LANSA Composer Guide

e What's New in this Version?
e Introducing LANSA Composer
e Define Integration Components
e Activities
e Activities by Group
e Configurations
e Trading Partners
e Transformation Maps
e Processing Sequences
e Transaction Document Processing
e Using aXes Terminal Server with LANSA Composer
e Deploying Solutions for LANSA Composer
e (perations
e Administration and Housekeeping
e Develop Custom Activities for LANSA Composer
e LANSA Composer Tutorials
e Appendix A. Install LANSA Composer
e LANSA Composer Server on IBM i
e LANSA Composer Server on Windows
e LANSA Composer Client on Windows
e Uninstall LANSA Composer Client on Windows
e Appendix B. License LANSA Composer
e Appendix C. The Mapping Tool
e Appendix D. Commands to Invoke LANSA Composer
e Appendix E. Using LANSA Composer with LANSA Applications
e Appendix F. The LANSA Composer Request Server

its:lansa091.chm::/lansa/intengc0_0010.htm
its:LANSA091.CHM::/lansa/intengc1_0010.htm
its:lansa091.chm::/lansa/intengc2_0010.htm
its:lansa091.chm::/lansa/intengc2_0015.htm
its:lansa091.chm::/Lansa/IntEngC2_0405.htm
its:LANSA091.CHM::/lansa/intengc2_0020.htm
its:LANSA091.CHM::/lansa/intengc2_0025.htm
its:LANSA091.CHM::/lansa/intengc2_0195.htm
its:lansa091.chm::/lansa/intengc3_0010.htm
its:lansa091.chm::/lansa/intengc3b_0010.htm
its:lansa091.chm::/lansa/intengc3c_0010.htm
its:lansa091.chm::/lansa/intengc4_0010.htm
its:lansa091.chm::/lansa/intengc5_0010.htm
its:lansa091.chm::/lansa/intengc6_0010.htm
its:lansa091.chm::/lansa/intengc7_0010.htm
its:lansa091.chm::/lansa/intengc8_0010.htm
its:lansa091.chm::/lansa/intengc9_0010.htm
its:lansa091.chm::/lansa/Intengc9_0025.htm
its:lansa091.chm::/lansa/Intengc9_0280.htm
its:lansa091.chm::/lansa/Intengc9_0030.htm
its:lansa091.chm::/lansa/Intengc9_0190.htm
its:lansa091.chm::/lansa/intengc9_0185.htm
its:lansa091.chm::/lansa/intengc9_0015.htm
its:lansa091.chm::/lansa/intengc9_0230.htm
its:lansa091.chm::/lansa/intengc9_0240.htm
its:lansa091.chm::/lansa/intengc9_0475.htm

e Appendix G. National Language and Multilingual Support in LANSA
Composer

Edition Date April 29, 2014
This edition applies to Version 5.0 of LANSA Composer.

© LANSA

its:lansa091.chm::/lansa/intengc9_0650.htm

About this Guide

LANSA Composer is a design and execution platform for integrating business
activities involving transport and transformation of data along with custom
business processing. This guide describes the features and functions of LANSA
Composer.

It is intended for use by business analysts who will use the application to design
and implement solutions to business integration problems.

The text in this guide is available while using the LANSA Composer design
environment by selecting the Help command from the Help menu on the
LANSA Composer main window or by pressing F1.

The LANSA Integrator Guide is also provided with LANSA Composer and
provides more in-depth technical information on the LANSA Integrator services
that are used by many of the supplied LANSA Composer activities or that you
may use in your own custom activities.

How to use this Guide

This guide is designed to get you started with the LANSA Composer software
as quickly as possible. However, you will need to know some of the basic
structures and windows of Composer before you begin. Please review Getting
Started with LANSA Composer which includes a Quick Tour and Functional
Components for an overview of LANSA Composer's components.

Sample configurations for supported transport protocols have been provided.
You only need to refer to the description and specifications of the protocol that
you will be using, and these are described in Configurations.

LANSA Composer is supplied with a number of Activities that will perform
transport, file management and other common business integration functions for
you. Refer to Activities for details.

Should you wish to develop some custom activities, you will find notes on how
to do this in Develop Custom Activities for LANSA Composer.

its:LANSA091.CHM::/lansa/intengc1_0025.htm
its:LANSA091.CHM::/lansa/intengc1_0020.htm
its:LANSA091.CHM::/lansa/intengc2_0020.htm
its:LANSA091.CHM::/lansa/intengc2_0015.htm
its:LANSA091.CHM::/lansa/intengc7_0010.htm

What's New in LANSA Composer Version 5.0?
LANSA Composer version 5.0 introduces many new features and
enhancements. The highlights are described in the following sections:

Licensing

Installation

New SQL Database Activities

Other New and Enhanced Activities

Extended Duration Processing Sequences

Cross References

Deployment

Audit Trail

Events

Parameter Classes

LANSA Composer Client User-interface Enhancements

Transformation Maps

Transaction Document Support

System Settings

Database Housekeeping

Browsers for Server Files and Folders

Other New and Enhanced Features

Note: Some features have been previously made available in hotfixes

for LANSA Composer version 4.0.

Licensing

IMPORTANT NOTE:

Due to changes in the licensing implementation, all LANSA
Composer customers upgrading from LANSA Composer version 4.0
must request and obtain new LANSA Composer server licenses before

upgrading to LANSA Composer version 5.0. Prior to upgrading to
Version 5.0, you should send your CPU details to LANSA Licensing
for new Version 5.0 licenses. For more information refer to Appendix
B: License LANSA Composer.

its:LANSA091.CHM::/lansa/Intengc9_0185.htm

Installation

LANSA Composer Client

The LANSA Composer Windows client installer now offers the option of
installing the LANSA Web Administrator program. (LANSA Web
Administrator can be used, if necessary, to change the LANSA for the Web
configuration on the LANSA Composer server.)

Altova MapForce version 2014 release 2 (2014R2) is provided on the media. It
is strongly recommended that MapForce is upgraded to this level on all LANSA
Composer clients.

LANSA Composer Server on IBM i

The LANSA Composer installation on IBM i servers now supports installation
into independent auxiliary storage pools (IASP), if required.

LANSA Composer Server on Windows

The Windows server installation of LANSA Composer has been completely
revised. It is now uses "standard" Windows installer/MSI technology, which
will make future patches and upgrades simpler and more flexible. It also
appears as a separate item in the Control Panel Programs and Features and can
be uninstalled in the usual way.

Only a single copy of the LANSA Composer server may be installed on a
Windows server.

LANSA Composer's database tables are now installed using a new and constant
database schema/collection/owner (LC_DTA), meaning that in future versions,
the post-installation task to "cleanup" the previous collection will no longer be
necessary (it is necessary for this version, however).

More of the post-installation tasks are now automated - in particular the
installation of LANSA Composer's data directory and files. On the Windows
server, the first client to connect will no longer need to complete the Server
Initialization wizard.

LANSA Runtime Version Information

LANSA Composer version 5.0 is built with LANSA version 13SP1 at EPC level
131100 and requires a run-time environment at least at that level. In addition it
requires LANSA Integrator at EPC level 131300. This is of concern only to
existing users who have installed LANSA Composer in an existing LANSA
system. The upgrade of standard LANSA Composer installations (in their own

LANSA run-time system) will upgrade all the necessary components.

New SQL Database Activities

This version of LANSA Composer introduces a new suite of twelve activities
for performing SQL operations on a database identified by a LANSA Composer
database configuration. The databases can be on any network addressable
server. So, for example, LANSA Composer on an IBM i server could address
an MS SQL Server database on a Windows server, or vice-versa..

Typically in LANSA Composer, most database activity is accomplished through
the use of Transformation Maps. However, these new activities provide another
option for performing limited database query and update operations on an SQL
database. In addition, they provide a means of invoking SQL stored procedures
in the target database.

The SQL database activities are not intended for high-throughput, high-volume
database operations. Rather they provide a simple means to complete a business
process integration solution that may not otherwise have been possible, with
some simple, low-volume database access and/or maintenance.

The new SQL database activities comprise:
e Activities to establish or disconnect an SQL database connection:

SQL_CONNECT Connect to database using SQL
SQL_DISCONNECT| Disconnect from database using SQL

e Activities to query the database:

SQL_QUERY Query database using SQL
SQL_QUERYTOCSV | Query database using SQL to output CSV file

e Activities to perfom insert, update and delete operations in the database:

SQL_UPDATE | Update database using SQL

its:LANSA091.CHM::/lansa/AT_SQL_CONNECT.htm
its:LANSA091.CHM::/lansa/AT_SQL_DISCONNECT.htm
its:LANSA091.CHM::/lansa/AT_SQL_QUERY.htm
its:LANSA091.CHM::/lansa/AT_SQL_QUERYTOCSV.htm
its:LANSA091.CHM::/lansa/AT_SQL_UPDATE.htm

e Activities to execute an SQL stored procedure in the database:

SQL_CALL Execute an SQL stored procedure
SQL_CALLQRYCSV | Query database using an SQL stored procedure to
CSV

SQL_CALLQUERY | Query database using an SQL stored procedure

e Activities to implement transaction control relating to any database insert,
update or delete operations you have performed:

SQL_COMMIT Commit a database transaction using SQL
SQL_ROLLBACK | Rollback a database transaction using SQL

e Activities to set parameter values for an SQL operation:

SQL_PARAMS Set parameter values for SQL operation
SQL_PARAMSCSV | Set parameter values for SQL operation from CSV

its:LANSA091.CHM::/lansa/AT_SQL_CALL.htm
its:LANSA091.CHM::/lansa/AT_SQL_CALLQRYCSV.htm
its:LANSA091.CHM::/lansa/AT_SQL_CALLQUERY.htm
its:LANSA091.CHM::/lansa/AT_SQL_COMMIT.htm
its:LANSA091.CHM::/lansa/AT_SQL_ROLLBACK.htm
its:LANSA091.CHM::/lansa/AT_SQL_PARAMS.htm
its:LANSA091.CHM::/lansa/AT_SQL_PARAMSCSV.htm

Other New and Enhanced Activities

In addition to the New SQL Database Activities, this version of LANSA
Composer is supplied with a range of other new and revised Activities that
deliver new and powerful capabilities:

New Activities
Revised Activities

New Activities
The following new Activities are added in this version of LANSA Composer:

The new BASE64 ENCODE and BASE64 DECODE activities will base64
encode or decode the contents of a specified file and write the encoded or
decoded content to another file. Base64 encoding is commonly used when
there is a need to encode binary data that needs to be stored and transferred
over media or transports that are designed to deal with textual data. This is to
ensure that the data remains intact without modification during transport.
Base64 encoding is commonly used in a number of applications including
email via MIME, and storing complex data in XML.

The new COUNTLIST activity counts the entries in a variable list used in a
Processing Sequence. Previously it would have been necessary to iterate the
list entries with a LOOP directive in order to count the entries.

The new DTAQ_CLEAR, DTAQ_RECEIVE and DTAQ_SEND activities
provide support for sending and receiving data to and from IBM i data
queues and to emulated data queues on Windows servers.

The new FOR_EACH_OBIJECT activity iterates for each object in an IBM i
server library that matches a specified object name and/or object type. The
activity is only supported on IBM i servers.

The new HASH_FILE activity generates a hash value of the contents of the
specified file according to a known algorithm. The hash value is a fixed-
length (according to the chosen algorithm), non-reversible representation of
the contents of the file. Such hash values have many uses in information
security, including as a means of detecting (accidental or intentional)
changes to or corruption of the source data.

The new JSM_RECLAIM activity reclaims LANSA Integrator JSM
resources by initiating garbage collection in the JSM's Java Virtual Machine
instance. In some particular instances, a delay in garbage collection can lead
to functional issues in subsequent processing when certain resources, such as

its:LANSA091.CHM::/lansa/AT_BASE64_ENCODE.htm
its:LANSA091.CHM::/lansa/AT_BASE64_DECODE.htm
its:LANSA091.CHM::/lansa/AT_COUNTLIST.htm
its:LANSA091.CHM::/lansa/AT_DTAQ_CLEAR.htm
its:LANSA091.CHM::/lansa/AT_DTAQ_RECEIVE.htm
its:LANSA091.CHM::/lansa/AT_DTAQ_SEND.htm
its:LANSA091.CHM::/lansa/AT_FOR_EACH_OBJECT.htm
its:LANSA091.CHM::/lansa/AT_HASH_FILE.htm
its:LANSA091.CHM::/lansa/AT_JSM_RECLAIM.htm

files, might remain locked awaiting garbage collection of Java objects that
reference them. The JSM_RECLAIM activity may help to avoid issues of
this nature.

e The new QUERY_CCSID activity returns the IBM i CCSID for a specified
file. The activity is only supported on IBM i servers.

e The new WATCH_DTAQ, WATCH_MSGQ and WATCH_DIRECTORY
iterator activities provide a means of iteratively watching a data queue,
message queue or a file system directory for new items (and/or changed or
deleted items in the case of WATCH_DIRECTORY) for further processing.
The WATCH_MSGAQ activity is only supported on IBM i servers.

e The new WAIT_FILESREADY activity is intended for use in processing
sequences that identify and process newly-discovered files. For example, a
processing sequence that uses the new WATCH_DIRECTORY activity may
need to use this activity. It provides file cache services designed to allow
LANSA Composer solutions to control the processing of newly-discovered
files to avoid contention issues with applications that may, for example, still
be writing to a file when it is "discovered" by the LANSA Composer
solution.

e The new XML_QUERY activity permits a LANSA Composer solution to
selectively interrogate values contained in an XML document using XML
Path Language (XPath) expressions. The activity is intended for selective
interrogation of a limited number of particular values from the XML
document, perhaps to determine how to further process the XML document
as a whole.

e The new XML_VALIDATE activity validates an XML document file. At
the minimum, the activity will verify that the XML document is well-
formed. If the XML document contains or references a DTD or an XML
schema and the DTD or schema can be accessed, then the document content
will be validated against the DTD or schema.

Revised Activities

Several previously supplied Activities have been revised to add functionality
and/or to support other new and revised functionality in this version of LANSA
Composer:

e The COPY_FILE, MOVE_FILE, RENAME_FILE and DELETE_FILE
activities have been revised to provide more diagnostic information in the
event of failure on IBM i servers.

its:LANSA091.CHM::/lansa/AT_QUERY_CCSID.htm
its:LANSA091.CHM::/lansa/AT_WATCH_DTAQ.htm
its:LANSA091.CHM::/lansa/AT_WATCH_MSGQ.htm
its:LANSA091.CHM::/lansa/AT_WATCH_DIRECTORY.htm
its:LANSA091.CHM::/lansa/AT_WAIT_FILESREADY.htm
its:LANSA091.CHM::/lansa/AT_WATCH_DIRECTORY.htm
its:LANSA091.CHM::/lansa/AT_XML_QUERY.htm
its:LANSA091.CHM::/lansa/AT_XML_VALIDATE.htm
its:LANSA091.CHM::/lansa/AT_COPY_FILE.htm
its:LANSA091.CHM::/lansa/AT_MOVE_FILE.htm
its:LANSA091.CHM::/lansa/AT_RENAME_FILE.htm
its:LANSA091.CHM::/lansa/AT_DELETE_FILE.htm

The COPY_FILE activity provides a new AUT parameter that specifies the
method used to assign authority information to copied objects on IBM i
Servers.

The DIRECTORY_LIST activity provides new CONTENT and
MAXDEPTH parameters that allow it to list either sub-directories or files
contained in the specified directory, and, optionally, to include the contents
of child or descendant directories.

The FTP configurations and the supplied FTP activities, such as
FTP_INBOUND have been enhanced to provide support both for SSH
compression and for SFTP public key authentication.

The SMTP and POP3 configurations and the supplied email activities such
as MAIL_SEND and MAIL_RECEIVE have been enhanced to provide
support for explicit SSL/TLS.

A new BACKIMAGEPATH and related parameters for the SPLF_TO_PDF
activity permits a background image to be specified for inclusion in the
generated PDF file. The SPLF_TO_PDF activity is only supported on IBM i
Servers.

A new DOCCCSID parameter for the SPLF_TO_TEXT activity permits the
solution to specify the IBM i CCSID with which the output text document is
created. The SPLF_TO_TEXT activity is only supported on IBM i servers.
The SYSTEM_COMMAND activity has been revised to provide more
diagnostic information including captured joblog messages in the event the
command execution is unsuccessful on IBM i servers.

its:LANSA091.CHM::/lansa/AT_COPY_FILE.htm
its:LANSA091.CHM::/lansa/AT_DIRECTORY_LIST.htm
its:LANSA091.CHM::/lansa/AT_FTP_INBOUND.htm
its:LANSA091.CHM::/lansa/AT_MAIL_SEND.htm
its:LANSA091.CHM::/lansa/AT_MAIL_RECEIVE.htm
its:LANSA091.CHM::/lansa/AT_SPLF_TO_PDF.htm
its:LANSA091.CHM::/lansa/AT_SPLF_TO_TEXT.htm
its:LANSA091.CHM::/lansa/AT_SYSTEM_COMMAND.htm

Extended Duration Processing Sequences

A number of new features and enhancements are designed to further facilitate
creation and management of extended duration Processing Sequences — for
example, Processing Sequences that are intended to run indefinitely, perhaps
monitoring a file system directory, data queue or message queue for new items
to process. These changes include:

e New activities mentioned previously: WATCH_DTAQ, WATCH_MSGQ,
WATCH_DIRECTORY and WAIT_FILESREADY.

e A new example Processing Sequence, EXAMPLE_WATCHO1, provides an
example of a process using the new WATCH_DIRECTORY and
WAIT_FILESREADY activities. It demonstrates some suggested design
techniques for extended duration Processing Sequences.

e New documentation in the LANSA Composer Guide provides tips and
suggestions for designing extended duration Processing Sequences in
LANSA Composer. It can be found under the heading Considerations for
Extended Duration Processing Sequences.

e Large processing sequence logs will usually load faster and more reliably.
LANSA Composer reduces the initial loaded log size by "collapsing" detail
associated with COMPLETED iterations for LOOP, WHILE/UNTIL
directives and iterator activities, the premise being:

- that a long-running process will almost invariable involve iteration in some
form, and;

- that the users interest when viewing the log will most often be on the latest
or last iterations

Collapsed items will still be capable of being expanded, on demand.

e Associated with the previous item, the Processing Sequence Log window has
been enhanced to have a better organized, consistent and simpler user
interface.

e The Processing Sequence Log window more clearly identifies a processing
sequence run that is active and now allows "controlled end" to be initiated
for the run. Note the processing sequence must be designed to check and act
on the value of the new *SHUTDOWN built-in variable for such requests to
be effective.

e When Print is selected in the Processing Sequence Log window, LANSA

its:LANSA091.CHM::/lansa/AT_WATCH_DTAQ.htm
its:LANSA091.CHM::/lansa/AT_WATCH_MSGQ.htm
its:LANSA091.CHM::/lansa/AT_WATCH_DIRECTORY.htm
its:LANSA091.CHM::/lansa/AT_WAIT_FILESREADY.htm
its:LANSA091.CHM::/lansa/IntEngC7b_0205.htm

Composer will print the log as displayed — that is with detail log messages
shown or not and with items collapsed or expanded as they presently are in
the Processing Sequence Log window.

Cross References

A new Cross references command tab provides comprehensive cross reference
information for most definition types in LANSA Composer, including:

e Activities
e Transformation Maps
e Processing sequences

e All types of transport and database Configurations

Detals | [Run commands | [l Run history |) version history . Cross references & Attachments | [Inotes | () Audit

| Mame | Description | Details | Type | G-t

=i Used by EXAMPLE SQLO1 s
ﬁ LOGLIST Logs a variable list's values ACTIVITY item, sequence 16 Activity @ Refiesh
5@ SQL_CONMECT Connect to database using SQL ACTIVITY item, sequence 5 Activity
8% SQL_DISCONNECT Disconnect from database using SQL ACTIVITY item, sequence 18 Activity - :
g SQL_QUERY Query database using SQL ACTIVITY item, sequence 14 Activity fsti Bl
5;} SUBSTITUTE Formats an input string with variable su... ACTIVITY item, sequence 12 Activity
|[@] TXDOC_DATABASE Transaction document database configu... PARAMETER item, sequence 1 Database configuration

= Uses EXAMPLE_S(QL01
ﬁﬂ D¥%_MASTER_EG Shipped examples Export list

Using the cross reference information provided by LANSA Composer, you can

quickly identify:

e Other definitions that the subject definition uses or refers to. For example,
for a Processing Sequence, this would include Activities, Transformation
Maps and configurations that are used in the Processing Sequence.

e Other definitions that use or refer to the subject definition. For example, for
an FTP configuration, this would include Trading Partners and Processing
Sequences that use the FTP configuration.

The cross reference information includes the much-requested references to
configurations, providing the references are to a specific, fixed configuration.
(References to configurations and other definitions using variables or built-in
variables are resolved at run-time and cannot be cross-referenced.)

This new support provides a new level of impact analysis capability while
maintaining your business process integration (BPI) solutions. In addition, it
facilitates deployment of those solutions, for example, from a design
environment to production.

(The Cross references tab applies to most definition types and it replaces the
Where Used tab that was previously available for Activities and Transformation
maps only.)

its:LANSA091.CHM::/lansa/IntEngC1_0240.htm#IntEngC1_0245

Deployment
This version of LANSA Composer provides persistent and more detailed and
informative logging for export and import tasks.

The logs for each export and import task are retained in the LANSA Composer
database and can be retrieved and viewed at any time through the LANSA
Composer client software by clicking the History tab.

_Fj Import : Higtory

53 mport | L History |

| Run number i Start date/time | End date | time | status | | 2 Refresh
J{-}H 000000000000038 2013-08-13 4 22:33PM 2013-08-13 422:39 PM @3 QK

LA 000000000000037 2013-08-13 L:0422PM 2013-08-13 1:04:22PM &3 OK Sl e
-E}HDDDDDDDDDDDDD% 2013-08-13 L:0L01PM 2013-08-13 1:01:02 PM @ QK D
%DDDDDDDDDDDDMS 2013-08-13 12:57:15PM 2013-08-13 12:57: 17 PM 'ﬁ@ QK Fo2 Prinks
4 000000000000034 2013-08-06 9:3%:21AM 2013-08-06 9:34:27 AM €2 OK TR

4 000000000000033 2013-07-034:12:53PM 20130703 412:54PM € OK L5 Manifest..;

-% 000000000000032 2013-07-02 8:06:14 AM 2013-07-02 8:06: 17 AM EE oK

From the History tab, you can also print an Export Manifest that lists all
exported items along with their last-changed dates, times and users.

&5 Export Manifest - Presentation Viewer .

File View Help

Export Manifest

Frocuced at 2013-08-22 12:3902 by usar XEAHUGH

m

Export fist: DX_MASTER_EG
Description: Shipped examples
Run number: 000000000000075
Start date / time: 2013-08-22 12:35:42
End date / time: 2013-08-22 12:36:10
Execution result code: OK

Contents
Name Description Last changed
Database configurations
EXAMPLEDE_MSSQL Example SQL Server database configuration 2012-09-17 20:41:01 by user QOTHPRDOWN
EXAMPLEDB_ACCES Example Microsoft Access database configuration 2012-09-17 20:43:55 by user QOTHPRDOWN
EXAMPLEDB_ORACL Example Oracle database configuration 2012-09-17 20:41:01 by user QOTHPRDOWN
EXAMPLEDB_ODBC Example database config using jdbc:odbce driver 2012-09-17 20:41:01 by user QOTHPRDOWN
EXAMPLEDE 400 Example IBM i database configuration 2012-09-17 20:41:01 by user QOTHPRDOWN
LANSA system configurations
EXAMPLE LANSA Example LANSA system configuration 2012-09-17 20:41:01 by user QOTHPRDOWN
FTP l:onfigur_ations
EXAMPLE_FTPIN Example FTP inbound configuration 2012-09-17 20:41:01 by user QOTHPRDOWN
EXAMPLE_FTPOUT Example FTP outbound configuration 2012-09-17 20:41:02 by user QOTHPRDOWN
HTTP configurations
EXAMPLE_HTTPIN Example HTTP Inbound configuration 2012-09-17 20:41:02 by user QOTHPRDOWN
EXAMPLE HTTPOUT Example HTTP Outbound configuration 2012-09-17 20:41:02 by user QOTHPRDOWN
Messaging configurations
EXAMPLE MSG Example messaging configuration 2012-09-17 20:41:02 by user QOTHPRDOWN ~
P n | b
Ciane

In addition, a number of other new and revised features enhance the reliability
and useability of the existing LANSA Composer export and import capability.
They include:

e Export and import of System Properties is now supported, including the
option to preserve existing system property values on the importing system,
if applicable

e Import provides the option to preserve the existing security credentials (user
names and passwords) when importing configurations that already exist on
the importing system.

e Import now updates the last-changed dates, times and user information for
the imported definitions on the importing system to match the values with
which the definitions were exported. This enables the information to be
compared with a manifest or with the definitions on a source LANSA
Composer system.

Audit Trail

LANSA Composer now maintains an audit trail of significant, usually
modifying events to most definitions, including Activities, Transformation
Maps, Processing Sequences and all types of configurations. This enables you
to trace when changes were made to definitions and by whom.

Events that are recorded include:
e Create, change, delete

e Opened for editing
e Saved (Processing Sequences)
e Prepared (Transformation Maps)

e Archived version restored, deleted or purged (Processing sequences and
Transformation Maps)

e Exported, Imported

Information that is recorded for each event includes:
e The identity of item affected
e Timestamp
¢ Related log, where applicable (export, import)
e Job name, user and number
e Computer name

Note that the audit records do NOT record what actually changed in the item
definition, only that the event occurred.

The existing Audit command tab for each of the definition types has been
substantially revised to display the audit trail events for the selected item

(instead of just the last changed date, time and user information that was shown
before):

its:LANSA091.CHM::/lansa/IntEngC1_0240.htm#IntEngC1_0225

Proceszing sequence : Audit (EXAMPLE_SOLD1-Example of using the SAL_QUERY activity]
| Details [Run commands | 3l Run history | [Version history . = Cross references | ._,f? Attachments | [Notes | @.Ai-.ldit |

Internal identifier 360985 LACEEE40ARD2TEE 2E 1EE 249964 & Refresh
Last changed 2013-07-08 10:01:33 by user QOTHPRDOWN
Audit event ! Timestamp Log | User name Computer name | R
Exported 2013-08-22 12:35:57 ... 000000000000075 QOTHPRDOWN LANSAPCO07 3k i
Opened for editing 2013-08-22 8:55:03 AM QOTHPRDOWN LANSAPCO07
Exported 2013-08-20 2:14:10 PM 000000000000074 QOTHPRDOWMN LANSAPCOO7
Exported 2013-08-13 4:13:35FM 000000000000072 QOTHPRDOWN LANSAPCO07
Opened for editing 2013-07-08 11:09:46 ... QOTHPRDOWN LANSAPCO07
Opened for editing 2013-07-08 11:08:39 ... QOTHPRDOWMN LANSAPCOO7
Opened for editing 2013-07-08 11.07:09 .., QOTHPRDOWN LANSAPCOOD7
Exported 2013-07-08 10:07:26 ... 000000000000066 QOTHPRDOWN LANSAPCO07
Saved after editing 2013-07-08 10:01:33 ... QOTHPRDOWN LANSAPCO07
Opened for editing 2013-07-08 10:0L:06 ... QOTHPRDOWN LANSAPCOO07
Saved after editing 2013-07-08 9:08:52 AM QOTHPRDOWN LANSAPCOO07
Opened for editing 2013-07-08 5:07:20 AM QOTHPRDOWN LANSAPCO07
Saved after editing 2013-07-05 3:40:52 PM QOTHPRDOWM LANSAPCOO7
Opened for editing 2013-07-05 3:38:35FM QOTHPRDOWN LANSAPCOO07
Saved after editing 2013-07-05 3:35:09 PM QOTHPRDOWN LANSAPCOO07
Saved after editing 2013-07-05 3:33:53PM QOTHPRDOWMN LANSAPCOO7
Opened for editing 2013-07-05 3:13:00 PM QOTHPRDOWN LANSAPCO07
| | Saved after editing 2013-07-05 3:12:36 FM QOTHPRDOWN LANSAPCOO07
Opened for editing 2013-07-05 2:53:15PM QOTHPRDOWN LANSAPCOO7
Changed (Details) 2013-07-05 2:52:32PM QOTHPRDOWMN LANSAPCOO7
Created as copy of EXAMP... 2013-07-05 2:52:17FPM QOTHPRDOWN LANSAPCO07

In addition, there is also a new Audit trail option appearing in the Navigator,
under Administration and Housekeeping, that permits interrogation and viewing
of the audit records across all definitions and types by various criteria:

........... & — {3 Refresh

Audit event | Timestamp | | Mame ! Description | Log | User name
= [{Today.

Archived versionres... 2013-08-22 1:16:00 PM

MY_SQLO1 Example of using the SQL_... QOTHPRDOWN |

Archived version res... 2013-08-22 1:15:54FM MY_SQLO1 Example of using the SQL_... QOTHPRDOWN 1

Changed (Details) 2013-08-22 1:15:39 FM MY_SQLO1 Example of using the 5QL_... QOTHPRDOWN L

Saved after editing 2013-08-22 1:15:25 FM MY_SQLO1 Example of using the QL _... QOTHPRDOWN
MY_SQLO1 Example of using the SQL_... QOTHPRDOWN

Opened for editing 2013-08-22 1:15:11PM
Changed (Attachme... :
Changed (Notes)

MY_SQLO1 Example of using the SQL_... QOTHPRDOWN
MY_SQLO1 Example of using the 5QL_... QOTHPRDOWN

Saved after editing t MY_SQLO1 Example of using the QL _... QOTHPRDOWN
Opened for editing 2013-08-22 1:13:51PM MY_SQLO1 Example of using the SQL_... QOTHPRDOWN
Created as copy of ... 2013-08-22 1:13:47 PM MY_SQLO1 Example of using the SQL_... QOTHPRDOWN
Export using exportl... 2013-08-22 12:36:10 FM DX_MASTER_EG Shipped examples 000000000000075 QOTHPRDOWN
Exported 2013-08-22 12:36:10 PM EXAMPLE_TP Example trading partner d... 000000000000075 QOTHPRDOWN
Exported 2013-08-22 12:36:09 PM EXAMPLE_SMS Example SMS configuration 000000000000075 QOTHPRDOWN B

Events

LANSA Composer's Event Maintenance now permits you to add multiple event
notifications for a single event. For example, one event may now both send an
email and send a message to an IBM i message queue.

ﬁ Event maintenance : Detail: [EXAMPLE_EVEMTO1-Example uzer-defined event]

Details | B Cross references ,{f Attachments | [INotes | {-) Audit

Name EXAMPLE_EVENTO1 M eave
Description Example user-defined event
p p @ Refresh
Status Active > =
&3 Test...
Click an event notification to show its details below. Use the buttons to add, remove and arrange the notifications for this Add...

event,

: Remove
¥ 5end an email e

J|5end a message to an IBM i message queue FPARERCTD
W | Run a spedified processing sequence sl

W Execute a spedified function Move down

In addition, an event can now use any one or more of the following notification
methods to provide the notification of the event:

e Send an email
Send an SMS

Send a message to an IBM i message queue (IBM i servers only)

Run a specified processing sequence

Execute a specified function

(Previously one and only one of email and SMS options could be chosen.)
You can specify more than one instance of each notification method if you wish.
Further enhancements to the event support include:

e You can now specify a list of email addresses for any of the TO, CC or BCC
addresses for an email notification.

e A new Test button in the Event Maintenance window now permits you to
quickly test the notifications for your event without having to contrive to run
a failing processing sequence to do so.

its:LANSA091.CHM::/lansa/IntEngC6_0025.htm
its:LANSA091.CHM::/lansa/IntEngC6_0025.htm

Parameter Classes
This version of LANSA Composer implements support for parameter classes for
activity, transformation map and processing sequence parameters.

Each parameter can have a class associated with it that can specify what type of
information is specified by the parameter. The available parameter classes
include:

e File path
Folder path

Trading partner

Transformation map

Processing sequence

Event handler
e Configurations of all types

If none of the above classes apply, then a default class of General is used.

For the most part, you need not be greatly concerned with the parameter classes,
because:

e For supplied Activities, the parameter classes are shipped already set
appropriately;

e For Transformation Maps, the parameter classes are inferred from the map
definition during the Prepare step.

(However, you may wish to set parameter classes appropriately, where
applicable, for your own Processing Sequences or for your own custom
Activities.)

The important point to note is that this enhancement brings to LANSA
Composer several important benefits:

e The use of parameter classes has facilitated more thorough and complete
Cross References in LANSA Composer, most notably for configurations.

e The use of parameter classes provides in-place prompting for file and folder
paths, configurations and other items, either when editing a Processing
Sequence, or when you run an Activity or Processing Sequence through the
LANSA Composer client software user-interface.

Conversely, you should also note:

e The parameter classes are (deliberately) not used for validation of parameter
values. They do not restrict the values that can be entered for a parameter.
(So you can still, for example, enter the name of an FTP configuration that
you have yet to create.)

e The parameter classes do not impose any additional processing sequence
run-time overhead.

To illustrate, the following partial screenshot from the Processing Sequence
Editor shows the parameters for the FTP_INBOUND activity in the detailer.
You can see:

e The parameter class for each FTP_INBOUND activity parameter is shown in
the column on the right.

¢ A button for in-place parameter value prompting is visible in the currently
active parameter, FTPCONFIG. When clicked, the button will allow the
user to choose from a list of existing FTP inbound configurations.

=8 Activity 9
Name: FTP_INBOUMD - FTP Get files from remote host S
= //‘- * tl
Dietails | Parameters
! | Wariable or value for parameter EFfararnet_e_r_ name -F'a_r_ameter description i :_F_'a_ram_eter class |
-1 || *| Inbound |'TC_FTPIN' ... |FTPCONFIG FTP Configuration ID FTP inbound config| |
2| Inbound |&REMOTE_DIR REMOTEDIRECTCR' | Override Remote Directory to GET file fro| General |
3 Inbound |&TC_DATA OUT LOCALDIRECTORY |Override Local Directory into which file pli| Folder path E |
4 Inbound GETLIKE Override 'GET selection’ for filename masl | General
5| | Outbound FILELIST List of file retrieved - file name General
& Cutbound FILEPATH List of file retrieved - full path & name File path x

LANSA Composer Client User-interface Enhancements

This version of LANSA Composer offers easier, faster and more flexible
location and selection of the definitions in LANSA Composer that you wish to
work with. At the same time, it can free up space in the LANSA Composer
window by allowing you to hide the instance lists when not in use.

To accomplish this, the Filters and Instance lists used in previous versions have
been replaced with unified Instance lists that integrate the filter/find features
within them. This provides a more effective user-interface that is:

More visually effective and appealing;
Provides quicker access to search and locate items;
Provides a greater range of means and search criteria to locate items;

Integrates recently-visited, recently-modified and user-defined working
lists;

Implements much faster searches;

Supports copy, delete and print on multiple selections;

Capable of being "unpinned" and scrolled out of the way when not in use
to provide more useable screen area for command handlers. In this
unpinned state, the Instance list can slide back into view on demand, at the
click of a button or with a single shortcut keystroke.

E Recent | waorking lists | All processing sequences

& Name | Description | Last changed | User :A
et = Recently visited (Jocal) (3
4k } EXAMPLE AATEST1 Check LANSA Composer installation 2012-09-17 XF4.. | |
4 Fg EXAMPLE_AATEST2 Check LAMNSA Integrator functionality 2012-09-17 XF4...

Cj fg EXAMPLE_ACTPARM Shows ways to provide activity parameter values 2012-05-17 XF4...

fﬂ. EXAMPLE_CSvVO1 Example of processing CSV 2012-09-17 XF4...
m EXAMPLE_LOGO1 Logging Example 2012-09-17 *F4...
1 EXAMPLE_LOOPO1 Example of processing multiple documents, 2012-09-17 XF4... T

For more information, refer to Locating and selecting items in the Instance

Lists.

its:LANSA091.CHM::/lansa/IntEngC1_0110.htm
its:LANSA091.CHM::/lansa/IntEngC1_0230.htm

Transformation Maps

There are several enhancements to the Transformation Map support in this
version of LANSA Composer:

Parameter Classes are automatically inferred for a Transformation Map
during the Prepare step.

LANSA Composer creates better human-readable Transformation Map
parameter descriptions during the Prepare step.

LANSA Composer is fully compatible with the latest (at time of release)
MapForce versions, especially for "catalogued" map information.

Transformation Map Prepare provides better diagnostic information,
including date/time in the Prepare log, logging the server JSM instance path,
and access to the IBM i server joblog when run against LANSA Composer
server running on IBM i.

In addition, if you update to the latest version of the mapping tool (Altova
MapForce version 2014 release 2), the following new capabilities will be
available (relative to MapForce version 2012SP1):

User-defined component names;

Extended SQL-Where functionality: ORDER_BY;

MapForce supports logical files of the IBM i database and shows them as
views;

Support for SELECT statements with parameters

Timeout settings for web service function calls and database execution
Support for XML wildcards (xs:any and xs:anyAttribute)

Support for comments and processing instructions in output XML
Support for CDATA generation in XML files

User-defined end-of-line settings for output files (*)

Greater control over the output of quote marks surrounding values in CSV
files

New function to calculate age based on a birthdate

New functions for processing and generating sequences

A new option for keeping useful connections after deleting a component
Automatic highlighting of mandatory items in target components
Improved mapping validation and editing help

its:LANSA091.CHM::/lansa/INTENGC2_0195.htm

e Support for Informix 11.7 databases and extended support for other
databases;

(*) Refer to Changed behaviour for text output files in MapForce 2013 Release
2 on IBM i servers for important information on the impact of this change on
existing maps for LANSA Composer running on IBM i servers.

http://www.lansa.com.au/support/notes/p0428.htm

Transaction Document Support

LANSA Composer's supplied Transaction Document Processing Framework has
been extended to better cover the inbound and outbound transport operations:

e For inbound transport, the supplied "model" processing sequences (*) have
been extended to include a call to a new TXDOC_RCYV processing sequence
for receiving transaction document files. That processing sequence, in turn,
is set up to delegate to a processing sequence (modeled as
TXDOC_RCV_TP) that is specific to the Trading Partner.

e For outbound transport, the supplied "model" processing sequences (*) have
been extended to include a call to a new TXDOC_SEND processing
sequence for sending transaction document files. That processing sequence,
in turn, is set up to delegate to a processing sequence (modeled as
TXDOC_SEND_TP) that is specific to the Trading Partner.

e Trading partner support has been extended to permit the trading partner
specific receive and send processing sequences to be specified individually
for each trading partner and new trading partner built-in variables are
provided for accessing these values.

Receive processing sequence TXDOC_RCV_TP

Send processing sequence TXDOC_SEND_TP

Together, these changes make the Transaction Document Processing
Framework, as supplied, a better fit for accommodating the varied transports
associated with a range of trading partners, and should reduce the need to
modify the framework solution for this purpose.

(*) The changes are to the supplied processing sequences. Existing
implementations will most usually have copied the supplied processing
sequences and modified them to suit the specific implementation. In this case,
the existing implementation may need to be revised to take advantage of this
new support.

Other changes related to transaction document support include:

e The LANSA Composer Document Manager provides a Resend button for a
completed outbound transaction document envelope. When clicked, the
completed transaction document file will be sent again to the trading partner
by means of executing a Processing Sequence identified by a new system
setting. By default, the supplied TXDOC_SEND processing sequence is

its:LANSA091.CHM::/lansa/IntEngC3b_0015.htm
its:LANSA091.CHM::/lansa/INTENGC2_0025.htm

used, which in turn delegates to the processing sequence specified for the
Trading Partner, if any.

New *txdoc.* built-in variables provide access to transaction document
envelope attributes in a Processing Sequence.

A new application program interface (API) to replicate the functionality of
TXDOC_REGISTER and TXDOC_STATUS customer application code.

System Settings

Modifications to System Settings include:
e The Server network path system setting has been renamed to Home path.

e A new value introduced for Home path relative to server provides reliable
path conversion where necessary between client-relative and server-relative
forms.

Default value (for all dients): |
YWalansa01Yifs\LANSA_Composer_licpgmlibYic Browse

| Reset Value
|

| Override value for this dient installation:
| \\glansaD 1¥fs\LANSA_Composer_licpgmiiblic i)

| Home path relative to server:

JLANSA_Composer_licpgmlib,flic Browse

In addition, LANSA Composer now provides an option to print the current
system settings. You may be asked to do this in the context of a support call, for
example.

System Settings now provides a new System information tab that provides
information about the LANSA run-time environment in which LANSA
Composer is running on your LANSA Composer server, including LANSA
listener and JSM port numbers.

Details | (1) System information
E
Listener port: 05592
Web instance port: 05533
LANSA Integrator (15M) port: 05534

LANSA Integrator (15M) admin port: 05535

its:LANSA091.CHM::/lansa/IntEngC6_0015.htm

Database Housekeeping

Changes to Database Housekeeping facilitate the integration of this task into
your scheduled operations, extend the housekeeping task with new sub-tasks,
and reduce the time taken for the typical housekeeping task to complete:

e A command line interface is now provided for invoking the database
housekeeping task on Windows servers. (Equivalent functionality was
already available for IBM i servers via the COMPOSER command.)

e A new Save button in the user interface permits the housekeeping options to
be saved without having to submit the task. These two changes facilitate the
integration of this task into your scheduled operations.

e The database housekeeping task now optionally includes purging database
records associated with the new Audit Trail.

e The database housekeeping task now optionally includes clearing the JSSM
trace and temporary files. These are temporary files that may have been
created by the LANSA Integrator JSM (Java Service Manager) in the course
of normal operations.

e LANSA Composer now provides persistent and more detailed and
informative logging for database housekeeping tasks. The logs for each
database housekeeping task are retained in the LANSA Composer database
and can be retrieved and viewed at any time through the LANSA Composer
client software by clicking the History tab.

"‘ Database housekeeping : History

=7 Submit | L1l History

Run number i Start datetime ' End date / time | Status % Refresh
T2/ 000000000000038 2013-08-06 5:00:48 AM 2013-08-06 S:02:50 AM &4 OK

127 000000000000037 2013-08-06 7:59:24 AM 2013-08-06 7:55:49 AM &) OK Sk Viewss
12/ 000000000000036 2013-08-06 7:56:50 AM 2013-08-06 7:57:25 AM &3 oK :

7 0000000000035 2013-08-06 7:5413 AM 2013-08-06 7:54:58 AM i OK 5 Printis
2] 000000000000034 2013-08-05 3:23:35PM 2013-08-05 3:24:43 PM &30 OK j

e The database reconcile and reorganize tasks have now been separated in the
user interface such that each can be individually selected.

e The database reconcile task is unselected by default. In normal operations,
this step should not be necessary and excluding it will significantly reduce
the time to complete the database housekeeping job.

its:LANSA091.CHM::/lansa/IntEngC6_0030.htm
its:LANSA091.CHM::/lansa/Intengc9_0485.htm
its:LANSA091.CHM::/lansa/Intengc9_0480.htm

'g Databaze housekeeping : Submit

[T Submit | Eﬂ Histary

Do you wish to purge the logs?

Last purged date and time

Mumber of days for which you wish to retain records
Do you want to keep entries with error status?

Do you wish to retain entries with warning status?

Do you wish to purge the version history?
Last purged date and time
Number of days for which you wish to retain records

Do you wish to purge the transaction document register?
Last purged date and time

Mumber of days for which you wish to retain records

Do you wish to purge the audit records?
Last purged date and time

Mumber of days for which you wish to retain records

Do you wish to clear the 15M trace and temporary files?

Last purged date and time

Do you wish to reorganize the database tables?

Last recrganised date and time

Do you wish to reconcile the database ?

Last recondled date and time

2013-08-06 5:00:48 AM

180

Mo x
Mo x
W

2013-08-06 8:00:48 AM

180

W

2013-08-06 8:00:48 AM

130

W

2013-08-06 8:00:49 AM

130

W

2013-08-06 8:02:48 AM

W

2013-08-06 8:02:48 AM

2013-08-06 7:56:58 AM

MNB: This can be a very time-consuming step that is not necessary in normal drocumstances

Browsers for Server Files and Folders

The LANSA Composer client application now allows for much easier and more
reliable selection or specification of server-side file and folder selections. This
is achieved by implementing new browser windows that permit the user to
browse the server file system directly.

Browse For Server File L)
”Ll Mame ! Date modified I Tupe ! Sizeé
T @ [LEMSA Composer.. | Acktt 200007-051:40:49AM Test Document TKB |
@[3 LA Lot SKELu 100705 TDSAM TedDocumen 113
o N -07-05 1:40: ext Documen
= ﬁﬁgi—gg:ﬁﬁig: TUTorder ctd 20100705 1-41:07 A Document Type . 1KB
o = TUT arder. xml 2 0-07-051:37:37 &k =ML Document 1KB
& [LANSA_Composer... TUTORIAL mdb 200901-08 5:47:29 M Microsoft Office .. 128 KB
=3 LaMSa_Composer..
@ [LAMSA_Composer. ||
= 7 LANSA Compozer...
B {2 lc
@ [BPI_WEBI..
& | Examplaz
@ [HTTPIM
[E3] | mports
F [Map
@ [TC_DATA ..
@ [TC_DATA ..
®m [TP
A Tutorial
B T wehserver '-—
File ranme TUTorder.xml | Ok J Cancel

The new browsers are used in a number of places in LANSA Composer,
including:

¢ In the Server Initialization wizard and in System Settings;

¢ In various configurations to select server-side folder and file locations;

¢ To provide browsing support in connection with new Activity,
Transformation Map and Processing Sequence Parameter Classes support
where the File path or Folder path parameter classes are used.

Other New and Enhanced Features

Amongst other revisions in this version of LANSA Composer are:

The FTP configurations user interface has been reorganized for better clarity
and simplicity.

The FTP configurations and activities now support connection timeout and
response timeout values, specified in milliseconds.

HTTP Outbound configurations support a range of new values for the
Content Type that applies to the file being sent by the HTTP_POST activity.
The new values include the special value Automatic that specifies that the
activity should determine an appropriate content type according to the file
extension of the file being sent. Automatic is now the default value for new
HTTP configurations.

The HTTP_GET and HTTP_POST activities will now retrieve the response
content file, if requested, even when an error status is returned by the remote
HTTP server. This enables the solution to receive and examine the response
content to determine the details of the error, if applicable.

A new Test button in Database Configurations provides a means to test the
database configuration using the currently entered database configuration
values (not necessarily saved values) - in a similar fashion to that already
provided for FTP and some other configuration types.

The Processing Sequence Editor now supports drag-and-drop re-ordering of
the processing sequence items.

The Processing Sequence Editor previously had an option to show tree lines
that more clearly show the relationship between processing sequence items.
This option is now on by default, and the tree lines are also available in the
Processing Sequence Log window and in printing support for both the
Processing Sequence and the Processing Sequence Log.

Improvements to processing sequence run-time performance have been
achieved by eliminating, reducing or deferring some types of database
operations and by other processing changes.

Several groups of new built-in variables provide access to:

- pending controlled end request (*SHUTDOWN)
- transaction document envelope attributes;
- trading partner send and receive processing sequences;

- lists of trading partners by trading partner groups;
- timezone description and UTC offset values.

LANSA Composer now provides a web service (SOAP) interface for
running Processing Sequences.

When connected to an IBM i server, the LANSA Composer client now
provides direct access to the IBM i joblog for the associated LANSA server
job from the client user interface in several places, including from the Tools
menu, from the Transformation Maps Prepare Log window and from the
Processing Sequence Log display (when shown in connection with
processing sequence runs initiated through the LANSA Composer client).

On IBM i servers, the COMPOSER REQUEST(ABOUT) command will
now list the LANSA listener, HTTP listener and JSM port numbers in use.

