standard	LANSA	Composer	installation,	there	will	be	only	one	partition
named	LIC.		Type	a	2	next	to	the	partition	that	you	wish	to	upgrade	and	press
Enter.		A	confirmation	screen	will	be	displayed	–	press	F8	to	confirm	your
choices	and	submit	the	upgrade	job	to	batch.

WARNING:	Do	NOT	attempt	to	use	LANSA	Composer	in	any	way
until	the	installation	or	upgrade	has	completed.		Do	NOT	start	the
HTTP	server,	the	listener	or	the	JSM.		Do	not	attempt	to	connect	a
LANSA	Composer	client	to	the	LANSA	Composer	server.		Do	NOT
attempt	to	use	the	COMPOSER	or	LANSA	commands.

Refer	to	Complete	the	Installation	for	information	on	the	next	steps.

Note:		If	the	LANSA	system	containing	LANSA	Composer	is	not	at
the	level	required	by	this	version	of	LANSA	Composer,	the	install

program	will	notify	you.

For	a	standard	LANSA	Composer	installation	(where	LANSA
Composer	was	originally	installed	into	its	own	new	LANSA	system),
the	install	program	will	give	you	the	option	of	upgrading	the	LANSA
system	during	the	LANSA	Composer	upgrade.

You	can	proceed	with	the	LANSA	Composer	upgrade	only	if	you
respond	YES	to	the	LANSA	upgrade.
However,	you	should	only	respond	YES	if	you	are	very	sure	that
doing	so	will	not	adversely	affect	other	applications	or	your	LANSA
development	activities.		A	LANSA	system	that	was	installed	as	part	of
a	LANSA	Composer	installation	should	never	be	used	for	other
activities.		Providing	the	LANSA	system	is	only	used	for	LANSA
Composer,	it	should	be	safe	to	proceed	with	the	upgrade.

Earlier	versions	of	LANSA	Composer	allowed	the	application	to	be
installed	into	a	pre-existing	LANSA	system.		In	such	cases	the	install
program	will	not	allow	the	upgrade	to	proceed	if	the	LANSA	system
is	not	at	the	level	required	by	this	version	of	LANSA	Composer.		You
must	quit	the	installation	and	upgrade	the	LANSA	system	to	the
required	level	before	attempting	the	upgrade	again.

Complete	the	Installation
When	the	installation	is	complete	a	message	will	be	sent	to	the	user	message
queue	for	the	user	who	submitted	the	installation.	Check	the	messages	and	any
output	produced	to	verify	that	the	installation	was	successful.
Once	the	installation	is	complete,	you	will	need	to	apply	any	server	licenses	that
you	have	been	issued	for	LANSA	Composer.	For	more	information	refer	to
License	the	LANSA	Composer	Server.

Note:	The	installation	of	LANSA	Composer	server	is	not	complete
until	at	least	one	client	install	has	been	completed	and	has	successfully
connected	to	the	server.	Loading	of	supplied	activity	and	other
definitions	and	setting	initial	system	values	for	the	correct	operation	of
the	system	are	performed	from	the	client.	Refer	to	Initialize	Data	and
Settings	for	further	information.

User	Profiles	Created	by	the	Installation
The	successful	installation	of	LANSA	Composer	on	your	IBM	i	server	may
have	created	new	user	profiles	on	your	system:

User	QOTHPRDOWN
If	this	is	the	first	LANSA	software	product	to	be	installed	on	your	system,
then	the	installer	will	have	created	user	QOTHPRDOWN,	which	by	default
is	the	owner	for	most	of	the	objects	associated	with	LANSA	Composer	(and
other	LANSA	products);
User	LICPGMLIB	(or	similar	name)
The	installer	created	a	user	with	name	LICPGMLIB	(or	similar	name	if	you
used	a	library	name	prefix	other	than	the	default	LIC).		This	user	profile	is
configured	for	normal	access	to	most	LANSA	Composer	functionality	and
may	be	used	to	connect	to	your	LANSA	Composer	server	from	the	LANSA
Composer	client	software.

In	both	cases,	the	profiles	are	created	with	default	passwords.		You	may	wish	to
assign	new	passwords	and/or	to	review	the	user	profiles	to	ensure	that	they
conform	to	your	security	policies.

Creating	Further	User	Profiles	for	Use	with	LANSA	Composer
If	you	wish	not	to	use	the	supplied	default	user	profile	for	your	work	with	your
LANSA	Composer	server,	you	may	create	your	own	profiles.
When	creating	a	user	that	will	be	used	to	connect	to	your	LANSA	Composer
server	from	the	LANSA	Composer	client,	you	should	create	it	with	the	job
description	that	was	created	in	the	LANSA	Composer	program	library	(usually
LICPGMLIB).
For	example,	you	could	use	the	following	command	to	create	LCUSER1:
CRTUSRPRF	USRPRF(LCUSER1)	TEXT('LANSA	Composer	user')
JOBD(LICPGMLIB/LICJOBD)

Although	this	user	profile	has	no	special	authorities,	it	should	suffice	for	most
LANSA	Composer	work	in	a	default	installation.
However,	a	lack	of	authorities	may	become	evident	in	some	particular	respects.	
For	example,	this	user	may	not	be	able	to	successfully	prepare	Transformation
Maps	due	to	a	lack	of	specific	authority	to	the	/LANSA_licpgmlib/jsm/instance
folder	in	the	IBM	i	IFS.
Most	such	authority-related	errors	can	be	avoided	by	making	the	user	a	member
of	the	group	LICPGMLIB	(or	similar	name	if	you	used	a	library	name	prefix
other	than	the	default	LIC).		For	example,	you	could	revise	the	command	you
use	to	create	the	user	profile	as	follows:
CRTUSRPRF	USRPRF(LCUSER1)	TEXT('LANSA	Composer	user')
JOBD(LICPGMLIB/LICJOBD)	GRPPRF(LICPGMLIB)

If	you	have	more	than	one	installation	of	LANSA	Composer	on	your	IBM	i
server	(for	example,	separate	design	and	production	environments),	then	you
will	usually	need	to	use	a	different	user	profile	to	connect	to	each.		In	each	case
the	user	profile	should	specify	the	job	description	appropriate	to	the	target
LANSA	Composer	system.

Subsystems	and	Jobs
The	LANSA	system	in	which	LANSA	Composer	runs	is	a	complete	application
execution	environment	supporting	client/server	as	well	as	web	applications.	As
such,	it	has	a	number	of	components	that	must	be	active	on	the	server	to	provide
the	necessary	application	support.
When	the	installation	is	completed	into	a	new	LANSA	system,	the	necessary
subsystems	and	jobs	are	started	for	you.	If	you	stop	these	subsystems	or	restart
your	system,	you	will	need	to	restart	the	subsystems	that	provide	LANSA
application	support	for	LANSA	Composer.

Starting	the	listener
The	LANSA	listener	provides	communications	services	necessary	to	support
both	the	client/server	and	web	parts	of	LANSA	Composer.	The	LANSA	listener
must	be	active	in	order	to	start	the	LANSA	Composer	windows	client	or	to	open
the	LANSA	Composer	operations	console	in	a	web	browser.
The	LANSA	listener	is	started	by	starting	the	subsystem	in	which	the	listener
jobs	run.	By	default	this	subsystem	has	the	same	name	as	the	program	library
used	for	the	LANSA	installation.	So	if	you	installed	LANSA	Composer	into	a
new	LANSA	system	using	the	suggested	defaults,	you	would	start	the	listener
with	this	command:
STRSBS	SBSD(LICPGMLIB/LICPGMLIB)
	

Starting	the	HTTP	server
The	HTTP	server	instance	associated	with	the	LANSA	installation	must	be
started	in	order	to	open	the	LANSA	Composer	operations	console	in	a	web
browser.
The	HTTP	server	instance	is	started	by	using	the	STRTCPSVR	(Start	TCP/IP
server)	command.	By	default,	the	HTTP	server	instance	has	the	same	name	as
the	program	library	used	for	the	LANSA	installation.	So	if	you	installed
LANSA	Composer	into	a	new	LANSA	system	using	the	suggested	defaults,	you
would	start	the	listener	with	this	command:
STRTCPSVR	SERVER(*HTTP)	HTTPSVR(LICPGMLIB)
	

Starting	the	Java	Service	Manager	(JSM)
The	Java	Service	Manager	associated	with	the	LANSA	installation	must	be

started	in	order	to	use	LANSA	Integrator	services	with	LANSA	Composer.	This
is	necessary	for	many	of	the	activities	shipped	with	LANSA	Composer.
The	Java	Service	Manager	is	started	by	starting	the	subsystem	into	which	it	was
installed.	If	you	installed	LANSA	Composer	into	a	new	LANSA	system	using
the	suggested	defaults,	you	would	start	the	Java	Service	Manager	with	this
command:
STRSBS	SBSD(LICJSMLIB/LICJSMLIB)

LANSA	Composer	Server	on	Windows

If	you	are	upgrading	LANSA	Composer	from	version	earlier	than
version	4.0,	you	must	upgrade	first	to	version	4.0	and	then	to	version
5.0.	Upgrading	directly	from	earlier	versions	to	version	5.0	is	not
supported.

You	must	first	request	new	LANSA	Composer	server	licenses	before
upgrading	to	version	5.0.	For	more	information	refer	to	Appendix	B.
License	LANSA	Composer.

A	single	copy	of	the	LANSA	Composer	server	can	be	installed	on	a	Windows
server	system.	If	LANSA	Composer	server	(version	5.0)	is	already	installed,	the
installation	program	will	allow	you	to	repair	it.	Otherwise,	it	will	allow	you	to
install	the	LANSA	Composer	Server.
The	installation/upgrade	on	the	Windows	server	includes	these	steps:

For	Upgrading	from	Version	4: For	First	Composer	Installation:

Before	You	Begin	Checklist
Plan	Your	Upgrade	from	LANSA
Composer	Version	4.0
Complete	your	Upgrade	Plan
using	the
Upgrade	Plan	Notes
Immediately	Before	You	Begin
Start	the	Installation	Program
Complete	the	Installation

Before	You	Begin	Checklist
Create	a	Database	for	a	New
LANSA	Composer	installation
Start	the	Installation	Program
Complete	the	Installation

			or	you	can
			Repair	an	Existing	LANSA	Composer	Installation

Any	late	breaking	news	about	LANSA	Composer	is	available	on	the
LANSA	web	site.	We	recommend	that	you	refer	to	this	before
proceeding	with	the	installation	or	upgrade.

http://www.lansa.com/support/v13news/index.htm#composer5?tabitems=1

Before	You	Begin	Checklist
Before	you	begin	installing	or	upgrading	LANSA	Composer,	check	the
following:

Does	your	server	system	meet	the	minimum	hardware	and	software
requirements	specified	in	Server	Requirements	and	in	LANSA's	current
Supported	Platforms	and	Versions.
Do	you	have	the	correct	version	of	the	LANSA	Composer	Windows	Server
software	media?		
LANSA	Composer	Windows	Server	is	supplied	on	a	single	DVD	that	also
contains	the	LANSA	Composer	Server	for	IBM	i	and	the	LANSA	Composer
Windows	client	software.
Do	you	have	access	to	a	suitable	(administrative)	user	profile	on	the
Windows	server?
Do	you	have	the	necessary	licenses	for	LANSA	Composer	Windows	Server?
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	you	must	first
request	new	LANSA	Composer	server	licenses.	For	more	information	refer
to	Appendix	B.	License	LANSA	Composer.
If	you	are	upgrading	an	earlier	version	of	LANSA	Composer,	have	you	(a)
backed	up	your	existing	LANSA	Composer	installation,	including	the
LANSA	Composer	database,	and	(b)	run	the	LANSA	Composer	Database
Housekeeping	task?		Both	of	these	steps	are	strongly	recommended.

If	you	answer	Yes	to	all	these	questions,	continue.	If	you	are:
upgrading,	go	to	Plan	Your	Upgrade	from	LANSA	Composer	Version	4.0.
installing,	go	to	Create	a	Database	for	a	New	LANSA	Composer	installation.

If	you	are	upgrading	LANSA	Composer	from	an	earlier	version,	you
must	upgrade	first	to	version	4.0	and	then	to	version	5.0.	Upgrading
directly	from	earlier	versions	to	version	5.0	is	not	supported.

http://www.lansa.com.au/support

Plan	Your	Upgrade	from	LANSA	Composer	Version	4.0

If	you	are	upgrading	LANSA	Composer	from	an	earlier	version,	you
must	upgrade	first	to	version	4.0	and	then	to	version	5.0.	Upgrading
directly	from	earlier	versions	to	version	5.0	is	not	supported.

NOTE:	As	with	any	upgrade,	you	are	strongly	advised	to	make	a
backup	of	the	LANSA	Composer	Windows	server	installation	and	the
database	that	it	uses	before	proceeding	with	the	upgrade.		You	should
also	run	the	LANSA	Composer	Database	Housekeeping	task	to
cleanup,	maintain	and	reorganize	the	LANSA	Composer	database.

Understand	the	Upgrade	from	LANSA	Composer	Version	4.0
LANSA	Composer	Server	Version	5.0	installs	the	Windows	Server	using	the
Windows	Installer	(MSI)	technology	recommended	by	Microsoft	for	Windows
software	installation	and	maintenance.
The	use	of	this	new	installation	technology	will	make	future	software
installation	and	upgrades	simpler	and	consistent	with	Microsoft
recommendations.
However,	for	this	one	upgrade	from	version	4.0	to	version	5.0,	some	special
considerations	apply.	Principally,	the	new	installer	will	not	be	aware	of	your
existing	LANSA	Composer	Version	4.0	installation.
Future	upgrades	from	version	5.0	to	later	versions	of	LANSA	Composer	will
recognize	your	version	5.0	LANSA	Composer	installation	details.

Overview	of	the	Upgrade	Procedure
You	will	treat	this	as	a	new	installation,	including	specifying	a	new	and	different
installation	path	for	the	LANSA	Composer	Version	5.0	software.	This	will	leave
the	version	4.0	software	on	your	system,	which	will	be	removed	afterwards.
For	certain	aspects	of	the	new	installation,	you	will	need	to	provide	the	details
that	apply	to	your	existing	LANSA	Composer	version	4.0	installation:

In	particular,	in	the	Setup	the	Local	Database	step	you	will	need	to	provide
the	details	that	identify	your	existing	LANSA	Composer	version	4.0
database.	As	a	result,	the	version	4.0	database	will	be	upgraded	and	become
the	database	for	the	new	LANSA	Composer	version	5.0	installation.
Also	in	the	Setup	the	Local	Database	step	you	must	identify	the	path	to	the

existing	LANSA	Composer	Server	version	4.0	installation	in	the	Upgrade
Folder	field.		This	is	very	important	to	permit	the	existing	database	to	be
successfully	upgraded	from	version	4.0	to	version	5.0	and	to	permit	JAR
files	for	transformation	maps	to	be	re-deployed	to	the	new	installation.
Other	details	from	your	existing	LANSA	Composer	version	4.0	installation
that	you	may	wish	to	re-use	in	the	setup	of	LANSA	Composer	version	5.0
are	covered	in	Complete	your	Upgrade	Plan.

In	addition,	there	are	further	considerations	that	may	apply	if	you	have	other
LANSA	for	the	Web	applications	installed	on	your	server.		These	considerations
are	described	in	item	7	of	Complete	your	Upgrade	Plan.

Complete	your	Upgrade	Plan
You	will	need	some	details	from	your	existing	version	4.0	installation	to	use
when	you	are	installing	version	5.0	of	LANSA	Composer.
We	recommend	that	you	print	the	following	table	and	complete	it	with	the
version	4.0	details	that	you	will	use.
Example	entries	are	inserted	in	gray	and	numbers	in	brackets	refer	to	guideline
notes	in	Upgrade	Plan	Notes.
Installation	paths:

New	(version
5.0): (1) C:\Program	Files\LANSA\LANSA	Composer

Server	V5Plus

Existing
(version	4.0):

(2) C:\Program	Files\LANSA	Composer
Server\x_win95\x_lansa\x_lic

	

Database:

DBMS	Type: (3) MSSQL

Data	source	name: (4) COMPOSER

Server: (5) MYSERVER\SQLSERVER

Database	name: (6) COMPOSER

	

Web:

Is	the	active	IIS	Plug-in	installed	in	the (7)
	ü		Select	one	-	refer	to
notes

version	4.0	installation	path? |_|			There	is	no	active
plug-in.
|_|			No,	another	IIS
plug-in	is	active.
|_|			Yes,	serving	only
LANSA	Composer.
|_|			Yes,	serving	other
web	applications	too.

JSM	Virtual	Folder	name: (8) cgi-bin

	

Communication	Ports:

Listener: (9) 4545

JSM	Server: (10) 4560

JSM	Administrator: (11) 4561

	

LANSA	Composer	Files	Location:

Path:
(relative	to	server)

(12) C:\LANSA	Composer

Network	path:
(relative	to	client)

(13) \\MYSERVER\LANSA
Composer

Path	is	child	of	installation
path?

(14)
	ü		Select	one	
|_|			No
|_|			Yes	-	refer	to	notes.

	

Customizations:

Customizations: (15) Have	you	made	custom	additions	or	alterations	to
the	files	in	the	version	4.0	installation	directories?

	

Licenses:

New	licenses
required:

(16) Have	you	requested	and	obtained	new	LANSA
Composer	server	licenses?

	

Upgrade	Plan	Notes
These	notes	refer	to	the	reference	numbers	in	the	table	in	Complete	your
Upgrade	Plan.
Installation	Paths	Notes
1.		New	version	(5.0)
The	new	installation	path	must	be	different	to	the	existing	installation	path	for
the	version	4.0	LANSA	Composer	system.		This	is	very	important.

2.		Existing	version	(4.0)
In	the	Setup	the	Local	Database	step	you	will	need	to	specify	the	existing
installation	path	down	to	the	partition	folder.		That	is	to	say,	the	path	will
usually	end	with	x_win95\x_lansa\x_lic.

Database	Notes
It	is	very	important	that	you	specify	the	database	details	during	the	installation
that	identify	your	LANSA	Composer	version	4.0	database.		If	you	don't	know
these	details,	you	can	find	them	by	opening	the	file	dxstart.cfg	in	a	text	editor,
such	as	notepad.exe.		Look	for	lines	similar	to	the	following:
dbid=COMPOSER
dbut=MSSQLS

Disregard	any	lines	that	begin	with	a	semi-colon	(;)	as	these	are	comments	and
are	not	effective.
3.		DBMS	Type	
You	can	determine	the	existing	version	4.0's	DBMS	(database	management
system)	type	by	referring	to	the	line	beginning	dbut=	in	the	file	dxstart.cfg
(described	above).	It	is	very	important	that	you	specify	the	same	DBMS	type
for	the	new	version	5.0	installation.

4.		Data	Source	Name
You	can	determine	version	4.0's	Data	source	name	by	referring	to	the	line
beginning	dbid=	in	the	file	dxstart.cfg	(described	above).	It	is	recommended
that	you	use	the	same	Data	source	name	for	the	new	version	5.0	installation.

5.		Server
With	the	Data	Source	Name	(from	point	4),	open	the	DSN	in	the	ODBC	Data
Source	Administrator	program	to	find	the	name	of	the	database	server.	It	is
very	important	that	you	specify	the	same	database	server	for	the	new	version
5.0	installation.

6.		Database	name
With	the	Data	Source	Name,	open	the	DSN	in	the	ODBC	Data	Source
Administrator	program	(from	point	5)	to	discover	the	database	name.		It	is
very	important	that	you	specify	the	same	database	name	for	the	new	version
5.0	installation.

Web	Notes
7.		Is	the	active	IIS	plug-in	installed	in	the	version	4.0	installation	path?
Depending	on	your	response	to	this	question,	you	may	need	to	carry	out
further	steps	as	described	below.

					First	you	must	determine	the	location	of	your	LANSA	for	the	Web	IIS	plug-
in:
a.		Start	the	Internet	Information	Services	(IIS)	Manager.
b.		Open	the	ISAPI	Filters	feature.
c.		Locate	the	ISAPI	Filter	with	the	name	'lansaweb'.
If	there	is	no	such	ISAPI	Filter,	then	select	the	option	There	is	no	active
plug-in	in	this	item	in	the	Upgrade	Plan.	No	further	action	is	required.
If	there	is	an	ISAPI	filter,	examine	the	executable	file	path	associated	with
it.	The	path	will	usually	end	with	something	similar	to:
..\WebServer\IISPlugin\lansaweb\lansaweb.dll.

					If	the	path	is	a	child	of	the	LANSA	Composer	Version	4.0	installation
path,	then	go	to	Is	LANSA	Composer	the	Only	Web	Application	being
served	by	the	Active	IIS	Plug-in?	to	determine	which	of	the	Yes	options	to
select.

					If	the	path	is	not	a	child	of	the	LANSA	Composer	Version	4.0	installation,
select	the	option	No,	another	IIS	plug-in	is	active	in	your	Upgrade	Plan.
No	further	action	is	required	at	this	time,	however	you	may	need	to	follow
the	instructions	in	Configure	IIS	to	Serve	the	LANSA	Composer	Web
Components	when	you	have	completed	the	installation.

8.		JSM	Virtual	Folder
You	should	use	the	same	JSM	Virtual	Folder	name	that	you	used	for	the
LANSA	Composer	version	4.0	installation.		You	can	determine	the	existing
system's	JSM	Virtual	Folder	name	by	opening	the	Internet	Information
Services	(IIS)	Manager	and	locating	the	folder	in	the	web	site	that	refers	to
the	.\Integrator\JSMCGI	folder	in	the	existing	version	4.0	LANSA	Composer
installation.	The	default	name	used	by	prior	LANSA	Composer	installations

was	cgi-bin.

Communication	Ports	Notes
It	is	recommended	that	you	use	the	same	port	numbers	that	you	used	for	the
LANSA	Composer	version	4.0	installation.
9.		Listener	port	number
If	you	don't	know	the	listener	port	number	used	for	the	existing	installation,
you	can	discover	it	by	opening	the	file	listen.dat	in	a	text	editor,	such	as
notepad.exe.	The	listen.dat	file	can	be	found	in	the	Connect	directory	of	the
existing	LANSA	Composer	Version	4.0	installation	path.

10.	JSM	Server	port	number
If	you	don't	know	the	JSM	port	numbers	used	for	the	existing	installation,
you	can	discover	them	by	opening	the	file	manager.properties	in	a	text	editor,
such	as	notepad.exe.	The	file	manager.properties	can	be	found	in	the
Integrator\JSMInstance\system	directory	of	the	existing	LANSA	Composer
Version	4.0	installation	path.
Look	for	the	last	occurrence	(there	may	be	more	than	one)	of	a	line	beginning
tcp.port=,	and	make	a	note	of	the	port	number	as	the	JSM	Server	port
number.	If	such	a	line	is	not	present,	the	default	is	4560.

11.	JSM	Administrator	port	number
In	the	manager.properties	file,	described	in	item	10,	look	for	the	last
occurrence	(there	may	be	more	than	one)	of	a	line	beginning
console.tcp.port=,	and	make	a	note	of	the	port	number	as	the	JSM
Administrator	port	number.	If	such	a	line	is	not	present,	the	default	is	4561.

LANSA	Composer	Files	Location	Notes
12.	Path	(relative	to	the	server)
To	determine	the	path	to	the	LANSA	Composer	Files	location	used	in	the
existing	version	4.0	installation,	firstly	determine	the	network	path	as
described	for	item	13	below.	Then	translate	that	network	path	to	the
equivalent	local	path	relative	to	the	server	on	which	LANSA	Composer	is
installed.

13.	Network	path	(relative	to	client)
To	find	the	network	path	to	the	LANSA	Composer	Files	location	used	in	the
existing	version	4.0	installation,	open	the	LANSA	Composer	version	4.0
client	software,	go	to	System	Settings,	and	locate	the	Server	network	path
setting.

14.	Path	is	child	of	installation	path?

If	your	existing	LANSA	Composer	Files	location	is	NOT	a	child	directory	of
the	LANSA	Composer	Version	4.0	installation	path,	then	select	the	No	option
for	this	item.	No	further	action	is	required.

					If	your	existing	LANSA	Composer	Files	location	is	a	child	directory	of	the
LANSA	Composer	Version	4.0	installation	path,	then	select	Yes	for	this	item.
For	example,	if	the	existing	LANSA	Composer	version	4.0	is	installed	at:
C:\Program	Files\LANSA	Composer	Server	and	your	existing	LANSA
Composer	Files	location	is	at	C:\Program	Files\LANSA	Composer
Server\DATA	then	your	answer	is	Yes.

If	Yes,	then	you	have	two	options	to	consider:
Proceed,	using	the	existing	LANSA	Composer	Files	location.
When	you	come	to	the	post-installation	task	Remove	LANSA	Composer
Version	4.0,	you	should	make	sure	that	you	remove	all	the	contents	of	the
Version	4.0	installation	directory	except	the	directory	that	is	the	LANSA
Composer	Files	location.	You	should	not	remove	the	entire	Version	4.0
installation	directory	as	this	will	remove	the	LANSA	Composer	Files
location	as	well.
Choose	a	new	LANSA	Composer	File	location	for	the	Version	5.0
installation.
We	recommend	that	you	choose	a	location	that	is	not	in	the	Program	Files
(or	equivalent)	tree.
You	may	not	wish	to	use	a	new	location	if	your	existing	solutions	contain
hard-coded	references	to	the	LANSA	Composer	Files	location	or	if	other
applications	also	use	the	same	folders	or	files.

15.		Customizations
					If	you	have	made	custom	additions	or	alterations	to	the	files	in	the	version
4.0	installation	directories,	you	should	identify	them	so	that	you	can	re-apply
the	customizations	to	the	new	version	5.0	installation.		Such	changes	might
include:

LANSA	Communications	Administrator	entries	that	you	may	have	created
to	permit	your	LANSA	Composer	solutions	to	communicate	with	other
LANSA	applications	or	other	LANSA	Composer	installations,	especially
those	on	separate	or	remote	server	systems.
Typically	such	entries	would	be	associated	with	LANSA	system
configurations	used	in	LANSA	Composer	solutions	with	the
CALL_FUNCTION	or	COMPOSER_RUN	activities.
You	can	use	the	LANSA	Communications	Administrator	program	to

identify	any	such	entries.
Custom	LANSA	functions	that	are	called	by	your	LANSA	Composer
solutions	using	the	CALL_FUNCTION	activity.	
The	affected	files	would	usually	consist	of	one	or	more	DLL	files	in	the
partition-execute	directory
(typically	.\X_WIN95\X_LANSA\X_LIC\Execute).
(Recommended	practice	for	recent	LANSA	Composer	solutions	would	be
to	call	such	functions	in	a	separate	LANSA	environment.		However,
especially	in	earlier	versions	of	LANSA	Composer,	you	may	have
developed	solutions	that	used	functions	deployed	to	the	LANSA
Composer	installation	directories.)
The	activity	processors	for	custom	activities.
The	affected	files	would	usually	consist	of	one	or	more	DLL	files	in	the
partition-execute	directory	(typically
.\X_WIN95\X_LANSA\X_LIC\Execute).
Custom	LANSA	Integrator	(JSM)	solutions	used	with	LANSA	Composer.
Such	solutions	might	include	ones	built	using	the	LANSA	Integrator
Studio	"binding"	wizards	(for	SOAP	server	and	agent	or	for	XML	or
JSON	bindings).
The	affected	files	would	usually	consist	of	one	or	more	JAR	files	in	the
Bindings	or	JAR	directories	of	the	LANSA	Integrator	directory	tree
(typically	.\Integrator\JSMInstance).		Such	solutions	may	also	necessitate
new	entries	in	properties	files	in	the	Properties	directory.
Changes	to	internal	LANSA,	web	and	LANSA	Integrator	(JSM)
configuration	files.		Normally	such	changes	would	be	made	only	in
exceptional	circumstances	upon	the	advice	of	LANSA	Support.

You	do	not	need	to	identify	software	patches	and	hotfixes	to	version	4.0	that
you	obtained	from	LANSA	Support	as	these	are,	where	applicable,	included
in	LANSA	Composer	version	5.0.		Nor	do	you	need	to	identify	the	JAR	files
for	transformation	maps	as	these	will	automatically	be	re-deployed	to	the
new	installation.

16.		Licenses
					Before	proceeding	with	your	upgrade,	you	must	first	request	new	LANSA
Composer	server	licenses.	For	more	information	refer	to	Appendix	B.
License	LANSA	Composer.

Is	LANSA	Composer	the	Only	Web	Application	being	served	by
the	Active	IIS	Plug-in?
To	determine	this:
1.		Start	the	Web	Administrator	in	the	Settings	and	Administration	folder	of	the
LANSA	Composer	program	group.

2.		From	the	Options	menu,	choose	Local	configuration,	and	then	Open.
3.		In	the	Open	dialog,	navigate	to	the	..\WebServer\IISPlugin\	directory	of	your
LANSA	Composer	version	4.0	installation,	select	the	file	l4w3serv.cfg,	and
click	the	Open	button.

4.		In	the	LANSA	Web	Administrator	window,	choose	the	Maintain	systems
command	from	the	Tools	menu.

If	there	is	only	one	entry:

Then	select	the	option	Yes,	serving	only	LANSA	Composer	for	item	7	in	the
Upgrade	Plan.
If	there	is	more	than	one	entry	(ie:	LANSA	Composer	is	NOT	the	only	web
application	being	served	by	the	active	IIS	plug-in):
Then	select	the	option	Yes,	serving	other	web	applications	too	for	item	7	in
the	Upgrade	Plan.
After	the	Composer	V5	installation,	you	must	follow	the	steps	in	Restore
Configurations	for	LANSA	for	the	Web	applications.	This	is	to	restore	the
IIS	and	LANSA	for	the	Web	configuration	to	a	state	so	that	it	can	continue	to
serve	both	LANSA	Composer's	web	components	and	the	other	applications
that	are	presently	served	by	the	active	IIS	plug-in.

Now	close	the	LANSA	Web	Administrator	and	return	to	Complete	your	Upgrade

Plan.

Immediately	Before	You	Begin
When	you	have	completed	planning	and	are	ready	to	start	the	installation,	you
should	complete	the	following	steps:
Stop	services
Use	the	Microsoft	Windows	Services	Management	Console	applet	to	stop	and
disable	the	JSM	and	listener	services.

The	JSM	service	will	have	a	name	like	LANSA	Integrator	JSM
Administrator.
The	listener	service	will	have	a	name	like	LConnect	Services.

In	both	cases,	if	there	is	more	than	one	similarly-named	service,	use	the	path
contained	in	the	Description	column	to	identify	the	one	that	applies	to	your
LANSA	Composer	Version	4.0	installation.		When	you	have	identified	the
correct	services,	stop	them.		Then	display	their	properties	and	set	the	Startup
type	to	Disabled.
De-activate	the	existing	LANSA	for	the	Web	plug-in
If	your	selection	in	item	7	of	your	Upgrade	Plan	is	Yes,	(either	of	the	Yes
options),	these	steps	are	necessary:
1.		Start	the	Internet	Information	Services	(IIS)	Manager,	and	stop	the	server.
2.		In	Internet	Information	Services	(IIS)	Manager,	open	the	ISAPI	Filters
feature.

3.		Locate	the	ISAPI	Filter	with	the	name	'lansaweb'	and	Remove	it.		If	there	is	a
filter	with	the	name	'lansaweb64',	then	Remove	it	too.

	
When	you	have	completed	these	steps,	continue	your	upgrade	with	Start	the
Installation	Program.

Create	a	Database	for	a	New	LANSA	Composer	installation

Note:		If	you	are	upgrading	or	repairing	an	existing	installation	of
LANSA	Composer,	the	upgrade	or	repair	will	use	the	database	that
was	specified	when	the	installation	was	initially	created.	You	do	not
need	to	create	a	new	database,	so	you	may	skip	this	step.

On	Windows	servers,	you	will	need	to	have	installed	and	configured	one	of	the
database	management	systems	currently	supported	for	LANSA	software,	for
example,	a	supported	version	of	MS	SQL	Server,	Oracle	or	Sybase.	Refer	to	the
Supported	Platforms	document	on	the	LANSA	web	site	for	details	of	current
supported	database	management	systems.
When	installing	a	fresh	copy	of	LANSA	Composer	you	will	need	to	create	a
new,	empty	database	to	hold	the	LANSA	Composer	database	tables,	using	the
supported	database	management	system	of	your	choice.	The	LANSA	Composer
installation	will	create	the	necessary	database	tables,	but	you	must	create	the
database	that	will	hold	them.	You	should	add	the	new	LANSA	Composer
database	to	your	backup	procedures.
Suggested	database	name:	COMPOSER,	although	you	can	use	your	own	choice
of	database	name.
COMPOSER	is	the	database	name	used	for	the	database	set	up	example	during
the	installation	in	the	Setup	the	Local	Database	step.

Note:	When	creating	a	Sybase	database	(including	SQLAnywhere	10
and	11),	you	must	select	the	Ignore	trailing	blanks	in	string

http://www.lansa.com/support/supportedversions.htm#platforms

comparisons	option.	This	translates	to	"Blank	Padding"	=	ON	in	the
"Extended	Information"	page	in	the	database	properties.

Note:	This	database	is	for	LANSA	Composer's	own	database	tables
that	hold	the	definitions	of	the	business	process	integration	solutions
you	create	with	LANSA	Composer.		It	should	not	be	in	the	same
database	as	your	application	data.		Your	LANSA	Composer	solution
can	access	your	application	database	(for	example	in	Transformation
Maps)	even	if	it	is	in	another	database,	database	system	or	even	on
another	computer.

When	you	have	created	your	database,	continue	with	Start	the	Installation
Program.

Start	the	Installation	Program
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	then	be	sure	you	have
completed	the	steps	in	Immediately	Before	You	Begin.
Log	on	to	your	Windows	server	using	a	user	that	has	administrative	rights	on
the	computer.
Insert	the	LANSA	Composer	installation	DVD	into	the	DVD	drive	of	your
Windows	server.	After	a	short	pause,	the	LANSA	Composer	installation
program	should	load.	(If	the	installer	does	not	start	automatically,	use	Windows
Explorer	to	locate	and	open	the	setup.exe	file	in	the	root	directory	of	the
installation	DVD.)

Click	the	Install	or	Upgrade	LANSA	Composer	Windows	Server	Software	option
to	start	the	LANSA	Composer	Windows	Server	setup	program.
Depending	on	whether	LANSA	Composer	Server	version	5.0	has	already	been
installed	on	this	computer,	continue	with	one	of	the	following:

Install	or	Upgrade	LANSA	Composer	Windows	Servers	Software

Repair	an	Existing	LANSA	Composer	Installation

Install	or	Upgrade	LANSA	Composer	Windows	Servers	Software
If	LANSA	Composer	version	5.0	has	not	been	previously	installed	on	your
Windows	Server,	you	will	be	prompted	to	install	it.
If	you	are	upgrading	LANSA	Composer	from	version	4.0,	you	will	use	the	same
procedure	as	for	a	new	installation,	but	for	certain	aspects	of	the	new
installation,	you	will	need	to	provide	the	details	that	apply	to	your	existing
LANSA	Composer	version	4.0	installation.	Please	make	sure	you	have	read
Plan	Your	Upgrade	from	LANSA	Composer	Version	4.0	and	completed	your
Upgrade	Plan	before	proceeding.

IMPORTANT	NOTE:
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	you	must
first	request	new	LANSA	Composer	server	licenses.		For	more
information	refer	to	Appendix	B.	License	LANSA	Composer.

If	you	are	upgrading	LANSA	Composer	from	an	earlier	version,	you
must	upgrade	first	to	version	4.0	and	then	to	version	5.0.		Upgrading
directly	from	earlier	versions	to	version	5.0	is	not	supported.

NOTE:		As	with	any	upgrade,	you	are	strongly	advised	to	make	a
backup	of	the	LANSA	Composer	Windows	server	installation	and	the
database	that	it	uses	before	proceeding	with	the	upgrade.

