
Web	Application	Modules	(WAMs)
Web	Application	Modules	(WAMs)
Before	You	Begin
An	Introduction	to	WAMs
WAMs	Deconstructed
Essential	Topics
Advanced	Topics
Execute	WAM	Applications
WAM	and	WEBEVENT	Interoperability
Technology	Services
Weblets	for	XHTML	Technology	Service
Weblets	for	jQMobile	Technology	Service
WAM	Tutorials
Appendix	A.	XSL	and	XML	Conformance
Appendix	B.	WAM	XML	Structure
Appendix	C.	Deprecated	Weblets	

	

Edition	Date	May	29,	2015
©	LANSA
	

its:LANSA087.CHM::/lansa/wamengm0_0010.htm
its:LANSA087.CHM::/lansa/wamengm1_0010.htm
its:LANSA087.CHM::/lansa/wamengm2_0010.htm
its:LANSA087.CHM::/lansa/wamb1_250.htm
its:LANSA087.CHM::/lansa/wamengb4_0010.htm
its:lansa087.chm::/lansa/wamb1_205.htm
its:Lansa087.chm::/lansa/wamengb1_0015.htm
its:Lansa087.chm::/lansa/wamengb1_0025.htm
its:Lansa087.chm::/lansa/wamengb8_0005.htm
its:lansa087.chm::/lansa/WamEngb9_0005.htm
its:LANSA087.CHM::/lansa/tutorial_begin.htm
its:LANSA087.CHM::/lansa/wamb3_0005.htm
its:LANSA087.CHM::/lansa/wamengbb_0010.htm
its:LANSA087.CHM::/lansa/wamengbc_begin.htm

Before	You	Begin
The	LANSA	for	the	Web	WAM	technology	is	an	extension	of	the	LANSA
development	environment.	If	you	have	Repository	and	RDML/RDMLX
skills,	you	can	apply	them	to	building	Web-based	applications.
Before	any	development	efforts	begin,	you	must	have	a	properly	installed
and	configured	LANSA	for	the	Web	system	that	supports	the	WAM
technology.
You	will	need	a	properly	configured	Web	Server	and	a	properly	configured
LANSA	Application/Data	Server.
Your	development	system	must	have	Internet	Explorer	6.0	or	later	and
MSXML	Core	Services	6.0	XML	Parser.	The	MSXML	parser	is	installed
during	the	Visual	LANSA	install.
For	details	about	the	installation	and	configuration	of	LANSA	for	the	Web,
refer	to	the	Installing	LANSA	on	Windows	Guide.
If	you	are	using	WAMs	for	the	very	first	time,	we	recommended	that	you
read	An	Introduction	to	WAMs	which	will	give	you	an	outline	of	all	the
components	of	WAMs	and	WAMs	Deconstructed,	which	will	give	you	a
more	in-depth	understanding	of	the	WAM	components.	We	also	recommend
that	you	complete	the	WAM	Tutorials.	For	information	about	the	WAM
tutorials	refer	to	WAM	Tutorials.
Weblets	are	shipped	with	the	software	to	provide	wizards	or	building	blocks
that	facilitate	the	rapid	development	of	HTML	browser-based	applications.
To	create	your	own	Weblets,	or	complex	HTML	pages,	you	will	need	XSL,
HTML	and	JavaScript	skills.
The	XSL	used	for	transformation	of	the	XML	WEBROUTINE	document
conforms	to	the	standard	W3C	XSL	1.0	specification.	Refer	to	XSL	1.0
references	for	information.

its:lansa087.chm::/lansa/wamengm1_0010.htm
its:lansa087.chm::/lansa/wamengm2_0010.htm
its:LANSA087.CHM::/lansa/tutorial_begin.htm

1.	An	Introduction	to	WAMs
This	chapter	gives	you	a	very	simple	overview	of	LANSA's	WAM	architecture
and	explains	each	component.
This	introduction	doesn't	describe	the	minutiae	of	every	technology,	command
and	parameter.	Rather,	it	is	a	solid	overview	so	that	you	can	approach	the	use	of
WAMs	with	confidence.	It	is	assumed	that	you	have	a	working	knowledge	of
the	Visual	LANSA	Application	Development	Environment.

Why	did	LANSA	develop	WAM	technology?
There	are	a	number	of	reasons,	but	two	key	points	stand	out:
1.		Web	technologies	are	evolving	very	quickly.	HTML	is	no	longer	the	only
way	to	deliver	web	content.	It	is	imperative	that	web	application	development
in	LANSA	is	readily	adaptable	to	new	technologies	as	they	emerge.

2.		It	is	clear	that	application	development	is	heading	towards	a	component-
based	future	so	it	is	imperative	that	web	application	development	in	LANSA
allows	you	to	take	full	advantage	of	component-based	techniques.

	

1.1	What	is	a	WAM?
Web	Application	Modules	(WAMs)	are	LANSA's	solution	for	building
applications	that	deliver	their	User	Interface	in	a	form	of	XML,	typically	via	a
web	browser.
WAMs	consist	of	two	distinct	pieces:	an	Application	Logic	Layer	and	a
Presentation	Layer.
Here's	what	happens:
The	Application	Logic	Layer	is	provided	by	RDMLX	code,	maintained	in	the
LANSA	Editor.	The	data	output	by	the	Application	Logic	Layer	and	destined
for	the	Presentation	Layer	is	in	the	form	of	XML.
the	Presentation	Layer	is	also	maintained	in	the	LANSA	Editor.	When	you
create	your	Application	Logic	Layer	you	generate	a	default	"best	guess"
Presentation	User	Interface	in	XSL.	The	RDMLX	does	not	need	to	be	compiled
to	generate	the	Presentation	User	Interface.	Once	the	XSL	is	generated	you	can
update	it	using	the	LANSA	Editor.
Your	business	data	(in	the	form	of	XML)	is	exchanged	between	these	two	layers
by	means	of	familiar	fields	and	working	lists.	The	following	diagram
summarizes	the	architecture:

1.2	The	BIG	Advantage	of	the	WAM	Architecture
The	separation	of	Application	Logic	and	Presentation	Layers	introduces	a	new
level	of	flexibility	to	LANSA's	web	solution.
Separating	the	business	logic	from	the	User	Interface	helps	to	"future-proof"
your	WAM	applications.	Potentially,	your	XHTML	(eXtensible	Hypertext
Markup	Language)	browser-based	applications	of	today	can	be	deployed
tomorrow	using	the	User	Interface	technology	of	the	day	(whether	that	be
XAML,	AUIML	or	some	other	technology	yet	to	be	invented)	without	having	to
change	your	business	logic.
the	Presentation	Layer	uses	a	Technology	Service	(TSP)	to	generate	the	User
Interface	for	each	potential	platform.	Currently,	one	of	the	most	common
Technology	Services	in	the	web	world	is	XHTML.	This	is	one	TSP	that	LANSA
generates	for,	delivering	a	User	Interface	that	will	look	good	in	Internet
Explorer	or	some	other	browser.
The	other	TSP	that	LANSA	generates	for	is	PocketPC	XHTML,	which	is
basically	the	same	as	the	default	XHTML	but	designed	to	fit	a	handheld	device.
Other	TSPs	can	be	introduced	with	relative	ease,	allowing	a	single	WAM	to
have	multiple	user	interfaces	by	selecting	the	appropriate	TSP.	This	means	that
the	same	application	can	be	run	on	different	devices,	making	for	the	perfect
separation	of	Application	Logic	and	presentation.

1.3	Other	Great	Things	about	WAMs
There	are	other	powerful	advantages	to	adopting	LANSA's	WAM	technology.	In
the	Presentation	Layer	these	include:

Industry	standard	architecture:	WAMs	are	based	on	industry	standard
technologies	including	XML	and	XSL.		This	ensures	that	your	WAM
applications	are	open	and	flexible.
An	editor:	the	LANSA	Editor	lets	you	"paint"	your	WAM's	User
Interface	using	point-and-click.		When	more	power	is	needed,	the	UI	can
be	edited	at	source	code	level	with	round-trip	support,	i.e.	you	can	edit
the	source	code	and	then	revert	to	using	the	LANSA	Editor	for	further
work.
Shipped	and	user-definable	"Weblets":	Weblets	are	XSL-based
components	used	for	encapsulating	common	field	visualizations	and	other
User	Interface	elements.		Weblets	are	designed	to	promote	re-use	in	the
Presentation	Layer.		LANSA	ships	with	a	range	of	ready-to-use	Weblets
for	common	User	Interface	elements,	but	you	can	also	build	your	own.

In	the	Application	Logic	Layer,	WAMs	exploit	and	build	on	much	of	LANSA's
traditional	application	development	strengths:

Repository-based:	LANSA's	repository-based	approach	to	application
development	captures	business	rules	and	domain	knowledge	and	ensures
that	it	is	consistently	applied	throughout	an	application.
Component-based:	in	LANSA	parlance,	WAMs	are	components	and	are
capable	of	making	use	of	other	LANSA	components.		This	offers	the
potential	for	you	to	build	upon	the	repository-based	approach	and	further
extend	the	separation	between	business	rules,	Application	Logic	and	the
User	Interface.		You	can	build	common	business	logic	components	that
can	be	shared	between	browser-based	applications,	rich-client
applications	and	integration	projects.
Single	skill	set:	the	Application	Logic	for	WAMs	is	built	using	the	same
RDML	programming	language	that	is	used	throughout	LANSA.		For
example,	LANSA	developers	with	5250	green	screen	backgrounds	can
quickly	and	easily	learn	how	to	produce	sophisticated	web	browser-based
applications.

Let's	now	look	more	closely	at	the	key	components	of	the	Application	Logic
and	Presentation	Layers.

1.4	The	Application	Logic	Layer
WAMs,	as	the	name	indicates,	are	the	modules	of	a	web	application	and	contain
your	application's	logic.	The	Application	Logic	Layer	contains	RDMLX	code,
maintained	in	the	LANSA	Editor.
You	can	have	as	many	or	as	few	WAMs	making	up	your	application	as	you	like.
An	entire	application	can	be	contained	in	a	single	WAM,	or	it	can	be	spread
across	multiple	WAMs.

1.4.1	Webroutines
A	WAM	may	contain	one	or	more	Webroutines.	These	contain	your	Application
Logic.	They	can	be	thought	of	in	much	the	same	way	as	subroutines.	Indeed,	a
Webroutine	is	defined	in	a	similar	manner	to	a	subroutine,	using	the
Webroutine/Endroutine	command	combination,	as	follows:

To	execute	this	Webroutine	from	a	browser	(i.e.	to	initiate	this	Webroutine),	a
user	would	enter	a	URL	that	looks	something	like	this:

http://www.MyWebSite.com/cgi-bin/lansaweb?
wam=MYWAM&webrtn=MyWebroutine
Note	that,	when	the	Endroutine	statement	is	reached,	control	is	passed	back	to
the	Presentation	Layer.
What	the	Presentation	Layer	shows	is	the	web	page	associated	with	that
Webroutine.	Yes,	each	Webroutine	is	capable	of	having	its	own	web	page	that	it
shows	to	the	user.	More	about	this	in	1.5	The	Presentation	Layer.
Of	course,	you	will	often	want	to	pass	data	back	and	forth	between	the
Application	Logic	Layer	and	the	Presentation	Layer.	This	is	done	with	1.4.2
Web	Maps.

1.4.2	Web	Maps
Web	Maps	are	the	interfaces	for	the	exchange	of	data	between	your	Webroutines
and	the	Presentation	Layer.
The	specification	of	a	web	map	that	outputs	a	Department	description	to	the
Presentation	Layer	would	look	something	like	this:

Note	the	For	parameter	of	the	Web_Map	command.
The	parameter	values	can	be:
					*input	–	this	defines	data	that	is	coming	from	the	Presentation	Layer	into	the
Webroutine.

					*output	–	this	defines	data	that	is	going	from	the	Webroutine	to	the
Presentation	Layer.

					*both	–	this	defines	data	that	comes	into	the	Webroutine	from	the
Presentation	Layer	and	is	sent	from	the	Webroutine	to	the	Presentation	Layer.

					The	fourth	value,	*none	is	described	in	1.4.3	Being	Stateless.
Say	you	had	a	Webroutine	whose	job	it	was	to	accept	a	Department	Code	as
input	and	then	to	output	a	Department	Description.	The	specification	of	its	Web
Maps	would	look	like	this:

The	department	code	is	*input	to	the	Webroutine	when	it	is	executed	and	the
Department	Description	is	*output	to	the	Presentation	Layer	when	the
Webroutine	ends.	These	settings	are	very	strict.	That	is,	the	value	of
DEPTMENT,	as	specified	in	this	example,	is	only	ever	input	to	the	Webroutine.
Once	the	Webroutine	ends,	its	value	is	not	sent	back	to	the	Presentation	Layer.
Similarly,	when	the	Webroutine	begins	executing,	DEPTDESC	has	no	value,	as
it	is	only	ever	output	by	the	Webroutine.

This	is	where	the	For	parameter	value	of	*both	is	very	useful	if	your
Webroutine	needs	to	accept	certain	information	as	input	as	well	as	to	be	able	to
output	it.	A	classic	example	of	this	is	that	of	a	simple	file	maintenance
application.	When	a	user	wants	to	edit	information	about	a	Department,	,	the
Webroutine	should	*output	that	information	to	the	Presentation	Layer	in	order
to	show	it,	but	it	should	also	be	able	to	accept	it	as	*input,	as	it	may	have	been
changed	by	the	user.	So	the	web	map	might	look	a	bit	like	this:

As	well	as	fields,	working	lists	can	be	used	to	pass	data	back	and	forth.	Simply
specify	the	name	of	the	working	list	on	your	Web	Maps,	just	like	this:
You	can	either	use	the	identifier	or	the	name	of	the	field	in	the	Web_Map
command.	The	XSL	and	XML	will	be	generated	using	the	identifier.	The	WAM
Editor	will	in	most	cases	display	the	name	but	still	use	the	identifier	under	the
covers.

Attributes	for	Fields	in	Web	Maps
Note	the	For	parameter	of	the	Web_Map	command	affects	which	fields	and
working	lists	are	exchanged	between	the	Presentation	Layer	and	the
Webroutine.	You	might	find	it	helpful	to	think	of	all	the	relevant	Web_Map
commands	as	defining	a	parameter	list	for	your	Webroutine.
However,	the	For	parameter	of	the	Web_Map	command	does	not	affect	how	the
field	is	presented	–	that	is	the	job	of	the	Presentation	Layer.
While	you	may	want	certain	values	to	be	for	(*both),	you	may	not	want	the	user
to	be	able	to	change	them,	or	indeed	see	them,	on	the	web	page.	To	do	this,	you
can	specify	the	following	attributes	for	fields	in	Web	Maps:
					*output	–	the	data	is	displayed	on	the	web	page,	but	the	user	cannot	change
it.

					*hidden	–	the	data	is	passed	between	the	logic	and	Presentation	Layers,	but
the	user	cannot	see	it.

					*private	–	the	data	is	passed	between	the	logic	and	Presentation	Layers,	but
the	data	is	not	merged	into	the	XSL.	(This	has	specialized	uses	where	the
value	of	a	field	or	contents	of	a	list	are	referenced	during	the	XSL
transformation	process	but	do	not	need	to	be	generated	into	the	final	page).

					Note:	*input	is	also	a	valid	attribute,	and	is	the	default.
Remember,	though,	that	how	the	field	is	represented	is	the	responsibility	of	the
Presentation	Layer.	The	field	attributes	you	set	in	your	web	map	to	control	this
are	only	effective	when	the	web	design	is	generated	for	the	Webroutine.	After
that	you	can	alter	how	the	field	is	represented	using	the	LANSA	Editor.	What
this	also	means	is	that	field	attributes	specified	in	the	web	map	should	only	be
regarded	as	an	indication	of	your	intentions,	as	ultimately	the	Presentation
Layer	controls	how	the	field	is	represented.
Here's	an	example	where	a	DEPTMENT	is	to	be	passed	back	and	forth	and
displayed,	but	you	don't	want	the	user	changing	its	value:

Particular	things	to	note	about	this	example	are:
The	only	effect	of	specifying	the	*output	field	attribute	is	to	make	field

#DEPTMENT	output-only	when	generating	the	web	design	for	the
Webroutine	–	it	does	not	mean	that	the	field	remains	as	output-only	on	the
web	page	as	it	may	be	changed	using	the	LANSA	Editor.
If	field	#DEPTMENT	is	output-only	on	the	web	page,	the	web	page	will
not	POST	the	field	value	back	to	the	next	Webroutine.		For	example,	if
the	Webroutine	posts	its	data	back	to	the	same	Webroutine,	then	it	will
not	work	because	the	value	of	field	#DEPTMENT,	being	output-only,	will
not	be	posted.		If,	however,	this	Webroutine	is	invoked	by	some	other
Webroutine	that	does	POST	a	value	for	field	#DEPTMENT,	then	this	use
will	work.

As	you	can	see,	specifying	*output	as	a	field	attribute	has	a	very	different
meaning	and	effect	to	using	for(*output)	on	the	Web_Map	command.

Webroutines	generate	Presentation	Layer	XSL	when	Compiled
When	a	Webroutine	that	has	Web	Maps	is	compiled,	appropriate	XSL	for	the
Presentation	Layer	is	generated.	In	the	case	of	*input	and	*both	Web	Maps,
LANSA	will	typically	generate	a	web	page	for	the	Webroutine	that	displays
those	fields	and/or	working	lists.
Exactly	what	is	generated	for	the	Presentation	Layer	is	described	in	1.5.2	What
is	Generated	for	the	Presentation	Layer	by	Default?

Global	Web	Maps
If	you	specify	a	web	map	outside	the	bounds	of	a	Webroutine,	it	becomes	a
global	web	map.	This	means	that	every	Webroutine	in	the	WAM	adopts	that
web	map.
You	will	find	many	uses	for	global	Web	Maps,	and	you	will	see	examples	of
using	them	in	this	guide,	such	as	in	1.4.3	Being	Stateless.
Until	now,	we	have	described	Web	Maps	that	have	been	specified	in
Webroutines	such	as	in	this	example:

In	the	following	global	web	map	example,	note	the	placement	of	the	web	map
for	the	WLDEPTS	working	list.	Both	MyWebroutine	and	MyOtherWebroutine
will	adopt	this	web	map	when	compiled.	Note	also	that	MyWebroutine	also	has
its	own,	local,	web	map	specified.

Controlling	Webroutine	Flow	Programmatically
As	well	as	Webroutines	being	executed	from	the	Presentation	Layer,	which	is
described	later,	they	can	also	be	executed	under	program	control	using	the	Call
and	Transfer	RDML	commands.	Consider	the	following	code:

Imagine	that	the	user	executes	the	Initialize	Webroutine	by	keying	a	URL	into
their	browser.	It	places	a	value	into	DEPTMENT.
The	Transfer	command	then	transfers	control	to	the	ShowPage	Webroutine,
which	accepts	DEPTMENT's	value.	Note	that	the	appropriate	mapping	takes
place	as	part	of	the	transfer,	according	to	the	web	map	definitions	for	the	current
Webroutine.	The	ShowPage	Webroutine	doesn't	actually	do	anything,	but	ends,
outputting	DEPTMENT's	value	as	it	does.	Control	is	then	passed	to	the
Presentation	Layer,	which	shows	ShowPage's	web	page.
Note	that	the	Endroutine	command	of	the	Initialize	Webroutine	is	never
executed,	as	control	is	transferred	to	ShowPage.	Consequently,	no	page	shows
for	the	Initialize	Webroutine.
This	use	of	Transfer	illustrates	a	slightly	more	advanced	technique,	whereby	a
single	Webroutine	in	the	WAM	can	be	responsible	for	showing	the	Presentation
Layer.	Using	this	technique,	all	other	Webroutines	can	be	used	solely	to	perform
Application	Logic.	All	of	them	transfer	control	to	the	ShowPage	Webroutine	as
the	last	thing	they	do.
You	may	find	that	this	technique	can	simplify	your	application.	What	this	means
is	that	your	application	may	be	made	up	of	multiple	WAMs,	each	WAM	using
only	one	Webroutine	to	display	a	web	page.	To	further	support	this,	the	Transfer
command	also	supports	transfer	between	WAMs:

The	Call	command	is	similar	to	the	Transfer	command	in	that	it	executes	a
Webroutine.	The	difference	is	that	control	is	not	transferred	–	the	Webroutine	is
executed	fully,	right	through	to	the	Endroutine	command	and	control	is	then
returned	to	the	executing	Webroutine.	Note	that	the	web	page	for	the	called
Webroutine	is	not	shown.

1.4.3	Being	Stateless
One	of	the	key	points	about	WAMs	is	that	they	are	stateless.	In	fact,	any
internet-based	application	is	stateless.	What	this	means	is	that	when	a	WAM	is
executed	from	the	Presentation	Layer,	it	runs	(a	job	is	initiated	on	the	server),
produces	some	output	(a	web	page),	and	then	ends	(the	job	on	the	server	ends
and	control	is	transferred	back	to	the	browser).
The	job	starting	and	ending,	to	all	intents	and	purposes,	is	a	"transaction".	Any
data	that	needs	to	be	maintained	for	the	user's	web	"session",	i.e.	span	multiple
transactions,	must	be	kept	somewhere.	A	good	example	of	this	is	when	a	user
logs	on	to	a	website.	The	fact	that	they're	logged	on	needs	to	be	maintained
across	multiple	transactions,	as	certain	functions	of	the	application	may	only	be
executed	if	they	are	logged	on.
In	a	windows	or	green	screen	application,	this	is	all	implicit	–	the	user's	job
stays	alive	in	memory,	waiting	for	the	next	move	from	the	user.	But	on	the	web,
we	don't	know	what	the	user	might	do	next	–	they	might	key	in	a	new	URL,	hit
the	back	button,	close	the	browser	and	so	on.
Data	to	be	displayed	on	the	web	page	is	moved	back	and	forth	courtesy	of	Web
Maps.	Even	data	that	is	hidden	is	moved	back	and	forth.	But	this	shouldn't
happen	in	the	case	of	"session"	data.	This	is	data	that	is	important	to	the
Application	Logic	Layer	only,	and	doesn't	influence	what	happens	in	the
Presentation	Layer.
WAMs	supports	this	idea	of	session	data	by	using	a	special	value	of	*none	in
the	For	parameter	of	the	web	map	and	a	value	of	*persist	in	the	web	map's
options	parameter.	A	web	map	to	maintain	the	log	on	status	of	a	user	might	look
like	this:

Note	the	placement	of	the	web	map.	Because	it	is	global,	all	Webroutines	in	the
WAM	will	adopt	it.	It	makes	a	lot	of	sense	to	code	your	session	data	Web	Maps
in	this	way	–	so	that	the	data	is	mapped	in	and	out	at	all	times.

There	are	other	parameters	and	settings	that	need	to	be	taken	into	account	when
coding	for	session	data,	but	you	should	now	have	the	basic	idea.	Refer	to	WAM
Session	Management	for	more	information.

its:LANSA087.CHM::/lansa/wamb1_130.htm

1.4.4	How	Reusable	Parts	can	Play	a	Role
As	with	all	applications,	internet-based	or	not,	there	may	be	functionality	that
needs	to	be	used	in	more	than	one	place.	Again,	a	good	example	is	the	"log	on"
function	(recording	the	user	id,	date	and	time	of	logon	in	a	database,	etc),	which
may	be	the	same	across	different	WAM	applications.
LANSA's	Reusable	Parts	can	provide	the	necessary	level	of	modularity.	Simply
use	the	Define_com	command	to	declare	the	appropriate	parts	and	use	them	for
the	Application	Logic.	Here's	an	example:

The	Logon	Webroutine	accepts	a	user	id	and	password	from	some	other
Webroutine	that	is	displayed	at	the	Presentation	Layer.	An	instance	of	the
Reusable	Part	ADHLOGON	comes	alive	and	its	ValidateLogOnDetails	method
is	used	to	validate	the	user	id	and	password.	If	successful,	the	#LOGGEDON
field	(declared	as	persistent	session	data)	is	set	to	True	and	control	is	transferred
to	the	LogOnSuccessful	Webroutine.	If	logon	is	unsuccessful,	control	is

transferred	to	the	LogOnFailed	Webroutine.
As	you	can	see,	this	is	a	great	technique	to	ensure	your	Application	Logic	is
encapsulated	in	a	single	place	so	that	it	can	be	used	over	and	over	by	other
WAMs.

1.5	The	Presentation	Layer
What	is	the	Presentation	Layer?
The	following	diagram	shows	the	path	from	a	Webroutine	to	the	"glass"	of	the
device	the	user	is	looking	at.	The	Presentation	Layer	consists	of	everything	to
the	right	of	the	Webroutine	box.

When	the	Webroutine	ends,	field	and	working	list	data	(as	defined	on	*output
and	*both	Web	Maps)	is	written	out	to	an	XML	document.	This	is	merged	with
the	XSL	generated	for	the	User	Interface	(including	the	XSL	of	any	Weblets
being	used)	and	then	transformed	into	a	document	that	is	displayed	to	the	user
(in	this	instance,	a	web	page	in	the	form	of	XHTML).

1.5.1	The	Editor
The	area	of	the	LANSA	Editor	where	a	Web	Design	is	maintained	is	a	visual
editor:	you	use	it	to	'paint'	your	web	designs.	Any	WAM	that	you	have	open	in
the	Source	tab	of	the	LANSA	Editor	can	have	its	Webroutines'	web	pages
designed	in	the	Design	tab.
To	open	a	Web	Design	for	a	WAM's	Webroutine,	select	the	green	arrow,	also
known	as	the	Webroutine	Design	Glyph,	immediately	to	the	right	of	the
Webroutine	command.	If	the	Webroutine	does	not	have	a	Web	Design	for	the
active	Technology	Service	Provider,	one	will	be	automatically	generated.
Otherwise	the	Design	tab	will	load	with	the	selected	Webroutine's	Web	Design
for	the	current	Technology	Service	Provider.
The	following	composite	graphic	shows	what	it	might	look	like:

The	Design	tab's	Web	Page	is	the	visual	display	of	the	XSL	source	that	is	used
to	generate	the	web	page	that	the	user	sees.	You	can	look	at	the	actual,
underlying	XSL,	by	selecting	the	XSL	tab.	Similarly,	the	XML	can	be	viewed	by
clicking	that	tab.

A	few	additional	tabs	that	act	as	aids	and	detailers	in	the	page-painting	process
are	also	available.	These	tabs	can	be	arranged	to	the	left,	right	or	bottom	of	the
Editor's	window,	or	they	may	be	free	floating.	For	details	about	the	LANSA
Editor's	main	features,	refer	to	Setting	up	Your	Workspace	in	the	User	Guide.
In	the	main	Editor's	pane,	as	shown	above	are:

The	Outline	tab	shows	fields	and	lists,	as	well	as	other	elements	contained
in	the	Web	Page	currently	being	edited.	Clicking	on	an	entry	in	this	list
selects	the	corresponding	control	in	the	Web	Page	tab.	If	a	drag	and	drop
operation	is	hovering	over	an	HTML	or	XSL	element	in	the	design,	that
element	will	be	highlighted	in	the	Outline	tab	to	give	a	visual	feedback
and	assist	with	drag	and	drop	operations.
The	Web	Design	tab	showing	all	Web	Designs	for	all	languages	and	all
Technology	Service	Providers	for	the	current	Webroutine.	This	tab	is
useful	for	deleting	Web	Designs,	rolling	back	changes,	creating	language
copies	and	so	on.

In	the	left	hand	pane	in	the	graphic,	you	will	see:
The	Repository	tab	that	lists	all	the	available	objects	that	are	stored	in	the
Repository.	LANSA	Fields	can	be	dragged	and	dropped	(either	as	a	field
or	as	a	list)	from	the	Repository	to	the	Web	Page.	You	can	also	drag	and
drop	from	the	Repository	into	the	Webroutine	Output	tab,	and	from
Webroutine	Output	tab	to	the	Web	Page.
The	Details	tab	shows	a	Properties	for	the	control	that	is	currently
selected	in	the	Web	Page	tab.
The	Webroutine	Output	tab	shows	fields	and	lists	that	are	in	the	Web
Maps	available	to	the	current	Webroutine.	You	can	drag	and	drop	directly
from	this	list	to	the	Web	Page,	or	from	the	Repository	to	this	tab,	if
required.

					You	would	use	the	WebRoutine	Output	tab	when	you	want	to:
change	the	order	of	fields	in	a	list	before	dropping	the	list	on	the	design.	It

cannot	be	done	elsewhere.
move	fields	and	lists	between	web	maps,	moving	them	from	local	web	maps	to

global	web	maps	and	vice	versa.
					To	move	objects	between	the	Repository	and	the	WebRoutine	Output	tab,	you
would	organize	your	screen	layout	to	show	both	tabs	at	the	same	time.

its:lansa012.chm::/lansa/L4wUsr1_0010.htm

1.5.2	What	is	Generated	for	the	Presentation	Layer	by	Default?
When	a	WAM	is	compiled,	some	default	User	Interface	pieces	are	built,	based
on	the	Web	Maps	specified.	These	are	different	depending	on	whether	fields	or
working	lists	are	being	mapped.	For	example,	this	Webroutine	maps	two	fields:

and	will	generate	a	User	Interface	in	the	form	of	a	web	page	that	looks
something	like	this:

As	you	can	see,	a	table	has	been	generated	with	two	columns	and	a	row	for	each
field.	The	*output	attribute	on	DEPTMENT	means	that	it	cannot	be	modified	by
the	user,	whilst	the	implied	attribute	of	*input	for	DEPTDESC	means	that	it	is
input-capable.
For	this	Webroutine,	that	specifies	a	working	list:

a	web	page	will	be	generated	that	looks	something	like	this:

A	table	has	been	generated	with	two	columns,	each	representing	a	field	in	the
list,	and	with	each	row	of	the	table	representing	an	entry	in	the	list.	By	default,
three	rows	of	the	table	are	shown	for	design	purposes.
These	default	pieces	of	User	Interface	are	all	well	and	good,	but	what	if	you
want	to	do	something	a	bit	more	'webby',	such	as	visualize	fields	as	clickable
images	or	hyperlinks?	This	is	where	1.5.3	Weblets	come	in.

1.5.3	Weblets
Weblets	are	pieces	of	XSL	that	can	take	information	about	Fields	and	Working
Lists	and	present	them	in	different	ways.
At	this	introductory	level,	think	of	Weblets	as	being	visual	building	blocks	with
which	the	user	interacts	on	the	web	page.	Weblets	provide	hyperlinks,	push
buttons,	clickable	images	and	so	on.	Often,	they	can	be	used	to	visualize	fields
and	working	lists.
For	example,	you	might	want	the	user	to	be	able	to	click	on	a	Department	Code
or	description	of	their	choosing	to	perform	some	action.	By	dragging	and
dropping	the	Anchor	Weblet	onto	the	columns	in	the	LANSA	Editor,	the	Dept
Code	and	Department	Description	are	displayed	as	hyperlinks,	causing:

this: to	become	this:

Following	is	a	list	of	some	of	the	Weblets	that	are	shipped	as	standard	with
Visual	LANSA:

Along	with	the	more	recognizable	types	of	User	Interface	widget,	such	as	list
boxes	and	push	buttons,	you	will	see	some	'standard	layout	schemas'.	These
Weblets	give	your	web	pages	a	basic	look	and	feel	and	provide:
a	place	to	display	a	company	logo
a	framework	for	various	menus
a	place	where	application	messages	get	sent.
Standard	layout	schema	1,	for	example,	is	the	one	you've	seen	many	times
elsewhere	in	this	document.	It	looks	like	this:

Standard	layout	schema	2	looks	a	bit	different	-	it	has	a	left	aligned	column,	for
instance:

Weblets,	just	like	standard	Visual	LANSA	User	Interface	controls,	have
properties	to	control	their	look	and	behavior.	These	are	shown	on	the	Property
tab,	which	you	access	by	clicking	on	the	Details	tab	when	the	Weblet	is
selected.	Following	is	the	Property	Sheet	for	the	Anchor	Weblet:

Note	the	name	and	value	parameters/properties	near	the	top	of	the	sheet.	The
name	of	the	Weblet	instance	is	the	same	name	as	the	LANSA	field	it's
visualizing	(DEPTMENT)	and	its	value	is	set	to	the	field's	value.
Look	down	the	sheet	at	some	of	the	other	properties.	The	on_click_wamname
and	on_click_wrname	properties,	for	instance,	specify	the	name	of	the	WAM
and	Webroutine	to	be	invoked	when	the	user	clicks	on	the	Anchor.	Back	in
MYWAM01,	the	DepartmentSelected	Webroutine	might	look	something	like
this:

Weblets	can	play	a	non-visual	role,	such	as	supplying	underlying	Javascript

code	or	other,	non-displayable	components	of	the	web	page.

1.6	A	WAM	Example	-	Beginning	to	End
Let's	walk	through	a	simple	two-page	web	example	in	order	to	reiterate	what
happens	at	key	points	in	the	execution	of	a	WAM.
The	initial	page,	when	displayed	in	a	browser,	looks	like	this:

As	you	can	see,	it's	a	Consignment	Status	Enquiry.	It	provides	for	a
Consignment	Note	Number	to	be	entered.	The	Check	Consignment	button	can
then	be	clicked	to	retrieve	the	information	from	the	database	and	display	the
status	of	the	Consignment.	So,	we	have	three	steps.	To	keep	it	simple,	we'll	have
a	Webroutine	for	each	step:

one	to	show	the	initial	page,	as	above	(ConsignmentEnquiry),
one	to	receive	and	validate	the	Consignment	Note	Number
(CheckConsignment),
and	one	to	fetch	and	show	the	data	from	the	database
(ShowConsignment).

To	begin	with,	how	do	you	display	the	initial	page?	You	may	enter	a	URL:

Note	the	webapp=WDWAM01	and	webrtn=ConsignmentEnquiry
parameters.	These	indicate	the	name	of	the	WAM	(WDWAM01)	and
Webroutine	(ConsignmentEnquiry)	to	be	executed.
Or	you	may	execute	this	from	some	other	part	of	a	bigger	WAM	application,
perhaps	by	clicking	on	an	Anchor	(or	Hyperlink),	by	pushing	a	button	or	by
selecting	a	menu	item.	Regardless	of	the	method,	the	mechanism	is	the	same:	a
Webroutine,	sitting	inside	a	WAM,	is	executed.
So,	what	does	the	underlying	code	for	our	initial	ConsignmentEnquiry
Webroutine	look	like?	Here	it	is:

The	key	here	is	the	web	map	for	the	WDCONSIGN	field.	It	is	defined	as	*both,
meaning	that	its	value	will	be	read	in	at	the	start	of	the	Webroutine	and	written
out	when	the	Webroutine	ends.	Remember,	when	you	compile	the	WAM,
LANSA	will	create	some	XSL	to	display	WDCONSIGN	on	the	web	page.
It	won't,	however,	give	you	a	push	button.	So,	you	right-click	on	the	Webroutine
and	open	its	page	in	the	LANSA	Editor.	Drag	and	drop	a	push	button	Weblet
onto	the	design	and	set	its	properties:

Note	the	caption,	on_click_wamname	and	on_click_wrname	property
settings.	The	on_click	properties	executes	the	CheckConsignment	Webroutine	in
the	WDWAM01	WAM	when	the	button	is	clicked.
So	far,	then,	the	flow	of	this	little	application	looks	like	this:

Now,	back	in	the	LANSA	Editor,	enter	the	following	RDMLX	code	for	the
CheckConsignment	Webroutine:

Again,	note	the	web	map.	Its	For(*input)	setting	means	that	WDCONSIGN	is
mapped	into	the	Webroutine	when	it's	invoked	–	by	the	user	clicking	the	push
button,	in	this	instance.
The	Consignment	status	file	is	checked	to	see	if	the	entered	Consignment	Note
Number	exists.	If	it	does	exist,	control	is	transferred	to	the	ShowConsignment
Webroutine.	If	it	doesn't	exist,	an	appropriate	error	message	is	issued	and
control	is	transferred	to	the	original	ConsignmentEnquiry	Webroutine.
Note	that	the	CheckConsignment	Webroutine	never	ends,	and	so	never	displays
a	web	page.	It	always	transfers	control	to	either	the	ShowConsignment	or

ConsignmentEnquiry	Webroutines.
The	flow	for	this	part	of	the	WAM,	then,	looks	like	this:

Now	have	a	look	at	the	code	for	the	ShowConsignment	Webroutine:

Again,	note	the	Web	Maps.	The	Consignment	Note	Number	(WDCONSIGN)
comes	in	courtesy	of	the	*both	web	map.
The	status	field,	WDCONSTS,	is	fetched	from	the	database	using	the
Consignment	Note	Number	as	a	key.
The	Webroutine	ends.	The	Consignment	Note	Number	and	Status	fields	are
mapped	out	of	the	Webroutine.
Control	is	transferred	to	the	Presentation	Layer,	which	displays	the
Consignment	Note	Number	and	Status.	Note	too	the	*output	attributes	on	the
fields,	which	means	they	will	be	displayed	as	output-only.
Let's	run	the	WAM	from	the	beginning,	assuming	a	valid	Consignment	Note
Number	has	been	entered:

Note	the	Check	Another	push	button.	It	simply	takes	us	back	to	where	we
started	by	re-executing	the	ComponentEnquiry	Webroutine.

1.7	WAM	Wizards
The	Visual	LANSA	Application	Wizards	guide	you	in	the	creation	of	complex
Visual	LANSA	applications	using	a	series	of	predefined	steps.
Before	you	can	run	a	Visual	LANSA	Wizard:

Visual	LANSA	needs	to	be	installed	and	correctly	configured
The	partition	needs	to	be	Web	enabled
The	system	needs	to	have	a	web	server	installed	and	configured	to	run
WAMs	if	the	execute	option	is	selected.

To	access	the	wizards,	in	the	LANSA	editor,	select	the	Tools	tab,	and	in	the
Utilities	group,	click	on	Wizards.

To	start,	click	on	any	of	the	wizards	in	the	Available	Wizards	list.
Each	Wizard	contains	a	list	of	questions	which	are	listed	with	a	 ,	once	you
answer	each	question,	the	 	becomes	a	 .	You	need	to	answer	all	the	questions
before	you	can	the	Finish	the	wizard.
You	can	navigate	between	the	different	questions	by	using	the	back	
and	next	 	buttons.
The	up	 	and	down	 	arrows	at	the	bottom	right	corner	of	the	wizard	dialog
are	used	to	scroll	through	the	messages,	if	any	messages	are	displayed	in	the
message	bar.

The	Wizards	available	are:
1.7.1	LANSA	Web	Mobile	Application	This	wizard	generates	LANSA
Web	Mobile	Browser	applications	with	the	ability	to	filter,	view	lists	and
show	Header/Detailer	forms	including	a	Sampler	to	showcase	the	types	of
controls	that	can	be	used	within	your	own	LANSA	Web	Mobile
applications.
1.7.2	LANSA	Web	jQuery	Themed	CRUD	Application	
This	wizard	generates	a	complete	LANSA	for	the	Web	CRUD	(Create,
Read,	Update,	Delete)	application	over	any	LANSA	or	keyed	files.
Features	include:

jQuery	themed	using	your	selected	site	layout	or	the	default
Drilldown	to	related	files
Searches	over	application	data.

1.7.3	Web	Application	Layout	Manager	Wizard	
This	wizard	provides	an	easy	way	to	customise	and	generate	the	site
layout	for	your	web	application.	Features	include:

Colour	scheme	and	look	and	feel
Multiple	content	areas
Ability	to	use	both	LANSA	weblets	and	jQuery	weblets
Enable	Web	2.0	sites	using	AJAX.

1.7.1	LANSA	Web	Mobile	Application
This	wizard	generates	a	totally	customisable	jQuery	Mobile	WAM.	Depending
on	your	answers,	the	generated	WAM	will	include	one	or	more	of	the	following:

A	Sampler	webpage	containing	all	the	controls	available	to	users.	This
page	is	for	the	whole	application.
A	user	defined	Webpage	using	one	or	more	of	the	following:

Heading
Text	Block
Image
Form	elements.	This	element	contains	a	collection	of	popular	form	controls.
Link
List	view.	This	control	can	contain	one	or	more	of	the	following:

															 -	List	Data,	which	is	data	dynamically	loaded	from	RDML.	There
is	only	one	list	data	per	list.	If	you	add	another	list	control	then	you
can	specifiy	another	List	Data.
-	Divider
-	Static	Menu	Item,	which	will	link	to	one	of	the	previously	created
webpages.

1.7	WAM	Wizards

1.7.2	LANSA	Web	jQuery	Themed	CRUD	Application
This	wizard	generates	a	WAM	and	a	WAM	layout	to	perform	file	maintenance
operations.
You	can	choose	to	restrict	the	generated	WAM	to	Read	only	operations	or	you
can	authorise	Create,	Update	or	Delete	operations.
The	fields	displayed	on	the	Add	and	ShowRecord	pages	as	well	as	the	columns
on	the	SearchList	page	are	customizable.	You	can	drill	down	to	another	WAM
provided	it	matches	the	AccessRoute	details.
Following	is	an	example	of	the	wizard	with	file	PSLMST:

	1.7	WAM	Wizards

1.7.3	Web	Application	Layout	Manager	Wizard
Depending	on	the	answers	the	user	provides,	the	wizard	will	generate	a	layout
weblet	to	the	requirements	you	have	specified,	and	a	subfolder	in	the	images
folder	of	the	webserver.	The	following	might	be	included	depending	on	the
answers	provided:

A	CSS	file	containing	the	styles	in	the	webserver	images	subfolder	with
its	matching	external	resource	object.
A	JavaScript	file	containing	additional	JavaScript	code	in	the	webserver
images	subfolder	and	its	matching	external	resource	object.
A	sample	WAM	using	the	generated	layout.	In	this	case	a	WAM	layout	is
also	created	to	reference	the	generated	layout	weblet.

Refer	to	WAM025	-	Using	the	Layout	Wizard	to	step	through	the
Wizard.

	1.7	WAM	Wizards

	

2.	WAMs	Deconstructed
Prerequisite	Reading
Before	reading	this	chapter,	we	recommend	that	you	read	An	Introduction	to
WAMs	for	an	overview	of	LANSA's	WAM	Architecture.

its:lansa087.chm::/lansa/wamengm1_0010.htm

2.1	The	Relationship	Between	WAMs,	Webroutines,	Weblet	and
Weblet	Templates
After	reading	An	Introduction	to	WAMs	you	should	have	a	clear	picture	of	what
WAMs	and	webroutines	are,	so	we'll	now	shift	the	focus	and	explain,	in	more
depth,	weblets	and	weblet	templates,	and	how	they	interact	with	WAMs	and
webroutines	to	build	up	and	customize	the	presentation	layer.
Let's	review	some	WAM	concepts.	You	should	already	be	familiar	with	most	of
these	concepts:

Simplistically,	each	webroutine	is	comprised	of	two	parts:	the	RDMLX
portion	encapsulating	the	application	logic	(in	the	Application	Logic
Layer),	and	the	XSL/XML	portion	defining	the	presentation	interface	(in
the	Presentation	Layer,	also	known	as	the	Web	Design).
A	WAM	includes	one	or	more	webroutines.
All	webroutines	are	defined	in	the	RDMLX	code	of	a	WAM	using	a
simple	WEBROUTINE	/	ENDROUTINE	construct.	The	webroutine
definition	may	include	WEB_MAP	commands	to	pass	field	and	working
list	information	to	and	from	the	presentation	layer.
The	RDMLX	code	of	a	WAM	can	also	include	method	routines
(MTHROUTINE)	and	subroutines	(SUBROUTINE).	If	you	need	a
refresher	on	these	concepts	refer	to	the	LANSA	Technical	Reference
Guide.
Webroutines	are	generally	presented	as	a	user	interface	(for	example,
HTML	for	a	web	browser),	but	can	be	generated	as	a	non-visual
presentation	if	the	appropriate	Technology	Services	are	defined.
Typically,	opening	a	webroutine	in	the	LANSA	Editor	opens	the
Extensible	Stylesheet	(XSL)	object	generated	for	the	webroutine	so	it	can
be	viewed	and	modified	as	required.	The	initial	presentation	in	the
LANSA	Editor	is	based	on	the	internally	defined	LXML	(a	list
representation	of	XML	tags)	and	the	XSL/XML	objects,	which	can	be
generated	during	a	build.	We'll	review	these	objects	again	later	in	this
document.
A	weblet	includes	one	or	more	weblet	templates.		Weblet	Templates
determine	how	a	weblet	is	applied	for	a	technology	service	or	another
variant	which	requires	different	XSL,	like	inline	lists.
The	presentation	of	a	webroutine	can	be	modified	by	dragging	and

its:lansa087.chm::/lansa/wamengm1_0010.htm

dropping	weblet	templates	onto	the	webroutine's	Web	Page	tab	in	the
LANSA	Editor.
Weblet	Templates	are	Technology	Service	specific.	This	means	that	while
a	consistent	set	of	weblets	is	shown	in	your	LANSA	repository,	when	you
change	your	current	Technology	Service	the	list	of	available	Weblet
Template	will	be	modified.

The	following	diagram	shows	the	relationship	between	a	webroutine	(the
application	logic)	and	the	generated	XSL,	XML	and	various	weblets	(the
presentation	layer):

2.1.1	What	happens	when	I	build	or	compile	a	WAM?
Let's	review	the	process	of	building	or	compiling	a	WAM	to	see	how	this
impacts	the	development	process.
The	easiest	way	to	see	what	happens	when	a	WAM	is	built	or	compiled	is	to
create	a	simple	WAM	and	review	the	resulting	objects.
Let's	use	a	very	simple	WAM	(named	KWAM10)	with	a	single	webroutine
(KWAM1001):

The	first	time	a	Web	Design	is	generated,	the	appropriate	layout	objects	will	be
generated	too.	Any	subsequent	generation	will	NOT	regenerate	the	layout
objects.	All	changes	to	the	generated	layout	are	performed	using	the	LANSA
Editor.
Don't	dwell	on	this	too	long	as	layouts	will	be	explained	in	great	detail	later	in
this	document.
The	objects	associated	with	the	WAM	layout	are:

A	single	layout	variables	object	is	created	for	the	WAM	–
kwam10_layout.variables.xml
A	single	layout	XSL	stylesheet	is	created	for	the	WAM	–
kwam10_layout.xsl

Additional	XML	and	XSL	objects	are	generated	or	regenerated	for	each
webroutine	during	the	build	or	compile	phase	if	you	select	the	appropriate
Generate	XSL	options	in	conjunction	with	one	or	more	Technology	Services.
These	XML	and	XSL	objects	can	also	be	generated	or	regenerated	for	a	specific
webroutine	when	you	explicitly	ask	them	to	be	using	the	small	green	arrow
immediately	to	the	right	of	the	RDMLX	WEBROUTINE	command.	This	set	of
objects	will	be	created	for	each	Partition	Language	and	each	selected
Technology	Service	combination	using	the	directory	structure
...\X_WIN95\X_LANSA\X_<Partition>\web\<Provider>\
<Technology	Service>\<language>.
The	objects	associated	with	the	Generate	XSL	settings	are:

An	XSL	stylesheet	is	created	for	each	webroutine	–
kwam10.kwam1001.xsl
A	variables	document	is	created	for	each	webroutine.	(This	is	related	to
the	XSL	object	and	is	independent	of	the	LXML	information	stored
internally.)	–	kwam10.kwam1001.variables.xml

If	you	perform	a	build,	the	default	system	settings,	to	Generate	XSL	for	all	New
Webroutines	(that	is,	webroutines	that	have	not	previously	had	XSL/XML
objects	generated),	will	be	applied.	The	compile	options	for	a	WAM	allow	more
control	of	this	process.
When	compiling	a	WAM,	the	Generate	XSL	options	allow	for	the	generation	of
XSL	to	be	bypassed,	or	XSL	can	be	generated	for	All	Webroutines	or	only	for
New	Webroutines.	You	can	also	generate	XSL	for	a	single	webroutine	on
demand	using	the	small	green	arrow	immediately	to	the	right	of	the	RDMLX
WEBROUTINE	command

	It	is	important	to	remember	that	by	selecting	Generate	XSL	for
All	Webroutines	you	will	regenerate	the	XSL	and	in	doing	so	will	lose
any	modifications	applied	in	the	LANSA	Editor.	The	same	applies
when	regenerating	XSL	on	demand.

	

	If	you	are	doing	Multilingual	Development…
The	XSL	objects	associated	with	the	default	partition	language	are
published	in	the	LANSA	repository	and	replicated	for	other	languages.
This	process	allows	you	to	effectively	have	a	single	set	of	XSL
information	for	each	Technology	Service	for	all	languages.	While	it	is
possible	to	have	a	different	set	of	XSL	published	for	each	language,
this	approach	is	generally	not	recommended	unless	you	require	very
distinct	interfaces	for	each	language.	It	is	a	better	approach	to	use
Multilingual	Variables	as	this	requires	only	one	Web	Design	and	hence
is	easier	to	maintain.

	
In	addition	to	the	XML	and	XSL	objects	generated,	whenever	a	WAM	is
compiled	(this	does	not	apply	for	the	build	option)	a	set	of	RDMLX	objects
associated	with	the	WAM	will	always	be	created	or	recreated.	The	same	set	of
objects	is	created	for	a	WAM	as	for	any	other	RDMLX	compilable	object,	for

example:
A	dynamic	link	library	object	kwam10.dll	is	created	in	the	partition
execute	directory
...\X_WIN95\X_LANSA\X_<Partition>\execute
A	program	file,	kwam10.pgm	is	created	in	the	partition	source
directory	...\X_WIN95\X_LANSA\X_<Partition>\source
A	text	file,	kwam10.txt	is	created	in	the	partition	source	directory
...\X_WIN95\X_LANSA\X_<Partition>\source

That	covers	the	files	generated	to	support	a	WAM,	but	there	is	one	final	piece
required	to	the	complete	the	picture.	When	the	WAM	is	built	or	compiled,
LXML	(a	list	representation	of	XML	tags)	information	is	ALWAYS	generated,
or	regenerated,	for	each	webroutine.	This	LXML	information	is	stored	internally
in	the	LANSA	database	and	is	independent	of	Technology	Service	and
Language.
Automatic	regeneration	of	the	LXML	information	is	important	as	it	ensures	that
any	modifications	to	WEB_MAP	definitions	are	available	in	the	Webroutine
Output	tab.	The	LXML	can	be	viewed	in	the	LANSA	Editor	by	selecting	the
XML	tab.
Some	modifications	to	the	generated	LXML	(cookies	and	TSML	nodes	added
by	the	LANSA	Editor)	are	retained	when	the	LXML	is	regenerated.
This	is	a	concise	view	of	the	WAM	build	and	compile	processes.	As	you	can
see,	in	the	diagram	below,	some	objects	are	generated	for	the	WAM	and	apply	to
all	the	webroutines	in	the	WAM,	while	other	objects	are	generated	for	each
webroutine	(and	some	information	is	stored	internally):

2.1.2	What	are	Weblets	and	Weblet	Templates?
Weblets	are	snippets	of	XSL	code	designed	to	encapsulate	common	HTML
functions	and,	in	doing	so,	hide	their	complexity.		Weblet	Templates	are	an
additional	level	of	granularity	within	a	Weblet,	defining	sub-sections	of	the
weblet	XSL	code	applicable	to	a	specific	Technology	Service	and	other	possible
conditions.
All	weblets	are	stored	in	the	LANSA	repository	and	can	be	created,	opened	or
modified	in	the	LANSA	Editor.		Weblets,	and	consequently	Weblet	Templates,
are	reusable	and	can	be	dragged	and	dropped	onto	the	Web	Page	of	any
webroutine	to	assist	in	building	up	the	desired	Presentation	Layer	or	Web
Design.		While	you	can	drag	and	drop	both	Weblets	and	Weblet	Templates	to
get	the	same	result	(in	most	cases)	it	is	useful	to	get	into	the	habit	of	working
with	Weblet	Templates	to	ensure	the	selected	weblet	is	supported	with	the
current	Technology	Service.		The	Weblet	Groupings	can	also	make	it	easier	to
locate	the	appropriate	weblet	to	be	used.		For	example,	if	you	are	using	inline
list	there	is	a	Weblet	Template	grouping	Inline	Templates	to	identify	all	the
weblets	defined	to	be	"inline-aware"	for	the	current	Technology	Service.
LANSA	supplies	a	standard	set	of	weblets.	Weblets,	like	all	XSL	and	XML
objects	in	LANSA,	are	Technology	Service	specific.	Most	shipped	weblets	are
supported	for	both	Technology	Services	provided	by	LANSA,	that	is,	XHTML
(eXtensible	Hypertext	Markup	Language)	and	JQMOBILE	(jQuery	Mobile).
Typically	weblets	are	used	to	visualize	data	on	a	web	page.	For	example
standard	weblets	are	provided	to	visualize	a	field	as	a	checkbox	or	a	radio
button,	or	a	working	list	could	be	visualized	as	a	dropdown	list	or	a	tree.	There
are	also	standard	weblets	provided	for	formatting	the	layout	of	a	web	page,
message	presentation,	menus	and	other	elements	commonly	included	on	web
pages	that	are	not	specifically	related	to	data	on	the	interface.	Additional	non-
visualized	weblets	are	provided	to	give	access	to	commonly	required
information,	for	example	the	variables	and	style	weblets	(which	are	described	in
2.5	Variables	and	2.7	Cascading	Style	Sheets	(CSS)	and	the	Style	Weblet).

2.1.3	How	do	I	use	Weblets?
To	get	a	feeling	for	how	weblets	can	be	used	to	build	up	the	presentation	layer,
let's	look	at	a	simple	example.
The	goal	in	this	example	is	to	construct	a	simple	search	page	to	allow	to	a
department	code	to	be	entered	and	then	a	search	for	department	records
initiated.
Create	a	WAM	and	name	it	WAMSTART.
	

	
Once	the	WAM	has	been	created	you	are	presented	with	a	dialog	to	create	a
webroutine.	You	can	dismiss	this	dialog	and	start	editing	the	WAM	yourself,	or
you	can	use	the	dialog	to	fill	in	the	details	for	your	new	webroutine	and	then	go
straight	to	the	Design	phase	and	let	the	RDMLX/Web	Design	interaction
automatically	build	the	web	maps	in	the	RDMLX	source	for	you.	In	this
example	we	will	use	the	dialog	to	create	a	webroutine.

You	will	now	automatically	be	taken	into	the	Web	Design	phase	and	see	the
following	Web	Design.

Drag	the	DEPTMENT	field	from	the	Repository	and	drop	it	on	the	Web	Design.
This	operation	will	also	add	a	web	map	to	the	RDMLX	Source.

To	facilitate	the	search	you	want	to	add	a	push	button	to	the	page.	To	do	this,
open	the	Weblet	Templates	in	the	Repository	and	locate	the	push	button	weblet.
Simply	drag	the	push	button	onto	the	Design	view	where	you	want	it	to	be
displayed.

Ensure	the	focus	is	on	the	newly	added	push	button.	Select	the	Details	tab	to
review	the	push	button's	properties.

Change	the	caption	property	to	Search	and	the	on_click_wrname	property	to
deptsearch.	This	indicates	that	when	the	push	button	is	clicked	on	the	resulting
web	page,	a	webroutine	deptsearch	(defined	in	the	current	WAM)	will	be
executed.	Note	that	this	webroutine	is	currently	not	defined	so	it	must	be	added
to	the	WAM	before	the	push	button	will	execute	correctly.
In	this	example,	the	appearance	and	functionality	of	the	web	page	generated	for
webroutine	kwam1001	is	modified	by	dropping	a	field	onto	the	design,
including	a	reference	to	the	push	button	weblet	and	customizing	the	properties
as	required.
Non-visualized	weblets	can	be	applied	in	the	same	way	but	you	will	need	to
review	the	XSL	tab	to	ensure	a	reference	to	the	weblet	has	been	added	as
required.
Before	executing	the	WAM	it	must	be	compiled	but	be	careful	not	to	regenerate
the	XSL	for	All	webroutines	as	this	will	replace	the	manual	changes	to	the	XSL
applied	by	dragging	and	dropping	the	weblet	template.

2.1.4	How	do	I	know	where	and	when	to	use	a	Weblet?
You	will	be	applying	visualized	weblets	to	your	presentation,	so	the	question	of
when	and	where	to	use	a	weblet	is	really	a	design	consideration	relating	to	how
you	want	to	view	and	modify	information	on	the	resulting	web	page.
For	example,	if	you	defined	the	following	webroutine:

then	compiled	the	webroutine	to	generate	a	default	presentation	interface	for
XHTML,	the	resulting	web	page	would	look	something	like	this:

Notice	that	the	default	representation	for	the	mapped	value	is	an	input	capable
field.
By	dragging	the	Checkbox	weblet	(or	the	Boolean	field	visualization	weblet)
onto	the	field	value	you	can	change	the	presentation	of	the	data	so	it	is	viewed
and	responds	as	a	checkbox:

	Tip	–	If	you	define	the	field	#YESORNO	as	type	*BOOLEAN,
the	visual	representation	would	automatically	be	a	checkbox.

Refer	to	Standard	Field	Visualizations	for	details	of	the	visualized	weblets
shipped	with	LANSA,	including	typical	usage	for	each	weblet.
The	use	of	non-visualized	weblets	requires	a	thorough	understanding	of	the
purpose	of	the	respective	weblet.	The	purpose	and	application	of	the	various
non-visualized	weblets	shipped	with	LANSA	is	outlined	later	in	this	document.

its:lansa087.chm::/lansa/wamengb2_0020.htm

2.1.5	Can	I	create	my	own	Weblets?
Yes,	you	can	create	your	own	weblets	to	implement	your	site's	standards	or	to
encapsulate	commonly	used	XSL	code	by	using	the	New	menu	and	choosing
Weblet	in	the	LANSA	Editor's	tool	bar.	You	can	then	add	the	appropriate	XSL
code	to	define	your	weblet.	Typically	you	will	not	need	to	add	XML	for	the
weblet.	The	XML	tab	is	by	default	not	visible	in	the	LANSA	Editor.
We	recommend	that	you	use	a	naming	prefix	other	than	std_	for	any	weblets
you	create.	To	simplify	the	management	of	your	Weblets,	create	your	own
weblet	grouping,	and	assign	this	to	any	weblets	you	create.
Remember	you	will	need	to	create	a	version	of	your	weblet	for	each	Technology
Service	you	intend	to	use	the	weblet	with.

	Do	not	modify	the	weblets	shipped	with	LANSA	as	these	will	be
replaced	during	subsequent	LANSA	software	upgrades.

		If	you	create	a	new	weblet	using	a	standard	weblet	as	a	template,
remember	to	change	the	name	of	the	xsl:template	as	well	as	the	file
name.	Two	weblets	with	the	same	xsl:template	name	cannot	be	used
together	on	the	same	layout	or	webroutine.

2.2	Technology	Services
Before	you	launch	into	any	WAM	development	it	is	important	to	understand
what	Technology	Services	are	and	how	they	impact	your	WAM	development.

What	is	a	Technology	Service?
Technology	Services	apply	to	the	Presentation	Layer	or	Web	Design	of	a	WAM.
They	allow	common	business	logic	(the	RDMLX)	to	render	a	presentation	on
multiple	types	of	client.	This	is	an	important	concept	as	it	allows	the	RDMLX
of	a	single	WAM	to	be	presented	in	multiple	technology	formats,	on	multiple
devices,	separating	application	logic	from	the	presentation	technology.
So	essentially	a	Technology	Service	defines	the	presentation	output	of	a
WEBROUTINE.

Which	Technology	Service	should	I	use?
It	depends	on	how	you	want	to	deliver	your	web	solution.
Two	of	the	most	commonly	used	Technology	Services	are	shipped	with	Visual
LANSA	to	support	the	presentation	layer	for	WAMs.	These	are	XHTML
(eXtensible	Hypertext	Markup	Language)	to	support	a	standard	web	browser
interface	and	JQMOBILE	(jQuery	Mobile)	designed	for	mobile	devices.
If	you	want	to	present	your	web	application	in	a	format	other	than	XHTML	or
JQMOBILE,	you	will	need	to	create	your	own	Technology	Service.

Can	I	create	my	own	Technology	Services?
Yes,	you	can	define	additional	Technology	Services	but	the	implementation	and
resulting	XSL	are	entirely	your	responsibility.
Technology	Services	are	defined	in	the	LANSA	Editor.	To	create	a	new
Technology	Services,	use	the	New	button	from	the	toolbar	and	select
Technology	Services.	Then	fill	in	the	details	for	your	new	Technology	Service.
You	will	need	to	create	your	own	XSL	Stylesheet	template	documents	to
support	your	new	Technology	Service.	These	documents	should	be	saved	in	the
appropriate	LANSA	directory	...\X_WIN95\X_LANSA\web\tsp.	These
templates	will	be	used	to	generate	the	initial	XSL	presentation	of	a
WEBROUTINE.
Refer	to	Technology	Services	for	further	information	about	creating	your	own
Technology	Service.

its:LANSA087.CHM::/lansa/wamengb1_0025.htm

Do	not	add	additional	Technology	Services	to	the	LANSA
provider	as	the	LANSA	provided	Technology	Services	may	be
extended	or	changed	in	future	versions.

How	do	I	generate	XSL	for	a	particular	Technology	Service?
When	you	create	a	new	webroutine	you	get	the	option	to	generate	XSL	for
existing	Technology	Services.	If	you	only	intend	to	execute	your	finished	web
application	on	a	web	browser	you	would	not	select	the	JQMOBILE	Technology
Service.
If	you	want	to	generate	XSL	for	a	different	Technology	Service	at	a	later	stage
you	can	do	so	by	right	mouse	clicking	on	the	Webroutine	Design	Glyph,
choosing	Generate	XSL	and	then	the	Technology	Service	Provider	you	are
interested	in.

How	do	I	view	the	presentation	for	a	specific	Technology	Service?
The	default	Technology	Service	for	the	LANSA	Editor	is	XHTML.	Use	the	Web
menu	in	the	LANSA	Editor	to	view	the	JQMOBILE	design	(if	it	was	generated)
or	any	other	Technology	Services	you	have	created	and	subsequently	generated
Wed	Designs	for.

2.3	Structure	of	a	Webroutine's	XSL
We	have	examined	what	objects	are	created	when	you	compile	a	WAM	and	the
role	of	Technology	Services	with	these	objects.	Now	let's	delve	further	into	the
workings	of	the	WAM	by	opening	the	XSL	generated	for	a	webroutine	in	the
LANSA	Editor.
Using	the	same	WAM	definition	(KWAM10),	you	can	open	the	KWAM1001
Webroutine	XSL	object	(that	is,	kwam10.kwam1001.xsl)	in	the	LANSA
Editor's	Design	tab	by	clicking	on	the	 	Webroutine	Design	Glyph	or	by	right
mouse	clicking	 ,	choosing	Open	Design	and	then	the	Technology	Service
Provider	you	are	interested	in..

Now	that	the	Web	Design	is	open	in	the	LANSA	Editor,	select	the	Outline	tab.
You	may	need	to	explicitly	open	it	from	the	LANSA	Editor's	View	menu,
choosing	Views	and	then	Outline	or	by	pressing	F6.	You	will	see	a	tree	view
representing	the	various	weblets,	HTML,	XML	and	XSL	structures	that	make
up	the	presentation.	A	prominent	feature	high	in	the	tree	view	is	the	reference	to
the	automatically	generated	WAM	layout	kwam10_layout.xsl.	There	is	also	a
field	description	and	value	included	in	the	XSL	(but	are	not	represented	as
weblets)	for	the	mapped	field	DEPTMENT.	In	addition,	the	XSL	contains	the
weblet	std_button	which	is	the	display	for	a	push	button.

If	you	double	click	on	the	WAM	layout	weblet	in	the	Outline	tab	(or	press	right
click	and	choose	Weblet:	kwam10_layout	-	Open	from	the	context	menu),	it	will
open	the	kwam10_layout.xsl	weblet	in	the	LANSA	Editor	as	well.	Looking	at
the	Outline	tree	structure	of	this	WAM	layout	shows	references	to	more	weblets,
in	this	case	std_themelet1_1col.	We	begin	to	understand	how	weblets	are
reused,	even	in	the	automatically	generated	XSL	objects.
Back	to	our	WAM	layout	weblet,	looking	at	the	Outline	tree	you	can	quite
simply	deduce	from	this	that	the	WAM	layout	is	based	on	the	standard	one
column	themed	layout	weblet	named	std_themelet1_1col.

You	can	verify	this	in	the	Design	tab:

Also	notice	that	the	WAM	layout	weblet	has	no	references	to	WebRoutine-
specific	details	(that	is,	the	mapped	webroutine	information).	It	is	the	shell	that
provides	structure	and	a	consistent	interface	for	the	page.

Note	that	for	the	purpose	of	this	introduction	to	the	structure	of	a	Webroutine's
XSL,	we	are	using	an	example	based	on	the	std_themelet1_1col	weblet.
Because	the	shipped	layout	weblets	(prefixed	by	std_)	must	never	be	modified,
it	is	recommended	that	you	always	build	your	own	site	layout	weblet.	The	site
layout	weblet	can,	of	course,	be	modified	as	you	require	for	your	web	site.	The
easiest	way	to	create	your	own	site	layout	is	to	use	the	Web	Application	Layout
Manager	Wizard.
If	you	were	using	your	own	site	layout	weblet	named	kwamsite,	the	Outline	tree
would	look	like	the	following:

In	the	following	text,	the	std_themelet1_1col	weblet	name	would	be	replaced	by
the	kwamsite	weblet	name	when	using	a	site	layout.	All	other	details	would	be
the	same	if	the	Web	Application	Layout	Manager	Wizard	was	used	to
generate	this	site	layout.
Still	looking	at	the	WAM	layout	weblet,	if	you	click	on	the	Details	tab,	the
property	settings	for	the	weblet	kwam10_layout.xsl	are	exposed.	These	are
currently	set	to	the	default	values.	Changing	these	properties	will	change	the
layout	interface	accordingly.

its:lansa087.CHM::/LANSA/WamEngm1_0120.HTM

At	this	point,	if	you	move	back	to	the	Outline	tab,	you	can	continue	to	drill
down	through	the	weblets	to	further	investigate	how	the	basic	webroutine
kwam1001	is	constructed.	From	the	WAM	Layout	weblet	you	can	double	click
on	the	std_themelet1_1col	weblet	so	it	too	opens	in	the	LANSA	Editor.	Note
that	you	must	not	update	this	shipped	standard	weblet.

Looking	at	the	structure	of	the	std_themelet1_1col		weblet	in	the	Outline	tab	(or

the	Design	view)	you	will	see	references	to	page	content	areas	identified	by	the
template	names	content.header,	content.hidden	and	content.footer.	Even
though	the	kwam10_layout	does	not	specifically	show	these	names	in	the
Outline	view,	they	are	available	as	editable	areas	of	both	the	kwam10_layout
and	the	kwam1001	webroutine	Web	Designs	using	the	LANSA	editor.

Review	the	std_themelet1_1col		weblet	in	the	Design	view	to	observe	the
relationship	between	this	weblet	and	the	WAM	layout	kwam10_layout.
Close	the	std_themelet1_1col		weblet	without	updating	to	return	to
editing	the	kwam10_layout	Weblet	for	the	WAM.

To	update	any	of	the	page	content	areas,	position	the	cursor	to	the	content	area
to	be	modified	(header,	footer	or	hidden)	and	press	right	click.	The	context
menu	option	Content	Area	for	the	applicable	page	content	will	be	available	to
allow	you	to	Replace	or	Expand	the	content:

If	the	content	area	is	modified,	it	will	then	appear	in	the	outline	view	for	the
WAM	layout	kwam10_layout.	For	example:

Now	let's	look	in	more	detail	how	the	Webroutine	layout	kwam1001_layout	is
constructed	from	each	of	its	related	weblets.
First,	open	the	XSL	tab	for	the	kwam1001_layout	weblet	and	scroll	to	the	top
of	the	XSL.	You	don't	need	to	understand	the	code	but	observe	the	references	to
"import"	other	XSL	documents:

These	imports	indicate	that	the	kwam1001_layout	weblet	refers	to	a	set	of
weblets	(that	is,	XSL	documents),	which,	although	they	may	not	always	be
visualized,	are	important	elements	in	the	definition.
From	the	Outline	view	of	the	kwam10_layout	WAM	Layout	weblet,	double
click	on	the	std_themelet1_1col	weblet	so	it	also	opens	in	the	LANSA	Editor.
Review	the	updated	Outline	view	expanded	to	include	the	std_themelet1_1col
weblet.

Again,	open	the	XSL	tab	for	the	std_themelet1_1col	weblet,	scroll	to	the	top	of
the	XSL	and	observe	the	references	to	"import"	other	XSL	documents:

These	imports	indicate	that	the	std_themelet1_1col	weblet	refers	to	another	set
of	weblets	(that	is,	XSL	documents),	which,	although	they	may	not	always	be
visualized,	are	important	elements	in	the	definition.
For	now,	all	you	need	know	if	that	these	different	weblets	are	referred	to	in	the
shipped	standard	layouts	and	as	such	are	"available"	to	any	other	weblets,	which
in	turn	refer	to	these	layouts.	We	will	describe	what	these	various	weblets	do	in
the	following	sections	of	this	document.
The	following	diagram	summarizes	what	we	have	just	described	about	the
structure	of	a	webroutine's	generated	XSL:

You	will	find	more	details	of	each	of	these	pieces	elsewhere	in	this	guide.

2.4	WAM	Layouts	and	Layout	Weblets
In	previous	descriptions	we	have	touched	upon	the	concepts	of	WAM	layouts
and	Layout	weblets.	Now	it	is	time	to	explain:
2.4.1	What	is	a	WAM	Layout?
2.4.2	What	is	a	Layout	Weblet?
2.4.3	What	do	Layouts	Determine/Control?
2.4.4	How	is	a	WAM	layout	assigned	to	a	WAM?
2.4.5	How	do	I	Create	my	Own	Site	Layout?
2.4.6	Can	I	Change	the	WAM	Layout	used	by	a	Webroutine?
2.4.7	Can	I	Change	the	Layout	Weblet	associated	with	a	WAM	Layout?
You	can	easily	create	your	layout	using	the	Web	Application	Layout
management	Wizard	Web	Application	Layout	Manager	Wizard.

its:lansa087.chm::/lansa/WAMEngm1_0120.HTM

2.4.1	What	is	a	WAM	Layout?
A	WAM	layout	weblet	is	a	specific	type	of	weblet	that	is	used	to	give	structure
to	the	web	page.	Typically,	it	will	define	any	titles,	menus,	message	presentation
or	logos	to	be	displayed.	The	WAM	layout	also	controls	the	Cascading	Style
Sheet	or	other	documents	to	be	applied.	(We'll	get	to	this	later	in	2.7.2	What
CSS	files	are	loaded	and	how	do	I	add	my	own?)

The	WAM	layout	weblet	is	used	as	the	basis	for	any	presentation	associated
with	the	WAM's	webroutines.
A	single	WAM	layout	is	generated	for	each	WAM	regardless	of	how	many
webroutines	are	defined	within	the	WAM.	If	your	web	application	includes
multiple	WAMs,	the	same	layout	can	be	applied	to	all	the	WAMs	in	your
application.	This	way,	you	can	guarantee	a	consistent	interface.
Contrary	to	what	the	name	suggests,	a	WAM	layout	does	not	have	to	be	made	of
visual	elements	–	although	it	usually	is.
The	non-visual	elements	of	a	layout	include	references	to	XSL	documents	for:
Standard	variables
Standard	data	types

Style
JavaScript
Default	hidden	fields

2.4.2	What	is	a	Layout	Weblet?
If	you	have	many	WAM	layouts	and	want	them	to	share	common	elements,	you
can	place	the	common	elements	in	a	Layout	Weblet.	Similar	to	other	weblets,
the	purpose	of	the	Layout	Weblet	is	to	reuse	functionality	and	avoid
unnecessary	duplication.	Refer	to	Create	a	Weblet	in	the	Visual	LANSA	User
Guide	for	details	about	Weblets.
Three	themable	Layout	Weblets	(Themelets)	are	shipped	with	Visual	LANSA
(std_themelet1_[1-3]col).	These	layouts	can	be	used	for	any	WAM-specific
layouts	or	as	a	starting	point	for	creating	your	own	site	Layout	Weblets.
The	easiest	way	to	create	your	own	site	layouts	is	to	use	the	Web	Application
Layout	Manager	Wizard.

When	you	create	a	new	WAM	you	can	select	the	site's	Layout	Weblet.
The	WAM	layout	that	is	automatically	created	is	based	on	the	Layout
you	nominate.

its:lansa012.chm::/lansa/l4wusr04_0335.htm
its:lansa087.chm::/lansa/WAMEngm1_0120.HTM

2.4.3	What	do	Layouts	Determine/Control?
The	layout	(A	standalone	WAM	layout	or	a	Layout	weblet	based	WAM	layout)
is	a	key	element	in	the	generated	webroutine	presentation.	It	ensures	that	a
consistent	interface	is	available	across	webroutines.
When	you	view	your	webroutine	in	the	LANSA	Editor's	Outline	tab,	the	layout
weblet	is	generally	at	the	highest	level	in	the	outline	tree.	This	indicates	that	all
weblets	below	the	layout	in	the	tree	can	refer	to	the	documents	specified	in	the
layout	weblet.
Some	of	the	things	controlled	by	layouts	include:

The	appearance	of	any	menus
Available	menu	options
The	appearance	of	a	message	box
The	Cascading	Style	Sheet	to	be	applied
Access	to	common	JavaScript	functions
Definition	of	any	global	hidden	fields
Standard	variable	definitions	which	may	be	referenced	in	other	weblets
Whether	a	visual	layout	should	be	applied.

Of	course	if	you	define	your	own	layout,	you	can	decide	what	common
elements	need	to	be	included	in	the	interface.

2.4.4	How	is	a	WAM	layout	assigned	to	a	WAM?
A	WAM-specific	layout	weblet	is	automatically	generated	for	a	WAM	the	first
time	it	is	built	or	compiled	unless	one	already	exists.
By	default,	when	XSL	is	generated,	the	processor	checks	if	a	WAM-specific
layout	weblet	already	exists	for	the	WAM.	If	a	WAM	layout	does	not	exist,	a
new	WAM	layout	weblet	is	generated	and	stored	in	the	repository	where	the
name	is	composed	of	the	WAM	name	followed	by	"_layout".	After	it	has	been
generated,	your	WAM-specific	layout	weblet	is	referenced	by	all	the
webroutines	in	the	associated	WAM.	Any	changes	to	the	WAM-specific	layout
weblet	will	be	reflected	in	all	of	the	WAM's	webroutines.
The	Generate	XSL	options	on	a	WAM	compilation	do	not	regenerate	the	WAM-
specific	layout.	A	WAM-specific	layout	is	generated	only	once.	Any	subsequent
modifications	to	the	WAM-specific	layout,	or	the	assignment	of	a	different
layout,	must	be	performed	in	the	LANSA	Editor.

2.4.5	How	do	I	Create	my	Own	Site	Layout?
The	easiest	way	is	to	run	the	Web	Application	Layout	Manager	Wizard.
To	create	a	layout	weblet	from	scratch,	select	the	Weblet	option	in	the	LANSA
Editor's	New	toolbar	dropdown	list.	In	the	New	Weblet	dialog	select	the	Layout
Weblet	option	to	create	a	Layout	weblet.
Alternatively,	you	can	use	any	of	the	shipped	layout	weblets	as	a	basis	for
creating	your	own.

its:lansa087.chm::/lansa/WAMEngm1_0120.HTM

2.4.6	Can	I	Change	the	WAM	Layout	used	by	a	Webroutine?
In	the	WAM	Editor's	Designer	tab,	drag	and	drop	the	WAM	Layout	you	want	to
use.	It	will	replace	the	existing	WAM	Layout.

2.4.7	Can	I	Change	the	Layout	Weblet	associated	with	a	WAM
Layout?
After	a	WAM	layout	weblet	has	been	created	for	a	WAM,	you	can	open	and	edit
this	weblet	in	much	the	same	as	any	other	weblet.	You	can	modify	the	properties
associated	with	the	WAM	layout	or	you	can	replace	the	Layout	weblet	it	is
based	on,	using	an	alternative	Layout	weblet	as	the	base.
To	change	the	layout	weblet	used	as	a	template	for	the	WAM	layout:
1.		Open	the	WAM	layout	weblet	in	the	LANSA	Editor.	Select	the	Design	tab.
2.		In	the	Repository	tab,	locate	the	weblet	to	be	used	as	a	layout.	Drag	this	new
layout	weblet	onto	the	WAM-specific	layout	weblet.	The	new	layout	will	be
displayed	below	the	old	layout.

3.		Select	the	old	layout	and	delete	it.
4.		Save	the	changes.

It	is	important	to	execute	the	above	steps	in	the	prescribed	order.
By	adding	a	new	layout	weblet	to	be	used	as	the	template,	all	existing
objects	are	moved	under	this	new	template.	After	this	step	is	complete,
you	can	safely	remove	the	old	layout	template	without	removing	the
dependant	objects.

2.5	Variables
The	variables	weblet	–	std_variables	–	is	not	visualized.
The	sole	purpose	of	the	std_variables	weblet	is	to	define	a	set	of	variables	with
default	values.	These	default	values	can	in	turn	be	referenced	in	appropriate
weblet	properties	or	used	in	other	weblet's	XSL	source.	For	variables	defined	in
std_variables	to	be	referenced	by	other	weblets,	the	referencing	weblet	must
include	a	specific	import	of	the	std_variables.xsl	document.
For	example,	the	std_menu_item	weblet	includes	the	following	statement	in	the
XSL	source:

Further	down	in	the	XSL	is	a	reference	to	a	variable	$lweb_WAMName
(defined	in	std_variables)	to	resolve	the	name	of	the	currently	executing	WAM
at	runtime.

2.5.1	How	can	I	Change	the	Value	of	a	Shipped	Variable?
Variables	in	XSL	are	not	like	the	variables	you	have	come	across	in	other
programming	environments.		In	XSL,	the	term	variable	is	used	in	its
mathematical	sense	to	mean	a	placeholder.		This	means	that,	once	defined,	a
variable	cannot	be	changed.
It	is	possible	to	override	a	variable	in	certain	contexts.	To	do	this	correctly	you
need	to	have	a	good	understanding	of	XSLT	import	precedence.		The	variables
defined	in	std_variables	provide	access	to	environment	parameters	and	specific
parts	of	the	source	lxml	data.		If	you	need	to	change	the	default	value	of	a
variable	then	change	the	source	data	rather	than	the	variable.
If	you	wish	to	create	your	own	variables	then	create	your	own	xxx_variables
weblet	and	import	it	into	your	layouts	or	weblets	as	required.
We	do	not	recommend	that	you	change	the	std_variables	weblet	as	this	may	be
changed	by	future	updates.

	If	you	reinstall	Visual	LANSA,	any	changes	made	to	the	standard
shipped	weblets	will	be	overwritten.

2.5.2	How	can	I	Create	my	own	Variables?
The	safest	way	to	create	your	own	variables	is	to	create	your	own	xxx_variables
weblet	and	import	this	wherever	you	need	access	to	the	new	variables.
You	can	use	the	existing	std_variables	weblet	as	a	guide	but	don't	attempt	to
redefine	variables	already	defined	in	std_variables.	This	is	not	necessary	and
may	result	in	strange	and	unexpected	behavior.
Some	knowledge	of	XSLT,	and	a	thorough	understanding	of	where	and	how
variables	are	used,	is	required	before	attempting	to	create	your	own	variables.

2.6	Localized	Variables
The	locale	definitions	weblet	–	std_locale	–	is	not	visualized.
The	purpose	of	the	std_locale	weblet	is	to	define	a	set	of	variables	with	default
values	that	may	differ	for	different	locales	(regional	settings).	These	default
values	can	in	turn	be	referenced	in	appropriate	weblet	properties	or	used	in	other
weblet's	XSL	source.	For	variables	defined	in	std_locale	to	be	referenced	by
other	weblets,	the	referencing	weblet	must	import	std_variables.xsl	which	itself
imports	std_locale.xsl.
This	weblet	is	shipped	in	different	languages	with	variables	set	to	locale	specific
values.
For	example,	the	std_style_v2	weblet	refers	to	the	variable
$lweb_std_css_language_overlay	to	obtain	the	name	of	a	language	specific	style
sheet	to	be	applied	to	the	layout.
You	can	create	your	customized	version	of	localizable	variables,	for	example,	if
you	want	to	customize	variable	$lweb_std_css_language_overlay.

2.7	Cascading	Style	Sheets	(CSS)	and	the	Style	Weblet
The	std_style	weblet	adds	the	CSS	stylesheets	needed	by	the	WAM,	any
additional	CSS	stylesheets	you	nominate	(indirectly	via	your	layout)	and
external	resources	CSS	stylesheets	used	by	your	WAM.
Together,	the	std_style	weblet	and	external	Cascading	Style	Sheet	definitions
can	be	used	to	tailor	the	overall	appearance	of	your	web	page	interface.
Let's	start	with	the	basics:
2.7.1	What	are	Cascading	Style	Sheets	and	how	do	they	work?
2.7.2	What	CSS	files	are	loaded	and	how	do	I	add	my	own?
2.7.3	Can	I	create	my	own	Style	Weblet?
2.7.4	What	Cascading	Style	Sheets	are	available?

2.7.1	What	are	Cascading	Style	Sheets	and	how	do	they	work?
A	Cascading	Style	Sheet	tells	the	browser	how	to	display	page	elements.	
Cascading	Style	Sheet	information	determines	things	like	the	fonts	and	color
schemes,	visual	effects,	alignment,	border	size	and	color,	but	may	also	be	used
to	define	images	and	other	features	related	to	the	interface.	These	properties	can
be	assigned	to	individual	elements	identified	by	an	ID,	or	groups	of	elements
identified	by	type,	location	and	class.
A	detailed	description	of	CSS	is	beyond	the	scope	of	this	document.	However,
there	are	many	good	books	and	online	resources	that	cover	the	subject	in	detail.
A	good	place	to	start	online	is	the	free	tutorial	at	W3Schools.
Many	of	the	shipped	weblets	include	style	(or	class)	properties.	The	default
style	applied	to	a	property,	and	the	full	set	of	styles	available	in	the	dropdown
list	associated	with	these	properties,	relate	directly	back	to	the	CSS	file
referenced	on	the	WAM's	related	layout.

	Cascading	styleheets	are	shipped	minified	(Most	whitespace
removed).	Non-minified	version	of	these	files	are	also	shipped	in	the
same	directory.

LANSA	also	ships	with	a	set	of	CSS	files	defined	specifically	for	use
with	the	PocketPC	Technology	Service.

http://www.w3schools.com/css/

2.7.2	What	CSS	files	are	loaded	and	how	do	I	add	my	own?
The	std_style_v2	weblet	takes	care	of	creating	all	the	<link>	tags	needed	to	load
the	CSS	files	so	you	need	to	include	it	in	the	<head>	section	of	your	layouts.
The	std_style_v2	weblet	always	loads	std_style.min.css	into	every	layout.	This
defines	the	non-theme	related	properties	of	all	LANSA	supplied	weblets.
It	then	loads	any	CSS	files	defined	by	its	theme_css_filename	and	css_files
properties.	These	properties	are	provided	for	backwards	compatibility	with
layouts	built	with	older	versions	of	the	weblet.	For	new	layouts,	you	should
specify	'none'	in	theme_css_filename	and	use	External	Resources	to	define
additional	CSS	files	you	want	to	include.
Next,	it	adds	any	CSS	files	defined	as	External	Resources	(which	we	mentioned
above)	referenced	in	the	webroutine,	layout	or	weblets	used	by	the	webroutine.
Finally,	the	std_style_v2	weblet	loads	a	stylesheet	defined	by	the	variable
$lweb_std_css_language_overlay.		This	variable	is	defined	in	the	std_locale
weblet	and	provides	a	means	to	apply	language	specific	CSS	modifications.

Before	External	Resources	and	jQuery	UI	support,	the	default	LANSA	theme
was	included	in	std_styles.css	and	always	loaded.	Any	custom	themes	added
with	the	theme_css_filename	property	had	to	take	this	into	account	and	undo	any
styles	from	the	default	theme	that	they	didn't	want.	From	LANSA	version	12
SP1	the	styles	associated	with	this	default	theme	are	separated	into	their	own
CSS	file	(theme_default.css).	For	backwards	compatibility	this	theme	is	still
loaded	before	any	theme	specified	in	theme_css_filename.

New	themes	can	remove	theme_default.css	and	start	with	a	blank	canvas	by
specifying	'none'	in	the	theme_css_filename	property.

The	css_files	property	provided	a	mechanism	for	individual	webroutines	to	add
special	purpose	CSS	files	to	the	page	such	as	a	CSS	file	needed	by	a	custom
weblet.	External	Resources	are	a	much	more	powerful	mechanism	for	doing	this,
allowing	weblets	to	define	their	own	CSS	requirements	and	having	that
automatically	communicated	through	to	std_style_v2.	The	css_files	property	is
no	longer	necessary	and	is	included	only	for	backwards	compatibility.

Notes:

its:LANSA087.CHM::/lansa/wamengm2_0190.htm

The	CSS	filenames	passed	in	arguments	to	std_style_v2	are	assumed	to	be
relative	to	the	style	sub-directory.	The	value	of	the	style	sub-directory	is	defined
by	the	variable	$lweb_style_path.	By	default,	this	variable	refers	to	the	sub-
directory	/style	directly	under	the	web	server	image	directory.	We	recommend
that	you	do	not	change	this	value.

From	version	13.0,	WAM	output	is	in	UTF-8.
<link>	elements	for	the	ccs_files	property	didn't	have	a	charset	attribute,
therefore	they	were	assumed	to	be	in	the	same	character	set	as	the	main
document.	To	preserve	backwards	compatibility,	they	now	have	a	charset
attribute	that	defaults	to	"shift_jis"	for	language	JPN	and	to	"iso-8859-1"	for	all
other	languages.	If	you	need	to	nominate	a	different	character	set,	use	the
css_files_charset	property	in	weblet	std_style_v2	(you	will	need	to	add	this
parameter	to	your	site	layout).	A	better	approach	is	to	register	your	extra	CSS
files	as	external	resources	and	include	them	as	such.

2.7.3	Can	I	create	my	own	Style	Weblet?
The	standard	style	weblet	should	handle	most	of	your	needs	but,	if	you	want	to
create	your	own	style	weblet,	you	can.	The	standard	style	weblet	provides
functionality	that	is	essential	to	the	correct	operation	of	the	LANSA	supplied
weblets	and	layouts.	You	should	always	call	it	from	within	your	custom	style
weblet	or	design	your	weblet,	as	shown	in	the	example	below,	to	work	alongside
the	standard	style	weblet.
			<xsl:import	href="std_style_v2.xsl"	/>
			
			<xsl:template	name="my_style">
						<xsl:call-template	name="style">
									<xsl:with-param	name="theme_css_filename"/>
									<xsl:with-param	name="css_files"/>
						</xsl:call-template>
						
						<!--	Custom	style	functionality	here	-->
			</xsl:template>
	

You	must	not	use	a	template	name	of	"style".
If	you	name	the	template	of	your	custom	weblet	"style"	then	you	will	cause	an
infinite	loop.

2.7.4	What	Cascading	Style	Sheets	are	available?
The	main	CSS	stylesheets	mentioned	in	2.7.1	What	are	Cascading	Style	Sheets
and	how	do	they	work?	are	in	the	main	style	directory	under	the	images
directory.
The	themed	CCS	stylesheets	are	under	the	jQuery	subdirectory—under	a
subdirectory	named	after	the	theme.
See	External	Resources	Shipped	with	LANSA		for	a	list	of	the	other	stylesheets
available	to	WAMs.

its:lansa087.chm::/lansa/wamengb3_0090.htm

2.8	JavaScript	and	the	Script	Weblet
2.8.1	Can	I	create	my	own	Script	Weblet?
2.8.2	How	do	I	Format	inline	JavaScript	for	a	Weblet	Property?
The	script	weblet	–	std_script	–	is	not	visualized.
The	std_script	weblet	loads	a	number	of	external	JavaScript	files	and	initializes
a	number	of	JavaScript	variables	and	functions	used	by	the	LANSA	weblets.		It
should	be	included	in	the	<head>	section	of	all	layouts.
The	external	JavaScript	files	referenced	are	a	small	set	of	JavaScript	files
installed	on	the	web	server	to	support	WAMs.	These	scripts	are	loaded	into	a
subdirectory	/script	directly	under	the	image	directory.	If	you	create	your	own
script	weblet,	ensure	that	the	scripts	included	in	the	shipped	std_script	weblet
are	included	in	your	script	weblet.

	These	files	are	shipped	minified	(Most	whitespace	removed).	The
non-minified	versions	of	these	files	are	also	shipped	in	the	same
directory.

If	you	wish	to	provide	your	own	localized	versions	of	the	JavaScript	messages,
make	a	copy	of	std_script_messages.min.js	and	translate	the	messages.		Then
edit	the	language	specific	version	of	the	std_locale	weblet	and	update	the
lweb_script_messages_file	and	lweb_script_messages_file_charset	variables.
To	add	your	own	JavaScript	files	to	a	page	or	layout,	Enroll	your	JavaScript	file
as	a	Web	Images	external	resource.	Add	the	external	resource	to	the	webroutine
or	weblet	that	requires	it.	The	corresponding	<script>	element	will	be	added	at
runtime	automatically.
Notes:

Every	layout	has	a	javascript_files	property,	which	is	passed	to	the
std_script	weblet.		This	parameter	takes	a	comma-delimited	list	of	file
names	(assumed	to	be	relative	to	the	/script	directory).
From	Version	13.0,	WAM	output	is	in	UTF-8.	<script>	elements	for	the
javascript_files	property	didn't	have	a	charset	attribute,	therefore	they
were	assumed	to	be	in	the	same	character	set	as	the	main	document.	To
preserve	backwards	compatibility,	they	now	have	a	charset	attribute	that
defaults	to	"shift_jis"	for	language	JPN	and	to	"iso-8859-1"	for	all	other
languages.	If	you	need	to	nominate	a	different	character	set,	use	the

javascript_files_charset	property	in	weblet	std_script	(you	will	need	to
add	this	parameter	to	your	site	layout).	A	better	approach	is	to	register
your	extra	JavaScript	files	as	external	resources	and	include	them	as	such.

					Several	of	the	shipped	weblets	also	include	small	inline	JavaScript	functions
in	the	XSL.

2.8.1	Can	I	create	my	own	Script	Weblet?
The	standard	script	weblet	should	handle	most	of	your	needs	but,	if	you	want	to
create	your	own	script	weblet,	you	can.	The	standard	script	weblet	provides
functionality	that	is	essential	to	the	correct	operation	of	the	LANSA	supplied
weblets	and	layouts.	You	should	always	call	it	from	within	your	custom	weblet
or	design	your	weblet,	as	shown	in	the	example,	to	work	alongside	the	standard
script	weblet.
			<xsl:import	href="std_script.xsl"	/>
			
			<xsl:template	name="my_script">
						<xsl:call-template	name="script">
									<xsl:with-param	name="javascript_files"/>
									<xsl:with-param	name="trap_script_errors"/>
						</xsl:call-template>
						
						<!--	Custom	script	functionality	here	-->
			</xsl:template>
	

You	must	not	use	a	template	name	of	"script".
If	you	name	the	template	of	your	custom	weblet	"script"	then	you	will	cause	an
infinite	loop.