1. Introducing LANSA Composer

1.1 What Is LANSA Composer?
1.2 Functional Components
1.3 Getting Started With LANSA Composer

1.1 What Is LANSA Composer?

LANSA Composer is a design and execution platform for integrating business
activities involving transport and transformation of data along with custom
business processing. It satisfies these three key requirements of a business
process integration (BPI) solution:

Transport

LANSA Composer provides ready-to-use Activities supporting widely-used
transport protocols including:

e FTP Inbound (file transfer protocol)

e FTP Outbound (file transfer protocol)

e HTTP Inbound (hypertext transfer protocol)

e HTTP Outbound (hypertext transfer protocol)

e POP3 for inbound e-mail (post office protocol)

e SMTP for outbound e-mail (simple mail transfer protocol)

¢ Inbound and outbound via message brokering systems such as IBM MQ
Series

To use these transport Activities with LANSA Composer, you simply need to
provide configurations that specify the variable information required to connect
or communicate with the other parties involved. There is no programming
involved.

Using the supplied transport Activities, you can exchange business information
such as orders and invoices with other parties, including external trading
partners and internal business units, using agreed standards-based protocols as
appropriate for each party.

Transformation

LANSA Composer includes powerful visual mapping that allows you to define
how to map data between disparate formats including:

e XML documents
e EDI documents
e Microsoft Excel 2010 (XLSX) files

o Text files (for example comma-separated values)

e Web service functions

¢ A wide range of databases, including IBM DB2 Universal Database for
IBM i.

The maps created with the visual mapping tool can be directly integrated into
your business processes along with transport and other Activities.

With the transformation capabilities you can transform business information
between external and internal formats as it is received or before it is sent. In this
way you can readily extract information from corporate databases to send as,
say, XML conforming to a schema agreed with your trading partner. Similarly
you can transform in-coming XML documents and write them directly to your
corporate database for further processing by your existing applications.

Process Orchestration

LANSA Composer provides a simple but powerful process orchestration
capability that allows you to combine transport, transformation and custom
business processing with processing Directives that provide conditional,
iterative and other capabilities. A complete business process consisting of a
number of steps may be defined, executed and managed as a single processing
unit of work, without programming.

Also see

1.1.1 Extensible And Customizable

1.1.2 Who Can Use LANSA Composer?

1.1.3 What Can I Do With LANSA Composer?

1.1.4 Transaction Document Processing with LANSA Composer
1.1.5 How Is LANSA Composer different to LANSA Integrator?

1.1.1 Extensible And Customizable

LANSA Composer can be extended and customized to accommodate
organization-specific requirements. A simple interface is provided to enable you
to "wrap" your specific business logic as Activities that may then be combined

with transport and transformation provided by Composer into a single business
process.

1.1.2 Who Can Use LANSA Composer?

LANSA Composer is designed to be used by business analysts to design and
implement solutions to integration problems. It is not necessary to write
program code to use Composer in solutions that involve standard transport and
transformation activities. The implementation of the transport and
transformation activities and the orchestration of them in business processes is
all accomplished using highly-visual graphical interfaces.

LANSA Composer can, however, be extended to encompass custom business
processing. Doing so will require Activity processes to be written to encapsulate
the custom processing. Once these are defined in Composer as Activities, they
are orchestrated in the same way as supplied transport activities and
transformations.

So, LANSA Composer lends itself well to an environment in which the
implementation of the custom business processing can be delegated to a services
development group, while the combination and orchestration of the Activities is
performed by business analysts.

1.1.3 What Can I Do With LANSA Composer?

LANSA Composer enables you to:

e Exchange business information and transactions in common and agreed
formats with trading partners, internal business units and/or other business
applications on the same or different computing platforms.

e Transform business information between XML, EDI, Microsoft Excel 2007
(XSLX), text and database formats, including the capability to invoke web
services, whether they be publicly available, published by trading partners or
within your organization for internal consumption

e Orchestrate the transport, transformation and other activities, pass variable
data between them and apply conditional and structural Directives to create
multi-step business processes that can be executed and managed as a single
unit

These things can be entirely accomplished in a graphical, drag-and-drop

environment by business analysts without having to write program code.

A Simple Example

Consider the simple stereotypical scenario illustrated in the diagram:

<order>

<forder>

<order>

TR 11

Received

orders

In this scenario, your organization is required to periodically retrieve orders in
an agreed XML format from your trading partner using file transfer protocol
(FTP). More than one order document may be retrieved. Your application must
process each order document to transform it from the XML format to your in-
house received orders database.

Such a scenario might be very easily implemented in LANSA Composer in
three steps:

1.Create an FTP configuration that specifies the addressing details and
security credentials necessary to communicate with the trading partner via
FTP.

2.Create a Transformation Map that specifies how to map from the orders in
XML format to the internal database.

3.Create a Processing Sequence that combines the supplied FTP_INBOUND
Activity with a loop that executes the Transformation Map for each
received order document.

In LANSA Composer, the finished Processing Sequence for this simple scenario
might look like this:

...... *= Beginning of processing sequence

EI@ Activity
M ame: FTP_IMBEOUMD - FTF Get files fram remate biost
=€ Loop
List: FILERATH
Loop wariable: THISFILE
=-/&5 Transform
M ame: DEM_ORDER_DBZ - Order.xml to DB2

..... ** End of proceszing sequence ***

This Processing Sequence may then be invoked from your own applications or
scheduled to run periodically through your job scheduler of choice as described
in Run a Processing Sequence.

Extend The Example Scenario

You can take and extend this scenario in many ways and still accomplish the
result using LANSA Composer:

e Add custom business processing to validate and accept the incoming orders

¢ Generate acknowledgement documents in an agreed XML format and FTP
them to the trading partner

e Implement similar processes for other types of business information such as
inventory and price enquiries, purchasing, invoicing and more

e Use other transport protocols such as HTTP, IBM MQ Series or e-mail or
implement different FTP configurations for different trading partners

e Design business processes that perform such processing repetitively for a
range of trading partners

its:LANSA091.CHM::/lansa/intengc3_0035.htm

1.1.4 Transaction Document Processing with LANSA Composer

LANSA Composer's transport, transformation and process orchestration features
provide an infinitely flexible and adaptable framework that can be used to solve
almost any type of business process integration challenge.

However, many typical business process integration requirements follow a
similar and familiar pattern involving the exchange of transaction documents,
usually in standard forms such as XML or EDI, with known Trading Partners
and transformations between those transaction document formats and an internal
application database.

Because this pattern is so typical, LANSA Composer provides a ready-made
framework solution that you can easily adapt and extend to encompass the
exchanges and document types that are specific to your organization. As a part
of this framework solution, LANSA Composer provides a transaction document
registration database and the LANSA Composer Document Manager application
that can be used to monitor and manage your inbound and outbound document
flows.

LANSA Composer's transaction document processing framework and the
LANSA Composer Document Manager can support virtually any type of
transaction document exchange. However, particular support is provided for
EDI X12 and EDIFACT transaction document formats.

1.1.5 How Is LANSA Composer different to LANSA Integrator?

LANSA Integrator is a developer toolkit that enables integration of application-
to-application (A2A) and business-to-business (B2B) transactions through XML
and Java services. Most uses of LANSA Integrator require a developer to write
program code to access the integration services.

LANSA Composer uses LANSA Integrator services.

While performing very similar processes, LANSA Composer is designed for use
by business analysts without the need to employ programming skills. A business
analyst, with no programming skills, can compose business processes consisting
of combinations of standard transport, transformations and other activities.

Many of the supplied Activities (including supplied transport activities) and the
run-time execution of Transformation Maps make use of LANSA Integrator
services but, using Composer, no program code is required to take advantage of
them.

LANSA Integrator is designed to handle high-volume, high-throughput
scenarios, so a custom application using LANSA Integrator services may offer
the best performance characteristics for that type of application.

1.2 Functional Components

The major functional components of LANSA Composer correspond to the key
integration requirements of transport, transformation and orchestration. They
are:

1.2.1 Activities
1.2.2 Transformation Maps
1.2.3 Processing Sequences

Other components of LANSA Composer support and extend these to provide
greater implementation flexibility:

1.2.4 Configurations
1.2.5 Trading Partners

1.2.1 Activities

Activities, along with Transformation Maps, implement specific business
functions that are executed by LANSA Composer Processing Sequences.
Examples of Activities include:

e Performing a file transfer via FTP (file transfer protocol)
e Zipping a file or folder
e Deleting a file

LANSA Composer is supplied with a set of Activities that provide transport, file
management and zip/unzip capabilities. Refer to Supplied Activities for a
complete list and description of the supplied Activities.

You can use LANSA Composer straight away with the supplied Activities. If
required, you can extend LANSA Composer with custom Activities of your
oWn.

its:LANSA091.CHM::/lansa/intengc2_0085.htm

1.2.2 Transformation Maps

Transformation maps define how to transform or map data between disparate
formats including XML, EDI, Microsoft Excel 2010 (XSLX), text files, web
service functions and database tables.

Typically most of your structured corporate data is held in database tables, while
information is exchanged with external parties in open formats such as XML
documents. Commonly you will have the need to transform data between your
internal database table representation and external exchange formats such as
XML that you agree with your trading partners. Examples of transformation
requirements include:

e Receiving incoming sales orders in agreed XML format and mapping to
the received orders database

e Generating invoices in agreed XML format directly from your accounts
receivable database tables

e Transferring information between internal applications (perhaps from
different vendors) that are not directly integrated.

Transformation Maps created using LANSA Composer can be directly
integrated into your business processes along with transport and other
Activities.

1.2.3 Processing Sequences

Processing sequences allow you to combine Activities and transformations with
processing directives such as loops and conditions to complete a business
process. Combining these elements with variable transport and database
configurations and trading partner information permits great flexibility to
accomplish complex multi-step processing without programming.

Processing sequences are defined visually in LANSA Composer using the
Processing Sequence Editor. A typical Processing Sequence might be visualized
in the editor like this:

PRy

...... ** Beginning of processing sequence

EI& Activity
M ame: FTP_IMBEOUMD - FTF Get files fram remate biost
EI& Activity
M ame: DEMO_BATCHMUM - Generate batch number
=& Loop
List: FILERATH
Loop wariable: THISFILE
=-/&5 Transform
M ame: DEM_ORDER_DBZ - Order.xml to DB2
EI@ Activity
M ame: DEM_ORDER_RCY - Process received orders
=) IF
Condition: BACKMOWLEDGEMEMTS = YES!
=-l&5 Transform
M ame: DEM_DBZ_ACK - DBZ to ack.=ml
El& Activity
M ame: FTP_OUTBOUMD - FTP Put filez on remote hogt

..... ** End of proceszing sequence

Refer to Processing Sequences for further information.

its:LANSA091.CHM::/lansa/intengc3_0010.htm

1.2.4 Configurations

Configurations encapsulate the variable information required for common
transport Activities and for database connections. Typically configurations
encapsulate information such as:

e Source and target identification and addressing and

e Security credentials

By encapsulating the implementation-specific information in configurations,
LANSA Composer allows a single Activity and often a single Processing
Sequence to be used with multiple variations of a business process (such as for
multiple trading partners).

Specific configuration types support the supplied transport activities. They are:

FTP Configurations

HTTP Configurations

SMTP Server Configurations
SMTP Mail Details

POP3 Configurations

SMS Configurations

Messaging Configurations

In addition, the special type of Database Configuration is provided to support
encapsulating database details for databases used with Transformation Maps.

1.2.5 Trading Partners

Trading partners are an optional feature of LANSA Composer that can be used
to link variable information such as folders, configurations and Transformation
Maps with specific trading partners.

Trading partners are particularly useful for:

e Organizing files into directories (typically for inbound and outbound
transport),

e Sharing common activities and Processing Sequences with different source
and target locations by using variable inputs associated with the trading
partner

e Performing iterative processing for multiple trading partners

1.3 Getting Started With LANSA Composer

System Requirements
Refer to LANSA Composer Requirements.

Installation
Installation instructions are in Install LANSA Composer.

As part of the install process, you need to set your required paths, defaults and
codes as described in Administration and Housekeeping.

Once you have LANSA Composer installed and configured, you are ready to
1.3.1 Start LANSA Composer.

its:LANSA091.CHM::/lansa/intengc9_0020.htm
its:LANSA091.CHM::/lansa/intengc9_0010.htm
its:LANSA091.CHM::/lansa/intengc6_0010.htm

1.3.1 Start LANSA Composer

To start the LANSA Composer design environment, select the LANSA
Composer shortcut that was installed on your start menu. LANSA Composer
displays the Connect to LANSA Composer server window.

=] Connect to LANSA Composer server
Connect

Cancel

Weork Offline

Type the user name and password to connect to your LANSA Composer Server,

Uzer LICPGMLIE

3
Fazzword ==

|Jze wWindows credentials

»

Type or select the LANSA Composer server to which you wish to connect.

Server connection name COMPOSERD -
Partition LIC

Click to specify connection attributes for your LANSA Composer server,

<«

Usually you simply need to type your User name and Password, type or select
the server with which you want to work (if more than one server is available to
you) and click the Connect button. In some cases, you may need to enter
additional connection attributes the first time you connect to your LANSA
Composer server. Refer to Connect to LANSA Composer Server for more
information about this window.

If you are the first client to connect to your LANSA Composer server, you will
see the LANSA Composer Server Initialization window. Refer to Step 1.
LANSA Composer Server Initialisation for information if required.

Once you have successfully connected, the LANSA Composer Start Here
window is displayed.

its:LANSA091.CHM::/lansa/intengc9_0120.htm

|/ LANSA Composer
Fle Edt Miew Go Tools Help
Q Start Here | = New |f|] Copy =% Delete | <3 Print | |:| Details [5%] Motes

LANSA Composer

= E LANSA Composer =| LANSA Composer : Start Here

= (5 Operations
I;i Console
E Java Service Manager cone
'f? Run processing sequence s
= @ Definitions
B Activities
‘h Trading partners
ﬁ Transformation maps
ﬁ Processing sequences
= @ Configurations
FTF configurations
HTTP configurations
SMTP server configuration:
.| SMTP mail detais
ﬁ POP 3 mail configurations
[5Ms configurations
% Messaging configurations
Databasze configurations
&8 LANSA system configuratio

P et

The Getting Started window provides quick access to some of the main areas of
the LANSA Composer design environment, and, in particular, to those areas that
you may wish to access as you are getting started with the software.

Connect to LANSA Composer Server

The Connect to LANSA Composer server window lets you specify all the
information necessary to make a connection to your LANSA Composer server.
In many cases you need enter only your password and click Connect. However
the first time you connect to your LANSA Composer server, you may need to
enter additional information in order to complete the connection successfully.

The Connect to LANSA Composer server window is divided into three sections.
The LANSA Composer server and Server connection attributes sections may be
collapsed and hidden when not in use or expanded when required by clicking
the up or down arrow buttons. LANSA Composer will remember the state of
the window and the values used when you last connected (except the password)
and present the window the same way the next time you start LANSA
Composer.

Refer to the following headings for more information:
Type the User name and Password
Type or Select the LANSA Composer server
Specify Connection Attributes
Specify Windows Server Database Connection Attributes

Define Additional Servers Using the LANSA Communications
Administrator

In the event of difficulties or errors completing the connection to your LANSA
Composer server, please refer to the following:

Troubleshooting Connection Errors

Type the User name and Password

In the User and Password fields, you should type the user name and password
assigned to you for connecting to your LANSA Composer server.

Alternatively, you can check the box labeled Use Windows credentials to use a
Windows user profile and password when connecting to the LANSA Composer
server. The server must have been configured for Single Sign On and the user
enrolled first.

Type the user name and password to connect to your LANSA Composer server,

Iser LICPGMLIE
Fazzword |

|Jze wWindows credentials

If you connect to more than one LANSA Composer server, you may need to use
a different user name and/or password for each server.

When connecting to a new default installation of LANSA Composer server on
IBM i, you can usually use the following credentials:

User LICPGMLIB (the default user name is the same as the <program-

library> name in which LANSA Composer server was installed on
IBM i)

Password Lansa

Note: If you wish to create and use your own user profiles to connect
to your IBM i server, refer to Creating Further User Profiles for Use
with LANSA Composer.

When connecting to a new default installation of LANSA Composer server on
Windows, you can usually use the User Id (and its password) that you entered in
the User Id for Visual LANSA for Web Configuration during the LANSA
Composer Server forWindows installation. For example:

User PCXUSER
Password PCXUSER
Note: You may need to grant permissions to the database for the user

in the database management system (for example, MS SQL Server) on
the Windows server computer. This applies particularly if the

database connection is using trusted connections and you are not
separately specifying a database user and password in the Server
exceptional arguments entry box.

Type or Select the LANSA Composer server

If the Server connection name and Partition fields are not shown, expand the
dialog by clicking this line:

its:LANSA091.CHM::/lansa/intengc9_0715.htm

LANSA Composer server is COMPOSERO1. Click to spedfy a different server, 2

When you start LANSA Composer for the first time, the COMPOSERO1
connection entry is pre-selected for you to connect to the LANSA Composer
server system whose name and port number you specified during installation of
the LANSA Composer client.

Type or select the LAMSA Composer server to which you wish to connect. A
Server connection name COMPOSERDO >
Partition LIC

If LANSA Composer server is installed in a partition other than the one shown,
type the correct partition name. LANSA Composer initially shows the default
partition name, LIC.

If you wish to connect to a different LANSA Composer server system, do one of
the following:

e Select the desired Server connection name from the drop-down list (if you
have connected this LANSA Composer client to the desired server before)
and change the partition name if necessary

e Type the name of a different Server connection name that is defined in the
LANSA Communications Administrator and change the partition name if
necessary. If the connection is successful, the new Server connection name
will be added to the drop-down list the next time you start LANSA
Composer. (You can remove entries that you no longer use by clicking the
remove button in the Connection attributes section of the window.)

Refer to Define Additional Servers Using the LANSA Communications
Administrator for more information.

Specify Connection Attributes

If the Server connection attributes fields are not shown, expand the dialog by
clicking this line (you will need to expand the LANSA Composer server section
first if it is not already expanded):

Click to specfy connection attributes for your LANSA Composer server, N

The Server connection attributes section lets you specify values that affect how
LANSA Composer connects to the LANSA Composer server.

Specify connection attributes to connect to your LANSA Compaser server, "

Server type LAMNSA Composer server for IBM i -
Client-server translation table =108

Server-client translation table =108

Selection block size 500

Selection limit 10000

Server exceptional arguments

Open LANSA Communications Administrator g?

In most cases you will not need to change values of these fields. One notable
exception, however, is when connecting to a LANSA Composer server for
Windows, you may need to specify values in the Server exceptional arguments
field that identify the server database/DSN (and credentials if applicable) used
by the LANSA Composer server. These values depend on choices made when
LANSA Composer server is installed.

e Refer to LANSA documentation topic X_Run Parameter Summary for
complete information concerning all the possible keywords and arguments
values you can use in the Server exceptional arguments field.

e Refer to Specify Windows Server Database Connection Attributes below
for more information concerning the database connection keywords and
arguments you might need to specify to successfully connect to a LANSA
Composer server on Windows

¢ If in doubt, refer to your system administrator for the correct values to use
for your system.

Specify Windows Server Database Connection Attributes

NOTE: This section concerns connections to a LANSA Composer

server on Windows. If you are connecting to LANSA Composer
server on an IBM i server you do not need to read this section.

The following example shows default and typical values used in the Server
exceptional arguments field when connecting to a LANSA Composer Windows
server that uses an MS SQL Server database:

Specify connection attributes to connect to your LANSA Compaser server, "

Server type LANSA Composer server for Windows =
Selection block size 500
Selection limit 10000
Semver exceptional arguments DBID="SERYER DEBII="SERVER
Open LANSA Communications Administrator 3?

NOTE: In the above example no database user credentials were
supplied because the MS SQL Server database was configured to use
Windows authentication. Depending on your configuration, you may

need to specify DBUS= and PSWD= keywords and values in the
Server exceptional arguments string to provide database user
authentication credentials.

In many cases, the default values shown will be sufficient to successfully
connect to your LANSA Composer server database. However, in exceptional
cases, you may need to alter the Server exceptional arguments database values
to suit your particular server configuration.

The server exceptional arguments that most usually are used to connect to the
LANSA Composer server database are listed in the table. You should refer to
LANSA documentation topics X_Run Parameter Summary and DBID, DBUT,
DBII and DBIT Parameters for more complete information.

Keyword Description Examples

DBID= Specifies the database/DSN id of the = DBID=*SERVER
LANSA Composer database on the
Windows server. or

Usually you can use the special value = DBID=LCDBO01
*SERVER to specify that the

database/DSN name is specified the

x_lansa.pro file on the server, which

can be found in the

AX_WIN95\X _LANSA folder of the

Windows server application

installation.

DBII= Specifies the database/DSN id of the = DBII=*SERVER

DBUT=
DBIT=

DBUS=
PSWD=

LANSA Composer database containing

the LANSA internal/repository or
database tables. Normally, this should
be the same as the DBID= value. DBII=LCDBO01

(NOTE: LANSA Composer does use
certain LANSA internal tables for
messages, locking and other purposes.
Certain LANSA Composer operations
will not succeed if the DBII= value is
not specified correctly.)

These keywords may be provided to DBUT=SQLANYWHERE
specify the type of the database DBIT= SQLANYWHERE
specified by the DBID= and DBII=

keywords, respectively.

The default value is MSSQLS (for a
Microsoft SQL Server database). If
your LANSA Composer Windows
server database is of another type you
may specify:

ORACLE
SQLANYWHERE

These keywords may be provided to DBUS=DBA PSWD=SQL
specify the user name and password for
the database login.

If your MS SQL Server database is
configured to use integrated login, you
usually do not need to specify these
keywords (but instead, you must ensure
that the user is configured in the
database to enable the integrated login
to succeed).

In other cases, the DBUS= and/or

PSWD= keywords may already be
specified in the x_lansa.pro file on the
server, which can be found in the
AX_WIN95\X _LANSA folder of the
Windows server application
installation. If this is the case, you
usually do not need to specify them
again here.

What follows is additional information concerning the way in which the server
exceptional arguments affecting the database connection are used in LANSA
Composer:

e When the LANSA Composer client starts (and before it connects), the
DBID= value is initially *NONE and the other values have LANSA default
values (usually). This is appropriate for the execution of the client software,
but it usually means that the DBID= keyword must be explicitly specified (at
least as DBID=*SERVER) for the connection to the LANSA Composer
server.

Note that the DBID= keyword value may be affected by the contents of the
LANSA Composer's dxstart.cfg file, which can be found in the
AX_WIN95\X_LANSA\Execute folder of the client application installation.

(An exception to the preceding occurs for the default installation of the
offline client used as part of the LANSA Composer Windows server
installation - in this case, the dxstart.cfg file is usually pre-configured with
database values appropriate for direct access by the offline client.)

e For the server connection, LANSA Composer pre-fills the Server
exceptional arguments with the following defaults:

DBID=*SERVER DBII=*SERVER

In most cases this is appropriate and will cause the LANSA Composer server
connection to use values specified in the x_lansa.pro file on the server,

which can be found in the .\X_ WIN95\X LANSA folder of the Windows
server application installation.

e Depending on your specific configuration, the DBII= keyword and argument

value can be important for the successful operation of LANSA Composer
and should usually be specified in addition to DBID= (they should usually
have the same value).

LANSA Composer does use certain LANSA internal tables for messages,
locking and other purposes. Certain LANSA Composer operations will not
succeed if the DBII= value is not specified correctly.

e Depending on your specific configuration and choices, the contents of the
x_lansa.pro file on the server may be crucial to the success of the LANSA
Composer Windows server connection. If you use the special value
*SERVER for any of the keywords, or, in some cases, if you omit the
keywords, the applicable values will be retrieved from the x_Ilansa.pro file
on the server. The x_lansa.pro file can be found in the
AX_WIN95\X_LANSA folder of the Windows server application installation.

The following table shows example values for Server exceptional arguments
when connecting to the specified databases. You will need to alter these to suit
your database or DSN names, system configuration and environment. You
should refer to LANSA documentation of the X_RUN parameters for more
information.

MS SQL DBID=*SERVER DBII=*SERVER
Server
ORACLE DBID=LX_LANSA DBUT=0ODBCORACLE

DBUS=PCXUSER PSWD=PCXUSER

Sybase SQL DBID=LX_LANSA DBUT=SQLANYWHERE
Anywhere DBUS=PCXUSER PSWD=PCXUSER

Define Additional Servers Using the LANSA Communications
Administrator

If you have more than one installation of LANSA Composer server, you can
create new Server connection name entries in the LANSA Communications
Administrator for each server. Once each is defined in the LANSA
Communications Administrator, you can choose the server to connect to when
starting LANSA Composer as described in Type or Select the LANSA
Composer server.

To define additional servers using the LANSA Communications Administrator,

follow these steps:

1. Fully expand the Connect to LANSA Composer server window, if not already
expanded.

2. Click the Open LANSA Communications Administrator button.

3. In the LANSA Communications Administrator window, click New.

B Host Route Information EHE E|

[Usze generated LU Mame for TCP hosthame/port address pair.

Partrer LU Mame
[Mame of the Host ta which v'ou " ant to Connect]: |':D""'”:'E'5EHEI2

Fully Qualified Mame of the Host [Address]): |SEF|‘-.-’EF|E|2

Communications Method: |Sncket ﬂ

Options

Leave these fields blank to uze the defaults. ak.

Connection |dentifier: |4545|

Communications Module: | Canicel

Maxl_Field [Packet Size): |
Help

[v Enable TCP_NODELAY TCRAP socket option
[Enable IPvE

4. Complete the fields in the Host Route Information window as follows:

Partner Type a symbolic name that you wish to use as the new Server
LU Name connection name. For example, you might use COMPOSERO02
as the name for your second LANSA Composer server.

Fully. . Type the DNS name or the IP address of the server system
Qualified containing the required LANSA Composer server installation.

Name of por example, SERVERO2 or 192.168.192.2.
the Host

Connfe(.:tion Type the port number used for the LANSA listener in the
Identifier required LANSA Composer server installation. For example,
4545.

5. Click OK to save the new Host Route Information details and then close the
LANSA Communications Administrator window.

6. In the Connect to LANSA Composer server window, type the new Server
connection name using the name you specified in the Partner LU Name
above. Then type the partition name and any further server connection
attributes necessary to connect to that LANSA Composer server.

7. Type the User and Password that apply to the new Server connection name
and click Connect.

If the connection is successful, the new Server connection name will be
available in the drop-down list the next time you start LANSA Composer.

Troubleshooting Connection Errors
Common errors that may occur during the connection to the LANSA Composer
server are discussed under the following headings:

Could Not Logon to LANSA Composer server

Could Not Connect to LANSA Composer server

LANSA Composer Database Access Not Available

Possible LANSA Composer Server Configuration Problem

Could Not Logon to LANSA Composer server

When you attempt to connect to your LANSA Composer server, you may see a
message like this:

Connect to LANSA Composer server (eS|

Could not logon to LANSA Composer server COMPOSERDL with user
! %, PCXUSER.

The most commeon cause of this error is an incorrect user name or
password,

You should also check that the user profile is enabled and has
appropriate authorities,

(More information: communications error code & received.)

Usually this error simply means that the user name and password you typed at
the Connect to LANSA Composer server window are not correct for the server
system.

You should check the following:

e Did you type the user name correctly? Is the user name correct for the server
system? If necessary check with your system administrator.

e Did you type the password correctly? On some systems, the user name
and/or password are case-sensitive. If this is the case, check that you typed
the details in the correct case and that the Caps Lock is not on.

On some systems, especially on IBM i servers, the user may become disabled
for various reasons - including repeated failed logon attempts. Check on the
server system that this has not occurred for the user with which you are trying to

connect.

Could Not Connect to LANSA Composer server

When you attempt to connect to your LANSA Composer server, you may see a
message like this:

Connect to LANSA Composer server e B o]

! Could not connect to LANSA Composer server COMPOSERDT,

Common causes of thizs error include:

- the communications link to the server is not available;

- the listener is not started on the server system;

- the server name is not correct:

- the host route information for the server is specified incorrectly on
the client system (in the LANSA Communications Administrator),

(More information: communications errar code 20 received.)

g

If you have not connected using the specified details before, then you should
first check:

e that the Server connection name specified matches the Partner LU name of
an entry in the LANSA Communications Administrator.

¢ that the host route information specified in the LANSA Communications
Administrator is correct, especially the Fully qualified name of the host
(address) and the Connection identifier (port number).

Refer to Define Additional Servers Using the LANSA Communications
Administrator for more information.

If you are still having difficulties, check that:

e the communications link is operational (is your computer connected to the
network?)

e the LANSA listener for the LANSA Composer server system is active on the
Server.

For information on starting the LANSA listener for LANSA Composer on an
IBM i server, refer to:

Subsystems and Jobs

For information on starting the LANSA listener for LANSA Composer on a
Windows server, refer to:

its:LANSA091.CHM::/lansa/intengc9_0075.htm

Services used by the LANSA Composer Windows Server

LANSA Composer Database Access Not Available

When you attempt to connect to your LANSA Composer server, you may see a
message like this:

LAMSA Composer database access not available X]

_'“-.I Database access for LANSA Composer may not be correctly configured,

- LANSA Composer unsuccessfully atternpted a database read
operation.

Before attempting to restart LANSA Composer, please check:
- that the connection information used is correct

- that the database is configured to allow access with the credentials
used

This message means that the LANSA Composer client successfully established
the communications link to the LANSA Composer server but not the connection
to the LANSA Composer server database. You must correct the condition that
prevented the database connection in order to complete the connection to the
LANSA Composer server.

Some possible causes of this error may be:

e The credentials used to connect to the database are not correct. If you are
using an MS SQL Server database with integrated login configured and you
have not provided database credentials by means of the DBUS= and PSWD=
keywords of the Server exceptional arguments, then this may mean that the
user has not been configured in the MS SQL Server database to allow the
integrated login.

e The database connection has not been correctly specified in either the Server
exceptional arguments or the x_lansa.pro file on the server.

e The database is not presently accessible or the server-side service or process
that provides the database access has not been started.

For more information refer to the following topics:
Specify Connection Attributes
Specify Windows Server Database Connection Attributes

its:LANSA091.CHM::/lansa/intengc9_0575.htm

Possible LANSA Composer Server Configuration Problem

When you attempt to connect to your LANSA Composer server, you may see a
message like this:

Possible LANSA Composer Server Configuration Problem LX)

i '_".I LAMSA Composer may not be correctly configured for exchanging
BLOBE data with the LANSA Composer server,

One possible cause is that the LANSA Composer server is unable to
create folders or files in the designated server temporary file location,

You may need to:
- grant permissions to the server file location; OR
- add or medify LFTH= and/or TPTH= entries in the server's x_lansa.pro

configuration file to designate an alternate server temporary file
location to be used.

This message means that the LANSA Composer client successfully established
the communications link to the LANSA Composer server and was able to access
the LANSA Composer server database, but it could not exchange BLOB data
with the server or perform database operations involving BLOB data. You must
correct the condition that prevented the BLOB operation in order to complete
the connection to the LANSA Composer server.

(BLOBs are "binary large objects". LANSA Composer uses BLOB support to
save and access file attachments for LANSA Composer definitions of all types.
In particular, this support is also used to catalogue Transformation Map
definition (*.mfd) and implementation (*.jar) files when various operations are
performed on Transformation Maps.)

The most usual cause of this error is that the designated server temporary file
location used for sending and receiving the BLOB files is incorrect or the user
on the server does not have the necessary permissions. For example, in a
default configuration, the LANSA Composer server may be attempting to use
C:\Windows\Temp as the temporary file location for BLOB files, but if the user
on the server does not have the necessary permissions to create and/or read
folders and files in this location then the BLOB operations will fail. If this is
the issue, there are two suggested remedies:

e Grant the necessary permissions to the designated server temporary file

location used for sending and receiving the BLOB files; OR

e Designate an alternate server temporary file location (with the necessary
permissions) to be used for sending and receiving the BLOB files. One way
to do this is to add a line specifying the 'LPTH=' parameter to the
x_lansa.pro file in the LANSA Composer Server installation.

The x_lansa.pro file may be found in the x_win95\x_lansa directory of the
LANSA Composer Server installation — for example,

C:\Program Files\LANSA\LANSA Composer Server\x_win95\x_lansa. To
modify this file, open it in a plain text editor, such as notepad.exe.

In order to designate C:\Temp as the alternate server temporary file location,
you could add a line like this to the x_lansa.pro file, save your changes and then
stop and restart the LANSA Composer listener service.

LPTH=C:\Temp

1.3.2 Composer Quick Tour

LANSA Composer presents a consistent interface in which many of the main
user interface elements are common across most of the major functions of the
program. The following screen picture shows the LANSA Composer window
when Processing Sequences are selected in the Navigator.

LANSA Composer =8 5
File Edit View Go Tools Help
7F StartHere [New [Copy %€ Delete & print | Details [] Motes @ Audt | B Run %] Edit
- 3 ¥ Juiick: find processing sequences n
= & Operations
2 console i Recent | Working lists | All processing sequences
38 SENCE Mananer console Mame | Description | Last changed | User I
5.7 Run processing sequence shortcuts @ 51 Recently visited (ocal)
= g‘igﬁ:'h;rf: &) EXAMPLE_AATES.. Check LANSA Composerinstal. 2012-09-17 8:41:02PM QOTHPRDOWH %
g TE :' s = = il EXAMPLE_AATEST2 Check LANSA Integrator function... 2012-09-178:4L:02PM QOTHPRDOWN
g T’a '”é pa’t sy & i) EXAMPLE SQLO3 Evample of using the SOL_CALLQ... 2013-07-08 10:00:26 AM QOTHPROOWN
& P’E”S et i i ExampLE_SQLD2 Example of using the SQL_UPDAT... 2013-07-08 10:01:01AM QOTHPRDOWN
Y ﬁmcezs'ng S il EXAMPLE SQLO1 Example of using the SOL_QUERY... 2013-07-08 10:01:33AM QOTHPRDOWN
&l @?nﬁm ”;'5 . il EXAMPLE_XMLOL Example of using the XML_QUERY... 2012-11-20 10:17:19PM QOTHPRDOWN
RS i ExAMPLE_Ts01 Example data entry using aXes te... 2012-08-178:4L:05PM QOTHPRDOWN

-&Q HTTP configurations

& svre st i ExampLE_SwIT01 Terminate, loop and conditional e...
server configurations = R &

2012-08-178:41:04PM QOTHPRDOWN |~

| SMTP mail details
ﬁ POP3 mail configurations
@ SMS configurations
I?é Messaging configurations

." Processing sequence - Details [EXAMPLE_AATEST1-Check LANSA Composer installation]

el e neee. iRy Al G ma s

|[Z] Database configurations Name EXAMPLE_AATEST1 L Save
e @ LANSA system configurations Description Check LANSA Compaser installation
= [Transaction Documents & Refresh

& Document types Restartable Yes -

Document standards B run...
= Deployment Status Active -

1 Export lists

Export Event identifier

@ Import
= {‘ Administration and Housekeeping

{=) Audit trail 7

[2] system settings i

[} System properties | & \ Click Edit to edit your processing sequence, Edit...

[@] code maintenance 1;\:3 |

] Event maintenance it el

27 Database housekeeping |

Messages Ready LAMSAQLXF4 | ENG XF4HUGH u

Like most Windows applications, LANSA Composer offers menus and tool bar
buttons near the top of the window for quick access to functions of the program
or to perform common editing operations. At the bottom, there is a status bar
that displays messages and status information, including the connected state. In
the main body of the window, you will usually find:

Navigator
Instance Lists
Command Handlers
Refer also to the following headings:
Locating and Selecting Items in the Instance Lists

Navigator

The Navigator provides access to the major functional areas of LANSA
Composer. You can simply click on an item in the tree to switch to working in
that area of LANSA Composer.

=] LANSA Composer
= & Operations
E] Console
@ Java Service Manager console
Fun processing sequence shortouts
= @ Definitions
ﬁn Activities
% Trading partners
Eﬁ. Transformation maps
ﬁ. Processing sequences
= @ Configurations
"-%' FTP configurations
') HTTP configurations
Qfl SMTP server configurations
1 SMTP mail details
@] POP3 mail configurations
B 5MS configurations
'Lfé Messaging configurations
|[f] Database configurations
&8 LANSA system configurations
= [jl Transaction Documents
88 Document types
Document standards
= “,'-'ﬂx Deployment
& Exportlists
&él Export
.Efl Impaort
= EY Administration and Housekeeping
(=) Audit trai
@ System settings
|'_| System properties
|@ Code maintenance
f.,'j_] Event maintenance
2] Database housekeeping

Note: Some items in the Navigator may not be displayed due to access
restrictions. Refer to Configure User Access for more information.

its:LANSA091.CHM::/lansa/intengc6_0105.htm

Instance Lists

The Instance Lists show items of the type selected in the Navigator (for
example, Processing Sequences) and allow you to select an item to work with.

Recent | waorking lists | All processing sequences

Name | Description | Last changed | User : »
= Recently visited (Jocal) I

Ge®d <

} EXAMPLE_AATEST1 Check LANSA Composer installation 2012-09-17 XF4.. | |
EXAMPLE_AATEST2 Check LAMNSA Integrator functionality 2012-09-17 XF4...

m EXAMPLE_ACTPARM Shows ways to provide activity parameter values 2012-05-17 XF4...
EXAMPLE_CSvVO1 Example of processing CSV 2012-09-17 XF4...

m EXAMPLE_LOGO1 Logging Example 2012-09-17 *F4...

1 EXAMPLE_LOOPO1 Example of processing multiple documents,

2L M
For more information about using the Instance Lists, refer to the following
heading:

Locating and Selecting Items in the Instance Lists

Command Handlers

The command handler area is where you work with an item after selecting it in
one of the instance lists. Typically you will work with the Details for the item
but you can choose different commands for the item using the context menus,
toolbar buttons or the tabs across the top of the command handler area. When
the focus is in the command handler area, you can also use Alt+PageUp and

Alt+PageDown keyboard shortcuts to quickly switch between the available
tabs.

."' Processing sequence : Details [EXAMPLE AATEST1-Check LANSA Composer installation]

Detais || [3> Run commands | (1 Run history | [version history | % Crossreferences | 7 Attachments | [INotes | () Audt

Name 'EXAMPLE_MTEST]]-

S Save

Description Check LANSA Compaoser installation

= = @ Refresh
Restartable Yes hd

B’ Run...

Status Active i
Event identifier
i
| {‘ \ Click Edit to edit your processing sequence. Edit...

From——

Note that some types of items display a lot of information. In some cases
(depending on screen and window dimensions) you may have to scroll the
command handler area to see all the information.

Locating and Selecting Items in the Instance Lists

The Instance Lists and the associated Find support provide a great deal of
flexibility to find items that you wish to work with. This section provides an
overview of the features in the following sections:

Organization of the Instance Lists
Selecting a Current Item to Work With
Pinning or Unpinning the Instance Lists
Finding Items Using the Quick Find Box
Finding items Using the Find window
Using Working Lists

Organization of the Instance Lists

Several lists are available (depending on the definition type selected in the
Navigator) that are organized in various ways, providing a very flexible means
of locating and selecting the items with which you wish to work. For example:

e The Recent tab shows items (of the current type) of recent interest in two
groups:
- the Recently visited group shows items that you have recently displayed in

the LANSA Composer client at this computer. Whenever you make an item
the "current” item, the item will move to the top of this group.

- the Recently modified group shows items that have been recently created or
modified on the LANSA Composer server (that is, at any client computer).

e The Working lists tab shows one or more working lists of items that you can
build yourself by adding items that appear on other tabs.

e When you use the Find or Quick Find features, the matching items will be
shown in the Find results tab. (The Find results tab is not shown until you
perform a find.)

e The All <items> tab shows all the available items in alphabetical groups.

ik frid orocesSinG SemIenc

E Recent | waorking lists | All processing sequences

& Name | Description | Last changed | User :A
et = Recently visited (Jocal) (3
4k } EXAMPLE AATEST1 Check LANSA Composer installation 2012-09-17 XF4.. | |
4 fg EXAMPLE_AATEST2 Check LAMNSA Integrator functionality 2012-09-17 XF4...

Cj fg EXAMPLE_ACTPARM Shows ways to provide activity parameter values 2012-05-17 XF4...

fﬂ. EXAMPLE_CSvVO1 Example of processing CSV 2012-09-17 XF4...
m EXAMPLE_LOGO1 Logging Example 2012-09-17 *F4...

1 EXAMPLE_LOOPO1 Example of processing multiple documents, 2012-09-17 XF4... T

Depending on the type of definition you are working with, additional tabs may
be available. For example, when working with Activities, an Activities by group
tab is shown.

While the input focus is on the instance lists, you can press Alt+PageUp and
Alt+PageDown keyboard shortcuts to quickly switch between the available
tabs. Of course, you can also click on the tabs with your mouse.

Selecting a Current Item to Work With

The item that is currently selected (the "current” item) is identified in the
instance lists in bold and with a different (right-arrow) icon.

Quick find processing seguences 5
i Recent | waorking lists | All processing sequences

& Name | Description | Last changed | User : -
= Recently visited {Jocal) “_:
4k } EXAMPLE AATEST1 Check LANSA Composer installation 2012-09-17 XF4.. | |

E‘ EXAMPLE_AATEST2 Check LAMNSA Integrator functionality 2012-09-17 XF4...

(-3 @. EXAMPLE_ACTPARM Shows ways to provide activity parameter values 2012-05-17 XF4...

'E] EXAMPLE_CSvVO1 Example of processing CSV 2012-09-17 XF4...

m EXAMPLE_LOGO1 Logging Example 2012-09-17 *F4...

1 EXAMPLE_LOOPO1 Example of processing multiple documents,

2012-09-17 XF4... [

Note that the "current” item may not always be present in the particular instance
list you are working with. In this case it is not specifically identified in that list,
but you can still identify it by looking at the bar above the command handler
area.

:’ Processing sequence - Detailz [EXAMPLE_AATEST1-Check LANSA Composzer installation]

| Detais | [Run commands | [Run history | [Version history | % Cross references | (7 Attachments | [INotes | () Audit

To work with an item that you have located in the Instance Lists, you need to
make it the "current" item.

By default you do this by simply selecting it (click it with the mouse or use the
up and down arrow keys until the desired item is select).

If you prefer, you can configure LANSA Composer such that an item becomes
the "current” item only after you select it and press Enter, or after you double-
click the item. To do this, right-click in the instance lists, select Options from
the popup menu, and then select Set current item immediately to select or
deselect this option.

Recent | warking lists | All processing sequences

MName | Description Last changed | User i'_:
@ = Recently visited {Jocal)
ﬁ 3 EKAHP[E_AJ“"'" _""“"' T ————— 2012-09-17 9:41:0... QOTHPRDOWN =
3 i ExAMPLE_AAT [E]| Pinopen {' 2012-09-17 9:41:02... QOTHPRDOWN
& il ExaMPLE_ACT €53 | Refresh brvalues 2012-09-17%:41:02... QOTHPRDOWN
E‘{AI""IPLE_CSU: i 2012-09-17 %:41:02 ..., QOTHPRDOWM
{0 ExaMPLE_EVE Select all ssing ... 2013-08-138:22:41.., ¥F4HUGH
EXAMPLE_LOG Add to working list 3 {| 2012-09-17 :41:03 ... QOTHPRDOWMN
#3_EXAMPLE LOC ks, 2012-09-179:41:03 .., OOTHPRDOWN |~
..... L A T e M L

. Composer installation]

"' Processing sequence : D

Print EXAMPLE_AATEST1

Details | [Run commands Print all selected definitions oss references | 7 Attachments | [Notes | () Audit

Pa'-.-'r: :

Either way, when you make a new item the current item, information relating to
the item will be shown in the command handler area.

T Options b v Set current item immediately

."' Processing sequence : Details [EXAMPLE AATEST1-Check LANSA Composer installation]

i EEGenN | D ety E B dien B be cns e N R

Name EXAMPLE_AATESTH Save
Description Check LANSA Compaoser installation

= = @' Refresh
Restartable Yes hd

B’ Run...
Status Active i
Event identifier
i
| {‘\\ Click Edit to edit your processing sequence. Edit...
l\-i |

From——

Pinning or Unpinning the Instance Lists

When they are first shown, the Instance Lists will be pinned open. This means
they permanently occupy space above the command handlers. In this state, you
can resize the instance lists by clicking and dragging in the space between the
instance lists and the command handler area.

The pinned open state is indicated by this button in the tool buttons to the left of
the instance lists:

g

If you wish, you can unpin the instance lists to free up more space on your
screen for information shown in the command handler area. To do this, click
the pin button (or use the corresponding context menu item). The instance lists
will be removed from the screen, leaving only this visible:

IErICES i -

«

In this unpinned state, you can temporarily display the instance lists at any time
by using the Ctrl+F11 keyboard shortcut or by clicking this button:

¥

When you display the instance lists in an unpinned state, they will be
automatically hidden again as soon as the input focus moves away from the
instance lists, for example, if you click in the Navigator or in the command
handler areas or if you switch to another application.

To pin the instance lists open, click the pin button again.

Finding Items Using the Quick Find Box

If you know part or all of the name or description of an item you wish to work
with, you can find it very quickly using the Quick Find box.

To access the Quick Find box, use the Ctrl+Shift+F keyboard shortcut or click
in the Quick Find box:

¥ | Quick find processing segquences .

Type some text that you expect to find in the names or descriptions of the items
you wish to locate and press Enter. Any matching items will be displayed on
the Find results tab.

i
¥ | feceiveinbiaund | £

i Recent = Working lists | Find results || all processing sequences

& Name | Description | Last chan... | User |
. (= Quick find results - receive inbound' 3 processing sequences found
i | 1 m™poc_Rcy Receive inbound transaction document(s) 2012-11-13 ¥F4...
i fﬂ TXDOC_RCY_DEMO Receive inbound transaction document{s) for demo 2012-11-13 ¥F4...
Cj '@ TXDOC_RCY_TP Receive inbound transaction document(s) for TP 2012-11-13 XF4...

If only one item matched, then it will be automatically selected as the "current"
item and the details will be shown in the command handler area.

Finding items Using the Find window

You can use the Find window to find items using a more extensive set of search
criteria than just the name and description.

To access the Find window, use the Ctrl+ F keyboard shortcut or click this
button::

The Find window provides a text search similar to Quick Find, but also
provides a range of other search criteria in groups that you can expand and
collapse according to your requirements and interest.

Find Processing sequences

el ¢ ; . { Find |
., Specify criteria ta find processing sequences in one or S bRl
L_...*“ mare of _the aroups below, Ell_ck Fird ta shu:uw the 7| Cloze on find
L proceszing sequences matching the criteria.
Reset
Chooge how to ghow the find results:
Replace previous find results b Cloze
Type text to find in processing sequences &

W In name | In dezcription
Click to spedify items to find in processing sequences ¥
Click to spedfy last-changed details to find in processing sequences ¥
Click to spedify attachment names found in processing sequences ¥

The groups of search criteria vary a little depending on the type of definition
you are working with. For example, when working with Activities, a group is
provided to allow you to find activities that belong to a specified activity group.

If you specify more than one search criterion, they must all be satisfied in order
for an item to be matched.

When you have specified your search criteria, click the Find button. Any
matching items will be displayed on the Find results tab.

CALNCR TINd DroceEssng FeqUENCES o

Recent Working lists | Find results | All processing sequences

z Mame | Description ' Last chan... | User
= Find results 3 processing sequences found
.-;f’,. fg TXDOC_IEDIO10 EDI transaction document file split 2012-09-17 XF4...
o m TXDOC_IEDIN90 EDI transaction document acknowledgement 2012-11-12 ¥F4...
% fﬂ TXDOC_IMBOUMD Process inbound transaction documents 2012-11-13 ¥F4..
L L Ld
Using Working Lists

You can build your own static working lists of items of interest to you. These
working lists are stored only on your computer.

To add a selected item (or items) to a working list, click this button in the tool
buttons to the left of the instance lists:
4

LANSA Composer lets you choose an existing working list to add the item(s)
to, or you can specify the name for a new working list.

Note: The working list names are common across all LANSA
Composer's definition types. So if you create a new working list name

for Activities, then the same working list name will be added to the
Working lists tab for Trading Partners and other definition types.

To display your working lists and the items contained in them, click the Working
lists tab:

i Recent | Working lists | All processing sequences
L IR : Description
& || B My first working list

=1 My other working list

! Last chan... | User |

i fg EXAMPLE_CSYD1 Example of processing CSV
0l fi} EXAMPLE_LOGO1 Logaing Example

[Working list 1

2012-09-17 ¥F4...
2012-09-17 XF4...