The	LANSA	Composer	Server	Setup	wizard	will	prompt	for	a	number	of	options
that	are	essential	to	the	correct	operation	of	your	LANSA	Composer	system.		It
is	strongly	recommended	that	you	read	the	descriptions	of	each	step	that	follow,
to	ensure	that	you	make	the	correct	choices	to	ensure	a	successful	first-time
installation.
The	LANSA	Composer	Server	Setup	is	in	two	parts:
1.		The	LANSA	Composer	Server	Setup	wizard	will	install	the	LANSA
Composer	Server	software	on	your	system.		The	following	topics	describe	the
steps	and	the	responses	you	should	provide	at	each	step:
Welcome	to	the	LANSA	Composer	Server	Setup	Wizard
Installation	Scope
Destination	Folder

Setup	the	Application
Setup	the	Local	Database
User	Id
Web	Sites	for	IIS	Plug-In
Web	Site	Virtual	Folders
Communication	Ports
Choose	Setup	Type
Ready	to	install	LANSA	Composer	Server
Installing	LANSA	Composer	Server
Completed	the	LANSA	Composer	Server	Setup	Wizard

2.		The	Completing	LANSA	Composer	Server	Setup	wizard	will	then	start	and
guide	you	through	the	further	steps	necessary	to	load	LANSA	Composer	files
and	data	in	order	to	prepare	your	LANSA	Composer	installation	for	first	use.	
The	following	topics	describe	the	steps	and	the	responses	you	should	provide
at	each	step:
Completing	LANSA	Composer	Server	Setup
LANSA	Composer	Files	Location
LANSA	Composer	Files	Network	Path
Import	Supplied	Definitions
Ready	To	Install
Installing	LANSA	Composer	Files	and	Data
LANSA	Composer	Files	and	Data	Have	Been	Installed

Welcome	to	the	LANSA	Composer	Server	Setup	Wizard
If	LANSA	Composer	version	5.0	has	not	been	previously	installed	on	your
Windows	Server,	you	will	be	prompted	to	install	LANSA	Composer	Server.
If	you	are	upgrading	LANSA	Composer	from	version	4.0,	you	will	use	the	same
procedure	as	for	a	new	installation,	but	for	certain	aspects	of	the	new
installation,	you	will	provide	the	details	that	apply	to	your	existing	LANSA
Composer	version	4.0	installation.	These	are	the	details	you	will	have	recorded
in	Complete	your	Upgrade	Plan.
Please	read	all	of	the	following	section	before	you	proceed:

Click	Next	and	continue	with:
Installation	Scope

If,	instead,	you	see	the	following	screen,	it	means	that	LANSA	Composer
version	5.0	is	already	installed	on	this	Windows	server.
Only	a	single	copy	of	the	LANSA	Composer	server	can	be	installed	on	a
Windows	server	system.	If	LANSA	Composer	server	is	already	installed,	the
installation	program	will	allow	you	to	upgrade	or	repair	it.

In	this	case,	please	continue	with:
Repair	an	Existing	LANSA	Composer	Installation	

Installation	Scope
You	will	be	prompted	to	choose	the	installation	scope.		This	being	a	server
application,	you	should	always	choose	Install	for	all	users	of	this	machine.

Make	sure	that	Install	for	all	users	of	this	machine	is	selected,	then	click	Next
and	continue	with:

Destination	Folder

Destination	Folder
You	can	specify	the	folder	that	LANSA	Composer	Server	will	be	installed	into.	
The	LANSA	Composer	Server	Setup	wizard	will	create	the	folder	if	necessary.
For	a	new	installation,	we	suggest	accepting	the	default	folder	proposed.
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	then	you	must
specify	a	new	and	different	installation	path	for	the	LANSA	Composer	Version
5.0	software.		Refer	to	item	1	in	Complete	your	Upgrade	Plan.

NOTE:	The	destination	folder	must	NOT	be	the	existing	LANSA
Composer	version	4.0	installation	(ie:	item	2	in	Complete	your
Upgrade	Plan).		The	upgrade	will	not	be	successful	if	it	is.

NOTE:	If	you	are	installing	LANSA	Composer	Server	on	a	64-bit
version	of	Windows,	the	suggested	installation	path	will	begin	with
something	like	C:\ProgramFiles	(x86)\....		In	this	event,	you	must	not
attempt	to	change	the	installation	path	to	C:\Program	Files\...	
Microsoft	Windows	reserves	the	latter	path	for	64-bit	applications.	
LANSA	Composer	Server	is	a	32-bit	application.		If	you	attempt	to
install	it	under	C:\Program	Files\...,	the	installation	will	be	corrupted

and	will	not	execute	correctly.

When	you	have	made	your	choice,	click	Next	to	continue.
You	may	see	a	window	that	tells	you	that	the	IIS	plugin	for	LANSA	for	the	Web
support	is	already	installed.		This	may	happen	if	you	already	have	another
LANSA	application	on	your	server	that	uses	LANSA	for	the	Web.
In	order	to	ensure	that	this	installation	does	not	interfere	with	the	continued
normal	operation	of	the	existing	application,	the	LANSA	Composer	Server	Setup
wizard	will	not	configure	the	IIS	plugin	to	serve	LANSA	Composer's	web
components.		In	this	event,	you	will	need	to	manually	configure	the	web	support
after	the	installation	is	complete.		Instructions	for	this	are	provided	in	the
following	topic:

Configure	IIS	to	Serve	the	LANSA	Composer	Web	Components

Now	continue	with:
Setup	the	Application

Setup	the	Application
The	LANSA	Composer	Server	Setup	wizard	shows	a	window	that	lets	you
choose	the	DBMS	Type	(database	management	system	type).

For	a	new	installation,	you	should	choose	the	option	that	applies	to	the	database
you	created	in	Create	a	Database	for	a	New	LANSA	Composer	installation.		For
example,	if	you	created	your	database	in	Microsoft	SQL	Server,	then	you	should
choose	MSSQLS.
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	it	is	very	important
that	you	specify	the	same	DBMS	type	for	the	new	version	5.0	installation	as	is
used	for	the	existing	LANSA	Composer	Version	4.0	installation.		Refer	to	item
3	in	Complete	your	Upgrade	Plan.
When	you	have	made	your	choice,	click	Next	and	continue	with:

Setup	the	Local	Database

Setup	the	Local	Database
The	LANSA	Composer	Server	Setup	wizard	shows	a	selection	of	settings	for	the
LANSA	Composer	Server	database.
If	you	are	installing	a	new	copy	of	LANSA	Composer	Server,	the	choices	in	this
step	relate	to	the	database	that	you	created	in	Create	a	Database	for	a	New
LANSA	Composer	installation.
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	the	choices	in	this
step	must	relate	to	the	existing	database	in	which	LANSA	Composer	version	4.0
is	already	installed.	Refer	to	items	2,	4,	5	and	6	in	Complete	your	Upgrade	Plan.

Complete	your	choices	in	accordance	with	the	following:
Data	Source	Name:	Specifies	the	data	source	name	(DSN)	that	LANSA
Composer	will	use	to	access	the	database.		The	LANSA	Composer	Server
Setup	wizard	will	create	the	DSN	when	you	proceed	with	the	installation.

The	data	source	name	must	be	unique	amongst	DSN	names	on	this	Windows
server,	must	not	exceed	32	characters	in	length	and	may	not	include	any
blank	characters.		(If	you	wish	to	review	existing	DSNs	that	already	exist	on
this	computer,	you	can	do	so	using	the	ODBC	Data	Source	Administrator
program	in	Windows.)

Server:	This	is	the	name	that	the	database	server	is	called	on	the	network.	
Note,	the	Server	name	is	not	the	PC	name,	or,	at	least,	not	just	the	PC	name.
As	an	example,	for	SQL	Server	the	default	name	for	a	database	server	is	in
the	form	"PC	Name\Instance	Name"	-	for	example,
"MY_PC\SQLSERVER".
Database:	Specifies	the	name	of	the	database.	(This	does	not	apply	for	an
Oracle	database.)		If	you	are	installing	a	new	copy	of	LANSA	Composer
Server,	this	should	specify	the	name	of	the	database	that	you	created	in
Create	a	Database	for	a	New	LANSA	Composer	installation.		If	you	are
upgrading	from	LANSA	Composer	version	4.0,	this	must	specify	the	name
of	the	existing	database	in	which	LANSA	Composer	version	4.0	is	already
installed.		(refer	to	item	6	in	Complete	your	Upgrade	Plan).
User	and	Password:	Specifies	the	user	name	and	password	that	you	wish
LANSA	Composer	Server	to	use	to	access	the	database.		You	can	leave	these
values	blank	for	a	Microsoft	SQL	Server	database	in	order	to	use	trusted
connections.
Setup	Database:	When	checked,	this	option	will	install	or	upgrade	the
database	tables	and	any	shipped	data	into	the	nominated	database.		This	is
the	required	and	necessary	behavior	for	the	LANSA	Composer	Server	Setup
and	the	checkbox	is	checked	by	default.		You	must	leave	it	checked	for	a
successful	LANSA	Composer	Server	installation,	whether	it	is	a	new
installation	or	you	are	upgrading	from	LANSA	Composer	version	4.0.

IMPORTANT	NOTE:
The	Setup	Database	checkbox	must	be	checked	for	a	successful
LANSA	Composer	Server	installation	(including	upgrading	LANSA
Composer	version	4.0).

Upgrade	V12	Database:	For	a	new	installation,	this	option	does	not	apply.	
Do	not	check	this	checkbox	for	a	new	installation.
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	then	you	must
check	this	checkbox.

IMPORTANT	NOTE:
You	must	check	the	Upgrade	V12	Database	checkbox	if,	and	only	if,
you	are	upgrading	from	LANSA	Composer	version	4.0.

Upgrade	Folder:	For	a	new	installation,	this	option	does	not	apply	and	it	will
remain	grayed	(disabled)	because	you	have	not	checked	the	Upgrade	V12

Database	checkbox.
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	then	you	must
specify	here	the	path	to	the	LIC	partition	folder	in	the	existing	LANSA
Composer	version	4.0	installation.		The	path	you	specify	should	include	all
the	folders	down	to	the	partition	folder	level.		That	is	to	say,	the	path	will
should	end	with	x_win95\x_lansa\x_lic.		Refer	to	item	2	in	Complete	your
Upgrade	Plan.

When	you	have	made	your	choices,	click	Next	and	continue	with:
User	Id

User	Id
The	LANSA	Composer	Server	Setup	wizard	prompts	for	details	of	the	User	Id
that	is	to	be	used	to	connect	the	web	server	to	the	LANSA	Composer
application.

A	Windows	User	is	required	that	can	be	used	to	log	on	to	the	LANSA	Composer
environment	to	execute	web	requests	associated	with	LANSA	Composer's
Operations	Console.
The	User	can	be	setup	elsewhere	or	through	this	dialog.

From	the	dropdown	list,	select	whether	to	Use	an	existing	User,	Create	a
New	Local	User	or	Not	to	Configure	any	User.

If	you	select	Create	New	Local	User,	the	User	will	be	created	as	a	local	user.
If	using	an	existing	User,	the	user	details	will	be	verified	to	ensure	they	are
correct.	An	existing	User	may	be	a	local	or	a	domain	User.
Enter	the	User	Id	to	be	used	when	using	LANSA	for	the	Web.	You	may	enter
an	existing	or	new	User	Id.	The	User	will	be	automatically	added	to	the
LANSA	Users	Group.
Enter	the	password	for	the	User	Id.

If	creating	a	new	user,	re-enter	the	Password	to	confirm	the	new	Password.
You	do	not	have	to	confirm	the	password	if	you	are	entering	an	existing	user.

When	you	have	completed	your	choices,	click	Next	and	continue	with:
Web	Sites	for	IIS	Plug-In

Web	Sites	for	IIS	Plug-In
The	LANSA	Composer	Server	Setup	wizard	asks	you	to	choose	the	web-site(s)
through	which	you	wish	to	enable	LANSA	Composer's	web	features.		The
affected	web	features	include:

LANSA	Composer's	Operations	Console	web	application;
The	LANSA	Integrator	JSM	Direct	support	that	is	used	to	direct	inbound
HTTP	requests	through	LANSA	Composer.

The	web-sites	shown	are	those	that	are	configured	in	the	Microsoft	Internet
Information	Server	(IIS).		There	will	only	be	web-sites	listed	on	the	left	if	you
have	web-sites	in	addition	to	the	default	configured	in	IIS.		In	any	event,	usually
you	will	choose	just	one	web-site.
(If	you	choose	more	than	one	web	site,	then	further	advanced	configuration	will
usually	be	required	through	the	Web	Administrator	application	in	order	to	direct
selected	requests	in	the	required	way.)
When	you	have	completed	your	choices,	click	Next	and	continue	with:

Web	Site	Virtual	Folders

Web	Site	Virtual	Folders
The	LANSA	Composer	Server	Setup	wizard	asks	you	to	choose	the	web-site	in
which	you	wish	to	define	the	virtual	folders	used	with	LANSA	Composer's	web
features.

A	virtual	folder	(in	this	context)	is	a	means	of	instructing	Microsoft	Internet
Information	Services	(IIS)	to	re-direct	a	component	of	the	URL	used	for	an
incoming	web	request	(the	"virtual"	folder)	to	a	physical	folder	location,
possibly	outside	the	Microsoft	IIS	folder	tree.
In	particular,	the	LANSA	Composer	Server	Setup	defines	two	virtual	folders:

The	Images	folder	identifies	the	location	of	web	images	used	in	LANSA
Composer's	Operations	Console	web	application.		It	is	always	called	Images
–	you	have	no	control	over	the	virtual	folder	name.		The	virtual	folder	will
be	configured	to	re-direct	image	requests	to	the	appropriate	folder	in	the
LANSA	Composer	Server	installed	location,	for	example,	to:
C:\Program	Files\LANSA\LANSA	Composer	Server\WebServer\Images
The	JSM	folder	identifies	the	location	of	the	LANSA	Integrator	JSM	Direct
support	that	is	used	to	direct	inbound	HTTP	requests	through	LANSA
Composer.		The	LANSA	Composer	Server	Setup	permits	you	to	choose	the
virtual	folder	name.		If	you	create	a	new	virtual	folder,	it	will	be	mapped	to

the	directory	where	the	JSM	Direct	support	is	installed,	for	example,	to:
C:\Program	Files\LANSA\LANSA	Composer	Server\Integrator\JSMCGI

In	this	step	of	the	LANSA	Composer	Server	Setup	wizard,	you	can	control	the
creation	of	the	necessary	virtual	folders	in	two	respects,	as	follows:
Website
Of	the	websites	chosen	in	the	previous	step,	this	specifies	which	is	to	contain
the	Images	and	JSM	virtual	folders.
Usually	you	will	have	chosen	not	more	than	one	website	in	the	previous	step	-
its	name	will	be	shown	and	selected	here	and	you	need	make	no	further	change.
JSM	Virtual	Folder
This	allows	you	/to	specify	the	name	of	a	new	virtual	folder	(default	cgi-bin)	or
to	choose	an	existing	virtual	folder	that	is	used	with	the	LANSA	Integrator	JSM
Direct	support.
In	both	cases	the	related	LANSA	Integrator	files	(jsmdirect.exe,	jsmproxy.exe,
jsmadmin.exe	and	their	associated	data,	message	and	configuration	files)	will	be
installed	in	the	JSMCGI	folder	under	the	LANSA	Composer	root	directory.
If	you	select	an	existing	virtual	folder,	the	related	Integrator	files	(jsmdirect.exe,
jsmproxy.exe,	jsmadmin.exe	and	their	associated	data,	message	and
configuration	files)	will	then	be	copied	into	the	physical	folder	the	chosen
virtual	folder	is	mapped	to.
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	then	you	should	use
the	same	JSM	virtual	Folder	name	as	you	used	for	the	existing	LANSA
Composer	version	4.0	installation.		Refer	to	item	8	in	Complete	your	Upgrade
Plan.
When	you	have	completed	your	choices,	click	Next	and	continue	with:

Communication	Ports

Communication	Ports
The	LANSA	Composer	Server	Setup	wizard	prompts	you	to	specify	the	TCP/IP
communication	port	numbers	that	will	be	used	by	the	services	supporting	the
LANSA	Composer	installation.

For	more	information	on	the	services,	refer	to:
Services	Used	by	the	LANSA	Composer	Windows	Server

Port	numbers	may	be	assigned	to	the	following	services:
Listener:	Specifies	the	TCP/IP	communications	port	number	that	will	be	used
by	the	listener	for	this	system.		The	listener	is	the	means	by	which	LANSA
Composer	client	installations	and	LANSA	Composer	web	components	will
connect	to	this	server.
JSM	Server	:	Specifies	the	TCP/IP	communications	port	number	that	will	be
used	by	the	LANSA	Integrator	Java	Service	Manager	(JSM).		The	JSM
provides	the	implementation	that	executes	many	of	the	LANSA	Composer
activities.
JSM	Administrator	:	Specifies	the	TCP/IP	communications	port	number	that
will	be	used	for	the	LANSA	Integrator	JSM	console.		The	LANSA	Integrator
JSM	console	can	be	displayed	from	within	the	LANSA	Composer	client

software	and	is	used	to	monitor	the	functioning	of	the	LANSA	Integrator
Java	Service	Manager.

If	you	are	upgrading	from	LANSA	Composer	version	4.0,	then	you	should	use
the	same	port	numbers	as	were	specified	for	the	existing	LANSA	Composer
version	4.0	installation.		Refer	to	items	9,	10	and	11	in	Complete	your	Upgrade
Plan.

For	a	new	installation,	the	default	port	numbers	suggested	will	usually
be	acceptable	when	no	other	LANSA	systems	are	present.		In	any
event,	but	especially	if	you	have	existing	LANSA	or	LANSA
Composer	systems	installed,	you	should	review	and,	if	necessary,	re-
allocate	the	port	numbers	to	avoid	conflict	with	other	LANSA	or	non-
LANSA	applications	on	your	system.		You	should	also	avoid	using
port	numbers	in	the	well-known	port	number	range.		If	in	doubt,	you
should	consult	your	network	administrator.

When	you	have	made	your	choices,	click	Next	and	continue	with:
Choose	Setup	Type

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers#Well-known_ports

Choose	Setup	Type
The	LANSA	Composer	Server	Setup	wizard	asks	you	to	choose	the	setup	type
that	best	suits	your	needs.

IMPORTANT	NOTE:
There	are	no	optional	components	associated	with	the	LANSA
Composer	Server	installation.		You	should	always	choose	the
Complete	option	in	this	step.

Click	the	Complete	button,	and	continue	with:
Ready	to	install	LANSA	Composer	Server

Ready	to	install	LANSA	Composer	Server
The	LANSA	Composer	Server	Setup	wizard	shows	a	summary	of	the	main
options	chosen	before	proceeding	with	the	installation.		If	necessary,	you	may
click	Back	to	return	to	any	of	the	previous	steps	to	change	your	choices.

When	you	are	satisfied	that	the	choices	are	correct,	click	Install	to	begin	the
installation	and	continue	with:

Installing	LANSA	Composer	Server

Installing	LANSA	Composer	Server
As	the	installation	proceeds,	the	LANSA	Composer	Server	Setup	wizard	shows
the	progress	in	the	Installing	LANSA	Composer	Server	window.

IMPORTANT	NOTE:
Some	of	the	steps	may	take	some	time	to	complete	with	little	visible
change	in	status.		For	example,	the	status	Processing	database	tables
may	be	shown	for	a	significant	amount	of	time,	especially	when
upgrading	from	LANSA	Composer	version	4.0.		Please	allow	the
LANSA	Composer	Server	Setup	wizard	adequate	time	to	complete
normally.

You	may	notice	some	other	command	windows	briefly	open	and	close	during
the	installation.		In	addition	the	LANSA	Composer	Version	5.0	Read	Me	will
open	in	your	web	browser.		This	is	normal	and	you	should	simply	wait	for	the
LANSA	Composer	Server	Setup	wizard	to	finally	report	that	the	installation	is
complete.		When	it	does	so,	continue	with:

Completed	the	LANSA	Composer	Server	Setup	Wizard

Completed	the	LANSA	Composer	Server	Setup	Wizard
The	LANSA	Composer	Server	Setup	wizard	reports	that	the	installation	is
complete.

The	LANSA	Composer	Server	software	is	successfully	installed.
The	LANSA	Composer	Server	Setup	is	in	two	parts.		This	completes	the	first
part.
Next,	the	Completing	LANSA	Composer	Server	Setup	wizard	will	start	and
guide	you	through	the	further	steps	necessary	to	load	LANSA	Composer	files
and	data	in	order	to	prepare	your	LANSA	Composer	installation	for	first	use.	
The	following	topics	describe	the	steps	and	the	responses	you	should	provide	at
each	step:

Completing	LANSA	Composer	Server	Setup
LANSA	Composer	Files	Location
LANSA	Composer	Files	Network	Path
Import	Supplied	Definitions
Ready	To	Install
Installing	LANSA	Composer	Files	and	Data
LANSA	Composer	Files	and	Data	Have	Been	Installed

Click	Finish	to	close	the	wizard	and	then	continue	with	the	following:
Completing	LANSA	Composer	Server	Setup

Completing	LANSA	Composer	Server	Setup
When	the	Completing	LANSA	Composer	Server	Setup	wizard	starts	you	will	see
a	screen	like	the	one	shown:

Click	Next	and	continue	with:
LANSA	Composer	Files	Location

LANSA	Composer	Files	Location
The	Completing	LANSA	Composer	Server	Setup	wizard	asks	you	to	specify	a
location	in	the	server	file	system	for	LANSA	Composer	files.

The	LANSA	Composer	files	location	specifies	the	path	of	a	directory	that	will
be	used	by	LANSA	Composer	for	files	that	are	shared	with	the	LANSA
Composer	clients	(such	as	Transformation	Map	definitions)	and	that	will	serve
as	a	default	location	for	trading	partner	directories	and	files.
The	location	you	specify	must	be	one	that	you	can	make	available	to	LANSA
Composer	clients	via	a	new	or	existing	network	share	with	appropriate	read	and
write	permissions.		(The	next	step	of	the	wizard	will	ask	you	to	specify	the
network	path	to	the	same	location.)
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	use	the	value	in	item
12	in	Complete	your	Upgrade	Plan.
For	a	new	installation,	you	may	specify	the	name	of	a	new	or	existing	folder	in
your	server's	file	system	that	you	wish	to	use	for	this	purpose.
The	Completing	LANSA	Composer	Server	Setup	wizard	will	(later)	create	the
folder	if	it	does	not	exist	and	will	create	a	number	of	child	folders	and	install
shipped	LANSA	Composer	files.		The	files	that	will	be	installed	include:

Files	supporting	LANSA	Composer	examples
Master	import	files	for	supplied	LANSA	Composer	definition
Selected	SEF	files	for	use	with	EDI	activities
Files	used	in	the	LANSA	Composer	tutorials
Master	copies	of	files	required	for	the	Web	Server	support
Master	copies	of	files	used	with	the	LANSA	Composer	SOAP	web	service
for	running	a	Processing	Sequence	via	the	web	service

When	you	have	made	your	choice,	click	Next	and	continue	with:
LANSA	Composer	Files	Network	Path

LANSA	Composer	Files	Network	Path
The	Completing	LANSA	Composer	Server	Setup	wizard	asks	you	to	specify	the
network	path	that	will	refer	to	the	same	location	that	you	specified	in	the
previous	step	for	LANSA	Composer	files.

The	network	path	is	important	to	allow	the	LANSA	Composer	client	software
(which	is	usually	running	on	another	computer)	to	access	the	location	for
LANSA	Composer	files.		This	must	be	correctly	configured	in	order	for	certain
functions	of	LANSA	Composer	(such	as	creating	and	modifying	Transformation
Maps)	to	operate	correctly.
Depending	on	your	choices,	you	may	need	to	create	a	network	share	on	your
server	in	order	to	support	this	network	access	to	the	LANSA	Composer	files
location.		If	necessary,	consult	your	system	administrator.
(The	network	share	does	not	have	to	exist	now	in	order	to	complete	the	LANSA
Composer	Server	setup.		But	you	must	create	it	before	you	can	begin	to	use	the
LANSA	Composer	client	software	–	in	particular,	the	Transformation	Maps
features.		If	it	does	not	exist	now,	then	you	should	make	a	note	of	the	path	used
and	ensure	that	you	create	it	after	the	Completing	LANSA	Composer	Server
Setup	wizard	has	finished.)
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	use	the	value	in	item

13	in	Complete	your	Upgrade	Plan.
When	you	have	made	your	choice,	click	Next	and	continue	with:

Import	Supplied	Definitions

Import	Supplied	Definitions
The	Completing	LANSA	Composer	Server	Setup	wizard	will	import	supplied
definitions	used	with	LANSA	Composer	to	the	LANSA	Composer	database.

The	supplied	definitions	include	system	settings,	code	tables,	configurations,
activities	and	other	items.
These	items	are	necessary	for	a	fully	functional	LANSA	Composer	installation
and	they	will	be	imported,	whether	you	are	installing	a	new	LANSA	Composer
system	or	upgrading	a	LANSA	Composer	version	4.0	system.
(Where	you	have	made	supported	changes	to	these	definitions	in	your	existing
installations,	your	changes	will	be	preserved.)
Included	amongst	the	supplied	definitions	are	a	set	of	examples,	including
example	configurations	of	various	sorts,	example	Transformation	Map	and
Processing	Sequences.		You	may	choose	whether	to	import	the	examples	or	not.	
To	prevent	import	of	the	examples,	uncheck	the	check	box.
When	you	are	ready,	click	Next	and	continue	with:

Ready	To	Install

Ready	To	Install
The	Completing	LANSA	Composer	Server	Setup	wizard	is	now	ready	to	install
the	LANSA	Composer	files	and	definitions	according	to	your	choices	in	the
previous	steps.

If	you	wish	to	revise	any	of	your	choices,	click	the	Back	button	to	do	so.		When
you	are	satisfied	with	your	choices,	click	Next	and	continue	with:

Installing	LANSA	Composer	Files	and	Data

Installing	LANSA	Composer	Files	and	Data
The	Completing	LANSA	Composer	Server	Setup	wizard	proceeds	to	install	the
LANSA	Composer	files	and	definitions	as	specified.
As	it	does	so,	you	may	see	a	number	of	status	messages	indicating	the	progress
of	the	installation.

When	the	supplied	definitions	have	been	imported,	you	will	see	the	Import	Log
window.		It	will	indicate	that	the	imports	completed	successfully.

There	is	no	further	action	required	here.		Close	the	Import	Log	window	to	allow
the	installation	to	continue.		When	all	installation	steps	have	been	completed,
continue	with:

LANSA	Composer	Files	and	Data	Have	Been	Installed

LANSA	Composer	Files	and	Data	Have	Been	Installed
Both	parts	of	the	LANSA	Composer	Server	setup	are	now	complete.

Click	Finish	to	close	the	Completing	LANSA	Composer	Server	Setup	wizard.
Depending	on	your	particular	circumstances	and	choices	there	may	remain
some	post-installations	tasks	that	you	should	complete.		For	details,	please
continue	with:

Complete	the	Installation

Repair	an	Existing	LANSA	Composer	Installation
Use	this	option	to	repair	an	existing	installation	of	LANSA	Composer	version
5.0.
You	might	do	this,	particularly	on	instruction	from	LANSA	support	personnel,
in	the	event	that	your	installation	of	LANSA	Composer	Server	has	become
damaged.

NOTE:		As	with	any	upgrade,	you	are	strongly	advised	to	make	a
backup	of	the	LANSA	Composer	Windows	server	installation	and	the
database	that	it	uses	before	proceeding	with	the	repair.

This	option	will	re-install	the	LANSA	Composer	programs	and	other	software.	
It	will	not	change	or	remove	your	data	describing	your	LANSA	Composer
solutions	from	the	LANSA	Composer	database.
Follow	the	instructions	shown	by	the	LANSA	Composer	Server	Setup	wizard	to
proceed	and	complete	the	repair.

Complete	the	Installation
If	you	were	upgrading	from	LANSA	Composer	version	4.0,	then	you	should
first	continue	with	the	following:

Restore	Configurations	for	LANSA	for	the	Web	applications
Remove	LANSA	Composer	Version	4.0
Remove	LANSA	Composer	database	tables	from	the	earlier	version

You	may	now	need	to	complete	some	further	steps	to	prepare	your	LANSA
Composer	server	installation	for	use:

Apply	Licenses
Configure	Network	Share	for	use	by	LANSA	Composer	Clients
Grant	Database	Permissions	to	the	Web	User
Configure	IIS	to	Serve	the	LANSA	Composer	Web	Components
Running	the	LANSA	Composer	Client	on	the	Windows	Server

Once	the	installation	is	complete,	you	will	need	to	apply	any	server	licenses	that
you	have	been	issued	for	LANSA	Composer.	For	more	information	refer	to
License	the	LANSA	Composer	Server.

Restore	Configurations	for	LANSA	for	the	Web	applications
This	procedure	applies	if	you	are	upgrading	from	LANSA	Composer	version
4.0.	It	does	not	apply	if	you	are	installing	LANSA	Composer	Server.

You	must	complete	these	steps	before	you	Remove	LANSA	Composer
Version	4.0.

If	you	selected	Yes,	serving	other	web	applications	too	for	item	7	in	the
Complete	your	Upgrade	Plan,	then	complete	the	following	steps.
1.		Stop	Internet	Information	Services	(IIS).
2.		Locate	the	l4w3serv.cfg	file	in	the	LANSA	Composer	version	4.0	installation
directory	tree.		For	example,	it	might	be	found	in	C:\Program	Files\LANSA
Composer	Server\WebServer\IISPlugin.

3.		Copy	the	file	to	the	equivalent	location	in	the	LANSA	Composer	version	5.0
installation	directory	tree,	replacing	the	existing	file.

4.		Locate	the	lroute.dat	file	in	the	LANSA	Composer	version	4.0	installation
directory	tree.		For	example,	it	might	be	found	in	C:\Program	Files\LANSA
Composer	Server\Connect.

5.		Copy	the	file	to	the	equivalent	location	in	in	the	LANSA	Composer	version
5.0	installation	directory	tree,	replacing	the	existing	file.

6.		Start	the	LANSA	Communications	Administrator	program	using	the	shortcut
provided	in	the	LANSA	Composer	version	5.0	program	group.		Verify	that
the	entries	are	correct	for	your	other	LANSA	for	the	Web	applications.		Verify
that	the	COMPOSER01	entry	is	present	and	identifies	the	listener	port
number	for	the	LANSA	Composer	version	5.0	installation.

7.		Start	the	LANSA	Web	Administrator	program	using	the	shortcut	provided	in
the	LANSA	Composer	version	5.0	program	group.		Open	the	active
configuration	and	choose	the	Maintain	systems	command	from	the	Tools
menu.		Then	verify	that	the	entries	are	correct	both	for	the	LANSA	Composer
version	5.0	installation	and	for	the	other	LANSA	for	the	Web	applications.

8.		Restart	Internet	Information	Services	(IIS).
When	you	have	finished,	continue	with:

Remove	LANSA	Composer	Version	4.0

Remove	LANSA	Composer	Version	4.0
This	procedure	applies	if	you	are	upgrading	from	LANSA	Composer	version
4.0.	It	does	not	apply	if	you	are	installing	LANSA	Composer	Server.
The	procedure	to	upgrade	from	version	4.0	treats	Version	5.0	as	a	new
installation,	including	specifying	a	new	and	different	installation	path	for	the
LANSA	Composer	Version	5.0	software.	This	leaves	the	version	4.0	software
on	your	system.	Version	4.0	should	now	be	removed.
There	are	two	parts	to	removing	the	version	4.0	installation:

Delete	the	LANSA	Composer	version	4.0	shortcuts.	The	program	group
and	shortcuts	for	LANSA	Composer	version	4.0	are	no	longer	required.	You
should	delete	the	program	group	and	any	further	shortcuts	that	you	may	have
on	the	desktop	or	elsewhere.
Delete	the	LANSA	Composer	version	4.0	installation	directory.	
The	LANSA	Composer	version	4.0	software	remains	on	your	system	in	its
original	installation	directory	–	for	example:	C:\Program	Files\LANSA
Composer	Server.

Refer	to	item	14	in	Complete	your	Upgrade	Plan.		If	you	selected	No,	then
you	should:
Delete	(*)	the	entire	version	4.0	installation	directory.

					OR,	if	you	selected	Yes,	then	you	should:
Delete	(*)	all	the	contents	of	the	installation	directory	except	the	LANSA
Composer	Files	directory	(for	example,	C:\Program	Files\LANSA
Composer	Server\Data)

(*)	When	deleting	the	version	4.0	installation	directory,	do	so	by
simply	deleting	the	files	and/or	directories	as	instructed.		Do	NOT
attempt	to	uninstall	it	using	the	LANSA	(Selective	removal)	tool.

In	both	cases,	be	very	careful	that	it	is	the	version	4.0	shortcuts	or
installation	directory	that	you	are	removing.

When	you	have	finished,	continue	with:
Remove	LANSA	Composer	database	tables	from	the	earlier	version

Remove	LANSA	Composer	database	tables	from	the	earlier
version
This	procedure	applies	if	you	are	upgrading	from	LANSA	Composer	version
4.0.	It	does	not	apply	if	you	are	installing	LANSA	Composer	Server.
The	database	tables	for	LANSA	Composer	version	4.0	were	contained	in
schema	(or	collection	or	owner)	named	F4XF3LIB.
The	database	tables	for	LANSA	Composer	version	5.0	are	contained	in	schema
(or	collection	or	owner)	named	LC_DTA.
The	LANSA	Composer	Windows	Server	installer	will	have	created	the	version
5.0	database	tables	and	copied	the	version	4.0	data	into	them.		However,	the
version	4.0	database	tables	contained	in	schema	F4XF3LIB	will	remain	in	the
database,	even	though	they	are	no	longer	used.
You	should	use	your	database	management	tool	(for	example	MS	SQL	Server
Management	Studio)	to	remove	the	schema	F4XF3LIB	and	the	database	tables
and	views	it	contains.

Note:	For	future	LANSA	Composer	versions,	the	schema	name
LC_DTA	will	always	be	used	and	this	procedure	will	no	longer	be
necessary.