2.8.2	How	do	I	Format	inline	JavaScript	for	a	Weblet	Property?
Any	weblet	property	where	JavaScript	is	a	valid	or	expected	value	will	accept
an	inline	JavaScript	enclosed	in	single	quotes.	The	format	of	the	JavaScript	is
your	responsibility.
All	inline	JavaScript	must	end	with	a	semicolon	(;)		For	example,	'alert("hello
world");'.		Note	that,	because	the	JavaScript	must	be	enclosed	in	single	quotes
(this	is	done	for	you	in	the	background),	you	cannot	use	a	single	quote	within
the	code.		If	you	need	to	do	this,	consider	creating	a	function	in	an	external
JavaScript	file	and	calling	it	from	your	inline	code.
Most	properties	that	expect	JavaScript	are	executed	in	response	to	an	event	or
just	prior	to	performing	some	action.		For	example,	the	presubmit_js	property	of
the	std_button	weblet	is	executed	just	before	the	form	is	submitted	to	the	server.	
This	gives	you	the	opportunity	to	provide	some	extra	processing	or	to	cancel	the
event/action.		To	cancel	the	event/action	you	must	use	"return	false;"
For	example:
if	(confirmWithUser()	==	false)	return	false;
(where	confirmWithUser	is	a	function	you	have	defined	in	an	external
JavaScript	file)

JavaScript	Notes:
1:	Do	not	use	return	or	return	true	in	your	inline	JavaScript.	This	has	a
similar	effect	to	return	false	in	that	it	stops	execution	of	the	LANSA
JavaScript	but	it	does	not	stop	the	browser	from	performing	its	default
event	handling.	This	may	result	in	strange	and	unexpected	behavior.

2:	The	{	and	}	characters	have	a	special	meaning	in	XSLT	and	cannot
be	used	in	a	JavaScript	property.	Doing	so	will	cause	strange	behavior.
If	you	need	to	write	more	complex	JavaScript	that	requires	these
characters	you	should	create	a	separate	JavaScript	function	and	call	it
from	your	property.

3:	Previous	versions	of	the	documentation	advised	ending	the
JavaScript	with	a	double	backslash	(//)	to	cancel	the	default
processing.		This	technique	has	the	same	effect	as	using	return	and
should	not	be	used.

2.9	Messages
The	messages	weblet	–	std_	messages	–	formats	the	presentation	of	any
application	messages	on	a	web	page.
Message	presentation	is	automatically	incorporated	at	the	top	of	all	the	standard
shipped	layouts	which	means	you	generally	do	not	have	to	review,	modify	or
even	apply	the	std_messages	weblet	to	your	presentation.

A	show_messages	property	is	included	on	each	shipped	layout	to	indicate
whether	the	message	box	generated	by	std_messages	should	be	incorporated
into	the	layout.	The	default	setting	for	this	property	is	to	show	messages.	If	you
do	not	want	to	show	messages	or	choose	to	display	your	messages	in	a	different
window,	this	property	should	be	changed	to	false.
You	can	modify	the	basic	appearance	such	as	background	color,	of	the	message
box	interface	by	redefining	the	appropriate	style	sheet	classes	in	your	own	CSS
file.	Alternately	if	you	want	a	completely	different	visualization	of	the	messages
you	will	need	to	create	your	own	version	of	the	std_messages	weblet	and	refer
to	this	as	required	in	your	presentation	interface.

2.10	Types
The	type	weblet	–	std_types	–	is	not	visualized.
The	std_types	weblet	defines	the	type	of	information	that	is	valid	to	be	entered
for	a	weblet	property.	Types	are	declared	in	the	XSL	source	by	providing	an
attribute	wd:type,	assigning	a	type	name	and	then	detailing	the	type	of
information	which	is	valid	for	this	type.
For	example,	locate	the	following	code	in	the	std_types	document:

It	is	easy	to	deduce	from	this	type	definition	that	any	weblet	property	that	refers
to	this	type	std:border_style	will	relate	to	a	border	style	and	include	a	valid	set
of	values	which	correspond	to	the	values	on	the	wd:enumeration	statements.
To	verify	this,	add	a	panel	(std_panel)	weblet	to	a	web	page	and	select	the	

	tab	to	review	the	associated	panel	properties.	Check	the	values	available
in	the	dropdown	list	associated	with	the	border	property.	As	you	would	expect
the	dropdown's	values	match	the	wd:enumeration	statements.

Now	open	the	std_panel	weblet	and	review	the	XSL	source	to	see	how	the

relationship	between	a	weblet	property	and	the	type	is	established.
First	of	all	note	that	the	std_types	document	is	imported	into	the	std_panel
weblet's	XSL	source:

Now	scan	down	the	XSL	source	and	you	will	find	a	relationship	defined
between	the	weblet	property	and	the	type	definition.

So	it	all	comes	together!

Tip:	If	you	are	defining	your	own	weblets,	you	may	refer	to	the
types	defined	in	the	std_types	document	to	indicate	what	values	are
valid	for	your	weblet	properties.	It	is	not	anticipated	that	you	will	need
to	create	your	own	types.

2.11	Hidden
The	hidden	fields	weblet	–	std_hidden	–	is	not	visualized.
This	weblet	provides	access	to	a	group	of	internally	defined	and	evaluated
properties.	The	values	assigned	to	the	respective	properties	are	determined	in
the	RDMLX	definition	and	are	required	to	execute	a	webroutine	in	a	web
browser.
The	standard	hidden	information	is:

SERVICENAME
WEBAPP
WEBROUTINE
PARTITION
LANGUAGE
SESSIONKEY
LW3TRCID

The	hidden	information	relates	directly	to	the	values	that	can	be	included	on	a
URL	to	invoke	a	webroutine.	For	example	you	may	execute	a	webroutine
MaintainRecord	in	WAM	WAMEX02	directly	from	a	web	browser	using	the
URL:

http://<server>/cgi-bin/lansaweb?
wam=WAMEX02&webrtn=MaintainRecord&part=DEX
or	alternately,	assuming	the	servicename	WAMEX02	Maintenance	has	been
assigned	to	the	webroutine,	the	URL	may	look	like	this:

http://<server>/cgi-bin/lansaweb?
srve=WAMEX02_Maintenance&part=DEX
In	both	examples	the	language,	tracing	and	any	other	undeclared	parameter
values	will	assume	the	default	value.

2.12	Keys
The	keys	weblet	–	std_keys	–	is	not	visualized.
The	standard	keys	weblet	declares	a	set	of	named	keys,	which	can	be	used	in
other	XSL	documents	to	allow	easy	access	to	complex	XML	documents.	Use	of
key	information	requires	a	thorough	understanding	of	XSL	and	XML.
This	weblet	is	imported	into	many	weblets	to	support	use	of	the	key	function	in
these	weblets.

Further	Reading
For	further	information	about	WAMs	and	their	use	refer	to:	Weblets	and	Weblet
Templates.

its:LANSA087.CHM::/lansa/wamengb2_0010.htm

2.13	Inline	Lists
Rationale
Weblet	XSL	templates	are	heavily	parameterized	in	order	to	give	the	WAM
developer	the	ability	to	customize	the	results.
For	example,	the	std_anchor	weblet	has	the	ability	to	change	its	appearance
when	the	mouse	hovers	over	it.		To	activate	this	behavior,	the	developer	assigns
a	value	to	the	mouseover_class	property.		The	following	XSLT	is	executed	at
runtime	to	see	if	the	property	has	been	set	and,	if	so,	adds
onmouseover/onmouseout	event	handlers	to	the	anchor:
	<xsl:if	test="$mouseover_class	!=	''">
				<xsl:attribute	name="onmouseover">
							<xsl:text>this.className='</xsl:text>
							<xsl:value-of	select="$mouseover_class"	/>
							<xsl:text>'</xsl:text>
				</xsl:attribute>
				<xsl:attribute	name="onmouseout">
							<xsl:text>this.className='</xsl:text>
							<xsl:value-of	select="$class"	/>
							<xsl:text>'</xsl:text>
				</xsl:attribute>
	</xsl:if>
	

Once	the	WEBROUTINE	design	has	been	saved,	the	value	of
$mouseover_class	never	changes	but	this	code	is	still	executed	every	time	the
webroutine	is	run.		If	the	weblet	is	in	a	list,	the	code	is	executed	again	for	every
row	of	the	list.
Now,	in	most	cases,	many	of	the	parameters	(weblet	properties)	are	constant	and
don't	depend	on	runtime	values.	It	is	more	efficient	to	apply	these	properties
once	at	design	time	instead	of	doing	it	every	time	at	runtime.	This	is	particularly
important	in	the	case	of	lists	(even	more	so	for	large	lists).
This	is	what	inline	lists	do.	Inline	lists	differ	from	standard	lists	in	that	the	XSL
is	done	at	design	time.	All	weblet	properties	that	can	be	applied	at	design	time
are	resolved,	and	special	extension	elements	and	functions	are	used	to	allow
WAMs	to	use	runtime	values	where	needed.
	

Applying	the	XSL	during	design	time	means	that	you	can't	customize
an	inline	list	with	information	(such	as	field	values)	that	is	only
available	at	runtime.	This	is	a	trade-off.	If	you	need	this	extra
flexibility	you	use	a	standard	list.	If	you	don't	need	it	you	can	benefit
from	the	better	performance	provided	by	an	inline	list.

2.13.1	Creating	an	Inline	List
There	are	two	ways	to	make	your	list	an	inline	list.
1.		Setting	the	Inline	property	of	your	WAM	to	Lists	will	make	all	lists	in	the
WAM	inlined	by	default.
FUNCTION	OPTIONS(*DIRECT)
BEGIN_COM	ROLE(*EXTENDS	#PRIM_WAM)	INLINE(Lists)
	
END_COM
	

2.		Marking	an	individual	list	as	inline	in	the	WEB_MAP.
	
WEBROUTINE	NAME(MyWebroutine)	DESC('Sample	Webroutine')
					WEB_MAP	FOR(*OUTPUT)	FIELDS((#DEPTLIST	*INLINE))
	
ENDROUTINE
	

If	any	XSL	already	exists	when	you	change	a	list	to	or	from	inline,	the	XSL	will
need	to	be	regenerated	or	the	list	deleted	and	re-added	to	the	XSL.

If	inline	lists	are	turned	on	at	the	WAM	level,	an	individual	list	can	be
marked	as	not	inline	in	the	WEB_MAP	like	this:
					WEB_MAP	FOR(*OUTPUT)	FIELDS((#DEPTLIST
*NOINLINE))

2.13.2	Using	Weblets	in	an	Inline	List
Weblets	must	be	"inline-aware"	before	they	can	be	used	in	an	inline	list.		An
alert	will	notify	you	if	you	attempt	to	drop	a	weblet	that	is	not	inline-aware	onto
an	inline	list.

For	the	most	part,	inline	weblets	look	and	behave	the	same	as	their	non-inline
counterparts.		The	key	difference	is	that	the	inline	weblet	is	generated	when	you
drop	it	onto	a	list	and,	again,	each	time	you	change	a	property.		Because	of	this,
there	are	a	few	considerations	that	you	need	to	be	aware	of.

Accessing	field	and	column	values
In	a	non-inline	list,	you	would	access	the	value	of	a	column	with	the
$COLUMNNAME	XSL	variable	or	a	field	value	with	an	XPath	expression	such
as	key	('field-value',	'FIELDNAME').		Because	the	XSL	in	an	inline	weblet	is
executed	at	design	time,	no	XSL	like	this	cannot	be	used	to	access	runtime	data.	
There	are	several	special	XSL	extension	functions	you	can	use	to	access	runtime
data	in	a	weblet	property.	These	are:
wd:column-value('COLUMNNAME')	–	returns	the	value	of	the	specified

column.		You	can	type	#COLUMNNAME	into	the	property	and	the	LANSA	editor
will	automatically	translate	it	to	a	wd:column-value	for	you.
wd:field-value('FIELDNAME')	–	returns	the	value	of	the	specified	field.
wd:variable('VARNAME')	–	returns	the	value	of	the	specified	MTXT	or	System

variable.
wd:row-index()	–	returns	the	row	number	of	the	current	row	of	the	list.		The

number	will	be	right-padded	with	zeros	to	a	length	of	4	digits.
These	are	XSL	functions	and	should	be	entered	in	the	XPath	expression	area.

These	extensions	functions	need	to	remain	in	the	result	document	after
the	XSL	transformation	is	done	(they	are	parsed	by	the	WAM	runtime
after		the	XSL	is	executed).		For	this	reason,	when	they	are	processed
by	the	XSL	processor	they	just	echo	themselves.		For	example,		a
weblet	property	of	"{wd:column-value('COLUMNNAME')}"	results
in	the	string	"{wd:column-value('COLUMNNAME')}"	in	your
property	variable.		You	can	place	this	string	directly	into	any	HTML
attribute.		If	you	want	to	place	it	into	the	HTML	content	you	should
first	convert	it	into	a	special	tag	using	the	wdTagFromAttr.private
template	provided	in	std_util.xsl.

Accessing	Context	Data
As	with	field	and	column	values,	the	context	information	normally	available	in
the	<lxml:context>	section	of	the	webroutine	XML	cannot	be	accessed	by	XSL
at	runtime.		Use	these	XSL	extension	functions	to	access	context	data	in	a
weblet	property:
wd:web-user()
wd:webapplication()
wd:webapplication-title()
wd:webroutine()
wd:webroutine-title()
wd:service-name()
wd:partition()
wd:language()

wd:images-path()
wd:action-request()
wd:layout-name()
wd:dbcs()
wd:align-right()
wd:check-numeric()
wd:debug()
wd:trace()
wd:task()

Runtime	data	cannot	be	used	in	all	properties
Some	weblet	properties	affect	how	a	weblet	is	constructed,	others	are	passed	to
the	browser	to	control	CSS	or	JavaScript	behavior.		Because	an	inline	weblet	is
constructed	at	design	time,	you	cannot	use	runtime	data	to	affect	the
construction.		For	example,	see	the	display_mode	property	in	any	of	the
standard	visualization	weblets.		A	value	of	'input'	will	generate	an	HTML
<input>	tag.		A	value	of	'output'	will	generate	a	.		If	you	need	to	use
runtime	data	in	these	properties,	you	should	use	a	non-inline	list.
The	exceptions	to	this	are	some	boolean	properties	like	hide_if	and	disabled.

wd:boolean	properties
Some	boolean	properties	like	hide_if	and	disabled,	whose	values	affect	how	a
weblet	is	constructed,	can	still	accept	runtime	data	through	the	use	of	a	string
containing	a	wd:boolean	expression.
The	syntax	of	a	wd:boolean	expression	is	designed	to	optimize	runtime
performance,	so	it	may	not	be	easy	to	read.		Properties	that	accept	a	wd:boolean
expression	will	provide	you	with	an	expression	editor	dialog	so	that	you	don't
need	to	be	able	to	read	the	expression.		Click	the	ellipsis	button	to	the	right	of
the	property	to	open	the	property	editor:

Refreshing	Inline	Weblets
Inline	Weblets	used	in	a	webroutine	are	not	automatically	updated	when	the
weblet	is	changed.		To	update	an	inline	weblet	it	must	be	refreshed.		You	can	do
this	in	several	ways:
Modify	a	property	of	the	weblet

Open	the	Webroutine	in	the	Design	tab	then	right	click	on	the	weblet	and	select
"Refresh	Inlined	Weblet"	from	the	context	menu.
Open	the	Webroutine	in	the	Design	tab	and	select	Refresh	Inlined	Weblets…	from

the	Web	menu.
Select	WAMs	from	the	Repository	or	Favorites	tab	and	select	Refresh	Inlined

Weblets…	from	the	context	menu.	This	is	the	recommended	way	to	refresh	inlined
weblets	for	a	larger	number	of	WAMs	and	webroutines.
When	you	select	WAMs	from	the	Repository	or	Favorites	tab	every	WAM	and

its	webroutines	will	be	opened	to	verify	if	there	are	any	inlined	weblets	in	the
webroutine	and	if	they	are	out-of-date.	Depending	on	how	many	WAMs	and
webroutines	are	selected,	their	complexity	and	the	number	of	inlined	weblets	this
process	might	take	a	while.

When	you	open	a	webroutine	the	LANSA	editor	will	tell	you	if	it	contains
inlined	weblets	that	need	to	be	refreshed.

Note	that	this	message	only	applies	to	the	webroutine	being	opened.	If	you	have
multiple	webroutines	in	a	WAM	you	need	to	open	each	webroutine	to	check	for
differences	in	weblet	version.
When	you	chose	Refresh	Inlined	Weblets	you	will	be	able	to	select	which
weblets	you	wish	to	update.

By	default	all	Weblets	are	pre-selected.	It	is	recommended	that	you	refresh	all	of
them.
	
	

3.	Essential	Topics
After	you	have	read	An	Introduction	to	WAMs	we	recommend	that	you	become
familiar	with	the	following	topics:
3.1	Using	CHECKNUMERIC	in	WAMs
3.2	WAM	Application	Design
3.3	Developing	for	Multiple	Languages
3.4	Using	Cookies	in	Your	WAM	Application
3.5	Using	the	Service	Name
3.7	Deleting	Objects
3.8	LOB	Data	Types	and	Stream	Files
3.9	WAM	External	Resources
3.10	Using	jQuery
3.11	Theming	WAMs
3.12	Localization
3.13	JSON	Support
3.14	Saving	a	WAM's	Output	to	a	File
3.15	Document	Type	Declaration	(DOCTYPE)

its:lansa087.chm::/lansa/wamengm1_0010.htm

3.1	Using	CHECKNUMERIC	in	WAMs
To	enable	numeric	validation	in	WAMs,	use	the	CHECKNUMERIC	selector	for
the	WAM.	This	is	specified	on	the	BEGIN_COM	command.

If	CHECKNUMERIC	is	not	specified	in	the	RDMLX	code	for	the	WAM,	the
default	is	based	on	the	System	Information	value	for	Web	validate	numerics.	To
find	the	Web	validate	numerics,	open	System	Information	in	the	Repository,
expand	Compile	and	Edit	Options.	The	setting	is	located	under	Process	and
functions	compile	defaults.
If	CHECKNUMERIC	is	applied	and	an	invalid	number	is	entered	at	runtime	the
following	warning	is	issued:

3.2	WAM	Application	Design
When	designing	a	LANSA	Web	application,	you	must	determine	the	number
of	WAMs	required	by	your	application	and	the	WEBROUTINES	that	will
belong	to	each	WAM.	Typically,	you	will	divide	your	application	into
functional	areas	where	each	area	is	represented	by	a	WAM.
You	must	also	understand	WAM	session	management	(refer	to	WAM
Session	Management)	when	designing	your	WAM/WEBROUTINE
structures.	By	default,	each	WAM	maintains	its	own	session	state
independent	of	other	WAMs,	but	you	may	chain	WAM	sessions.
Modularize	your	WAM	applications	by	using	other	RDMLX	components.
Use	RDMLX	Components	in	your	WEBROUTINEs	and	assign	business
rule	processing	to	them.	This	design	will	provide	a	good	foundation	for	code
re-use	across	different	presentation	technologies,	such	as	GUI	and	browser-
based	applications.
Using	a	WEBROUTINE	Service	Name	provides	greater	flexibility	when
deploying	WAM	applications.	For	example,	it	allows	applications	to	be	re-
deployed	to	a	different	Partition,	WAM	or	WEBROUTINE	without	having
to	modify	any	external	URL	references	to	it.

its:LANSA087.CHM::/lansa/wamb1_130.htm

3.3	Developing	for	Multiple	Languages
WAMs	support	the	development	of	Web	applications	executing	in	multiple
languages	from	a	single	RDMLX	WAM	code	base.	WEBROUTINE	and	weblet
XSL	stylesheets	are	language	sensitive.
It	is	possible	to	save	and	deploy	separate	distinct	stylesheet	for	distinct
languages.	For	example,	you	can	create	different	presentation	pages	and	weblets
for	English	and	Chinese	languages.
How	you	will	approach	the	task	of	developing	and	maintaining	WAMs	for
multiple	languages	depends	on	your	application.
If	your	web	application	will	have	the	same	appearance	for	all	languages	(i.e.
same	menus	and	same	page	layout	for	the	respective	webroutines)	the	simplest
way	to	implement	a	multilingual	application	is	to	supply	all	text	values	as
Multilingual	Variables	(*MTXT),	which	can	be	used	for	the	appropriate
captions	in	the	weblet	properties.		This	approach	simplifies	the	management	and
distribution	of	your	application,	as	only	a	single	set	of	XSL	source	exists	for
each	webroutine	and	layout.
If	your	web	application	requires	a	different	interface	for	each	webroutine	based
on	the	language,	then	you	will	need	to	create	appropriate	webroutine	and	layout
XSL	to	support	each	language.	This	obviously	is	the	less	ideal	approach	as	you
will	have	more	objects	to	maintain.
If	a	language	specific	page	does	not	exist	at	execution	time,	a	partition	default
page	is	used	for	presentation	output.	So	while	it	is	possible	to	have	different
pages	for	different	languages,	it	is	also	possible	to	have	a	single	page,	which	is
presented	for	multiple	languages.
Field	captions	and	list	headings	are	language	dependent	and	will	be	presented
according	to	the	requested	language.	Multiligual	variables	are	supported	and	can
be	referenced	in	the	WEBROUTINE	XSL.	Where	weblets	allow	you	to	specify
a	caption,	you	can	specify	Multilingual	variable	rather	than	specifying	language
dependent	literal	text.	Weblets	will	display	the	text	according	to	the	language
the	WAM	is	being	executed	for.
	

Important:
1.	The	values	of	multilingual	text	variables	referenced	in	webroutine
and	weblet	XSL	are	resolved	when	the	WAM	or	weblet	is	saved.	
2.	If	you	deploy	a	WAM	or	weblet,	the	values	from	the	source	system

are	taken	in	the	deployment	package.

	
At	runtime,	a	language	can	be	requested	by	passing	a	language	keyword	in	the
URL	'lang'	parameter.	For	example	the	following	URL	requests	an	English
language	page:
http://localhost/cgi-bin/lansaweb?
srve=LEWAM01_SearchQuery&part=DEM&lang=ENG
	

For	more	details,	refer	to	the	LANSA	Multilingual	Application	Design	Guide.

3.4	Using	Cookies	in	Your	WAM	Application
You	can	control	how	cookies	are	set	in	the	browser	by	adding	a	special	cookies
section	to	your	Input	XML	file	for	a	WEBROUTINE.	For	example:
<lxml:server-instructions>
			<lxml:cookies>
						<lxml:cookie	name="USRID">
									<lxml:value	field-name="EMPNO"></lxml:value>
									<lxml:expires	field-name="EXPDAT"></lxml:expires>
									<lxml:domain	field-name="DOMAIN"></lxml:domain>
									<lxml:path	field-name="PATH"></lxml:path>
									<lxml:secure	field-name="SECFLAG"></lxml:secure>
									<lxml:httponly	field-name="HTTPFLAG"></lxml:httponly>
					</lxml:cookie>
			</lxml:cookies>
</lxml:server-instructions>
	

This	example	demonstrates	the	format	of	the	cookies	section	that	is	required	if
you	wish	to	set	cookies	in	the	browser	from	WEBROUTINE	field	values.	The
lxml:cookie	element	contains	all	the	required	cookie	information.	Its	name
attribute	specifies	the	name	used	to	store	the	cookie,	as	well	as	the	LANSA	field
name	that	will	contain	the	cookie	value	on	subsequent	WEBROUTINE
requests.
Note:	The	cookies	section	must	be	inside	the	server-instructions	section,	as
shown	in	the	example.
The	following	table	describes	the	elements:

Element Description

lxml:value The	value	to	store	for	the	cookie.

lxml:expires The	expiry	date	of	the	cookie	in	GMT	format.	If	this	is	not
specified,	the	cookie	will	expire	when	the	browser	is	closed.

lxml:domain The	domain	name	to	make	the	cookie	available	to	all
subdomains	of	the	specified	domain.	If	unspecified,	the	cookie
is	only	available	to	the	pages	of	the	domain	that	set	the	cookie.

lxml:path The	path	of	the	cookie	even	though	it	may	be	being	set	on	a
page	from	a	different	directory.	This	value	can	be	used	to

ensure	that	a	cookie	set	in	one	subdirectory	is	available	in
another	by	specifying	a	path	of	a	parent	directory	used	by	both
subdirectories.	If	a	'/'	value	is	specified,	then	the	cookie	is
available	in	all	subdirectories	of	the	domain.	If	unspecified,	the
cookie	is	only	available	in	the	path	it	was	set	in.

lxml:secure A	value	of	true	indicates	that	the	cookie	is	only	available	to
pages	from	secure	SSL	domains.

lxml:httponly Supported	by	most	modern	browsers.	A	value	of	true	indicates
that	the	cookie	should	not	be	accessible	via	non-HTTP	APIs
(for	example,	JavaScript).

	

The	above	elements	may	also	specify	a	field-name	attribute	that	contains	the
name	of	the	field	storing	the	cookie	values	as	shown	in	the	first	example.
The	following	example	show	how	cookie	values	can	be	specified	directly	in	the
XML:
<lxml:cookies>
		<lxml:cookie	name="LSTACT">
				<lxml:value>Inquiry</lxml:value>
				<lxml:expires>Thu,	31	Dec	2020	10:00:00	GMT</lxml:expires>
				<lxml:domain>acme.com</lxml:domain>
				<lxml:path>/home</lxml:path>
				<lxml:secure>true</lxml:secure>
				<lxml:httponly>true</lxml:httponly>
		</lxml:cookie>									
</lxml:cookies>
	

3.5	Using	the	Service	Name
It	is	possible	to	have	different	URLs	(see	below)	to	invoke	the	same	webroutine
as	a	webpage.
Let's	look	at	the	definition	for	an	example	webroutine,	MaintainRecord:

Based	on	the	WEBROUTINE	definition,	this	webroutine	can	use	the	optional
ServiceName	property	on	the	WEBROUTINE	definition	to	invoke	the	WAM:

http://<server>/cgi-bin/lansaweb?srve=MaintEmployee&part=DEX
The	ServiceName	does	not	require	further	qualification,	as	it	must	be	unique
across	the	partition.
The	second	URL	option	uses	the	combination	of	WAM	name	and	the
webroutine	name	as	a	unique	combination.

http://<server>/cgi-bin/lansaweb?
wam=WAMEX02&webrtn=MaintainRecord	&part=DEX

3.6	Using	Session	Status
Let's	have	a	look	at	a	simple	implementation	of	session	management.
First,	set	the	BEGIN_COM	command	in	the	WAM	RDMLX	to	indicate	that
each	webroutine	in	this	WAM	must	have	an	active	session	status	before	it	can
be	executed	UNLESS	otherwise	indicated	by	the	ONENTRY	parameter
associated	with	the	specific	webroutine.

The	entry	point	webroutine,	in	this	example	MaintainGrid,	will	be	allowed	to
execute	with	no	session	status,	as	indicated	by
ONENTRY(*SESSIONSTATUS_NONE).	All	other	webroutines	in	the	WAM
(which	do	not	have	this	parameter	setting)	require	an	active	session	status	by
default.
This	entry	webroutine	sets	the	session	status	to	active	and	can	now	invoke	other
webroutines	in	the	WAM,	which	require	an	active	session	status.

So	what	happens	if	the	session	status	is	invalid	(for	example,	if	I	try	to	invoke
another	webroutine	in	this	same	WAM	which	does	not	have	the
ONENTRY(*SESSIONSTATUS_NONE)	setting)?
An	invalid	session	status	fires	a	SessionInvalid	event,	which	can	be	handled	to
issue	the	appropriate	information	to	the	user.

3.7	Deleting	Objects
WAMs

When	you	delete	a	WAM	from	the	LANSA	Editor,	the	WAM	RDMLX	and
all	of	its	WebRoutine	XSL	stylesheets	for	all	languages	and	Technology
Services	are	also	deleted.	The	default	WAM	layout	can	optionally	be	deleted
when	you	delete	a	WAM.	Other	weblets	used	by	the	WAM	are	not	deleted.
If	the	option	to	delete	orphan	webroutine	designs	when	closing	is	enabled
(the	default	setting),	you	don't	need	to	remove	them	manually.	Otherwise,
the	XSL	Stylesheets	are	not	automatically	deleted,	and	will	still	appear	as	an
item	in	the	LANSA	Editor's	Outline	view	and	the	Web	Designs	tab.	You	can
delete	them	from	the	WAM	Editor's	Outline	view.
When	you	check-in	a	WAM,	its	RDMLX	source	and	all	XSL	Stylesheets	for
all	languages	and	Technology	Services	are	checked-in.	The	WAM's	layout
weblet	is	also	checked-in.
When	you	check-out	a	WAM,	its	RDMLX	source	and	all	XSL	Stylesheets
for	all	languages	and	Technology	Services	are	checked-out.	Please	note	that
the	WAM's	layout	weblet	is	not	checked-out.
When	you	create	a	new	partition	language,	you	need	to	republish	your
WAM's	webroutines.	This	is	not	done	automatically.

Weblets
When	you	delete	a	Weblet	in	the	WAM	Editor's	Weblet	view,	you	are
deleting	the	Weblet	for	all	languages	and	all	Technology	Services.
Be	aware	that	if	other	Weblets	or	Webroutine	XSL	Stylesheets	use	a	Weblet
you	deleted,	you	will	get	errors	when	opening	those	documents	in	the
LANSA	Editor,	or	when	executing	the	WAM	that	uses	them.	Any	references
to	deleted	Weblets	must	be	removed	by	editing	the	Webroutine's	XSL
Source.
Weblets	can	be	checked-in	or	out	in	the	LANSA	Editor's	Repository	view.
When	you	create	a	new	partition	language,	you	need	to	republish	your
Weblets.	This	is	not	done	automatically.

	

3.8	LOB	Data	Types	and	Stream	Files
WAMs	allow	you	to	serve	stream	files	that:

You	don't	want	to	store	on	your	Web	server
Documents	whose	contents	are	stored	in	your	application	data	base.
Documents	created	on	demand.

You	can	serve	the	contents	of	LOB	data	types	(BLOBs	and	CLOBs)	and	stream
files	located	in	your	Application	Server	with	special	webroutines.
You	create	these	file	serving	webroutines	by	defining	the	Response	parameter	in
the	Webroutine	command:

The	webroutine	can	contain	RDMLX	code	to	create	the	contents	of	the	file	or
determine	which	file	to	send.		The	only	requirement	is	that	you	set	the
ContentFile	to	the	file	name	that	you	want	to	serve.
You	can	also	send	the	contents	of	a	string.	In	this	case,	you	need	to	set	the
content	type.	The	charset	is	assumed	to	be	the	current	encoding.	If	that	is	not	the
case,	you	need	to	set	the	Charset	property.

Also	see
File	Request
LOB/File	Content	Type
LOB/File	Properties
Custom	HTTP	Headers
CLOBs	and	Files	with	Text	Content
Compression

3.8.1	File	Request
You	request	the	LOB/file	by	invoking	the	webroutine.	For	example:
http://myhost/cgi-bin/lansaweb?
wam=LOBSAMPLE&webrtn=SEND_SAMPLE&ml=LANSA:XHTML
&part=DEX&lang=ENG
	

You	can	use	the	Standard	LOB	Visualization	(std_lob)	weblet	if	you	want	to
show	it	as	an	anchor.	You	need	to	specify	the	webroutine	that	handles	the
request.	You	don't	need	to	drop	it	on	top	of	a	LOB	field.	You	can	drop	the	LOB
weblet	on	an	empty	space.
For	example:

3.8.2	LOB/File	Content	Type
LANSA	determines	the	content-type	of	the	LOB	or	file	based	on	the	file
extension.	You	normally	don't	need	to	add	the	content-type	header.	If	the	prefix
is	not	known,	the	content	type	defaults	to	"application/octet-stream".	To
override	the	content-type,	you	add	the	content-type	header	as	described	later	in
this	section.

3.8.3	LOB/File	Properties
The	Response	variable	has	properties	to	set	the	following:

ContentType:	If	you	need	to	override	the	default	determined	from	the
file	extension	or	the	file	extension	is	unknown.	By	default	LANSA
uses	the	file	extension	to	determine	the	content	type.
Charset:	to	override	the	character	set	for	files	with	text	content.	By
default,	LANSA	determines	the	character	set	from	the	file's	CCSID
(IBM	i)	or	the	Byte	Order	Mark	(other	platforms).
AttachmentFileName:	To	ask	the	user	to	save	the	file	as	an
attachment	with	a	suggested	name.	If	not	defined,	a	content-
disposition	header	is	not	added.
Compression:	True/False.	Use	gzip	encoding	to	compress	the	file.
The	default	value	is	False.
RemoveFile:	True/False.	If	True,	the	file	is	removed	after	it	is	sent	to
the	user	agent.	The	default	value	is	False.

Note:	You	don't	need	to	remove	LOB	files	that	you	read	from	LANSA
files.	They	are	automatically	cleaned	up	for	you	by	the	LANSA
runtime	when	the	request	is	completed.

	
For	example:

3.8.4	Custom	HTTP	Headers
To	add	other	HTTP	headers,	use	the	AddHeader	method:

3.8.5	CLOBs	and	Files	with	Text	Content
CLOBs	and	files	that	have	text	content-type	are	sent	as	text	therefore	the	file
encoding	has	an	impact	in	how	LANSA	handles	the	file.
For	IBM	i,	LANSA	uses	the	file	CCSID	attribute	to	determine	the	character-set
of	the	content.	You	can	override	this	character-set	by	specifying	the	Charset
property.

Special	Case	for	UTF‑16	
The	IBM	i	HTTP	Server	doesn't	serve	text	content	in	UTF‑16.	Text
content	in	UTF‑16	is	transcoded	to	UTF‑8.	The	exceptions	are	XML
documents.	XML	documents	encoded	in	UTF‑16	are	sent	with
content-type	application/xml	(binary).

For	Windows	and	Linux,	the	only	encodings	that	are	detected	automatically	are
UTF‑16	and	UTF‑8	files.	LANSA	uses	the	Byte	Order	Mark	(BOM)	of	the	file
to	determine	the	encoding.	To	set	the	character-set	for	other	text	files,	specify
the	Charset	property	of	the	HTTP	response.

3.8.6	Compression
You	can	compress	the	file	by	setting	the	Compression	property	or	adding	the
HTTP	header	content-encoding:	gzip.

Note	that	compression	is	CPU	intensive	and	is	performed	each	time
the	file	is	sent	(that	is,	the	compressed	file	is	not	cached).	You	need	to
balance	the	CPU	utilization	with	the	reduced	size	achieved	with
compression.

3.9	WAM	External	Resources
The	RDMLX	Repository	object	External	Resource	provides	the	ability	to	store,
in	the	Repository,	all	externally	created	resources	associated	with	an	application.
These	could	include

Images
Cascading	Style	Sheets	(CSS)
JavaScript	files.

For	Web	development,	LANSA	uses	external	resources	to	ship:
Themelets
jQuery	and	jQuery	UI	Libraries
CSS	and	Javascript	files	associated	with	the	new	jQuery	Weblets.

Cross	References
External	Resources	used	by	WAMs	and	weblets	appear	in	the	cross-references.
This	makes	it	easier	to	include	dependent	objects	when	creating	deployment
packages.

Further	Information
Specifying	scripts	and	styles
Web	External	Resource	Locations
Order	of	External	Resource	Inclusion
Shipped	WAM	External	Resource

3.9.1	Specifying	scripts	and	styles
WAMs	and	weblets	can	nominate	which	JavaScript	and	CSS	stylesheets	they
require.	The	JavaScript	and	CSS	stylesheets	need	to	be	first	enrolled	in	Visual
LANSA.
Refer	to	the	Visual	LANSA	User	Guide	for	how	to	Register	Single	External
Resources	or	the	Developer	Guide	for	how	to	Register	Multiple	External
Resources	and	then	Using	External	Resources	with	WAMs	for	how	to	link	them
to	your	Weblets.
You	can	add	scripts	and	styles	external	resources	to	both	webroutines	and
weblets.	The	standard	practice	is	to	add	the	CSS	stylesheets	that	provide	the
theme	(See	Theming	WAMs)	to	your	site	layout	and	scripts	and	other	styles	to
your	webroutines	or	weblets	as	required.
The	WAM	runtime	consolidates	the	scripts	and	styles	so	that	they	are	only
added	once	to	the	output	page.	Refer	to	Order	of	External	Resource	Inclusion.
	3.9	WAM	External	Resources

its:lansa012.chm::/lansa/L4wUsr04_0405.htm
its:lansa013.chm::/lansa/L4wDev07_0350.htm
its:lansa012.chm::/lansa/l4wusr04_0420.htm
its:lansa087.CHM::/lansa/WAMEngb3_0070.htm

3.9.2	Web	External	Resource	Locations
The	location	attribute	determines	where	the	web	external	resource	goes	in	the
web	page.

Further	information
Locations
Resolution	of	different	locations

Locations
The	following	table	lists	the	locations	available	for	styles	and	scripts.

Type Location Description

Style header Inside	the	XHTML	<header>

body-top Immediately	after	the	XHTML	<body>	starts

Script header Inside	the	XHTML	<header>

body-top Immediately	after	the	XHTML	<body>	starts

body-bottom Just	before	the	XHTML	<body>	ends

async Script	is	loaded	asynchronously	after	the	DOM	is	ready

	

Choose	the	location	according	to	your	needs.	For	example,	place	scripts	that	are
not	needed	until	the	web	page	is	complete	either	at	the	end	of	the	page	or	load	it
asynchronously.

Resolution	of	different	locations
If	a	given	web	external	resource	has	different	locations	when	used	by	more	than
one	weblet	(or	between	the	location	provided	by	the	weblet	and	that	provided	by
the	webroutine)	the	'highest'	precedence	will	be	used,	according	to	this	table:

Precedence

header

body-top

body-bottom

async

	

In	the	case	of	scripts,	you	should	avoid	using	different	locations	as	it	might
produce	runtime	JavaScript	errors.

3.9.3	Order	of	External	Resource	Inclusion
The	order	in	which	scripts	and	styles	are	included	is	important.	External
resources	are	added	in	the	order	in	which	they	are	found.	If	a	webroutine	or
weblet	imports	weblets	that	themselves	have	external	resources,	they	are	added
at	the	point	in	which	the	weblet	import	is	encountered.	The	following	example
shows	the	order	of	inclusion:

The	external	resources	order	of	inclusion	is:
1.		ExtRes11
2.		ExtRes12
3.		ExtRes21	-	Note	that	the	import	of	External	Resource	11	isn't	repeated.
4.		ExtRes22
5.		ExtRes01
6.		ExtRes02
This	order	ensures	that	you	can	include	scripts	and	styles	in	the	correct	sequence
when	there	are	dependencies	between	the	files	(for	example,	JavaScript
functions	that	rely	on	existing	JavaScript	libraries	being	present).	For	further
details	about	the	sequencing	of	external	resources,	refer	to	Using	External

its:lansa012.chm::/lansa/l4wusr04_0420.htm

Resources	in	the	Visual	LANSA	User	Guide.
	3.9	WAM	External	Resources

3.9.4	Shipped	WAM	External	Resources
LANSA	ships	the	following	external	resources,	which	are	used	by	some	of	the
standard	weblets.

Name Type Description

XMC001 Style Mobiscroll	CSS

XMC01L Style jQuery	Mobile	Core	LANSA	Styles

XMCJQM Style jQuery	Mobile	Core	Structural	CSS

XMJ001 Script Mobiscroll	JavaScript

XMJ01L Script jQMobile	Core	LANSA	Library

XMJ02L Script jQuery	Mobile	File	Upload	Plugin	Extension

XMJJQM Script jQuery	Mobile	Core	JavaScript	Library

XMJQC Script jQuery	Core	JavaScript	for	jQMobile	TSP

XMT00J Style jQuery	Mobile	Default	Theme	Icons

XMT01J Style jQuery	Mobile	1.3.2	Compatible	Theme

XMT02J Style jQuery	Mobile	Default	Theme

XWC001 Style jQuery	Widgets	Extensions	CSS

XWC002 Style jQuery	TimePicker	Plugin	CSS

XWCFU01 Style jQuery	File	Upload	Plugin	CSS

XWJ001 Script jQuery	Widgets	Extensions

XWJ002 Script jQuery	Timepicker	Plugin

XWJ003 Script LANSA	JSON	JavaScript	Library

XWJ004 Script CKEditor	JavaScript	Library

XWJ004E Script CKEditor	Extensions

XWJ004J Script CKEditor	Plugin	for	jQuery

XWJ005 Script Google	Charts

XWJ007 Script jQuery	File	Upload	Plugin	Extension

XWJDCJS1 Script Douglascrockford/json-js

XWJFU01 Script jQuery	Iframe	Transport	Plugin

XWJFU02 Script jQuery	File	Upload	Plugin

XWJLLP01 Script Lazy	Loader	Plugin	for	jQuery

XWJMODZR Script Modernizr	JavaScript	Library

XWJQC Script jQuery	Core	JavaScript	Library

XWJQUI Script jQuery	UI	JavaScript	Library

XWT01J Style Redmond	–	jQuery	UI	Widgets

XWT01L Style Redmond	–	LANSA	Theme	Extensions

XWT01L101 Style Redmond	–	LANSA		Style	#	1	Themelet

XWT01L102 Style Redmond	–	LANSA		Style	#	2	Themelet

XWT02J Style Pepper	Grinder	–	jQuery	UI	Widgets

XWT02L Style Pepper	Grinder	–	LANSA	Theme	Extensions

XWT02L101 Style Pepper	Grinder	–	LANSA		Style	#	1	Themelet

XWT02L102 Style Pepper	Grinder	–	LANSA		Style	#	2	Themelet

XWT03J Style Cupertino	–	jQuery	UI	Widgets

XWT03L Style Cupertino	–	LANSA	Theme	Extensions

XWT03L101 Style Cupertino	–	LANSA		Style	#	1	Themelet

XWT03L102 Style Cupertino	–	LANSA		Style	#	2	Themelet

XWT04J Style Smoothness	–	jQuery	UI	Widgets

XWT04L Style Smoothness	–	LANSA	Theme	Extensions

XWT04L101 Style Smoothness	–	LANSA		Style	#	1	Themelet

XWT04L102 Style Smoothness	–	LANSA		Style	#	2	Themelet

XWT05J Style UI	Darkness	–	jQuery	UI	Widgets

XWT05L Style UI	Darkness	–	LANSA	Theme	Extensions

XWT05L101 Style UI	Darkness	–	LANSA		Style	#	1	Themelet

XWT05L102 Style UI	Darkness	–	LANSA		Style	#	2	Themelet

XWT06J Style UI	Lightness	–	jQuery	UI	Widgets

XWT06L Style UI	Lightness	–	LANSA	Theme	Extensions

XWT06L101 Style UI	Lightness	–	LANSA		Style	#	1	Themelet

XWT06L102 Style UI	Lightness	–	LANSA		Style	#	2	Themelet

XWT07J Style Blitzer	–	jQuery	UI	Widgets

XWT07L Style Blitzer	–	LANSA	Theme	Extensions

XWT07L101 Style Blitzer	–	LANSA		Style	#	1	Themelet

XWT07L102 Style Blitzer	–	LANSA		Style	#	2	Themelet

XWT08J Style South	Street	–	jQuery	UI	Widgets

XWT08L Style South	Street	–	LANSA	Theme	Extensions

XWT08L101 Style South	Street	–	LANSA		Style	#	1	Themelet

XWT08L102 Style South	Street	–	LANSA		Style	#	2	Themelet

	

	3.9	WAM	External	Resources

3.10	Using	jQuery
Libraries	shipped	with	LANSA
LANSA	ships	the	jQuery	Core,	jQuery	UI	and	jQuery	Mobile	libraries.	The
JavaScript	and	CSS	files	are	shipped	as	External	Resources	(See	list	of	Shipped
WAM	External	Resources).

Using	jQuery	in	your	own	weblets
These	libraries	are	used	by	some	of	the	standard	weblets	shipped	with	LANSA.
You	can	also	use	them	in	your	own	weblets	or	JavaScript.	You	need	to	include
the	appropriate	external	resources	either	in	your	weblet	or	your	layout	or
webroutine	(according	to	your	needs).

LANSA	may	upgrade	the	jQuery,	jQuery	UI	and	jQuery	Mobile
libraries	in	future	versions	of	LANSA.

Also	see
jQuery	Tools	and	Tips

3.10.1	jQuery	Tools	and	Tips
Working	with	other	JavaScript	libraries
jQuery	enabled	XHTML	layouts	have	the	jQueryNoConflic	property.	If	set	to
true,	jQuery.noConfict()	is	called	to	relinquish	the	$	name.	You	need	to	include
the	other	JavaScript	library	that	uses	the	$	name	before	you	include	jQuery
Core.

Escaping	LANSA	field	and	column	names	in	jQuery	ID	selectors
LANSA	field	names	may	have	'$'	in	their	names.	List	column	names	have	'.'	as
separators	in	their	qualified	names	(for	example,	LIST1.0001.EMPNO).	To	get
the	field	ID	that	you	can	use	in	a	jQuery	ID	selector,	you	can	use	the	LANSA
jQuery	global	extension	lansa.makeSafeId().
var	myvar	=	jQuery(jQuery.lansa.makeSafeId("LIST1.0001.EMPNO"));

This	is	equivalent	to:
var	myvar	=	jQuery("#LIST1\\.0001\\.EMPNO");

3.11	Theming	WAMs
Most	weblets	use	the	jQuery	UI	visual	design	theme,	which	makes	it	easier	for
you	to	customize	colors,	fonts	and	other	visual	design	elements	on	your	web
pages.	Themable	layouts	(themelets)	provide	a	matching	layout	for	your	WAMs.
LANSA	ships	the	following	jQuery	UI	themes:

Redmond
Pepper	Grinder
Cupertino
Smoothness
UI	Darkness
UI	Lightness
Blitzer
South	Street

Aside	from	the	shipped	standard	themelets	(two	different	styles)	you	can	create
your	own	themeable	layout	using	the	Web	Application	Layout	Manager	Wizard.
To	implement	a	theme,	add	the	jQuery	UI	stylesheet	and	either	the	base	LANSA
Theme	extensions	(for	example,	external	resource	XWT01L	for	the	Redmond
theme)	or	the	corresponding	LANSA	themelet	styles	(for	example,	external
resource	styles	XWT01J	and	XWT01L101	for	the	Redmond	theme)	to	your
WAM	layout.
Alternatively,	add	them	to	your	site	layout	so	that	all	your	WAMs	share	the
same	theme.

its:lansa087.CHM::/lansa/wamengm1_0120.HTM

3.12	Localization
Some	weblets	have	language	dependent	settings.	The	weblets	use	the	ISO
language	or	ISO	language-country	code	for	localizing	text	and	other	locale
preferences,	such	as	date	and	time	formats.	Weblets	taking	advantage	of	this
setting	have	'auto'	default	settings	for	localizable	properties.	Using	these	default
settings	is	the	easiest	way	of	localizing	your	WAMs.
Refer	to	ISO	language	code	in	the	Administrator's	Guide	for	information	about
localization.

WAMs	use	the	ISO	language	code	nominated	in	the	partition	language
definition,	not	the	user	agent's	language	code.

Supported	languages	may	vary	for	some	weblets	based	on	third	party
software.

Most	localizable	strings	are	stored	in	JSON	files	in	the	script/i18n	subdirectory
of	the	images	directory.

Also	see
Technology	Service	Providers
3rd	Party	Libraries

its:lansa011.chm::/lansa/l4wadm05_1010.htm

3.12.1	Technology	Service	Providers
Within	thei18n	directory,	each	Technology	Service	has	its	own	directory
containing	localizable	strings.
The	strings	for	each	language	are	stored	in	a	file	with	the	name:
std_messages-<lang-code>.json
where	<lang-code>	is	a	2	letter	ISO	language	code	followed	by	an	optional
country	code.	For	example	"de-AT"	represents	German	("de")	as	used	in	Austria
("AT").
All	strings	used	by	the	LANSA	framework	are	defined	in	std_messages-en.json
and	this	file	is	always	loaded	by	the	framework	first.	This	way,	if	no	translation
is	found	the	will	at	least	be	some	string	to	use.	Next,	the	framework	will	load
and	merge	the	language	file	for	the	current	language	followed	by	the	country
specific	file.	For	example,	if	the	partition	language	code	is	"de-AT"	the
framework	will	load	the	following	files	in	this	order:

std_messages-en.json
std_messages-de.json
std_messages-de-AT.json

This	means	that	when	defining	the	std_messages-de-AT	file,	you	don't	need	to
duplicate	and	maintain	every	string.	Instead,	you	only	need	to	define	the	strings
that	are	different	from	the	version	found	in	std_messages-de.json.

3.12.2	3rd	Party	Libraries
3rd	Party	libraries	may	use	different	mechanisms	to	handle	localizable	strings.
Refer	to	the	documentation	for	each	library	for	specific	details.	Wherever
possible,	3rd	party	localization	files	will	be	found	under	scripts/i18n	(e.g.
jQuery)	however,	if	specific	requirements	of	the	library	prevent	this,	the
localization	files	will	be	found	within	that	library's	home	directory	(e.g.	jQuery
UI	and	CKEditor).

3.13	JSON	Support
How	to	use	JSON	in	WAMs
WAMs	supports	Javascript	Object	Notation	(JSON)	in	two	ways:
Posting	JSON	data

					Refer	to	JSON	Convenience	Wrapper	for	details	on	how	to	post	fields	and
lists	using	JSON.
JSON	Response	Webroutines

					The	webroutine's	web	maps	(fields	and	lists)	is	sent	as	a	JSON	response	with
MIME	type	application/json	and	encoded	in	UTF‑8.	You	can	use	these
webroutines	to	send	responses	to	Ajax	requests.

Some	of	the	weblets	shipped	by	LANSA	use	JSON	response	webroutines	to
update	data	using	Ajax	requests.
To	make	it	easier	for	you	to	use	JSON	response	webroutines,	convenience
functions	are	shipped	in	JavaScript	file	std_json.js.	To	include	this	JavaScript
file	in	your	weblets	or	webroutines,	add	the	shipped	external	resources	XWJJQ
(jQuery	Core)	and	XWJ003	(LANSA	JSON	Library).
This	file	defines	JSON	convenience	wrapper	objects	that	let	you	access	a	JSON
response	webroutine	fields,	lists	and	context	information.	See	JSON
Convenience	Wrapper	for	details.

Also	see

JSON	Lists

JSON	Lists
You	can	output	a	list	in	JSON	format	using	the	*JSON	attribute	in	your
WEB_MAP	in	a	webroutine	that	produces	a	normal	page.

JSON	lists	WEB_MAPs	don't	appear	on	the	output	page.	You	use	them	via
JavaScript	using	the	JavaScript	object	Lstd.Json.List.

3.13.1	JSON	Convenience	Wrapper
LANSA	ships	a	JavaScript	library	that	provides	you	with	an	easy	way	to	get	to
the	fields	and	lists	returned	in	JSON	responses	or	to	post	data	in	JSON.	You	also
use	the	list	methods	to	get	to	JSON	lists	returned	in	a	web	page.	To	use	this
library,	add	external	resources	XWJDCJS1	(JavaScript	file	json2.js)	and
XWJ003	(JavaScript	file	std_json.js)	to	your	webroutine.

Also	see
Requesting	a	Webroutine
Getting	Fields
Processing	Lists
Getting	Messages
Context	Data
Building	a	JSON	Request
Adding	Fields	to	the	JSON	Request
Adding	a	List	to	the	JSON	Request
Defining	JSON	Request	List	Headers
Adding	Entries	to	the	JSON	Request	List
Posting	the	Json	Request

Requesting	a	Webroutine
The	Lstd.Json.getWebroutine(options)	method	provides	a	way	for	your
JavaScript	code	to	call	a	Webroutine.	Any	webrouting	can	be	called	with	this
method	but	only	a	JSON	Response	Webroutine	can	return	data	to	it.	The	single
options	parameter	is	a	JavaScript	object	containing	zero	or	more	of	the
following	properties:

Wam The	WAM	being	called.	If	not	present,	the	current	WAM	is	used.

webroutine The	Webroutine	being	called.	If	not	present,	the	current
webroutine	is	used.

Fields A	JavaScript	object	containing	the	input	values	to	send	to	the
Webroutine.	For	example:
{
GIVENAME:	"William",
SURNAME:	"Shakespeare"
}

Lists A	JavaScript	object	containing	lists	to	send	to	the	Webroutine.
Each	list	is	an	array	or	rows	and	each	row	is	an	object	containing
column	values.	For	example:
{
LIST01:	[
{DEPTMENT:	"ADM",	DEPTDESC:	"Administration"},
{DEPTMENT:	"FIN",	DEPTDESC:	"Finance"}
]
}

callback A	JavaScript	function	that	will	be	called	when	the	Ajax	request	is
completed.	This	function	is	only	called	on	successful	completion
of	a	call	to	a	JSON	Response	Webroutine.	It	will	be	passed	a
single	parameter	containing	a	Webroutine	object	that	represents
the	Webroutine	output.

	

	
Putting	it	all	together,	you	get	something	like	this:

	
/*
*	Get	webroutine	(Ajax	request)
*	Webroutine	(wr)	is	passed	to	the	callback	wrapped	in	an	Lstd.Json.Wr	object
*/
var	options	=	{
wam:	"SampleWam",
webroutine:	"Sample1",
fields:	{
GIVENAME:	"John",
SURNAME:	"Smith"
},
lists:	{
LIST01:	[
{DEPTMENT:	"ADM",	DEPTDESC:	"Administration"},
{DEPTMENT:	"FIN",	DEPTDESC:	"Finance"}
]
},
callback:	function(wr)	{
//	Code	to	handle	the	Ajax	response	goes	here
}
};
	
Lstd.Json.getWebroutine(options);

	
The	Webroutine	object	passed	to	the	callback	function	contains	a	number	of
methods	for	getting	the	fields	and	lists	returned	from	the	server.

Getting	Fields
Captions	are	only	available	if	your	webroutine	has	Options(*METADATA)
	
//	Get	field
var	empno	=	wr.field("EMPNO");
var	empnoLabel	=	empno.label();
var	empnoDesc	=	empno.description();
var	empnoHeadings	=	empno.headings();
var	empnoValue	=	empno.value();

	

Processing	Lists
Captions	are	only	available	if	your	webroutine	has	Options(*METADATA)
//	Get	list
var	list01	=	wr.list("LIST01");
	
//	Get	list	header	details
var	list01Hdr	=	list01.headers();
	
var	deptHdr	=	list01Hdr.col("DEPTMENT");
var	deptHeadings	=	deptHdr.headings();
	
//	Get	list	entries
var	list01Entries	=	list01.entries();
var	rowCount	=	list01Entries.rowCount();
	
list01Entries.each(function(entry)	{
var	rowNumber	=	entry.row();
var	deptValue	=	entry.col("DEPTMENT");
});

Getting	Messages
//	Webroutine	messages
var	msgs	=	wr.messages();
var	msgsCount	=	msgs.count();
	
//	Process	each	message
msgs.each(function(m)	{
alert("Message:	"	+	m);
});

Context	Data
WAM	and	webroutine	context	information	is	also	available.
var	ar	=	[
"action-request",
"images-path",
"language",
"partition",
"service-name",
"session-key",
"session-key-name",
"session-key-method",
"technology-service",
"user-id",
"webapplication",
"webapplication-title",
"webroutine",
"webroutine-title"];
	
//	List	context	items
for	(x	in	ar)	alert(ar[x]	+	":	"	+	wr.context(ar[x]));

	

Building	a	JSON	Request
Start	by	creating	a	WebRoutine	request	object:
var	wr	=	Lstd.Json.factory();

	

Adding	Fields	to	the	JSON	Request
Add/change	field	values.	If	a	field	is	already	defined,	its	value	is	replaced.
wr.field("EMPNO",	"AA010");
wr.field("GIVENAME",	"John");
wr.field("SURNAME",	"Smith");
wr.field("SALARY",	1000);

	

Adding	a	List	to	the	JSON	Request
Get	a	JSON	list	object	by	adding	a	list	to	the	WebRoutine	request	object.
var	list1	=	wr.addList("LIST01");

	

Defining	JSON	Request	List	Headers
Define	the	list	headers	by	setting	the	column	names.
list1.headers(["DEPTMENT",	"DEPTDESC"]);

Adding	Entries	to	the	JSON	Request	List
Add	entries	to	the	list.	The	column	count	must	match	the	number	of	column
names	set	with	the	headers()	method.
var	entries	=	list1.entries();
entries.add(["ADM",	"Administration"]);
entries.add(["MKT",	"Marketing"]);

	

Posting	the	JSON	Request
Post	the	request.	If	you	don't	provide	a	WAM	name,	it	defaults	to	the	current
WAM.
In	this	example	"wrb"	is	the	WebRoutine	JSON	object	returned	by	Webroutine
"MyResponse".
wr.post({wam:	"MyWam",	webroutine:	"MyResponse",	callback:
function(wrb)	{
//	Handle	the	response	here
}});

3.14	Saving	a	WAM's	Output	to	a	File
In	addition	to	running	a	WAM	from	a	web	browser,	you	can	also	run	a	WAM
from		the	X_RUN	command	line	to	save	the	output	to	a	stream	file.
The	syntax	for	the	X_RUN	command	line	for	a	Windows	platform	is:

Where:	
the	ending	'\'	for	each	line	is	added	as	a	line	continuation	indicator	to	make	the
command	line	easier	to	read	in	this	documentation.	The	above	is	meant	to	be	a
single	command	line	to	be	submitted	inside	a	command	prompt.
Note:	For	IBM	i	and	Linux,	the	actual	command	line	required	is	slightly
different	but	the	X_RUN	arguments	required	are	much	the	same.
The	following	X_RUN	arguments	are	essential	to	run	a	WAM	and	save	the
output	to	a	stream	file:

Argument Value

PROC "*WAMSP"	is	the	special	fixed	value	to	activate	this	function.

WMOD WAM	name	to	be	executed.

WRTN WebRoutine	name	in	the	WAM	to	be	executed.

WAML Markup	language	to	run	the	WAM	in	the	WMOD	argument.
Optional.	The	default	is	LANSA:XHTML.

PART Partition	where	the	WAM	in	the	WMOD	argument,	belongs.

LANG Language	for	running	the	WAM	in	the	WMOD	argument,.

USER User	for	running	the	WAM	in	the	WMOD	argument.	Optional
for	some	platforms.

WASP Output	file	path	where	the	WAM	output	will	be	saved.	The	path
required	follows	the	syntax	of	the	platform	where	the	WAM	is

executed.
For	example,	for	Windows,	you	would	enter:
C:\Temp\wam_output.html	(with	backward	slash	characters).
For	IBM	i,	it	is	the	IFS	format	and	with	Linux,	uses	forward	slash
characters.

	

Additional	X_RUN	arguments	can	be	added.	For	example,	ITRO,	ITRM	and
ITRL	can	be	used	to	enable	tracing.	Refer	to	the	X_RUN	Parameter	Summary
in	the	Visual	LANSA	Technical	Reference	for	more	information.
For	example:

Where,	for	Windows:
the	above	command	line	executes	WebRoutine	myrtn	of	WAM	mywam	in
partition	DEM	using	the	markup	language	LANSA:XHTML	and	saves	the
output	html	into		the	stream	file	C:\Temp\myrtn.html.
For	Linux,	the	equivalent	command	line	would	be:

Note	that	the	x_run	command	is	in	lower	case	and	the	output	file	path	is	in	the
UNIX	format.
For	IBM	i,	the	equivalent	command	line	would	be:

There	are	a	few	limitations	when	running	a	WAM	in	this	manner:
As	there	is	no	interaction	with	a	web	browser,	no	posted	data	can	be	passed
to	the	WAM.	Similarly,	any	HTTP	request-related	information,	such	as
HTTP	cookies,	are	not	available.	What	this	means	is	that	any	WEB_MAP
for	input	fields	or	lists	for	the	WebRoutine	will	not	be	updated	with	values,
so	fields	would	retain	their	default	values	and	any	lists	would	be	empty.
For	IBM	i,	the	output	stream	file	will	be	created	using	the	code	page	for	the
user	profile	used	to	submit	the	X_RUN	command.
A	WAM	that	creates	an	Active	session	will	still	create	a	WAM	session	but

its:Lansa015.CHM::/lansa/depb3_0005.htm

that	session	would	not	be	available	for	use	by	any	subsequent	WAM.
A	WAM	that	requires	an	Active	session	will	get	the	Invalid	Session	event
fired.	For	this	and	the	reason	above,	WAM	session	management	should	be
avoided	for	WAMs	to	be	run	in	this	manner.

	

3.15	Document	Type	Declaration	(DOCTYPE)
This	topic	covers	the	use	of	the	DOCTYPE	declaration	for	directing	a	layout
mode	(what	is	called	browser	DOCTYPE	"sniffing"	or	switching),	not	for	DTD
validation.
To	add	a	DOCTYPE	declaration	to	a	WAM,	use	the	xsl:output	element.	For
example:
<xsl:output	method="xml"	omit-xml-declaration="yes"	encoding="UTF-8"
						indent="no"	doctype-public="-//W3C//DTD	XHTML	1.0	Strict//EN"
						doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
/>
	

To	avoid	conflict	between	the	different	weblets	and	the	main	webroutine	XSL,
we	recommend	you	define	your	DOCTYPE	declaration	in	your	layout	weblet
only.
The	LANSA	shipped	themelets	use	the	strict	DOCTYPE	to	trigger	standards
mode.	The	older	layout	weblets	don't	use	any	DOCTYPE.
HTML5	uses	the	simplified	DTD-less	<!DOCTYPE	html>	to	trigger	standards
mode	in	browsers.	XSL	doesn't	support	this	DOCTYPE	declaration.
As	some	devices	might	look	for	the	simplified	DOCTYPE	to	detect	if	the
document	is	HTML5,	the	WAM	runtime	outputs	the	simplified	HTML5
DOCTYPE	if	the	xsl:output	uses	the	XSL-friendly	legacy-compat	DOCTYPE:
<xsl:output	method="xml"	omit-xml-declaration="yes"	encoding="UTF-8"
						indent="no"	doctype-system="about:legacy-compat"	/>
	

	

4.	Advanced	Topics
4.1	TRANSFER	Statements	in	WEBROUTINEs
4.2	CALL	Statements	in	WEBROUTINEs
4.3	WAM	Session	Management

4.1	TRANSFER	Statements	in	WEBROUTINEs
In	its	simplest	form,	each	WEBROUTINE	in	a	WAM	is	associated	with	one
XSL	stylesheet,	which	defines	the	presentation	layer,	also	known	as	the	Web
Design.	Once	a	WEBROUTINE	is	invoked,	only	that	WEBROUTINE's	page
will	be	returned.	Sometimes,	however,	it	is	necessary	to	"redirect"	execution	to
a	different	page	from	RDMLX.	For	example,	a	WEBROUTINE	might	be
requested	but	the	session	has	expired.	In	this	case,	it	may	be	necessary	to
display	an	error	page	or	a	different	page	to	the	one	requested.
Another	example	is	a	Logon	page	with	a	single	logon	button	to	invoke	a	Logon
WEBROUTINE.	This	WEBROUTINE	authenticates	the	user	and	depending	on
whether	the	user	is	a	registered	user	or	a	guest,	it	would	"redirect"	to	the
appropriate	WEBROUTINE	and	present	the	appropriate	page.	There	are	many
other	examples	where	it	may	be	necessary	to	"redirect"	from	one
WEBROUTINE	to	another.
This	"redirection"	can	be	accomplished	with	the	use	of	a	TRANSFER
statement.	The	fields	are	mapped	to	the	target	WEBROUTINE	according	to	that
WEBROUTINE's	WEB_MAP	statements.	Only	fields	and	lists	specified	on	the
incoming	WEB_MAPs	are	passed	to	the	target	WEBROUTINE.
The	TRANSFER	statement	has	the	following	properties:

Property Description

TOROUTINE Specify	the	name	of	a	WEBROUTINE	to	transfer	to.	You	can
specify	another	WAM,	in	this	case	the	WAM	name	followed
by	a	WEBROUTINE	name	separated	by	a	dot
(e.g.	#MYWAM.Browse).
A	Service	Name	can	also	be	specified,	if	prefixed	with	the
*SERVICE	modifier.
The	value	can	also	be	provided	from	a	field,	if	prefixed	with
the	*EVALUATE	modifier.

OnEntry This	property	is	used	for	mapping	incoming	fields	and	lists
into	the	target	WEBROUTINE.	This	property	can	be	one	of:
*MAP_NONE	(does	not	map	any	fields	or	lists),
*MAP_ALL	(maps	all	required	fields	and	lists),
*MAP_LOCAL	(only	fields	and	lists	on	WEBROUTINE's
WEB_MAPs	are	mapped),

*MAP_SHARED	(only	WAM	level	WEB_MAP	fields	and
lists	are	mapped,	not	WEBROUTINE	level).
The	default	value	is	*MAP_ALL.

	

When	a	TRANSFER	is	performed,	the	target	WEBROUTINE	assumes	control
of	execution	and	the	source	WEBROUTINE	does	not	regain	control.	When	the
target	WEBROUTINE	is	exited,	that	WEBROUTINE's	page	is	returned,	as	if
the	WEBROUTINE	was	invoked	directly	from	the	browser.
The	following	are	some	examples	of	TRANSFER	statement:
TRANSFER	TOROUTINE(Browser)
TRANSFER	TOROUTINE(#MYWAM.Browser)
TRANSFER	TOROUTINE(*SERVICE	EmployeeBrowse)
change	#WEBRTN	'wam1.routine1'
TRANSFER	TOROUTINE(*EVALUATE	#WEBRTN)
	

4.2	CALL	Statements	in	WEBROUTINEs
You	may	also	use	a	CALL	statement	to	redirect	execution	to	another
WEBROUTINE.	The	CALL	statement	has	similar	semantics	to	the	TRANSFER
statement,	except	the	called	WEBROUTINE	returns	control	back	to	the	calling
WEBROUTINE	and	execution	continues	from	that	point	onwards.
The	CALL	statement	has	the	following	properties:

Property Description

WEBROUTINE Specify	the	name	of	a	WEBROUTINE	to	transfer	to.	You
can	specify	another	WAM,	in	this	case	WAM	name
followed	by	a	WEBROUTINE	name	separated	by	a	dot
(e.g.	#MYWAM.Browse).
A	Service	Name	can	also	be	specified,	if	prefixed	with
*SERVICE	modifier.
The	value	can	also	be	provided	from	a	field,	if	prefixed	with
*EVALUATE	modifier.

OnEntry This	property	is	used	for	mapping	incoming	fields	and	list
into	the	target	WEBROUTINE.	This	property	can	be	one	of:
*MAP_NONE	(does	not	map	any	fields	or	lists),
*MAP_ALL	(maps	all	required	fields	and	lists),
*MAP_LOCAL	(only	fields	and	lists	on	WEBROUTINE's
WEB_MAPs	are	mapped),
*MAP_SHARED	(only	WAM	level	WEB_MAP	fields	and
lists	are	mapped,	not	WEBROUTINE	level).
The	default	value	is	*MAP_ALL.

OnExit This	property	used	for	mapping	outgoing	fields	from	the
target	WEBROUTINE.	This	property	can	be	one	of:
*MAP_NONE	(does	not	map	any	fields	or	lists),
*MAP_ALL	(maps	all	required	fields	and	lists),
*MAP_LOCAL	(only	fields	and	lists	on	WEBROUTINE's
WEB_MAPs	are	mapped),
*MAP_SHARED	(only	WAM	level	WEB_MAP	fields	and
lists	are	mapped,	not	WEBROUTINE	level).

The	default	value	is	*MAP_ALL.

	

The	following	are	some	examples	of	CALL	statement:
CALL	WEBROUTINE(Browser)
CALL	WEBROUTINE(#MYWAM.Browser)
CALL	WEBROUTINE(*SERVICE	EmployeeBrowse)
CALL	WEBROUTINE(*EVALUATE	#WEBRTN)

4.3	WAM	Session	Management
A	user	Web	interaction	with	a	server	involves	many	requests	from	the	same
user/client	to	the	server.	Each	request	from	a	server's	perspective	is	a	unique
request.	The	HTTP	protocol	is	stateless	and	does	not	provide	an	implicit
mechanism	for	maintaining	a	continuous	session	across	multiple	Web	requests
for	the	same	user/client.	Refer	to	Being	Stateless	for	further	information.
To	overcome	these	challenges,	most	transactional	web-based	applications
provide	their	own	mechanism	for	session	management.	A	WAM	uses	a
declarative,	implicit,	secure	session	management	mechanism.	Session
management	has	been	designed	to	be	as	transparent	as	possible	to	the	rest	of	the
application.
Web	session	data	or	state	is	stored	in	a	database	on	the	server	and	is	identified
with	a	unique	session	key	that	is	passed	between	the	server	and	browser.	Since
the	browser	does	not	have	a	mechanism	to	explicitly	terminate	a	session,	a
timeout	mechanism	is	provided	which	expires	a	session	once	there	are	no	more
requests	from	the	same	user	within	a	specified	time	period.
For	more	details,	review	the	following:
4.3.1	Session	Management	Configuration
4.3.2	Session	Key	Method
4.3.3	The	WEB_MAP	*PERSIST	Keyword
4.3.4	Session	State	Maintenance
4.3.5	The	Mechanics	of	Session	Management
4.3.6	WAM	Session	Properties
4.3.7	WAM	Session	Example
4.3.8	Session	States
A	WAM	application	has	the	facility	to	store	session	state	on	the	server	in	a
server	independent	way.	To	declare	session	state,	it	is	necessary	to	set
OPTIONS	attribute	of	fields	or	lists	to	*PERSIST.	Using	*PERSIST	ensures
that	whatever	changes	are	made	to	those	fields	and	lists,	they	are	always
accessible	on	the	server	once	a	WEBROUTINE	is	executed	in	the	context	of
that	session.	Storing	the	actual	session	state	in	a	database	enables	a	multi-stream
execution	environment.	Consequently,	it	is	possible	to	setup	and	configure
multiple	application	servers,	on	separate	boxes,	for	greater	scalability.
Individual	WEBROUTINE	requests	could	be	shared	amongst	all	available
servers.	When	a	request	is	made,	the	session	state	(i.e.	all	the	fields	and	lists

its:LANSA087.CHM::/lansa/wamengm1_0060.htm

marked	OPTIONS(*PERSIST))	is	reloaded	from	a	single	database	into	server
memory	before	WEBROUTINE	RDMLX	is	executed.	The	session	state	is
unloaded	when	the	WEBROUTINE	exits.

4.3.1	Session	Management	Configuration
Session	configuration	is	done	by	directly	specifying	values	for	WAM	properties.
There	are	properties	for	configuring	how	the	session	key	is	stored	in	the	browser
and	for	setting	the	inactivity	timeout	period	of	the	session.	(You	will	find	details
in	4.3.6	WAM	Session	Properties.)
By	default,	each	WAM	maintains	its	own	session	state	independent	of	other
WAMs;	however,	you	can	chain	multiple	WAM	sessions	as	a	single	session.
Chaining	is	useful	in	situations	where	multiple	WAMs	comprise	a	single	Web
application.
WAMs	allow	you	to	specify	the	behavior	on	session	expiry	or	when	a	session	is
invalid.	You	can	provide	an	event	handler	for	the	event	that	is	signaled	when	a
session	is	invalid	or	expired.	The	code	in	the	event	handler	might	show	a
custom	error	page,	or	re-direct	to	a	logon	page,	or	provide	some	other
functionality.

4.3.2	Session	Key	Method
To	identify	a	session	with	the	client,	a	unique	session	key	is	allocated	to	the
session	when	the	session	is	created.	This	session	key	is	returned	back	to	the
browser.
To	identify	that	a	request	belongs	to	a	particular	session,	the	browser	must	pass
the	session	key	back	to	the	server	with	each	request.	The	passing	of	the	session
key	is	done	transparently	to	the	rest	of	the	application.
A	WAM	supports	three	ways	of	maintaining	the	session	key	in	the	browser:
1.		It	can	be	stored	in	a	hidden	field	that	is	returned	for	every	page.
2.		It	can	be	passed	back	in	a	URL.
3.		It	can	be	stored	in	a	cookie	maintained	in	the	browser	memory.	You	have	a
choice	of	standard	cookie	or	secure	cookie.	If	you	choose	secure	cookies	the
session	key	will	only	be	passed	via	an	SSL	(HTTPS)	connection	to	prevent
any	chance	of	eavesdropping	on	session	key.	This	implies	that	an	application
using	secure	cookie	mechanism	must	be	served	to	the	browser	via	an	HTTPS
protocol.

The	third	method,	secure	cookies,	is	considered	the	most	secure	because	they
are	the	most	difficult	to	steal	either	visually	or	programmatically.

The	hidden	field	Session	Key	Method	doesn't	work	in	jQuery	Mobile
because	of	the	way	pages	are	loaded	without	doing	a	full	page	refresh.
Use	either	the	URL	or	cookie	methods	instead.

4.3.3	The	WEB_MAP	*PERSIST	Keyword
The	*PERSIST	option	can	be	used	inside	OPTIONS	property	of	a	WEB_MAP.
WAMs	are	designed	to	execute	in	a	server-side	Web-based	environment.	In
order	to	achieve	maximum	scalability	and	minimize	resource	utilization,	a
WAM	Component	is	stateless.	Any	WAM	memory	state	is	maintained	only
while	a	WEBROUTINE	is	being	executed.	At	the	completion	of
WEBROUTINE	execution,	any	memory	state	(such	as	field	and	list	values)	are
destroyed.	(For	more	information,	refer	to	4.3	WAM	Session	Management.
It	is	possible	to	declare	fields	and	lists	to	retain	or	persist	data	that	is	to	be
available	across	WEBROUTINE	executions	for	the	duration	of	a	Web	session.
Persistence	is	achieved	by	declaring	an	OPTIONS(*PERSIST)	on	a	WEB_MAP
for	fields	or	lists.	In	addition	to	declaring	an	OPTIONS(*PERSIST)	the
WEBROUTINE	needs	to	have	an	initial	SessionStatus	set	to	Active.	This	is
done	by,	either	setting	it	for	the	WAM	or	by	setting
OnEntry(*SessionStatus_Active)	keyword	for	individual	WEBROUTINE.	By
setting	SessionStatus	to	Active,	in	this	way,	ensures	that	the	WEBROUTINE
will	load	the	session	state	before	it	starts	execution.
You	can	use	the	following	syntax	to	declare	session	data,	which	is	not	mapped
in	or	out	of	WEBROUTINEs:
WEB_MAP	FOR(*NONE)	FIELDS	field	and/or	list	names	with	a	#	prefix	OPTIONS(*PERSIST)
	

When	a	FOR(*NONE)	declaration	is	used,	the	declared	fields	and	lists	will	not
be	mapped	in	or	out	of	WEBROUTINEs,	but	their	values	will	be	available	in
WEBROUTINE	RDMLX	across	WEBROUTINE	executions.	If	the	above
WEB_MAP	is	declared	at	WAM	level,	(i.e.	after	BEGIN_COM	but	outside	of
any	WEBROUTINE	block),	then	every	WEBROUTINE,	that	requires	a	session
(i.e.	its	initial	SessionStatus	is	not	None),	will	have	access	to	these	fields	and
lists	as	they	form	session	state.

4.3.4	Session	State	Maintenance
One	of	the	biggest	advantages	of	WAM	session	management	is	the	ability	to
maintain	state	or	data	for	a	particular	session	without	using	server	memory
(which	is	a	limited	resource).	WAMs	provide	a	declarative	mechanism
(described	in	4.3.3	The	WEB_MAP	*PERSIST	Keyword)	to	identify	fields	and
lists	that	must	be	maintained	for	the	session	beyond	the	scope	of	a	single
request.	Fields	and	lists	declared	as	session	data	are	maintained	in	a	database
and	are	then	moved	in	and	out	of	server	memory	for	each	request	from	a
session.	This	mechanism	allows	distinct	application	servers	(in	a	multiple	server
configuration)	to	service	individual	requests	even	from	the	same	session,	as
long	as	a	single	database	is	used	for	session	state	storage.
The	time	between	two	requests	from	a	session	must	be	within	an	inactivity
timeout	period.	Each	request	resets	the	inactivity	timeout.	If	a	request	occurs
outside	of	the	timeout	period	for	a	session,	the	session	is	deemed	expired	and
appropriate	action	must	be	taken	at	the	application	level	to	handle	this	situation.	
For	example,	an	RDMLX	event	handler	must	be	written	to	deal	with	an	invalid
session	key.	(If	an	event	handler	is	not	provided,	a	generic	error	page	is
returned.)
When	a	session	has	expired,	it	is	not	immediately	removed	from	the	database.	It
is	just	flagged	as	expired.	A	separate	clean	up	process	is	run	to	perform	expired
session	clean	up.	This	process	can	be	configured	as	a	background	process	that
can	be	executed	from	the	database	at	off-peak	times.	Refer	to	WAM	Session
Clean	Up	in	the	Web	Administration	Guide	for	information	about	clearing	the
database.

its:LANSA085.CHM::/lansa/lwbengh1_0030.htm

4.3.5	The	Mechanics	of	Session	Management
There	is	a	pre-set	configurable	pool	of	Web	jobs	for	processing	WEBROUTINE
requests.	A	Web	job	currently	processing	a	request	will	load	the	necessary	state
and	reset	the	internal	state,	and	then	make	itself	available	for	the	next	request
which	may	come	from	a	different	Web	session	altogether.	The	load	is	shared	by
Web	jobs	at	the	individual	request	level	and	not	the	session	level.	As	a	result,	it
is	possible	to	have	a	much	larger	number	of	active	browser	sessions	than	Web
jobs	running.
The	stateless	nature	of	WAM	execution	environment	has	an	important
implication.	A	WAM	Component's	state	only	exists	for	the	duration	of
WEBROUTINE	execution.	Unless	fields	and	lists	are	declared	as	*PERSIST,
their	values	are	destroyed	and	not	available	for	the	next	request	after
WEBROUTINE	exit.	Consequently,	any	other	RDMLX	Components
instantiated	during	WEBROUTINE	execution	will	be	destroyed	upon
WEBROUTINE	termination.	However,	any	*PERSIST	fields	and	lists,	live
beyond	the	lifetime	of	a	request	and	are	still	available.	They	can	span	multiple
WEBROUTINE	requests	until	session	termination.

Session	Management	Summary
Following	is	a	summary	of	important	features	of	the	WAM	execution
environment:

A	WAM	Component	is	a	type	of	RDMLX	Component.	It	can	instantiate	and
invoke	other	non-visual	RDMLX	Components.
Each	WEBROUTINE	in	a	WAM	can	be	invoked	from	the	browser.	It	can
also	be	exposed	via	a	Service	Name	mechanism.
A	WAM	supports	the	concept	of	a	Web	session.	The	session	key	to	identify
the	Web	session	is	stored	in	the	browser.
When	a	WEBROUTINE	request	is	made	from	a	browser	(or	other	type	of
client	device),	a	WAM	Component	is	created,	its	requested	WEBROUTINE
is	executed,	and	the	WAM	Component	is	destroyed.	This	process	reduces	the
server	resource	usage	and	ensures	maximum	scalability.
Since	WAM	execution	maintains	state	on	a	per-request	basis,	a	configurable
pre-defined	number	of	Web	jobs	can	service	many	Web	sessions	and	the
requests	can	be	shared	amongst	multiple	application	server	machines.
Any	data,	(i.e.	fields,	lists,	other	Component	state),	is	destroyed	upon
WEBROUTINE	termination	and	is	not	available	on	subsequent	request.

Any	field	or	list	marked	with	OPTIONS(*PERSIST)	to	declare	it	as	session
state	are	not	destroyed	but	stored	in	a	database	on	the	server.	It	is	possible	to
change	this	data	in	one	WEBROUTINE	request	and	have	it	available	for
subsequent	WEBROUTINE	requests.
If	no	requests	have	been	made	for	a	session	within	a	specified	timeout
period,	the	session	is	deemed	expired.	Any	further	requests	from	the	same
session	will	result	in	a	SessionInvalid	event	being	triggered.	An	event
handler	for	this	event	can	be	used	to	handle	session

4.3.6	WAM	Session	Properties
Session	configuration	is	done	by	directly	specifying	values	for	WAM	properties.
There	are	properties	for	configuring	how	the	session	key	is	stored	in	the
browser,	for	setting	the	inactivity	timeout	period	of	the	session	and	so	on.	By
default,	each	WAM	maintains	its	own	session	state	independent	of	other	WAMs.
The	following	table	describes	session	management	related	WAM	properties:

Property Value Description

SessionKeyMethod URL,	Cookie,
SecureCookie,
or
HiddenField

This	is	the	method	of	storing	a
session	identifier,	known	as	a
session	key,	in	the	browser.	The
secure	cookie	method	is	considered
the	most	secure.	This	property	is
not	available	at	runtime.

SessionStatus Active,
Invalid,
Expired,	or
None

At	runtime,	this	property	can	be
queried	to	determine	the	status	of
the	Web	session.	You	can	also
control	creation	and	deletion	of	a
session	by	setting	this	property	to
Active	or	Invalid,	respectively.	At
design	time,	this	property	can	be	set
on	a	WAM	wide	basis,	which
applies	to	every	WEBROUTINE,	or
for	an	individual	WEBROUTINE
by	using	OnEntry	keyword.	Setting
a	value	of	Active	at	design	time,
ensures	that	a	session	is	validated
before	executing	a	WEBROUTINE.
A	value	of	None	allows	a
WEBROUTINE	to	be	executed,
even	when	a	session	is	invalid	or
expired.	SessionStatus	can	then	be
set	to	Active	inside	this
WEBROUTINE	to	create	a	new
session	and	return	the	session	key	to
the	browser.	This	property	is

available	both	at	design	time	and
runtime.

SessionTimeout A	numeric
value	in
seconds.	If	set
to	0,	a	system
wide	default
is	used.	If	set
to	–1	an
infinite
timeout	is
used	(i.e.
there	is	no
timeout).

A	timeout	value	determines	a	period
of	time	after	which	a	session	is
deemed	expired	if	no	request	has
been	received.	Any	subsequent
requests	for	WEBROUTINEs
requiring	a	session	(SessionStatus
set	to	Active),	will	not	execute	the
WEBROUTINE,	but	will	trigger	a
SessionInvalid	event.	The	timeout
applies	to	all	WEBROUTINEs	in
the	WAM.
The	session	state	may	still	be	in	the
session	store,	since	you	can
schedule	a	clean	up	done	later.
This	property	is	not	available	at
runtime.

SessionGroupName Any
alphanumeric
value

Every	WAM	maintains	its	own
session	state	and	is	separate	to	other
WAMs.	If	more	than	one	WAM
participates	in	a	Web	application,	it
is	possible	to	have	all	required
WAMs	reference	the	same	session
state	by	assigning	the	same
identifier	in	this	property	for	all
participating	WAMs.	This	property
is	not	available	at	runtime.

	

All	WEBROUTINEs	in	a	WAM	are	assigned	an	initial	SessionStatus	value	from
a	WAM-defined	SessionStatus	property.	However,	SessionStatus	can	be
overridden	by	using	an	OnEntry	keyword	for	a	WEBROUTINE	with	the
following	values:

Value Description

*SessionStatus_Active An	active	session	is	assumed	for	the
WEBROUTINE	to	be	entered	for	execution.

*SessionStatus_None No	session	is	required	for	the	WEBROUTINE
to	be	entered	for	execution.

*SessionStatus_Of_WAM This	is	the	default	if	the	OnEntry	keyword	is
unspecified.	Assumes	the	value	of	the	WAM's
SessionStatus	property.

	

4.3.7	WAM	Session	Example
It	is	important	to	understand	the	SessionStatus	property	for	managing	your
WAM	sessions.
The	following	is	an	example	of	a	typical	WAM	which	a	manages	a	session:
FUNCTION	OPTIONS(*DIRECT)
BEGIN_COM	ROLE(*EXTENDS	#PRIM_WAM)	SESSIONSTATUS(Active)	SESSIONTIMEOUT(300)
	
*The	following	line	declares	Session	state	#CUSTNAME	field
WEB_MAP	FOR(*NONE)	FIELDS(#CUSTNAME)	OPTIONS(*PERSIST)
	
WEBROUTINE	NAME(Start)	DESC('Initial	Page')	OnEntry(*SessionStatus_None)
WEB_MAP	FOR(*OUTPUT)	FIELDS(#USERID	#PASSWORD)
ENDROUTINE
	
WEBROUTINE	NAME(Logon)	DESC('Logon	Page')	OnEntry(*SessionStatus_None)
WEB_MAP	FOR(*INPUT)	FIELDS(#USERID	#PASSWORD)
…
*	Some	authentication	logic,	if	authentication	fails	can	TRANSFER	back	to	Start	page
	
*	The	following	line	will	create	a	session,	when	WEBROUTINE	exits
#COM_SELF.SessionStatus	:=	Active
	
TRANSFER	TOROUTINE(WelcomePage)
ENDROUTINE
	
WEBROUTINE	NAME(WelcomePage)	DESC('Welcome	Page')
ENDROUTINE
	
WEBROUTINE	NAME(Logoff)	DESC('Logoff	page')
#COM_SELF.SessionStatus	:=	Invalid
ENDROUTINE
	
*	The	following	event	handler	will	handle	invalid	sessions	and
*	TRANSFER	back	to	starting	page,	for	logon
EVTROUTINE	HANDLING(#COM_OWNER.SessionInvalid)	OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
TRANSFER	TOROUTINE(Start)
ENDROUTINE

	
END_COM
SessionStatus	is	set	to	Active.	By	default	,WEBROUTINEs	in	this	WAM
require	a	session	to	be	valid	before	they	are	executed.	SessionTimeout	is	5
minutes.
Two	WEBROUTINEs,	Start	and	Logon,	override	SessionStatus	to	None,	by
using	OnEntry(*SessionStatus_None)	keyword.	The	Start	WEBROUTINE
presents	a	page	requesting	logon	details.	Since	this	is	an	initial	page,	it	must
be	executed	whether	there	is	a	valid	session	or	not.	Hence,	a	SessionStatus	of
None.
Logon	WEBROUTINE	is	invoked	from	a	Start	page,	when	a	button	to	logon
is	pressed.	At	this	point,	there	is	still	no	valid	session	so	this	WEBROUTINE
must	also	be	allowed	to	execute	without	a	session.
Logon	validates	the	user	id	and	password	and,	if	valid,	sets	SessionStatus	to
Active.	Setting	SessionStatus	from	None	to	Active	will	create	a	new	session
when	Logon	WEBROUTINE	exits.
Logon	WEBROUTINE	performs	a	TRANSFER	to	WelcomPage
WEBROUTINE.	We	now	have	an	Active	session,	so	WelcomePage	is
allowed	to	execute	(it	requires	an	Active	session).	When	WelcomePage	exits,
a	session	key	for	the	new	session	is	passed	back	to	the	browser.	This	session
key	will	be	returned	from	now	on	for	every	new	WEBROUTINE	request
from	the	same	browser	and	allows	the	server	to	identify	the	session.
There	is	also	a	SessionInvalid	handler	which	simply	TRANSFERs	to	Start
page.	This	handler	is	invoked	whenever	there	is	an	attempt	to	invoke	a
WEBROUTINE	with	a	non-existent	or	invalid	session	key	or	when	a	valid
session	key	is	provided	but	the	session	has	expired	(no	requests	for	more
than	5	minutes).	When	a	session	is	invalid	or	expired,	a	Start	page	requesting
user	id	and	password	is	always	displayed	in	the	browser.
You	can	also	provide	a	Logout	button	or	menu	in	your	WAM	application	so
the	session	is	explicitly	invalidated.	In	such	circumstances,	the	button
invokes	a	Logoff	WEBROUTINE,	which	sets	SessionStatus	to	Invalid	and
invalidates	the	session	on	WEBROUTINE	exit.

4.3.8	Session	States
A	session	can	be	in	one	of	four	states:

State Meaning

Invalid The	session	key	used	to	identify	the	session	is	not	provided,	or	it
does	not	match	any	session	key	the	server	knows	about

Expired The	session	key	identifies	a	valid	session,	however	the	previous
request	from	the	same	session	has	exceeded	the	SessionTimeout
period.

Active The	session	key	identifies	a	known	valid	session	and	the	last	request
from	the	same	server	was	within	the	SessionTimeout	period.

None Used	declaratively	at	design	time	to	denote	WEBROUTINEs	that
can	execute	without	a	valid	session	context.	If	SessionStatus	is	set	to
Active	at	WAM	level,	you	must	have	at	least	one	WEBROUTINE
with	OnEntry(*SessionStatus_None)	keyword	to	allow	entry	to	the
WAM	application	to	create	a	new	session,	via	this	WEBROUTINE.

	

Conceptually	invalid	or	expired	sessions	are	treated	the	same.	They	are	both
session	statuses	that	prevent	execution	of	WEBROUTINEs	that	require	a	valid
session	context	(i.e.	WEBROUTINEs	with	a	SessionStatus	property	set	to
Active).
A	WAM	is	able	to	handle	invalid	or	expired	sessions	by	providing	a
SessionInvalid	event	handler.	This	handler	can	TRANSFER	to	another
WEBROUTINE	or	perform	some	other	action	to	handle	invalid	or	expired
sessions.	SessionInvalid	handler	removes	the	need	for	every	WEBROUTINE	to
perform	checks	to	verify	session	(if	your	application	requires	one).	All	session
checking	is	done	at	WAM	level	and	the	SessionInvalid	event	is	triggered	to
allow	the	WAM	to	customize	invalid	session	handling.
If	a	SessionInvalid	handler	is	not	provided,	the	standard	WAM	invalid	session
page	is	returned	to	the	browser.
When	a	session	has	expired,	session	state	is	not	deleted	from	the	session
database	immediately.	This	technique	is	used	to	reduce	load	on	the	server	at
peak	times.	The	Transaction	Monitor	performs	periodic	cleanup	of	expired

session	states.	It	is	also	possible	to	turn	off	periodic	cleanup	and	schedule
cleanup	to	be	performed	at	designated	off-peak	times.
	
	

5.	Execute	WAM	Applications
5.1	Build	or	Compile	your	WAM
5.2	Deployment	and	Runtime	Environment
5.3	WAM	Uniform	Resource	Locator	(URL)
5.4	Mapping	Posted	HTTP	Data	to	Fields
5.5	How	is	the	Output	Presentation	Created?