For further options to maintain your working lists, including options to remove
items and delete lists, use the context (right-click) menu at the Working lists tab

Working with Definition Items
Using LANSA Composer you can create, maintain, and delete any number of
definitions of the following types according to your application's needs:

e All the major definition types comprising Activities, Trading Partners,
Transformation Maps and Processing Sequences;

e All configuration types (for example, FTP configurations and HTTP
configuration)

e Export Lists
e Document types and standards
e Event definitions

To work with any of these definition types, simply click the entry in the
Navigator for the desired type.

The Instance Lists for that type will be shown. Refer to Locating and Selecting
Items in the Instance Lists.

Each definition type is described in more detail elsewhere in this guide, but
many of the ways in which you work with your definitions are common to all
definition types. These are briefly described in this section under the following
headings:

Create a New Definition

Copy or Delete Definitions

Review or Change a Definition

Print Definitions and Lists of Definitions
Review Cross references

Maintain Attachments

Define or Review Notes

Review Audit Details

Create a New Definition

Use the Ctrl+ N shortcut or click the New button on the toolbar to create a new
definition. Then complete the details for the new definition as described
elsewhere in this guide for the definition type. Remember to click Save before
switching elsewhere in LANSA Composer to save the details of your new
definition.

Copy or Delete Definitions

You can copy or delete one or more definitions at a time. Select one or more
items in the Instance Lists and then click the Copy or Delete buttons or use the
provided menu items or shortcuts.

LANSA Composer will show a list of the selected items and wait for you to
confirm the copy or delete request. For a copy request, you must type a new
name for each item to be copied before proceeding.

Copy
| - To copy the following item(s), type the new name(s) and dick Copy.

Cancel
[Name |Description

EXAMPLE_CSV01 Example of processing CSV
FLE (OG0T EXAMPLE_LOGOD1 Logging Example

(If no item is selected in the current instance list when you request Copy or
Delete, LANSA Composer will prompt you to copy or delete the "current” item
— that is the item for which details are presently shown in the command handler
area).

NOTE: when you copy items that contain security credentials (user
names and/or passwords), LANSA Composer will copy the user

names but will not copy the passwords. You will need to revise each
copied definition to enter the correct security credentials as required.

Review or Change a Definition

To work with an item that you have located in the Instance Lists, simply select it
(depending on instance list options chosen, you may need to press Enter, or
double-click the item). Information relating to the item will be shown in the
command handler area.

Often the Details command handler tab will be presented first, showing the
basic identifying information and definition for the item, but other command
tabs may be shown. The command handler tabs that are common to all
definition types are briefly described under the following headings:

Maintain Attachments

Define or Review Notes
Review Audit Details

In addition, other command handler tabs may be available depending on the
type of definition with which you are working. Refer to the description for the
definition type elsewhere in this guide for specific information.

While the input focus is in the command handler area, you can press
Alt+PageUp and Alt+PageDown keyboard shortcuts to quickly switch between
the command handler tabs available for the definition type you are working
with. Of course, you can also click on the tabs with your mouse.

Print Definitions and Lists of Definitions
You can print the definitions of most definition types in LANSA Composer,
including:

e Activities

e Transformation Maps

e Processing sequences

e All types of transport and database Configurations

You have several printing options:

1. To print the definition of an item with which you are currently working, click
the Print button in the toolbar or use the Ctrl+P keyboard shortcut.

2. To print the definitions of several items at once, select the items in the
Instance Lists, click the Print button on the Instance List and then select Print
all selected definitions from the popup menu.

3. To print just a list of items shown on the current Instance Lists tab, click the
Print button on the Instance List and then select Print this list from the popup
menu.

Depending on the current print options (which can be changed using the Print
Options command from the File menu), the output is shown in the Presentation
Viewer window (as shown below), or in print preview mode, printed
immediately or shown in your web browser.

When the Presentation Viewer window is open, you can use the menu
commands and toolbar buttons to change the format and/or level of detail
shown, and to save, print or preview the output or to open the output in your
web browser.

Processing sequence - Presentation Viewer |Z||E|E|

File View Help
M & G S oo e ESth detailed information v| (= 1]
.3
Froduced at 2008-12-01 14:54:33 by user XFZHUGH
Name: DEM_ORDER_RCV
Description: Qrder receive processing
Status: Active
Restartable: Yes
Parameters
There are no parameters defined for this item.
Definition
2 === Beginning of processing sequence ===
e Activity
MName: FTP_INBOUMD - FTP Get files from remote host
2F Activity
MName: DEMO_BATCHNUM - Generate batch number
"6}‘ Loop
List: filepath
Loop variable: thisfile
E"ﬁ Transform
Name: DEM_ORDER_DB2 - Order XML to IEM i DB2]
=== End of processing sequence === &
[one

Review Cross references

LANSA Composer provides comprehensive cross reference information for
most definition types in LANSA Composer, including:

e Activities

e Transformation Maps
e Processing sequences
e All types of transport and database Configurations

Using the cross reference information provided by LANSA Composer, you can

quickly identify:

e Other definitions that the subject definition uses or refers to. For example,
for a Processing Sequence, this would include Activities, Transformation
Maps and configurations that are used in the Processing Sequence.

e Other definitions that use or refer to the subject definition. For example, for
an FTP configuration, this would include Trading Partners and Processing
Sequences that use the FTP configuration.

NOTE: only static references in a Processing Sequence are cross-
referenced. If a Processing Sequence refers to an Activity,

Transformation Map or a configuration using a variable or a built-in
variable, then such references are resolved at run-time and cannot be
cross referenced.

To review cross reference information for a definition such as a Processing
Sequence:

1. Select the definition type in the Navigator.

2. Use the Instance Lists to locate and select the item whose cross references
you wish to review.

3. Click the Cross references tab to display the cross references window.

Details | [Run commands | [l Run history | [Version history | T Cross references & Attachments | [Inotes | () Audit

| Mame | Description | Details | Type | Gt

=i Used by EXAMPLE SQLO1 l=i=
ﬁu LOGLIST Logs a variable list's values ACTIVITY item, sequence 16 Activity "‘f} Refiesh
5@. SQL_CONMECT Connect to database using SQL ACTIVITY item, sequence 5 Activity
8% SQL_DISCONNECT Disconnect from database using SQL ACTIVITY item, sequence 18 Activity = :
g SQL_QUERY Query database using SQL ACTIVITY item, sequence 14 Activity fsti Bl
5;} SUBSTITUTE Formats an input string with variable su... ACTIVITY item, sequence 12 Activity
|[@] TXDOC_DATABASE Transaction document database configu... PARAMETER item, sequence 1 Database configuration

= Uses EXAMPLE_S(QL01
451 D¥%_MASTER_EG Shipped examples Export list

You can print or refresh the cross reference information by clicking the
appropriate buttons.

You can switch directly to one of the listed items by double-clicking the item or
by selecting it and pressing Enter or clicking the Go to button.

Maintain Attachments
You can attach files to most definition types in LANSA Composer, including:
e Activities
¢ Transformation Maps
e Processing sequences
o All types of transport and database Configurations

You can attach any kind of file that you can access through the file system of
your computer. LANSA Composer will hold the file attachment(s) in its
database, permanently associated with the specific definition to which you
attached it. When you export and import your LANSA Composer definitions,
the attachments will be included (subject to export and import options).

You might use this feature to attach such things as:
e A copy of an XML Schema used in a Transformation Map;
e A description of operating procedures relating to a Processing Sequence;

e Contact information and/or pictures or copies of trading agreements with a
Trading Partner.

To review, add, change or delete attachments associated with a definition such
as a Processing Sequence:

1. Select the definition type in the Navigator.

2. Use the Instance Lists to locate and select the item whose attachments you
wish to work with.

3. Click the Attachments tab to display the attachments window.

Details | [Run commands | {3l Run history |) Version history £ Attachments | [Notes (=) Audit

Files held in the LANSA Composer
server database for Temporary working space for EXAMPLE_PDFO1 files: y
EXAMPLE PDFO1:
= EJ E}fArﬂ?LE—PDFDI } Mame Size | Type B
A Ei:mii—gggg:'ggﬁsﬁ) P ExAMPLE_PDFO1.gif SKE PantShopPro 7Im... 2
& B ! L Copy P = EXAMPLE_PDFO1 :
B ~ B | pdf 6KB Adobe AcrobatDoc... 2
& EXAMPLE_PDFO1.xml (3 KB =
& = L | =] EXAMPLE_PDFO L.xml 3KB XML Document z:
Copy Al M
v Open on copy
H saveal...
@ Refresh
< >
¥ Hide hints

To create a new file, right-click in the working space and select New
To add a file from your computer, drag it to the working space
To delete a file, dick Copy to copy it to the working space and delete it there

To view or edit a file, dick Copy to copy it to the working space and open it t...

Remember to Save your changes when you are finished and before switching
elsewhere in LANSA Composer.

Define or Review Notes
You can create notes for most definition types in LANSA Composer, including:

Activities

Transformation Maps

Processing sequences
All types of transport and database Configurations

Notes can be used to expand upon the short description of an item to further
describe its intended purpose and use. For example you can describe the
function of a custom Activity and the purpose and requirements for its
parameters.

The notes can later be reviewed to remind you or others of when and how to use
the item. Notes for Activities, Processing Sequences, Transformation Maps and
Configurations can be displayed when editing Processing Sequences in the
Processing sequence editor.

Notes are supplied for most of the Activities, Configurations and other
definitions that are shipped with LANSA Composer.

To review or change the notes:
1. Select the definition type in the Navigator.

2. Use the Instance Lists to locate and select the item for which you wish to
access the notes.

3. Click the Notes tab or the Notes button on the toolbar to display the notes
window.

The notes window displays the existing notes, if any. You can edit the notes
as required.

Detais | ‘2. Parameters | (20 Groups | il Run history |). Where used [notes () Audit
L

FTP_INEOUND Save
This activity retrieves a list of Tiles from a remote host using FTP. Refresh
It connects to the remote FTP host and retrieves files from a directory
on the remote host. The Tiles are placed in a local directory.
Details of the remote host and directories is taken from an FTP
configuration.
A Tist of the Tiles retrieved is output. The T1ist is output in two
formats - one containing just the filg
names the other containing the full 1ocal path and Tile name.
An email Event notification named FTPINFAILED is available in this
activity. If this ewvent is active and a failure occurs in this activity,
then an email will be sent.
INPUT Parameters:
FTPCONFIG : Required
This parameter should contain the name of an FTP configuration on file
DXFC. This configuration can be created and maintained using the FTP
Configuration option in the Transport Configurations Business Object.
If this parameter is not provided or is not found, this activity will
return an error and processing will be abandoned. I

Remember to Save your changes when you are finished and before switching
elsewhere in LANSA Composer.

Note: You can display but you cannot change the notes for Activities

supplied with LANSA Composer.

Review Audit Details

Most definition types in LANSA Composer have audit information that records
by whom and when the item was changed and when other significant operations
were performed, such as importing and exporting the item.

To review the audit information for an item:
1. Select the definition type in the Navigator

2. Use the Instance Lists to locate and select an item.

3. Select the Audit tab or the Audit button on the toolbar to display the audit
information window.

"' Proceszing sequence : Audit (EXAMPLE_SOLD1-Example of using the SAL_QUERY activity]

_ Detais | [Run commands | [Run history |) Version history | % Cross references | 7 Attachments | [INotes | (DAudit)

Internal identifier 3699351ACE6E40AB927862E 1ER 240964 @ Refresh
Last changed 2013-07-08 10:01:33 by user QOTHPRDOWN PR
|| Audit event ' Timestamp i Log | User name ' Computer name R
| | Exported 2013-08-22 12:35:57 ... 000000000000075 QOTHRRDOWN LANSAPCOO7 it
Opened for editing 2013-03-22 8:55:03 AM QOTHPRDOWN LANSAPCOO7
Exported 2013-08-20 2:14:10 PM 000000000000074 QOTHPRDOWM LANSAPCOO7
Exported 2013-08-13 4:13:35PM 000000000000072 QOTHPRDOWM LANSAPCOO7
| | Opened for editing 2013-07-08 11:09:46 ... QOTHPRDOWN LANSAPCOO7
Opened for editing 2013-07-08 11:08:39 ... QOTHPRDOWN LANSAPCOO7
Opened for editing 2013-07-08 11:07:09 ... QUTHPRDOWN LANSAPCOO7
| Exported 2013-07-08 10:07:26 ... 000000000000066 QOTHPRDOWM LANSAPCOO7
Saved after editing 2013-07-08 10:01:33 ... QOTHPRDOWMN LANSAPCOO7
Opened for editing 2013-07-08 10:01:06 ... QOTHPRDOWN LANSAPCOO7
Saved after editing 2013-07-08 9:08:52 AM QOTHPRDOWMN LANSAPCOO7
Opened for editing 2013-07-08 9:07:20 AM QOTHPRDOWMN LANSAPCOO7
| | Saved after editing 2013-07-05 3:40:52FM QOTHPRDOWNM LANSAPCOO7
Opened for editing 2013-07-05 3:38:35PM QOTHPRDOWMN LANSAPCOO7
Saved after editing 2013-07-05 3:35:09 PM QOTHPRDOWMN LANSAPCOO7
Saved after editing 2013-07-05 3:33:53 FPM QOTHPRDOWM LANSAPCOO7
| | Opened for editing 2013-07-05 3:13:00 PM QOTHPRDOWMN LANSAPCOO7
| | saved after editing 2013-07-05 3:12:36 PM QOTHPRDOWMN LANSAPCOO7
Opened for editing 2013-07-05 2:53:15PM QUTHPRDOWN LANSAPCOO7
| | Changed (Details) 2013-07-05 2:52:32FPM QUTHPRDOWN LANSAPCOO7
Created as copy of EXAMP... 2013-07-05 2:52:17 PM QOTHPRDOWMN LANSAPCOO7

The audit information window displays the following information:

Internal Identifier

You assign a human-readable identifier (name) to definition items such as
Activities and Configurations. But internally, LANSA Composer assigns a
unique internal identifier to help to ensure that components can be transferred
between systems irrespective of whether the user-assigned identifiers exist on
the target system. For most purposes, you do not need to know or use this
internal identifier.

Audit events
Shows a list of the changes and significant events for this item.

You can also interrogate and view the audit trail across all definition

types and items using the Audit Trail option under Administration and
Housekeeping in the Navigator.

2. Define Integration Components

2.1 Activities

2.2 Activities by Group
2.3 Configurations

2.4 Trading Partners

2.5 Transformation Maps

2.1 Activities

Activities encapsulate individual units of work or business processes that can be
combined with Transformations in a Processing Sequence. Activities, along
with Transformations, implement the business functions that are executed by
LANSA Composer Processing Sequences. Examples of Activities include:

e Performing a file transfer via FTP (file transfer protocol)
e Zipping a file or folder
e Deleting a file

Two key aspects of the definition of an Activity support their implementation
and use along with other Activities and Transformations to orchestrate a
complete business process:

e Activity ProcessorThis is a LANSA re-useable part that implements the
function of the Activity. LANSA Composer invokes the processor as
required in order to execute the Activity. The Activity Processor is
provided for all supplied Activities. If you extend LANSA Composer with
your own Activities, you will write their Activity Processors according to
your requirements.

e Activity parameters
The inbound and outbound parameters for an Activity provide the variable
information necessary for an Activity to complete its work. More than that
though, they provide the communication between different Activities and
Transformations that are orchestrated together in a single Processing
Sequence. Thus, the output (outbound parameters) from one Activity
might provide the input (inbound parameters) for the next.

LANSA Composer is supplied with a set of ready-to-use Activities that provide
transport, file management and zip/unzip capabilities. Refer to 2.2.17 All
Supplied Activities for a complete list and description of the supplied Activities
or to 2.2 Activities by Group for a quick reference list of the Activities you may
need for a particular task.

You can use LANSA Composer straight away with the supplied Activities. If
required, you can extend LANSA Composer with custom Activities of your
own. Refer to Develop Custom Activities for LANSA Composer for
information on developing your own custom Activities.

Iterator Activities

its:LANSA091.CHM::/lansa/intengc7_0010.htm

Iterator Activities are a special form of Activity that can be used to perform
iterative processing in a Processing Sequence.

It is possible to perform iterative processing using standard Processing
Sequence directives such as LOOP, WHILE and UNTIL. Iterative processing
performed in this way is controlled by:

e The extent of a variable list (LOOP directive)
¢ A conditioning expression (WHILE or UNTIL directives)

Iterator Activities extend this capability to enable iterative processing controlled
by any application-defined data, rule or condition. When you add an Iterator
Activity to a Processing Sequence, it becomes a "block" item (similar to a
LOOP for example) under which you can nest further Processing Sequence
directives, Activities or Transformation Maps that are to be executed for each
iteration of the Iterator Activity.

Some of the Activities supplied with LANSA Composer are Iterator Activities.
They include:
FOR_EACH_CSVROW Iterate for each row in a CSV file
FOR_EACH_INDEX Iterate for each index in a range

FOR_EACH_TXDOCO Iterate for each pending outbound transaction doc

You can extend LANSA Composer with your own Iterator Activities. Such
Iterator Activities might be driven by data in your own applications. For
example, you might define and implement Iterator Activities that iterate for:

e Each division in your organization
e FEach of your products in a specified product group
e FEach product delivery scheduled on a given date

If you define your own Iterator Activities. you must implement the Activity
Processor in a particular way such that it supports the iterative behavior. Refer
to Develop a Custom Activity Processor for more information.

If there is any problem with any supplied activity, refer to Restore Supplied
Definitions for information on how to restore them.

its:LANSA091.CHM::/lansa/intengc7_0040.htm
its:LANSA091.CHM::/lansa/intengc4_0030.htm

2.1.1 Work With Activities
Using LANSA Composer you can create, maintain, and delete Activity
definitions according to your application's needs.

To work with Activities, expand Definitions in the Navigator and click
Activities. To find out how to locate and select Activities to work with, refer to:

Locating and selecting items in the Instance Lists

For information on common tasks associated with Activities (such as creating,
copying, deleting and printing definitions) refer to:

Working with definition items

For information on tasks associated specifically with Activities, refer to the
following headings:

Review or change 2.1.3 Activity Parameters for your activity

Review or change 2.1.4 Activity Groups to which your activity is assigned
Run an Activity

Display the Run History of an Activity

Note: You can review the definitions of Activities that are supplied

with LANSA Composer, but you cannot change most of the
information. You cannot delete supplied Activities.

Note: If you create your own custom Activities, you must also supply
an Activity Processor that implements the custom processing. Refer to
Develop a Custom Activity Processor for information on developing
your own custom Activity Processor.

Run an Activity

You can run an existing Activity directly, without having to first create a
Processing Sequence containing the Activity.

To do so, select the required item in the Activities list. Details of the selected
Activity will be displayed. Click the Run button to run the activity. LANSA
Composer will display a window like the Run Processing Sequence window in
which you can enter the input parameter values for the activity.

Refer to Run a Processing Sequence from LANSA Composer.for further
information on using the Run Processing Sequence window.

its:LANSA091.CHM::/lansa/intengc1_0230.htm
its:LANSA091.CHM::/lansa/intengc1_0240.htm
its:LANSA091.CHM::/lansa/intengc7_0040.htm
its:LANSA091.CHM::/lansa/intengc3_0105.htm

Running an Activity in this way is very much like running a Processing
Sequence containing just that Activity. LANSA Composer will automatically
log the input and output parameter values in the Processing Sequence log
(subject to the logging level currently in effect).

Display the Run History of an Activity

To display available Run History for an Activity, select the required item in the
Activities list and select the Run History tab. A list of processing sequence runs
(including direct runs of the Activity) that used the selected Activity will be
displayed.

Select an item and click the View button to display the Processing Sequence log
or the Print button to print the Processing Sequence log for the run.

If a prior Processing Sequence run has ended in error, you may be able to use
the Restart button to restart it from the point of failure. Refer to Restart a
Processing Sequence Run for more information.

Note: The completeness of the Run History is subject to the logging
level that was in force for each run. Only at more detailed levels of
logging is the log information sufficient to identify each and every

Activity run. In addition, Processing Sequence run history can be
purged using the Database Housekeeping function. The run history
for Processing Sequence runs that have been purged is no longer
available.

its:LANSA091.CHM::/lansa/intengc3_0270.htm
its:LANSA091.CHM::/lansa/intengc6_0030.htm

2.1.2 Activity Details

The Details tab identifies the Activity and contains basic information.

Details | <7, Parameters | (= Groups | il Run history | () Whereused | [JMotes = () Audit
ID DEMO_BATCHNUM g
Description Generate batch number @ P
Status Active -
[:3“ Run...

Supplied activity Mo -
Activity processor DXACTDEMO
Keep active Mo >,
Restartable Yes -
Iterator activity Mo .
Supported on | all servers

IBM i server

Windows server

Local (standalone) mode

ID An identifier to uniquely identify this Activity.

Description This should describe the Activity.

Status Active or Inactive. Activities cannot be used in a processing
sequence while they are in inactive status — the processing
sequence will end in error if it attempts to use an activity that has
inactive status.

Activity Specifies the name of the re-useable part that implements this

Processor Activity. For a supplied Activity, this specifies a re-useable part
that is shipped with LANSA Composer.

If you define your own custom Activities, you must supply your
own Activity Processor that implements the custom processing
and you must name it here.

Supplied yes or No. You cannot change this value.

Activity Yes indicates Activities that are supplied with LANSA

Composer.
No indicates Activities that you define yourself.

Keep
Active

Restartable

Iterator
Activity

Supported
on

Yes or No. Use this value to optimize the performance for
Activities that have a significant cost of initialization.

Yes indicates the Activity Processor will normally be loaded and
unloaded once for each Processing Sequence run.

No indicates the Activity Processor will be loaded and unloaded
each time it is used in a Processing Sequence.

If you define your own Activity Processor, it must be
implemented such that it supports this setting, if used. Refer to
Develop a Custom Activity Processor for more information.

Yes or No. This value determines whether a Processing Sequence
run that fails while executing this activity can be restarted (if it is
otherwise eligible).

Yes indicates the activity can be restarted.

No indicates that this activity cannot be restarted. A Processing
Sequence that fails on this Activity will not be eligible to be
restarted.

If you define your own Activity Processor, it must be
implemented such that it supports this setting, if used. Refer to
Develop a Custom Activity Processor for more information.

Yes or No. This value signifies whether this Activity is an
Iterator Activity - a special form of Activity that can be used to
perform iterative processing in a Processing Sequence. Refer to
2.3 Configurations for more information about this type of
Activity.

Yes indicates that this is an Iterator Activity.
No indicates that this is not an Iterator Activity.

If you define your own Activity Processor, it must be
implemented such that it supports this setting, if used. Refer to
Develop a Custom Activity Processor for more information.

If the activity processor is not valid or supported across all server
platforms supported by LANSA Composer, you can check and

its:LANSA091.CHM::/lansa/intengc7_0040.htm
its:LANSA091.CHM::/lansa/intengc7_0040.htm
its:LANSA091.CHM::/lansa/intengc7_0040.htm

uncheck the boxes to indicate which servers this activity does
support.

2.1.3 Activity Parameters

This tab lists the inbound and outbound parameters that have been defined for
the Activity. Parameters provide the variable information necessary for an
Activity to complete its work. They also provide the communication between
different Activities and Transformations that are orchestrated together in a
single Processing Sequence. Thus, the output (outbound parameters) from one
Activity might provide the input (inbound parameters) for the next.

Details || (2 Groups | il Runhistory | % Crossreferences | &7 Attachments | [] notes | () Audit

Required Save
or Parameter Parameter Parameter Parameter |Default

Direction| Optional |Name Description Class Iz a List? |Value

1 |Outbound DEMO_BATCHMUM | Batch number General Mo

Qﬁj Refresh

Add...

Remove

Mave tp

For each parameter, you can specify the following information:

Direction Inbound, outbound or both. This specifies whether the Activity
Processor requires this parameter as input (using the GetVariable
method) or will set its value as output (using the PutVariable
method).

Required Thjs applies only to inbound parameters and its value provides a
or visual indication, when using the Activity in the Processing
Optional sequence editor, of whether the parameter is required.

Parameter Specifies a name for the parameter. By default, this will become

Name the name of the corresponding variable in the variable pool for a
Processing Sequence that uses this Activity, though the name can
be overridden in the Processing sequence editor.

Parameter This should describe the purpose or use of the parameter.
Description

Parameter yoy can choose a class for the parameter from the options shown

Class in the drop-down list. The parameter class does not limit or
validate the values that can be entered for the parameter, but if
you choose a class, other than the default General, LANSA
Composer will provide appropriate browsing support for the

Parameter
Is a List?

Default
Value

parameter value when entered through the LANSA Composer
client software. For example, if you choose Trading Partner,
LANSA Composer will automatically support browsing and
selecting from a list of defined Trading Partners. Or if you
choose File path, LANSA Composer will automatically provide
support for browsing and selecting from files in the server file
system.

Yes or No. If the Activity Processor references this parameter as
a list (by using multiple and indexed references to it), you should
set this value to Yes. This provides a visual indication in the
Processing sequence editor that the associated variable is a list.

If required, you can specify a default value for the parameter.

2.1.4 Activity Groups

This tab lists the available Activity groups — the groups to which this Activity
has been assigned have a checkmark next to their name. Activity groups are
used to group related Activities so they can be easily located. You can define
your own groups in addition to or instead of the groups supplied with LANSA

Composer.

Details = . Parameters {2 Groups U3l Run history | () Where used | [Notes | () Audit
Name | Desciption | e
DESIGN Design, test and debug =

EMALL Email {5 Refresh
FILE_MAMAGE File management
FTP FTP transport activities
HTTP HTTP transport activities
MESSAGIMG Messaqging transport activities
W |PROCESS Processing
TRAMSFORM Transformations
TRAMSPORT Transport
TuT Tutorials
| VARIABLES Variable manipulation
ZIP Zip activities

Here you can assign Activities to Activity groups or remove them from Activity
groups. You can do this both for supplied Activities and for custom Activities
that you define yourself.

To add an Activity to an Activity group, check the box next to the desired
group. To remove an Activity from an Activity group, uncheck the box.
Remember to click Save before switching elsewhere in LANSA Composer.

2.2 Activities by Group

LANSA Composer is supplied with a range of ready-to-use Activities that
perform transport, file management and other tasks.

These Activities are supplied complete, including, of course, the Activity
Processors. However you may need to create one or more Configurations for
use with the transport Activities. Refer to each Activity's description for details.
The supplied Activities should not be changed. Future upgrades to LANSA
Composer may completely replace the supplied Activities, overwriting any
changes you may make. If you wish to adapt the supplied Activities for your
own purposes, you should create your own copy of the Activity definition and
the Activity Processor and adapt them to your needs.

Refer to the list of 2.2.17 All Supplied Activities

or

refer to the following quick reference lists of functionally-related activities:

2.2.1 Design, Test and 2.2.6 Iterator activities 2.2.11 Terminal Server

Debug Activities

2.2.2 Email 2.2.7 Messaging 2.2.12 Transaction Document
Transport Processing

2.2.3 File Management 2.2.8 Processing 2.2.13 Transformations

2.2.4 FTP Transport ~ 2.2.9 Spooled File 2.2.14 Transport
Activities Management

2.2.5 HTTP Transport 2.2.10 SQL Database 2.2.15 Variable manipulation
Activities Activities

2.2.16 Zip Activities

Some Activities from previous versions of LANSA Composer have been
deprecated in this version. Refer to 2.2.18 Deprecated Activities for
information on deprecated Activities and suggested alternatives.

2.2.1 Design, Test and Debug

Activity ID

Description

FOR_EACH_VAR Iterate for each processing sequence variable

LOGLIST

LOGVARIABLE

NULL

Creates entries in the processing sequence log that
contain a variable list's values.

Creates an entry in the processing sequence log that
contains a variable's value.

This activity does nothing but can be useful as a
placeholder during the design of your processing
sequence.

2.2.2 Email
Activity ID
MAIL_RECEIVE

MAIL_RECEIVEALL

MAIL_SEND
SMS_SEND

Description

Retrieves a single email message from the mail
server.

Retrieves multiple email messages for a user from the
mail server.

Sends an email by SMTP.

Send an SMS message to a mobile number using an
email service provided by a third-party SMS provider

2.2.3 File Management
Activity ID
BASE64_DECODE
BASE64_ENCODE
COPY_FILE

DELETE_FILE

DIRECTORY_LIST
FOR_EACH_TXTLIN
FOR_EACH_OBJECT
HASH_FILE
LOAD_PSVSET

MOVE_FILE
PATHMAKE

PATHSPLIT
QUERY_CCSID
RENAME_FILE
SAVE_PSVSET
SYSTEM_COMMAND
TEXT_SUBSTITUTE

Description
Base64 decode the contents of a specified file.
Base64 encode the contents of a specified file.

Copies a file from one directory to another using the
file names, source directory and the target directory.

Deletes a flat file from a directory using the
provided file name and full path.

Lists the contents of a directory.

Iterate for each line in a text file.

Iterate for each object in an IBM i server library
Generate a hash value for a specified file

Load processing sequence variables from a PSV
file.

Moves a file from one directory to another using the
file names, source directory and the target directory.

Constructs a file path from folder path and file
name.

Splits a file path into its constituent components.
Returns the IBM i CCSID for a specified file
Renames a file.

Save processing sequence variables to a PSV file.
Executes an operating system command.

Reads a skeleton text file and replaces
%%parm.parmeter%% references in the text with
the current parameter value and writes the expanded
text file.

WAIT_FILESREADY Cache operations for files waiting for "ready"
WATCH_DIRECTORY Watch a directory for new or changed files

XML_SPLIT Split XML document file.
XML_QUERY Query value(s) in an XML document file.
XML_VALIDATE Validate an XML document file.

XSL_TRANSFORM Executes an XSL transformation

ZIP_DIRECTORIES Zips a list of directories and places the contents in a
zip archive.

ZIP_FILES Zips a list of files and places them in a zip archive.
ZIP_LIST Lists the contents of a zip archive.

ZIP_UNZIP Lists the contents of a zip archive.

2.2.4 FTP Transport Activities

Activity ID

FITP_COMMANDLIST

FTP_DIRLIST

FTP_INBOUND

FTP_OUTBOUND

FTP_SCRIPT

Description

Connects to the FTP host specified in the FTP
Configuration and then executes FTP commands
from a command list file.

List all the available files in a remote directory as
specified by the FTP configuration..

Retrieves a list of files from a remote host using
FTP.

Transfers files from the local machine to a remote
host by FTP.

Execute an FTP script using the native IBM i5/0S
FTP client

2.2.5 HTTP Transport Activities

Activity ID Description
HTTP_GET Retrieves a document from an HTTP server.

HTTP_INBOUND Handles an inbound HTTP message and saves it to a
specific directory.

HTTP_POST .
Sends data to an HTTP server and/or receives response

data from the server.

2.2.6 Iterator activities
Activity ID
FOR_EACH_CSVROW
FOR_EACH_INDEX
FOR_EACH_OBJECT
FOR_EACH_TXDOCO
FOR_EACH_TXDOCT

FOR_EACH_TXTLIN
FOR_EACH_VAR
LOAD_PSVSET

WATCH_DIRECTORY
WATCH_DTAQ
WATCH_MSGQ

Description

Iterate for each row in a CSV file

Iterate for each index in a range

Iterate for each object in an IBM i server library
Iterate for each pending outbound transaction doc

Iterate for each transaction set (message) registered
for a transaction document

Iterate for each line in a text file
Iterate for each processing sequence variable

Load processing sequence variables from a PSV
file.

Watch a directory for new or changed files
Watch a data queue for new entries

Watch a message queue for new messages

2.2.7 Messaging Transport

Activity ID
DTAQ CLEAR
DTAQ_RECEIVE
DTAQ SEND
MSG_RECEIVE

MSG_SEND

MSGQ_RECEIVE
MSGQ_SEND
WATCH_DTAQ
WATCH_MSGQ

Description

Clear a named data queue

Receive data from a named data queue
Send data to a named data queue

Receives a message from a supported message brokering
system such as IBM MQ Series.

Sends a file through a supported message brokering
system such as IBM MQ Series.

Receive a message from a message queue
Send a message to a message queue
Watch a data queue for new entries

Watch a message queue for new messages

2.2.8 Processing
Activity ID
BLANKCONCAT

CALCULATE
CALL_3GL

CALL_FUNCTION
CALL_JAVA
CLEARLIST
CLEARVARIABLE
COMPOSER_RUN
CONCAT

COUNTLIST
FIND_TPMAP

GET_DTAARA
JSM_RECLAIM
JSM_SCRIPT
LOAD_PSVSET
LOGLIST

LOGUSERINFO

LOGVARIABLE

Description

Concatenates one or more strings, removing trailing
blanks and inserting a single blank between each
string.

Perform a simple arithmetic calculation.

Calls an RPG, COBOL or other 3GL program on
IBM i servers.

Calls a LANSA function.

Calls a Java program.

Clears a variable list.

Clears a variable.

Run a LANSA Composer Processing Sequence

Concatenates one or more strings, removing trailing
blanks from each.

Counts the entries in a variable list.

Find linked transformation map(s) for a trading
partner

Read a value from a data area

Reclaim LANSA Integrator JSM resources.

Execute a LANSA Integrator JSM script.

Load processing sequence variables from a PSV file.

Creates entries in the processing sequence log that
contain a variable list's values.

Creates an impromptu entry in the processing
sequence log.

Creates an entry in the processing sequence log that

LOWERCASE
NEXTNUMBER
NOTIFYEVENT
PUT_DTAARA
RANDOMNUMBER
SAVE_PSVSET
SLEEP
SUBSTITUTE
SUBSTITUTE_VAR
SUBSTRING
UNIQUEID
UPPERCASE

contains a variable's value.

Converts uppercase characters to lowercase.
Generates the next number in a series.

Trigger an event notification

Write a value to a data area

Generates a pseudo-random number.

Save processing sequence variables to a PSV file.
Suspend processing for a specified time interval
Formats an input string with variable substitution.
Formats an input string with variable substitution.
Extracts a portion of a string.

Generate a unique identifier.

Converts lowercase characters to uppercase.

WAIT_FILESREADY Cache operations for files waiting for "ready"

2.2.9 Spooled File Management

Activity ID Description
DELETE_SPLF Deletes an IBM i spool file.

LAST_SPLF Retrieve identity of the last spooled file created in the
current job

MOVE_SPLF Moves an IBM i spool file to a specified output queue.

SPLF_LIST Lists IBM i spool files in an output queue that meet
specified selection criteria.

SPLF_TO_PDF Converts an IBM i spool file to a PDF document.
SPLF_TO_TEXT Converts an IBM i spool file to a text document

2.2.10 SQL Database Activities

SQL_CALL
SQL_CALLQRYCSV

SQL_CALLQUERY
SQL_COMMIT
SQL_CONNECT
SQL_DISCONNECT
SQL_PARAMS
SQL_PARAMSCSV
SQL_QUERY
SQL_QUERYTOCSV
SQL_ROLLBACK
SQL_UPDATE

Execute an SQL stored procedure

Query database using an SQL stored procedure to
CSV

Query database using an SQL stored procedure
Commit a database transaction using SQL
Connect to database using SQL

Disconnect from database using SQL

Set parameter values for SQL operation

Set parameter values for SQL operation from CSV
Query database using SQL

Query database using SQL to output CSV file
Rollback a database transaction using SQL

Update database using SQL

2.2.11 Terminal Server Activities

Activity ID
TS_CAPTURE
TS_CONNECT
TS_DISCONNECT
TS_EXECUTE
TS_GET
TS_GETBYNAME
TS_GETBYPOS
TS_GETFIELD
TS_SEND
TS_SETBYNAME
TS_SETBYPOS
TS_SETCURSOR

Description

Capture aXes 5250 terminal session screen image
Connect to aXes 5250 terminal session
Disconnect from aXes 5250 terminal session
Execute an aXes terminal operations script

Get aXes terminal session attributes

Get aXes 5250 terminal session value by name
Get aXes 5250 terminal session value by position
Get aXes 5250 terminal session field attributes
Send data to aXes 5250 terminal session

Set aXes 5250 terminal session value by name
Set aXes 5250 terminal session value by position

Set aXes 5250 terminal session cursor position

2.2.12 Transaction Document Processing

Activity ID
DISCOVER_DOC
DISCOVER_EDI
DISCOVER_MAP
DISCOVER_XML

EDI_SPLIT
FOR_EACH_TXDOCO
FOR_EACH_TXDOCT

TXDOC_ALLOCCTRL
TXDOC_EXPORT
TXDOC_IMPORT
TXDOC_KEYS

TXDOC_REGISTER
TXDOC_REGOUTBND
TXDOC_REGOUTEDI

TXDOC_REGOUTX12

TXDOC_STATUS
XML_SPLIT
XML_QUERY
XML_VALIDATE

Description

Discover the document type for a document file
Discover, catalogue and validate EDI document file
Discover attributes associated with map

Discover the root element name of an XML
document

Split EDI document file
Iterate for each pending outbound transaction doc

Iterate for each transaction set (message) registered
for a transaction document

Allocate transaction document control number(s)
Export transaction data to staging files
Import transaction data from staging files

Retrieve staging file keys for a pending outbound
transaction document

Register transaction document
Register pending outbound transaction document

Register pending outbound EDIFACT transaction
document

Register pending outbound EDI X12 transaction
document

Update transaction document status
Split XML document file.
Query value(s) in an XML document file.

Validate an XML document file.

2.2.13 Transformations

Activity ID Description

BASE64_DECODE Base64 decode the contents of a specified file.
BASE64_ENCODE Base64 encode the contents of a specified file.
FIND_TPMAP Find linked transformation map(s) for a trading partner

TRANSFORM Runs a transformation map (used as an alternative to
the Transform processing sequence directive where the
identifier of the transformation map to run is variable
and determined at run-time)

XSL_TRANSFORM Executes an XSL transformation

2.2.14 Transport
Activity ID
FTP_COMMANDLIST
FTP_INBOUND
FTP_OUTBOUND

FTP_SCRIPT

HTTP_GET
HTTP_INBOUND

HTTP_POST
MAIL_RECEIVE
MAIL_RECEIVEALL

MAIL_SEND
MSG_RECEIVE

MSG_SEND

SMS_SEND

Description

Connects to the FTP host specified in the FTP
Configuration and then executes FTP commands
from a command list file.

Retrieves a list of files from a remote host using
FTP.

Transfers files from the local machine to a remote
host by FTP.

Execute an FTP script using the native IBM i5/0S
FTP client

Retrieves a document from an HTTP server.

Handles an inbound HTTP message and saves it to a
specific directory.

Sends data to an HTTP server and/or receives
response data from the server..

Retrieves a single email message from the mail
server.

Retrieves multiple email messages for a user from
the mail server.

Sends an email by SMTP.

Receives a message from a supported message
brokering system such as IBM MQ Series.

Sends a file through a supported message brokering
system such as IBM MQ Series.

Send an SMS message to a mobile number using an
email service provided by a third-party SMS
provider

2.2.15 Variable manipulation

Activity ID
BLANKCONCAT

CALCULATE
CLEARLIST
CLEARVARIABLE
CONCAT

COUNTLIST
FOR_EACH_VAR
LOAD_PSVSET
LOGLIST

LOGVARIABLE

LOWERCASE
NEXTNUMBER
PATHMAKE
PATHSPLIT

RANDOMNUMBER

SAVE_PSVSET
SORT_LISTS
SUBSTITUTE
SUBSTITUTE_VAR

Description

Concatenates one or more strings, removing trailing
blanks and inserting a single blank between each
string.

Perform a simple arithmetic calculation.
Clears a variable list.
Clears a variable.

Concatenates one or more strings, removing trailing
blanks from each.

Counts the entries in a variable list.
Iterate for each processing sequence variable
Load processing sequence variables from a PSV file.

Creates entries in the processing sequence log that
contain a variable list's values.

Creates an entry in the processing sequence log that
contains a variable's value.

Converts uppercase characters to lowercase.
Generates the next number in a series.

Constructs a file path from folder path and file name.
Splits a file path into its constituent components.
Generates a pseudo-random number.

Save processing sequence variables to a PSV file.
Sort one or more variable lists in "parallel”

Formats an input string with variable substitution.

Formats an input string with variable substitution.

SUBSTRING Extracts a portion of a string.
UNIQUEID Generate a unique identifier.

UPPERCASE Converts lowercase characters to uppercase.

2.2.16 Zip Activities

Activity ID Description

ZIP_DIRECTORIES Zips a list of directories and places the contents in a zip
archive.

ZIP_FILES Zips a list of files and places them in a zip archive.

ZIP_LIST Lists the contents of a zip archive.

ZIP_UNZIP Lists the contents of a zip archive.

2.2.17 All Supplied Activities

This is a list of all the supplied Activities. There is a quick reference list of
Activities in 2.2 Activities by Group.

Activity ID
BASE64_DECODE
BASE64_ENCODE
BLANKCONCAT

CALCULATE
CALL_3GL

CALL_FUNCTION
CALL_JAVA
CLEARLIST
CLEARVARIABLE
COMPOSER_RUN
CONCAT

COPY_FILE

COUNTLIST

DELETE_FILE

DELETE_SPLF
DIRECTORY_LIST

Description
Base64 decode the contents of a specified file.
Base64 encode the contents of a specified file.

Concatenates one or more strings, removing
trailing blanks and inserting a single blank between
each string.

Perform a simple arithmetic calculation.

Calls an RPG, COBOL or other 3GL program on
IBM i servers

Calls a LANSA function.

Calls a Java program.

Clears a variable list.

Clears a variable.

Run a LANSA Composer Processing Sequence

Concatenates one or more strings, removing
trailing blanks from each.

Copies a file from one directory to another using
the file names, source directory and the target
directory.

Counts the entries in a variable list.

Deletes a flat file from a directory using the
provided file name and full path.

Deletes an IBM i spool file.

Lists the contents of a directory.

DISCOVER_DOC
DISCOVER_EDI

DISCOVER_MAP
DISCOVER_XML

DTAQ_CLEAR
DTAQ_RECEIVE
DTAQ_SEND
EDI_SPLIT
FIND_TPMAP

FOR_EACH_CSVROW
FOR_EACH_INDEX
FOR_EACH_OBJECT
FOR_EACH_TXDOCO
FOR_EACH_TXDOCT

FOR_EACH_TXTLIN
FOR_EACH_VAR
FITP_COMMANDLIST

FTP_DIRLIST

FTP_INBOUND

FTP_OUTBOUND

Discover the document type for a document file
Discover, catalogue and validate EDI document file
Discover attributes associated with map

Discover the root element name of an XML
document

Clear a named data queue

Receive data from a named data queue
Send data to a named data queue

Split EDI document file

Find linked transformation map(s) for a trading
partner

Iterate for each row in a CSV file

Iterate for each index in a range

Iterate for each object in an IBM i server library
Iterate for each pending outbound transaction doc

Iterate for each transaction set (message) registered
for a transaction document

Iterate for each line in a text file
Iterate for each processing sequence variable

Connects to the FTP host specified in the FTP
Configuration and then executes FTP commands
from a command list file.

Connect to the host specified via FTP and then
returns a list of files available in the remote
directory.

Retrieves a list of files from a remote host using
FTP.

Transfers files from the local machine to a remote

FTP_SCRIPT

GET_DTAARA
HASH_FILE
HTTP_GET
HTTP_INBOUND

HTTP_POST

JSM_RECLAIM
JSM_SCRIPT
LAST_SPLF

LOAD_PSVSET

LOGLIST

LOGUSERINFO

LOGVARIABLE

LOWERCASE
MAIL_RECEIVE

MAIL_RECEIVEALL

MAIL_SEND

host by FTP.

Execute an FTP script using the native IBM i5/0S
FTP client

Read a value from a data area

Generate a hash value for a specified file
Retrieves a document from an HTTP server.

Handles an inbound HTTP message and saves it to
a specific directory.

Sends data to an HTTP server and/or receives
response data from the server..

Reclaim LANSA Integrator JSM resources.
Execute a LANSA Integrator JSM script

Retrieve identity of the last spooled file created in
the current job

Loads processing sequence variables from one or
more PSV sets into a PSV file.

Creates entries in the processing sequence log that
contain a variable list's values.

Creates an impromptu entry in the processing
sequence log.

Creates an entry in the processing sequence log that
contains a variable's value.

Converts uppercase characters to lowercase.

Retrieves a single email message from the mail
server.

Retrieves multiple email messages for a user from
the mail server.

Sends an email by SMTP.

MOVE_FILE

MOVE_SPLF

MSG_RECEIVE

MSG_SEND

MSGQ_RECEIVE
MSGQ_SEND
NEXTNUMBER
NOTIFYEVENT
NULL

PATHMAKE

PATHSPLIT
PUT_DTAARA
QUERY_CCSID
RANDOMNUMBER
RENAME_FILE
SAVE_PSVSET

SLEEP
SMS_SEND

Moves a file from one directory to another using
the file names, source directory and the target
directory.

Moves an IBM i spool file to a specified output
queue.

Receives a message from a supported message
brokering system such as IBM MQ Series.

Sends a file through a supported message brokering

system such as IBM MQ Series.

Receive a message from a message queue
Send a message to a message queue
Generates the next number in a series.
Trigger an event notification

This activity does nothing but can be useful as a
placeholder during the design of your processing
sequence.

Constructs a file path from folder path and file
name.

Splits a file path into its constituent components.
Write a value to a data area

Returns the IBM i CCSID for a specified file
Generate a pseudo-random number

Renames a file.

Saves processing sequence variables and their
values to a PSV file.

Suspend processing for a specified time interval

Send an SMS message to a mobile number using
an email service provided by a third-party SMS

SORT_LISTS

SPLF_LIST

SPLF_TO_PDF
SPLF_TO_TEXT
SQL_CALL
SQL_CALLQRYCSV

SQL_CALLQUERY
SQL_COMMIT
SQL_CONNECT
SQL_DISCONNECT
SQL_PARAMS
SQL_PARAMSCSV
SQL_QUERY
SQL_QUERYTOCSV
SQL_ROLLBACK
SQL_UPDATE
SUBSTITUTE
SUBSTITUTE_VAR
SUBSTRING

SYSTEM_COMMAND

TEXT_SUBSTITUTE

provider

Sort one or more variable lists in "parallel”

Lists IBM i spool files in an output queue that meet
specified selection criteria.

Converts an IBM i spool file to a PDF document.
Converts an IBM i spool file to a text document
Execute an SQL stored procedure

Query database using an SQL stored procedure to
CSV

Query database using an SQL stored procedure
Commit a database transaction using SQL
Connect to database using SQL

Disconnect from database using SQL

Set parameter values for SQL operation

Set parameter values for SQL operation from CSV
Query database using SQL

Query database using SQL to output CSV file
Rollback a database transaction using SQL
Update database using SQL

Formats an input string with variable substitution.
Formats an input string with variable substitution.
Extracts a portion of a string.

Executes an operating system command.

Reads a skeleton text file and replaces
%%parm.parmeter%% references in the text with
the current parameter value and writes the

TRANSFORM

TS_CAPTURE
TS_CONNECT
TS_DISCONNECT
TS_EXECUTE
TS_GET
TS_GETBYNAME
TS_GETBYPOS
TS_GETFIELD
TS_SEND
TS_SETBYNAME
TS_SETBYPOS
TS_SETCURSOR

expanded text file.

Runs a transformation map (used as an alternative
to the Transform processing sequence directive
where the identifier of the transformation map to
run is variable and determined at run-time)

Capture aXes 5250 terminal session screen image
Connect to aXes 5250 terminal session
Disconnect from aXes 5250 terminal session
Execute an aXes terminal operations script

Get aXes terminal session attributes

Get aXes 5250 terminal session value by name
Get aXes 5250 terminal session value by position
Get aXes 5250 terminal session field attributes
Send data to aXes 5250 terminal session

Set aXes 5250 terminal session value by name
Set aXes 5250 terminal session value by position

Set aXes 5250 terminal session cursor position

TXDOC_ALLOCCTRL Allocate transaction document control number(s)

TXDOC_EXPORT
TXDOC_IMPORT
TXDOC_KEYS

TXDOC_REGISTER
TXDOC_REGOUTBND
TXDOC_REGOUTEDI

Export transaction data to staging files
Import transaction data from staging files

Retrieve staging file keys for a pending outbound
transaction document

Register transaction document
Register pending outbound transaction document

Register pending outbound EDIFACT transaction
document

TXDOC_REGOUTX12 Register pending outbound EDI X12 transaction

document

TXDOC_STATUS Update transaction document status
UNIQUEID Generate a unique identifier.
UPPERCASE Converts lowercase characters to uppercase.