The	following	is	a	sample	SQL	script	that	you	may	be	able	to	copy	and	adapt	to
your	database	management	system	to	perform	this	task.		(The	specific	syntax
required	for	your	DBMS	may	vary	from	the	sample	script	shown	below)
	
USE	[database-name];
	
DROP	VIEW	[F4XF3LIB].[DXCVV02_V];
DROP	VIEW	[F4XF3LIB].[MWBHFL3_V];
DROP	TABLE	[F4XF3LIB].[DX02];
DROP	TABLE	[F4XF3LIB].[DX62];
DROP	TABLE	[F4XF3LIB].[DXAG];
DROP	TABLE	[F4XF3LIB].[DXAP];
DROP	TABLE	[F4XF3LIB].[DXAR];
DROP	TABLE	[F4XF3LIB].[DXAT];
	
DROP	TABLE	[F4XF3LIB].[DXCV];

DROP	TABLE	[F4XF3LIB].[DXDB];
DROP	TABLE	[F4XF3LIB].[DXDC];
DROP	TABLE	[F4XF3LIB].[DXDX];
DROP	TABLE	[F4XF3LIB].[DXEN];
DROP	TABLE	[F4XF3LIB].[DXEV];
	
DROP	TABLE	[F4XF3LIB].[DXFA1];
DROP	TABLE	[F4XF3LIB].[DXFA2];
DROP	TABLE	[F4XF3LIB].[DXFC];
DROP	TABLE	[F4XF3LIB].[DXHC];
DROP	TABLE	[F4XF3LIB].[DXJM];
	
DROP	TABLE	[F4XF3LIB].[DXL1];
DROP	TABLE	[F4XF3LIB].[DXL2];
DROP	TABLE	[F4XF3LIB].[DXL3];
DROP	TABLE	[F4XF3LIB].[DXL4];
DROP	TABLE	[F4XF3LIB].[DXL5];
DROP	TABLE	[F4XF3LIB].[DXL6];
	
DROP	TABLE	[F4XF3LIB].[DXLK];
DROP	TABLE	[F4XF3LIB].[DXM2];
DROP	TABLE	[F4XF3LIB].[DXM9];
DROP	TABLE	[F4XF3LIB].[DXMAPWORK];
	
DROP	TABLE	[F4XF3LIB].[DXMFCAT0];
DROP	TABLE	[F4XF3LIB].[DXMFCAT1];
DROP	TABLE	[F4XF3LIB].[DXMFCAT2];
DROP	TABLE	[F4XF3LIB].[DXMFCAT3];
DROP	TABLE	[F4XF3LIB].[DXMFCAT4];
DROP	TABLE	[F4XF3LIB].[DXMFCAT5];
DROP	TABLE	[F4XF3LIB].[DXMFCAT6];
	
DROP	TABLE	[F4XF3LIB].[DXMP];
DROP	TABLE	[F4XF3LIB].[DXMS];
DROP	TABLE	[F4XF3LIB].[DXNN];
DROP	TABLE	[F4XF3LIB].[DXNT];
	
DROP	TABLE	[F4XF3LIB].[DXP1];
DROP	TABLE	[F4XF3LIB].[DXP2];

DROP	TABLE	[F4XF3LIB].[DXP3];
DROP	TABLE	[F4XF3LIB].[DXP4];
DROP	TABLE	[F4XF3LIB].[DXP5];
DROP	TABLE	[F4XF3LIB].[DXP6];
DROP	TABLE	[F4XF3LIB].[DXP7];
DROP	TABLE	[F4XF3LIB].[DXP8];
	
DROP	TABLE	[F4XF3LIB].[DXPC];
DROP	TABLE	[F4XF3LIB].[DXPRTCTL];
DROP	TABLE	[F4XF3LIB].[DXPV];
	
DROP	TABLE	[F4XF3LIB].[DXR1];
DROP	TABLE	[F4XF3LIB].[DXR2];
DROP	TABLE	[F4XF3LIB].[DXR3];
	
DROP	TABLE	[F4XF3LIB].[DXSD];
DROP	TABLE	[F4XF3LIB].[DXSD02];
DROP	TABLE	[F4XF3LIB].[DXSK];
DROP	TABLE	[F4XF3LIB].[DXSM];
DROP	TABLE	[F4XF3LIB].[DXSP];
DROP	TABLE	[F4XF3LIB].[DXSRC256];
DROP	TABLE	[F4XF3LIB].[DXST];
DROP	TABLE	[F4XF3LIB].[DXSV];
DROP	TABLE	[F4XF3LIB].[DXSY];
	
DROP	TABLE	[F4XF3LIB].[DXT2];
DROP	TABLE	[F4XF3LIB].[DXT3];
DROP	TABLE	[F4XF3LIB].[DXT4];
DROP	TABLE	[F4XF3LIB].[DXT5];
DROP	TABLE	[F4XF3LIB].[DXT9];
DROP	TABLE	[F4XF3LIB].[DXTG];
DROP	TABLE	[F4XF3LIB].[DXTP];
DROP	TABLE	[F4XF3LIB].[DXTXT1];
	
DROP	TABLE	[F4XF3LIB].[DXX1EN];
DROP	TABLE	[F4XF3LIB].[DXX2IN];
DROP	TABLE	[F4XF3LIB].[DXX3GP];
DROP	TABLE	[F4XF3LIB].[DXX4MS];
DROP	TABLE	[F4XF3LIB].[DXX5AK];

	
DROP	TABLE	[F4XF3LIB].[DXXDCT];
DROP	TABLE	[F4XF3LIB].[DXXDSHF1];
DROP	TABLE	[F4XF3LIB].[DXXDST];
DROP	TABLE	[F4XF3LIB].[DXXDTR];
DROP	TABLE	[F4XF3LIB].[DXXECN];
	
DROP	TABLE	[F4XF3LIB].[DXXH];
DROP	TABLE	[F4XF3LIB].[DXXI];
DROP	TABLE	[F4XF3LIB].[DXXJ];
DROP	TABLE	[F4XF3LIB].[DXXSQN];
	
DROP	TABLE	[F4XF3LIB].[DXXTNLOG];
DROP	TABLE	[F4XF3LIB].[DXXTNREG];
DROP	TABLE	[F4XF3LIB].[DXXTNVLR];
	
DROP	TABLE	[F4XF3LIB].[EDI810IT1];
DROP	TABLE	[F4XF3LIB].[EDI810IT1P];
DROP	TABLE	[F4XF3LIB].[EDI810IT1R];
DROP	TABLE	[F4XF3LIB].[EDI810IT1S];
DROP	TABLE	[F4XF3LIB].[EDI810IT1T];
DROP	TABLE	[F4XF3LIB].[EDI810ITD];
DROP	TABLE	[F4XF3LIB].[EDI810MSG];
DROP	TABLE	[F4XF3LIB].[EDI810N1];
DROP	TABLE	[F4XF3LIB].[EDI810REF];
DROP	TABLE	[F4XF3LIB].[EDI810SAC];
DROP	TABLE	[F4XF3LIB].[EDI810TXI];
	
DROP	TABLE	[F4XF3LIB].[EDI850FOB];
DROP	TABLE	[F4XF3LIB].[EDI850MSG];
DROP	TABLE	[F4XF3LIB].[EDI850N1];
DROP	TABLE	[F4XF3LIB].[EDI850N1RF];
DROP	TABLE	[F4XF3LIB].[EDI850PER];
DROP	TABLE	[F4XF3LIB].[EDI850PO1];
DROP	TABLE	[F4XF3LIB].[EDI850PO1M];
DROP	TABLE	[F4XF3LIB].[EDI850REF];
DROP	TABLE	[F4XF3LIB].[EDI850TD5];
	
DROP	TABLE	[F4XF3LIB].[EDI855MSG];

DROP	TABLE	[F4XF3LIB].[EDI855N1];
DROP	TABLE	[F4XF3LIB].[EDI855PO1];
DROP	TABLE	[F4XF3LIB].[EDI855REF];
	
DROP	TABLE	[F4XF3LIB].[EDI997AK2];
DROP	TABLE	[F4XF3LIB].[EDI997AK3];
DROP	TABLE	[F4XF3LIB].[EDI997AK4];
DROP	TABLE	[F4XF3LIB].[EDI997MSG];
	
DROP	TABLE	[F4XF3LIB].[MWBDF];
DROP	TABLE	[F4XF3LIB].[MWBHF];
	
DROP	TABLE	[F4XF3LIB].[TUTORDH];
DROP	TABLE	[F4XF3LIB].[TUTORDL];
	
DROP	SCHEMA	[F4XF3LIB];

When	you	have	finished,	continue	with:
Apply	Licenses

Apply	Licenses
Once	the	installation	is	complete,	you	will	need	to	apply	any	server	licenses	that
you	have	been	issued	for	LANSA	Composer.	For	more	information	refer	to
License	the	LANSA	Composer	Server.
When	you	have	finished,	continue	with:

Configure	Network	Share	for	use	by	LANSA	Composer	Clients

Configure	Network	Share	for	use	by	LANSA	Composer	Clients
In	order	to	permit	network	access	by	the	LANSA	Composer	clients	to
transformation	map	definition	files	(*.mfd),	you	may	need	to	configure	a
network	share	to	certain	folders	used	by	the	LANSA	Composer	Windows	server
installation.

Note:		when	configuring	a	network	share	for	this	purpose,	the	LANSA
Composer	clients	will	need	both	read	and	write	access	to	the	shared
location.		Look	for	Advanced	Sharing	and/or	Security	options	in
Windows	in	order	to	configure	the	security	applying	to	the	network
share.		If	this	is	not	configured	properly,	LANSA	Composer	clients
may	fail	to	save	Transformation	Maps	correctly.

For	more	information	refer	to:
File	locations	relative	to	client

When	you	have	finished,	continue	with:
Grant	Database	Permissions	to	the	Web	User

its:LANSA091.CHM::/lansa/IntEngC6_0090.htm

Grant	Database	Permissions	to	the	Web	User
To	permit	the	LANSA	Composer	Web	components	(for	example,	the	Operations
Console)	to	operate	successfully,	you	need	to	grant	database	permissions	to	the
user	id	(for	example,	PCXUSER)	specified	in	the	User	Id	step	of	the	LANSA
Composer	Server	Setup	wizard.

For	a	Microsoft	SQL	Server	database,	the	LANSA	Composer	Server
Setup	wizard	will	have	granted	the	permissions	automatically.

Use	your	database	management	system's	(DBMS)	provided	software	to	grant
the	permissions.		You	must	grant	the	permissions	in	the	database	used	for
LANSA	Composer	–	that	is	the	database	specified	in	the	Setup	the	Local
Database	step	of	the	LANSA	Composer	Server	Setup	wizard.
When	you	have	finished,	continue	with:

Configure	IIS	to	Serve	the	LANSA	Composer	Web	Components

Configure	IIS	to	Serve	the	LANSA	Composer	Web	Components
The	LANSA	Composer	Windows	server	installation	does	not	re-configure	the
LANSA	for	the	Web	IIS	plug-in	if	it	is	already	installed.	This	is	deliberate,	to
avoid	interfering	with	existing	working	LANSA	for	the	Web	applications,	but	it
also	means	that	you	cannot	immediately	execute	the	LANSA	Composer	Web
components	(for	example,	the	Operations	Console)	until	you	manually	alter	the
IIS	plug-in	configuration.
There	are	several	ways	to	do	this.	The	following	describes	an	example
procedure	to	accomplish	this.

You	should	refer	to	the	applicable	LANSA	and	IIS	documentation	for
full	details.		The	example	procedure	shows	one	way	to	configure	the
IIS	plug-in	for	this	purpose.		The	specific	screens	and	the	most
appropriate	configuration	steps	and	values	may	differ	on	your	system
according	to	your	circumstances	and	requirements.

The	major	steps	in	the	example	procedure	are:
1.		In	IIS,	add	a	new	site	binding	for	LANSA	Composer
2.		In	the	LANSA	Web	Administrator,	add	a	data/application	server	for
LANSA	Composer
3.		Copy	LANSA	Composer's	web	images,	styles	and	script	files
4.		In	LANSA	Composer,	alter	System	Settings	to	use	the	new	port	number

When	you	have	finished,	continue	with:
Running	the	LANSA	Composer	Client	on	the	Windows	Server

1.		In	IIS,	add	a	new	site	binding	for	LANSA	Composer
By	default,	the	existing	LANSA	for	the	Web	application	is	being	served	using
the	default	port	80.
You	can	choose	a	new	port	number	on	which	to	serve	the	LANSA	Composer
Web	components.		Usually	you	should	use	a	port	number	greater	than	1000	to
avoid	conflict	with	"well-known"	port	assignments	used	for	other	protocols	such
as	FTP.
Once	you	have	chosen	the	port	number	(for	example,	8080),	perform	the
following	steps	to	configure	the	web	site	to	serve	that	port:

a.		Open	the	Microsoft	Internet	Information	Services	(IIS)	Manager	and
select	the	web	site	in	which	the	LANSA	for	the	Web	IIS	plug-in

(lansaweb)	is	installed.
b.		Open	the	Site	Bindings	window	for	the	selected	web	site	and	click	Add	to
add	a	new	binding.

c.		In	the	Add	Site	Binding	window,	type	the	new	port	number.
d.		Make	sure	you	have	saved	all	your	changes.		There	is	no	need	to	restart
IIS	services	yet.

2.		In	the	LANSA	Web	Administrator,	add	a	data/application
server	for	LANSA	Composer
Perform	the	following	steps	to	configure	LANSA	for	the	Web	to	invoke	LANSA
Composer	to	serve	web	requests	made	using	the	new	port	number:

a.		Open	the	LANSA	Web	Administrator	and	open	the	active	LANSA	web
configuration	(for	example,	l4w3serv.cfg	in	the	WebServer\IISPlugIn
folder	of	the	LANSA	system	directory	in	which	the	IIS	plug-in	is
installed)

b.		Select	Maintain	Systems	from	the	Tools	menu	and	click	Add.

c.		On	the	Web	Server	tab	of	the	Add	LANSA	System	window,	type	the
specific	port	number	determined	above.

d.		On	the	Data/Application	Server	tab	of	the	Add	LANSA	System	window,
type	the	name	of	the	LANSA	Communications	Administrator	entry	for
LANSA	Composer.		Click	the	ellipsis	(…)	button	to	open	the	LANSA
Communications	Administrator	if	necessary.		Type	the	user	and	password
details	necessary	for	LANSA	for	the	Web	to	connect	to	the	LANSA
Composer	application	server.

Note:	the	specified	user	profile	need	to	be	an	authorized	user	in	the
SQL	database	(if	using	Microsoft	SQL	Server)

e.		Test	the	connection,	save	your	changes	and	close	the	LANSA	Web
Administrator.

f.		Finally	you	should	restart	IIS	now	to	cause	the	new	configuration	to	take

effect.

3.		Copy	LANSA	Composer's	web	images,	styles	and	script	files
The	LANSA	Composer	Windows	server	installation	program	installed	the	web
images,	styles	and	script	files	for	LANSA	Composer	in	the	WebServer\Images
directories	of	the	LANSA	Composer	installation	location.
You	will	need	to	copy	these	files	to	the	equivalent	WebServer\Images	directories
of	the	LANSA	system	directory	in	which	the	IIS	plug-in	is	installed.
The	following	files	need	to	be	copied:

Image	files	named	xfd*.*	in	WebServer\Image		s
Cascading	style	sheet	files	(.css)	named	xfd*.css	in
WebServer\Images\style	
JavaScript	files	(.js)	named	xfd*.js	in	WebServer\Images\script	

4.		In	LANSA	Composer,	alter	System	Settings	to	use	the	new	port
number
Once	IIS	and	LANSA	for	the	Web	are	configured,	you	need	to	change	the	base
URL	used	by	LANSA	Composer	for	the	Operations	Console.
To	do	this,	start	the	LANSA	Composer	client	and	select	System	Settings	from
the	navigator	on	the	left.		In	the	list	of	system	settings,	select	Base	URL	for
browser	interface.		In	the	Value	edit	box	on	the	right,	change	the	URL	to	use	the
new	port	number	that	has	been	bound	to	the	LANSA	for	the	Web	IIS	plug-in.

Running	the	LANSA	Composer	Client	on	the	Windows	Server
When	you	install	LANSA	Composer	Server	on	Windows,	the	LANSA
Composer	client	software	is	also	installed	on	the	Windows	server	computer.
If	you	wish,	and	if	your	operating	procedures	permit	it,	you	can	logon	to	the
Windows	server	computer	and	run	the	client	software	in	offline	mode	(that	is,
accessing	the	LANSA	Composer	Windows	server	database	directly).
This	mode	of	running	the	LANSA	Composer	client	is	not	recommended	for
normal	use.		Most	usually,	you	will	install	the	LANSA	Composer	client
software	on	one	or	more	client	computers	that	will	connect	to	this	LANSA
Composer	server	on	Windows.		To	do	this,	follow	the	procedure	described	in
LANSA	Composer	Client	on	Windows.
However,	if	you	do	choose	to	run	the	LANSA	Composer	client	installed	with
the	Windows	server,	there	are	some	further	steps	that	you	must	complete	before
you	can	do	so.

Install	supporting	software

Full	use	of	the	LANSA	Composer	client	requires	Optional	Products	that	are
not	installed	with	the	LANSA	Composer	server.		You	may	need	to	manually
install	this	software	on	the	Windows	server.		If	so,	you	can	find	the
installation	programs	for	Altova	MapForce	and	the	JDK	in	the
\WINCLIENT\Installs	directory	of	your	LANSA	Composer	installation
media.

Services	Used	by	the	LANSA	Composer	Windows	Server
The	LANSA	Composer	Windows	server	is	a	complete	application	execution
environment	supporting	client/server	as	well	as	web	applications.	As	such,	it	has
a	number	of	services	that	must	be	active	on	the	server	to	provide	the	necessary
application	support.
When	the	installation	is	completed	into	a	new	LANSA	system,	the	necessary
services	are	started	for	you	and	are	usually	configured	to	be	automatically
started	whenever	the	server	system	is	restarted.
In	addition	to	the	services	described	below,	the	web	server	instance	used	by
LANSA	Composer	must	be	started	in	order	to	use	web	components	such	as	the
Operations	Console.

The	listener	service
The	LANSA	listener	provides	communications	services	necessary	to	support
both	the	client/server	and	web	parts	of	LANSA	Composer.	The	LANSA	listener
service	must	be	active	in	order	to	start	the	LANSA	Composer	windows	client	or
to	open	the	LANSA	Composer	operations	console	in	a	web	browser.
The	LANSA	listener	service	is	usually	identified	with	a	service	name	beginning
LConnect	Services.		If	you	have	more	than	one	LANSA	product	installed	on
your	server,	there	may	be	more	than	one	such	service.		In	this	case	you	can	refer
to	the	path	specified	in	the	service	description	to	identify	the	listener	service	that
is	used	by	your	LANSA	Composer	Windows	server.

The	Java	Service	Manager	(JSM)	service
The	Java	Service	Manager	service	associated	with	the	LANSA	Composer
installation	must	be	started	in	order	to	use	LANSA	Integrator	services	with
LANSA	Composer.	This	is	necessary	for	many	of	the	activities	shipped	with
LANSA	Composer.
The	Java	Service	Manager	service	is	usually	identified	with	a	service	name
beginning	LANSA	Integrator	JSM	Administrator	Service.		If	you	have	more	than
one	LANSA	product	installed	on	your	server,	there	may	be	more	than	one	such
service.		In	this	case	you	can	refer	to	the	path	specified	in	the	service	description
to	identify	the	listener	service	that	is	used	by	your	LANSA	Composer	Windows
server.

LANSA	Composer	Client	on	Windows

The	latest	information	concerning	this	version	of	LANSA	Composer	is
available	on	the	LANSA	web	site.		We	recommend	that	you	refer	to
this	before	proceeding	with	the	installation	or	upgrade.

You	will	install	the	client	on	Windows	in	these	steps:
Install	LANSA	Composer	Client
Initialize	Data	and	Settings

Note:	If	you	are	upgrading	or	replacing	an	existing	installation	of	the
LANSA	Composer	client	software,	it	is	strongly	recommended	that
you	uninstall	the	existing	client	software	before	beginning	the
installation	of	the	new	LANSA	Composer	client	software.		Refer	to
Uninstall	LANSA	Composer	Client	on	Windows	for	instructions	on
how	to	do	this.

http://www.lansa.com/support/v13news/index.htm#composer5?tabitems=1

Install	LANSA	Composer	Client
Log	on	to	your	Windows	PC	using	a	user	that	has	administrative	rights	on	the
computer.
Insert	the	LANSA	Composer	installation	DVD	into	the	DVD	drive	on	your
Windows	PC.	After	a	short	pause,	the	LANSA	Composer	installation	program
should	load.	(If	the	installer	does	not	start	automatically,	use	Windows	Explorer
to	locate	and	open	the	setup.exe	file	in	the	root	directory	of	the	installation
DVD.)

Start	the	setup	program
Click	the	Install	LANSA	Composer	Client	Software	option	to	start	the	LANSA
Composer	client	setup	program.

Complete	your	installation	choices
Complete	the	prompts	in	the	LANSA	Composer	Client	Installation	window	as
follows:
Installation	directory
Type	the	directory	path	into	which	LANSA	Composer	is	to	be	installed.		The
setup	program	will	create	the	folder	if	necessary.
The	setup	program	will	automatically	generate	and	show	the	name	for	the	start
menu	folder	that	will	contain	the	program	shortcuts	based	upon	the	installation
directory	path	that	you	specify.
The	setup	program	will	create	a	set	of	icons	in	your	Start	menu	for	LANSA
Composer.		These	icons	will	be	contained	in	the	start	menu	folder	name	shown.
It	can	also	create	icons	on	your	desktop	if	you	choose.		Check	the	Create
Desktop	Icon	box	if	you	wish	desktop	icons	to	be	created.		If	you	choose	this
option,	the	setup	program	will	create	a	single	desktop	icon	(*)	that	will	always

be	labelled	LANSA	Composer	and	that	will	start	the	LANSA	Composer	client
software.

(*)	Note	if	you	install	LANSA	Composer	client	software	more	than
once,	only	one	LANSA	Composer	desktop	icon	is	created.		If	it
already	exists,	it	will	be	updated	to	refer	to	the	last	installed	LANSA
Composer	client.		If	you	wish	to	have	more	than	one	desktop	icon	for
multiple	LANSA	Composer	client	installations,	then	you	must
manually	copy	and	alter	the	desktop	icons	accordingly.

LANSA	Composer	Server	Definition
Specify	the	DNS	name	or	IP	address	of	the	LANSA	Composer	server	to	which
you	will	connect	and	the	communications	port	number	used	by	the	LANSA
Listener	for	the	specified	LANSA	Composer	server.
(These	details	will	be	used	to	initialize	the	COMPOSER01	server	entry	in	the
LANSA	Communications	Administrator.		The	LANSA	Composer	client	will
default	to	using	the	COMPOSER01	entry	for	its	server	connection,	although
you	can	change	this	if	necessary	when	you	connect.)
Optional	Products
Typical	use	of	LANSA	Composer	client	requires	the	installation	of	some	other
supporting	software.	The	LANSA	Composer	client	setup	program	can	install
this	software	for	you:

Altova	MapForce	is	used	to	visually	define	transformation	maps	that
transform	data	between	formats	such	as	database,	XML,	EDI	and	text.	If	you
wish	to	define	transformation	maps	then	you	must	install	Altova	MapForce.
A	Java	development	kit	at	a	supported	level	is	required	for	compiling	the
Java	code	that	is	generated	to	implement	your	transformation	maps
The	LANSA	Integrator	Studio	may	optionally	be	used	for	developing	certain
LANSA	Integrator	level	solutions	(such	as	web	services	solutions)	that	you
might	use	with	LANSA	Composer.		Usually,	this	type	of	activity	will	also
require	development	activity	using	the	LANSA	development	environment	or
other	3GL	program	languages.
The	LANSA	Web	Administrator	is	used	to	configure	the	LANSA	for	the
Web	support	on	your	LANSA	Composer	server.		You	may	need	to	use	this
program	if	you	need	or	choose	to	change	the	default	LANSA	for	the	Web
configuration	used	by	LANSA	Composer.

It	is	strongly	recommended	that	you	install	this	software	if	the	setup	program

suggests	that	you	do	so.	If	you	do	not,	certain	features	of	LANSA	Composer
(such	as	the	transformation	map	features)	will	not	be	available	to	you	unless	you
subsequently	install	them	individually.

Note	1:		If	Altova	MapForce	is	already	installed	at	a	version	earlier
than	supplied	with	this	version	of	LANSA	Composer,	you	may	wish	to
upgrade	it	to	the	supplied	version.		You	can	do	so	before	or	after
installing	LANSA	Composer	by	directly	running	the	appropriate
installation	executable	file	supplied	on	the	LANSA	Composer
installation	media.		Refer	to	Mapping	Tool	Requirements	for	specific
considerations	that	apply	to	upgrading	from	an	earlier	version	of
Altova	MapForce.

Note	2:		If	you	intend	to	use	Altova	MapForce	to	create	mappings
involving	EDI	X12,	EDIFACT,	HL7	or	certain	other	specialized
transaction	standards,	you	may	need	to	install	additional	configuration
files	for	that	transaction	standard.		These	are	not	installed	by	the
LANSA	Composer	client	installation.		The	additional	installers	for
EDI	X12	and	EDIFACT	for	the	shipped	version	of	Altova	MapForce
are	provided	on	the	LANSA	Composer	installation	media.	
Configuration	files	for	other	versions	or	standards	may	be	downloaded
from	the	Altova	web-site	at
http://www.altova.com/components_mapforce.html.

Proceed	with	the	installation
When	you	have	completed	your	installation	choices,	click	OK	to	proceed	with
the	installation	and	then	click	Yes	when	asked	to	confirm	that	the	installation
should	proceed.

The	setup	program	will	proceed	through	a	number	of	steps	(according	to	your

choices)	to	install	the	supporting	software	and	the	LANSA	Composer	client.	
When	complete,	the	LANSA	Composer	Client	Installation	window	will	close
and	the	Read	Me	will	be	opened.	You	can	now	start	the	LANSA	Composer
client	application	using	the	shortcuts	provided	on	your	start	menu.		You	should
continue	with	the	following	steps:

Initialize	Data	and	Settings

Initialize	Data	and	Settings
The	first	LANSA	Composer	client	to	connect	to	the	server	should	complete	the
initialization	of	the	server	system	by	importing	supplied	definitions	and
establishing	system	settings.	To	begin	this	task,	start	LANSA	Composer	using
the	shortcut	provided	and	connect	to	your	LANSA	Composer	server	as
described	in	Connect	to	LANSA	Composer	Server.
Now	perform	these	two	steps:

Step	1.	LANSA	Composer	Server	Initialization
Step	2.	Establish	System	Settings

its:LANSA091.CHM::/lansa/intengc1_0140.htm

Step	1.	LANSA	Composer	Server	Initialization

This	step	applies	only	when	connecting	to	an	IBM	i	server.		If	your
LANSA	Composer	Server	software	is	installed	on	a	Windows
software,	you	may	disregard	this	section.

When	the	first	LANSA	Composer	client	starts	and	connects	to	the	IBM	i	server,
LANSA	Composer	will	detect	that	the	server	system	initialization	has	not	been
completed	and	prompt	you	to	do	so.

You	should	follow	the	prompts	to	complete	the	wizard	and	initialize	the	server
system.		In	particular::

When	prompted	to	set	selected	system	settings,	you	can	refer	to	System
settings	for	detailed	information	about	the	system	settings	whose	values	you
are	required	to	supply.
When	prompted	to	import	supplied	definitions,	there	is	an	option	to	import
supplied	examples.	To	prevent	import	of	examples,	uncheck	the	check	box.

its:LANSA091.CHM::/lansa/intengc6_0015.htm

Once	done,	click	Finish	to	save	your	changes	and	proceed	with	the	import.

Step	2.	Establish	System	Settings
During	Step	1.	LANSA	Composer	Server	Initialization	you	may	have	specified
certain	system	settings	necessary	for	the	basic	initialization	to	complete.		You
should	now	review	and	revise	as	necessary	all	the	remaining	system	settings	for
LANSA	Composer.	Certain	features	of	LANSA	Composer	will	not	function
correctly	until	you	have	specified	appropriate	settings	for	your	installation.
To	revise	the	system	settings,	expand	Administration	and	Housekeeping	and
click	System	Settings.	Refer	to	System	settings	for	more	information.
In	particular,	you	must	provide	appropriate	values	for	the	following	settings:

Home	path	described	in	File	locations
Base	URL	for	browser	interface	described	in	Browser
URL	for	LANSA	Integrator	(JSM)	console	described	in	Browser.

its:LANSA091.CHM::/lansa/intengc6_0015.htm
its:LANSA091.CHM::/lansa/intengc6_0045.htm
its:LANSA091.CHM::/lansa/intengc6_0050.htm
its:LANSA091.CHM::/lansa/intengc6_0050.htm

Uninstall	LANSA	Composer	Client	on	Windows
The	LANSA	Composer	client	consists	of	the	LANSA	Composer	client	software
and	supporting	software	including	the	Mapping	Tool	(Altova	MapForce)	and	the
Java	Development	Kit.		You	can	uninstall	each	of	these	components
independently.		If	LANSA	Composer	client	installed	all	these	components,	then
you	must	separately	uninstall	each	of	them	in	order	to	completely	remove
LANSA	Composer	client	software	from	the	PC.
When	uninstalling	you	should	logon	as	the	same	user	who	installed	LANSA
Composer.		If	that	is	not	possible,	you	should	use	a	user	that	has	administrative
privileges	on	the	computer.

Uninstall	the	Mapping	Tool
You	can	uninstall	the	Mapping	Tool	(Altova	MapForce),	if	required	using	the
Add	or	Remove	Programs	applet	in	Control	Panel.

Uninstall	the	Java	Development	Kit
You	can	uninstall	the	Java	Development	Kit,	if	required	using	the	Add	or
Remove	Programs	applet	in	Control	Panel.

Uninstall	the	LANSA	Composer	client	software
Follow	these	steps	to	uninstall	the	LANSA	Composer	Windows	client	software
1.		Using	Windows	Explorer,	locate	and	delete	the	LANSA	Composer	program
folder	in	the	Program	Files	folder	on	your	PC.		For	example:

					C:\Program	Files\LANSA	Composer
2.		Locate	and	delete	the	LANSA	Composer	program	folder	on	your	Start
menu.		To	do	this:
a.		Click	the	Start	button
b.		Click	Programs
c.		Right-click	the	LANSA	Composer	folder	name
d.		Select	Delete	from	the	popup	menu.

3.		Locate	and	delete	the	shortcut	to	the	LANSA	Composer	program	folder	on
your	desktop,	if	present.

4.		Using	Windows'	Registry	Editor,	locate	the	LANSA	Composer	key	in	the
Software	section	of	HKEY_CURRENT_USER.		If	you	have	more	than	one
copy	of	LANSA	Composer	client	installed,	locate	and	delete	ONLY	the	sub-

key	that	corresponds	to	the	installed	path	for	the	copy	that	you	are	deleting.	
Otherwise	you	can	delete	the	entire	LANSA	Composer	key.

					This	step	is	optional,	but	it	is	important	to	do	this	if	you	intend	to	re-install
LANSA	Composer	on	the	same	computer.

					Incorrectly	editing	the	Windows	registry	can	render	your	computer
inoperable.		You	should	only	perform	this	procedure	if	you	are	well-versed	in
the	Windows'	registry	and	in	using	the	Registry	Editor.

Appendix	B.	License	LANSA	Composer
The	LANSA	Composer	server	needs	to	be	licensed	for	your	server	computer	in
order	to	design	or	execute	business	integration	solutions.		For	more	information
refer	to	License	the	LANSA	Composer	Server.
The	LANSA	Composer	client	software	does	not	need	to	be	further	licensed	with
the	exception	that	you	need	to	obtain	and	apply	a	license	code	for	the	mapping
tool	if	you	wish	to	design	Transformation	Maps.		For	more	information	refer	to
License	the	LANSA	Composer	Client.

IMPORTANT	NOTE:
If	you	are	upgrading	from	LANSA	Composer	version	4.0,	you	must
first	request	new	LANSA	Composer	server	licenses.		Refer	to	Request
a	Server	License	for	LANSA	Composer.

License	the	LANSA	Composer	Server
The	LANSA	Composer	server	needs	to	be	licensed	for	your	server	computer	in
order	to	permit:

LANSA	Composer	clients	to	connect	to	it
LANSA	Composer	Processing	Sequences	to	be	run
LANSA	Integrator	services	to	be	used	by	supplied	activities
The	Operations	Console	of	LANSA	Composer	to	be	accessed	from	a	web-
browser.

If	you	wish	to	use	the	CALL_FUNCTION	or	COMPOSER_RUN	activities	in
their	"remote"	mode	to	call	LANSA	functions	or	run	LANSA	Composer
Processing	Sequences	on	a	different	server	system,	then	the	remote	system	will
also	need	a	LANSA	Composer	Remote	Request	Server	license.
In	order	to	license	your	server	for	LANSA	Composer,	you	will	need	to:

Request	a	Server	License	for	LANSA	Composer
Apply	the	Server	License	for	LANSA	Composer

You	may	also	refer	to	general	information	about	licensing	LANSA	products	at
this	web	page:

Product	Licensing
For	additional	information,	you	can	also	refer	to	About	LANSA	Composer
Server	Licenses.

http://www.lansa.com.au/support/licensing/index.htm

Request	a	Server	License	for	LANSA	Composer
The	procedure	you	need	to	follow	to	request	a	server	license	for	LANSA
Composer	depends	on	the	type	of	server	on	which	LANSA	Composer	will	be
installed.		Refer	to	the	appropriate	heading	below:

IBM	i	Server	or
Windows	Server

IBM	i	Server
When	you	request	a	LANSA	Composer	license	for	your	IBM	i	server	you	will
need	to	provide	the	processor	serial	number,	model	number	and	feature	code
that	apply	to	the	server	to	be	licensed.
You	can	obtain	this	information	using	the	WRKSYSVAL	command	from	an
OS/400	Command	Entry.	On	the	Work	System	Values	screen,	use	option	5	to
display	the	required	values:

System	serial	number	(QSRLNBR)
System	model	number	(QMODEL)
Processor	Feature	(QPRCFEAT).

To	display	a	single	system	value,	you	may	also	use	the	DSPSYSVAL	command.
For	example,	DSPSYSVAL	QPRCFEAT	will	display	the	Processor	Feature
code.
Windows	Server
To	obtain	the	LANSA	license	codes	required	for	your	LANSA	Composer	server
on	Windows,	you	must	supply	the	CPU	details	of	the	Windows	server	on	which
LANSA	Composer	is	installed.	This	is	achieved	using	a	shipped	LANSA	utility,
called	x_cpu.		Refer	to	the	following	web	page	for	information	on	using	x_cpu:

Using	X_CPU.EXE	for	generating	CPU	details	for	a	License	request
When	you	have	run	x_cpu.exe	and	have	located	your	x_cpu_<My	cpu>_<My
model>.txt	file,	you	can	contact	your	LANSA	vendor	to	request	the	license,
providing	the	file	and	specify	that	you	require	one	or	both	of:

LANSA	Composer	license	for	a	Windows	server
LANSA	Composer	Remote	Request	Server	license	for	a	Windows	server

Refer	to	About	LANSA	Composer	Server	Licenses	for	information	on	the
individual	license	codes	required	to	license	a	LANSA	Composer	Windows
server.

http://www.lansa.com/support/tips/t0577.htm

Apply	the	Server	License	for	LANSA	Composer
The	procedure	you	need	to	follow	to	apply	a	server	license	for	LANSA
Composer	depends	on	the	type	of	server	on	which	LANSA	Composer	is
installed.		Refer	to	the	appropriate	heading	below:

IBM	i	Server	or
Windows	Server

IBM	i	Server
You	will	usually	receive	your	IBM	i	server	license	as	a	file	attachment	to	an	e-
mail	message.		To	apply	the	license,	you	need	to	follow	these	steps:
1.		Save	the	license	file	on	the	IFS	(integrated	file	system)	of	your	IBM	i	server.
					You	might	save	it	to	the	folder	that	was	created	for	LANSA	Composer.		For
example	you	might	save	it	as:
/LANSA_Composer/license.txt

2.		Signon	to	an	IBM	i	workstation	or	emulation	session	as	QSECOFR	or
equivalent.

3.		Type	the	following	command	and	press	Enter:
<pgmlib>/COMPOSER	LICENSE

					where	<pgmlib>	is	the	name	of	the	program	library	for	the	LANSA	system
in	which	LANSA	Composer	is	installed.		For	example,	if	you	installed
LANSA	Composer	into	the	default	location,	you	would	type:
LICPGMLIB/COMPOSER	LICENSE

4.		All	current	licenses,	if	any,	will	be	displayed,	along	with	their	status.		To
apply	your	new	license,	proceed	by	following	the	instructions	at	the
following	web	page:
Server	License	Codes	-	IBM	i

5.		Start	or	restart	the	LANSA	listener,	the	HTTP	server	and	the	Java	Service
Manager	(JSM).		Refer	to	Subsystems	and	Jobs	for	information	on
controlling	these	subsystems	and	jobs.

Windows	Server
You	will	usually	receive	your	Windows	server	license	as	a	file	attachment	to	an
e-mail	message.		To	apply	the	license,	you	should	follow	the	instructions	at	the
following	web	page:

http://www.lansa.com/support/tips/t0578.htm#GenLiciSeries

Server	License	Codes	-	Windows

http://www.lansa.com/support/tips/t0578.htm#Genlicwin

About	LANSA	Composer	Server	Licenses
A	complete	LANSA	Composer	server	license	is	made	up	of	at	least	four
individual	license	codes	that	license	separate	components	of	LANSA	and
LANSA	Composer	functionality.		The	necessary	license	codes	are	delivered	and
applied	using	a	single	file.		The	following	table	describes	the	individual	license
codes	that	are	necessary	for	the	LANSA	Composer	server.

TFD LANSA
Composer
run-time

Permits	LANSA	Composer	Processing	Sequences
to	be	run.

LXX
or	Xnn

Client/server
support
(SuperServer)

Permits	LANSA	Composer	clients	to	connect	to
the	LANSA	Composer	server.

PWB,
WEB
or
Wnn

Web	support Permits	the	HTTP	server	support	necessary	for
the	Operations	Console	of	LANSA	Composer	to
be	accessed	from	a	web-browser.