5.1	Build	or	Compile	your	WAM
You	can	Build	a	WAM	using	this	icon	 	on	your	LANSA	Editor's	toolbar
or
you	can	Compile	it	using	this	icon	
When	you	use	these	icons,	the	options	selected	for	the	build	will	be	either	the
defaults	supplied	with	LANSA	or	the	options	selected	for	your	last	compile.
What	is	the	difference	between	a	Build	and	a	Compile?
The	Build	process	is	optional	and	doesn't	create	any	executable	objects.	The
build	process:

saves	the	WAM
performs	a	full	function	check	(FFC)	of	your	code

If	the	Web	Designs	do	not	already	exist:
generates	a	design	(XSL	Stylesheet)	for	the	WAM	Layout	and
Web	Designs	(XSL	Stylesheets)	for	the	webroutines.

The	Compile	process	is	the	same	as	a	Build	EXCEPT	that	the	executable
objects	are	produced	and	the	webroutine	XSL	generation	can	be	controlled.
You	must	Compile	a	WAM	before	it	can	be	run,	but	you	can	do	as	many,	or	as
few,	Builds	as	you	like.
Both	the	Build	and	Compile	generate	Web	Designs	for	your	webroutines.	In
addition,	when	required,	and	not	found,	a	layout	design	is	generated	for	the
WAM.	The	layout	design	can	subsequently	be	modified	in	the	LANSA	Editor	if
required.
Compile	Options
To	view	or	change	the	options	for	your	Compile,	select	the	Compile	process
from	the	Verify	menu.	This	opens	the	Compile	Options	dialog	box.

The	options	in	this	dialog	are	self	explanatory	but	details	can	be	obtained	in
Component	Compile	Options	in	the	LANSA	Technical	Reference	Guide.
The	compile	options	selected	are	retained	for	future	compiles,	with	the
exception	of	the	XSL	Generation,	which	is	always	set	to	only	generate	New
webroutines	as	a	safeguard.
The	options	to	be	very	careful	about	are:
Generate	XSL
All	webroutines
If	you	choose	this	option,	webroutine	Web	Designs	will	be	re-generated.	Any
modifications	that	you	have	already	made	to	these	webroutine's	designs	via	the
LANSA	Editor	will	be	overwritten.
New	webroutines
This	is	the	default	option.	This	option	will	cause	Web	Designs	to	be	generated
only	for	new	webroutines	and	will	not	overwrite	any	designs,	which	already
exist.
Technology	services
Select	the	Technology	Services	that	you	will	be	using	with	this	WAM.

its:lansa015.chm::/lansa/l4wtgu04_0100.htm

5.2	Deployment	and	Runtime	Environment
Following	is	a	description	of	the	deployment	and	runtime	environment	of
WAM-based	Web	applications.
Review	the	following	topics:
5.2.1	WAM	and	XSL	Deployment
5.2.2	Multi-tier	Deployment

5.2.1	WAM	and	XSL	Deployment
Once	your	WAMs	are	developed	and	the	web	pages	have	been	designed	and
tested,	the	application	is	ready	to	be	deployed	to	production.	You	can	use	the
LANSA	Deployment	Tool	to	create	a	deployment	package.
The	Deployment	Tool	allows	you	to	select	the	WAMs	to	deploy	and	along	with
all	of	their	dependent	objects	including	the	WEBROUTINE	Web	Designs	(XSL
Stylesheets).
Deploying	your	whole	application	is	simply	a	matter	of:

selecting	the	necessary	WAMs
selecting	all	the	cross-references	settings	to	include	associated	objects
selecting	the	Technology	Service	(LANSA	XHTML	is	the	default)
creating	a	deployment	package
deploying	the	package	to	the	production	environment.

If	your	application	uses	any	static	external	objects,	such	as	image	files,	script
pages	or	other	HTML	pages	that	are	not	identified	to	the	Deployment	Tool,	then
these	objects	must	be	deployed	separately.
Refer	to	the	WAM	section	of	the	WAM	Application	with	Windows	Application
Database	in	the	Deployment	Tool	Guide.

its:lansa022.chm::/Lansa/l4wdplb2_0025.htm

5.2.2	Multi-tier	Deployment
LANSA	for	the	Web	supports	both	Single-tier	and	Multi-tier	installations.
A	Single-tier	installation	includes	the	Web	Server	and	Data/Application	Server
on	a	single	machine.	A	Multi-tier	installation	has	the	Web	Server	on	one
machine	and	the	Data/Application	Server	on	a	separate	machine.
If	you	install	a	Multi-tier	configuration	with	a	Windows	IIS	web	server,	the	XSL
Processing	of	your	WAMs,	by	default,	is	moved	to	the	Web	Server	tier,	thereby
distributing	the	processing	load	across	the	tiers.	This	option	is	configurable	in
Web	Administrator,	Local	Configuration	of	your	LANSA	ISAPI	Plugin.
For	details,	refer	to	Multi-Tier	Web	System	Setup	in	the	Web	Administration
Guide.

its:Lansa085.chm::/lansa/iwinb7_0500_a.htm

5.3	WAM	Uniform	Resource	Locator	(URL)
There	are	two	methods	for	invoking	WEBROUTINEs	from	a	browser	using	a
URL.
The	unique	combination	of	the	WAM	and	WEBROUTINE	can	be	specified:
http://localhost/cgi-bin/lansaweb?wam=<WAM	name>&webrtn=
<WEBROUTINE	name>&ml=<TS	name>&part=
<PARTITION	name>&lang=<LANGUAGE	name>

If	a	service	name	has	been	associated	with	a	webroutine,	the	unique	service
name	can	be	specified:
http://localhost/cgi-bin/lansaweb?srve=<Service	name>&ml=
<TS	name>&part=<PARTITION	name>&lang=<LANGUAGE	name>

Either	of	the	above	methods	to	invoke	a	webroutine	can	be	extended	to	include
parameters	on	the	URL	(similar	to	WEBEVENTs).	Any	fields	used	as
parameters	on	the	URL	must	be	mapped	for	input	on	the	webroutine.	The	basic
syntax	is	shown	in	the	following	example:
http://server/cgi-bin/lansaweb?
w=wam&r=rtn&f(fieldname)=fieldvalue&f(fieldname2)=fieldvalue2

The	following	table	describes	each	URL	keyword:

Keyword
name

Short
version

Required Description

field f Optional. Values	can	be	passed	into	a	mapped	field	by
adding	the	required	field	(fieldname)=
fieldvalue	parameter	to	the	URL.	For
example,
field(Section)=AB.

language lang	or
l

Optional.	If
unspecified,
then
partition
default
language	is
used.

The	language	identifier	determines	which
language	is	to	be	used	for	presentation	of
the	page.	It	is	possible	to	create
WEBROUTINE	XSL	and	weblet
stylesheets	for	specific	languages	separate
from	partition	default	language.	If	a	page	or
weblet	for	a	specified	language	does	not
exist	a	partition,	the	default	language	page
is	returned.

markup ml Optional.	If
not
specified,	a
configured
default	is
used.

The	Technology	Service	to	use	to	render	the
page.	In	case	of	HTML,	a	default
LANSA:XHTML	Technology	Service	is
used.	The	default	value	can	be	changed
using	the	LANSA	for	the	Web
Administrator.

partition part	or
p

Optional.	If
not
specified,	a
forced
configured
partition	is
always
used.

The	Partition	identifier	specifies	which
LANSA	partition	to	use.	If	a	forced
Partition	is	configured	on	the	server	(this	is
done	using	the	LANSA	for	the	Web
Administrator),	this	parameter	is	ignored.

srve s Mandatory.
Must
appear	as
the	first
keyword.
Either
webapp	or
srve
keyword
must	be
used.

The	Service	Name	that	is	enrolled	and
mapped	to	a	particular	WAM,
WEBROUTINE,	Partition	and	Language.	If
this	parameter	is	used	and	the	specified
Service	Name	is	enrolled	(can	be	specified
in	ServiceName	property	of	a
WEBROUTINE),	then	partition	and
language	parameters	do	not	need	to	be
specified	as	these	values	are	read	from	the
registered	entry.	If	specified,	the	values	will
override	the	registered	entry.
For	further	information,	refer	to	Using	the
Service	Name.

webapp wam	or
w

Mandatory.
Must
appear	as
the	first
keyword.
Either
webapp	or
srve
keyword
must	be

The	name	of	the	WAM	that	contains	the
WEBROUTINE	to	be	invoked.

its:lansa087.chm::/lansa/wamengb3_0055.htm

used.

webrtn r Mandatory.
Must
appear	as
the	second
keyword.
Must	be
used	with
the	webapp
keyword.

The	name	of	the	WEBROUTINE	to	be
invoked.

	

A	similar	alternative	notation	is	also	supported	(for	backwards	compatibility
with	previous	versions).	Note	the	'+'	used	instead	of	the	'&'	to	separate	keyword-
value	pairs.
Invoking	a	WAM	and	WEBROUTINE:
http://localhost/cgi-bin/lansaweb?webapp=<WAM	name>+webrtn=
<WEBROUTINE	name>+ml=<TS	name>+part=<PARTITION	name>+lang=
<LANGUAGE	name>

Invoking	the	service	name:
http://localhost/cgi-bin/lansaweb?srve=<Service	name>+ml=
<TS	name>+part=<PARTITION	name>+lang=<LANGUAGE	name>

To	prevent	the	use	of	cached	pages,	when	LANSA	issues	a	GET	request,	It
appends	a	timestamp	to	the	url	so	the	request	is	interpreted	as	a	request	for	a
"different"	resource.	For	example:
http://localhost/cgi-bin/lansaweb?
wam=WAM01&webrtn=WR01&ml=LANSA:XHTML&part=DEX&lang=ENG&_=
1343366108313

	

5.4	Mapping	Posted	HTTP	Data	to	Fields
When	a	browser	form	is	submitted	to	the	server,	the	named	input	boxes	are	also
submitted	with	the	data	they	contain.	The	submitted	data	is	in	name/value	pair
format	for	each	of	the	input	boxes	on	the	form.	The	server	can	then	process	the
submitted	values	and	produce	the	result	page.
When	a	WEBROUTINE	page	is	presented	in	the	browser,	that	page	has	input
boxes	(or	other	more	complex	controls)	for	each	of	the	fields	in	outgoing
WEB_MAPs.	Each	input	box	uses	the	same	field	name	on	the	form	as	the	field
name	in	the	WEB_MAP.	(No	prefixes	are	used.)
When	this	page	is	submitted	to	another	WEBROUTINE,	the	WAM	runtime
assigns	the	input	values	to	the	fields	specified	in	that	WEBROUTINE's
incoming	WEB_MAP	statements	based	on	the	field	names	that	match	the	name
of	the	input	box.	Hence,	the	posted	values	are	assigned	to	appropriate	fields	and
are	available	once	the	WEBROUTINE	begins	execution.

5.5	How	is	the	Output	Presentation	Created?
After	a	WEBROUTINE	is	invoked	from	the	browser	and	the	incoming	fields
and	lists	have	been	received	(as	mapped	in	its	WEB_MAP	statements),	the
RDMLX	code	of	the	WEBROUTINE	is	executed	until	ENDROUTINE
statement	is	encountered.	The	RDMLX	logic	might	retrieve	data	from	a
database	or	perform	calculations	using	the	incoming	fields.
Once	the	WEBROUTINE	has	completed,	it	sends	back	any	outgoing	fields	and
lists	(as	mapped	in	its	WEB_MAP	statements)	to	the	LANSA	Data/Application
Server.	The	outgoing	field	and	list	values	are	then	used	to	create	an	Input	XML
document	in	the	format	described	in	Appendix	B.	WAM	XML	Structure.

The	XSL	Stylesheet	for	the	WEBROUTINE,	based	on	the	required	Technology
Service	and	Language,	is	used	to	transform	the	Input	XML	document	(at
runtime)	into	the	required	presentation.		For	example,	HTML	is	used	as	the

its:LANSA087.CHM::/lansa/wamengbb_0010.htm

default	Technology	Service.	The	transformed	presentation	output	(HTML)	is
then	returned	by	the	Web	Server	back	to	the	browser.
	

6.	WAM	and	WEBEVENT	Interoperability
LANSA	V11.0	significantly	extends	the	LANSA's	ability	to	build	web	browser
and	internet	based	applications	by	providing	a	new	type	of	component	called	a
WAM	(Web	Application	Module).
Prior	to	V11.0	the	main	instrument	used	to	construct	web	browser	applications
was	a	special	type	of	RDML	function	called	a	WEBEVENT	function.
WEBEVENT	functions	continue	to	be	fully	supported	and	have	been
significantly	enhanced	in	LANSA	V11.0.	There	is	little	or	no	benefit	in
converting	existing	WEBEVENT	functions	to	WAM	components.	However,
you	may	benefit	by	extending	and	enhancing	your	existing	WEBEVENT-based
web	applications.
A	number	of	techniques	for	constructing	web	applications	that	contain	a	mixture
of	WAM	components	and	WEBEVENT	functions	are	described	in	the	following
topics:
6.1	A	WAM	Form	Invoking	a	WEBEVENT	Form
6.2	A	WEBEVENT	Form	Invoking	a	WAM	Form
6.3	A	WAM	Container	Form	Managing	WEBEVENT	Forms
6.4	A	WEBEVENT	Container	Form	Managing	WAM	Forms
6.5	Sharing	Information	between	WAMs	and	WEBEVENT	Functions

6.1	A	WAM	Form	Invoking	a	WEBEVENT	Form
The	primary	mechanism	for	invoking	a	WEBEVENT	form	is	via	a	JavaScript
function	called	HandleEvent().	A	similar	JavaScript	based	method	of	invoking	a
WEBEVENT	form	from	a	WAM	form	is	also	provided	but	called
HandleWebEvent().
Here's	how	you	can	invoke	a	WEBEVENT	form	from	a	WAM	form:
1.		Use	the	JavaScript	function	named	HandleWebEvent()	that	is	provided.
					This	function	can	be	called	in	the	same	way	the	HandleEvent()	function	is
called	now.

2.		There	are	no	additional	properties	on	weblets	to	navigate	to	a	Webevent
(such	as	there	is	for	Webroutines).	HandleWebEvent()	can	be	called	from	the
presubmit_js	property	of	most	weblets,	or	via	user	defined	JavaScript.	It	is
possible,	for	example,	to	directly	set	JavaScript	to	execute	by	setting	the
onlick	attribute	value,	document.LANSA.SEARCH.onclick	=
"HandleWebEvent('MYPROC',	'MYFUNC',	null,	null,
'ASURNAME',	'ASTDRENTRY')"

3.		The	parameters	are	HandleWebEvent(Process,	Webevent,	Form,	Target,
"ASURNAME",	"ASTDRENTRY",	...),	a	variable	number	of	parameters	on
the	end	can	be	passed	for	fields,	the	values	of	which	are	to	be	passed	to	the
WebEvent.	The	parameters	are	all	characters	strings	except	for	Form,	which
should	be	the	actual	form	DHTML	object	(eg.	document.MYFORM).	It	is
important	to	provide	a	single	character	prefix	before	the	field	name.	The
prefix	is	A	for	Alphanumeric,	P	for	Packed	and	S	for	Signed	fields,	or	Q	for
RDMLX	fields.	This	prefix	is	required	so	that	a	WEBEVENT	being	invoked
is	able	to	exchange	the	passed	field	values.

4.		The	JavaScript	function	gets	the	values	for	the	fields	from	the	specified	Form
parameter	(or	default	"LANSA"	form	if	Form	is	null),	creates	a	temporary
form	and	inserts	the	fields	and	their	values	into	the	temporary	form	for
posting	to	the	url,	and	then	performs	an	HTTP	post	to	the	url.	Note,	the	field
names	passed	as	parameters	to	HandleWebEvent()	must	all	be	prefixed	with	a
single	character	prefix	denoting	the	field	type.	WAM	field	references	do	not
require	prefixes,	but	WEBEVENT	functions	do,	hence	the	JavaScript	code
retrieves	the	specified	field	values	from	a	WAM	form	without	this	single
character	prefix,	but	posts	field	names	to	the	WEBEVENT	function	with	the
prefix.

5.		As	a	result,	a	WebEvent	LANSA	function	is	executed	passing	the	specified
field	values	and	a	WebEvent	page	is	shown	in	the	browser.

Example
How	a	WAM	form	can	initiate	a	WEBEVENT	form	and	pass	information	to	it:

Consider	a	Search	WAM	form,	which	submits	to	a	Browse	WEBEVENT,	but
passing	the	entered	SURNAME	field	value.
In	LANSA	Editor's	Details	tab	you	enter	'HandleWebEvent("MYPROC",
"MYFUNC",	null,	null,	"ASURNAME",	"ASTDRENTRY");	return	false;'	for
presubmit_js	property	of	the	Search	button.

When	you	run	this	page	in	the	browser,	clicking	on	Search	button	will	submit	to
a	WEBEVENT,	showing	its	page	in	the	browser,	after	it	completes	execution.

6.2	A	WEBEVENT	Form	Invoking	a	WAM	Form
The	primary	mechanism	for	invoking	a	WEBEVENT	form	is	via	a	JavaScript
function	called	HandleEvent().	A	similar	JavaScript-based	method	of	invoking	a
WAM	form	from	a	WEBEVENT	form,	called	HandleWAMEvent()	is	also
provided.
Here's	how	you	can	invoke	a	WAM	form	from	a	WEBEVENT	form:
1.		Use	the	provided	JavaScript	function	named	HandleWAMEvent().
					This	function	can	be	called	the	same	way	HandleEvent()	function	is	called
now.

2.		The	parameters	are	HandleWAMEvent(WAM,	Webroutine,	TechServ,	Form,
Target,	actionRequest,	Partition,	Language,	optSessionKey,	optDebugMode,
"ASURNAME",	"ASTDRENTRY",	...),	a	variable	number	of	parameters	can
be	passed	for	fields,	the	values	of	which	are	to	be	passed	to	the	Webroutine.	It
is	important	to	provide	a	single	character	prefix	before	the	field	name.	The
prefix	is	A	for	Alphanumeric,	P	for	Packed	and	S	for	Signed	fields,	or	Q	for
RDMLX	fields.	Although	this	prefix	is	not	required	when	passing	field
values	to	a	WAM	WEBROUTINE,	it	is	required	to	access	the	form	field
value,	as	well	as	being	more	consistent	with	HandleWebEvent()	JavaScript
function	semantics.

					The	parameters	of	HandleWAMEvent	are:

WAM The	name	of	the	target	WAM.

Webroutine The	name	of	the	target	WEBROUTINE.

TechServ The	Technology	Service	to	use,	can	be	null	for	default
LANSA	XHTML	Technology	Service

Form The	form	HTML	object	to	get	field	values	for	submit	from,
e.g.	document.MYFORM	for	a	form	with	"MYFORM"
name,	can	be	null	for	default	LANSA	form.

Target The	target	iframe,	frame	or	window	where	the	result	of
navigation	will	be	displayed,	null	to	navigate	to	a	new	page.

actionRequest If	left	null,	is	the	default	"cgi-bin/lansaweb"	action	request.

Partition The	partition	to	execute	the	WAM	from.

Language The	language	under	which	the	WAM	will	execute.

optSessionKey Can	optionally	pass	the	session	key,	if	the
SessionKeyMethod	is	URL,	otherwise	null.

optDebugMode Can	pass	the	debug	url	keyword	to	allow	debugging	of	the
WAM,	otherwise	null.

3.		The	JavaScript	function	gets	the	values	for	the	fields	from	the	specified	Form
parameter	(or	default	"LANSA"	form	if	Form	is	null),	creates	a	temporary
form	and	inserts	the	fields	and	their	values	into	the	temporary	form	for
posting	to	the	url,	and	then	performs	an	HTTP	post	to	the	url.	Note,	the	field
names	passed	as	parameters	to	HandleWebEvent()	must	all	be	prefixed	with	a
singe	character	prefix	denoting	the	field	type.	WAM	field	references	do	not
require	prefixes,	but	WEBEVENT	functions	do,	hence	the	JavaScript	code
retrieves	the	specified	field	values	from	a	WEBEVENT	form	with	this	single
character	prefix,	but	posts	field	names	to	the	WAM	function	without	the
prefix.

4.		As	a	result	a	Webroutine	is	executed	passing	the	specified	field	values	and	a
Webroutine	page	is	shown	in	the	browser.	The	submitted	fields	must	be
specified	on	the	WEB_MAP	FOR(*INPUT	or	*BOTH)	for	the	values	to	be
set	in	the	Webroutine.

Example
How	a	WEBEVENT	form	can	initiate	a	WAM	form	and	pass	information	to
it
1.		Create	a	function	and	paste	this	code:
	
Function	Options(*DIRECT	*webevent)
*	
Define	Field(#searchwam)	Type(*char)	Length(1)
Define	Field(#wamname)	Type(*char)	Length(9)
Define	Field(#webrname)	Type(*char)	Length(20)
Define	Field(#techserv)	Type(*char)	Length(21)
Define	Field(#currlang)	Type(*char)	Length(4)	Default(*language)
*	
Group_By	Name(#webform)	Fields((#stdrentry	*hidden)	#surname	#searchwam	(#currlang	*hidden)	(#partition	*hidden)	(#wamname	*hidden)	(#webrname	*hidden)	(#techserv	*hidden))
*	
Change	Field(#wamname)	To(<your	wam	name>)

Change	Field(#webrname)	To(<your	wam	webroutine	name>)
Change	Field(#stdrentry)	To(N)
*	
Request	Fields(#webform)	Exit_Key(*no)	Menu_Key(*no)	Prompt_Key(*no)
*	
	

2.		Replace	<your	wam	name>	and	<your	webroutine	name>	with	the
appropriate	names.

					Note	that	the	WAM	must	exist	in	the	same	partition	and	will	execute	in	the
same	language	using	the	default	LANSA:XHTML	technology	service.
Otherwise,	change	the	values	of	fields	#techserv,	#currlang	and	#partition
accordingly.

3.		Using	the	LANSA	Web	Function	Editor,	create	a	Visual	component	type
Input	and	call	it	SEARCHWAM.

4.		Name	the	page	for	the	component	SEARCHWAM	as	well.
5.		Create	a	new	page	and	past	this	code:
<button	onclick="return
HandleWAMEvent('<RDML	MERGE="WAMNAME">',
'<RDML	MERGE="WEBRNAME">',	'<RDML	MERGE="TECHSERV">',	null,	'<RDML	MERGE="TARGET">',	null,	'<RDML	MERGE="PARTITION">',	'<RDML	MERGE="CURRLANG">',	null,	null,	'ASURNAME',	'ASTDRENTRY')">Search</button>
	
<script	type="text/javascript">
//<![CDATA[
function	CreateTempForm(ownerDoc)
{
			var	oTempForm	=	ownerDoc.createElement("form");
	
			if	(oTempForm	!=	null)
			{
						if	(typeof	oTempForm.setAttribute	===	"function")
						{
									oTempForm.setAttribute("method",	"post");
						}
						else
						{
									oTempForm	=	ownerDoc.createElement("<form	method=\"post\">
</form>");
						}

			}
			return	oTempForm;
}
	
function	HandleWAMEvent(WAM,	WebRoutine,	techServ,	Form,	Target,
actionRequest,	Partition,	Language,	optSessionKey,	optDebugMode	/*,	field1,
field2,	etc...*/)
{
			if	(Form	==	null)
			{
						Form	=	document.LANSA;
			}
			if	(techServ	==	null)
			{
						techServ	=	"LANSA:XHTML";
			}
	
			var	oTempForm	=	CreateTempForm(Form.ownerDocument);
	
			if	(oTempForm	!=	null)
			{
						Form.ownerDocument.body.appendChild(oTempForm);
						var	argLen	=	arguments.length;
	
						if	(argLen	>	10)
						{
									for	(var	index	=	10;	index	<	argLen;	index++)
									{
												var	fieldNameWithPrefix	=	arguments[index];
												var	fieldName	=	fieldNameWithPrefix.substr(1,
fieldNameWithPrefix.length	-	1);
												for	(var	ind	=	fieldNameWithPrefix.length;	ind	<	10;	ind++)
												{
															fieldNameWithPrefix	+=	"	";
												}
												var	fieldValue	=	Form.elements[fieldNameWithPrefix].value;
												InsertHidden(oTempForm,	fieldName,	fieldValue);
									}
						}

	
						//	Add	STDANCHOR	if	available
						var	anchorField	=	Form.elements["ASTDANCHOR"];
						if	(anchorField	!=	null)
						{
									InsertHidden(oTempForm,	"STDANCHOR",	anchorField.value);
						}
	
						var	prevAction	=	oTempForm.action;
						var	prevTarget	=	oTempForm.target;
	
						var	action	=	"";
						if	(actionRequest	==	null	||	actionRequest.length	<=	0)
						{
									actionRequest	=	"/cgi-bin/lansaweb";
						}
						action	+=	actionRequest	+	"?wam="	+	WAM	+	"&webrtn="	+
WebRoutine	+	"&ml="	+	techServ	+	"&part="	+	Partition	+	"&lang="	+
Language;
						if	(optDebugMode	!=	null	&&	optDebugMode.length	>	0)
						{
									action	+=	"&debug="	+	optDebugMode;
						}
						if	(optSessionKey	!=	null)
						{
									action	+=	"&sid="	+	optSessionKey;
						}
						oTempForm.action	=	action;
					
						if	(Target	!=	null)
						{
									oTempForm.target	=	Target;
						}
						oTempForm.submit();
						setTimeout(function()	{
												oTempForm.action	=	prevAction;
												oTempForm.target	=	prevTarget;
												oTempForm.parentNode.removeChild(oTempForm);
									},	100);

			}
			return	false;
}
	
function	InsertHidden(Form,	FieldName,	FieldValue)
{
			if	(Form	==	null)
			{
						return;
			}
	
			var	field	=	Form.elements[FieldName];
	
			if	(field	==	null)
			{
						var	elem	=	Form.document.createElement("input");
	
						if	(elem	!=	null)
						{
									elem.setAttribute("type",	"hidden");
									elem.setAttribute("name",	FieldName);
									elem.setAttribute("value",	FieldValue);
									Form.appendChild(elem);
						}
			}
			else
			{
						field.value	=	FieldValue;
			}
}
//]]>
</script>
	

6.		Save	the	page	as	SEARCHWAM.
7.		Compile	your	webevent	functions	generating	the	HTML.
8.		Run	this	WEBEVENT	example	in	the	browser.	Clicking	a	Search	button
should	navigate	to	the	WAM	and	WEBROUTINE	you	nominated	in
WAMNAME	and	WEBRNAME	fields.

6.3	A	WAM	Container	Form	Managing	WEBEVENT	Forms
The	primary	mechanism	for	invoking	a	WEBEVENT	form	is	via	a	JavaScript
function	called	HandleEvent().	A	similar	JavaScript	based	method	of	invoking	a
WEBEVENT	form	from	a	WAM	form,	called	HandleWebEvent()	is	also
provided.
Here's	how	you	can	invoke	a	WEBEVENT	form	from	a	WAM	form:
1.		Use	the	JavaScript	function	named	HandleWebEvent()	that	is	provided.
					This	function	can	be	called	the	same	way	HandleEvent()	function	is	called
now.

2.		There	are	no	additional	properties	on	weblets	to	navigate	to	Webevent	(such
as	there	is	for	Webroutines).	HandleWebEvent()	can	be	called	from	the
presubmit_js	property	of	most	weblets,	or	via	user	defined	JavaScript.	It	is
possible,	for	example,	to	directly	set	JavaScript	to	execute	by	setting	the
onclick	attribute	value:

						document.LANSA.SEARCH.onclick	=
"HandleWebEvent('MYPROC',	'MYFUNC',	null,	'WEFrame',
'ASURNAME',	'ASTDRENTRY')"

3.		The	parameters	are	HandleWebEvent(Process,	Webevent,	Form,	Target,
"ASURNAME",	"ASTDRENTRY",	...),	a	variable	number	of	parameters	on
the	end	can	be	passed	for	fields,	the	values	of	which	are	to	be	passed	to	the
WebEvent.	The	parameters	are	all	characters	strings	except	for	Form,	which
should	be	the	actual	form	DHTML	object	(e.g.	document.MYFORM).	It	is
important	to	provide	a	single	character	prefix	before	the	field	name.	The
prefix	is	A	for	Alphanumeric,	P	for	Packed	and	S	for	Signed	fields,	or	Q	for
RDMLX	fields.	This	prefix	is	required	so	that	a	WEBEVENT	being	invoked
is	able	to	exchange	the	passed	field	values.

					The	Target	parameter	for	the	JavaScript	function	must	be	specified	and	must
be	a	name	of	the	contained	Navigation	panel	(std_nav_panel)	weblet,
window,	or	your	own	<iframe>	or	<frame>	HTML	element.

4.		The	JavaScript	function	gets	the	values	for	the	fields	from	the	specified	Form
parameter	(or	default	"LANSA"	form	if	Form	is	null),	creates	a	temporary
form	and	inserts	the	fields	and	their	values	into	the	temporary	form	for
posting	to	the	url,	and	then	performs	an	HTTP	post	to	the	url.	Note,	the	field
names	passed	as	parameters	to	HandleWebEvent()	must	all	be	prefixed	with	a

single	character	prefix	denoting	the	field	type.	WAM	field	references	do	not
require	prefixes,	but	WEBEVENT	functions	do,	hence	the	JavaScript	code
retrieves	the	specified	field	values	from	a	WAM	form	without	this	single
character	prefix,	but	posts	field	names	to	the	WEBEVENT	function	with	the
prefix.

5.		As	a	result,	a	WebEvent	LANSA	function	is	executed	passing	the	specified
field	values	and	a	WebEvent	page	is	shown	in	the	Target	Navigation	panel
(std_nav_panel),	window,	or	your	own	<iframe>	or	<frame>	HTML	element.

Example
How	a	WAM	form	can	initiate	a	WEBEVENT	form	and	pass	information	to
it.
Consider	a	Search	WAM	form,	which	submits	to	a	Browse	WEBEVENT,	but
passing	the	entered	SURNAME	field	value,	and	shows	the	result	in	Navigation
panel	(std_nav_panel)	below	the	Search	button.
1.		In	the	LANSA	Editor,	drag	and	drop	Navigation	panel	(std_nav_panel)
weblet	onto	the	page,	as	shown	below,	and	enter	'WEFrame'	for	its	name
property.	Select	yes	for	its	size_panel_to_content	property,	so	that	it	resizes
itself	to	full	size	of	the	WEBEVENT	page	it	navigates	to.

2.		Click	on	the	Search	button	and	enter	'HandleWebEvent("MYPROC",
"MYFUNC",	null,	"WEFrame",	"ASURNAME",
"ASTDRENTRY");	return	false;'	for	the	presubmit_js	property	of	the
Search	button.

3.		When	you	run	this	page	in	the	browser,	clicking	on	Search	button	will	submit
to	a	WEBEVENT,	showing	its	page	in	the	Navigation	panel	(std_nav_panel)
weblet,	on	the	same	page.

6.4	A	WEBEVENT	Container	Form	Managing	WAM	Forms
The	primary	mechanism	for	invoking	a	WEBEVENT	form	is	via	a	JavaScript
function	called	HandleEvent().	A	similar	JavaScript	based	method	of	invoking	a
WAM	form	from	a	WEBEVENT	form,	called	called	HandleWAMEvent()	is
also	provided.
Here's	how	you	can	invoke	a	WAM	form	from	a	WEBEVENT	form:
1.		A	JavaScript	function	named	HandleWAMEvent()	is	provided.
					This	function	can	be	called	the	same	way	HandleEvent()	function	is	called
now.

2.		The	parameters	are	HandleWAMEvent(WAM,	Webroutine,	TechServ,	Form,
Target,	actionRequest,	Partition,	Language,	optSessionKey,	optDebugMode,
"ASURNAME",	"ASTDRENTRY",	...),	a	variable	number	of	parameters	can
be	passed	for	fields,	the	values	of	which	are	to	be	passed	to	the	Webroutine.	It
is	important	to	provide	a	single	character	prefix	before	the	field	name.	The
prefix	is	A	for	Alphanumeric,	P	for	Packed	and	S	for	Signed	fields,	or	Q	for
RDMLX	fields.	Although	this	prefix	is	not	required	when	passing	field
values	to	a	WAM	WEBROUTINE,	it	is	required	to	access	the	form	field
value,	as	well	as	being	more	consistent	with	HandleWebEvent()	JavaScript
function	semantics.

3.		The	parameters	of	HandleWAMEvent	are:

WAM The	name	of	the	target	WAM.

Webroutine The	name	of	the	target	WEBROUTINE.

TechServ The	Technology	Service	to	use,	can	be	null	for	default
LANSA	XHTML	Technology	Service

Form The	form	HTML	object	to	get	field	values	for	submit	from,
e.g.	document.MYFORM	for	a	form	with	"MYFORM"
name,	can	be	null	for	default	LANSA	form.

Target The	target	iframe,	frame	or	window	where	the	result	of
navigation	will	be	displayed,	null	to	navigate	to	a	new	page.

actionRequest If	left	null,	is	the	default	"cgi-bin/lansaweb"	action	request.

Partition The	partition	to	execute	the	WAM	from.

Language The	language	under	which	the	WAM	will	execute.

optSessionKey Can	optionally	pass	the	session	key,	if	the
SessionKeyMethod	is	URL,	otherwise	null.

optDebugMode Can	pass	the	debug	url	keyword	to	allow	debugging	of	the
WAM,	otherwise	null.

4.		The	JavaScript	function	gets	the	values	for	the	fields	from	the	specified	Form
parameter	(or	default	"LANSA"	form	if	Form	is	null),	creates	a	temporary
form	and	inserts	the	fields	and	their	values	into	the	temporary	form	for
posting	to	the	url,	and	then	performs	an	HTTP	post	to	the	url.	Note,	the	field
names	passed	as	parameters	to	HandleWebEvent()	must	all	be	prefixed	with	a
single	character	prefix	denoting	the	field	type.	WAM	field	references	do	not
require	prefixes,	but	WEBEVENT	functions	do,	hence	the	JavaScript	code
retrieves	the	specified	field	values	from	a	WEBEVENT	form	with	this	single
character	prefix,	but	posts	field	names	to	the	WAM	function	without	it.

5.		The	Target	parameter	for	the	JavaScript	function	must	be	specified	and	must
be	a	name	of	the	contained	iframe,	frame	or	window.

6.		As	a	result	a	Webroutine	is	executed	passing	the	specified	field	values	and	a
Webroutine	page	is	shown	in	the	browser.	The	submitted	fields	must	be
specified	on	the	WEB_MAP	FOR(*INPUT	or	*BOTH)	for	the	values	to	be
set	in	the	Webroutine.

Example
How	a	WEBEVENT	form	can	initiate	a	WAM	form	and	pass	information	to
it
1.		Create	a	function	and	paste	this	code:
	
Function	Options(*DIRECT	*webevent)
*	
Define	Field(#searchwam)	Type(*char)	Length(1)
Define	Field(#wamname)	Type(*char)	Length(9)
Define	Field(#webrname)	Type(*char)	Length(20)
Define	Field(#techserv)	Type(*char)	Length(21)
Define	Field(#frametgt)	Type(*char)	Length(20)
Define	Field(#currlang)	Type(*char)	Length(4)	Default(*language)
*	
Group_By	Name(#webform)	Fields((#stdrentry	*hidden)	(#frametgt	*noid)	#surname	#searchwam	(#currlang	*hidden)	(#partition	*hidden)	(#wamname	*hidden)	(#webrname	*hidden)	(#techserv	*hidden))

*	
Change	Field(#wamname)	To(<your	wam	name>)
Change	Field(#webrname)	To(<your	wam	webroutine	name>)
Change	Field(#frametgt)	To(<your	iframe	name>)
Change	Field(#stdrentry)	To(N)
*	
Request	Fields(#webform)	Exit_Key(*no)	Menu_Key(*no)	Prompt_Key(*no)
*	

	

2.		Replace	<your	wam	name>,	<your	wam	name>	and	<your	iframe	name>
with	the	appropriate	names.

					Note	that	the	WAM	must	exist	in	the	same	partition	and	will	execute	in	the
same	language	using	the	default	LANSA:XHTML	technology	service.
Otherwise,	change	the	values	of	fields	#techserv,	#currlang	and	#partition
accordingly.

3.		Using	the	LANSA	Web	Editor,	create	a	Visual	component	type	Input	and	call
it	FRAMETGT.

4.		Name	the	page	for	the	component	FRAMETGT	as	well.
5.		Create	a	new	page	and	past	this	code:
<iframe	style="width:600px;	height:400px"	name='<RDML	MERGE="FRAMETGT">'>
</iframe>
	

6.		Save	the	page	as	FRAMETGT.
7.		Using	the	LANSA	Web	Function	Editor,	create	a	Visual	component	type
Input	and	call	it	SEARCHWAM.

8.		Name	the	page	for	the	component	SEARCHWAM	as	well.
9.		Create	a	new	page	and	past	this	code:
	
<button	onclick="return
HandleWAMEvent('<RDML	MERGE="WAMNAME">',
'<RDML	MERGE="WEBRNAME">',	'<RDML	MERGE="TECHSERV">',	null,	'<RDML	MERGE="TARGET">',	null,	'<RDML	MERGE="PARTITION">',	'<RDML	MERGE="CURRLANG">',	null,	null,	'ASURNAME',	'ASTDRENTRY')">Search</button>
	
<script	type="text/javascript">
//<![CDATA[

function	CreateTempForm(ownerDoc)
{
			var	oTempForm	=	ownerDoc.createElement("form");
	
			if	(oTempForm	!=	null)
			{
						if	(typeof	oTempForm.setAttribute	===	"function")
						{
									oTempForm.setAttribute("method",	"post");
						}
						else
						{
									oTempForm	=	ownerDoc.createElement("<form	method=\"post\">
</form>");
						}
			}
			return	oTempForm;
}
	
function	HandleWAMEvent(WAM,	WebRoutine,	techServ,	Form,	Target,
actionRequest,	Partition,	Language,	optSessionKey,	optDebugMode	/*,	field1,
field2,	etc...*/)
{
			if	(Form	==	null)
			{
						Form	=	document.LANSA;
			}
			if	(techServ	==	null)
			{
						techServ	=	"LANSA:XHTML";
			}
	
			var	oTempForm	=	CreateTempForm(Form.ownerDocument);
	
			if	(oTempForm	!=	null)
			{
						Form.ownerDocument.body.appendChild(oTempForm);
						var	argLen	=	arguments.length;
	

						if	(argLen	>	10)
						{
									for	(var	index	=	10;	index	<	argLen;	index++)
									{
												var	fieldNameWithPrefix	=	arguments[index];
												var	fieldName	=	fieldNameWithPrefix.substr(1,
fieldNameWithPrefix.length	-	1);
												for	(var	ind	=	fieldNameWithPrefix.length;	ind	<	10;	ind++)
												{
															fieldNameWithPrefix	+=	"	";
												}
												var	fieldValue	=	Form.elements[fieldNameWithPrefix].value;
												InsertHidden(oTempForm,	fieldName,	fieldValue);
									}
						}
	
						//	Add	STDANCHOR	if	available
						var	anchorField	=	Form.elements["ASTDANCHOR"];
						if	(anchorField	!=	null)
						{
									InsertHidden(oTempForm,	"STDANCHOR",	anchorField.value);
						}
	
						var	prevAction	=	oTempForm.action;
						var	prevTarget	=	oTempForm.target;
	
						var	action	=	"";
						if	(actionRequest	==	null	||	actionRequest.length	<=	0)
						{
									actionRequest	=	"/cgi-bin/lansaweb";
						}
						action	+=	actionRequest	+	"?wam="	+	WAM	+	"&webrtn="	+
WebRoutine	+	"&ml="	+	techServ	+	"&part="	+	Partition	+	"&lang="	+
Language;
						if	(optDebugMode	!=	null	&&	optDebugMode.length	>	0)
						{
									action	+=	"&debug="	+	optDebugMode;
						}
						if	(optSessionKey	!=	null)

						{
									action	+=	"&sid="	+	optSessionKey;
						}
						oTempForm.action	=	action;
					
						if	(Target	!=	null)
						{
									oTempForm.target	=	Target;
						}
						oTempForm.submit();
						setTimeout(function()	{
												oTempForm.action	=	prevAction;
												oTempForm.target	=	prevTarget;
												oTempForm.parentNode.removeChild(oTempForm);
									},	100);
			}
			return	false;
}
	
function	InsertHidden(Form,	FieldName,	FieldValue)
{
			if	(Form	==	null)
			{
						return;
			}
	
			var	field	=	Form.elements[FieldName];
	
			if	(field	==	null)
			{
						var	elem	=	Form.document.createElement("input");
	
						if	(elem	!=	null)
						{
									elem.setAttribute("type",	"hidden");
									elem.setAttribute("name",	FieldName);
									elem.setAttribute("value",	FieldValue);
									Form.appendChild(elem);
						}

			}
			else
			{
						field.value	=	FieldValue;
			}
}
//]]>
</script>
	

10.	Save	the	page	as	SEARCHWAM.
11.	Compile	your	webevent	functions	generating	the	HTML.
12.	Run	the	above	WEBEVENT	example	in	the	browser.	Clicking	a	Search
button	should	navigate	to	a	WAM	and	WEBROUTINE	you	nominated	in
WAMNAME	and	WEBRNAME	fields.	The	HTML	response	resulting	from
executing	the	WEBROUTINE	will	be	shown	in	the	FRAMETGT	component
on	the	same	page	as	the	WEBEVENT	Search	button.

6.5	Sharing	Information	between	WAMs	and	WEBEVENT
Functions
Existing	WEBEVENT	functions	sometimes	share	non-visible	or	server	side
information	amongst	themselves	using	hidden	browse	list(s)	and/or	hidden
field(s)	that	often	pass	through	the	client	browser	on	each	web	interaction.	This
technique	is	a	simple	form	of	session	state	management.
This	technique	is	acceptable	for	sharing	information	between	WEBEVENT
functions,	but	it	cannot	be	used	to	share	information	between	WAMs	and
WEBEVENT	functions	-	or	vice-versa.
There	is	a	newer,	better	and	clearer	general-purpose	technique	for	sharing
information	between	both	WEBEVENT	and	WAM	applications	executing
within	the	same	web	session	and	it	is	described	in:
6.5.1	Uniquely	Identifying	Shared	Data
6.5.2	Sharing	Data
6.5.3	Clean	up	Shared	Data
6.5.4	Visual	LANSA	Framework	and	the	'Virtual	Clipboard'

6.5.1	Uniquely	Identifying	Shared	Data
Any	interaction	between	a	browser	and	a	server	via	a	stateless	HTTP	protocol
can	use	a	unique	value	passed	between	the	browser	and	server.	This	serves	as
special	key	to	indentify	other	data	maintained	on	the	server	that	is	never	passed
to	the	browser	and	not	visible.	It	is	analogous	to	a	key	in	a	database	that
identifies	a	row	or	multiple	rows	of	data	and	can	also	server	as	a	foreign	key	to
other	tables	of	data.
WAMs	use	a	similar	technique,	using	a	unique	identifier	which	is	used	as	a	way
to	determine	the	identity	of	the	session	and	its	access	session	state	on	the	server.
You	can	use	a	similar	method	to	share	data	between	a	WEBEVENT	function
and	a	WAM.	All	that	is	required	is	to	pass	a	special	unique	identifier	key
between	the	browser	and	the	server	as	the	browser	interaction	progresses	from
WEBEVENT	to	a	WAM	and	vice	versa.	The	browser	can	simply	store	this
value	in	a	hidden	field	on	the	form,	which	is	submitted	with	the	form.
It	is	strongly	recommended	this	identifier	value	is	32	bytes	long	and	unique,	to
identify	unique	server	data	sets.	WAM	forms,	by	default,	maintain	and	submit
STDANCHOR	field	for	this	purpose.	For	WEBEVENT	forms	you	should	add
this	field	to	your	DISPLAY/REQUEST	commands	to	ensure	it	is	also	placed	on
your	WEBEVENT	forms.	You	should	create	this	Alpha	field	of	length	32	in
your	repository	and	use	it	in	both	your	WAM	and	WEBEVENT	code	to	retrieve
data	you	wish	to	share	between	them.	You	can	then	use	this	field	as	a	key	into	a
database	table	that	maintains	shared	data,	or	use	operating	system	files	with	the
key	as	a	filename	to	maintain	shared	data.

6.5.2	Sharing	Data
As	an	example,	consider	an	application	that	needs	to	share	a	shopping	cart.	The
shopping	cart	may	be	represented	by	a	list	and	may	contain	a	product	identifier,
product	name,	and	quantity.	Consider	a	WEBEVENT	application	where	a
customer	adds	a	number	of	products	to	a	shopping	cart	list.	In	your
WEBEVENT	code,	you	can	assign	a	unique	identifier	to	STDANCHOR	and
then	insert	entries	in	the	shopping	cart	list	into	a	database	table	with
STDANCHOR	as	a	key.	Add	STDANCHOR	to	the	DISPLAY	command	to
ensure	that	its	value	is	available	in	the	form	as	a	hidden	field.
When	a	WEBEVENT	form	is	shown	in	the	browser,	it	will	also	contain	the
STDANCHOR	unique	identifier.	You	can	then	navigate	to	a	WAM	using	the
HandleWAMEvent()	JavaScript	function	as	described	in	6.	WAM	and
WEBEVENT	Interoperability.
HandleWAMEvent()	automatically	looks	for	the	STDANCHOR	field	in	the
form	and	submits	its	value	as	well.
On	the	WAM	side,	the	STDANCHOR	field	needs	to	be	placed	on	the
WEB_MAP	to	ensure	it	is	mapped	into	the	WebRoutine.	When	the	target
WebRoutine	is	executed,	it	will	receive	the	STDANCHOR	identifier	value	and
any	other	field	values	passed	via	HandleWAMEvent()	and	mapped	into	the
WebRoutine	on	the	WEB_MAP.	In	the	WebRoutine,	the	shopping	cart	list	can
then	be	retrieved	from	the	database	table	using	the	STDANCHOR	key.	The
values	can	then	be	placed	into	a	WAM	list	that	belongs	to	WAM	Session	state
and	the	data	keyed	by	STDANCHOR	deleted	from	the	database.	Alternatively,	a
special	cleanup	job	can	be	scheduled	to	run	to	clean	up	stale	data	from	the
database.
To	pass	data	from	a	WAM	to	a	WEBEVENT,	the	steps	above	can	be	performed
in	reverse	order.	The	HandleWebEvent()	JavaScript	function	automatically
looks	for	the	STDANCHOR	field	on	the	WAM	form	and	submits	it	with	the	rest
of	submitted	data.

6.5.3	Clean	up	Shared	Data
As	described	in	6.5.2	Sharing	Data,	maintaining	shared	data	between	WAMs
and	WEBEVENT	functions	requires	the	data	to	be	stored	in	some	storage	such
as	database	or	files	accessible	to	both.	The	nature	of	browser-based	applications
is	such	that	it	is	not	always	possible	to	know	when	a	user	has	finished	using	the
application	so	that	appropriate	clean	up	of	shared	data	can	be	performed.
It	is	for	this	reason	that	all	browser-based	applications	that	require	transient	data
to	be	maintained	on	the	server	need	some	kind	of	timeout	mechanism	to
determine	when	this	data	is	stale	and	can	be	cleaned	up.
For	this	reason,	when	sharing	data	using	the	STDANCHOR	mechanism
described	in	6.5.2	Sharing	Data,	it	is	recommended	that	a	time	stamp	is	also	set
on	the	data	whenever	shared	data	is	stored	or	updated.	This	time	stamp	can	then
be	used	by	the	clean	up	job	to	determine	the	last	time	the	data	was	used	and
whether	is	is	a	candidate	for	clean	up.
If	your	application	has	some	kind	of	"Logout"	function,	it	is	recommended	that
shared	data	clean	up	also	occurs	at	this	point.	However,	a	user	may	not	always
perform	a	"Logout",	hence	a	clean	up	mechanism	is	still	required	to	ensure	stale
shared	data	is	cleaned	up.

6.5.4	Visual	LANSA	Framework	and	the	'Virtual	Clipboard'
Visual	LANSA	Framework	for	the	Web	employs	a	'virtual	clipboard'	facility	for
sharing	session	data.	Refer	to	The	Virtual	Clipboard	in	the	Visual	LANSA
Framework	Guide.

its:Lansa048.chm::/lansa/lansa048_0840.htm

7.	Technology	Services
WAMs	use	XSL	Technology	both	for	generation	of	XSL	Stylesheets	and	at
runtime	to	produce	presentation	output	that	is	delivered	to	the	browser	(or	other
user	agent).
XSL	Technology	allows	for	transformations,	the	output	of	which	is	another	XSL
Stylesheet.	This	is	the	purpose	of	the	Technology	Service	XSL	Stylesheet	used
for	generation.
The	Input	XML	to	the	Technology	Service	XSL	Stylesheet	is	an	XML	file
containing	information	about	the	fields	and	lists	used	in	WebRoutines.	This	is
information	such	as	field	length,	field	type,	its	attributes	and	so	on.	This
information	can	be	used	by	the	Technology	Service	XSL	Stylesheet	to	generate
the	appropriate	WebRoutine	Stylesheet	to	reflect	its	fields	and	lists	used	in
WEB_MAPs.
LANSA	supplies	Technology	Services	for	XHTML	and	jQuery	Mobile.	You
may	need	to	create	your	own	Technology	Service	for	the	following	reasons:

To	implement	other	existing	XML	mark-up	languages,	such	as	BPEL,	or
new	ones	as	they	appear.
To	interface	with	a	supplier	or	customer	that	expects	a	custom	XML	format.
To	customize	for	specific	user-agents	(for	example,	HTML	with	Microsoft
Internet	Explorer	specific	extensions).

To	create	a	Technology	Service,	refer	to
7.1	Create	a	Technology	Service
7.2	TSML	Document	Structure
7.3	TSML	Document	Example
7.4	WebRoutine	TSP	Stylesheet	and	the	LANSA	Editor
7.5	Default	Weblet	for	Technology	Service
7.6	About	Weblets	and	Weblet	Templates

7.1	Create	a	Technology	Service
To	create	a	Technology	Service,	follow	these	steps:
Step	1.	Create	a	Technology	Service
Step	2.	Create	the	Technology	Service	XSL	Stylesheets
Step	2a.	Create	the	WebRoutine	TSP	Stylesheet
Step	2b.	Create	the	Weblet	TSP	Stylesheet
Step	2c.	Copy	your	Technology	Service	Stylesheets	to	the	TSP	directory

Step	1.	Create	a	Technology	Service
You	create	a	Technology	Service	using	the	LANSA	Editor.	The	Provider	and
Technology	Service	name	uniquely	identify	the	Technology	Service.
When	you	create	a	Technology	Service	you	define	its	properties.	The	properties
store	definitions	and	options	used	by	the	LANSA	Editor	and	the	WAM	runtime.

Also	see
Editing	Provider	Definitions	in	the	Visual	LANSA	User	Guide
Technology	Services	in	the	Technical	Reference	Guide

Step	2.	Create	the	Technology	Service	XSL	Stylesheets
How	WAMs	use	XSL	stylesheets	to	transform	the	WebRoutine	XML	document
into	different	presentation	formats	and	the	purpose	of	Technology	Services,	is
described	earlier	in	this	guide.	Refer	to	WAMs	Deconstructed.
LANSA	uses	XSL	stylesheets	itself	to	generate	the	WebRoutine	XML	document
and	the	WebRoutine	XSL	stylesheet	for	a	Technology	Service	as	shown	here:

its:Lansa012.chm::/lansa/l4wusr01_1610.htm
its:lansa015.chm::/lansa/l4wtgu04_0105.htm
its:LANSA087.CHM::/lansa/wamengm2_0010.htm

When	XSL	is	generated	for	a	WebRoutine,	LANSA	generates	an	in-memory
XML	document	named	the	Technology	Service	Markup	Language	(TSML)
document.	This	is	the	input	document	used	to	create	both	the	WebRoutine
LXML	document	and	the	WebRoutine	XSL	stylesheet.	A	similar	process	is
followed	for	the	WAM	layout	weblet.
When	you	create	a	Technology	Service	you	need	to	provide	two	TSP
stylesheets:

the	first	one	to	generate	the	WebRoutine	XSL	stylesheet
the	second	one	to	generate	the	WAM	layout	weblet.

Your	TSP	Stylesheets	must	be	encoded	for	UTF-8.	That	is,	it	should
include	the	statement	<?xml	version="1.0"	encoding="UTF-8"	?>
The	XSL	used	for	transformation	of	the	XML	WebRoutine	document
conforms	with	the	standard	W3C	XSL	1.0	specification.	Refer	to	XSL
1.0	references	for	information.

The	Global	LXML	stylesheets	are	the	same,	regardless	of	Technology	Service.
You	don't	need	to	create	your	own.
Refer	to	these	sections	for	information	about	the	Technology	Service	Markup
Language	document:
7.2	TSML	Document	Structure
7.3	TSML	Document	Example

Step	2a.	Create	the	WebRoutine	TSP	Stylesheet
The	WebRoutine	TSP	stylesheet	is	used	to	create	the	WebRoutine	XSL
stylesheet	as	shown	in	the	diagram	in	Step	2.
You	must	follow	this	naming	convention	(Name	must	be	all	lower-case):
tsp_<provider>_<technology_service_name>_WebRoutine.xsl
Where	<provider>	is	the	Technology	Service	Provider	and
<technology_service_name>	is	the	Technology	Service	name.	For	example,	for
LANSA:XHTML	the	WebRoutine	TSP	stylesheet	name	is:
tsp_lansa_xhtml_WebRoutine.xsl
The	easiest	way	of	creating	a	WebRoutine	TSP	stylesheet	is	to	base	it	on	the
ones	provided	by	LANSA.

The	shipped	WebRoutine	TSP	stylesheets	have	two	top-level
parameters	(g_inliner_call	and	g_import_path).	These	are	used	to
support	inline	lists.	An	inliner	call	is	when	the	generator	needs	to
insert	the	inline	weblet.

Step	2b.	Create	the	Weblet	TSP	Stylesheet
The	Weblet	TSP	stylesheet	is	used	to	create	the	WAM	Layout	Weblet.	When
you	create	a	WAM,	LANSA	checks	if	it	has	a	Layout	weblet.	If	it	doesn't	have
one,	it	uses	this	TSP	stylesheet	to	create	one.
You	must	follow	this	naming	convention	(Name	must	be	all	lower-case):
tsp_<provider>_<technology_service_name>_webletbuilder.xsl
Where	<provider>	is	the	Technology	Service	Provider	and
<technology_service_name>	is	the	Technology	Service	name.	For	example,	for
LANSA:XHTML	the	Weblet	TSP	stylesheet	name	is:
tsp_lansa_xhtml_webletbuilder.xsl
The	easiest	way	of	creating	a	Weblet	TSP	stylesheet	is	to	base	it	on	the	ones
provided	by	LANSA.

Note:	The	shipped	Weblet	TSP	stylesheets	have	templates	for	creating
other	weblets.	Currently	the	only	weblet	you	need	to	implement	in
your	TSP	stylesheet	is	the	Layout	weblet.

Step	2c.	Copy	your	Technology	Service	Stylesheets	to	the	TSP
directory

All	TSP	stylesheets	must	be	placed	in	the	TSP	directory:
...	<sysdir>\web\tsp
IBM	i	and	Unix/Linux:	...	<lansa	root>/x_lansa/web/tsp

7.2	TSML	Document	Structure
The	Technology	Service	Markup	Language	(TSML)	document	is	produced	by
Visual	LANSA.	It	describes	the	fields	and	lists	mapped	(defined	in
WEB_MAPS)	in	the	WebRoutine,	has	context	information	from	the	WAM	and
stores	values	from	the	existing	LXML	document	(which	will	be	replaced)	so
they	can	be	retained	in	the	new	XML/XSL	to	be	generated.	Its	structure	is	very
similar	to	the	LXML	document	(which	can	be	viewed	in	the	XML	tab	of	the
Web	Design	in	the	LANSA	Editor),	but	with	additional	meta-data	used	to	create
the	XSL	stylesheet.
The	TSML	document	is	divided	into	the	following	sections:
Technology	Service	List
Used	by	Generation	to	determine	how	many	XSL	exist	for	a	given	Technology
Service.	If	there	is	only	XSL	(for	the	default	language)	and	the	WebRoutine
XSL	is	regenerated,	then	tsml	nodes	from	the	document	about	to	be	replaced
can	be	safely	removed.
Server	Instructions
These	instructions	are	mapped	directly	into	the	LXML	document.	These
elements	are	used	by	the	WAM	runtime	to	prepare	the	HTTP	response.
Weblets	Section
Lists	the	weblets	used	for	visualization	by	the	tsml:field	and	tsml:list	columns
referenced	in	the	WebRoutine.	The	weblets	list	the	parameters	for	template	calls
used	by	each	Technology	Service.
LXML	Data	Section
Lists	content	that	will	map	into	LXML	data	islands	in	XSL	stylesheets.	For
example,	it	lists	picklist	entries	for	dropdowns.
Replaced-LXML	Section
This	section	contains	the	portions	of	the	current	LXML	document	(to	be
replaced	by	regeneration)	that	have	values	that	should	be	retained.	Currently
this	section	includes	cookies,	sample	messages,	field	captions	and	sample
values,	list	captions	and	sample	values	and	TSML	data	islands.
Context	Section
This	section	in	the	TSML	document	contains	contextual	information	about	the
WebRoutine.	Items	such	as	WAM	name,	WebRoutine	name,	WebRoutine	title
are	available	here.	Note:	Not	all	the	context	items	map	into	context	lxml:items.

Some	are	used	only	during	generation.	For	example,	the	tsml:layout-name	item
names	the	layout	weblet	to	import	in	the	XSL	stylesheet.
Options	Section
The	options	section	contains	various	options	that	may	be	modified	for	a
WebRoutine	that	may	determine	whether	particular	validation	or	presentation
functionality	is	enabled.
Messages	Section
Maps	into	the	LXML	document	messages	section.
Fields	Section
The	fields	section	contains	fields	that	appear	as	outgoing	fields	in	WEB_MAP
statements	in	the	WebRoutine.	These	are	the	fields	that	appear	in	the	field	list	in
the	LXML	document.	In	addition	to	the	caption	and	value	elements,	the
tsml:field	has	meta-data	content	such	as	display	size,	input-case	and	weblet
visualization	(if	available).
Lists	Section
The	lists	section	contains	lists	that	appear	as	outgoing	lists	in	WEB_MAP
statements	in	the	WebRoutine.	These	are	the	lists	that	appear	in	the	LXML
document.	In	addition	to	the	column	caption	and	value	elements,	the
tsml:column	has	the	same	meta-data	content	as	the	tsml:field	element.

The	LANSA	Editor	uses	the	WebRoutine	TSP	stylesheet	to	create
XSL	for	fields	and	lists.	If	your	Technology	Service	is	editable	by	the
LANSA	Editor,	your	templates	to	create	fields	and	lists	must	follow
the	pattern	used	in	the	TSP	stylesheets	provided	by	LANSA.

7.3	TSML	Document	Example
The	following	is	an	example	of	the	TSML	document:
<?xml	version="1.0"	encoding="UTF-8"?>
<tsml:data	full-
document="true"	inline="none"	xmlns:tsml="http://www.lansa.com/2002/XML/Generation-
Metadata">
<tsml:technology-service-list>
<tsml:technology-service	used_by="LANSA_XHTML"	lang-count="1"	/>

<tsml:server-instructions>
<tsml:client-charset	/>
<tsml:cookies	/>
<tsml:ssi	/>
</tsml:server-instructions>

<tsml:replaced-lxml	xmlns:lxml="http://www.lansa.com/2002/XML/Runtime-
Data"	/>

<tsml:weblets>
<tsml:weblet	name="std_dropdown.std_dropdown">
<tsml:technology-services>
<tsml:technology-service	name="LANSA:XHTML"	mod-
id="20120116205618000">
<tsml:template-params>
<tsml:template-param>
<tsml:param-name>display_mode</tsml:param-name>
<tsml:param-role>std:display_mode</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>items</tsml:param-name>
<tsml:param-role>std:picklist</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>pos_absolute</tsml:param-name>
<tsml:param-role>std:pos_absolute_design</tsml:param-role>
</tsml:template-param>
<tsml:template-param>

<tsml:param-name>width_design</tsml:param-name>
<tsml:param-role>std:width_design</tsml:param-role>
</tsml:template-param>
</tsml:template-params>
</tsml:technology-service>
</tsml:technology-services>
</tsml:weblet>
</tsml:weblets>

<tsml:lxml-data	xmlns:lxml="http://www.lansa.com/2002/XML/Runtime-
Data">
<lxml:picklist	id="9C3BBEF5861148FE8B36378F5F06EF26"	field-
ref="GRADEX">
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTGRADED"	/>
</lxml:caption>
<lxml:value>D</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTGRADEM"	/>
</lxml:caption>
<lxml:value>M</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTGRADEP"	/>
</lxml:caption>
<lxml:value>P</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTGRADEF"	/>
</lxml:caption>
<lxml:value>F</lxml:value>
</lxml:item>
</lxml:picklist>
</tsml:lxml-data>

<tsml:context>
<tsml:user-id>QOTHPRDOWN</tsml:user-id>
<tsml:webapplication>EMPWAM</tsml:webapplication>
<tsml:webapplication-title>Employee</tsml:webapplication-title>
<tsml:WebRoutine>skills</tsml:WebRoutine>
<tsml:WebRoutine-title>Employee	skills</tsml:WebRoutine-title>
<tsml:service-name	/>
<tsml:partition>WEX</tsml:partition>
<tsml:language	iso-lang="en">ENG</tsml:language>
<tsml:images-path>/images</tsml:images-path>
<tsml:action-request>/CGI-BIN/lansaweb</tsml:action-request>
<tsml:layout-name>empwam_layout</tsml:layout-name>
<tsml:timestamp>2012-03-07T10:30:00+10:00</tsml:timestamp>
</tsml:context>

<tsml:options>
<tsml:option	name="DBCS">false</tsml:option>
<tsml:option	name="align-right">true</tsml:option>
<tsml:option	name="check-numeric">false</tsml:option>
<tsml:option	name="debug"	/>
<tsml:option	name="trace"	/>
<tsml:option	name="task"	/>
</tsml:options>

<tsml:variables	/>

<tsml:messages	/>

<tsml:fields>
<tsml:field	name="EMPNO">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDE</tsml:sample-value>
<tsml:format>
<tsml:type>alpha</tsml:type>
<tsml:display-max-length>5</tsml:display-max-length>
<tsml:max-length>5</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift	/>

</tsml:format>
<tsml:caption	ref="description">
<tsml:label>Employee	no....</tsml:label>
<tsml:description>Employee	Number</tsml:description>
<tsml:heading-1>		Employ</tsml:heading-1>
<tsml:heading-2>		Number</tsml:heading-2>
<tsml:heading-3	/>
</tsml:caption>
</tsml:field>
<tsml:field	name="GIVENAME">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDEFGHIJKLMNOPQRST</tsml:sample-value>
<tsml:format>
<tsml:type>alpha</tsml:type>
<tsml:display-max-length>20</tsml:display-max-length>
<tsml:max-length>20</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift>O</tsml:keyboardshift>
</tsml:format>
<tsml:caption	ref="description">
<tsml:label>Given	names....</tsml:label>
<tsml:description>Employee	Given	Name(s)</tsml:description>
<tsml:heading-1>Given	name(s)</tsml:heading-1>
<tsml:heading-2	/>
<tsml:heading-3	/>
</tsml:caption>
</tsml:field>
<tsml:field	name="SURNAME">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDEFGHIJKLMNOPQRST</tsml:sample-value>
<tsml:format>
<tsml:type>alpha</tsml:type>
<tsml:display-max-length>20</tsml:display-max-length>
<tsml:max-length>20</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift>O</tsml:keyboardshift>
</tsml:format>
<tsml:caption	ref="description">
<tsml:label>Surname........</tsml:label>

<tsml:description>Employee	Surname</tsml:description>
<tsml:heading-1>Surname</tsml:heading-1>
<tsml:heading-2	/>
<tsml:heading-3	/>
</tsml:caption>
</tsml:field>
</tsml:fields>

<tsml:lists	default-sample-size="5">
<tsml:list	name="SKILLS"	inline="false">
<tsml:mode>input</tsml:mode>
<tsml:list-header>
<tsml:header	name="SKILCODE">
<tsml:heading-1>Skill</tsml:heading-1>
<tsml:heading-2>Code</tsml:heading-2>
<tsml:heading-3	/>
</tsml:header>
<tsml:header	name="SKILDESC">
<tsml:heading-1>Skill</tsml:heading-1>
<tsml:heading-2>Description</tsml:heading-2>
<tsml:heading-3	/>
</tsml:header>
<tsml:header	name="GRADEX">
<tsml:heading-1>Grade</tsml:heading-1>
<tsml:heading-2>Obtained</tsml:heading-2>
<tsml:heading-3>for</tsml:heading-3>
</tsml:header>
<tsml:header	name="DATEACQ">
<tsml:heading-1>				Date	Skl</tsml:heading-1>
<tsml:heading-2>				Acquired</tsml:heading-2>
<tsml:heading-3	/>
</tsml:header>
</tsml:list-header>
<tsml:list-entries>
<tsml:entry>
<tsml:column	name="SKILCODE">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDEFGHIJ</tsml:sample-value>
<tsml:format>

<tsml:type>alpha</tsml:type>
<tsml:display-max-length>10</tsml:display-max-length>
<tsml:max-length>10</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift>O</tsml:keyboardshift>
</tsml:format>
</tsml:column>
<tsml:column	name="SKILDESC">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDEFGHIJKLMNOPQRST</tsml:sample-value>
<tsml:format>
<tsml:type>alpha</tsml:type>
<tsml:display-max-length>20</tsml:display-max-length>
<tsml:max-length>20</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift>O</tsml:keyboardshift>
</tsml:format>
</tsml:column>
<tsml:column	name="GRADEX">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>D</tsml:sample-value>
<tsml:format>
<tsml:type>alpha</tsml:type>
<tsml:display-max-length>1</tsml:display-max-length>
<tsml:max-length>1</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift	/>
</tsml:format>
<tsml:use-weblets>
<tsml:use-weblet	name="std_dropdown.std_dropdown"	technology-
service="LANSA:XHTML"	/>
</tsml:use-weblets>
</tsml:column>
<tsml:column	name="DATEACQ">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>12/34/56</tsml:sample-value>
<tsml:format>
<tsml:type>signed</tsml:type>
<tsml:display-max-length>11</tsml:display-max-length>

<tsml:max-length>6</tsml:max-length>
<tsml:total-digits>6</tsml:total-digits>
<tsml:fraction-digits>0</tsml:fraction-digits>
<tsml:decimal-separator>.</tsml:decimal-separator>
</tsml:format>
</tsml:column>
</tsml:entry>
</tsml:list-entries>
</tsml:list>
</tsml:lists>

</tsml:data>
	

7.4	WebRoutine	TSP	Stylesheet	and	the	LANSA	Editor
The	WebRoutine	TSP	stylesheet	is	used	both	during	generation	and	by	the
LANSA	Editor	when	you	drag	and	drop	fields	and	or	lists	in	the	web	designer.
7.4.1	Payload	Wrapper	XSL	stylesheet
7.4.2	Sample	Field	Drag	and	Drop

7.4.1	Payload	Wrapper	XSL	stylesheet
The	LANSA	Editor	uses	a	Payload	Wrapper"	XSL	stylesheet	to	transform	a
field	or	list	TSML	node	and	get	the	contents	to	add	to	the	design.
The	Payload	Wrapper	XSL	imports	the	WebRoutine	TSP	stylesheet	(for	the
currently	active	TSP).	The	output	of	this	XSL	is	the	contents	that	the	LANSA
Editor	needs	to	add	to	the	design	(XSL	imports,	lxml	data	nodes,	XSL	for	the
field	or	list)
Note	that	the	Payload	Wrapper	expects	some	XSL	templates	to	be	defined	in	the
WebRoutine	TSP	Stylesheet.
<?xml	version="1.0"	encoding="UTF-8"?>
	
<!--	(c)	2002,	2013	LANSA																										-->
<!--	WAM	Editor	TSP	Stylesheet	Wrapper													-->
<!--	$Workfile::	tsp_payload_wrapper.xsl									$	-->
<!--	$Revision::	3																															$	-->
	
<xsl:transform	version="1.0"
								xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
								xmlns:xslt="http://www.lansa.com/2002/XSL/Transform-Alias"
								xmlns:lxml="http://www.lansa.com/2002/XML/Runtime-Data"
								xmlns:tsml="http://www.lansa.com/2002/XML/Generation-Metadata"
								xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"
								xmlns:lansa_design="http://www.lansa.com/2002/XML/Design"
								xmlns="http://www.w3.org/1999/xhtml"
								exclude-result-prefixes="tsml">
	
				<xsl:import	href="%tsp_webroutine%.xsl"/>
	
				<xsl:output	method="xml"	omit-xml-declaration="no"
																				encoding="UTF-8"	indent="yes"/>
				<xsl:namespace-alias	stylesheet-prefix="xslt"	result-prefix="xsl"/>
	
				<xsl:template	match="tsml:data[@full-document	=	'false']">
				<lansa_design:payload
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
								xmlns:lxml="http://www.lansa.com/2002/XML/Runtime-Data"
								xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"

								xmlns:lansa_design="http://www.lansa.com/2002/XML/Design"
								xmlns="http://www.w3.org/1999/xhtml">
	
				<lansa_design:imports>
				<xsl:call-template	name="weblet-imports"/>
				</lansa_design:imports>
	
				<xsl:apply-templates	select="tsml:lxml-data"/>
	
				<lansa_design:content>
				<xsl:apply-templates	select="*[not(self::tsml:lxml-data)]"/>
				</lansa_design:content>
				</lansa_design:payload>
				</xsl:template>
	
				<xsl:template	match="tsml:lxml-data">
				<lansa_design:lxml-data>
				<xsl:apply-imports	/>
				</lansa_design:lxml-data>
				</xsl:template>
	
				<xsl:template	match="tsml:fields">
				<xsl:apply-templates	select="tsml:field"	/>
				</xsl:template>
	
				<xsl:template	match="tsml:field">
				<lansa_design:label>
				<xsl:if	test="(tsml:mode	!=	'hidden')	and	(tsml:mode	!=	'private')">
				<xsl:call-template	name="field-caption">
				<xsl:with-param	name="field"	select="."/>
				</xsl:call-template>
				</xsl:if>
				</lansa_design:label>
				<lansa_design:value>
				<xsl:if	test="tsml:mode	!=	'private'">
				<xsl:call-template	name="field-value">
				<xsl:with-param	name="field"	select="."/>
				</xsl:call-template>
				</xsl:if>

				</lansa_design:value>
				</xsl:template>
	
				<xsl:template	match="tsml:lists[not(@column-only)]">
				<lansa_design:reference>
				<xsl:apply-imports	/>
				</lansa_design:reference>
				<lansa_design:implementation>
				<xsl:apply-templates	select="tsml:list"	mode="template_definition"/>
				</lansa_design:implementation>
				</xsl:template>
				
				<xsl:template	match="tsml:lists[@column-only]">
				<xsl:apply-templates	select="tsml:list"/>
				</xsl:template>
	
				<xsl:template	match="tsml:lists[@column-only]/tsml:list">
				<lansa_design:value>
				<xsl:variable	name="inline_list"
												select="(@inline	=	'true')	or	((@inline	=	'default')	and
$g_inline_lists)"/>
				<xsl:apply-templates	select="./tsml:list-entries/tsml:entry/tsml:column"
												mode="column_placement">
				<xsl:with-param	name="inline_list"	select="$inline_list"/>
				</xsl:apply-templates>
				</lansa_design:value>
				</xsl:template>
</xsl:transform>
	

7.4.2	Sample	Field	Drag	and	Drop
The	following	samples	show	the	field,	list	and	list	column	TSML	nodes	and	the
resulting	documents	produced	by	by	the	Payload	Wrapper	XSL	stylesheet.	We
use	Technology	Service	XHTML	for	these	samples:
Dragging	and	Dropping	a	Field
Dragging	and	Dropping	a	List
Dragging	and	Dropping	a	List	Column

Dragging	and	Dropping	a	Field
Field	TSML	Node
Field	Drag	and	Drop	output

Field	TSML	Node

This	is	the	TSML	Node	for	a	field	with	a	picklist	visualized	with		weblet
std_dropdown:

<?xml	version="1.0"	encoding="UTF-8"?>
	
<tsml:data	full-document="false"	inline="none"
														xmlns:tsml="http://www.lansa.com/2002/XML/Generation-
Metadata">
				
<tsml:weblets>
<tsml:weblet	name="std_dropdown.std_dropdown">
<tsml:technology-services>
<tsml:technology-service	name="LANSA:XHTML"
																	mod-id="20121221132340000">
<tsml:template-params>
<tsml:template-param>
<tsml:param-name>display_mode</tsml:param-name>
<tsml:param-role>std:display_mode</tsml:param-role>
<tsml:param-select>'input'</tsml:param-select>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>items</tsml:param-name>
<tsml:param-role>std:picklist</tsml:param-role>
<tsml:param-select>document('')/*/lxml:data/lxml:dropdown</tsml:param-
select>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>name</tsml:param-name>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>pos_absolute</tsml:param-name>
<tsml:param-role>std:pos_absolute_design</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>width_design</tsml:param-name>
<tsml:param-role>std:width_design</tsml:param-role>

</tsml:template-param>
</tsml:template-params>
</tsml:technology-service>
</tsml:technology-services>
</tsml:weblet>
</tsml:weblets>
	
<tsml:lxml-data	xmlns:lxml="http://www.lansa.com/2002/XML/Runtime-
Data">
<lxml:picklist	id="380F247733D94ECDA37898AA9AEFCCD5"
																				field-ref="DAYOFWEEK">
<lxml:item	default="true">
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN05801"	/></lxml:caption>
<lxml:value>MON</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN06001"	/></lxml:caption>
<lxml:value>TUE</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN06201"	/></lxml:caption>
<lxml:value>WED</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN06401"	/></lxml:caption>
<lxml:value>THU</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN06601"	/></lxml:caption>
<lxml:value>FRI</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN06801"	/></lxml:caption>

<lxml:value>SAT</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN07001"	/></lxml:caption>
<lxml:value>SUN</lxml:value>
</lxml:item>
</lxml:picklist>
</tsml:lxml-data>
	
<tsml:fields>
<tsml:field	name="DAYOFWEEK">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>MON</tsml:sample-value>
<tsml:format>
<tsml:type>alpha</tsml:type>
<tsml:display-max-length>3</tsml:display-max-length>
<tsml:max-length>3</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift	/>
</tsml:format>
<tsml:caption	ref="description">
<tsml:label>Day	of	the	week</tsml:label>
<tsml:description>Day	of	the	week</tsml:description>
<tsml:heading-1>Day</tsml:heading-1>
<tsml:heading-2>of</tsml:heading-2>
<tsml:heading-3>the</tsml:heading-3>
</tsml:caption>
<tsml:use-weblets>
<tsml:use-weblet	name="std_dropdown.std_dropdown"
														technology-service="LANSA:JQMOBILE"	/>
<tsml:use-weblet	name="std_dropdown.std_dropdown"
														technology-service="LANSA:XHTML"	/>
</tsml:use-weblets>
</tsml:field>
</tsml:fields>
</tsml:data>
	

Field	Drag	and	Drop	output
The	output	of	the	transformation	is	shown	.	The	LANSA	Editor	puts	the
relevant	sections	in	their	appropriate	location	in	the	target	document	(the
WebRoutine	XSL	stylesheet)
<?xml	version="1.0"	encoding="UTF-8"?>
<lansa_design:payload	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"	
				xmlns:lxml=http://www.lansa.com/2002/XML/Runtime-Data
				xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"	
				xmlns:lansa_design="http://www.lansa.com/2002/XML/Design"	
				xmlns="http://www.w3.org/1999/xhtml">
<lansa_design:imports>
<xsl:import	href="std_dropdown.xsl"	/>
</lansa_design:imports>
<lansa_design:lxml-data>
<lxml:data>
<lxml:picklist	id="380F247733D94ECDA37898AA9AEFCCD5">
<lxml:item	default="true">
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN05801"></lxml:variable>
</lxml:caption>
<lxml:value>MON</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN06001"></lxml:variable>
</lxml:caption>
<lxml:value>TUE</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN06201"></lxml:variable>
</lxml:caption>
<lxml:value>WED</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN06401"></lxml:variable>

http://www.lansa.com/2002/XML/Runtime-Data

</lxml:caption>
<lxml:value>THU</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN06601"></lxml:variable>
</lxml:caption>
<lxml:value>FRI</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN06801"></lxml:variable>
</lxml:caption>
<lxml:value>SAT</lxml:value>
</lxml:item>
<lxml:item>
<lxml:caption>
<lxml:variable	name="MTXTDEMCALEN07001"></lxml:variable>
</lxml:caption>
<lxml:value>SUN</lxml:value>
</lxml:item>
</lxml:picklist>
	
</lxml:data>
	
</lansa_design:lxml-data>
<lansa_design:content>
<lansa_design:label>
<label	class="caption"	for="DAYOFWEEK">
<xsl:value-of	select="key('field-caption',	'DAYOFWEEK')/lxml:description"
/>
</label>
</lansa_design:label>
<lansa_design:value>
<xsl:call-template	name="std_dropdown">
<xsl:with-param	name="name"	select="'DAYOFWEEK'"	/>
<xsl:with-param	name="value"	select="key('field-value',	'DAYOFWEEK')"	/>
<xsl:with-param	name="display_mode"	select="'input'"	/>
<xsl:with-param	name="items"

select="document('')/*/lxml:data/lxml:picklist[@id	=
'380F247733D94ECDA37898AA9AEFCCD5']"	/>
</xsl:call-template>
</lansa_design:value>
</lansa_design:content>
</lansa_design:payload>
	

Dragging	and	Dropping	a	List
List	TSML	Node
List	Drag	and	Drop	Output

List	TSML	Node
<?xml	version="1.0"	encoding="UTF-8"?>
<tsml:data	full-document="false"
												inline="none"
												xmlns:tsml="http://www.lansa.com/2002/XML/Generation-
Metadata">
	
<tsml:weblets>
<tsml:weblet	name="std_boolean.std_boolean">
<tsml:technology-services>
<tsml:technology-service	name="LANSA:XHTML"
								mod-id="20121220163646000"
								proxy-format="__,_PROXY">
<tsml:template-params>
<tsml:template-param>
<tsml:param-name>display_mode</tsml:param-name>
<tsml:param-role>std:display_mode</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>pos_absolute</tsml:param-name>
<tsml:param-role>std:pos_absolute_design</tsml:param-role>
</tsml:template-param>
</tsml:template-params>
</tsml:technology-service>
</tsml:technology-services>
</tsml:weblet>
<tsml:weblet	name="std_input.std_input">
<tsml:technology-services>
<tsml:technology-service	name="LANSA:JQMOBILE"
								mod-id="20130301081954000">
<tsml:template-params>
<tsml:template-param>
<tsml:param-name>displayMode</tsml:param-name>
<tsml:param-role>std:display_mode</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>id</tsml:param-name>

<tsml:param-select>concat($lweb_WRName,'_',$name)</tsml:param-select>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>label</tsml:param-name>
<tsml:param-role>std:field_caption</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>maxlength</tsml:param-name>
<tsml:param-role>std:field_maxlength</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>name</tsml:param-name>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>rdmlxDataType</tsml:param-name>
<tsml:param-role>std:rdmlx_data_type</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>size</tsml:param-name>
<tsml:param-role>std:field_display_length</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>type</tsml:param-name>
<tsml:param-role>std:field_input_type</tsml:param-role>
<tsml:param-select>'text'</tsml:param-select>
</tsml:template-param>
</tsml:template-params>
</tsml:technology-service>
</tsml:technology-services>
</tsml:weblet>
<tsml:weblet	name="std_datepicker.std_datepicker">
<tsml:technology-services>
<tsml:technology-service	name="LANSA:XHTML"
								mod-id="20121220142947000"
								proxy-format="__,_PROXY">
<tsml:template-params>
<tsml:template-param>
<tsml:param-name>allow_sqlnull</tsml:param-name>
<tsml:param-role>std:allow_sqlnull</tsml:param-role>

</tsml:template-param>
<tsml:template-param>
<tsml:param-name>display_mode</tsml:param-name>
<tsml:param-role>std:display_mode</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>pos_absolute</tsml:param-name>
<tsml:param-role>std:pos_absolute_design</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>size</tsml:param-name>
<tsml:param-role>std:field_size</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>width</tsml:param-name>
<tsml:param-role>std:width_design</tsml:param-role>
</tsml:template-param>
</tsml:template-params>
</tsml:technology-service>
</tsml:technology-services>
</tsml:weblet>
<tsml:weblet	name="std_char.std_char">
<tsml:technology-services>
<tsml:technology-service	name="LANSA:XHTML"
								mod-id="20121220115335000">
<tsml:template-params>
<tsml:template-param>
<tsml:param-name>class</tsml:param-name>
<tsml:param-role>std:field_css_class</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>display_length</tsml:param-name>
<tsml:param-role>std:field_display_length</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>display_mode</tsml:param-name>
<tsml:param-role>std:display_mode</tsml:param-role>
</tsml:template-param>
<tsml:template-param>

<tsml:param-name>height</tsml:param-name>
<tsml:param-role>std:height_design</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>keyboard_shift</tsml:param-name>
<tsml:param-role>std:keyboard_shift</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>maxlength</tsml:param-name>
<tsml:param-role>std:field_maxlength</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>pos_absolute</tsml:param-name>
<tsml:param-role>std:pos_absolute_design</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>type</tsml:param-name>
<tsml:param-role>std:field_input_type</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>width</tsml:param-name>
<tsml:param-role>std:width_design</tsml:param-role>
</tsml:template-param>
</tsml:template-params>
</tsml:technology-service>
</tsml:technology-services>
</tsml:weblet>
</tsml:weblets>
	
<tsml:lists	default-sample-size="5">
<tsml:list	name="LIST01"	inline="false">
<tsml:mode>input</tsml:mode>
<tsml:list-header>
<tsml:header	name="BOOL01">
<tsml:heading-1>Boolean</tsml:heading-1>
<tsml:heading-2>field</tsml:heading-2>
<tsml:heading-3	/></tsml:header>
<tsml:header	name="DAT01">
<tsml:heading-1>Date</tsml:heading-1>

<tsml:heading-2>field</tsml:heading-2>
<tsml:heading-3	/></tsml:header>
<tsml:header	name="CHR01">
<tsml:heading-1>DBCS	Char</tsml:heading-1>
<tsml:heading-2>field</tsml:heading-2>
<tsml:heading-3>length	10</tsml:heading-3>
</tsml:header>
</tsml:list-header>
<tsml:list-entries>
<tsml:entry>
<tsml:column	name="BOOL01">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>False</tsml:sample-value>
<tsml:format>
<tsml:type>boolean</tsml:type>
<tsml:display-max-length>5</tsml:display-max-length>
<tsml:max-length>1</tsml:max-length>
</tsml:format>
<tsml:use-weblets>
<tsml:use-weblet	name="std_boolean.std_boolean"
								technology-service="LANSA:JQMOBILE"	/>
<tsml:use-weblet	name="std_boolean.std_boolean"
								technology-service="LANSA:XHTML"	/>
</tsml:use-weblets>
</tsml:column>
<tsml:column	name="DAT01">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>1/01/1900</tsml:sample-value>
<tsml:format>
<tsml:type>date</tsml:type>
<tsml:display-max-length>10</tsml:display-max-length>
<tsml:max-length>10</tsml:max-length>
<tsml:sql-nullable>true</tsml:sql-nullable>
</tsml:format>
<tsml:use-weblets>
<tsml:use-weblet	name="std_input.std_input"
								technology-service="LANSA:JQMOBILE"	/>
<tsml:use-weblet	name="std_datepicker.std_datepicker"
								technology-service="LANSA:XHTML"	/>

</tsml:use-weblets>
</tsml:column>
<tsml:column	name="CHR01">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDEFGHIJ</tsml:sample-value>
<tsml:format>
<tsml:type>char</tsml:type>
<tsml:display-max-length>10</tsml:display-max-length>
<tsml:max-length>10</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift>J</tsml:keyboardshift>
</tsml:format>
<tsml:use-weblets>
<tsml:use-weblet	name="std_input.std_input"
								technology-service="LANSA:JQMOBILE"	/>
<tsml:use-weblet	name="std_char.std_char"
								technology-service="LANSA:XHTML"	/>
</tsml:use-weblets>
</tsml:column>
</tsml:entry>
</tsml:list-entries>
</tsml:list>
</tsml:lists>
</tsml:data>
	

List	Drag	and	Drop	Output
<?xml	version="1.0"	encoding="UTF-8"?>
<lansa_design:payload	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:lxml="http://www.lansa.com/2002/XML/Runtime-Data"
xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"
xmlns:lansa_design="http://www.lansa.com/2002/XML/Design"
xmlns="http://www.w3.org/1999/xhtml">
<lansa_design:imports>
<xsl:import	href="std_boolean.xsl"	/>
<xsl:import	href="std_char.xsl"	/>
<xsl:import	href="std_datepicker.xsl"	/>
</lansa_design:imports>
<lansa_design:content>
<lansa_design:reference>
<xsl:apply-templates
select="/lxml:data/lxml:lists/lxml:list[@name='LIST01']"
wd:listname="LIST01">
<xsl:with-param	name="allowSort"	select="true()"	/>
<xsl:with-param	name="allowColResize"	select="true()"	/>
<xsl:with-param	name="hoverEffect"	select="false()"	/>
<xsl:with-param	name="selectableRows"	select="false()"	/>
<xsl:with-param	name="hide_header_if_empty"	select="true()"	/>
</xsl:apply-templates>
</lansa_design:reference>
<lansa_design:implementation>
	
<xsl:template	match="/lxml:data/lxml:lists/lxml:list[@name='LIST01']">
<xsl:param	name="allowSort"	wd:type="std:boolean"	select="true()"
wd:tip_id=""	/>
<xsl:param	name="allowColResize"	wd:type="std:boolean"	select="true()"
wd:tip_id=""	/>
<xsl:param	name="hoverEffect"	wd:type="std:boolean"	select="false()"
wd:tip_id=""	/>
<xsl:param	name="selectableRows"	wd:type="std:boolean"	select="false()"
wd:tip_id=""	/>
<xsl:param	name="hide_header_if_empty"	wd:type="std:boolean"
select="true()"	wd:tip_id=""	/>

<xsl:variable	name="thelist"
select="/lxml:data/lxml:lists/lxml:list[@name='LIST01']"	/>
<input	type="hidden"	name="LIST01.."	value="{count(lxml:list-
entries/lxml:entry[1])}"	/>
<div	class="std_grid_wrapper"	id="LIST01_wrap">
<xsl:if	test="$lweb_design_mode">
<xsl:attribute	name="class">std_grid_wrapper_designtime</xsl:attribute>
</xsl:if>
<table	class="std_grid	ui-widget"	id="LIST01">
<xsl:if	test="not($hide_header_if_empty)	or	($thelist/@row-count	!=	0)">
<thead>
<tr	class="list-h	ui-widget-header">
<th	class="ltext	BOOL01	std_grid_sort_indicator"	__decimalseparator=""
__formattype="boolean"	__mode="input"	__allowsort="true">
<xsl:for-each	select="$thelist/lxml:list-header/lxml:header[1]/*[.//text()
[normalize-space(.)!='']]"	wd:edit-as-list="false">
<xsl:value-of	select="."	/><xsl:if	test="not(position()	=	last())">

</xsl:if>
</xsl:for-each>
<div	class="std_grid_cell_sizer">
<xsl:if	test="boolean(/lxml:data/lxml:context[@design])">
<xsl:attribute	name="class">hidden__</xsl:attribute>
</xsl:if>
<xsl:comment>.</xsl:comment>
</div>
</th>
<th	class="number	DAT01	std_grid_sort_indicator"	__decimalseparator=""
__formattype="date"	__mode="input"	__allowsort="true">
<xsl:for-each	select="$thelist/lxml:list-header/lxml:header[2]/*[.//text()
[normalize-space(.)!='']]"	wd:edit-as-list="false">
<xsl:value-of	select="."	/><xsl:if	test="not(position()	=	last())">

</xsl:if>
</xsl:for-each>
<div	class="std_grid_cell_sizer">
<xsl:if	test="boolean(/lxml:data/lxml:context[@design])">
<xsl:attribute	name="class">hidden__</xsl:attribute>
</xsl:if>
<xsl:comment>.</xsl:comment>
</div>

</th>
<th	class="utext	CHR01	std_grid_sort_indicator"	__decimalseparator=""
__formattype="char"	__mode="input"	__allowsort="true">
<xsl:for-each	select="$thelist/lxml:list-header/lxml:header[3]/*[.//text()
[normalize-space(.)!='']]"	wd:edit-as-list="false">
<xsl:value-of	select="."	/><xsl:if	test="not(position()	=	last())">

</xsl:if>
</xsl:for-each>
<div	class="std_grid_cell_sizer">
<xsl:if	test="boolean(/lxml:data/lxml:context[@design])">
<xsl:attribute	name="class">hidden__</xsl:attribute>
</xsl:if>
<xsl:comment>.</xsl:comment>
</div>
</th>
</tr>
</thead>
</xsl:if>
<tbody	class="ui-widget-content">
<xsl:for-each	select="$thelist/lxml:list-entries/lxml:entry">
<xsl:variable	name="BOOL01"	select="lxml:column[1]"	/>
<xsl:variable	name="DAT01"	select="lxml:column[2]"	/>
<xsl:variable	name="CHR01"	select="lxml:column[3]"	/>
<tr	__oddrc="list-o"	__evenrc="list-e">
<xsl:attribute	name="class">
<xsl:choose>
<xsl:when	test="position()	mod	2">list-o</xsl:when>
<xsl:otherwise>list-e</xsl:otherwise>
</xsl:choose>
</xsl:attribute>
<td	class="BOOL01">
<xsl:attribute	name="__cellvalue"><xsl:value-of	select="$BOOL01"	/>
</xsl:attribute>
<xsl:call-template	name="std_boolean">
<xsl:with-param	name="name"	select="$BOOL01/@id"	/>
<xsl:with-param	name="value"	select="$BOOL01"	/>
<xsl:with-param	name="display_mode"	select="'input'"	/>
</xsl:call-template>
</td>

<td	class="DAT01">
<xsl:attribute	name="__cellvalue"><xsl:value-of	select="$DAT01"	/>
</xsl:attribute>
<xsl:call-template	name="std_datepicker">
<xsl:with-param	name="name"	select="$DAT01/@id"	/>
<xsl:with-param	name="value"	select="$DAT01"	/>
<xsl:with-param	name="allow_sqlnull"	select="true()"	/>
<xsl:with-param	name="display_mode"	select="'input'"	/>
<xsl:with-param	name="size"	select="10"	/>
</xsl:call-template>
</td>
<td	class="CHR01">
<xsl:attribute	name="__cellvalue"><xsl:value-of	select="$CHR01"	/>
</xsl:attribute>
<xsl:call-template	name="std_char">
<xsl:with-param	name="name"	select="$CHR01/@id"	/>
<xsl:with-param	name="value"	select="$CHR01"	/>
<xsl:with-param	name="class"	select="'utext'"	/>
<xsl:with-param	name="display_length"	select="10"	/>
<xsl:with-param	name="display_mode"	select="'input'"	/>
<xsl:with-param	name="keyboard_shift"	select="'J'"	/>
<xsl:with-param	name="maxlength"	select="10"	/>
<xsl:with-param	name="type"	select="'text'"	/>
</xsl:call-template>
</td>
</tr>
</xsl:for-each>
</tbody>
</table>
</div>
<script	type="text/javascript">
<xsl:text	disable-output-escaping="yes">//<![CDATA[</xsl:text>
register_std_grid('LIST01',{
				columns:	3,
								allowSort:	<xsl:value-of	select="$allowSort"	/>,
								allowColResize:	<xsl:value-of	select="$allowColResize"	/>,
								hoverEffect:	<xsl:value-of	select="$hoverEffect"	/>,
								selectableRows:	<xsl:value-of	select="$selectableRows"	/>
								});

<xsl:text	disable-output-escaping="yes">//]]></xsl:text>
</script>
</xsl:template>
</lansa_design:implementation>
</lansa_design:content>
</lansa_design:payload>
	

Dragging	and	Dropping	a	List	Column
List	Column	TSML	Node
List	Column	Drag	and	Drop	Output

List	Column	TSML	Node
<?xml	version="1.0"	encoding="UTF-8"?>
<tsml:data	full-document="false"
								inline="none"
								xmlns:tsml="http://www.lansa.com/2002/XML/Generation-Metadata">
	
<tsml:weblets>
<tsml:weblet	name="std_input.std_input">
<tsml:technology-services>
<tsml:technology-service	name="LANSA:JQMOBILE"
								mod-id="20130102151636000">
<tsml:template-params>
<tsml:template-param>
<tsml:param-name>displayMode</tsml:param-name>
<tsml:param-role>std:display_mode</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>label</tsml:param-name>
<tsml:param-role>std:field_caption</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>maxlength</tsml:param-name>
<tsml:param-role>std:field_maxlength</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>rdmlxDataType</tsml:param-name>
<tsml:param-role>std:rdmlx_data_type</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>size</tsml:param-name>
<tsml:param-role>std:field_display_length</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>type</tsml:param-name>
<tsml:param-role>std:field_input_type</tsml:param-role>
</tsml:template-param>
</tsml:template-params>

</tsml:technology-service>
</tsml:technology-services>
</tsml:weblet>
<tsml:weblet	name="std_char.std_char">
<tsml:technology-services>
<tsml:technology-service	name="LANSA:XHTML"
								mod-id="20121220115335000">
<tsml:template-params>
<tsml:template-param>
<tsml:param-name>class</tsml:param-name>
<tsml:param-role>std:field_css_class</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>display_length</tsml:param-name>
<tsml:param-role>std:field_display_length</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>display_mode</tsml:param-name>
<tsml:param-role>std:display_mode</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>height</tsml:param-name>
<tsml:param-role>std:height_design</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>keyboard_shift</tsml:param-name>
<tsml:param-role>std:keyboard_shift</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>maxlength</tsml:param-name>
<tsml:param-role>std:field_maxlength</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>pos_absolute</tsml:param-name>
<tsml:param-role>std:pos_absolute_design</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>type</tsml:param-name>
<tsml:param-role>std:field_input_type</tsml:param-role>

</tsml:template-param>
<tsml:template-param>
<tsml:param-name>width</tsml:param-name>
<tsml:param-role>std:width_design</tsml:param-role>
</tsml:template-param>
</tsml:template-params>
</tsml:technology-service>
</tsml:technology-services>
</tsml:weblet>
</tsml:weblets>
	
<tsml:lists
								default-sample-size="5"
								column-only="true">
<tsml:list	name="LIST01"	inline="false">
<tsml:mode>input</tsml:mode>
<tsml:list-entries>
<tsml:entry>
<tsml:column	name="CHR01">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDEFGHIJ</tsml:sample-value>
<tsml:format>
<tsml:type>char</tsml:type>
<tsml:display-max-length>10</tsml:display-max-length>
<tsml:max-length>10</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift>J</tsml:keyboardshift>
</tsml:format>
<tsml:use-weblets>
<tsml:use-weblet	name="std_input.std_input"
								technology-service="LANSA:JQMOBILE"	/>
<tsml:use-weblet	name="std_char.std_char"
								technology-service="LANSA:XHTML"	/>
</tsml:use-weblets>
</tsml:column>
</tsml:entry>
</tsml:list-entries>
</tsml:list>
</tsml:lists>

</tsml:data>

List	Column	Drag	and	Drop	Output
<?xml	version="1.0"	encoding="UTF-8"?>
<lansa_design:payload	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:lxml="http://www.lansa.com/2002/XML/Runtime-Data"
xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"
xmlns:lansa_design="http://www.lansa.com/2002/XML/Design"
xmlns="http://www.w3.org/1999/xhtml">
<lansa_design:imports>
<xsl:import	href="std_char.xsl"	/>
</lansa_design:imports>
<lansa_design:content>
<lansa_design:value>
<xsl:call-template	name="std_char">
<xsl:with-param	name="name"	select="$CHR01/@id"	/>
<xsl:with-param	name="value"	select="$CHR01"	/>
<xsl:with-param	name="class"	select="'utext'"	/>
<xsl:with-param	name="display_length"	select="10"	/>
<xsl:with-param	name="display_mode"	select="'input'"	/>
<xsl:with-param	name="keyboard_shift"	select="'J'"	/>
<xsl:with-param	name="maxlength"	select="10"	/>
<xsl:with-param	name="type"	select="'text'"	/>
</xsl:call-template>
</lansa_design:value>
</lansa_design:content>
</lansa_design:payload>
	

7.5	Default	Weblet	for	Technology	Service
You	can	nominate	a	default	weblet	for	a	Technology	Service.	The	default	weblet
is	used	when	a	field	has	no	weblet	visualization.	If	no	default	weblet	is
nominated,	your	WebRoutine	XSL	stylesheet		should	have	templates	to	handle
non-weblet	fields	or	list	columns.
The	nominated	weblet	must	exist	in	your	Technology	Service.	Add	the
following	instructions	to	the	same	level	as	the	<xsl:output>	instruction	in	your
WebRoutine	XSL	stylesheet.	This	example	shows	the	default	weblet	for
Technology	Service	JQMOBILE:
<xsl:output	method="xml"	omit-xml-declaration="no"	encoding="UTF-8"
indent="yes"/>
<xsl:namespace-alias	stylesheet-prefix="xslt"	result-prefix="xsl"/>
	
<!--	Default	Weblet	-->
<tsml:definition>
				<tsml:default-weblet	name="std_input.std_input"	/>
</tsml:definition>
	

7.6	About	Weblets	and	Weblet	Templates
7.6.1	What	are	weblets	and	weblet	templates?
7.6.2	Field	weblet	visualization

7.6.1	What	are	weblets	and	weblet	templates?
WAMs	are	shipped	with	a	set	of	standard	weblets	for	each	Technology	Service.
A	weblet	is	a	repository	object	that	contains	one	or	more	weblet	templates.	A
weblet	template	is	a	reusable	component	that	wraps	some	common	functionality
and	can	be	dragged	and	dropped	onto	your	WebRoutine	designs.
Although	a	weblet	may	contain	many	weblet	templates,	it	is	normal	practice	for
each	weblet	to	contain	only	one	template	so	the	term	"weblet"	is	often	used	to
refer	to	a	weblet	template.	A	weblet	may	exist	in	one	or	more	of	the	Technology
Services.
Note:	Weblets	sometimes	contain	a	second	weblet	template	where	the	extra
template	is	a	special	version	of	the	main	template	for	use	on	inline	lists.	These
"inline"	weblet	templates	do	not	show	up	in	the	Weblet	Templates	section	of	the
repository	because	the	WAM	Editor	will	automatically	use	the	correct	template
as	required.