WAIT_FILESREADY Cache operations for files waiting for "ready"
WATCH_DIRECTORY Watch a directory for new or changed files

WATCH_DTAQ Watch a data queue for new entries
WATCH_MSGQ Watch a message queue for new messages
XML_SPLIT Split XML document file.

XML_QUERY Query value(s) in an XML document file.
XML_VALIDATE Validate an XML document file.

XSL_TRANSFORM Executes an XSL transformation.

ZIP_DIRECTORIES Zips a list of directories and places the contents in a
zip archive.

ZIP_FILES Zips a list of files and places them in a zip archive.
ZIP_LIST Lists the contents of a zip archive.

ZIP_UNZIP Lists the contents of a zip archive.

BASE64_DECODE

This activity will base64 decode the contents of a specified file and write the
decoded content to another file.

Base64 encoding is commonly used when there is a need to encode binary data
that needs to be stored and transferred over media that are designed to deal with
textual data. This is to ensure that the data remains intact without modification
during transport. Base64 encoding is commonly used in a number of
applications including email via MIME, and storing complex data in XML.

INPUT Parameters:
BASE64SOURCE : Required

This parameter must specify the full path and file name of the file whose
contents are to be base64 decoded.

BASEG64TARGET : Optional

This parameter may specify the full path and file name for the file to which
the decoded file contents are to be written. The default, if not specified, is
the special value *AUTO.

If the special value *AUTO is used, the activity will use the path and file
name specified in the BASE64SOURCE parameter but replacing the file
extension with an extension of '.decode’. For example, if you specify
/myfolder/myfile.dat in the BASE64SOURCE parameter, then the activity
will write the decoded contents to the file /myfolder/myfile.decode.

BASEG64REPLACE : Optional

This parameter specifies what the activity should do if the output file already
exists. The default value *INO will cause the activity to end in error if the
output file already exists. Alternatively you can specify *YES to cause the
existing file to be replaced.

OUTPUT Parameters:
BASEG4DECODED :

Upon successful completion, this parameter will contain the actual path and
file name of the output file containing the decoded contents of the file
specified by the BASE64SOURCE parameter.

BASE64_ENCODE

This activity will base64 encode the contents of a specified file and write the
encoded content to another file.

Base64 encoding is commonly used when there is a need to encode binary data
that needs to be stored and transferred over media that are designed to deal with
textual data. This is to ensure that the data remains intact without modification
during transport. Base64 encoding is commonly used in a number of
applications including email via MIME, and storing complex data in XML.

INPUT Parameters:
BASE64SOURCE : Required

This parameter must specify the full path and file name of the file whose
contents are to be base64 encoded.

BASEG64TARGET : Optional

This parameter may specify the full path and file name for the file to which
the encoded file contents are to be written. The default, if not specified, is
the special value *AUTO.

If the special value *AUTO is used, the activity will use the path and file
name specified in the BASE64SOURCE parameter but replacing the file
extension with an extension of '.base64'. For example, if you specify
/myfolder/myfile.dat in the BASE64SOURCE parameter, then the activity
will write the encoded contents to the file /myfolder/myfile.base64.

BASEG64FOLD : Optional

This parameter specifies whether the activity should fold the encoded
contents onto separate lines. The default value *NO will not insert any line
breaks in the encoded contents. Alternatively you can specify *YES to cause
the activity to insert a carriage-return and line-feed (CRLF) after every 76
characters of encoded output.

BASEG64REPLACE : Optional

This parameter specifies what the activity should do if the output file already
exists. The default value *INO will cause the activity to end in error if the
output file already exists. Alternatively you can specify *YES to cause the
existing file to be replaced.

OUTPUT Parameters:
BASEG4ENCODED :

Upon successful completion, this parameter will contain the actual path and
file name of the output file containing the encoded contents of the file
specified by the BASE64SOURCE parameter.

BLANKCONCAT

This activity concatenates one or more strings, removing trailing blanks and
inserting a single blank between each input string. At least two and up to 9 input
strings may be specified, either as literals or variables or a mixture of both.

INPUT Parameters:
STRINGIN1 : Required

This parameter specifies the first string to be trimmed and concatenated.
STRINGIN2 : Required
This parameter specifies the second string to be trimmed and concatenated.

STRINGIN3STRINGIN4
STRINGINS
STRINGING6
STRINGIN7
STRINGINS
STRINGIND : Optional

These parameters may be used to specify further strings to be blank
concatenated. If used, they must be specified contiguously (the activity stops
looking after the first parameter whose value is not specified).

OUTPUT Parameters:
STRINGOUT :

Upon completion, this parameter will contain the blank concatenated string.

CALCULATE

This activity performs a simple arithmetic calculation, given an operator and
two operands. It is intended for simple calculations, usually using integer
values. The calculation for the modulo (remainder) operator assumes integer
values are specified.

All calculations are performed using a precision of 30,9. If any inputs or
intermediate or final results exceed the number of significant or decimal digits,
then loss of precision will result without warning or error.

Note: Intensive calculations, especially when relating to application data (as
opposed to variables that control the process orchestration) should be done in
compiled code units (such as custom activities, Java or IBM i 3GL programs or
LANSA functions) that are called from the processing sequence.

INPUT Parameters:
NUMBERIN1 : Required

This parameter specifies the first operand for the calculation. The value
specified must be numeric.

OPERATOR : Required

This parameter must specify the arithmetic operator to be used for the
calculation. You must specify one of the following values:

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

% (modulo, remainder)

NUMBERIN2 : Required

This parameter specifies the second operand for the calculation. The value
specified must be numeric. Further, for operators / and % (division and
modulo operations), the value cannot be zero.

OUTPUT Parameters:
NUMBEROUT :

Upon successful completion, this output parameter contains the result of the
specified calculation.

CALL_3GL

This activity calls a program. The program may be an RPG, COBOL or Control
Language program or written using some other 3GL supported on IBM i. This
activity is only supported on IBM i servers.

The activity can pass and receive up to 9 parameters, according to the
requirements of the specified program. All parameters are passed as A(256).
The called program should treat the parameters as character data and must not
attempt to address more than 256 bytes for each parameter.

It is the user's responsibility:

- to ensure that the program is available in the library list at execution time

- to ensure that the executing job has the necessary authorities to make the call
- to specify at least the number of parameters expected by the called program
- to ensure that the called program is appropriate for the purpose.

INPUT Parameters:
PGM : Required

This parameter specifies the name of the program to call.
LIB : Optional

This parameter can specify the name of the library containing the program to
call. If it is not specified, the processing sequence will use the library list to
locate the program.

INPUT and OUTPUT Parameters:

PARMO01PARMO02

PARMO03

PARMO04

PARMO05

PARMO06

PARMO07

PARMO08

PARMO9 : Optional

These parameters can be used to pass and receive up to nine parameters
to/from the called program. The parameters are passed and received as
character variables of length 256. The activity will pass and receive the
number of parameters (up to nine) for which you specify values or alternate
variable names. If used, they must be specified contiguously (the activity

stops looking after the first parameter whose value is not specified).

CALL_FUNCTION

This activity calls a named LANSA function. The LANSA function may be
contained in another LANSA configuration on the same or a different (*)
server. The activity can pass and receive up to seven values via the LANSA
exchange list. All parameters are passed as A(256).

(* Note a LANSA Composer Remote Request Server license is required for the
remote server in order to call a LANSA function on a different server system.)

It is the user's responsibility:

e To ensure that the function is available in the necessary LANSA system and
partition

e To ensure that the executing job (*) has the necessary authorities to make the
call

e To ensure that the called function is appropriate for the purpose.

(*) Depending on the request, the executing job will usually be a job submitted
by the LANSA Composer Request Server.

Further important information about the CALL_FUNCTION activity is
provided under the following headings later in these notes:

LANSA programming considerations for the called function

Calling a function in the same system and partition as LANSA Composer

Calling a function in another LANSA system or partition

Function calls executed through the LANSA Composer Request Server
You should also refer to:

2.3.10 LANSA System Configuration

Appendix F. The LANSA Composer Request Server

INPUT Parameters:
LANSACONEFIG : Optional

This parameter specifies the name of a LANSA system configuration that
identifies the LANSA system and partition containing the function to be
called and the connection details, if required, to connect to the server system
on which the LANSA system resides. The partition containing the function
to be called must be a multilingual partition.

PROCESS : Optional
This parameter specifies the name of the process containing the function to

call. If not specified, the activity assumes *DIRECT. If *DIRECT is
specified or assumed, the function must be defined with FUNCTION
OPTIONS(*DIRECT). On Windows servers the process name (not
*DIRECT) must be specified for requests that will be processed through the
request server.

FUNCTION : Required

This parameter specifies the name of the function to call. The function name
must always be specified.

SYNCHRONOUS : Optional

This parameter specifies whether the activity waits for the function call to
complete. It defaults to YES, which means the activity does wait. If any
other value is specified, the activity posts the function call request and
completes immediately. Note that the activity can only receive values
returned from the called function (in the EXCHO1 ... EXCHO7 input/output
parameters) if this parameter is YES.

SYNCHTIMEOUT : Optional

This parameter specifies the number of seconds the activity waits for a
synchronous call to complete when executed through the request server. If
not specified, a default of 30 seconds is used. If the timeout is exceeded, the
activity ends with an error. Note the timeout ONLY applies to requests
executed through the request server.

EXPIRES : Optional

On IBM i servers only, this parameter specifies the number of seconds, after
it is posted to the request server, that the request remains effective. If more
than the specified interval has elapsed before the request server begins to
process the request, the request server will consider the request to have
expired and will not process it. If not specified, a default of zero (0) is used,
which means that no expiry applies to the request. Note that the expiry
ONLY applies to requests executed through the request server for IBM i
servers. INo expiry applies when running on Windows servers.

LANSASYS : Optional (deprecated)

This parameter specifies the name of the program library for the LANSA
system containing the function to call. If not specified, the activity assumes
the same LANSA system as is executing LANSA Composer. This parameter
is only used on IBM i servers and is provided for backwards compatibility.
On Windows servers (and for new solutions on IBM i servers) you should

specify a LANSA system configuration name in the LANSACONFIG
parameter. If a LANSA system configuration is named in the
LANSACONFIG parameter, the value of this parameter is not used.

PARTITION : Optional (deprecated)

This parameter specifies the name of the partition containing the function to
call. If not specified, the activity assumes the same partition in which
LANSA Composer is executing. This parameter is only used on IBM i
servers and is provided for backwards compatibility. On Windows servers
(and for new solutions on IBM i servers) you should specify a LANSA
system configuration name in the LANSACONFIG parameter. If a LANSA
system configuration is named in the LANSACONFIG parameter, the value
of this parameter is not used. The partition containing the function to be
called must be a multilingual partition.

INPUT and OUTPUT Parameters:
EXCHO01EXCHO02
EXCHO03
EXCHO04
EXCHO05
EXCHO06
EXCHO07 : Optional

These parameters can be used to pass and receive up to seven values to/from
the called function via the LANSA exchange list. The parameters are placed
on and received from the exchange list as character variables of length 256
using the variable names EXCHO1 ... EXCHO7.

The called function must also use the variables names EXCHO1 ... EXCHO07
in order to receive the parameter values. If the called function needs to return
values via these variables, it must execute the EXCHANGE command at the
appropriate point.

The activity will place on and receive from the exchange list the number of
parameters (up to seven) for which you specify values or alternate variable
names. If used, they must be specified contiguously (the activity stops
looking after the first parameter whose value is not specified).

Note that the activity can only receive values returned from the called
function when executed synchronously - see the description of the
SYNCHRONOUS parameter.

Refer to the description of the EXCHANGE RDML command in the
LANSA product documentation for further information on exchanging

information via the exchange list.

LANSA programming considerations for the called function

The following LANSA programming considerations apply to the way in which
the called function must be defined:

e [f *DIRECT is specified or assumed for the PROCESS parameter, the
function must be defined with FUNCTION OPTIONS(*DIRECT)

e (alled functions may be RDML or they may be fully RDMLX enabled.

e The partition containing the function to be called must be a multi-lingual
partition.

e The function must define fields EXCHO1 ... EXCHO7 in order to receive
values (via the exchange list) that are specified in the corresponding
CALL_FUNCTION activity parameters.

e The function must use the EXCHANGE command with fields EXCHO1 ...
EXCHO7 in order to return values (via the exchange list) for variables that
are specified in the corresponding CALL_FUNCTION activity parameters.

e On IBM i servers only, if the CALL_FUNCTION activity will execute via
the LANSA Composer request server, position 487 of LANSA data area
DC@AO1 must be set to "Y' before compiling the function. If this condition
is not met, the called function will not correctly receive or return the
EXCHO1 ... EXCHO7 variable values.

Refer to LANSA documentation for more information on LANSA features
referred to above.

Depending on all the requirements, these considerations may sometimes
necessitate that your programming staff write functions specifically for the
purpose. However, even if this is necessary, the functions can frequently be
simple "stub" functions that call other existing functions in the LANSA
application.

Calling a function in the same system and partition as LANSA
Composer

If you want to call a function that is available in the same LANSA system and
partition as LANSA Composer, you only need to specify the function name in
the FUNCTION parameter, and any values to be exchanged with the function in
the EXCHO1 ... EXCHO7 parameters. You do not need to specify values for the
LANSACONFIG, PROCESS or SYNCHRONOUS parameters (nor the
deprecated LANSASYS and PARTITION parameters).

Providing (1) *DIRECT is specified or assumed for the PROCESS parameter,
and (2) YES is specified or assumed for the SYNCHRONOUS parameter, the
function call will be performed directly from the activity processor, in the same
job and context. When the CALL_FUNCTION activity runs in this mode, the
value of the SYNCHTIMEOUT parameter is ignored.

Functions called in this way must be defined with FUNCTION
OPTIONS(*DIRECT).

Calling a function in another LANSA system or partition

You can call a function that is available in a different LANSA system and/or
partition than LANSA Composer on the same or a different server system. To
do this, you should:

a)create a LANSA system configuration in LANSA Composer that identifies the
LANSA system and partition you wish to use, and

b)specify the LANSA system configuration name on the LANSACONFIG
parameter.

Such requests offer greater flexibility, including the ability to call the required
function through a specified process (instead of with *DIRECT) and
synchronously or asynchronously processing the request. These types of
function calls will execute through the LANSA Composer Request Server, and
some special considerations apply.

Function calls executed through the LANSA Composer Request
Server

The CALL_FUNCTION activity will seek to execute the function call through
the LANSA Composer request server if any of the following are true:

¢ You specify a LANSA system configuration name using the
LANSACONFIG parameter

(OR on IBM i servers only, the values specified for the LANSASYS and
PARTITION parameters identify a LANSA system and/or partition that is
not the same as for the LANSA Composer system.)

* You specify a process name (other than *DIRECT) in the PROCESS
parameter.

¢ You specify a value other than YES for the SYNCHRONOUS parameter.

When executed this way, the function call executes in another process or job
(the request server). LANSA Composer and the request server process or job

communicate cooperatively to execute the request and return the results.

Some special considerations apply to this mode of execution, including
considerations related to:

e User profiles, authorities and execution environment
e IBM i work management (jobs and subsystems)
e The way in which the called function must be compiled

You should refer to Appendix F (The LANSA Composer Request Server) in the
LANSA Composer guide for detailed information about considerations for
requests executed through the LANSA Composer Request Server.

CALL_JAVA

This activity calls a named Java program, and can pass up to 9 command-line
parameter (or argument) values. It cannot receive parameter values back from
the Java program, however.

It is the user's responsibility to ensure the program and all required supporting
components are available in the default or specified classpath at execution time
and that the executing job has the necessary authorities to make the call.

The CALL_JAVA activity will use a Java environment with system default
execution attributes. There is no means by which you can specify or override
the Java VM version or other parameters such as those affecting JVM garbage
collection.

Depending on the operating environment, load and capacity, the overhead of
starting a JVM for each execution of the CALL_JAVA activity may become
excessive in some applications. The CALL_JAVA activity is intended mostly
for relatively infrequent non-intensive use. If your application calls for
intensive use (for example, executing a Java program repeatedly in a tight loop),
then you should consider and test the performance characteristics before
commiting to this activity as a solution. Some applications may be better served
with a custom solution.

INPUT Parameters:
CLASS : Required

This parameter specifies the name of the Java class to be run. The class
name may be qualified by one or more package names. Each package name
must be followed by a period. For example 'pkgl.pkg2.myClass'. You may
specify the special value *VERSION' to have Java run with the -version
switch and list the JVM version information in the processing sequence log
(when run with sufficient logging in effect). Alternatively, you may specify
the name of a jar file in which the startup class is indicated by the Main-
Class specified in the manifest.

CLASSPATH : Optional

This parameter can specify the path used to locate Java classes. Directories
are separated by colons. If not specified, the classpath will be determined by
the operating environment.

PARMO01PARMO02
PARMO03

PARMO04
PARMO05
PARMO06
PARMO07
PARMO08
PARMO9 : Optional

These parameters can be used to pass up to nine command-line parameter (or
argument) values to the called Java program. The activity will pass the
number of parameters (up to nine) for which you specify values or alternate
variable names. If used, they must be specified contiguously (the activity
stops looking after the first parameter whose value is not specified).

OUTPUT Parameters:
There are no output parameters.

CLEARLIST
This activity clears the variable list specified in the parameter.

INPUT Parameters:
LIST : Required
This parameter specifies the variable list to be cleared.

You should always specify a variable, not a literal value, for this parameter.
The variable list's values are not used by this activity - rather the variable list
specified is cleared of all values.

OUTPUT Parameters:
There are no output parameters.

CLEARVARIABLE

This activity clears the value of the variable specified in the parameter.

For most purposes, this is functionally equivalent to assigning an empty value to
the variable using an ASSIGN processing sequence directive.

INPUT Parameters:
VARIABLE : Required
This parameter specifies the variable whose value is to be cleared.

You should always specify a variable, not a literal value, for this parameter.
The variable's value is not used by this activity - rather the variable is cleared
of its value.

OUTPUT Parameters:
There are no output parameters.

COMPOSER_RUN

This activity runs a named LANSA Composer processing sequence. It can pass
up to five named parameter values to the processing sequence. The processing
sequence to be run does not have to be and usually is not in the same LANSA
Composer configuration or even on the same server (*) system as the activity
that initiates the run. The processing sequence can be run synchronously or
asynchronously.

(* Note a LANSA Composer Remote Request Server license is required for the
remote server in order to run a Processing Sequence on a different server
system.)

NOTE:

The COMPOSER_RUN activity will run the specified processing sequence
through the LANSA Composer Request Server. This means that the processing
sequence runs in another process or job (the request server). LANSA Composer
and the request server communicate cooperatively to execute the request and
return the results.

As a consequence, some particular considerations apply, including
considerations related to:

e User profiles, authorities and the execution environment
e IBM i work management (jobs and subsystems)

Refer to 2.3.10 LANSA System Configuration for information about the
LANSA system configurations that are used in conjunction with this activity
and with the CALL_FUNCTION activity.

Refer to Appendix F. The LANSA Composer Request Server in the LANSA
Composer guide for detailed information about considerations for requests
executed through the LANSA Composer request server.

INPUT Parameters:
LANSACONEFIG : Optional

This parameter specifies the name of a LANSA system configuration that
identifies the LANSA system and partition containing the processing
sequence to run and the connection details, if required, to connect to the
server system on which the LANSA system resides.. This parameter is
required on Windows servers and recommended on IBM i servers.

PSEQ : Required

This parameter identifies the processing sequence to run. Either the external
identifier (name) or the internal identifier (as shown on the Audit tab) may
be specified.

SYNCHRONOUS : Optional

This parameter specifies whether the activity waits for the processing
sequence run to complete. It defaults to YES, which means the activity does
wait. If any other value is specified, the activity posts the processing
sequence run request and completes immediately.

SYNCHTIMEOUT : Optional

This parameter specifies the number of seconds the activity waits for a
synchronous run to complete. If not specified, a default of 30 seconds is
used. If the timeout is exceeded, the activity ends with an error.

EXPIRES : Optional

On IBM i servers only, this parameter specifies the number of seconds, after
it is posted to the request server, that the request remains effective. If more
than the specified interval has elapsed before the request server begins to
process the request, the request server will consider the request to have
expired and will not process it. If not specified, a default of zero (0) is used,
which means that no expiry applies to the request. No expiry applies when
running on Windows servers.

PARMNAME(O1, PARMVALUEO1PARMNAMEO(02, PARMVALUE(02
PARMNAMEO03, PARMVALUEO03

PARMNAME(04, PARMVALUE(04

PARMNAMEO05, PARMVALUEQOQ5 : Optional

These parameters can be used to pass up to five processing sequence
parameter name and value pairs to the processing sequence.

e PARMNAMEO1 (... PARMNAMEDOQ5) should contain the parameter name
as defined in the processing sequence to be run

e PARMVALUEO1 (... PARMVALUEQ5S) should contain the value that is to
be passed to the processing sequence for the corresponding parameter
name. The maximum value length that can be passed is 200.

If used, they must be specified contiguously (the activity stops looking after
the first parameter name/value pair that is not specified).
LANSASYS : Optional (deprecated)

This parameter specifies the name of the program library for the LANSA
system containing the processing sequence to run. If not specified or if

*CURRENT is specified, the activity assumes the same LANSA system as is
executing LANSA Composer. This parameter is only used on IBM i servers
and is provided for backwards compatibility. On Windows servers (and for
new solutions on IBM i servers) you should specify a LANSA system
configuration name in the LANSACONFIG parameter. If a LANSA system
configuration is named in the LANSACONFIG parameter, the value of this
parameter is not used.

PARTITION : Optional (deprecated)

This parameter specifies the name of the partition containing the processing
sequence to run. If not specified or if *CURRENT is specified, the activity
assumes the same partition in which LANSA Composer is executing. This
parameter is only used on IBM i servers and is provided for backwards
compatibility. On Windows servers (and for new solutions on IBM i servers)
you should specify a LANSA system configuration name in the
LANSACONFIG parameter. If a LANSA system configuration is named in
the LANSACONFIG parameter, the value of this parameter is not used.

OUTPUT Parameters:
There are no output parameters.

CONCAT

This activity concatenates one or more strings, removing trailing blanks from
each string as it does so. At least two and up to 9 input strings may be specified,
either as literals or variables or a mixture of both.

INPUT Parameters:
STRINGIN1 : Required

This parameter specifies the first string to be trimmed and concatenated.
STRINGIN2 : Required
This parameter specifies the second string to be trimmed and concatenated.

STRINGIN3STRINGIN4
STRINGINS
STRINGING6
STRINGIN7
STRINGINS
STRINGIND : Optional

These parameters may be used to specify further strings to be concatenated.
If used, they must be specified contiguously (the activity stops looking after
the first parameter whose value is not specified).

OUTPUT Parameters:
STRINGOUT :

Upon completion, this parameter will contain the concatenated string.

COPY_FILE

This Activity will copy a file from one directory to another.
When executed on a Windows platform a system copy command is executed.

When executed on an IBM i platform an i5/0S CPY command is executed.
Note that files in the integrated file system are copied — if you want to copy
objects in the QSYS file system, you must use IFS file system notation to do so.

When executed on an IBM i platform, this activity is capable of performing data
conversion between different CCSIDs during the copy operation. For example,
to convert the data in a text file from its original encoding to UTF-8 you could
use the parameter values TOCCSID(1208) DTAFMT(*TEXT).

INPUT Parameters:
FROMFULLNAME : Required

This parameter should contain the full path and name of the file to be copied
For example: Windows C:\dirl\myfile.txt

IBMi /indir/myfile.txt
TODIRECTORY : Optional (*)

This parameter may contain the full directory path of the destination
directory. If specified, the file will be copied to this new location using the
same name and extension as the original file. If not specified, you must
provide a value for the TOFULLNAME parameter.

TOFULLNAME : Optional (*)

This parameter may specify the path of the directory the object is to be
copied to AND the new name of the object. If specified, the file will be
copied to this new location using the new file name and extension specified.
If not specified, you must provide a value for the TODIRECTORY
parameter.

FROMCCSID : Optional, IBM i servers only

This parameter may specify the method for obtaining the coded character set
identifier (CCSID) for the source of the copy operation. This CCSID will be
used for data conversion, if requested.

This parameter corresponds directly to the FROMCCSID parameter of the
IBM i CPY command and you may use any values that are defined for the
CPY command. At IBM i V7R1 the possible values include *OBJ,
*PCASCII, *JOBCCSID or a CCSID value in the range 1-65533. Refer to

the IBM documentation for the CPY command for more information.

The special (default) value *DEFAULT specifies that the FROMCCSID
parameter will not be specified. Note that this parameter applies only when
LANSA Composer is running on an IBM i server.

TOCCSID : Optional, IBM i servers only

This parameter may specify the data coded character set identifier (CCSID)
for the target of the copy operation.

This parameter corresponds directly to the TOCCSID parameter of the IBM i
CPY command and you may use any values that are defined for the CPY
command. At IBM i V7R1 the possible values include *OBJ, *CALC,
*PCASCII, *STDASCII, *JOBCCSID or a CCSID value in the range 1-
65533. Refer to the IBM documentation for the CPY command for more
information.

The special (default) value *DEFAULT specifies that the TOCCSID
parameter will not be specified. Note that this parameter applies only when
LANSA Composer is running on an IBM i server.

DTAFMT : Optional, IBM i servers only

This parameter may specify the format of the data in the file to be copied..

This parameter corresponds directly to the DTAFMT parameter of the IBM i
CPY command and you may use any values that are defined for the CPY
command. At IBM i V7R1 the possible values are *TEXT and *BINARY.
Refer to the IBM documentation for the CPY command for more
information.

The special (default) value *DEFAULT specifies that the DTAFMT
parameter will not be specified. Note that this parameter applies only when
LANSA Composer is running on an IBM i server.

AUT : Optional, IBM i servers only

This parameter may specify the method used to assign authority information
to copied objects.

This parameter corresponds directly to the AUT parameter of the IBM i CPY
command and you may use any values that are defined for the CPY
command. At IBM i V7R1 the possible values are *OBJ, *INDIR and
*INDIROBJ. Refer to the IBM documentation for the CPY command for
more information.

The special (default) value *DEFAULT specifies that the AUT parameter
will not be specified. Note that this parameter applies only when LANSA

Composer is running on an IBM i server.

OUTPUT Parameters:

FULLNAMEOUT
Upon successful completion, this parameter will contain the full path and file
name of the resulting destination file.

COUNTLIST
This activity counts the entries in the variable list specified in the parameter.

INPUT Parameters:
LIST : Required

This parameter specifies the variable list to be counted.
You should always specify a variable, not a literal value, for this parameter.

OUTPUT Parameters:
COUNT:

Upon successful completion, this output parameter contains the number of
entries in the specified variable list.

DELETE_FILE

This Activity will delete a flat file from a directory.
The full path and name of the file must be provided.
When executed on a Windows platform a system del command is executed.

When executed on an IBM i platform an i5/0S DEL command is executed.
Note that files in the integrated file system are deleted — if you want to delete
objects in the QSYS file system, you must use IFS file system notation to do so.

INPUT Parameters:
FILENAME : Required

This parameter should contain the full path and name of the file to be deleted
For example: Windows c:\mydir\myfile.txt
IBMi /dirabc/file.txt

OUTPUT Parameters:
There are no output parameters.

DELETE_SPLF

This activity will delete a spool file on an IBM i server. It is only supported on
IBM i servers.

The input parameters must fully identify the spool file to be deleted. You must
specify the SPLFNUMBER parameter if there is more than one spool file of the
name specified by the SPLFNAME parameter for the job specified by the first
three parameters

INPUT Parameters:
JOBNAME : Required

This parameter specifies the name of the job that created the spool file to be
deleted.

JOBUSER : Required

This parameter specifies the user profile name of the job that created the
spool file to be deleted.

JOBNUMBER : Required

This parameter specifies the job number of the job that created the spool file
to be deleted.

SPLFNAME : Required
This parameter specifies the name of the spool file to be deleted.
SPLFNUMBER : Optional

This parameter specifies the number of the spool file to be deleted and is
only required if there is more than one spool file of the name specified by the
SPLFNAME parameter for the job specified by the first three parameters. If
not specified, a default special value of *ONLY is used. You may specify
special values *ONLY or *LAST. Otherwise specify the number of the job's
spooled file that is to be deleted.

OUTPUT Parameters:
There are no output parameters.

DIRECTORY_LIST

This activity will list the contents of a directory. Using this activity you can list
either the files or the directories contained in the specified directory. You can
also specify whether the list should include contents of nested sub-directories
contained in the specified directory.

Optionally, files (but not sub-directories) may be filtered using the FILENAME
and/or EXTENSION parameters. If neither parameter is specified, all available
files will be included in the file list (when the content requested is *FILES).
Activities that populate list variables are often followed by a LOOP processing

sequence directive or other constructs to process the contents of the list. Refer
to Variables and Lists for more information about the use of list variables.

INPUT Parameters:
DIRECTORY : Required

This parameter should contain the full path of the directory whose contents
are to be listed.

For example: Windows C:\mydirectory

IBMi /orders/January
CONTENT : Optional

This parameter specifies whether files or directories contained in the
specified directory are to be listed. You may specify one of the following
values:

*FILES (to list the files)
*DIRECTORIES (to list the directories)

(The alias value *FOLDERS may also be used as an alternative to
*DIRECTORIES)

If this parameter is not specified, a default of *FILES is assumed.
MAXDEPTH : Optional

This parameter specifies whether the content of sub-directories of the
specified directory should be included, and, if so, the nested depth to which
this should apply. You may specify one of the following values:

1 (lists only the files or directories that are immediate children of the
specified directory)

n (list files or directories to the nesting depth specified by the integer value)
*MAX (lists files or directories contained in the specified directory and all

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm

descendant directories)
If this parameter is not specified, a default of 1 (one) is assumed.

Note that in order to avoid unintended "runaway" processing, the special
value *MAX actually limits the nesting depth to 9 (nine), which would be
reasonable for most circumstances. If you wish to process directory contents
to a nesting depth greater than this, then you may do so by explicitly
specifying an appropriate integer value.

CAUTION: Use this parameter with care. It is very easy to inadvertently
make a request much larger than you might have anticipated. Specifying a
value greather than 1 (one) in conjunction with a directory that contains
many files or sub-directories may lead to an unexpectedly long processing
time for the activity and/or to processing limits being exceeded.

FILENAME : Optional

This parameter may be specified when you wish to list files that match a
specified file name and/or extension pattern. This parameter only applies
when the content requested (in the CONTENT parameter) is *FILES.

The filter matching is not case sensitive. For example a value of 'abc*.txt'
will result in only files with an extension of .TXT or .txt and with names
beginning with '"ABC' or 'abc' being returned in the file list.

When constructing the file name mask, you may use the following
placeholder characters:

Will match any single character at the specified position of the name or
? extension of the file name

Will generically match any/all remaining characters in the name or
* extension component of the file name

Within either the name or extension component of the file name mask, any
characters after the first *' are not effective and will be ignored. If there is
no extension component, then files of any (or no) extension will be matched.

Examples:
* K Will list all files (equivalent to omiting this parameter value)

ab*.* Will list all files whose names begin with 'ab' and with any (or no)
file extension

P77 Will list all files whose names contain 'd" in the 4th position and that
d*.csv have an extension of 'csv'

xm Will list all files whose file extension begins with 'xm'

EXTENSION : Optional

This parameter may be specified when you wish to list only files with a
certain extension. This parameter only applies when the content requested
(in the CONTENT parameter) is *FILES.

The filter matching is not case sensitive and does not require the "." prefix.
For example a value of 'xml' will result in only files with an extension of
XML or .xml being returned in the file list.

This parameter provides better performance than the FILENAME parameter
alone if you only want to select files by file extension. (This is because it is
implemented at the LANSA Integrator XMLFileService level, rather than as
a post-processing step). You may specify both the FILENAME and
EXTENSION parameters - the value of the EXTENSION parameter is
applied first and matching files are then tested aainst the FILENAME mask,
if provided.

ORDERBY : Optional

This parameter allows you to specify the order in which the files will be
listed in the FILELIST output parameter. You may specify one value from
each of the following two groups (each value should be separated by at least
one space):

1. *NONE | *NAME | *MODIFIED

2. *ASCEND | *DESCEND

You must specify quote marks around the value(s) to distinguish them from
built-in variable names.

The values are described further below. If you specify more than one value
from each group, the last-specified value is effective. If you do not specify
this parameter, the default values is *NONE, meaning that no explicit
ordering is performed (in this case the actual order is undefined by LANSA
Composer but may be subject to operating environment factors).

1. *NONE | *NAME | *MODIFIED

These values specify the file attribute that is used to order the list of files.
Specify *NAME to have the list ordered by file path. Specify *MODIFIED
to have the list ordered by the date last modified for each file.

2. *ASCEND | *DESCEND

These values specify the ordering to apply. Specify *ASCEND to list the
files in ascending order or *DESCEND for descending order. If not
specified, the default is *ASCEND.

For example, specify *MODIFIED *DESCEND' to have the files listed in
descending order of the last-modified date.

NOTE: The ORDERBY parameter applies whether the content requested (in
the CONTENT parameter) is *FILES or *DIRECTORIES. If the
MAXDEPTH parameter specifes a value greater than 1 (one), ORDERBY
affects the order of files or directories within each directory listed.

OUTPUT Parameters:

FILELIST
Specifies the name of a list variable that, upon successful completion, will
contain a list of the files or directories that match the request.

The list will contain the full path and file or directory name. If you specify a
value other than *NONE for the ORDERBY parameter, the list entries will
be ordered as specified (within each sub-directory, if applicable).

For example: Windows C:\mydirectory\filel.txt
IBMi /orders/January/ord01.xml

DISCOVER_DOC

This activity determines the document type (as defined in LANSA Composer's
Document types) corresponding to a specified transaction document file.

INPUT Parameters:
DOCFILE : Required

This parameter specifies the path and name of the transaction document file.
DOCTYPEGROUP : Optional

This parameter may specify the name of a document type group that will
limit the document type definitions against which the specified transaction
document file is matched. The document type groups provide a further
means for you to qualify the document discovery process according to the
context in which it is running.

OUTPUT Parameters:
DOCTYPE :

Upon successful completion, this parameter will contain the name of the
document type that applies to the specified transaction document file. If a
matching document type is not found, this parameter will contain the special
value *UNKNOWN'.

DOCPSEQ :

Upon successful completion, this parameter will contain the name of the
processing sequence associated with the document type (if specified for the
document type). Your processing sequence can invoke the processing
sequence using the Processing Sequence directive (the processing Sequence
directive allows you to specify a processing sequence variable that contains
the processing sequence identifier).

DISCOVER_EDI

This activity processes an EDI transaction document file to discover more
information about its contents. If the document has already been registered in
the transaction document register, the activity will update the register with
information extracted from the document.

The functions of this activity include:
e determining the EDI document standard, version and the transaction type;

e matching the EDI transaction document to a LANSA Composer trading
partner definition, and updating the transaction document register
accordingly;

e populating the trading partner agreements (interchanges), groups and
transactions (messages) sections of the transaction document register with
initial information about the contents of the EDI transaction document;

e optionally validating the EDI transaction(s) (if specified for the matching

trading partner, and if a SEF file is specified for the matching LANSA
Composer document standard and version).

INPUT Parameters:
EDINUMBER : Required

This parameter specifies the transaction document envelope number for the
transaction document. This number is normally assigned by the
TXDOC_REGISTER activity.

If the document has not been registered, you can specify the special value
"**NONE'. If you specify *NONE/, the activity will not attempt to use or
update the transaction document register with information gleaned from the
document.

EDIFILE : Required

This parameter specifies the path and name of the EDI transaction document
file.

EDIDIR : Required

This parameter specifies the direction (I=inbound, O=outbound) for the
document exchange.

OUTPUT Parameters:
EDISTD :

Upon successful completion, this parameter will contain the document

standard id (as defined in LANSA Composer's Document types) that applies
to the EDI transaction document.

EDIVER :

Upon successful completion, this parameter will contain the document
standard version id (as defined in LANSA Composer's Document types) that
applies to the EDI transaction document.

EDITYPE :

Upon successful completion, this parameter will contain the EDI transaction
type (eg: 850 or INVOIC) of the EDI transaction(s) contained in the EDI
transaction document.

EDIPRODTEST :

Upon successful completion, this parameter will contain P if the EDI
transaction is a production transaction or T if it is a test transaction.

EDIVALID:

Upon successful completion, this parameter indicates whether the transaction
is deemed to be valid (Y) or not (IN), if the transaction was validated
according to the LANSA Composer settings in effect for the applicable
trading partner and document standard.

EDIMATCHTP :

Upon successful completion, this parameter will contain the identifier of the
trading partner that matches the EDI transaction document.

DISCOVER_MAP

This activity retrieves attributes (including many data interchange attributes)
associated with a specified transformation map definition.

INPUT Parameters:
MAPID : Required

This parameter specifies the identifier of the transformation map whose
attributes are to be retrieved. You may specify the special value
*TRANSFORM to retrieve attributes for the current transformation map (the
transformation map identified by the *TRANSFORM built-in value).

OUTPUT Parameters:
MAPTYPE :

Upon successful completion, this parameter will contain the transformation
map type code value that applies to the specified transformation map.

DOCTYPE :

Upon successful completion, this parameter will contain the name of the
document type (if any) associated with the specified transformation map.

DIRECTION :

Upon successful completion, this parameter will contain the map direction (I,
O) that applies to the specified transformation map.

STANDARD :

Upon successful completion, this parameter will contain the name of the
document standard that applies to the specified transformation map.

VERSION :

Upon successful completion, this parameter will contain the name of the
document standard version that applies to the specified transformation map.

TRANSACTIONID :

Upon successful completion, this parameter will contain the transaction type
that applies to the specified transformation map.

DOCEXTN :

Upon successful completion, this parameter will contain the file extension
associated with the document type.

DOCPSEQIN :
Upon successful completion, this parameter will contain the identifier of the

inbound processing sequence associated with the document type. Your
processing sequence can invoke the processing sequence using the
Processing Sequence directive.

DOCPSEQOUT :

Upon successful completion, this parameter will contain the identifier of the
outbound processing sequence associated with the document type. Your
processing sequence can invoke the processing sequence using the
Processing Sequence directive.

DISCOVER_XML

This activity interrogates an XML document to discover the type of information
it contains. A processing sequence might use the output from this activity to
determine how to process different types of XML documents - for example,
what type of transformation to run for them.

If the activity fails to load or parse the document, it will set an error return code.

For performance reasons, this activity performs simplified parsing of
the XML document. It does NOT load the entire document and cannot

assert that the XML document is well-formed or valid. In some cases,
it may return, without error, a root element name for invalid or badly-
formed XML documents.

INPUT Parameters:
XMLFILE : Required
This parameter specifies the path and name of the XML document.

OUTPUT Parameters:
XMLROOT :

Upon successful completion, this parameter will contain the name of the root
element of the specified XML document. The namespace prefix, if present,
has been removed.

XMLROOTUPPER :

Upon successful completion, this parameter will contain the same value as
the XMLROOT output parameter, but with lowercase characters translated to
uppercase.

Note: XML tags are strictly case-sensitive. The uppercase version of the
document root element name is provided for your convenience, but it is your
responsibility to ensure that using this converted name is valid and
appropriate for your application.

XMLNAMESPACE :

Upon successful completion, this parameter will contain the namespace URI
associated with the root element, if any.
XMLNAMESPACEUPPER :

Upon successful completion, this parameter will contain the same value as
the XMLNAMESPACE output parameter, but with lowercase characters

translated to uppercase.

Note: XML tags are strictly case-sensitive. The uppercase version of the
namespace URI is provided for your convenience, but it is your
responsibility to ensure that using this converted name is valid and
appropriate for your application.

DTAQ_CLEAR

This activity clears a named data queue.

Refer also to the companion DTAQ_RECEIVE, DTAQ_SEND and
WATCH_DTAQ activities that allows you to send and receive data to and from
a named data queue.

Note: Data queues are persistent objects but their data content can be
lost or corrupted during a system failure. Backup, recovery and

maintenance of data queues used in your LANSA Composer solution
is your responsibility — you should make provision for this in your
implementation plans.

IBM i Platform Notes

Data queues are a native operating system feature on the IBM i server. The full
range of capabilities of this activity may only be available on IBM i servers.

(The implementation of this activity on an IBM i server uses the QCLRDTAQ
system API.)

Refer to the description of the DTAQ_SEND activity for more complete IBM i
Server Platform Notes relating to the suite of DTAQ activities. Refer to IBM i
documentation concerning data queues for further information about the
operating system features upon which this activity depends.

Windows Server Platform Notes

Although data queues are a native feature of the IBM i server, this activity and
the companion DTAQ_RECEIVE, DTAQ_SEND and WATCH_DTAQ
activities are available on Windows servers too, but with a reduced feature set
and with other restrictions and caveats.

The following notes and restrictions apply to using this activity on a Windows
server:

e The DTAQLIB parameter is not used and its value will be ignored. (You
may use the DTAQPATH parameter to specify a location for the data queue,
if required.)

e Data queues are stored in pairs of files in the Windows server file system
with .EDQ and .LDQ file extensions. The .EDQ file contains the data queue
definition and entries. The .LDQ files are used to logically lock the data
queue during receive operations. The file names are determined by the
LANSA run-time support used by this activity. This activity clears the data

queue by deleting these files.
e The location of the .EDQ and .LDQ data queue storage files is determined

by the value of the DTAQPATH parameter. Refer to that parameter
description for further information.

o Refer to the description of the DTAQ_SEND activity for more complete
Windows Server Platform Notes relating to the suite of DTAQ activities.

INPUT Parameters:
DTAQ : Required

This parameter must specify the name of the data queue that is to be cleared.
DTAQLIB: Optional

When running on IBM i servers, this parameter may specify the name of the
library containing the data queue. If not specified, a default of *LIBL is used
which means the library list is used to locate the named data queue.

When running on a Windows server, this parameter is not used and its value
is ignored. You may use the DTAQPATH parameter to specify the location
for the data queue, if required.

DTAQPATH: Optional

When running on Windows servers, this parameter may specify the path to
the directory in which the data queue .EDQ and .LDQ files are stored. If not
specified, the default location is determined by the LANSA run-time
according to the effective value of the DPTH= X_RUN parameter.

When running on an IBM i server, this parameter is not used and its value is

ignored. You may use the DTAQLIB parameter to specify the location for
the data queue, if required.

OUTPUT Parameters:
There are no output parameters

DTAQ_RECEIVE

This activity receives data from a named data queue.

This activity treats data received from a data queue as character data. Using this
activity to interact with applications that send or receive binary data to or from
the data queue is not supported.

When the activity receives an entry from the named data queue, the data content
(and possibly sender information) is available through the output parameters of
the activity.

When no data is available to be received (after waiting for the interval specified
by the DTAWAIT parameter, if used), the activity ends normally but the output

parameters are not filled. The value of the RCVCOUNT output parameter may
be used to determine whether an entry was received.

Refer also to the companion DTAQ_CLEAR, DTAQ_SEND and

WATCH_DTAQ activities that allows you to send and receive data to and from
and to perform other operations on a named data queue.

Note: Data queues are persistent objects but their data content can be
lost or corrupted during a system failure. Backup, recovery and

maintenance of data queues used in your LANSA Composer solution
is your responsibility — you should make provision for this in your
implementation plans.

IBM i Platform Notes

Data queues are a native operating system feature on the IBM i server. The full
range of capabilities of this activity is only available on IBM i servers.

(The implementation of this activity on an IBM i server uses the QRCVDTAQ
system API.)

Use of keyed data queues with this activity is not presently supported.

Refer to the description of the DTAQ_SEND activity for more complete IBM i
Server Platform Notes relating to the suite of DTAQ activities. Refer to IBM i
documentation concerning data queues for further information about the
operating system features upon which this activity depends.

Windows Server Platform Notes

Although data queues are a native feature of the IBM i server, this activity and
the companion DTAQ_CLEAR, DTAQ_SEND and WATCH_DTAQ activities

are available on Windows servers too, but with a reduced feature set and with
other restrictions and caveats.

(The implementation of this activity on a Windows server uses the emulated
data queue support in the LANSA run-time, using the
RCV_FROM_DATA_QUEUE built-in function.)

The following notes and restrictions apply to using this activity on a Windows
server:

e The DTAQLIB parameter is not used and its value will be ignored. (You
may use the DTAQPATH parameter to specify a location for the data queue,
if required.)

e Data queues are stored in pairs of files in the Windows server file system
with .EDQ and .LDQ file extensions. The .EDQ file contains the data queue
definition and entries. The .LDQ files are used to logically lock the data
queue during receive operations. The file names are determined by the
LANSA run-time support used by this activity. The files can be manually
cleared or deleted by deleting the associated files. Alternatively the
DTAQ_CLEAR activity may be used for this purpose.

e The location of the .EDQ and .LDQ data queue storage files is determined
by the value of the DTAQPATH parameter. Refer to that parameter
description for further information.

e Refer to the description of the DTAQ_SEND activity for more complete
Windows Server Platform Notes relating to the suite of DTAQ activities.

NOTE: On Windows servers, the specific implementation used means
that the activity is unable to handle certain types of exceptions that
may be considered unexceptional in other circumstances. In such
cases the processing sequence containing the activity may simply end
abnormally without logging diagnostic information in the Processing
Sequence log. This behavior differs from most other LANSA
Composer activities and from the IBM i implementation of this
activity.

You should be aware of this possibility and be prepared to diagnose
such issues in other ways. For example, the x_err.log generated by the
LANSA run-time may assist with diagnosing such conditions.

INPUT Parameters:

DTAQ : Required

This parameter must specify the name of the data queue from which the data
is to be received.

DTAQLIB: Optional

When running on IBM i servers, this parameter may specify the name of the
library containing the data queue. If not specified, a default of *LIBL is used
which means the library list is used to locate the named data queue.

When running on a Windows server, this parameter is not used and its value
is ignored. You may use the DTAQPATH parameter to specify the location
for the data queue, if required.

DTAQPATH: Optional

When running on Windows servers, this parameter may specify the path to
the directory in which the data queue .EDQ and .LDQ files are stored. If not
specified, the default location is determined by the LANSA run-time
according to the effective value of the DPTH= X_RUN parameter.

When running on an IBM i server, this parameter is not used and its value is
ignored. You may use the DTAQLIB parameter to specify the location for
the data queue, if required.

DTAWAIT: Optional

Specifies the length of time (in seconds) that the activity will wait for data to
arrive on the data queue if no data is immediately available when the activity
is processed.

The default value is 0 (zero) which means that the activity does not wait for
the arrival of an entry if one is not immediately available when the activity is
processed.

You may also specify the special value *MAX which means that the activity
waits indefinitely for data to arrive. You should understand that this value
may cause the activity and hence the processing sequence in which it is
contained to stall indefinitely if no data is sent to the data queue. Other than
by the arrival of data, such a processing sequence run may only be
terminated by terminating the job, the subsystem in which the job is running
or the system. If you wish a process to wait indefinitely for data to arrive on
a data queue, the WATCH_DTAQ activity may provide a more suitable
solution.

DTARMYV: Optional
Specifies whether the data received by the activity is removed from the data

queue. The default is *YES, which means the data is removed. You may
specify *NO to cause the data not to be removed from the data queue. If you
do so, the data can be received again by this activity in the same or another
Processing Sequence.

DTAQELEN: Optional

On an IBM i server, this parameter is not required and its value will be
ignored.

On a Windows server, this parameter is required and it must specify the
length of the data queue entries. The activity supports data lengths between
1 and 1024 inclusive.

On a Windows server, the first send (DTAQ_SEND) operation for a data
queue will automatically create the data queue and will set its entry length.
The length specified for subsequent operations to the same data queue must
match the length specified on the initial operation that created the data
queue. (On Windows servers, LANSA Composer will actually use the next
greatest multiple of 256 — for example, if you specify 700 for this parameter,
LANSA Composer will actually use the value 768.)

OUTPUT Parameters:
RCVCOUNT:

The received entry count. If data is received successfully, the value will be
one (1). Otherwise the value will be zero (0). The activity ends normally
when no message is available to receive after waiting for the interval
specified by the DTAWAIT parameter.