JME LANSA
Integrator

Permits	LANSA	Integrator	services	to	be	used	by
supplied	activities.

EDI LANSA
Integrator

Permits	EDI-specific	LANSA	Integrator	services
to	be	used	by	supplied	activities.

	

If	necessary	you	can	check	the	status	of	individual	licenses.
IBM	i	Server
To	check	the	status	of	individual	licenses	on	your	IBM	i	server,	type	the
following	command	and	press	Enter:

<pgmlib>/LANSA	LICENSE
where	<pgmlib>	is	the	name	of	the	program	library	for	the	LANSA	system	in
which	LANSA	Composer	is	installed.		For	example,	if	you	installed	LANSA
Composer	into	the	default	location,	you	would	type:

LICPGMLIB/LANSA	LICENSE
From	the	resulting	menu,	choose	option	1	and	press	Enter	to	display	LANSA

license	status	for	the	LANSA	system.
Windows	Server
To	check	the	status	of	individual	licenses	on	your	Windows	server,	select	the
LANSA	License	Status	item	from	the	Start	menu	or	LANSA	shortcuts	folder	for
the	Visual	LANSA	system	in	which	LANSA	Composer	is	installed.

LANSA	Composer	Remote	Request	Server	License
If	you	wish	to	use	the	CALL_FUNCTION	or	COMPOSER_RUN	activities	in
their	"remote"	mode	to	call	LANSA	functions	or	run	LANSA	Composer
Processing	Sequences	on	a	different	server	system,	then	the	remote	system	will
also	need	a	LANSA	Composer	Remote	Request	Server	license.	The	following
table	describes	the	individual	license	codes	that	usually	comprise	a	LANSA
Composer	Remote	Request	Server	license.

TFQ LANSA
Composer
remote
request	server

Permits	the	LANSA	Composer	Request	Server	to
be	executed	in	remote	mode	on	the	remote	system.

LXX
or
Xnn

Client/server
support
(SuperServer)

Permits	LANSA	Composer	running	on	a	separate
server	system	to	connect	to	the	LANSA	Composer
Request	Server	on	the	remote	system.

	

	

License	the	LANSA	Composer	Client
You	need	to	request	and	apply	a	license	code	for	the	mapping	tool	if	you	wish	to
design	Transformation	Maps	with	LANSA	Composer.		You	request	the	license
code	from	your	LANSA	Composer	supplier.
You	will	receive	the	license	by	email	as	a	file	attachment.		Follow	the
instructions	supplied	in	the	email	to	apply	the	license	to	the	LANSA	Composer
client	your	computer(s)	to	which	it	applies.

Appendix	C.	The	Mapping	Tool
The	Altova	MapForce	mapping	tool	has	been	selected	for	use	with	LANSA
Composer	specifically	because	of	its	powerful	visual	mapping	of	data	between
XML,	EDI,	Excel	(OOXML),	text,	web	service	functions	and	database	formats.
However,	MapForce	is	a	general-purpose	mapping	tool	from	a	third-party
vendor	(Altova)	and	not	designed	specifically	or	exclusively	for	use	with
LANSA	Composer.	As	a	consequence,	there	are	certain	features	and	functions
of	MapForce	that	do	not	apply	and/or	that	LANSA	do	not	support	in	the	context
of	LANSA	Composer.	Refer	to	Supported	Functionality	of	the	Mapping	Tool	for
further	details.

Also	see
Learn	about	the	Mapping	Tool
Mapping	Tool	Requirements
Connecting	to	databases	in	Transformation	Maps
Supported	Functionality	of	the	Mapping	Tool
Supported	Versions	of	the	Mapping	Tool

Learn	about	the	Mapping	Tool
MapForce	is	a	powerful	visual	mapping	tool	with	a	range	of	features	and
functionality	that	is	beyond	the	scope	of	this	guide	to	describe.	You	are	strongly
urged	to	complete	the	relevant	tutorials	and	refer	to	the	supplied	MapForce
documentation	to	acquaint	yourself	fully	with	this	tool.
In	particular,	you	should:

Complete	the	LANSA	Composer	Tutorials.
Complete	applicable	on-line	training	modules	offered	by	Altova.
Complete	the	MapForce	tutorial	which	can	be	found	in	the	Altova	MapForce
User	and	Reference	Manual.
Read	the	Altova	MapForce	User	and	Reference	Manual.

A	brief	outline,	Overview	of	the	Mapping	Tool,	has	been	provided	to	give	you	a
quick	start	with	this	tool.

Note:		When	completing	the	Altova	on-line	training	modules,	the
MapForce	tutorial	or	using	other	MapForce	reference	material,	bear	in
mind	the	context	and	limitations	for	use	of	MapForce	within	LANSA
Composer.	For	example,	you	may	wish	to	disregard	references	to
generating	XSLT	(or	other	languages)	code	since	LANSA	Composer
uses	MapForce	to	generate	Java	code	for	your	Transformation	Maps.

its:lansa091.chm::/lansa/intengc8_0010.htm
http://www.altova.com/wbt_overview.html

Overview	of	the	Mapping	Tool
When	you	first	edit	a	new	Transformation	Map,	the	Altova	MapForce	window
is	shown	and	the	map	workspace	is	empty.

Note	that	LANSA	Composer	has	already	assigned	a	file	name	and
path	to	the	map.	The	file	name	is	based	on	the	identifier	you	assigned
to	the	Transformation	Map	in	Create	or	Copy	a	Transformation	Map
in	Work	with	Transformation	Maps.	You	can	see	the	file	name	in	the
title	bar	–	in	this	case	DEM_ORDER.mfd.	When	you	save	your	map,
do	NOT	change	the	name	or	path.	If	you	do	so,	LANSA	Composer
will	not	find	or	use	your	saved	map	definition.

A	typical	Transformation	Map	transforms	data	from	one	format	to	another	–	for
example,	from	an	in-coming	order	in	xml	format	to	one	or	more	database	tables.
The	steps	to	create	this	type	of	map	will	typically	include:
1.		Insert	the	source	component.

its:LANSA091.CHM::/lansa/intengc2_0205.htm

					To	insert	an	XML,	EDI,	text	or	database	component	that	is	to	be	the	source
component	for	the	mapping,	select	the	appropriate	option	from	the	Insert
menu	(or	use	the	corresponding	toolbar	button)	and	complete	the	resulting
dialogs	to	make	your	selection.

2.		Insert	the	target	component.
					Insert	the	XML,	EDI,	text	or	database	component	that	is	to	be	the	target
component	for	your	map.	To	do	this,	you	follow	the	same	procedure	as	you
did	to	insert	the	source	component.	When	you	have	completed	your
selections,	the	components	are	added	to	the	map	workspace.	You	can	re-
arrange	the	components	in	the	workspace	to	make	them	easier	for	you	to
work	with.

					The	source	and	target	are	shown	in	a	tree	view.	The	triangles	in	the	edges	of
each	item	indicate	the	input	and	output	connectors	for	use	when	mapping	the
individual	elements,	attributes,	columns	or	fields.

For	further	information	about	inserting	database	components	in	your
map,	refer	to	Connecting	to	databases	in	Transformation	Maps.

3.		Connect	elements,	attributes,	columns	or	fields	of	the	source	and	target
components.

					Create	connections	between	corresponding	elements,	attributes,	columns	or
fields	of	the	source	and	target	components.	To	create	the	connections,	you
click	and	drag	from	the	output	connector	(the	small	triangle)	of	a	source	data
item	to	the	input	connector	of	the	corresponding	target	data	item.	When	you
release	the	mouse	over	the	input	connector	of	the	target	data	item,	the
mapping	tool	draws	the	connector	between	the	two.	You	proceed	in	this	way
until	all	necessary	connections	are	made.

its:LANSA091.CHM::/lansa/intengc9_0135.htm

4.		When	complete,	Save	your	map	and	close	MapForce.
					When	you	save	your	Transformation	Map	definition	in	MapForce,	it	is	saved
as	a	.mfd	mapping	file	that	contains	the	map	definition.	The	.mfd	file	is	not
executable.	In	order	to	execute	the	map,	you	must	prepare	the	map.	Refer	to
Prepare	Transformation	Map	for	information.

Note:	The	mapping	tool	includes	menu	options	and	tool	buttons	for
generating	code	for	mapping	in	various	languages.	Do	not	use	these
options	as	LANSA	Composer	will	generate	the	Java	code	for	the	map
when	you	complete	the	Prepare	step.

its:LANSA091.CHM::/lansa/intengc2_0370.htm

Mapping	Tool	Requirements
To	use	the	mapping	tool	and	the	Transformation	Map	features	of	LANSA
Composer,	you	need	the	following	on	the	workstation	at	which	the
Transformation	Maps	will	be	designed.

LANSA	Composer	client	software
Altova	MapForce	installed,	configured	and	licensed
A	supported	Java	Development	Kit	for	compiling	the	Java	code	for	the
Transformation	Map.

The	Java	development	kit	(JDK)	must	be	at	a	level	that	is	capable	of
compiling	the	Java	code	for	Transformation	Maps	to	the	required	Java
version	as	required	by	the	JVM	on	the	LANSA	Composer	Server.		In	order
to	run	Transformation	Maps,	the	following	minimum	JVM	level	is	required
on	the	LANSA	Composer	server:
For	Transformation	Maps	created	with	Altova	MapForce	2013	or	later,
your	JVM	must	be	at	level	1.6	or	higher.
For	Transformation	Maps	created	with	Altova	MapForce	2009	or	later,
your	JVM	must	be	at	level	1.5	or	higher.
For	Transformation	Maps	created	with	Altova	MapForce	2008	release	2	or
earlier,	your	JVM	must	be	at	level	1.4	or	higher.		For	Excel	2007
(OOXML)	support,	Java	1.5	or	higher	is	necessary.

The	LANSA	Composer	client	setup	will	install	these	components	if	necessary.

Notes:

LANSA	Composer	will	operate	successfully	with	all	recent	versions
of	Altova	MapForce.		It	is	not	mandatory	to	upgrade	Altova	MapForce
to	the	version	supplied	with	this	version	of	LANSA	Composer,
although	we	strongly	advise	that	you	do	so	in	order	to	take	advantage
of	new	functionality	in	Altova	MapForce.

You	should	make	sure	that	you	use	the	same	version	of	Altova
MapForce	on	all	LANSA	Composer	client	installations.

If	you	intend	to	use	Altova	MapForce	to	create	mappings	involving
EDI	X12,	EDIFACT,	HL7	or	certain	other	specialized	transaction

standards,	you	may	need	to	install	additional	configuration	files	for
that	transaction	standard.		These	are	not	installed	by	the	LANSA
Composer	client	installation.		The	additional	installers	for	EDI	X12
and	EDIFACT	for	the	shipped	version	of	Altova	MapForce	are
provided	on	the	LANSA	Composer	client	media.		Configuration	files
for	other	versions	or	standards	may	be	downloaded	from	the	Altova
web-site	at	http://www.altova.com/components_mapforce.html.

	

Connecting	to	databases	in	Transformation	Maps
The	mapping	tool	in	LANSA	Composer	supports	mapping	data	between	the
various	forms	in	which	you	exchange,	transport,	store	and	process	it	-	for
example,	between	XML	and	CSV.
Because	most	corporate	data	is	stored	in	relational	databases,	a	common
application	of	Transformation	maps	is	to	map	data	between	one	of	those	formats
and	an	application	database.	For	example,	in	an	application	that	permits	trading
partners	to	submit	sales	orders	in	an	agreed	XML	format,	your	application	might
need	to:

transform	incoming	sales	order	XML	data	received	from	your	trading	partner
into	your	received-orders	database;
transform	order	acknowledgement	information	from	your	database	into	an
agreed	XML	form	to	send	back	to	the	trading	partner.

The	mapping	tool	supports	the	use	of	database	components	as	either	the	source
or	target	(or	both)	of	the	transformation	for	the	databases	it	supports.	These
include:

MS	SQL	Server
Oracle
IBM	DB2
MySQL

Other	databases	may	be	used	if	they	provide	suitable	connectivity.	You	should
refer	to	MapForce	documentation	and	Altova	for	details	of	database	support	in
MapForce.

Database	Connectivity
You	must	be	able	to	establish	two	types	of	connectivity	to	a	database	for	use
with	the	mapping	tool	and	the	maps	it	generates:

ODBC,	ADO	or	JDBC	connection	from	the	LANSA	Composer	client
computer

					While	defining	your	map	you	need	to	be	able	to	establish	an	ODBC,	ADO	or
JDBC	connection	(depending	on	the	specific	database	type).	This	connection
is	initiated	from	the	client	computer	running	MapForce.	Refer	to:
Connecting	to	databases	while	defining	a	Transformation	Map	using	ODBC
or	ADO

Connecting	to	databases	while	defining	a	Transformation	Map	using	JDBC
JDBC	connection	from	the	LANSA	Composer	server	computer

					When	the	Transformation	map	runs,	it	will	use	a	JDBC	connection	to
establish	the	connection	to	the	database.	This	connection	is	initiated	from	the
server	computer	on	which	the	transformation	map	executes.	Refer	to:
Connecting	to	Databases	while	Executing	a	Transformation	Map	using
JDBC

The	following	topic	provides	additional	information	about	connecting	to
databases	in	Transformation	Maps:

Database	Connectivity	Components	and	Drivers
The	following	topics	provide	examples,	sample	screens	and	guidance	for
connecting	to	selected	specific	database	types:

Example	Database	Connections	for	IBM	DB2	for	i5/OS
Example	Database	Connections	for	Microsoft	Access
Example	Database	Connections	for	Microsoft	SQL	Server
Example	Database	Connections	for	Oracle
	

Connecting	to	databases	while	defining	a	Transformation	Map
using	ODBC	or	ADO
You	define	your	Transformation	Map	using	the	mapping	tool.	If	you	wish	to	use
a	database	in	your	map,	you	do	so	by	inserting	a	database	component	and
completing	the	screens	presented	by	the	mapping	tool	that	define	the	database
connection.	Because	the	mapping	tool	runs	on	your	LANSA	Composer	client
computer:

The	database	connection	is	relative	to	(from)	the	LANSA	Composer	client
computer
Any	required	database	connectivity	components	must	be	installed	on	the
LANSA	Composer	client	computer

Refer	to	the	following	topics	for	more	information	about	inserting	a	database
component	using	the	mapping	tool:

Insert	a	Database	Component
Select	a	Database	Type
Select	Database	Drivers
Select	or	Create	a	DSN
Select	Database	Schema	and	Tables

	

About	ODBC

ODBC	stands	for	open	database	connectivity.	It	is	an	API	for	using	database
management	systems	that	is	intended	to	be	independent	of	programming
languages,	databases	and	operating	systems.	It	provides	methods	for	querying
and	updating	data	in	a	database.

ODBC	Drivers

An	ODBC	driver	is	software	that	conforms	to	the	ODBC	standard	and	will
provide	the	bridge	between	ODBC	database	access	requests	issued	by	the
application	(in	this	case	the	mapping	tool,	Altova	MapForce)	and	a	particular
vendor's	database	system.
The	driver	accepts	requests	according	to	the	ODBC	standard	API	and	processes
them	according	to	the	particular	database	type	or	system	for	which	it	is

designed.
Major	database	vendors	provide	approved	ODBC	drivers	for	their	database
products.	Refer	to	Database	Connectivity	Components	and	Drivers	for	further
information.
You	can	see	the	ODBC	database	drivers	installed	on	your	client	computer	by
starting	the	Data	Sources	(ODBC)	control	panel	applet	and	selecting	the	Drivers
tab.

DSN	(Database	Source	Name)

While	an	ODBC	driver	knows	how	to	query	and	update	data	in	a	particular	type
of	database	system,	it	usually	requires	additional	information	that	refers	it	to	a
particular	instance	of	that	database	system.	Such	information	may	include,	for
example:

The	name	or	address	of	the	server	hosting	the	database	system
Communications	protocol	information
The	database	name	or	library	name
User	authentication	information

Such	information	is	usually	held	in	a	DSN	(database	source	name).	You	have	to
create	the	DSN's	necessary	to	access	your	databases	according	to	your	own

database	implementations.	In	Microsoft	Windows,	you	can	create	three	types	of
DSN:

User	DSN:	these	DSNs	apply	only	to	the	computer	on	which	they	are	created
and	are	accessible	only	to	the	current	user
System	DSN:	a	system	DSN	also	applies	only	to	the	local	computer	but	is
visible	to	all	users
File	DSN:	a	file	DSN	exists	in	a	file	in	the	file	system	and	can	be	shared	by
users	on	multiple	computers	who	have	the	same	drivers	installed.

You	can	see,	change	and	create	DSNs	on	your	system	by	starting	the	Data
Sources	(ODBC)	control	panel	applet	and	selecting	the	User	DSN,	System	DSN
or	File	DSN	tabs.	Most	applications	that	support	ODBC	(including	the	mapping
tool)	will	allow	you	to	create	or	change	a	DSN	from	within	the	application	in
the	course	of	establishing	a	database	connection.
In	either	case,	when	you	create	or	change	a	DSN,	additional	screens	will	be
presented	that	will	ask	you	for	the	information	necessary	to	connect	to	a
particular	instance	of	the	database.	The	screens	are	defined	by	the	ODBC	driver,
depend	on	the	requirements	of	the	target	database	and	will	vary	from	one
database	driver	to	another.

Insert	a	Database	Component
To	insert	a	database	component	in	the	mapping	tool,	select	the	Database	option
from	the	Insert	menu	(or	use	the	corresponding	toolbar	button)	and	complete	the
resulting	dialogs	to	make	your	selection.

The	dialogs	you	have	to	complete	depend	on	the	type	of	database	connection
you	insert	and	on	choices	you	have	made	in	previous	sessions	in	the	mapping
tool.	The	following	topics	describe	some	of	the	most	common	and	important
dialogs	and	choices:

Select	a	Database	Type
Select	Database	Drivers
Select	or	Create	a	DSN
Select	Database	Schema	and	Tables

Select	a	Database	Type
If	you	use	the	connection	wizard	when	you	insert	a	database	component	in	the
mapping	tool,	the	wizard	will	ask	that	you	select	the	type	of	database	with
which	you	wish	to	work.

If	you	wish	to	connect	to	a	IBM	i	database,	choose	IBM	DB2	and	click	Next.

Select	Database	Drivers
When	you	insert	a	database	component	in	the	mapping	tool,	it	may	ask	you	to
select	the	ODBC	database	driver	to	be	used	to	establish	the	connection	from	the
client	computer:

If	you	wish	to	connect	to	a	IBM	i	database,	choose	the	IBM	i	Access	ODBC
Driver	or	an	equivalent	driver	that	provides	access	to	IBM	IBM	i	databases.If
you	do	not	see	this	screen,	and	you	need	to	select	a	different	database	driver,
you	can	click	the	Edit	Drivers	button	when	you	are	asked	to	Select	or	Create	a
DSN.

Select	or	Create	a	DSN
When	you	insert	a	database	component,	the	mapping	tool	may	ask	you	to	select
or	create	a	DSN	that	is	to	be	used	to	establish	the	connection	from	the	client
computer:

If	you	have	previously	created	a	suitable	DSN	you	can	select	it	and	use	it	again.
If	no	suitable	DSN	exists,	you	can	create	one.	If	you	choose	this	option,	further
dialogs	will	be	displayed	that	will	ask	for	DSN	details	according	to	the	selected
database	and	driver.	These	will	vary	according	to	the	type	of	database	and
driver.
For	example,	if	you	are	connecting	to	IBM	DB2	for	i5/OS	using	the	IBM	i
Access	ODBC	Driver,	you	will	see	a	screen	like	this	that	prompts	you	for	a
name,	description	and	other	details	for	the	new	DSN:

Complete	the	details	as	required	for	your	database	and	server.		If	in	doubt,	ask
your	system	or	database	administrator	for	instructions.
If	you	are	connecting	to	IBM	DB2	for	i5/OS	using	the	IBM	i	Access	ODBC
Driver,	in	the	simplest	case	you	will	need	only	to	enter	a	data	source	name,
description	and	select	or	specify	the	System	to	which	you	wish	to	connect.	
However,	depending	on	your	specific	system	and	database	configuration	you
may	need	to	complete	or	change	settings	on	other	pages	of	the	IBM	i	Access	for
Windows	ODBC	Setup	screen.
Depending	on	the	ODBC	driver	you	chose	and	the	configuration	options
specified	in	the	DSN,	you	may	be	prompted	for	login	information.		If	so,
complete	the	login	information	to	establish	the	connection:

	

Choose	to	Connect	Natively	or	via	the	ODBC	API
The	mapping	tool	may	ask	whether	you	wish	to	connect	"natively"	or	"via	the
ODBC	API".

In	most	cases	you	should	accept	the	default	"native"	selection.
You	should	only	select	"via	the	ODBC	API"	when	instructed	to	by	support	or
otherwise	when	experiencing	difficulties	using	the	native	connection.

Note	1:		"Natively"	refers	to	Altova	MapForce's	native
implementation	in	which	it	uses	the	ODBC	API	to	directly	interrogate
system	tables	in	supported	target	databases	for	information	that	is	not
normally	accessible	through	the	ODBC	API	alone.		This
implementation	permits	the	mapping	tool	to	implement	advanced
database	functionality.

Note	2:		Whichever	choice	you	make	here	affects	only	the	connection
from	the	client	while	defining	the	map	in	the	mapping	tool.		At	run-
time,	the	prepared	map	will	always	use	JDBC	connections	using	a
LANSA	Composer	database	configuration	that	you	specify.

	

Select	Database	Schema	and	Tables
When	you	have	selected	the	driver,	DSN	and	provided	connection	information,
the	mapping	tool	establishes	the	connection	and	then	allows	you	to	choose	the
particular	tables	you	wish	to	use	in	your	transformation	map:

When	you	have	selected	the	tables	and	clicked	OK,	the	database	component	is
inserted	in	the	workspace	for	the	map:

You	can	then	proceed	to	insert	further	components	and	create	connections
between	them.	For	further	information,	refer	to	Edit	Transformation	Map.

its:LANSA091.CHM::/lansa/intengc2_0210.htm

Connecting	to	databases	while	defining	a	Transformation	Map
using	JDBC
With	MapForce	2012,	you	also	have	the	alternative	of	creating	connections	via
JDBC.	It	is	important	to	note	that	this	JDBC	connection	is	only	used	inside
MapForce	and	is	not	the	same	as	the	one	that	is	used	by	LANSA	Composer
server	at	runtime.
To	use	JDBC,	you	will	need	the	proper	JDBC	driver	installed	on	your	machine.
Finding	the	Right	JDBC	Driver
Depending	on	the	database	being	used,	you	will	need	an	appropriate	JDBC
driver.	Please	consult	your	system	administrator	to	determine	the	appropriate
driver	to	use.		For	example,	to	connect	to	IBM	DB2	for	i5/OS,	you	would
usually	use	the	JDBC	driver	provided	by	IBM	in	the	file	jt400.jar.
Installing	the	JDBC	Driver
To	be	able	to	use	a	JDBC	driver,	it	must	first	be	added	to	the	java	CLASSPATH.
To	do	this:
1.		First	put	it	somewhere	on	your	system	e.g.	C:\Drivers.
2.		Then	go	to	Control	Panel	->	Systems	->	Advanced.
3.		Click	on	Environment	Variables.

4.		Select	the	CLASSPATH	variable	and	click	edit.

5.		Add	the	location	of	the	JDBC	driver	to	the	path.
6.		You	may	need	to	restart	your	PC	for	the	setting	to	take	effect.

Using	JDBC	in	MapForce
To	opt	to	use	JDBC,	first	you	need	to	click	JDBC	Connections	on	the	'Select	a
Database'	dialogue.	You	will	then	be	presented	with	a	screen	similar	to	the
following.	Enter	the	appropriate	details	and	you	should	be	able	to	connect	to	the
database.
For	example,	if	you	are	connecting	to	an	IBM	DB2	for	i5/OS	database	and	you
are	using	the	JDBC	driver	jt400.jar,	you	would	be	selecting	the
AS400JDBCDriver	as	below	and	you	would	probably	use	a	connection	string
similar	to:	'jdbc:as400://{server-name}'.

Connecting	to	Databases	while	Executing	a	Transformation	Map
using	JDBC
After	you	have	defined	and	prepared	your	Transformation	Map,	you	will
execute	it	by	including	it	in	a	Processing	Sequence,	probably	along	with	other
Activities,	and	then	running	the	Processing	Sequence.	The	Processing	Sequence
runs	on	your	LANSA	Composer	server,	and	so:

The	database	connection	will	be	relative	to	(from)	the	LANSA	Composer
server	computer
Any	required	database	connectivity	components	must	be	installed	on	the
LANSA	Composer	server	computer

When	the	Processing	Sequence	runs	the	Transformation	Map,	it	does	so	by
executing	the	Java	code	that	was	generated	for	the	Transformation	Map.	If	the
Transformation	Map	includes	any	database	components,	the	processing
sequence	controller	prepares	and	provides	a	JDBC	connection	to	the
database(s).
The	JDBC	connection	is	prepared	according	to	the	Database	Configuration	that
you	provide	as	a	parameter	to	the	Transformation	Map.	You	must	define	the
Database	Configuration	with	the	correct	details	necessary	to	establish	the
particular	database	connection	to	be	used.
Several	example	database	configurations	are	supplied	with	LANSA	Composer
that	illustrate	how	to	connect	to	databases	commonly	used	with	LANSA
Composer.	You	can	copy	and	modify	these	example	configurations	or	create
your	own	from	scratch.
Refer	to	the	following	topics	for	further	information:

Database	Configuration
Transformation	Maps
Database	Connectivity	Components	and	Drivers

Note:	When	your	transformation	map	uses	database	components	that
connect	to	IBM	DB2	for	i5/OS	database	tables,	LANSA	Composer
will	remove	the	library	qualifier	from	the	generated	Java	code	when
you	prepare	the	transformation	map.		You	must	setup	your	database
configuration	so	that	the	required	files	can	be	found	at	run-time.	
Usually	this	is	done	by	specifying	the	library	name	as	part	of	the	URL
in	the	JDBC	connection	string.		For	more	information,	refer	to

its:LANSA091.CHM::/lansa/intengc2_0075.htm
its:lansa091.chm::/lansa/intengc2_0195.htm

Additional	Considerations	for	Transformation	Maps	Using	IBM	DB2
for	i5/OS.

About	JDBC
JDBC	stands	for	Java	database	connectivity.	It	is	an	API	for	the	Java
programming	language	that	defines	how	a	client	may	access	a	database.	It
provides	methods	for	querying	and	updating	data	in	a	database.	JDBC	is
oriented	towards	relational	databases.
Major	database	vendors	provide	approved	JDBC	drivers	for	their	database
products.	Refer	to	Database	Connectivity	Components	and	Drivers	for	further
information.

Database	Connectivity	Components	and	Drivers
When	you	insert	a	database	component	into	a	Transformation	Map	you	must
have	the	necessary	ADO	or	ODBC	database	connectivity	components	installed
on	your	client	workstation.	You	define	the	map	through	the	mapping	tool	and	if
you	do	a	trial	execute	of	the	map	in	the	mapping	tool,	you	will	use	the	selected
ADO	or	ODBC	database	connector	for	the	database	connectivity.
When	you	execute	the	map	in	a	LANSA	Composer	Processing	Sequence,	the
map	will	use	JDBC	database	connectivity	components	installed	on	your
LANSA	Composer	server	computer.	The	details	for	the	JDBC	database
connection	are	provided	by	means	of	a	Database	Configuration.
LANSA	Composer	supplies	neither	the	ADO	or	ODBC	(client-side)	nor	the
JDBC	(server-side)	database	connectivity	components.	You	must	obtain	and
install	these	components	yourself	for	use	with	LANSA	Composer	–	usually
these	components	are	supplied	by	your	database	software	vendor.
Most	vendors	will	provide	the	requisite	drivers	on	their	installation	CDs,	as	well
as	allow	you	to	download	them	from	their	web	site.	In	many	case	these	drivers
will	be	available	at	no	charge.	Most	databases	will	need	you	to	use	a	driver	that
is	of	exactly	the	same	version	as	the	database.	Therefore,	ensure	that	you	have
access	to	the	correct	driver	for	the	version	and	type	of	database	that	you	wish	to
connect	to.	Vendor	web	sites	are	the	best	source	for	this	information.
Some	useful	sites	are	as	follows	for:

Oracle	JDBC	Drivers
Microsoft	SQL	Server	Drivers

Note:	For	many	databases,	drivers	can	also	be	obtained	from	third	party
sources.
The	IBM	Toolbox	for	Java	comes	with	two	JDBC	drivers	for	the	IBM	i	,	which
can	be	used	for	accessing	DB2	data:

IBM	Toolbox	for	Java	JDBC	Driver	-	this	is	a	Type	4	driver,	that	makes
direct	socket	connect	to	the	database	host	server
IBM	Developer	Kit	for	Java	JDBC	Driver	-	this	is	a	Type	2	driver,	and
makes	native	method	calls	to	the	SQL	CLI	(Client	Level	Interface).

JDBC	driver	components	need	to	be	installed	either	into	the	jar	directory	of	the
LANSA	Integrator	instance	or	into	a	location	that	is	accessible	through	the
classpath.
	

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://www.microsoft.com/technet/downloads/sqlsrvr.mspx

Example	Database	Connections	for	IBM	DB2	for	i5/OS

Note:		example	values	and	screens	given	in	this	section	are	based	on
particular	database	and	driver	software	versions	and	configurations.	
They	are	provided	for	illustration	and	guidance.		Your	own
environment	may	require	different	values	and	procedures.

You	must	be	able	to	establish	two	types	of	connectivity	to	your	IBM	DB2	for
i5/OS	database	for	use	with	the	mapping	tool	and	the	maps	it	generates:

ODBC	connection	from	the	LANSA	Composer	client	computer
					While	defining	your	map	you	need	to	be	able	to	establish	an	ODBC
connection	to	the	IBM	DB2	for	i5/OS	database	on	your	IBM	i	server.	.	This
connection	is	initiated	from	the	client	computer	running	MapForce.	Refer	to:
Connecting	to	IBM	DB2	for	i5/OS	to	define	a	Transformation	Map
JDBC	connection	from	the	LANSA	Composer	server	computer

					When	the	Transformation	map	runs,	it	will	use	a	JDBC	connection	to
establish	the	connection	to	the	IBM	DB2	for	i5/OS	database	on	your	IBM	i
server.	This	connection	is	initiated	from	the	server	computer	on	which	the
transformation	map	executes	and	is	defined	in	LANSA	Composer	by	means
of	a	Database	Configuration.	Refer	to:
Connecting	to	IBM	DB2	for	i5/OS	to	execute	a	Transformation	Map

For	further	important	information	concerning	the	use	of	IBM	DB2	for	i5/OS
databases	in	Transformation	Maps,	please	refer	to:

Additional	Considerations	for	Transformation	Maps	Using	IBM	DB2	for
i5/OS

Connecting	to	IBM	DB2	for	i5/OS	to	define	a	Transformation
Map
While	defining	a	Transformation	Map	using	the	mapping	tool,	you	will	select
the	Database	option	from	the	Insert	menu	(or	use	the	corresponding	toolbar
button)	to	insert	a	database	component.

The	dialogs	you	have	to	complete	depend	on	the	type	of	database	connection
you	insert	and	on	choices	you	have	made	in	previous	sessions	in	the	mapping
tool.	The	following	steps	describe	some	of	the	most	common	and	important
dialogs	and	choices:		The	actual	windows	you	will	see	and	have	to	complete	in
order	to	establish	your	database	connection	will	vary	according	to	the	type	of
database,	driver,	previous	database	selections	and	other	factors.	What	follows	is
an	example	sequence	of	windows	for	establishing	a	new	connection	to	IBM
DB2	for	i5/OS	running	on	a	IBM	i	server.
1.		On	the	first	panel	of	the	Connection	Wizard,	choose	IBM	DB2	as	the
database	type	and	click	Next.	

(If	the	Connection	Wizard	is	not	shown,	click	the	Connection	Wizard	button
to	display	it)

2.		When	prompted	to	select	database	drivers,	choose	the	IBM	i	Access	ODBC
Driver	or	an	equivalent	driver	that	provides	access	to	your	IBM	i	database.

Note:	The	IBM	i	Access	ODBC	Driver	needs	to	be	installed	on	the	PC
that	runs	the	LANSA	Composer	client	and	Altova	MapForce	to	enable
access	to	IBM	DB2	for	i5/OS	database	tables.		Typically	this	is
installed	as	part	of	the	IBM	IBM	i	Access	installation.

					Normally	you	see	this	screen	only	on	the	first	occasion	that	you	choose	the
IBM	DB2	option	on	the	previous	wizard	panel.		It	associates	specific	drivers
on	your	computer	with	the	IBM	DB2	option	in	the	mapping	tool.		If	you	need
to	add	or	change	drivers	later,	you	can	click	the	Edit	Drivers	button	at	the
Configure:	IBM	DB2	panel	shown	in	the	next	step.

3.		When	prompted	to	configure	IBM	DB2,	if	you	have	previously	defined	a
data	source	name	(DSN)	for	use	with	LANSA	Composer,	choose	it	and	click
Next.	Otherwise,	click	Create	a	new	Data	Source	Name	(DSN)	and	click
Next.

4.		If	you	chose	the	option	to	Create	a	new	Data	Source	Name	(DSN),	you	will
now	be	prompted	for	details	of	the	new	DSN.		The	specific	panels	shown	will
vary	according	to	the	ODBC	driver	you	chose.		If	you	are	connecting	to	IBM
DB2	for	i5/OS	using	the	IBM	i	Access	ODBC	Driver,	you	will	see	a	screen
similar	to	this	that	prompts	you	for	a	name,	description	and	other	details	for
the	new	DSN:

					Complete	the	details	as	required	for	your	database	and	server.		If	in	doubt,
ask	your	system	or	database	administrator	for	instructions.

					If	you	are	connecting	to	IBM	DB2	for	i5/OS	using	the	IBM	i	Access	ODBC
Driver,	in	the	simplest	case	you	will	need	only	to	enter	a	data	source	name,
description	and	select	or	specify	the	System	to	which	you	wish	to	connect.	
For	example:

Data
Source
Name

iiiSRV400	This	could	be	any	meaningful	name.	It	is	the	DSN
name	for	this	ODBC	connection.

Description IBM	i	Access	for	Windows	ODBC	Source
System Specify	the	IBM	i	server	system	name	(for	example,	the	system

name	EARTH	is	used	in	many	of	these	examples))

	

					However,	for	more	IBM	DB2	for	i5/OS	considerations	regarding	the	DSN,
refer	to	Library	names	in	the	DSN.

					However,	depending	on	your	specific	system	and	database	configuration	you
may	need	to	complete	or	change	settings	on	other	pages	of	the	IBM	i	Access
for	Windows	ODBC	Setup	screen.

5.		Depending	on	the	ODBC	driver	you	chose	and	the	configuration	options
specified	in	the	DSN,	you	may	be	prompted	for	login	information.		If	so,
complete	the	login	information	to	connect	to	the	database	and	continue	with
designing	your	transformation	map.

Note:		The	mapping	tool	may	attempt	to	connect	more	than	once	to
the	database.		This	may	result	in	you	being	prompted	repeatedly	for
login	information.		You	can	avoid	the	multiple	logins	by	changing	the
connection	properties	for	the	IBM	i	server	in	IBM	i	Access	for
Windows	such	that	IBM	i	Access	will	prompt	you	for	a	password	only
for	the	first	connection.

7.		When	your	ODBC	connection	has	been	successfully	established,	the
mapping	tool	allows	you	to	choose	the	particular	tables	you	wish	to	use	in
your	transformation	map:

8.		Select	the	arrow	symbol	next	to	#LIBRARY	to	display	IBM	i	libraries	in	a
dropdown

5.		Scroll	down	to	find	the	library	containing	the	files	you	want	to	use	in	your
transformation	map.	For	example,	the	tutorial	database	tables	can	be	found	in
the	library	for	the	LANSA	partition	in	which	LANSA	Composer	was	installed
-	for	example,	LICLICLIB.

6.		Select	the	database	tables	you	wish	to	use	and	click	OK.	A	database
component	representing	the	selected	tables	is	inserted	in	the	workspace	for
the	map.