You	should	never	modify	the	shipped	weblets	directly.	Every	time	a
Partition	Initialization	with	the	Enable	for	the	Web	is	executed,	the
shipped	weblets	are	re-imported	and	the	weblets	in	the	repository	are
overwritten.	If	you	wish	to	customize	a	weblet,	make	a	copy	of	the
shipped	weblet	then	modify	the	copy	(including	JavaScript	functions
that	the	weblet	uses	as	they	might	be	changed	in	future	versions).

The	shipped	weblets	use	a	standard	naming	convention	where	the
weblet	name	is	prefixed	with	'std_'.	You	should	not	use	this	prefix	for
any	custom	weblets	you	create.

Also	see
Weblets	for	XHTML	Technology	Service
Weblets	for	jQMobile	Technology	Service
	

its:lansa087.chm::/lansa/WAMEngb8_0005.htm
its:lansa087.chm::/lansa/WamEngb9_0005.htm

7.6.2	Field	weblet	visualization
You	can	define	the	weblet	visualization	of	a	field	so	that	when	a	field	is
included	in	a	web_map,	the	generated	page	automatically	uses	the	weblet
defined	in	field	visualization.	You	can	define	the	weblet	visualization	for	each
Technology	Service:
Begin_Com	Role(*Weblet	'std_datetimepicker.std_datetimepicker')
Name(#WebletTemplate)	Defaultweblet(True)
End_Com
Begin_Com	Role(*Weblet	'std_mobiscroll.std_mobiscroll')
Name(#WebletTemplate2)	Defaultweblet(LANSA.JQMOBILE)
End_Com

You	can	further	customize	your	field	weblet	visualization	without	the	neee	to
create	custom	weblets	for	different	fields	by	defining	default	properties	for	the
weblets.	This	way,	you	can	create	weblets	that	can	be	customized	via	properties
instead	of	creating	separate	weblets:
Begin_Com	Role(*Weblet	'std_input.std_input')
Name(#WebletTemplateJQMOBILE)	Defaultweblet(LANSA.JQMOBILE)
Default_Type('''email''')
End_Com

8.	Weblets	for	XHTML	Technology	Service
This	section	documents	the	Weblet	Templates	that	are	shipped	with	the	XHTML
Technology	Service.
The	Weblet	Templates	repository	view	displays	templates	by	group.	A	weblet
template	may	belong	to	more	than	one	group	(right-click	a	weblet	to	configure).
The	standard	groups	are:
					Standard	Weblets
					Charting	Weblets
					Standard	Field	Visualizations
					Layout	Weblets
And	if	you	are	an	existing	user	and	need	to	refer	to	them,	there's	Deprecated
Weblets.

its:lansa087.chm::/Lansa/WAMEngb2_0015.htm
its:lansa087.chm::/Lansa/WAMEngb8_0740.htm
its:lansa087.chm::/Lansa/WAMEngb2_0020.htm
its:lansa087.chm::/Lansa/WAMengb8_0210.htm
its:lansa087.chm::/lansa/WAMEngb8_0461.htm

8.1	Standard	Weblets
This	section	provides	a	description	of	the	standard	weblets,	their	properties	and
how	to	use	them	in	your	own	webroutines.	You	will	not	use	every	property
available	for	a	weblet.

Weblet	name Description

Anchor	(std_anchor) The	anchor	weblet	provides	a	hyperlink	(or	anchor)
control.

Attachment	panel
(std_attach_panel_v2)

Provides	a	panel	with	five	areas	where	content	can
be	dropped:	left,	top,	right,	center,	and	bottom.

Autocomplete
(std_autocomplete)

While	you	type,	the	Autocomplete	weblet	provides
suggestions	provided	by	a	WebRoutine	using	Ajax.

Checkbox
(std_checkbox)

Checkbox	with	a	caption.

CKEditor
(std_ckeditor)

CKEditor	is	a	WYSIWYG	rich	text	editor.

Clickable	image
(std_click_image)

Image	that	can	be	clicked	on.

Combo	box
(std_dropdown)

Drop	down	items	can	be	specified	via	items	property
in	the	LANSA	Editor	or	they	can	come	from	a	list.

Dynamic	Select	Box
(std_dynamic_select)

An	element	that	allows	you	to	create	a	dropdown	or
a	list	that	can	monitor	another	field	and
automatically	refresh	itself	when	that	field	changes.

Export	to	Excel
(std_toexcel)

Allows	you	to	export	a	table	or	grid	to	an	Excel
spreadsheet.

File	Upload
(std_fileupload)

Allows	you	to	select	files	to	upload	to	the	application
server.		The	webroutine	that	receives	the	uploaded
files	can	manipulate	them	as	required.

Grid	(std_grid_v2	and
std_grid_v3)

Grid	control	with	sortable	columns.	Grid	cells	can	be
populated	from	a	list.

its:lansa087.chm::/lansa/wamengb2_0025.htm
its:lansa087.CHM::/lansa/WAMEngb8_0475.HTM
its:lansa087.CHM::/lansa/WAMEngb8_0745.HTM
its:lansa087.CHM::/lansa/WAMEngb2_0045.HTM
its:lansa087.CHM::/lansa/WAMEngb8_0750.HTM
its:lansa087.chm::/lansa/wamengb2_0050.htm
its:lansa087.chm::/lansa/wamengb2_0060.htm
its:lansa087.chm::/lansa/WAMEngb8_0570.htm
its:lansa087.CHM::/lansa/WAMEngb8_2090.HTM
its:lansa087.CHM::/lansa/WAMEngb8_2640.HTM
its:lansa087.chm::/lansa/wamengb2_0065.htm

Image	(std_image) Image	with	the	option	to	delay	loading	until	the
image	comes	into	view.

Horizontal	splitter
(std_splitter_horz)

Horizontal	splitter	control	that	allows	content	to	be
added	for	top	and	bottom	splitter	panes.

Large	List
(std_largelist)

Large	list.	Used	for	report	like	(output	only)	lists
with	very	simple	formatting.	List	can	be	sent	as
XHTML	or	CSV	(Comma-separated	values).

Listbox	(std_listbox) List	box	control.	The	items	can	come	from	a	list	or
specified	directly	through	items	property.

List	paging	buttons
(std_list_buttons)

Buttons	that	can	be	used	for	browse	list	navigation.

List	paging	images
(std_list_images)

Image	buttons	that	can	be	used	for	browse	list
navigation.

Mark-up	(std_markup) Used	when	you	want	to	visualize	the	content	in
output	mode	only.	Companion	to	the	CKEditor
weblet.

Memo	using	a	list
(std_textarea_v2)

A	multi-line	edit	control	where	each	line	is	loaded
and	stored	to	a	list.

Memo	using	a	field
(std_list_textarea)

A	multi-line	edit	control	using	a	field.	Superseded	by
std_textarea_v2.

Menu	bar
(std_menubar)

Provides	the	functionality	of	a	menu	bar	that	can
invoke	other	web	pages	including	other	web
routines.

Menu	item
(std_menu_item_v2)

A	hyperlink	menu	item.	Used	when	creating	HTML
menus.

Messages
(std_messages)

Shows	messages	from	a	WEBROUTINE	that	have
been	output	with	MESSAGE	RDML	command.

Navigation	panel
(std_nav_panel)

A	panel	that	can	navigate	to	a	WEBROUTINE	or	a
URL	independently	of	the	rest	of	the	page.

Panel	(std_panel) A	panel	that	allows	contents	such	as	html	or	other
weblets	to	be	dropped	on	it.	All	of	its	content	is

its:lansa087.chm::/LANSA/WAMengb8_2450.HTM
its:lansa087.chm::/lansa/wamengb2_0120.htm
its:lansa087.CHM::/lansa/WAMEngb8_2525.HTM
its:lansa087.chm::/lansa/wamengb8_2530.htm
its:lansa087.CHM::/lansa/wamengb2_0075.htm
its:lansa087.CHM::/lansa/wamengb2_0075.htm
its:lansa087.CHM::/lansa/wamengb8_0755.htm
its:lansa087.chm::/lansa/wamengb2_0080.htm
its:lansa087.chm::/lansa/wamengb2_0130.htm
its:lansa087.CHM::/lansa/WAMb8_menubar.HTM
its:lansa087.chm::/lansa/wamengb2_0090.htm
its:lansa087.chm::/lansa/wamengb2_0095.htm
its:lansa087.chm::/lansa/wamengb2_0100.htm

relatively	positioned	in	the	panel.	It	also	has	"snap	to
grid"	design	time	support.

Print	Page
(std_printpage)

Provides	a	hyperlink	to	print	the	current	page.

Progress	bar
(std_progressbar)

Display	status	of	a	determinate	or	indeterminate
process.

Prompter
(std_prompter)

A	button	that	supports	field	prompting.	The	prompter
can	invoke	a	WEBROUTINE,	even	from	a	different
WAM,	for	its	pop	up	window	page.

Push	Button
(std_button_v2)	&
Push	Button	with
Images
(std_image_button_v2)

These	weblets	provide	themable	push	buttons	for
your	web	page.
The	previous	versions	of	these	Weblets	have	been
deprecated.

Radio	button
(std_rad_button)

A	radio	button.

Radio	group
(std_radbuttons)

A	radio	button	group.

Tab	pages
(std_tab_pages_v2)

Tab	control	that	allows	content	to	be	added	for	each
tab	page.	Tab	pages	can	be	changed,	added	and
deleted.	You	can	modify	tab	captions	through	the
tabs	property.

TreeView
(std_treeview_v2)

Provides	an	expandable	collapsible	tree

Vertical	splitter
(std_splitter_vert)

Vertical	splitter	control	that	allows	content	to	be
added	for	left	and	right	splitter	panes.

	

its:lansa087.CHM::/lansa/WAMEngb8_2095.HTM
its:lansa087.chm::/LANSA/WAMengb8_2495.HTM
its:lansa087.chm::/lansa/wamengb2_0105.htm
its:lansa087.chm::/lansa/WAMEngb8_2085.htm
its:lansa087.chm::/lansa/wamengb2_0110.htm
its:lansa087.chm::/lansa/wamengb2_0115.htm
its:lansa087.chm::/lansa/wamengb2_3655.htm
its:lansa087.CHM::/lansa/WAMEngb8_0480.HTM
its:lansa087.chm::/lansa/wamengb2_0125.htm

8.1.1	Anchor	(std_anchor)
	

QuickStart	-	Anchor Properties	-	Anchor

The	anchor	weblet	provides	a	hyperlink	(or	anchor)	control.	It	broadly
corresponds	to	the	<a>	(anchor)	HTML	element	that	designates	the	destination
of	a	hypertext	link.

The	anchor	weblet	can	display	an	image	and/or	text	to	represent	the	link	and
can	specify	a	destination	that	the	WAM	should	navigate	to	when	the	link	is
activated.
The	image	or	text	can	be	static	(specified	as	literals	in	the	weblet	properties)
or	can	be	determined	by	nominated	fields,	system	variables	or	multilingual
variables.
The	destination	can	be	a	url	(such	as	http::/lansa//www.yourcompany.com/)
or	you	can	specify	a	WAM	and	webroutine	to	be	executed	and	optionally
identify	a	field	whose	value	should	be	passed	to	the	webroutine.

The	anchor	weblet	looks	like	this	(the	department	codes):

The	anchor	weblet	is	frequently	used	with	a	field	or	a	column	in	a	list	to	provide
a	quick	and	easy	way	to	both	select	an	item	and	initiate	an	action	concerning
that	item.	In	the	example	above,	the	department	codes	have	been	made	into
anchors.	When	the	user	clicks	a	department	code	another	webroutine	is	invoked
that	displays	details	for	the	corresponding	department.	The	currentrowhfield	and
currentrownumval	properties	specify	that	the	corresponding	department	code	is
passed	to	that	webroutine.

QuickStart	-	Anchor
To	use	an	anchor	with	a	column	in	a	list,	you	would	need	to	create	a	webroutine
that	specifies	the	list	in	its	WEB_MAP	as	*BOTH	or	*OUTPUT.	When	you
open	the	generated	XSL	in	the	LANSA	Editor,	you	can	change	a	column	of	the
list	to	function	as	an	anchor	as	follows:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Anchor	weblet.

2.		Drag	the	Anchor	weblet	over	the	column	in	your	list	and	release	the	left-
mouse	button.	The	column's	appearance	changes	to	show	that	it	is	now	an
anchor	Click	on	an	item	in	the	column	and	then	click	on	the	Details	tab	You
should	see	that	the	name	and	value	properties	for	the	anchor	weblet	have
already	been	set	according	to	the	field	upon	which	it	was	dropped.

3.		Set	the	currentrowhfield	and	currentrownumval	properties	as	described	in	the
property	descriptions.

4.		Set	the	on_click_wrname	property	to	the	name	of	the	webroutine	to	be
invoked	when	the	hyperlink	is	clicked	If	the	webroutine	is	in	a	different
WAM	to	the	current	webroutine	then	you	will	need	to	set	the
on_click_wamname	property	as	well.

Properties	-	Anchor
The	Anchor	weblet's	properties	are:

absolute-image-path
currentrowhfield
currentrownumval
formname
hide_if
mouseover_class
name
on_click_wamname

on_click_wrname
pos_absolute_design
presubmit_js
protocol
reentryfield
reentryvalue
relative-image-path

show_in_new_window
tab_index
target_window_name
text_class
url
value
vf_wamevent
width_design

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
This	property	specifies	the	text	that	is	displayed	for	the	hyperlink.	If	the	weblet
visualizes	a	field,	this	will	identify	the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	you	must	specify	the	value	if	you	wish	the
hyperlink	to	display	text	(the	hyperlink	may	also	display	an	image	–	see	the
relative-image-path	and	absolute-image-path	properties.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable	(the	corresponding	ellipses	button	in	the	property	sheet	can	be
clicked	to	choose	one	from	a	list).

currentrowhfield
The	field	name	to	be	used	to	post	to	the	target	webroutine	the	value	that	is
specified	in	the	currentrownumval	property.	The	field	name	should	be	in	single
quotes.
See	the	description	of	the	currentrownumval	property	for	further	information.

Default	value
'STDROWNUM'

Valid	values
Single-quoted	text.

Example
This	example	specifies	the	field	name	DEPTLINK	as	the	field	name	to	be
used	to	post	the	value	to	the	target	webroutine.	The	target	webroutine	would
need	to	have	field	DEPTLINK	in	its	WEB_MAP	for	*BOTH	or	for	*INPUT
in	order	to	receive	the	value:

currentrownumval
The	value	to	post	to	the	target	webroutine	in	the	field	specified	in	the
currentrowhfield	property.	If	that	field	is	alphanumeric,	the	value	must	be
specified	in	single	quotes.	If	it	is	numeric,	the	value	can	be	specified	with	or
without	quotes.
This	property	is	used	in	conjunction	with	the	currentrowhfield	property	to
describe	how	to	post	values	to	a	target	webroutine.	These	two	pieces	of
information	are	required	to	accomplish	this:
1.		currentrowhfield:		the	field	name	that	the	target	webroutine	uses	to	refer	to
the	information

2.		currentrownumval:		a	literal	value	or	a	field	name	in	this	(the	source)
webroutine	that	contains	the	necessary	information

Note:	Despite	the	name	of	the	property	being	currentrownumval,	the	field
name	specified	in	currentrownumval	is	not	required	to	be	a	numeric	field.

Default	value
position()

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.
See	the	description	of	the	reentryvalue	property	for	further	information.

Note:	this	property	is	provided	to	support	a	re-entrant	programming
technique	that	is	commonly	used	in	WEBEVENT	applications.	Web
applications	that	are	designed	from	the	outset	to	use	WAMs	do	not
usually	need	to	make	use	of	that	technique.

Default	value
'STDRENTRY'

Valid	values
Single-quoted	text.

reentryvalue
The	value	to	post	to	the	target	webroutine	in	the	field	specified	in	the
reentryfield	property.	If	that	field	is	alphanumeric,	the	value	must	be	specified	in
single	quotes.	If	it	is	numeric,	the	value	can	be	specified	with	or	without	quotes.
This	property	is	used	in	conjunction	with	the	reentryfield	property	to	describe
how	to	post	values	to	a	target	webroutine.	These	two	pieces	of	information	are
required	to	accomplish	this:
1.		reentryfield:		the	field	name	that	the	target	webroutine	uses	to	refer	to	the
information

2.		reentryvalue:		a	literal	value	or	a	field	name	in	this	(the	source)	webroutine
that	contains	the	necessary	information

Note:	this	property	is	provided	to	support	a	re-entrant	programming
technique	that	is	commonly	used	in	WEBEVENT	applications.	Web
applications	that	are	designed	from	the	outset	to	use	WAMs	do	not
usually	need	to	make	use	of	that	technique.

Default	value
'D'

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

url
This	property	may	be	used	to	specify	a	URL	that	the	hyperlink	will	navigate	to.
If	specified,	the	URL	may	be	specified	as	a	literal	value	(for	example
'http://www.mycompany.com/')	or	a	field	name	may	be	specified	that	contains
the	URL	at	run-time.
This	property	takes	precedence	over	the	on_click_wamname,	on_click_wrname
and	protocol	properties.	The	latter	properties	are	ignored	if	url	is	specified.

Default	Value
'javascript:void();'	–	equivalent	to	nothing.

Valid	Values
A	URL	enclosed	by	single	quotes	or	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	the	URL	at	run-time.

on_click_wamname
Specifies	the	name	of	the	WAM	whose	webroutine	is	executed	when	the
hyperlink	that	represents	this	weblet	is	clicked.	(The	webroutine	name	is
specified	in	the	on_click_wrname	property.)
This	property	is	ignored	if	the	url	property	is	specified.

Default	value
If	not	specified,	the	current	WAM	is	used.	($lweb_WAMName)

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_click_wrname
Specifies	the	name	of	the	webroutine	that	is	executed	when	the	hyperlink	that
represents	this	weblet	is	clicked.	(The	name	of	the	WAM	containing	the
webroutine	is	specified	in	the	on_click_wamname	property.)
This	property	is	ignored	if	the	url	property	is	specified.

Default	value
No	default	value	applies	–	either	the	url	property	or	the	on_click_wrname
property	must	be	specified

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_click_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

Example
This	example	specifies	deptdetail	as	the	name	of	the	webroutine	that	will	be
executed	when	the	hyperlink	is	clicked.	The	name	of	the	WAM	containing
the	webroutine	is	specified	by	the	on_click_wamname	property.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	specified	in	the	on_click_wrname	property.
Typically	you	might	use	this	property	when	it	is	necessary	to	switch	to	or	from
secure-mode	processing.	Otherwise	it	is	not	usually	necessary	to	specify	this
property.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	If	specified,	it	is	usually	'http:'	or	'https:'.

show_in_new_window
A	boolean	property,	the	result	of	which	determines	whether	response	HTML	for
the	weblet	should	be	shown	in	a	new	browser	window.

Default	value
false()	–	response	HTML	is	shown	in	the	current	browser	window.

Valid	values
true(),	false()	or	a	valid	expression.

target_window_name
The	name	of	the	window,	or	frame,	in	which	the	destination	of	the	hyperlink
will	be	shown.

Default	value
Blank	–	the	destination	of	the	hyperlink	will	be	shown	in	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.

pos_absolute_design
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	Position
Absolutely	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned)

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

Example
In	this	example,	Position	Absolutely	has	been	enabled	for	the	weblet	and	the
weblet	was	positioned	as	required	in	the	Design	view	of	the	LANSA	Editor.
This	resulted	in	the	value	shown	for	the	pos_absolute_design	property.

width_design
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width-design	property.	However	you	can	directly	edit	the
property	value	if	required.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

relative-image-path
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
be	displayed.

Default	value
Blank	–	no	image	is	displayed.

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

absolute-image-path
The	path	and	file	name	of	the	image	to	be	displayed.	If	specified,	the
relative_image_path	property	should	be	left	blank.

Default	value
Blank	–	the	default	is	to	use	the	image	specified	in	the	relative_image_path
property.

Valid	values
The	path	and	name	of	an	image	enclosed	in	single	quotes.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.	For	example,	'std_anchor'.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

mouseover_class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet	when	the	mouse	is
moved	over	it.

Default	value
No	default	value	applies	for	this	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	list	in	the	property	sheet.	For	example,	the	mouseover_class
property	after	the	shipped	mouseover	class	has	been	selected	could	be
"std_anchor_mouseover'.

text_class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	text	of	the	weblet.

Default	value
The	name	of	the	shipped	text	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

presubmit_js
JavaScript	code	to	be	run	prior	to	navigating	to	the	destination	of	the	hyperlink.
JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

vf_wamevent
vf_wameventVLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.1.2	Autocomplete	(std_autocomplete)

QuickStart	–	Autocomplete Properties	–	Autocomplete

The	Autocomplete	weblet	provides	suggestions	while	you	type	into	the	field.
The	suggestions	are	provided	by	a	webroutine	using	Ajax:

QuickStart	–	Autocomplete
To	use	the	autocomplete	weblet	you	can	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	jQuery	UI	Autocomplete	weblet.

2.		Drag	and	drop	the	weblet	onto	your	page.	Make	sure	the	weblet	is	selected
and	then	click	on	the	Details	tab.	Fill	the	properties	as	required.

3.		While	the	autocomplete	weblet	is	selected	in	the	designer,	right	click	and
from	the	context	menu,	select	the	option	to	create	the	Ajax	WebRoutine.

4.		In	your	RDMLX	source,	complete	the	code	for	the	response	webroutine
(created	in	step	3).

Properties	–	Autocomplete
The	Autocomplete	weblet's	properties	are:

cache
class
delay
disabled
display_length
display_mode
extraFields
height
hide_if
keyboard_shift

labelField
listName
matchContains
maxlength
minLength
namevalue
onchange_script
pos_absolute
read_only
scroll

scrollHeight
size
sourceWamName
sourceWrName
tab_index
termField
title
valueField
width

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	or	left	blank	for	users
to	fill	with	suggested	values.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.	It	will
only	work	in	autocomplete	mode	if	the	weblet	is	in	input	mode.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

maxlength
Specifies	the	maximum	number	of	characters	the	user	can	type	in	the	weblet.
When	the	weblet	visualizes	a	field,	this	is	set	to	the	number	appropriate	for	the
field.

Default	value
Blank	(the	weblet	does	not	restrict	the	number	of	characters	the	user	can
type).

Valid	values
A	numeric	value.

size
The	size	of	the	weblet	data	in	characters/bytes.
This	property	is	currently	not	implemented	–	use	the	maxlength	and/or
display_length	properties	instead.

display_length
The	approximate	size	of	the	weblet	input	box	in	characters	–	the	browser	sizes
the	input	box	according	to	the	number	of	characters	specified.	If	the	width
property	is	specified,	it	takes	precedence	and	the	display_length	property	is
ignored.

Default	value
Blank	(the	weblet	assumes	a	default	size).

Valid	values
A	numeric	value.

keyboard_shift
The	keyboard	shift	for	the	input	field.

Default	value
The	keyboard	shift	of	the	field	with	this	weblet	visualization.	Blank
otherwise.

Valid	values
Char	and	String	data	types:	'	',	'W',	'J',	'E',	'O'	and	'U'
Alpha	data	type:	'	',	'X',	'A',	'N',	"W',	'I',	'D',	'M',	'J',	'E'	and	'O'

The	keyboard	shift	is	currently	only	used	to	validate	DBCS	fields.

minLength
The	minimum	number	of	characters	a	user	has	to	type	before	the	Autocomplete
activates.	Zero	is	useful	for	local	data	with	just	a	few	items.	Should	be	increased
when	there	are	a	lot	of	items,	where	a	single	character	would	match	a	few
thousand	items.

Default	value
1

Valid	values
Numeric	value.

delay
The	delay	in	milliseconds	the	Autocomplete	waits	after	a	keystroke	to	activate
itself.	A	zero-delay	makes	sense	for	local	data	(more	responsive),	but	can
produce	a	lot	of	load	for	remote	data,	while	being	less	responsive.

Default	value
300	milliseconds

Valid	values
Numeric	value	in	milliseconds.

sourceWamName
The	name	of	the	WAM	whose	Webroutine	provides	the	response	data	for	this
weblet.

Default	value
The	current	WAM

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

sourceWrName
The	name	of	the	Webroutine	that	provides	the	response	data	for	this	weblet.

Default	value
Blank	–	a	Webroutine	name	must	be	specified.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	be	a	JSON
response	weboutine	and	exist	in	the	WAM	specified	in	the	sourceWamName
property.	A	list	of	known	JSON	Webroutines	can	be	displayed	by	clicking
the	corresponding	dropdown	button	on	the	property	sheet.

termField
The	field	name	in	the	response	handling	webroutine	that	is	to	receive	the	current
value	in	the	autocomplete	field.

Default	value
None.	Required	field.

Valid	values
Single	quoted	text	field.	Field	must	be	in	WEB_MAP	for	*INPUT	in	the
response	handling	webroutine.

listName
[Optional]	The	name	of	the	list	in	the	response	webroutine	to	store	the
suggestion	list.	If	left	empty	the	first	list	(which	should	be	the	only	list	in	the
response	webroutine)	will	be	used.

Default	value
Blank:	It	uses	the	first	list	in	response	webroutine.

Valid	values
Single	quoted	text	.	List	must	be	in	WEB_MAP	for	*OUTPUT	in	the
response	handling	webroutine.

labelField
The	response	data	is	a	list,	with	either	a	label	or	value	column	or	both.	The	label
column	is	displayed	in	the	suggestion	menu.	The	value	will	be	inserted	into	the
input	element	after	the	user	selected	something	from	the	menu.	If	just	one
column	is	specified,	it	will	be	used	for	both,	eg.	if	you	provide	only	value-
properties,	the	value	will	also	be	used	as	the	label.

Default	value
Blank.

Valid	values
Single	quoted	text.	Column	name	but	exist	in	list	returned	by	the	response
handling	webroutine.

valueField
The	response	data	is	a	list,	with	either	a	label	or	value	column	or	both.	The	label
column	is	displayed	in	the	suggestion	menu.	The	value	will	be	inserted	into	the
input	element	after	the	user	selected	something	from	the	menu.	If	just	one
column	is	specified,	it	will	be	used	for	both,	eg.	if	you	provide	only	value-
properties,	the	value	will	also	be	used	as	the	label.

Default	value
Blank.

Valid	values
Single	quoted	text.	Column	name	but	exist	in	list	returned	by	the	response
handling	webroutine.

extraFields
[Optional].	A	comma	separated	list	of	fields	to	send	to	the	webroutine	providing
the	response	for	this	weblet.

Default	value
Blank.	No	extra	fields

Valid	values
Comma	separated	list	of	fields.	Fields	must	be	input	or	hidden	fields.

cache
Set	to	true	to	save	the	server	response	locally	and	filter	it	to	narrow	suggestions
as	the	user	types	more	characters.

Default	value
True.

Valid	values
true(),	false()	or	a	valid	expression.

matchContains
If	set	to	true,	autocomplete	matches	the	entered	characters	anywhere	in	the
suggestions.	Otherwise,	autocomplete	only	matches	suggestions	that	start	with
the	entered	characters.	This	applies	to	narrowing	the	suggestions	for	cached
responses.	The	data	source	must	have	a	selecion	criteria	consistent	with	this
property.

Default	value
False.

Valid	values
true(),	false()	or	a	valid	expression.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

title
Specifies	a	title	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

read_only
A	boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	will	set	the	weblet	to	read-only	if	field	#STD_FLAG	is	equal
to	'Y'.	The	expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	and	height	properties.	However	you	can	directly	edit	the
property	value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width	and	height	properties.	However	you	can	directly
edit	the	property	values	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

scroll
Whether	to	scroll	when	more	results	than	configured	via	scrollHeight	are
available.

Default	value
False.

Valid	values
true(),	false()	or	a	valid	expression.

scrollHeight
Height	of	scrolled	autocomplete	suggestion	box.	Only	activated	if	scroll	is	true.

Default	value
180px.

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

onchange_script
JavaScript	code	bind	to	the	jQuery	UI	autocomplete	widget	change	event	(when
the	input	box	loses	focus	after	the	text	has	been	changed).	It	has	optional	event
and	ui	object	parameters.	For	example,	myOnChangeEventHandler(event,	ui).

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

onselect_script
JavaScript	code	bind	to	the	jQuery	UI	autocomplete	widget	select	event	(when
the	user	selects	an	item	from	the	autocomplete	suggestion	list).	It	has	optional
event	and	ui	object	parameters.	For	example,	myOnSelectEventHandler(event,
ui).

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).
	

8.1.3	Attachment	panel	(std_attach_panel_v2)

QuickStart-	Attachment	panel Properties	-	Attachment	panel

The	Attachment	panel	weblet	provides	a	panel	with	five	areas	where	content
can	be	dropped:	left,	top,	right,	center,	and	bottom.	Each	of	these	has	attachment
layout	manager	behavior.	Contents	can	be	inserted	or	other	weblets	dropped	into
any	of	the	five	areas.	Dropped	weblets	are	sized	according	to	attachment	layout
manager	rules	when	they	are	dropped.
The	following	is	an	example	of	the	appearance	of	a	nearly	empty	attachment
panel.	In	this	example,	just	three	of	the	attachment	areas	have	been	used.	A
thick	dashed	border	has	been	specified	for	the	attachment	panel	and	thin	dotted
borders	for	the	panels	used	in	the	three	areas.	The	borders	have	been	used	for
clarity	in	this	example	–	you	do	not	have	to	use	visible	borders	and	you	may	not
wish	to	in	your	applications.	Remember	you	can	drag	and	drop	other	weblets
(such	as	input	boxes,	check	boxes	and	push	buttons)	onto	each	of	the	layout
areas.

The	attachment	panel	is	one	of	a	number	of	weblets	that	you	can	use	to	aid	the
creation	of	a	consistent	and	visually	appealing	layout	for	your	web	pages.	You
may	also	wish	to	review	the	horizontal	and	vertical	splitters	and	the	panel	and
navigation	panel	weblets.	This	weblet	(the	attachment	panel)	is	static	–	the	user
is	not	able	to	resize	or	otherwise	manipulate	the	size	and	position	of	the	panels
that	it	contains.

Version	2	of	the	attachment	panel	deals	with	some	browser	compatability	issues
by	replacing	the	border	and	border_width	properties	with	a	single	border
property	and	removes	the	class_top,	class_left,	class_center,	class_right	and
class_bottom	properties.	The	class	values	can	now	be	set	using	the	"panes"
custom	property	editor	which	also	allows	you	to	set	the	size	and	alignment	of
each	pane.

QuickStart-	Attachment	panel
To	use	the	attachment	panel	you	can	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Attachment	panel	weblet.

2.		Drag	and	drop	the	weblet	onto	your	page.	Make	sure	the	weblet	is	selected
and	then	click	on	the	Details	tab.	Set	any	properties	required	for	the
attachment	panel,	such	as	borders.

3.		Now	you	can	drag	and	drop	or	otherwise	insert	content	into	the	required
panes	or	layout	areas.	You	may	find	it	easiest	to	drag	and	drop	the	Panel
weblet	into	each	of	the	five	layout	areas	that	you	wish	to	use.	You	can	then
more	easily	size	those	panels	and	insert	other	weblets	onto	those	child	panels.

Properties	-	Attachment	panel
The	Attachment	panel	weblet's	Properties	are:

name
border
height
hide_if
																				

panes
pos_absolute
width

name
The	name	the	weblet	is	identified	with.	Normally,	you	would	leave	this	as	the
default	and	let	LANSA	use	its	own	internal	naming	convention.	However,	you
may	want	to	use	your	own	name	if	using	JavaScript	or	XSL	that	references	the
weblet.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

panes
An	XML	node	set	specifying	a	set	of	panes	to	show	and	their	properties.	This	is
a	system	generated	value	set	up	when	you	drag	the	attachment	panel	onto	the
design	view.	Can	only	be	set	by	the	designer.	To	invoke	the	designer	use	the
ellipse	button	in	the	property	sheet.

Default	value
document(")/*/lxml:data/lxml:panes[@id='<unique	id>']	(this	is	equivalent
to	the	current	pane	where	the	unique	id	is	an	automatically	generated
identifier.)

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

Example
Use	the	ellipse	button	on	the	property	to	open	the	designer:

The	designer	allows	the	following	properties	to	be	edited	for	each	pane:
Width/Height:	You	must	supply	a	valid	CSS	length	value
Vertical/Horizontal	alignment:	Valid	values	are	displayed	in	a	dropdown
CSS	Class:	A	CSS	class	to	apply	to	the	pane.

border
A	CSS	border	value	for	the	outer	boundary	of	the	weblet.	For	example	'1px
dashed	red'.

Default	value
Blank	(no	border	is	shown).

Valid	values
Any	valid	CSS	border	string.	This	consists	of	a	width,	a	style	and	a	color,
each	separated	by	a	space.	Properties	can	be	omitted	from	this	list	but	must
be	in	this	order.	For	example,	"solid	#ff0000"	is	valid.	For	more	information
on	the	CSS	border	property,	look	at	the	W3C	specification.

http://www.w3.org/TR/css3-background/

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

Example
In	this	example,	Position	Absolutely	has	been	enabled	for	the	weblet	and	the
weblet	was	positioned	as	required	in	the	Design	view	of	the	LANSA	Editor.
This	resulted	in	the	value	shown	for	the	pos_absolute_design	property.

width
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width-design	and	height_design	properties.	However
you	can	directly	edit	the	property	values	if	required.

Default	value
''	(this	specifies	that	the	attachment	panel	will	use	the	full	width	available	in
the	containing	element).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width-design	and	height_design	properties.	However
you	can	directly	edit	the	property	values	if	required.

Default	value
'250pt'

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

8.1.4	Push	Button	(std_button_v2)	&	Push	Button	with	Images
(std_image_button_v2)

QuickStart-	Push	Button	&	Push
Button	with	Images

Properties	-	Push	Button	&	Push
Button	with	Images

The	Push	Button	weblets	provide	themable	push	buttons	for	your	web	page.
They	look	like	this:

QuickStart-	Push	Button	&	Push	Button	with	Images
To	add	a	push	button	to	your	web	page:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	either	of	the	Push	Button	weblets.

2.		Drag	and	drop	the	required	weblet	onto	the	web	page.	Click	on	the	Details
tab.

3.		Set	the	caption	to	specify	the	text	to	be	displayed	on	the	button.	In	the	case
of	the	Push	Button	with	Images,	set	the	appropriate	image	properties.	A	left-
hand	side	image	and	a	right-hand	side	image	can	be	set.

4.		Set	the	on_click_wrname	properties	to	the	name	of	the	webroutine	to	be
invoked	when	the	button	is	clicked.	If	the	webroutine	is	in	a	different	WAM
to	the	current	webroutine	then	you	will	also	need	to	set	the
on_click_wamname	property.

Properties	-	Push	Button	&	Push	Button	with	Images
All	these	properties	are	common	to	both	button	weblets	except	for	those
indicated	as	std_image_button_v2	only.

caption
currentrowhfield
currentrownumval
confirm
confirmText
default_button
disabled
formname
height_design
hide_if

left_absolute_image_path
left_image_height
left_relative_image_path
name
on_click_wamname
on_click_wrname
pos_absolute_design
presubmit_js
protocol
right_absolute_image_path

right_image_height
right_relative_image_path
show_in_new_window
submitExtraFields
tab_index
target_window_name
text_class
title
vf_wamevent
width_design

name
The	name	of	the	weblet.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	However,	you	may	want	to	use
your	own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name	enclosed	in	single	quotes.

caption
The	caption	for	the	weblet.

Default	value
'Caption'

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

currentrowhfield
The	field	name	to	be	used	to	post	to	the	target	webroutine	the	value	that	is
specified	in	the	currentrownumval	property.	The	field	name	should	be	in	single
quotes.
See	the	description	of	the	currentrownumval	property	for	further	information.

Default	value
'STDROWNUM'

Valid	values
Single-quoted	text.

currentrownumval
The	value	to	post	to	the	target	webroutine	in	the	field	specified	in	the
currentrowhfield	property.	If	that	field	is	alphanumeric,	the	value	must	be
specified	in	single	quotes.	If	it	is	numeric,	the	value	can	be	specified	with	or
without	quotes.
This	property	is	used	in	conjunction	with	the	currentrowhfield	property	to
describe	how	to	post	values	to	a	target	webroutine.	These	two	pieces	of
information	are	required	to	accomplish	this:
1.		currentrowhfield:		the	field	name	that	the	target	webroutine	uses	to	refer	to
the	information

2.		currentrownumval:		a	literal	value	or	a	field	name	in	this	(the	source)
webroutine	that	contains	the	necessary	information

Note:	Despite	the	name	of	the	property	being	currentrownumval,	the	field
name	specified	in	currentrownumval	is	not	required	to	be	a	numeric	field.

Default	value
position()

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

left_relative_image_path
std_image_button_v2	only.
The	path	and	name,	relative	to	the	images	directory,	of	the	image	to	be
displayed	on	the	left	of	the	weblet.	If	specified,	the	left_absolute_image_path
property	should	be	left	blank.

Default	value
'ball_red.gif'

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

left_absolute_image_path
std_image_button_v2	only.
The	path	and	name	of	the	image	to	be	displayed	on	the	left	of	the	weblet.	If
specified,	the	left_relative_image_path	property	should	be	left	blank.

Default	value
Blank	–	the	default	is	to	use	the	image	specified	in	the
left_relative_image_path	property.

Valid	values
The	path	and	name	of	an	image	enclosed	in	single	quotes.

left_image_height
std_image_button_v2	only.
The	height	of	the	image	on	the	left	of	the	weblet.

Default	value
'12pt'

Valid	values
A	height,	in	a	valid	unit	of	measurement,	enclosed	in	single	quotes.

right_relative_image_path
std_image_button_v2	only.
The	path	and	name,	relative	to	the	images	directory,	of	the	image	to	be
displayed	on	the	right	of	the	weblet.	If	specified,	the	right_absolute_image_path
property	should	be	left	blank.

Default	value
Blank	–	by	default,	buttons	do	not	display	an	image	on	the	right.

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

right_absolute_image_path
std_image_button_v2	only.
The	path	and	name	of	the	image	to	be	displayed	on	the	right	of	the	weblet.	If
specified,	the	right_relative_image_path	property	should	be	left	blank.

Default	value
Blank	–	the	default	is	to	use	the	image	specified	in	the
right_relative_image_path	property,	if	specified.

Valid	values
The	path	and	name	of	an	image,	enclosed	in	single	quotes.

right_image_height
std_image_button_v2	only.
The	height	of	the	image	on	the	right	of	the	weblet.

Default	value
'12pt'

Valid	values
A	height,	in	a	valid	unit	of	measurement,	enclosed	in	single	quotes.

submitExtraFields
An	XML	nodeset	specifying	any	extra	fields	(not	already	in	the	form	being
submitted)	that	should	be	sent	to	the	onClick	webroutine.	This	will	most
commonly	be	used	when	the	weblet	is	used	in	a	list	or	grid	to	specify	values
from	other	columns	in	the	list.

Default	value
document('')/*/lxml:data/lxml:json[not(@id)]	(this	indicates	no	items
have	been	defined	for	this	weblet).

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

Example
This	example	shows	the	submitExtraFields	property	editor:

This	shows	how	output	fields	in	the	current	webroutine	(the	"Value"	column)
can	be	mapped	to	input	fields	with	a	different	name	(the	"Name"	column)
defined	in	the	onClick	webroutine's	WEB_MAP.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

pos_absolute_design
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height_design
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

on_click_wamname
The	name	of	the	WAM	to	be	invoked	when	the	weblet	is	clicked.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_click_wrname
The	name	of	the	Webroutine	to	be	invoked	when	the	weblet	is	clicked.

Default	value
Blank	–	a	Webroutine	name	must	be	specified.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_click_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	specified	in	the	on_click_wrname	property.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

show_in_new_window
A	Boolean	property,	the	result	of	which	determines	whether	response	HTML	for
the	weblet	should	be	shown	in	a	new	browser	window.

Default	value
false()	–	response	HTML	is	shown	in	the	current	browser	window.

Valid	values
true(),	false()	or	a	valid	expression.

target_window_name
The	name	of	the	window,	or	frame,	in	which	response	HTML	will	be	shown.

Default	value
Blank	–	response	HTML	will	be	shown	in	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet,	or	a	unique	name	can	be	entered.
'_blank'	will	launch	in	a	new	window
'_media'	will	launch	a	media	panel	in	the	current	window
'_search'	will	launch	a	search	panel	in	the	current	window
'_parent'	will	launch	in	the	parent	window	(usually	the	current	window)
'_top'	will	launch	in	the	top	window	(usually	the	current	window)
Note	that	_search	and	_media	are	supported	by	Internet	Explorer	6	only.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

title
Text	to	be	displayed	as	a	Tool	Tip	for	the	weblet	when	the	mouse	is	hovered
over	it.

Default	value
Blank	–	no	Tool	Tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

text_class
The	Cascading	Style	Sheet	class	name	for	the	caption	in	the	push	button.

Default	value
None	for	the	push	button.		'std_image_button_text'		for	the	image	push
button.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

presubmit_js
JavaScript	code	to	be	run	prior	to	the	submission	of	the	form.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	function,	or	JavaScript	code	followed	by	a	semicolon
(;).
If	you	want	to	execute	the	presubmit	JavaScript	only,	without	running	the
JavaScript	that	submits	the	request	(thus	canceling	the	onclick	event),
append	return	false;	to	your	presubmit	JavaScript.

confirm
If	true,	it	presents	a	confirmation	dialog	box	for	the	user	to	confirm	the	action
before	proceeding.	If	the	user	clicks	on	the	Cancel	button	in	the	confirmation
dialog	box	or	closes	the	confirmation	dialog	box	without	clicking	on	the	OK
button,	the	action	to	be	performed	by	the	button	weblet	is	cancelled.

Default	value
false()	–No	confirmation	dialog	box.

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	shows	the	confirmation	dialog	box	you	would	add	to	a	Delete
button:

confirmText
The	text	to	display	in	the	confirmation	dialog	box.	Only	applicalble	if	the
confirm	property	is	set	to	true().

Default	value
Blank	–	no	text	message.

Valid	values
Single-quoted	text,	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list)	or	an	XPath	expression	whose	result	is	a	string.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

default_button
A	Boolean	property,	the	result	of	which	determines	whether	the	button	is	the
default	button	for	the	form.	Only	one	button	on	the	form	can	be	the	default
button	–	setting	to	True	will	set	all	other	buttons	to	False.

Default	value
Blank	-	Equivalent	to	False.

Valid	values
true(),	false()	or	a	valid	expression.

vf_wamevent
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.1.5	Checkbox	(std_checkbox)

QuickStart	-	Checkbox Properties	-	Checkbox

The	checkbox	weblet	provides	a	checkbox	control.	It	broadly	corresponds	to	the
<input	type="checkbox">	HTML	element.
A	checkbox	control	is	typically	used	to	represent	a	value	that	can	have	one	of
two	states.	For	example:	on	or	off;	yes	or	no;	selected	or	unselected.
When	used	in	a	list	(with	no	caption),	the	checkbox	weblet	looks	like	this:

Note:	While	the	checkbox	weblet	includes	properties	such	as
on_click_wrname	that	allow	it	to	navigate	to	another	webroutine	when
clicked,	It	is	not	good	user-interface	design	practice	to	initiate	actions
from	the	click	of	a	checkbox.	Devices	such	as	a	push	button,	menu
item	or	anchor	(hyperlink)	should	be	used	to	accomplish	this.

QuickStart	-	Checkbox
It	is	common	to	use	a	checkbox	with	a	column	in	a	list	to	indicate	a	data	item	or
selection	state.	To	do	so	you	would	need	to	create	a	webroutine	that	specifies
the	list	in	its	WEB_MAP.	When	you	open	the	generated	XSL	in	the	LANSA
Editor,	you	can	change	a	column	of	the	list	to	function	as	a	checkbox	as	follows:
Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list	near
the	top	and	locate	the	Checkbox	weblet.
Drag	the	Checkbox	weblet	over	the	column	in	your	list	and	release	the	left-
mouse	button.	The	column's	appearance	changes	to	show	that	it	is	now	a
checkbox.	Click	on	an	item	in	the	column	and	then	click	on	the	Details	tab.	You
should	see	that	the	name	and	value	properties	for	the	checkbox	weblet	have
already	been	set	according	to	the	field	upon	which	it	was	dropped.
Set	the	caption	property	as	required.	When	used	in	a	list	you	may	not	wish	to
use	a	caption	–	to	remove	the	caption,	specify	an	empty	string	by	specifying	two
quote	marks	with	no	contained	text.
You	may	need	to	set	the	oncode	and	offcode	properties	according	to	the	values
used	in	your	application	to	represent	the	on	and	off	or	selected	and	unselected
states.

Properties	-	Checkbox
The	Checkbox	weblet's	Properties	are:

alignment
caption
class
disabled
display_mode
formname
hide_if

mouseover_class
name
offcode
on_click_wamname
on_click_wrname
oncode
pos_absolute

protocol
reentryfield
reentryvalue
tab_index
target_window_name
text_class
value
vf_wamevent

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	checkbox	and/or	that	is	used	to
receive	the	state	of	the	checkbox.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

caption
The	caption	for	the	weblet.	The	caption	is	displayed	adjacent	to	the	checkbox	on
the	web	page.

Default	value
'Caption'	(this	is	a	placeholder	default	value	-	you	will	need	to	set	a	caption).

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).
If	you	do	not	want	any	caption	displayed	next	to	the	checkbox	(for	example,
when	it	is	used	in	a	list)	you	may	specify	an	empty	string	by	specifying	two
quote	marks	with	no	contained	text.

oncode
The	value	that	represents,	or	is	used	to	set,	a	checked	status	for	a	checkbox.

Default	value
'Y'

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable	(the	corresponding	ellipses	button	in	the	property	sheet	can	be
clicked	to	choose	one	from	a	list).

offcode
The	value	that	represents,	or	is	used	to	set,	an	unchecked	status	for	a	checkbox.

Default	value
'N'

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable	(the	corresponding	ellipses	button	in	the	property	sheet	can	be
clicked	to	choose	one	from	a	list).

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.
See	the	description	of	the	reentryvalue	property	for	further	information.
Note:	this	property	is	provided	to	support	a	re-entrant	programming	technique
that	is	commonly	used	in	WEBEVENT	applications.	Web	applications	that	are
designed	from	the	outset	to	use	WAMs	do	not	usually	need	to	make	use	of	that
technique.

Default	value
'STDRENTRY'

Valid	values
Single-quoted	text.

reentryvalue
The	value	to	post	to	the	target	webroutine	in	the	field	specified	in	the
reentryfield	property.	If	that	field	is	alphanumeric,	the	value	must	be	specified	in
single	quotes.	If	it	is	numeric,	the	value	can	be	specified	with	or	without	quotes.
This	property	is	used	in	conjunction	with	the	reentryfield	property	to	describe
how	to	post	values	to	a	target	webroutine.	These	two	pieces	of	information	are
required	to	accomplish	this:
1.		reentryfield:		the	field	name	that	the	target	webroutine	uses	to	refer	to	the
information

2.		reentryvalue:		a	literal	value	or	a	field	name	in	this	(the	source)	webroutine
that	contains	the	necessary	information

Note:	this	property	is	provided	to	support	a	re-entrant	programming	technique
that	is	commonly	used	in	WEBEVENT	applications.	Web	applications	that	are
designed	from	the	outset	to	use	WAMs	do	not	usually	need	to	make	use	of	that
technique.

Default	value
'M'

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

on_click_wamname
Specifies	the	name	of	the	WAM	whose	webroutine	is	executed	when	the
checkbox	is	clicked.	(The	webroutine	name	is	specified	in	the	on_click_wrname
property.)	This	property	is	ignored	unless	the	on_click_wrname	property	is
specified.

Note:	It	is	not	good	user-interface	design	practice	to	initiate	actions
from	the	click	of	a	checkbox.	Devices	such	as	a	push	button,	menu
item	or	anchor	(hyperlink)	should	be	used	to	accomplish	this.

Default	value
If	not	specified,	the	current	WAM	is	used.	($lweb_WAMName).

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_click_wrname
Specifies	the	name	of	the	webroutine	that	is	executed	when	the	checkbox	is
clicked.	(The	name	of	the	WAM	containing	the	webroutine	is	specified	in	the
on_click_wamname	property.)

Note:	It	is	not	good	user-interface	design	practice	to	initiate	actions
from	the	click	of	a	checkbox.	Devices	such	as	a	push	button,	menu
item	or	anchor	(hyperlink)	should	be	used	to	accomplish	this.

Default	value
No	default	value	applies.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_click_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	specified	in	the	on_click_wrname	property.
Typically	you	might	use	this	property	when	it	is	necessary	to	switch	to	or	from
secure-mode	processing.	Otherwise	it	is	not	usually	necessary	to	specify	this
property.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	If	specified,	it	is	usually	'http:'	or	'https:'.

target_window_name
The	name	of	the	window,	or	frame,	in	which	the	response	HTML	will	be	shown
upon	navigation	to	the	webroutine	specified	in	the	on_click_wrname	property.

Default	value
Blank	–	the	response	HTML	will	be	shown	in	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

alignment
Determines	whether	the	caption	appears	to	the	left	or	right	of	the	checkbox.

Default	value
'right'

Valid	values
'left',	'right'	or	the	name	of	a	field	or	system	variable	that	will	contain	one	of
the	preceding	values	at	run-time.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

Example
In	this	example,	Position	Absolutely	has	been	enabled	for	the	weblet	and	the
weblet	was	positioned	as	required	in	the	Design	view	of	the	LANSA	Editor.
This	resulted	in	the	value	shown	for	the	pos_absolute_design	property.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

mouseover_class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet	when	the	mouse	is
moved	over	it.

Default	value
No	default	value	applies	for	this	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

text_class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	text	of	the	weblet.

Default	value
The	name	of	the	shipped	text	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

vf_wamevent
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.1.6	CKEditor	Rich	Text	Editor	(std_ckeditor)

QuickStart	–	CKEditor Properties	–	CKEditor	Rich	Text	Editor

CKEditor	is	a	rich	text	editor.	It's	a	WYSIWYG	editor,	which	means	that	the
text	being	edited	on	it	looks	as	similar	as	possible	to	the	results	users	have	when
publishing	it.

QuickStart	–	CKEditor
To	use	the	CKEditor	weblet	you	can	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	CKEditor	Rich	Text	Editor	weblet.

2.		Drag	and	drop	the	weblet	onto	your	page.	Make	sure	the	weblet	is	selected
and	then	click	on	the	Details	tab.

3.		Assign	a	field	name	to	the	CKEditor	name	property.	The	field	would
normally	be	a	string	field	long	enough	to	store	the	expected	content	when
escaped	(all	markup	text	is	escaped	by	the	CKEditor).

Properties	–	CKEditor	Rich	Text	Editor

autoGrow
autoGrow_maxHeight
autoGrow_minHeight
contentCss
height_design
hide_if
name
onchange_script

pos_absolute
resize_dir
resize_enabled
resize_maxHeight
resize_maxWidth
resize_minHeight
resize_minWidth
showElementsPath

showSource
tab_index
toolbar
toolbarCanCollapse
uiColor
value
valueFromField
width_design

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name.
Otherwise	the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

valueFromField
If	set	to	true	and	the	value	property	is	null,	the	CKEditor	weblet	will	load	the
value	from	the	field	that	matches	the	CKEditor	name	attribute.	Use	this	option	if
your	text	content	is	large	and	you	don't	want	the	content	to	appear	both	in	the
CKEditor	weblet	value	and	the	webroutine	field	values	list.

Default	value
False()

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

toolbar
The	level	of	features	to	include	in	the	editor.	The	Full	option	shows	all	the
options	available	in	the	CKEditor.	Use	the	basic	toolbar	if	you	want	to	provide
simple	editing	capabilities	only.

Default	value
Basic

Valid	values
Basic
Full

Example
CKEditor	with	basic	toolbar:

showSource
When	showing	the	full	toolbar,	whether	to	allow	users	to	view/edit	the	HTML
source

Allowing	users	to	add	any	markup	in	field	values	could	be	a	security
vulnerability.	Only	use	this	option	with	care.

Default	value
False.

Valid	values
False(),	true()	or	any	valid	XPath	expression	that	returns	a	Boolean	value.

showElementsPath
The	elements	path	displays	information	about	the	HTML	elements	of	the
document	for	a	position	of	the	cursor.	It	appears	in	the	status	bar	of	the
CKEditor.

Default	value
True.

Valid	values
False(),	true()	or	any	valid	XPath	expression	that	returns	a	Boolean	value.

toolbarCanCollapse
Whether	the	toolbar	can	be	collapsed	by	the	user.	If	disabled,	the	collapser
button	will	not	be	displayed.

Default	value
True.

Valid	values
False(),	true()	or	any	valid	XPath	expression	that	returns	a	Boolean	value.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width-design	and	height_design	properties.	However	you	can
directly	edit	the	property	value	if	required.

Default	value
Blank.

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height_design
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width-design	and	height_design	properties.	However
you	can	directly	edit	the	property	values	if	required.

Default	value
Blank.

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

resize_enabled
Whether	to	enable	the	CKEditor	to	be	resized.	If	disabled	the	resize	handler	will
not	be	visible.

Default	value
False.

Valid	values
False(),	true()	or	any	valid	XPath	expression	that	returns	a	Boolean	value.

resize_dir
The	directions	to	which	the	editor	resizing	is	enabled.	Only	applicable	if	the
CKEditor	is	enabled	to	be	resized.

Default	value
Both

Valid	values
Both
Vertical
Horizontal

autoGrow
Whether	to	enable	AutoGrow.	Autogrow	allows	the	content	area	to	expand	as
the	user	fills	the	content	area.

Default	value
False.

Valid	values
False(),	true()	or	any	valid	XPath	expression	that	returns	a	Boolean	value.

autoGrow_maxHeight
The	maximum	height	to	which	the	editor	can	reach	using	AutoGrow.

Default	value
Blank.

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

autoGrow_minHeight
The	minimum	height	to	which	the	editor	can	reach	using	AutoGrow.

Default	value
Blank.

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

resize_maxHeight
The	maximum	editor	height,	in	pixels,	when	resizing	it	with	the	resize	handle.

Default	value
3000	pixels

Valid	values
A	height	in	pixels.

resize_maxWidth
The	maximum	editor	width,	in	pixels,	when	resizing	it	with	the	resize	handle.

Default	value
3000	pixels

Valid	values
A	width	in	pixels.

resize_minHeight
The	minimum	editor	height,	in	pixels,	when	resizing	it	with	the	resize	handle.
Note:	It	fallbacks	to	editor's	actual	height	if	that's	smaller	than	the	default	value.

Default	value
250	pixels

Valid	values
A	height	in	pixels.

resize_minWidth
The	minimum	editor	width,	in	pixels,	when	resizing	it	with	the	resize	handle.
Note:	It	fallbacks	to	editor's	actual	width	if	that's	smaller	than	the	default	value.

Default	value
750	pixels

Valid	values
A	width	in	pixels.

contentCss
The	CSS	file(s)	to	be	used	to	apply	style	to	the	contents	(comma	separated	list).
It	should	reflect	the	CSS	used	in	the	final	pages	where	the	contents	are	to	be
used.	Use	the	special	value	'inherit'	to	apply	the	same	CSS	used	in	the
webroutine.

Default	value
Inherit

Valid	values
Comma	separated	list	of	stylesheets.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

uiColor
The	toolbar	area	background	color.

Default	value
Theme:	Defaults	to	a	color	matching	the	current	theme.

Valid	values
A	color	in	#RRGGBB	format.

onchange_script
JavaScript	code	to	be	run	when	the	input	box	loses	focus	after	the	text	has	been
changed.	JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

8.1.7	Clickable	Image	(std_click_image)

QuickStart	-	Clickable	Image Properties	-	Clickable	Image

The	Clickable	Image	weblet	provides	a	mechanism	by	which	an	image	can	be
displayed	on	your	web	page	that	can	be	clicked	on	to	perform	an	action.	By
default,	it	shows	a	blue	ball	that	looks	like	this:

QuickStart	-	Clickable	Image
To	use	a	clickable	image	with	a	column	in	a	list,	you	would	need	to	create	a
webroutine	that	specifies	the	list	in	its	WEB_MAP	as	*BOTH	or	*OUTPUT.
When	you	open	the	generated	XSL	in	the	LANSA	Editor,	you	can	change	a
column	of	the	list	to	function	as	a	clickable	image	as	follows:
Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list	near
the	top	and	locate	the	Clickable	Image	weblet.
Drag	and	drop	it	onto	the	column	in	your	list	you	want	to	be	clickable.	The
column's	appearance	changes	to	show	that	it	is	now	an	image.	Click	on	an	item
in	the	column	and	then	click	on	the	Details	tab.	You	should	see	that	the	name
and	value	properties	for	the	anchor	weblet	have	already	been	set	according	to
the	field	upon	which	it	was	dropped.
Set	the	currentrowhfield	and	currentrownumval	properties	as	described	in	the
property	descriptions.
Set	the	on_click_wrname	property	to	the	name	of	the	webroutine	to	be	invoked
when	the	hyperlink	is	clicked.	If	the	webroutine	is	in	a	different	WAM	to	the
current	webroutine	then	you	will	need	to	set	the	on_click_wamname	property	as
well.

Properties	-	Clickable	Image
The	Clickable	Image	weblet's	properties	are:

absolute_image_path
class
currentrowhfield
currentrownumval
disabled
disabled_class
formname
height_design
hide_focus
hide_if

mouseover_absolute_image_path
mouseover_relative_image_path
name
on_click_wamname
on_click_wrname
pos_absolute
presubmit_js
protocol
reentryfield
reentryvalue

relative_image_path
show_in_new_window
tab_index
target_window_name
tooltip
url
value
vf_wamevent
width_design

name
The	name	of	the	weblet.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	However,	you	may	want	to	use
your	own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name	in	single	quotes.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	is	the	value	of
the	field.

Default	value
Blank.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable,	system
variable	or	field	(the	ellipses	button	in	the	property	sheet	can	be	clicked	to
choose	one	from	a	list).

currentrowhfield
The	name	of	the	field	that	will	contain	the	current	row's	specified	value.	This
property	should	only	be	used	if	the	weblet	is	being	used	in	a	list.

Default	value
'STDROWNUM'	–	in	conjunction	with	the	default	value	of	position()	for	the
currentrownumval	property,	STDROWNUM	will	hold	the	list	entry	number.

Valid	values
The	name	of	a	repository-	or	WAM-defined	field,	in	single	quotes.	A	list	of
known	field	names	is	available	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

currentrownumval
The	value	to	be	placed	in	the	field	specified	in	the	currentrowhfield	property.
This	property	should	only	be	used	if	the	weblet	is	being	used	in	a	list.

Default	value
Position()	–	in	conjunction	with	the	default	value	of	STDROWNUM	for	the
currentrowhfield	property,	STDROWNUM	will	hold	the	list	entry	number.

Valid	values
Any	appropriate	valid	value.	If	specifying	a	field	value	from	the	current	row
of	a	list,	prefix	the	name	of	the	field	with	'$'.

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.

Default	value
'STDRENTRY'

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

reentryvalue
The	value	to	post	into	the	field	specified	in	the	reentryfield	property.	If	that	field
is	alphanumeric,	the	value	must	be	specified	in	single	quotes.	If	it	is	numeric,
the	value	can	be	specified	with	or	without	quotes.

Default	value
'M'

Valid	values
Any	appropriate	literal.

tooltip
Text	to	be	displayed	as	a	Tool	Tip	for	the	weblet	when	the	mouse	is	hovered
over	it.

Default	value
'Tooltip'

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable,	system
variable	or	field	(the	ellipses	button	in	the	property	sheet	can	be	clicked	to
choose	from	a	list).

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

url
This	property	may	be	used	to	specify	a	URL	that	the	weblet	will	navigate	to
when	clicked.	If	specified,	the	URL	may	be	specified	as	a	literal	value	(for
example	'http://www.mycompany.com/')	or	a	field	name	may	be	specified	that
contains	the	URL	at	run-time.
This	property	takes	precedence	over	the	on_click_wamname,	on_click_wrname
and	protocol	properties.	The	latter	properties	are	ignored	if	url	is	specified.

Default	Value
'javascript:void();'	–	equivalent	to	nothing.

Valid	Values
A	URL	enclosed	by	single	quotes	or	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	the	URL	at	run-time.

on_click_wamname
The	name	of	the	WAM	to	be	invoked	when	the	weblet	is	clicked.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_click_wrname
The	name	of	the	Webroutine	to	be	invoked	when	the	weblet	is	clicked.

Default	value
Not	applicable	–	a	Webroutine	name	must	be	specified.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_click_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	specified	in	the	on_click_wrname	property.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

show_in_new_window
A	Boolean	property,	the	result	of	which	determines	whether	response	HTML	for
the	weblet	should	be	shown	in	a	new	browser	window.

Default	value
false()	–	response	HTML	is	shown	in	the	current	browser	window.

Valid	values
true(),	false()	or	any	valid	expression	that	returns	True	or	False.

target_window_name
The	name	of	the	window,	or	frame,	in	which	response	HTML	will	be	shown.

Default	value
Blank	–	response	HTML	will	be	shown	in	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.
'_blank'	will	launch	in	a	new	window
'_media'	will	launch	a	media	panel	in	the	current	window
'_search'	will	launch	a	search	panel	in	the	current	window
'_parent'	will	launch	in	the	parent	window	(usually	the	current	window)
'_top'	will	launch	in	the	top	window	(usually	the	current	window)
Note	that	_search	and	_media	are	supported	by	Internet	Explorer	6	only.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()or	any	valid	expression	that	returns	True	or	False.

hide_focus
A	Boolean	property	that,	if	evaluated	to	be	True,	will	hide	the	focus	rectangle
for	the	weblet	when	it	has	focus.

Default	value
true()

Valid	values
true(),	false()	or	a	valid	expression	that	returns	a	Boolean	value.

relative_image_path
The	path	and	file	name,	relative	to	the	'images'	directory,	of	the	image	to	be
displayed.	If	specified,	the	absolute_image_path	property	should	be	left	blank.

Default	value
'ball_blue.gif'

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

absolute_image_path
The	path	and	file	name	of	the	image	to	be	displayed.	If	specified,	the
relative_image_path	property	should	be	left	blank.

Default	value
The	default	is	to	use	the	image	specified	in	the	relative_image_path	property.

Valid	values
The	path	and	name	of	an	image	enclosed	in	single	quotes.

mouseover_relative_image_path
The	path	and	file	name,	relative	to	the	'images'	directory,	of	an	image	to	be
displayed	when	the	mouse	moves	over	the	weblet.

Default	value
Blank	–	the	image	does	not	change	when	the	mouse	is	moved	over	the
weblet.

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

mouseover_absolute_image_path
The	path	and	file	name	of	an	image	to	be	displayed	when	the	mouse	moves	over
the	weblet.

Default	value
Blank	–	the	default	is	to	use	the	image	specified	in	the
mouseover_relative_image_path	property.

Valid	values
The	path	and	name	of	an	image	enclosed	in	single	quotes.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height_design
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

class
The	Cascading	Style	Sheet	class	name	of	the	weblet.

Default	value
'std_click_image'	-	The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

disabled_class
The	Cascading	Style	Sheet	of	the	weblet	when	the	disabled	property	is	set	to
True.

Default	value
'std_click_image_disabled'	-	The	name	of	the	shipped	disabled	class	for	the
weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

presubmit_js
JavaScript	code	to	be	run	prior	to	the	submission	of	the	form.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	function,	or	JavaScript	code	followed	by	a	semicolon
(;).
If	you	want	to	execute	the	presubmit	JavaScript	only,	without	running	the
JavaScript	that	submits	the	request	(thus	canceling	the	onclick	event),
append	return	false;	to	your	presubmit	JavaScript.

Example
The	following	example	shows	a	message	box:

The	following	example	shows	a	message	box	and	cancels	the	submit
JavaScript:

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

vf_wamevent
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.1.8	Combo	Box	(std_dropdown)

QuickStart	-	Clickable	Image Properties	-	Combo	Box

The	combo	box	weblet	builds	a	dropdown	selection	for	a	field.	The	values	used
to	build	the	dropdown	can	be	from	a	working	list	or	a	static	set	of	values
defined	via	the	item	property	of	the	weblet.	Each	dropdown	is	implemented	as	a
<select>	HTML	tag.	It	looks	like	this:

QuickStart	-	Combo	Box
Each	entry	in	a	combo	box	is	defined	by	an	entry	in	a	working	list	or	a	set	of
items	hardcoded	in	the	combo	box	properties.

If	you	use	a	working	list:
To	use	a	working	list	to	define	the	dropdown	options,	you	need	to	create	a
webroutine	that	specifies	a	field	to	store	the	selected	value	and	the	working	list
of	options	in	the	WEB_MAP.	When	you	open	the	XSL	generated	for	the
webroutine	in	the	LANSA	Editor:
1.		If	the	working	list	was	not	*HIDDEN	on	the	WEB_MAP	a	default	table
representation	of	the	working	list	will	be	included	on	the	web	page.	Delete
the	table	that	visualizes	the	list.	To	do	this,	right-click	in	the	list	and	select
Delete	Entire	List	from	the	pop-up	menu.

2.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Combo	Box	weblet.

3.		Drag	the	Combo	Box	weblet	onto	the	field	to	store	the	value	and	release	the
left-mouse	button.	This	will	display	with	dropdown	options.

4.		Click	on	the	weblet	to	review	the	Details	tab.	Notice	that	the	name	and	value
properties	have	been	set	to	indicate	the	field	you	dragged	the	weblet	on	to.
The	value	property	indicates	that	on	presentation	of	the	web	page	any	value
currently	in	this	field	will	be	used	to	set	the	selected	drop	down	entry.	When
the	drop	down	value	is	changed	the	appropriate	value	will	be	place	in	the
field	nominated	on	the	name	property	–	in	this	case	the	same	field.

5.		Change	the	listname	property	to	the	working	list	passed	on	the	WEB_MAP.
The	combo	box	representation	should	immediately	change	to	represent	the
working	list.

6.		Set	the	codefield	and	captionfield	properties	to	the	appropriate	fields	from
the	working	list.

If	you	use	the	items	property:
To	use	a	set	of	items	hardcoded	in	the	combo	box	properties,	you	would	need	to
create	a	webroutine	that	specifies	a	field	in	its	WEB_MAP.	When	you	open	the
XSL	generated	for	the	webroutine	in	the	LANSA	Editor:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list

near	the	top	and	locate	the	Combo	Box	weblet.
2.		Drag	the	Combo	Box	weblet	onto	the	field	to	store	the	value	and	release	the
left-mouse	button.	This	will	display	with	dropdown	options.

3.		Click	on	the	weblet	to	review	the	Details	tab.	Notice	that	the	name	and	value
properties	have	been	set	to	indicate	the	field	you	dragged	the	weblet	on	to.
The	value	property	indicates	that	on	presentation	of	the	web	page	any	value
currently	in	this	field	will	be	used	to	set	the	selected	drop	down	entry.	When
the	drop	down	value	is	changed	the	appropriate	value	will	be	place	in	the
field	nominated	on	the	name	property	–	in	this	case	the	same	field.

4.		Set	up	the	list	of	items	to	be	used	as	drop	down	options	by	selecting	the
ellipses	button	on	the	items	property.	Proceed	to	define	the	require	entries	for
the	drop	down.

Properties	-	Combo	Box
The	Combo	Box	weblet's	properties	are:

captionfield
class
codefield
disabled
display_mode
formname
hide_if
items
listname

mouseover_class
name
on_change_wamname
on_change_wrname
pos_absolute
protocol
reentryfield
reentryvalue
selector_field

selector_value_eq
submit_tagfields
tab_index
tagfield1
tagfield2
tagfield3
target_window_name
value
vf_wamevent
width_design

name
The	name	of	the	dropdown.	Normally,	you	would	leave	this	as	the	default	and
let	LANSA	use	its	own	internal	naming	convention.	If	the	weblet	has	been
dropped	onto	a	field,	or	is	to	be	used	to	display	or	populate	a	field,	the	field
name	is	used.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

Example
This	shows	the	default	name	is	not	associated	with	a	field:

Or	you	when	the	weblet	is	associated	with	a	field	STD_FLAG:

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	is	the
value	of	the	field	or	a	default	value.

Default	value
Blank.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable,	system
variable	or	field	(the	ellipses	button	in	the	property	sheet	can	be	clicked	to
choose	from	a	list).

Example
This	example	indicates	the	value	should	be	set	to	the	current	value	of	the
field	#SECTION.	When	entered	into	the	property	this	looks	like	this:

When	focus	is	moved	off	the	property	the	same	value	will	appear	as	follows:

display_mode
Controls	whether	the	weblet	accepts	input	or	displays	output.

Default	value
'input'

Valid	values
'input'	or	'output'.

items
An	XML	nodeset	specifying	the	items	to	appear	in	the	weblet.	Can	only	be	set
by	the	designer.	To	invoke	the	designer	use	the	ellipse	button	in	the	property
sheet.	Leave	blank	if	items	are	populated	from	a	list	specified	in	the	listname
property.

Default	value
document(")/*/lxml:data/lxml:dropdown	(this	indicates	no	items	have	been
defined	for	this	dropdown.)

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

Example
This	example	indicates	that	items	have	been	setup	in	the	designer	to	use	as
dropdown	values.

Using	the	ellipse	button	on	the	property	you	will	see	the	designer	and	be	able
to	maintain	the	items	to	be	displayed	in	the	dropdown.	The	following	view	of
the	designer	indicates	two	entries	have	been	set	up	for	the	dropdown.	The
first	entry	has	the	literal	value	'MONDAY'	and	the	second	entry	uses	a
multilingual	variable	to	display	the	description	for	the	code	TUE.	Check	the
Default	Item	check	box	for	the	item	which	is	to	be	selected	if	no	value	is
preselected.

listname
The	name	of	the	working	list	to	use	to	populate	the	cells	in	the	grid.	Leave	blank
if	details	are	specified	in	the	items	property.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	list	of	available	working	lists	(as	defined	in	the	WAM)
can	be	selected	from	by	clicking	the	corresponding	dropdown	button	in	the
property	sheet.

selector_field
The	name	of	the	field	in	the	list	specified	in	the	listname	property	that	can
contain	a	value	to	limit,	to	a	subset,	the	list	items	shown	in	the	weblet.	This
property	is	used	in	conjunction	with	the	selector_value_eq	property.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

selector_value_eq
This	value	is	used	in	order	to	limit,	to	a	subset,	the	list	items	shown	in	the
weblet.	If	a	listname	property	is	provided	the	associated	field	must	be	specified
in	the	selector_field	property.	If	the	items	property	designer	has	been	used	to
define	the	list	of	values	the	corresponding	selector	value	entered	in	the	designer
is	used.

Default	value
Blank.

Valid	values
Single-quoted	text	or	a	numeric	value.	A	field,	from	the	working	list
nominated	in	listname,	can	be	selected	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

codefield
The	name	of	the	field	in	the	list	specified	in	the	listname	property	that	holds	the
key	value	for	each	list	item.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

captionfield
The	name	of	the	field	in	the	list	specified	in	the	listname	property	that	holds	the
caption	for	the	each	list	item.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

tagfield1
The	name	of	a	field	in	the	list	specified	in	the	listname	property	that	can	contain
an	additional	value	to	be	tagged	onto	a	list	item.	This	value	is	added	as	an
attribute	with	the	name	of	the	field	prefixed	with	'tag_'.	This	attribute	can	then
be	specified	in	JavaScript	code.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

tagfield2
The	name	of	a	field	in	the	list	specified	in	the	listname	property	that	can	contain
an	additional	value	to	be	tagged	onto	a	list	item.	This	value	is	added	as	an
attribute	with	the	name	of	the	field	prefixed	with	'tag_'.	This	attribute	can	then
be	specified	in	JavaScript	code.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

tagfield3
The	name	of	a	field	in	the	list	specified	in	the	listname	property	that	can	contain
an	additional	value	to	be	tagged	onto	a	list	item.	This	value	is	added	as	an
attribute	with	the	name	of	the	field	prefixed	with	'tag_'.	This	attribute	can	then
be	specified	in	JavaScript	code.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

submit_tagfields
A	Boolean	property.	Set	to	True	if	tag	field	values	are	to	be	submitted	with	the
rest	of	the	form.

Default	value
True().

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.

Default	value
'STDRENTRY'

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

reentryvalue
The	value	to	post	into	the	field	specified	in	the	reentryfield	property.	If	that	field
is	alphanumeric,	the	value	must	be	specified	in	single	quotes.	If	it	is	numeric,
the	value	can	be	specified	with	or	without	quotes.

Default	value
'M'

Valid	values
Any	appropriate	literal.

hide_if
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	hide	the
weblet.

Default	value
False()	(that	is,	the	grid	will	always	be	shown)

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	hide	the	grid	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'	(that	is,	document.LANSA)

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	recognised.	The	property	will	usually	be	set	in	pixels	by	dragging	and
dropping	the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

on_change_wamname
The	name	of	the	WAM	to	be	invoked	when	an	item	in	the	weblet	is	selected.

Note:	It	is	not	good	user-interface	design	to	initiate	actions	from	the
click	of	a	dropdown.	Devices	such	as	a	push	button,	menu	item	or
anchor	(hyperlink)	should	be	used	to	accomplish	this.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_change_wrname
The	name	of	the	Webroutine	to	be	invoked	when	an	item	in	the	weblet	is
selected.

Note:	It	is	not	good	user-interface	design	to	initiate	actions	from	the
click	of	a	dropdown.	Devices	such	as	a	push	button,	menu	item	or
anchor	(hyperlink)	should	be	used	to	accomplish	this.

Default	value
Blank.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_change_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	invoked	by	this	weblet.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

target_window_name
The	name	of	the	window,	or	frame,	in	which	response	HTML	will	be	shown.	A
unique	name	can	be	entered	or	use	the	available	selection	for	a	predefined	set	of
values.

Default	value
Blank	–	response	HTML	will	be	shown	in	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.
A	list	of	known	windows	and	frames	can	be	displayed	by	clicking	on	the
corresponding	dropdown	button	in	the	property	sheet,	or	a	unique	name	can
be	entered.
'_blank'	will	launch	in	a	new	window
'_media'	will	launch	a	media	panel	in	the	current	window
'_search'	will	launch	a	search	panel	in	the	current	window
'_parent'	will	launch	in	the	parent	window	(usually	the	current	window)
'_top'	will	launch	in	the	top	window	(usually	the	current	window)
Note	that	_search	and	_media	are	supported	by	Internet	Explorer	6	only.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

mouseover_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	weblet	when	the	mouse	is
moved	over	it.

Default	value
Blank.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.	A	shipped	class	of
'std_dropdown_mouseover'	is	supplied.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

vf_wamevent
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.1.9	Dynamic	Select	Box	(std_dynamic_select)
	

QuickStart	-	Dynamic	Select
Box

8.1.9	Dynamic	Select	Box
(std_dynamic_select)

The	Dynamic	Select	Box	is	an	HTML	<select>	element	(which	means	it	can
create	a	dropdown	or	a	list)	that	is	able	to	monitor	another	field	and
automatically	refresh	itself	when	that	field	changes.	The	values	used	to	build	the
list	can	be	from	a	working	list	or	a	static	set	of	values	defined	via	the	item
property	of	the	weblet.

QuickStart	-	Dynamic	Select	Box
Each	entry	in	a	Dynamic	Select	Box	is	defined	by	an	entry	in	a	working	list	or	a
set	of	items	hardcoded	in	the	weblet	properties.

If	you	use	a	working	list:
To	use	a	working	list	to	define	the	dropdown	options,	you	need	to	create	a
webroutine	that	specifies	a	field	to	store	the	selected	value	and	the	working
list	of	options	in	the	WEB_MAP.	The	working	list	must	be	defined	as	a
*JSON	list.	The	working	list	will	usually	contain	2	or	3	columns:
A	caption	column	containing	the	values	to	display	in	the	list
A	code	column	containg	the	code	associated	with	each	caption.	The	code	is
the	value	that	will	be	sent	back	to	indicate	the	user's	choice.
An	optional	selector	column.	This	will	be	used	in	conjunction	with	the
selectorValueField	property	to	filter	the	list	displayed	to	the	user

	
1.		If	the	working	list	was	not	*HIDDEN	on	the	WEB_MAP	a	default	table
representation	of	the	working	list	will	be	included	on	the	web	page.	Delete
the	table	that	visualizes	the	list.	To	do	this,	right-click	in	the	list	and	select
Delete	Entire	List	from	the	pop-up	menu.

2.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Dynamic	Select	Box	weblet.

3.		Drag	the	Dynamic	Select	Box	weblet	onto	the	field	to	store	the	value	and
release	the	left-mouse	button.

4.		Click	on	the	weblet	to	review	the	Details	tab.	Notice	that	the	vf_wamevent
and	value	properties	have	been	set	to	indicate	the	field	you	dragged	the
weblet	on	to.	The	value	property	indicates	that	on	presentation	of	the	web
page	any	value	currently	in	this	field	will	be	used	to	set	the	selected	entry.
When	the	weblet	value	is	changed	the	appropriate	value	will	be	placed	in	the
field	nominated	on	the	name	property	–	in	this	case	the	same	field.

5.		Change	the	listname	property	to	the	working	list	passed	on	the	WEB_MAP.
6.		Set	the	codefield	and	captionfield	properties	to	the	appropriate	fields	from
the	working	list.

7.		Set	the	size	property	to	indicate	the	desired	height	of	the	list	box	in	rows	(a
value	of	1	will	cause	it	to	render	as	a	dropdown).

If	you	use	the	items	property:
To	use	a	set	of	items	hardcoded	in	the	weblet	properties,	you	would	need	to
create	a	webroutine	that	specifies	a	field	for	the	selected	value	in	its
WEB_MAP.	When	you	open	the	XSL	generated	for	the	webroutine	in	the
LANSA	Editor:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Dynamic	Select	Box	weblet.

2.		Drag	the	Dynamic	Select	Box	weblet	onto	the	field	to	store	the	value	and
release	the	left-mouse	button.

3.		Click	on	the	weblet	to	review	the	Details	tab.	Notice	that	the	vf_wamevent
and	value	properties	have	been	set	to	indicate	the	field	you	dragged	the
weblet	on	to.	The	value	property	indicates	that	on	presentation	of	the	web
page	any	value	currently	in	this	field	will	be	used	to	set	the	selected	entry.
When	the	weblet	value	is	changed	the	appropriate	value	will	be	place	in	the
field	nominated	in	the	name	property	–	in	this	case	the	same	field.

4.		Set	up	the	list	of	items	to	be	used	as	drop	down	options	by	selecting	the
ellipses	button	on	the	items	property.	Proceed	to	define	the	require	entries	for
the	select	box.

Automatic	Updating
The	dynamic	select	box	can	monitor	another	field	and	automatically	refresh
itself	whenever	that	field	is	updated.	If	the	weblet	has	been	filled	using	a
working	list	then	you	will	need	to	create	a	JSON	webroutine	that	will	output	a
fresh	copy	of	the	working	list.	The	weblet	will	call	this	Webroutine	each	time	it
needs	to	refresh.
1.		Set	the	updateOnFieldChange	to	the	id	of	the	field	you	want	to	monitor.	This
will	usually	be	the	name	of	a	field	but	it	can	be	the	id	of	any	HTML	form
element	capable	of	generating	a	change	event.	This	field	will	be	submitted	to
the	Webroutine	supplying	the	new	list.
2.		Set	the	updateWamName	and	updateWrName	properties	to	the	name	of
the	WAM/Webroutine	that	will	supply	the	new	list.	This	webroutine	must
output	a	new	copy	of	the	list	defined	in	the	listname	property.
3.Set	the	updateFieldsToSubmit	property	to	identify	the	input	values	to	be
sent	to	the	update	webroutine.
It	is	not	necessary	to	use	an	update	webroutine	to	refresh	the	list.	In	many
simple	cases	you	can	supply	all	possible	values	to	the	weblet	in	the	initial	list

output	by	your	main	webroutine	and	filter	the	list	using	the	selectorField.
The	weblet	will	remember	the	initial	list	and	reapply	the	selectorField	filter
when	doing	a	refresh,	avoiding	the	need	to	send	a	request	to	the	server	and
wait	for	a	response.
For	example,	if	the	updateOnFieldChange	and	selectorValueField	properties
both	specify	the	same	field,	the	list	will	update	itself	by	re-filtering	every
time	the	user	changes	that	field.
Deciding	which	approach	to	take	is	a	balancing	act.	Using	the	selectorField
makes	the	list	update	more	quickly	but	may	result	in	a	longer	initial	page
load	as	more	data	has	to	be	sent	to	the	browser.	Using	an	update	webroutine
will	improve	initial	load	and	allows	real	time	retrieval	of	the	latest	data	or
allows	more	complex	logic	in	the	list	construction	but	may	introduce	a	delay
while	the	list	is	retrieved	from	the	server.

Also	see
QuickStart	-	Dynamic	Select	Box

Properties	-	Dynamic	Select	Box
The	Dynamic	Select	Box	weblet's	properties	are:

allowMultiSelect
captionField
class
codeField
disabled
display_mode
hide_if
id
items
listname
multiSelectCodefield

multiSelectListname
name
onChangeExtraFields
onChangeFormname
onChangeProtocol
onChangeTarget
onChangeWamName
onChangeWrName
position
selectorField
selectorValueField

size
tabIndex
updateFieldsToSubmit
updateOnFieldChange
updateProtocol
updateWamName
updateWrName
value
vf_wamevent
width

name
The	name	of	the	weblet.	Normally,	you	would	leave	this	as	the	default	and
let	LANSA	use	its	own	internal	naming	convention.	If	the	weblet	has	been
dropped	onto	a	field,	or	is	to	be	used	to	display	or	populate	a	field,	the	field
name	is	used.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Any	string	starting	with	a	letter	([A-Za-z])	followed	by	any	number	of
letters,	digits([0-9]),	hyphens	("-")	or	underscores	("_").

id
A	unique	id	for	the	weblet.	The	default	is	the	same	as	the	name	property	and
normally	you	would	leave	it	as	that.	In	some	special	circumstances	you	may
have	multiple	weblets,	in	multiple	forms,	visualizing	the	same	field.	In	those
cases	you	would	need	to	set	this	property	to	give	each	one	a	unique	ID.

Default	value
$name	The	same	as	the	name	property

Valid	values
Any	string	starting	with	a	letter	([A-Za-z])	followed	by	any	number	of
letters,	digits([0-9]),	hyphens	("-")	or	underscores	("_").

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	is	the
value	of	the	field	or	a	default	value.

Default	value
Blank.

Valid	values
Any	text	or	the	name	of	a	multilingual	text	variable,	system	variable	or	field
(the	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose	from	a
list).

size
The	height	(expressed	as	a	number	of	lines)	of	the	weblet.	If	the	value	is	1,
the	weblet	will	display	as	a	drop-down	list.	If	it	is	greater	than	1,	it	will
display	as	a	list	box.

Default	Value
The	weblet	displays	as	a	drop-down	list.

Valid	values
An	integer	value	greater	than	0.

display_mode
Controls	whether	the	weblet	accepts	input	or	displays	output.

Default	value
'input'

Valid	values
'input'	or	'output'.

hide_if
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	hide
the	weblet.

Default	value
false()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

items
An	XML	nodeset	specifying	the	items	to	appear	in	the	weblet.	Can	only	be
set	by	the	designer.	To	invoke	the	designer	use	the	ellipse	button	in	the
property	sheet.	Leave	blank	if	items	are	populated	from	a	list	specified	in	the
listname	property.