RCVDATALEN:
If data is received, this parameter contains the length of the data received.

(On a Windows server, the activity cannot determine the actual data length
received, and the value returned in this parameter is the same as the value
provided in the DATAQELEN input parameter.)

RCVDATARCVDATA02

RCVDATAO03

RCVDATAO04:

If data is received, this parameter contains the data. Each parameter receives
up to 256 bytes of data. The first parameter, RCVDATA, contains the first
up to 256 bytes of data. The remaining parameters are filled only if you are
using data queue entries of length greater than 256, 512 and 768 respectively.

SENDJOB

SENDUSER
SENDJOBNBR:

If data is received, these output parameters may contain the job name, user
name and the job number of the job that sent the data to the data queue.

On an IBM i server, these values will be available only if
SENDERID(*YES) was specified when the data queue was created using the
CRTDTAQ (Create Data Queue) command.

On a Windows server, the sending job information is not available and these
parameters will not be filled.

DTAQ_SEND

This activity sends data to a named data queue.

This activity treats data sent to a data queue as character data. Using this
activity to interact with applications that send or receive binary data to or from
the data queue is not supported.

Refer also to the companion DTAQ_RECEIVE, DTAQ_CLEAR and
WATCH_DTAQ activities that allows you to receive data from and to perform
other operations on a named data queue.

Note: Data queues are persistent objects but their data content can be
lost or corrupted during a system failure. Backup, recovery and

maintenance of data queues used in your LANSA Composer solution
is your responsibility — you should make provision for this in your
implementation plans.

IBM i Platform Notes

Data queues are a native operating system feature on the IBM i server. The full
range of capabilities of this activity are only available on IBM i servers.

(The implementation of this activity on an IBM i server uses the QSNDDTAQ
system API.)

Data queues referenced by this activity must already exist on the IBM i server.
You can create a data queue on the IBM i server using the CRTDTAQ
command. For example, the following command creates a data queue named
MYDATAQ in library QGPL that can receive data entries of up to 256
characters:

CRTDTAQ DTAQ(QGPL/MYDATAQ) MAXLEN(512)
Use of keyed data queues with this activity is not presently supported.
Refer to IBM i documentation concerning data queues for further information
about the operating system features upon which this activity depends.
Windows Server Platform Notes

Although data queues are a native feature of the IBM i server, this activity and
the companion DTAQ_CLEAR, DTAQ_RECEIVE and WATCH_DTAQ
activities are available on Windows servers too, but with a reduced feature set
and with other restrictions and caveats.

(The implementation of this activity on a Windows server uses the emulated

data queue support in the LANSA run-time, using the
SND_TO_DATA_QUEUE built-in function.)

The following notes and restrictions apply to using this activity on a Windows
server:

The TODTAQLIB parameter is not used and its value will be ignored. (You
may use the TODTAQPATH parameter to specify a location for the data
queue, if required.)

Data queues are automatically created when they are first referenced.

The first reference not only creates the data queue, but also permanently sets
the entry size for the data queue according to the value of the DTALEN
parameter.

Data queues are stored in pairs of files in the Windows server file system
with .EDQ and .LDQ file extensions. The .EDQ file contains the data queue
definition and entries. The .LDQ files are used to logically lock the data
queue during receive operations. The file names are determined by the
LANSA run-time support used by this activity. The files can be manually
cleared or deleted by deleting the associated files. Alternatively the
DTAQ_CLEAR activity may be used for this purpose.

The location of the .EDQ and .LDQ data queue storage files is determined
by the value of the TODTAQPATH parameter. Refer to that parameter
description for further information.

If you have the Visual LANSA documentation available to you, you can find
further information pertinent to the Windows implementation of this and
related activities in the description of the SND_TO_DATA_QUEUE built-in
function, in the LANSA Technical Reference Guide.

NOTE: On Windows servers, the specific implementation used means
that the activity is unable to handle certain types of exceptions that
may be considered unexceptional in other circumstances. In such
cases the processing sequence containing the activity may simply end
abnormally without logging diagnostic information in the Processing
Sequence log. This behavior differs from most other LANSA
Composer activities and from the IBM i implementation of this
activity.

You should be aware of this possibility and be prepared to diagnose
such issues in other ways. For example, the x_err.log generated by the

|| LANSA run-time may assist with diagnosing such conditions. ||

INPUT Parameters:
TODTAQ : Required

This parameter must specify the name of the data queue to which the data is
sent.

TODTAQLIB: Optional

When running on IBM i servers, this parameter may specify the name of the
library containing the data queue. If not specified, a default of *LIBL is used
which means the library list is used to locate the named data queue.

When running on a Windows server, this parameter is not used and its value
is ignored. You may use the TODTAQPATH parameter to specify a location
for the data queue, if required.

TODTAQPATH: Optional

When running on Windows servers, this parameter may specify the path to
the directory in which the data queue .EDQ and .LDQ files are to be stored.
If not specified, the default location is determined by the LANSA run-time
according to the effective value of the DPTH= X_RUN parameter.

When running on an IBM i server, this parameter is not used and its value is
ignored. You may use the TODTAQLIB parameter to specify a location for
the data queue, if required.

DTALEN: Required

This parameter must specify the number of characters of data to be sent to
the data queue. The activity supports data lengths between 1 and 1024
inclusive.

On an IBM i server, this value must be consistent with the length specified
when the data queue was created using the CRTDTAQ command.

On a Windows server, the first send operation for a data queue will
automatically create the data queue and will set its entry length. The length
specified for subsequent operations to the same data queue must match the
length specified on the initial operation that created the data queue. (On
Windows servers, LANSA Composer will actually use the next greatest
multiple of 256 — for example, if you specify 700 for this parameter, LANSA
Composer will actually use the value 768.)

SNDDATASNDDATAOQ2
SNDDATAO03

SNDDATAO04: Optional

These parameters specify the data to be sent to the data queue. Each
parameter specifies up to 256 bytes of data. The first parameter, SNDDATA
is required. The remaining parameters are optional and only need be
specified if you are using data queue entries of length greater than 256, 512
and 768 respectively.

OUTPUT Parameters:
There are no output parameters

EDI_SPLIT

This activity can split a composite EDI transaction document file into one or
more EDI transaction documents each containing no more than the specified
number of transactions. This splitting can be important or necessary for two
main reasons concerning further processing of the EDI transaction document:

e later standard LANSA Composer EDI document processing, such as the
DISCOVER_EDI activity is founded on assumptions that the transactions
contained in EDI document are for the same trading partner and/or are of the
same EDI transaction type;

e when very large EDI transaction documents are expected, splitting them into
smaller documents optimises their further processing, especially in any
mapping steps.

INPUT Parameters:
EDIFILE : Required

This parameter specifies the path and name of the EDI transaction document
file to be split.

EDILIMIT : Optional

This parameter specifies the maximum number of transactions to be
contained in each of the resulting split EDI transaction documents. If not
specified, a default of 1 (one) is assumed. The value for this parameter can
be taken from the value specified for the exchange trading partner associated
with the EDI transaction document file using the *tradingpartner.edi.splitmax
built-in variable.

EDIIGNORECRLF : Optional

When Y (yes) is specified, carriage return / line feeds in the source EDI
transaction document file are ignored when parsing the document. If not
specified, a default of N (no) is used. The value for this parameter can be
taken from the value specified for the exchange trading partner associated
with the EDI transaction document file using the
*tradingpartner.edi.splitignorecr built-in variable.

OUTPUT Parameters:
EDISPLITLIST :

Upon successful completion, this parameter will contain a list of the resulting
EDI transactions documents. The individual split documents in the list are
typically further processed using the LOOP directive.

FIND_TPMAP

This activity finds the transformation map(s) linked to the specified trading
partner that match the criteria specified. Transformation maps are considered in
order of the sequence (within map type) specified when the maps are linked to
the trading partner.

Depending on the transformation maps linked to the trading partner and the
criteria specified in the parameters to this activity, more than one matching map
may be found. Consequently, the output parameter is a list of transformation
map identifiers. If you want or intend that only one matching map be found,
then you must:

a) link only the appropriate maps to the trading partner

b) ensure that the linked maps have appropriate attributes, including the
applicable Data Interchange attributes

c) specify appropriate values for the activity parameters.

If more than one matching map is found, the output parameters MAPID and
MAPACK will be treated as a list variable, each containing an entry for each
matching transformation map that was found. Activities that populate list
variables are often followed by a LOOP processing sequence directive or other
constructs to process the contents of the list. Refer to Variables and Lists for
more information about the use of list variables.

INPUT Parameters:
TRADINGPARTNER : Required

Specifies the identifier of the trading partner whose linked transformation
maps are to be considered. If you are using this activity inside a processing
sequence loop that is controlled by the *TRADINGPARTNERS built-in
variable list, then you should usually specify the *TRADINGPARTNER
built-in variable for this parameter. You may also use the
*TRADINGPARTNER built-in variable if, in your processing sequence, you
have previously explicitly set its value. Otherwise, you should specify a
variable or literal that contains the required trading partner ID.

PRODTEST : Optional

Specifies whether the transformation map must be linked to the trading
partner for production (P) or test (T) transactions in order to be considered.
If not specified, then the selection of matching linked transformation map is
not affected by that attribute.

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm

MAPTYPE : Optional

Specifies the transformation map type code value that is to be matched
against the type of transformation maps linked to the trading partner. If not
specified, then the selection of matching linked transformation map is not
affected by that attribute.

DOCTYPE : Optional

Specifies the transaction document type identifier that is to be matched
against the transaction document types associated with transformation maps
linked to the trading partner. If not specified, then the selection of matching
linked transformation map is not affected by that attribute.

DIRECTION : Optional

Specifies the map direction that is to be matched against the map direction
associated with transformation maps linked to the trading partner. You
should specify 'T' for inbound maps or 'O’ for outbound maps. If not
specified, then the selection of matching linked transformation map is not
affected by that attribute.

STANDARD : Optional

Specifies the document standard "match agency" value that is to be matched
against that specified for the document standard associated with
transformation maps linked to the trading partner (for example, you would
specify 'X' for X12 maps). If not specified, then the selection of matching
linked transformation map is not affected by that attribute.

VERSION : Optional

Specifies the document standard "match version" value that is to be matched
against that specified for the document standard associated with
transformation maps linked to the trading partner (for example, you would
specify '004010' for X12 version 004010 maps). If not specified, then the
selection of matching linked transformation map is not affected by that
attribute.

TRANSACTIONID : Optional

Specifies the map transaction ID that is to be matched against the map
transaction ID associated with transformation maps linked to the trading
partner. For example, you might specify '850' for maps that process X12
transaction 850. If not specified, then the selection of matching linked
transformation map is not affected by that attribute.

VERSION : Optional

Specifies the map standard version that is to be matched against the map
standard version associated with transformation maps linked to the trading
partner. If not specified, then the selection of matching linked
transformation map is not affected by that attribute.

OUTPUT Parameters:

MAPCOUNT
Upon completion, this variable will contain a count of the number of
matching transformation maps found. (This will be the same as the number
of items in the MAPID list).

MAPID
Upon successful completion, this parameter will contain a list of the
identifiers (names) of transformation maps linked to the specified trading
partner that match the specified criteria. In many cases, you might expect
one matching map (but this is subject to appropriate entry of map attributes
and activity parameter values). In such cases, you simply refer to the first
(and assumed to be the only) entry in the list. In other cases, you may expect
more than one matching linked transformation map. In that event, you
should process the resulting list in this parameter using a LOOP directive in
the processing sequence.

Note that you can assign the value(s) contained in this parameter to the
*TRANSFORM built-in variable. You can then directly access further
attributes of the map using the supported qualified forms of the
*TRANSFORM built-in variable.

MAPACK
Upon successful completion, this parameter will contain a list of the
"acknowledgement required" flags corresponding to the matching
transformation maps identified in the MAPID parameter list. This value
(Y/N) comes from the "Linked Transformation Maps" definition for the
trading partner and transformation map and specifies whether the transaction
processed by the transformation map for the trading partner requires an
acknowledgement to be sent.

FOR_EACH_CSVROW

This is an iterator activity. It will read each row in a CSV file and on each
iteration output first 50 column values found in the row. The processing logic
nested beneath FOR_EACH_CSVROW activity is repeated for each row read.

This activity supports reading up to 999 rows and outputs the value for up to 50
columns. It is not intended for routine processing of large volumes of data. It
can be useful however for transferring limited amounts of information between
activities, transformation maps and the processing sequence variable pool.

Note:
This activity will read only CSV file format.

This activity will read only the first 999 rows of a CSV file and the remaining
rows are ignored.

This activity will output up to 50 columns of a CSV file and the remaining
columns are ignored.

INPUT Parameters:
CSVFILEPATH : Required

This parameter must contain the path of the file to be read.
This activity reads only CSV file format.

eg C:\order.csv

or /orders/order_jan.csv

SEPARATOR: Optional

If a non-comma separator is used, this value should contain the separator
character. The separator should be 1 character in length and can consist of
any character.

OUTPUT Parameters:
CSVCOLUMN1CSVCOLUMN2

CSVCOLUMNS0

These output parameters will contain the value for the corresponding column
for each CSV row read, up to the number of columns present in the data or a
maximum of 50 columns.

FOR_EACH_INDEX

This is an iterator activity. It will iterate for each index value in the range
specified by the input parameters. The processing logic nested beneath the
activity is repeated for each index value.

INPUT Parameters:
INDEXFROM : Optional

This parameter specifies the starting index value. If not specified a default
value of 1 (one) is used.

INDEXTO : Required

This parameter specifies the ending index value. Iteration ends when the
current index value exceeds the value of this parameter.

INDEXSTEP : Optional

This parameter specifies the value by which the index is incremented for
each iteration. If not specified a default value of 1 (one) is used.

OUTPUT Parameters:
INDEXOUT
This parameter contains the current index value during each iteration.

FOR_EACH_OBJECT

This is an iterator activity that iterates for each object matching specified criteria
in a named IBM i server library. The processing sequence directives nested
beneath the activity are repeated for each matching object found. This activity
is supported only on IBM i servers.

INPUT Parameters:
LIB : Required

This parameter must specify the name of the library containing the objects to
be iterated.

You may also specify one of the special values *ALL, *ALLUSR,
*CURLIB, *LIBL, *USRLIBL.

You should be very careful if you specify some of these special values that
will enumerate more than one library, especially the *ALL or *ALLUSR
values, as the request may take a considerable time to process.

OBJ : Optional

This parameter specifies which objects in the specified library or libraries are
to be iterated. You may use the default value *ALL or you may specify the
name or generic name of the objects required. A generic name is specified as
a character string that contains one or more characters followed by an
asterisk (*). For example, the value ABC* selects all objects whose names
begin with the characters '"ABC' that exist in the specified library or libraries
and that also match the object type specified by the OBJTYPE parameter.

OBJTYPE : Optional

This parameter specifies the object type of the objects in the specified library
or libraries that are to be iterated. You may use the default value *ALL or
you may specify a particular IBM i object type such as *PGM, *FILE etc.

OUTPUT Parameters:

OBJOUT
Upon each iteration, this parameter will contain the name of the current
object.

LIBOUT
Upon each iteration, this parameter will contain the name of the library
containing the current object. In most cases, this will be the same value as
specified on the LIB input parameter, unless you used one of the special
values on the LIB parameter that do not identify a particular library name

such as *ALL or *ALLUSR.

OBJTYPEOUT
Upon each iteration, this parameter will contain the object type of the current
object — for example, *PGM or *FILE.

OBJATTROUT
Upon each iteration, this parameter will contain the attribute of the current
object — for example, an object of type *FILE might have one of several
possible attributes including PF, LF or SAVF.

OBJSIZEOUT
Upon each iteration, this parameter will contain the size of the current object.

OBJTEXTOUT
Upon each iteration, this parameter will contain the text description of the
current object.

FOR_EACH_TXDOCO

This is an iterator activity. It will iterate for each pending outbound transaction
document in LANSA Composer's document register that matches the criteria
specified by the parameter values. For each iteration, it provides the transaction
document envelope number in the DOCNUMBER output parameter.

Typically a process using this activity specifies further processing directives
nested beneath this iterator activity to extract or export, transform and send the
pending outbound transaction document.

INPUT Parameters:
TRADINGPARTNER : Required

Specifies the trading partner whose pending outbound transaction documents
are to be processed.

MAPID : Required

Specifies the transformation map identifier associated with pending
outbound transaction documents to be processed.

PRODTEST : Optional

This parameter specifies whether production (P) or test (T) pending
outbound transaction documents are to be processed. If not specified, a
default of production (P) is used.

DOCTYPE : Optional

This parameter specifies additional restriction on which pending outbound
transaction documents are to be processed. If specified, only documents of a
specific type will be processed.

DOCSTD : Optional

This parameter specifies additional restriction on which pending outbound
transaction documents are to be processed. If specified, only documents of a
specific standard will be processed.

DOCSTDVER : Optional

This parameter specifies additional restriction on which pending outbound
transaction documents are to be processed. If specified, only documents
registered as of a certain standard version will be processed.
DOCCONTENTTYPE : Optional

This parameter specifies additional restriction on which pending outbound
transaction documents are to be processed. If specified, only documents

registered as having a certain content type will be processed.

DOCDATAKEY01DOCDATAKEY(2
DOCDATAKEY03
DOCDATAKEY04
DOCDATAKEY05
DOCDATAKEY06 : Optional

These parameters refer to application defined "keys" that may have been
specified when douments were registered. If specified, only those documents
registered with matching key will be processed.

OUTPUT Parameters:
DOCNUMBER

Upon each iteration, this parameter will contain the transaction document
envelope number of a pending outbound transaction document that matched
the criteria specified. This number is typically referenced in further
processing directives nested beneath this iterator activity to extract or export,
transform and send the pending outbound transaction document.

DOCTYPEOUT

Upon each iteration, this parameter will contain the document type of a
pending outbound transaction document that matched the criteria specified.

DOCSTDOUT

Upon each iteration, this parameter will contain the document standard of a
pending outbound transaction document that matched the criteria specified.

DOCSTDVEROUT

Upon each iteration, this parameter will contain the document standard
version of a pending outbound transaction document that matched the criteria
specified.

DOCPRODTESTOUT

Upon each iteration, this parameter will contain P for production usage or T
for test usage.

DOCCONTENTTYPEOUT

Upon each iteration, this parameter will contain the document content type of
a pending outbound transaction document that matched the criteria specified.

DOCDATAKEY(010UT
DOCDATAKEY(020UT
DOCDATAKEY(030UT

DOCDATAKEY040UT
DOCDATAKEY(050UT
DOCDATAKEY060UT

Upon each iteration, these parameters will contain the application defined
"keys" of a pending outbound transaction document that matched the criteria
specified. If there are multiple sets of keys, only the first will be retrieved
(see note below).

Note: It is possible for a single pending oubound transaction document to
contain multiple individual messages, each of which may have their own set
of staging database key values. This typically happens, for example, for a
complex outbound EDI transaction. The output parameters containing the
staging database keys will only contain the values for the FIRST message in
this case. This consideration does not apply to documents that are registered
using the TXDOC_REGOUTBND, TXDOC_REGOUTEDI or
TXDOC_REGOUTX12 activities, which permit only one message and
therefore only one set of staging database keys to be registered.

FOR_EACH_TXDOCT

This is an iterator activity. It will iterate for each transaction set (or message)
registered for the specified transaction document. For each iteration, it provides
the control numbers and transaction document register staging file keys that
identify the transaction set (or message).

Typically a process using this activity specifies further processing directives
nested beneath this iterator activity to perform further processing related to the
transaction set (or message).

INPUT Parameters:
DOCNUMBER : Required

Specifies the transaction document envelope number whose registered
transaction sets (messages) are to be iterated.

OUTPUT Parameters:
CTRLNUMBER _IC :

Upon each iteration, this parameter will contain the interchange control
number for the current transaction set (message).

CTRLNUMBER_GP:

Upon each iteration, this parameter will contain the group control number for
the current transaction set (message).

CTRLNUMBER_MS :

Upon each iteration, this parameter will contain the the transaction set
(message) control number for the current transaction set (message).

DOCNUMBER_IC :

Upon each iteration, this parameter will contain the the internal document
interchange sequence number for the current transaction set (message). This
value corresponds to the key field DXXINTID in the staging database files
DXX2IN, DXX3GP and DXX4MS.

DOCNUMBER_GP:

Upon each iteration, this parameter will contain the the internal document
group sequence number for the current transaction set (message). This value
corresponds to the key field DXXGRPID in the staging database files
DXX3GP and DXX4MS.

DOCNUMBER_MS :

Upon each iteration, this parameter will contain the the internal document
transaction set (message) sequence number for the current transaction set
(message). This value corresponds to the key field DXXMSGID in the
staging database file DXX4MS.

DOCDATAKEY(01DOCDATAKEY02
DOCDATAKEY03
DOCDATAKEY 04
DOCDATAKEY05
DOCDATAKEY06 :

Upon each iteration, these parameters will contain the "application-defined"
staging file key values for the current transaction set (message).

FOR_EACH_TXTLIN

This is an iterator activity. It will read each line (*) from a text file and on each
iteration output the text line. The processing logic nested beneath
FOR_EACH_TXTLIN activity is repeated for each line read.

This activity is not intended for routine processing of large volumes of data. It
can be useful however for transferring limited amounts of information between
activities, transformation maps and the processing sequence variable pool.

(*) Any of the line terminators (CR, CRLF, LF, NL or LFCR) will be used to
indicate the end of a line.

INPUT Parameters:
TXTFILEPATH : Required
This parameter must contain the path of the text file to be read.
eg C:\memo.txt
or /memos/memo].txt
OUTPUT Parameters:
TXTLINE

For each iteration, this output parameter will contain the value of the current
text line read.

FOR_EACH_VAR

This is an iterator activity. It will iterate for each processing sequence variable
extant in the variable pool. The iteration does NOT include built-in variables or
internal variables. On each iteration the output parameters provide the variable
name, index and variable value. Because it is an iterator activity, you may nest
processing sequence directives beneath the FOR_EACH_VAR activity that will
be executed for each iteration.

This activity is mainly intended for diagnostic purposes. It would not normally
be used in live, completed BPI solutions. As a diagnostic aid, it will log the
variable name, index and value into the processing sequence log for each
iteration. It may not be necessary, therefore, to include any processing sequence
directives nested beneath this activity - the provided logging may be sufficient
for your diagnostic purposes. NB: the Processing Sequence Editor will give a
warning that the iterator item is empty, but this warning may be ignored.

The activity takes a "snapshot" of the state of the variable pool before beginning
the iteration. The following applies to any changes that occur during the
iteration as a result of executing other activities or processing sequence
directives:
e processing sequence variables that are added will not be included in the
iteration

e processing sequence variables that are removed or cleared will still be
included in the iteration

However, changes to the VALUES of processing sequence variables WILL be
reflected in the iteration if they occur BEFORE the affected variable is iterated.

INPUT Parameters:
There are no input parameters.

OUTPUT Parameters:
VARNAME :
This output variable provides the name of the current processing sequence
variable.
VARINDEX :
This output variable provides the index of the current processing sequence
variable. If the variable is not part of a list, the value will be 1 (one).

VARVALUE :

This output variable provides the value of the processing sequence variable
for the current index.

FIP_COMMANDLIST

This Activity connects to the FTP host specified in the FTP Configuration and
then executes FTP commands from a command list file. The command list file
may be specified on the FTP Configuration or overridden by the
COMMANDLISTFILE parameter. The command list file is a text file.

An email Event notification named FTPCMDLSTFAILED is available in this
Activity. If this event is active and a failure occurs in this Activity, then an email
will be sent. Refer to Event Maintenance for setting up Event notifications.

INPUT Parameters:
FTPCONFIG : Required

This parameter should contain the name of an FTP Configuration with the
type of Command List. This Configuration can be created and maintained
using the FTP Configuration option in the Navigator.

If this parameter is not provided or is not found, this Activity will return an
error and processing will be abandoned.

COMMANDLISTFILE : Optional

If it contains a non-blank value it will be used for the command list. If this
parameter is not provided, then the command list file from the FTP
Configuration will be used. Refer to the 2.3.2 FTP Configuration for a
description and examples of command formats.

OUTPUT Parameters:
There are no output parameters.

Processing

This Activity uses either the LANSA Integrator FTPService or SFTPService
(depending on FTP configuration choices).

It uses the Connection information from the FTP Configuration to connect to the
remote host.

The command list file is read, one line at a time. The line terminator may be a
carriage return, line feed, new line, carriage return line feed or line feed carriage
return. Lines with a first character of # are considered to be comments and are
ignored. All other lines should contain a single FTP command which can be
used by the LANSA Integrator FTPService or SFTPService. These commands
are executed using the LANSA Integrator service and must conform to that
format.

its:LANSA091.CHM::/lansa/intengc6_0025.htm

Any failure encountered when executing the commands will attempt to invoke
the email Notification event, FTPCMDLSTFAILED. If this event is active then
an email will be sent to the specified email address with a notification of the
failure.

FTP_DIRLIST

This Activity retrieves a list of files from a remote host using FTP. It connects to
the remote FTP host and retrieves the names of files from a directory on the
remote host. Details of the remote host and directories is taken from an FTP
Configuration. A list of the files retrieved is output. The list is output in two
formats - one containing just the file names, the other containing the full local
path and file name.

Activities that populate list variables are often followed by a LOOP processing
sequence directive or other constructs to process the contents of the list. Refer
to Variables and Lists for more information about the use of list variables.

An email Event notification named FTPDIRLISTFAIL is available in this
Activity. If this event is active and a failure occurs in this Activity, then an email
will be sent. Refer to Event Maintenance for setting up Event notifications.

INPUT Parameters:
FTPCONFIG : Required

This parameter should contain the name of an FTP Configuration. This
Configuration can be created and maintained using the FTP Configuration
option in the Navigator.

If this parameter is not provided or is not found, this Activity will return an
error and processing will be abandoned.

REMOTEDIRECTORY : Optional

If it contains a non-blank value it will be used as the directory on the remote
host from which the list of files are retrieved. If this parameter is not
provided, then the remote host directory from the FTP Configuration will be
used. Note that this is a required parameter if configuration of type command
list is used.

GETLIKE - Optional

If it contains a non-blank value it will be used as the pattern use to identify
files to be listed. Note that if this is specified, only files matching the given
pattern will be listed. If blank, values from the FTP Configuration will be
used.

OUTPUT Parameters:

FILELIST
Specifies the name of a list variable that will contain a list of files from the
remote host. The list will contain only the file name.

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm
its:LANSA091.CHM::/lansa/intengc6_0025.htm

For example: order5.csv

FILEPATH
Specifies the name of a list variable that will contain a list of files from the
remote host. The list will contain the full path and file name.

For example: /inftp/order5.csv
This list may be used as an alternative to the FILELIST

Processing

This Activity uses either the LANSA Integrator FTPService or SFTPService
(depending on FTP configuration choices).

It uses the Connection information from the FTP Configuration to connect to the
remote host.

It changes directory on the remote host to the directory specified either in the
input parameter or the FTP Configuration. It lists the files in that directory. If
the parameter GETLIKE is specified or if the FTP Configuration is an Inbound
configuration and contains a Get files like pattern, then only files which match
that pattern are listed. FTP mode is changed to Binary if required.

The output lists will contain each file in the directory.

Any failure encountered when executing, will attempt to invoke the email
Notification event, FTPDIRLISTFAIL. If this event is active then an email will
be sent to the specified email address with a notification of the failure.

FIP_INBOUND

This Activity retrieves a list of files from a remote host using FTP. It connects to
the remote FTP host and retrieves files from a directory on the remote host. The
files are placed in a local directory. Details of the remote host and directories is
taken from an FTP Configuration. A list of the files retrieved is output. The list
is output in two formats - one containing just the file names, the other
containing the full local path and file name.

Activities that populate list variables are often followed by a LOOP processing
sequence directive or other constructs to process the contents of the list. Refer
to Variables and Lists for more information about the use of list variables.

An email Event notification named FTPINFAILED is available in this Activity.
If this event is active and a failure occurs in this Activity, then an email will be
sent. Refer to Event Maintenance for setting up Event notifications.

INPUT Parameters:
FTPCONFIG : Required

This parameter should contain the name of an FTP Configuration with type
of Inbound. This Configuration can be created and maintained using the FTP
Configuration option in the Navigator.

If this parameter is not provided or is not found, this Activity will return an
error and processing will be abandoned.

REMOTEDIRECTORY : Optional

If it contains a non-blank value it will be used as the directory on the remote
host from which files are retrieved. If this parameter is not provided, then the
remote host directory from the FTP Configuration will be used.

LOCALDIRECTORY - Optional

If it contains a non-blank value it will be used as the local directory into
which the retrieved files are placed. If this parameter is not provided, then
the local directory from the FTP Configuration will be used.

GETLIKE - Optional

This parameter may specify a pattern to identify the files to be retrieved from
the remote host.For example: (1) the pattern *.ord' will retrieve files with a
file extension of 'ord', (2) 'ord*' will retrieve files whose names start with the
characters 'ord', irrespective of the file extension.

If specified, the value of this parameter overrides the specifications in the
FTP inbound configuration for Get like pattern. If this parameter is not

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm
its:LANSA091.CHM::/lansa/intengc6_0025.htm

specified, the values in the FTP inbound configuration for Get selection and
Get like pattern will apply.

OUTPUT Parameters:

FILELIST
Specifies the name of a list variable that will contain a list of files retrieved
from the remote host. The list will contain only the file name.

For example: order5.csv

FILEPATH
Specifies the name of a list variable that will contain a list of files retrieved
from the remote host. The list will contain the full path and file name.

For example: /inftp/order5.csv
This list may be used as an alternative to the FILELIST

Processing

This Activity uses either the LANSA Integrator FTPService or SFTPService
(depending on FTP configuration choices).

It uses the Connection information from the FTP Configuration to connect to the
remote host.

It changes directory on the remote host to the directory specified either in the
input parameter or the FTP Configuration. It lists the files in that directory. If
the FTP Configuration contains a Get files like pattern or the GETLIKE
parameter has been specified, then only files which match that pattern are listed.
FTP mode is changed to Binary if required. Processing then cycles through the
list of files to GET each from the remote directory to the local directory. If
required it deletes from the remote directory each file successfully transferred.
The FTP session is terminated by a QUIT command.

The output lists will contain each file retrieved.

Any failure encountered when executing, will attempt to invoke the email
Notification event, FTPINFAILED. If this event is active then an email will be
sent to the specified email address with a notification of the failure.

FIP_OUTBOUND

This Activity will transfer files from the local machine to a remote host by FTP.
It connects to the remote FTP host and puts a copy of local files onto the remote
host. The files to be transferred may be provided in a list or from a local
directory. Details of the remote host and directories is taken from an FTP
Configuration.

An email Event notification named FTPOUTFAILED is available in this
Activity. If this event is active and a failure occurs in this Activity, then an email
will be sent. Refer to Event Maintenance for setting up Event notifications.

INPUT Parameters:
FTPCONFIG : Required

This parameter must contain the name of an FTP Configuration with type of
Outbound. This Configuration can be created and maintained using the FTP
Configuration option in the Navigator.

If this parameter is not provided or is not found, this Activity will return an
error and processing will be abandoned.

FILELIST_FTPOUT : Optional

If it contains a non-blank value it will be used to select the files to be FTP'ed

to the remote host. If this parameter value is provided the
LOCALDIRECTORY parameter is not used.

The files contained in this list must be a full path and file name.
For example: Windows c:\mydir\filel.txt

IBMi /mydir/subdir/filex.xml
LOCALDIRECTORY : Optional

This parameter is checked for only if the FILELIST_FTPOUT parameter
does not exist.

If LOCALDIRECTORY contains a non-blank value it will be used as the
local directory from which files are copied. Otherwise, the local directory
from the FTP Configuration will be used.

REMOTEDIRECTORY : Optional
If it contains a non-blank value it will be used as the directory on the remote

host into which files are put. If this parameter is not provided, then the
remote host directory from the FTP Configuration will be used.

ARCHIVEPATHOK : Optional

its:LANSA091.CHM::/lansa/intengc6_0025.htm

This parameter is optional. If it contains a non-blank value it will be used as
the archive directory path for successful transactions.

If this parameter is not provided, then the Local Archive Path (OK) directory
from the FTP Configuration will be used.

ARCHIVEPATHER : Optional

This parameter is optional. If it contains a non-blank value it will be used as
the archive directory path for transactions ending in error.

If this parameter is not provided, then the Local Archive Path (ER) directory
from the FTP Configuration will be used.

OUTPUT Parameters:
There are no output parameters.

Processing

This Activity uses either the LANSA Integrator FTPService or SFTPService
(depending on FTP configuration choices).

If no list of files is input, a list of files in the local directory is built. This list
may be filtered by files with a particular extension as specified in the FTP
Configuration.

The Connection information from the FTP Configuration is used to connect to
the remote FTP server.

The processing changes directory on the remote host to the directory specified
either in the input parameter or the FTP Configuration. It changes to Binary
mode if required.

Processing then cycles through the list of files, either input or built from the
local directory contents. Each file is PUT onto the remote host in the remote
directory. The local file is moved to the appropriate archive directory as
specified on the FTP Configuration. If no archive directories are specified, the
local file is not moved.

The FTP session is ended with a QUIT command.

Any failure encountered when executing, will attempt to invoke the email
Notification event, FTPOUTFAILED. If this event is active then an email will
be sent to the specified email address with a notification of the failure.

FTP_SCRIPT

This activity will execute a script of FTP subcommands. It is supported only on
IBM i servers.

The FTP script may contain substitution variables that are replaced at run-time
by the values of Processing Sequence variables. See below for details on this
feature.

Other supplied FTP activities (including FTP_INBOUND, FTP_OUTBOUND
and FTP_COMMANDLIST) use the LANSA Integrator FTPService in their
implementation. However, in some cases it is desirable or necessary to take
advantage of IBM i QSYS.LIB file system object support that is provided by the
native IBM i5/0S FTP client but NOT available through the LANSA Integrator
FTPService. This activity is provided for such cases. For example, this activity
can be used for transferring IBM i5/0S save files (*FILE objects with SAVF
attribute) between IBM i systems.

Notes:
1. The script is executed using the native IBM i5/0OS FTP client.

2. The FTP script will run to completion irrespective of any errors that may
occur during its execution. If errors occur in the FTP operations, the activity
does not end in error - see the description of the output parameter
FTPERRORCOUNT for more information.

3. Because the FTP functions performed by this activity are determined by the
user-provided FTP script, it does not inherently have any "inbound" or
"outbound" sense. The script can perform any combination of FTP
subcommands supported by the i5/0S FTP client, including PUT/MPUT,
GET/MGET or both.

INPUT Parameters:
FTPCONFIG : Optional

This parameter can contain the name of an FTP configuration. If specified, it
is recommended that you use an FTP configuration of type 'Command List/,
although you can also specify an Inbound or Outbound configuration. This
activity will, at most, use the following attributes of the FTP configuration:

- Remote Host
- Remote Port Address
- Remote User

- Remote Password
- Command list file

You may specify *NONE for the 'Remote Host'. If you do so, then the
'Remote Port Address' will not be used and your script should usually
contain an FTP 'open' subcommand to establish the connection to a remote
host that you specify.

Similarly, if the FTP configuration is not specified, then your script must
contain the FTP subcommands (such as 'open') necessary to establish the
required connection along with the necessary credentials. In this case, you
must provide the remote host, port (if necessary) and credentials through the
FTP subcommands in the script.

FTPSCRIPTFILE : Optional

This parameter is optional, but if it is not provided, then you must provide
the FTP subcommand script either through the FTPSCRIPTLIST parameter
or in the 'Command list file' field of the FTP configuration. If this parameter
is provided, then it must specify the full path to a text file that contains the
FTP subcommand script to be executed. See FTP Subcommand Script below
for more information.

FTPSCRIPTLIST : Optional

This parameter is optional, but if it is not provided, then you must provide
the FTP subcommand script either through the FTPSCRIPTFILE parameter
or in the 'Command list file' field of the FTP configuration. If this parameter
is provided, then it must contain a list of the FTP subcommands to be
executed. See FTP Subcommand Script below for more information.

OUTPUT Parameters:
FTPOUTPUT:

Upon completion, this parameter will contain a list of FTP log output lines
generated by running the FTP script. (The FTP log results are also available
in the Processing Sequence log, depending on the logging level in effect.)

FTPERRORCOUNT:

Upon completion, this parameter will contain a count of the lines in the FTP
log that the activity interprets as representing errors. This is defined as lines
that begin with an FTP response code in the range 400-499 and 500-599.

Note that:

- the error count will be incremented for some "normal" messages such as
'467 bytes transferred ...'

- response codes counted as errors are generally issued by the FTP server

- errors (usually syntax errors) issued by the FTP client may not have a
recognisable response code and so may not be counted as errors

- in any event, it may be normal for some scripts to generate errors.

For all these reasons, the activity does NOT return an error status if the
apparent error count is greater than zero. It is up to you to test the output
parameters to determine the success of the operation and to handle error
conditions in your Processing Sequence.

FTP Subcommand Script

Whether you specify your FTP script through the FTP configuration, or through
the FTPSCRIPTFILE or FTPSCRIPTLIST parameters, you should compose
your script according to the following guidelines:

e Your script can consist of any valid FTP subcommands supported by the FTP
client software

e Each FTP subcommand should be on a separate line or in a separate list
entry

e Lines or list entries beginning with "*' are ignored and may contain
comments

e If you have specified an FTP configuration and the 'Remote Host' is not
*NONE, then the activity will insert the remote user id and password from
the FTP configuration in the first line of the script. In this case, there is no
need to specify the credentials inside your script unless the remote FTP
server requires additional account information or unless your script closes
the connection and you subsequently wish to open another connection.

Refer to the documentation for the FTP client software for information on the
FTP subcommands supported. On IBM i servers, you can start the FTP client
by typing the command FTP RMTSYS(*NONE) at a command line. When the
FTP client has started type the command HELP and press Enter to access on-
line help about the supported FTP subcommands.

Substituting Processing Sequence Variables in the FTP Subcommand script

The activity supports substitution variables in the FTP script. When found, they
will be replaced by the value of the named variable in the Processing Sequence
variable pool.

You can specify a substitution variable in the following form:
%%var.<variable-name>%%

where <variable-name> is the name by which the variable is known in the
Processing Sequence variable pool. See the example FTP script below for an
example of using substitution variables in an FTP script.

If you specify substitution variables in your FTP script, it is your responsibility
to ensure that the variables named exist and have valid values assigned to them
in the Processing Sequence that uses the script. The variables values may be set
by any supported means - for example, they might be received as Processing
Sequence parameters, explicitly set with an ASSIGN directive, or set as the
result of running some other activity. If the named variables do not exist in the
Processing Sequence when the FTP script is executed, this activity will issue a
warning but execution will continue (the variable reference is removed from the
FTP script).

Note that the following advanced forms of variable references are NOT
supported by this feature:

1. Compound or qualified variables - for example: *tradingpartner.xxx
2. Indexed variables - for example: mylist(3)

Typically you could circumvent these limitations, if necessary, by assigning the
desired compound or indexed variables to a simple variable name before
executing the script.

Example FTP Subcommand Script

The following script might be used with a correctly configured FTP
configuration to copy the contents of a source library on the source IBM i
system to a target library on the target IBM i system. The processing sequence
must set the value of the processing sequence variables SOURCELIB and
TARGETLIB in order to specify the respective library names. The FTP
configuration used must specify the remote host name and the remote user and
password used to connect to the remote host.

Sk 3 3 e 3k 3 S e 3k 3k e e 3 S e S S S e 3k S e e ke S e S Sk S e S sk e e Sk 3k

* This is a sample FTP script

Sk 3 3 e 3k 3 e e 3k 3k e e S S e i S S e 3k S e e ke S e S Sk S e Sk sk s e Sk 3k

BINARY

NAMEFMT 1

SENDEPSV 0

CWD /QSYS.LIB/%%var.TARGETLIB%%.LIB/

MPUT /QSYS.LIB/%%var.SOURCELIB%%.LIB/

CLOSE

QUIT

3 3 3¢ 3¢ 2 e 2 e 2 e S e S e S i e S e S S Sl e S e S e s e S ok S ok S ok S

GET_DTAARA

This activity reads a value from a specified data area. It is supported only on
IBM i servers.

This activity can only read from data areas created with TYPE(*CHAR) and the
starting position and length specified must be valid for the definition of the data
area specified. The data area must exist and the job running the activity must
have the necessary authorities.

INPUT Parameters:
DTAARA : Required
This parameter specifies the name of the data area.
LIB : Optional

This parameter can specify the name of the library containing the data area.
If it is not specified, the processing sequence will use the library list to locate
the data area.

START : Required

This parameter specifies the starting position in the data area from which to
read the value.

LENGTH : Required
This parameter specifies the length of the value to be read.

OUTPUT Parameters:
STRINGOUT:

Upon successful completion, this parameter will contain the value read from
the specified positions in the specified data area.

HASH_FILE

This activity generates a hash value of the contents of the specified file
according to a known algorithm.

The hash value is a fixed-length (according to the chosen algorithm), non-
reversible representation of the contents of the file. Such hash values have
many uses in information security, including as a means of detecting (accidental
or intentional) changes to or corruption of the source data.

For example, you could generate and store a hash value for file A. Then, in
another place or time, you could generate a hash value (using the same
algorithm) for a file that purports to be file A, and by comparing the hash values
you can establish that the files are the same (with a very high degree of
certainty, depending on the algorithm chosen), or not (with absolute certainty).

The HASH_FILE activity returns the generated hash value in string form, either
as a hexadecimal representation, or in base64-encoded form.
Note that it is NOT possible to derive the original file contents from the hash

value — that is, it is non-reversible. You should not seek to use this activity as a
means of implementing reversible data encryption.

INPUT Parameters:
FILEPATH : Required

This parameter should contain the full name and path of the file for which
the hash value is to be generated.

ALGORITHM : Optional

This parameter can specify the hashing algorithm to be used to generate the
hash value. If it is not specified, a default of SHA is assumed. You can
choose from the following supported algorithms:

MD2 The MD2 Message-Digest Algorithm is optimized for 8-bit
computers and is no longer considered secure.

It generates a 128-bit digest (hash) value, 22 characters when
*BASE64 encoded, or 32 characters when *HEX encoded.

MD5 The MD5 Message-Digest Algorithm has been employed in a wide
variety of security applications, and is also commonly used to check
data integrity.

It generates a 128-bit digest (hash value), 22 characters when
*BASE64 encoded, or 32 characters when *HEX encoded.

SHA SHA stands for "secure hash algorithm", and the SHA parameter
value here implements the SHA-1 algorithm from the SHA family
of algorithms.

It generates a 160-bit digest (hash value), 27 characters when
*BASE64 encoded, or 40 characters when *HEX encoded.

SHA256 SHA256, SHA384 and SHAS512 are a set of algorithms from the
SHA384 SHA-2 family.

SHA512 They generate 256, 384 or 512-bit (respectively) digests (hash
values), 43, 64 or 86 characters when *BASE64 encoded, or 64, 96
or 128 characters when *HEX encoded.

ENCODING : Optional

This parameter specifies the form of encoding applied to the generated digest
or hash value (which is binary data) to produce the string representation
given in the HASH output parameter. If not specified, a default of *BASE64
is assumed. You can choose from the following options:

*BASE64 The result is a base64-encoded representation of the generated

hash value.
*HEX The result is a hexadecimal string representation of the generated
hash value.
OUTPUT Parameters:

HASH:

Upon successful completion, this parameter will contain the string
representation of the generated hash value of the contents of the specified
file, encoded according to the value of the ENCODING parameter.

HTTP_GET

This activity may be used to retrieve a document from an HTTP server (usually
using the HTTP GET method).

This activity is used with an HTTP outbound configuration which can specify
most of the parameters necessary to establish the connection to the HTTP
server. Selected attributes of the HTTP outbound configuration may be
overridden by the parameters to this activity.

A notification event named HTTPFAILED is available for this activity. If this
event is active and a failure occurs in the activity, then the notification event
will be fired to send an email or other supported form of notification.

INPUT Parameters:
HTTPCONFIG : Required

This parameter must specify the name of an HTTP outbound configuration
that specifies most of the parameters necessary to establish the connection to
the HTTP server. Selected attributes of the HTTP outbound configuration
may be overridden by the other parameters to this activity, as described
below.

URI : Optional

This parameter may specify an alternate value used to override the URI that
is specified in the HTTP outbound configuration. If used, the value should
specify the URI to be used to connect to the remote host specified in the
HTTP outbound configuration. If this parameter is not specified, then the
value will be taken from the HTTP configuration.

RETURNFILEDIR : Optional

This parameter is optional. If it contains a non-blank value it will be used as
the directory on the local server in which return payload file is saved (the file
containing the HTTP response data received from the HTTP server). If this
parameter is not provided, then the value will be taken from the Content File
Directory specified in the HTTP outbound configuration.
RETURNFILENAME : Optional

This parameter is optional. If it contains a non-blank value it will be used as
the return payload file name (the file containing the HTTP response data
received from the HTTP server).

HTTPMETHOD : Optional (Advanced)

This parameter may specify the HTTP request method to be used for the

outbound HTTP request. The HTTP protocol standard defines several
methods and user-defined methods can be used for REST style applications.
The default value is GET and that would be the most usual value when you
are using the HTTP_GET activity to retrieve a document from an HTTP
server. One common alternate HTTP method is POST - you can use the
HTTP_POST activity to issue POST requests - you would use POST when
you need to send data to the HTTP server and optionally receive response
data.

HTTPHEADERNAME: Optional (Advanced)
HTTPHEADERVALUE - Optional (Advanced)

These two parameters may optionally be used to specify one or more HTTP
header names and corresponding HTTP header values to be added to the
HTTP header for the outbound request. Note that the activity already adds
several common and "standard" properties to the request header. You might
use these parameters when your application requires you to specify
additional HTTP header properties such as '"AUTHORIZATION' or custom
properties specific to the HTTP server application. The parameters are lists,
allowing you to specify multiple values in each list by assigning them using
a list index. The activity will add as many properties as you specify in the
HTTPHEADERNAME list. If used, it is your responsibility to ensure that
each HTTPHEADERNAME list entry has a corresponding
HTTPHEADERVALUE list entry containing the corresponding HTTP
header property value.

OUTPUT Parameters:
There are no output parameters.

HTTP_INBOUND

This activity may be used to process an inbound HTTP request. It will receive
the content of the HTTP request and save it to a specific directory. The name
and location of the saved content will be output as a parameter value.

Other identifying criteria relating to the HTTP message will be output as
parameter values.

This activity is designed to be invoked in the following way:

1. LANSA Integrator's JSMDIRECT CGI program is invoked to handle the in-
coming request

2. JSMDIRECT uses the application name specified in the URI of the in-
coming request to determine the name of a program or LANSA function to
process the request. In the context of the HTTP inbound support in LANSA
Composer, this is usually the supplied DXHTFN1 function.

3. Function DXHTFN1 uses the application name specified in the URI of the
in-coming request to determine the name of a LANSA Composer processing
sequence to process the request.

4. The processing sequence should include this activity to receive and save the
HTTP content.

In LANSA Composer, the application name specified in the URI of the in-
coming request is associated with the function (usually DXHTFNT1) and the
processing sequence by means of an HTTP inbound configuration. Creating or
modifying an appropriate HTTP inbound configuration will also maintain the
necessary entries in the tables used by JSMDIRECT.

This activity is nominally an iterator activity, although it is unusual insofar as it
iterates only once. It is defined as an iterator activity in order to allow any
processing sequence directives nested beneath it to process the received content
and prepare the response payload, if any. You can nest transformation maps,
other activities or whatever directives you need to perform this. The activity's
input parameters (RESPONSEFILEPATH and RESPONSECONTENTTYPE)
that specify the response payload are not evaluated until the iteration completes
- so your nested processing sequence directives can set their values.

INPUT Parameters:
RESPONSEFILEPATH : Optional

This parameter can specify the path and file name of a file containing content

(of the type specified in the RESPONSECONTENTTYPE parameter) that is
to be sent in response to the inbound HTTP request. If specified, the content
of the file is sent in response. If not specified, then the activity sends a 200
(OK) response status along with the OKHTTP response message specified in
the HTTP configuration (if any).

Note that this parameter is not evaluated until the iteration completes - so
your nested processing sequence directives can set its value according to the
nature or content of the request received.