Note:	When	used	to	access	IBM	DB2	for	i5/OS	database	tables,	the
library	from	which	you	select	the	files	is	used	only	for	the	purpose	of
defining	the	transformation	map.		LANSA	Composer	will	remove	the
library	qualifier	from	the	generated	Java	code	when	you	prepare	the
transformation	map.		You	must	setup	your	database	configuration	such
that	the	required	files	can	be	found	in	the	desired	library	at	run-time	-
this	is	described	in	Connecting	to	IBM	DB2	for	i5/OS	to	execute	a
Transformation	Map.

Connecting	to	IBM	DB2	for	i5/OS	to	execute	a	Transformation
Map
When	the	Transformation	map	runs,	it	will	use	JDBC	to	establish	the
connection	to	the	IBM	DB2	for	i5/OS	database	on	your	IBM	i	server.	This
connection	is	initiated	from	the	server	computer	on	which	the	transformation
map	executes.
LANSA	Composer	prepares	the	JDBC	connection	according	to	the	Database
Configuration	that	you	provide	as	a	parameter	to	the	Transformation	Map.	You
must	define	the	Database	Configuration	with	the	correct	details	necessary	to
establish	the	particular	database	connection	to	be	used.
Example	Database	Configuration
The	following	sample	values	assume	that	you	are	using	native	IBM	JDBC
driver	to	connect	to	the	IBM	DB2	for	i5/OS	database	on	your	IBM	i	server:
Database
driver
class

Following	is	the	class	name	used	with	the	native	IBM	JDBC	driver:
com.ibm.as400.access.AS400JDBCDriver

Database
connection
string

Following	is	a	sample	JDBC	connection	string	to	connect	to	the	IBM	DB2
for	i5/OS	database	running	on	your	IBM	i	server	using	the	native	IBM
JDBC	driver:
jdbc:as400://SYSNAME/LIBNAME;naming=sql;errors=full;date
format=iso;	translate	binary=true
The	following	alternate	form	permits	database	tables	from	more	than	one
library	(or	schema)	to	be	used.		The	JDBC	connection	property
naming=system	must	specified	for	this	to	be	effective:
jdbc:as400://SYSNAME;naming=system;libraries=LIB1,
LIB2,*LIBL;errors=full;date	format=iso;	translate	binary=true

Further	considerations
Refer	also	to	Additional	Considerations	for	Transformation	Maps	Using
IBM	DB2	for	i5/OS.
When	your	transformation	map	uses	database	components	that	connect	to
IBM	DB2	for	i5/OS	database	tables,	LANSA	Composer	will	remove	the
library	qualifier	when	you	prepare	the	transformation	map.		You	must	setup
your	database	configuration	so	that	the	required	files	can	be	found	at	run-

time.		Usually	this	is	done	by	specifying	the	library	name	as	part	of	the	URL
in	the	JDBC	connection	string	-	in	the	first	example	shown,	LIBNAME
represents	the	library	name.
An	alternate	form	of	the	connection	string	permits	database	tables	from	more
than	one	library	(or	schema)	to	be	used.		For	this	form	to	be	effective,	the
library	name	must	be	omitted	from	the	URL	portion	of	the	connection	string
(so	that	the	connection	has	no	default	schema)	and	naming=system	must	be
specified.		In	this	form,	the	libraries=	property	of	the	JDBC	connection
string	specifies	the	libraries	that	are	to	be	searched	for	the	tables	used	in	the
Transformation	Map.		In	the	second	example	shown,	LIB1,	LIB2	and
*LIBL	represent	the	library	names	to	be	used.
The	Database	Configuration	should	specify	the	username	and	password	of
an	i5/OS	user	authorized	to	perform	the	database	transactions.
Depending	which	driver	version	you	are	using,	the	IBM	JDBC	Driver	is
implemented	in	the	file	jt400.jar	or	jt400Native.jar.		If	it	is	not	already
present,	you	may	need	to	copy	the	file	to	the	/jar	directory	of	your	JSM
instance	and	restart	the	Java	Service	Manager	before	using	the	driver	with
Transformation	Maps	in	LANSA	Composer.		The	jt400.jar	is	supplied	with
the	IBM	i	operating	system	can	usually	and	can	usually	be	found	in	an	IFS
folder	such	as	//QIBM/ProdData/OS400/jt400/lib
Refer	to	relevant	IBM	reference	materials	for	more	information	on	the	JDBC
drivers	available	for	IBM	DB2	for	i5/OS	and	the	keywords	and	values	that
can	be	specified	in	the	JDBC	connection	string	for	the	native	IBM	JDBC
driver.		Following	are	some	useful	WEB	references.	Note	that	some	of	these
references	relate	to	specific	versions	of	i5/OS	and	associated	software.	You
should	refer	to	the	equivalent	pages	for	the	software	versions	you	are	using.
IBM	Toolbox	for	Java	JDBC
IBM	Toolbox	for	Java	JDBC	properties
IBM	i	-	IBM	Toolbox	for	Java:	JDBC	FAQ
ConnectionStrings.com	-	Forgot	that	connection	string?	Get	it	here!

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzahh/page1.htm
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzahh/jdbcproperties.htm
http://www-03.ibm.com/systems/i/software/toolbox/faqjdbc.html
http://www.connectionstrings.com

Additional	Considerations	for	Transformation	Maps	Using	IBM
DB2	for	i5/OS
The	IBM	i	and	its	integrated	environment	including	the	IBM	DB2	for	i5/OS
database	offer	some	unique	capabilities.		Because	the	mapping	tool	is	designed
to	support	databases	on	a	wide	variety	of	platforms,	some	of	the	capabilities
specific	to	the	IBM	i	server	present	particular	considerations	for	Transformation
Maps	that	use	IBM	DB2	for	i5/OS	database	components.		The	following	topics
describe	some	of	these	considerations:

Libraries	and	Library	Lists
Using	SQL	SELECT	Statements	or	SQL-WHERE	Components	in	an	IBM
DB2	for	i5/OS	Database	Components
Library	names	in	the	DSN
Transaction	Control	and	IBM	DB2	for	i5/OS	Database	Journaling

Note:		The	considerations	described	are	based	on	using	Altova
MapForce	version	2010	release	3.		Earlier	(or	later)	versions	of	the
mapping	tool	may	be	subject	to	different	considerations	or	may	differ
with	respect	to	the	specific	features	mentioned.

Libraries	and	Library	Lists
In	a	typical	i5/OS	environment,	applications	avoid	hard-coded	reference	to
specific	libraries.		This	is	a	powerful	feature	that	permits	the	same	programs	to
be	run	using	database	tables	and	other	objects	in	libraries	that	are	determined	by
the	run-time	environment.		LANSA	Composer	supports	this	feature	in
connection	with	Transformation	Maps	that	use	IBM	DB2	for	i5/OS	database
tables	as	follows:

1.		Defining	a	Transformation	Map	that	uses	IBM	DB2	for	i5/OS	database
tables

When	you	define	a	Transformation	Map	that	uses	IBM	DB2	for	i5/OS
database	tables	you	select	a	specific	library	containing	the	files	whose
definitions	you	wish	to	use.
It	is	important	to	understand	that	the	library	from	which	you	select	the	files	is
used	only	for	the	purpose	of	defining	the	transformation	map.		It	does	not
mean	that	the	Transformation	Map	will	use	the	files	in	that	library	at
execution	time.

2.		Preparing	a	Transformation	Map	that	uses	IBM	DB2	for	i5/OS	database
tables

When	you	prepare	a	Transformation	Map	that	uses	IBM	DB2	for	i5/OS
database	tables,	LANSA	Composer	will	remove	the	library	qualifier	from	the
generated	Java	code.		This	means	that	the	Transformation	Map	can	be
executed	using	different	instances	of	the	database	tables	at	run-time.		This	is
the	desired	behavior	in	an	IBM	i	server	environment.
Note	that	LANSA	Composer	removes	library	qualifiers	only	for	an	IBM
DB2	for	i5/OS	database	component	-	not	for	any	other	type	of	database.		It
does	so	by	using	a	temporary	copy	of	the	map	definition	(*.mfd)	file	in
which	it	has	set	MapForce's	database	component	setting	Strip	schema	names
from	table	names	(if	not	already	set).		The	original	map	definition	(*.mfd)
file	is	not	changed	in	this	process.
Note:		LANSA	Composer	will	not	remove	library	qualifiers	for	certain	types
of	map	constructs.		For	more	information,	refer	to	Using	SQL	SELECT
Statements	or	SQL-WHERE	Components	in	an	IBM	DB2	for	i5/OS
Database	Components.
3.		Executing	a	Transformation	Map	that	uses	IBM	DB2	for	i5/OS	database
tables

When	you	execute	a	Transformation	Map	that	uses	IBM	DB2	for	i5/OS
database	tables,	LANSA	Composer	prepares	the	JDBC	connection	according
to	the	Database	Configuration	that	you	provide	as	a	parameter	to	the
Transformation	Map.		The	Database	Configuration	specifies	the	library	(or
libraries)	to	use.

Using	SQL	SELECT	Statements	or	SQL-WHERE	Components	in	an	IBM
DB2	for	i5/OS	Database	Components
The	mapping	tool	provides	two	features	that	allow	you	to	enter	SQL	that	will	be
executed	by	the	Transformation	Map:

A	database	component	may	include	one	ore	more	SQL	SELECT
statements,	the	results	of	which	may	be	used	as	"virtual"	tables	for
mapping	purposes.
Another	type	of	component,	SQL-WHERE,	allows	you	to	filter	database
data	conditionally	using	an	SQL	WHERE	clause	that	you	enter	yourself.

When	you	use	these	features	with	an	IBM	DB2	for	i5/OS	database	component,
you	must	understand	that	the	Strip	schema	names	from	table	names	feature	does
not	strip	schema	(library)	names	from	the	user-defined	SQL	SELECT	statement

or	SQL-WHERE	clause.		This	means	that	when	you	prepare	the	Transformation
Map,	any	schema	(library)	qualifiers	present	will	remain	in	the	generated	Java
code.

In	order	to	avoid	creating	Transformation	Maps	that	access	or	update
database	tables	in	a	library	other	than	intended,	you	must	avoid	using
schema	(library)	qualifiers	in	your	SQL	SELECT	statement	or	SQL-
WHERE	clause	when	using	these	MapForce	features.

There	is	a	secondary	consequence	of	this.		If	you	omit	or	remove	the	library
qualifiers	from	your	SQL	SELECT	statement	or	SQL-WHERE	clause,	you	may
find	that:

You	can	no	longer	test	execute	the	map	in	the	mapping	tool	using	the
Output	tab,	and/or
The	Prepare	step	may	fail	while	generating	the	Java	code.

In	both	cases,	this	occurs	because	ODBC	cannot	find	the	files	because	the
library	or	libraries	containing	the	files	are	not	specified	in	the	DSN.		If	this
occurs,	it	will	be	necessary	to	use	an	ODBC	DSN	that	specifies	an	appropriate
library	list.		Refer	to	Library	names	in	the	DSN	for	more	information.
Library	names	in	the	DSN
When	you	define	a	Transformation	Map	that	uses	IBM	DB2	for	i5/OS	database
tables,	MapForce	prompts	you	to	select	a	specific	library	containing	the	files
whose	definitions	you	wish	to	use.
As	a	result,	it	is	frequently	not	necessary	to	specify	the	library	or	libraries	you
wish	to	use	in	the	ODBC	DSN	you	use	for	the	connection.		This	can	be
convenient	because	it	allows	you	to	reference	tables	in	multiple	libraries	using	a
single	DSN.
However,	when	using	certain	MapForce	features	with	such	a	DSN	you	may	be
affected	by	one	or	both	of	the	following:

You	cannot	successfully	test	execute	the	map	in	the	mapping	tool	using	the
Output	tab,	and/or
The	Prepare	step	may	fail	while	generating	the	Java	code.

In	particular	this	occurs:
When	you	use	MapForce	SQL	SELECT	statements	in	which	(as
recommended)	you	have	omitted	the	library	qualifiers;
When	you	use	MapForce	SQL-WHERE	components	in	which	(as

recommended)	you	have	omitted	the	library	qualifiers;
When	you	explicitly	select	the	Strip	schema	names	from	table	names	check-
box	in	the	database	component	settings.

To	avoid	these	issues,	you	are	advised	to	use	a	DSN	that	specifies	the	library	or
libraries	you	wish	to	use.		You	can	specify	such	a	DSN	for	the	IBM	i	Access
ODBC	Driver	using	the	Server	page	of	the	IBM	i	Access	for	Windows	ODBC
Setup	window	in	one	of	the	following	ways:
1.		To	specify	a	single	library,	type	the	library	name	in	the	SQL	default	library
box	as	shown:

2.		To	specify	a	list	of	libraries:
a.		Select	System	naming	convention	(*SYS)	in	the	Naming	convention
drop-down	list	(but	see	note	below)

b.		Specify	the	required	libraries	in	the	Library	List	box	as	shown:

Note:		If	you	use	the	system	naming	convention,	you	will	have	to
select	the	option	to	connect	via	the	ODBC	API	(instead	of	Natively)

when	prompted	while	adding	the	database	component.		Otherwise	you
will	not	be	able	to	see	or	select	your	library	name	in	the	Add/Remove
Tables	window.

Transaction	Control	and	IBM	DB2	for	i5/OS	Database	Journaling
You	may	use	a	database	component,	including	an	IBM	DB2	for	i5/OS	database
component,	as	the	source	or	target	of	a	mapping.
When	used	as	the	source	of	a	mapping,	you	are	using	the	database	for	read-only
and	transaction	control	considerations	do	not	apply.
When	used	as	the	target	of	a	mapping	however,	the	Transformation	Map	may	be
performing	insert,	update	and/or	delete	actions	against	the	affected	database
tables,	according	to	the	Database	Table	Actions	you	specify	in	the	mapping
tool.		In	this	case,	you	may	wish	to	consider	transaction	control	(commitment
control)	options	that	allow	you	to	ensure	that	a	transaction	is	either	completed	in
its	entirety	or	rolled	back	in	the	event	of	an	error.
The	mapping	tool	allows	you	to	specify	that	you	wish	to	use	transactions	at	two
levels:

In	the	database	Component	Settings	window,	check	the	Use	Transactions
checkbox	to	indicate	that	transaction	control	is	to	be	applied	to	database
table	actions	for	all	tables	used	in	the	database	component;
In	the	Database	Table	Actions	window,	check	the	Use	Transactions
checkbox	to	indicate	that	transaction	control	is	to	be	applied	to	database
table	actions	for	that	table.

In	most	cases,	specifying	the	option	at	the	component	level	is	advised.	
Unresolved	issues	have	been	observed	when	attempting	to	specify	the	option	at
the	database	table	actions	level	(at	the	level	of	MapForce	version	2012	release
2).		Refer	to	the	Altova	MapForce	documentation	for	more	details	concerning
these	options.
The	remainder	of	this	section	is	concerned	with	the	particular	considerations
that	apply	when	you	use	these	options	in	connection	with	an	IBM	DB2	for
i5/OS	database	component.

1.		If	you	do	not	specify	the	Use	Transactions	options	in	your	map,	no
special	considerations	apply.		There	is	no	need	to	have	database	journaling
in	effect	for	the	affected	IBM	i	database	tables.		(Note	that	this	is	a	change
from	the	advice	that	applied	to	earlier	versions	of	LANSA	Composer	and
the	mapping	tool).

However,	if	when	you	execute	the	map,	you	experience	an	error	SQL7008
(<file>	in	<library>	not	valid	for	operation)	with	reason	code	3,	it	may	be
because	your	Database	Configuration	is	not	configured	appropriately	for	this
case.		In	particular,	your	Database	Configuration:
Should	specify	transaction	isolation:	None
Should	not	contain	keywords	in	the	JDBC	connection	string	that	will
cause	the	database	manager	to	attempt	to	use	commitment	control.		For
example,	make	sure	that	it	does	not	contain	the	string	'true
autocommit=true'.

2.		If	you	do	specify	the	Use	Transactions	options	in	your	map,	then	you	will
need	to:

a.		Ensure	that	the	database	itself	is	configured	to	support	the	desired
transaction	control.		This	usually	means	at	least	that	the	database	tables
must	be	journalled.		Depending	on	how	your	database	tables	were	created,
you	may	have	to	use	IBM	i	commands	such	as	CRTJRNRCV	(Create
Journal	Receiver),	CRTJRN	(Create	Journal)	and	STRJRNPF	(Start
Journal	Physical	File).		Refer	to	IBM	i	documentation	for	details.

b.		Specify	appropriate	values	in	your	Database	Configuration	to	support	the
desired	transaction	control.		In	many	cases,	the	following	values	will	be
appropriate:

Database
connection
string	

jdbc:as400://SYSNAME/LIBNAME;
prompt=false;naming=sql;data
truncation=false;errors=full;date	format=iso;translate
binary=true

	

Commit
automatically

No

Transaction
isolation

Read	uncommitted

(The	values	suggested	above	were	successfully	tested	with	IBM	i	OS	7.1.	
The	specific	values	required	on	your	system	may	vary	according	to	your
environment	and	system	and	database	configuration.		The	values	required
may	also	vary	according	to	the	JDBC	driver	level	and	the	operating	system
level.)

When	using	transaction	control	you	are	strongly	advised	to	test	that
the	map	options	you	specified	along	with	the	database	configuration
you	propose	to	use	do	work	as	expected,	both	for	the	case	where	the
transaction	completes	normally	and	for	the	case	where	an	error	occurs
requiring	the	transaction	to	be	rolled	back.		A	transformation	map	that
uses	transaction	control	on	an	i5/OS	database	may	appear	to	function
correctly	in	normal	circumstances.		It	may	not	become	apparent	until
the	necessity	arises	to	invoke	the	transaction	rollback	that	the	database
setup	(eg:	lack	of	journaling)	and/or	the	database	configuration	are	not
appropriate	for	supporting	the	desired	transaction	control.

	

Example	Database	Connections	for	Microsoft	Access

Note:	Example	values	and	screens	given	in	this	section	are	based	on
particular	database	and	driver	software	versions	and	configurations.
They	are	provided	for	illustration	and	guidance.	Your	own
environment	may	require	different	values	and	procedures.

You	must	be	able	to	establish	two	types	of	connectivity	to	your	Microsoft
Access	database	for	use	with	the	mapping	tool	and	the	maps	it	generates:

ODBC	connection	from	the	LANSA	Composer	client	computer
					While	defining	your	map	you	need	to	be	able	to	establish	an	ODBC
connection	to	the	Microsoft	Access	database	on	your	network.		This
connection	is	initiated	from	the	client	computer	running	MapForce.	Refer	to:
Connecting	to	Microsoft	Access	to	Define	a	Transformation	Map
JDBC	connection	from	the	LANSA	Composer	server	computer

					When	the	Transformation	map	runs,	it	will	use	a	JDBC	connection	to
establish	the	connection	to	the	Microsoft	Access	database	on	your	network.
This	connection	is	initiated	from	the	server	computer	on	which	the
transformation	map	executes	and	is	defined	in	LANSA	Composer	by	means
of	a	Database	Configuration.	Refer	to:
Connecting	to	Microsoft	Access	to	Execute	a	Transformation	Map

Connecting	to	Microsoft	Access	to	Define	a	Transformation	Map
While	defining	a	Transformation	Map	using	the	mapping	tool,	you	will	select
the	Database	option	from	the	Insert	menu	(or	use	the	corresponding	toolbar
button)	to	insert	a	database	component.

The	dialogs	you	have	to	complete	depend	on	the	type	of	database	connection
you	insert	and	on	choices	you	have	made	in	previous	sessions	in	the	mapping
tool.	The	following	steps	describe	some	of	the	most	common	and	important
dialogs	and	choices:		The	actual	windows	you	will	see	and	have	to	complete	in
order	to	establish	your	database	connection	will	vary	according	to	the	type	of
database,	driver,	previous	database	selections	and	other	factors.	What	follows	is
an	example	sequence	of	windows	for	establishing	a	new	connection	to	a
Microsoft	Access	database	on	your	network.
1.		On	the	first	panel	of	the	Connection	Wizard,	choose	Microsoft	Access	as	the
database	type	and	click	Next.	

(If	the	Connection	Wizard	is	not	shown,	click	the	Connection	Wizard	button
to	display	it)

Note:	The	Microsoft	Access	ODBC	Driver	need	to	be	installed	on	the
PC	that	runs	Composer	Client	and	Altova	MapForce	to	enable	access
to	Microsoft	Access	databases.		Most	standard	Windows	installations
include	this	and	other	standard	Microsoft	ODBC	drivers.		If	your	PC
does	not	have	this	driver,	you	may	be	able	to	obtain	it	by	downloading
and	installing	the	appropriate	Microsoft	Data	Access	Components
package.

2.		When	prompted	to	select	the	Microsoft	Access	database,	type	the	network
path	to	the	database	or	use	the	Browse	button	to	locate	it.		When	complete,
click	Next.

3.		When	your	ODBC	connection	has	been	successfully	established,	the
mapping	tool	allows	you	to	choose	the	particular	tables	you	wish	to	use	in
your	transformation	map:

4.		When	you	have	completed	your	selections,	click	Insert.	A	database

component	representing	the	selected	tables	is	inserted	in	the	workspace	for
the	map.

Connecting	to	Microsoft	Access	to	Execute	a	Transformation
Map
When	the	Transformation	map	runs,	it	will	use	JDBC	to	establish	the
connection	to	the	Microsoft	Access	database	on	your	network.	This	connection
is	initiated	from	the	server	computer	on	which	the	transformation	map	executes.
LANSA	Composer	prepares	the	JDBC	connection	according	to	the	Database
Configuration	that	you	provide	as	a	parameter	to	the	Transformation	Map.	You
must	define	the	Database	Configuration	with	the	correct	details	necessary	to
establish	the	particular	database	connection	to	be	used.
Example	Database	Configuration
The	following	sample	values	assume	that	you	will	use	the	JDBC-ODBC	bridge
included	with	your	JDK	on	the	Windows	server	running	LANSA	Composer	in
order	to	connect	to	your	Microsoft	Access	database.		This	approach	requires	that
the	machine	also	have	the	Microsoft	Access	ODBC	driver	installed.		There	are
also	other	JDBC	solutions	available	for	Microsoft	Access	from	third-party
providers.

Database
driver
class

Following	is	the	class	name	used	with	the	JDBC-ODBC	bridge:
sun.jdbc.odbc.JdbcOdbcDriver

Database
connection
string	

Following	is	a	sample	JDBC	connection	string	to	connect	to	a	Microsoft	Access
database	using	the	JDBC-ODBC	bridge:
jdbc:odbc:;DRIVER=Microsoft	Access
Driver	(*.mdb);DBQ=C:\COMPOSER\TUTORIAL\TUTORIAL.mdb

Further	considerations
The	Database	Configuration	need	not	specify	a	username	and	password
unless	you	have	defined	security	in	your	Microsoft	Access	database.
Following	are	some	useful	references	related	to	the	JDBC-ODBC	bridge	and
Microsoft	Access	ODBC	driver:
JDBC-ODBC	Bridge	Driver
Type	1	Driver	-	JDBC-ODBC	bridge
Frequently	Asked	Questions	about	JDBC
TechBookReport	-	JDBC-ODBC	Bridge	Tutorial
ConnectionStrings.com	-	Forgot	that	connection	string?	Get	it	here!

http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/bridge.html
http://en.wikipedia.org/wiki/JDBC_driver
http://www.oracle.com/technetwork/java/index-138427.html
http://www.techbookreport.com/tutorials/jdbcodbc.html
http://www.connectionstrings.com/

Example	Database	Connections	for	Microsoft	SQL	Server

Note:		Example	values	and	screens	given	in	this	section	are	based	on
particular	database	and	driver	software	versions	and	configurations.	
They	are	provided	for	illustration	and	guidance.		Your	own
environment	may	require	different	values	and	procedures.

You	must	be	able	to	establish	two	types	of	connectivity	to	your	Microsoft	SQL
Server	database	for	use	with	the	mapping	tool	and	the	maps	it	generates:

ADO	or	ODBC	connection	from	the	LANSA	Composer	client	computer
					While	defining	your	map	you	need	to	be	able	to	establish	an	ADO	or	ODBC
connection	to	the	Microsoft	SQL	Server	database	on	your	network.		This
connection	is	initiated	from	the	client	computer	running	MapForce.	Refer	to:
Connecting	to	Microsoft	SQL	Server	to	Define	a	Transformation	Map
JDBC	connection	from	the	LANSA	Composer	server	computer

					When	the	Transformation	map	runs,	it	will	use	a	JDBC	connection	to
establish	the	connection	to	the	Microsoft	SQL	Server	database	on	your
network.		This	connection	is	initiated	from	the	server	computer	on	which	the
transformation	map	executes	and	is	defined	in	LANSA	Composer	by	means
of	a	Database	Configuration.	Refer	to:
Connecting	to	Microsoft	SQL	Server	to	Execute	a	Transformation	Map

Connecting	to	Microsoft	SQL	Server	to	Define	a	Transformation
Map
While	defining	a	Transformation	Map	using	the	mapping	tool,	you	will	select
the	Database	option	from	the	Insert	menu	(or	use	the	corresponding	toolbar
button)	to	insert	a	database	component.

The	dialogs	you	have	to	complete	depend	on	the	type	of	database	connection
you	insert	and	on	choices	you	have	made	in	previous	sessions	in	the	mapping
tool.	The	following	steps	describe	some	of	the	most	common	and	important
dialogs	and	choices:		The	actual	windows	you	will	see	and	have	to	complete	in
order	to	establish	your	database	connection	will	vary	according	to	the	type	of
database,	driver,	previous	database	selections	and	other	factors.	What	follows	is
an	example	sequence	of	windows	for	establishing	a	new	ADO	connection	to	a
Microsoft	SQL	Server	database	running	on	your	network.
1.		On	the	first	panel	of	the	Connection	Wizard,	choose	Microsoft	SQL	Server	as
the	database	type	and	click	Next.	

(If	the	Connection	Wizard	is	not	shown,	click	the	Connection	Wizard	button
to	display	it)

Note:		These	examples	will	use	the	Microsoft	OLE	DB	Provider
for	SQL	Server	to	establish	an	ADO	connection	to	the	MS	SQL
Server	database.		This	is	the	preferred	means	of	accessing	MS
SQL	Server	from	the	mapping	tool.		Refer	to	the	MapForce
documentation	for	more	information.

It	is	also	possible	to	establish	an	ODBC	connection	if	you	have	an
ODBC	driver	installed	for	MS	SQL	Server.		To	do	so,	click	ODBC
Connections	and	complete	the	steps	for	creating	an	ODBC
connection.		You	may	need	to	create	a	DSN	for	your	server	and
database.

2.		When	prompted	to	select	an	ADO	provider,	choose	the	Microsoft	OLE	DB
Provider	for	SQL	Server	and	click	Next.

Note:	If	you	have	the	Microsoft	SQL	Server	Native	Client	software
installed,	you	can	also	select	the	SQL	Native	Client	option	from	the
drop-down	list.

3.		The	Connection	tab	of	the	Data	Link	Properties	window	allows	you	to	enter
details	of	the	database	to	which	you	wish	to	connect.		Complete	the	details	as
described	below:

Type	the	name	of	the	server	that	hosts	the	MS	SQL	Server	data	or	select	it
from	the	drop-down	list.		In	the	illustration,	the	server	name	is	TEST0101.
Complete	the	logon	security	credentials	as	required	for	your	server	and
database.		If	you	enter	a	required	password,	you	must	check	the	Allow
saving	password	box.
Select	or	type	the	name	of	the	database	on	the	server	that	you	wish	to	use.

Important:	If	you	are	having	connection	problems	at	this	point,	then
you	need	to	check	if	the	MS	SQL	Server	is	reachable	(ping).		If	that	is
ok,	check	that	the	username	/	password	is	correct.		If	using	"Windows
NT	Integrated	Security",	then	you	will	need	to	make	sure	that	the
current	Windows	user	of	the	client	is	registered	as	a	valid	user	in	the
MS	SQL	Server.		Refer	to	the	security	options	on	the	Database	for
adding	a	new	user	on	the	MS	SQL	Server	Guide.		Additionally,	for
more	information	on	the	error,	see	the	SQL	Server	logs	in	the	SQL
Server	Management	Studio.

					You	can	click	Test	Connection	to	verify	that	the	connection	can	be

established	with	the	details	you	have	entered.		When	complete,	click	OK	to
continue.

Important:		If	you	enter	a	required	password,	you	must	check	the
Allow	saving	password	box	to	save	the	password	in	the	connection
string.		If	a	password	is	required,	it	must	be	saved	in	the	connection
string.		Otherwise	the	connection	will	fail	when	MapForce	attempts	to
insert	the	component,	even	if	the	Test	Connection	succeeds.

4.		When	your	connection	has	been	successfully	established,	the	mapping	tool
allows	you	to	choose	the	particular	tables	you	wish	to	use	in	your
transformation	map:

					Select	the	database	tables	you	wish	to	use	and	click	OK.	A	database
component	representing	the	selected	tables	is	inserted	in	the	workspace	for
the	map.

Connecting	to	Microsoft	SQL	Server	to	Execute	a	Transformation
Map
When	the	Transformation	map	runs,	it	will	use	JDBC	to	establish	the
connection	to	the	Microsoft	SQL	Server	database	on	your	network.	This
connection	is	initiated	from	the	server	computer	on	which	the	transformation
map	executes.
LANSA	Composer	prepares	the	JDBC	connection	according	to	the	Database
Configuration	that	you	provide	as	a	parameter	to	the	Transformation	Map.	You
must	define	the	Database	Configuration	with	the	correct	details	necessary	to
establish	the	particular	database	connection	to	be	used.
Example	Database	Configuration
The	following	sample	values	assume	that	you	are	using	Microsoft's	JDBC	driver
to	connect	to	the	Microsoft	SQL	Server	database	on	your	network:

Database
driver
class

Following	are	class	names	commonly	used	with	the	Microsoft	SQL
Server	JDBC	drivers:
For	Microsoft	SQL	Server	2000:
com.microsoft.jdbc.sqlserver.SQLServerDriver
For	Microsoft	SQL	Server	2005:
com.microsoft.sqlserver.jdbc.SQLServerDriver

Database
connection
string	

Following	is	a	sample	JDBC	connection	string	to	connect	to	the
Microsoft	SQL	Server	database	named	TUTORIAL	running	on	the
server	named	TEST0101:
jdbc:sqlserver://TEST0101:1433;databasename=TUTORIAL

Further	considerations
The	Database	Configuration	should	specify	the	username	and	password	of
the	Windows	or	SQL	Server	user	authorized	to	perform	the	database
transactions.

					If	necessary,	you	can	download	the	Microsoft	SQL	Server	JDBC	Driver	3.0
from	this	location.		Make	sure	that	this	driver	version	is	appropriate	for	your
Windows	system	and	Microsoft	SQL	Server	database.		Downloads	of	other
JDBC	driver	versions	may	also	be	available:

					Download:	Microsoft	SQL	Server	JDBC	Driver	3.0

http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=21599

The	Microsoft	SQL	Server	JDBC	Driver	3.0	is	implemented	in	the	file
sqljdbc.jar	(for	Java	1.5)	or	sqljdbc4.jar	(for	Java	1.6	and	above).		You	may
need	to	copy	the	file	to	the	/jar	directory	of	your	JSM	instance	and	restart	the
Java	Service	Manager	before	using	the	driver	with	Transformation	Maps	in
LANSA	Composer.
If	you	are	using	integrated	Windows	authentication	to	connect	to	the
Microsoft	SQL	Server	database,	then	it	may	also	be	necessary	to	copy	the
appropriate	version	of	the	file	sqljdbc_auth.dll	into	your
/Windows/System32	directory.		Versions	of	this	file	for	32-bit	and	64-bit
Windows	environments	are	supplied	and	installed	with	the	Microsoft	SQL
Server	JDBC	Driver.		Refer	to	the	driver	documentation	for	more
information.
Refer	to	relevant	Microsoft	resources	for	more	information	on	the	JDBC
drivers	available	for	Microsoft	SQL	Server	and	the	keywords	and	values	that
can	be	specified	in	the	JDBC	connection	string.		Following	are	some	useful
references.		Note	that	some	of	these	references	relate	to	specific	versions	of
Microsoft	SQL	Server	and	associated	software.		You	should	refer	to	the
equivalent	pages	for	the	software	versions	you	are	using.
Microsoft	SQL	Server	JDBC	Driver	3.0
ConnectionStrings.com	-	Forgot	that	connection	string?	Get	it	here!

http://msdn.microsoft.com/en-us/library/ee460721(v=sql.10).aspx
http://www.connectionstrings.com/

Example	Database	Connections	for	Oracle

Note:		Example	values	and	screens	given	in	this	section	are	based	on
particular	database	and	driver	software	versions	and	configurations.	
They	are	provided	for	illustration	and	guidance.		Your	own
environment	may	require	different	values	and	procedures.

You	must	be	able	to	establish	two	types	of	connectivity	to	your	Oracle	database
for	use	with	the	mapping	tool	and	the	maps	it	generates:

ODBC	connection	from	the	LANSA	Composer	client	computer
					While	defining	your	map	you	need	to	be	able	to	establish	an	ODBC
connection	to	the	Oracle	database	on	your	network.		This	connection	is
initiated	from	the	client	computer	running	MapForce.	Refer	to:
Installing	and	Configuring	Oracle	Client	Software
Connecting	to	Oracle	to	Define	a	Transformation	Map
JDBC	connection	from	the	LANSA	Composer	server	computer

					When	the	Transformation	map	runs,	it	will	use	a	JDBC	connection	to
establish	the	connection	to	the	Oracle	database	on	your	network.		This
connection	is	initiated	from	the	server	computer	on	which	the	transformation
map	executes	and	is	defined	in	LANSA	Composer	by	means	of	a	Database
Configuration.	Refer	to:
Connecting	to	Oracle	to	Execute	a	Transformation	Map

Installing	and	Configuring	Oracle	Client	Software
In	order	to	establish	an	ODBC	connection	to	the	Oracle	database	on	your
network	in	the	mapping	tool,	you	will	need	to	have	the	appropriate	Oracle
ODBC	driver	and	supporting	software	installed	and	configured	correctly	on
your	client	computer.

If	you	already	have	the	Oracle	ODBC	client	and	ODBC	driver
installed	and	are	able	to	successfully	establish	ODBC	connections	to
your	Oracle	database	on	the	network	using	another	ODBC-aware
applications	(such	as	Microsoft	Excel,	for	example),	then	you	can
proceed	directly	to	Connecting	to	Oracle	to	Define	a	Transformation
Map.

There	are	several	ways	to	obtain,	install	and	configure	the	necessary	Oracle
client	and	ODBC	software.		Following	are	some	observations	from	our	own
experience	during	testing	with	Oracle	and	creating	these	examples.

We	downloaded	the	Oracle	Instant	Client	for	Microsoft	Windows	(32-bit).
We	used	version	11.1.0.7.0	after	having	had	unresolved	difficulties	with
earlier	versions
To	the	extent	of	our	testing,	we	were	able	to	successfully	use	this	version
with	our	Oracle	10g	database.
It	was	necessary	to	separately	download	and	install	the	"Basic"	and	"ODBC"
packages.		The	former	is	a	pre-requisite	for	the	latter.
The	installation	process	was	manual.		It	was	necessary	to	download	and
unzip	files	following	the	instructions	provided,	read	and	follow	instructions
in	the	associated	README	files,	run	the	ODBC	install	script	and	modify
and/or	create	environment	variables.		If	any	step	is	omitted	or	incorrectly
completed,	your	ODBC	client	installation	may	not	operate	correctly.
We	encountered	a	number	of	issues	and	noticed	other	reports	on	the	web.		If
you	have	difficulty	connecting	your	Oracle	client	to	your	Oracle	database	on
the	network,	we	suggest	you	search	resources	on	the	web,	using	keywords
associated	with	the	symptoms	you	are	experiencing.		For	issues	that	we
encountered,	it	was	our	observation	that	somebody	on	the	web	had
encountered	similar	symptoms	and	suggested	workarounds	or	fixes	are	often
available,	either	via	Oracle	resources	or	through	peer-support	networks	and
forums.