Default	value
document(")/*/lxml:data/lxml:select	(this	indicates	no	items	have	been
defined	for	this	weblet.)

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

Example
This	example	shows	the	item's	property	editor:

This	shows	a	list	configured	with	6	items.	Check	the	Default	Item	check	box
for	the	item	which	is	to	be	selected	if	no	value	is	preselected.	The	Selector
value	can	be	used	to	filter	the	list	down	to	a	smaller	set	of	displayed	values	at
runtime.

listname
The	name	of	the	working	list	to	use	to	populate	the	weblet	list.	Leave	blank
if	details	are	specified	in	the	items	property.	If	both	the	listname	and	items
properties	are	specified,	the	listname	property	will	take	priority.

Default	value
Blank.

Valid	values
Blank,	or	the	name	of	an	output	working	list	that	is	defined	as	*JSON	in	the
current	webroutine.

selectorField
The	name	of	the	field	in	the	[listname]	working	list	that	contains	a	selector
value.	The	selector	value	is	used	to	filter	the	working	list	into	a	smaller	list	of
values	that	are	actually	displayed	at	runtime.	If	the	value	of	the	selectorField
column	matches	the	value	in	selectorValueField	then	the	entry	will	be
included	in	the	list.

Default	value
Blank.

Valid	values
A	field,	from	the	[listname]	working	list.	A	value	can	be	selected	by	clicking
the	corresponding	dropdown	button	in	the	property	sheet.

selectorValueField
The	name	of	a	field	whose	value	is	used	to	filter	the	list	supplied	to	the
weblet	into	a	smaller	list	for	display.	When	building	the	display	list,	this
value	is	compared	with	the	value	in	the	lists	"selector"	column.	If	a	match	is
found	the	entry	is	included	in	the	displayed	list.
This	can	be	useful	for	reducing	the	work	done	at	the	server.	Instead	of
calculating	the	list	entries	every	time	it	is	executed,	the	webroutine	could
output	a	pre-built	list	with	all	possible	values	and	a	selector	value.	The
browser	can	then	reduce	the	list	to	a	subset	based	on	the	selector	value.
This	can	also	be	used	to	allow	a	dynamic	list	to	refresh	without	having	to
make	a	server	request.	If	the	field	being	monitored	for	updates	is	also	the
selectorValueField	then	the	weblet	can	rebuild	itself	by	applying	the	new
selector	value	to	the	list	initially	passed	to	it.

Default	value
Blank.	No	filtering	is	done.

Valid	values
The	name	of	any	output	field	in	the	current	Webroutine.

codeField
The	name	of	the	field	in	the	[listname]	working	list	that	holds	the	key	value
for	each	list	item.

Default	value
Blank.

Valid	values
A	field,	from	the	[listname]	working.	A	value	can	be	selected	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

captionField
The	name	of	the	field	in	the	[listname]	working	list	that	holds	the	caption
value	for	each	list	item.

Default	value
Blank.

Valid	values
A	field,	from	the	[listname]	working.	A	value	can	be	selected	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

allowMultiSelect
A	Boolean	property	that	controls	whether	multiple	selections	are	allowed	in
the	list	box.	If	multiple	selections	are	allowed,	the	multiSelectListname	and
multiSelectCodefield	properties	must	be	specified.	Note	that	only	a	listbox	is
capable	of	multiple	selections.	If	size	is	1,	this	property	will	be	ignored.

Default	value
false()	–	only	a	single	selection	may	be	made	in	the	list	box.

Valid	values
true(),	false(),	or	a	valid	expression	that	returns	True	or	False.

multiSelectListname
The	working	list	that	contains	the	selected	entries	for	the	list	box.	The
working	list	should	contain	only	the	code	field	that	is	specified	in	the
multiSelectCodefield	property.	If	allowMultiSelect	is	false	or	size	is	1,	this
property	is	ignored.

Default	value
Blank	–	only	a	single	selection	may	be	made	in	the	list	box.

Valid	values
The	name	of	a	working	list.	Click	the	corresponding	dropdown	button	in	the
property	sheet	to	choose	from	a	list	of	known	working	lists.

multiSelectCodefield
The	name	of	the	field	in	the	[multiSelectListname]	working	list	that	holds	the
code	value	of	the	selected	list	box	items.

Default	value
Blank	–	only	a	single	selection	may	be	made	in	the	list	box.

Valid	values
The	name	of	a	field.	Click	the	corresponding	dropdown	button	in	the
property	sheet	to	choose	from	a	list	of	known	fields.

onChangeWamName
The	name	of	the	WAM	to	be	invoked	when	an	item	in	the	weblet	is	selected.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM.	A	list	of	known	WAMs	can	be	displayed	by	clicking
the	corresponding	dropdown	button	on	the	property	sheet.

onChangeWrName
The	name	of	the	Webroutine	to	be	invoked	when	an	item	in	the	weblet	is
selected.

Default	value
Blank.

Valid	values
The	name	of	a	Webroutine.	The	Webroutine	must	exist	in	the	WAM	specified
in	the	onChangeWamName	property.	A	list	of	known	Webroutines	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

onChangeFormname
The	name	of	the	HTML	form	to	post	to	the	server	when	calling	the
onChange	webroutine.	Normally	you	will	not	need	to	change	this	property.
Advanced	applications	with	multiple	forms	may	need	it	to	ensure	the	correct
form	is	sent.

Default	value
'LANSA'	(that	is,	document.LANSA)

Valid	values
A	name	for	the	form.	A	list	of	known	form	names	is	available	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

onChangeExtraFields
An	XML	nodeset	specifying	any	extra	fields	(not	already	in	the	form	being
submitted)	that	should	be	sent	to	the	onChange	webroutine.	This	will	most
commonly	be	used	when	the	weblet	is	used	in	a	list	or	grid	to	specify	values
from	other	columns	in	the	list.

Default	value
document('')/*/lxml:data/lxml:json[not(@id)]	(this	indicates	no	items
have	been	defined	for	this	weblet).

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

Example
This	example	shows	the	onChangeExtraFields	property	editor:

This	shows	how	output	fields	in	the	current	webroutine	(the	"Value"	column)
can	be	mapped	to	input	fields	with	a	different	name	(the	"Name"	column)
defined	in	the	onChange	webroutine's	WEB_MAP.

onChangeProtocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	when
calling	the	onChange	webroutine.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

onChangeTarget
The	name	of	the	window,	or	frame,	in	which	response	HTML	will	be	shown.
A	unique	name	can	be	entered	or	use	the	available	selection	for	a	predefined
set	of	values.

Default	value
Blank	–	response	HTML	will	be	shown	in	the	current	window/frame.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.
A	list	of	known	windows	and	frames	can	be	displayed	by	clicking	on	the
corresponding	dropdown	button	in	the	property	sheet,	or	a	unique	name	can
be	entered.
'_blank'	will	launch	in	a	new	window
'_media'	will	launch	a	media	panel	in	the	current	window
'_search'	will	launch	a	search	panel	in	the	current	window
'_parent'	will	launch	in	the	parent	window	(usually	the	current	window)
'_top'	will	launch	in	the	top	window	(usually	the	current	window)
Note	that	_search	and	_media	are	supported	by	Internet	Explorer	6	only.

position
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this
property	to	be	recognised.	The	property	will	usually	be	set	in	pixels	by
dragging	and	dropping	the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement.

width
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet
appears	enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

class
A	CSS	class	to	be	applied	to	the	weblet.

Default	value
Blank

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet.	A	list	of
available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tabIndex
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tabIndex	property
value	determines	the	tab	order	as	follows:

1.		Objects	with	a	positive	tabIndex	are	selected	in	increasing	tabIndex	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tabIndex	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tabIndex	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

updateOnFieldChange
The	ID	of	a	field	to	monitor	for	changes.	If	a	change	occurs	in	the	monitored
field	the	select	box	will	refresh.

Default	value
blank

Valid	values
The	ID	of	any	field	on	the	current	page	capable	of	generating	"change"
events.	That	means	any	text	input	fields,	or	select	elements	(dropdown	lists
or	list	boxes).	If	updateWamName	and	updateWrName	have	been	specified,
the	weblet	will	call	the	webroutine	to	request	a	fresh	copy	of	the	[listname]
working	list.	Otherwise	it	will	re-apply	the	selectorValue	filter	to	the	list	it
already	has	and	rebuild	the	select	list	from	that.

updateWamName
The	name	of	the	WAM	to	be	invoked	when	refreshing	the	list.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM.	A	list	of	known	WAMs	can	be	displayed	by	clicking
the	corresponding	dropdown	button	on	the	property	sheet.

updateWrName
The	name	of	the	Webroutine	to	be	invoked	when	refreshing	the	list.	This
webroutine	must	be	defined	as	*JSON.

Default	value
Blank.

Valid	values
The	name	of	a	Webroutine.	The	Webroutine	must	exist	in	the	WAM	specified
in	the	updateWamName	property.	A	list	of	known	Webroutines	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

updateFieldsToSubmit
An	XML	nodeset	specifying	any	fields	that	should	be	sent	to	the	update
webroutine.

Default	value
document('')/*/lxml:data/lxml:json	(this	indicates	no	items	have	been
defined	for	this	weblet).

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

Example
This	example	shows	the	updateFieldsToSubmit	property	editor:

This	shows	how	output	fields	in	the	current	webroutine	(the	"Value"	column)
can	be	mapped	to	input	fields	with	a	different	name	(the	"Name"	column)
defined	in	the	update	webroutine's	WEB_MAP.

updateProtocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	when
calling	the	update	webroutine.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

vf_wamevent
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.1.10	Export	to	Excel	(std_toexcel)

QuickStart	–	Export	to	Excel Properties	–	Export	to	Excel

The	Export	to	Excel	weblet	allows	you	to	export	a	table	or	grid	to	an	Excel
spreadsheet.

QuickStart	–	Export	to	Excel
You	would	typically	use	this	weblet	when	your	page	has	a	table	or	grid	with
tabular	data	that	users	would	want	to	manipulate	in	a	spreadsheet.

This	weblet	uses	ActiveX	and	works	only	in	MS	Internet	Explorer.
The	weblet	is	disabled	if	the	browser	doesn't	support	ActiveX.

This	weblet	is	to	be	used	with	tables	that	contain	output	fields	only.	If
the	table	contains	Weblets	or	input	elements,	the	result	won't	work	as
expected.

1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Export	to	Excel	weblet.

2.		Drag	and	drop	the	weblet	onto	the	web	page.
3.		Set	the	listname	property	with	the	name	of	the	list	you	want	to	make
exportable.

4.		Set	the	startingColumnIndex	property	with	the	index	of	the	first	column	to
include	in	the	export	(first	column	has	index	0).

5.		Set	the	numberOfColums	property	with	the	numbers	of	columns	to	export.
6.		Change	the	caption	property	if	needed.

Properties	–	Export	to	Excel
The	Export	to	Excel	properties	are:
caption
disabled
height_design
hide_if

listname
name
numberOfColumns
pos_absolute

startingColumnIndex
tab_index
text_class
title
width_design

name
The	name	of	the	weblet.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	However,	you	may	want	to	use
your	own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name	enclosed	in	single	quotes.

listname
The	name	of	the	working	list	to	export.	This	property	is	required.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	list	of	available	working	lists	(as	defined	in	the	WAM)
can	be	selected	from	by	clicking	the	corresponding	dropdown	button	in	the
property	sheet.

startingColumnIndex
The	index	of	the	column	from	which	to	start	the	export.	The	index	of	the	first
column	is	zero.

Default	value
0.

Valid	values
An	integer	value.	Must	be	less	than	the	number	of	columns	in	the	table.

numberOfColumns
The	number	of	columns	to	include	in	the	export

Default	value
last	–	All	columns	from	the	starting	column	specified	in
startingColumnIndex	up	to	the	last	column	in	the	table.

Valid	values
An	integer	value.	It	should	not	exceed	the	last	column,	starting	from	the
column	specified	in	startingColumnIndex.

caption
The	caption	for	the	weblet.

Default	value
'Export	to	Excel'

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height_design
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.	If	the	browser	doesn't	support	ActiveX,	the	weblet	is
automatically	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()or	any	valid	expression	that	returns	True	or	False.

title
Text	to	be	displayed	as	a	Tool	Tip	for	the	weblet	when	the	mouse	is	hovered
over	it.

Default	value
Blank	–	no	Tool	Tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

text_class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	text	of	the	weblet.

Default	value
Blank	–	no	text	class

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

8.1.11	File	Upload	(std_fileupload)

QuickStart	–	File	Upload Properties	–	File	Upload

The	file	upload	weblet	allows	you	to	select	files	to	upload	to	the	application
server	(into	a	temporary	directory).	The	webroutine	that	receives	the	file	upload
can	then	manipulate	the	uploaded	files	as	required.

QuickStart	–	File	Upload
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	File	Upload	weblet.

2.		Drag	and	drop	the	weblet	onto	your	page	in	the	Design	view.	Make	sure	the
weblet	is	selected	and	then	click	on	the	Details	tab.

3.		Set	the	name	of	the	weblet.	Assign	it	the	name	of	the	LOB	field	that	will
receive	the	file	path	in	your	webroutine	(see	uploadWrName	property)

4.		Set	the	WAM	and	webroutine	name	to	receive	the	file	upload.
5.		On	the	designer,	make	sure	the	weblet	is	selected	and	right	click	to	select
"Create	Ajax	Webroutine".	This	will	generate	a	skeleton	for	the	webroutine
handling	the	file	upload.

Properties	–	File	Upload

caption
class
failCallback
hide_If
id

MaxFileSize
MaxNumberOfFiles
name
successCallback

tab_index
text_class
uploadWamName
uploadWrName

	

name
The	name	of	LOB	field	to	receive	the	uploaded	file	temporary	path.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

id
A	unique	id	for	the	weblet.	The	default	is	the	same	as	the	name	property	and
normally	you	would	leave	it	as	that.	In	some	special	circumstances	you	may
have	multiple	weblets,	in	multiple	forms,	visualizing	the	same	field.	In	those
cases	you	would	need	to	set	this	property	to	give	each	one	a	unique	ID.

Default	value
$name	The	same	as	the	name	property

Valid	values
Any	string	starting	with	a	letter	([A-Za-z])	followed	by	any	number	of
letters,	digits([0-9]),	hyphens	("-")	or	underscores	("_").

caption
Specifies	the	caption	for	the	button	to	add	files.

Default	value
Default:	"Select	files"

Valid	values
Any	string	value.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

hide_If
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

uploadWamName
The	name	of	the	WAM	whose	Webroutine	receives	the	file	uploaded	by	this
weblet.

Default	value
The	current	WAM

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

uploadWrName
The	name	of	the	Webroutine	that	receives	the	file	uploaded	by	this	weblet.	It
must	be	a	JSON	webroutine.	Its	response	is	passed	to	the	optional	JavaScript
callback	functions	to	provide	feedback	to	the	user.

Default	value
Blank	–	a	Webroutine	name	must	be	specified.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	be	a	JSON
response	weboutine	and	exist	in	the	WAM	specified	in	the	uploadWamName
property.	A	list	of	known	JSON	Webroutines	can	be	displayed	by	clicking
the	corresponding	dropdown	button	on	the	property	sheet.

MaxFileSize
The	maximum	file	size	allowed	in	Megabytes.

Default	value
5	–	5Mb

Valid	values
An	integer	value.	Must	be	consistent	with	maximum	value	for	file	uploads
defined	in	the	application	server.	Note:	Browsers	may	have	their	own	limits.

MaxNumberOfFiles
The	maximum	number	of	files	allowed.

Default	value
1

Valid	values
An	integer	value.

successCallback
The	name	of	the	optional	JavaScript	function	to	call	when	the	file	is
successfully	uploaded.	The	function	is	called	with	two	arguments:	The	event
object	(null	if	not	available)	and	the	JSON	webroutine	response	from	the	file
upload	webroutine.

Default	Value
None

Valid	values
The	name	of	a	JavaScript	function.

failCallback
The	name	of	the	optional	JavaScript	function	to	call	when	the	file	upload	fails.
The	function	is	called	with	two	arguments:	The	event	object	(null	if	not
available)	and	a	constructed	JSON	webroutine	response	with	the	error	messages
(mimics	messages	issued	by	a	webroutine).

Default	Value
None

Valid	values
The	name	of	a	JavaScript	function.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.	If	the	browser	doesn't	support	ActiveX,	the	weblet	is
automatically	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()or	any	valid	expression	that	returns	True	or	False.

text_class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	text	of	the	weblet.

Default	value
Blank	–	no	text	class

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

8.1.12	Grid	(std_grid_v2	and	std_grid_v3)
	

QuickStart	-	Grid Properties	-	Grid

The	grid	weblet	provides	a	grid	control	with	sortable	columns.	Grid	cells	are
populated	from	a	working	list	or	XML.	Grid	elements	are	implemented	as	a
HTML	<table>.	Use	std_grid_v3	weblet	if	you	want	to	use	jQuery	UI	based
weblets.	It	looks	like	this:

QuickStart	-	Grid
To	use	this	weblet	you	would	typically	create	a	webroutine	that	specifies	a
working	list	in	its	WEB_MAP.	The	grid	weblet	can	be	used	to	represent	the	data
in	the	working	list	by	completing	the	following	steps	in	the	LANSA	Editor:
1.		If	the	working	list	was	not	*HIDDEN	on	the	WEB_MAP	a	default	table
representation	of	the	working	list	will	be	included	on	the	web	page.	Delete
the	table	that	visualizes	the	list.	To	do	this,	right-click	in	the	list	and	select
Delete	Entire	List	from	the	pop-up	menu.

2.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Grid	weblet.

3.		Drag	and	drop	the	weblet	onto	your	page	in	the	Design	view.	Make	sure	the
weblet	is	selected	and	then	click	on	the	Details	tab.

4.		Set	the	listname	property	to	the	working	list	passed	on	the	WEB_MAP.	The
grid	representation	should	immediately	reflect	the	working	list	details.

5.		Optionally	you	may	want	to	set	the	height	and	width	properties	to	fit	your
webpage	design.

For	more	information	on	customizing	grid	columns	with	your	own	weblets	refer
to	Customize	Grid	Columns.

Properties	-	Grid
The	Grid	weblet's	properties	are:

allowColResize
allowSort
even_row_class
formname
grid_col_properties
grid_hdr_properties
height

hide_header_if_empty
hide_if
listname
listname_fixed_col_field
name
odd_row_class
onRowClickJS

pos_absolute
rowHoverEffect
selectableRow
show_header
sort_fixed_rows_with_body
width

	

name
The	name	of	the	grid.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	However,	you	may	want	to	use
your	own	name	if	using	JavaScript	or	XSL	that	references	the	grid.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

listname
The	name	of	the	working	list	to	use	to	populate	the	cells	in	the	grid.	If	specified,
the	or_list_xml	property	should	be	left	blank.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	list	of	available	working	lists	(as	defined	in	the	WAM)
can	be	selected	from	by	clicking	the	corresponding	dropdown	button	in	the
property	sheet.

listname_fixed_col_field
Specify	the	field	name,	associated	with	the	list	specified	in	listname,	that	will
contain	the	entries	to	appear	in	the	leftmost	fixed	(non-scrollable)	column.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

sort_fixed_rows_with_body
A	Boolean	property.	If	false()	the	entries	in	the	fixed	column	specified	in
listname_fixed_col_field	property,	will	not	move	with	the	rest	of	the	row	when
the	other	columns	in	the	grid	are	sorted.

Default	value
True()

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	sort	the	fixed	column	with	the	other	columns	if	field
#STD_FLAG	is	equal	to	'X'.	The	expression	should	be	entered,	and	is	shown
when	the	property	has	focus,	as	follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

grid_hdr_properties
Used	to	set	the	properties	of	grid	header	columns.	Can	only	be	set	by	the
designer.	To	invoke	the	designer	use	the	ellipse	button	in	the	property	sheet.

Default	value
document(")/*/lxml:data/lxml:grid[@id='<unique	id>']	-	indicates	the	lxml
fragment	relating	to	this	definition	is	store	in	the	current	document	under	the
lxml	data	element	and	is	identified	as	a	grid	with	a	unique	id	as	generated.

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	Use	the	ellipses	button	in
the	property	sheet	to	select	grid	columns	and	indicate	the	properties	to	be
maintained.
In	this	example	the	field	SURNAME	will	allow	the	column	headings	to	be
customized	and	the	column	will	be	sorted	in	reverse	order	when	clicked:

Example
The	following	example	indicates	that	an	LXML	fragment	with	a	unique
identifier	matching	the	value	indicated	by	@id	had	been	automatically
generated	in	the	current	document	to	define	the	grid	header	properties.

You	can	review	these	LXML	fragments	by	opening	the	XSL	Source	tab	and
searching	for	references	to	the	unique	identifier.

grid_col_properties
Used	to	set	properties	of	the	grid	columns.	Can	only	be	set	by	the	designer.	To
invoke	the	designer	use	the	ellipse	button	in	the	property	sheet.

Default	value
document(")/*/lxml:data/lxml:grid[@id='<unique	id>']	-	indicates	the	lxml
fragment	relating	to	this	definition	is	store	in	the	current	document	under	the
lxml	data	element	and	is	identified	as	a	grid	with	a	unique	id	as	generated.

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	Use	the	ellipses	button	in
the	property	sheet	to	select	grid	columns	and	indicate	the	properties	to	be
maintained.
In	this	example	the	field	SURNAME	will	allow	the	column	to	be
customized.	It	is	not	read	only.

Example
The	following	example	indicates	that	an	LXML	fragment	with	a	unique
identifier	matching	the	value	indicated	by	@id	had	been	automatically

generated	in	the	current	document	to	define	the	grid	column	properties.

You	can	review	these	LXML	fragments	by	opening	the	XSL	Source	tab	and
serching	for	references	to	the	unique	identifier.

show_header
A	Boolean	property.	If	false(),	the	column	headers	will	not	be	shown	in	the	grid.

Default	value
true()

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	show	the	column	headings	if	field	#STD_FLAG	is	equal
to	'X'.	The	expression	should	be	entered,	and	is	shown	when	the	property	has
focus,	as	follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

hide_header_if_empty
A	Boolean	property.	If	true(),	the	column	headers	will	not	be	shown	in	the	grid,
if	there	are	no	entries	in	the	list,	specified	in	listname	property.

Default	value
true()

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	show	the	column	headings,	even	when	there	are	no	list
entries	to	display,	if	field	#STD_FLAG	is	equal	to	'X'.	The	expression	should
be	entered,	and	is	shown	when	the	property	has	focus,	as	follows:

hide_if
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	hide	the
weblet.

Default	value
False()	(that	is,	the	grid	will	always	be	shown)

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	hide	the	grid	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

even_row_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	even	number	grid	rows.

Default	value
'even_row'.	This	is	the	default	class	applied	to	even	numbered	rows	(that	is,
2nd,	4th	row	etc.)	in	the	grid	and	is	provided	with	the	all	shipped	cascading
styles	sheets.

Valid	values
Any	valid	class	name	selected	from	the	current	Cascading	Style	Sheet,	in
single	quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

odd_row_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	odd	number	grid	rows.

Default	value
'odd_row'.	This	is	the	default	class	applied	to	odd	numbered	rows	(that	is,	1st,
3rd	etc…)	in	the	grid	and	is	provided	with	the	all	shipped	cascading	styles
sheets.

Valid	values
Any	valid	class	name	selected	from	the	current	Cascading	Style	Sheet,	in
single	quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'	(that	is,	document.LANSA)

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	recognised.	The	property	will	usually	be	set	in	pixels	by	dragging	and
dropping	the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

allowSort
A	Boolean	property.	If	true(),	the	user	will	be	able	to	sort	the	grid	contents	by
clicking	on	a	column	heading.

Default	value
true()

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

allowColResize
A	Boolean	property.	If	true(),	the	user	will	be	able	to	resize	grid	columns	by
clicking	and	dragging	the	border	between	header	cells.

Default	value
true()

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

rowHoverEffect
A	Boolean	property.	If	true(),	the	grid	will	provide	some	visual	feedback	to	the
user	by	highlighting	the	row	under	the	mouse	pointer.

Default	value
false()

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

selectableRow
A	Boolean	property.	If	true(),	the	grid	will	track	the	row	last	clicked	on	and
highlight	that	row	to	indicate	selection.

Default	value
false()

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

onRowClickJS
JavaScript	code	to	be	run	when	the	user	clicks	on	a	row	in	the	grid.	The	code
receives	two	variables	that	provide	extra	information	about	the	click	event:

event	–	The	browser	Event	object	for	the	click	event.
rowNum	–	the	number	of	the	row	clicked	on.	This	will	be	the
number	of	the	row	in	the	working	list,	not	the	row	within	the	grid
(which	may	change	with	user	sorting).

You	can	prevent	the	row	being	selected	by	returning	false	from	this	code.

Default	value
Blank

Valid	values
Any	valid	JavaScript	code

Example
The	following	will	display	an	alert	indicating	the	row	clicked,	and	prevent
row	3	from	being	selected:
alert("Row	"	+	rowNum);	return	(rowNum	!=	3);
	

Customize	Grid	Columns

Reference	Column	Values	in	Weblet	Properties Grid	Column	Example

The	grid	will	automatically	visualize	each	column	using	the	default	weblet	for
that	field.		Sometimes	you	may	want	to	change	the	properties	of	the	weblet	or
use	a	different	weblet.		To	do	this,	edit	the	grid_col_properties	property	and
select	the	Customize	Column	option	for	the	column	you	wish	to	customize.

When	you	click	OK,	the	customized	columns	will	go	blank.

Now	you	can	add	any	Weblet	to	the	column	by	dragging	it	to	any	one	of	the
empty	cells	in	the	column.

Reference	Column	Values	in	Weblet	Properties
Referencing	column	values	in	a	grid	is	a	little	different	than	you	may	have	seen
before.		When	using	a	standard	list	you	can	reference	the	value	of	a	column
using	an	XSLT	variable	of	the	same	name	($COLUMNNAME).		This	is	not
possible	with	the	grid	so	it	is	necessary	to	access	a	column	with	the	following
XPath	expression:
../lxml:column[@name='COLUMNAME']
	

This	is	not	necessary	for	referencing	the	current	column	(i.e.	the	column
containing	the	weblet).		In	this	case	you	can	use	a	single	period	(.).
If	you	know	the	position	of	the	column	you	want	to	reference,	you	can	use	an
Xpath	expression	like	this:
../lxml:column[2]
	

This	is	handy	for	large	lists	as	it	is	much	faster	but	it	may	cause	problems	if	you
change	the	order	of	the	columns	in	your	list.

Note:	All	field	and	column	name	references	in	XPath	expressions
must	be	uppercase.	All	references	to	repository	fields	must	use	the
object	name	for	the	field.

Also	see
confirmText

The	XPath	expression	tells	the	XSLT	processor	where	to	find	the
column	in	the	XML	data	output	by	the	Webroutine.		Like	DOS	or
Linux	file	paths,	the	expression	indicates	a	path	to	the	target	data	from
the	current	position	and,	like	file	paths,	a	period	(.)	refers	to	the
current	position	and	two	periods	(..)	refer	to	the	parent.
Following	is	the	XML	output	for	a	single	row	in	the	list:

<lxml:entry>
			<lxml:column	name="EMPNO"
id="EMPLIST.0002.EMPNO">A0090</lxml:column>
			<lxml:column	name="SURNAME"
id="EMPLIST.0002.SURNAME">BLOGGS</lxml:column>

			<lxml:column	name="GIVENAME"
id="EMPLIST.0002.GIVENAME">FRED	JOHN
ALAN</lxml:column>
			<lxml:column	name="DEPTMENT"
id="EMPLIST.0002.DEPTMENT">FLT</lxml:column>
</lxml:entry>

When	processing	a	weblet	in	a	grid	column,	the	current	position	in	the
XML	is	the	<lxml:column>	tag	for	that	row	and	column.		An	XPath
expression	like	this:

			../lxml:column[@name='EMPNO']

says	to	go	up	to	the	parent	<lxml:entry>	tag,	look	for	a	child
<lxml:column>	tag	with	a	name	attribute	of	'EMPNO'	and	return	it.

Grid	Column	Example
This	example	adds	a	combo	box	to	the	Department	column	in	a	list	of
employees.		It	assumes	an	employee	list	called	#EMPLIST	containing	a
#DEPTMENT	column	and	a	department	list	called	#DEPTS	containing
#DEPTMENT	and	#DEPTDESC.
1.		Add	a	grid	to	the	Webroutine	design	and	set	its	listname	property	to
EMPLIST.

2.		Modify	the	grid_col_properties	property	and	select	the	Customize	Column
option	for	the	DEPTMENT	column.

3.		Drag	a	combo	box	weblet	onto	the	first	non-header	cell	of	the	DEPTMENT
column.

4.		Set	the	listname	property	of	the	dropdown	to	DEPTS.
5.		Set	the	codefield	property	to	DEPTMENT	and	the	captionfield	property	to
DEPTDESC.	Your	grid	should	be	looking	something	like	this:

Notice	that	the	value	property	contains	a	single	period	(.).		This
indicates	that	the	value	for	the	combo	box	should	be	the	value	of	the
current	column	of	the	EMPLIST	list.

Notice,	also,	that	the	display_mode	property	is	set	to	$tsml_col_mode.
This	is	a	special	XSLT	variable	used	inside	the	grid	to	indicate	the
display	mode	defined	in	the	DEF_LIST.

Now	an	on_change	action	will	be	added	to	the	combo	box	to	execute	a

Webroutine	when	a	value	is	changed.	The	Webroutine,	UpdateDepartment,
takes	two	inputs:	EMPNO	and	DEPTMENT.
6.		Set	the	on_change_wrname	property	of	the	combo	box	to
UpdateDepartment.

7.		Set	the	tagfield1	property	of	the	combo	box	to	DEPTMENT.		This	tells	the
combo	box	to	submit	the	selected	value	of	the	DEPTMENT	column	(in	the
DEPTS	list).

8.		Set	the	reentryfield	property	of	the	combo	box	to	EMPNO	and	set	the
reentryvalue	property	to	../lxml:column[@name='EMPNO'].		As	this	is	an
XPath	expression	you	must	use	the	XPath	entry	area	at	the	bottom	of	the
details	tab	to	enter	the	value.		This	tells	the	combo	box	to	get	the	value	of	the
EMPNO	column	of	the	grid	and	submit	it	in	a	field	called	EMPNO.

8.1.13	Image	(std_image)

QuickStart	-	Image Properties	–	Image	(std_image)

Displays	an	image.	Has	the	option	to	load	the	image	only	when	it	comes	into
view,	which	helps	render	the	page	faster.

QuickStart	-	Image
To	use	an	image:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Standard	Image	weblet.

2.		Set	the	relativeImagePath	property	to	the	image	you	want	to	display.

Properties	–	Image	(std_image)

caption
height

hideIf
lazyLoad

relativeImagePath
width

relativeImagePath
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
be	displayed.

Default	value
Blank	–	no	image	is	displayed.

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

lazyLoad
If	true,	the	image	is	not	loaded	until	it	comes	into	view

Default	value
True.

Valid	values
true(),	false()or	any	valid	XPath	expression	that	returns	a	boolean	value.

width
Specifies	the	width	of	the	input	in	pixels.

Tip:	Always	specify	both	the	height	and	width	properties	for	images.
If	height	and	width	are	set,	the	space	required	for	the	image	is
reserved	when	the	page	is	loaded.	However,	without	these	properties,
the	browser	does	not	know	the	size	of	the	image,	and	cannot	reserve
the	appropriate	space	to	it.	The	effect	will	be	that	the	page	layout	will
change	during	loading	(while	the	images	load).

Default	value
Blank	-	the	browser	will	calculate	the	width	after	it	loads	the	image.

Valid	values
Any	integer	value.

height
Specifies	the	height	of	the	input	in	pixels.

Tip:	Always	specify	both	the	height	and	width	properties	for	images.
If	height	and	width	are	set,	the	space	required	for	the	image	is
reserved	when	the	page	is	loaded.	However,	without	these	properties,
the	browser	does	not	know	the	size	of	the	image,	and	cannot	reserve
the	appropriate	space	to	it.	The	effect	will	be	that	the	page	layout	will
change	during	loading	(while	the	images	load).

Default	value
Blank	-	the	browser	will	calculate	the	height	after	it	loads	the	image.

Valid	values
Any	integer	value.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

caption
Specifies	alternate	text	for	the	user,	if	he/she	for	some	reason	cannot	view	the
image	(because	of	slow	connection,	an	error	in	the	src	attribute,	or	if	the	user
uses	a	screen	reader).

Default	value
Blank

Valid	values
Any	string	value.

8.1.14	List	Paging	Images	(std_list_images)	and	List	Paging
Buttons	(std_list_buttons)

QuickStart	-	List	Paging	Images	&
List	Paging	Buttons

Properties	-	List	Paging	Images	&	List
Paging	Buttons

The	List	Paging	Images	weblet	includes	three	images	for	navigating	to	the
previous	page,	next	page	and	starting	a	new	search.	This	weblet	is	designed	to
be	included	before	or	after	a	list	visualization	with	supporting	logic	for	page	at	a
time	processing	of	list	information.
The	appearance	of	the	Previous	and	Next	images	can	be	conditioned.
The	weblet	looks	like	this:

and	is	usually	implemented	something	like	this:

The	List	Paging	Buttons	weblet	is	similar	but	uses	push	buttons	instead	of
images	for	navigation.

QuickStart	-	List	Paging	Images	&	List	Paging	Buttons
To	use	either	of	these	weblets	you	would	create	a	webroutine	that	specifies	a
working	list	in	its	WEB_MAP.	The	WAM	should	be	designed	for	page	at	a	time
processing	with	a	single	page	of	entries	passed	in	the	defined	working	list.	The
working	list	will	be	visualized	as	a	table	on	the	resulting	web	page	and	by
adding	a	row	to	the	table	you	can	incorporate	navigation	by	completing	the
following	steps	in	the	LANSA	Editor:
1.		Add	a	row	to	the	table	generated	to	show	the	working	list	To	do	this,	right-
click	in	the	list	and	select	Table	–	Add	Row	-	1	from	the	pop-up	menu.

2.		If	the	table	includes	more	than	one	column,	focus	on	the	first	column	in	the
newly	created	row	and	click	on	the	Design	tab	Set	the	colspan	property	to	the
number	of	visible	columns	in	the	table	This	will	allow	the	navigation	weblet
to	display	across	the	full	width	of	the	table.

3.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	List	Paging	Images	(or	List	Paging	Buttons)
weblet.

4.		Drag	and	drop	into	the	newly	created	table	row	in	the	Design	view	Make
sure	the	weblet	is	selected	and	then	click	on	the	Details	tab.

5.		Set	the	on_page_wrname	property	to	the	webroutine	to	be	invoked	when
either	the	Previous	or	Next	image	(buttons)	is	clicked.

6.		Set	the	on_search_wrname	property	to	the	webroutine	to	be	invoked	when
the	Search		image	(button)	is	clicked.

7.		Set	an	appropriate	field	name	in	the	reentryfield	property	or	use	the	default
field	STDRENTRY	This	field	is	required	to	distinguish	between	previous	and
next	page	processing	in	the	RDMLX	code.

Properties	-	List	Paging	Images	&	List	Paging	Buttons
The	List	Paging	Images	&	Buttons	Weblet's	properties	are:

class		(std_list_buttons	only)
formname
height_design
hide_if
image_size
mouseover_class
name

nextcondfield
on_click_wamname
on_page_wrname
on_search_wrname
page_count_fieldname
pos_absolute_design
prevcondfield

protocol
reentryfield
show_first_last
tab_index
vf_wamevents
width_design

name
The	name	of	the	weblet.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	However,	you	may	want	to	use
your	own	name	if	using	JavaScript	or	XSL	that	references	the	grid.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

image_size
The	size	of	the	weblet	images	in	pixels.	There	are	4	sizes	available:	16x16,
24x24,	32x32,	48x48.

Default	value
16

Valid	Values
16,	24,	32	or	48

prevcondfield
The	name	of	the	field	that	determines	whether	the	'Previous	Page'	image	/
button	is	shown.	A	non-blank	value	displays	the	button.

Default	value
'STDPREV'

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

nextcondfield
The	name	of	the	field	that	determines	whether	the	'Next	Page'	image	/	button	is
shown.	A	non-blank	value	displays	the	button.

Default	value
'STDMORE'

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

show_first_last
A	Boolean	property.	Set	to	true()	to	enable	the	First	and	Last	buttons.

Default	value
false()	(that	is,	the	First	and	Last	buttons	will	not	be	shown)

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals	or	XSL
variables,	which	can	be	resolved	to	true()	or	false().

reentryfield
The	field	name	to	be	used	to	indicate	which	button	was	selected	when	transfer	is
passed	to	the	webroutine	nominated	in	on_page_wrname.
Button Re-entry	Field	Value
First F

Previous P

Next M

Last L

	

Default	value
'STDRENTRY'

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

hide_if
A	Boolean	property.	An	expression	which	if	evaluated	to	be	True	will	hide	the
weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'	(that	is,	document.LANSA)

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

pos_absolute_design
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.

Default	value
'0%'	(this	is	equivalent	to	the	weblet	adopting	its	default	width	of	100%).

Valid	values
A	width	in	a	valid	unit	of	measurement	in	single	quotes.

height_design
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height	in	a	valid	unit	of	measurement,	in	single	quotes.

on_click_wamname
The	name	of	the	WAM	to	be	invoked	when	any	of	the	images	/	buttons	is
clicked.	This	is	used	in	combination	with	the	on_page_wrname	and
on_search_wrname	properties.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_page_wrname
The	nominated	webroutine	will	be	invoked	whenever	the	Previous	or	Next
image	/	button	is	pressed.

Default	value
Not	applicable	–	a	Webroutine	name	must	be	specified.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_click_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

on_search_wrname
The	nominated	webroutine	will	be	invoked	whenever	the	Search	button	is
pressed.

Default	value
Not	applicable	–	a	Webroutine	name	must	be	specified.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_click_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	invoked	by	this	weblet.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

page_count_fieldname
The	name	of	the	field	posted	to	the	webroutine	when	the	previous	or	next	image
/	button	is	clicked	that	holds	the	number	of	items	to	show	per	page.

Default	value
Blank.

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

class
std_list_buttons	only.
The	Cascading	Style	Sheet	class	to	be	applied	to	the	buttons.

Default	value
'STD_BUTTON'	-	The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

mouseover_class
std_list_buttons	only.
The	Cascading	Style	Sheet	class	to	be	applied	to	the	buttons	when	the	mouse	is
moved	over	it.

Default	value
'STD_BUTTON_MOUSOVER'	-	The	name	of	the	shipped	mouseover	class
for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

vf_wamevents
VLF	WAM	event	strings	for	each	action.	Use	the	pop-up	dialog	to	enter	VLF
WAM	Event	strings:

The	First	and	Last	VLF	WAM	events	are	disabled	if	the	show_first_last
property	is	False.

Default	value
Blanks.

Valid	values
Comma	separated	list	of	string	values.	Comma	(',')	not	allowed	in	string
value.
	

8.1.15	Mark-up	(std_markup)

QuickStart	–	Mark-up Properties	–	Mark-up

The	mark-up	weblet	is	a	companion	weblet	to	the	CKEditor	Rich	Text	Editor
when	you	want	to	visualize	the	content	in	output	mode	only.

As	the	mark-up	content	can	have	script	elements	and	input	fields,	you
should	use	the	mark-up	weblet	with	care,	only	with	content	that	you
can	trust	or	that	has	been	verified.

QuickStart	–	Mark-up
To	use	the	mark-up	weblet	you	can	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Mark-up	weblet.

2.		Drag	and	drop	the	weblet	onto	your	page.	Make	sure	the	weblet	is	selected
and	then	click	on	the	Details	tab.	Change	the	name	to	the	field	name	that	you
want	to	visualize	as	marked-up	content.

Properties	–	Mark-up

class
height
hide_if

name
pos_absolute
title

value
valueFromField
width

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	mark-up	weblet.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

valueFromField
If	set	to	true	and	the	value	property	is	null,	the	Mark-up	weblet	will	load	the
value	from	the	field	that	matches	the	Mark-up	name	attribute.	Use	this	option	if
your	text	content	is	large	and	you	don't	want	the	content	to	appear	both	in	the
Mark-up	weblet	value	and	the	webroutine	field	values	list.

Default	value
False()

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

title
Specifies	a	title	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	and	height	properties.	However	you	can	directly	edit	the
property	value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width	and	height	properties.	However	you	can	directly
edit	the	property	values	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

8.1.16	Memo	using	a	list	(std_list_textarea_v2)

QuickStart	-	Memo	using	a	list Properties	-	Memo	using	a	list

The	Memo	using	a	list	(text	area)	weblet	provides	a	text	area	for	the	display	and
input	of	long	text	values,	possibly	spanning	multiple	lines.	It	broadly
corresponds	to	the	<textarea>	html	element.	The	weblet	looks	like	this:

This	weblet	is	similar	to	the	Memo	using	a	field	(std_textarea)	weblet.	The
difference	concerns	the	means	by	which	the	text	is	exchanged	between	the	page
and	the	webroutine.	In	this	weblet,	the	text	is	exchanged	using	a	working	list	–
refer	to	the	description	of	the	listname	property	for	further	information.

QuickStart	-	Memo	using	a	list
To	use	this	weblet	you	would	typically	create	a	webroutine	that	specifies	a
working	list	in	its	WEB_MAP	that	contains	and	populates	one	text	field.	When
LANSA	generates	the	default	XSL	for	such	a	webroutine,	the	list	will	usually	be
visualized	in	a	table.	To	use	this	weblet	in	place	of	the	table,	follow	these	steps:
1.		Delete	the	table	that	visualizes	the	list.
					To	do	this,	right-click	in	the	list	and	select	Delete	Entire	List	from	the	pop-up
menu.

					If	the	list	has	been	specified	with	the	*hidden	WEB_MAP	attribute,	it	must
be	manually	removed	from	the	XSL	(not	visualized	in	Design	View).

2.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Memo	using	a	list	weblet.

3.		Drag	and	drop	the	weblet	onto	your	page	in	the	Design	view	Make	sure	the
weblet	is	selected	and	then	click	on	the	Details	tab.

4.		Set	the	listname	and	list_text_fieldname	properties	as	required	to	refer	to	the
appropriate	field	in	your	working	list.

5.		Set	the	cols	property	appropriately	according	to	the	size	of	the	field	in	your
application.

Properties	-	Memo	using	a	list
The	Memo	using	a	list	weblet's	properties	are:

class
cols
disabled
formname
height_design
hide_if

list_text_fieldname
listname
max_rows_onsubmit
name
onchange_script
pos_absolute

read_only
rows
tab_index
width_design
word_wrap_display
word_wrap_onsubmit

listname
The	name	of	the	working	list	to	use	to	populate	the	text	in	the	textarea	and/or
receive	text	from	the	text	area.	The	list	should	be	specified	in	the	WEB_MAP
for	the	webroutine.	The	list_text_fieldname	property	identifies	the	field	in	the
working	list	that	contains	the	text.
Upon	output,	the	rows	from	the	working	list	are	concatenated	to	form	the
displayed	text.	Each	row	in	the	working	list	is	a	new	line	in	the	text	area.
Upon	input,	the	text	in	the	text	area	is	broken	into	strings	written	to	the	working
list.	The	exact	mechanism	used	will	depend	on	the	values	of	the	cols	and
word_wrap_onsubmit	properties.

Default	value
No	default	value	applies.	You	must	specify	the	list	name.

Valid	values
The	name	of	the	working	list,	in	single	quotes.	A	list	of	known	list	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

list_text_fieldname
The	name	of	the	field	in	the	working	list	specified	by	the	listname	property	that
is	used	to	populate	the	text	in	the	textarea	and/or	receive	text	from	the	text	area.
Refer	to	the	listname	property	for	more	information	on	how	the	working	list	is
used	with	this	weblet.

Default	value
If	the	field	name	is	not	specified,	the	first	field	in	the	working	list	is
assumed.

Valid	values
The	name	of	the	field,	in	single	quotes.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

name
The	name	the	weblet	is	identified	with.	Normally,	you	would	leave	this	as	the
default	and	let	LANSA	use	its	own	internal	naming	convention.	However,	you
may	want	to	use	your	own	name	if	using	JavaScript	or	XSL	that	references	the
weblet.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width-design	and	height_design	properties.	However	you	can
directly	edit	the	property	value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width	–
determined	by	the	cols	property).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height_design
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width-design	and	height_design	properties.	However
you	can	directly	edit	the	property	values	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	height	–
determined	by	the	rows	property).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

rows
The	number	of	visible	rows	in	the	textarea.	This	property	sets	the	height	of	the
weblet	such	that	the	specified	number	of	rows	or	lines	of	text	will	be	visible.
If	the	height_design	property	is	specified,	it	takes	precedence	and	the	rows
property	is	ignored.

Default	value
10

Valid	values
A	number	that	specifies	the	number	of	rows.

cols
The	number	of	columns	in	the	textarea.	This	property	sets	the	width	of	the
weblet,	based	on	the	average	character	width	for	the	font	used,	such	that
approximately	the	specified	number	of	columns	of	text	will	be	visible.	Note	that
the	mechanism	used	to	determine	the	actual	width	is	browser	specific	and	will
result	in	slightly	different	sizes	on	different	browsers.
If	the	width_design	property	is	specified,	it	takes	precedence	and	the	cols
property	is	ignored.

Default	value
50

Valid	values
A	number	that	specifies	the	number	of	columns.

word_wrap_display
This	property	specifies	how	the	weblet	should	handle	word-wrapping	of	the
displayed	text.	If	true,	long	lines	of	text	are	automatically	wrapped	at	the	right
edge	of	the	text	area.	Note	that	this	is	display	only.	Wrapping	of	the	text	entered
in	the	working	list	is	determined	by	the	word_wrap_onsubmit	property.

Default	value
true()

Valid	values
Boolean	values	true()	or	false()	or	any	expression	that	evaluates	to	true	ot
false.	

word_wrap_onsubmit
This	property	specifies	how	the	weblet	should	handle	word-wrapping	when
submitting	the	text	If	true,	long	lines	of	text	are	automatically	wrapped	at	a
width	of	cols	characters	If	a	fixed-width	font	is	used	for	the	text	area	then	this
wrapping	will	match	what	the	user	sees	on	screen.
If	false,	long	lines	of	text	will	not	be	wrapped.
Note	that,	to	avoid	data	loss,	word	wrapping	will	still	occur	at	the	maximum
width	of	the	list_text_fieldname	field	regardless	of	the	value	of	this	property.

Default	value
false()

Valid	values
Boolean	values	true()	or	false()	or	any	expression	that	evaluates	to	true	or
false.	

max_rows_onsubmit
The	maximum	number	of	rows	to	submit	If	your	working	list	has	a	maximum
size,	you	should	set	this	property	to	that	value.

Default	value
0	(which	means	to	send	all	rows)

Valid	values
A	number	that	specifies	the	number	of	rows.

class
The	Cascading	Style	Sheet	(CSS)	class	name	for	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

read_only
A	boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	will	set	the	weblet	to	read-only	if	field	#STD_FLAG	is	equal
to	'Y'.	The	expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

onchange_script
JavaScript	code	to	be	run	when	the	text	area	loses	focus	after	the	text	has	been
changed.	JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

8.1.17	Large	List	(std_largelist)

QuickStart	-	Large	List Properties	-	Large	List

The	Large	List	weblet	can	be	used	to	display	large	lists.	This	weblet	is	suitable
for	report-like,	output-only	lists	that	don't	require	special	formatting.	The	list
can	be	sent	to	the	user-agent	either	as	an	XHTML	list	or	as	a	CSV	(Comma-
separated	values)	file.

QuickStart	-	Large	List
1.		Create	your	(main)	webroutine	as	you	would	normally	do.	However,	don't
define	a	WEB_MAP	for	your	working	list.	Instead,	include	the	Large	List
weblet	where	you	would	place	the	working	list.

2.		Create	a	separate	webroutine	to	serve	the	large	list.	Define	a	WEB_MAP
FOR(*OUTPUT)	for	the	working	list.	Define	WEB_MAP	FOR(*INPUT)	for
fields	you	need	to	tailor	the	content	of	your	list.

3.		In	your	main	webroutine,	edit	the	Large	List	weblet	properties:
a.Nominate	the	webroutine	you	created	in	step	2	as	the	webroutine	to	serve
the	list.

b.In	field_names_to_exchange,	select	the	fields	you	want	to	make	available
to	the	webroutine	serving	the	list.

4.		To	view	the	list,	run	your	main	webroutine.

Properties	-	Large	List
The	Large	List	weblet's	properties	are:

column_css_class
csv_hyperlink_relative_image_path
csv_hyperlink_text
csv_hyperlink_type
fields_names_to_exchange

format_target
iframe_height
iframe_width
listname
name

show_busybox
hourMax
src_wrname
wait_content

name
The	name	of	the	list.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	However,	you	may	want	to	use
your	own	name	if	using	JavaScript	or	XSL	that	references	the	grid.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.	Must	be	unique	within	the	whole	XHTML	page.

listname
The	name	of	the	working	list	to	use	to	populate	the	large	list.

Default	value
Blank.

Valid	values
Single-quoted	text.	The	list	must	be	mapped	for	output	in	the	webroutine	that
serves	the	list	(See	src_wrname	property).

format_target
The	format/target	of	the	data	served	by	the	source	WAM	webroutine.

Default	value
xhtml-iframe

Valid	values
1.		xhtml-iframe:	The	list	is	formatted	as	an	XHTML	table	inside	an	iframe.
Use	this	option	if	you	want	users	to	select	the	whole	table	using	Ctrl+A
(Select	All)	when	inside	the	iframe

2.		xhtml-inline:	The	list	is	formatted	as	an	XHTML	table	and	placed	inline
in	the	main	XHTML	page.	This	is	the	closest	to	having	the	XHTML
defined	in	the	main	XHTML	page.

3.		csv-inline:	The	list	is	formatted	as	a	comma-separated	document	inside	an
iframe.	If	your	browser	is	Microsoft	Internet	Explorer	and	you	have
Microsoft	Excel,	the	iframe	will	show	the	list	as	an	spreadsheet.

4.		csv-window:	The	list	is	formatted	as	a	comma-separated	document	and
opened	in	a	new	window.	If	your	browser	is	Microsoft	Internet	Explorer
and	you	have	Microsoft	Excel,	the	new	window	will	show	the	list	as	an
spreadsheet.

Warning:

The	xhtml-inline	format/target	loads	the	list	programmatically.	The	page
cannot	be	saved.	If	you	need	to	save	the	page,	use	the	xhtml-iframe	option
(You	can	save	the	iframe	content).

iframe_width
The	iframe	width.	(Only	applicable	when	the	content	target	is	an	iframe.)

Default	value
'auto'

Valid	values
Enter	the	width	as	a	quoted	literal	(You	can	use	percentages,	points	or	pixels
as	units).	If	your	format/target	is	'xhtml-iframe'	you	can	use	the	special	value
'auto'	to	resize	the	iframe	so	the	contents	are	visible	without	a	horizontal
scroll	bar.

iframe_height
The	iframe	height.	(Only	applicable	when	the	content	target	is	an	iframe.)

Default	value
'auto'

Valid	values
Enter	the	height	as	a	quoted	literal	(You	can	use	percentages,	points	or	pixels
as	units).	If	your	format/target	is	'xhtml-iframe'	you	can	use	the	special	value
'auto'	to	resize	the	iframe	so	the	contents	are	visible	without	a	vertical	scroll
bar.

column_css_class
Boolean	value.	Only	applicable	if	the	format/target	is	XHTML.	If	true,	a
cascading	style	sheet	(CSS)	class		is	assigned	to	each	column	in	the	XHTML
table.	If	false,	a	cascading	stylesheet	class	is	assigned	only	at	the	row	level.

Default	value
false().	Apply	CSS	style	at	the	row	level.

Valid	values
true(),	false()	or	an	XSLT	expression	that	returns	a	booolean	result.

CSS	styles	for	Large	Lists
The	preformatted	XHTML	table	has	the	CSS	class	"std_largelist".	By
creating	a	CSS	style	for	this	class	or	its	sub	elements,	you	can
customize	the	look	of	your	Large	List.

When	the	target	is	an	iframe,	the	iframe	inherits	the	styles	from	the
parent	window	(the	main	webroutine).

For	example,	if	your	webroutine	overrides	the	styles	as	follows:

table.std_largelist	th,	table.std_largelist	td	{white-space:nowrap;}
tr.list-h	{background:black;	color:white;	font-weight:bold;}
table.std_largelist	tr.list-o	{background:white;	color:black;}
table.std_largelist	tr.list-e	{background:#ffe9bd;	color:black;}

your	list	will	look	like:

src_wamname
Specifies	the	name	of	the	WAM	whose	webroutine	is	executed	to	serve	the	list.
(The	webroutine	name	is	specified	in	the	src_wrname	property.)

Default	value
If	not	specified,	the	current	WAM	is	used.	($lweb_WAMName)

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

src_wrname
Specifies	the	name	of	the	webroutine	that	is	executed	to	serve	the	list.	(The
name	of	the	WAM	containing	the	webroutine	is	specified	in	the	src_wamname
property.)

Default	value
No	default	value.	You	must	enter	a	valid	webroutine	name.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	webroutine	must	exist	in	the
WAM	specified	in	the	src_wamname	property.	A	list	of	known	Webroutines
can	be	displayed	by	clicking	the	corresponding	dropdown	button	on	the
property	sheet.

fields_names_to_exchange
Optional.	Select	one	or	more	fields	to	send	to	the	webroutine	serving	the	list.
You	would	normally	nominate	fields	whose	values	will	determine	the	content	of
the	list.	To	select	more	than	one	field,	press	the	Ctrl	key	while	selecting
additional	field	names.

The	fields	are	sent	to	the	webroutine	serving	the	list	but	are	not	read
back	into	the	main	webroutine.	That	is,	the	behavior	is	identical	to
having	them	mapped	for	input	in	the	webroutine	serving	the	list.

Default	value
No	default	value.

Valid	values
Comma	separated	list	of	field	names	mapped	for	output	in	the	current
webroutine.

csv_hyperlink_type
Specifies	whether	to	show	the	hyperlink	to	the	new	CSV	window	as	an	image	or
a	text	link.	Only	applicable	for	format/target	'csv-window'.

Default	value
image.

Valid	values
image:	The	hyperlink	is	shown	as	an	image.	You	define	the	image	in	the
csv_hyperlink_relative_image_path	property.
text:	The	hyperlink	is	shown	as	a	text	link.	You	specify	the	text	in	the
csv_hyperlink_text	property

csv_hyperlink_relative_image_path
The	path	and	name,	relative	to	the	images	directory,	of	the	image	to	be
displayed	to	represent	the	hyperlink	to	the	new	CSV	window.	Only	applicable
for	format/target	'csv-window'.

Default	value
'excel.gif'	which	is	an	image	representing	a	Microsoft	Excel	spreadsheet.

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

csv_hyperlink_text
The	text	for	the	hyperlink	to	the	new	CSV	window.	This	is	the	hyperlink	text
when	you	choose	'text'	in	the	csv_hyperlink_type	property.	Only	applicable	for
format/target	'csv-window'.

Default	value
'Hyperlink'

Valid	values
Any	appropriate	literal,	field	name,	system	variable	name	or	multilingual	text
variable	name.	A	field,	system	variable	or	multilingual	variable	name	can	be
chosen	from	a	list	by	clicking	the	corresponding	ellipses	button	in	the
property	sheet.

show_busybox
Choose	whether	to	show	a	busy	box	message	while	the	list	is	being	served.	This
is	recommended	for	large	lists	where	it	can	take	significant	time	to	prepare,	send
and	render	the	list.

The	busy	box	message	doesn't	work	with	new	windows.	It	only	works
for	inline	content	or	content	loaded	into	an	iframe.

Default	value
true().	The	busy	box	message	is	shown.

Valid	values
true(),	false()	or	an	XSLT	expression	that	returns	a	booolean	result.

wait_content
Optional.	The	message	to	be	displayed	in	the	busy	box	while	the	large	list	is
being	served.	Only	applicable	is	the	show_busybox	property	is	true().

Default	value
Blank	–	the	default	'Processing'	text	is	shown.

Valid	values
Any	appropriate	literal,	field	name,	system	variable	name	or	multilingual	text
variable	name.	A	field,	system	variable	or	multilingual	variable	name	can	be
chosen	from	a	list	by	clicking	the	corresponding	ellipses	button	in	the
property	sheet.	Keep	the	message	short.

Example
This	example	shows	a	literal	message:

The	busy	box	will	display:

8.1.18	List	Box	(std_listbox)

QuickStart	-	List	Box Properties	-	List	Box

The	List	Box	weblet	provides	a	Windows-like	single-	or	multi-select	list	box	for
your	web	page.	It	looks	like	this:

QuickStart	-	List	Box
Refer	to	the	example	in	List	Box	Example.

Properties	-	List	Box
The	List	Box	weblet's	properties	are:

allow_multi_selections
captionfield
class
codefield
disabled
display_mode
formname
height_design
hide_if
items

listname
mouseover_class
multi_select_codefield
multi_select_listname
name
on_select_wamname
on_select_wrname
pos_absolute
protocol
reentryfield

reentryvalue
selector_field
selector_value_eq
size
submit_tagfields
tab_index
tagfield1,	tagfield2,	tagfield3
target_window_name
value
vf_wamevent
width_design

name
The	name	of	the	list	box.	If	the	list	box	is	to	allow	selection	of	only	one	entry,
this	should	be	the	name	of	the	code	field,	in	quotes	(for	example,
'DEPTMENT'),	that	is	to	contain	the	value	of	the	selected	entry	to	be	returned	to
the	WAM.	If	it's	to	be	multi-select,	its	name	can	remain	as	the	default.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name,	in	single	quotes.	This	can	be	a	nominal	choice	or	the	name	of	a
field,	the	value	of	which	is	set	by	the	weblet.

value
The	value	to	set	the	weblet	to.	For	a	single	select	list,	this	should	be	the	name	of
the	field	containing	the	code	value	to	be	pre-selected	(for	example,
$DEPTMENT).	For	a	multi-select	list,	this	property	can	be	left	at	its	default.

Default	value
Blank.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable,	system
variable	or	field	(the	ellipses	button	in	the	property	sheet	can	be	clicked	to
choose	from	a	list).

display_mode
Controls	whether	the	weblet	accepts	input	or	displays	output.

Default	value
'input'

Valid	values
'input'	or	'output'.

items
An	XML	node	set	specifying	the	items	to	appear	in	the	weblet.	Can	only	be	set
by	the	designer.	To	invoke	the	designer	use	the	ellipse	button	in	the	property
sheet.	Leave	blank	if	items	are	populated	from	a	list	specified	in	the	listname
property.

Default	value
document(")/*/lxml:data/lxml:listbox	–	this	indicates	no	items	have	been
defined	for	this	list	box.

Valid	values
Not	applicable	–	this	value	is	system	maintained.	To	invoke	the	designer,	use
the	ellipse	button	in	the	property	sheet.

Example
This	example	indicates	that	items	have	been	setup	in	the	designer	to	use	as
list	box	values.

Using	the	ellipses	button	on	the	property	you	will	see	the	designer	and	be
able	to	maintain	the	items	to	be	displayed	in	the	list	box.	The	following	view
of	the	designer	shows	two	entries	for	the	list	box.	The	first	entry	has	the
literal	value	'MONDAY'	and	the	second	entry	uses	a	multilingual	variable	to
display	the	description	for	the	code	TUE.	Check	the	Default	Item	check	box
for	the	item	which	is	to	be	selected	if	no	value	is	preselected.

size
The	number	of	visible	rows	in	the	list.	This	property	will	be	ignored	if	the
height_design	property	is	specified.

Default	value
8

Valid	values
A	valid	number.

allow_multi_selections
A	Boolean	property	that	controls	whether	multiple	selections	are	allowed	in	the
list	box.	If	multiple	selections	are	allowed,	the	multi_select_listname	and
multi_select_codefield	properties	must	be	specified.

Default	value
false()	–	only	a	single	selection	may	be	made	in	the	list	box.

Valid	values
True(),	false(),	or	a	valid	expression	that	returns	True	or	False.

multi_select_listname
The	working	list	to	contain	the	selected	entries	for	the	list	box	if	the
allow_multi_selections	property	is	True.	The	working	list	should	contain	the
code	field	that	is	specified	in	the	multi_select_codefield	property.

Default	value
Blank	–	only	a	single	selection	may	be	made	in	the	list	box.

Valid	values
The	name	of	a	working	list,	in	single	quotes.	Click	the	corresponding
dropdown	button	in	the	property	sheet	to	choose	from	a	list	of	known
working	lists.

multi_select_codefield
The	name	of	the	field	in	the	working	list	specified	in	the	multi_select_listname
property	that	will	hold	the	code	value	of	the	selected	list	box	items.

Default	value
Blank	–	only	a	single	selection	may	be	made	in	the	list	box.

Valid	values
The	name	of	a	field,	in	single	quotes.	Click	the	corresponding	dropdown
button	in	the	property	sheet	to	choose	from	a	list	of	known	fields.

listname
The	name	of	the	working	list	that	contains	the	items	used	to	populate	the	weblet.

Default	value
Blank.	A	valid	list	name	must	be	entered.

Valid	values
The	name	of	a	valid	working	list,	in	single	quotes.	A	list	of	valid	list	names
can	be	chosen	from	by	clicking	the	corresponding	dropdown	button	in	the
property	sheet.

selector_field
The	name	of	the	field	in	the	list	specified	in	the	listname	property	that	can
contain	a	value	to	limit,	to	a	subset,	the	list	items	shown	in	the	weblet.

Default	value
Blank.	All	entries	of	the	list	are	always	shown.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	valid	field	names	can	be
chosen	from	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

selector_value_eq
The	value	that	the	field	specified	in	the	selector_field	property	must	be	equal	to
in	order	to	limit,	to	a	subset,	the	list	items	shown	in	the	weblet.	If	list	details
have	been	entered	using	the	items	property	this	value	must	match	the	selector
value	.

Default	value
Blank.	All	entries	of	the	list	are	always	shown.

Valid	values
A	valid	value	for	the	type	of	field	specified	in	the	selector_field	property	or
value	enter	in	items	property.

codefield
The	name	of	the	field	in	the	list	specified	in	the	listname	property	that	holds	the
key	value	for	each	list	item.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

captionfield
The	name	of	the	field	in	the	list	specified	in	the	listname	property	that	holds	the
caption	for	the	each	list	item.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

tagfield1,	tagfield2,	tagfield3
The	name	of	a	field	in	the	list	specified	in	the	listname	property	that	can	contain
an	additional	value	to	be	tagged	onto	a	list	item.	This	value	is	added	as	an
attribute	with	the	name	of	the	field	prefixed	with	'tag_'.	Note	that	the	value	is
not	shown	in	the	list	box,	but	can	be	referenced	in	JavaScript	code.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

submit_tagfields
A	Boolean	property	that	controls	whether	the	values	in	the	fields	specified	in	the
tagfieldn	properties	are	submitted	to	the	web	server	when	submitting	the	form.

Default	value
True()	–	the	values	in	the	fields	are	posted	to	the	web	server.

Valid	values
true(),	false(),	or	a	valid	expression	that	returns	true()	or	false().

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.

Default	value
'STDRENTRY'

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

reentryvalue
The	value	to	post	into	the	field	specified	in	the	reentryfield	property.	If	that	field
is	alphanumeric,	the	value	must	be	specified	in	single	quotes.	If	it	is	numeric,
the	value	can	be	specified	with	or	without	quotes.

Default	value
'M'

Valid	values
Any	appropriate	literal.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
true(),	false(),	or	a	valid	expression	that	returns	true()	or	false().

Example
This	example	will	hide	the	weblet	if	field	STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

height_design
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

width_design
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

on_select_wamname
The	name	of	the	WAM	to	be	invoked	when	an	item	in	the	list	box	is	selected.

Default	value
Blank	–	this	equivalent	to	the	current	WAM.

Valid	values
A	WAM	name,	in	single	quotes.	Click	on	the	corresponding	dropdown
button	in	the	property	sheet	to	choose	from	a	list	of	known	WAMs.

on_select_wrname
The	name	of	the	Webroutine	to	be	invoked	when	an	item	in	the	list	box	is
selected.

Default	value
Blank	–	a	Webroutine	is	not	invoked	when	an	item	is	selected.

Valid	values
A	Webroutine	name,	in	single	quotes.	This	Webroutine	should	exist	in	the
WAM	specified	in	the	on_select_wamname	property.	Click	on	the
corresponding	dropdown	button	in	the	property	sheet	to	choose	from	a	list	of
known	Webroutines.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	invoked	by	this	weblet.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

target_window_name
The	name	of	the	window,	or	frame,	in	which	response	HTML	will	be	shown.

Default	value
Blank	–	response	HTML	will	be	shown	in	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.
'_blank'	will	launch	in	a	new	window
'_media'	will	launch	a	media	panel	in	the	current	window
'_search'	will	launch	a	search	panel	in	the	current	window
'_parent'	will	launch	in	the	parent	window	(usually	the	current	window)
'_top'	will	launch	in	the	top	window	(usually	the	current	window)
Note	that	_search	and	_media	are	supported	by	Internet	Explorer	6	only.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false(),	or	a	valid	expression	that	returns	true()	or	false().

class
The	Cascading	Style	Sheet	class	name	of	the	weblet.

Default	value
'std_listbox'	-	The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

mouseover_class
The	Cascading	Style	Sheet	class	name	of	the	weblet	when	the	mouse	is	moved
over	it.

Default	value
Blank.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

vf_wamevent
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

List	Box	Example
Following	is	an	example	of	a	list	box	with	multiple	selections	plus	a	description
of	the	techniques	used	to	produce	this	result.
If	you	require	only	single	selection	in	your	list	box,	you	should	refer	to	the
description	of	the	allow_multi_selections	and	related	properties.

The	list	box	allows	for	multiple	selections	(via	the	standard	Windows	method	of
holding	down	the	Shift	or	Ctrl	keys	when	making	selections).	The	'Produce
Report'	button,	when	clicked,	passes	the	selected	entries	into	the	WAM	for
processing.
Change	the	items	selected	in	the	list	box	and	click	the	'Produce	Report'	button.
You	will	see	a	list	of	the	selected	entries	in	a	list,	similar	to	the	following:

The	List	Definitions
Two	lists	are	required	to	code	the	multi-select	list	box:

The	first,	#ListBox,	drives	the	content	of	the	list	box.	It	will	usually	have	two
fields	in	it:	a	code	field	and	a	description	field.
The	second	list,	#Selected,	has	two	uses.	Entries	can	be	added	to	it	in	the	WAM
to	cause	#ListBox	entries	to	be	pre-selected	when	the	list	box	is	displayed.	It	is
also	used	to	return	the	entries	selected	by	the	user	to	the	WAM.
If	you	right-click	on	the	ShowPage	Webroutine	and	open	it	in	the	LANSA
Editor,	you'll	see	the	list	box	and	the	push	button.	Click	on	the	list	box	and
display	its	properties	by	clicking	on	the	Details	tab:

The	allow_multi_selections	setting	is	self-explanatory:	true()	means	that	multi-
selections	are	enabled,	whilst	false()	ensures	that	only	single	selection	is

permitted.
The	listname	property	holds	the	name	of	the	working	list	used	to	populate
the	list	box.
The	codefield	property	is	the	name	of	the	field	in	the	listname	list	that	holds
the	code	value	of	the	list	entry	(in	this	case,	department	code).
The	captionfield	property	is	the	name	of	the	field	to	be	displayed	in	the	list
box	(in	this	case,	department	description).

These	entries	are	sufficient	to	get	the	list	box	populated	and	onto	the	web	page.	
The	remaining	two	properties	relate	to	the	selection	of	entries	in	the	list	box:

The	multi_select_listname	property	contains	the	name	of	the	list	that	is	to
return	the	selected	entries	to	the	WAM.
The	multi_select_codefield	property	is	the	name	of	the	field	in	that	list	that	is
to	hold	the	code	value	of	the	selected	entry.

Building	the	Main	List
Look	at	the	ShowPage	Webroutine	in	the	source	editor	again:

Note	the	Web_maps	for	the	two	list	box-related	lists.
A	simple	Select	loop	is	used	to	add	all	departments	from	the	DEPTAB	file	to	the
main	list,	#ListBox.
Then,	two	entries	are	added	to	the	#Selected	list.	This	will	pre-select	the
Administration	and	Information	Systems	departments	in	the	list	box	when	it's
displayed.

Processing	the	Selected	Entries
The	ProduceReport	Webroutine	is	invoked	by	the	push	button	on	the	web	page:

Again,	note	the	Web_maps:	the	incoming	list	of	selected	entries	(#Selected)	and
another,	outgoing	list	(#Report).	These	are	used	to	display	a	list	of	selected
departments.

8.1.19	Menu	bar	(std_menubar)

Using	the	Menu	Item	Designer
QuickStart	-	Menubar

Using	a	List	to	Define	the	Menu
Properties	-	Menu	bar

The	menu	bar	weblet	provides	the	functionality	of	a	menu	bar	that	can	invoke
other	web	pages	including	other	webroutines.	The	menu	bar	can	be	arranged
horizontally	or	vertically	and	the	top	level	menu	items	can	cause	further	menus
to	pop-up	as	the	mouse	moves	over	them.	This	is	what	the	menu	bar	weblet
looks	like	when	arranged	horizontally	–	in	this	example,	two	levels	of	popup
menu	are	shown.

The	menu	items	can	be	defined	in	the	Webroutine	design	using	the	menu	item
designer	or	they	can	be	supplied	at	runtime	in	an	RDMLX	list.		The	weblet	is
based	on	the	jQuery	UI	menu	widget	and	requires	jQuery	and	jQuery	UI	to
operate	(the	weblet	will	automatically	add	the	required	external	resources	to	the
output	HTML).

QuickStart	-	Menubar
To	use	the	Menubar	weblet,	open	your	webroutine	in	the	LANSA	Editor	and
follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Menubar	weblet.

2.		Drag	and	drop	the	weblet	onto	your	page	in	the	Design	view.	Make	sure	the
weblet	on	the	page	is	selected	and	then	click	on	the	Details	tab.

3.		Click	the	ellipsis	button	next	to	the	menu_items	property	to	open	the	menu
items	designer	and	define	your	menu	items.

Using	the	Menu	Item	Designer
To	open	the	menu	item	designer,	follow	these	steps:
1.		Make	sure	the	Menubar	weblet	on	your	page	is	selected	and	then	click	on	the
Details	tab.

2.		Move	the	mouse	pointer	over	the	menu_items	property	in	the	Details	tab.	An
ellipsis	should	appear	next	to	the	property	value.	Click	the	ellipsis	button	to
open	the	menu	items	designer.	A	window	like	the	one	shown	below	appears.

The	top-half	of	the	window	shows	a	representation	of	the	current	state	of	the
menu.	Note	that	this	is	always	shown	in	horizontal	orientation	irrespective	of
the	current	value	of	the	orientation	property.	In	this	part	of	the	window,	you	can:

click	on	items	to	complete	their	details	in	the	lower	half;
drag	and	drop	items	to	rearrange	them;
add	new	items	by	clicking	on	the	blank	items	shown	adjacent	to	the	currently
selected	item;
remove	items	by	selecting	them	and	clicking	the	Remove	button.

In	the	bottom-half	of	the	window	you	can	specify	the	details	for	the	selected

item	as	follows:
Caption
Specifies	the	text	that	appears	on	the	face	of	the	menu	item.	You	can	also	enter
the	text	directly	on	the	face	of	a	menu	item	by	clicking	on	it	in	the	top-half	of
the	window	and	typing.
Action	URL
Specifies	a	URL	that	the	menu	item	will	navigate	to	when	clicked.	You	can
specify	a	complete	URL	or	one	that	is	relative	to	the	current	page.
WAM	and	Webroutine
Specifies	a	Webroutine	to	invoke	when	the	menu	item	is	clicked.	Note	that	if
both	a	URL	and	a	Webroutine	have	been	specified,	the	URL	will	take	priority
and	the	Webroutine	will	be	ignored.
VLF	WAM	Event
Specifies	a	VLF	WAM	event	to	pass	to	the	handler	when	this	menu	item	is
selected.
	

Using	a	List	to	Define	the	Menu
The	menu	structure	can	be	defined	with	an	RDMLX	list	(normal	list	or	JSON
list).	To	do	this	you	must	create	a	list	with	a	specific	format.	The	list	must	have
6	columns	containing	the	following	values:
1.		Menu	item	ID	-	A	unique	id	for	the	menu	item.	This	can	be	a	number	or	a
string.	If	using	numbers,	do	not	use	zero	(items	with	an	id	of	zero	cannot	have
child	items).

2.		Parent	item	ID	-	The	id	of	the	parent	item.	Use	zero	(0)	or	an	empty	string
for	top	level	items	with	no	parent.

3.		Caption	-	The	text	to	display	for	the	menu	item.
4.		URL	-	The	URL	that	the	menu	item	will	navigate	to	when	clicked.	You	can
specify	a	complete	URL	or	one	that	is	relative	to	the	current	page.	Use	an
empty	string	if	the	menu	item	is	to	invoke	a	webroutine.

5.		WAM	-	The	name	of	the	WAM	containing	the	Webroutine	to	be	invoked
when	the	menu	item	is	clicked.If	the	URL	is	specified,	this	is	ignored.

6.		Webroutine	-	The	name	of	the	Webroutine	to	be	invoked	when	the	menu
item	is	clicked.If	the	URL	is	specified,	this	is	ignored.

7.		WAM	Event	(optional)	–	The	VLF	WAM	Event	to	send	to	the	webroutine
handling	the	request.
The	columns	names	may	be	anything	you	like	but	they	must	be	defined	in
the	order	specified	above.

Properties	-	Menu	bar
The	Menu	bar	weblet's	properties	are:

id
listname

menu_items
orientation

show_arrows
submit_selected_to

id
A	unique	name	for	the	weblet.	Normally,	you	would	leave	this	as	the	default	and
let	LANSA	use	its	own	internal	naming	convention.	However,	you	may	want	to
use	your	own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
Any	valid	HTML	ID	string.		It	must	begin	with	a	letter	([A-Za-z])	and	may
be	followed	by	any	number	of	letters,	digits	([0-9]),	hyphens	("-"),
underscores	("_"),	colons	(":"),	and	periods	(".").	However,	for	best
compatibility	with	various	JavaScript	libraries,	CSS	editors	and	other	web
technologies	it	is	advisable	to	avoid	colons	(":")	and	periods	(".").

listname
The	name	of	an	RDMLX	list	that	contains	the	definition	of	the	menubar	and	its
items.	See	Using	a	List	to	Define	the	Menu	for	more	details	of	how	to	use	this
property.	Both	normal	lists	and	JSON	lists	are	allowed.	JSON	lists	are
recommended.

Default	value
Blank.

Valid	values
Any	output	list	from	the	current	Webroutine.

menu_items
An	XML	nodeset	that	specifies	the	menu	items.	This	is	a	system	generated
value	set	up	when	you	drag	the	menu	onto	the	design	view.
Do	not	directly	edit	the	value	shown.	Instead,	click	the	ellipsis	button	to	open
the	menu	items	designer.	Refer	to	Using	the	Menu	Item	Designer	for	more
information.

Default	value
document('')/*/lxml:data/lxml:menu[@id='<unique	id>']
		where	the	<unique	id>	is	an	automatically	generated	identifier.

Valid	values
Not	Applicable.	(This	value	is	system	generated	and	should	not	be
modified.)	If	listname	is	specified,	this	value	will	be	ignored.

orientation
The	orientation	of	the	menu.	This	determines	the	positioning	of	the	top-level
menu	items	relative	to	each	other	and	the	direction	or	relative	location	that	pop-
up	menus	appear.

Default	value
'top'

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	following	values:
'top'	The	top-level	menu	items	are	arranged	horizontally	and	first-level	pop-
up	menus	appear	below	the	corresponding	top-level	menu	item.	Suitable	for
use	as	a	horizontal	menu	bar	across	or	near	the	top	of	the	page.
'left'	The	top-level	menu	items	are	arranged	vertically	and	first-level	pop-up
menus	appear	to	the	right	of	the	corresponding	top-level	menu	item.	Suitable
for	use	as	a	vertical	menu	bar	on	the	left	of	the	page.
'right'	The	top-level	menu	items	are	arranged	vertically	and	first-level	pop-up
menus	appear	to	the	left	of	the	corresponding	top-level	menu	item.	Suitable
for	use	as	a	vertical	menu	bar	on	the	right	of	the	page.
'bottom'	The	top-level	menu	items	are	arranged	horizontally	and	first-level
pop-up	menus	appear	above	the	corresponding	top-level	menu	item.	Suitable
for	use	as	a	horizontal	menu	bar	across	or	near	the	bottom	of	the	page.
	

show_arrows
A	boolean	value	that	indicates	whether	to	not	to	display	arrows	on	the	top	level
menu	items.	This	only	applies	to	the	top	level	menubar	items.	Any	menu	items
that	have	submenus	will	always	display	an	arrow	to	indicate	this	fact.

Default	value
true()

Valid	values
true(),	false()	or	a	valid	boolean	expression.

submit_selected_to
When	a	menu	item	is	clicked,	and	the	action	of	that	menu	item	is	to	invoke	a
Webroutine,	the	ID	of	the	selected	menu	item	will	be	placed	into	this	field.	For
menubars	defined	with	an	RDMLX	list,	the	ID	will	be	the	ID	specified	in
column	1.	For	menubars	specified	with	the	menu	item	designer,	the	value	will
be	a	comma	delimited	sequence	of	numbers	representing	the	path	to	the	selected
item.	For	example,	if	the	3rd	item	in	the	second	menu	is	selected,	the	submitted
ID	would	be	"2,3".

Default	value
Blank

Valid	values
The	name	of	a	*INPUT	field	in	the	webroutine(s)	being	executed.

	

8.1.20	Menu	item	(std_menu_item_v2)

QuickStart	-	Menu	item Properties	-	Menu	item

The	menu	item	weblet	provides	a	hyperlink	menu	item	that	looks	and	behaves
very	much	like	a	push	button.	It	is	intended	to	be	used	in	groups	arranged
together	in	the	page	to	provide	a	menu	of	alternate	pages	or	webroutines	that	the
user	can	access	from	the	current	page.
The	menu	item	is	essentially	a	clickable	link	with	some	extra	capabilities:

It	includes	support	for	a	"selected"	style.
It	is	constructed	with	several	spans	to	allow	for	multiple	images	and
expanding	backgrounds	(using	the	"sliding	doors"	technique).

QuickStart	-	Menu	item
The	menu	item	weblet	is	used	to	provide	a	skeletal	menu	in	the	default	standard
webroutine	layouts.	You	may	wish	to	use	them	in	your	layouts	to	provide	this
functionality	or	you	can	use	them	directly	in	the	page	for	individual
webroutines.	To	use	the	menu	item	weblet,	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Menu	item	weblet.

2.		Drag	and	drop	the	weblet	onto	your	page	in	the	Design	view	(You	may	wish
to	use	a	table	or	some	other	device	to	assist	in	arranging	multiple	instances	of
the	weblet.)		Click	on	the	weblet	and	then	click	on	the	Details	tab.

3.		Set	the	caption	property	as	required.
4.		Set	the	on_click_wrname	property	to	the	name	of	the	webroutine	to	be
invoked	when	the	hyperlink	is	clicked	If	the	webroutine	is	in	a	different
WAM	to	the	current	webroutine	then	you	will	need	to	set	the
on_click_wamname	property	as	well	Alternatively	you	can	set	the	href
property	to	cause	the	weblet	to	navigate	to	a	destination	that	is	not	a
webroutine.

Menu	Item	Appearance

Layout	and	Size

The	basic	menu	item	has	no	particular	formatting	beyond	bold	text	and	a	CSS
display	value	of	"block".	This	can	change	significantly,	depending	on	what
layout	and	layout	theme	you	are	using.	The	default	layouts	provided	prior	to
Visual	LANSA	V12	SP1	provided	three	themes:	default,	royal	and	grass.

Default Royal Grass

If	you	are	using	an	new	Layout	with	a	jQuery	UI	theme	then	you	can	set	the
menu	item	to	take	on	the	standard	theme	appearance	of	a	clickable	item	by
setting	the	useJQueryUITheme	property	to	True.

Cupertino Smoothness Pepper	Grinder

	

If	you	have	no	theme	applied,	or	have	useJqueryUITheme	set	to	False,	the	menu
item	will	display	as	bold	text	inside	a	borderless	white	box

The	basic	HTML	structure	of	this	is:

Sample	Menu	Item

When	a	menu	item	is	selected,	the	class	of	the	<a>	tag	is	changed	to
"std_menu_selected".
Basic	styling	of	the	menu	item	can	be	done	by	defining	some	properties	for	the
std_menu	and	std_menu_selected	classes	in	your	style	sheet.	For	example:
a.std_menu,	a.std_menu_selected	{
color:#01478c;
border-style:solid;
border-color:#7db0e5;
border-width:0px	2px	1px	2px;
background-color:#c7dff4;
}
a.std_menu_selected	{
background-color:#7db0e5;
}

A	left	aligned	image	could	be	added	with	something	like	this:
a.std_menu,	a.std_menu_selected	{
background-image:url('icon.png')	no-repeat	left	center;
padding-left:32px;
}

More	complex	"self	sizing"	background	images	can	be	created	by	applying	the
two	halves	of	the	image	to	each	of	the	spans	in	what	is	known	as	the	"sliding
doors"	technique.

http://www.jankoatwarpspeed.com/post/2008/04/30/make-fancy-buttons-using-css-sliding-doors-technique.aspx

Layout	and	Size
The	default	menu	item	is	an	HTML	"block"	item.	This	means	that	it
automatically	expands	to	the	width	of	the	space	you	give	it	and	does	not	allow
other	content	on	either	side	of	it	(within	the	containing	box).	This	is	ideal	for
creating	a	vertical	stack	of	menu	items	in	a	sidebar.	You	can	set	the	size	of	the
sidebar	and	the	menu	items	will	all	automatically	match	the	size.	If	you	want	to
use	the	menu	items	in	a	different	scenario,	you	may	want	to	change	their	display
mode	and/or	their	size.		For	example,	to	create	a	horizontal	bar	of	menu	items
like	this:

You	might	place	them	inside	a	<div>	with	the	id	"hMenu"	and	then	define	the
following	CSS:
#hMenu	{
background:#333;
}
a.std_menu,	a.std_menu_selected	{
color:#fff;
display:inline-block;
padding:5px	10px;
border-right:1px	solid	#fff;
background-color:#c7dff4;
font-weight:normal;
}

Properties	-	Menu	item
The	Menu	item	weblet's	properties	are:

caption
class
force_selected
formname
hide_if
href

is_selected_if_also
name
on_click_wamname
on_click_wrname
protocol
reentryfield

reentryvalue
selected_class
style
tab_index
target_window_name
useJQueryUITheme
vf_wamevent

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

caption
This	property	specifies	the	text	that	is	displayed	for	the	menu	item.

Default	value
'Caption'	(you	will	usually	need	to	set	this	property	value.)

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable	(the	corresponding	ellipses	button	in	the	property	sheet	can	be
clicked	to	choose	one	from	a	list).

href
This	property	may	be	used	to	specify	a	URL	that	the	menu	item	will	navigate	to.
If	specified,	the	URL	may	be	specified	as	a	literal	value	(for	example
'http://www.mycompany.com/')	or	a	field	name	may	be	specified	that	contains
the	URL	at	run-time.
This	property	takes	precedence	over	the	on_click_wamname,	on_click_wrname
and	protocol	properties.	The	latter	properties	are	ignored	if	href	is	specified.

Default	Value
None

Valid	Values
A	URL	enclosed	by	single	quotes	or	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	the	URL	at	run-time.

on_click_wamname
Specifies	the	name	of	the	WAM	whose	webroutine	is	executed	when	the	menu
item	is	clicked.	(The	webroutine	name	is	specified	in	the	on_click_wrname
property.)
This	property	is	ignored	if	the	href	property	is	specified.

Default	value
If	not	specified,	the	current	WAM	is	used.	($lweb_WAMName)

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_click_wrname
Specifies	the	name	of	the	webroutine	that	is	executed	when	the	menu	item	is
clicked.	(The	name	of	the	WAM	containing	the	webroutine	is	specified	in	the
on_click_wamname	property.)
This	property	is	ignored	if	the	href	property	is	specified.

Default	value
No	default	value	applies	–	either	the	href	property	or	the	on_click_wrname
property	must	be	specified	in	order	for	the	menu	item	to	be	functional.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_click_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	specified	in	the	on_click_wrname	property.
Typically	you	might	use	this	property	when	it	is	necessary	to	switch	to	or	from
secure-mode	processing.	Otherwise	it	is	not	usually	necessary	to	specify	this
property.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	If	specified,	it	is	usually	'http:'	or	'https:'.

is_selected_if_also
By	default,	a	menu	item	assumes	the	selected-state	appearance	if	the	values	for
its	on_click_wamname	and	on_click_wrname	properties	match	the	WAM	and
webroutine	name	of	the	current	page	(note	that	this	comparison	is	case-
sensitive).
This	property	allows	you	to	extend	this	behavior	by	specifying	a	further
condition	that	must	apply	for	the	menu	item	to	assume	the	selected-state.

Default	value
true()	(that	is,	no	further	condition	applies)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	specifies	that,	in	addition	to	the	default	tests	specified	above,
the	weblet	will	test	if	the	field	#STD_FLAG	is	equal	to	'X'.	The	expression
should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

force_selected
If	true,	the	menu	item	assumes	the	selected	state	regardless	of	the	current
WAM/Webroutine	or	the	is_selected_if_also	property.	If	you	want	to	apply	your
own	logic	to	deciding	the	state	of	the	menu	item	you	can	set	is_selected_if_also
to	False	to	disable	the	default	logic	and	place	an	appropriate	Boolean	expression
into	force_selected.
For	example,	you	could	create	a	field	that	contained	the	name	of	the	selected
menu	item.	Then	you	could	set	the	force_selected	property	(using	the	XPath
entry	area)	to
#SELMENU	=	'Menu1'

Default	value
False()	(the	default	logic	is	applied)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

target_window_name
The	name	of	the	window,	or	frame,	in	which	the	destination	of	the	menu	item
will	be	shown	A	special	v	alue	of	"_blank"	will	open	a	new	unnamed	window.

Default	value
Blank	–	the	destination	of	the	menu	item	will	be	shown	in	the	current
window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.
See	the	description	of	the	reentryvalue	property	for	further	information.
Note:	this	property	is	provided	to	support	a	re-entrant	programming	technique
that	is	commonly	used	in	WEBEVENT	applications.	Web	applications	that	are
designed	from	the	outset	to	use	WAMs	do	not	usually	need	to	make	use	of	that
technique.

Default	value
No	default	value	applies.

Valid	values
Single-quoted	text.

reentryvalue
The	value	to	post	to	the	target	webroutine	in	the	field	specified	in	the
reentryfield	property.	If	that	field	is	alphanumeric,	the	value	must	be	specified	in
single	quotes.	If	it	is	numeric,	the	value	can	be	specified	with	or	without	quotes.
This	property	is	used	in	conjunction	with	the	reentryfield	property	to	describe
how	to	post	values	to	a	target	webroutine.	These	two	pieces	of	information	are
required	to	accomplish	this:
1.		reentryfield:		the	field	name	that	the	target	webroutine	uses	to	refer	to	the
information

2.		reentryvalue:		a	literal	value	or	a	field	name	in	this	(the	source)	webroutine
that	contains	the	necessary	information

Note:	this	property	is	provided	to	support	a	re-entrant	programming	technique
that	is	commonly	used	in	WEBEVENT	applications.	Web	applications	that	are
designed	from	the	outset	to	use	WAMs	do	not	usually	need	to	make	use	of	that
technique.

Default	value
No	default	value	applies.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

style
The	inline	style	property	for	the	weblet.	This	property	allows	you	to	set	CSS
style	properties	for	this	weblet	that	will	override	any	values	defined	in	the
layout	stylesheets.

Default	value
''

Valid	values
Any	valid	CSS	properties,	separated	by	semi-colons	and	contained	within
single	quotes.

useJQueryUITheme
Indicates	if	the	weblet	should	apply	jQuery	UI	classes	to	itself.	If	True,	and	the
layout	loads	a	jQuery	UI	theme,	the	layout	will	take	on	the	look	of	a	clickable
element	as	defined	by	the	theme.

Default	value
False

Valid	Values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	menu	item.

Default	value
The	name	of	the	shipped	class	for	the	menu	item.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

selected_class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	menu	item	when	it	is
selected.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

vf_wamevent
	
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.1.21	Navigation	Panel	(std_nav_panel)

QuickStart	-	Navigation	Panel Properties	-	Navigation	Panel

The	Navigation	Panel	weblet	provides	a	container	that	can	be	used	to	display
content	that	is	provided	by	a	WAM	or	a	URL.	As	such,	it	can	be	used	to
'modularize'	your	application	such	that	not	all	content	is	provided	by	a	single
source.

QuickStart	-	Navigation	Panel
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Navigation	Panel	weblet.

2.		Drag	and	drop	it	onto	the	web	page	being	designed.
3.		Set	the	nav_wrname	property	to	the	name	of	the	webroutine	to	be	invoked
when	the	web	page	is	shown.	If	the	webroutine	is	in	a	different	WAM	to	the
current	webroutine	then	you	will	need	to	set	the	nav_wamname	property	as
well.

Properties	-	Navigation	Panel
The	Navigation	Panel	weblet's	properties	are:

border
border_width
class
formname
height
hide_if
name
nav_asynchronously
nav_url

nav_wamname
nav_wrname
pos_absolute
protocol
reentryfield
reentryvalue
scrolling
size_panel_to_content
size_panel_to_content_axis

transparent
wait_content
wait_content_absolute_image
wait_content_class
wait_content_image_alignment
wait_content_image_class
wait_content_relative_image
wait_content_timeout
width
vf_wamevent

name
The	name	of	the	weblet.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	However,	you	may	want	to	use
your	own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name	in	single	quotes.

border
The	style	of	the	border.

Default	value
Blank.	The	weblet	has	no	border.

Valid	values
A	valid	border	style,	in	single	quotes.	A	valid	style	can	be	chosen	from	a	list
by	clicking	the	corresponding	dropdown	button	in	the	property	sheet.		Note
that	'window-inset'	is	only	supported	by	Internet	Explorer.

border_width
The	width	of	the	panel's	border.

Default	value
Blank.	Equivalent	to	the	panel	having	no	border.

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.	Alternatively,	a
width	of	'thick',	'medium'	or	'thin'	can	be	selected	by	clicking	on	the
corresponding	dropdown	button	in	the	property	sheet.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.

Default	value
'100%'	–	the	panel	is	sized	to	the	width	of	the	page.

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.

Default	value
'250pt'.