RESPONSECONTENTTYPE : Optional

If you specify the RESPONSEFILEPATH parameter, then you must specify
the corresponding content type (eg *TEXTPLAIN) for the response content.
This parameter is not used if the RESPONSEFILEPATH parameter is not
specified.

Note that this parameter is not evaluated until the iteration completes - so
your nested processing sequence directives can set its value according to the
nature or content of the request received.

OUTPUT Parameters:
HTTP_CONTENT

This value will contain the path and file name of the saved inbound HTTP
content.

For example : OnanIBMiserver /inorders/HI25.dat

On a Windows server C:\order\HI123.dat

The directory will be taken from the system setting HTTP inbound payload
directory.

The file name will be derived from a prefix plus a unique number plus .dat
extension. The prefix is taken from the system setting HTTP inbound
filename prefix.

HTTP_CONTENT_TYPE

This value will contain all the content types which are applicable to the
content.

For example, a Comma Separated file will have a value of *TEXT *SV
*CSV

Refer to the 2.3.3 HTTP Configuration for a full list of types.
HTTP_CONTENT_TYPE2
This is an alternate representation of the content type. It will contain the

actual value of the CONTENT-TYPE HTTP header. For example, text/plain.
HTTP_CONTENT_LENGTH

This value will contain the content length of the content received on the
HTTP inbound request.

HTTP_QUERY_STRING

This value will contain the query string from the URI.

If the full URL was http://lansa01:8080/cgi-bin/jsmdirect?ZZorders
then the query string would have a value of ZZorders.
HTTP_REMOTE_ADDRESS

This value will contain the IP address of the remote server.
HTTP_REMOTE_USER

This value will contain the remote user if available.
HTTP_SERVER_PORT

This value will contain the local port number that serviced this inbound
HTTP message.

Function DXHTFN1 - supplied JSMDirect function.
Function DXHTFN1 in process DXPROCO?2 is supplied to be invoked by
HTTP JSMDirect.

This function will retrieve the query string from the URI. It will trim the
query string to remove any additional parameters. The resulting string is used
to locate the Composer HTTP Inbound Configuration with the corresponding
Application Name.

The Processing Sequence on that Composer HTTP Configuration is then
launched. This Processing Sequence should contain the HTTP_INBOUND
Activity to retrieve the payload and information from the inbound HTTP
transmission.

HTTP_POST

This activity may be used to send data to an HTTP server (usually using the
HTTP POST method) and/or to receive response data from the server.

This activity is used with an HTTP outbound configuration which can specify
most of the parameters necessary to establish the connection to the HTTP server
and to identify the file to be sent to the HTTP server. Selected attributes of the
HTTP outbound configuration may be overridden by the parameters to this
activity.

A notification event named HTTPFAILED is available for this activity. If this
event is active and a failure occurs in the activity, then the notification event
will be fired to send an email or other supported form of notification.

INPUT Parameters:
HTTPCONFIG : Required

This parameter must specify the name of an HTTP outbound configuration
that specifies most of the parameters necessary to establish the connection to
the HTTP server and to identify the file to be sent to the HTTP server.
Selected attributes of the HTTP outbound configuration may be overridden
by the other parameters to this activity, as described below.

URI : Optional

This parameter may specify an alternate value used to override the URI that
is specified in the HTTP outbound configuration. If used, the value should
specify the URI to be used to connect to the remote host specified in the
HTTP outbound configuration. If this parameter is not specified, then the
value will be taken from the HTTP configuration.

CONTENTFILEDIR : Optional

This parameter is optional. If it contains a non-blank value it will be used as
the directory on the local server in which the content payload file is found
(the file containing the data to be sent to the HTTP server). If this parameter
is not provided, then the value will be taken from the HTTP configuration.

CONTENTFILENAME : Optional

This parameter is optional. If it contains a non-blank value it will be used as
the content payload file name (the file containing the data to be sent to the
HTTP server). If this parameter is not provided, then the value will be taken
from the HTTP configuration.

CONTENTFILETYPE : Optional

This parameter is optional. If it contains a non-blank value it will be used as
the content type. If this parameter is not provided, then the value will be
taken from the HTTP Configuration.

If the content file type in this parameter and in the HTTP configuration are
blank, or specify the special value *AUTO, then the content type will be
derived from the file extension of the file being sent. (This is achieved by a
lookup on the file filetype.txt in the <system> directory of the server's JSM
instance directory tree.)

Refer to the 2.3.3 HTTP Configuration, Outbound, for the format and
possible special "shorthand" values you may specify for this parameter, such
as *XML, *HTML, *CSV, *PDF and *ZIP. However, you are not limited to
those values — you may explicitly specify an actual content type such as
application/zip.

RETURNFILEDIR : Optional

This parameter is optional. If it contains a non-blank value it will be used as
the directory on the local server in which return payload file is saved (the file
containing the HTTP response data received from the HTTP server). If this
parameter is not provided, then the value will be taken from the
CONTENTFILEDIR.

RETURNFILENAME : Optional

This parameter is optional. If it contains a non-blank value it will be used as
the return payload file name (the file containing the HTTP response data
received from the HTTP server).

HTTPMETHOD : Optional (Advanced)

This parameter may specify the HTTP request method to be used for the
outbound HTTP request. The HTTP protocol standard defines several
methods and user-defined methods can be used for REST style applications.
The default value is POST and that would be the most usual value when you
are using the HTTP_POST activity to "send" a file to a remote server via
HTTP. One common alternate HTTP method is GET - you can use the
HTTP_GET activity to issue GET requests - you would use GET when you
have no content to send but you are using the activity to receive content from
the remote HTTP server.

HTTPHEADERNAME: Optional (Advanced)
HTTPHEADERVALUE - Optional (Advanced)

These two parameters may optionally be used to specify one or more HTTP

header names and corresponding HTTP header values to be added to the
HTTP header for the outbound request. Note that the activity already adds
several common and "standard" properties to the request header. You might
use these parameters when your application requires you to specify
additional HTTP header properties such as '"AUTHORIZATION' or custom
properties specific to the HTTP server application. The parameters are lists,
allowing you to specify multiple values in each list by assigning them using
a list index. The activity will add as many properties as you specify in the
HTTPHEADERNAME list. If used, it is your responsibility to ensure that
each HTTPHEADERNAME list entry has a corresponding
HTTPHEADERVALUE list entry containing the corresponding HTTP
header property value.

OUTPUT Parameters:
There are no output parameters.

JSM_RECLAIM

This activity reclaims LANSA Integrator JSM resources by initiating garbage
collection in the JSM's Java Virtual Machine instance.

In normal circumstances, garbage collection is entirely managed by the JVM
and it is not necessary to intervene.

In some instances, however, the delay in garbage collection can lead to
functional issues in subsequent processing when certain resources, such as files,
might remain locked awaiting garbage collection of Java objects that reference
them.

For example, if a Transformation Map ends with an exception, it can sometimes
leave input or output files locked, preventing the processing sequence
performing further operations on them.

In such cases, this activity, frequently executed conditionally by placing it in a
CATCH block, may avoid the file locking issues.

Excessive use of this activity should be avoided as unnecessarily pre-empting
normal garbage collection processing can adversely affect performance of your
solution.

INPUT Parameters:
JSMCOUNT : Optional

This parameter specifies the number of iterations of garbage collection to
initiate in the LANSA Integrator JSM's Java Virtual Machine instance. More
than one may be necessary in some instances, as each iteration simply
triggers one "round" of garbage collection - it is not necessarily exhaustive.
The value specified must be numeric. If not specified, a default of 3 (three)
is assumed.

OUTPUT Parameters:
There are no output parameters.

JSM_SCRIPT

This activity will execute a script of LANSA Integrator JSM commands.

The JSM command script may contain substitution variables that are replaced at
run-time by the values of Processing Sequence variables. See below for details
on this feature.

Note that JSM commands executed using this activity are not able to pass or
receive LANSA variables or working lists to or from the LANSA Integrator
service. This fact will restrict the services and/or the selection of service
commands that may usefully be executed using this activity.

Due to this restriction and limited error handling and recovery capabilities, the
activity is intended only for relatively simple LANSA Integrator service
command sequences. You should consider using one of the purpose-specific
supplied activities or creating your own custom activity for more advanced
applications.

As soon as this activity begins to execute the JSM command script, the
restartable flag is set OFF. It is not possible to restart a processing sequence that
ends in error in this activity after it begins to execute the JSM command script.

INPUT Parameters:
JSMSERVICE : Optional

This parameter can contain the name of the JSM service to be loaded. If
specified, the activity will load the JSM service at the beginning of execution
and unload it when complete. If a single service is being used, this is the
preferred technique because it allows the activity to respect and exploit
applicable LANSA Composer settings and functionality, such as LANSA
Composer features supporting LANSA Integrator tracing. If not specified,
then the JSM script must contain the necessary SERVICE_LOAD and
SERVICE_UNLOAD commands to load and unload the required JSM
service.

JSMSCRIPTFILE : Optional

This parameter is optional, but if it is not provided, then you must provide
the JSM command script through the JSMSCRIPTLIST parameter. If this
parameter is provided, then it must specify the full path to a text file that
contains the JSM command script to be executed. See JSM command Script
below for more information.

JSMSCRIPTLIST : Optional

This parameter is optional, but if it is not provided, then you must provide
the JSM command script through the JSMSCRIPTFILE parameter. If this
parameter is provided, then it must contain a list of the JSM commands to be
executed. See JSM command Script below for more information.

JSMERRORACTION : Optional

This parameter specifies the action the activity should take if any command
in the specified JSM command script results in an error. You can specify one
of the following values:

*ERROR : the activity immediately ends in error without executing
further JSM script commands

*CONTINUE : the activity continues to attempt to execute remaining JSM
script commands, but when complete, ends with a warning status

If not specified (or if an unrecognised value is specified), the activity
assumes a default value of *CONTINUE.

OUTPUT Parameters:
JSMSTATUS:

Upon completion, this parameter will contain a list of the JSM status codes
(eg: 'OK' 'ERROR' ...) resulting from executing the JSM script commands.
Only status codes resulting from script commands are included - the list does
NOT include status codes resulting from opening or closing the JSM
connection or from loading or unloading the service (unless the service load
or unload results from commands in the JSM script). Therefore the sequence
of the status codes in the list corresponds directly to the sequence of the JSM
commands executed.

JSMMESSAGE:

Upon completion, this parameter will contain a list of the JSM messages
resulting from executing the JSM script commands. Only messages resulting
from script commands are included - the list does NOT include messages
resulting from opening or closing the JSM connection or from loading or
unloading the service (unless the service load or unload results from
commands in the JSM script). Therefore the sequence of the JSM messages
in the list corresponds directly to the sequence of the JSM commands
executed.

JSMERRORCOUNT:

Upon completion, this parameter will contain a count of the JSM command
script commands that ended in error. If *ERROR is specified for the

JSMERRORACTION parameter, this count will always be either zero or 1
because the first error terminates the JSM command script execution.

JSM Command Script

Whether you specify your JSM command script through the JSMSCRIPTFILE
or JSMSCRIPTLIST parameters, you should compose your script according to
the following guidelines:

e Your script can consist of any JSM service commands valid for the JSM
service loaded and according to the JSM service documentation, providing
that the commands used do not rely upon passing program variables or lists
to or from the LANSA Integrator service

e Each JSM service command should be on a separate line or in a separate list
entry

e Lines or list entries beginning with "*' are ignored and may contain
comments

Refer to the LANSA Integrator documentation for information about the
supported JSM services and service commands.

Substituting Processing Sequence Variables in the JSM command script

The activity supports substitution variables in the JSM command script. When
found, they will be replaced by the value of the named variable in the
Processing Sequence variable pool.

You can specify a substitution variable in the following form:
%%var.<variable-name>%%

where <variable-name> is the name by which the variable is known in the
Processing Sequence variable pool. See the example JSM command script
below for an example of using substitution variables.

If you specify substitution variables in your JSM command script, it is your
responsibility to ensure that the variables named exist and have valid values
assigned to them in the Processing Sequence that uses the script. The variables
values may be set by any supported means - for example, they might be
received as Processing Sequence parameters, explicitly set with an ASSIGN
directive, or set as the result of running some other activity. If the named
variables do not exist in the Processing Sequence when the JSM command
script is executed, this activity will issue a warning but execution will continue
(the variable reference is removed from the JSM command).

Note that the following advanced forms of variable references are NOT

supported by this feature:
1. Compound or qualified variables - for example: *tradingpartner.xxx

2. Indexed variables - for example: mylist(3)

Typically you could circumvent these limitations, if necessary, by assigning the
desired compound or indexed variables to a simple variable name before
executing the script.

Example JSM Command Script

This is a sample JSM command script that is intended to delete records from the
LANSA Composer tutorial orders database tables TUTORDH and TUTORDL
using the LANSA Integrator SQLService. It uses substitution variables for the
database user and password and for the BCHNUM database field value that
identifies the records to be deleted. It is the responsibility of the solution
designer to ensure that corresponding processing sequence variables exist with
appropriate values before executing this script using the JSM_SCRIPT activity.
Sk 3k 3 e 3k 3k e e 3 3k e e S S e 3k S e e 3k S e e S S e 3k S S e 3k S e e S S e S S S e 3k S e e 3k Sk e Sk Sk s sfe Sk s sfe sl sk sk sfe e sk sk sfe ok
* This is a sample JSM command script

3k 3k 3 e 3k 3k e e 3 3 e S S S e 3k 3 e e 3k S e e S S e Sk S S e Sk S e e S S e S S S e 3k S e e S Sk e Sk S s e Sk sk sl sl sk sk sfe e sk sk sfe ok
CONNECT DRIVER(TUT) DATABASE(TUT)

USER(%%var.USER%%)

PASSWORD(%%var.PASSWORD%%)

SET AUTOCOMMIT(*YES)

EXECUTE UPDATE("DELETE FROM TUTORDL

WHERE BCHNUM = "%%var. BCHNUM%%'"")

EXECUTE UPDATE("DELETE FROM TUTORDH

WHERE BCHNUM = "%%var. BCHNUM%%'"")

DISCONNECT

3 3 3 3¢ 2 e 2 e 2 e S e S e S i S S S S e S e S e S e S e S ok S Sk S ok S

Note that the example above would require entries similar to the following to be
added to LANSA Integrator's SQLService.properties file in order to operate
successfully. This is a requirement of the particular JSM service and service
commands being used - it does not apply to the JSM_SCRIPT activity in
general. You should refer to the LANSA Integrator documentation for
information about requirements and considerations that apply to the JSM
service and service commands that you are using.

#

driver.tut=com.ibm.as400.access.AS400JDBCDriver
database.tut=jdbc:as400://SY STEM/LICLICLIB;naming=sql;errors=full;date
format=iso;translate binary=true

#

LAST_SPLF

This activity retrieves the identity of the last spooled file created for the current
job. This activity is only supported on IBM i servers.

You might use this activity after executing another activity that you expect will
have created a spooled file in the current job. For example, executing certain
system commands (using the SYSTEM_COMMAND activity), a custom
activity or calling a program or LANSA function may create a spooled file.

Note that this activity will ONLY retrieve the identity of a spooled file created
in the same job that executes the LAST_SPLF activity. This means that there
are several common circumstances in which this activity will NOT yield the
desired information. For example:

e spooled files generated as a consequence of executing a LANSA Integrator
service command

e calling a LANSA function, if the request is satisfied through the LANSA
Composer Request Server

(You may use the SPLF_LIST activity to list spooled files created in another job
or by another user.)

You should check that the spooled file is the one you expect before processing it
further - for example, you might at least test that the SPLFNAME value is the
spooled file name that you expect.

Note that in some circumstances (in particular when the current job's user name
is not the same as the current user profile), the job details for the spooled file
will not match the job name, user name and job number for the current job. For
example, you may find that a job named QPRTJOB owns the spooled file. You
should use the details provided by this activity or by the SPLF_LIST activity if
you wish to perform further operations on the spooled file.

If no last spooled file information is available, the output parameters will be
empty. The activity ends normally (without error) in this case.

INPUT Parameters:
There are no input parameters for this activity.

OUTPUT Parameters:
JOBNAME:

If successful, this parameter will contain the name of the job that owns the
spool file.

JOBUSER :
If successful, this parameter will contain the user profile name of the job that
owns the spool file.

JOBNUMBER :
If successful, this parameter will contain the job number of the job that owns
the spool file.

SPLFNAME :
If successful, this parameter will contain the name of the spool file.

SPLFNUMBER :
If successful, this parameter will contain the number of the spool file.

LOAD_PSVSET

This activity will load processing sequence variables from one or more PSV sets
(processing sequence variables sets) contained in the specified PSV file.

Because this is an iterator activity, the processing logic nested beneath the
LOAD_PSVSET activity is repeated for each PSV set loaded. In some valid
usage scenarios for this activity, the process may only expect to load one PSV
set - for example when loading a PSV file that was created using the
SAVE_PSVSET activity. In that instance it is the process designer's choice
whether or not to nest the associated processing directives beneath this activity.

There is no inherent limit to the number of PSV sets that can be loaded or the
number of processing sequence variables loaded from each PSV set. However,
the activity is not intended for routine processing of large volumes of data and
performance may suffer if you attempt to do so.

The PSV files processed by this activity may contain one or more PSV sets
(<psvSet> element). PSV files created by the SAVE_PSVSET activity will
always contain a single PSV set (<psvSet> element). However, PSV files
created by other means (for example, as the output from a Transformation Map)
may contain more than one PSV set (processing sequence variables set).

For more information about PSV files, refer to the following.

Saving, Loading and Transforming Processing Sequence Variables

NOTE: This activity does not clear any processing sequence variables
or variable lists before loading them from the PSV file. This is
particularly important for variable lists. If your processing sequence
already contains a list named &my_list containing 30 entries, and a
list of the same name is loaded from the PSV file with 15 entries, the
resulting list will still contain 30 entries - the LOAD_PSVSET activity

will replace the values of only the first fifteen entries in this instance.
You will need to use the CLEARLIST activity if you wish to ensure
that any loaded variable lists contain ONLY the entries loaded from
the PSV file. If you are using the iterator capability of this activity (to
load multiple PSV sets), then the CLEARLIST activity would
typically need to be repeated at the end of each iteration.

INPUT Parameters:
PSVFILEPATH : Required

its:LANSA091.CHM::/lansa/intengc3_0116.htm

This parameter must specify the path and file name of the PSV file to be
read.

PSVSELECT : Optional

If the PSV file read by this activity contains more than one PSV set
(<psvSet> element), this parameter may be used to select a single PSV set
(processing sequence variables set) to be loaded. To do this, you may
specify the special value *FIRST" to select the first processing sequence
variables set in the PSV file or you may specify an id value to be matched
against the value of the id= attribute of the <psvSet> element. If you specify
an id, the match is case-sensitive. If this parameter is not specified or the
default value of **ALL' is used, then the activity will iterate for each
processing sequence variables set present in the PSV file.

OUTPUT Parameters:
PSVINDEX:

For each iteration, this output parameter will contain the index of the current
PSV set in the PSV file. If you specify an id value for the PSVSELECT
parameter, the returned index may not necessarily be 1 (one) if the selected
PSV set was not the first in the file.

PSVSETID:

For each iteration, this output parameter will contain the value of the id=
attribute of the <psvSet> element for the current PSV set.
PSVCOMMENT:

For each iteration, this output parameter will contain the value of the
comment= attribute of the <psvSet> element for the current PSV set.

LOGLIST

This activity creates one or more entries in the processing sequence log that
contain the values of the variable list specified in the parameter. This can be
useful while testing or debugging your processing sequence.
Note that logging is subject to the logging level in effect for the processing
sequence run.
INPUT Parameters:

LIST : Required

Specifies the list values to be logged. Normally you would specify a variable
list in this parameter - if you do so, LANSA Composer will log the indexed
variable name and its value for each item in the list.

(It is possible, but not useful, to specify a literal value for this parameter.)

OUTPUT Parameters:
There are no output parameters.

LOGUSERINFO

This activity creates an impromptu entry in the processing sequence log -
subject to the logging level in effect for the processing sequence run.

INPUT Parameters:
LOGTEXT : Required

Specifies the impromptu message text for log entry. The activity will use a
maximum of 512 characters, but, in any event, you should usually specify
considerably less than this.

LOGEXTRA : Required

Specifies additional information that supports the impromptu message. This
might enumerate parameter values or a command string that affect the
operation in progress. This information, if specified, can be displayed for the
log entry under the heading additional information. The activity will use a
maximum of 512 characters for this parameter.

OUTPUT Parameters:
There are no output parameters.

LOGVARIABLE

This activity creates an entry in the processing sequence log that contains the
value of the variable specified in the parameter. This can be useful while testing
or debugging your processing sequence.

Note that logging is subject to the logging level in effect for the processing
sequence run.

INPUT Parameters:
VARIABLE : Required

Specifies the value to be logged. Normally you would specify a variable in

this parameter - if you do so, LANSA Composer will log the variable name
and its value.

(It is possible, but not useful, to specify a literal value for this parameter.)

OUTPUT Parameters:
There are no output parameters.

LOWERCASE

This activity returns the specified input string with all uppercase characters
converted to lowercase.

INPUT Parameters:
STRINGIN : Required

This parameter specifies the string to be converted.

OUTPUT Parameters:
STRINGOUT :

Upon completion, this parameter will contain the converted string.

MAIL_RECEIVE

This Activity will retrieve a single email message from the mail server using
LANSA Integrator's POP3MailService. It will retrieve the first email message
for a particular user. The user details and other criteria must be specified in a
POP3 Mail Configuration.

Information about the email, the mail text and attachments will be output.

If the "Remove from server after read" is set to Yes on the POP3 Mail
Configuration, then the next execution of this Activity will retrieve the next
email message.

An email Event notification named POP3FAILED is available in this Activity. If

this event is active and a failure occurs in this Activity, then a notification email
will be sent. Refer to Event Maintenance for setting up Event notifications.

INPUT Parameters:
POP3CONFIG : Required

This parameter must contain the name of a POP3 Mail Configuration. This
Configuration can be created and maintained using the POP3 Mail
Configuration option in the Navigator.

If this parameter is not provided or is not found, this Activity will return an
error and processing will be abandoned.

SAVEDIRECTORY : Optional

This parameter may be used if the POP3 Configuration requires mail text or
attachments to be saved. If it contains a non-blank value it will be used as the
directory into which the email message text and attachments will be saved.

If this parameter is not provided, and text or attachments are to be saved,
then the directory from the POP3 Configuration will be used.

OUTPUT Parameters:
POP3COUNT

Upon completion, this value will contain a count of the email messages
received. Because this activity receives a maximum of one message, this
value will be either zero or one.

FROMADDRESS
This value will contain the from address from the retrieved email message.

SUBJECT
This value will contain the Subject from the received email message.

its:LANSA091.CHM::/lansa/intengc6_0025.htm

SENTDATE
This value will contain the date on which the received email message was
sent.

ATTACHMENTNO
This will contain the number of attachments on the received email message.

TEXTFILE
If the POP3 Configuration requires the email text to be saved, then this value
will contain the path and file name of the email text which has been saved.

For example: Windows c:\messages\mailtext.txt

IBMi /email/mailtext.txt

ATTACHMENTLIST
If the POP3 Configuration requires the email attachments to be saved, this
will contain a list of full path and file name which have been saved from the
received email.
The attachments will be saved in the directory specified in the POP3 Mail
Configuration or the input parameter SAVEDIRECTORY.

MAIL_RECEIVEALL

This Activity will retrieve multiple email messages for a user from the mail
server using LANSA Integrator's POP3MailService.

Information about the email, the mail text and attachments from the retrieved
emails will be saved to a local directory. A directory will be created for each
email retrieved. A list of the directories created will be output by this Activity.

The parent directory for these created directories may be specified in the POP3
Mail Configuration or in the input parameter SAVEDIRECTORY.

Activities that populate list variables are often followed by a LOOP processing
sequence directive or other constructs to process the contents of the list. Refer
to Variables and Lists for more information about the use of list variables.

An email Event notification named POP3FAILED is available in this Activity. If
this event is active and a failure occurs in this Activity, then a notification email
will be sent. Refer to Event Maintenance for setting up Event notifications.

INPUT Parameters:
POP3CONFIG : Required

This parameter must contain the name of a POP3 Mail Configuration. This
Configuration can be created and maintained using the POP3 Mail
Configuration option in the Navigator.

If this parameter is not provided or is not found, this Activity will return an
error and processing will be abandoned.

SAVEDIRECTORY : Optional

If this parameter contains a non-blank value it will be used as the home
directory into which the sub directory to contain the email details is created.
The details of the email message, the message text and attachments will be
saved into this sub directory. If this parameter is not provided, then the
directory from the POP3 Configuration will be used.

POP3MAX : Optional

If this parameter contains a number, it will be used as the maximum number
of emails that this activity will retrieve. A special value of *NOMAX can be
used to indicate that there be no maximum. In this case, all emails that have
not been deleted will be retrieved. If this parameter is not provided, then a
default limit of 50 will be used.

OUTPUT Parameters:

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm
its:LANSA091.CHM::/lansa/intengc6_0025.htm

POP3COUNT

Upon completion, this value will contain a count of the email messages
received. The value may be zero if no mail was available to receive.

STOREDIRECTORY

Specifies the name of a list variable that will contain a list of sub directories
which have been created within the SAVEDIRECTORY.
The full path will be held.

For example: Windows \savedir\subdir

IBMi /savedir/subdir

The name of the sub-directory will be generated from the system setting

POP3 save sub-directory name prefix plus a unique number. For example :
MS123

This sub-directory will contain:
e Mail attachments (if required to be saved)

e Mail text (if required to be saved) as file named mailtext.txt

e Mail information in file named mailinfo.txt
Format of this mailinfo.txt is:

Created by DXACTP302 on 20060216 11:32:00
FROMADDRES S=XXXXXXXXXXXXXXXXX
SUBJECT=z2772277272772777
SENTDATE=dddddddddd

#

MAIL_SEND

This Activity will send an email with or without attachments to one or more
recipients.

The details for the email must be specified in an SMTP mail details
configuration. Selected details of the configuration may be overridden using the
activity parameters.

To use this Activity you must have an SMTP mail server available. The activity
will send the email through the SMTP server identified in the specified or
system default SMTP server configuration.

An email Event notification named SMTPFAILED is available in this Activity.
If this event is active and a failure occurs in this Activity, then an email will be
sent. Refer to Event Maintenance for setting up Event notifications.

INPUT Parameters:
SMTPMESSAGEDETAILID : Required

This parameter should contain the name of an SMTP Message Detail
configuration that specifies details of the e-mail message to be sent. If this
parameter is not provided or is not found, an error will be returned and
processing abandoned.

SMTPSERVERID : Optional

This parameter may contain the name of SMTP server Configuration that
will be used to send the e-mail. If this parameter is not provided then the
default SMTP server configuration set in System Settings will be used as the
mail server.

TOADDRESS : Optional

This parameter may contain the email address(es) to be used for the TO
email address. If not specified, then the TO email address(es) from the detail
configuration will be used as the TO email address. You may specify a
single email address (eg: 'me@here.com’) or a list of email addresses
separated by commas (eg: 'me@here.com,you@there.com’).

CCADDRESS : Optional

This parameter may contain the email address(es) to be used for the CC
(copy to) email address. If not specified, then the CC email address from the
detail configuration will be used as the CC email address. You may specify a
single email address (eg: 'me@here.com’) or a list of email addresses
separated by commas (eg: 'me@here.com,you@there.com’).

its:LANSA091.CHM::/lansa/intengc6_0025.htm

BCCADDRESS : Optional

This parameter may contain the email address(es) to be used for the BCC
(blind copy to) email address. If not specified, then the BCC email address
from the detail configuration will be used as the BCC email address. You
may specify a single email address (eg: 'me@here.com’) or a list of email
addresses separated by commas (eg: 'me@here.com,you@there.com").

FROMADDRESS : Optional

This parameter may contain an email address to be used for the FROM email
address. If not specified, then the FROM email address from the detail
configuration will be used as the FROM email address.

NB: SMTP mail servers may enforce certain rules about the FROM
addresses that can be specified, in order to prevent abusive practices such as
mail relay.

FROMDISPLAYNAME : Optional

This parameter may contain the FROM display name. If not specified, then
the FROM display name from the detail configuration will be used as the
FROM display name.

SMTPSUBJECT : Optional

This parameter may contain the email subject line. If not specified, then the
subject from the configuration will be used as the email subject line.

MAILBODYTEXT:Optional

This parameter may contain the location and file name to be used as the body
text.

If parameter values are available, it will be used for the body text of the
email message.

If no parameters exist and a value exists on the detail Configuration, it will
be used for the body text.

MAILATTACHMENT : Optional

Mail attachments may be provided as a list.

If parameter values are available, they will be added as attachments.

If no parameters exist and a value exists on the detail Configuration, it will
be used to add an attachment.

MAILATTACHMENTZIP : Optional
If some mail attachments were found, they may be attached as a zip. The

name of the zip will be retrieved from the parameters. If a parameter does
not exist but a value for the zip exists in the details Configuration that name

will be used.

If no zip name is provided, as parameter or in Configuration, then
attachments are added unzipped.

OUTPUT Parameters:
There are no output parameters.

MOVE_FILE

This Activity will move a file from one directory to another.
When executed on a Windows platform a system move command is executed.

When executed on an IBM i platform an i5/0S MOV command is executed.
Note that files in the integrated file system are moved — if you want to move
objects in the QSYS file system, you must use IFS file system notation to do so.

After the move the file will not exist in the original directory.

When executed on an IBM i platform, this activity is capable of performing data
conversion between different CCSIDs during the move operation. For example,
to convert the data in a text file from its original encoding to UTF-8 you could
use the parameter values TOCCSID(1208) DTAFMT(*TEXT).

INPUT Parameters:
FROMFULLNAME : Required

This parameter should contain the full path and name of the file to be moved
For example: Windows C:\dirl\myfile.txt

IBMi /indir/myfile.txt
TODIRECTORY : Optional (*)

This parameter may contain the full directory path of the destination
directory. If specified, the file will be moved to this new location using the
same name and extension as the original file. If not specified, you must
provide a value for the TOFULLNAME parameter. TOFULLNAME :
Optional (*)

This parameter may specify the path of the directory the object is to be
moved to AND the new name of the object. If specified, the file will be
moved to this new location using the new file name and extension specified.
If not specified, you must provide a value for the TODIRECTORY
parameter.

FROMCCSID : Optional, IBM i servers only

This parameter may specify the method for obtaining the coded character set
identifier (CCSID) for the source of the move operation. This CCSID will be
used for data conversion, if requested.

This parameter corresponds directly to the FROMCCSID parameter of the
IBM i MOV command and you may use any values that are defined for the
MOV command. At IBM i V7R1 the possible values include *OBJ,

*PCASCII, *JOBCCSID or a CCSID value in the range 1-65533. Refer to
the IBM documentation for the MOV command for more information.

The special (default) value *DEFAULT specifies that the FROMCCSID
parameter will not be specified. Note that this parameter applies only when
LANSA Composer is running on an IBM i server.

TOCCSID : Optional, IBM i servers only

This parameter may specify the data coded character set identifier (CCSID)
for the target of the move operation.

This parameter corresponds directly to the TOCCSID parameter of the IBM i
MOV command and you may use any values that are defined for the MOV
command. At IBM i V7R1 the possible values include *OBJ, *CALC,
*PCASCII, *STDASCII, *JOBCCSID or a CCSID value in the range 1-
65533. Refer to the IBM documentation for the MOV command for more
information.

The special (default) value *DEFAULT specifies that the TOCCSID
parameter will not be specified. Note that this parameter applies only when
LANSA Composer is running on an IBM i server.

DTAFMT : Optional, IBM i servers only
This parameter may specify the format of the data in the file to be moved..

This parameter corresponds directly to the DTAFMT parameter of the IBM i
MOV command and you may use any values that are defined for the MOV
command. At IBM i V7R1 the possible values are *TEXT and *BINARY.
Refer to the IBM documentation for the MOV command for more
information.

The special (default) value *DEFAULT specifies that the DTAFMT
parameter will not be specified. Note that this parameter applies only when
LANSA Composer is running on an IBM i server.

OUTPUT Parameters:

FULLNAMEOUT
Upon successful completion, this parameter will contain the full path and file
name of the resulting destination file.

MOVE_SPLF

This activity will move a spool file on an IBM i server to a specified output
queue. It is only supported on IBM i servers.

The input parameters must fully identify the spool file to be moved. You must
specify the SPLFNUMBER parameter if there is more than one spool file of the
name specified by the SPLFNAME parameter for the job specified by the first
three parameters

INPUT Parameters:
JOBNAME : Required

This parameter specifies the name of the job that created the spool file to be
moved.

JOBUSER : Required

This parameter specifies the user profile name of the job that created the
spool file to be moved.

JOBNUMBER : Required

This parameter specifies the job number of the job that created the spool file
to be moved.

SPLFNAME : Required
This parameter specifies the name of the spool file to be moved.
SPLFNUMBER : Optional

This parameter specifies the number of the spool file to be moved and is only
required if there is more than one spool file of the name specified by the
SPLFNAME parameter for the job specified by the first three parameters. If
not specified, a default special value of *ONLY is used. You may specify
special values *ONLY or *LAST. Otherwise specify the number of the job's
spooled file that is to be moved.

TOOUTQ : Required

Specifies the name of the destination output queue the spool file is to be
moved to.

TOOUTQLIB : Optional

Specifies the name of the library containing the destination output queue.
The default value is *LIBL meaning the library list is used to locate the
named destination output queue.

OUTPUT Parameters:

There are no output parameters.

MSG_RECEIVE

This Activity will receive a message from a supported message brokering
system such as IBM MQ Series. Refer to 2.3.9 Messaging Configuration for
further information on this Activity and the pre-requisites for using it.

The MSGCONFIG parameter specifies the name of a messaging configuration
that identifies, amongst other things, the address of and credentials for the
messaging system and queue from which the messageis to be received.

The message contents are received into a file. The location and name of the
received file is determined by the configuration in conjunction with the
parameter values.

In addition, message properties can be received in comma-separated form into a
second file. The location and name of the CSV file is determined by the
configuration in conjunction with the parametervalues.

In all cases, parameter values, if specified, override values in the configuration.

When no message is available to be received (after waiting for the interval
specified by the WAITTIME parameter, if used), the activity ends normally but
the output parameters containing message attributes are not filled. The value of
the MSGRCVCOUNT output parameter may be used to determine whether a
message was received.

INPUT Parameters:
MSGCONFIG : Required

This parameter must contain the name of a messaging configuration. This
configuration can be created and maintained using the Messaging
Configurations option in the LANSA Composer client software. Amongst
other things, the messaging configuration specifies the address, queue name
and security credentials to be used with the message broker system. If this
parameter is not provided or is not foundor is Inactive, this Activity will
return an error and processing will be abandoned

WAITTIME: Optional

Specifies the length of time (in milliseconds) that the activity will wait for a
qualifying message to arrive in the message queue if one is not immediately
available when the activity is processed.

The default value is -1 which means that the activity does not wait for the
arrival of a message if one is not immediately available when the activity is
processed.

You may also specify a special value of 0 (zero) which means that the
activity waits indefinitely for a message to arrive. You should understand
that this value may cause the activity and hence the processing sequence in
which it is contained to stall indefinitely if no message is sent to the message
queue. Other than by the arrival of a message, such a processing sequence
run may only be terminated by terminating the job, the subsystem in which
the job is running or the system.

ENCODING: Optional

Use the ENCODING when the received message is a Unicode TextMessage.
The default value is UTF-8.

MSGFOLDER: Optional

Use the MSGFOLDER to specify the folder to which the file containing the

received message contents will be written. If specified, this parameter
overrides the Receive folder value in the messaging configuration.

You can leave this parameter unspecified and specify a fully qualified
MSGFILENAME.

When neither the folder nor the MSGFILENAME are specified, the file will
be created in \x_lansa.

MSGFILENAME: Optional

The name to be given to the file containing the received message contents.
Use in conjunction with MSGFOLDER or the Receive folder in the
configuration. If specified, this parameter overrides the Receive file name
value in the messaging configuration.

When a filename is not specified, the file's name will be auto generated in
the format:

<system setting prefix><number>
PTYFILENAME: Optional

The name to be given to the file containing the received message properties.
When this parameter has no value but message properties are received, the
file will have the same name as the MSGFILENAMEwith the extension CSV
appended to it.

The file will be created in the Message Properties Receive file path, if
specified in the messaging configuration (Message Properties tab). If not, it
will be created in the MSGFOLDER. Otherwise itwill be created in \x_lansa.

SELECTOR: Optional

A message selector to be passed to the MQSeries system. Only valid for
MQSeries message queue on an IBM i server. The message selector is used
to select which message is to be received by the activity. If specified, only
messages matching the specified criteria will be received by the activity.
Otherwise, messages will not be filtered.

OUTPUT Parameters:
MESSAGEID:

The message ID of the received message as returned by the message broker
system.

MSGRCVCOUNT:

The received message count. If a message is received successfully, the value
will be one (1). Otherwise the value will be zero (0).
MSGFILENAMEOUT:

The full path and file name of the file to which the received message
contents were written.

PTYFILENAMEOUT:

The full path and file name of the file to which the received message
properties were written.

MSG_SEND

This Activity will send a file through a supported message brokering system
such as IBM MQ Series. Refer to 2.3.9 Messaging Configuration for further
information on this Activity and the pre-requisites for using it.

The MSGCONFIG parameter specifies the name of a messaging configuration
that identifies, amongst other things, the address of and credentials for the
messaging system and queue to which the message is to be sent.

There are different ways to specify what file or files to send. Which way to
choose depends entirely on your requirements.

MSGFILENAME MSGFOLDER MSGFILEEXTENSION
Send a file Unqualified File Fully qualified N/A

located ina name folder name

folder

Send a file Fully qualified file Blank N/A
located ina name

folder

Send all Blank Fully qualified Use default *.*
files in a folder name

folder

Send all Blank Fully qualified Gif
files in a folder name

folder with

extension

gif

Note: the MSGFOLDER and MSGFILENAME parameters in this activity
override the Send folder and Send file name in the messaging configuration. If
they rarely change you can specify them at the configuration level and leave the
MSGFOLDER and MSGFILENAME parameters blank.

INPUT Parameters:
MSGCONFIG : Required

This parameter must contain the name of a messaging configuration. This
configuration can be created and maintained using the Messaging
Configurations option in the LANSA Composer client software. Amongst
other things, the messaging configuration specifies the address, queue name
and security credentials to be used with the message broker system. If this
parameter is not provided or is not found or is Inactive, this Activity will
return an error and processing will be abandoned.

MSGTYPE : Optional

Set the MSGTYPE to *BINARY to send the file contents as a binary bytes.
Set the MSGTYPE to *TEXT to send the file contents as a text message.The
default value is *BINARY.

ENCODING: Optional

Used when the MSGTYPE is set to *TEXT, the value of this parameter is
used to convert the file content into a Unicode string that will be sent as the
text message. The default value is UTF-8.

MSGFOLDER: Optional

Use in conjunction with the MSGFILENAME or MSGFILEEXTENSION
parameters. It must contain the fully qualified path to the folder containing
the file or files to send.

Use the appropriate format depending on the operating system. For example:
Windows <drive>:\mydir\
IBMi /mydir/subdir/

MSGFILENAME: Optional

Use in conjunction with the MSGFOLDER parameter or the Send folder
specified in the messaging configuration.

When specifying the folder, MSGFILENAME must contain the name of a
file found in that folder.

When the folder is not specified, MSGFILENAME must contain a fully
qualified file name.

Use the appropriate format depending on the operating system. For example:
Windows <drive>:\mydir\filel.txt

IBMi /mydir/subdir/filex.xml

MSGFILEEXTENSION: Optional

This parameter can specify a file extension filter used to select files to be

sent from the folder specified in the MSGFOLDER parameter or in the
messaging configuration. The filtering is done without regard to the case of
the filter value or file extension. For example, you might specify a value of
'XML' for this parameter to select all files with an XML file extension. This
parameter is ignored if a file name is specified in the MSGFILENAME
parameter.

PTYFILENAME: Optional

This parameter may specify the name of a file containing message properties
that are to be merged with any specified in the messaging configuration and
sent with the message(s).

If the Message Properties Send file path is specified in the messaging
configuration, this parameter (if used) must specify the name of a file found
in that folder.

If the Message Properties Send file path is NOT specified in the messaging
configuration, this parameter (if used) must have the fully qualified file
name.

Refer to 2.3.9 Messaging Configuration for information on the expected
format of the message properties comma-separated file.

OUTPUT Parameters:
MESSAGEID:

The message IDs of the sent message(s) returned by the message broker
system.

If the parameter values used result in more than one file/message being sent,
then this outbound parameter contains a list of the message ids for each
message sent.

MSGQ_RECEIVE

This activity receives a message from a named message queue on the IBM i
server. It is supported only on IBM i servers.

When the activity receives a message from the named message queue, a range
of attributes of the message are available through the output parameters of the
activity, including message text, message data, message identifier and sender
information.

When no message is available to be received (after waiting for the interval
specified by the MSGWAIT parameter, if used), the activity ends normally but
the output parameters containing message attributes are not filled. The value of
the RCVCOUNT output parameter may be used to determine whether a
message was received.

Refer also to the companion MSGQ_SEND and WATCH_MSGAQ activities that
allow you to send a message to a named message queue or to iteratively wait on
messages arriving at a message queue. Refer to IBM i documentation
concerning message queues, message descriptions and message files for further
information about the operating system features upon which this activity
depends.

INPUT Parameters:
MSGAQ : Required
This parameter must specify the name of the message queue from which the
message is to be received.

MSGQLIB: Optional

This parameter may specify the name of the library containing the message
queue. If not specified, a default of *LIBL is used which means the library
list is used to locate the named message queue.

MSGPOS: Optional

You may specify this parameter to control which message is to be received
from the message queue or to receive messages that are "old" (that is,
messages that have previously been received without being removed).

The usual (and default) value, *NEW, specifies that the activity will receive a
"new" message, that is one that has not been previously received (without
being removed). When this value is specified (or assumed) the messages are
received in FIFO (first-in, first-out) order.

Alternatively you may use the values *FIRST or *LAST to specify that the

first or last message on the message queue is to be received. These values
permit "old" messages to be received again, but will also receive "new"
messages where applicable.

MSGWAIT: Optional

Specifies the length of time (in seconds) that the activity will wait for a
message to arrive in the message queue if one is not immediately available
when the activity is processed.

The default value is 0 (zero) which means that the activity does not wait for
the arrival of a message if one is not immediately available when the activity
is processed.

You may also specify the special value *MAX which means that the activity
waits indefinitely for a message to arrive. You should understand that this
value may cause the activity and hence the processing sequence in which it is
contained to stall indefinitely if no message is sent to the message queue.
Other than by the arrival of a message, such a processing sequence run may
only be terminated by terminating the job, the subsystem in which the job is
running or the system. If you wish a process to wait indefinitely for a
message to arrive, the WATCH_MSGQ activity may provide a more suitable
solution.

MSGRMYV: Optional

Specifies whether the message received by the activity is removed from the
message queue. The default is *YES, which means the message is removed.
You may specify *NO to cause the message not to be removed from the
message queue. If you do so, the system considers the message to be "old"
and it will not be received again by this activity except by specifying *FIRST
or *LAST for the MSGPOS parameter. If your processing sequence leaves
"old" messages on the message queue, it is your responsibility to remove
them by other means such as by executing the CLRMSGQ operating system
command.

OUTPUT Parameters:
RCVCOUNT:
The received message count. If a message is received successfully, the value
will be one (1). Otherwise the value will be zero (0). The activity ends
normally when no message is available to receive after waiting for the
interval specified by the MSGWAIT parameter.

RCVMSGSEYV:

If a message is received, this parameter contains the severity code of the
received message. Impromptu messages sent by the MSGQ_SEND activity
will usually have a severity code of '00". For pre-defined messages, the
severity code is defined by the message description.

RCVMSGTYPE:

If a message is received, this parameter contains the message type of the
received message. Messages sent by the MSGQ_SEND activity will have a
message type of *INFO. For messages sent by other means, the message
type is specified by the sending program.

RCVMSGID:

If a message is received, this parameter contains the message identifier of the
received message. An impromptu message has no message identifier.
Otherwise, this value identifies the message description in the message file
identified by the RCVMSGF and RCVMSGFLIB parameters.

RCVMSGEF:

If a message is received, this parameter contains the name of the message file
of the received message. An impromptu message has no message file name.
Otherwise, this value identifies the message file name containing the
message description used to send the message.

RCVMSGFLIB:

If a message is received, this parameter contains the name of the library
containing the message file, if any.

RCVMSGTXT:

If a message is received, this parameter contains the first level message text
of the received message. For a pre-defined message, this includes the
message data fields that were substituted for substitution variables in the text
before the message was sent. A maximum of 256 characters of the first level
text will be returned.

RCVSECLVL:

If a message is received, this parameter contains the second level message
text of the received message, if any. An impromptu message has no second
level message text. For a pre-defined message, this includes the message
data fields that were substituted for substitution variables in the second level
text before the message was sent. A maximum of 256 characters of the
second level text will be returned.

RCVMSGDTA:

If a message is received, this parameter contains the message data field
values of the received msg. An impromptu message has no message data.
Otherwise this contains a single string of the message data values used to
send the message. A maximum of 256 characters of message data will be
returned.

SENDJOB:

If a message is received, this parameter contains the name of the job that sent
the message.

SENDUSER:

If a message is received, this parameter contains the user name of the job that
sent the message.

SENDJOBNBR:

If a message is received, this parameter contains the job number of the job
that sent the message.

SENDDATE:

If a message is received, this parameter contains the date that the message
was sent. The date is in ISO format - that is, CCYY-MM-DD.

SENDTIME:

If a message is received, this parameter contains the time that the message
was sent. The time is in ISO format - that is, HH:MM:SS.

MSGQ_SEND

This activity sends a message to a named message queue on the IBM i server. It
is supported only on IBM i servers.

You can use this activity to send an impromptu message or a pre-defined
message.

An impromptu message is one for which the message text is entirely supplied at
run-time. To send an impromptu message, specify the message text in the MSG
parameter value. The MSGID, MSGF, MSGFLIB and MSGDTA parameter
values are ignored if MSG is specified.

A pre-defined message uses a message description contained in a message file
to provide the text for the message. To send a pre-defined message, do not
provide a value for the MSG parameter but instead specify the message
identifier in the MSGID parameter and specify the message file that contains the
message description in the MSGF parameter (and the MSGFLIB parameter, if
necessary). When using a pre-defined message you may also provide message
substitution values using the MSGDTA parameter for messages that are defined
to use them.

The message is always sent with a message type of *INFO.

Refer also to the companion MSGQ_RECEIVE and WATCH_MSGQ activities
that allow you to receive messages from a named message queue. Refer to IBM
i documentation concerning message queues, message descriptions and message
files for further information about the operating system features upon which this
activity depends.

INPUT Parameters:
TOMSGQ : Required

This parameter must specify the name of the message queue to which the
message is sent.

TOMSGQLIB: Optional

This parameter may specify the name of the library containing the message
queue. If not specified, a default of *LIBL is used which means the library
list is used to locate the named message queue.

MSG: Optional
This parameter may specify the message text for an impromptu message. If

message text is specified in this parameter, any values specified in the
MSGID, MSGF, MSGFLIB and MSGDTA parameters are ignored.

MSGID: Optional

Specifies the message identifier for a pre-defined message description
contained in the message file named in the MSGF parameter. The message
identifier is an alphanumeric value of seven characters and numbers. For
example, CPF9898 is the message identifier for a general-purpose message
description supplied with the IBM i operating system in message file
QCPFMSG. This value is ignored if impromptu message text is specified in
the MSG parameter.

MSGF: Optional

Specifies the name of the message file containing the pre-defined message
description identified by the MSGID parameter. For example, QCPFMSG is
the name of a message file supplied with the IBM i operating system, but
you may use message files of your own as well. This value is ignored if
impromptu message text is specified in the MSG parameter.

MSGFLIB: Optional

This parameter may specify the name of the library containing the message
file identified by the MSGF parameter. If not specified, a default of *LIBL is
used which means the library list is used to locate the named message file.
This value is ignored if impromptu message text is specified in the MSG
parameter.