Following	are	some	useful	references	related	to	downloading,	installing,
configuring	and	trouble-shooting	the	Oracle	Instant	Client	software:

Oracle	Instant	Client	Downloads
Connecting	to	Oracle

TNS	Service	Names
When	you	connect	to	an	Oracle	database	using	the	Oracle	ODBC	driver,	one	of
the	things	you	are	asked	to	specify	is	a	TNS	Service	Name.		The	TNS	Service
Name	is	an	Oracle	artefact	that	specifies	the	information	that	identifies	the
server	system	and	database	to	which	you	wish	to	connect.
TNS	Service	Name	definitions	are	created	and	maintained	using	the	Oracle
SQL*Net	program	and	are	held	in	a	text	file	named	TNSNAMES.ORA.		The
Oracle	client	looks	for	this	file	in	the	location	specified	by	the	TNS_ADMIN
environment	variable.
The	Oracle	Instant	Client	"Basic"	and	"ODBC"	packages	mentioned	above	do
not	include	the	necessary	program	for	maintaining	the	TNSNAMES.ORA	file.	
You	can	deal	with	this	in	one	of	the	following	ways:

Install	and	use	the	full	Oracle	client	instead
Create	the	TNS	Service	Names	on	a	different	computer	that	has	the
necessary	programs	and	then	copy	TNSNAMES.ORA	to	your	client
computer.
Manually	create	and	edit	the	TNSNAMES.ORA	file	using	a	plain	text	editor
such	as	Notepad.		To	do	this,	you	need	to	know	the	format	and	content	of	the
file.		Some	of	the	links	provided	below	describe	the	format	and	content	of
the	file	and/or	provide	examples.

In	all	the	above	cases,	you	must	ensure	that	the	TNS_ADMIN	environment
variable	has	been	set	correctly	so	that	the	Oracle	ODBC	driver	software	can
locate	the	file.
Alternatively,	where	prompted	for	a	TNS	Service	Name,	you	can	often	enter	an
SQL	Connect	URL	to	specify	all	the	necessary	connection	information	without
using	TNSNAMES.ORA.		This	is	the	approach	that	has	been	used	in	the
examples	described	and	shown	later	in	this	section.		Whether	you	can	use	this
approach	may	depend	on	your	specific	environment	and	database	configuration.
Following	are	some	references	that	provide	more	information	on	TNS	Service
Names,	their	definition	and	the	alternate	SQL	Connect	URL	form.		There	are
many	more	references	available	on	the	Internet.	Use	your	Internet	search	engine
to	locate	further	references	if	required.

http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
http://www.querytool.com/help/911.htm

Tnsnames.ora	-	Oracle	FAQ
Local	Naming	Parameters	(tnsnames.ora)

	

http://www.orafaq.com/wiki/Tnsnames.ora
http://download.oracle.com/docs/cd/B28359_01/network.111/b28317/tnsnames.htm

Connecting	to	Oracle	to	Define	a	Transformation	Map
While	defining	a	Transformation	Map	using	the	mapping	tool,	you	will	select
the	Database	option	from	the	Insert	menu	(or	use	the	corresponding	toolbar
button)	to	insert	a	database	component.

The	dialogs	you	have	to	complete	depend	on	the	type	of	database	connection
you	insert	and	on	choices	you	have	made	in	previous	sessions	in	the	mapping
tool.	The	following	steps	describe	some	of	the	most	common	and	important
dialogs	and	choices:		The	actual	windows	you	will	see	and	have	to	complete	in
order	to	establish	your	database	connection	will	vary	according	to	the	type	of
database,	driver,	previous	database	selections	and	other	factors.	What	follows	is
an	example	sequence	of	windows	for	establishing	a	new	ODBC	connection	to
an	Oracle	database	running	on	your	network.
1.		On	the	first	panel	of	the	Connection	Wizard,	choose	Oracle	as	the	database
type	and	click	Next.

(If	the	Connection	Wizard	is	not	shown,	click	the	Connection	Wizard	button
to	display	it)

Note:		These	examples	will	use	the	ORACLE	ODBC	driver
installed	with	the	Oracle	Instant	Client	as	described	in	Installing
and	Configuring	Oracle	Client	Software.

2.		When	prompted	to	Configure:	Oracle,	you	can	do	either	of	the	following:
If	you	have	already	created	a	Data	Source	Name	(DSN)	for	your	Oracle
database,	then	you	can	click	Use	an	existing	Data	Source	Name	and	select
the	DSN	from	those	shown.
If	you	have	not	yet	created	a	Data	Source	Name	(DSN)	for	your	Oracle
database,	then	you	should	click	Create	a	new	Data	Source	Name…	and
then	select	the	Oracle	ODBC	driver	from	the	drop-down	list.

The	drop-down	list	may	show	the	Microsoft	ODBC	for	Oracle	driver,	but
we	recommend	using	the	driver	installed	with	the	Oracle	client	software	-
its	name	will	vary	according	to	the	installation	path.		(The	Microsoft
ODBC	for	Oracle	driver	still	requires	part	or	all	of	the	Oracle	client
software	to	be	present	on	the	client	computer,	so	there	seems	little	to	be
gained	by	using	this	driver.)

If	the	Oracle	ODBC	driver	is	not	shown	in	the	drop-down	list,	then	click

the	Edit	Drivers	button	to	add	it	to	the	list	of	drivers	that	the	mapping	tool
will	associate	with	the	Oracle	database	choice.		(When	you	have	done	this,
you	must	click	the	Back	To	Configuration	Page	button	to	return	to	the
Configure:	Oracle	window.)

(If	the	Oracle	ODBC	driver	does	not	appear	in	the	list	of	all	available
drivers,	then	you	may	not	have	run	the	ODBC	install	script
(odbc_install.exe)	as	part	of	the	installation	of	the	"ODBC"	package	of	the
Oracle	Instant	Client)

This	example	assumes	that	you	are	creating	a	new	Data	Source	Name
(DSN).

3.		The	Oracle	ODBC	Driver	Configuration	window	prompts	for	details	for	the
new	Data	Source	Name	(DSN).		Complete	the	details	as	described	below:

The	first	two	entry	fields	(Data	Source	Name	and	Description)	provide	a
name	and	description	for	the	Data	Source	Name	(DSN).		Type	a	name	and
description	that	are	appropriate	to	identify	the	DSN.
In	the	TNS	Service	Name	entry	field	you	can	enter	either	a	TNS	Service
Name	(defined	in	the	TNSNAMES.ORA	file)	or	the	SQL	Connect	URL
required	to	identify	the	server	and	database	to	which	you	wish	to	connect.	
The	example	shows	the	SQL	Connect	URL	form	where	TEST0101	is	the
name	of	the	server	hosting	the	database	and	ORA0101	is	the
database/service	name.		For	more	information	and	references	refer	to	TNS
Service	Names.
Type	the	User	ID	that	you	will	use	to	connect	to	your	server	and	database.
Review	and	change	(if	necessary)	the	options	in	the	tabs	at	the	bottom
according	to	your	environment,	your	database	and	the	requirements	of	the
application.

					You	can	click	Test	Connection	to	verify	that	the	connection	can	be
established	with	the	details	you	have	entered.		When	complete,	click	OK	to
continue.		If	prompted	for	a	password,	type	the	password	associated	with	the
user	id	that	you	will	use	to	connect	to	your	server	and	database.

4.		When	your	connection	has	been	successfully	established,	the	mapping	tool
allows	you	to	choose	the	particular	tables	you	wish	to	use	in	your
transformation	map:

					Select	the	database	tables	you	wish	to	use	and	click	OK.		(If	your	database
tables	are	not	in	the	schema	initially	shown,	click	the	arrow	next	to	the
schema	name	and	select	the	required	schema	from	the	drop-down	list.)		A
database	component	representing	the	selected	tables	is	inserted	in	the
workspace	for	the	map.

Connecting	to	Oracle	to	Execute	a	Transformation	Map
When	the	Transformation	map	runs,	it	will	use	JDBC	to	establish	the
connection	to	the	Oracle	database	on	your	network.	This	connection	is	initiated
from	the	server	computer	on	which	the	transformation	map	executes.
LANSA	Composer	prepares	the	JDBC	connection	according	to	the	Database
Configuration	that	you	provide	as	a	parameter	to	the	Transformation	Map.	You
must	define	the	Database	Configuration	with	the	correct	details	necessary	to
establish	the	particular	database	connection	to	be	used.
Example	Database	Configuration
The	following	sample	values	assume	that	you	are	using	an	Oracle		JDBC	driver
to	connect	to	the	Oracle	database	on	your	network:

Database
driver
class

Following	are	class	names	commonly	used	with	the	Oracle	JDBC
drivers:
For	Oracle	10g	and	earlier:
oracle.jdbc.driver.OracleDriver
For	Oracle	11i	and	later:
oracle.jdbc.OracleDriver

Database
connection
string	

The	form	of	the	connection	string	for	the	Oracle	JDBC	driver
depends	on	the	driver	and	the	type	of	connection	you	wish	to
make.		For	example:
For	the	JDBC	Thin	Driver,	or	Server-side	Thin	Driver:
jdbc:oracle:thin:@<database>
where	<database>	is	either	a	string	of	the	form	//<host>:
<port>/<service_name>,	or	a	SQL*net	name-value	pair,	or	a
TNSEntryName.		For	example,	the	following	is	a	sample	JDBC
connection	string	to	connect	to	the	Oracle	database	named
ORA0101	running	on	the	server	named	TEST0101:
jdbc:oracle:thin:@//TEST0101/ORA0101
	
To	make	a	remote	connection	with	the	JDBC	OCI	(Oracle	call
interface)	driver:
jdbc:oracle:oci:@<database>

where	<database>	is	either	a	TNSEntryName	or	a	SQL*net
name-value	pair	defined	in	tnsnames.ora.

Further	considerations
The	Database	Configuration	should	specify	the	username	and	password	of
the	user	authorized	to	perform	the	database	transactions.
If	necessary,	you	can	download	the	Oracle	JDBC	Driver	appropriate	to	your
environment	from	this	location:

JDBC/UCP	Download	Page
The	name	of	the	.jar	that	implements	the	Oracle	JDBC	driver	depends	on	the
version	and	features	of	the	JDBC	driver	that	you	have	downloaded.		For
example,	the	base	JDBC	driver	for	use	with	Java	1.5	is	ojdbc5.jar.		You	may
need	to	copy	the	file	to	the	/jar	directory	of	your	JSM	instance	and	restart	the
Java	Service	Manager	before	using	the	driver	with	Transformation	Maps	in
LANSA	Composer.
Refer	to	relevant	Oracle	resources	for	more	information	on	the	available
Oracle	JDBC	drivers,	their	installation	and	configuration	requirements	and
the	keywords	and	values	that	can	be	specified	in	the	JDBC	connection
string.		Following	are	some	useful	references:
Oracle	JDBC	Frequently	Asked	Questions
Oracle	JDBC	FAQ
Top	Ten	Oracle	JDBC	Tips	|	O'Reilly	Media
ConnectionStrings.com	-	Forgot	that	connection	string?	Get	it	here!

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html
http://www.onjava.com/pub/a/onjava/2001/12/19/oraclejdbc.html
http://www.connectionstrings.com/

Supported	Functionality	of	the	Mapping	Tool
This	section	discusses	MapForce	features	and	functionality	that	are	or	are	not
supported	for	use	with	LANSA	Composer.	Please	note,	however,	nothing	here
adds	to	Altova's	own	statements	of	supported	features,	functions	and	platforms
for	Altova	MapForce,	nor	to	LANSA's	statements	of	supported	platforms	and
software.	For	further	information	please	refer	to	the	Altova	documentation	and
their	web-site	and	to	the	LANSA	web-site.

Supported	MapForce	Functionality
Unsupported	MapForce	Functionality

Supported	MapForce	Functionality
LANSA	Composer	supports	the	functionality	offered	by	the	mapping	tool	for
mapping	between	XML,	EDI,	Excel	(OOXML),	text	(including	using	FlexText),
web	service	functions	and	database	formats	and	including	the	use	of	constants,
filters,	If-Else	conditions,	supplied	functions	and	input	functions,	provided	that:

the	functionality	is	supported	by	Altova	when	generating	Java	code	for	the
map.
databases	and	database	drivers	used	and	the	operating	systems	on	which
they	are	running	are	amongst	those	that	are	supported	by	LANSA	for	use
with	LANSA	software.

Certain	properties	of	a	Transformation	Map	definition	are	set	explicitly	by
LANSA	Composer	before	generating	the	Java	code	for	a	map.	Thus	any
changes	that	you	make	to	these	properties	in	your	map	definition	will	not	affect
the	generated	Java	implementation	of	the	map.	These	include:

The	default	output	directory	for	generated	code
The	application	name
The	base	package	name	for	Java	generation.
The	output	language	(LANSA	Composer	always	generates	Java	code)

Unsupported	MapForce	Functionality
There	are	certain	functions	of	Altova	MapForce	that	are	explicitly	NOT
supported	for	use	with	LANSA	Composer.	These	are:

MapForce	projects
Web	service	projects	(publishing	web	services)
Any	functionality	that	is	not	supported	by	Altova	for	Java	generation
Maps	that	use	multiple	target	components	or	"chained	transformations"
(such	cases	can	generally	be	accomplished	by	making	use	of	intermediate
"variable"	components	or	by	using	more	than	one	map	each	with	a	single
target	component)

Transformation	Map	definitions	that	make	use	of	these	functions	may	not
integrate	correctly	with	LANSA	Composer.
In	addition,	the	following	user-interface	options	for	Altova	MapForce	are	not
used	(or	supported)	with	LANSA	Composer:

MapForce	plug-in	for	MS	Visual	Studio	.NET
MapForce	plug-in	for	Eclipse

Supported	Versions	of	the	Mapping	Tool
LANSA	Composer	version	5.0	is	tested	and	supplied	with	Altova	MapForce
version	2014	release	2	(2014R2).
LANSA	recommends	that	you	upgrade	to	the	version	of	Altova	MapForce	that
is	shipped	with	LANSA	Composer.
Newer	Versions	of	Altova	MapForce
From	time-to-time,	newer	versions	of	Altova	MapForce	will	become	available.	
Usually	LANSA	will	then	perform	limited	testing	for	the	new	version	of	Altova
MapForce	with	the	current	version	of	LANSA	Composer.
You	are	strongly	advised	not	to	upgrade	to	a	new	version	of	Altova	MapForce
until	LANSA	has	tested	and	approved	it	for	use	with	LANSA	Composer.
For	the	latest	information	on	the	versions	of	Altova	MapForce	that	have	been
tested	with	LANSA	Composer,	refer	to:

Supported	Platforms	for	LANSA	Composer
Upgrading	Altova	MapForce
Installing	the	LANSA	Composer	client	software	does	not	automatically	upgrade
an	existing	installation	of	Altova	MapForce.
However,	the	installer	for	the	shipped	version	of	Altova	MapForce	is	supplied
on	the	LANSA	Composer	installation	DVD	in	the	directory
WINCLIENT\Installs\ALTOVA.		You	can	run	the	installer	manually	to	upgrade
your	version	of	Altova	MapForce.
LANSA	recommends	that	you	upgrade	to	the	version	of	Altova	MapForce	that
is	shipped	with	LANSA	Composer.		However,	before	you	do	so,	you	should
consider	the	following:

Altova	MapForce	may	require	that	your	software	activation	key	code
signifies	a	valid	and	current	support	and	maintenance	plan	in	order	to	install
or	upgrade	to	newer	versions.		If	you	have	a	current	software	maintenance
contract	for	LANSA	Composer	with	LANSA,	then	you	will	normally	have
received	new	software	activation	keys	for	Altova	MapForce	when	your
LANSA	Composer	software	maintenance	was	renewed..
LANSA	recommends	uninstalling	the	current	version	of	Altova	MapForce
before	installing	a	newer	version.
It	will	usually	be	the	case	that	Transformation	Maps	saved	with	a	newer
version	will	not	be	capable	of	being	opened	with	an	older	version	of	Altova

http://www.lansa.com/support/supportedversions.htm#composer

MapForce.
In	order	to	ensure	interoperability	across	all	LANSA	Composer	clients	(with
respect	to	opening,	editing	and	preparing	Transformation	Maps),	LANSA
strongly	recommends	that	all	LANSA	Composer	clients	use	the	same
version	of	Altova	MapForce.
It	is	not	normally	necessary	to	re-prepare	your	Transformation	Maps	after
upgrading	to	a	newer	version	of	Altova	MapForce.
In	some	cases,	users	may	be	using	Altova	MapForce	for	applications	outside
LANSA	Composer.		In	that	event,	you	should	consider	the	effect	of
upgrading	Altova	MapForce	on	those	other	applications.

Appendix	D.	Commands	to	Invoke	LANSA	Composer
LANSA	Composer	provides	interfaces	or	commands	to	invoke	LANSA
Composer	functionality	on	the	server	and/or	the	client.		The	available	interfaces
or	commands	are	described	in	this	appendix	in	the	following	sections:

The	COMPOSER	command	for	IBM	i	servers
Using	dxstart.exe	to	start	functions	of	LANSA	Composer	on	Windows

The	COMPOSER	command	for	IBM	i	servers

Note:		The	COMPOSER	command	is	provided	only	for	IBM	i
servers.		On	Windows	servers,	LANSA	Composer	provides	alternate
means	or	procedures	to	accomplish	the	functions	that	are	provided	by
the	COMPOSER	command.

LANSA	Composer	provides	the	COMPOSER	command	for	invoking	selected
LANSA	Composer	functionality	on	the	LANSA	Composer	server.		Using	the
COMPOSER	command	you	can:

Display	LANSA	Composer	system	information
Re-organise	the	LANSA	Composer	database
Run	a	Processing	Sequence
Apply	a	IBM	i	Server	License	for	LANSA	Composer
Start	the	LANSA	Composer	tutorial	orders	application

This	appendix	provides	the	following	information:
COMPOSER	Command	Parameters
Using	the	COMPOSER	Command
COMPOSER	Command	Examples

Also	see
Run	a	Processing	Sequence	using	the	COMPOSER	command
Apply	the	Server	License	for	LANSA	Composer
																																																									Required
	
		COMPOSER	---	REQUEST	----	ABOUT			---------------------------->
																												RUN				
																												REORG		
																												LICENSE
																												LICENCE
																												TUTORD
	
	--
																																																									Optional
	
											>--	PSEQ	-------	processing	sequence	identifier	----->

its:LANSA091.CHM::/lansa/intengc3_0280.htm

	
											>--	PARMS	------	parameter	name	--	parameter	value	-->
																										|																																			|
																											<-----------	100	max	--------------
	
											>--	PARTITION	--	partition	identifier	--------------->
	
											>--	LANGUAGE	---	language	code	----------------------|
	

COMPOSER	Command	Parameters
REQUEST
This	parameter	specifies	the	LANSA	Composer	function	to	be	performed.		The
functions	that	may	be	requested	are:

ABOUT:	Echos	messages	containing	certain	LANSA	Composer	version	and
environment	information	back	to	the	command	processor.		This	information
includes	LANSA	listener,	HTTP	listener	and	JSM	port	numbers.
RUN:	Specifies	that	a	LANSA	Composer	Processing	Sequence,	Activity	or
Transformation	Map	is	to	be	run.		The	PSEQ	parameter	must	be	specified	if
REQUEST(RUN)	is	specified.		The	PSEQ	parameter	specifies	the	identifier
of	the	Processing	Sequence,	Activity	or	Transformation	Map	that	is	to	be
run.
REORG:	Specifies	that	the	LANSA	Composer	database	housekeeping	task	is
to	be	run.		The	database	housekeeping	task	will	use	the	parameter
specifications	last	used	or	last	saved	through	the	LANSA	Composer	client.	
Refer	to	Database	Housekeeping	for	more	information.
LICENSE	or	LICENCE:	Specifies	that	a	server	license	for	LANSA
Composer	is	to	be	applied.
Refer	to	Apply	the	Server	License	for	LANSA	Composer	for	more	details.
TUTORD:	Starts	the	LANSA	Composer	tutorial	orders	application.

PSEQ
For	REQUEST(RUN),	this	parameter	must	specify	the	identifier	of	the
Processing	Sequence,	Activity	or	Transformation	Map	that	is	to	be	run.		You
can	specify	the	identifier	in	one	of	two	ways:

When	running	a	Processing	Sequence,	you	can	specify	the	external	identifier
(ID	or	name)	of	the	Processing	Sequence.
Otherwise	you	can	specify	the	internal	identifier	of	the	Processing	Sequence,
Activity	or	Transformation	Map.		The	internal	identifier	is	a	unique	internal
key	that	is	allocated	for	each	item	by	LANSA	Composer	when	it	is	created.	
Its	value	can	be	displayed	on	the	Audit	tab	in	the	LANSA	Composer	client
application.

PARMS
For	REQUEST(RUN),	the	PARMS	parameter	may	be	used	to	specify	parameter
values	for	the	Processing	Sequence,	Activity	or	Transformation	Map	that	is	to

its:LANSA091.CHM::/lansa/IntEngC6_0030.htm

be	run.		Up	to	100	parameter	values	may	be	specified.
Parameter	values	are	always	provided	by	parameter	name,	so	you	only	need	to
supply	values	for	required	parameters	or	where	you	wish	to	use	a	value	different
from	the	default	parameter	value.		You	can	specify	the	parameter	name	and
value	pairs	in	any	order.
For	each	parameter	for	which	you	wish	to	provide	a	value,	you	must	provide:

parameter	name	-	the	name	of	the	parameter	as	defined	in	the	Processing
Sequence,	Activity	of	Transformation	Map	definition.
parameter	value	-	the	value	for	the	parameter.

PARTITION
This	parameter	specifies	the	identifier	of	the	LANSA	partition	containing	the
LANSA	Composer	server	installation	to	be	used.		If	not	specified,	the
COMPOSER	command	will	attempt	to	determine	the	partition	identifier
according	to	information	recorded	during	the	last	LANSA	Composer	installation
into	this	system.

LANGUAGE
This	parameter	specifies	the	national	language	to	be	used.		If	not	specified,	the
language	defaults	to	the	partition	default	language.

Using	the	COMPOSER	Command
The	following	sections	describe	some	further	considerations	for	using	the
COMPOSER	command:

Invoking	the	COMPOSER	Command
Submitting	the	COMPOSER	Command	to	Batch
Including	the	COMPOSER	Command	in	Your	Own	Programs
Monitoring	Messages	Issued	by	the	COMPOSER	Command

Invoking	the	COMPOSER	Command
The	COMPOSER	command	is	installed	in	the	LANSA	program	library	of	the
LANSA	system	in	which	LANSA	Composer	is	installed.		In	a	default	LANSA
Composer	installation	this	is	LICPGMLIB,	but	it	may	be	different	on	your
system.
The	COMPOSER	command	can	be	entered	at	a	command	line	display	by	typing
the	command	and	pressing	F4	to	prompt	for	the	command	parameter	values:

COMPOSER
If	the	LANSA	program	library	is	not	already	in	the	library	list,	you	can	enter	the
command	as:

<pgmlib>/COMPOSER
	where	<pgmlib>	is	the	name	of	the	program	library	for	the	LANSA	system	in
which	LANSA	Composer	is	installed.		For	example,	if	you	installed	LANSA
Composer	into	the	default	location,	you	would	type:

LICPGMLIB/COMPOSER
Once	invoked,	the	COMPOSER	command	will	automatically	establish	the
environment	it	needs	to	operate,	including	modifying	the	library	list	if
necessary.		However,	it	is	your	responsibility	to	ensure	that	the	library	list
includes	any	necessary	application	libraries.

Submitting	the	COMPOSER	Command	to	Batch
When	using	the	COMPOSER	command	to	run	a	Processing	Sequence,	you	can
submit	the	command	to	batch.		For	example,	you	could	use	a	command	like	this
to	submit	the	supplied	processing	sequence	TUT_01_P1	to	run	in	batch	:

SBMJOB	JOB(TUT_01_P1)
CMD(<pgmlib>/COMPOSER	REQUEST(RUN)
PSEQ(TUT_01_P1)
PARMS((YOURINITIALS	'FS')
(YOURMESSAGE	'Hello	World')
(YOURNAME	'Fred	Smith')))

(where	<pgmlib>	is	the	name	of	the	program	library	for	the	LANSA	system	in
which	LANSA	Composer	is	installed).

Including	the	COMPOSER	Command	in	Your	Own	Programs
When	using	the	COMPOSER	command	to	run	a	Processing	Sequence,	you	can
compile	it	into	your	own	3GL	programs,	typically	i5/OS	Control	Language	(CL)
programs.
In	this	way	you	can	deeply	integrate	your	LANSA	Composer	solutions	within
your	own	application	processing	and	increase	the	flexibility	of	your	solutions	by
passing	variable	data	supplied	by	your	application	into	the	Processing	Sequence
using	parameters.

Note:		You	should	not	attempt	to	directly	invoke	the	COMPOSER
command	from	a	LANSA	application,	although	you	can	submit	it	to
batch.		Refer	to	Appendix	E.	Using	LANSA	Composer	with	LANSA
Applications	for	more	information.

its:LANSA091.CHM::/lansa/intengc9_0240.htm

Monitoring	Messages	Issued	by	the	COMPOSER	Command
When	the	COMPOSER	command	is	used	to	run	a	Processing	Sequence,	it	will
issue	message	CPF9898	as	an	*ESCAPE	message	if	the	Processing	Sequence
does	not	end	normally.		You	can	monitor	for	CPF9898	in	your	CL	programs
using	the	MONMSG	CL	command.

COMPOSER	Command	Examples
Example	1:	Display	LANSA	Composer	server	version	and	environment
information:

<pgmlib>/COMPOSER	REQUEST(ABOUT)
					where	<pgmlib>	is	the	name	of	the	program	library	for	the	LANSA	system
in	which	LANSA	Composer	is	installed.		For	example,	if	you	installed
LANSA	Composer	into	the	default	location,	you	would	type:
LICPGMLIB/COMPOSER	REQUEST(ABOUT)

	If	you	typed	the	above	command	at	a	command	line,	LANSA	Composer	will
display	messages	containing	the	LANSA	Composer	version	and	environemt
information.		For	example::
LANSA	Composer	Server	version	3.0	(Build	307)
LANSA	V11SP5																																
IBM	i	server	6.1																												

Example	2:	Initiate	applying	a	server	license	to	the	LANSA	Composer	server
system:

<pgmlib>/COMPOSER	REQUEST(LICENSE)
					where	<pgmlib>	is	the	name	of	the	program	library	for	the	LANSA	system
in	which	LANSA	Composer	is	installed.		For	example,	if	you	installed
LANSA	Composer	into	the	default	location,	you	would	type:
LICPGMLIB/COMPOSER	REQUEST(LICENSE)

Example	3:	Run	the	supplied	processing	sequence	TUT_01_P1	:
<pgmlib>/COMPOSER	REQUEST(RUN)
pseq(TUT_01_P1)
parms((YOURINITIALS	'FS')
(YOURMESSAGE		'Hello	World')
(YOURNAME					'Fred	Smith'))

Example	4:	Run	the	supplied	activity	FTP_INBOUND	using	the
EXAMPLE_FTPIN	configuration	:

<pgmlib>/COMPOSER	REQUEST(RUN)
pseq(4B3DEDA9F50B4C53885BE5318F12DDCA)
parms((FTPCONFIG	'EXAMPLE_FTPIN'))

Using	dxstart.exe	to	start	functions	of	LANSA	Composer	on
Windows
LANSA	Composer	provides	dxstart.exe	for	starting	functionality	of	the	LANSA
Composer	client	and/or	of	the	LANSA	Composer	Windows	server.		It	is
installed	in	the	X_WIN95\X_LANSA\Execute	directory	of	the	LANSA
Composer	client	or	server	installation.		Using	dxstart.exe	you	can:

Start	the	LANSA	Composer	client	application
Start	the	LANSA	Composer	Document	Manager	application
Execute	a	processing	sequence	run	"shortcut"	from	the	client	computer
Re-organise	the	LANSA	Composer	database

When	you	install	LANSA	Composer,	shortcuts	are	automatically	created	for	the
first	two	of	these	functions.		If	you	need	to,	you	can	use	the	information
contained	here	to	create	your	own	shortcuts	or	integrate	dxstart.exe	into	your
desktop	or	server	environment	in	other	ways	that	you	choose.		This	appendix
provides	the	following	information:

dxstart.exe	Syntax	and	Parameters
dxstart.exe	Configuration	File
dxstart.exe	Examples

dxstart.exe	Syntax	and	Parameters
You	can	specify	switches	and	parameters	on	the	dxstart.exe	command	line	to
control	its	behaviour.
	
		dxstart.exe				/request={dxclient|dxtxmon|dxrun|dxreorg|dxregister}
	
																	/lang=lll
	
																	/part=ppp
	
																	/offline
	
																	/shortcut=path
	

/request=	{dxclient|dxtxmon|dxrun|dxreorg|dxregister}
This	switch	specifies	the	LANSA	Composer	client	or	server	function	to	be
performed.		The	functions	that	may	be	requested	are:

dxclient:	Starts	the	LANSA	Composer	client	application.		This	is	the	default
if	the	/request	switch	is	not	provided	or	the	value	is	not	recognised.
dxtxmon:	Starts	the	LANSA	Composer	Document	Manager	application.
dxrun:	Executes	a	processing	sequence	run	"shortcut"	file.		The	path	to	the
shortcut	file	must	be	provided	using	the	/shortcut	switch.		In	normal	usage,
LANSA	Composer	registers	the	file	extension	associated	with	a	LANSA
Composer	processing	sequence	run	"shortcut"	file	(.dxrun)	such	that	the
default	Windows	Explorer	action	for	files	with	that	extension	is	to	invoke
dxstart.exe	with	this	switch	and	the	/shortcut	switch.
dxreorg:	Executes	the	LANSA	Composer	database	housekeeping	task.		The
database	housekeeping	task	will	use	the	parameter	specifications	last	used	or
last	saved	through	the	LANSA	Composer	client.		Refer	to	Database
Housekeeping	for	more	information.		This	function	can	only	be	executed	on
the	LANSA	Composer	Windows	server.
dxregister:	May	be	used	to	explicitly	invoke	dxtstart.exe	to	register	the
.dxrun	file	with	Windows	Explorer	and	associate	dxstart.exe	with	it.	
Normally	this	occurs	in	the	course	of	standard	LANSA	Composer
installation	and	processing.

its:LANSA091.CHM::/lansa/IntEngC6_0030.htm

/lang=lll
This	switch	may	be	used	to	specify	the	national	language	used	to	start	LANSA
Composer.		If	not	specified,	LANSA	Composer	will	automatically	detect	French
and	Japanese	systems	and	start	the	LANSA	Composer	client	in	the	appropriate
language.		If	this	switch	is	specified,	its	value	overrides	the	automatic	detection
and	any	value	that	may	be	specified	in	the	dxstart.cfg	configuration	file.

/part=ppp
This	switch	may	be	used	to	specify	the	partition	name	used	to	start	LANSA
Composer.		If	specified,	this	value	overrides	any	value	that	may	be	specified	in
the	dxstart.cfg	configuration	file.		In	a	standard	LANSA	Composer	installation	it
should	not	be	necessary	to	specify	this	switch	as	the	software	is	always	installed
in	partition	named	LIC.		The	partition	specified	here	does	not	affect	or	override
the	partition	name	used	for	the	connection	to	the	LANSA	Composer	server.

/offline
For	/request=dxclient	or	/request=dxtxmon,	this	switch	may	be	specified	to
cause	the	LANSA	Composer	client	or	LANSA	Composer	Document	Manager
application	to	start	in	offline	mode,	without	showing	the	Connect	to	LANSA
Composer	Server	dialog.
You	would	never	use	this	switch	in	a	standard	LANSA	Composer	client
installation,	as	such	an	installation	does	not	have	a	local	LANSA	Composer
database	and	therefore	cannot	run	in	offline	mode.
This	switch	is	typically	used	with	the	LANSA	Composer	client	that	is	installed
with	a	LANSA	Composer	Server	for	Windows	installation.

/shortcut=path
For	/request=dxrun,	this	switch	specifies	the	full	path	to	the	LANSA	Composer
processing	sequence	"shortcut"	file	to	be	executed.		Such	a	file	usually	has	a	file
extension	of	.dxrun.		If	the	path	contains	spaces	or	other	special	characters	it
should	be	fully-enclosed	in	double-quote	marks.

dxstart.exe	Configuration	File
In	a	standard	LANSA	Composer	installation,	dxstart.exe	requires	only	the
information	described	above	to	successfully	start	the	requested	function.
In	exceptional	circumstances,	it	may	be	necessary	to	override	aspects	of
dxstart.exe's	default	behavior.		This	can	be	done	by	altering	the	contents	of	the
dxstart.cfg	file	contained	in	the	same	folder	as	dxstart.exe.		The	presence	of	this
file	is	optional	-	if	it	is	not	present,	dxstart.exe	will	use	default	behaviours.
The	following	is	an	example	dxstart.cfg	file.		All	the	configuration	parameters
in	this	example	are	commented	by	the	preceding	semi-colon	(;)	and	thus	are	not
effective.		The	dxstart.exe	program	will	exhibit	default	behavior	in	this	case.
;	--
;	THIS	file	can	be	used	to	configure	dxstart.exe	so	that	it	can	locate
;	and	correctly	execute	the	LANSA	and	LANSA	Composer	executable	files.
;
;	dxstart.exe	is	used	to:
;
;	-	start	the	LANSA	Composer	client
;		(dxstart.exe	/request=dxclient)
;
;	-	start	the	LANSA	Composer	Document	Manager
;		(dxstart.exe	/request=dxtxmon)
;
;	-	run	client-side	LANSA	Composer	processing	sequence	run	"shortcuts"
;		(dxstart.exe	/request=run	/shortcut=%1)
;		(normally	accomplished	by	Windows	shell	file	association	for	.dxrun)
;
;	-	execute	the	LANSA	Composer	database	housekeeping	task
;		(dxstart.exe	/request=dxreorg)
;
;	In	a	standard	LANSA	Composer	installation,	the	defaults	used	by
;	dxstart.exe	should	suffice	-	it	should	NOT	be	necessary	to	enable
;	ANY	settings	in	this	file.
;
;	For	a	LANSA	Composer	client	that	is	or	may	be	used	in	OFFLINE	mode,
;	it	will	be	necessary	that	this	file	is	configured	correctly	to	permit
;	the	offline	LANSA	Composer	client	to	access	the	local	database.
;

;	Typically,	this	applies	to:
;	-	an	offline	client	used	on	and	with	a	LANSA	Composer	Windows	server
;			installation,
;	-	a	LANSA	Composer	development	environment	(applies	to	LANSA	LPC
only)
;
;	Lines	beginning	with	;	are	comments	and	will	NOT	be	effective.
;	--
	
[dxStart]
;x_win95=C:\Program	Files\LANSA	Composer\X_WIN95
	
[x_run]
;user=LICPGMLIB
;part=LIC
;lang=ENG
;dbid=LX_LANSA
;dbut=SQLANYWHERE
;dbus=DBA
;pswd=SQL
;extra=DBID=LX_LANSA	DBUT=SQLANYWHERE	DBUS=DBA
PSWD=SQL
	

dxstart.exe	Examples
Example	1:	Start	the	LANSA	Composer	client	application:
dxstart.exe
	

Example	2:	Start	the	LANSA	Composer	Document	Manager	application	in
French:
dxstart.exe	/request=dxtxmon	/lang=FRA
	

Example	3:	Initiate	a	LANSA	Composer	processing	sequence	run	from	the
client	computer	using	the	processing	sequence	id	and	parameter	values	specified
in	the	file	c:\example.dxrun:
dxstart.exe	/request=dxrun	/shortcut="c\example.dxrun"
	

Example	4:	Execute	the	LANSA	Composer	database	housekeeping	task	on	a
Windows	server:
dxstart.exe	/request=dxreorg
	

	

Appendix	E.	Using	LANSA	Composer	with	LANSA	Applications
LANSA	Composer	is	an	application	that	is	functionally	independent	of	other
LANSA	products.		It	is	not	necessary	at	all	that	you	use	or	have	installed	other
LANSA	products	(including	LANSA	development	tools)	in	order	to	make	use
of	LANSA	Composer.
If,	however,	you	do	use	LANSA	development	tools	to	build	your	own
applications,	two	factors	position	LANSA	Composer	to	provide	the	best
possible	integration	with	those	LANSA	applications:
1.		LANSA	Composer	is	built	by	LANSA
2.		LANSA	Composer	is	itself	built	using	LANSA	development	tools
Typical	integration	between	LANSA	Composer	and	a	LANSA	application	will
take	place	in	the	course	of	executing	a	LANSA	Composer	Processing	Sequence.
The	integration	may	occur	in	either	or	both	of	two	directions:

LANSA	Application	Initiates	a	Processing	Sequence
Processing	Sequence	Invokes	Functions	or	Components	of	a	LANSA
Application

There	are	several	standard	means	that	LANSA	Composer	supports	for	a	LANSA
application	to	integrate	with	and	extend	your	business	process	integration
solutions.		These	include:

The	CALL_FUNCTION	activity

LANSA	Composer	supplies	the	ready-to-use	CALL_FUNCTION	activity
for	calling	existing	LANSA	functions.		The	LANSA	functions	to	be	called
may	exist	in	the	same	or	a	different	LANSA	system	and/or	partition	as
LANSA	Composer.
Activity	processors	for	custom	activities

In	fact,	the	processors	for	custom	activities	that	you	define	must	be
developed	using	Visual	LANSA,	even	if	they	simply	exist	to	call	existing
3GL	programs.		(Your	LANSA	Composer	supplier	can	usually	do	this	for
you	if	LANSA	development	tools	and/or	LANSA	development	skills	are	not
available	to	you.)
User-defined	event	notification	handlers

As	an	alternative	to	the	built-in	email	and	SMS	event	notification	handlers,	it

is	possible	to	define	your	own	event	notification	handler	as	a	LANSA
function.
LANSA	applications	can	initiate	LANSA	Composer	Processing	Sequences

There	are	several	ways	to	initiate	a	Processing	Sequence,	most	of	which	can
be	used	by	any	application.		However,	from	LANSA	V12SP1,	specific	built-
in	functions	are	provided	with	LANSA	specifically	for	use	by	LANSA
applications	to	initiate	LANSA	Composer	Processing	Sequence.