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

size_panel_to_content
A	Boolean	property	that	determines	how	the	panel	is	sized.	The	navigated-to
page	must	be	in	the	same	domain	as	the	current	page.
The	size	used	will	be	determined	by	the	browser	and	may	vary	slightly	from
browser	to	browser.		It	may	also	be	affected	by	the	initial	size.		For	best	results,
make	sure	your	panel	content	page	explicitly	sizes	its	content	so	that	the
browser	doesn't	have	to	decide	for	itself.		Note,	also,	that	Opera	will	not	reduce
the	size	of	the	panel.
If	using	nav_url,	the	URL	must	be	from	the	same	server	that	the	WAM	is	from.	
Browser	security	restrictions	prevent	code	in	a	page	from	one	server	accessing
information	in	a	page	from	another	server.		If	the	panel	content	is	from	another
server,	the	panel	will	not	be	able	to	determine	its	size.	Using	a	URL	that	points
to	another	server	will	cause	the	prompter	code	to	fail	with	an	"access	denied"
error.

Default	value
false()	–	the	panel	is	not	resized	when	navigated	to.

Valid	values
true(),	false(),	'once',	or	a	valid	expression.	If	set	to	true(),	the	frame	will	be
sized	to	the	content	of	the	page	it	navigates	to	every	time	the	navigation
occurs.	If	set	to	'once',	the	sizing	will	occur	only	on	the	first	navigation	and
the	panel	will	remain	at	that	size	on	subsequent	navigations.

size_panel_to_content_axis
Specifies	the	nature	of	the	content	sizing	if	the	size_panel_to_content	is	not
false().

Use	this	property	with	care.		Although	the	panel	does	its	best	to	do
what	you	expect,	some	decisions	about	content	size	and	placement	of
scroll	bars	are	determined	by	the	browser	using	its	own	rules.		This
may	lead	to	unexpected	behaviour.		In	particular,	layouts	that	use
percentages	to	size	elements	may	result	in	unexpected	scroll	bars.

Default	value
'both'	–	the	height	and	width	of	the	panel	are	resized.

Valid	values
Set	to	'height'	to	size	the	panel's	height	only.	Set	to	'width'	to	size	the	panel's
width	only.	Set	to	'both'	to	size	the	panel's	height	and	width.

scrolling
Determines	whether	scrolling	is	permitted.

Default	value
'both'.

Valid	values
Set	to	'yes'	or	'no'	to	allow	or	disallow	scrolling	whether	or	not	the	content
fits	within	the	panel.	Set	to	'auto'	to	allow	scrolling	if	required.

class
The	Cascading	Style	Sheet	class	name	of	the	weblet.
The	class	must	be	defined	in	an	external	CSS	file	which	must	be	loaded	into	the
current	layout.

Default	value
'std_nav_panel'	-	The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

transparent
A	Boolean	property	that	sets	the	allowTransparent	attribute	of	the	IFRAME	that
makes	up	the	panel.		This	is	an	Internet	Explorer	(7	and	under)	only	attribute
which,	when	true,	allows	the	document	loaded	in	the	panel	to	have	a	transparent
background-color.
It	is	important	to	note	that	this	property	does	not	make	the	panel	transparent,	it
simply	allows	the	panel	contents	to	be	transparent.	The	content	document	must
still	set	its	BODY	background-color	to	transparent.		If	this	property	is	false	then
any	transparent	background-color	in	the	content	document	will	be	ignored.
This	is	a	non-standard	property	that	is	only	supported	by	Internet	Explorer	(7
and	under)	or	Internet	Explorer	8+	running	in	compatability	mode.	Other
browsers	(including	Internet	Explorer	8+	running	in	standards	mode)	do	not
support	this	property.		They	will	behave	as	if	transparent	is	true.		However,	if	no
background	color	is	specified	in	the	content	document,	some	browsers	will
default	to	transparent	and	other	browsers	will	default	to	white.		So,	for	best
cross-browser	results,	leave	this	property	as	true	and	make	sure	you	explicitly
set	the	background	color	of	your	content	document.

Default	value
true()

Valid	values
true()	or	false()

nav_url
The	URL	the	panel	should	navigate	to.

Default	value
Blank	–	the	panel	does	not	navigate	to	a	URL.

Valid	values
A	valid	URL,	in	single	quotes.	Note	that	a	protocol	(for	example,	http:	or
https:)	must	be	specified.

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
Blank.

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

nav_wamname
The	name	of	the	WAM	that	will	be	invoked	to	display	a	page	in	the	panel.

Default	value
Blank	–	the	current	WAM	will	be	invoked	if	the	nav_wrname	property	is
specified.

Valid	values
The	name	of	a	WAM,	in	single	quotes.	A	list	of	known	WAM	names	may	be
chosen	from	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

nav_wrname
The	name	of	the	Webroutine	that	will	be	invoked	to	display	a	page	in	the	panel.

Default	value
Blank	–	a	Webroutine	will	not	be	invoked	to	display	a	page	in	the	panel.

Valid	values
The	name	of	a	Webroutine,	in	single	quotes.	A	list	of	valid	Webroutine
names	may	be	chosen	from	by	clicking	the	corresponding	dropdown	button
in	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	invoked	by	this	weblet.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

nav_asynchronously
A	Boolean	property	that	controls	the	way	in	which	the	panel	is	loaded	if	a	URL
has	been	specified	in	the	nav_url	property.	Ignored	if	nav_url	is	not	specified.
If	true,	the	url	is	loaded	using	a	new	thread.		The	effect	of	this	is	that	the
browser	will	not	wait	for	the	panel	to	load	before	firing	the	onLoad	event	to
indicate	the	page	has	loaded.		If	nav_asynchronously	is	false,	the	browser	will
wait	for	the	panel	to	finish	loading	before	firing	the	event.

This	property	is	not	supported	by	Opera.		Opera	will	behave	as	if
nav_asynchronously	is	true	regardless	of	its	actual	value.

Default	value
true()	–	the	nav_url	URL	(if	specified)	is	navigated	to	asynchronously.

Valid	values
If	set	to	True,	the	URL	specified	in	the	nav_url	property	will	be	navigated	to
asynchronously	(that	is,	the	rest	of	the	outer	page	will	load	before	the	panel
is	loaded).

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.

Default	value
Blank	–	a	re-entry	field	is	not	used.

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

reentryvalue
The	value	to	post	into	the	field	specified	in	the	reentryfield	property.	If	that	field
is	alphanumeric,	the	value	must	be	specified	in	single	quotes.	If	it	is	numeric,
the	value	can	be	specified	with	or	without	quotes.

Default	value
Blank	–	a	re-entry	field	is	not	used.

Valid	values
Any	appropriate	literal.

wait_content
The	text	to	be	displayed	whilst	the	panel	is	loading.	HTML	can	also	be
specified.

Default	value
Blank	–	no	text	is	displayed	whilst	the	panel	is	loading.

Valid	values
Any	appropriate	literal,	field	name,	system	variable	name	or	multilingual	text
variable	name.	A	field,	system	variable	or	multilingual	variable	name	can	be
chosen	from	a	list	by	clicking	the	corresponding	ellipses	button	in	the
property	sheet.

wait_content_timeout
If	the	wait_content	property	is	specified,	this	property	specifies,	in	milliseconds,
the	amount	of	time	to	wait	before	the	page	is	requested.	This	allows	time	for	the
image	to	load	and	be	displayed.

Default	value
100	–	if	the	wait_content	property	is	specified,	a	delay	of	100	milliseconds
occurs	before	the	navigation	occurs.

Valid	values
A	valid	wait	time,	in	milliseconds.

wait_content_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	container	element	of	the
content	specified	in	the	wait_content	property.

Default	value
Blank	–	no	style	is	applied.

Valid	values
The	name	of	a	valid	Cascading	Style	Sheet	class,	in	single	quotes.	A	valid
style	can	be	chosen	from	a	list	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

wait_content_relative_image
The	path	and	file	name,	relative	to	the	images	directory,	of	the	image	to	be
displayed	whilst	the	panel	is	loading.	The	image	will	initially	be	retrieved	from
the	server,	but	will	subsequently	be	retrieved	from	the	browser	cache,	if
enabled.

Default	value
Blank	–	no	image	is	shown.

Valid	values
A	valid	path	and	image	file	name,	in	single	quotes.	An	image	can	be	chosen
from	a	prompter	by	clicking	the	corresponding	ellipses	button	in	the	property
sheet.

wait_content_absolute_image
The	path	and	file	name	of	the	image	to	be	displayed	whilst	the	panel	is	loading.
The	image	will	initially	be	retrieved	from	the	server,	but	will	subsequently	be
retrieved	from	the	browser	cache,	if	enabled.

Default	value
Blank	–	no	image	is	shown.

Valid	values
A	valid	path	and	file	name,	in	single	quotes.	Should	not	be	specified	if	the
wait_content_relative_image	property	is	specified.

wait_content_image_alignment
The	alignment	of	the	image	specified	in	the	wait_content_relative_image	or
wait_content_absolute_image	properties,	relative	to	the	wait_content	property.

Default	value
Blank	–	equivalent	to	'left'.

Valid	values
Set	to	'left',	'right',	'top'	or	'bottom'.

wait_content_image_class
The	Cascading	Style	Sheet	class	of	the	image	specified	in	the
wait_content_relative_image	or	wait_content_absolute_image	property.

Default	value
Blank	–	the	image	has	no	class.

Valid	values
The	name	of	a	valid	Cascading	Style	Sheet	class,	in	single	quotes.	A	valid
style	can	be	chosen	from	a	list	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

vf_wamevent
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.1.22	Panel	(std_	panel)

QuickStart	-	Panel Properties	-	Panel

The	Panel	weblet	is	used	as	a	container	for	other	controls	on	a	web	page.	It	is
typically	used	to	ensure	that	certain	portions	of	a	web	page	are	positioned
absolutely	as	opposed	to	relatively.	As	such,	it	is	usually	used	in	conjunction
with	other	'arrangement'	controls	such	as	tables	and	attachment	panels.

QuickStart	-	Panel
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Panel	weblet.

2.		Drag	and	drop	it	onto	the	web	page	being	designed.
3.		Size	it	appropriately	by	specifying	the	height	and	width	properties	or	by
dragging	the	panel's	sizing	handles.	Other	controls	can	now	be	dragged	onto
it.	Note	that	these	controls	are	positioned	absolutely	as	opposed	to	relatively.

Properties	-	Panel
The	Panel	weblet's	properties	are:

border
border_width
class
grid_size

height
hide_if
name
panes

pos_absolute
snap_to_grid
width

name
The	name	of	the	weblet.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	However,	you	may	want	to	use
your	own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name	in	single	quotes.

panes
An	XML	nodeset	specifying	a	set	of	panes	to	show.	This	is	a	system	generated
value	set	up	when	you	drag	the	banner	into	a	pane	on	the	design	view.	Cannot
be	modified.

Default	value
document(")/*/lxml:data/lxml:panes[@id='<unique	id>']	(this	is	equivalent
to	the	current	pane	where	the	unique	id	is	an	automatically	generated
identifier.)

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)

border
The	style	of	the	border.

Default	value
Blank.	The	weblet	has	no	border.

Valid	values
A	valid	border	style,	in	single	quotes.	A	valid	style	can	be	chosen	from	a	list
by	clicking	the	corresponding	dropdown	button	in	the	property	sheet.		Note
that	'window-inset'	is	only	supported	by	Internet	Explorer.

border_width
The	width	of	the	panel's	border.

Default	value
Blank.	Equivalent	to	the	panel	having	no	border.

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.	Alternatively,	a
width	of	'thick',	'medium'	or	'thin'	can	be	selected	by	clicking	on	the
corresponding	dropdown	button	in	the	property	sheet.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

class
The	Cascading	Style	Sheet	class	name	of	the	weblet.

Default	value
'std_panel'	-	The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

snap_to_grid
A	Boolean	property	that	determines	whether	the	Snap	to	Grid	feature	should	be
enabled	at	design	time.	Snap	to	Grid	allows	controls	placed	on	the	panel	to	be
aligned	more	easily.	This	is	a	design-time	feature	only.

Default	value
true()	–	the	Snap	to	Grid	feature	is	enabled	for	the	panel	at	design	time.

Valid	values
Set	to	true()	to	enable	Snap	to	Grid	or	false()	to	disable	it.

grid_size
The	distance	between	the	points	of	the	grid	at	design-time.	The	points	allow
easier	alignment	of	controls	placed	on	the	grid.	This	is	a	design-time	feature
only.

Default	value
'10px'	–	the	points	of	the	grid	are	placed	10	pixels	apart.

Valid	values
A	distance,	in	a	valid	unit	of	measurement,	in	single	quotes.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	panel	on	the	web	page.

Default	value
'400pt'.

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	panel	on	the	web	page.

Default	value
'200pt'.

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

8.1.23	Print	Page	(std_printpage)

QuickStart	-	Print	Page Properties	-	Print	Page

The	Print	Page	weblet	provides	a	hyperlink	to	print	the	current	page.	It	look	like
this:

QuickStart	-	Print	Page
To	add	the	Print	Page	weblet	to	your	web	page:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Print	Page	weblets.

2.		Drag	and	drop	the	weblet	onto	the	web	page.

Properties	-	Print	Page
The	Print	Page	weblet	properties	are:

absolute_image_path
caption
class
disabled

disabled_class
height_design
hide_focus
hide_if

pos_absolute
relative_image_path
tab	index
width_design

caption
The	caption	for	the	weblet.

Default	value
'Print'

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()or	any	valid	expression	that	returns	True	or	False.

hide_focus
A	Boolean	property	that,	if	evaluated	to	be	True,	will	hide	the	focus	rectangle
for	the	weblet	when	it	has	focus.

Default	value
true()

Valid	values
true(),	false()	or	a	valid	expression	that	returns	a	Boolean	value.

relative_image_path
The	path	and	file	name,	relative	to	the	'images'	directory,	of	the	image	to	be
displayed.	If	specified,	the	absolute_image_path	property	should	be	left	blank.

Default	value
'icons/normal/16/printer_16.png'

absolute_image_path
The	path	and	file	name	of	the	image	to	be	displayed.	If	specified,	the
relative_image_path	property	should	be	left	blank.

Default	value
The	default	is	to	use	the	image	specified	in	the	relative_image_path	property.

Valid	values
The	path	and	name	of	an	image	enclosed	in	single	quotes.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height_design
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

class
The	Cascading	Style	Sheet	class	name	of	the	weblet.

Default	value
'std_printpage'	-	The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

disabled_class
The	Cascading	Style	Sheet	of	the	weblet	when	the	disabled	property	is	set	to
True.

Default	value
'std_printpage_disabled'	-	The	name	of	the	shipped	disabled	class	for	the
weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab	index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet

8.1.24	Progress	bar	(std_progressbar)
Properties	–	Progress	bar
Display	status	of	a	determinate	or	indeterminate	process.	It	can	also	be	used	to
display	a	value	as	a	percentage	of	its	maximum	value.

Properties	–	Progress	bar

caption
delayClose
height
hide_if

indeterminate
max
name
overlay

transitory
value
width

name
The	name	of	the	weblet.	If	the	weblet	represents	a	field	from	your	WAM,	this
should	be	the	name	of	the	field.	If	the	weblet	does	not	represent	a	field,	you	may
wish	to	use	your	own	name	if	using	JavaScript	or	XSL	that	references	the
weblet.	If	nominating	a	name	is	not	a	consideration,	the	default	name	should	be
used,	as	determined	by	LANSA.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name,	in	single	quotes.	This	can	be	a	nominal	choice,	or	the	name	of	a
field,	the	value	of	which	is	set	by	the	weblet.

value
The	value	to	set	the	weblet	to.The	ratio	of	this	value	to	the	maximum	value	is
used	to	represent	the	current	progress.

Default	value
Zero:	0%	of	progress

Valid	values
0	to	maximum	value.

max
The	value	that	represents	100%	of	progress.	This,	together	with	the	current
value	are	used	to	determine	the	progress	shown	by	the	progress	bar.

Default	value
100

Valid	values
A	numeric	value	greater	than	zero.

height
The	height	of	the	progress	bar.

Default	value
Auto:	20px

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

width
The	width	of	the	progress	bar.

Default	value
Auto:	99%

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

caption
Caption	to	show	on	progress	bar	once	it	reaches	its	maximum	value	or	when	the
indeterminate	progress	bar	is	shown.

Default	value
Auto:	"In	progress	…"	or	"Complete"

Valid	values
Single-quoted	text.

transitory
Show	progress	bar	only	while	its	value	is	greater	than	zero	until	it	reaches	its
maximum	value.

Default	value
False()

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

indeterminate
Set	to	true	to	show	a	progress	bar	that	indicates	something	is	in	progress,	but
progress	is	indeterminate.

Default	value
False()

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

overlay
For	transitory	progress	bars:	Overlay	the	progress	bar	at	the	center	of	the
viewport.	This	prevents	users	from	interacting	with	the	page	while	the	progress
bar	is	displayed.

Default	value
False()

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

delayClose
For	transitory	progress	bars:	Delay	time	(in	milliseconds)	to	keep	the	progress
bar	before	closing	it.

Default	value
500

Valid	values
An	integer	value

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

8.1.25	Prompter	(std_prompter)
Properties	-	Prompter
The	Prompter	weblet	provides	a	mechanism	through	which	a	user	can	select	a
value	for	a	field,	or	fields,	using	a	custom	user	interface	presented	in	a	pop-up
panel.
The	weblet	creates	a	button	like	this:

When	clicked,	the	prompter	will	call	a	webroutine	and	display	its	output	in	a
panel	like	this:

This	webroutine	may	call	other	webroutines	as	necessary,	for	example,	pages	in
a	list,	steps	in	a	wizard.	When	the	final	value	is	known,	it	is	output	in	a
predefined	webroutine	know	as	the	"closing"	webroutine.	The	prompter	will
recognize	the	closing	webroutine,	copy	the	value(s)	into	the	current	page	and
close.	See	the	closing_wrname,	field_mapping	and	field_name_to_exchange
properties	for	more	details	on	closing	the	prompter	and	accessing	its	results.

Properties	-	Prompter
The	Prompter	weblet's	properties	are:

absolute_image_path
auto_resize
border
border_width
button_class
button_height
button_mouseover_class
button_width
caption
closing_url
closing_wrname
disabled
field_mapping

field_name_to_exchange
formname
hide_if
image_height
image_width
name
on_change_protocol
on_change_reentryfield
on_change_reentryvalue
on_change_target_window_name
on_change_wamname
on_change_wrname
pos_absolute

pre_show_js
prompter_class
prompter_height
prompter_url
prompter_wamname
prompter_width
prompter_wrname
protocol
reentryfield
reentryvalue
relative_image_path
tab_index
title
vf_wamevent

name
The	name	of	the	weblet.	If	the	weblet	represents	a	field	from	your	WAM,	this
should	be	the	name	of	the	field.	If	the	weblet	does	not	represent	a	field,	you	may
wish	to	use	your	own	name	if	using	JavaScript	or	XSL	that	references	the
weblet.	If	nominating	a	name	is	not	a	consideration,	the	default	name	should	be
used,	as	determined	by	LANSA.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name,	in	single	quotes.	This	can	be	a	nominal	choice,	or	the	name	of	a
field,	the	value	of	which	is	set	by	the	weblet.

caption
The	caption	to	appear	to	the	right	of	the	prompter's	image.

Default	value
Blank	–	the	prompter	has	no	text	to	the	right	of	the	image.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	multilingual	text	variable	or	system
variable	(the	corresponding	ellipses	button	in	the	property	sheet	can	be
clicked	to	choose	one	from	a	list).

relative_image_path
The	path	and	file	name,	relative	to	the	'images'	directory,	of	the	image	to	be
displayed.	If	specified,	the	absolute_image_path	property	should	be	left	blank.

Default	value
'search_1.gif'

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

absolute_image_path
The	path	and	file	name	of	the	image	to	be	displayed.	If	specified,	the
relative_image_path	property	should	be	left	blank.

Default	value
Blank	–	the	default	is	to	use	the	image	specified	in	the	relative_image_path
property.

Valid	values
The	path	and	name	of	an	image	enclosed	in	single	quotes.

image_height
The	height	of	the	image	on	the	prompter	button.

Default	value
'12pt'.

Valid	values
A	height,	in	a	valid	unit	of	measure,	in	single	quotes.

image_width
The	width	of	the	image	on	the	prompter	button.

Default	value
'12pt'.

Valid	values
A	width,	in	a	valid	unit	of	measure,	in	single	quotes.

border
The	style	of	the	prompter's	border.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	style).

Valid	values
A	fixed	set	of	border	style	–	'dashed',	'dotted',	'double',	'groove',	'inset',
'outset',	'ridge',	'solid',	'window-inset'.		Note	that	'window-inset'	is	only
supported	by	Internet	Explorer.

border_width
The	width	of	the	weblet's	border.

Default	value
Blank.	Equivalent	to	the	weblet	adopting	its	default	width.

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
false()	–	the	weblet	will	always	be	shown

Valid	values
True(),	False()	or	any	valid	expression	that	returns	True	or	False.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
'left:0pt;top:0pt;'	–	equivalent	to	the	weblet	being	positioned	relatively.

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

button_width
The	width	of	the	prompter	button.

Default	value
Blank.	Equivalent	to	the	button	adopting	its	default	width.

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

button_height
The	height	of	the	prompter	button.

Default	value
Blank.	Equivalent	to	the	button	adopting	its	default	height.

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

prompter_width
The	initial	width	of	the	prompt	window	when	the	prompt	button	is	clicked.		If
auto_resize	is	set	to	true	then	the	prompter	will	automatically	resize	when	its
content	is	loaded.

Default	value
Blank.	Equivalent	to	the	prompt	window	adopting	a	default	width.

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

prompter_height
The	initial	height	of	the	prompt	window	when	the	prompt	button	is	clicked.		If
auto_resize	is	set	to	true	then	the	prompter	will	automatically	resize	when	its
content	is	loaded.

Default	value
Blank.	Equivalent	to	the	prompt	window	adopting	its	default	height.

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

auto_resize
Determines	whether	the	prompter	will	automatically	resize	to	the	size	of	its
content.

Default	value
true

Valid	values
true	or	false.		When	true,	the	prompter	will	automatically	resize	to	match	the
size	of	the	page	displayed	inside	it.		If	false,	the	prompter	will	be	sized
according	to	the	prompter_width	and	prompter_height	properties.
The	size	used	will	be	determined	by	the	browser	and	may	vary	slightly	from
browser	to	browser.		It	may	also	be	affected	by	the	initial	size	set	with	the
prompter_width	and	prompter_height	properties.		For	best	results,	make	sure
your	prompter	content	page	explicitly	sizes	its	content	so	that	the	browser
doesn't	have	to	decide	for	itself.	Note	that	most	browsers	will	expand	the
prompter	if	necessary	but	it	will	not	make	it	smaller.		Some	browsers	may
make	it	smaller	vertically	but	not	horizontally.

button_class
The	Cascading	Style	Sheet	class	of	the	prompter	button.

Default	value
'std_prompter_button'.	This	is	the	default	class	for	the	prompter	button	and	is
provided	with	the	all	shipped	cascading	style	sheets.

Valid	values
Any	valid	class	name	selected	from	the	current	Cascading	Style	Sheet,	in
single	quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

prompter_class
The	Cascading	Style	Sheet	class	of	the	prompt	window	shown	when	the
prompter	button	is	clicked.

Default	value
'std_prompter'.	This	is	the	default	class	for	the	prompt	window	and	is
provided	with	the	all	shipped	cascading	style	sheets.

Valid	values
Any	valid	class	name	selected	from	the	current	Cascading	Style	Sheet,	in
single	quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

button_mouseover_class
The	Cascading	Style	Sheet	class	of	the	prompter	button	when	the	mouse	is
moved	over	it.

Default	value
'std_prompter_button_mouseover'.	This	is	the	default	mouseover	class	for
the	prompter	button	and	is	provided	with	all	shipped	cascading	style	sheets.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

prompter_url
The	URL	to	navigate	the	prompter	panel	to.	Will	be	ignored	if	the
prompter_wrname	property	is	specified.

Default	value
Blank	–	the	prompter	does	not	navigate	to	a	URL.

Valid	values
A	valid	URL,	in	single	quotes.	Note	that	a	protocol	(for	example,	http:	or
https:)	must	be	specified.
The	URL	must	be	from	the	same	server	that	the	WAM	is	from.		Browser
security	restrictions	prevent	code	in	a	page	from	one	server	accessing
information	in	a	page	from	another	server.		Using	a	URL	that	points	to
another	server	will	cause	the	prompter	code	to	fail	with	a	"permission
denied"	error.

prompter_wamname
The	name	of	the	WAM	to	be	invoked	to	display	a	page	in	the	prompter	window
from	which	a	selection	can	be	made.	Should	be	left	blank	if	the	prompter_url
property	is	specified.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
A	valid	WAM	name,	in	single	quotes.	Click	on	the	corresponding	dropdown
button	in	the	property	sheet	to	choose	from	a	list	of	known	WAMs.

prompter_wrname
The	name	of	the	Webroutine	to	be	invoked	to	display	a	page	in	the	prompter
window	from	which	a	selection	can	be	made.	Should	be	left	blank	if	the
prompter_url	property	is	specified.

Default	value
A	Webroutine	name	must	be	specified	if	the	prompter_wrname	property	is
specified.

Valid	values
A	valid	Webroutine	name,	in	single	quotes.	Click	on	the	corresponding
dropdown	button	in	the	property	sheet	to	choose	from	a	list	of	known
Webroutines.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	invoked	by	this	weblet.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

field_name_to_exchange
The	name	of	the	field	in	the	local	WEBROUTINE	(the	WEBROUTINE
containing	the	prompter)	to	be	filled	from	the	result	of	the	prompter.	This	value
is	taken	from	a	field	of	the	same	name	in	the	closing	WEBROUTINE.	To	copy
more	than	one	field,	or	from	fields	with	different	names,	use	the	field_mapping
property.

Default	value
Blank.	A	field	name	must	be	specified.

Valid	values
A	valid	field	name,	in	single	quotes.	Click	on	the	corresponding	dropdown
button	in	the	property	sheet	to	choose	from	a	list	of	known	fields.

closing_url
The	URL	that	will	close	the	prompter	window.	Will	be	ignored	if	the
closing_wrname	property	is	specified.

Default	value
Blank.	A	URL	is	not	invoked	to	close	the	prompter	window.

Valid	values
A	valid	URL,	in	single	quotes.	Note	that	a	protocol	(for	example,	http:	or
https:)	must	be	specified.
The	URL	must	be	from	the	same	server	that	the	WAM	is	from.		Browser
security	restrictions	prevent	code	in	a	page	from	one	server	accessing
information	in	a	page	from	another	server.		Using	a	URL	that	points	to
another	server	will	cause	the	prompter	code	to	fail	with	a	"permission
denied"	error.

field_mapping
Used	to	define	the	mapping	of	multiple	fields	in	the	closing	WEBROUTINE
into	the	local	WEBROUTINE	(the	WEBROUTINE	containing	the	prompter).
This	property	is	not	directly	editable.	You	can	open	a	custom	property	editor
window	by	clicking	the	ellipse	button	in	the	property	sheet.
If	you	have	only	one	field	to	copy	from	the	closing	WEBROUTINE	you	can	use
the	field_name_to_exchange	property	instead	If	you	have	one	or	more	fields	to
copy,	all	with	matching	names	(i.e.	FIELDA	maps	to	FIELDA,	FIELDB	maps
to	FIELDB,	etc.)	then	you	can	leave	field_mapping	and
field_name_to_exchange	unchanged.	The	prompter	will	automatically	copy	all
fields	in	the	closing	WEBROUTINE	into	matching	fields	(if	present)	in	the
local	WEBROUTINE.
Note	that	if	field_name_to_exchange	is	defined	field_mapping	will	be	ignored.

Default	value
This	XPath	expression	identifies	an	XML	data	fragment,	stored	in	the	XSL
Source,	that	contains	the	mapping	information:
document('')/*/lxml:data/lxml:prompter[@id='<unique	id>']

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	Use	the	ellipses	button	in
the	property	sheet	to	edit	field	mapping.
In	the	following	example	the	local	WEBROUTINE	is	'Main'	and	the
prompter	closing	WEBROUTINE	is	'Close'.	The	fields	#PVAL1	and
#PVAL2	from	Close	will	be	copied	into	the	fields	#SELECTED1	and
#SELECTED2	in	Main.

http://www.w3schools.com/xpath/default.asp

closing_wrname
The	name	of	the	Webroutine,	in	the	current	WAM,	to	be	invoked	that	will	close
the	prompter	panel.	Leave	blank	if	the	closing_url	property	is	specified.
The	prompter	will	close	as	soon	as	this	webroutine	is	loaded,	however	the
webroutine	design	may	flash	briefly	in	the	user	interface	so	you	should	use	a
blank	layout	with	no	visible	content.
All	of	the	output	values	for	the	prompter	must	exist	in	the	HTML	output	of	the
webroutine	as	<input>	elements	for	the	Prompter	to	be	able	to	find	them	and
transfer	their	values.	The	quickest	way	to	do	this	and	keep	them	invisible	is	to
define	them	as	*HIDDEN	in	your	web	mapbefore	generating	the	HTML.

Default	value
'Close'	–	this	is	a	suggested	Webroutine	name	only.

Valid	values
The	name	of	a	valid	Webroutine	in	the	current	WAM.	Click	on	the
corresponding	dropdown	button	in	the	property	sheet	to	select	from	a	list	of
know	Webroutines.

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.

Default	value
'STDRENTRY'

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

reentryvalue
The	value	to	post	into	the	field	specified	in	the	reentryfield	property.	If	that	field
is	alphanumeric,	the	value	must	be	specified	in	single	quotes.	If	it	is	numeric,
the	value	can	be	specified	with	or	without	quotes.

Default	value
'M'

Valid	values
Any	appropriate	literal.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
True(),	false()	or	a	valid	expression.

title
Tool	Tip	text.

Default	value
Blank	–	no	Tool	Tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

on_change_wamname
The	name	of	the	WAM	to	be	invoked	after	a	selection	has	been	made	in	the
prompter.	This	property	would	typically	be	used	if	the	value	returned	by	the
prompter	is	to	be	directed	to	a	WAM	other	than	the	current	one.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_change_wrname
The	name	of	the	Webroutine	to	be	invoked	after	a	selection	has	been	made	in
the	prompter.

Default	value
Blank	–	no	Webroutine	is	invoked	when	a	selection	is	made	in	the	prompter.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_change_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

on_change_protocol
The	protocol	(for	example,	http:	or	https:)	the	weblet	should	use	for	navigation
to	the	WAM	specified	in	the	on_change_wamname	property	after	a	selection
has	been	made	in	the	prompter.

Default	value
Blank	–	the	current	protocol	is	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

on_change_reentryfield
A	field	name	to	be	used	to	post	the	value	specified	in	the
on_change_reentryvalue	property	after	a	selection	is	made	in	the	prompter.	This
field	is	only	submitted	if	the	on_change_wrname	property	is	specified.

Default	value
Blank	–	no	field	is	used	to	post	a	value.

Valid	values
A	valid	field	name,	in	single	quotes.	Click	on	the	corresponding	dropdown
button	in	the	property	sheet	to	select	from	a	list	of	know	fields.

on_change_reentryvalue
The	value	to	be	posted	into	the	field	specified	on	the	on_change_reentryfield
property.	This	value	is	only	submitted	if	the	on_change_wrname	property	is
specified.

Default	value
Blank	–	no	value	is	posted.

Valid	values
A	valid	value	for	the	type	of	field	specified	in	the	on_change_reentryfield
property.

on_change_target_window_name
The	name	of	the	window	to	which	content	is	to	be	directed	when	the
Webroutine	specified	in	the	on_change_wrname	property	is	invoked.

Default	value
Blank	–	content	is	directed	to	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.
'_blank'	will	launch	in	a	new	window
'_media'	will	launch	a	media	panel	in	the	current	window
'_search'	will	launch	a	search	panel	in	the	current	window
'_parent'	will	launch	in	the	parent	window	(usually	the	current	window)
'_top'	will	launch	in	the	top	window	(usually	the	current	window)
Note	that	_search	and	_media	are	supported	by	Internet	Explorer	6	only.

pre_show_js
JavaScript	code	to	be	run	prior	to	the	prompter	being	shown.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	function,	or	JavaScript	code	followed	by	a	semicolon
(;)	or	double	backslash	(//).	A	section	of	JavaScript	followed	by	a	semicolon
indicates	the	script	should	to	flow	into	the	existing	submit	JavaScript,
whereas	the	double	backslash	indicates	that	the	rest	of	the	submit	JavaScript
for	WAM	submits	is	to	be	commented	out.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

vf_wamevent
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.1.26	Radio	Button	(std_rad_button)

QuickStart	-	Radio	Group Properties	-	Radio	Group

The	radio	button	weblet	displays	a	single	radio	button.	It	broadly	corresponds	to
the	<input	type="radio">	HTML	element.
Radio	buttons	are	typically	grouped	as	two	or	more	radio	buttons	for	mutually
exclusive	selection.	In	other	words,	you	can	choose	only	one	of	several	options
—like	a	multiple-choice	question.	It	looks	like	this:

but	is	typically	grouped	to	look	more	like	this:

You	may	choose	to	use	this	weblet	instead	of	the	std_radbuttons	weblet	which	is
implemented	as	a	group	of	radio	buttons,	if	you	want	to	store	the	resulting
selections	in	different	fields.

The	radio	button	weblet	includes	properties	such	as	on_click_wrname
that	allow	it	to	navigate	to	another	webroutine	when	clicked	It	is	not
good	user-interface	design	to	initiate	actions	on	the	click	of	a	radio
button	Devices	such	as	a	push	button,	menu	item	or	anchor
(hyperlink)	should	be	used	to	accomplish	this.

QuickStart	-	Radio	Button
A	radio	button	should	always	be	displayed	as	a	group	of	two	or	more	radio
buttons.	Each	radio	button	you	add	to	the	web	page	will	usually	correspond	to	a
field	included	on	WEB_MAP	of	a	webroutine.	When	you	open	the	XSL
generated	for	the	webroutine	in	the	LANSA	Editor:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Radio	Button	weblet.

2.		Drag	the	Radio	Button	weblet	over	the	field	generated	from	your
WEB_MAP	definition.	(You	may	want	to	delete	the	field	description).	This
will	display	with	default	radio	button	settings.

3.		Click	on	the	weblet	to	review	the	Details	tab.	Notice	that	the	name	and	value
properties	have	been	set	to	indicate	the	field	you	dragged	the	weblet	on	to.
The	value	property	indicates	that	on	presentation	of	the	web	page	any	value
currently	in	this	field	will	be	compared	against	the	code	property	to	determine
if	this	radio	button	should	be	checked.	When	the	radio	buttons	value	is
changed	the	appropriate	value	will	be	place	in	the	field	nominated	on	the
name	property	–	in	this	case	the	same	field.

4.		Set	the	caption	property	as	required	and	ensure	the	code	property	matches
the	required	value	for	the	caption.

Properties	-	Radio	Button
The	Radio	Button	weblet's	properties	are:

alignment
caption
class
code
disabled
formname
hide_if

label_id
mouseover_class
name
on_click_wamname
on_click_wrname
pos_absolute
protocol

reentryfield
reentryvalue
tab_index
target_window_name
text_class
value
vf_wamevent

name
The	name	of	the	radio	button.	Normally,	you	would	leave	this	as	the	default	and
let	LANSA	use	its	own	internal	naming	convention.	If	the	weblet	has	been
dropped	onto	a	field,	or	is	to	be	used	to	display	or	populate	a	field,	the	field
name	is	used.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	is	the	value	of
the	field	or	a	default	value.

Default	value
Blank.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable,	system
variable	or	field	(the	ellipses	button	in	the	property	sheet	can	be	clicked	to
choose	from	a	list).

Example
This	example	indicates	the	value	should	be	set	to	the	current	value	of	the
field	#SECTION.	When	entered	into	the	property	this	looks	like	this:

When	focus	is	moved	off	the	property	the	same	value	will	appear	as	follows:

caption
The	text	to	display	next	to	the	radio	button.

Default	value
Blank.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable,	system
variable	or	field	(the	ellipses	button	in	the	property	sheet	can	be	clicked	to
choose	from	a	list).

code
The	value	to	be	placed	in	the	field	when	the	radio	button	is	checked.

Default	value
Blank.

Valid	values
Single-quoted	text.

label_id
An	identifier	for	the	radio	button	element	which	allows	the	radio	button	caption
to	be	bound	to	the	button,	so	that	if	the	caption	is	clicked	it	will	respond	in	the
same	way	as	if	the	button	itself	was	clicked.	This	value	must	be	unique.

Default	value
concat($name,$code)	(that	is,	concatenation	of	the	value	is	the	name	and
code	properties).

Valid	values
Single-quoted	text.

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.

Default	value
'STDRENTRY'

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

reentryvalue
The	value	to	post	into	the	field	specified	in	the	reentryfield	property.	If	that	field
is	alphanumeric,	the	value	must	be	specified	in	single	quotes.	If	it	is	numeric,
the	value	can	be	specified	with	or	without	quotes.

Default	value
'M'

Valid	values
Any	appropriate	literal.

hide_if
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	hide	the
weblet.

Default	value
false()	(that	is,	the	grid	will	always	be	shown)

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	hide	the	grid	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'	(that	is,	document.LANSA)

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

on_click_wamname
The	name	of	the	WAM	to	be	invoked	when	an	item	in	the	weblet	is	selected.

Note:		It	is	not	good	user-interface	design	to	initiate	actions	from	the
click	of	a	radio	button	Devices	such	as	a	push	button,	menu	item	or
anchor	(hyperlink)	should	be	used	to	accomplish	this.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_click_wrname
The	name	of	the	Webroutine	to	be	invoked	when	an	item	in	the	weblet	is
selected.

Note:		It	is	not	good	user-interface	design	to	initiate	actions	from	the
click	of	a	radio	button	Devices	such	as	a	push	button,	menu	item	or
anchor	(hyperlink)	should	be	used	to	accomplish	this.

Default	value
Blank.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_click_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	invoked	by	this	weblet.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

target_window_name
The	name	of	the	window,	or	frame,	in	which	response	HTML	will	be	shown.	A
unique	name	can	be	entered	or	use	the	available	selection	for	a	predefined	set	of
values.

Default	value
Blank	–	response	HTML	will	be	shown	in	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet,	or	a	unique	name	can	be	entered.
'_blank'	will	launch	in	a	new	window
'_media'	will	launch	a	media	panel	in	the	current	window
'_search'	will	launch	a	search	panel	in	the	current	window
'_parent'	will	launch	in	the	parent	window	(usually	the	current	window)
'_top'	will	launch	in	the	top	window	(usually	the	current	window)
Note	that	_search	and	_media	are	supported	by	Internet	Explorer	6	only.

alignment
Indicates	whether	the	caption	should	be	displayed	to	the	left	or	right	of	the	radio
buttons.

Default	value
'right'

Valid	values
'left'	or	'right'

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	recognized.	The	property	will	usually	be	set	in	pixels	by	dragging	and
dropping	the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	weblet.

Default	value
The	name	of	the	default	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.	A	shipped	class	of
'std_rad_button'	is	supplied.

mouseover_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	weblet	when	the	mouse	is
moved	over	it.

Default	value
Blank.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.	A	shipped	class	of
'std_rad_button_mouseover'	is	supplied.

text_class
The	Cascading	Style	Sheet	class	to	be	applied	to	radio	button	captions	in	the
weblet.

Default	value
The	name	of	the	default	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.	A	shipped	class	of
'std_rad_button_text'	is	supplied.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

vf_wamevent
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.1.27	Radio	Group	(std_radbuttons)

QuickStart	-	Radio	Button Properties	-	Radio	Button

The	radio	group	weblet	builds	groups	of	radio	buttons.	The	number	of	buttons
and	button	values	can	be	established	from	a	working	list	or	a	static	set	of	values
defined	via	the	item	property	of	the	weblet.	Each	radio	buttons	broadly
corresponds	to	an	<input	type="radio">	HTML	element.	It	looks	like	this:

The	radio	buttons	group	weblet	includes	properties	such	as
on_click_wrname	that	allow	it	to	navigate	to	another	webroutine	when
clicked	It	is	not	good	user-interface	design	to	initiate	actions	on	the
click	of	a	radio	button	Devices	such	as	a	push	button,	menu	item	or
anchor	(hyperlink)	should	be	used	to	accomplish	this.

QuickStart	-	Radio	Group
Each	entry	in	a	radio	button	group	is	defined	by	an	entry	in	a	working	list	or	a
set	of	items	hard	coded	in	the	radio	group	properties.

If	you	use	a	working	list:
To	use	a	working	list	to	define	the	radio	buttons	in	the	group,	you	need	to	create
a	webroutine	that	specifies	a	field	to	store	the	selected	value	and	the	working
list	of	options	in	the	WEB_MAP.	When	you	open	the	XSL	generated	for	the
webroutine	in	the	LANSA	Editor:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Radio	Group	weblet.

2.		Drag	the	Radio	Group	weblet	onto	the	field	to	store	the	value	and	release	the
left-mouse	button.	(You	may	want	to	delete	the	field	description).	This	will
display	with	default	radio	button	settings.

3.		Click	on	the	weblet	to	review	the	Details	tab.	Notice	that	the	name	and	value
properties	have	been	set	to	indicate	the	field	you	dragged	the	weblet	on	to.
The	value	property	indicates	that	on	presentation	of	the	web	page	any	value
currently	in	this	field	will	be	used	to	set	the	selected	radio	button.	When	the
radio	buttons	value	is	changed	the	appropriate	value	will	be	place	in	the	field
nominated	on	the	name	property	–	in	this	case	the	same	field.

Change	the	listname	property	to	the	working	list	passed	on	the	WEB_MAP.	The
radio	group	representation	should	immediately	change	to	a	set	of	buttons
without	identifiers.
Set	the	codefield	and	captionfield	properties	to	the	appropriate	fields	from	the
working	list.

If	you	use	the	items	property:
To	use	a	set	of	items	hard	coded	in	the	radio	group	properties,	you	would	need
to	create	a	webroutine	that	specifies	a	field	in	its	WEB_MAP.	When	you	open
the	XSL	generated	for	the	webroutine	in	the	LANSA	Editor:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Radio	Group	weblet.

2.		Drag	the	Radio	Group	weblet	onto	the	field	to	store	the	value	and	release	the
left-mouse	button.	(You	may	want	to	delete	the	field	description).	This	will

display	with	default	radio	button	settings.

3.		Click	on	the	weblet	to	review	the	Details	tab.	Notice	that	the	name	and	value
properties	have	been	set	to	indicate	the	field	you	dragged	the	weblet	on	to.
The	value	property	indicates	that	on	presentation	of	the	web	page	any	value
currently	in	this	field	will	be	used	to	set	the	selected	radio	button.	When	the
radio	buttons	value	is	changed	the	appropriate	value	will	be	place	in	the	field
nominated	on	the	name	property	–	in	this	case	the	same	field.

4.		Set	up	the	list	of	items	to	be	used	as	radio	buttons	by	selecting	the	ellipses
button	on	the	items	property.	Proceed	to	define	the	require	entries	for	the
radio	buttons.

Properties	-	Radio	Group
The	Radio	Group	weblet's	properties	are:
	

alignment
captionfield
class
codefield
disabled
display_mode
formname
group_title
groupbox_class
height

hide_if
items
listname
mouseover_class
name
on_click_wamname
on_click_wrname
orientation
pos_absolute
protocol

reentryfield
reentryvalue
selector_field
selector_value_eq
show_groupbox
tab_index
target_window_name
text_class
width
value
vf_wamevent

name
The	name	of	the	radio	group.	Normally,	you	would	leave	this	as	the	default	and
let	LANSA	use	its	own	internal	naming	convention.	If	the	weblet	has	been
dropped	onto	a	field,	or	is	to	be	used	to	display	or	populate	a	field,	the	field
name	is	used.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	is	the
value	of	the	field	or	a	default	value.

Default	value
Blank.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable,	system
variable	or	field	(the	ellipses	button	in	the	property	sheet	can	be	clicked	to
choose	from	a	list).

Example
This	example	indicates	the	value	should	be	set	to	the	current	value	of	the
field	#SECTION.	When	entered	into	the	property	this	looks	like	this:

When	focus	is	moved	off	the	property	the	same	value	will	appear	as	follows:

display_mode
Controls	whether	the	weblet	accepts	input	or	displays	output.

Default	value
'input'

Valid	values
'input'	or	'output'.

items
An	XML	nodeset	specifying	the	items	to	appear	in	the	weblet.	Can	only	be	set
by	the	designer.	To	invoke	the	designer	use	the	ellipse	button	in	the	property
sheet.	Leave	blank	if	items	are	populated	from	a	list	specified	in	the	listname
property.

Default	value
document(")/*/lxml:data/lxml:dropdown	(this	indicates	no	items	have	been
defined	for	this	dropdown.)

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

Example
This	example	indicates	that	items	have	been	setup	in	the	designer	to	use	as
dropdown	values.

Using	the	ellipse	button	on	the	property	you	will	see	the	designer	and	be	able
to	maintain	the	items	to	be	displayed	as	radio	buttons.	The	following	view	of
the	designer	indicates	two	radio	buttons	are	required	in	the	radio	group.	The
first	entry	has	the	literal	value	'MONDAY'	and	the	second	entry	uses	a
multilingual	variable	to	display	the	description	for	the	code	TUE.	Check	the
Default	Item	check	box	for	the	item	which	is	to	be	selected	if	no	value	is
preselected.

listname
The	name	of	the	working	list	to	use	to	create	the	radio	buttons	in	the	radio
group.	Leave	blank	if	details	are	specified	in	the	items	property.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	list	of	available	working	lists	(as	defined	in	the	WAM)
can	be	selected	from	by	clicking	the	corresponding	dropdown	button	in	the
property	sheet.

selector_field
The	name	of	the	field	in	the	list	specified	in	the	listname	property	that	can
contain	a	value	to	limit,	to	a	subset,	the	list	items	shown	in	the	weblet.	This
property	is	used	in	conjunction	with	the	selector_value_eq	property.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

selector_value_eq
This	value	is	used	in	order	to	limit,	to	a	subset,	the	list	items	shown	in	the
weblet.	If	a	listname	property	is	provided	the	associated	field	must	be	specified
in	the	selector_field	property.	If	the	items	property	designer	has	been	used	to
define	the	list	of	values,	the	corresponding	selector	value	entered	in	the	designer
is	used.

Default	value
Blank.

Valid	values
Single-quoted	text	or	a	numeric	value.	A	field,	from	the	working	list
nominated	in	listname,	can	be	selected	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

codefield
The	name	of	the	field	in	the	list	specified	in	the	listname	property	that	holds	the
key	value	for	each	list	item.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

captionfield
The	name	of	the	field	in	the	list	specified	in	the	listname	property	that	holds	the
caption	for	the	each	list	item.

Default	value
Blank.

Valid	values
Single-quoted	text.	A	field,	from	the	working	list	nominated	in	listname,	can
be	selected	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.

Default	value
'STDRENTRY'

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

reentryvalue
The	value	to	post	into	the	field	specified	in	the	reentryfield	property.	If	that	field
is	alphanumeric,	the	value	must	be	specified	in	single	quotes.	If	it	is	numeric,
the	value	can	be	specified	with	or	without	quotes.

Default	value
'M'

Valid	values
Any	appropriate	literal.

hide_if
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	hide	the
weblet.

Default	value
false()	(that	is,	the	grid	will	always	be	shown)

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	hide	the	grid	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'	(that	is,	document.LANSA)

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

on_click_wamname
The	name	of	the	WAM	to	be	invoked	when	an	item	in	the	weblet	is	selected.

Note:		It	is	not	good	user-interface	design	to	initiate	actions	from	the
click	of	a	radio	button	Devices	such	as	a	push	button,	menu	item	or
anchor	(hyperlink)	should	be	used	to	accomplish	this.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_click_wrname
The	name	of	the	Webroutine	to	be	invoked	when	an	item	in	the	weblet	is
selected.

Note:		It	is	not	good	user-interface	design	to	initiate	actions	from	the
click	of	a	radio	button	Devices	such	as	a	push	button,	menu	item	or
anchor	(hyperlink)	should	be	used	to	accomplish	this.

Default	value
Blank.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_click_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	invoked	by	this	weblet.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

target_window_name
The	name	of	the	window,	or	frame,	in	which	response	HTML	will	be	shown.	A
unique	name	can	be	entered	or	use	the	available	selection	for	a	predefined	set	of
values.

Default	value
Blank	–	response	HTML	will	be	shown	in	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet,	or	a	unique	name	can	be	entered.
'_blank'	will	launch	in	a	new	window
'_media'	will	launch	a	media	panel	in	the	current	window
'_search'	will	launch	a	search	panel	in	the	current	window
'_parent'	will	launch	in	the	parent	window	(usually	the	current	window)
'_top'	will	launch	in	the	top	window	(usually	the	current	window)
Note	that	_search	and	_media	are	supported	by	Internet	Explorer	6	only.

alignment
Indicates	whether	the	caption	should	be	displayed	to	the	left	or	right	of	the	radio
buttons.

Warning:	Using	left	alignment	with	a	vertical	orientation	may	cause
your	radio	buttons	to	be	misaligned	as	the	justification	is	based	on	the
first	character	of	the	caption	for	the	radio	buttons.

Default	value
'right'

Valid	values
'left'	or	'right'

orientation
Indicates	the	direction	in	which	the	group	of	radio	buttons	should	be	oriented.

Default	value
'horizontal'

Valid	values
'vertical'	or	'horizontal'

show_groupbox
A	Boolean	property,	the	result	of	which	determines	whether	a	group	box	will
appear	around	the	group	of	radio	buttons.

Default	value
false()	(that	is,	no	group	box	will	be	shown).

Valid	values
true(),	false()	or	a	valid	expression.

group_title
A	title	to	be	displayed	on	the	group	box.	If	the	show_groupbox	property	is	set
the	title	will	appear	at	the	top	left	of	the	group	box.	If	the	group	box	is	not
shown	the	title	will	appear	centered	above	the	group	of	radio	buttons.

Default	value
Blank

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable,	system
variable	or	field	(the	ellipses	button	in	the	property	sheet	can	be	clicked	to
choose	from	a	list).

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	recognized.	The	property	will	usually	be	set	in	pixels	by	dragging	and
dropping	the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	weblet.

Default	value
The	name	of	the	default	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.	A	shipped	class	of
'std_rad_button'	is	supplied.

mouseover_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	weblet	when	the	mouse	is
moved	over	it.

Default	value
Blank.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.	A	shipped	class	of
'std_rad_button_mouseover'	is	supplied.

text_class
The	Cascading	Style	Sheet	class	to	be	applied	to	radio	button	captions	in	the
weblet.

Default	value
The	name	of	the	default	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.	A	shipped	class	of
'std_rad_button_text'	is	supplied.

groupbox_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	group	box	associated	with
the	weblet.	This	property	is	only	applied	if	the	show_groupbox	property	is	set	as
true.

Default	value
Blank.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

Example

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

vf_wamevent
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.1.28	Horizontal	Splitter	(std_splitter_horz)

QuickStart	-	Horizontal	Splitter Properties	-	Horizontal	Splitter

The	Horizontal	splitter	weblet	divides	the	area	covered	by	the	weblet	into	a	top
and	bottom	pane	with	a	moveable	divider	separating	the	two	panes.	It	does	not
provide	any	input	or	output	but	is	used	solely	to	assist	with	web	page	design.
Other	elements	or	weblets	can	be	dropped	into	each	pane,	effectively	creating
multiple	editable	areas	on	the	web	page.
The	horizontal	splitter	can	be	combined	with	additional	horizontal	splitters	or
vertical	splitters	to	construct	more	complex	pages.
It	looks	like	this:

QuickStart	-	Horizontal	Splitter
To	use	the	horizontal	splitter	create	a	webroutine.	Any	WEB_MAPs	are	optional
as	they	do	not	have	a	direct	bearing	on	the	splitter	weblet.	Add	a	horizontal
splitter	to	the	resulting	web	page	by	completing	the	following	steps	in	the
LANSA	Editor:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Horizontal	Splitter	weblet.

2.		Drag	and	drop	the	weblet	to	the	required	location	in	the	Design	view.	Make
sure	the	weblet	is	selected	and	then	click	on	the	Details	tab.

3.		Set	the	top_portion_percent	property	as	required.	The	appropriate	value	to
use	in	this	property	may	become	more	apparent	after	the	content	of	the
splitter	panes	has	been	defined.

4.		Format	the	content	of	the	splitter	panes	as	required	by	adding	weblets	and	/
or	field	information	into	the	top	and	bottom	area	of	the	splitter.

Properties	-	Horizontal	Splitter
The	Horizontal	Splitter	weblet's	properties	are:

bottom_border
bottom_class
bottom_style
divider_class
height

name
panes
pos_absolute
top_border

top_class
top_proportion_percent
top_style
width

name
The	name	of	the	horizontal	splitter.	Normally,	you	would	leave	this	as	the
default	and	let	LANSA	use	its	own	internal	naming	convention.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name,	in	single	quotes.

panes
An	XML	nodeset	specifying	a	set	of	panes	to	show.	This	is	a	system	generated
value	set	up	when	you	drag	the	splitter	onto	the	design	view.

Note:	This	value	cannot	be	modified	and	is	for	information	only.

Default	value
document(")/*/lxml:data/lxml:splitter_panes[@id='<unique	id>']	(this	is
equivalent	to	the	current	pane	where	the	unique	id	is	an	automatically
generated	identifier.)

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	bottom-click	menu	for	this
property	to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and
dropping	the	weblet.

Default	value
'top:0pt;top:0pt;'	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'top'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.

Default	value
'100%'	(this	is	equivalent	to	the	weblet	the	full	width	available).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.

Default	value
'200pt'	when	placed	directly	on	the	form	element	or	'100%'	if	contained
within	another	weblet.

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

top_proportion_percent
The	percentage	of	space	initially	occupied	by	the	top	pane	of	the	horizontal
splitter.

Default	value
70

Valid	values
A	valid	percentage,	entered	as	a	number	(that	is,	without	quotes).

top_border
The	border	style	of	the	top	pane	of	the	splitter.	This	will	apply	to	the	top,	left
and	right	border	of	the	top	pane.

Default	value
'outset'.

Valid	values
A	fixed	set	of	border	style	–	'dashed',	'dotted',	'double',	'groove',	'inset',
'outset',	'ridge',	'solid',	'window-inset'.		Note	that	'window-inset'	is	only
supported	by	Internet	Explorer.

bottom_border
The	border	style	of	the	bottom	pane	of	the	splitter.	This	will	apply	to	the	bottom,
left	and	right	border	of	the	bottom	pane.

Default	value
'inset'.

Valid	values
A	fixed	set	of	border	style	–	'dashed',	'dotted',	'double',	'groove',	'inset',
'outset',	'ridge',	'solid',	'window-inset'.		Note	that	'window-inset'	is	only
supported	by	Internet	Explorer.

top_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	top	pane	of	the	splitter.

Default	value
'std_splitter_horz_top'	-	The	name	of	the	default	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

divider_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	divider	bar.

Default	value
'std_splitter_vert_divider'	-	The	name	of	the	default	shipped	class	for	the
weblet.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

bottom_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	bottom	pane	of	the	splitter.

Default	value
'std_splitter_vert_bottom'	-	The	name	of	the	default	shipped	class	for	the
weblet.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

top_style
The	inline	Cascading	Style	Sheet	style	of	the	top	pane	of	the	splitter.	This	will
override	any	corresponding	characteristics	detailed	in	the	Cascading	Style	Sheet
class	nominated	in	the	top_class	property.

Default	value
Blank.

Valid	values
Single	quoted	text	string	comprised	of	one	or	more	style	declarations,	where
a	declaration	is	made	up	of	a	property,	a	colon,	and	one	or	more	values.

bottom_style
The	inline	style	to	be	applied	of	the	bottom	pane	of	the	splitter.	This	will
override	any	corresponding	characteristics	detailed	in	the	Cascading	Style	Sheet
class	nominated	in	the	bottom_class	property.

Default	value
Blank.

Valid	values
Single	quoted	text	string	comprised	of	one	or	more	style	declarations,	where
a	declaration	is	made	up	of	a	property,	a	colon,	and	one	or	more	values.

8.1.29	Vertical	Splitter	(std_splitter_vert)

QuickStart	-	Vertical	Splitter Properties	-	Vertical	Splitter

The	Vertical	splitter	weblet	divides	the	area	covered	by	the	weblet	into	a	left	and
right	pane	with	a	moveable	divider	separating	the	two	panes.	It	does	not	provide
any	input	or	output	but	is	used	solely	to	assist	with	web	page	design.	Other
elements	or	weblets	can	be	dropped	into	each	pane,	effectively	creating	multiple
editable	areas	on	the	web	page.
The	vertical	splitter	can	be	combined	with	additional	vertical	splitters	or
horizontal	splitters	to	construct	more	complex	pages.
It	looks	like	this:

QuickStart	-	Vertical	Splitter
To	use	the	vertical	splitter	create	a	webroutine.	Any	WEB_MAPs	are	optional
as	they	do	not	have	a	direct	bearing	on	the	splitter	weblet.	Add	a	vertical	splitter
to	the	resulting	web	page	by	completing	the	following	steps	in	the	LANSA
Editor:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Vertical	Splitter	weblet.

2.		Drag	and	drop	the	weblet	to	the	required	location	in	the	Design	view.	Make
sure	the	weblet	is	selected	and	then	click	on	the	Details	tab.

3.		Set	the	left_portion_percent	property	as	required.	The	appropriate	value	to
use	in	this	property	may	become	more	apparent	after	the	content	of	the
splitter	panes	has	been	defined.

4.		Format	the	content	of	the	splitter	panes	as	required	by	adding	weblets	and	/
or	field	information	into	the	left	and	right	area	of	the	splitter.

Properties	-	Vertical	Splitter
The	Vertical	Splitter	weblet's	properties	are:

divider_class
height
left_border
left_class
left_proportion_percent

left_style
name
panes
pos_absolute

right_border
right_class
right_style
width

name
The	name	of	the	vertical	splitter.	Normally,	you	would	leave	this	as	the	default
and	let	LANSA	use	its	own	internal	naming	convention.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name,	in	single	quotes.

panes
An	XML	nodeset	specifying	a	set	of	panes	to	show.	This	is	a	system	generated
value	set	up	when	you	drag	the	splitter	onto	the	design	view.

Note:	This	value	cannot	be	modified	and	is	for	information	only.

Default	value
document(")/*/lxml:data/lxml:splitter_panes[@id='<unique	id>']	(this	is
equivalent	to	the	current	pane	where	the	unique	id	is	an	automatically
generated	identifier.)

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.

Default	value
'100%'	(this	is	equivalent	to	the	weblet	the	full	width	available).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.

Default	value
'200pt'	when	placed	directly	on	the	form	element	or	'100%'	if	contained
within	another	weblet.

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

left_proportion_percent
The	percentage	of	space	initially	occupied	by	the	left	pane	of	the	vertical
splitter.

Default	value
30

Valid	values
A	valid	percentage,	entered	as	a	number	(that	is,	without	quotes).

left_border
The	border	style	of	the	left	pane	of	the	splitter.	This	will	apply	to	the	top,
bottom	and	left	border	of	the	left	pane.

Default	value
'outset'.

Valid	values
A	fixed	set	of	border	style	–	'dashed',	'dotted',	'double',	'groove',	'inset',
'outset',	'ridge',	'solid',	'window-inset'.		Note	that	'window-inset'	is	only
supported	by	Internet	Explorer.

right_border
The	border	style	of	the	right	pane	of	the	splitter.	This	will	apply	to	the	top,
bottom	and	right	border	of	the	right	pane.

Default	value
'inset'.

Valid	values
A	fixed	set	of	border	style	–	'dashed',	'dotted',	'double',	'groove',	'inset',
'outset',	'ridge',	'solid',	'window-inset'.		Note	that	'window-inset'	is	only
supported	by	Internet	Explorer.

left_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	left	pane	of	the	splitter.

Default	value
'std_splitter_vert_left'	-	The	name	of	the	default	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

divider_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	divider	bar.

Default	value
'std_splitter_vert_divider'	-	The	name	of	the	default	shipped	class	for	the
weblet.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

right_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	right	pane	of	the	splitter.

Default	value
'std_splitter_vert_right'	-	The	name	of	the	default	shipped	class	for	the
weblet.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

left_style
The	inline	Cascading	Style	Sheet	style	of	the	left	pane	of	the	splitter.	This	will
override	any	corresponding	characteristics	detailed	in	the	Cascading	Style	Sheet
class	nominated	in	the	left_class	property.

Default	value
Blank.

Valid	values
Single	quoted	text	string	comprised	of	one	or	more	style	declarations,	where
a	declaration	is	made	up	of	a	property,	a	colon,	and	one	or	more	values.

right_style
The	inline	style	to	be	applied	of	the	right	pane	of	the	splitter.	This	will	override
any	corresponding	characteristics	detailed	in	the	Cascading	Style	Sheet	class
nominated	in	the	right_class	property.

Default	value
Blank.

Valid	values
Single	quoted	text	string	comprised	of	one	or	more	style	declarations,	where
a	declaration	is	made	up	of	a	property,	a	colon,	and	one	or	more	values.

8.1.30	Tab	Pages	(std_tab_pages_v2)

QuickStart	-	Tab	pages
Using	the	Tab	Item	Designer

Properties	-	Tab	pages
Using	CSS	with	the	Tab	Pages	weblet

The	Tab	pages	weblet	provides	the	functionality	of	a	tab	control	that	can	be	used
to	organize	related	information	into	groups.	This	is	what	the	Tab	pages	weblet
looks	like	when	embedded	in	a	web	page.	In	this	example,	common	information
is	grouped	at	the	top	of	the	page.	The	tab	control	appears	underneath	that	and
provides	access	to	three	groups	of	information	about	an	employee	–
Organization,	Contacts	and	Employment.	The	Contacts	tab	is	shown	but	the
user	can	display	information	in	the	other	groups	by	clicking	the	tabs.

The	weblet	provides	an	extensive	set	of	properties	that	affect	its	appearance	and
behavior.	The	tab	items	themselves	are	typically	specified	statically	using	the
tab	item	designer.	In	some	cases	you	may	wish	to	override	properties	of	the	tab
items	dynamically	and	you	can	do	this	by	specifying	the	listname	and	related
properties.
You	can	add	content	directly	to	each	tab	page	if	the	containing	webroutine
provides	the	content	in	its	web_map.	You	do	this	in	the	usual	ways	–	for
example	by	dragging	and	dropping	fields	from	the	fields	tab.	Similarly	you	can
add	other	weblets	to	the	tab	pages.
Alternatively	you	can	add	a	navigation	panel	(std_nav_panel)	weblet	to	one	or
more	of	your	tab	pages	and	set	properties	for	each	navigation	panel	so	that	it
displays	content	that	is	provided	by	another	webroutine	(or	URL).

QuickStart	-	Tab	pages
To	use	the	Tab	pages	weblet,	open	your	webroutine	in	the	LANSA	Editor	and
follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Tab	pages	weblet.

2.		Drag	and	drop	the	weblet	onto	your	page	in	the	Design	view	Make	sure	the
weblet	on	the	page	is	selected	and	then	click	on	the	Details	tab.

3.		Click	the	ellipsis	button	next	to	the	tabs	property	to	open	the	tab	items
designer	and	define	your	tabs	Click	OK	to	close	the	tab	items	designer	when
complete.

4.		In	the	Design	view,	click	on	your	first	tab	to	activate	its	page.
5.		Add	content	to	the	tab	page	by	cutting	and	pasting	content	from	elsewhere
on	your	web	page	or	by	dragging	and	dropping	fields	and/or	weblets	onto	the
tab	page	If	you	will	be	adding	several	fields	you	may	wish	to	begin	by	adding
a	table	to	contain	them	–	to	do	so,	right-click	in	the	tab	page	and	select	Insert,
Table	from	the	pop-up	menu.

6.		If	you	prefer	that	your	tab	page	displays	content	provided	by	another
webroutine,	then	you	need	to	add	a	navigation	panel	and	set	its	properties	To
do	so	follow	these	steps:
a.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Navigation	panel	weblet.

b.		Drag	and	drop	the	weblet	onto	your	tab	page	in	the	Design	view	Make
sure	the	Navigation	panel	weblet	on	the	tab	page	is	selected	and	then	click
on	the	Details	tab.

c.		Set	the	nav_wamname	and	nav_wrname	properties	(or	the	nav_url
property)	to	identify	the	webroutine	(or	url)	that	provides	the	content	You
may	wish	to	set	other	properties	for	the	Navigation	panel	such	as	the
wait_content	and	related	properties.

7.		Repeat	from	step	4	for	each	tab	that	you	have	defined	in	your	tab	pages
weblet.

Note:	A	bug	in	current	versions	of	Internet	Explorer	causes	the	border
to	disappear	from	around	the	content	area	of	empty	tabs.	To	prevent
this	behaviour	in	Internet	Explorer,	make	sure	all	your	tabs	contain

something.

Using	the	Tab	Item	Designer
To	open	the	tab	item	designer,	follow	these	steps:
1.		Make	sure	the	Tab	pages	weblet	on	your	page	is	selected	and	then	click	on
the	Details	tab.

2.		Move	the	mouse	pointer	over	the	tabs	property	in	the	Details	tab	An	ellipsis
should	appear	next	to	the	property	value.	Click	the	ellipsis	button	to	open	the
tab	items	designer	A	window	like	the	one	shown	below	appears:

The	window	shows	a	list	of	the	tab	items	presently	defined	for	the	weblet.	You
can	click	on	an	item	to:

change	its	properties;
move	the	item	up	or	down	or	remove	it	by	using	the	buttons.

In	Tab	Properties	area	you	can	specify	the	properties	for	the	selected	item	as
follows:
Tab	Caption
Specifies	the	text	that	appears	on	the	tab	item	If	you	are	creating	multilingual
applications	you	should	use	the	*MTXT	Variable	instead.	You	can	only	specify

one	of	the	Tab	Caption	or	the	*MTXT	Variable.
Or	*MTXT	Variable
Specifies	the	name	of	a	multilingual	text	variable	that	contains	the	text	that
appears	on	the	tab	item.	Click	the	ellipsis	next	to	this	property	to	select	from	a
list	of	multilingual	text	variables.	You	can	only	specify	one	of	the	Tab	Caption
or	the	*MTXT	Variable.
Image
Specifies	the	path	and	file	name,	relative	to	the	images	virtual	directory,	of	an
image	to	be	displayed	on	the	tab.	If	specified,	this	overrides	any	image	specified
in	the	tab_image	property.
Selected	Image
Specifies	the	path	and	file	name,	relative	to	the	image's	virtual	directory,	of	an
image	to	be	displayed	on	the	tab	when	it	is	selected.	If	specified,	this	overrides
any	image	specified	in	the	tab_selected_image	property.
Hide	if	true
Specifies	the	name	of	a	field	that	indicates	if	the	tab	item	should	be	hidden.
Hidden,	in	this	context,	means	that	the	tab	and	it's	content	is	not	sent	to	the
browser	at	all.	The	tab	is	hidden	if	the	field	contains	the	boolean	value	true,	the
number	1	or	a	string	value	of	true,	TRUE,	y,	Y	or	1.
Disable	if	true
Specifies	the	name	of	a	field	that	indicates	if	the	tab	item	should	be	disabled.
The	tab	is	disabled	if	the	field	contains	the	boolean	value	true,	the	number	1	or
a	string	value	of	true,	TRUE,	y,	Y	or	1.
Preload	Nav	Panels
If	the	tab	page	contains	a	navigation	panel,	this	checkbox	controls	whether	the
navigation	panel	for	unselected	tabs	is	loaded	when	the	page	containing	the	tab
pages	is	loaded.	If	the	webroutine	or	URL	that	is	accessed	by	the	navigation
panel	is	resource-expensive	or	simply	if	you	have	a	lot	of	tabs,	you	may	wish	to
uncheck	this	box	for	one	or	all	tab	pages.	If	this	checkbox	is	unchecked,	the
navigation	panel	is	not	loaded	unless	or	until	the	corresponding	tab	page	is
selected.
Reload	Nav	Panels	on	tab	click
If	the	tab	page	contains	a	navigation	panel,	this	checkbox	controls	whether	the
navigation	panel	is	loaded	once	(when	first	displayed)	or	every	time	that	the	tab
page	is	displayed.

Using	CSS	with	the	Tab	Pages	weblet
	

How	the	Default	CSS	Works Adding	your	own	CSS	Styles

The	Tab	Pages	weblet	is	constructed	using	an	HTML	table.	The	tabs	themselves
are	constructed	using	an	unordered	list.	The	HTML	for	a	Tab	Pages	weblet
looks	something	like	this:
<table	id="TabPagesName"	class="std_tab_pages"	cellpadding="0"	cellspacing="0">
			<tbody>
						<tr>
									<td	class="std_tab_pages_top_tabs">
												<ul	class="std_tab_pages_tabs">
															<li	class="std_tab_active">
																		Organisation
															
															
																		Contact
															
															
																		Employment
															
												
									</td>
						</tr>
						<tr>
									<td	class="std_tab_pages_content_wrapper">
												<div	class="std_tab_pages_content">
															Tab	1	Content
												</div>
												<div	class="std_tab_pages_content"	style="display:none">
															Tab	2	Content
												</div>
												<div	class="std_tab_pages_content"	style="display:none">
															Tab	3	Content
												</div>
	
											</td>

						</tr>
			</tbody>
</table>
	

How	the	Default	CSS	Works
Without	any	CSS,	the	Tab	Pages	HTML	will	produce	this	result	(table	border
added	for	clarity):

To	start,	you	need	to	remove	the	list-style	and	margins	from	the	UL	tag:
ul.std_tab_pages_tabs
{
					list-style-type:	none;
					margin:	0px;
}

Next	you'll	add	some	borders	and	background	colors	to	the	LI	tags,	use	float:left
to	distribute	them	horizontally	and	apply	a	margin	to	separate	them:
ul.std_tab_pages_tabs	li
{
					border:	1px	solid	#7db0e5;
					background-color:	#e2effa;
					color:	black;
					white-space:	nowrap;
					display:	block;
					float:	left;
					margin-right:	2px;
}

Finally,	add	a	border	around	the	content	area:
.std_tab_pages_content_wrapper
{
					border:	1px	solid	#7db0e5;

					padding:	2px;
}

Your	table	and	list	should	now	looks	like	this:

Next,	put	a	little	spacing	around	the	tab	text	and	change	the	background	color	of
the	selected	tab.	You	also	need	to	remove	the	bottom	border	from	the	selected
tab	and	extend	the	tab	vertically	to	fill	the	space	by	increasing	its	bottom
padding.	(It	is	done	this	way	because	Internet	Explorer	draws	the	left	and	right
borders	unevenly	if	you	try	to	change	the	color	of	the	bottom	border):
ul.std_tab_pages_tabs	li	a
{
					display:	block;
					padding:	3px;
					text-decoration:	none;
					font-weight:	bold;
}
ul.std_tab_pages_tabs	li.std_tab_active
{
					background-color:	white;
					color:	black;
					border-bottom:	none;
					padding-bottom:	1px;
}
	

Finally	you	need	to	move	the	tabs	down	by	the	border	width	so	that	their	bottom
borders	overlap	the	border	of	the	content	area.	You	can	do	this	by	making	the
table	cell	containing	the	tabs	relatively	positioned	and	shifting	it	down	by	the
width	of	the	border:
.std_tab_pages_top_tabs
{

					position:	relative;
					top:	1px;
}
	

This	cell	shifting	technique	only	works	in	Internet	Explorer.	In	Firefox	and
Opera	you	need	to	move	the	UL	block	down	by	the	border	width	(which	does
not	work	in	IE):
ul.std_tab_pages_tabs
{
					position:	relative;
					top:	1px;
}
	

The	end	result	is	this:

Some	of	the	styles	used	only	apply	to	tabs	positioned	along	the	top	of	the
content	area	so	you	need	to	create	some	more	styles	with	more	specific	selectors
to	ensure	the	properties	are	only	applied	to	top	aligned	tabs:
.std_tab_pages_top_tabs	ul
{
					position:	relative;
					top:	1px;
}
.std_tab_pages_top_tabs	ul	li.std_tab_active
{
					border-bottom:	none;
					padding-bottom:	1px;
}
	

Adding	your	own	CSS	Styles
You	can	easily	modify	the	appearance	of	your	Tab	Pages	weblets	by	adding	a
few	styles	to	a	custom	stylesheet	to	override	the	defaults.	For	example,	the
following	will	change	the	border	and	background	colors:
.std_tab_pages_content_wrapper
{
					border:	1px	solid	#81a594;
}
ul.std_tab_pages_tabs	li
{
					border:	1px	solid	#81a594;
					background-color:	#cbcbb8;
}
	

Changing	the	border	thickness	will	also	require	changing	the	selected	tab
padding	and	the	amount	that	the	tabs	are	shifed	to	overlap	the	content.	These
custom	styles:
.std_tab_pages_content_wrapper
{
					border:	3px	solid	#81a594;
}
ul.std_tab_pages_tabs	li
{
					border:	3px	solid	#81a594;
					background-color:	#cbcbb8;
}
.std_tab_pages_top_tabs,
.std_tab_pages_top_tabs	ul
{
					position:	relative;
					top:	3px;
}
.std_tab_pages_top_tabs	ul	li.std_tab_active
{
					border-bottom:	none;
					padding-bottom:	3px;
}

	
will	produce	this	result:

Earlier	Internet	Explorer-only	versions	of	the	Tab	Pages	weblet	would	draw
vertical	text	in	left	or	right	aligned	tabs.	Because	this	can	only	be	done	in
Internet	Explorer,	the	feature	was	removed	from	the	_v2	version.	Left	aligned
tabs	now	look	like	this:

If	your	target	browser	is	Internet	Explorer	only	then	you	can	re-apply	this	effect
with	the	writing-mode	property:
.std_tab_pages_left_tabs	ul	li	a
{
					writing-mode:tb-rl;
}

If	you	prefer	the	text	written	from	bottom	to	top,	you	can	use	the	filter	property
to	rotate	it	180	degrees:
.std_tab_pages_left_tabs	ul	li	a
{
					writing-mode:tb-rl;
					filter:	flipv	fliph;
}
	

Properties	-	Tab	pages
The	Tab	pages	weblet's	properties	are:

caption_field
disable_if_true_field
formname
content_height
content_width
hide_if
hide_if_true_field

image_field
listname
name
pos_absolute_design
selected_image_field
selected_tab_index
selected_tab_index_field

tab_alignment
tab_image
tab_image_alignment
tab_image_height
tab_image_width
tab_selected_image
tabs

name
The	name	the	weblet	is	identified	with.	Normally,	you	would	leave	this	as	the
default	and	let	LANSA	use	its	own	internal	naming	convention.	However,	you
may	want	to	use	your	own	name	if	using	JavaScript	or	XSL	that	references	the
weblet.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

	

tabs
An	XML	nodeset	that	specifies	the	tab	items	to	show.	This	is	a	system	generated
value	set	up	when	you	drag	the	tab	pages	weblet	onto	the	design	view.

Do	not	directly	edit	the	value	shown.	Instead,	click	the	ellipsis	button
to	open	the	tab	items	designer.	Refer	to	Using	the	tab	item	designer	for
more	information.

Default	value
document('')/*/lxml:data/lxml:tab[@id='<unique	id>']
where	the	<unique	id>	is	an	automatically	generated	identifier.

Valid	values
Not	Applicable	(this	value	is	system	generated	and	should	not	be	modified).

selected_tab_index
Specifies	the	index	of	the	tab	that	is	to	be	initially	selected	when	the	web	page	is
shown.

Note:	Clicking	on	the	tabs	in	the	Design	view	alters	this	value	to	the
index	of	the	currently	selected	tab.	Since	you	will	do	this	routinely
while	designing	your	tab	pages,	you	will	need	to	remember	to	select
the	first	tab	again	(or	whichever	tab	you	wish	to	be	initially	selected)
before	saving	your	work.

Default	value
1

Valid	values
Any	integral	value	between	1	and	the	number	of	tabs	(inclusive)	or	the	name
of	a	field	that	will	contain	the	tab	index	at	run-time.
If	the	value	specified	is	less	than	1	or	greater	than	the	number	of	tabs,	then
no	tab	is	initially	selected.	In	many	applications	of	tab	pages,	this	will	not	be
desirable.

selected_tab_index_field
Specifies	the	name	of	a	field	that	will	contain	the	index	of	the	selected	tab.	This
is	similar	to	the	selected_tab_index	property	Indeed	you	can	specify	a	field
name	for	the	selected_tab_index	property	and	its	value	will	control	the	index	of
the	tab	that	is	initially	selected.	But	using	this	property	instead	has	the
additional	effect	of	updating	the	field	with	the	index	of	the	currently	selected
tab.	If	this	field	is	posted	back	to	the	webroutine,	then	your	program	code	can
know	which	tab	was	last	shown.	You	may,	for	example,	wish	to	save	this
information	and	use	it	the	next	time	the	webroutine	is	loaded	for	the	same	user
to	show	them	the	same	tab	they	displayed	on	their	previous	visit.

Default	value
Blank.

Valid	values
The	name	of	a	field	present	in	the	web-map	for	your	WebRoutine.	(Usually
you	will	specify	a	numeric	field	that	is	large	enough	to	contain	the	highest
tab	number.)	The	field	name	should	be	specified	in	single	quotes.	Click	the
drop-down	arrow	next	to	this	property	to	choose	from	a	list	of	available	field
names.

tab_alignment
This	property	determines	whether	the	tab	buttons	appear	on	the	top,	left,	right	or
bottom	of	the	tab	pages.

Default	value
'top'

Valid	values
'top',	'left',	'right'	or	'bottom'

tab_image
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
show	on	each	tab.	This	property	applies	to	all	tabs	unless	overridden	in	the	tab
item	designer	for	individual	tabs.

Default	value
'ball_grn.gif'		(this	identifies	a	standard	image	shipped	with	LANSA)

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.	If	you	do	not	want	to
display	an	image	on	the	tab	you	can	enter	an	empty	string	(using	two	quote
marks	with	nothing	in-between).

tab_selected_image
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
show	on	each	tab	when	the	tab	is	selected.	If	specified,	this	property	applies	to
all	tabs	unless	overridden	in	the	tab	item	designer	for	individual	tabs.

Default	value
Blank	–	the	image	does	not	change	when	the	tab	item	is	selected.

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

tab_image_height
The	height	of	tab	button	images.

Default	value
'14px'

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

tab_image_width
The	width	of	tab	button	images.

Default	value
'14px'

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

tab_image_alignment
This	property	specifies	whether	the	tab	button	images	appear	to	the	left	or	right
of	the	caption.

Default	value
'left'

Valid	values
'left'	or	'right'.

listname
The	name	of	a	working	list	specified	in	the	web_map	that	will	be	used	to
dynamically	override	attributes	of	the	tab	items	at	run-time.	Using	the	working
list	you	can	override	any	one	or	more	of	the	following	attributes:

Tab	caption	(specify	the	working	list	field	name	in	the	caption_field
property)
Tab	image	(specify	the	working	list	field	name	in	the	image_field	property)
Tab	selected	image	(specify	the	working	list	field	name	in	the
selected_image_field	property)
Tab	hidden	(specify	the	working	list	field	name	in	the	hide_if_true_field
property)
Tab	disabled	(specify	the	working	list	field	name	in	the	disable_if_true_field
property).

To	use	this	feature	you	must	specify	a	working	list	in	your	web_map	(for
*OUTPUT	or	*BOTH)	that	contains	one	or	more	fields	corresponding	to	one	or
more	of	the	attributes	above	that	you	wish	to	override.	The	RDML	code	in	the
webroutine	should	populate	the	list	with	the	number	of	entries	corresponding	to
the	number	of	tab	items	with	field	values	set	as	described	for	each	of	the
properties	mentioned	above.

Note:	You	still	need	to	use	the	tab	items	designer	to	create	the
required	number	of	tab	items	and	to	set	any	attributes	of	the	tab	items
that	are	not	specified	in	the	working	list.	Refer	to	Using	the	menu	item
designer	for	more	information.

Default	value
Blank	–	no	working	list	is	used	to	override	attributes	of	the	tab	items	at	run
time.	The	tabs	are	displayed	as	defined	in	the	tab	items	designer.

Valid	values
The	name	of	a	working	list	specified	in	the	web-map	for	the	WebRoutine.	A
list	of	available	working	lists	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

Example
In	this	example	a	working	list	named	A1OTABS	will	be	used	to	override
certain	attributes	of	the	tab	items	at	run-time.	The	names	of	the	fields

containing	the	overriding	values	for	each	tab	item	should	be	specified	in	one
or	more	of	the	caption_field,	image_field,	selected_image_field,
hide_if_true_field	and/or	disable_if_true_field	properties.

caption_field
This	property	specifies	the	name	of	the	field	in	the	working	list	specified	in	the
listname	property	that	will	override	the	tab	caption	for	each	tab	item.	This
property	is	ignored	if	the	listname	property	is	not	specified,	but	in	any	event	is
optional.	Refer	to	the	description	of	the	listname	property	for	further
information.

Default	value
Blank	–	the	tab	caption	is	not	overridden	at	run-time	via	the	working	list
specified	in	the	listname	property.

Valid	values
The	name	of	a	field	in	the	working	list	specified	in	the	listname	property	that
will	contain	the	tab	caption	for	each	tab	item.	You	can	choose	from	a	list	of
available	fields	by	clicking	the	corresponding	dropdown	button	in	the
property	sheet.

image_field
This	property	specifies	the	name	of	the	field	in	the	working	list	specified	in	the
listname	property	that	will	override	the	tab	image	filename	(relative	to	the
images	virtual	directory)	for	each	tab	item.	This	property	is	ignored	if	the
listname	property	is	not	specified,	but	in	any	event	is	optional.	Refer	to	the
description	of	the	listname	property	for	further	information.

Default	value
Blank	–	the	tab	image	filename	is	not	overridden	at	run-time	via	the	working
list	specified	in	the	listname	property.

Valid	values
The	name	of	a	field	in	the	working	list	specified	in	the	listname	property	that
will	contain	the	tab	image	filename	(relative	to	the	images	virtual	directory)
for	each	tab	item.	You	can	choose	from	a	list	of	available	fields	by	clicking
the	corresponding	dropdown	button	in	the	property	sheet.

selected_image_field
This	property	specifies	the	name	of	the	field	in	the	working	list	specified	in	the
listname	property	that	will	override	the	tab-selected	image	filename	(relative	to
the	images	virtual	directory)	for	each	tab	item.	This	property	is	optional	and	is
ignored	if	the	listname	property	is	not	specified.	Refer	to	the	description	of	the
listname	property	for	further	information.

Default	value
Blank.	The	tab	selected	image	filename	is	not	overridden	at	run-time	via	the
working	list	specified	in	the	listname	property.

Valid	values
The	name	of	a	field	in	the	working	list	specified	in	the	listname	property	that
will	contain	the	tab-selected	image	filename	(relative	to	the	images	virtual
directory)	for	each	tab	item.	You	can	choose	from	a	list	of	available
fieldsfrom	the	corresponding	dropdown	list	in	the	property	sheet.

hide_if_true_field
This	property	specifies	the	name	of	the	field	in	the	working	list	specified	in	the
listname	property	that	will	override	the	hidden	state	for	each	tab	page.	This
property	is	ignored	if	the	listname	property	is	not	specified,	but	in	any	event	is
optional	Refer	to	the	description	of	the	listname	property	for	further
information.

Default	value
Blank	–	the	hidden	state	is	not	overridden	at	run-time	via	the	working	list
specified	in	the	listname	property.

Valid	values
The	name	of	a	field	in	the	working	list	specified	in	the	listname	property	that
will	override	the	hidden	state	for	each	tab	page.	You	can	choose	from	a	list	of
available	fields	by	clicking	the	corresponding	dropdown	button	in	the
property	sheet.
In	order	to	hide	the	tab	page	the	webroutine	must	populate	the	field	with	one
of	these	recognized	true	values:	'y',	'Y',	'true',	or	'1'.

disable_if_true_field
This	property	specifies	the	name	of	the	field	in	the	working	list	specified	in	the
listname	property	that	will	override	the	disabled	state	for	each	tab	page.	This
property	is	ignored	if	the	listname	property	is	not	specified,	but	in	any	event	is
optional.	Refer	to	the	description	of	the	listname	property	for	further
information.

Default	value
Blank	–	the	disabled	state	is	not	overridden	at	run-time	via	the	working	list
specified	in	the	listname	property.

Valid	values
The	name	of	a	field	in	the	working	list	specified	in	the	listname	property	that
will	override	the	disabled	state	for	each	tab	page.	You	can	choose	from	a	list
of	available	fields	by	clicking	the	corresponding	dropdown	button	in	the
property	sheet.
In	order	to	disable	the	tab	page	the	webroutine	must	populate	the	field	with
one	of	these	recognized	true	values:	'y',	'Y',	'true',	or	'1'.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.	Note	that
hiding	the	weblet	will	hide	the	tab	pages	and	all	their	contents.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

pos_absolute_design
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

content_width
The	width	of	the	content	area	of	the	weblet.	That	is,	the	width	of	the	weblet
excluding	the	tabs.
If	you	specify	an	empty	string	('')	the	width	will	automatically	adjust	to	the
width	of	the	content	of	the	selected	tab.

Default	value
'300px'

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

content_height
The	height	of	the	content	area	of	the	weblet.	That	is,	the	height	of	the	weblet
excluding	the	tabs.
If	you	specify	an	empty	string	('')	the	height	will	automatically	adjust	to	the
height	of	the	content	of	the	selected	tab.

Default	value
'150px'

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

8.1.31	Tree	View	(std_treeview_v2)

QuickStart	-	Tree	View Properties	-	Tree	View

The	Tree	View	weblet	provides	an	expandable	collapsible	tree.		It	can	be	useful
as	a	site	navigation	system	or	for	visualizing	complex	hierarchical	data.

In	can	also	be	used	in	conjunction	with	an	<iframe>	or	the	Navigation	Panel
weblet	to	display	detail	information	in	response	to	the	selection	of	tree	items
(this	replaces	the	TreeView	Target	weblet	used	in	the	previous	version).

The	Tree	View	is	filled	with	data	from	a	working	list.	Similar	to	the	VL	Tree
View,	the	source	data	can	be	unlevelled,	where	each	entry	has	an	id	and
specifies	the	id	of	its	parent,	or	levelled,	where	the	tree	builds	itself	from	a
sorted	list	based	on	key	columns	in	the	list.
When	using	unlevelled	source	data,	the	list	can	be	configured	to	use	Ajax	to
request	child	entries	from	the	server	when	a	branch	is	opened	by	the	user.

QuickStart	-	Tree	View

Unlevelled	List
Using	Ajax	with	an	Unlevelled	List

Levelled	List
Responding	to	item	selection

Unlevelled	List
In	an	unlevelled	list	each	entry	tells	the	Tree	View	exactly	where	it	fits	in	the
tree	structure	by	specifying	its	parent	ID.	At	a	minimum,	an	unlevelled	list	must
contain	columns	with	the	following	data:

Field Tree	View
Property

Description

ID list_id_field A	unique	ID	string	to	identify	the	entry.

Parent
ID

list_parent_id_field The	ID	string	of	the	parent	entry.	An
empty	string	indicates	a	top	level	entry.

Caption list_caption_field The	text	to	display	for	the	entry.

	

The	Tree	View	processes	the	list	entries	in	the	supplied	order	and	cannot	add	an
entry	to	a	parent	that	doesn't	exist.	It	is	your	responsibility	to	ensure	the	list	is
sorted	so	that	parent	items	come	before	their	children	and	items	at	the	same
level	are	in	display	order.	One	way	to	do	that	is	to	add	a	depth	column	and	a
sequence	column	and	sort	the	list	by	depth	then	sequence.
For	example,	a	working	list	like	this:

ID Parent	ID Caption

1 	 Node	A

2 	 Node	B

3 1 Leaf	A1

4 1 Leaf	A2

5 2 Node	B1

6 2 Leaf	B2

7 5 Leaf	B1A

8 5 Leaf	B1B

	

Will	produce	a	tree	like	this:

Note	that,	although	the	ID	and	ParentID	columns	contain	numbers	in	this
example,	they	must	be	text	or	character	fields.
	
An	unlevelled	list	can	contain	more	columns	that	can	be	used	to	further
customize	the	behavior	or	appearance	of	the	corresponding	entry.

Field Tree	View	Property Description

Image list_image_field Specifies	a	path,	relative	to
the	images	directory,	to	an
image	to	be	used	for	the
entry's	icon.

Open
image

list_open_image_field Specifies	a	path,	relative	to
the	images	directory,	to	an
image	to	be	used	for	the
entry's	icon	when	the	entry	is
expanded.

Is	Selected list_is_selected_field Indicates	that	the	initial	state
of	the	entry	is	selected.	This
should	be	a	string	field	that
will	contain	either	nothing
(not	selected)	or	one	of	two
values:	'true'	or	'freeze'.	Both
values	indicate	that	the	entry
is	selected	but	differ	in	how

the	Tree	View	behaves.	If
the	value	is	'true'	the	Tree
View	will	perform	whatever
action	it	is	configured	to
perform	when	a	user	clicks
on	the	entry.	In	other	words,
it	simulates	the	user
selecting	the	entry.	If	the
value	is	'freeze'	then	the	Tree
View	draws	the	item	as
selected	but	performs	no
other	action.

Is
Expanded

list_is_expanded_field Indicates	that	the	initial	state
of	the	entry	is	expanded.
This	is	ignored	if	the	entry
does	not	have	children.	This
field	can	be	a	string	or	a
numeric.	Values	of	'true',	'y'
or	1	are	treated	as	true,	all
other	values	are	treated	as
false.

OnSelect
WAM
OnSelect
Webroutine

list_onselect_wamname_field
list_onselect_wrname_field

The	name	of	a
WAM/Webroutine	that	will
be	run	when	the	item	is
clicked.	If	no	value	is
supplied	in	these	fields,	the
defaults	specified	by	the
onselect_wamname	and
onselect_wrname	properties
will	be	used.

	

	

Using	Ajax	with	an	Unlevelled	List
When	using	an	unlevelled	list,	it	is	possible	to	define	just	a	partial	list	and	to
have	the	Tree	View	fetch	further	entries	at	a	future	time	if	and	when	they	are
needed.	This	technique	can	be	useful	for	particularly	large	tree	structures	that
might	slow	down	the	initial	loading	and	rendering	of	the	page.
To	use	this	technique,	you	should	add	a	"has	children"	field	to	your	working	list.
This	field	(a	single-byte	field	that	should	contain	a	Y	or	N)	tells	the	Tree	View
to	draw	the	item	as	an	expandable	node	even	if	it	has	no	children.
When	the	user	expands	a	node	that	has	no	children	the	Tree	View	will	call	a
webroutine	to	request	a	fresh	copy	of	the	working	list	containing	new	entries	to
add	to	the	tree.	The	webroutine	used	for	this	purpose	is	defined	with	the
onexpand_wamname/onexpand_wrname	properties.	The	webroutine	does	not
need	a	user	interface	as	the	Tree	View	will	automatically	request	a	JSON
response	from	it.
Two	fields	and	a	list	are	sent	to	the	webroutine.