MSGDTA: Optional

When using a pre-defined message, this parameter may specify a string
containing one or more substitution values that are used as message data
fields within the pre-defined message. This value is ignored if impromptu
message text is specified in the MSG parameter.

OUTPUT Parameters:
There are no output parameters

NOTIFYEVENT

This activity can be used to trigger any event that is defined to LANSA
Composer (in event maintenance).

Usually events are triggered automatically by the activities that are associated
with them. However, using this activity, you can define your own events (or re-
use the supplied event definitions) and trigger them explicitly where appropriate
in your processing sequences.
INPUT Parameters:

EVENTID : Required

This parameter must contain the name/identifier of an event defined in Event

Maintenance. This can be one of ths shipped events or any event that you
defined.

OUTPUT Parameters:
None.

NEXTNUMBER

This activity generates the next number in a series that is identified by the two
"key" values that can be specified in the input parameters. It may be suitable in
some applications for generating sequential batch numbers or similar for
processed data.

The series from which the number is generated is determined by the two number
"keys" specified in the parameters. You can use the keys to generate a sequence
number identified appropriately for your purpose or application. For example,
you might specify "ORDER_IN" as the first key and "BATCHNUMBER" as the
second key. The first time the activity runs (in any processing sequence) with
these keys, the number 1 (one) is returned. Each subsequent invocation with
these keys (in any processing sequence) returns the next number in the
ORDER_IN/BATCHNUMBER series.

The numbers generated have a maximum precision of 30, 0. When the number
reaches its maximum capacity it will roll-over to zero. The numbers and the
keys are held in a Composer database file.

This activity may not meet the standards for data integrity and security required
for some applications. You should consider the requirements of your application
carefully before using this activity.

INPUT Parameters:
NUMBERKEY1 : Optional

This is the first of two optional "keys" that are used to uniquely identify the
series from which the next sequential number will be generated. If this
parameter is not specified, the activity will use the internal identifier of the
containing processing sequence (a unique 32 character string). This results in
a series of numbers unique to that processing sequence. But two instances of
the activity in the same processing sequence would generate numbers from
the same series (unless you specify a value for the NUMBERKEY?2
parameter).

NUMBERKEY?2 : Optional
This is the second of two optional "keys" that are used to uniquely identify

the series from which the next sequential number will be generated. This
parameter has no default - if not specified, a blank key value will be used.

OUTPUT Parameters:
NUMBEROUT :

Upon completion, this parameter contains the next sequential number in the
series identified by the specified (or assumed) "keys".

NULL
This activity does nothing.

Clearly this isn't useful in a production environment, but it can sometimes be
useful as a placeholder during the design of your processing sequence.
INPUT Parameters:
None.

OUTPUT Parameters:
None.

PATHMAKE

This activity receives a folder path and a file name and extension and constructs
and returns the full file path.

The activity's behavior is subject to the operating environment. For example, it
uses or looks for a path delimiter of "\' or '/ according to whether the processing
sequence engine is running on a Windows or IBM i server.

INPUT Parameters:
PATHIN : Required
This parameter specifies the folder path - that is the portion of the path left of
the file name and extension. It may include a drive name or network
location. It may or may not include the terminating folder separator (\' or '/’
according to operating environment). If it does not, the activity will append
it.

FILEIN : Optional

This parameter specifies the file name. It may include the file extension, in
which case the EXTENSIONIN parameter should not be specified.

EXTENSIONIN : Optional

This parameter specifies the file extension, if required. If specified, the
activity will append this to the file path. It may or may not include the period
(.) separator - if it does not, the activity will add it.

OUTPUT Parameters:
PATHOUT :

Upon completion, this parameter will contain the full file path.

PATHSPLIT
This activity receives a file path and extracts the constituent components
including the folder path, file name and extension.

The activity's behavior is subject to the operating environment. For example, it
uses or looks for a path delimiter of "\' or '/ according to whether the processing
sequence engine is running on aWindows or IBM i server.

INPUT Parameters:
PATHIN : Required
This parameter specifies the file path to be split.

OUTPUT Parameters:
PATHOUT :

Upon completion, this parameter will contain the folder path - that is the
input file path minus the file name and extension.

FILEOUT :

Upon completion, this parameter will contain the file name if one is found in
the input file path.

FILEXOUT :

Upon completion, this parameter will contain the file name and extension if
one is found in the input file path.

EXTENSIONOUT :

Upon completion, this parameter will contain the file extension (not
including the period) if one is found in the input file path.

PUT_DTAARA

This activity writes a value to the specified data area. It is supported only on
IBM i servers.

This activity can only write to data areas created with TYPE(*CHAR) and the
starting position and length specified must be valid for the definition of the data
area specified. The data area must exist and the job running the activity must
have the necessary authorities.

INPUT Parameters:
DTAARA : Required

This parameter specifies the name of the data area.
LIB : Optional

This parameter can specify the name of the library containing the data area.
If it is not specified, the processing sequence will use the library list to locate
the data area.

START : Required

This parameter specifies the starting position in the data area to which to
write the value.

LENGTH : Required
This parameter specifies the length of the value to be written.
STRINGIN : Required

This parameter specifies the value to be written to the specified positions in
the specified data area.

OUTPUT Parameters:
There are no output parameters

QUERY_CCSID

This activity returns the IBM i CCSID for the specified file. The activity is only
supported on IBM i servers.

A CCSID is a coded character set identifier that identifies a specific encoding of
a specific code page on IBM i servers and other IBM platforms and software. It
is crucial that a file containing textual data has the correct CCSID that
represents its encoding of that data — otherwise programs cannot successfully
interpret the file. For more information on CCSIDs, refer to relevant IBM
documentation.

INPUT Parameters:
FILEPATH : Required

This parameter should contain the full name and path of the file whose
CCSID is to be queried.

OUTPUT Parameters:
CCSID :

If successful, this parameter will contain the CCSID for the specified file.

RANDOMNUMBER

This activity generates a pseudo-random number in the range specified by the
LOWERBOUND and UPPERBOUND input parameters. For example, if the
default values of 1 (one) and 100 (one hundred) are used for the
LOWERBOUND and UPPERBOUND parameters, the resulting pseudo-
random number will be in the range 1 to 100 inclusive.

Typically (but not invariably), each use of the RANDOMNUMBER activity
will yield a result different to the previous and frequent use will yield results
that will be evenly spread, on average, over the range specified by the
LOWERBOUND and UPPERBOUND input parameters.

Technical note: The implementation of the RANDOMNUMBER activity uses
the LANSA RANDOM_NUM_GENERATOR built-in function with a stream
index value of 77. Refer to LANSA documentation for more information on
this built-in function.

INPUT Parameters:
LOWERBOUND : Optional

This optional parameter specifies the lower bound of the range of the
resulting pseudo-random number. If not specified, a default value of 1 (one)
is used.

UPPERBOUND : Optional

This optional parameter specifies the upper bound of the range of the
resulting pseudo-random number. If not specified, a default value of 100
(one hundred) is used.

OUTPUT Parameters:
NUMBEROUT :

Upon completion, this parameter contains the generated pseudo-random
number in the range specified by the LOWERBOUND and UPPERBOUND
input parameters.

RENAME_FILE

This activity will rename a file.
When executed on a Windows platform a system rename command is executed.
When executed on an IBM i platform an i5/0S REN command is executed.

INPUT Parameters:
FROMFULLNAME : Required

This parameter should contain the full path and name of the file to be
renamied.

For example: Windows C:\dirl\myfile.txt

IBMi /indir/myfile.txt
TONAME : Required

This parameter should contain the new name (and optional extension) of the
file. Note that you cannot specify a new drive or path for the destination
file. The file is renamed in the same directory containing the existing object.

OUTPUT Parameters:
There are no output parameters.

SAVE_PSVSET

This activity saves processing sequence variables and their values to a PSV file.
The variables and their values may subsequently be loaded into the same or a
different processing sequence using the LOAD_PSVSET activity or
transformed using a Transformation Map. Built-in variables (and other
variables used internally by LANSA Composer) are not saved.

If no processing sequence variables are selected, the activity completes
normally and a valid PSV file is created (containing no <psVariable> elements).
The value of the PSVCOUNT output parameter will be zero in this case.

The PSV file created by this activity will always contain a single PSV set
(<psvSet> element). However, PSV files created by other means (for example,
as the output from a Transformation Map) may contain more than one PSV set
(processing sequence variables set) and the LOAD_PSVSET activity is capable
of processing files containing one or more PSV sets.

For more information about PSV files, refer to the following.
Saving, Loading and Transforming Processing Sequence Variables

INPUT Parameters:
PSVFILEPATH : Required

This parameter must specify the path and file name of the PSV file to be
created. By convention, we suggest using a file extension of .PSV’, though
this is not a requirement. If the specified file already exists, it will be
replaced by this activity.

PSVSELECT : Optional

This parameter may optionally specify a generic name of the processing
sequence variables to be saved. For example, specify 'ORDER' to save the
processing sequence variables whose names begin with the characters
'ORDER'. Note that processing sequence variable names are case-
insensitive. It does not matter whether you specify the generic name using
upper or lowercase characters, or a mixture of both. If the generic name
specified ends with "*' (a common "generic" notation), the trailing asterisk is
removed before performing the comparisons. If this parameter is not
specified, a default value of "*ALL' is assumed. Values of *', *ALL' or
blank will result in all processing sequence variables being selected.

PSVSETID : Optional
This parameter may optionally specify a value to be written to the 'id="'

its:LANSA091.CHM::/lansa/intengc3_0116.htm

attribute of the <psvSet> element in the PSV file. The value of this atribute
will be available, if required, to the processing sequence that loads the
variable set using the LOAD_EACHPSVSET activity.

PSVCOMMENT : Optional

This parameter may optionally specify a value to be written to the
'comment=" attribute of the <psvSet> element in the PSV file. The value of
this atribute will be available, if required, to the processing sequence that
loads the variable set using the LOAD_EACHPSVSET activity.

OUTPUT Parameters:
PSVCOUNT:

Upon successful completion, this output parameter will contain a count of
the processing sequence variables saved.

SLEEP

This activity will suspend processing for a time interval specified by the
INTERVAL parameter. When the specified time interval has elapsed, the
activity ends and processing continues with the next directive in the processing
sequence.

When used on LANSA Composer IBM i Server, the specified interval is
rounded up to the nearest 1000 milliseconds (one second).

INPUT Parameters:
INTERVAL : Optional
This parameter specifies the interval in milliseconds to suspend processing.
If not specified, the activity assumes a default of 1000 milliseconds (one

second). When used on LANSA Composer IBM i Server, the value specified
is rounded up to the nearest 1000 milliseconds (one second).

OUTPUT Parameters:
There are no output parameters

SMS_SEND

This activity will send an SMS to a mobile number using an e-mail-based
service provided for the purpose by a third party SMS provider. Such services
require you to hold an account with them (usually paid). Once you have an
account, your application sends an e-mail to the provider in a specified format.
The SMS_SEND activity uses an e-mail format used by www.streetdata.com.au
and other providers in which the key features are:

¢ the telephone number for the receiver is specified left of the '@' sign in the
e-mail address (for example, 04001234567 @streetdata.com.au)

¢ the subject specifies the account holder's assigned user name and
password

¢ the e-mail body contains the message text to be sent

To use this Activity you must have an SMTP mail server available and an SMS
provider. If your SMS provider expects email in a format different to that
generated by this Activity, then the activity processor for the activity may need
to be modified to accommodate it.

Details for connecting to and using the SMS provider service and for the
SMS message destination and content may be specified in an 2.3.7 SMS
Configuration. Refer to the description of 2.3.7 SMS Configuration for

additional information.

INPUT Parameters:
SMSCONFIGID : Optional

This parameter may contain the name of an SMS Configuration to be used
to send the SMS message. This Configuration can be created and maintained
using the SMS Configuration. If the specified SMS configuration is not
found or not active, the Activity will return an error and processing will be
abandoned. If the SMS configuration name is not provided then the default
SMS configuration set in System Settings will be used.

SMSTONUM : Optional

This parameter may contain the SMS number to which the message is to be
sent. If specified here, it overrides the value specified in the SMS
configuration. If not specified here, then the SMS number must be specified
in the SMS configuration.

SMSMSG : Optional

http://www.streetdata.com.au

This parameter may contain the SMS message text to be sent. If specified
here, it overrides the value specified in the SMS configuration. If not
specified here, then the SMS message text must be specified in the SMS
configuration. Most SMS providers restrict the SMS message length to a
maximum number of characters, for example 160 characters. It is your
responsibility to ensure the message text does not exceed the maximum
imposed by the service you are using.

OUTPUT Parameters:
There are no output parameters.

SORT_LISTS

This activity will sort one or more variable lists in "parallel" into the order of
the values in the list specified by the SORTLIST1 parameter.

In the simplest case, where you want to sort one list, simply specify the required
variable list on the SORTLIST1 parameter.

You might specify more than one list in cases where you have variable lists that
are linked. For example, you have two variable lists ORDERS and
CUSTOMERS that contain an order number and customer number respectively
for a list of ORDERS. For every entry in ORDERS, there is also an entry in
CUSTOMERS that contains the customer number for the corresponding order.

To sort the two lists in "parallel” into the sequence of the order numbers, you
could specify ORDERS as the list for the SORTLIST1 parameter and
CUSTOMERS as the list for the SORTLIST2 parameter.

If you specify more than one list, all the lists must have the same number of list
items. Otherwise, the activity will end in error.

NOTE: This activity imposes a maximum number of list items that can be
sorted. If the variable list contains more than the maximum, the activity will
end in error. The maximum is usually 9,999. However, using variable lists of
this extent is generally NOT recommended in the context of this activity or any
other aspect of LANSA Composer variable list processing.

INPUT Parameters:
SEQUENCE : Optional

This parameter specifies whether the variable list(s) should be sorted in
ascending (*ASCEND) or descending (*DESCEND) order of the values in
the list specified by the SORTLIST1 parameter.

INPUT and Output Parameters:
SORTLIST1 : Required

Specifies the first variable list to be sorted. If more than one list is specified,
it is the values in THIS list that are used to sort ALL the lists in parallel.
This parameter must be specified.

SORTLIST2SORTLIST3
SORTLIST4
SORTLISTS5 : Optional

You may specify up to four additional variable lists to be sorted in
"parallel”. If you use these parameters you must specify them contiguously -

LANSA Composer will stop looking after the first unused parameter. Each
list specified here must have exactly the same number of list items as the list
specified in the SORTLIST1 parameter - otherwise the activity will end in
error.

SPLF_LIST

This activity fills the output lists with details of all or selected spool files in a
specified output queue. Spool files in the output queue can be selected by user,
user data or form type by specifying values for the corresponding parameters.

Entries in each output list correspond by index to entries in the other lists for the
same spool file.

Activities that populate list variables are often followed by a LOOP processing
sequence directive or other constructs to process the contents of the list. Refer
to Variables and Lists for more information about the use of list variables.

INPUT Parameters:
OUTQ : Required
This parameter specifies the name of the output queue from which the spool
files are listed.

OUTQLIB : Optional

This parameter specifies the library containing the output queue from which
the spool files are listed. If not specified, a default value of *LIBL is used,
meaning the library list is searched to find the output queue named in the
OUTQ parameter.

SELECTUSER : Optional

If this parameter is specified, the output lists will include only the spool files
for the specified user (that also meet other selection criteria). If not
specified, spool files for all users are eligible to be included.
SELECTUSERDATA : Optional

If this parameter is specified, the output lists will include only the spool files
whose user data (USRDTA) matches the user data specified (and that also
meet other selection criteria). If not specified, all spool files are eligible to
be included irrespective of their user data.

SELECTFORMTYPE : Optional

If this parameter is specified, the output lists will include only the spool files
whose form type (FORMTYPE) matches the form type specified (and that

also meet other selection criteria). If not specified, spool files of any form
type are eligible to be included.

OUTPUT Parameters:
SPLFNAMELIST :

its:LANSA091.CHM::/lansa/intengc3_0130.htm
its:LANSA091.CHM::/lansa/intengc3_0055.htm
its:LANSA091.CHM::/lansa/intengc3_0115.htm

Upon successful completion, this parameter will contain a list of the spool
file names for spool files that were selected from the specified output queue.

SPLEFNUMBERLIST :

Upon successful completion, this parameter will contain a list of the spool
file numbers for spool files that were selected from the specified output
queue.

JOBNAMELIST :

Upon successful completion, this parameter will contain a list of the job
names for spool files that were selected from the specified output queue.
The job names apply to the job that created the spool files.

JOBUSERLIST :

Upon successful completion, this parameter will contain a list of the user
profile names for spool files that were selected from the specified output
queue. The user profile names apply to the job that created the spool files.

JOBNUMBERLIST :
Upon successful completion, this parameter will contain a list of the job

numbers for spool files that were selected from the specified output queue.
The job numbers apply to the job that created the spool files.

SPLF_TO_PDF

This activity converts the spooled file identified by the job and spool file input
parameters into a PDF document. The PDF document is written to the file name
and path specified by the DOCPATH parameter.

Additional input parameters allow basic formatting and layout of the PDF

document to be specified. The MOREATTRIBUTES parameter is provided for
advanced use to specify additional PDF document attributes.

INPUT Parameters:
DOCPATH : Required
This parameter specifies the path and file name for the PDF document that
will be generated by this activity. If the specified file already exists, by
default it's contents will be replaced, but this behavior can be altered by the
APPEND parameter.
APPEND : Optional
This optional parameter only applies if the specified PDF document path and
file name already exists. It takes a value of Y (yes) or N (no). If Y (yes) is
specified, the converted spool file pages will be appended to the existing
PDF document. If N (no) is specified or assumed, the existing PDF
document will be replaced. If this parameter is not specified, a default of N
(no) is assumed.
JOBNAME : Required

This parameter specifies the name of the job that created the spool file from
which the PDF document is to be created.

JOBUSER : Required

This parameter specifies the user profile name of the job that created the
spool file from which the PDF document is to be created.

JOBNUMBER : Required

This parameter specifies the job number of the job that created the spool file
from which the PDF document is to be created.

SPLFNAME : Required

This parameter specifies the name of the spool file from which the PDF
document is to be created.

SPLFNUMBER : Optional
This parameter specifies the number of the spool file from which the PDF

document is to be created. If not specified, a default value of 1 is used.
Otherwise specify the number of the job's spooled file from which the PDF
document is to be created.

PAGES : Required

This parameter can specify a comma-separated list of page numbers and/or
page ranges that are to be included in the conversion to PDF. For example
the value '2,5,10-15"' will select single pages 2 and 5 and pages 10 to 15. If
this parameter is not specified, all pages in the spool file will be converted to
PDF.

PAGETYPE : Required

According to the value of this parameter, the converted PDF document may
consists of PDF text pages or PDF TIFF G4 image pages. The value *TEXT
may be used for SCS type spooled files and *IMAGE may be used for both
SCS and AFPDS type spooled files. *TEXT is faster but can only convert
SCS spool files. *IMAGE is slower but can be used for both SCS and
AFPDS file types. If this parameter is not specified, *TEXT is assumed.

PAGESIZE : Optional

Specifies the page size for the generated PDF document. The default value
is *A4. Other valid values include:

-*A0 to *A10

- *B0 to *B5

-*LETTER

- *HALFLETTER

- *LEDGER

- *LEGAL

- *NOTE

ORIENTATION : Optional

Specifies the page orientation as *PORTRAIT or *LANDSCAPE. The
default value is * LANDSCAPE.

BACKIMAGEPATH : Optional

This parameter may specify the path and file name of an image file (such as
a corporate logo or letterhead) to be included in the background of the
generated PDF file. If specified, the image is included and positioned
according to the values of the BACKIMAGEPAGES and
BACKIMAGEPOQOS parameters.

When this feature is used, the image is placed on the PDF page and the spool
file text is placed over it. The position or layout of the spool file text is not
altered to accommodate the image. Therefore, you should choose an image
file and/or position or size the image to avoid obscuring the spooled file

text. For example, choose an image file that uses mainly light colours.

BACKIMAGEPAGES : Optional

This parameter applies only when a background image file is specified using
the BACKIMAGEPATH parameter. It specifies the pages of the PDF file
that are to include the image. You can use the value *ALL to include the
image on every page of the generated PDF file, or you can use the value
*FIRST to include the image only on the first page of the PDF file. The
default value is *ALL.

BACKIMAGEPOS : Optional

This parameter applies only when a background image file is specified using
the BACKIMAGEPATH parameter. It specifies the size and position of the
image on each affected page of the PDF file. It must be specified as four
numeric values separated by commas. The four values specify respectively
the x (left) and y (top) coordinates and the width and height of the image.
All values are specified in points — each point is 1/72 inches. If not
specified, the default values 1, 1, 80, 80 are used.

MOREATTRIBUTES : Optional

This parameter is provided for advanced use. It allows additional PDF
document attributes to be specified using the syntax:

keyword(value) {keyword(value) ...}
Refer to LANSA Integrator documentation for the CREATE service
command of the PDFSpoolFileService for details of the keywords and values
that may be specified.

OUTPUT Parameters:
There are no output parameters.

SPLF_TO_TEXT

This activity will convert the spooled file identified by the job and spool file
input parameters into a text document. The text document is written to the file
name and path specified by the DOCPATH parameter. The FORMAT parameter
allows you to choose the format that is applied to the spooled file data when it is
written to the text document.

Amongst other things, you may be able to use this activity to mine data
contained in spooled files by combining the activity with a Transformation Map
that parses and extracts information from the generated text document using the
FlexText component of the mapping tool.

The implementation of this activity uses the IBM i CPYSPLF command. Some
spooled files, for example spooled files that contain only advanced function
printing data stream (AFPDS) data cannot be processed by the CPYSPLF
command. Refer to IBM i documentation of the CPYSPLF command for more
information.

INPUT Parameters:
DOCPATH : Required

This parameter specifies the path and file name for the text document that
will be generated by this activity. If the specified file already exists, its
contents will be replaced.

JOBNAME : Required

This parameter specifies the name of the job that owns the spool file from
which the text document is to be created.

JOBUSER : Required

This parameter specifies the user profile name of the job that owns the spool
file from which the text document is to be created.

JOBNUMBER : Required

This parameter specifies the job number of the job that owns the spool file
from which the text document is to be created.

SPLFNAME : Required

This parameter specifies the name of the spool file from which the text
document is to be created.

SPLFNUMBER : Optional
This parameter specifies the number of the spool file from which the text

document is to be created. It is required only if there is more than one spool
file of the name specified by the SPLFNAME parameter for the job
specified. If not specified, a default special value of *ONLY is used. You
may specify special values *ONLY or *LAST. Otherwise specify the
number of the job's spooled file that is to be converted.

DOCCCSID : Optional

This parameter allows you to specify the IBM i CCSID with which the
output text document is created.

If the parameter is not specified, a default of *DEFAULT is assumed, which
instructs the activity to create the output text document using the CCSID for
the job in which the activity is executing. (You can also specify the special
value of *JOB which has the same effect.)

Otherwise, you should specify the numeric CCSID value required. For
example, a value of 1208 means UTF-8. Refer to IBM i documentation for a
complete list and description of the available CCSIDs.

NOTE: the assumed or explicit CCSID is applied only when the specified
output file does NOT already exist. If the specified output file already exists
and is being replaced or appended-to by this activity, then its CCSID will not
be changed.

FORMAT : Optional

This parameter allows you to choose the format that is applied to the spooled
file data when it is written to the text document. You may specify one value
from each of the following three groups (each value should be separated by
at least one space):

1. *SPOOLDATA | *PRTCTL | *PAGELINE
2. *FIXED | *CSV
3. *BLANKLINES | *NOBLANKLINES | *CONDENSEBLANKLINES

You must specify quote marks around the value(s) to distinguish them from
built-in variable names.

The options in each of the three groups are described further below. If you
specify more than one value from each group, the last-specified value is
effective. If you do not specify this parameter, the default values are
"*SPOOLDATA *FIXED *BLANKLINES'.

1. *SPOOLDATA | *PRTCTL | *PAGELINE

These values specify what data items to include in each output line. The
default is *SPOOLDATA, which includes only the spooled file line contents.

Specify *PRTCTL to include skip before and space before values before
each spooled file line contents. Specify *PAGELINE to include page
number and line number values before each spooled file line contents. Note
that the page and line numbers are calculated. In some cases, they may not
match exactly the page and line numbers in the original spooled file.

2. *FIXED | *CSV
These values specify how the data items on each output line are formatted.

The default is *FIXED, which includes the data items in fixed-length
columns.

For FORMAT("*PRTCTL *FIXED"), the skip before value will occupy
columns 1-3, the space before value will occupy column 5 and the spooled
file line contents will begin in column 7.

For FORMAT("*PAGELINE *FIXED'), the page number value will occupy
columns 1-7, the line number value will occupy columns 9-11 and the
spooled file line contents will begin in column 13.

Specify *CSV to have the data items output in comma-separated form
instead.

For FORMAT("*SPOOLDATA"), the *FIXED or *CSV formatting values do
not apply and have no effect.

3. *BLANKLINES | *NOBLANKLINES | *CONDENSEBLANKLINES
These values specify whether blanks lines are output to the text document.
The default is *BLANKLINES which will include all blank lines that occur
in the spooled file up to the last non-blank line on each page.

Specify *NOBLANKLINES to have blank lines suppressed altogether. Note
that this option does not change the generated page and line number values
written for the non-blank lines (that is to say, the blank lines are still counted
for this purpose).

Specify *CONDENSEBLANKLINES to have only the first in each group of
consecutive blank lines written to the text document. Again, this option does
not change the generated page and line number values written for the non-
blank lines (that is to say, the blank lines are still counted for this purpose).

OUTPUT Parameters:
There are no output parameters.

SQL_CALL

This activity executes a stored procedure on the target database. Use this
activity when your stored procedure does not return a result set. It may,
optionally return a single result that can be received in the SQLRESULT output
parameter of this activity.

If your stored procedure returns a result set, then you should use the
SQL_CALLQUERY or SQL_CALLQRYCSYV activity instead.

This activity supports the use of SQL parameter markers (usually designated by
a question mark) in the SQL statement. If your solution uses this capability, you
must first execute one of the following activities to supply the parameter
value(s):

SQL_PARAMS Set parameter values for SQL operation
SQL_PARAMSCSV Set parameter values for SQL operation from CSV

Note that only input (IN) parameters for an SQL stored procedure are presently
supported. You cannot pass or receive OUT and INOUT stored procedure call
parameters.

For more information about the SQL database activities, refer to the description
of the SQL_CONNECT activity. For a list of supplied working (*) examples
using the SQL database activities, refer to:

Example Processing Sequences using the SQL database activities

INPUT Parameters:
SQLHANDLE : Required

This parameter must specify the connection handle value that identifies the
SQL connection upon which this activity should operate. The connection
handle value is returned by the SQL_CONNECT activity.

SQLCALL : Required

This parameter must specify the name of the stored procedure (which may be
qualified with a library or schema name) along with any parameters (or
parameter markers) that it requires. The CALL keyword should not be
included. It should usually be in the form:

<library or schema>.procedure(<parameters>)
OR

<library or schema>/procedure(<parameters>)
(depending on the syntax used by your database and JDBC driver.)

The SQL statement may make use of parameter markers (usually designated
by a question mark). You must use either the SQL._PARAMS or the
SQL_PARAMSCSYV activity before this activity, to supply the parameter
values. Note that the SQL_CALL activity will make use of only one set (or
"row") of parameter values.

The following is an example that might be specified in this parameter to call
the SQL stored procedure DXTUTSQLO1, passing it two parameter values
that have previously been supplied using either the SQL_PARAMS or the
SQL_PARAMSCSYV activity:

DXTUTSQLO1(?, ?)
SQLRETURNING : Optional

This parameter specifies the expected data type of the return value, if any,
from the stored procedure. You can choose from the following values:

*NONE
*CHAR
*STRING
*SMALLINT
*INTEGER
*FLOAT
*DOUBLE
*DECIMAL
*NUMERIC

However, the datatypes possible depend on what your target database and
JDBC driver can support. And, in any particular instance, of course, it
depends on the definition of the stored procedure.

The default value is *INTEGER. If your database is on an IBM i server,
note that presently the IBM i database only supports a data type of integer for
values returned from a stored procedure. If your stored procedure does not
return a value, then you can specify *NONE to signify this.

OUTPUT Parameters:

SQLRESULT :

If successful, this output parameter will contain the return value, if any, from
the stored procedure.

SQL_CALLQRYCSV

This activity executes a stored procedure on the target database, receives a result
set and writes the result set directly into the specified file in CSV format.

If your stored procedure does not return a result set, then you should use the
SQL_CALL activity instead. Refer also to the description of the
SQL_CALLQUERY activity for an alternate way to receive the result set from a
stored procedure call.

This activity supports the use of SQL parameter markers (usually designated by
a question mark) in the SQL statement. If your solution uses this capability, you
must first execute one of the following activities to supply the parameter
value(s):

SQL_PARAMS Set parameter values for SQL operation
SQL_PARAMSCSV Set parameter values for SQL operation from CSV

Note that only input (IN) parameters for an SQL stored procedure are presently
supported. You cannot pass or receive OUT and INOUT stored procedure call
parameters.

For more information about the SQL database activities, refer to the description
of the SQL_CONNECT activity. For a list of supplied working (*) examples
using the SQL database activities, refer to:

Example Processing Sequences using the SQL database activities

INPUT Parameters:
SQLHANDLE : Required

This parameter must specify the connection handle value that identifies the
SQL connection upon which this activity should operate. The connection
handle value is returned by the SQL_CONNECT activity.

SQLCALL : Required

This parameter must specify the name of the stored procedure (which may be
qualified with a library or schema name) along with any parameters (or
parameter markers) that it requires. The CALL keyword should not be
included. It should usually be in the form:

<library or schema>.procedure(<parameters>)
OR

<library or schema>/procedure(<parameters>)
(depending on the syntax used by your database and JDBC driver.)

The SQL statement may make use of parameter markers (usually designated
by a question mark). You must use either the SQL._PARAMS or the
SQL_PARAMSCSYV activity before this activity, to supply the parameter
values. Note that the SQL_CALLQRYCSYV activity will make use of only
one set (or "row") of parameter values.

The following is an example that might be specified in this parameter to call
the SQL stored procedure DXTUTSQLO1, passing it two parameter values
that have previously been supplied using either the SQL_PARAMS or the
SQL_PARAMSCSYV activity:

DXTUTSQLO1(?, ?)
SQLFILEPATH : Required

This parameter must specify the path and file name of the CSV file to be
created or appended by this activity. If the file already exists (and NO is
specified or assumed for the SQLAPPEND parameter), then the file will be
overwritten by this activity.

SQLAPPEND : Optional

If the specified output file already exists, then you can specify YES for this
parameter to cause the activity to append the new results to the end of the
existing contents of the file. Otherwise the file is replaced with the new
contents. If the specified output file does not already exist, then this
parameter is ignored.

SQLCCSID : Optional

This parameter applies only on IBM i servers. It allows you to specify the
IBM i CCSID with which the output CSV file is created.

If the parameter is not specified, a default of *DEFAULT is assumed, which

instructs the activity to create the output text file using the CCSID for the job
in which the activity is executing. (You can also specify the special value of
*JOB which has the same effect.)

Otherwise, you should specify the numeric CCSID value required. For
example, a value of 1208 means UTF-8. Refer to IBM i documentation for a

complete list and description of the available CCSIDs.

NOTE: the assumed or explicit CCSID is applied only when the specified
output file does NOT already exist. If the specified output file already exists
and is being replaced or appended-to by this activity, then its CCSID will not
be changed.

SQLCOLUMNS : Optional

This parameter must specify the number of columns from the expected result
set that are to be written to the CSV file, up to a maximum of 25. This, of
course, will depend on the stored procedure that you are calling.

You may specify fewer columns than returned from your stored procedure
call. However, if you specify more, then a run-time error will occur, for
example

ERROR - Descriptor index not valid, or
ERROR — The index 10 is out of range

COLSEPARATOR : Optional

You may specify the separator character that is used to separate the column
values in each line of the CSV output file. The most common form of CSV
uses a comma as the separator, and that is the default value for this parameter
if you do not specify it.

If a non-comma separator is specified, it should be 1 character in length and
can consist of any character.

COLHEADINGS : Optional

If you wish the first row of the output CSV file to contain comma-separated
column headings, you may specify the heading line in this parameter. Note
you should specify the entire string, including the separators, as a single
value — for example:

Heading1,Heading2,Heading3

If you do not specify a value for this parameter, then no heading row will be
written to the CSV file. If you specified YES for the SQLAPPEND
parameter, then the COLHEADINGS value is not used.

SQLMAXROWS : Optional

This parameter may specify a maximum number of rows to be returned.
This guards against the possibility of stored procedure calls that select much
more data than was intended.

If not specified, a default value of 100 (one hundred) is used. Remember

that the SQL database activities are not intended and not usually suitable for
high-throughput, high-volume database operations. If you expect that your
stored procedure will return a large number of records, then you should
possibly consider an alternate implementation, such as using a
Transformation Map.

OUTPUT Parameters:
SQLROWS :

Upon successful completion, this parameter will contain the actual number
of rows returned by the stored procedure call and written to the CSV file.

SQL_CALLQUERY

This activity executes a stored procedure on the target database. Use this
activity when your stored procedure returns a result set.

If your stored procedure does not return a result set, then you should use the
SQL_CALL activity instead. Refer also to the description of the
SQL_CALLQRYCSYV activity for an alternate way to receive the result set from
a stored procedure call.

This activity supports the use of SQL parameter markers (usually designated by
a question mark) in the SQL statement. If your solution uses this capability, you
must first execute one of the following activities to supply the parameter
value(s):

SQL_PARAMS Set parameter values for SQL operation
SQL_PARAMSCSV Set parameter values for SQL operation from CSV

Note that only input (IN) parameters for an SQL stored procedure are presently
supported. You cannot pass or receive OUT and INOUT stored procedure call
parameters.

For more information about the SQL database activities, refer to the description
of the SQL_CONNECT activity. For a list of supplied working (*) examples
using the SQL database activities, refer to:

Example Processing Sequences using the SQL database activities

INPUT Parameters:
SQLHANDLE : Required

This parameter must specify the connection handle value that identifies the
SQL connection upon which this activity should operate. The connection
handle value is returned by the SQL_CONNECT activity.

SQLCALL : Required

This parameter must specify the name of the stored procedure (which may be
qualified with a library or schema name) along with any parameters (or
parameter markers) that it requires. The CALL keyword should not be
included. It should usually be in the form:

<library or schema>.procedure(<parameters>)
OR

<library or schema>/procedure(<parameters>)
(depending on the syntax used by your database and JDBC driver.)

The SQL statement may make use of parameter markers (usually designated
by a question mark). You must use either the SQL._PARAMS or the
SQL_PARAMSCSYV activity before this activity, to supply the parameter
values. Note that the SQL_CALLQUERY activity will make use of only one
set (or "row") of parameter values.

The following is an example that might be specified in this parameter to call
the SQL stored procedure DXTUTSQLO1, passing it two parameter values
that have previously been supplied using either the SQL_PARAMS or the
SQL_PARAMSCSYV activity:

DXTUTSQLO1(?, ?)
SQLMAXROWS : Optional

This parameter may specify a maximum number of rows to be returned.
This guards against the possibility of stored procedure calls that select much
more data than was intended.

If not specified, a default value of 100 (one hundred) is used. Remember
that the SQL database activities are not intended and not usually suitable for
high-throughput, high-volume database operations. If you expect that your
stored procedure will return a large number of records, then you should
possibly consider an alternate implementation, such as using a
Transformation Map.

OUTPUT Parameters:
SQLROWS :

Upon successful completion, this parameter will contain the actual number
of rows returned by the stored procedure call.

SQLCOLUMN!I1
SQLCOLUMN?2

SQLCOLUMN25

These output lists will contain a list of the values for the corresponding
column for each row returned by the stored procedure call.

You should specify the name of a variable list that will contain the values for
each column returned by your stored procedure, up to a maximum of 25.

You may specify fewer output lists than returned from your stored procedure
call. However, if you specify more, then a run-time error will occur, for
example

ERROR — Descriptor index not valid, or
ERROR — The index 10 is out of range

SQL_COMMIT

This activity commits a database transaction performed by one or more prior
SQL database activities such as SQL_UPDATE.

For more information about the SQL database activities, refer to the description
of the SQL_CONNECT activity. For a list of supplied working (*) examples
using the SQL database activities, refer to:

Example Processing Sequences using the SQL database activities
INPUT Parameters:
SQLHANDLE : Required

This parameter must specify the connection handle value that identifies the
SQL connection upon which this activity should operate. The connection
handle value is returned by the SQL_CONNECT activity.

OUTPUT Parameters:
There are no output parameters.

SQL_CONNECT

This activity establishes a connection to an SQL database and returns a "handle"
that can be used to identify this database connection for use in other SQL
database activities.

Typically in LANSA Composer, most database activity is accomplished through
the use of Transformation Maps. However, this activity along with its related
SQL database activities provides another option for performing limited database
query and update operations on an SQL database, as well as a means of
invoking SQL stored procedures in the database.

The SQL_CONNECT activity establishes the database connection using a
database configuration whose name you provide in the DBCONFIG parameter.
The database configuration contains the implementation-specific database
connection information and user credentials. Because the connections use
JDBC, like transformation maps, the SQL activities are capable of addressing
any compatible database that is network-addressable from the server system
running LANSA Composer, if a suitable JDBC driver is available. This means
that a LANSA Composer system running on an IBM i server, for example, could
address an SQL server database running on a Windows server in the same
network, or vice-versa.

More than one SQL database connection may be active at one time in a single
Processing Sequence.

The SQL database activities are not intended and not usually suitable for high-
throughput, high-volume database operations. Rather they provide a simple
means to complete a business process integration solution that may not
otherwise have been possible, with some simple, low-volume database access
and/or maintenance.

NOTE: LANSA Composer does not guarantee that any form of SQL
statement that is valid for your target database can successfully be
executed through the SQL database activities, nor that every form of
SQL stored procedure can successfully be executed.

Nor will it be possible to successfully address every possible data type
in your database. Since processing sequence variables that might be
used to pass or receive data to the SQL database are untyped, not all
conversions can be successful or yield useful results. It is your

responsibility to ensure that any data passed through the SQL database
suite of activities is in a form that can be accepted and processed by
both the JDBC driver and the target database.

It is recommended that you keep your SQL operations through these
activities as simple as possible.

Example Processing Sequences using the SQL database activities

Refer to the following example processing sequences supplied with LANSA
Composer for working (*) examples that use the SQL database activities. (*)
Note that some setup will be required on your system to enable these examples
to execute successfully. Refer to the notes accompanying the example
processing sequences for details:

e EXAMPLE_SQLO1: Example of using the SQL_QUERY activity

e EXAMPLE_SQLO02: Example of using the SQL._UPDATE activity

e EXAMPLE_SQLO3: Example of using the SQL._CALLQRYCSYV activity

Related SQL database activities

The SQL_CONNECT activity returns a "handle" that can then be passed on to
the other SQL database activities to accomplish a range of database tasks. The
full suite of SQL database activities are briefly described below:

e Use the following activities to establish or disconnect an SQL database
connection:

SQL_CONNECT Connect to database using SQL
SQL_DISCONNECT| Disconnect from database using SQL

e Use the following activities to query the database:

SQL_QUERY Query database using SQL
SQL_QUERYTOCSV | Query database using SQL to output CSV file

e Use the following activities to perfom insert, update and delete operations in

the database:

SQL_UPDATE

Update database using SQL

e Use the following activities to execute an SQL stored procedure in the

database:

SQL_CALL

Execute an SQL stored procedure

SQL_CALLQRYCSV | Query database using an SQL stored procedure to

CSV

SQL_CALLQUERY | Query database using an SQL stored procedure

e Use the following activities to implement transaction control relating to any
database insert, update or delete operations you have performed:

SQL_COMMIT

Commit a database transaction using SQL

SQL_ROLLBACK | Rollback a database transaction using SQL

e Use the following activities to set the parameter values for an SQL

operation:

SQL_PARAMS

Set parameter values for SQL operation

SQL_PARAMSCSV | Set parameter values for SQL operation from CSV

Eligibility for Processing Sequence Restart
When a LANSA Composer Processing Sequence run ends in error, it is often

possible to restart it from the point of failure—once the cause of the failure has
been corrected. This is a very powerful feature of LANSA Composer.

For a LANSA Composer solution using the SQL database activities, processing
sequence restart is supported, but needs to be heavily qualified by exactly what
database operations are being performed.

LANSA Composer restart support remembers and can re-establish a previously-
established SQL connection, but whether a particular process can effectively be
restarted depends on the types of database operations that are being performed
and in particular whether they are dependent on earlier SQL database operations
that may have completed before the restart.

For example, a process that performs database updates under transaction control
may not be restartable in practice, depending on where the failure occurs. On
the other hand a solution that exclusively performs SQL query operations will
usually be capable of being successfully restarted.

Therefore this decision is left to the solution designer by means of the
RESTARTELIGIBLE parameter to the SQL._CONNECT activity.

If your solution uses the SQL database activities in such a way that restart
eligibility cannot be assured for the life of the database connection, then you
should specify NO for this parameter.

In any event, to maximize the benefit of LANSA Composer's restart capability,
you should complete your SQL database operations and execute the
SQL_DISCONNECT activity at the earliest opportunity. Once the SQL database
connection has been closed, normal restart eligibility resumes.

INPUT Parameters:
DBCONTFIG : Required

This parameter must specify the name of a 2.3.8 Database Configuration that
specifies the details necessary to establish the database connection.

RESTARTELIGIBLE : Optional

This parameter specifies whether the LANSA Composer processing
sequence that contains this activity should remain eligible for restart while
the SQL database connection remains open. The default value is YES.

If your solution uses the SQL database activities in such a way that restart
eligibility cannot be assured for the life of the database connection, then you
should specify NO for this parameter.

For more information refer to Eligibility for Processing Sequence Restart
above.

OUTPUT Parameters:
SQLHANDLE :

If successful, the value of this output parameter identifies the SQL
connection established by this instance of the SQL_CONNECT activity. The
same value must be specified as the SQLHANDLE input parameter value for
all subsequent SQL database activities that are to operate on the same SQL
database connection.

SQL_DISCONNECT

This activity closes an SQL database connection previously established using
the SQL_CONNECT activity.

Once the database connection has been closed, the connection handle value is
no longer valid and cannot be used again in further SQL database activities.

If you do not execute the SQL_DISCONNECT activity for an open SQL
database connection before the end of your processing sequence, LANSA
Composer will automatically disconnect it. However, it is recommended that
you explicitly disconnect using this activity as soon as the SQL database
connection is no longer required. For more information on this, refer to:

Eligibility for Processing Sequence Restart

For more information about the SQL database activities, refer to the description
of the SQL_CONNECT activity. For a list of supplied working (*) examples
using the SQL database activities, refer to:

Example Processing Sequences using the SQL database activities

INPUT Parameters:
SQLHANDLE : Required

This parameter must specify the connection handle value that identifies the
SQL connection upon which this activity should operate. The connection
handle value is returned by the SQL_CONNECT activity.

OUTPUT Parameters:
There are no output parameters.

SQL_PARAMS

This activity sets parameter values to be used subsequently by one of the
following SQL database activities:

SQL_CALL Execute an SQL stored procedure

SQL_CALLQRYCSV Query database using an SQL stored procedure to
CSV

SQL_CALLQUERY Query database using an SQL stored procedure

SQL_UPDATE Update database using SQL

The parameter values are used in the SQL statement used by one of the above
activities in place of any parameter markers (usually designated by a question
mark) that are specified in the SQL statement.

Note that any parameter values that have been set will be cleared after executing
any of the above activities or the SQL_QUERY or SQL_QUERYTOCSV
activities. If you need to use the same set of parameters more than once, then
you will need to repeat this activity before each activity that uses the
parameters.

Refer also to the description of the SQL_PARAMSCSYV activity, which
performs a similar function but permits the parameter values to be supplied
from a CSV file.

For more information about the SQL database activities, refer to the description
of the SQL_CONNECT activity.
INPUT Parameters:

SQLHANDLE : Required

This parameter must specify the connection handle value that identifies the
SQL connection upon which this activity should operate. The connection
handle value is returned by the SQL_CONNECT activity.

SQLPARAM1SQLPARAM?2

SQLPARAM25: Optional

Use these parameters to supply one or more variable lists, up to a maximum
of 25, each "row" of which supplies one set of the parameter values to be
used. Each of the lists supplied should have the same number of entries.

A subsequent SQL_CALL, SQL_CALLQRYCSV or SQL_CALLQUERY
will use only one set (or "row) of parameter values.

In the case of a subsequent SQL._UPDATE activity, the requested operation
(such as insert, update or delete) specified for the activity will be performed
once for each set of entries (or "row") of parameter values.

OUTPUT Parameters:
There are no output parameters.

SQL_PARAMSCSV

This activity sets parameter values to be used subsequently by one of the
following SQL database activities , using values from a specified CSV file:

SQL_CALL Execute an SQL stored procedure

SQL_CALLQRYCSV Query database using an SQL stored procedure to
CSV

SQL_CALLQUERY Query database using an SQL stored procedure

SQL_UPDATE Update database using SQL

The parameter values are used in the SQL statement used by one of the above
activities in place of any parameter markers (usually designated by a question
mark) that are specified in the SQL statement.

Note that any parameter values that have been set will be cleared after executing
any of the above activities or the SQL_QUERY or SQL_QUERYTOCSV
activities. If you need to use the same set of parameters more than once, then
you will need to repeat this activity before each activity that uses the
parameters.

Refer also to the description of the SQL._PARAMS activity, which performs a
similar function but using processing sequence variables instead of a CSV file.

For more information about the SQL database activities, refer to the description
of the SQL_CONNECT activity. For a list of supplied working (*) examples
using the SQL database activities, refer to:

Example Processing Sequences using the SQL database activities

INPUT Parameters:
SQLHANDLE : Required

This parameter must specify the connection handle value that identifies the
SQL connection upon which this activity should operate. The connection
handle value is returned by the SQL_CONNECT activity.

SQLFILEPATH : Required
This parameter must specify the path and file name of the CSV file

containing the values to be used. The CSV file should contain one or more
columns, up to a maximum of 25, each "row" of which supplies one set of
the parameter values to be used.

A subsequent SQL_CALL, SQL_CALLQRYCSV or SQL_CALLQUERY
will use only one set (or "row) of parameter values.

In the case of a subsequent SQL._UPDATE activity, the requested operation
(such as insert, update or delete) specified for the activity will be performed
once for each set of entries (or "row") of parameter values.

COLSEPARATOR : Optional

You may specify the separator character that is used to separate the column
values in each line of the CSV file. The most common form of CSV uses a
comma as the separator, and that is the default value for this parameter if you
do not specify it.

If a non-comma separator is specified, it should be 1 character in length and
can consist of any character.

HEADINGSROW : Optional

If the first row of the CSV file contains column headings, you should specify
YES for this parameter. If this parameter specifies YES, then the activity
will ignore the first row read. The default value is NO, which will cause the
activity to process every row contained in the CSV file.

OUTPUT Parameters:
There are no output parameters.

SQL_QUERY

This activity queries a database using an SQL SELECT statement and receives
the results into processing sequence variable lists.

This activity does not support the use of SQL parameter markers (usually
designated by a question mark) in the SQL statement. If you need the SQL
statement to be variable (for example, selection values in a WHERE clause),
then you must dynamically construct the SQL statement to include the variable
values as constants.

For more information about the SQL database activities, refer to the description
of the SQL_CONNECT activity. For a list of supplied working (*) examples
using the SQL database activities, refer to:

Example Processing Sequences using the SQL database activities

INPUT Parameters:
SQLHANDLE : Required

This parameter must specify the connection handle value that identifies the
SQL connection upon which this activity should operate. The connection
handle value is returned by the SQL_CONNECT activity.

SQLQUERY : Required
This parameter must specify the SQL SELECT statement that will execute

on the target database for the query. The following are examples of SQL
SELECT statements that might be specified in this parameter:

select distinct bchnum from tutordh

select bchnum, ordnum, cusnum, orddat from tutordh
where bchnum = '12345687890"

Since processing sequence variables are restricted to 256 characters, a single
value may not be sufficiently large to hold some queries. For this reason,
this parameter is defined as a variable list. This means that you can split
your long SQL statement into more than one part and provide the parts in
this parameter using a variable list. If you do this, then the SQL_QUERY
activity will re-assemble them into a single statement before execution.