Also	refer	to:
Required	Characteristics	of	the	Common	LANSA	environment

LANSA	application	developers	should	be	guided	in	all	cases	by	the
relevant	LANSA	documentation.

LANSA	Application	Initiates	a	Processing	Sequence
There	are	several	ways	that	an	application	can	initiate	a	Processing	Sequence.	
They	are	fully	described	in	Run	a	Processing	Sequence.
However,	for	a	LANSA	application,	there	are	some	particular	and	additional
considerations.

The	recommended	way	for	a	LANSA	application	to	directly	execute	a
Processing	Sequence	is	by	means	of	the	built-in	functions	supplied
with	LANSA	V12SP1	and	above..		Refer	to	Run	a	Processing
Sequence	from	a	LANSA	application	for	more	information.		The
considerations	below	do	not	apply	if	you	use	the	supplied	built-in
functions	in	your	LANSA	application.

If	your	LANSA	application	will	submit	the	Processing	Sequence	such	that	it
executes	in	a	separate	process	or	job,	then	you	are	free	to	use	any	of	the
described	means	to	do	so,	even	when	the	LANSA	application	is	in	a	different
LANSA	system	and/or	partition	to	LANSA	Composer.
If,	however,	you	wish	your	LANSA	application	to	directly	execute	the
Processing	Sequence	(other	than	by	means	of	the	built-in	functions	provided),
then	you	should	consider	the	following:

You	must	not	invoke	the	Processing	Sequence	using	any	method	that	will
cause	one	of	the	LANSA	entry	points	(LANSA	command	or	program,
X_RUN)	to	be	executed,	as	this	will	lead	to	recursion	issues.		In	particular,
this	means:
You	may	not	invoke	the	COMPOSER	command
You	may	not	invoke	the	DXP1RUN	function	via	the	LANSA	command	or
by	executing	X_RUN

The	LANSA	application	code	unit	(function	or	component)	that	will	invoke
the	Processing	Sequence	must	reside	in	the	same	LANSA	system	and
partition	as	LANSA	Composer.

These	considerations	apply	whether	the	invocation	is	direct	or	indirect.		In	other
words,	you	cannot	circumvent	these	constraints	by	initiating	the	Processing
Sequence	from	a	non-LANSA	program	that	you	invoke	from	your	LANSA
application.

its:LANSA091.CHM::/lansa/IntEngC3_0035.htm
its:LANSA091.CHM::/lansa/IntEngC3_0285.htm

Processing	Sequence	Invokes	Functions	or	Components	of	a
LANSA	Application
LANSA	Composer	may	be	extended	in	a	number	of	ways	that	involve	a
Processing	Sequence	invoking	customer	or	3rd-party	defined	functions	or
components.		These	include:

The	CALL_FUNCTION	activity

LANSA	Composer	supplies	the	ready-to-use	CALL_FUNCTION	activity
for	calling	existing	LANSA	functions.		The	LANSA	functions	to	be	called
may	exist	in	the	same	or	a	different	LANSA	system	and/or	partition	as
LANSA	Composer.
Activity	processors	for	custom	activities

In	fact,	the	processors	for	custom	activities	that	you	define	must	be
developed	using	Visual	LANSA,	even	if	they	simply	exist	to	call	existing
3GL	programs.		(Your	LANSA	Composer	supplier	can	usually	do	this	for
you	if	LANSA	development	tools	and/or	LANSA	development	skills	are	not
available	to	you.)
User-defined	event	notification	handlers

As	an	alternative	to	the	built-in	email	and	SMS	event	notification	handlers,	it
is	possible	to	define	your	own	event	notification	handler	as	a	LANSA
function.

When	a	Processing	Sequence	invokes	customer	or	3rd-party	defined	LANSA
functions	or	components	in	any	of	these	ways	there	are	some	particular	and
additional	considerations.		When	designing	such	a	business	process	integration
solution	you	should	consider	the	following:

Except	for	functions	called	via	the	CALL_FUNCTION	activity,	the	LANSA
application	code	unit	(function	or	component)	to	be	invoked	must	reside	in
the	same	LANSA	system	and	partition	as	LANSA	Composer.
You	must	not	invoke	the	LANSA	application	code	unit	using	any	method
that	will	cause	one	of	the	LANSA	entry	points	(LANSA	command	or
program,	X_RUN)	to	be	executed,	as	this	will	lead	to	recursion	issues.

These	considerations	apply	whether	the	invocation	is	direct	or	indirect.		In	other
words,	you	cannot	circumvent	these	constraints	by	invoking	a	non-compliant

LANSA	application	code	unit	from	another	LANSA	application	code	unit	that	is
compliant.		Nor	can	you	do	so	by	means	of	an	intermediate	non-LANSA
program	that	you	invoke	from	LANSA	Composer	or	from	your	compliant
LANSA	application	code	unit.

Required	Characteristics	of	the	Common	LANSA	environment

NOTE:		This	information	is	provided	primarily	for	the	benefit	of	pre-
existing	LANSA	Composer	installations	that	may	have	used	this	type
of	installation.		From	version	4.0	of	LANSA	Composer,	it	is	no	longer
possible	or	necessary	to	create	new	installations	of	LANSA	Composer
in	an	existing	LANSA	system	that	is	used	by	other	LANSA
applications.

As	described	in	preceding	sections,	some	of	the	possible	forms	of	integration
between	LANSA	Composer	and	a	LANSA	application	require	that	LANSA
Composer	and	the	LANSA	application	code	unit	reside	in	the	same	LANSA
system	and	partition.
In	those	cases,	therefore,	the	LANSA	system	and	partition	must	meet	the
minimum	requirements	for	LANSA	Composer.		Consequently,	the	LANSA
application	code	unit	must	also	be	compatible	with	those	minimum
requirements.		In	particular,	the	common	LANSA	partition:

Must	be	RDMLX-enabled
Must	be	web-enabled
Must	be	multilingual-enabled
Must	be	at	least	at	the	LANSA	version	and	EPC	level	required	by	the
version	of	LANSA	Composer	that	is	installed

Appendix	F.	The	LANSA	Composer	Request	Server
The	LANSA	Composer	Request	Server	provides	support	for	the	tightest
possible	integration	between	LANSA	Composer	and	other	LANSA	applications,
permitting	each	to	invoke	functions	in	the	other,	even	though	they	may	be
executing	on	different	server	systems,	in	different	LANSA	run-time	systems
and/or	different	LANSA	partitions,	and	even	if	they	are	running	in	different
versions	or	EPC	levels	of	the	LANSA	run-time.
In	particular,	the	LANSA	Composer	Request	Server	supports	the	following:

LANSA	Composer	"calling"	LANSA

Using	the	CALL_FUNCTION	activity	in	a	LANSA	Composer	Processing
Sequence	to	"call"	a	LANSA	function	on	the	same	or	a	different	server
system	and/or	in	a	different	LANSA	system	and/or	partition	and	exchange
variable	information	with	it.
LANSA	Composer	"calling"	LANSA	Composer

Using	the	COMPOSER_RUN	activity	in	a	LANSA	Composer	Processing
Sequence	to	run	a	Processing	Sequence	in	another	installation	of	LANSA
Composer	on	the	same	or	a	different	server	system	and/or	in	a	different
LANSA	system	and/or	partition	and	exchange	variable	information	with	it.
LANSA	"calling"	LANSA	Composer

Using	the	COMPOSER_RUN	built-in	function	in	a	LANSA	application	to
directly	"call"	a	LANSA	Composer	Processing	Sequence	on	the	same	server
system	in	a	different	LANSA	system	and/or	partition	and	pass	variable
information	to	be	used	as	Processing	Sequence	parameter	values.

By	and	large,	the	operation	of	the	LANSA	Composer	Request	Server	is
transparent	to	users	of	the	system.		The	LANSA	Composer	designer	or	the
LANSA	application	developer	simply	needs	to	provide	appropriate	parameter
values	to	the	CALL_FUNCTION	activity	or	the	COMPOSER_RUN	built-in
function.		If	needed,	the	request	will	be	directed	through	the	LANSA	Composer
Request	Server	automatically.
The	LANSA	Composer	Request	server	works	by	executing	the	request	in	a
separate	process	or	job.		This	occurs	transparently	and	is	managed	by	the
request	server	to	ensure	that	no	conflict	is	possible	arising	from	attempting	to
simultaneously	use	two	LANSA	run-time	systems.

The	implementation	of	the	LANSA	Composer	Request	Server	is	specific	to	the
server	operating	environment	being	used.		In	other	words,	LANSA	Composer
provides	two	implementations:

LANSA	Composer	Request	Server	for	IBM	i	servers
LANSA	Composer	Request	Server	for	Windows	servers

For	the	most	part,	the	LANSA	Composer	designer	or	the	LANSA	application
developer	need	not	be	concerned	with	any	differences	between	the
implementations	for	IBM	i	and	Windows	servers.		However,	there	are	some
differences	in	the	constraints	and	behaviors	that	may	be	relevant	or	important	in
some	cases.		Amongst	other	things,	this	appendix	documents	such	differences.
In	addition,	there	are	some	things	you	need	to	understand	about	the	execution
context	for	requests	that	are	processed	through	the	LANSA	Composer	Request
Server.		Furthermore,	on	IBM	i	servers,	you	may	need	to	manually	configure	the
LANSA	Composer	Request	Server	for	optimal	operation	in	your	operating
environment.
The	following	topics	provide	additional	information:

What	You	Need	to	Know	About	Requests	Processed	Through	the	LANSA
Composer	Request	Server
How	the	LANSA	Composer	Request	Server	for	IBM	i	Works
How	the	LANSA	Composer	Request	Server	for	Windows	Servers	Works
Connecting	to	the	LANSA	Composer	Request	Server	on	a	Remote	System
LANSA	Built-in	Functions	that	use	the	LANSA	Composer	Request	Server
LANSA	Programming	Considerations	for	Called	Functions
Configuring	the	LANSA	Composer	Request	Server	for	IBM	i	to	Suit	Your
Needs

What	You	Need	to	Know	About	Requests	Processed	Through	the
LANSA	Composer	Request	Server
There	are	several	key	things	to	understand	about	requests	that	are	processed
through	the	LANSA	Composer	Request	Server.		Some	of	these	have
consequences	that	may	have	a	significant	bearing	on	the	way	that	you	design
your	solutions	that	use	the	LANSA	Composer	Request	Server.

1.	The	function	"call"	happens	in	a	different	process	or	job	or	even	on	a
different	computer

Normally	it	is	impossible	for	a	LANSA	application	running	in	one	LANSA
system	and/or	partition	to	directly	call	a	LANSA	function	running	in	a
different	LANSA	system	and/or	partition.		In	order	to	emulate	this	capability,
the	LANSA	Composer	Request	Server	directs	the	requests	to	a	separate
process	or	job	or	even	a	separate	server	system,	exchanging	the	request	and
response	data	with	that	job	as	required.
In	many	respects,	this	fact	is	transparent	to	the	requesting	application.	
Depending	on	your	application	design	it	may	have	no	functional	implications
at	all.		However,	it	does	mean	that	the	execution	context	for	the	function	call
may	not	be	what	you	might	otherwise	expect	it	to	be.
Understanding	this	point	is	fundamental	-	the	remaining	points	in	this	section
are	largely	a	direct	consequence	of	this	fact.
2.	On	IBM	i	servers,	the	function	"call"	executes	with	the	user	credentials	of
the	request	server	job

The	LANSA	Composer	Request	Server	for	IBM	i	makes	no	attempt	to
exchange	user	credentials	with	the	request	server	job	that	executes	the
request	and	the	request	server	does	not	switch	user	contexts.		The	request
that	executes	in	the	request	server	job	will	execute	with	the	user	credentials
of	the	request	server	job.		If	necessary,	you	can	change	the	way	that	the
request	server	jobs	are	started	such	that	they	use	a	different	user	profile	of
your	choosing.		Refer	to	Configuring	the	LANSA	Composer	Request	Server
for	IBM	i	to	Suit	Your	Needs	for	further	information.
3.	The	function	"call"	happens	in	the	execution	environment	of	the	request
server	job

Because	the	requests	execute	in	a	separate	process	or	job,	it	follows	that	they
are	subject	to	the	execution	environment	of	that	request	server	job	-	not	of
the	job	that	made	the	request.		Particularly	on	IBM	i	servers,	this	is

significant	for	a	range	of	job	attributes,	including	(but	not	limited	to):
File	overrides	in	the	requesting	job	do	not	apply	to	the	request
Open	data	paths	in	the	requesting	job	are	not	shared	with	the	request
The	contents	of	the	QTEMP	library	of	the	requesting	job	are	not	available
to	the	request
The	request	executes	with	the	library	list	of	the	request	server	job	(not	the
requesting	job)

4.	The	execution	environment	of	the	request	server	job	does	not	persist	from
one	call	to	another

It	is	not	valid	to	assume	that	the	execution	environment	of	the	request	server
job(s)	that	process	your	requests	will	persist	from	one	call	to	another.		For
example,	if	a	called	LANSA	function	on	an	IBM	i	server	makes	changes	to
the	library	list	or	creates	objects	in	QTEMP,	you	must	not	design	your
solution	relying	on	the	fact	that	those	changes	will	still	be	in	effect	for	the
next	called	function.		There	are	two	main	reasons	for	this:
It	may	not	be	the	same	process	or	job

On	Windows	servers,	every	request	directed	through	the	LANSA
Composer	Request	Server	executes	in	a	new	process.

On	IBM	i	servers,	to	handle	a	given	load,	more	than	one	request	server	job
may	be	active	to	service	requests	to	a	particular	LANSA	system.		There	is
no	guarantee,	for	example,	that	the	same	job	will	execute	the	requests	for
successive	CALL_FUNCTION	activities	in	a	LANSA	Composer
Processing	Sequence.
Each	request	server	job	reinitializes	its	state	between	requests

On	IBM	i	servers,	in	order	to	ensure	the	integrity	of	the	state	of	the
LANSA	execution	environment	from	one	request	to	another,	the	request
server	jobs	perform	certain	re-initialisation	between	requests.

How	the	LANSA	Composer	Request	Server	for	IBM	i	Works
The	diagram	below	provides	an	overview	of	the	way	the	LANSA	Composer
Request	Server	for	IBM	i	works	for	the	case	where	a	LANSA	Composer
Processing	Sequence	uses	the	CALL_FUNCTION	activity	to	synchronously
"call"	a	LANSA	function	that	may	be	in	a	different	LANSA	system	and/or
partition.		The	numbers	in	the	diagram	refer	to	the	notes	that	follow.
Although	this	diagram	illustrates	the	CALL_FUNCTION	activity,	the
processing	is	similar	for	the	reverse	case	where	a	LANSA	application	"calls"	a
LANSA	Composer	Processing	Sequence	using	the	COMPOSER_RUN	built-in
function.

1.		The	activity	processor	for	the	CALL_FUNCTION	activity	posts	the	request
to	the	request	server	by	adding	one	or	more	entries	to	header	and	detail	data
queues	used	by	the	LANSA	Composer	Request	Server.		It	may	also	start	the
request	server	job	automatically	if	it	detects	that	there	is	not	one	available.

2.		The	LANSA	Composer	Request	Server	receives	details	about	the	request
from	the	data	queues.

3.		For	the	CALL_FUNCTION	case,	the	request	server	populates	the	exchange
list	in	the	target	LANSA	system	with	any	exchanged	variables	and	calls	the
specified	LANSA	function.		It	then	receives	exchanged	variable	values	from
the	LANSA	exchange	list.

4.		The	request	server	posts	any	response	data	to	the	response	data	queue.
5.		The	activity	processor	for	the	CALL_FUNCTION	activity	receives	the
response	data	from	the	data	queue,	determines	the	result	and	updates	values
in	the	Processing	Sequence	variable	pool	as	necessary.

How	the	LANSA	Composer	Request	Server	for	Windows	Servers
Works
The	implementation	of	the	LANSA	Composer	Request	Server	for	Windows
servers	is	simpler	than	the	IBM	i	implementation.		There	are	no	data	queues	and
no	subsystems	to	configure.
On	a	Windows	server,	each	request	to	the	LANSA	Composer	request	server
spawns	a	new	WIndows	process	that	executes	the	request	and	communicates
with	the	requesting	process.		Communications	between	the	processes	conveying
the	exchange	variables	and	results	and	any	necessary	configuration	information
is	accomplished	using	Windows	messages.		When	a	request	completes,	the
process	that	executed	it	ends	too.
There	are	no	additional	configuration	tasks	necessary	for	the	LANSA	Composer
Request	Server	for	Windows	servers.

Connecting	to	the	LANSA	Composer	Request	Server	on	a	Remote
System
There	are	two	activities	supplied	with	LANSA	Composer	that	make	use	of	the
LANSA	Composer	Request	Server.		They	are:

CALL_FUNCTION	and
COMPOSER_RUN

In	both	cases,	an	activity	parameter	is	used	to	specify	the	name	of	a	LANSA
system	configuration	that	contains	the	details	necessary	to	connect	to	another
LANSA	system	to	run	a	LANSA	function	or	a	LANSA	Composer	processing
sequence	in	that	system.
In	the	simplest	case,	the	other	LANSA	(or	LANSA	Composer)	system	resides
on	the	same	server	as	the	requesting	LANSA	Composer	system.
But	it	is	also	possible	to	define	the	LANSA	system	configuration	such	that	the
activities	can	call	a	LANSA	function	or	execute	a	LANSA	Composer
Processing	Sequence	on	a	different	(*)	server	system.

*	Note	a	LANSA	Composer	Remote	Request	Server	license	is
required	for	the	remote	server	in	order	to	call	a	LANSA	function	or
run	a	Processing	Sequence	on	a	different	server	system.

NB:		At	time	of	writing	(with	reference	to	LANSA	V12SP1),
connection	from	one	IBM	i	server	to	another	IBM	i	server	is	not
supported.		This	restriction	may	be	lifted	in	future	LANSA	versions.

In	addition	to	correctly	defining	the	connection	in	the	LANSA	system
configuration,	there	are	some	other	pre-requisites	to	successfully	using	this
support.		These	include:

LANSA	Composer	must	be	installed	and	licensed	on	the	remote	system
The	LANSA	Listener	must	be	active	in	the	remote	LANSA	Composer
system
The	requesting	system	must	contain	appropriate	LANSA	communications
routing	records	for	the	remote	system

LANSA	Composer	must	be	installed	and	licensed	on	the	remote
system
You	must	install	LANSA	Composer	on	the	remote	system	in	order	to	provide

the	remote	request	server	components	that	allow	the	communications	link	to	be
completed.
This	installation	of	LANSA	Composer	might	not	be	used	for	any	other	purpose
than	to	provide	those	remote	request	server	components.		It	does	not	need	to	be
a	fully-licensed	LANSA	Composer	system	unless	you	wish	to	design	or	execute
Processing	Sequences	on	the	remote	system		However,	a	LANSA	Composer
Remote	Request	Server	license	is	required	for	the	remote	server.

The	LANSA	Listener	must	be	active	in	the	remote	LANSA
Composer	system
The	requesting	LANSA	Composer	system	will	connect	to	the	remote	system
through	the	LANSA	listener	in	the	remote	LANSA	Composer	system.	
Therefore	the	LANSA	listener	must	be	active	in	that	system	in	order	that	it	may
receive	and	process	the	requests.

The	requesting	system	must	contain	appropriate	LANSA
communications	routing	records	for	the	remote	system
A	vital	part	of	the	LANSA	system	configuration	is	the	Server	LU	partner	name
that	specifies	the	logical	name	that	refers	to	the	LANSA	listener	on	the	remote
system.
The	name	specified	must	identify	a	LANSA	communications	routing	record	that
specifies,	inter	alia,	the	network	name	or	address	of	the	remote	system	and	the
TCP	port	number	on	which	the	remote	LANSA	Composer	system	is	listening.

When	the	requesting	LANSA	Composer	system	is	running	on	a	Windows
server,	you	create	and/or	maintain	these	records	using	the	LANSA
Communications	Administrator.
When	the	requesting	LANSA	Composer	system	is	running	on	an	IBM	i
server,	you	create	and/or	maintain	these	records	using	LANSA's	Work
with	Communications	Routing	Records	screen.

NOTE:		the	LANSA	built-in	functions	used	for	LANSA	development
activity	to	integrate	with	LANSA	Composer	do	not	support	connecting
to	a	request	server	on	a	remote	system.		They	can	only	be	used	for
integrating	LANSA	applications	and	LANSA	Composer	systems	that
execute	on	the	same	server	system.

LANSA	Built-in	Functions	that	use	the	LANSA	Composer
Request	Server
If	your	organization	uses	LANSA	development	tools,	you	should	know	that	as
of	LANSA	V12SP1,	a	set	of	built-in	functions	is	available	in	the	LANSA
development	environment	that	permit	your	LANSA	applications	to	interact	with
LANSA	Composer	through	the	LANSA	Composer	Request	Server.
The	built-in	functions	are:

COMPOSER_USE	:	Specifies	connection	information	for	subsequent
requests
COMPOSER_RUN	:	Runs	a	LANSA	Composer	Processing	Sequence
COMPOSER_CALLF	:	Calls	a	LANSA	function

The	COMPOSER_RUN	built-in	function	is	for	use	in	a	LANSA	application	to
execute	a	LANSA	Composer	Processing	Sequence	through	the	LANSA
Composer	Request	Server.
The	COMPOSER_CALLF	built-in	function	is	intended	to	be	used	in	a	custom
activity	processor	that	executes	in	the	LANSA	Composer	environment.		It	is	to
permit	your	custom	activity	processor	to	call	a	function	in	your	LANSA
application	through	the	LANSA	Composer	Request	Server.
Refer	to	the	LANSA	Technical	Reference	for	detailed	programming	instructions
for	these	built-in	functions.

NOTE:		the	LANSA	built-in	functions	do	not	support	connecting	to	a
request	server	on	a	remote	system.		They	can	only	be	used	for
integrating	LANSA	applications	and	LANSA	Composer	systems	that
execute	on	the	same	server	system.

LANSA	Programming	Considerations	for	Called	Functions
When	developing	LANSA	functions	that	will	be	called	from	a	LANSA
Composer	Processing	Sequence	using	the	CALL_FUNCTION	activity	via	the
LANSA	Composer	Request	Server,	some	particular	LANSA	programming
considerations	apply:

Either	RDML	functions	or	fully	RDMLX-enabled	functions	may	be	called.
The	partition	containing	the	function	to	be	called	must	be	a	multilingual
partition.
If	*DIRECT	is	specified	or	assumed	for	the	PROCESS	parameter	of	the
CALL_FUNCTION	activity,	the	function	must	be	defined	with	FUNCTION
OPTIONS(*DIRECT)

If	you	intend	to	exchange	variable	data	with	the	called	function	using	the
EXCHnn	parameters	of	the	CALL_FUNCTION	activity,	these	additional
considerations	apply:

For	functions	that	will	be	called	on	IBM	i	servers,	position	487	of	LANSA
data	area	DC@A01	must	be	set	to	'Y'	(in	the	LANSA	system	containing	the
LANSA	function	to	be	called)	before	compiling	and	executing	the	function.	
If	this	condition	is	not	met,	the	called	function	will	not	correctly	receive	or
return	the	EXCHnn	variable	values.
The	function	must	define	the	fields	EXCH01	through	to	EXCH07	in	order	to
receive	values	(via	the	exchange	list)	that	are	specified	in	the	corresponding
CALL_FUNCTION	activity	parameters.
The	function	must	use	the	EXCHANGE	command	with	fields	EXCH01
through	to	EXCH07	in	order	to	return	values	(via	the	exchange	list)	for
variables	that	are	specified	in	the	corresponding	CALL_FUNCTION	activity
parameters.

Refer	to	LANSA	documentation	for	more	information	on	LANSA	features
referred	to	above.

Configuring	the	LANSA	Composer	Request	Server	for	IBM	i	to
Suit	Your	Needs

This	section	applies	only	to	the	LANSA	Composer	Request	Server	for
IBM	i.		On	Windows	servers,	every	request	processed	through	the
LANSA	Composer	Request	Server	executes	in	a	separate	new	process,
and	the	number	of	request	server	requests	that	can	be	simultaneously
processed	is	limited	only	by	system	memory	and	processing	capacity.	
No	additional	configuration	is	necessary	for	the	LANSA	Composer
Request	Server	on	a	Windows	server.

On	many	systems,	the	LANSA	Composer	Request	Server	for	IBM	i	servers	will
work	correctly	and	provide	adequate	adaptive	load-balancing	as	installed.
To	function	correctly,	the	LANSA	Composer	Request	Server	for	IBM	i	must	be
capable	of	submitting	its	request	server	jobs	to	a	job	queue	and	subsystem	that
are	active	and	capable	of	executing	multiple	active	jobs	simultaneously.
As	installed	the	LANSA	Composer	Request	Server	for	IBM	i	will	do	this
automatically	using	job	queue	QUSRNOMAX.		This	job	queue	is	supplied	by
IBM	with	the	i5/OS	operating	system	and	is	usually	associated	with	subsystem
QUSRWRK.
Other	features	of	the	installed	behavior	of	the	LANSA	Composer	Request
Server	for	IBM	i	include:

Request	server	jobs	are	automatically	submitted	on	demand	-	that	is,	when	a
requesting	job	makes	a	request	that	needs	the	LANSA	Composer	Request
Server	for	IBM	i.
The	LANSA	Composer	Request	Server	for	IBM	i	will	activate	up	to	a
maximum	of	five	request	server	jobs	at	any	one	time	(for	each	target
LANSA	system),	to	cope	with	possible	load	from	multiple	requestor	jobs.
The	request	server	jobs	will	self-terminate	after	five	minutes	of	inactivity.

Together	these	features	provide	a	server	configuration	that	is	capable	of
adapting	to	load	spikes,	but	is	unobtrusive	for	the	relatively	modest	level	of
usage	that	it	will	serve	in	most	environments.
Nevertheless,	you	may	need	or	want	to	adapt	the	installed	configuration	for	your
own	use.		All	the	foregoing	features	and	values	may	be	altered	to	suit	your
environment.		Such	adaptations	might	include:

Using	a	different	job	queue	and/or	subsystem	for	the	request	server	jobs

Changing	the	maximum	request	server	jobs	from	the	supplied	default	value
of	five,	or	changing	other	values	that	affect	when	and	how	the	LANSA
Composer	Request	Server	for	IBM	i	will	submit	request	server	jobs.
Taking	full	control	yourself	of	the	submission	of	request	server	jobs	by
creating	your	own	work	management	configuration	(subsystem	descriptions,
job	descriptions,	autostart	job	entries	etc).

The	following	topics	provide	additional	information	to	allow	you	to	configure
the	LANSA	Composer	Request	Server	for	IBM	i	to	suit	your	needs:

Library	List	Considerations	for	the	Request	Server	Jobs
LANSA	Composer	Request	Server	for	IBM	i	Configuration	Settings

Library	List	Considerations	for	the	Request	Server	Jobs
The	prime	purpose	of	the	request	server	jobs	is	to	call	a	LANSA	function,	often
on	a	different	server	system	and/or	in	a	different	LANSA	system	and/or
partition	to	the	requesting	job.
The	LANSA	Composer	Request	Server	for	IBM	i	does	this	using	a	LANSA
program	library	name	and	a	partition	name	passed	to	it	as	part	of	the	request.	
The	request	server	job	uses	this	information	to	invoke	the	requested	function	in
LANSA,	relying	entirely	on	LANSA's	standard	library	list	management	features
-	in	other	words,	LANSA	will	alter	the	library	list	to	contain	the	libraries
necessary	for	execution	of	functions	in	the	specified	LANSA	system	and
partition,	according	to	the	applicable	LANSA	system	and	partition	settings.
The	initial	library	list	for	the	request	server	job	should	never	contain	any
LANSA	libraries.		In	particular,	if	the	initial	library	list	contains	LANSA
libraries	for	a	LANSA	system	other	than	that	in	which	the	request	is	executing,
severe	and	unpredictable	execution	errors	may	occur.

Note	that	the	library	containing	the	LANSA	Composer	Request	Server
for	IBM	i	software	does	NOT	need	to	be	in	the	library	list,	providing
the	request	server	job	is	initiated	using	a	qualified	call	to	the
DXRQSSERV	program.		The	request	server,	although	it	may	be
installed	in	a	LANSA	system	or	partition	library,	is	entirely	composed
of	non-LANSA	software,	does	not	itself	use	the	LANSA	run-time
(other	than	to	execute	the	specified	request)	and	makes	fully-qualified
references	to	its	own	components	using	the	library	name	from	which
the	DXRQSSERV	program	is	started.

If	your	application	requires	libraries	in	the	library	list	other	than	those	that	are
automatically	added	by	LANSA,	then	you	will	have	to	make	provision	yourself
for	adding	those	libraries.		This	would	typically	be	done	in	one	of	two	ways,
depending	on	your	specific	requirements:

By	specifying	the	libraries	in	the	initial	library	list	for	all	request	server	jobs;
By	having	your	called	function	alter	the	library	list	as	required.

LANSA	Composer	Request	Server	for	IBM	i	Configuration
Settings
Settings	that	affect	the	behavior	of	the	LANSA	Composer	Request	Server	for
IBM	i	are	contained	in	the	data	area	DXRQSSERV	in	the	library	containing	the
LANSA	Composer	Request	Server	software.		You	can	alter	these	settings	in
order	to	configure	the	LANSA	Composer	Request	Server	to	suit	your
requirements	and	your	operating	environment.		To	alter	the	settings,	use	the
CHGDTAARA	(Change	Data	Area)	command.

Note	that	the	settings	are	all	accessed	by	their	position	in	the	data
area.		Any	text	labels	contained	in	the	data	area	are	present	for	ease-
of-reference	and	are	NOT	used	by	the	software	to	locate	or	identify
the	settings.

Work	Management	Mode	(positions	16	-	25)
The	work	management	mode	determines	whether	the	LANSA	Composer
Request	Server	automatically	starts	the	request	server	jobs	on	demand	and
according	to	other	settings	described	herein.
If	the	value	is	*AUTO,	then	the	LANSA	Composer	Request	Server	will
automatically	start	the	request	server	jobs	on	demand.
If	any	other	value	is	specified,	then	the	LANSA	Composer	Request	Server	will
NOT	automatically	start	the	request	server	jobs	on	demand.		In	this	case	it	is

your	responsibility	to	start	the	request	server	jobs.

Maximum	Request	Server	Jobs	(positions	58	-	62)
When	the	work	management	mode	is	*AUTO,	this	setting	determines	the
maximum	number	of	request	server	jobs	that	the	LANSA	Composer	Request
Server	will	activate	at	any	one	time	for	each	target	LANSA	system.		If	no
request	server	job	is	"available"	to	process	a	request	(within	the	wait	time
specified	by	the	next	setting),	the	LANSA	Composer	Request	Server	will	check
how	many	request	server	jobs	are	already	active	for	a	given	target	LANSA
system.		If	the	number	is	less	than	specified	by	this	setting,	the	LANSA
Composer	Request	Server	will	start	another	request	server	job	to	satisfy	the
request.		Otherwise,	no	new	job	is	started	and	the	request	is	simply	posted	for	an
active	request	server	job	to	process	when	one	becomes	available.		In	the	latter
case,	the	request	may	timeout	or	expire	(according	to	parameters	specified	for
the	request)	if	an	active	request	server	job	does	not	become	available	in	time	to
process	the	request.
If	the	work	management	mode	is	not	*AUTO,	this	setting	is	not	used.

Wait	Time	for	an	Available	Request	Server	Job	(positions	72	-	76)
When	the	work	management	mode	is	*AUTO,	this	setting	specifies	the	number
of	seconds	the	LANSA	Composer	Request	Server	will	wait	for	a	response	from
an	available	request	server	job	before	starting	a	new	request	server	job	(subject
to	the	maximum	specified	by	the	previous	setting)	to	satisfy	the	request.
If	the	work	management	mode	is	not	*AUTO,	this	setting	is	not	used.

Maximum	Inactive	Time	for	Request	Server	Job	(positions	87	-
91)
This	settings	specifies	the	maximum	number	of	seconds	a	request	server	job
will	remain	active	while	waiting	for	new	requests.		When	the	specified	number
of	seconds	has	elapsed	since	the	last	completed	request	processed	by	the	job,	the
request	server	job	will	automatically	end.
This	setting	applies	irrespective	of	whether	*AUTO	is	specified	for	the	work
management	mode	settings.		However,	if	the	work	management	mode	is	not
*AUTO,	you	will	probably	need	to	increase	the	value	specified	in	this	setting	to
a	very	large	value	or	make	provision	in	your	work	management	arrangements
for	new	request	server	jobs	to	be	periodically	started.

Skeleton	SBMJOB	(Submit	Job)	Command	(positions	769	-	1024)
When	the	work	management	mode	is	*AUTO,	this	setting	specifies	the

command	string	used	by	the	LANSA	Composer	Request	Server	to	start	new
request	server	jobs.		For	example,	as	shipped,	the	following	command	string	is
used:
SBMJOB	CMD(CALL	&MONLIB/DXRQSSERV
PARM('&PGMLIB'))
JOB(LCRQSSERV)
JOBQ(QUSRNOMAX)
CURLIB(*USRPRF)
INLLIBL(*SYSVAL)
USER(&PGMLIB)
If	you	wish	to	customise	the	way	new	request	server	jobs	are	started,	you	may
alter	this	command	string	as	required.		If	you	do	so,	please	be	guided	by	the
following:

The	request	server	job	must	run	program	DXRQSSERV	in	the	library
specified	by	the	placeholder	variable	&MONLIB	and	with	a	single
parameter	that	specifies	the	LANSA	program	library	name	for	which	it	will
service	requests.

If	you	wish,	you	could	customise	the	command	string	to	submit	a	call	to
your	own	custom	program	as	long	as:
a)Your	program	calls	DXRQSSERV	as	described	above.
b)Your	program	is	a	non-LANSA	program	and	does	not	invoke	any	LANSA
program.