Field Tree	View	Property Description

ID onsubmit_id_field The	ID	of	the	expanded	item

Level onsubmit_level_field The	level	of	the	expanded	item

Ancestors onsubmit_ancestor_list A	list	containing	the	ancestors	of	the
expanded	item.	The	list	will	contain	a
single	field	which	will	be	the	same	as	the
ID	field	of	the	working	list	used	to	create
the	tree.

	

While	the	properties	above	allow	you	to	specify	what	fields	the	information	is
put	into,	you	still	need	to	define	those	fields	in	the	WEB_MAP	for	the	onsubmit
webroutine.

Levelled	List
A	levelled	list	is	one	where	the	ID	and	Caption	for	each	level	is	represented	by	a
different	column.	For	example,	the	list	may	contain	3	columns:	Department,
Section,	Name.	The	Tree	View	will	automatically	create	"section"	entries	as
children	of	"department"	entries	and	"name"	entries	as	children	of	"section"
entries.
Two	properties	control	how	it	does	this:

key_fields A	comma	delimited	list	of	field	names.	These	fields	are	used
as	keys	for	each	level.	As	the	list	is	processed,	the	key	fields
are	compared,	in	order,	with	the	key	fields	from	the	previous
entry,	if	they	change,	a	new	tree	entry	is	created	at	the	key
field	level.

display_fields A	comma	delimited	list	of	field	names.	These	fields	contain
the	text	to	be	displayed	at	the	correeponding	level.

	
For	example,	a	working	list	like	this:

DEPTMENT SECTION EMPNO DISPNAME DEPTDESC

ADM 01 A1001 BEN	JONES ADMINISTRATOR
DEPT

AUD 01 A1007 GEORGE
SNELL

INTERNAL
AUDITING

AUD 01 A1008 ALLAN
SNEDDON

INTERNAL
AUDITING

AUD 01 A1011 CHRISTOPHER
PERRIN

INTERNAL
AUDITING

AUD 02 A1009 DAMIAN
SNASHALL

INTERNAL
AUDITING

AUD 03 A0907 ANNE	MISS
SIMPSON

INTERNAL
AUDITING

AUD 03 A1010 WILLIAM
PERRY

INTERNAL
AUDITING

FLT 01 A1016 JACK	TURNER FLEET
ADMINISTRATION

FLT 02 A1003 Robert	SMITHE FLEET
ADMINISTRATION

FLT 03 A0090 FRED	JOHN
ALAN
BLOGGS

FLEET
ADMINISTRATION

GAC 02 A1018 PAUL
ZACHARIA

GROUP
ACCOUNTS

INF 01 A1030 VALERIE
TURNER

INFORMATION
SERVICES

INF 02 A1017 GARY	NEAVE INFORMATION
SERVICES

LEG 01 A1019 CHARLES
DICKENS

LEGAL
DEPARTMENT

LEG 03 A1023 DAVID	REID LEGAL
DEPARTMENT

MIS EI A1031 JOHN	BLAKE MANAGEMNT
INFORMATIO

MKT 01 A1024 JOHN	TAYLOR MARKETING
DEPARTMENT

MKT 02 A1022 KELLY
THOMPSON

MARKETING
DEPARTMENT

SD ES A1234 STEPHEN
JACKSON

SALES	&
DISTRIBUTION

TRVL 03 A1006 JACK
SMITHERS

TRAVEL
DEPARTMENT

	

With	key_fields	and	display_fields	set	to:

key_fields DEPTMENT,SECTION,EMPNO

display_fields DISPNAME,DEPTDESC,SECDESC

	

Would	produce	a	tree	like	this:

Responding	to	item	selection
When	a	tree	item	is	clicked,	the	Tree	View	will	invoke	a	webroutine.	If	the
listtype	is	'unlevelled'	then	the	webroutine	specified	in
list_onselect_wamname_field/list_onselect_wrname_field	will	be	invoked.	If
the	listtype	is	'levelled'	or	an	item	specific	webroutine	has	not	been	specified,
the	webroutine	specified	in	onselect_wamname/onselect_wrname	will	be
invoked.
Two	fields	and	a	list	are	sent	to	the	webroutine.

Field Tree	View	Property Description

ID onsubmit_id_field The	ID	or	key	of	the	selected	item

Level onsubmit_level_field The	level	of	the	selected	item

Ancestors onsubmit_ancestor_list A	list	containing	the	ancestors	of	the
selected	item.	The	list	will	contain	a
single	field	which	will	be	the	same	as	the
ID	field	of	the	working	list	used	to	create
the	tree.

	

While	the	properties	above	allow	you	to	specify	what	fields	the	information	is
put	into,	you	still	need	to	define	those	fields	in	the	WEB_MAP	for	the	onsubmit
webroutine.

Properties	-	Tree	View
The	Tree	View	weblet's	properties	are:

display_fields
folder_closed_image
folder_open_image
height
item_image
jQueryUI_node_icon
key_fields
list_caption_field
list_haschildren_field
list_id_field
list_image_field

list_is_expanded_field
list_is_selected_field
list_onselect_wamname_field
list_onselect_wrname_field
list_open_image_field
list_parent_id_field
listname
listtype
name
node_text_click
onexpand_wamname

onexpand_wrname
onselect_wamname
onselect_wrname
onsubmit_ancestor_list
onsubmit_id_field
onsubmit_level_field
pos_absolute
target_window_name
use_jQueryUI_theme
width

name
The	name	of	the	weblet.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	When	using	this	weblet	in
conjunction	with	the	Tree	View	Target	(this	would	normally	be	the	case),	it	is
recommended	that	a	name	be	entered,	as	the	Tree	View	Target	will	be	required
to	reference	it.	Using	this	name	will	be	clearer	than	using	the	LANSA-generated
name.

Default	value
concat('oTree',	ancestor-or-self::lxml:list/@name,position())	–	this	is	the
internal	name	given	to	the	tree	view	by	LANSA.

Valid	values
A	name	in	single	quotes.

listname
The	name	of	the	working	list	that	contains	the	items	used	to	populate	the	weblet.
For	best	performance,	your	WEB_MAP	should	define	the	list	as	*JSON.

Default	value
Blank.	A	valid	list	name	must	be	entered.

Valid	values
The	name	of	a	valid	working	list.	A	list	of	valid	list	names	can	be	chosen
from	by	clicking	the	corresponding	dropdown	button	in	the	property	sheet.

listtype
The	type	of	data	in	the	working	list

Levelled
In	an	unlevelled	list,	the	data	includes	a	unique	ID	for	each	item	as	well	as	the
id	of	the	item's	parent.	This	type	of	list	can	be	used	to	build	a	whole	tree	or	it
can	be	used	to	build	an	Ajax	tree.	In	an	Ajax	tree	the	initial	list	contains	a	subset
of	the	full	tree	(at	least	the	visible	items,	possibly	some	sublevels).	When	the
user	attempts	to	open	a	branch	that	has	no	children	the	TreeView	will	execute	a
webrouting	to	obtain	a	new	copy	of	the	list	containing	new	items	to	add	to	the
tree.
Items	in	the	TreeView	will	be	created	in	list	order.	So,	the	items	in	the
unlevelled	list	must	be	sorted	such	that	parents	occur	before	their	children	and
children	of	a	single	parent	occur	in	display	order.

Unlevelled
In	a	levelled	list	the	TreeView	infers	the	tree	structure	from	the	data.	You
provide	the	Tree	View	a	list	of	column	names	(known	as	key	fields)	to	use	for
folders	and	it	automatically	builds	the	tree	structure	by	grouping	items	with	the
same	key	value	under	the	same	parent.	The	Tree	View	does	this	grouping	by
comparing	the	key	fields	of	each	entry	with	the	key	fields	of	the	previous	entry.
It	is	your	responsibility	to	ensure	the	list	is	correctly	sorted	into	display	order.

Default	value
levelled

Valid	values
'levelled'	or	'unlevelled'.

use_jQueryUI_theme
The	Tree	view	weblet	is	a	jQuery-UI	widget	and	will	use	the	current		jQuery-UI
theme	to	produce	its	default	appearance.	If	you	are	not	using	a	jQuery-UI	theme
or	don't	want	the	treeview	to	use	the	theme,	you	can	turn	off	the	theme	by
setting	this	property	to	false().

				 		

A	Tree	View	with	the	Redmond	theme 		A	Tree	View	with	no	theme

Default	value
true()

Valid	values
true(),	false()	or	a	valid	boolean	expression.

jQueryUI_node_icon
Specifies	the	jQuery-UI	icon	to	be	used	for	the	node	icon.	Only	valid	if
use_jQueryUI_theme	is	true().

Default	value
'triangle'

Valid	values
'folder',	'carat'	or	'triangle'

folder_closed_image
The	path	and	file	name,	relative	to	the	images	directory,	of	an	image	that
represents	closed	tree	nodes.	A	blank	value	indicates	that	the	Tree	View	should
use	its	own	default	image.

Default	value
Blank

Valid	values
Blank	or	the	path	and	name	of	an	image,	relative	to	the	images	directory,
enclosed	in	single	quotes.	An	image	can	be	chosen	from	a	prompter	by
clicking	the	corresponding	ellipses	button	in	the	property	sheet.

folder_open_image
The	path	and	file	name,	relative	to	the	images	directory,	of	an	image	that
represents	open	tree	nodes.	A	blank	value	indicates	that	the	Tree	View	should
use	its	own	default	image.

Default	value
Blank

Valid	values
Blank	or	the	path	and	name	of	an	image,	relative	to	the	images	directory,
enclosed	in	single	quotes.	An	image	can	be	chosen	from	a	prompter	by
clicking	the	corresponding	ellipses	button	in	the	property	sheet.

item_image
The	path	and	file	name,	relative	to	the	images	directory,	of	an	image	to	represent
a	leaf	node	of	the	tree.	A	blank	value	indicates	that	the	Tree	View	should	use	its
own	default	image.

Default	value
Blank

Valid	values
Blank	or	the	path	and	name	of	an	image,	relative	to	the	images	directory,
enclosed	in	single	quotes.	An	image	can	be	chosen	from	a	prompter	by
clicking	the	corresponding	ellipses	button	in	the	property	sheet.

node_text_click
Specifies	what	action	to	take	when	the	user	clicks	on	the	text	portion	of	an
expandable	node.	Possible	actions	are	to	select	the	node,	to	toggle
(expand/collapse)	the	node,	or	to	do	both.

Default	value
both

Valid	values
'select',	'toggle'	or	'both'.

key_fields
If	the	listtype	is	'levelled',	this	property	specifies	what	fields	the	Tree	View
should	use	to	determine	item	groups.	The	fields	should	be	specified	in	depth
order.	You	can	open	a	custom	property	editor	window	by	clicking	the	ellipse
button	in	the	property	sheet.

Default	value
Blank.	Must	be	specified	for	a	levelled	list.

Valid	values
A	comma	delimited	list	of	field	names.

display_fields
If	the	listtype	is	'levelled'	this	property	specifies	what	fields	the	Tree	View
should	use	to	display	the	item	text.	The	fields	should	be	specified	in	depth	order.
You	can	open	a	custom	property	editor	window	by	clicking	the	ellipse	button	in
the	property	sheet.

Default	value
Blank.	Must	be	specified	for	a	levelled	list.

Valid	values
A	comma	delimited	list	of	field	names.

list_caption_field
The	name	of	the	field	in	the	listname	working	list	that	contains	tree	item
captions.	This	is	only	valid	for	unlevelled	lists	and	will	be	ignored	if	listtype	is
"levelled".

Default	value
Blank.	A	valid	field	name	from	the	listname	working	list	must	be	specified.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

list_image_field
The	name	of	the	field	in	the	listname	working	list	that	contains	a	tree	item's
image	path	and	file	name,	relative	to	the	images	directory.	Leave	blank	if	using
default	images.	This	is	only	valid	for	unlevelled	lists	and	will	be	ignored	if
listtype	is	"levelled".
Default	value

Blank.	Default	images	are	used.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

list_open_image_field
The	name	of	the	field	in	the	listname	working	list	that	contains	a	tree	item's
image	path	and	file	name,	relative	to	the	images	directory,	that	represents	an
expanded	node.	Leave	blank	if	using	default	images.	This	is	only	valid	for
unlevelled	lists	and	will	be	ignored	if	listtype	is	"levelled".

Default	value
Blank.	Default	images	are	used.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

list_id_field
The	name	of	the	field	in	the	listname	working	list	that	contains	item	IDs.	This	is
the	non-visible,	unique	identifier	of	the	tree	item	that	can	be	used	to	identify	it
when	selected	or	expanded.	This	is	only	valid	for	unlevelled	lists	and	will	be
ignored	if	listtype	is	"levelled".

Default	value
$list_caption_field.	The	field	used	to	store	the	id	information	is	the	same
field	used	for	the	caption.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

list_onselect_wamname_field
The	name	of	the	field	in	the	listname	working	list	that	contains	the	name	of	the
WAM	whose	Webroutine	is	to	be	invoked	when	a	tree	item	is	selected.	This	is
only	valid	for	unlevelled	lists	and	will	be	ignored	if	listtype	is	"levelled".

Default	value
Blank.	The	WAM	specified	by	onselect_wamname	will	used.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

list_onselect_wrname_field
The	name	of	the	field	in	the	listname	working	list	that	contains	the	name	of	the
Webroutine	that	is	to	be	invoked	when	a	tree	item	is	selected	(the	WAM
containing	the	webroutine	should	be	specified	in	list_onselect_wamname_field).
This	is	only	valid	for	unlevelled	lists	and	will	be	ignored	if	listtype	is	"levelled".

Default	value
Blank.	The	Webroutine	specified	by	onselect_wrname	will	invoked.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.
	

list_haschildren_field
The	name	of	the	field	in	the	listname	working	list	that	determines	whether	a	tree
item	has	child	items.	This	is	only	valid	for	unlevelled	lists	and	will	be	ignored	if
listtype	is	"levelled".

Default	value
'STD_CODE'

Valid	values
The	name	of	a	valid	field,	in	single	quotes,	that	will	contain	a:
'Y'	(the	tree	item	has	child	items)	or	an
'N'	(the	tree	item	does	not	have	child	items).

list_is_selected_field
The	name	of	the	field	in	the	listname	working	list,	the	value	of	which	will
determine	if	a	tree	item	should	be	selected	when	displayed.	This	is	only	valid
for	unlevelled	lists	and	will	be	ignored	if	listtype	is	"levelled".

Default	value
Blank.	Tree	items	cannot	be	pre-selected.

Valid	values
The	name	of	the	field	in	the	working	list	that	will	contain	a	value	of	'True'	if
an	item	in	the	tree	should	be	selected.	If	set	to	'Freeze',	the	item	will	be
selected	but	the	associated	'on	select'	action	(if	applicable)	will	not	be
triggered.

list_is_expanded_field
The	name	of	the	field	in	the	working	list	that	will	control	a	tree	item's	expanded
state.	.	This	is	only	valid	for	unlevelled	lists	and	will	be	ignored	if	listtype	is
"levelled"

Default	value
Blank.	A	tree	item's	expanded	state	cannot	be	controlled.

Valid	values
The	name	of	the	field	in	the	working	list	that	will	contain	a	value	of	'True'	if
an	item	should	be	expanded,	and	'False'	if	it	should	not.

list_parent_id_field
The	name	of	the	field	in	the	working	list	that	will	contain	the	identifier	of	the
parent	of	the	tree	item.	This	is	only	valid	for	unlevelled	lists	and	will	be	ignored
if	listtype	is	"levelled".

Default	value
Blank.	If	left	blank,	all	items	will	be	assumed	to	be	top	level	items.

Valid	values
The	name	of	the	field	in	the	working	list	that	will	contain	the	identifier	of	the
parent	of	the	tree	item.

onselect_wamname
The	name	of	the	WAM	whose	Webroutine	will	be	invoked	when	an	item	in	the
tree	is	selected.	Individual	items	in	an	unlevelled	list	can	override	this	using	the
list_onselect_wamname_field	property.

Default	value
The	current	WAM.

Valid	values
The	name	of	a	WAM,	in	single	quotes.	A	selection	can	be	made	from	a	list	of
known	WAMs	by	clicking	on	the	corresponding	dropdown	button	in	the
property	sheet.

onselect_wrname
The	name	of	the	Webroutine	that	will	be	invoked	when	an	item	in	the	tree	is
selected.	Individual	items	in	an	unlevelled	list	can	override	this	using	the
list_onselect_wrname_field	property.

Default	value
The	current	Webroutine.

Valid	values
The	name	of	a	valid	Webroutine,	in	single	quotes.	A	selection	can	be	made
from	a	list	of	valid	Webroutines	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.

onexpand_wamname
The	name	of	the	WAM	whose	Webroutine	will	be	invoked	when	a	node	in	the
tree	is	expanded	and	has	no	children.

Default	value
Blanks.	The	current	WAM	will	be	invoked.

Valid	values
The	name	of	a	WAM,	in	single	quotes.	A	selection	can	be	made	from	a	list	of
known	WAMs	by	clicking	on	the	corresponding	dropdown	button	in	the
property	sheet.

onexpand_wrname
The	name	of	the	Webroutine	that	will	be	invoked	when	a	node	in	the	tree	is
expanded	and	has	no	children.

Default	value
Blank.	The	current	Webroutine	is	the	default.

Valid	values
The	name	of	a	valid	Webroutine,	in	single	quotes.	A	selection	can	be	made
from	a	list	of	valid	Webroutines	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.

onsubmit_id_field
The	name	of	the	field	that	will	be	sent	to	the	"On	Expand"	or	"On	Select"
Webroutine	containing	the	ID	of	the	expanded	or	selected	item.	If	not	specified,
the	field	specified	by	list_id_field	will	be	used.

Default	value
Blank.	Use	the	value	specified	in	list_id_field.

Valid	values
The	name	of	a	valid	input	field.	A	selection	can	be	made	from	a	list	of	valid
fields	by	clicking	on	the	corresponding	dropdown	button	in	the	property
sheet.

onsubmit_level_field
The	name	of	the	field	that	will	be	sent	to	the	"On	Expand"	or	"On	Submit"
Webroutine	containing	the	level	of	the	expanded	or	selected	item.	If	not
specified,	the	level	will	not	be	returned	to	the	Webroutine.

Default	value
Blank.	Do	not	send	a	level.

Valid	values
The	name	of	a	valid	input	field.	A	selection	can	be	made	from	a	list	of	valid
fields	by	clicking	on	the	corresponding	dropdown	button	in	the	property
sheet.

onsubmit_ancestor_list
The	name	of	the	working	list	returned	to	the	Webroutine	that	will	contain	a	list
of	parent	identifiers	for	the	currently	selected	or	expanded	tree	item.

Default	value
Blank.	A	list	of	parent	identifiers	is	not	passed	to	the	Webroutine.

Valid	values
The	name	of	a	valid	working	list,	in	single	quotes.	A	selection	can	be	made
from	a	list	of	valid	working	lists	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.

target_window_name
The	name	of	the	browser	window,	frame,	iframe	or	Navigation	Panel	weblet	that
will	be	used	to	display	the	results	of	the	'on	select'	action.

Default	value
Blank.	The	current	page	containing	the	Tree	View	will	be	replaced	with	the
selected	content.

Valid	values
The	name	of	a	browser	window,	frame,	iframe	or	Navigation	Panel	weblet.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(the	weblet	expands	to	fill	the	space	given	to	it).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(the	weblet	expands	to	contain	its	content).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

8.1.32	Memo	using	a	field	(std_textarea)

QuickStart	-	Memo	using	a	field Properties	-	Memo	using	a	field

The	Memo	using	a	field	(text	area)	weblet	provides	a	text	area	for	the	display
and	input	of	long	text	values,	possibly	spanning	multiple	lines.	It	broadly
corresponds	to	the	<textarea>	html	element.	The	weblet	looks	like	this:

QuickStart	-	Memo	using	a	field
It	is	common	to	use	this	weblet	with	long	text	fields.	To	use	this	weblet,	open
the	XSL	for	your	webroutine	in	the	LANSA	Editor	and	follow	the	following
steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Memo	using	a	field	weblet.

2.		Drag	the	weblet	onto	your	page	in	the	Design	view.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		Set	the	name	and	value	properties	as	required	to	associate	the	weblet	with	the
required	field	in	your	webroutines	web_map.

4.		Depending	on	the	usage	of	the	field	in	your	application,	you	may	need	to	set
the	value	of	the	word_wrap	property.

Note:	depending	on	the	definition	of	the	field	in	your	webroutine,	the	generated
XSL	may	already	visualize	the	field	using	one	of	the	std_char	or	std_varchar
field	visualization	weblets.	These	weblets	provide	much	of	the	functionality	of
the	text	area	weblet	with	additional	features.

Properties	-	Memo	using	a	field
The	Memo	using	a	field	weblet's	properties	are:

class maxlength rows

cols name tab_index

disabled onchange_script value

height_design pos_absolute width_design

hide_if read_only word_wrap

keyboard_shift 	 	

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	is	the	value	of
the	field.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	text	area	and/or	that	is	used	to
receive	the	text	from	the	text	area.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

Example
This	shows	how	a	field	name	is	entered	for	the	value	property	when	the
weblet	visualizes	a	field:

When	the	property	loses	focus,	the	field	name	is	shown	as	follows:

maxlength
Specifies	the	maximum	number	of	characters	the	user	can	type	in	the	weblet.
When	the	weblet	visualizes	a	field,	this	is	set	to	the	number	appropriate	for	the
field.

Default	value
Blank	(the	weblet	does	not	restrict	the	number	of	characters	the	user	can
type).

Valid	values
A	numeric	value.

keyboard_shift
The	keyboard	shift	for	the	input	field.

Default	value
The	keyboard	shift	of	the	field	with	this	weblet	visualization.	Blank
otherwise.

Valid	values
Char	and	String	data	types:	'	',	'W',	'J',	'E',	'O'	and	'U'
Alpha	data	type:	'	',	'X',	'A',	'N',	"W',	'I',	'D',	'M',	'J',	'E'	and	'O'

The	keyboard	shift	is	currently	only	used	to	validate	DBCS	fields.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

Example
In	this	example,	Position	Absolutely	has	been	enabled	for	the	weblet	and	the
weblet	was	positioned	as	required	in	the	Design	view	of	the	LANSA	Editor.
This	resulted	in	the	value	shown	for	the	pos_absolute_design	property.

width_design
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width-design	and	height_design	properties.	However	you	can
directly	edit	the	property	value	if	required.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height_design
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width-design	and	height_design	properties.	However
you	can	directly	edit	the	property	values	if	required.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

rows
The	number	of	visible	rows	in	the	text	area.	This	property	sets	the	height	of	the
weblet	such	that	the	specified	number	of	rows	or	lines	of	text	will	be	visible.
If	the	height_design	property	is	specified,	it	takes	precedence	and	the	rows
property	is	ignored.

Default	value
10

Valid	values
A	number	that	specifies	the	number	of	rows.

cols
The	number	of	columns	in	the	text	area.	This	property	sets	the	width	of	the
weblet,	based	on	the	average	character	width	for	the	font	used,	such	that
approximately	the	specified	number	of	columns	of	text	will	be	visible.
If	the	width_design	property	is	specified,	it	takes	precedence	and	the	cols
property	is	ignored.

Default	value
50

Valid	values
A	number	that	specifies	the	number	of	columns.

word_wrap
This	property	specifies	how	the	weblet	should	handle	word-wrapping	when
typing	text.

Default	value
Blank.

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	following	values:

	'soft' Text	is	displayed	with	word	wrapping	and	submitted	without	carriage
returns	and	line	feeds.

'hard' Text	is	displayed	with	word	wrapping	and	submitted	with	soft	returns
and	line	feeds.

'off' Word	wrapping	is	disabled.	The	lines	appear	exactly	as	the	user	types
them.

class
The	Cascading	Style	Sheet	(CSS)	class	name	for	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

Example
The	example	shown	sets	the	CSS	class	name	to	'bold':

read_only
A	boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	will	set	the	weblet	to	read-only	if	field	#STD_FLAG	is	equal
to	'Y'.	The	expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

onchange_script
JavaScript	code	to	be	run	when	the	text	area	loses	focus	after	the	text	has	been
changed.	JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

8.2	Charting	Weblets
The	charting	weblets	provide	you	a	means	to	visualize	data.	They	are	useful	to
compare	distribution	of	values,	trends	and	proportional	part-to-whole
information.
The	charting	weblets	use	the	Google	Image	Chart	API.	The	weblets	provide	you
an	easy	way	to	request	chart	images	from	Google.

Note:	The	image	charts	is	a	service	provided	by	Google	so	you
need	to	abide	by	Google's	Chart	Usage	Policy:
Google	Chart	Usage	Policy
There's	no	limit	to	the	number	of	calls	per	day	you	can	make	to	the
Google	Chart	API.	However,	Google	reserves	the	right	to	block	any
use	that	it	regards	as	abusive.	If	you	think	your	service	may	risk	being
blocked,	contact	Google.

There	are	three	types	of	charts	you	can	create	using	the	Google	Charting
weblets:

Weblet	name Description

Google	Bar	Chart
(std_gbar_chart)

Single	and	multiple	data	series.	You	can	create	vertical,
horizontal,	grouped,	stacked,	and	overlapped	bar	charts.

Google	Line	Chart
(std_gline_chart)

Single	and	multiple	data	series.	You	can	create	various
types	of	line	charts	and	put	markers	on	data	points.

Google	Pie	Chart Simple	and	3D	pie	charts	for	single	data	series.		Use
concentric	pie	charts	for	multiple	data	series.

	

its:lansa087.CHM::/lansa/WAMEngb8_0765.HTM
its:lansa087.CHM::/lansa/WAMEngb8_0770.HTM
its:lansa087.CHM::/lansa/WAMEngb8_0775.HTM

8.2.1	Common	Chart	Topics
Chart	Data
Chart	Colors
Chart	Title,	Label	and	Legends
Chart	Margins

Chart	Data
You	provide	the	data	in	a	JSON	list.	See	JSON	Lists.	The	list	columns	must	all
be	numeric.	Each	column	is	a	data	value	in	the	series.	Each	list	row	is	a	data
series.
The	following	examples	use	a	Bar	chart	but	the	concept	applies	equally	to	the
other	charts.

Samples
Transposing	List	Rows	and	Columns

its:lansa087.chm::/lansa/wamengb3_0110.htm

Samples
Sample	single	data	series	list

Column	1 Column	2 Column	3 Column	4 Column	5

20 15 30 25 55

	

Sample	multiple	data	series	list	(Three	data	series)

Column	1 Column	2 Column	3 Column	4 Column	5

20 15 30 25 55

30 35 20 80 65

18 42 35 55 30

	

Transposing	List	Rows	and	Columns
It	is	easier	to	build	lists	where	the	data	values	are	represented	by	the	list	rows
rather	than	the	column.	Use	the	transpose	property	in	the	charts	to	transpose	the
list	rows	and	columns.
For	example	if	you	have	the	following	list:

Column	1

20

15

30

25

55

	

If	you	set	the	transpose	property	to	true,	it	is	as	if	you	were	using	the	following
list:

Column	1 Column	2 Column	3 Column	4 Column	5

20 15 30 25 55

	

Chart	Colors
If	you	don't	designate	colors,	the	charts	use	color	schemes	compatible	with	the
theme	in	use.	See	Theming	WAMs.	This	includes	series	colors,	title,	labels,
range	labels,	legends	and	background	colors.

Examples

its:lansa087.chm::/lansa/wamengb3_0060.htm

	

Chart	Title,	Label	and	Legends
You	can	add	a	title,	custom	labels	and	legends	to	all	charts.	The	property
customizers	allow	you	to	enter	text	values	or	use	multilingual	text	variables.

Chart	Margins
You	can	specify	the	size	of	the	chart's	margins,	in	pixels.	Margins	are	calculated
inward	from	the	specified	chart	size	(width	x	height);	Note	that	the	margins
don't	increase	the	total	chart	size,	but	rather	shrinks	the	chart	area,	if	necessary.
Click	on	the	margins	property	customizer	to	enter	margins.	If	you	don't	enter
margins,	Google	will	determine	them	automatically	based	on	your	chart	size.

8.2.2	Google	Bar	Chart	(std_gbar_chart)
	

QuickStart	–	Google	Bar	Chart Properties	–	Google	Bar	Chart

Bar	charts	visualize	data	points	as	vertical	or	horizontal	bars	that	are
proportional	to	the	data	value.	You	can	create,	vertical,	horizontal,	grouped,
stacked,	and	overlapped	bar	charts.
Bar	charts	are	good	for	side-by-side	comparison	and	visualizing	trends	in	a
small	number	of	discrete	data	points.

QuickStart	–	Google	Bar	Chart
To	create	a	bar	chart,	you	need	to	create	a	webroutine	that	specifies	the	a	JSON
list	with	the	data	values	in	its	WEB_MAP	as	*OUTPUT.
1.		Click	on	the	Weblets	tab,	select	Charting	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Google	Bar	Chart	weblet.

2.		Drag	the	Google	Bar	Chart	weblet	over	the	designer	and	release	the	left-
mouse	button.	A	placeholder	image	will	appear	on	the	designer.

3.		Set	the	listName	property	with	the	list	name	in	your	WEB_MAP.
4.		Use	the	transpose	property	if	you	want	to	transpose	rows	and	column
5.		Set	your	chart	title,	labels	and	legends	as	required.

Properties	–	Google	Bar	Chart

axesColor
barWidth
bgColor
chartType
height
hide_if
labels
labelsColor
labelsFontSize
legendColor
legendFontSize

legendMargins
legendOrder
legendPos
legendText
listName
margins
name
pos_absolute
rangeLabels
rangeLabelsColor

rangeLabelsFontSize
seriesColor
spaceBetweenBars
spaceBetweenGroups
titleColor
titleFontSize
titleText
transpose
width

	

name
The	name	the	weblet	is	identified	with.	Normally,	you	would	leave	this	as	the
default	and	let	LANSA	use	its	own	internal	naming	convention.	However,	you
may	want	to	use	your	own	name	if	using	JavaScript	or	XSL	that	references	the
weblet.

Default	value
A	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

chartType
The	type	of	bar	chart.	Bars	can	be	horizontal	or	vertical	and	the	bars	can	be
stacked	(atop	or	in	front	of	each	other)	or	grouped.

Default	value
Vertical	bar	chart	with	grouped	bars

Valid	values
Horizontal	bar	chart	with	stacked	bars
Vertical	bar	chart	with	stacked	bars(atop)
Vertical	bar	chart	with	stacked	bars	(in	front)
Horizontal	bar	charts	with	grouped	bars
Vertical	bar	chart	with	grouped	bars

The	horizontal	and	vertical	bar	charts	with	stacked	bars	only	work	for
lists	with	positive	values.	If	your	data	has	negative	values,	use	either
the	horizontal	or	vertical	bar	charts	with	grouped	bars.

listName
Name	of	the	JSON	list	containing	the	data	to	be	visualized	in	the	bar	chart.	Each
column	in	the	list	will	be	a	bar.	Each	row	in	the	list	is	a	series.

Default	value
No	default	value.	A	list	name	is	required.

Valid	values
The	name	of	a	JSON	list	with	valid	data	values	(numeric	series).

transpose
If	true,	the	list	columns	and	rows	are	transposed	so	that	each	column	becomes	a
series.

Default	value
False

Valid	values
false()	or	true()

labels
Labels	to	use	in	the	base	axis.

Default	value
The	chart	will	assign	sequence	numbers	to	each	data	value	or	data	series
group.

Valid	values
A	list	of	strings	or	multilingual	text	variables.

labelsColor
The	color	of	the	labels	text.

Default	value
Theme:	Uses	a	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	must	be	in	RRGGBB	hexadecimal	format.

labelsFontSize
Font	size	of	the	chart	labels,	in	pixels.

Default	value
If	not	provided,	Google	sets	it	automatically

Valid	values
A	numeric	value	in	pixels.

rangeLabels
Labels	to	use	in	the	range	axis.

Default	value
The	range	of	data	values	is	used	to	assign	range	values	at	intervals	in	the
range	axis.

Valid	values
A	list	of	strings	or	multilingual	text	variables.

rangeLabelsColor
The	color	of	the	range	labels	text.

Default	value
Theme:	Uses	a	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	must	be	in	RRGGBB	hexadecimal	format.

rangeLabelsFontSize
Font	size	of	the	chart	range	labels,	in	pixels.

Default	value
If	not	provided,	Google	sets	it	automatically

Valid	values
A	numeric	value	in	pixels.

barWidth
[Optional]	Bar	width,	in	pixels.	Enter	'spaceBetweenBars'	and
'spaceBetweenGroups'	also	in	absolute	values,	in	pixels.	Bars	can	be	clipped	if
the	chart	isn't	wide	enough.	Use	'auto-absolute'	or	'auto-relative'	to	have	bars
resized	so	that	all	bars	will	fit	in	the	chart.
Absolute	values:	Values	are	given	in	absolute	units	(or	default	absolute	values,
if	not	specified).	Bars	will	be	resized	so	that	all	bars	will	fit	in	the	chart
Relative	values:		Values	are	given	in	relative	units	(or	default	relative	values,	if
not	specified)	Relative	units	are	floating	point	values	compared	to	the	bar	width,
where	the	bar	width	is	1.0:	for	example,	0.5	is	half	the	bar	width,	2.0	is	twice
the	bar	width.	Bars	can	be	clipped	if	the	chart	isn't	wide	enough.

Default	value
23	pixels	(absolute	value)

Valid	values
Numeric	value	(in	pixels)	or	'auto-absolute'	or	'auto-relative'

spaceBetweenBars
[Optional]	Space	between	bars.	Must	be	entered	in	absolute	values,	in	pixels,	if
the	bar	width	has	been	specified	in	pixels	or	'auto-absolute'.	If	bar	width	is	'auto-
relative',	this	is	a	floating	point	value	where	1.0	is	the	bar	width.

Default	value
4	pixels	for	absolute	values,	or	4/23	for	relative	values.

Valid	values
A	numeric	value.

spaceBetweenGroups
[Optional]	Space	between	Groups.	Must	be	entered	in	absolute	values,	in	pixels,
if	the	bar	width	has	been	specified	in	pixels	or	'auto-absolute'.	If	bar	width	is
'auto-relative',	this	is	a	floating	point	value	where	1.0	is	the	bar	width.

Default	value
8	pixels	for	absolute	values,	or	8/23	for	relative	values.

Valid	values
A	numeric	value

seriesColor
Colors	to	be	used	for	each	series.	Colors	must	be	in	RRGGBB	hexadecimal
format.

Default	value
Theme:	Uses	colors	(one	for	each	data	series,	up	to	a	maximum	of	10	data
series)	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
A	comma	separated	list	of	colors.	Colors	must	be	in	RRGGBB	hexadecimal
format.

bgColor
Chart	background	color.	Color	must	be	in	RRGGBB	hexadecimal	format.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
Chart	width,	in	pixels.	Maximum	value	is	1,000.	Width	x	height	cannot	exceed
300,000.

Default	value
400	pixels

Valid	values
Numeric	value	up	to	1,000.	Width	x	height	cannot	exceed	300,000.

height
Chart	height,	in	pixels.	Maximum	value	is	1,000.	Width	x	height	cannot	exceed
300,000.

Default	value
250	pixels

Valid	values
Numeric	value	up	to	1,000.	Width	x	height	cannot	exceed	300,000.

titleText
The	chart	title.	Use	a	pipe	character	(|)	to	indicate	line	breaks.

Default	value
No	title

Valid	values
Text	string	or	multilingual	text	variable.

titleColor
The	color	of	the	chart	title.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

titleFontSize
Font	size	of	the	chart	title,	in	points.

Default	value
If	not	provided,	Google	sets	it	automatically.

Valid	values
Numeric	value,	in	points.

axesColor
The	color	of	the	chart	axes.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

margins
Minimum	margin	size	around	the	chart	area,	in	pixels	(left,	right,	top,	bottom).
Increase	this	value	to	include	some	padding	to	prevent	axis	labels	from	bumping
against	the	borders	of	the	chart.

Default	value
The	margins	are	by	default	whatever	is	left	over	after	the	chart	size	is
calculated.

Valid	values
Comma	separated	numeric	values	in	pixels	(left,	right,	top	and	bottom).

legendText
Optional.	The	text	for	the	legend	entries.	Each	label	applies	to	the
corresponding	series	in	the	data	array.	If	you	do	not	specify	this	parameter,	the
chart	will	not	get	a	legend.	There	is	no	way	to	specify	a	line	break	in	a	label.
The	legend	will	typically	expand	to	hold	your	legend	text,	and	the	chart	area
will	shrink	to	accommodate	the	legend.

Default	value
No	legends

Valid	values
Comma	separated	list	of	strings	or	multilingual	text	variables.

legendPos
Optional.	The	position	of	the	legend.	You	can	add	an	's'	to	any	value	if	you	want
empty	legend	entries	in	legendText	to	be	skipped	in	the	legend.

Default	value
Legend	to	the	right	of	the	chart,	legend	entries	in	a	vertical	column.

Valid	values
Right	of	chart,	in	vertical	column
Bottom	of	chart,	in	horizontal	row
Bottom	of	chart,	in	vertical	column
Top	of	chart,	in	horizontal	row
Top	of	chart,	in	vertical	column
Left	of	chart,	in	vertical	column

legendOrder
Optional.	The	order	of	the	legend.	Display	in	order	(Default	for	vertical
legends)	shows	labels	in	the	order	they	were	entered.	Reverse	order	is	useful	in
stacked	bar	charts	to	show	the	legend	in	the	same	order	as	the	bars	appear.
Automatic	ordering	(Default	for	horizontal	legends):	roughly	means	sorting	by
length,	shortest	first,	as	measured	in	10	pixel	blocks.	When	two	elements	are	the
same	length	(divided	into	10	pixel	blocks),	the	one	listed	first	will	appear	first.

Default	value
Display	in	order

Valid	values
Display	in	order
Reverse	order
Automatic	ordering

legendColor
The	color	of	the	legend	text.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

legendFontSize
Font	size	of	the	legend	text,	in	points.

Default	value
Automatically	set	by	Google.

Valid	values
A	numeric	value	in	points.

legendMargins
Optional.	Width	of	the	margin	around	the	legend	(width,	height),	in	pixels.	Use
this	to	avoid	having	the	legend	bump	up	against	the	chart	area	or	the	edges	of
the	image.

Default	value
Automatically	set	by	Google.

Valid	values
Comma	separated	numbers	(width,	height)	in	pixels.

8.2.3	Google	Line	Chart	(std_gline_chart)
	

QuickStart	–	Google	Line	Chart Properties	–	Google	Line	Chart

Line	charts	visualize	data	points	joined	together	by	a	line.
You	can	line	charts	in	which	your	data	values	represent	the	points	along	the
range	axis	distributed	at	even	intervals	in	the	horizontal	axis	or	you	provide
pairs	of	data	series	representing	the	x,y	pairs.
Line	charts	are	good	for	visualizing	trends	in	a	large	number	of	discrete	data
points.

QuickStart	–	Google	Line	Chart
To	create	a	line	chart,	you	need	to	create	a	webroutine	that	specifies	the	a	JSON
list	with	the	data	values	in	its	WEB_MAP	as	*OUTPUT.
1.		Click	on	the	Weblets	tab,	select	Charting	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Google	Line	Chart	weblet.

2.		Drag	the	Google	Line	Chart	weblet	over	the	designer	and	release	the	left-
mouse	button.	A	placeholder	image	will	appear	on	the	designer.

3.		Set	the	listName	property	with	the	list	name	in	your	WEB_MAP.
4.		Use	the	transpose	property	if	you	want	to	transpose	rows	and	column
5.		Set	your	chart	title,	labels	and	legends	as	required.

Properties	–	Google	Line	Chart

axesColor
bgColor
chartType
height
hide_if
labels
labelsColor
labelsFontSize
legendColor
legendFontSize

legendMargins
legendOrder
legendPos
legendText
lineThickness
listName
margins
markerColor
markerType
name

pos_absolute
rangeLabels
rangeLabelsColor
rangeLabelsFontSize
seriesColor
titleColor
titleFontSize
titleText
transpose
width

name
The	name	the	weblet	is	identified	with.	Normally,	you	would	leave	this	as	the
default	and	let	LANSA	use	its	own	internal	naming	convention.	However,	you
may	want	to	use	your	own	name	if	using	JavaScript	or	XSL	that	references	the
weblet.

Default	value
A	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

chartType
The	type	of	line	chart.	Line	charts	can	be	simple	line	chats,	sparklines	(no	axes)
and	line	chart	with	x,y	coordinates	for	each	point.

Default	value
Line	Chart

Valid	values
Line	Chart
Line	Chart	with	no	Axis	(Sparklines)
Line	Chart	with	x,y	Coordinates	for	each	Point

listName
Name	of	the	JSON	list	containing	the	data	to	be	visualized	in	the	line	chart.
Each	column	in	the	list	will	be	a	data	point.	Each	row	in	the	list	is	a	series.

Default	value
No	default	value.	A	list	name	is	required.

Valid	values
The	name	of	a	JSON	list	with	valid	data	values	(numeric	series).

transpose
If	true,	the	list	columns	and	rows	are	transposed	so	that	each	column	becomes	a
series.

Default	value
False

Valid	values
false()	or	true()

labels
Labels	to	use	in	the	base	axis.

Default	value
The	chart	will	assign	sequence	numbers	to	each	data	value	or	data	series
group.

Valid	values
A	list	of	strings	or	multilingual	text	variables.

labelsColor
The	color	of	the	labels	text.

Default	value
Theme:	Uses	a	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	must	be	in	RRGGBB	hexadecimal	format.

labelsFontSize
Font	size	of	the	chart	labels,	in	pixels.

Default	value
If	not	provided,	Google	sets	it	automatically

Valid	values
A	numeric	value	in	pixels.

rangeLabels
Labels	to	use	in	the	range	axis.

Default	value
The	range	of	data	values	is	used	to	assign	range	values	at	intervals	in	the
range	axis.

Valid	values
A	list	of	strings	or	multilingual	text	variables.

rangeLabelsColor
The	color	of	the	range	labels	text.

Default	value
Theme:	Uses	a	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	must	be	in	RRGGBB	hexadecimal	format.

rangeLabelsFontSize
Font	size	of	the	chart	range	labels,	in	pixels.

Default	value
If	not	provided,	Google	sets	it	automatically

Valid	values
A	numeric	value	in	pixels.

seriesColor
Colors	to	be	used	for	each	series.	Colors	must	be	in	RRGGBB	hexadecimal
format.

Default	value
Theme:	Uses	colors	(one	for	each	data	series,	up	to	a	maximum	of	10	data
series)	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
A	comma	separated	list	of	colors.	Colors	must	be	in	RRGGBB	hexadecimal
format.

bgColor
Chart	background	color.	Color	must	be	in	RRGGBB	hexadecimal	format.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

lineThickness
The	thickness	of	the	line	in	pixels.

Default	value
thin

Valid	values
thin
medium
thick

Example
Line	chart	with	medium	line	thickness:

markerType
Select	a	marker	type	to	add	markers	for	data	points	in	the	line	chart.

Default	value
None

Valid	values
None
Cross
Diamond
Circle
Square
An	X

Example
Line	chart	with	square	markers:

markerColor
The	color	for	the	markers.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
Chart	width,	in	pixels.	Maximum	value	is	1,000.	Width	x	height	cannot	exceed
300,000.

Default	value
400	pixels

Valid	values
Numeric	value	up	to	1,000.	Width	x	height	cannot	exceed	300,000.

height
Chart	height,	in	pixels.	Maximum	value	is	1,000.	Width	x	height	cannot	exceed
300,000.

Default	value
250	pixels

Valid	values
Numeric	value	up	to	1,000.	Width	x	height	cannot	exceed	300,000.

titleText
The	chart	title.	Use	a	pipe	character	(|)	to	indicate	line	breaks.

Default	value
No	title

Valid	values
Text	string	or	multilingual	text	variable.

titleColor
The	color	of	the	chart	title.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

titleFontSize
Font	size	of	the	chart	title,	in	points.

Default	value
If	not	provided,	Google	sets	it	automatically.

Valid	values
Numeric	value,	in	points.

axesColor
The	color	of	the	chart	axes.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

margins
Minimum	margin	size	around	the	chart	area,	in	pixels	(left,	right,	top,	bottom).
Increase	this	value	to	include	some	padding	to	prevent	axis	labels	from	bumping
against	the	borders	of	the	chart.

Default	value
The	margins	are	by	default	whatever	is	left	over	after	the	chart	size	is
calculated.

Valid	values
Comma	separated	numeric	values	in	pixels	(left,	right,	top	and	bottom).

legendText
Optional.	The	text	for	the	legend	entries.	Each	label	applies	to	the
corresponding	series	in	the	data	array.	If	you	do	not	specify	this	parameter,	the
chart	will	not	get	a	legend.	There	is	no	way	to	specify	a	line	break	in	a	label.
The	legend	will	typically	expand	to	hold	your	legend	text,	and	the	chart	area
will	shrink	to	accommodate	the	legend.

Default	value
No	legends

Valid	values
Comma	separated	list	of	strings	or	multilingual	text	variables.

legendPos
Optional.	The	position	of	the	legend.	You	can	add	an	's'	to	any	value	if	you	want
empty	legend	entries	in	legendText	to	be	skipped	in	the	legend.

Default	value
Legend	to	the	right	of	the	chart,	legend	entries	in	a	vertical	column.

Valid	values
Right	of	chart,	in	vertical	column
Bottom	of	chart,	in	horizontal	row
Bottom	of	chart,	in	vertical	column
Top	of	chart,	in	horizontal	row
Top	of	chart,	in	vertical	column
Left	of	chart,	in	vertical	column

legendOrder
Optional.	The	order	of	the	legend.	Display	in	order	(Default	for	vertical
legends)	shows	labels	in	the	order	they	were	entered.	Reverse	order	is	useful	in
stacked	bar	charts	to	show	the	legend	in	the	same	order	as	the	bars	appear.
Automatic	ordering	(Default	for	horizontal	legends):	roughly	means	sorting	by
length,	shortest	first,	as	measured	in	10	pixel	blocks.	When	two	elements	are	the
same	length	(divided	into	10	pixel	blocks),	the	one	listed	first	will	appear	first.

Default	value
Display	in	order

Valid	values
Display	in	order
Reverse	order
Automatic	ordering

legendColor
The	color	of	the	legend	text.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

legendFontSize
Font	size	of	the	legend	text,	in	points.

Default	value
Automatically	set	by	Google.

Valid	values
A	numeric	value	in	points.

legendMargins
Optional.	Width	of	the	margin	around	the	legend	(width,	height),	in	pixels.	Use
this	to	avoid	having	the	legend	bump	up	against	the	chart	area	or	the	edges	of
the	image.

Default	value
Automatically	set	by	Google.

Valid	values
Comma	separated	numbers	(width,	height)	in	pixels.

8.2.4	Google	Pie	Chart	(std_gpie_chart)
	

QuickStart	–	Google	Pie	Chart Properties	–	Google	Pie	Chart

Pie	charts	are	good	to	visualize	part-to-whole	comparisons,	like	market	share
for	products,	sales	per	product	line,	etc.
You	can	create	simple	or	3D	pie	charts	for	single	data	series.	You	can	use
concentric	pie	charts	to	visualize	multiple	data	series	with	each	data	series
showing	as	a	concentric	ring.

QuickStart	–	Google	Pie	Chart
1.		Click	on	the	Weblets	tab,	select	Charting	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Google	Pie	Chart	weblet.

2.		Drag	the	Google	Pie	Chart	weblet	over	the	designer	and	release	the	left-
mouse	button.	A	placeholder	image	will	appear	on	the	designer.

3.		Set	the	listName	property	with	the	list	name	in	your	WEB_MAP.
4.		Use	the	transpose	property	if	you	want	to	transpose	rows	and	column
5.		Set	your	chart	title,	labels	and	legends	as	required.

Properties	–	Google	Pie	Chart

bgColor
chartType
height
hide_if
labels
labelsColor
labelsFontSize
legendColor

legendFontSize
legendMargins
legendOrder
legendPos
legendText
listName
margins
name

pos_absolute
rotation
seriesColor
titleColor
titleFontSize
titleText
transpose
width

name
The	name	the	weblet	is	identified	with.	Normally,	you	would	leave	this	as	the
default	and	let	LANSA	use	its	own	internal	naming	convention.	However,	you
may	want	to	use	your	own	name	if	using	JavaScript	or	XSL	that	references	the
weblet.

Default	value
A	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

chartType
The	type	of	pie	chart.	There	are	three	general	types	of	pie	charts	that	you	can
create:	flat,	concentric,	or	3D.

Default	value
Two	dimensional	pie	chart

Valid	values
Two	dimensional	pie	chart
Three-dimensional	pie	chart
Concentric	pie	chart

Example
Three-dimensional	pie	chart:

listName
Name	of	the	JSON	list	containing	the	data	to	be	visualized	in	the	pie	chart.	Each
column	in	the	list	will	be	a	slice	in	the	pie	chart.	For	concentric	pie	charts,	each
row	in	the	list	shows	as	a	concentric	ring	in	the	pie	chart.

Default	value
No	default	value.	A	list	name	is	required.

Valid	values
The	name	of	a	JSON	list	with	valid	data	values	(numeric	series).

transpose
If	true,	the	list	columns	and	rows	are	transposed	so	that	each	column	becomes	a
series.

Default	value
False

Valid	values
false()	or	true()

labels
Labels	to	use	for	the	pie	chart	slices.

Default	value
The	chart	will	assign	sequence	numbers	to	each	slice.

Valid	values
A	list	of	strings	or	multilingual	text	variables.

labelsColor
The	color	of	the	labels	text.

Default	value
Theme:	Uses	a	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	must	be	in	RRGGBB	hexadecimal	format.

labelsFontSize
Font	size	of	the	chart	labels,	in	pixels.

Default	value
If	not	provided,	Google	sets	it	automatically

Valid	values
A	numeric	value	in	pixels.

rotation
By	default,	the	first	series	is	drawn	starting	at	3:00,	continuing	clockwise
around	the	chart.	Select	a	different	value	to	start	at	a	different	position.

Default	value
3:00

Valid	values
0:00
3:00
6:00
9:00

Example
Default	rotation	(3:00	o'clock):

Rotation	at	0:00	o'clock:

seriesColor
Colors	to	be	used	for	each	slice.	Colors	must	be	in	RRGGBB	hexadecimal
format.

Default	value
Theme:	Uses	a	monochromatic	set	of	colors,	starting	with	a	color	compatible
with	the	main	theme	color	(or	darker,	if	necessary).

Valid	values
A	comma	separated	list	of	colors.	Colors	must	be	in	RRGGBB	hexadecimal
format.

bgColor
Chart	background	color.	Color	must	be	in	RRGGBB	hexadecimal	format.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
Chart	width,	in	pixels.	Maximum	value	is	1,000.	Width	x	height	cannot	exceed
300,000.

Default	value
400	pixels

Valid	values
Numeric	value	up	to	1,000.	Width	x	height	cannot	exceed	300,000.

height
Chart	height,	in	pixels.	Maximum	value	is	1,000.	Width	x	height	cannot	exceed
300,000.

Default	value
250	pixels

Valid	values
Numeric	value	up	to	1,000.	Width	x	height	cannot	exceed	300,000.

titleText
The	chart	title.	Use	a	pipe	character	(|)	to	indicate	line	breaks.

Default	value
No	title

Valid	values
Text	string	or	multilingual	text	variable.

titleColor
The	color	of	the	chart	title.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

titleFontSize
Font	size	of	the	chart	title,	in	points.

Default	value
If	not	provided,	Google	sets	it	automatically.

Valid	values
Numeric	value,	in	points.

margins
Minimum	margin	size	around	the	chart	area,	in	pixels	(left,	right,	top,	bottom).
Increase	this	value	to	include	some	padding	to	prevent	axis	labels	from	bumping
against	the	borders	of	the	chart.

Default	value
The	margins	are	by	default	whatever	is	left	over	after	the	chart	size	is
calculated.

Valid	values
Comma	separated	numeric	values	in	pixels	(left,	right,	top	and	bottom).

legendText
Optional.	The	text	for	the	legend	entries.	Each	label	applies	to	the
corresponding	series	in	the	data	array.	If	you	do	not	specify	this	parameter,	the
chart	will	not	get	a	legend.	There	is	no	way	to	specify	a	line	break	in	a	label.
The	legend	will	typically	expand	to	hold	your	legend	text,	and	the	chart	area
will	shrink	to	accommodate	the	legend.

Default	value
No	legends

Valid	values
Comma	separated	list	of	strings	or	multilingual	text	variables.

legendPos
Optional.	The	position	of	the	legend.	You	can	add	an	's'	to	any	value	if	you	want
empty	legend	entries	in	legendText	to	be	skipped	in	the	legend.

Default	value
Legend	to	the	right	of	the	chart,	legend	entries	in	a	vertical	column.

Valid	values
Right	of	chart,	in	vertical	column
Bottom	of	chart,	in	horizontal	row
Bottom	of	chart,	in	vertical	column
Top	of	chart,	in	horizontal	row
Top	of	chart,	in	vertical	column
Left	of	chart,	in	vertical	column

legendOrder
Optional.	The	order	of	the	legend.	Display	in	order	(Default	for	vertical
legends)	shows	labels	in	the	order	they	were	entered.	Reverse	order	is	useful	in
stacked	bar	charts	to	show	the	legend	in	the	same	order	as	the	bars	appear.
Automatic	ordering	(Default	for	horizontal	legends):	roughly	means	sorting	by
length,	shortest	first,	as	measured	in	10	pixel	blocks.	When	two	elements	are	the
same	length	(divided	into	10	pixel	blocks),	the	one	listed	first	will	appear	first.

Default	value
Display	in	order

Valid	values
Display	in	order
Reverse	order
Automatic	ordering

legendColor
The	color	of	the	legend	text.

Default	value
Theme:	A	color	compatible	with	the	theme	(if	a	theme	is	present).

Valid	values
Color	in	RRGGBB	hexadecimal	format.

legendFontSize
Font	size	of	the	legend	text,	in	points.

Default	value
Automatically	set	by	Google.

Valid	values
A	numeric	value	in	points.

legendMargins
Optional.	Width	of	the	margin	around	the	legend	(width,	height),	in	pixels.	Use
this	to	avoid	having	the	legend	bump	up	against	the	chart	area	or	the	edges	of
the	image.

Default	value
Automatically	set	by	Google.

Valid	values
Comma	separated	numbers	(width,	height)	in	pixels.
	

8.3	Standard	Field	Visualizations
Standard	field	visualization	weblets	are	shipped	with	LANSA.	They	provide	a
standard	visualization	for	many	of	the	common	field	types	and	they	are	used	by
the	XSL	generator	(when	you	compile	your	WAM)	if	a	specific	field
visualization	is	not	specified	for	a	field	in	a	web_map.	For	example,	if	you
specify	a	field	of	type	DATE	in	your	web_map,	the	XSL	generator	will	use	the
std_date	field	visualization	by	default	when	it	generates	the	XSL	for	your
webroutine.
A	full	description	of	the	standard	field	visualization	weblets,	their	properties	and
how	to	use	them	in	your	own	webroutines	is	provided.

You	should	not	modify	the	shipped	weblets.	Every	time	a	Partition
Initialization	is	executed,	these	weblets	are	re-imported	and	the
original	weblets	in	the	repository	are	overwritten.	If	you	wish	to
customize	a	field	visualization	weblet,	save	it	first	with	a	different
name	in	the	LANSA	Editor	and	then	modify	the	weblet	copy.	Don't
start	your	own	weblet	names	with	'std_'	as	they	may	conflict	with
weblets	shipped	by	LANSA.

Weblet	Name Description

Alphanumeric
(std_char)

A	text	input	box	control.

Boolean
(std_boolean)

A	checkbox	control

jQuery	UI
Datepicker
(std_datepicker)

A	text	input	box	with	added	features	to	support	the
display,	entry,	prompting	and	validation	of	dates.

jQuery	UI
Datetimepicker
(std_datetimepicker)

A	text	input	box	with	added	features	to	support	the
display,	entry,	prompting	and	validation	of	datetimes.

Float	(std_float) A	text	input	box	control	specifically	configured	to
display	and	receive	floating	point	values.

Input	box A	text	input	box	control.

its:lansa087.chm::/Lansa/WAMEngb8_0780.htm
its:lansa087.chm::/Lansa/WAMEngb8_0781.htm

(std_input)

Integer	(std_integer) A	text	input	box	configured	to	display	and	receive
integer	values	with	logic	to	ensure	values	entered	are
within	the	allowable	range.

Object	(std_lob) A	hyperlink	(anchor)	to	the	webroutine	that	returns	the
LOB	content.

jQuery	UI
Timepicker
(std_timepicker)

A	text	input	box	that	supports	the	display,	entry	and
validation	of	times

Varchar
(std_varchar)

A	text	input	box	control.

	

its:lansa087.chm::/Lansa/WAMEngb8_0790.htm

8.3.1	Alphanumeric	(std_char)

QuickStart	-	Alphanumeric Properties	-	Alphanumeric

The	alphanumeric	weblet	provides	a	text	input	box	control.	It	broadly
corresponds	to	the	<input	type="text">	HTML	element.	The	weblet	looks	like
this	(when	in	'memo'	mode):

The	alphanumeric	weblet	is	used	to	display	and	receive	input	for	character	data.
It	is	the	default	weblet	for	fixed-length	character	fields	longer	than	256.

QuickStart	-	Alphanumeric
To	use	this	weblet	to	visualize	a	field	that	is	already	present	on	your	web	page,
open	the	XSL	for	your	webroutine	in	the	LANSA	Editor	and	follow	the
following	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	Alphanumeric	weblet.

2.		Drag	and	drop	the	weblet	over	the	existing	field.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		If	you	dropped	the	weblet	on	an	existing	field,	the	name,	value	and	other
properties	have	already	been	set	appropriately.	Otherwise,	set	these	properties
now	as	required	to	associate	the	weblet	with	the	required	field	in	your
webroutines	web_map.

4.		If	you	wish	the	weblet	to	act	as	a	multi-line	input	box,	select	'memo'	for	the
type	property.

Properties	-	Alphanumeric
The	Alphanumeric	weblet's	properties	are:

class
disabled
display_length
display_mode
height
hide_if

keyboard_shift
maxlength
name
pos_absolute
read_only
tab_index

title
type
value
width
word_wrap

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	and/or	that	is	used	to
receive	the	contents	of	the	input	box.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

Example
This	shows	how	the	value	is	specified	when	the	weblet	visualizes	a	field:

When	the	property	loses	focus,	the	value	is	shown	as	follows:

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

maxlength
Specifies	the	maximum	number	of	characters	the	user	can	type	in	the	weblet.
When	the	weblet	visualizes	a	field,	this	is	set	to	the	number	appropriate	for	the
field.

Default	value
Blank	(the	weblet	does	not	restrict	the	number	of	characters	the	user	can
type).

Valid	values
A	numeric	value.

display_length
The	approximate	width	of	the	weblet	input	box	in	characters	–	the	browser	sizes
the	input	box	according	to	the	number	of	characters	specified.	If	the	width
property	is	specified,	it	takes	precedence	and	the	display_length	property	is
ignored.

Default	value
Blank	(the	weblet	assumes	a	default	size).

Valid	values
A	numeric	value.

type
Specifies	the	type	of	input	control	the	weblet	implements.	This	weblet	is
designed	to	implement	an	<input	type=text>	or	an	<input	type=password>
control	or	a	<textarea>	control.	Other	types	are	possible	but	are	not	supported
for	this	weblet.

Default	value
'text'

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	following	values:

'text' Creates	a	text	entry	control.

'memo' Creates	a	multi-line	text	entry	control	with	word-wrapping.

'password' Creates	a	text	entry	control	in	which	characters	output	or	typed
are	not	visible	–	instead	an	asterisk	or	other	placeholder	character
is	shown.

keyboard_shift
The	keyboard	shift	for	the	input	field.

Default	value
The	keyboard	shift	of	the	field	with	this	weblet	visualization.	Blank
otherwise.

Valid	values
'	',	'W',	'J',	'E',	'O'	and	'U'

The	keyboard	shift	is	currently	only	used	to	validate	DBCS	fields.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

title
Specifies	a	title	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

word_wrap
If	'memo'	is	specified	for	the	type	property,	this	property	specifies	how	the
weblet	should	handle	word-wrapping	when	typing	text.

Default	value
Blank.

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	following	values:

'soft' Text	is	displayed	with	word	wrapping	and	submitted	without	carriage
returns	and	line	feeds.

'hard' Text	is	displayed	with	word	wrapping	and	submitted	with	soft	returns
and	line	feeds.

'off' Word	wrapping	is	disabled.	The	lines	appear	exactly	as	the	user	types
them.

read_only
A	boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	will	set	the	weblet	to	read-only	if	field	#STD_FLAG	is	equal
to	'Y'.	The	expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

Example
In	this	example,	Position	Absolutely	has	been	enabled	for	the	weblet	and	the
weblet	was	positioned	as	required	in	the	Design	view	of	the	LANSA	Editor.
This	resulted	in	the	value	shown	for	the	pos_absolute	property.

width
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	and	height	properties.	However	you	can	directly	edit	the
property	value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width	and	height	properties.	However	you	can	directly
edit	the	property	values	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

8.3.2	Boolean	(std_boolean)

QuickStart	-	Boolean Properties	-	Boolean

The	boolean	weblet	provides	a	checkbox	control.	It	broadly	corresponds	to	the
<input	type="checkbox">	HTML	element.	It	extends	the	checkbox	weblet	with
particular	support	for	boolean	type	fields.
A	checkbox	control	is	typically	used	to	represent	a	value	that	can	have	one	of
two	states.	For	the	Boolean	weblet	the	checkbox	represents	the	true	and	false
states.
When	used	in	a	list,	the	boolean	weblet	looks	like	this:

QuickStart	-	Boolean
Because	the	boolean	weblet	is	the	default	visualization	for	boolean	fields	you
usually	do	not	need	to	manually	add	it	to	your	web	page.	Simply	include	your
boolean	fields	in	your	web_map	or	in	a	list	that	is	present	in	your	web_map	and
they	will	be	visualized	using	the	Boolean	weblet.
If	you	need	to	add	the	weblet	to	your	page	manually,	simply	drag	the	boolean
field	from	the	Fields	tab	onto	your	page.	Alternatively,	open	the	XSL	for	your
webroutine	in	the	LANSA	Editor	and	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	Boolean	weblet.

2.		Drag	the	weblet	onto	your	page	in	the	Design	view.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		Set	the	name	and	value	properties	as	required	to	associate	the	weblet	with	the
required	field	in	your	webroutines	web_map.

Properties	-	Boolean
The	Boolean	weblet's	properties	are:

class
display_mode
hide_if

mouseover_class
name
pos_absolute

tab_index
value

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	checkbox	and/or	that	is	used	to
receive	the	state	of	the	checkbox.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

mouseover_class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet	when	the	mouse	is
moved	over	it.

Default	value
No	default	value	applies	for	this	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

8.3.3	jQuery	UI	Datepicker	(std_datepicker)
	

QuickStart	-	Datepicker Properties	-	Datepicker

The	datepicker	weblet	provides	a	text	input	box	control	with	added	features	to
support	the	display,	entry,	prompting	and	validation	of	dates.	It	broadly
corresponds	to	the	<input	type="text">	HTML	element.
An	example	of	the	weblet	is	shown	below.	This	example	shows	the	datepicker
with	default	settings:

The	datepicker	weblet	is	designed	to	work	with	the	date	data	type,	which	is
stored	in	UTC	format.

its:lansa087.CHM::/lansa/WAMEngb8_0875.HTM
its:lansa087.CHM::/lansa/WAMEngb8_0880.HTM

QuickStart	-	Datepicker
Because	the	datepicker	weblet	is	the	default	visualization	for	fields	of	type	date,
you	usually	do	not	need	to	manually	add	it	to	your	web	page.	Simply	include
your	date	fields	in	your	web_map	or	in	a	list	that	is	present	in	your	web_map
and	they	will	be	visualized	using	the	datepicker	weblet.	Similarly	fields	of	type
time	and	of	type	datetime	will	be	visualized	using	the	timepicker
(std_timepicker)	and	datetimepicker	(std_datetimepicker)	weblets.

Date	fields	created	before	Version	12	SP1	use	std_date	weblet	by
default.	To	use	std_datepicker,	change	the	weblet	visualization	in	the
field	definition.

The	Datepicker	weblet	uses	the	ISO	language	code	to	localize	some
properties	such	as	date	format,	first	day	of	the	week,	and	calendar
captions.

If	you	do	need	to	add	the	datepicker	weblet	to	your	page	manually,	simply	drag
the	date	field	from	the	Fields	tab	onto	your	page.	Alternatively,	open	the	XSL
for	your	webroutine	in	the	LANSA	Editor	and	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	jQuery	UI	Datepicker	weblet.

2.		Drag	the	weblet	onto	your	page	in	the	Design	view.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		Set	the	name	and	value	properties	as	required	to	associate	the	weblet	with	the
required	field	in	your	webroutines	web_map.

Displaying	Dates	Stored	in	Numeric	Fields
Use	intrinsics	to	map	dates	stored	in	numeric	fields	to	date	fields:

Properties	-	Datepicker
The	Datepicker	weblet's	properties	are:

allow_sqlnull
autoSize
buttonImage
buttonText
changeMonth
changeYear
dateFormat
disabled
display_mode
duration

firstDay
hide_if
maxDate
minDate
name
onchange_script
pos_absolute
selectOtherMonths
shortYearCuttoff
showAnim

showInline
showMonthAfterYear
showOn
showOtherMonths
tab_index
title
value
width
yearRange

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	and/or	that	is	used	to
receive	the	contents	of	the	input	box.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

allow_sqlnull
A	Boolean	property	which	determines	if	the	date	value	can	be	left	blank.

Note:	This	property	must	be	consistent	with	the	fields's	repository
definition	(ASQN	attribute).

Default	value
false().	If	the	weblet	is	dropped	over	a	field,	it	defaults	to	the	ASQN	attribute
of	the	field's	repository	definition.

Valid	values
true(),	false()	or	a	valid	expression.

dateFormat
The	input	format	of	the	date.	The	default	'Auto'	uses	the	default	for	the	language
(regional	setting).
See	the	Datetimepicker	weblet	for	a	full	list	of	valid	format	specifiers.

Note:	this	specifies	the	presentation	format	the	weblet	uses.	The	input
and	output	date	received	from	and	returned	to	the	webroutine	are
always	in	ISO	format.	If	you	choose	a	different	presentation	format	by
setting	this	property,	the	weblet	will	convert	to	and	from	the	internal
representation	as	required.

Default	value
'Auto'.	Uses	the	default	for	the	language	(regional	setting).

Valid	values
Any	of	the	values	listed	in	the	property	dropdown.

firstDay
Sets	the	first	day	of	the	week.

Default	value
Auto.	Uses	the	default	regional	setting.

Valid	values
A	valid	day	of	the	week.	Select	from	the	property	dropdown.

changeMonth
If	true,	you	can	change	the	month	by	selecting	from	a	drop-down	list.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

Example
Datepicker	with	property	set	to	true().

changeYear
If	true,	you	can	change	the	year	by	selecting	from	a	drop-down	list.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

Example
Datepicker	with	property	set	to	true().

yearRange
The	range	of	years	displayed	in	the	year	drop-down:	either	relative	to	today's
year	(-nn:+nn),	relative	to	the	currently	selected	year	(c-nn:c+nn),	absolute
(nnnn:nnnn),	or	combinations	of	these	formats	(nnnn:-nn).	Note	that	this	option
only	affects	what	appears	in	the	drop-down,	to	restrict	which	dates	may	be
selected	use	the	minDate	and/or	maxDate	options.

Default	value
+/1	10	selected	year

Valid	values
c-nn:c+nn:	Where	nn	is	the	number	of	years	(range	relative	to	selected	year)
-nn:+nn:	Range	relative	to	current	year.
nnnn:nnnn:	Absolute	years.

Example
c-2:c+2:	Range	of	two	years	around	selected	year
-1:+3:	From	one	year	ago	to	3	years	ahead
2000:2050:	Range	from	years	2000	to	2050

showOtherMonths
If	true,	displays	dates	in	other	months	(non-selectable)	at	the	start	or	end	of	the
current	month.	To	make	these	days	selectable	use	selectOtherMonths.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

Example
Datepicker	with	property	set	to	true().

selectOtherMonths
If	true,	days	in	other	months	shown	before	or	after	the	current	month	are
selectable.	This	only	applies	if	showOtherMonths	is	also	true.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

minDate
Set	a	minimum	selectable	date	via	a	string	in	the	current	dateFormat,	or	a
number	of	days	from	today	(e.g.	'-7')	or	a	string	of	values	and	periods	('y'	for
years,	'm'	for	months,	'w'	for	weeks,	'd'	for	days,	e.g.	'-1y	-1m'),	or	null	for	no
limit.

Default	value
no	limit

Valid	values
A	valid	expression	(as	per	in	the	description)	or	select	any	of	the	predefined
values	from	the	property	dropdown.

Example
-1y:	-1	year.

maxDate
Set	a	maximum	selectable	date	via	a	string	in	the	current	dateFormat,	or	a
number	of	days	from	today	(e.g.	'+7")	or	a	string	of	values	and	periods	('y'	for
years,	'm'	for	months,	'w'	for	weeks,	'd'	for	days,	e.g.	'+1m	+1w'),	or	null	for	no
limit.

Default	value
no	limit

Valid	values
A	valid	expression	(as	per	in	the	description)	or	select	any	of	the	predefined
values	from	the	property	dropdown.

Example
+1w:	+1	week.

shortYearCuttoff
Set	the	cutoff	year	for	determining	the	century	for	a	date	(used	in	conjunction
with	dateFormat	'y').	If	a	numeric	string	only	('0'-'99')	is	provided	then	this	value
is	used	directly.	If	a	string	value	has	a	'+'	then	it	is	added	to	the	current	year.
Once	the	cutoff	year	is	calculated,	any	dates	entered	with	a	year	value	less	than
or	equal	to	it	are	considered	to	be	in	the	current	century,	while	those	greater	than
it	are	deemed	to	be	in	the	previous	century.

Default	value
+10

Valid	values
A	string	representing	an	cutoff	year

Example
+20:	If	the	current	year	is	2015,	years	00	to	35	are	considered	to	be	years
2000	to	2035.	36	to	99	are	considered	to	be	1936	to	1999.

showInline
If	true,	Display	the	datepicker	embedded	in	the	page	instead	of	in	an	overlay.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

showOn
Whether	the	datepicker	appear	automatically	when	the	field	receives	focus,
appear	only	when	a	button	is	clicked,	or	appear	when	either	event	takes	place.

Default	value
focus

Valid	values
focus,	button	or	both

Example
Show	on	button	click:

showMonthAfterYear
If	true,	the	month	is	placed	after	the	year	in	the	header.	This	attribute	is	one	of
the	regionalization	attributes.	The	default	'Auto'	uses	the	default	for	the
language	(regional	setting).

Default	value
Auto

Valid	values
true(),	false()	or	a	valid	expression.

buttonImage
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
display	on	the	calendar	prompt	button.

Default	value
'calendar_jqui.gif'	(this	image	is	shipped	with	LANSA).

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

title
Specifies	text	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

buttonText
The	text	that	may	appear	as	tip	text	on	mouse	hover	over	the	datepicker	button.

Default	value
Blank	–	the	text	specified	for	the	title	property	is	used.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.	The	weblet	will	reserve	a	minimum
width	based	on	the	data	to	be	displayed.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	property.	However	you	can	directly	edit	the	property
value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

autoSize
Set	to	true	to	automatically	resize	the	input	field	to	accomodate	dates	in	the
current	date	format.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

showAnim
Sets	the	name	of	the	animation	used	to	show/hide	the	datepicker.

Default	value
show

Valid	values
show,	slideDown	or	fadeIn

duration
Controls	the	speed	at	which	the	datepicker	appears.	Choose	one	of	three
predefined	speeds.

Default	value
normal

Valid	values
slow,	normal	or	fast

onchange_script
JavaScript	code	to	be	run	when	the	input	box	loses	focus	after	the	text	has	been
changed.	JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

8.3.4	jQuery	UI	Datetimepicker	(std_datetimepicker)
	

QuickStart	-	Datetimepicker Properties	-	Datetimepicker

The	datetimepicker	weblet	provides	a	text	input	box	control	with	added	features
to	support	the	display,	entry,	prompting	and	validation	of	datetimes.	It	broadly
corresponds	to	the	<input	type="text">	HTML	element.
An	example	of	the	weblet	is	shown	below.	This	example	shows	the
datetimepicker	with	default	settings:

The	datetimepicker	weblet	is	designed	to	work	with	the	datetime	data	type,
which	is	stored	in	UTC	format.

its:lansa087.CHM::/LANSA/wamengb8_0885.HTM
its:lansa087.CHM::/LANSA/wamengb8_0890.HTM

QuickStart	-	Datetimepicker
Because	the	datetimepicker	weblet	is	the	default	visualization	for	fields	of	type
datetime,	you	usually	do	not	need	to	manually	add	it	to	your	web	page.	Simply
include	your	date	fields	in	your	web_map	or	in	a	list	that	is	present	in	your
web_map	and	they	will	be	visualized	using	the	datetimepicker	weblet.	Similarly
fields	of	type	time	and	of	type	date	will	be	visualized	using	the	timepicker
(std_timepicker)	and	datepicker	(std_datepicker)	weblets.

Datetime	fields	created	before	version	12	SP1	use	the	std_datetime
weblet	by	default.	To	use	std_datetimepicker,	change	the	weblet
visualization	in	the	field	definition.

The	Datetimepicker	weblet	uses	the	ISO	language	code	to	localize
some	properties	(e.g.	date	format,	first	day	of	the	week)	and	calendar
and	time	slider	captions.

If	you	do	need	to	add	the	datetimepicker	weblet	to	your	page	manually,	simply
drag	the	datetime	field	from	the	Fields	tab	onto	your	page.	Alternatively,	open
the	XSL	for	your	webroutine	in	the	LANSA	Editor	and	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	jQuery	UI	Datetimepicker	weblet.

2.		Drag	the	weblet	onto	your	page	in	the	Design	view.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		Set	the	name	and	value	properties	as	required	to	associate	the	weblet	with	the
required	field	in	your	webroutines	web_map.

Properties	-	Datetimepicker
The	Datetimepicker	weblet's	properties	are:

allow_sqlnull
autoSize
buttonImage
buttonText
changeMonth
changeYear
dateFormat
disabled
display_in_utc
display_mode
duration
firstDay

hide_if
hourMax
hourMin
maxDate
minDate
minuteMax
minuteMin
name
onchange_script
pos_absolute
selectOtherMonths
shortYearCuttoff

showAnim
showMonthAfterYear
showOn
showOtherMonths
stepHour
stepMinute
stepSecond
tab_index
timeFormat
title
value
width
yearRange

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	and/or	that	is	used	to
receive	the	contents	of	the	input	box.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

display_in_utc
A	Boolean	property	which	determines	if	the	datetimepicker	displays	the
datetime's	UTC		value	or	the	datetime's	local	value.

Default	value
false().	If	the	weblet	is	dropped	over	a	field,	it	defaults	to	the	DUTC	attribute
of	the	field's	repository	definition.

Valid	values
true(),	false()	or	a	valid	expression.

allow_sqlnull
A	Boolean	property	which	determines	if	the	datetime	value	can	be	left	blank.

Note:	This	property	must	be	consistent	with	the	fields's	repository
definition	(ASQN	attribute).

Default	value
false().	If	the	weblet	is	dropped	over	a	field,	it	defaults	to	the	ASQN	attribute
of	the	field's	repository	definition.

Valid	values
true(),	false()	or	a	valid	expression.

dateFormat
The	input	format	of	the	date	portion	of	the	datetime.	The	default	'Auto'	uses	the
default	for	the	language	(regional	setting).

Note:	this	specifies	the	presentation	format	the	weblet	uses.	The	input
and	output	datetime	received	from	and	returned	to	the	webroutine	are
always	in	ISO	format.	If	you	choose	a	different	presentation	format	by
setting	this	property,	the	weblet	will	convert	to	and	from	the	internal
representation	as	required.

Default	value
'Auto'.	Uses	the	default	for	the	language	(regional	setting).

Valid	values
The	following	formats	are	supported:

Date	Format Example

dd/mm/yyyy 09/06/2025

dd/mm/yy 09/06/25

dd-mm-yyyy 09-06-2025

dd-mm-yy 09-06-25

mm/dd/yyyy 06/09/2025

mm/dd/yy 06/09/25

mm-dd-yyyy 06-09-2025

mm-dd-yy 06-09-25

yyyy-mm-dd 2025-06-09

yy-mm-dd 25-06-09

yyyy/mm/dd 2025/06/09

yy/mm/dd 25/06/09

d-M-yy 9-Jun-25

d-M-yyyy 9-Jun-2025

d	M,	yy 9	Jun,	25

d	M,	yyyy 9	Jun,	2025

d-MM-yy 9-Jun-25

d-MM-yyyy 9-Jun-2025

d	MM,	yy 9	Jun,	25

d	MM,	yyyy 9	Jun,	2025

dd-M-yy 09-Jun-25

dd-M-yyyy 09-Jun-2025

dd	M,	yy 09	Jun,	25

dd	M,	yyyy 09	Jun,	2025

dd-MM-yy 09-June-25

dd-MM-yyyy 09-June-2025

dd	MM,	yy 09	June,	25

dd	MM,	yyyy 09	June,	2025

yy-M-d 25-Jun-9

yyyy-M-d 2025-Jun-9

yy	M,	dd 25	Jun,	09

yyyy	M,	dd 2025	Jun,	09

yy-MM-d 25-June-9

yyyy-MM-d 2025-June-9

yy	MM,	d 25	June,	9

yyyy	MM,	d 2025	June,	9

yy-M-dd 25-Jun-09

yyyy-M-dd 2025-Jun-09

yy	M,	dd 25	Jun,	09

yyyy	M,	dd 2025	Jun,	09

yy-MM-dd 25-June-09

yyyy-MM-dd 2025-June-09

yy	MM,	dd 25	June,	09

yyyy	MM,	dd 2025	June,	09

DDDDDD,	d	MM	yyyy Monday,	9	June	2025

DDDDDD,	d	MM	yy Monday,	9	June	25

DDDDDD,	dd	MM	yyyy Monday,	09	June	2025

DDDDDD,	dd	MM	yy Monday,	09	June	25

	

timeFormat
The	input	format	of	the	time	portion	of	the	datetime.	The	default	'Auto'	uses	the
default	for	the	language	(regional	setting).	

Default	value
'Auto'.	Uses	the	default	for	the	language	(regional	setting).

Valid	values
The	following	formats	are	supported:

Time	Format Example

H:mm 15:30

H:mm:ss 15:30:00

HH:mm 15:30

HH:mm:ss 15:30:00

h:mm	T 3:30	PM

h:mm	t 3:30	pm

hh:mm	T 03:30	PM

hh:mm	t 03:30	pm

hh:mm:ss	T 03:30:00	PM

hh:mm:ss	t 03:30:00	pm

	

	

firstDay
Sets	the	first	day	of	the	week.

Default	value
Auto.	Uses	the	default	regional	setting.

Valid	values
A	valid	day	of	the	week.	Select	from	the	property	dropdown.

changeMonth
If	true,	you	can	change	the	month	by	selecting	from	a	drop-down	list.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

Example
Datetimepicker	with	property	set	to	true():

changeYear
If	true,	you	can	change	the	year	by	selecting	from	a	drop-down	list.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

Example
Datetimepicker	with	property	set	to	true():

yearRange
The	range	of	years	displayed	in	the	year	drop-down:	either	relative	to	today's
year	(-nn:+nn),	relative	to	the	currently	selected	year	(c-nn:c+nn),	absolute
(nnnn:nnnn),	or	combinations	of	these	formats	(nnnn:-nn).	Note	that	this	option
only	affects	what	appears	in	the	drop-down,	to	restrict	which	dates	may	be
selected	use	the	minDate	and/or	maxDate	options.

Default	value
+/1	10	selected	year

Valid	values
c-nn:c+nn:	Where	nn	is	the	number	of	years	(range	relative	to	selected	year)
-nn:+nn:	Range	relative	to	current	year.
nnnn:nnnn:	Absolute	years.

Example
c-2:c+2:	Range	of	two	years	around	selected	year
-1:+3:	From	one	year	ago	to	3	years	ahead
2000:2050:	Range	from	years	2000	to	2050

showOtherMonths
If	true,	displays	dates	in	other	months	(non-selectable)	at	the	start	or	end	of	the
current	month.	To	make	these	days	selectable	use	selectOtherMonths.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

Example
Datetimepicker	with	property	set	to	true():

selectOtherMonths
If	true,	days	in	other	months	shown	before	or	after	the	current	month	are
selectable.	This	only	applies	if	showOtherMonths	is	also	true.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

minDate
Set	a	minimum	selectable	date	via	a	string	in	the	current	dateFormat,	or	a
number	of	days	from	today	(e.g.	'-7')	or	a	string	of	values	and	periods	('y'	for
years,	'm'	for	months,	'w'	for	weeks,	'd'	for	days,	e.g.	'-1y	-1m'),	or	null	for	no
limit.

Default	value
no	limit

Valid	values
A	valid	expression	(as	per	in	the	description)	or	select	any	of	the	predefined
values	from	the	property	dropdown.

Example
-1y:	-1	year.

maxDate
Set	a	maximum	selectable	date	via	a	string	in	the	current	dateFormat,	or	a
number	of	days	from	today	(e.g.	'+7")	or	a	string	of	values	and	periods	('y'	for
years,	'm'	for	months,	'w'	for	weeks,	'd'	for	days,	e.g.	'+1m	+1w'),	or	null	for	no
limit.

Default	value
no	limit

Valid	values
A	valid	expression	(as	per	in	the	description)	or	select	any	of	the	predefined
values	from	the	property	dropdown.

Example
+1w:	+1	week.

stepHour
Hours	step	interval	in	the	datetimepicker	hour	slider

Default	value
1	hour

Valid	values
An	integer

Example
1	(1	hour)

stepMinute
Minutes	step	interval	in	the	datetimepicker	minute	slider

Default	value
1	minute

Valid	values
An	integer

Example
15	(15	minutes)

stepSecond
Seconds	step	interval	in	the	datetimepicker	seconds	slider

Default	value
1	second

Valid	values
An	integer

Example
10	(10	seconds)

shortYearCuttoff
Set	the	cutoff	year	for	determining	the	century	for	a	date	(used	in	conjunction
with	dateFormat	'y').	If	a	numeric	string	only	('0'-'99')	is	provided	then	this	value
is	used	directly.	If	a	string	value	has	a	'+'	then	it	is	added	to	the	current	year.
Once	the	cutoff	year	is	calculated,	any	dates	entered	with	a	year	value	less	than
or	equal	to	it	are	considered	to	be	in	the	current	century,	while	those	greater	than
it	are	deemed	to	be	in	the	previous	century.

Default	value
+10

Valid	values
A	string	representing	an	cutoff	year

Example
+20:	If	the	current	year	is	2015,	years	00	to	35	are	considered	to	be	years
2000	to	2035.	36	to	99	are	considered	to	be	1936	to	1999.

hourMin
Minimum	hour	in	Timepicker	slider

Default	value
0

Valid	values
0	to	23

hourMax
Maximum	hour	in	Timepicker	slider

Default	value
23

Valid	values
0	to	23

minuteMin
Minimum	minute	in	Timepicker	slider

Default	value
0

Valid	values
0	to	59

minuteMax
Maximum	minute	in	Timepicker	slider

Default	value
59

Valid	values
0	to	59

showOn
Whether	the	datetimepicker	appear	automatically	when	the	field	receives	focus,
appear	only	when	a	button	is	clicked,	or	appear	when	either	event	takes	place.

Default	value
focus

Valid	values
focus,	button	or	both

Example
Show	on	button	click:

showMonthAfterYear
If	true,	the	month	is	placed	after	the	year	in	the	header.	This	attribute	is	one	of
the	regionalization	attributes.	The	default	'Auto'	uses	the	default	for	the
language	(regional	setting).

Default	value
Auto

Valid	values
true(),	false()	or	a	valid	expression.

buttonImage
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
display	on	the	calendar	prompt	button.

Default	value
'calendar_jqui.gif'	(this	image	is	shipped	with	LANSA).

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

title
Specifies	text	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

buttonText
The	text	that	may	appear	as	tip	text	on	mouse	hover	over	the	datetimepicker
button.

Default	value
Blank	–	the	text	specified	for	the	title	property	is	used.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.	The	weblet	will	reserve	a	minimum
width	based	on	the	data	to	be	displayed.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	property.	However	you	can	directly	edit	the	property
value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

autoSize
Set	to	true	to	automatically	resize	the	input	field	to	accomodate	datetimes	in	the
current	date	and	time	format.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

showAnim
Sets	the	name	of	the	animation	used	to	show/hide	the	datetimepicker.

Default	value
show

Valid	values
show,	slideDown	or	fadeIn

duration
Controls	the	speed	at	which	the	datetimepicker	appears.	Choose	one	of	three
predefined	speeds.

Default	value
normal

Valid	values
slow,	normal	or	fast

onchange_script
JavaScript	code	to	be	run	when	the	input	box	loses	focus	after	the	text	has	been
changed.	JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

8.3.5	Float	(std_float)

QuickStart	-	Float Properties	-	Float

The	float	weblet	provides	a	text	input	box	control	specifically	configured	to
display	and	receive	floating	point	values	and	includes	validation	logic	to	ensure
that	values	entered	are	within	the	allowable	range	for	the	specified	floating
point	size.	The	weblet	looks	like	this	(for	clarity,	the	label	for	the	input	box	is
shown	but	is	not	part	of	the	weblet):

The	float	weblet	is	the	default	visualization	for	floating	point	fields.	It	broadly
corresponds	to	the	<input	type="text">	HTML	element.

QuickStart	-	Float
Because	the	float	weblet	is	the	default	visualization	for	floating	point	fields	you
usually	do	not	need	to	manually	add	it	to	your	web	page	–	instead,	simply
customize	the	weblet	properties	as	required.
If	you	do	need	to	add	the	weblet	to	your	page	manually,	simply	drag	the	floating
point	field	from	the	Fields	tab	onto	your	page.	Alternatively,	open	the	XSL	for
your	webroutine	in	the	LANSA	Editor	and	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	Float	weblet.

2.		Drag	the	weblet	onto	your	page	in	the	Design	view.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		Set	the	name	and	value	properties	as	required	to	associate	the	weblet	with	the
required	field	in	your	webroutines	web_map.

4.		Set	the	maxlength	and	size	properties	according	to	the	field	definition.

Properties	-	Float
The	Float	weblet's	properties	are:

class
disabled
display_mode
height
hide_if

maxlength
name
pos_absolute
read_only

tab_index
title
type
value
widthsize

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	and/or	that	is	used	to
receive	the	contents	of	the	input	box.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

Example
This	shows	how	the	value	is	specified	when	the	weblet	visualizes	a	field:

When	the	property	loses	focus,	the	value	is	shown	as	follows:

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

maxlength
Specifies	the	maximum	number	of	characters	the	user	can	type	in	the	weblet.
When	the	weblet	visualizes	a	field,	this	is	set	to	the	number	appropriate	for	the
field,	including	allowances	for	a	sign	and	numeric	editing.

Default	value
Blank	(the	weblet	does	not	restrict	the	number	of	characters	the	user	can
type).

Valid	values
A	numeric	value.

size
The	size	of	the	weblet	data	in	characters/bytes.	For	the	float	weblet	this	is	used
to	validate	the	allowable	range	of	values	that	can	be	entered.

Default	value
Blank	(the	weblet	assumes	the	maximum	floating	point	size	for	validation).

Valid	values
Floating	point	fields	may	be	4	or	8	bytes	in	length.	One	of	those	values
should	be	used	for	correct	validation.

type
Specifies	the	type	of	input	control	the	weblet	implements.	This	weblet	is
designed	to	implement	an	<input	type=text>	or	an	<input	type=password>
control.	Other	types	are	possible	but	are	not	supported	for	this	weblet.

Default	value
'text'

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	following	values:

	'text' Creates	a	text	entry	control.

'password' Creates	a	text	entry	control	in	which	characters	output	or	typed	are
not	visible	–	instead	an	asterisk	or	other	placeholder	character	is
shown.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

title
Specifies	a	title	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

read_only
A	boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	will	set	the	weblet	to	read-only	if	field	#STD_FLAG	is	equal
to	'Y'.	The	expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	and	height	properties.	However	you	can	directly	edit	the
property	value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width	and	height	properties.	However	you	can	directly
edit	the	property	values	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

8.3.6	Input	box	(std_input)

QuickStart	-	Input	box Properties	-	Input	box

The	input	box	weblet	provides	a	text	input	box	control.	It	broadly	corresponds
to	the	<input	type="text">	HTML	element.	The	weblet	looks	like	this	(for
clarity,	the	label	for	the	input	box	is	shown	but	is	not	part	of	the	weblet):

The	input	box	is	used	to	display	and	receive	input	for	both	numeric	and
character	data.	It	is	a	generalized	weblet	upon	which	a	number	of	other	more
specialized	weblets	are	based.	In	many	cases	one	of	the	specialized	weblets	may
better	suit	your	purpose.	They	include	std_char,	std_varchar,	std_float	and
std_integer.

QuickStart	-	Input	box
To	use	this	weblet	to	visualize	a	field	that	is	already	present	on	your	web	page,
open	the	XSL	for	your	webroutine	in	the	LANSA	Editor	and	follow	the
following	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	Input	box	weblet.

2.		Drag	and	drop	the	weblet	over	the	existing	field.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		If	you	dropped	the	weblet	on	an	existing	field,	the	name,	value	and	other
properties	have	already	been	set	appropriately.	Otherwise,	set	these	properties
now	as	required	to	associate	the	weblet	with	the	required	field	in	your
webroutines	web_map.

Note:	depending	on	the	definition	of	the	field	in	your	webroutine,	the
generated	XSL	may	already	visualize	the	field	using	one	of	the
std_char	or	std_varchar	field	visualization	weblets.	These	weblets
provide	much	of	the	functionality	of	the	input	box	weblet	with
additional	features.

Properties	-	Input	box
The	Input	box	weblet's	properties	are:

class keyboard_shift size

disabled maxlength tab_index

display_length name title

display_mode onchange_script type

height pos_absolute value

hide_if read_only width

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	and/or	that	is	used	to
receive	the	contents	of	the	input	box.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

Example
This	shows	how	the	value	is	specified	when	the	weblet	visualizes	a	field:

When	the	property	loses	focus,	the	value	is	shown	as	follows:

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

maxlength
Specifies	the	maximum	number	of	characters	the	user	can	type	in	the	weblet.
When	the	weblet	visualizes	a	field,	this	is	set	to	the	number	appropriate	for	the
field.

Default	value
Blank	(the	weblet	does	not	restrict	the	number	of	characters	the	user	can
type).