SQLMAXROWS : Optional
This parameter may specify a maximum number of rows to be returned.

This guards against the possibility of SELECT statements that select much
more data than was intended.

If not specified, a default value of 100 (one hundred) is used. Remember
that the SQL database activities are not intended and not usually suitable for
high-throughput, high-volume database operations. If you expect that your
query will return a large number of records, then you should possibly
consider an alternate implementation, such as using a Transformation Map.

OUTPUT Parameters:
SQLROWS :

Upon successful completion, this parameter will contain the actual number
of rows returned by the query.

SQLCOLUMN!I1
SQLCOLUMN?2

SQLCOLUMN25

These output lists will contain a list of the values for the corresponding
column for each row selected by the query.

You should specify the name of a variable list that will contain the values for
each column used in your query, up to a maximum of 25.

You may specify fewer output lists than in your query, however, if you
specify more, then a run-time error will occur, for example

ERROR - Descriptor index not valid, or
ERROR — The index 10 is out of range

SQL_QUERYTOCSV

This activity queries a database using an SQL SELECT statement and writes the
results in CSV format into the specified file.

This activity does not support the use of SQL parameter markers (usually
designated by a question mark) in the SQL statement. If you need the SQL
statement to be variable (for example, selection values in a WHERE clause),
then you must dynamically construct the SQL statement to include the variable
values as constants.

For more information about the SQL database activities, refer to the description
of the SQL_CONNECT activity. For a list of supplied working (*) examples
using the SQL database activities, refer to:

Example Processing Sequences using the SQL database activities

INPUT Parameters:
SQLHANDLE : Required

This parameter must specify the connection handle value that identifies the
SQL connection upon which this activity should operate. The connection
handle value is returned by the SQL_CONNECT activity.

SQLQUERY : Required
This parameter must specify the SQL SELECT statement that will execute

on the target database for the query. The following are examples of SQL
SELECT statements that might be specified in this parameter:

select distinct bchnum from tutordh

select bchnum, ordnum, cusnum, orddat from tutordh
where bchnum = '12345687890"

Since processing sequence variables are restricted to 256 characters, a single
value may not be sufficiently large to hold some queries. For this reason,
this parameter is defined as a variable list. This means that you can split
your long SQL statement into more than one part and provide the parts in
this parameter using a variable list. If you do this, then the SQL_QUERY
activity will re-assemble them into a single statement before execution.

SQLFILEPATH : Required

This parameter must specify the path and file name of the CSV file to be
created or appended by this activity. If the file already exists (and NO is
specified or assumed for the SQLAPPEND parameter), then the file will be
overwritten by this activity.

SQLAPPEND : Optional

If the specified output file already exists, then you can specify YES for this
parameter to cause the activity to append the new results to the end of the
existing contents of the file. Otherwise the file is replaced with the new
contents. If the specified output file does not already exist, then this
parameter is ignored.

SQLCCSID : Optional

This parameter applies only on IBM i servers. It allows you to specify the
IBM i CCSID with which the output CSV file is created.

If the parameter is not specified, a default of *DEFAULT is assumed, which

instructs the activity to create the output text file using the CCSID for the job
in which the activity is executing. (You can also specify the special value of
*JOB which has the same effect.)

Otherwise, you should specify the numeric CCSID value required. For
example, a value of 1208 means UTF-8. Refer to IBM i documentation for a
complete list and description of the available CCSIDs.

NOTE: the assumed or explicit CCSID is applied only when the specified
output file does NOT already exist. If the specified output file already exists
and is being replaced or appended-to by this activity, then its CCSID will not
be changed.

SQLCOLUMNS : Optional

This parameter must specify the number of columns from the expected result
set that are to be written to the CSV file, up to a maximum of 25. This, of
course, will depend on the SELECT statement you are using.

You may specify fewer columns than in your query, however, if you specify
more, then a run-time error will occur, for example

ERROR - Descriptor index not valid, or
ERROR — The index 10 is out of range

COLSEPARATOR : Optional

You may specify the separator character that is used to separate the column
values in each line of the CSV output file. The most common form of CSV
uses a comma as the separator, and that is the default value for this parameter
if you do not specify it.

If a non-comma separator is specified, it should be 1 character in length and
can consist of any character.

COLHEADINGS : Optional

If you wish the first row of the output CSV file to contain comma-separated
column headings, you may specify the heading line in this parameter. Note
you should specify the entire string, including the separators, as a single
value — for example:

Heading1,Heading2,Heading3
If you do not specify a value for this parameter, then no heading row will be

written to the CSV file. If you specified YES for the SQLAPPEND
parameter, then the COLHEADINGS value is not used.

SQLMAXROWS : Optional

This parameter may specify a maximum number of rows to be returned.
This guards against the possibility of SELECT statements that select much
more data than was intended.

If not specified, a default value of 100 (one hundred) is used. Remember
that the SQL database activities are not intended and not usually suitable for
high-throughput, high-volume database operations. If you expect that your
query will return a large number of records, then you should possibly
consider an alternate implementation, such as using a Transformation Map.

OUTPUT Parameters:
SQLROWS :

Upon successful completion, this parameter will contain the actual number
of rows returned by the query and written to the CSV file.

SQL_ROLLBACK

This activity rolls back a database transaction performed by one or more prior
SQL database activities such as SQL_UPDATE.

For more information about the SQL database activities, refer to the description
of the SQL_CONNECT activity. For a list of supplied working (*) examples
using the SQL database activities, refer to:

Example Processing Sequences using the SQL database activities
INPUT Parameters:
SQLHANDLE : Required

This parameter must specify the connection handle value that identifies the
SQL connection upon which this activity should operate. The connection
handle value is returned by the SQL_CONNECT activity.

OUTPUT Parameters:
There are no output parameters.

SQL_UPDATE

This activity executes a specified SQL statement to update a database.
Typically, this will be an INSERT, DELETE or UPDATE statement.

This activity supports the use of SQL parameter markers (usually designated by
a question mark) in the SQL statement. If your solution uses this capability, you
must first execute one of the following activities to supply the parameter
value(s):

SQL_PARAMS Set parameter values for SQL operation
SQL_PARAMSCSV Set parameter values for SQL operation from CSV

For more information about the SQL database activities, refer to the description
of the SQL_CONNECT activity. For a list of supplied working (*) examples
using the SQL database activities, refer to:

Example Processing Sequences using the SQL database activities

INPUT Parameters:
SQLHANDLE : Required

This parameter must specify the connection handle value that identifies the
SQL connection upon which this activity should operate. The connection
handle value is returned by the SQL_CONNECT activity.

SQLUPDATE : Required

This parameter must specify the SQL statement that will execute to update
the target database. Typically, this will be an INSERT, DELETE or
UPDATE statement.

The SQL statement may make use of parameter markers (usually designated
by a question mark). You must use either the SQL._PARAMS or the
SQL_PARAMSCSYV activity before this activity, to supply the parameter
values.

Where the SQL_PARAMS or the SQL_PARAMSCSYV activity have been

used to supply parameter values, the SQL statement will be prepared before
executing it repeatedly for each supplied set (or "row") of parameter values.
The following is an example of such an SQL update statement that contains

parameter markers:
update tutordh set orddat = ? where bchnum = ?

Where parameter values are not supplied, the statement is not prepared
before it is executed and it will execute only once. The following is an
example of such an SQL update statement that does NOT contain parameter
markers:

update tutordh set orddat = '2014-01-01" where bchnum = '1234567890'

Since processing sequence variables are restricted to 256 characters, a single
value may not be sufficiently large to hold your SQL statement. For this
reason, this parameter is defined as a variable list. This means that you can
split your long SQL statement into more than one part and provide the parts
in this parameter using a variable list. If you do this, then the
SQL_UPDATE activity will re-assemble them into a single statement before
preparing and executing it.

OUTPUT Parameters:
SQLROWS :

If parameter values are not supplied for use with the SQL statement, then this
parameter will contain the count of the number of database rows affected by
the SQL statement.

If parameter values are supplied (and the statement is consequently prepared
before being executed), then the activity cannot return the affected rows
count and this parameter is not used.

SUBSTITUTE

This activity formats an input string, replacing variable placeholders in the form
&1, &2 ... &9 with specified values, which may be specified as literals or
variables.

NB: This activity performs a very similar function to the SUBSTITUTE_VAR
activity but uses a different means of specifying the variable data to be
substituted into the string. You can use either activity according to your
requirements or preference.

INPUT Parameters:
STRINGIN : Required

This parameter specifies the string that is to be formatted. The string may
contain placeholders in the form &1, &2 ... &9 that will be replaced by the
values of the corresponding variable parameters.

For example, if you specify the string "&1 files processed from &2", the
placeholders &1 and &2 will be replaced by the values of the VARIABLE1
and VARIABLE? parameters in the resulting formatted string.

VARIABLE1VARIABLE2
VARIABLE3
VARIABLE4
VARIABLEDS
VARIABLEG
VARIABLE7
VARIABLES
VARIABLES : Optional

These parameters may be used to specify the values that are to replace the
variable placeholders in the format string. For example, the value of
VARIABLE1 will replace each instance of &1 in the format string, while the
value of VARIABLE?2 will replace each instance of &2 and so on. You only
need to specify values for as many variables as you have specified variable
placeholders in the format string. However, they must be specified
contiguously (the activity stops looking after the first parameter whose value
is not specified).

OUTPUT Parameters:
STRINGOUT :

Upon completion, this parameter will contain the formatted string.

SUBSTITUTE_VAR

This activity formats an input string, replacing embedded references to
processing sequence variables and/or built-in variables with their current values.

NB: This activity performs a very similar function to the SUBSTITUTE
activity but uses a different means of specifying the variable data to be
substituted into the string. You can use either activity according to your
requirements or preference.

INPUT Parameters:
STRINGIN : Required

This parameter specifies the string that is to be formatted. The string may
contain embedded references to processing sequence variables (eg: &myvar)
and/or built-in variables (eg: *tradingpartner) that will be replaced by the
current variable values. Support for indexed variable references (eg:
&myvar(2) OR &myvar(&myindex)) is provided.

For example, if you specify the string "&MYCOUNT files processed from
&MYFOLDER(&MYINDEX) at *now_local", the variable and built-in
variable references &MYCOUNT, &MYFOLDER(&MYINDEX) and
*now_local will be replaced by the values of the variables that they
represent.

In most cases, a reference to a processing sequence variable or built-
invariable must be followed by a space (or certain special characters or the
end of the string) in order for the reference to be correctly identified and
substituted.

If two ampersands (&&) or two asterisks (**) appear together in the string,
they are reduced to a single ampersand or asterisk and not considered for
substitution.

OUTPUT Parameters:
STRINGOUT :

Upon completion, this parameter will contain the formatted string.

SUBSTRING

This activity extracts a portion of the input string. The portion extracted is
determined by the specified starting position and length.

INPUT Parameters:
STRINGIN : Required

This parameter specifies the string from which the substring is to be
extracted.

START : Required

This parameter specifies the starting position in the source string from which
to extract the substring.

LENGTH : Required
This parameter specifies the length of substring to be extracted.

OUTPUT Parameters:
STRINGOUT :

Upon completion, this parameter will contain the extracted substring.

SYSTEM_COMMAND

This activity executes an operating system command. Command execution is
synchronous - the processing sequence waits until the command completes
before proceeding. The parameters specify the command string to be executed
and the response or result code from the operating system is returned in the
RESPONSE parameter.

Notes:

* By using this activity, you are introducing an operating system dependency
into your processing sequence.

* The specific commands you can use and their format and syntax are
determined by the operating system. Refer to relevant operating system
documentation.

* The command must be eligible to be executed in the environment in which the
processing sequence will run, including with respect to the required authorities.

* If the command does not execute successfully, this is indicated by the
response code. The activity ends normally. If you wish to treat the failure as an
error, you must test the RESPONSE parameter.

* You cannot call the LANSA X_RUN entry point (to execute LANSA RDMLX
applications) using this activity.

INPUT Parameters:
COMMANDO1 : Required

This parameter must contain the command to be executed. The command
names and the format and syntax of the command string is operating system-
defined. Up to 256 characters may be specified. If the required command
string is longer than this, you may specify the remainder of the command
string in the COMMANDO2 and COMMANDO3 parameters.

This parameter is required. If it is not provided, the acivity will return an
error.

COMMAND02 COMMANDO3 : Optional

These parameters can contain optional parts 2 and 3 of the command string.
This can be used in the event that the command string is longer than the
maximum supported 256 characters for the COMMANDO1parameter. If
present, the values of these parameters are appended to the command string
before executing it. Trailing blanks are trimmed from the command string
before appending these values - this means that if you need a blank space

between the command strings in parts 1 and 2 or parts 2 and 3, then the blank
space must be present at the beginning of the second of the two parts.

OUTPUT Parameters:
RESPONSE :

Upon completion, this parameter contains the response code from the
operating system arising from executing the specified system command. A
response code of zero indicates successful execution. On IBM i servers, a
response code of 1 indicates failure. On Windows servers, one of a range of
Win32 error codes may be returned in the event of an error.

TEXT_SUBSTITUTE

This Activity reads a skeleton text file and replaces %%parm.parmeter%%
references in the text with the current parameter value and writes the expanded
text file.

This Activity can be used to create a skeleton text for such things as email body
text or email attachments. The complete text can then be resolved at execution
time with the current execution parameter values.

Skeleton file contents example:

Thank you %%PARM.CUSNAME%% for your order.
Your order, numbered %%parm.orderno%% has been dispatched via carrier
%%parm.CARRIER%%.

If parameter values were:

CUSNAME John Brown
ORDERNO ABO0015
CARRIER FEDEX

then the resulting text file would be:

Thank you John Brown for your order.
Your order, numbered AB0015 has been dispatched via carrier FEDEX.

INPUT Parameters:
TEXTSKELETON : Required

Path and file name of the skeleton text file.

For example: c:\mydir\emailtext.txt
TEXTFILE : Required

Path and file name of the text file to be created.
For example: c:\mail\orderemail.txt
TEXTCCSID : Optional

This parameter applies only on IBM i servers. It allows you to specify the
IBM i CCSID with which the output text file is created.

If the parameter is not specified, a default of *SKELETON is assumed,
which instructs the activity to create the output text file using the same

CCSID as the skeleton text file.

You can also specify special values of *DEFAULT or *JOB which cause the
activity to use the default CCSID for the job in which the activity is
executing.

Otherwise, you should specify the numeric CCSID value required. For
example, a value of 1208 means UTF-8. Refer to IBM i documentation for a
complete list and description of the available CCSIDs.

NOTE: the assumed or explicit CCSID is applied only when the specified
output file does NOT already exist. If the specified output file already exists
and is being replaced by this activity, then its CCSID will not be changed.

OUTPUT Parameters:
There are no output parameters.

TRANSFORM

This activity executes a transformation map. The parameters specify the
identifier (or name) of the transformation map to run and up to ten
transformation map parameters.

Usually you will use the Transform directive from the palette to run a
transformation map in a processing sequence. This is the easiest way when you
know at design time the identity of the transformation map you wish to use
because the processing sequence editor shows the exact parameters that you
must provide.

However, you can execute a transformation map using this activity when the
identity of the transformation map is variable. For example, you might use this
to execute transformation maps that are linked to trading partner definitions.
Refer to 2.4.7 Link Transformation Maps to a Trading Partner for more
information.

Note: When you use this activity to execute a transformation map,
you must ensure that the parameters specified are correct and

appropriate for every different map that might be executed by the
activity. You need to take care when editing the transformation maps
to ensure that this is the case.

INPUT Parameters:
TRANSFORMID : Required

This parameter must specify the identity of the transformation map to be run.

TRANSFORMPI1...
TRANSFORMP10 : Optional

These parameters provide up to ten parameters for the transformation map.
You must make sure that you specify parameters that are appropriate for
every transformation map that the activity might run.

OUTPUT Parameters:
There are no output parameters.

TS_CAPTURE

The TS_CAPTURE activity captures a representation of the current aXes
Terminal Server screen and returns it in the AXCAPTURE list. The screen
capture is a simple text representation. 5250 display attributes (such as
underlining of input fields) are not represented.

The most common use for the TS_CAPTURE activity is for diagnostic
purposes, especially while designing a process that uses the aXes terminal
server. You can use the LOGLIST activity with the list returned in the
AXCAPTURE parameter to include the screen capture in the processing
sequence log.

INPUT Parameters:
AXHANDLE : Required

This parameter must specify the connection handle value that identifies the
aXes terminal server session from which the screen representation is
captured. The connection handle value is returned by the TS_CONNECT
activity.

OUTPUT Parameters:
AXSCREEN :

Upon successful completion this parameter contains the current aXes 5250
screen name or signature. The screen name is the user-defined name if an

aXes project name was specified on the TS_CONNECT activity and a name
was assigned to the screen. Otherwise the screen signature is returned.

AXCAPTURE :

Upon successful completion, this parameter provides a list of captured aXes
screen image lines. The number of lines in the list depends on the display
attributes of the current 5250 screen shown in the aXes terminal server
session, but is most commonly 24 or 27.

TS_CONNECT

The TS_CONNECT activity is used to connect to an aXes terminal server and
signon the 5250 session using the server identification and user credentials
provided.

It is possible to use more than one aXes terminal server session at a time in your
processing sequence. The value of the AXHANDLE output parameter
identifies the session created by this instance of the TS_CONNECT activity.
The same value must be specified as the AXHANDLE input parameter value
for all subsequent aXes terminal server activities (such as TS_SETBYNAME or
TS_SEND) that are to operate on the same terminal server session.

NOTE: The processing sequence containing the TS_CONNECT activity
becomes ineligible to be restarted in the event of any failure for the duration of
the aXes terminal server session - that is, until the TS_DISCONNECT activity
is executed.

INPUT Parameters:
HOST : Required

This parameter must specify the host name or IP address of the machine
hosting the aXes terminal server to which you wish to connect.

PORT : Optional

This parameter may specify the port number to be used to connect to the
aXes terminal server. If not specified, a default value of 80 is assumed.

USER : Required

This keyword must specify the user name used to connect to the aXes
terminal server. This must be the name of an authorised i/OS user profile.

PASSWORD : Required

This parameter must specify the password for the user name specified in the
USER keyword.

AXPROJECT : Optional

This parameter may be used to set the aXes project to use for this session. A
project contains user assigned definitions of screens and fields. For example,
you can assign a name to a screen or a field, and later use that name to refer
to the screen or the field in other aXes terminal server activities. Although
aXes projects can either be stored in a file on the file system or on the aXes
server, you may only specify here an aXes server-based project.

AXEXTENDEDTRACE : Optional

If you specify YES for this parameter, LANSA Composer will use additional
LANSA Integrator aXesTerminalService tracing options that will create
additional Java Service Manager (JSM) tracing. The additional tracing will
include terminal session screen captures at appropriate points as well as
creating an additional aXes-specific trace file in the JSM trace directory. The
additional tracing may help in diagnosing interactions with the aXes terminal
server and so may be useful in the design and testing stage of your LANSA
Composer solution. However, there is additional processing overhead
associated with the the extra tracing and you may wish NOT to use it in a
performance-sensitive production environment. The effect of this parameter
is subject to standard LANSA Composer logging and tracing system settings
being in effect. The default for this parameter, if not specified, is NO.

OUTPUT Parameters:
AXHANDLE : Required

If successful, the value of this output parameter identifies the session created
by this instance of the TS_CONNECT activity. The same value must be
specified as the AXHANDLE input parameter value for all subsequent aXes
terminal server activities that are to operate on the same terminal server
session.

AXSCREEN :

Upon successful completion this parameter contains the resulting aXes 5250
screen name or signature. The screen name is the user-defined name if an
aXes project name was specified in the AXPROJECT parameter and a name
was assigned to the screen. Otherwise the screen signature is returned.

TS_DISCONNECT

The TS_DISCONNECT activity disconnects the specified aXes terminal server
session.

INPUT Parameters:
AXHANDLE : Required

This parameter must specify the connection handle value that identifies the
aXes terminal server session that should be disconnected. The connection
handle value is returned by the TS_CONNECT activity.

OUTPUT Parameters:
There are no output parameters for this activity.

TS_EXECUTE

The TS_EXECUTE activity executes a specified routine in an aXes terminal
operation script. Refer to the LANSA Composer guide for more information
about aXes terminal operations scripts.

INPUT Parameters:
AXHANDLE : Required

This parameter must specify the connection handle value that identifies the
aXes terminal server session upon which the aXes terminal operations script
should operate. The connection handle value is returned by the
TS_CONNECT activity.

AXSCRIPTFILE : Required

This parameter must specify the full path to a file that contains the aXes
terminal operations script routine to be executed. The aXes terminal
operations script must be in a comma-separated format as described in the
LANSA Composer guide.

AXROUTINE : Optional

This parameter may specify the name of a routine in the aXes terminal
operation script. If not specified, a blank routine name is assumed. If your
script does not contain named routines you do not need to specify this
parameter.

AXRELOAD : Optional

You may specify YES in this parameter to force the aXes terminal operations
script to be re-loaded from the file specified in the AXSCRIPTFILE
parameter. In normal operation, the activity loads an aXes terminal
operations script file once and then uses the loaded copy if the same script is
specified again in subsequent TS_EXECUTE activity executions. However,
if your processing sequence "generates" the script file in response to other
inputs (by using a Transformation Map, for example), then you may need to
force the TS_EXECUTE activity to reload the script after your processing
sequence has changed it. In that case you should specify YES for this
parameter. If not specified, the default for this parameter is NO.

OUTPUT Parameters:
AXSCREEN :

Upon successful completion this parameter contains the resulting aXes 5250
screen name or signature. The screen name is the user-defined name if an

aXes project name was specified on the TS_CONNECT activity and a name
was assigned to the screen. Otherwise the screen signature is returned.

TS_GET

The TS_GET activity retrieves attributes associated with the specified aXes
terminal session.

INPUT Parameters:
AXHANDLE : Required
This parameter must specify the connection handle value that identifies the
aXes terminal server session whose attributes are to be retrieved. The
connection handle value is returned by the TS_CONNECT activity.

OUTPUT Parameters:
AXCURSORROWOUT :

If successful, this parameter will contain the row number component of the
current screen cursor position.

AXCURSORCOLOUT:

If successful, this parameter will contain the column number component of
the current screen cursor position.

AXSYSTEM :

If successful, this parameter will contain the i/OS system name for the
current aXes terminal session.

AXDEVICE :

If successful, this parameter will contain the 5250 device name used by the
current aXes terminal session.

AXJOBUSER :

If successful, this parameter will contain the user name portion of the i/OS
job name for the current aXes terminal session.

AXJOBNUMBER :

If successful, this parameter will contain the job number portion of the i/OS
job name for the current aXes terminal session.

AXSCREENWIDTH :

If successful, this parameter will contain the current screen width for the

aXes terminal session. Note that this value refers to the screen currently
displayed, not maximum device capabilities.

AXSCREENHEIGHT :
If successful, this parameter will contain the current screen height for the

aXes terminal session. Note that this value refers to the screen currently
displayed, not maximum device capabilities.

AXSCREEN :

Upon successful completion this parameter contains the current aXes 5250
screen name or signature. The screen name is the user-defined name if an
aXes project name was specified on the TS_CONNECT activity and a name
was assigned to the screen. Otherwise the screen signature is returned.

TS_GETBYNAME

The TS_GETBYNAME activity retrieves the value of a field on the current

aXes terminal screen by reference to the field name (and an optional index for a
subfile field).

INPUT Parameters:
AXHANDLE : Required

This parameter must specify the connection handle value that identifies the
aXes terminal server session from which the screen field value is to be
retrieved. The connection handle value is returned by the TS_CONNECT
activity.

AXNAME : Required

This parameter must specify the name of the field whose value is to be
retrieved. The name may be a user-defined name (if an aXes project name
was specified on the TS_CONNECT activity) or an aXes field identifier.

AXINDEX : Optional

If the field is contained in a subfile, this parameter may specify the index of
the instance on the current screen of the field whose value is to be retrieved.
The first instance on the current screen has an index of 1, irrespective of the
scroll position of the subfile. If your processing sequence needs to process
fields in subfiles, it must do so a screen at a time and send
ROLL_UP/ROLL_DOWN using the TS_SEND activity (just like a 5250
terminal user would have to do).

OUTPUT Parameters:
AXSCREENVALUE :

Upon successful completion, this parameter will contain the value for the
specified screen field.

TS_GETBYPOS

The TS_GETBYPOS activity retrieves the value of a field on the current aXes
terminal screen by reference to the screen row and column number.

INPUT Parameters:
AXHANDLE : Required

This parameter must specify the connection handle value that identifies the
aXes terminal server session from which the screen field value is to be
retrieved. The connection handle value is returned by the TS_CONNECT
activity.

AXSCREENROW : Required

This parameter must specify the screen row number of the required field.

The row and column together must refer to the first position of the required
field.

AXSCREENCOL : Required

This parameter must specify the screen column number of the required field.

The row and column together must refer to the first position of the required
field.

OUTPUT Parameters:
AXSCREENVALUE :

Upon successful completion, this parameter will contain the value for the
specified screen field.

TS_GETFIELD

The TS_GETFIELD activity retrieves the attributes of a field on the current
aXes terminal screen by reference to either the field name (and an optional
index for a subfile field) or to the screen row and column number of the field.

INPUT Parameters:
AXHANDLE : Required

This parameter must specify the connection handle value that identifies the
aXes terminal server session from which the screen field attributes are to be
retrieved. The connection handle value is returned by the TS_CONNECT
activity.

AXNAME : Optional

This parameter may specify the name of the field whose attributes are to be
retrieved. The name may be a user-defined name (if an aXes project name
was specified on the TS_CONNECT activity) or an aXes field identifier. If
this parameter is not specified, then values must be specified for the
AXSCREENROW and AXSCREENCOL parameters.

AXINDEX : Optional

If a field identified by name (the AXNAME parameter) is contained in a
subfile, this parameter may specify the index of the instance on the current
screen of the field whose attributes are to be retrieved. The first instance on
the current screen has an index of 1, irrespective of the scroll position of the
subfile. If your processing sequence needs to process fields in subfiles, it
must do so a screen at a time and send ROLL_UP/ROLL_DOWN using the
TS_SEND activity (just like a 5250 terminal user would have to do).

AXSCREENROW : Optional

This parameter may specify the screen row number of the required field.

The row and column together, if used, must refer to the first position of the
required field. The value of this keyword is ignored if a value is specified
for the AXNAME parameter. Conversely, if AXNAME is not specified, then
AXSCREENROW and AXSCREENCOL parameter values must be
supplied.

AXSCREENCOL : Optional
This parameter may specify the screen column number of the required field.

The row and column together, if used, must refer to the first position of the
required field. The value of this keyword is ignored if a value is specified

for the AXNAME parameter. Conversely, if AXNAME is not specified, then
AXSCREENROW and AXSCREENCOL parameter values must be
supplied.

OUTPUT Parameters:
AXNAMEOUT :

If successful, this parameter will contain the user-defined name of the field
(if an aXes project name was specified on the CONNECT command) or the
aXes field identifier if no project was specified or no name has been defined
for the field.

AXINDEXOUT :
If successful, this parameter will contain the index of the instance on the

current screen of the field. The first instance on the current screen has an
index of 1, irrespective of the scroll position of the subfile.

AXSCREENROWOUT :

If successful, this parameter will contain the screen row number of the field.
AXSCREENCOLOUT:

If successful, this parameter will contain the screen column number of the
field.

AXSCREENCOUNT :

If successful and the specified field is contained in a subfile, this parameter
will contain the number of instances on the current screen for the field (the
number of subfile records displayed on the current screen). For reliability,

you should use this activity for a field that is never conditioned on the subfile
display - such as the option entry field in a "Work with ..." style display.

AXSCREENVALUE :

If successful, this parameter will contain the value for the specified screen
field.

TS_SEND

The TS_SEND activity sends the current aXes screen data to the aXes terminal
server. It is analogous to pressing the ENTER key (by default) or a function key
at a 5250 terminal.

INPUT Parameters:
AXHANDLE : Required

This parameter must specify the connection handle value that identifies the
aXes terminal server session upon which this activity should operate. The
connection handle value is returned by the TS_CONNECT activity.

AXKEY : Optional

This parameter may specify the function key to send. You may use any of
the values listed below. If not specified, *ENTER is sent.

*ENTER

*F1 - *F9

*F10 - *F24

*PAGE_UP, *PAGE_DOWN
*ROLL_UP, *ROLL_DOWN
*HELP, *PRINT

AXCURSORROW : Optional

This parameter may specify the screen cursor row number to send. If
AXCURSORROW and AXCURSORCOL are not both specified, the screen
cursor position is unchanged.

AXCURSORCOL : Optional

This parameter may specify the screen cursor column number to send. If
AXCURSORROW and AXCURSORCOL are not both specified, the screen
cursor position is unchanged.

OUTPUT Parameters:
AXSCREEN :

Upon successful completion this parameter contains the resulting aXes 5250
screen name or signature. The screen name is the user-defined name if an
aXes project name was specified on the TS_CONNECT activity and a name
was assigned to the screen. Otherwise the screen signature is returned.

TS_SETBYNAME

The TS_SETBYNAME activity sets the value of a field on the current aXes
terminal screen by reference to the field name (and an optional index for a
subfile field) and may (optionally) send the current aXes screen data to the aXes
terminal server. It is analogous to typing at a 5250 terminal.

INPUT Parameters:
AXHANDLE : Required

This parameter must specify the connection handle value that identifies the
aXes terminal server session upon which this activity should operate. The
connection handle value is returned by the TS_CONNECT activity.

AXNAME : Required

This parameter must specify the name of the field whose value is to be set.
The name may be a user-defined name (if an aXes project name was
specified on the TS_CONNECT activity) or an aXes field identifier.

AXINDEX : Optional

If the field is contained in a subfile, this parameter may specify the index of
the instance on the current screen of the field whose value is to be set. The
first instance on the current screen has an index of 1, irrespective of the
scroll position of the subfile. If your processing sequence needs to process
fields in subfiles, it must do so a screen at a time and send
ROLL_UP/ROLL_DOWN using the TS_SEND activity (just like a 5250
terminal user would have to do).

AXSCREENVALUE : Required
This parameter must specify the value to be set for the specified screen field.
AXKEY : Optional

This parameter may optionally specify a function key to send the current
aXes screen data to the aXes terminal server. You may use any of the values
listed below. If not specified, no send is performed.

*ENTER

*F1 - *F9

*F10 - *F24

*PAGE_UP, *PAGE_DOWN
*ROLL_UP, *ROLL_DOWN
*HELP, *PRINT

OUTPUT Parameters:
AXSCREEN :

Upon successful completion this parameter contains the resulting aXes 5250
screen name or signature. The screen name is the user-defined name if an
aXes project name was specified on the TS_CONNECT activity and a name
was assigned to the screen. Otherwise the screen signature is returned.

(NB: The 5250 screen that is presently shown can be affected or changed by
executing this activity ONLY if a function key value is specified in the
AXKEY parameter.)

TS_SETBYPOS

The TS_SETBYPOS command sets the value of a field on the current aXes
terminal screen by reference to the screen row and column number and may
(optionally) send the current aXes screen data to the aXes terminal server. It is
analogous to typing at a 5250 terminal.

INPUT Parameters:
AXHANDLE : Required

This parameter must specify the connection handle value that identifies the
aXes terminal server session upon which this activity should operate. The
connection handle value is returned by the TS_CONNECT activity.

AXSCREENROW : Required

This parameter must specify the screen row number of the required field.

The row and column together must refer to the first position of the required
field.

AXSCREENCOL : Required

This parameter must specify the screen column number of the required field.

The row and column together must refer to the first position of the required
field.

AXSCREENVALUE : Required
This parameter must specify the value to be set for the specified screen field.
AXKEY : Optional

This parameter may optionally specify a function key to send the current
aXes screen data to the aXes terminal server. You may use any of the values
listed below. If not specified, no send is performed.

*ENTER

*F1 - *F9

*F10 - *F24

*PAGE_UP, *PAGE_DOWN
*ROLL_UP, *ROLL_DOWN
*HELP, *PRINT

OUTPUT Parameters:
AXSCREEN :

Upon successful completion this parameter contains the resulting aXes 5250

screen name or signature. The screen name is the user-defined name if an
aXes project name was specified on the TS_CONNECT activity and a name
was assigned to the screen. Otherwise the screen signature is returned.

(NB: The 5250 screen that is presently shown can be affected or changed by
executing this activity ONLY if a function key value is specified in the
AXKEY parameter.)

TS_SETCURSOR

The TS_SETCURSOR activity sets the position of the cursor on the current
aXes terminal screen. It is analogous to using the arrow or tab keys to move the
cursor at a 5250 terminal. Some 5250 applications or screens are sensitive to
the cursor position and may exhibit different functionality dependent upon it.

INPUT Parameters:
AXHANDLE : Required

This parameter must specify the connection handle value that identifies the
aXes terminal server session upon which this activity should operate. The
connection handle value is returned by the TS_CONNECT activity.

AXCURSORROW : Required

This parameter must specify the cursor row number to set.
AXCURSORCOL : Required

This parameter must specify the cursor column number to set.

OUTPUT Parameters:
There are no output parameters for this activity.

TXDOC_ALLOCCTRL

This activity allocates one or more control numbers for outbound transaction
documents. It can allocate:

e zero, one or more interchange control numbers
e zero, one or more group control numbers
e zero, one or more transaction set (message) control numbers

The control number(s) are allocated from the series that apply to the specified
trading partner, as can be seen on the Outbound Numbering tab of the Trading
Partner definition, and the "next" numbers for the series are incremented
accordingly.

If the outbound numbering domain for the trading partner specifies that
outbound control numbers are allocated by transaction id, then the
DOCCONTENTTYPE parameter must specify the transaction type of the series
from which the control numbers are to be allocated.

NOTE (1) - When using the API supplied with LANSA Composer for
registering pending outbound documents, the necessary interchange,
group and transaction set control numbers are automatically allocated
by LANSA Composer. You do not need to use this activity in that

event. The same usually applies when using an export processor
associated with a transformation map for an outbound transaction
document process (although this will depend on the specific
implementation of the export processor).

NOTE (2) - There is no means to de-allocate or free control numbers
once allocated. If your trading environment or trading agreements
requires sequential control numbering or auditability of allocated
control numbers, then it is your responsibility to satisfy those
requirements when using this activity to allocate control numbers.

INPUT Parameters:
TRADINGPARTNER : Required

Specifies the trading partner for which the control numbers are allocated.
This parameter is required.

DOCCONTENTTYPE : Optional
This parameter may be used to specify the document content type for which

the control numbers are allocated. It is required if the outbound numbering
domain for the trading partner specifies that outbound control numbers are
allocated by transaction id. However, if the outbound numbering domain for
the trading partner specifies that outbound control numbers are allocated
across all transaction ids, then the value of the DOCCONTENTTYPE
parameter will be ignored.

ALLOCATE_IC : Optional
Specifies how many interchange control numbers to allocate. The allocated

interchange control numbers will be placed in the CTRLNUMBER_IC
output list parameter.

ALLOCATE_GP : Optional
Specifies how many group control numbers to allocate. The allocated group

control numbers will be placed in the CTRLNUMBER_GP output list
parameter.

ALLOCATE_MS : Optional

Specifies how many transaction set (message) control numbers to allocate.
The allocated transaction set control numbers will be placed in the
CTRLNUMBER_MS output list parameter.

OUTPUT Parameters:
CTRLNUMBER _IC :

Upon successful completion, this parameter will contain a list of zero, one or
more allocated interchange control numbers, according to the value specified
in the ALLOCATE_IC parameter.

CTRLNUMBER_GP :

Upon successful completion, this parameter will contain a list of zero, one or
more allocated group control numbers, according to the value specified in the
ALLOCATE_GP parameter.

CTRLNUMBER_MS :

Upon successful completion, this parameter will contain a list of zero, one or
more allocated transaction set (message) control numbers, according to the
value specified in the ALLOCATE_MS parameter.

TXDOC_EXPORT

This activity exports transaction data for out-going transactions by executing the
re-useable part specified as the export processor (the export processor is
typically associated with the transformation map that will be used to transform
the data to its out-going transaction document format).

Refer to the supplied processing sequence TXDOC_IEDI090 as an example of
using this activity in the course of generating an outbound EDI X12 997
acknowledgement in response to an in-coming EDI document.

INPUT Parameters:
DOCEXPORTPROCESSOR : Required

This parameter specifies the name of the transaction data export processor
component name. This must be the name of a re-useable part derived from
the supplied ancestor class DXXEXPBAS. This component must be written
to be capable of performing the required processing to export the transaction
data identified by the transaction data identifiers, typically into staging files
that will subsequently be used by the associated transformation map to create
an outbound transaction document file containing the data.

DOCPRODTEST : Optional

This parameter specifies whether the transaction document will be for
production (P) or test (T) use. It is up to the specific export processor
implementation how it makes use of this value - for EDI X12 transactions, it
would typically be used to fill the ISA15 (use) field of the interchange
header.

DOCDATAKEY1DOCDATAKEY?2 : Optional

These parameters are used to identify to the export processor the set of
transaction data to be exported. For example, they may be used to identify a
sales order, an invoice or another transaction document envelope to which
this is generating a response or acknowledgement. The meaning and
interpretation of these values is up to the implementation of the particular
export processor being used. The values supplied must be appropriate for
the use in that export processor.

OUTPUT Parameters:
DOCNUMBERLIST :

Upon successful completion, this will contain a list of one or more
transaction document envelope numbers generated by the activity.

TXDOC_IMPORT

This activity imports transaction data for incoming transactions by executing the
re-useable part specified as the import processor (the import processor is
typically associated with the transformation map used to transform the in-
coming data).

Refer to the supplied processing sequence TXDOC_IEDI020 as an example of
using this activity in the course of processing an in-coming EDI document.

INPUT Parameters:
DOCNUMBER : Required

This parameter must specify the transaction document envelope number for
the transaction document whose data is being imported. This number is
normally assigned by the TXDOC_REGISTER activity.

DOCCONTENTTYPE : Required

This parameter specifies the document content type for the transaction
document. The content type can be any string that identifies the content type
- for example, you might use the EDI transaction type (eg: '850") for an EDI
document or the XML document root element name for an XML document.

DOCIMPORTPROCESSOR : Required

This parameter specifies the name of the transaction data import processor
component name. This must be the name of a re-useable part derived from
the supplied ancestor class DXXIMPBAS. This component must be written
to be capable of performing the required processing to import the transaction
data for this transaction document, typically from staging files that have been
populated by the associated transformation map.

OUTPUT Parameters:
There are no output parameters for this activity.

TXDOC_KEYS

This activity retrieves the control numbers and staging file key values for each
transaction set (message) applicable to the specified pending outbound
transaction document.

This can optionally be used as an alternate means, for example, of passing the
staging file key values to the outbound transformation map.

Refer also to the description of the FOR_EACH_TXDOCT activity which
performs a similar function, but implemented as an iterator activity.

INPUT Parameters:
DOCNUMBER : Required

Specifies the transaction document envelope number whose control numbers
and staging file key values are to be retrieved.

OUTPUT Parameters:
CTRLNUMBER _IC :

Upon successful completion, this parameter will contain a list of the
interchange control numbers for each transaction set (message) registered for
the document.

CTRLNUMBER_GP:

Upon successful completion, this parameter will contain a list of the group
control numbers for each transaction set (message) registered for the
document.

CTRLNUMBER_MS :

Upon successful completion, this parameter will contain a list of the
transaction set (message) numbers for each transaction set (message)
registered for the document.

DOCNUMBER_IC :

Upon successful completion, this parameter will contain a list of the internal
document interchange sequence numbers for each transaction set (message)
registered for the document. These values correspond to the key field
DXXINTID in the staging database files DXX2IN, DXX3GP and DXX4MS.

DOCNUMBER_GP:

Upon successful completion, this parameter will contain a list of the internal
document group sequence numbers for each transaction set (message)
registered for the document. These values correspond to the key field

DXXGRPID in the staging database files DXX3GP and DXX4MS.
DOCNUMBER_MS :

Upon successful completion, this parameter will contain a list of the internal
document transaction set (message) sequence numbers for each transaction
set (message) registered for the document. These values correspond to the
key field DXXMSGID in the staging database file DXX4MS.

DOCDATAKEY(01DOCDATAKEY02
DOCDATAKEY03
DOCDATAKEY 04
DOCDATAKEY05
DOCDATAKEY06 :

Upon successful completion, these parameters will contain lists of the
"application-defined" staging file key values for each transaction set
(message) registered for the document.

TXDOC_REGISTER

This activity registers an in-coming or out-going transaction document in the
transaction document register. Normally this should be done as soon as the
document becomes available to the process and before significant processing is
done for it.

After registering the document, and as the processing sequence proceeds to
process the transaction document, it records its progress and updates the status
in the transaction document register using the TXDOC_STATUS activity.

INPUT Parameters:
TRADINGPARTNER : Optional

Specifies the identifier of the trading partner for which the transaction
document is being registered. If not specified, the activity will use the value
of the *TRADINGPARTNER built-in variable. Otherwise, you should
specify a variable or literal that contains the required trading partner ID. The
trading partner is required by this activity, so if you do not provide a valid
trading partner identifier and the *TRADINGPARTNER built-in variable is
not set, the activity will end in error.

DOCDIR : Optional

Specifies the direction (I/O) for the transaction document exchange.
DOCFILE : Required

This parameter specifies the path and name of the transaction document file.
DOCTYPE : Optional

This parameter may be used to specify the document type for the transaction
document. If (as is frequently the case) the document type is not known at
the time the transaction document is registered, it can be specified at a later
point using the TXDOC_STATUS activity. If specified, the document type
should be a document type identifier as defined in LANSA Composer's
Document types definitions, for example 'EDI'.

DOCCONTENTTYPE : Optional

This parameter may be used to specify the document content type for the
transaction document. If (as is frequently the case) the document content
type is not known at the time the transaction document is registered, it can be
specified at a later point using the TXDOC_STATUS activity. If specified,
the content type can be any string that identifies the content type - for
example, you might use the EDI transaction type (eg: '850") for an EDI

document or the XML document root element name for an XML document.
DOCPARENT : Optional

If applicable, this parameter can specify an existing registered transaction
document number that represents the parent of this transaction document.
This is typically applied in cases where an in-coming compound transaction
document is split into individual transaction documents before further
processing.

DOCRESPONSETO : Optional

If applicable, this parameter can specify an existing registered transaction
document number to which this transaction document is a response. For
example, when generating an acknowledgement for an in-coming
transaction.

DOCNUMBERPREASSIGNED : Optional

If a transaction document envelope number has already been assigned to the
new transaction document (by some other process or activity), then it should
be specified in this parameter. Otherwise the activity will assign a new
transaction document envelope number.

OUTPUT Parameters:
DOCNUMBER :
Upon successful completion, this parameter will contain the transaction
document envelope number assigned to the new transaction document. This
number should be saved and specified on subsequent TXDOC_STATUS
activity calls relating to this transaction document.

TXDOC_REGOUTBND

This activity registers a pending outbound transaction document for later
processing by an outbound process such as the supplied TXDOC_OUTBOUND
process.

Note that this registers the necessity for the outbound document - the
application typically uses this activity (or one of the functionally equivalent
APIs) upon an event occurring that will require an outbound transaction
document to be generated.

To put this another way, the outbound document is typically not existing when
this activity is run, but, rather, it is created by the subsequent outbound
transaction document process. (The activity FOR_EACH_TXDOCO is
provided for use in the outbound transaction document process for identifying
the pending outbound transaction documents).

INPUT Parameters:
TRADINGPARTNER : Required

Specifies the trading partner for which the pending outbound transaction
document is registered. This parameter is required.

DOCTYPE : Required

This parameter specifies the document type for the pending outbound
transaction document. The document type must be a document type
identifier as defined in LANSA Composer's Document types definitions, for
example 'EDI'.

DOCSTD : Required

This parameter specifies the transaction document standard for the pending
outbound transaction document. The document standard must be a
document standard identifier as defined in LANSA Composer's Document
standards definitions, for example 'X12'".

DOCSTDVER : Required

This parameter specifies the transaction document standard version for the
pending outbound transaction document. The document standard version
must be a document standard version identifier as defined in LANSA
Composer's Document standards definitions, for example '004020'.

DOCPRODTEST : Optional

This parameter specifies whether the transaction document will be for
production (P) or test (T) use. It is up to the specific export processor

implementation how it makes use of this value - for EDI X12 transactions, it
would typically be used to fill the ISA15 (use) field of the interchange
header.

DOCCONTENTTYPE : Required

This parameter specifies the document content type for the pending outbound
transaction document. The content type can be any string that identifies the
content type - for example, you might use the EDI transaction type (eg: '850")
for an EDI document or the XML document root element name for an XML
document.

DOCDATAKEYO01 : Required

This parameter specifies application-defined "key" information that will
allow the export processor to identify the application data associated with the
pending outbound transaction document.

DOCDATAKEY02 DOCDATAKEY03
DOCDATAKEY04
DOCDATAKEY05
DOCDATAKEY06 : Optional

These parameters may be used to specify further application-defined "key"
information.

OUTPUT Parameters:
DOCNUMBER :

Upon successful completion, this parameter will contain the transaction
document envelope number assigned to the new pending outbound
transaction document.

TXDOC_REGOUTEDI

This activity is a specialised extension of the TXDOC_REGOUTBND activity
that provides additional parameters to facilitate registering pending outbound
EDIFACT transaction documents. It registers the pending outbound transaction

document for later processing by an outbound process such as the supplied
TXDOC_OUTBOUND process.

Note that this registers the necessity for the outbound document - the
application typically uses this activity (or one of the functionally equivalent
APIs) upon an event occurring that will require an outbound transaction
document to be generated.

To put this another way, the outbound document is typically not existing when
this activity is run, but, rather, it is created by the subsequent outbound
transaction document process. (The activity FOR_EACH_TXDOCO is
provided for use in the outbound transaction document process for identifying
the pending outbound transaction documents).

INPUT Parameters:
TRADINGPARTNER : Required

Specifies the trading partner for which the pending outbound transaction
document is registered. This parameter is required.

DOCTYPE : Required

This parameter specifies the document type for the pending outbound
transaction document. The document type must be a document type
identifier as defined in LANSA Composer's Document types definitions, for
example 'EDI'.

DOCSTD : Required

This parameter specifies the transaction document standard for the pending
outbound transaction document. The document standard must be a
document standard identifier as defined in LANSA Composer's Document
standards definitions, for example 'EDIFACT".

DOCSTDVER : Required

This parameter specifies the transaction document standard version for the
pending outbound transaction document. The document standard version
must be a document standard version identifier as defined in LANSA
Composer's Document standards definitions, for example 'DO6A".

DOCPRODTEST : Optional

This parameter specifies whether the transaction document will be for
production (P) or test (T) use. It is up to the specific export processor
implementation how it makes use of this value - for EDIFACT transactions,
it would typically be used to populate and/or condition the UNB11 (test
indicator) field of the interchange header.

DOCCONTENTTYPE : Required

This parameter specifies the document content type for the pending outbound
transaction document. The content type can be any string that identifies the
content type - for example, you might use the EDI transaction type (eg:
'INVOIC") for an EDI document or the XML document root element name
for an XML document.

DOCGROUP : Optional

This parameter specifies whether a functional group (UNG / UNE segments)
is to be included in the outbound transaction document. It defaults to 'N'
(no).

Although the activity records this value in LANSA Composer's document
register (in field DXXGPABS in file DXX3GP), it is your responsibility to
design your outbound Transformation Map to read and respect the value in
order to include or exclude the functional group from the resulting EDI
document.

(If a single EDIFACT document includes messages of different types, each
different type is placed into a group introduced by a UNG Functional Group
Header segment and terminated by a UNE Functional Group Trailer
segment. In practice, there is no need in most EDIFACT applications to mix
different message types in a single transmission, and the Group level is not
generally used. Specifically, it is never used in book trade and library
applications.)

DOCCTY DOCISA11
DOCISA12
DOCISA14
DOCGS01
DOCTRVR
DOCTRRL
DOCTRCA
DOCTRAC : Optional

These parameters may be used to specify values for selected EDI interchange
header (UNB), group header (UNG) and message segments. These values, if

specif