Most	typically	(and	certainly	whenever	synchronous	request	are	used),	the
request	server	job	should	be	capable	of	becoming	active	immediately.		That
may	mean,	for	example,	that	you	should	use	a	job	queue	that	is	connected	to
a	subsystem	that	is	active	and	that	is	capable	of	simultaneously	executing
more	than	one	active	job.
You	need	to	be	careful	about	the	current	library	and	the	initial	library	list
used.		Specifically,	it	should	not	include	any	LANSA	libraries.		Refer	to
Library	List	Considerations	for	the	Request	Server	Jobs	for	more
information.
The	command	string	can	and	should	use	the	following	placeholder	variables
to	refer	to	the	corresponding	library	names.		LANSA	Composer	Request
Server	will	replace	all	instances	of	the	placeholder	variables	with	the
corresponding	library	names,	adjusting	the	command	length	as	necessary	to
accommodate	them.

&MONLIB	:	refers	to	the	library	containing	the	LANSA	Composer	Request
Server	software.

&PGMLIB	:	refers	to	the	LANSA	program	library	for	which	this	request
server	job	will	execute	requests.
The	command	string	(after	replacement	of	the	placeholder	variables)	will	be
executed	via	the	IBM-supplied	QCMDEXC	program.

If	the	work	management	mode	is	not	*AUTO,	this	setting	is	not	used.

Appendix	G.	National	Language	and	Multilingual	Support	in
LANSA	Composer
The	LANSA	Composer	software	is	available	already	translated	into	several
languages.		In	addition	it	contains	features	that	allow	definitions	to	be	created
with	limited	multilingual	support.		This	appendix	describes	these	features	under
the	following	headings:

LANSA	Composer	Product	Translations
Multilingual	support	in	LANSA	Composer

LANSA	Composer	Product	Translations
The	core	LANSA	Composer	software	is	translated	into	and	can	be	executed	in
the	following	languages:

English
French
Japanese

The	following	section	contains	information	on	how	to	start	LANSA	Composer
in	any	of	the	languages	for	which	translations	are	supplied:

Specifying	the	language	to	start	LANSA	Composer
The	LANSA	Composer	Guide	(this	guide)	is	supplied	translated	into:

English
Japanese

The	LANSA	Composer	client	software	will	automatically	open	the	appropriate
language	version	of	the	LANSA	Composer	Guide	according	to	the	language
with	which	the	software	was	started.
Certain	supplied	LANSA	Composer	definitions,	such	as	the	set	of	supplied
Activities	are	available	with	descriptions	and	notes	translated	into	the	following
languages:

English
French
Japanese

The	mapping	tool	supplied	and	used	with	LANSA	Composer	is	Altova
MapForce.		This	software	is	available	in	the	following	languages:

English(supplied	on	the	LANSA	Composer	product	media)
Japanese(supplied	on	the	LANSA	Composer	product	media)
German(available	for	download	from	Altova's	web-site)

Specifying	the	language	to	start	LANSA	Composer
You	can	only	start	LANSA	Composer	using	the	languages	for	which	translations
are	provided,	presently:

English
French
Japanese

Specifying	the	language	to	start	LANSA	Composer	client	software
When	LANSA	Composer	client	software	starts,	by	default	it	will	start	in	the
language	appropriate	for	the	computer	on	which	it	is	running.		For	example,	on
a	French	computer,	LANSA	Composer	will	start	in	French,	or	on	a	Japanese
computer,	LANSA	Composer	will	start	in	Japanese.
It	is	possible	to	override	this	behaviour	to	start	LANSA	Composer	in	a	different
language	using	a	command-line	switch	to	dxstart.exe	or	by	modifying	the
dxstart.cfg	configuration	file.		For	more	information,	refer	to:

Using	dxstart.exe	to	start	functions	of	LANSA	Composer	on	Windows
Server	functions	(such	as	a	Processing	Sequence	run	or	the	Database
Housekeeping	task)	that	are	initiated	from	the	LANSA	Composer	client
software	will	run	on	the	server	in	the	language	used	to	start	the	LANSA
Composer	client.

Specifying	the	language	to	run	a	LANSA	Composer	Processing
Sequence
When	you	initiate	a	Processing	Sequence	run	on	the	server	system,	you	can
specify	the	language	in	which	LANSA	Composer	will	execute.		This	affects,	for
example,	the	language	for	messages,	especially	for	the	Processing	Sequence	log.
For	more	information,	refer	to:

Run	a	Processing	Sequence	using	the	COMPOSER	command
Run	a	Processing	Sequence	using	a	Run	Control	File

Specifying	the	language	to	start	LANSA	Composer	IBM	i	server
software
On	IBM	i	servers,	you	can	use	the	COMPOSER	command	to	invoke	selected
LANSA	Composer	functionality,	including	to	run	a	Processing	Sequence.		The
COMPOSER	command	provides	a	parameter	that	allows	you	to	specify	the

its:LANSA091.CHM::/lansa/IntEngC3_0280.htm
its:LANSA091.CHM::/lansa/IntEngC3_0110.htm

language	in	which	LANSA	Composer	will	execute.
For	more	information,	refer	to:

The	COMPOSER	command	for	IBM	i	servers

Multilingual	support	in	LANSA	Composer
Irrespective	of	the	language	in	which	LANSA	Composer	windows,	menu	and
messages	are	shown,	you	can,	of	course,	use	your	local	language	when	entering,
displaying	and	printing	LANSA	Composer	definitions	such	as	Activities,
Configurations,	Transformation	maps	and	Processing	Sequences	(providing	the
client	and	server	systems	both	support	the	character	sets	or	code-pages	required
and	provide	the	necessary	client-server	translations).
But	in	addition,	LANSA	Composer	provides	limited	support	for	holding	such
definitions	in	more	than	one	language.		If	used,	this	would	mean,	for	example,
that	a	user	running	LANSA	Composer	in	English	could	see	English	descriptions
and	notes	for	definitions	such	as	Activities,	Configurations,	Transformation
maps	and	Processing	Sequences,	while	another	user	connected	to	the	same
LANSA	Composer	server	system	could	see	the	same	definitions	with	French
descriptions	and	notes.
This	multilingual	support	is	presently	provided	ONLY	for	the	following	parts	of
LANSA	Composer	definitions:

descriptions	for	each	definition
notes	associated	with	each	definition

When	you	create	new	definitions	in	LANSA	Composer,	the	description	and
notes	entered	are	saved	as	a	"base"	language.		If	the	current	language	is	not
English	they	also	saved	as	a	"translation"	for	the	current	language.
If	you	wish	to	enter	translations	for	these	items,	then	you	must	start	the	LANSA
Composer	client	again	in	the	alternate	language	and	re-enter	the	descriptions
and	notes	in	that	language.		Doing	so	will	not	alter	the	descriptions	and	notes
that	were	originally	entered	and	saved	as	the	"base"	language.		The	descriptions
and	notes	will	be	retained	in	the	LANSA	Composer	database	for	both
languages.
If	a	translation	is	not	present	for	an	item	for	the	current	language,	LANSA
Composer	will	display	the	description	or	notes	for	the	"base"	language.		The
"base"	language	is	implicitly	the	language	with	which	the	definition	was
initially	created.

Note	however,	that	for	the	purpose	of	subsequent	modification,	the
"base"	language	is	assumed	to	be	English.		That	is,	you	can	only
modify	the	"base"	language	version	of	the	description	and	notes	when
running	the	LANSA	Composer	client	in	English.		(Remember,	if

LANSA	Composer	was	running	in	a	language	other	than	English
when	you	created	the	definitions,	then	the	description	and	notes	were
saved	as	both	the	"base"	language	and	for	the	current	language.		If	you
subsequently	modified	the	definitions	while	running	LANSA
Composer	client	in	the	same	language,	then	only	the	second	set	were
modified	in	the	database	-	the	"base"	language	description	and	notes
were	not	modified.)

Scope	and	purpose	of	the	Multilingual	support
The	multilingual	support	described	above	is	mainly	intended	to	allow	LANSA
to	provide	supplied	Activity	and	other	definitions	with	descriptions	and	notes	in
the	languages	for	which	we	also	provide	LANSA	Composer	product
translations,	viz:

English
French
Japanese

While	running	LANSA	Composer	in	any	one	language,	the	multilingual	features
are	not	apparent	and	you	will	not	be	aware	of	the	presence	(or	absence)	of
translations	of	the	LANSA	Composer	definitions	for	other	languages.		LANSA
Composer	only	displays,	prints	and	uses	the	translations	that	apply	to	the	current
language.
LANSA	expects	that	most	customer	implementations	would	not	require	the
multilingual	support	and	would	not	enter	translations	in	multiple	languages	in
connection	with	their	own	customer-created	definitions.	

Deployment	Considerations	for	Multilingual	Definitions
If	you	do	create	translations	in	multiple	languages	for	your	own	definitions,
there	are	special	considerations	for	deploying	those	definitions	to	other	LANSA
Composer	installations.
LANSA	Composer	provides	Export	and	Import	features	to	support	the
deployment	of	LANSA	Composer	solutions	from	one	LANSA	Composer
installation	to	another.		For	a	fuller	description	of	these	features	and
considerations	for	their	use,	refer	to:

Deploying	Solutions	for	LANSA	Composer
The	standard	Export	and	Import	features	will	deploy	the	complete	definitions	of
selected	items	in	almost	every	respect.		However,	for	the	descriptions	and	notes,

its:LANSA091.CHM::/lansa/IntEngC4_0010.htm

the	standard	deployment	is	limited	to	only	the	"base"	language	(as	described
above)	and	the	translation	for	the	current	language,	if	present.
If	translations	for	these	items	have	been	entered	for	other	languages,	they	must
be	separately	deployed	using	the	procedure	outlined	below.		This	procedure	is
intended	primarily	for	use	by	LANSA	to	create	the	deployment	materials	for
definitions	such	as	Activities	that	are	supplied	with	LANSA	Composer.

The	procedure	necessitates	modifying	the	Windows	registry	on	the
computer	that	performs	the	Export.		Such	modifications	should	be
performed	with	great	care	by	suitable	qualified	individuals	-	incorrect
Windows	registry	modifications	can	have	serious	consequences
including	rendering	the	computer	inoperable.

1.		On	the	source	system:
a)			Export	the	required	definitions	in	the	normal	way

Descriptions	and	notes	for	the	selected	items	will	be	exported	for	the
"base"	language	and	the	current	language,	if	present.

b)			Edit	the	Windows	registry	to	enable	the	Export	Translations	feature

In	the	key:

HKEY_CURRENT_USER\Software\LANSA	Composer\<root>\
<server>\Settings

create	a	new	string	value	with	the	name	'AllowXLateExport'	and	set	its
value	to	'Y'.

c)			Start	the	LANSA	Composer	client	on	a	computer	that	is	capable	of
supporting	the	character	set	used	by	the	language	whose	translations	you
wish	to	export.		For	example,	to	export	Japanese	translations,	you	will
typically	have	to	perform	the	export	on	a	Japanese	language	PC.

NOTE:		Data	corruption	and/or	program	failure	arising	from	encoding
errors	may	arise	if	the	exporting	computer	is	not	capable	of	correctly
representing	the	characters	used	for	the	translation	language	being
exported.

d)			Select	Export	in	the	Navigator	and	begin	by	selecting	the	items	whose

translations	you	wish	to	export	in	the	normal	way.		But	then	expand	the
Translations	item	and	select	the	language(s)	for	which	you	wish	to	export
translations	for	the	selected	items.

e)			Click	the	Export	button	and	complete	the	export	in	the	usual	way.

Only	the	translations	of	the	descriptions	and	notes	for	the	selected	items
and	languages	will	be	exported.		This	export	file	does	not	contain	the
complete	item	definition	-	it	can	only	be	used	to	deploy	the	translations
when	the	items	already	exist	on	the	target	system.

f)			You	may	remove	the	registry	entry	above	or	set	it	to	'N'	to	disable	the
Export	Translations	feature.

2.		On	the	target	system:
a)			Load	/	import	the	item	definitions	using	the	export	file	created	in	step
1(a)

The	import	will	completely	replace	the	items	on	the	target	system	if	they
already	exist.		This	includes	removing	any	existing	translations	of
descriptions	and	notes.		The	import	will	load	the	"base"	language
descriptions	and	notes;		it	will	also	the	load	the	"current"	language
translations,	if	the	language	is	the	same	as	the	exporting	system.

b)			Start	the	LANSA	Composer	client	on	a	computer	that	is	capable	of
supporting	the	character	set	used	by	the	language	whose	translations	you
wish	to	import.		For	example,	to	import	Japanese	translations,	you	will
typically	have	to	perform	the	import	on	a	Japanese	language	PC.

NOTE:		Data	corruption	and/or	program	failure	arising	from	encoding
errors	may	arise	if	the	importing	computer	is	not	capable	of	correctly
representing	the	characters	used	for	the	translation	language	being
imported.

c)			Load	/	import	the	item	translations	using	the	export	file	created	in	step
1(e)

The	import	will	load	translations	only	for	items	that	already	exist	in	the
target	system.

	

	LANSA Composer
	About this Guide
	How to use this Guide

	What's New in LANSA Composer Version 5.0?
	Licensing
	Installation
	New SQL Database Activities
	Other New and Enhanced Activities
	Extended Duration Processing Sequences
	Cross References
	Deployment
	Audit Trail
	Events
	Parameter Classes
	LANSA Composer Client User-interface Enhancements
	Transformation Maps
	Transaction Document Support
	System Settings
	Database Housekeeping
	Browsers for Server Files and Folders
	Other New and Enhanced Features

	1. Introducing LANSA Composer
	1.1 What Is LANSA Composer?
	1.1.1 Extensible And Customizable
	1.1.2 Who Can Use LANSA Composer?
	1.1.3 What Can I Do With LANSA Composer?
	1.1.4 Transaction Document Processing with LANSA Composer
	1.1.5 How Is LANSA Composer different to LANSA Integrator?

	1.2 Functional Components
	1.2.1 Activities
	1.2.2 Transformation Maps
	1.2.3 Processing Sequences
	1.2.4 Configurations
	1.2.5 Trading Partners

	1.3 Getting Started With LANSA Composer
	1.3.1 Start LANSA Composer
	Connect to LANSA Composer Server
	Troubleshooting Connection Errors

	1.3.2 Composer Quick Tour
	Navigator
	Instance Lists
	Command Handlers
	Locating and Selecting Items in the Instance Lists
	Working with Definition Items

	2. Define Integration Components
	2.1 Activities
	2.1.1 Work With Activities
	2.1.2 Activity Details
	2.1.3 Activity Parameters
	2.1.4 Activity Groups

	2.2 Activities by Group
	2.2.1 Design, Test and Debug
	2.2.2 Email
	2.2.3 File Management
	2.2.4 FTP Transport Activities
	2.2.5 HTTP Transport Activities
	2.2.6 Iterator activities
	2.2.7 Messaging Transport
	2.2.8 Processing
	2.2.9 Spooled File Management
	2.2.10 SQL Database Activities
	2.2.11 Terminal Server Activities
	2.2.12 Transaction Document Processing
	2.2.13 Transformations
	2.2.14 Transport
	2.2.15 Variable manipulation
	2.2.16 Zip Activities
	2.2.17 All Supplied Activities
	BASE64_DECODE
	BASE64_ENCODE
	BLANKCONCAT
	CALCULATE
	CALL_3GL
	CALL_FUNCTION
	CALL_JAVA
	CLEARLIST
	CLEARVARIABLE
	COMPOSER_RUN
	CONCAT
	COPY_FILE
	COUNTLIST
	DELETE_FILE
	DELETE_SPLF
	DIRECTORY_LIST
	DISCOVER_DOC
	DISCOVER_EDI
	DISCOVER_MAP
	DISCOVER_XML
	DTAQ_CLEAR
	DTAQ_RECEIVE
	DTAQ_SEND
	EDI_SPLIT
	FIND_TPMAP
	FOR_EACH_CSVROW
	FOR_EACH_INDEX
	FOR_EACH_OBJECT
	FOR_EACH_TXDOCO
	FOR_EACH_TXDOCT
	FOR_EACH_TXTLIN
	FOR_EACH_VAR
	FTP_COMMANDLIST
	FTP_DIRLIST
	FTP_INBOUND
	FTP_OUTBOUND
	FTP_SCRIPT
	GET_DTAARA
	HASH_FILE
	HTTP_GET
	HTTP_INBOUND
	HTTP_POST
	JSM_RECLAIM
	JSM_SCRIPT
	LAST_SPLF
	LOAD_PSVSET
	LOGLIST
	LOGUSERINFO
	LOGVARIABLE
	LOWERCASE
	MAIL_RECEIVE
	MAIL_RECEIVEALL
	MAIL_SEND
	MOVE_FILE
	MOVE_SPLF
	MSG_RECEIVE
	MSG_SEND
	MSGQ_RECEIVE
	MSGQ_SEND
	NOTIFYEVENT
	NEXTNUMBER
	NULL
	PATHMAKE
	PATHSPLIT
	PUT_DTAARA
	QUERY_CCSID
	RANDOMNUMBER
	RENAME_FILE
	SAVE_PSVSET
	SLEEP
	SMS_SEND
	SORT_LISTS
	SPLF_LIST
	SPLF_TO_PDF
	SPLF_TO_TEXT
	SQL_CALL
	SQL_CALLQRYCSV
	SQL_CALLQUERY
	SQL_COMMIT
	SQL_CONNECT
	SQL_DISCONNECT
	SQL_PARAMS
	SQL_PARAMSCSV
	SQL_QUERY
	SQL_QUERYTOCSV
	SQL_ROLLBACK
	SQL_UPDATE
	SUBSTITUTE
	SUBSTITUTE_VAR
	SUBSTRING
	SYSTEM_COMMAND
	TEXT_SUBSTITUTE
	TRANSFORM
	TS_CAPTURE
	TS_CONNECT
	TS_DISCONNECT
	TS_EXECUTE
	TS_GET
	TS_GETBYNAME
	TS_GETBYPOS
	TS_GETFIELD
	TS_SEND
	TS_SETBYNAME
	TS_SETBYPOS
	TS_SETCURSOR
	TXDOC_ALLOCCTRL
	TXDOC_EXPORT
	TXDOC_IMPORT
	TXDOC_KEYS
	TXDOC_REGISTER
	TXDOC_REGOUTBND
	TXDOC_REGOUTEDI
	TXDOC_REGOUTX12
	TXDOC_STATUS
	UNIQUEID
	UPPERCASE
	WAIT_FILESREADY
	WATCH_DIRECTORY
	WATCH_DTAQ
	WATCH_MSGQ
	XML_SPLIT
	XML_QUERY
	Quick Guide to XPath expressions for use with the XML_QUERY activity

	XML_VALIDATE
	XSL_TRANSFORM
	ZIP_DIRECTORIES
	ZIP_FILES
	ZIP_LIST
	ZIP_UNZIP

	2.2.18 Deprecated Activities

	2.3 Configurations
	2.3.1 Work With Configurations
	2.3.2 FTP Configuration
	FTP commands

	2.3.3 HTTP Configuration
	2.3.4 SMTP Server Configuration
	2.3.5 SMTP Mail Details Configuration
	2.3.6 POP3 Mail Configuration
	2.3.7 SMS Configuration
	2.3.8 Database Configuration
	2.3.9 Messaging Configuration
	Details
	Message Properties

	2.3.10 LANSA System Configuration

	2.4 Trading Partners
	2.4.1 Work With Trading Partners
	2.4.2 Trading Partner Details
	2.4.3 Trading Partner Groups
	2.4.4 Trading Partner Properties
	2.4.5 Trading Partner Data Interchange Attributes
	2.4.6 Link Directories to a Trading Partner
	Add Linked Directories

	2.4.7 Link Transformation Maps to a Trading Partner
	2.4.8 Link Configurations to a Trading Partner
	2.4.9 Outbound Numbering

	2.5 Transformation Maps
	2.5.1 Understand Transformation Maps and the Mapping Tool
	2.5.2 Work With Transformation Maps
	2.5.3 Transformation Map Details
	2.5.4 Transformation Map Data Interchange Attributes
	2.5.5 Edit And Prepare Transformation Map
	Edit Transformation Map
	Prepare Transformation Map

	3. Processing Sequences
	3.1 Anatomy of a Processing Sequence
	3.1.1 Activities and Transformation Maps
	3.1.2 Variables
	Lists
	Save, Load and Transform Processing Sequence Variables
	Process Sequence Variables (PSV) Files
	Save and Load a PSV File
	Transform To or From a PSV File

	3.1.3 Built-in Variables
	Using the System Property Built-in Variables
	Using the Trading Partner Built-in Variables
	Trading Partner (*TRADINGPARTNER) Built-in Variable Qualifiers
	Using the Transformation Map Built-in Variables
	Transformation Map (*TRANSFORM) Built-in Variable Qualifiers
	Using the Transaction Document Built-in Variables
	Transaction Document (*TXDOC) Built-in Variable Qualifiers

	3.1.4 Processing Directives
	Loop
	While And Until
	Leave
	Continue
	Switch, Case And Otherwise
	If, ElseIf And Else
	Activity And Transform
	Processing Sequence
	Catch
	Assign
	Suspend and Terminate
	Comment
	Assignment Expressions
	Conditioning Expressions

	3.1.5 Parameters

	3.2 Work With Processing Sequences
	3.3 Work With Processing Sequence Version History
	3.4 Use the Processing Sequence Editor
	3.4.1 Parts of the Editor Window
	3.4.2 The Resources Tabs
	Palette tab
	Activities tab
	Processing Sequences tab
	Transformations tab
	Configurations tab
	Variables tab
	Built-ins tab

	3.4.3 The Information Tabs
	Assistant tab
	Errors tab

	3.4.4 Edit Processing Sequence Details
	Review or Revise Item Details
	Customise the view in the Processing Sequence Editor

	3.4.5 Edit Processing Sequence Parameters
	3.4.6 Edit Processing Sequence Notes
	3.4.7 Save Your Work

	3.5 Run a Processing Sequence
	3.5.1 Run a Processing Sequence from the LANSA Composer client
	3.5.2 Run a saved Processing Sequence "shortcut" from a client computer
	About Processing Sequence "shortcut" files
	Save a Processing Sequence "shortcut" file
	Run a saved Processing Sequence "shortcut" file

	3.5.3 Run a Processing Sequence from the Operations Console
	3.5.4 Run a Processing Sequence using the COMPOSER command
	3.5.5 Run a Processing Sequence using a Run Control File
	Run Control File
	The Run Command

	3.5.6 Run a Processing Sequence from a LANSA application
	3.5.7 Run a Processing Sequence by calling the Web Service function
	Before you begin
	Services required for the web service support
	Overview of the Run web service operation
	Accessing the web service from your SOAP client application

	3.5.8 Run a Processing Sequence using the DXP1FN1 function
	Exchange the Processing Sequence identifier
	Populate and pass the Parameters working list
	Receive the result of the Processing Sequence run
	Example function to run a Processing Sequence

	3.6 Restart a Processing Sequence Run
	3.6.1 Restart a Processing Sequence Run from LANSA Composer
	3.6.2 Restart a Processing Sequence Run from the Operations Console

	3.7 Review the Processing Sequence Log
	3.7.1 Display the Processing Sequence Log from LANSA Composer
	3.7.2 Display the Processing Sequence Log from the Operations Console

	4. Transaction Document Processing
	4.1 Transaction Document Processing Framework
	4.1.1 Overview of the Transaction Document Processing Framework
	4.1.2 Getting Started with the Transaction Document Processing Framework
	Run a simple demonstration
	Determine the scope and subject of a pilot implementation
	Planning your implementation
	Understand the major implementation steps
	Adapting your own Solution to Use the Transaction Document Register

	4.1.3 Document Types and Document Standards
	Document Type Maintenance
	Document Standard Maintenance

	4.1.4 Trading Partner support for Transaction Document Processing
	Trading Partner Data Interchange Attributes

	4.1.5 Activities for Transaction Document Processing
	4.1.6 Processing Sequences for Transaction Document Processing
	Modify the Supplied TXDOC_DATABASE Database Configuration
	Copy the Supplied Processing Sequences Before Use
	The Inbound Process
	The Outbound Process

	4.1.7 Transformation Maps for Transaction Document Processing
	Model Transformation Maps for Transaction Document Processing
	Transformation Map Data Interchange Attributes

	4.1.8 Pre-built EDI X12 solution components
	4.1.9 Application program interfaces (APIs)
	Import and Export Processors
	EDI Document Viewers
	Registering a Pending Outbound Document
	Register a Transaction Document and Update Its Status

	4.2 LANSA Composer Document Manager
	4.2.1 Start the LANSA Composer Document Manager
	4.2.2 Work with Transaction Documents
	4.2.3 Work with Transaction Document Statistics

	5. Using aXes Terminal Server with LANSA Composer
	5.1 What can I use the aXes Terminal Server Activities for?
	5.2 Requirements for using The aXes Terminal Server Activities
	5.3 When to use the aXes Terminal Server Activities
	5.4 Things you should understand about the aXes Terminal Server Activities
	5.5 Overview of aXes Terminal Server Activities
	5.6 Using aXes Terminal Operations Scripts
	5.6.1 aXes Terminal Operations Scripts Definition
	5.6.2 aXes Terminal Operations Script Variables
	5.6.3 aXes Terminal Operations Scripts Example

	5.7 Processing Sequence Example

	6. Deploying Solutions for LANSA Composer
	6.1 Deployment Considerations
	6.2 Work with Export Lists
	6.3 Export Definitions from LANSA Composer
	6.4 Import Definitions to LANSA Composer
	6.4.1 Restore Supplied Definitions

	7. Operations
	7.1 Console
	7.1.1 Run History
	7.1.2 Processing Sequence Log
	7.1.3 Processing Sequences

	7.2 Java Service Manager Console

	8. Administration and Housekeeping
	8.1 Audit Trail
	8.2 System Settings
	8.2.1 Logging
	8.2.2 Server File Locations
	8.2.3 File Locations Relative to Client
	8.2.4 Browser
	8.2.5 SMTP Mail Details Defaults
	8.2.6 HTTP Inbound Processing
	8.2.7 Transaction Document Processing
	8.2.8 Default Configuration
	8.2.9 Other Settings

	8.3 System Properties
	8.3.1 System Property Evaluation Functions

	8.4 Code Maintenance
	8.5 Event Maintenance
	8.5.1 Supplied Events
	8.5.2 Event Details
	8.5.3 Send an Email
	8.5.4 Send an SMS
	8.5.5 Send a Message to an IBM i Message Queue
	8.5.6 Run a Specified Processing Sequence
	8.5.7 Execute a Specified Function

	8.6 Database Housekeeping
	8.7 User Access Configuration
	8.7.1 Using User Access Configuration

	9. Develop Custom Activities for LANSA Composer
	9.1 Plan Your Custom Activity
	9.2 Define the Activity to LANSA Composer
	9.3 Create the Activity Processor
	9.4 Test your Activity
	9.5 Deploy your Custom Activity
	9.6 Develop a Custom Activity Processor
	9.6.1 Before you Begin your Custom Activity
	9.6.2 Generate Skeletal RDMLX Code
	9.6.3 Names
	9.6.4 The Ancestor Class - DXACTBAS1
	9.6.5 Load and Unload
	9.6.6 Initialize, Terminate and Execute
	9.6.7 Access the Variable Pool
	9.6.8 Understand Activity Parameters
	9.6.9 Implement an Activity Processor for an Iterator Activity
	9.6.10 Supporting Restartable Activities
	9.6.11 Use the Java Service Manager
	9.6.12 Signal an Event
	9.6.13 Set the Activity Return Code
	9.6.14 Use Logging Services

	10. Tips and Techniques for Success with LANSA Composer
	10.1 Activities
	10.1.1 Experiment with Activities by Running Them

	10.2 Processing Sequences
	10.2.1 Example Processing Sequences
	10.2.2 Considerations for Extended Duration Processing Sequences

	LANSA Composer Tutorials
	LIC001 - Introduce Composer Client & Validate Environment
	Step 1. Locate and execute Composer Client
	Step 2. Execute a Composer Processing sequence to validate your installation
	Step 3. Execute a Composer Processing sequence to validate the base LANSA Integrator installation
	Summary

	LIC002 - Create a Processing Sequence
	Step 1. Create a Processing Sequence
	Step 2. Configure the Processing Sequence Editor
	Step 3. Add Directory List Activity to your Processing Sequence
	Step 4. Add TUT_02_AT Activity to Processing Sequence
	Step 5. Execute the Processing Sequence you Created
	Summary

	LIC003 - Create a Transformation Map
	Step 1. Create a Transformation Map Registration
	Step 2. Edit the Transformation Map
	Step 3. Identify the xml source for the Transformation Map
	Step 4. Identify the Target Database for the Transformation Map
	Step 5. Map the Input xml to the Target Database
	Step 6. Prepare your Transformation Map for use within Composer
	Step 7. Set up the Database Configuration
	Summary

	LIC004 - Add the Transformation to the Processing Sequence
	Step 1. Set up a Loop to Cycle through the List of xml Files
	Step 2. Add the Transformation to the Processing Sequence
	Step 3. Execute your Amended Processing Sequence
	Step 4. Add a Variable Batch Number to the Processing Sequence
	Summary

	LIC005 - Set up a Trading Partner
	Step 1. Create a Trading Partner
	Step 2. Set up the Directories that your Trading Partner will use
	Step 3. Add the Trading Partner to your Processing Sequence
	Step 4. Execute your Processing Sequence
	Summary

	LIC006 - Add Email Acknowledgement to Processing Sequence
	Step 1. To set up the SMTP Server Configuration
	Step 2. Set up the SMTP mail detail configuration
	Step 3. Add an Email acknowledgement to your Processing Sequence
	Step 4. Execute your Processing Sequence
	Summary

	LIC007 - Extract Database to CSV File
	Step 1. Create Transformation Map
	Step 2. Define Transformation Map
	Step 3. Define an SQL Where condition and input parameter
	Step 4. Prepare Transformation Map
	Step 5. Create Processing Sequence
	Step 6. Run the Processing Sequence
	Step 7. Run Composer CL Command (Optional)
	Step 8. Run Processing Sequence from a shortcut (optional)
	Summary

	LIC008 - Processing via Email
	Step 1. Review Folders and Settings
	Step 2. Create POP3 Email Configuration
	Step 3. Create SMTP Mail Details
	Step 4. Define iiiTUTSEQ06 Processing Sequence
	Summary

	LIC009 - Handle multiple requests via an email attachment
	Step 1. Create FTP configuration
	Step 2. Create Server Folders
	Step 3. Create Request and Response Sample Files
	Step 4. Create Transformation Map
	Step 5. Create Processing Sequence
	Step 6. Execute and Test the Processing Sequence
	Step 7. Handling multiple messages and response xml files - Optional
	Summary

	LIC010 - Calling a Processing Sequence (Optional)
	Step 1. Create Processing Sequence iiiTUTSEQ7A
	Step 2. Modify Processing Sequence iiiTUTSEQ07
	Step 3. Test Processing Sequence iiiTUTSEQ07
	Summary

	LIC011 - Email notification service
	Scenario

	Appendix A. Install or Upgrade LANSA Composer
	LANSA Composer Requirements
	LANSA Composer Server on IBM i
	Before You Begin Checklist
	Call the Installation Program
	Install LANSA Composer
	Upgrade an Existing LANSA Composer installation
	Complete the Installation
	User Profiles Created by the Installation
	Creating Further User Profiles for Use with LANSA Composer
	Subsystems and Jobs

	LANSA Composer Server on Windows
	Before You Begin Checklist
	Plan Your Upgrade from LANSA Composer Version 4.0
	Complete your Upgrade Plan
	Upgrade Plan Notes
	Is LANSA Composer the Only Web Application being served by the Active IIS Plug-in?

	Immediately Before You Begin

	Create a Database for a New LANSA Composer installation
	Start the Installation Program
	Install or Upgrade LANSA Composer Windows Servers Software
	Welcome to the LANSA Composer Server Setup Wizard
	Installation Scope
	Destination Folder
	Setup the Application
	Setup the Local Database
	User Id
	Web Sites for IIS Plug-In
	Web Site Virtual Folders
	Communication Ports
	Choose Setup Type
	Ready to install LANSA Composer Server
	Installing LANSA Composer Server
	Completed the LANSA Composer Server Setup Wizard
	Completing LANSA Composer Server Setup
	LANSA Composer Files Location
	LANSA Composer Files Network Path
	Import Supplied Definitions
	Ready To Install
	Installing LANSA Composer Files and Data
	LANSA Composer Files and Data Have Been Installed

	Repair an Existing LANSA Composer Installation
	Complete the Installation
	Restore Configurations for LANSA for the Web applications
	Remove LANSA Composer Version 4.0
	Remove LANSA Composer database tables from the earlier version
	Apply Licenses
	Configure Network Share for use by LANSA Composer Clients
	Grant Database Permissions to the Web User
	Configure IIS to Serve the LANSA Composer Web Components
	Running the LANSA Composer Client on the Windows Server

	Services Used by the LANSA Composer Windows Server

	LANSA Composer Client on Windows
	Install LANSA Composer Client
	Initialize Data and Settings
	Step 1. LANSA Composer Server Initialization
	Step 2. Establish System Settings

	Uninstall LANSA Composer Client on Windows

	Appendix B. License LANSA Composer
	License the LANSA Composer Server
	Request a Server License for LANSA Composer
	Apply the Server License for LANSA Composer
	About LANSA Composer Server Licenses

	License the LANSA Composer Client

	Appendix C. The Mapping Tool
	Learn about the Mapping Tool
	Overview of the Mapping Tool
	Mapping Tool Requirements
	Connecting to databases in Transformation Maps
	Connecting to databases while defining a Transformation Map using ODBC or ADO
	Insert a Database Component
	Select a Database Type
	Select Database Drivers
	Select or Create a DSN
	Choose to Connect Natively or via the ODBC API
	Select Database Schema and Tables

	Connecting to databases while defining a Transformation Map using JDBC
	Connecting to Databases while Executing a Transformation Map using JDBC
	Database Connectivity Components and Drivers
	Example Database Connections for IBM DB2 for i5/OS
	Connecting to IBM DB2 for i5/OS to define a Transformation Map
	Connecting to IBM DB2 for i5/OS to execute a Transformation Map
	Additional Considerations for Transformation Maps Using IBM DB2 for i5/OS

	Example Database Connections for Microsoft Access
	Connecting to Microsoft Access to Define a Transformation Map
	Connecting to Microsoft Access to Execute a Transformation Map

	Example Database Connections for Microsoft SQL Server
	Connecting to Microsoft SQL Server to Define a Transformation Map
	Connecting to Microsoft SQL Server to Execute a Transformation Map

	Example Database Connections for Oracle
	Installing and Configuring Oracle Client Software
	Connecting to Oracle to Define a Transformation Map
	Connecting to Oracle to Execute a Transformation Map

	Supported Functionality of the Mapping Tool
	Supported MapForce Functionality
	Unsupported MapForce Functionality

	Supported Versions of the Mapping Tool

	Appendix D. Commands to Invoke LANSA Composer
	The COMPOSER command for IBM i servers
	COMPOSER Command Parameters
	Using the COMPOSER Command
	Invoking the COMPOSER Command
	Submitting the COMPOSER Command to Batch
	Including the COMPOSER Command in Your Own Programs
	Monitoring Messages Issued by the COMPOSER Command

	COMPOSER Command Examples

	Using dxstart.exe to start functions of LANSA Composer on Windows
	dxstart.exe Syntax and Parameters
	dxstart.exe Configuration File
	dxstart.exe Examples

	Appendix E. Using LANSA Composer with LANSA Applications
	LANSA Application Initiates a Processing Sequence
	Processing Sequence Invokes Functions or Components of a LANSA Application
	Required Characteristics of the Common LANSA environment

	Appendix F. The LANSA Composer Request Server
	What You Need to Know About Requests Processed Through the LANSA Composer Request Server
	How the LANSA Composer Request Server for IBM i Works
	How the LANSA Composer Request Server for Windows Servers Works
	Connecting to the LANSA Composer Request Server on a Remote System
	LANSA Built-in Functions that use the LANSA Composer Request Server
	LANSA Programming Considerations for Called Functions
	Configuring the LANSA Composer Request Server for IBM i to Suit Your Needs
	Library List Considerations for the Request Server Jobs
	LANSA Composer Request Server for IBM i Configuration Settings

	Appendix G. National Language and Multilingual Support in LANSA Composer
	LANSA Composer Product Translations
	Specifying the language to start LANSA Composer

	Multilingual support in LANSA Composer