Valid	values
A	numeric	value.

size
The	size	of	the	weblet	data	in	characters/bytes.
This	property	is	currently	not	implemented	–	use	the	maxlength	and/or
display_length	properties	instead.

display_length
The	approximate	size	of	the	weblet	input	box	in	characters	–	the	browser	sizes
the	input	box	according	to	the	number	of	characters	specified.	If	the	width
property	is	specified,	it	takes	precedence	and	the	display_length	property	is
ignored.

Default	value
Blank	(the	weblet	assumes	a	default	size).

Valid	values
A	numeric	value.

type
Specifies	the	type	of	input	control	the	weblet	implements.	This	weblet	is
designed	to	implement	an	<input	type=text>	or	an	<input	type=password>
control.	Other	types	are	possible	but	are	not	supported	for	this	weblet.

Default	value
'text'

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	following	values:

	'text' Creates	a	text	entry	control.

'password' Creates	a	text	entry	control	in	which	characters	output	or	typed	are
not	visible	–	instead	an	asterisk	or	other	placeholder	character	is
shown.

keyboard_shift
The	keyboard	shift	for	the	input	field.

Default	value
The	keyboard	shift	of	the	field	with	this	weblet	visualization.	Blank
otherwise.

Valid	values
Char	and	String	data	types:	'	',	'W',	'J',	'E',	'O'	and	'U'
Alpha	data	type:	'	',	'X',	'A',	'N',	"W',	'I',	'D',	'M',	'J',	'E'	and	'O'

The	keyboard	shift	is	currently	only	used	to	validate	DBCS	fields.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

title
Specifies	a	title	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

read_only
A	boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	will	set	the	weblet	to	read-only	if	field	#STD_FLAG	is	equal
to	'Y'.	The	expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	and	height	properties.	However	you	can	directly	edit	the
property	value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width	and	height	properties.	However	you	can	directly
edit	the	property	values	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

onchange_script
JavaScript	code	to	be	run	when	the	input	box	loses	focus	after	the	text	has	been
changed.	JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

8.3.7	Integer	(std_integer)

QuickStart	-	Integer Properties	-	Integer

The	integer	weblet	provides	a	text	input	box	control	specifically	configured	to
display	and	receive	integer	values	and	includes	validation	logic	to	ensure	that
values	entered	are	within	the	allowable	range	for	the	specified	integer	size.	The
weblet	looks	like	this	(for	clarity,	the	label	for	the	input	box	is	shown	but	is	not
part	of	the	weblet):

The	integer	weblet	is	the	default	visualization	for	integer	fields.	It	broadly
corresponds	to	the	<input	type="text">	HTML	element.

QuickStart	-	Integer
Because	the	integer	weblet	is	the	default	visualization	for	integer	fields	you
usually	do	not	need	to	manually	add	it	to	your	web	page	–	instead,	simply
customize	the	weblet	properties	as	required.
If	you	do	need	to	add	the	weblet	to	your	page	manually,	simply	drag	the	integer
field	from	the	Fields	tab	onto	your	page.	Alternatively,	open	the	XSL	for	your
webroutine	in	the	LANSA	Editor	and	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	Integer	weblet.

2.		Drag	the	weblet	onto	your	page	in	the	Design	view.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		Set	the	name	and	value	properties	as	required	to	associate	the	weblet	with	the
required	field	in	your	webroutines	web_map.

4.		Set	the	maxlength	and	size	properties	according	to	the	field	definition.

Properties	-	Integer
The	Integer	weblet's	properties	are:

class maxlength tab_index

disabled name title

display_mode pos_absolute type

height read_only value

hide_if size width

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	and/or	that	is	used	to
receive	the	contents	of	the	input	box.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

Example
This	shows	how	the	value	is	specified	when	the	weblet	visualizes	a	field:

When	the	property	loses	focus,	the	value	is	shown	as	follows:

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

maxlength
Specifies	the	maximum	number	of	characters	the	user	can	type	in	the	weblet.
When	the	weblet	visualizes	a	field,	this	is	set	to	the	number	appropriate	for	the
field,	including	allowances	for	a	sign	and	numeric	editing.

Default	value
Blank	(the	weblet	does	not	restrict	the	number	of	characters	the	user	can
type).

Valid	values
A	numeric	value.

size
The	size	of	the	weblet	data	in	characters/bytes.	For	the	integer	weblet	this	is
used	to	validate	the	allowable	range	of	values	that	can	be	entered.

Default	value
Blank	(the	weblet	assumes	the	maximum	integer	size	for	validation).

Valid	values
Integers	may	be	1,	2,	4	or	8	bytes	in	length.	One	of	those	values	should	be
used	for	correct	validation.

type
Specifies	the	type	of	input	control	the	weblet	implements.	This	weblet	is
designed	to	implement	an	<input	type=text>	or	an	<input	type=password>
control.	Other	types	are	possible	but	are	not	supported	for	this	weblet.

Default	value
'text'

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	following	values:

'text' Creates	a	text	entry	control

'password' Creates	a	text	entry	control	in	which	characters	output	or	typed
are	not	visible	–	instead	an	asterisk	or	other	placeholder	character
is	shown.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

title
Specifies	a	title	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

read_only
A	boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	will	set	the	weblet	to	read-only	if	field	#STD_FLAG	is	equal
to	'Y'.	The	expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	and	height	properties.	However	you	can	directly	edit	the
property	value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width	and	height	properties.	However	you	can	directly
edit	the	property	values	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

8.3.8	Object	(std_lob)

QuickStart	-	Object Properties	-	Object

The	Object	weblet	provides	a	hyperlink	control.	It	broadly	corresponds	to	the
<a>	(anchor)	HTML	element	that	designates	the	destination	of	a	hypertext	link.
It	is	very	similar	in	function	to	the	standard	Anchor	weblet	(std_anchor).

The	Object	weblet	can	display	an	image	and/or	text	to	represent	the	link.	It	is
used	to	specify	the	WAM	and	webroutine	that	serves	the	Object	content.
The	image	or	text	can	be	static	(specified	as	literals	in	the	weblet	properties)
or	can	be	determined	by	nominated	fields,	system	variables	or	multilingual
variables.

Note:	"Object"	in	the	context	of	this	weblet	refers	to	the	contents	of	a
LOB	or	a	stream	file.

The	Object	weblet	looks	like	this:

In	the	example	above,	when	the	user	clicks	on	the	hyperlink	the	webroutine	that
serves	the	Object	is	invoked	and	the	Object	is	sent	to	the	user	agent.

QuickStart	-	Object
To	use	a	Object	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	Object	weblet.

2.		Drag	the	Object	weblet	over	an	empty	space	or	over	a	LOB	field	and	release
the	left-mouse	button.	Select	the	hyperlink	and	then	click	on	the	Details	tab	If
you	dropped	the	weblet	on	a	LOB	field,	you	should	see	that	the	name	and
value	properties	for	the	Object	weblet	have	already	been	set	according	to	the
field	upon	which	it	was	dropped.

3.		If	the	weblet	is	used		in	a	list	column,	set	the	currentrowhfield	and
currentrownumval	properties	as	described	in	the	property	descriptions	(if
required).

4.		Set	the	on_click_wrname	property	to	the	name	of	the	webroutine	that	serves
the	Object.	If	the	webroutine	is	in	a	different	WAM	to	the	current	webroutine
then	you	will	need	to	set	the	on_click_wamname	property	as	well.

Properties	-	Object
The	Object	weblet's	properties	are:

absolute-image-path
class
currentrowhfield
currentrownumval
formname
hide_if
mouseover_class
name

on_click_wamname
on_click_wrname
pos_absolute_design
presubmit_js
protocol
reentryfield
reentryvalue
relative-image-path

show_in_new_window
tab_index
target_window_name
text_class
value
vf_wamevent
width_design

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
This	property	specifies	the	text	that	is	displayed	for	the	hyperlink.	If	the	weblet
visualizes	a	field,	this	will	identify	the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	if	not	dropped	over	a	field.	If	dropped	over	a	field,
the	default	is	the	value	of	the	field.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable	(the	corresponding	ellipses	button	in	the	property	sheet	can	be
clicked	to	choose	one	from	a	list).	The	hyperlink	may	also	display	an	image
in	addition	to	or	instead	of	text	–	see	the	relative-image-path	and	absolute-
image-path	properties.

currentrowhfield
The	field	name	to	be	used	to	post	to	the	target	webroutine	the	value	that	is
specified	in	the	currentrownumval	property.	The	field	name	should	be	in	single
quotes.
See	the	description	of	the	currentrownumval	property	for	further	information.

Default	value
'STDROWNUM'

Valid	values
Single-quoted	text.

Example
This	example	specifies	the	field	name	ROWNUM	as	the	field	name	to	be
used	to	post	the	value	to	the	target	webroutine.	The	target	webroutine	would
need	to	have	field	ROWNUM	in	its	WEB_MAP	for	*BOTH	or	for	*INPUT
in	order	to	receive	the	value:

currentrownumval
The	value	to	post	to	the	target	webroutine	in	the	field	specified	in	the
currentrowhfield	property.	If	that	field	is	alphanumeric,	the	value	must	be
specified	in	single	quotes.	If	it	is	numeric,	the	value	can	be	specified	with	or
without	quotes.
This	property	is	used	in	conjunction	with	the	currentrowhfield	property	to
describe	how	to	post	values	to	a	target	webroutine.	These	two	pieces	of
information	are	required	to	accomplish	this:
1.		currentrowhfield:		the	field	name	that	the	target	webroutine	uses	to	refer	to
the	information

2.		currentrownumval:		a	literal	value	or	a	field	name	in	this	(the	source)
webroutine	that	contains	the	necessary	information

Note:	Despite	the	name	of	the	property	being	currentrownumval,	the	field
name	specified	in	currentrownumval	is	not	required	to	be	a	numeric	field.

Default	value
position()

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

Example
This	example	specifies	the	ROWNUM	field	from	the	current	list	row	as	the
field	whose	value	is	posted	to	the	target	webroutine:

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.
See	the	description	of	the	reentryvalue	property	for	further	information.

Default	value
'STDRENTRY'

Valid	values
Single-quoted	text.

reentryvalue
The	value	to	post	to	the	target	webroutine	in	the	field	specified	in	the
reentryfield	property.	If	that	field	is	alphanumeric,	the	value	must	be	specified	in
single	quotes.	If	it	is	numeric,	the	value	can	be	specified	with	or	without	quotes.
This	property	is	used	in	conjunction	with	the	reentryfield	property	to	describe
how	to	post	values	to	a	target	webroutine.	These	two	pieces	of	information	are
required	to	accomplish	this:
1.		reentryfield:		the	field	name	that	the	target	webroutine	uses	to	refer	to	the
information

2.		reentryvalue:		a	literal	value	or	a	field	name	in	this	(the	source)	webroutine
that	contains	the	necessary	information

Default	value
'D'

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	the	XPath	expression	area:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

on_click_wamname
Specifies	the	name	of	the	WAM	whose	webroutine	sends	the	Object	when	the
hyperlink	is	clicked.	(The	webroutine	name	is	specified	in	the	on_click_wrname
property.)

Default	value
If	not	specified,	the	current	WAM	is	used.	($lweb_WAMName)

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_click_wrname
Specifies	the	name	of	the	webroutine	that	sends	the	Object	when	the	hyperlink
is	clicked.	(The	name	of	the	WAM	containing	the	webroutine	is	specified	in	the
on_click_wamname	property.)

Default	value
No	default	value	applies	–	the	on_click_wrname	property	must	be	specified

Valid	values
The	name	of	an	Object	serving	Webroutine	in	single	quotes.	The	Object	
serving	Webroutine	must	exist	in	the	WAM	specified	in	the
on_click_wamname	property.	A	list	of	known	Webroutines	can	be	displayed
by	clicking	the	corresponding	dropdown	button	on	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	specified	in	the	on_click_wrname	property.
Typically	you	might	use	this	property	when	it	is	necessary	to	switch	to	or	from
secure-mode	processing.	Otherwise	it	is	not	usually	necessary	to	specify	this
property.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	If	specified,	it	is	usually	'http:'	or	'https:'.

show_in_new_window
A	boolean	property,	the	result	of	which	determines	whether	the	Object	should	be
shown	in	a	new	browser	window.

Default	value
false()	–	response	Object	is	shown	in	the	current	browser	window.

Valid	values
true(),	false()	or	a	valid	expression.

target_window_name
The	name	of	the	window,	or	frame,	in	which	the	Object	will	be	shown.

Default	value
Blank	–	the	Object	will	be	shown	in	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.

pos_absolute_design
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	Position
Absolutely	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned)

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width-design	property.	However	you	can	directly	edit	the
property	value	if	required.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

relative-image-path
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
be	displayed.

Default	value
Blank	–	no	image	is	displayed.

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

absolute-image-path
The	path	and	file	name	of	the	image	to	be	displayed.	If	specified,	the
relative_image_path	property	should	be	left	blank.

Default	value
Blank	–	the	default	is	to	use	the	image	specified	in	the	relative_image_path
property.

Valid	values
The	path	and	name	of	an	image	enclosed	in	single	quotes.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

mouseover_class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet	when	the	mouse	is
moved	over	it.

Default	value
No	default	value	applies	for	this	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

text_class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	text	of	the	weblet.

Default	value
The	name	of	the	shipped	text	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

presubmit_js
JavaScript	code	to	be	run	prior	to	navigating	to	the	destination	of	the	hyperlink.
JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

vf_wamevent
VLF	WAM	event	string

Default	value
Blank.

Valid	values
String	value.	Comma	(',')	not	allowed.

8.3.9	jQuery	UI	Timepicker	(std_timepicker)
	

QuickStart	-	Timepicker Properties	-	Timepicker

The	timepicker	weblet	provides	a	text	input	box	control	with	added	features	to
support	the	display,	entry	and	validation	of	times.	It	broadly	corresponds	to	the
<input	type="text">	HTML	element.
An	example	of	the	weblet	is	shown	below:

The	timepicker	weblet	is	used	with	fields	of	type	time.	If	you	use	this	type,	the
data	will	automatically	be	passed	in	the	format	expected	by	the	weblet.

its:lansa087.CHM::/lansa/WAMEngb8_0895.HTM
its:lansa087.CHM::/lansa/WAMEngb8_0900.HTM

QuickStart	-	Timepicker
Because	the	timepicker	weblet	is	the	default	visualization	for	fields	of	type	time,
you	usually	do	not	need	to	manually	add	it	to	your	web	page.	Simply	include
your	time	fields	in	your	web_map	or	in	a	list	that	is	present	in	your	web_map
and	they	will	be	visualized	using	the	time	weblet.	Similarly	fields	of	type	date
and	of	type	datetime	will	be	visualized	using	the	datepicker	(std_datepicker)	and
datetimepicker	(std_datetimepicker)	weblets.

Time	fields	created	before	version	12	SP1	use	by	default	std_time
weblet.	To	use	std_timepicker,	change	the	weblet	visualization	in	the
field	definition.

The	Timepicker	weblet	uses	the	ISO	language	code	to	localize	the
time	format	and	time	slider	captions.

If	you	do	need	to	add	the	timepicker	weblet	to	your	page	manually,	simply	drag
the	time	field	from	the	Fields	tab	onto	your	page.	Alternatively,	open	the	XSL
for	your	webroutine	in	the	LANSA	Editor	and	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	Timepicker	weblet.

2.		Drag	the	weblet	onto	your	page	in	the	Design	view.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		Set	the	name	and	value	properties	as	required	to	associate	the	weblet	with	the
required	field	in	your	webroutines	web_map.

Properties	-	Timepicker
The	Timepicker	weblet's	properties	are:

allow_sqlnull
autoSize
buttonImage
buttonText
disabled
display_mode
duration
hide_if

hourMin
hourMax
minuteMin
minuteMax
name
onchange_script
pos_absolute
read_only
showAnim

showOn
stepHour
stepMinute
stepSecond
tab_index
timeFormat
title
value
width

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	and/or	that	is	used	to
receive	the	contents	of	the	input	box.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

allow_sqlnull
A	Boolean	property	which	determines	if	the	timepicker	value	can	be	left	blank.

Note:	This	property	must	be	consistent	with	the	fields's	repository
definition	(ASQN	attribute).

Default	value
false().	If	the	weblet	is	dropped	over	a	field,	it	defaults	to	the	ASQN	attribute
of	the	field's	repository	definition.

Valid	values
true(),	false()	or	a	valid	expression.

timeFormat
The	input	format	of	the	timepicker.	The	default	'Auto'	uses	the	default	for	the
language	(regional	setting).	

Default	value
'Auto'.	Uses	the	default	for	the	language	(regional	setting).

Valid	values
See	the	Datetimepicker	weblet	for	a	full	list	of	valid	format	specifiers.	

hourMin
Minimum	hour	in	Timepicker	slider

Default	value
0

Valid	values
0	to	23

hourMax
Maximum	hour	in	Timepicker	slider

Default	value
23

Valid	values
0	to	23

minuteMin
Minimum	minute	in	Timepicker	slider

Default	value
0

Valid	values
0	to	59

minuteMax
Maximum	minute	in	Timepicker	slider

Default	value
59

Valid	values
0	to	59

	

stepHour
Hours	step	interval	in	the	timepicker	hour	slider

Default	value
1	hour

Valid	values
An	integer

Example
1	(1	hour)

stepMinute
Minutes	step	interval	in	the	timepicker	minute	slider

Default	value
1	minute

Valid	values
An	integer

Example
15	(15	minutes)

stepSecond
Seconds	step	interval	in	the	timepicker	seconds	slider

Default	value
1	second

Valid	values
An	integer

Example
10	(10	seconds)

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

title
Specifies	text	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

showOn
Whether	the	timepicker	appear	automatically	when	the	field	receives	focus,
appear	only	when	a	button	is	clicked,	or	appear	when	either	event	takes	place.

Default	value
focus

Valid	values
focus,	button	or	both

Example
Show	on	button	click:

buttonImage
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
display	on	the	timepicker	prompt	button.

Default	value
'calendar_jqui.gif'	(this	image	is	shipped	with	LANSA).

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

buttonText
The	text	that	may	appear	as	tip	text	on	mouse	hover	over	the	timepicker	button.

Default	value
Blank	–	the	text	specified	for	the	title	property	is	used.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

read_only
A	Boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.	The	weblet	will	reserve	a	minimum
width	based	on	the	data	to	be	displayed.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	property.	However	you	can	directly	edit	the	property
value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

autoSize
Set	to	true	to	automatically	resize	the	input	field	to	accomodate	dates	in	the
current	date	format.

Default	value
False

Valid	values
true(),	false()	or	a	valid	expression.

showAnim
Sets	the	name	of	the	animation	used	to	show/hide	the	timepicker.

Default	value
show

Valid	values
show,	slideDown	or	fadeIn

duration
Controls	the	speed	at	which	the	timepicker	appears.	Choose	one	of	three
predefined	speeds.

Default	value
normal

Valid	values
slow,	normal	or	fast

onchange_script
JavaScript	code	to	be	run	when	the	input	box	loses	focus	after	the	text	has	been
changed.	JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

8.3.10	Varchar	(std_varchar)

QuickStart	-	Varchar				 Properties	-	Varchar

The	varchar	weblet	provides	a	text	input	box	control.	It	broadly	corresponds	to
the	<input	type="text">	HTML	element.	The	weblet	looks	like	this	(when	in
'memo'	mode):

The	varchar	weblet	is	used	to	display	and	receive	input	for	varying	length
character	data.	It	is	the	default	weblet	for	varying-length	character	fields.

QuickStart	-	Varchar
To	use	this	weblet	to	visualize	a	field	that	is	already	present	on	your	web	page,
open	the	XSL	for	your	webroutine	in	the	LANSA	Editor	and	follow	the
following	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	Varchar	weblet.

2.		Drag	and	drop	the	weblet	over	the	existing	field.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		If	you	dropped	the	weblet	on	an	existing	field,	the	name,	value	and	other
properties	have	already	been	set	appropriately.	Otherwise,	set	these	properties
now	as	required	to	associate	the	weblet	with	the	required	field	in	your
webroutines	web_map.

4.		If	you	wish	the	weblet	to	act	as	a	multi-line	input	box,	select	'memo'	for	the
type	property.

Properties	-	Varchar
The	Varchar	weblet's	properties	are:

class keyboard_shift title

disabled maxlength type

display_length name value

display_mode pos_absolute width

height read_only word_wrap

hide_if tab_index 	

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	and/or	that	is	used	to
receive	the	contents	of	the	input	box.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

Example
This	shows	how	the	value	is	specified	when	the	weblet	visualizes	a	field:

When	the	property	loses	focus,	the	value	is	shown	as	follows:

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

maxlength
Specifies	the	maximum	number	of	characters	the	user	can	type	in	the	weblet.
When	the	weblet	visualizes	a	field,	this	is	set	to	the	number	appropriate	for	the
field.

Default	value
Blank	(the	weblet	does	not	restrict	the	number	of	characters	the	user	can
type).

Valid	values
A	numeric	value.

display_length
The	approximate	width	of	the	weblet	input	box	in	characters	–	the	browser	sizes
the	input	box	according	to	the	number	of	characters	specified.	If	the	width
property	is	specified,	it	takes	precedence	and	the	display_length	property	is
ignored.

Default	value
Blank	(the	weblet	assumes	a	default	size).

Valid	values
A	numeric	value.

type
Specifies	the	type	of	input	control	the	weblet	implements.	This	weblet	is
designed	to	implement	an	<input	type=text>	or	an	<input	type=password>
control	or	a	<textarea>	control.	Other	types	are	possible	but	are	not	supported
for	this	weblet.

Default	value
'text'

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	following	values:

'text' Creates	a	text	entry	control.

'memo' Creates	a	multi-line	text	entry	control	with	word-wrapping.

'password' Creates	a	text	entry	control	in	which	characters	output	or	typed
are	not	visible	–	instead	an	asterisk	or	other	placeholder	character
is	shown.

keyboard_shift
The	keyboard	shift	for	the	input	field.

Default	value
The	keyboard	shift	of	the	field	with	this	weblet	visualization.	Blank
otherwise.

Valid	values
'	',	'W',	'J',	'E',	'O'	and	'U'

The	keyboard	shift	is	currently	only	used	to	validate	DBCS	fields.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

title
Specifies	a	title	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

word_wrap
If	'memo'	is	specified	for	the	type	property,	this	property	specifies	how	the
weblet	should	handle	word-wrapping	when	typing	text.

Default	value
Blank.

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	following	values:

'soft' Text	is	displayed	with	word	wrapping	and	submitted	without	carriage
returns	and	line	feeds.

'hard' Text	is	displayed	with	word	wrapping	and	submitted	with	soft	returns
and	line	feeds.

'off' Word	wrapping	is	disabled.	The	lines	appear	exactly	as	the	user	types
them.

read_only
A	boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	will	set	the	weblet	to	read-only	if	field	#STD_FLAG	is	equal
to	'Y'.	The	expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	and	height	properties.	However	you	can	directly	edit	the
property	value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width	and	height	properties.	However	you	can	directly
edit	the	property	values	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

8.4	Layout	Weblets

8.4.1	QuickStart	-	Standard	Layouts

Layout	weblets	provide	the	basic	HTML	page	structure	(head,	title,	body,	etc.)
needed	by	all	HTML	pages.	They	also	provide	standard	resources	required	by
all	webroutines	(scripts,	styles,	hidden	fields,	etc.)	and	standard	layout	elements
commonly	used	on	web	pages	(headers,	footers,	content	areas,	sidebars,	etc.)
Layout	weblets	are	the	base	of	WAM	layouts.	They	provide	a	common	interface
across	a	WAM	or	even	a	complete	web	application.	Typically	layouts	provide	a
consistent	look	and	feel	to	the	application	by	implementing	menus,	color
schemes,	message	handling,	images,	logos,	trademark	information	etc.
By	default	a	WAM	will	use	a	single	WAM	layout	across	all	generated
webroutines.	To	share	common	layout	features	you	can	either	use	the	same	site
layout	(refer	to	How	do	I	Create	my	Own	Site	Layout?	for	further	information)
for	your	whole	application	or	base	your	WAM	layouts	on	a	common	layout
weblet.	The	generated	WAM	layout	will	share	the	common	layout	features	from
your	site	layout	or	common	layout	weblet	and	may	then	be	customized	for
specific	WAM	requirements.	Refer	to	WAM	Layouts	and	Layout	Weblets	for
further	information.
The	Layout	Weblet	group	includes	the	standard	layout	weblets	shipped	with
LANSA.	WAM	Layouts,	which	follow	the	naming	convention
<WAMname>_layout,	will,	by	default,	be	included	in	a	different	group,	WAM
Layouts.

Never	modify	these	shipped	layouts.	If	you	wish	to	create	a	variation,
create	a	copy	and	change	the	copy.

Weblet	name Description

Standard	Theme	Layouts
(std_themelet1_[1-3]col)

Basic	jQuery	themed	layouts	for	your
Webroutine	pages.	Each	layout	has	1,	2	or	3
content	areas.
std_themelet1_1col	is	the	default	layout.

Standard	Blank	Layout
(std_blank_layout)

A	simple	blank	layout	with	no	layout/css.

Standard	Basic	Layout A	basic	layout	with	header	and	footer,	but

its:lansa087.chm::/lansa/wamengm2_0140.HTM
its:lansa087.chm::/lansa/WAMEngm2_0035.htm
its:lansa087.chm::/Lansa/WAMEngb8_2390.htm
its:lansa087.chm::/Lansa/WAMEngb8_2395.htm
its:lansa087.chm::/Lansa/WAMEngb8_2400.htm

(std_layout_V2	and
std_layout[1-5]_v2)

no	menus.
and
basic	layouts,	each	providing	a	different
appearance	for	your	Webroutine	pages.

	

	

8.4.1	QuickStart	-	Standard	Layouts
Typically	you	will	develop	or	customize	a	layout	weblet	to	suit	your	own	site
standards	or	application.
You	may	choose	to	use	the	Site	Layout	Manager	Wizard	to	help	you	create	your
site	layout	weblet	(Refer	to	How	do	I	Create	my	Own	Site	Layout?	for	further
information).
To	use	your	site	layout	weblet	as	the	base	for	all	the	WAM	layouts	in	your
application,	specify	your	site	layout	weblet	as	the	Layout	Weblet	when	creating
each	of	your	WAMs.	This	is	the	recommended	approach.
Alternatively,	to	apply	your	layout	to	a	WAM	layout	you	may	follow	these
steps:
1.		Open	the	WAM	layout	to	which	you	want	to	apply	the	layout	weblet.
2.		Select	Weblet	templates	in	the	repository	view	and	select	Layout	weblets
from	the	Weblet	groups	dropdown	list.

3.		Find	the	layout	weblet	you	want	to	apply	from	the	repository	view.
4.		Drag	and	drop	the	layout	weblet	on	to	the	Design	view	of	your	WAM	layout.
5.		The	layout	weblet	will	be	added	to	the	existing	layout.
6.		Set	focus	on	the	old	layout	and	press	the	delete	key.	You	will	be	left	only
with	the	new	layout.

7.		Save	your	WAM	layout
8.		If	this	is	a	customized	layout	for	your	site	this	is	probably	all	you	need	to	do.

Don't	drop	the	layout	weblet	directly	on	to	the	design	of	the
WebRoutine.	If	you	do,	the	layout	changes	you	make	to	the
WebRoutine	design	will	only	apply	to	that	WebRoutine,	not	to	the
entire	WAM.

Note	that	the	logo	images	used	in	the	layout	are	defined	in	the
std_style.min.css	Cascading	Style	Sheet	in	the	std_headerl	and
std_headerr	classes.

its:lansa087.chm::/lansa/wamengm2_0140.HTM

8.4.2	Standard	Theme	Layouts	(std_themelet1_[1-3]col)
std_themelet1_[1-3]col	are	jQuery	themed	layouts	with	header,	footer,	content
and	hidden	areas	defined.
The	three	layouts	are	essentially	the	same	but	provide	1,	2	or	3	content	areas
and	can	be	either	fixed	or	fluid	width.	There	are	currently	2	styles	and	8	jQuery
themes	provided	that	can	be	applied	to	these	layouts.
Use	the	arrow	to	the	far	right	of	the	Hidden	Content	area	to	collapse	and	later
expand	the	Hidden	Content	area.
std_themelet1_1col	is	the	default	layout	used	for	the	auto-generated	WAM
layout	when	LANSA	generates	the	WAM	XSL.	The	default	is	applied	if	a
specific	site	layout	weblet	has	not	been	specified	when	the	WAM	was	created.
The	std_themelet1_1col	layout	weblet	must	never	be	modified.
A	WAM	layout	that	has	been	created	using	the	std_themelet1_1col	layout
weblet	looks	like	this	when	opened	in	the	Editor	(using	Redmond	theme	and
Style	#1	Themelet):

As	you	can	see	from	this	image	the	layout	generally	controls	the	header	and
footer,	the	messages	area,	content	area	and	the	color	theme	and	style	for	all
webroutine	pages	using	the	layout.	JavaScript	can	also	be	applied	at	the	layout
level	and	will	then	apply	to	all	webroutines	using	the	layout.
The	Web_Maps	and	weblets	associated	with	a	specific	Webroutine	will	appear
in	the	content	area	of	the	layout	(below	the	Webroutine	Title).
std_themelet1_2col	layout	weblet	is	essentially	the	same	as	std_themelet1_1col
layout	weblet	but	with	two	content	areas.	The	std_themelet1_2col	layout	weblet
must	never	be	modified.
A	WAM	layout	that	has	been	created	using	the	std_themelet1_2col	layout
weblet	looks	like	this	when	opened	in	the	Editor	(using	Darkness	theme	and
Style	#2	Themelet):

std_themelet1_3col	layout	weblet	is	essentially	the	same	as	std_themelet1_1col
and	std_themelet1_2col	layout	weblets	but	with	three	content	areas.	The
std_themelet1_3col	layout	weblet	must	never	be	modified.
A	WAM	layout	that	has	been	created	using	the	std_themelet1_3col	layout
weblet	looks	like	this	when	opened	in	the	Editor	(using	South	Street	theme	and
Style	#1	Themelet):

Properties	-	Standard	Theme	Layouts	(std_themelet1_[1-3]col)
The	Standard	Themelet	Layouts	(std_themelet1_[1-3]col)	weblet	properties	are:

Backcompat_theme
content_side
content_width
css_files
has_form
javascript_files

jQueryNoConflict
output_charset
show_title
sidebar_width
sidebar1_width

sidebar2_width
title_text
width
width_type
window_title

Backcompat_theme
A	Boolean	property	that	determines	if	the	theme	passed	to	std_style	is	''	or
'none'.	If	evaluated	to	be	True,	a	backwards	compatible	theme	is	applied	so	that
the	layout	and	weblets	will	be	consistent	with	existing	applications	prior	to	V12
SP1.	If	False,	no	theme	will	be	applied,	as	External	Resources	are	now	the
method	used	to	apply	themes.

Default	value
False.

Valid	values
True	or	False.

Example

content_side
The	location	of	the	main	content	area	in	the	WAM	layout	relative	to	other
content	areas.	This	is	only	applicable	to	either	the	2	or	3	column	layouts.

Default	value
Center.

Valid	values
Left,	Center	or	Right.

Example

content_width
A	value	specified	in	CSS	units	for	the	main	content	width.	This	may	be	a
relative,	absolute	or	percentage	value.	This	is	only	applicable	to	either	the	2	or	3
column	layouts.

Default	value
70%	for	2	column	layout	and	50%	for	3	column	layout.

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes..

Example

css_files
A	comma	separated	list	of	Cascading	Stylesheet	(CSS)	files	to	be	applied	to	the
layout.	These	files	will	be	applied	the	file	defined	in	theme_css_filename	This
property	is	designed	to	allow	for	special	circumstances	when	one	stylesheet	isn't
enough.
Refer	to	Cascading	Style	Sheets	(CSS)	and	the	Style	weblet	for	more
information	on	the	use	of	CSS	in	your	layouts.

Default	value
''
Valid	values

A	comma	separated	list	of	path	and	CSS	filename	values,	relative	to	the	style
virtual	directory,	enclosed	in	single	quotes.

its:LANSA087.CHM::/lansa/wamengm2_0045.htm

has_form
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	False,	will	remove
the	default	LANSA	form	element.

Default	value
true()	(that	is,	the	LANSA	form	element	is	included	in	the	page)

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	remove	the	default	LANSA	form	if	field	#HAS_FORM	is
equal	to	'N'.	The	expression	should	be	entered,	and	is	shown	when	the
property	has	focus,	as	follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

output_charset
The	character	set	encoding	identifier	of	the	output	document,	such	as	iso-8859-1
or	windows-1251.	Some	character	sets	must	be	converted	before	they	can	be
used	in,	for	example,	email	or	PDF	documents.	If	the	default	charset	is	one	of
them,	this	attribute	will	contain	the	name	of	the	character	set	output	will	be
converted	to.	You	should	normally	leave	this	blank	so	a	default	value	is	used.

Default	value
/lxml:data/lxml:server-instructions/lxml:client-charset

Valid	values
Single	quote	character	set	value.

show_title
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	show	the
title.

Default	value
true()	(that	is,	the	grid	will	always	be	shown)

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	show	the	title	if	field	#SHOW_TITLE	is	equal	to	'Y'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

title_text
The	title	text	to	be	displayed	on	the	webroutine	page.

Default	value
/lxml:data/lxml:context/lxml:webroutine-title	(effectively	Blank).

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable,	system
variable	or	field	(the	ellipses	button	in	the	property	sheet	can	be	clicked	to
choose	from	a	list).

javascript_files
A	comma	separated	list	of	JavaScript	files	to	be	loaded	into	the	layout.	This
property	allows	you	to	include	your	own	custom	JavaScript	or	code	associated
with	third	party	controls.
Refer	to	JavaScript	and	the	Script	weblet	for	more	information	on	the	use	of
JavaScript	in	your	layouts.

Default	value
''
Valid	values

A	comma	separated	list	of	path	and	JavaScript	filename	values,	relative	to
the	script	virtual	directory,	enclosed	in	single	quotes.

its:LANSA087.CHM::/lansa/wamengm2_0050.htm

width
A	value	specified	in	CSS	units	for	the	page	width.	This	may	be	a	relative,
absolute	or	percentage	value.

Default	value
1000px

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

Example

width_type
The	CSS	layout	type.
A	fixed	width	layout	is	one	where	the	width	is	set	to	a	specific	value	that	is
independent	of	the	size	of	the	client	window.	Layout	content	will	not	be
adjusted	as	the	window	is	resized.
A	fluid	width	layout	is	one	where	the	layout	content	adjusts	itself	to	fit	the	width
of	the	client	window.	For	example,	a	100%	width	fluid	layout	will	take	up	the
entire	width	without	producing	a	scroll	bar.	It	will	only	produce	a	scroll	bar
when	resized	to	a	small	window.

Default	value
Fixed	for	the	1	column	layout	and	Fluid	for	the	2	and	3	column	layouts.

Valid	values
Fixed	or	Fluid.

Example

sidebar_width
A	value	specified	in	CSS	units	for	the	width	of	the	sidebar	content	area	of	the	2
column	layout.	This	may	be	a	relative,	absolute	or	percentage	value.

Default	value
29%

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

Example

sidebar1_width
A	value	specified	in	CSS	units	for	the	width	of	the	sidebar1	content	area	of	the	3
column	layout.	This	may	be	a	relative,	absolute	or	percentage	value.

Default	value
19%

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

Example

sidebar2_width
A	value	specified	in	CSS	units	for	the	width	of	the	sidebar2	content	area	of	the	3
column	layout.	This	may	be	a	relative,	absolute	or	percentage	value.

Default	value
30%

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

Example

jQueryNoConflict
A	Boolean	property	that	only	applies	if	you	use	jQuery.	If	evaluated	to	be	True,
jQuery.noConfict()	is	called	to	relinquish	the	$	name.	You	need	to	include	the
other	library	that	uses	the	$	name	before	you	include	jQuery	Core.

Default	value
False.

Valid	values
True	or	False.

Example

window_title
The	text	for	the	title	that	will	appear	in	the	client	window	for	the	web	page.

Default	value
The	description	for	the	WAM.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable,	system
variable	or	field	(the	ellipses	button	in	the	property	sheet	can	be	clicked	to
choose	from	a	list).

Example

8.4.3	Standard	Blank	Layout	(std_blank_layout)
The	std_blank_layout	layout	weblet	is	a	plain	layout	with	no	header	or	footer
areas	defined	and	no	color	scheme.	That	is,	it	is	used	for	displaying	a
Webroutine	with	no	layout/css.
The	std_blank_layout	layout	weblet	must	never	be	modified.
A	WAM	layout	that	has	been	created	using	the	std_blank_layout	layout	weblet
looks	like	this	when	opened	in	the	Editor:

With	the	introduction	of	this	new	blank	layout,	the	method	for	displaying	a
WebRoutine	with	no	layout/css	has	be	simplified.	Instead	of	selecting	the	layout
weblet	part	of	the	design	view,	and	changing	the	property	no_layout	to	true
you	simply:
drag	this	std_blank_layout	weblet	onto	the	webroutine.	It	will	replace	whatever
layout	it	had	previously.

8.4.4	Standard	Basic	Layout	(std_layout_V2	and	std_layout[1-
5]_v2)
Std_layout_v2	is	a	basic	layout	with	a	header	and	footer	areas	defined.
Standard	layouts	1-5	are	essentially	the	same	but	have	different	settings	applied
to	determine	the	menus		to	be	displayed	(std_layout1_v2,	std_layout2_v2	…
std_layout5_v2).	
When	opened	in	the	editor	the	std_layout1	weblet	looks	like	this:

As	you	can	see	from	this	image	the	layout	generally	controls	the	menus,	banners
and	images,	the	message	box	and	the	color	scheme	for	pages	using	the	layout.
JavaScripts	can	also	be	applied	at	the	layout	level	and	will	then	apply	to	all
webroutines	using	the	layout.
The	WEB_MAPs	and	weblets	associated	with	a	specific	webroutine	will	appear
in	the	body	of	the	layout	(below	the	message	box).

Properties	-	Standard	Layouts(std_layout_V2	and	std_layout[1-
5]_v2)
The	Standard	Layouts	weblet's	properties	are:

body_class
css_files
form_class
has_form
javascript_files
no_layout

onload_script
onunload_script
output_charset
show_left_menu
show_messages
show_right_menu

show_title
show_top_menu
theme_css_filename
title_text
trap_script_errors

show_left_menu
Not	available	on	std_layout.
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	show	the
left	menu.

Default	value
Varies	with	layout.

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	show	the	left	menu	if	field	#LEFT_MENU	is	equal	to	'Y'.
The	expression	should	be	entered,	and	is	shown	when	the	property	has	focus,
as	follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

show_top_menu
Not	available	on	std_layout.
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	show	the
top	menu.

Default	value
Varies	with	layout.

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	show	the	top	menu	if	field	#TOP_MENU	is	equal	to	'Y'.
The	expression	should	be	entered,	and	is	shown	when	the	property	has	focus,
as	follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

show_right_menu
Not	available	on	std_layout.
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	show	the
right	menu.

Default	value
Varies	with	layout.

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	show	the	right	menu	if	field	#RIGHT_MENU	is	equal	to
'Y'.	The	expression	should	be	entered,	and	is	shown	when	the	property	has
focus,	as	follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

body_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	body	element	of	the	page.

Default	value
Blank.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

Example

form_class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	form	element	of	the	page.

Default	value
Blank.

Valid	values
Any	valid	class	name	from	the	current	Cascading	Style	Sheet,	in	single
quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

has_form
Not	available	on	std_layout.
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	False,	will	remove
the	default	LANSA	form	element.

Default	value
true()	(that	is,	the	LANSA	form	element	is	included	in	the	page)

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	remove	the	default	LANSA	form	if	field	#HAS_FORM	is
equal	to	'N'.	The	expression	should	be	entered,	and	is	shown	when	the
property	has	focus,	as	follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

no_layout
Not	available	on	std_layout.
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	remove
the	layout	outline.

Default	value
false()	(that	is,	the	layout	outline	is	include	in	the	page)

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	remove	the	layout	outline	if	field	#NO_LAYOUT	is	equal
to	'Y'.	The	expression	should	be	entered,	and	is	shown	when	the	property	has
focus,	as	follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

show_title
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	show	the
title.

Default	value
true()	(that	is,	the	grid	will	always	be	shown)

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	show	the	title	if	field	#SHOW_TITLE	is	equal	to	'Y'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

title_text
The	title	text	to	be	displayed	on	the	webroutine	page.

Default	value
/lxml:data/lxml:context/lxml:webroutine-title	(effectively	Blank).

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable,	system
variable	or	field	(the	ellipses	button	in	the	property	sheet	can	be	clicked	to
choose	from	a	list).

show_messages
A	Boolean	property.	An	expression	which,	if	evaluated	to	be	True,	will	show	the
message	box	on	the	webroutine	page.

Default	value
true()	(that	is,	the	message	box	will	always	be	shown)

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	show	the	message	box	if	field	#SHOW_MESSSAGES	is
equal	to	'Y'.	The	expression	should	be	entered,	and	is	shown	when	the
property	has	focus,	as	follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

onload_script
Not	available	on	std_layout.
JavaScript	to	execute	after	the	page	is	loaded	into	the	browser	(that	is,	body	tag
onload	event).

Default	value
'SetFocus()'	(that	is,	When	the	page	is	loaded	execute	the	function	SetFocus()
which	is	included	in	the	standard	script.)

Valid	values
Single-quoted	valid	JavaScript	function,	or	JavaScript	code	followed	by	a
semicolon	(;).

onunload_script
Not	available	on	std_layout.
JavaScript	to	execute	after	the	page	is	unloaded	from	the	browser	(that	is,	body
tag	onunload	event).

Default	value
''
Valid	values

Single	quoted	valid	JavaScript	function,	or	JavaScript	code	followed	by	a
semicolon	(;).

javascript_files
A	comma	separated	list	of	JavaScript	files	to	be	loaded	into	the	layout.	This
property	allows	you	to	include	your	own	custom	JavaScript	or	code	associated
with	third	party	controls.
Refer	to	JavaScript	and	the	Script	weblet	for	more	information	on	the	use	of
JavaScript	in	your	layouts.

Default	value
''
Valid	values

A	comma	separated	list	of	path	and	JavaScript	filename	values,	relative	to
the	script	virtual	directory,	enclosed	in	single	quotes.

its:LANSA087.CHM::/lansa/wamengm2_0050.htm

theme_css_filename
Cascading	Stylesheet	(CSS)	filename,	relative	to	the	style	virtual	directory,	to	be
applied	to	the	layout	and	weblets	dependant	on	the	layout.	This	will	determine
the	style	properties	for	HTML	elements	and	the	CSS	class	selectors	available
for	selection	on	subordinate	weblets'	class	properties.
Refer	to	Cascading	Style	Sheets	(CSS)	and	the	Style	weblet	for	more
information	on	the	use	of	CSS	in	your	layouts.

Default	value
''
Valid	values

Any	path	and	CSS	filename,	relative	to	the	style	virtual	directory,	enclosed	in
single	quotes.	A	file	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

its:LANSA087.CHM::/lansa/wamengm2_0045.htm

css_files
A	comma	separated	list	of	Cascading	Stylesheet	(CSS)	files	to	be	applied	to	the
layout.	These	files	will	be	applied	the	file	defined	in	theme_css_filename	This
property	is	designed	to	allow	for	special	circumstances	when	one	stylesheet	isn't
enough.
Refer	to	Cascading	Style	Sheets	(CSS)	and	the	Style	weblet	for	more
information	on	the	use	of	CSS	in	your	layouts.

Default	value
''
Valid	values

A	comma	separated	list	of	path	and	CSS	filename	values,	relative	to	the	style
virtual	directory,	enclosed	in	single	quotes.

its:LANSA087.CHM::/lansa/wamengm2_0045.htm

output_charset
The	character	set	encoding	identifier	of	the	output	document,	such	as	iso-8859-1
or	windows-1251.	Some	character	sets	must	be	converted	before	they	can	be
used	in,	for	example,	email	or	PDF	documents.	If	the	default	charset	is	one	of
them,	this	attribute	will	contain	the	name	of	the	character	set	output	will	be
converted	to.	You	should	normally	leave	this	blank	so	a	default	value	is	used.

Default	value
/lxml:data/lxml:server-instructions/lxml:client-charset

Valid	values
Single	quote	character	set	value.

trap_script_errors
A	Boolean	property.	An	expression	which	if	evaluated	to	be	True	will	suppress
any	JavaScript	errors.

Default	value
true()	(that	is,	JavaScript	errors	will	be	suppressed)

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	suppress	any	JavaScript	errors	if	the	field	#TRAP_ERRS
is	equal	to	'Y'.	The	expression	should	be	entered,	and	is	shown	when	the
property	has	focus,	as	follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

8.4.5	Utility	Weblets

Weblet	name Description

Standard	hidden
fields	(std_hidden)

For	LANSA	Product	Centre's	internal	use	only.	Refer	to
Hidden	for	information.

Standard	locale
(std_locale)

For	LANSA	Product	Centre's	internal	use	only.	Refer	to
Local	for	information.

Standard	script
(std_script)

For	LANSA	Product	Centre's	internal	use	only.	Refer	to
JavaScript	and	the	Script	Weblet	for	information.

Standard	variables
(std_variables)

For	LANSA	Product	Centre's	internal	use	only.	Refer	to
Variables	for	information.

std_keys A	set	of	xsl:key	elements	used	by	field	references	in	XSL.
Refer	to	Keys	for	information.

std_select_list A	weblet	used	by	std_dropdown	and	std_listbox.	Should
not	be	used	directly.

std_types For	LANSA	Product	Centre's	internal	use	only.	Refer	to
Types	for	information.

std_util For	LANSA	Product	Centre's	internal	use	only.

CSS	Styles
(std_style_v2)

Default	style	that	is	used	for	all	generated
WEBROUTINE	pages.

	

	

its:lansa087.chm::/lansa/WAMEngm2_0065.htm
its:lansa087.chm::/lansa/WAMEngm2_0190.htm
its:lansa087.chm::/lansa/WAMEngm2_0050.htm
its:lansa087.chm::/lansa/WAMEngm2_0040.htm
its:lansa087.chm::/lansa/WAMEngm2_0205.htm
its:lansa087.chm::/lansa/WAMEngm2_0060.htm

8.4.6	Inline	Templates
The	Inline	Templates	group	is	provided	to	allow	quick	access	to	all	weblets
which	are	"inline-aware"	for	the	current	Technology	Service.		"Inline-aware"
weblets	include	a	weblet	template	with	the	suffix	.inline.
All	Weblets	included	in	the	Inline	Templates	group	are	also	available	in	the	8.1
Standard	Weblets	or	8.3	Standard	Field	Visualizations	groups.

8.4.7	jQuery	UI
The	jQuery	UI	group	is	provided	to	allow	quick	access	to	all	weblets	which	are
used	and	require	jQuery-ui	to	work.		All	Weblets	included	in	the	jQuery	UI
group	are	also	available	in	the	8.1	Standard	Weblets	and	8.3	Standard	Field
Visualizations.

8.4.8	WAM	Layouts
A	WAM	layout,	with	the	name	<WAMname>_layout	will	be	created	when	XSL
is	generated	for	a	WAM	unless	it	already	exists.	Use	the	LAYOUTWEBLET
selector	on	the	BEGIN_COM	command	of	the	WAM.	to	nominate	the	layout
weblet	to	be	used	by	the	WAM	layout.	The	generated	WAM	layout	is	included
in	the	Weblet	Template	group	WAM	Layouts.
Refer	to	WAM	Layouts	and	Layout	Weblets	for	further	information.
	

its:lansa087.chm::/lansa/wamengm2_0035.htm

9.	Weblets	for	jQMobile	Technology	Service
jQuery	Mobile	is	a	unified,	HTML5-based	user	interface	system	for	all	popular
mobile	device	platforms,	built	on	a	jQuery	and	jQuery	UI	foundation.	Its
lightweight	code	is	built	with	progressive	enhancement,	and	has	a	flexible,
easily	themeable	design.
The	jQMobile	Technology	service	is	a	wrapper	around	the	JavaScript	library
that	allows	it	to	work	in	the	LANSA	Editor	with	drag-and-droppable	weblets
that	are	configured	by	editing	properties.This	section	documents	the	Weblet
Templates	that	are	shipped	with	the	jqMobile	Technology	Service.
The	Weblet	Templates	repository	view	displays	templates	by	group.	A	weblet
template	may	belong	to	more	than	one	group	(right-click	a	weblet	to	configure).
The	standard	groups	are:
					Standard	Weblets
					Layout	Weblets

Also	see
QMobile	and	the	WAM	Editor
Field	Validation
Default	Weblet
Utility	Weblets

its:lansa087.chm::/Lansa/WAMengb9_0030.htm
its:lansa087.chm::/Lansa/WAMengb9_0035.htm

9.1	jQMobile	and	the	WAM	Editor
The	jQuery	Mobile	framework	relies	heavily	on	JavaScript	to	do	all	its	work	in
the	browser	at	runtime.	It	takes	minimal	HTML	as	its	starting	point	and	uses
JavaScript	to	modify	the	HTML	according	to	the	needs	and	capabilities	of	the
browser	it	is	running	on.
This	runtime	enhancement	presents	a	problem	for	the	concept	of	graphical
editing	that	you	may	be	used	to	from	other	Technology	Services	like	XHTML.
The	WAM	Editor	cannot	execute	the	runtime	JavaScript	so	it	is	only	able	to
display	and	edit	the	basic	HTML	that	provides	the	starting	point	for	jQuery
Mobile.
Many	of	the	weblets	are	container	weblets.	That	is,	they	act	as	wrappers	for
custom	content	and	server	to	modify	how	that	custom	content	appears	or
behaves.	The	Header	and	Footer	weblets	are	examples	of	this.	They	define
certain	positioning	and	visual	characteristics	for	a	header	or	footer	but	allow
you	to	define	the	actual	content	that	goes	into	the	header	or	footer.	This	content
may	be	some	simple	text,	other	weblets,	or	your	own	custom	HTML.	Container
weblets	cannot	be	selected	in	the	designer	by	clicking	on	them	because,	when
you	click	on	them,	you	are	actually	selecting	the	content.	To	select	these	weblets
and	edit	their	properties	you	will	need	to	use	the	outline	tab.

Figure	9.1.a	Using	the	outline	to	select	the	Footer	weblet

9.2	Field	Validation
The	HTML	5	specification	includes	a	number	of	features	for	form	validation.
Form	elements	have	a	number	of	new	attributes	like	required,	min,	max,	pattern
and	new	data	types	that	allow	the	browser	to	either	present	a	UI	that	prevents
invalid	data	entry	or	validate	the	entered	data	and	prevent	the	form	being
submitted	if	it	is	incorrect.	The	LANSA	framework	includes	some
enhancements	that	add	support	for	RDMLX	data	types	to	the	validation,	add
some	extra	functionality	and	address	some	inconsistencies	in	browser
implementation.

Also	see
9.2.1	RDMLX	Data	types
9.2.2	Displaying	Validation	Errors
9.2.3	Controlling	When	Validation	Occurs

9.2.1	RDMLX	Data	types
Validation	of	RDMLX	data	types	can	be	added	to	any	<input>,	<select>	or
<textarea>	element	by	adding	a	data-lstddatatype	attribute	to	it.	The	attribute
value	should	be	a	|	delimited	string	starting	with	the	data	type	followed	by	extra
parameters	as	required	by	the	data	type:

integer|<max	length>
float|<max	length>
packed|<total	digits>|<fraction	digits>|<decimal	separator>
signed|<total	digits>|<fraction	digits>|<decimal	separator>
dec|<total	digits>|<fraction	digits>|<decimal	separator>
alpha|<keyboard	shift>|<max	length>
char|<keyboard	shift>|<max	length>
varchar|<keyboard	shift>|<max	length>
nchar|<keyboard	shift>|<max	length>
nvarchar|<keyboard	shift>|<max	length>

For	example,	a	field	defined	with	the	following	RDMLX:
Define	Field(#TST_PKD)	Type(*PACKED)	Length(6)	Decimals(2)
	

might	use	an	<input>	tag	like	this:
<input	id="MyWR_TST_PKD"	name="TST_PKD"	maxlength="6"	size="11"
								data-lstddatatype="packed|6|2|."	type="number"	/>
	

When	you	generate	a	new	webroutine	or	drop	a	field	onto	a	design,	the	WAM
Editor	will	automatically	set	this	attribute	for	you.	Standard	weblets	that	create
form	elements	will	set	this	attribute	based	on	the	value	of	their	rdmlxDataType
property.

9.2.2	Displaying	Validation	Errors
Most	modern	desktop	browsers	will	display	validations	errors	by	displaying	a
tooltip	over	the	field	containing	an	error	message.	Usually,	only	one	error	is
displayed	at	a	time	(requiring	another	submit	to	check	for	further	errors)	and
there	is	no	option	to	display	errors	at	other	times,	such	as	during	typing	or	when
the	user	tabs	out	of	the	field.	At	the	time	of	writing,	mobile	device	browsers	did
not	do	even	this.	While	they	will	not	allow	an	invalid	form	to	be	submitted,	they
do	not	display	any	errors	to	explain	the	problem.
The	LANSA	framework	adds	the	option	of	displaying	validation	errors	within
the	page,	usually	next	to	the	field.	To	enable	this	behavior,	you	must	add	the
class	"	lstdErrorShowInDiv"	to	the	page	<div>	in	your	layout.	The	standard
shipped	layouts	do	this	using	the	validationErrorDisplay	property.	You	must
also	provide	the	<div>	tags	that	will	display	the	error.	There	must	be	one	error
<div>	for	each	field.	The	<div>	must	have	an	ID	of	"{Field	ID}_id"	and	a
class	of	"	lstdFieldError".	For	example:
<div	id="	MyWR_TST_PKD	_error"	class="lstdFieldError"></div>

The	standard	field	weblets	will	do	this	for	you	via	the	addErrorDiv	property.
When	the	"show	in	div"	behavior	is	turned	off,	all	error	divs	are	automatically
hidden.	When	the	"show	in	div"	behavior	is	turned	on,	all	error	divs	are	set	to
invisible,	meaning	that	they	cannot	be	seen	by	the	user	but	space	is	still	reserved
for	them	in	the	document.	This	prevents	the	confusion	of	the	page	re-flowing	if
they	are	later	made	visible.	When	a	validation	error	occurs	in	a	field	the
framework	will	place	the	error	message	inside	the	corresponding	error	div	and
make	it	visible.

9.2.3	Controlling	When	Validation	Occurs
The	default	browser	behavior	is	to	perform	validation	when	the	user	submits	the
form.	The	LANSA	framework	offers	two	options	to	extend	this:	after	the	user
has	entered	data	in	a	field	and	moved	the	focus	away,	and	immediately	while	the
user	is	typing.	To	enable	these	options,	add	one	of	the	following	classes	to	the
page	<div>:	lstdErrorImmediately	or	lstdErrorAfterFocus.	The	standard	shipped
layouts	do	this	using	the	validationTime	property.

While	most	validation	can	be	performed	at	these	other	times,	some
browsers	may	have	exceptions	for	specific	scenarios.	For	example,
Safari	will	not	invalidate	a	required	field	after	focus	unless	the	user
has	made	some	attempt	to	enter	data	in	it.	This	allows	a	user	to	tab
through	fields	while	filling	in	a	form	without	being	hit	with	errors
along	the	way.

9.3	Default	Weblet
jQuery	Mobile	has	features	to	allow	for	responsive	designs.	They	rely	on	input
fields	having	special	wrapper	fields	and	jQuery	Mobile	data	attributes.	This	is
easier	to	enforce	with	a	weblet.	For	this	reason,	the	JQMOBILE	Technology
Service	defines	std_input	as	the	default	weblet	visualization	for	any	repository
field	that	doesn't	have	one.

9.4	Standard	Weblets
Following	is	a	description	of	the	standard	weblets	in	alpha	sequence,	their
properties	and	how	to	use	them	in	your	own	webroutines.	You	will	not	use	every
property	available	for	a	weblet.

Anchor
(std_anchor	and
std_anchor_s1)

Provides	a	hyperlink	(or	anchor)	control	and	broadly
corresponds	to	the	HTML	element	that	designates	the
destination	of	a	hypertext	link.

Autocomplete
(std_autocomplete)

While	you	type,	the	Autocomplete	weblet	provides
suggestions	provided	by	a	WebRoutine	using	Ajax.

Boolean
(std_boolean)

This	weblet	generates	an	HTML	element	that	jQuery
Mobile	converts	into	a	sliding	switch.

Button
(std_button_s1	and
std_button_v2)

Represents	creates	a	clickable	button	and	can	contain
custom	HTML	like	formatted	text	and	images	(unlike	a
button	created	with	the	Input	box	weblet).

Checkbox
(std_checkbox)

A	standard	checkbox	control	which	jQuery	Mobile	will
modify	to	fit	the	current	theme.

Collapsible	Block
(std_collapsible)

A	section	of	content	that	the	user	can	show	or	hide	by
clicking	on	its	header.

Collapsible	Set
(std_collapsibleset

A	wrapper	that	can	be	placed	around	multiple	Collapsible
Block	weblets	to	create	an	accordian.	You	create	the
Collibsible	Block	weblets	and	place	them	into	the	content
area	of	the	Collapsible	Set	weblet.

Control	Group
(std_controlgroup)

A	wrapper	that	can	be	placed	around	multiple	buttons,
checkboxes	or	radio	buttons	to	group	them	together.

File	Upload
(std_fileupload)

This	weblet	allows	you	to	select	files	to	upload	to	a
temporary	directory	on	the	application	server.	The
receiving	webroutine	can	then	manipulate	the	uploaded
files.

Footer	(std_footer) A	jQuery	Mobile	toolbar	at	the	bottom	of	the	page.	Can
be	"fixed"	to	remain	in	position	when	the	page	is	scrolled
or	configured	to	show	or	hide	itself	when	the	user	taps	on

its:lansa087.chm::/Lansa/WamEngb9_0060.htm
its:lansa087.chm::/Lansa/WAMengb9_2065.htm
its:lansa087.chm::/Lansa/WamEngb9_0065.htm
its:lansa087.chm::/Lansa/WamEngb9_0070.htm
its:lansa087.chm::/Lansa/WamEngb9_0075.htm
its:lansa087.chm::/Lansa/WamEngb9_0080.htm
its:lansa087.chm::/Lansa/WamEngb9_0085.htm
its:lansa087.chm::/Lansa/WamEngb9_0090.htm
its:lansa087.chm::/Lansa/WamEngb9_2105.htm
its:lansa087.chm::/Lansa/WamEngb9_0100.htm

the	screen.

Header
(std_header)

A	jQuery	Mobile	toolbar	at	the	top	of	the	page.	Can	be
"fixed"	at	the	top	of	the	screen	to	remain	in	position	when
the	page	is	scrolled	or	show	or	hide	itself	when	the	user
taps	on	the	screen.

HTML	List
(std_html_list)

A	wide	range	of	lists	and	formatting	types	that	are	used
for	data	display,	navigation,	result	lists,	and	data	entry.

HTML	List	Item
(std_html_li)

Adds	items	to	a	HTML	List	weblet.

HTML	Textarea
(std_textarea)

An	element	that	can	be	used	for	the	display	and	input	of
long	text	values	spanning	multiple	lines.

Image	(std_image) Displays	an	image.

Input	Box
(std_input)

This	weblet	creates	an	element	is	the	basic	form	of	data
entry	in	HTML	pages.	Used	to	create	every	type	of	input
control	(including	buttons)	that	HTML	supports	except
multi-line	text	fields.

Layout	Grid
(std_gridlayout)

Used	if	you	need	to	place	small	elements	side-by-side
(like	buttons	or	navigation	tabs,	for	example).

Loader
(std_loader)

A	small	loading	overlay	displayed	when	jQuery	Mobile
loads	in	content	via	AJAX,	or	for	use	in	custom
notifications.

Messages
(std_messages)

Displays	messages	created	with	the	RDMLX	Message
command.

Mobiscroll	Date
and	Time	Picker
(std_mobiscroll)

A	customizable	date	and	time	picker	optimised	for	mobile
devices.

Navigation	Bar
(std_navbar)

A	very	basic	widget	that	can	provide	up	to	5	buttons	with
optional	icons.

Progress	bar
(std_progressbar)

Display	status	of	a	determinate	process.

Radio	Button Creates	a	set	of	radio	buttons	linked	to	an	RDMLX	field.

its:lansa087.chm::/Lansa/WamEngb9_0110.htm
its:lansa087.chm::/Lansa/WamEngb9_0115.htm
its:lansa087.chm::/Lansa/WamEngb9_0120.htm
its:lansa087.chm::/Lansa/WamEngb9_0155.htm
its:lansa087.chm::/Lansa/WamEngb9_2070.htm
its:lansa087.chm::/Lansa/WamEngb9_0125.htm
its:lansa087.chm::/Lansa/WamEngb9_0105.htm
its:lansa087.chm::/Lansa/WamEngb9_2075.htm
its:lansa087.chm::/Lansa/WamEngb9_0130.htm
its:lansa087.chm::/Lansa/WamEngb9_0135.htm
its:lansa087.chm::/Lansa/WamEngb9_0140.htm
its:lansa087.chm::/Lansa/WamEngb9_2080.htm
its:lansa087.chm::/Lansa/WamEngb9_0145.htm

Group
(std_radbuttons)

RDMLX	Working
List	(std_repeater)

Provides	a	flexible	mechanism	to	process	working	lists.

Select	Menu
(std_dropdown)

Based	on	a	native	select	element,	which	is	hidden	from
view	and	replaced	with	a	custom-styled	select	button	that
matches	the	look	and	feel	of	the	jQuery	Mobile
framework.

	

its:lansa087.chm::/Lansa/WamEngb9_0150.htm
its:lansa087.chm::/Lansa/WamEngb9_0095.htm

9.4.1	Anchor	(std_anchor	and	std_anchor_s1)
The	anchor	weblet	provides	a	hyperlink	(or	anchor)	control.	It	broadly
corresponds	to	the	<a>	(anchor)	HTML	element	that	designates	the	destination
of	a	hypertext	link.	Weblet	std_anchor	has	the	same	properties	as
std_anchor_s1,	but	with	the	difference	that	you	can	add	content	to	the	anchor
element.

In	its	simplest	form	the	anchor	weblet	can	display	a	text	value	that,	when
tapped	will	navigate	the	browser	to	a	new	page.
The	anchor	weblet	can	be	configured	to	display	as	a	button,	or	it	can	contain
any	arbritary	HTML	(including	other	weblets).
The	destination	can	be	a	url	(such	as	http:://www.yourcompany.com/)	or	you
can	specify	a	WAM	and	webroutine	to	be	executed	and	optionally	identify
fields	whose	values	should	be	passed	to	the	webroutine.
The	anchor	always	generates	a	GET	HTTP	request	and	does	not	submit	any

form	fields	unless	explicitly	specified	in	the	onclickExtraFields	property.	So	the
anchor	should	only	be	used	for	linking	to	external	sites,	static	pages	or
webroutines	that	perform	queries.	When	performing	transactions	that	create	or
update	data	you	should	use	a	submit	button.
HTML	5	form	validation	is	not	performed	on	fields	sent	with	an	anchor	click.

If	you	need	validation,	use	a	submit	button.

Properties	-	Anchor	(std_anchor	and	std_anchor_s1)

Use	std_anchor	only	if	you	need	to	add	content	to	the	anchor	element.
For	all	other	cases,	use	std_anchor_s1.

This	weblet's	properties	are:

absoluteImagePath	
(std_anchor_s1	only)
class
corners
customIcon	(std_anchor_s1
only)
countIndicator	(std_anchor_s1
only)]
countValue	(std_anchor_s1
only)
displayAs
hideIf

icon
iconPosition
iconShadow
id
inline
internal_id
mini
onClickExtraFields
onClickWamName
onClickWrName
relationship
	

relativeImagePath
(std_anchor_s1	only)
shadow
style
swatch
tabindex
transition
transitionDirection
url
useAjax
value

absoluteImagePath		(std_anchor_s1	only)
The	path	and	file	name	of	the	image	to	be	displayed.	If	specified,	the
relative_image_path	property	should	be	left	blank.

Default	value
Blank	–	the	default	is	to	use	the	image	specified	in	the	relative_image_path
property.

Valid	values
The	path	and	name	of	an	image	enclosed	in	single	quotes.

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

value
The	text	to	display	in	the	page	for	the	anchor.	The	anchor	weblet	can	contain
any	custom	HTML	content.		When	the	weblet	is	first	placed	on	a	design,	the
WAM	Editor	automatically	creates	custom	content	that	displays	this	value
string.	If	you	override	the	custom	content,	this	property	will	no	longer	have	any
effect.

Default	value
Blank.

Valid	values
Any	plain	text	string.

class
The	CSS	class,	or	classes,	to	assign	to	the	weblet.	A	CSS	class	allows	you	to
specify	a	set	of	CSS	styles,	defined	in	an	external	stylesheet,	to	apply	to	a
weblet,	or	elements	within	a	weblet.	For	complex	weblets	made	from	multiple
HTML	elements,	the	class	is	applied	to	the	outermost	element	of	the	weblet.

Default	value
Blank

Valid	values
A	string	containing	one	or	more	space	separated	CSS	class	names.

corners
Specifies	if	the	button	should	have	rounded	corners.

Note:	This	property	is	only	valid	if	the	displayAs	property	is	set	to
'Button'	and	will	be	ignored	otherwise.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

countIndicator	(std_anchor_s1	only)]
Shows	a	count	bubble	to	the	right	of	the	list	item	if	set	to	true.

Default	value
False	–	Don't	show	count	bubble.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

countValue	(std_anchor_s1	only)
The	value	to	show	in	the	count	bubble.

Default	value
None

Valid	values
A	numeric	value.

customIcon	(std_anchor_s1	only)
Shows	the	image	(relative	or	absolute	image	path)	as	an	icon	if	set	to	true.

Default	value
False	–	Show	image	as	a	thumbnail.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

displayAs
Set	this	property	to	"Button"	to	style	the	link	as	a	button.	The	jQuery	Mobile
framework	will	enhance	the	link	with	markup	and	classes	to	style	it	as	a	button.
Note	that	while	the	link	will	look	like	a	button,	it	is	still	a	link.	Clicking	on	it
will	result	in	a	GET	request	instead	of	a	POST	and	will	not	automatically
submit	all	fields	in	the	form.

Default	value
Link	-	Adds	no	extra	styling	to	the	anchor.

Valid	values
'Link'	or	'Button'

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

icon
Specifies	the	jQuery	Mobile	icon	to	use	with	the	button.

Note:	This	property	is	only	valid	if	the	displayAs	property	is	set	to
'Button'	and	will	be	ignored	otherwise.

Default	value
Default	-	no	icon	is	used

Valid	values
Any	of	the	values	listed	in	the	property	dropdown.

iconPosition
Specifies	the	position	of	the	button	icon	relative	to	the	button	text.

Note:	This	property	is	only	valid	if	the	displayAs	property	is	set	to
'Button'	and	an	icon	has	been	specified.	It	will	be	ignored	otherwise.

Default	value
Blank	-	uses	the	jQuery	Mobile	default	position	of	'Left'.

Valid	values
Left	-	position	the	icon	to	the	left	of	the	button	text.
Right	-	position	the	icon	to	the	right	of	the	button	text.
Top	-	position	the	icon	above	the	button	text.
Bottom	-	position	the	icon	below	the	button	text.
No	Text	-	draw	the	button	with	no	text	(icon	only).

iconShadow
Applies	the	theme	shadow	to	the	button's	icon	if	set	to	true.

Note:	This	property	is	only	valid	if	the	displayAs	property	is	set	to
'Button'	and	an	icon	has	been	specified.	It	will	be	ignored	otherwise.

Default	value
False	–	Don't	apply	a	shadow

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

inline
If	set	to	true,	this	will	make	the	button	act	like	an	inline	button	so	the	width	is
determined	by	the	button's	content.	If	set	to	false,	the	button	width	is	the	full
width	of	its	container,	regardless	of	the	content.

Note:	This	property	is	only	valid	if	the	displayAs	property	is	set	to
'Button'	and	will	be	ignored	otherwise.

Default	value
False	-	the	button	is	as	wide	as	its	container.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

mini
If	set	to	true,	this	will	display	a	more	compact	version	of	the	weblet	that	uses
less	vertical	height.	This	can	be	useful	in	toolbars	and	other	places	where	space
is	tight.

Note:	This	property	is	only	valid	if	the	displayAs	property	is	set	to
'Button'	and	will	be	ignored	otherwise.

Default	value
False	-	the	standard	size	is	used.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

onClickExtraFields
By	default,	the	anchor	generates	a	GET	request	with	no	field	values	submitted
to	the	target	webroutine.	This	property	allows	you	to	specify	extra	fields	and
values	that	should	be	sent	to	the	target	webroutine	when	the	weblet	is	clicked.
This	property	can	only	be	set	by	using	the	custom	property	designer,	invoked
using	the	ellipses	button	in	the	property	sheet.

This	shows	an	output	field	in	the	current	webroutine	(#SELSEC)		and	a	literal
value	("FLT")	being	mapped	to	input	fields	(the	"Name"	column)	in	the	target
webroutine.
Note:	You	must	set	the	onClickWamName	and	onClickWrName	properties
before	editing	this	property	so	that	the	dropdown	in	the	"Name"	column	can	be
correctly	filled.

Default	Value
document('')/*/lxml:data/lxml:json[not(@id)]	(this	indicates	no	items	have
been	defined	for	this	weblet).

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

onClickWamName
Specifies	the	name	of	the	WAM	whose	webroutine	is	executed	when	this	weblet
is	clicked.	(The	webroutine	name	is	specified	in	the	onClickWrName	property.)
This	property	is	ignored	if	the	url	property	is	specified.

Default	value
If	not	specified,	the	current	WAM	is	used.	($lweb_WAMName).

Valid	values
The	name	of	a	WAM.	A	list	of	known	WAMs	can	be	displayed	by	clicking
the	corresponding	dropdown	button	on	the	property	sheet.

onClickWrName
Specifies	the	name	of	the	webroutine	that	is	executed	when	this	weblet	is
clicked.	(The	name	of	the	WAM	containing	the	webroutine	is	specified	in	the
onClickWamName	property.)
This	property	is	ignored	if	the	url	property	is	specified.

Default	value
No	default	value	applies	–	either	the	url	property	or	the	on_click_wrname
property	must	be	specified.

Valid	values
The	name	of	a	Webroutine.	The	Webroutine	must	exist	in	the	WAM	specified
in	the	onClickWamName	property.	A	list	of	known	Webroutines	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

relationship
Tells	jQuery	mobile	how	it	should	load	and	display	the	target	page.	Possible
values	and	their	effects	are:

None The	page	content	is	loaded	using	Ajax	and	replaces	the	current	page
content.	The	page	is	added	to	the	browser	history.

Back Clicking	the	link	or	button	navigates	to	the	previous	page	in	the
browser	history	(the	same	as	clicking	the	back	button	in	the
browser).	This	option	with	cause	any	URL	or	Webroutine	settings
on	the	weblet	to	be	ignored.

Dialog The	page	content	is	loaded	using	Ajax	and	it	displayed	in	a	dialog
window.	It	is	not	added	to	the	browser	history.

External The	entire	page	is	loaded	(that	is,	Ajax	is	not	used)	and	added	to	the
browser	history.	This	has	the	same	effect	as	setting	useAjax	to	false
but	has	a	different	semantic	meaning,	This	setting	should	be	used
for	links	to	another	site	of	domain.

Note:	For	security	reasons,	links	to	another	site	will	not	use	Ajax
regardless	of	this	setting.

Default	value
None.

Valid	values
None,	Back,	Dialog,	External.

relativeImagePath	(std_anchor_s1	only)
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
be	displayed.

Default	value
Blank	–	no	image	is	displayed.

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

shadow
Applies	the	drop	shadow	style	to	the	button	if	set	to	true.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

style
Specifies	a	CSS	style	string	to	apply	to	the	weblet.	This	property	allows	you	to
set	CSS	style	properties	for	this	weblet	that	will	override	any	values	defined	in
the	layout	stylesheets.

Default	value
Blank

Valid	values
Any	valid	CSS	properties	and	values,	separated	by	semi-colons

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

tabindex
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.	Note
that	this	may	not	be	supported	in	some	older	browsers.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	integer	value.

transition
Specified	the	transition	to	use	when	displaying	the	next	page.	This	property	only
applies	if	the	next	page	is	loaded	with	Ajax.
Transition	effects	that	are	shipped	with	the	standard	jQuery	Mobile	are:

fade
pop
flip
turn
flow
slidefade
slide
slideup
slidedown,

See	the	jQuery	Mobile	documentation	for	information	on	creating	custom
transitions.

Note:	Not	all	devices	and	browsers	are	able	to	support	complex
transitions.	jQuery	mobile	will	automatically	fall	back	to	a	fade	or	no
transition	on	such	devices.

Default	value
slide

Valid	values
The	name	on	any	installed	transitions	or	none

http://jquerymobile.com/

transitionDirection
Specifies	the	direction	of	the	transition	animation.

Note:	If	the	relationship	property	is	set	to	"Back"	the	transition
direction	will	be	"reverse"	regardless	of	this	property	value.

Default	value
forward

Valid	values
forward	or	reverse.

url
Specifies	a	URL	that	will	be	loaded	when	the	weblet	is	clicked.
If	the	onClickWamName	and	onClickWrName	properties	are	both	specified,
this	property	will	be	ignored.

Default	value
#	-	equivalent	to	nothing.

Valid	values
Any	valid	URL	string.

useAjax
jQuery	normally	loads	pages	from	the	same	domain	using	an	Ajax	request	and
then	animates	the	page	content	into	place	when	the	load	is	complete.	This
usually	results	in	faster	loads	(scripts	and	styles	and	not	loaded	again)	and	a
more	app-like	appearance	to	you	site.
Sometimes	it	might	be	necessary	to	force	a	complete	reload	of	the	page.	This
will	most	likely	be	when	the	target	webroutine	uses	a	different	layout	and	needs
to	load	different	script	and	style	resources.
Setting	this	property	to	false	will	force	the	page	to	be	reloaded	without	an	Ajax
request.
See	the	"Linking	Pages"	section	of	the	jQuery	Mobile	documentation	for	more
information	on	how	pages	are	loaded.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

http://jquerymobile.com/

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.2	Autocomplete	(std_autocomplete)
The	Autocomplete	weblet	provides	suggestions	while	you	type	into	the	field.
The	suggestions	are	provided	by	a	webroutine	using	Ajax.

Properties	–	Autocomplete	(std_autocomplete)
The	properties	for	this	weblet	are:

cache
corners
extraFields
fieldContainWrapper
filterSwatch
hideIf
hideLabel

Id
inset
itemsSwatch
label
labelField
listName
minLength

mini
name
placeholder
sourceWamName
sourceWrName
termField
valueField

Id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

name
The	name	of	the	field	that	will	receive	the	value	of	this	weblet	when	it	is
submitted	to	a	webroutine.	When	a	weblet	is	generated,	or	dropped	on	a	field
from	the	current	webroutine's	WEB_MAP,	this	property	will	be	set	to	the	name
of	that	field.	If	the	field	that	you	want	the	value	submitted	to	has	a	different
name,	you	should	change	this	property	to	that	name.

Note:	In	the	XHTML	Technology	Service,	the	name	property	is	often
used	as	a	unique	ID.	This	is	not	the	case	for	the	jQuery	mobile
technology	service.	The	id	property	should	be	used	for	that.	If	the
weblet	value	is	not	to	be	submitted	to	the	server,	this	property	can	be
left	blank.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	name	of	a	field	in	a	target	webroutine.

placeholder
Specifies	a	short	hint	that	describes	what	you	are	expected	to	type	to	get	the
suggestion	list.	The	hint	is	displayed	in	the	field	when	it	is	empty,	and
disappears	when	the	field	gets	focus	or	contains	a	value	(details	vary	by
browser).

Default	value
Blank

Valid	values
Any	string	value.

minLength
The	minimum	number	of	characters	a	user	has	to	type	before	the	Autocomplete
activates.	Use	a	sensible	number	according	to	the	number	of	matching	list	items
likely	to	be	returned.

Default	value
1

Valid	values
Numeric	value.

sourceWamName
The	name	of	the	WAM	whose	Webroutine	provides	the	response	data	for	this
weblet.

Default	value
The	current	WAM

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

sourceWrName
The	name	of	the	Webroutine	that	provides	the	response	data	for	this	weblet.

Default	value
Blank	–	a	Webroutine	name	must	be	specified.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	be	a	JSON
response	weboutine	and	exist	in	the	WAM	specified	in	the	sourceWamName
property.	A	list	of	known	JSON	Webroutines	can	be	displayed	by	clicking
the	corresponding	dropdown	button	on	the	property	sheet.

termField
The	field	name	in	the	response	handling	webroutine	that	is	to	receive	the	current
value	in	the	autocomplete	field.

Default	value
None.	Required	field.

Valid	values
Single	quoted	text	field.	Field	must	be	in	WEB_MAP	for	*INPUT	in	the
response	handling	webroutine.

listName
The	name	of	the	list	in	the	response	webroutine	to	store	the	suggestion	list.

Default	value
Blank.

Valid	values
Single	quoted	text	.	List	must	be	in	WEB_MAP	for	*OUTPUT	in	the
response	handling	webroutine.

labelField
The	response	data	is	a	list,	with	either	a	label	or	value	column	or	both.	The	label
column	is	displayed	in	the	suggestion	menu.	The	value	will	be	inserted	into	the
hidden		input	element	after	the	user	selected	something	from	the	menu.	If	just
one	column	is	specified,	it	will	be	used	for	both,	eg.	if	you	provide	only	value-
properties,	the	value	will	also	be	used	as	the	label.

Default	value
Blank.

Valid	values
Single	quoted	text.	Column	name	but	exist	in	list	returned	by	the	response
handling	webroutine.

valueField
The	response	data	is	a	list,	with	either	a	label	or	value	column	or	both.	The	label
column	is	displayed	in	the	suggestion	menu.	The	value	will	be	inserted	into	the
hidden	input	element	after	the	user	selected	something	from	the	menu.	If	just
one	column	is	specified,	it	will	be	used	for	both,	eg.	if	you	provide	only	value-
properties,	the	value	will	also	be	used	as	the	label.

Default	value
Blank.

Valid	values
Single	quoted	text.	Column	name	but	exist	in	list	returned	by	the	response
handling	webroutine.

extraFields
This	property	allows	you	to	specify	extra	fields	and	values	that	should	be	sent	to
the	response	webroutine	when	a	request	for	a	suggestion	list	is	made.
This	property	can	only	be	set	by	using	the	custom	property	designer,	invoked
using	the	ellipses	button	in	the	property	sheet.

This	shows	an	output	field	in	the	current	webroutine	(#SELSEC)		and	a	literal
value	("FLT")	being	mapped	to	input	fields	(the	"Name"	column)	in	the
response	webroutine.
Note:	You	must	set	the	sourceWamName	and	sourceWrName	properties	before
editing	this	property	so	that	the	dropdown	in	the	"Name"	column	can	be
correctly	filled.

Default	Value
document('')/*/lxml:data/lxml:json[not(@id)]	(this	indicates	no	items	have
been	defined	for	this	weblet).

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

cache
Set	to	true	to	save	the	server	response	locally	and	reuse	if	the	term	is	entered
again	later	in	the	same	field.

Default	value
False.

Valid	values
true(),	false()	or	a	valid	expression.

corners
Specifies	if	the	search	field	should	have	rounded	corners.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

fieldContainWrapper
jQuery	Mobile	will	handle	all	the	complexities	of	laying	out	labels	and	fields
vertically	on	small	screens	and	so	they	all	line	up	on	wide	screens.	To	do	this	it
needs	each	label/field	pair	to	be	wrapped	in	a	<div>	tag	with	specific	attributes.
Setting	fieldContainWrapper	to	true	and	using	the	label	property	to	set	the	label
text	will	take	care	of	all	of	this	for	you.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

filterSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
filter	input	field.

Default	value
Default	-	Inherits	the	swatch	from	the	container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

itemsSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the	list
items	of	the	suggestion	list

Default	value
Default	-	Inherits	the	swatch	from	the	container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

hideLabel
Hides	the	label	accessibly.	This	means	that	the	label	is	not	visible	but	it	is	still
available	to	assistive	technologies	like	screen	readers.

Default	value
False	-	the	label	is	not	hidden.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

label
Specifies	the	label	text	to	use	for	the	weblet.	The	weblet	will	create	a	<label>
tag	with	this	value	and	make	sure	it	is	correctly	attached	to	the	input	field.	For
the	sake	of	accessibility,	it	is	recommended	that	you	provide	a	meaningful	label
for	all	weblets	even	if	you	do	not	intend	to	display	the	label.	Use	the	hideLabel
property	to	hide	the	label	while	keeping	it	available	for	assistive	technologies.

Default	Value
Blank	-	Automatically	generated	fields	will	have	a	value	from	the	repository
definition.

Valid	values
Any	string	value.

mini
If	set	to	true,	this	will	display	a	more	compact	version	of	the	weblet	that	uses
less	vertical	height.	This	can	be	useful	in	toolbars	and	other	places	where	space
is	tight.

Default	value
False	-	the	standard	size	is	used.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

inset
If	lists	are	embedded	in	a	page	with	other	types	of	content,	an	inset	list	packages
the	list	into	a	block	that	sits	inside	the	content	area	with	a	bit	of	margin	and
rounded	corners	(theme	controlled).	Setting	inset	to	True	applies	the	inset
appearance.

Note:	all	standard,	non-inset	lists	have	a	-15	pixel	margin	to	negate	the
15	pixels	of	padding	on	the	content	area	to	make	lists	fill	to	the	edges
of	the	screen.	If	you	add	other	content	above	or	below	a	list,	the
negative	margin	may	make	these	elements	overlap	so	you'll	need	to
add	additional	spacing	in	your	custom	CSS.

	

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

	

9.4.3	Boolean	(std_boolean)
The	Boolean	weblet	represents	boolean	values.	The	weblet	generates	an	<input
type="checkbox">	element	in	the	HTML	source	which	jQuery	Mobile	then
converts	into	a	sliding	switch.
The	Boolean	weblet	is	the	default	weblet	for	boolean	fields	but	it	can	also	be
used	with	any	field	that	has	only	two	valid	values	(for	example:	Sex)	by
configuring	the	trueValue	and	falseValue	properties	appropriately.

Properties	-	Boolean	(std_boolean)
This	weblet's	properties	are:

autofocus
class
corners
disabled
displayMode
falseDisplay
falseValue
fieldContainWrapper

form
hideIf
hideLabel
id
label
mini
name

rdmlxDataType
style
swatch
tabindex
title
trueDisplay
trueValue
value

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

name
The	name	of	the	field	that	will	receive	the	value	of	this	weblet	when	it	is
submitted	to	a	webroutine.	When	a	weblet	is	generated,	or	dropped	on	a	field
from	the	current	webroutine's	WEB_MAP,	this	property	will	be	set	to	the	name
of	that	field.	If	the	field	that	you	want	the	value	submitted	to	has	a	different
name,	you	should	change	this	property	to	that	name.

Note:	In	the	XHTML	Technology	Service,	the	name	property	is	often
used	as	a	unique	ID.	This	is	not	the	case	for	the	jQuery	mobile
technology	service.	The	id	property	should	be	used	for	that.	If	the
weblet	value	is	not	to	be	submitted	to	the	server,	this	property	can	be
left	blank.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	name	of	a	field	in	a	target	webroutine.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.	The	checked	state	of	the	weblet	is
determined	by	comparing	the	value	with	the	trueValue	property.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	checkbox.	Any	value	that	does
not	match	the	trueValue	property	is	treated	as	false.

Valid	values
A	string	value	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

autofocus
Specifies	that	the	weblet	should	automatically	get	the	focus	when	the	page
loads.	There	must	be	only	one	field	on	a	page	with	this	property	set	to	true.
Setting	autofocus	to	true	on	more	than	one	field	may	produce	inconsistent
results	on	different	browsers.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

class
The	CSS	class,	or	classes,	to	assign	to	the	weblet.	A	CSS	class	allows	you	to
specify	a	set	of	CSS	styles,	defined	in	an	external	stylesheet,	to	apply	to	a
weblet,	or	elements	within	a	weblet.	For	complex	weblets	made	from	multiple
HTML	elements,	the	class	is	applied	to	the	outermost	element	of	the	weblet.

Default	value
Blank

Valid	values
A	string	containing	one	or	more	space	separated	CSS	class	names.

corners
Specifies	if	the	flipswitch	should	have	rounded	corners.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

disabled
Specifies	if	the	weblet	should	be	disabled.	A	disabled	weblet	is	unusable	and
un-clickable.	Note	that	the	value	of	a	disabled	weblet	will	not	be	submitted	with
the	form.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

displayMode
Controls	whether	the	weblet	accepts	input	or	is	output	only.

Default	value
Blank	(equivalent	to	'input').

Valid	values
input	or	output.

falseDisplay
The	text	to	display	in	the	switch	when	it	is	in	the	off	position.

Default	value
No

Valid	values
Any	string	value.

falseValue
The	field	value	that	represents	the	false	or	off	state.	This	is	the	value	that	is	send
to	the	server	when	the	field	is	submitted,	it	is	not	necessarily	the	value	that	will
set	the	weblet	to	the	off	state.	Instead,	the	off	state	is	set	if	the	field	value	is	not
equal	to	the	trueValue	property.

Default	value
false

Valid	value
Any	string	value.

fieldContainWrapper
jQuery	Mobile	will	handle	all	the	complexities	of	laying	out	labels	and	fields
vertically	on	small	screens	and	so	they	all	line	up	on	wide	screens.	To	do	this	it
needs	each	label/field	pair	to	be	wrapped	in	a	<div>	tag	with	specific	attributes.
Setting	fieldContainWrapper	to	true	and	using	the	label	property	to	set	the	label
text	will	take	care	of	all	of	this	for	you.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

form
A	space-separated	list	of	form	IDs	that	specifies	the	form(s)	this	weblet	belongs
to.	When	a	form	is	submitted	by	clicking	a	submit	button,	all	the	fields	that
belong	to	the	form	are	sent	to	the	server.	By	default,	all	the	fields	that	are	inside
the	<form>	tag	belong	to	the	form.	This	property	allows	you	place	a	field	in
other	parts	of	the	document,	outside	of	the	<form>	tag,	or	inside	other	<form>
tags	and	still	have	its	value	submitted	with	the	form.
The	standard	LANSA	layouts	contain	a	single	<form>	tag	that	wraps	the	entire
page	so	it	is	usually	not	necessary	to	use	this	property	on	these	layouts.

Default	value
Blank

Valid	values
Space	separated	list	of	form	IDs.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

hideLabel
Hides	the	label	accessibly.	This	means	that	the	label	is	not	visible	but	it	is	still
available	to	assistive	technologies	like	screen	readers.

Default	value
False	-	the	label	is	not	hidden.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

label
Specifies	the	label	text	to	use	for	the	weblet.	The	weblet	will	create	a	<label>
tag	with	this	value	and	make	sure	it	is	correctly	attached	to	the	input	field.	For
the	sake	of	accessibility,	it	is	recommended	that	you	provide	a	meaningful	label
for	all	weblets	even	if	you	do	not	intend	to	display	the	label.	Use	the	hideLabel
property	to	hide	the	label	while	keeping	it	available	for	assistive	technologies.

Default	Value
Blank	-	Automatically	generated	fields	will	have	a	value	from	the	repository
definition.

Valid	values
Any	string	value.

mini
If	set	to	true,	this	will	display	a	more	compact	version	of	the	weblet	that	uses
less	vertical	height.	This	can	be	useful	in	toolbars	and	other	places	where	space
is	tight.

Default	value
False	-	the	standard	size	is	used.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

rdmlxDataType
Specifies	the	RDMLX	data	type	of	the	field	associated	with	the	weblet.	This
helps	some	weblets	perform	data	validation.	This	property	is	normaly	set
automatically	when	you	generate	or	drop	a	field	onto	a	design.	You	may	need	to
set	it	yourself	if	you	drop	the	weblet	onto	a	design	and	then	later	associate	it
with	a	field.

Default	value
Blank	unless	automatically	set	by	the	WAM	editor.

Valid	values
A	|	delimited	string	starting	with	the	data	type	followed	by	extra	parameters
as	required	by	the	data	type:
integer|<max	length>
float|<max	length>
packed|<total	digits>|<fraction	digits>|<decimal	separator>
signed|<total	digits>|<fraction	digits>|<decimal	separator>
dec|<total	digits>|<fraction	digits>|<decimal	separator>
alpha|<keyboard	shift>|<max	length>
char|<keyboard	shift>|<max	length>
varchar|<keyboard	shift>|<max	length>
nchar|<keyboard	shift>|<max	length>
nvarchar|<keyboard	shift>|<max	length>

style
Specifies	a	CSS	style	string	to	apply	to	the	weblet.	This	property	allows	you	to
set	CSS	style	properties	for	this	weblet	that	will	override	any	values	defined	in
the	layout	stylesheets.

Default	value
Blank

Valid	values
Any	valid	CSS	properties	and	values,	separated	by	semi-colons

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

tabindex
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.	Note
that	this	may	not	be	supported	in	some	older	browsers.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	integer	value.

title
Specifies	extra	advisory	information	about	the	weblet.	This	is	usually	extra	non-
essential		information	to	help	a	user	understand	the	purpose	of	the	weblet.
Different	browsers	may	handle	it	in	different	ways.	for	example,	most	desktop
browsers	will	display	it	as	a	tooltip	when	the	mouse	hovers	over	the	weblet.
Assistive	technologies	like	screen	readers	will	read	it	to	the	user.	At	the	time	of
this	writing,	mobile	device	browsers	will	ignore	it.

Default	value
Blank

Valid	values
Any	valid	HTML	attribute	string.

trueDisplay
The	text	to	display	in	the	switch	when	it	is	in	the	on	position.

Default	value
Yes

Valid	values
Any	string	value.

trueValue
The	field	value	that	represents	the	true	or	on	state.	This	is	the	value	that	is	send
to	the	server	when	the	field	is	submitted.	The	weblet	will	be	initially	set	to	the
on	state	if	the	value	field	contains	this	value.

Default	value
true

Valid	value
Any	string	value.

9.4.4	Button	(std_button_s1	and	std_button_v2)
The	button	weblet	represents	an	HTML	<button>	element	which	creates	a
clickable	button.	Unlike	a	button	created	with	the	<input>	element	(Input	box
weblet)	the	button	weblet	can	contain	custom	HTML	like	formatted	text	and
images.	Weblet	std_button_v2	has	the	same	properties	as	std_button_s1,	but
with	the	difference	that	you	can	add	content	to	the	button	element.
There	are	three	possible	types	of	button:

Submit A	'submit'	button	calls	a	web	routine	sending	the	values	of	all	named
fields	in	the	parent	form	(or	the	form	specified	in	the	form	property).
You	should	use	a	submit	button	whenever	sending	data	to	a	web
routine	that	results	in	a	database	update	or	when	you	require	HTML	5
validation	to	be	performed	on	the	fields	before	the	form	is	submitted.

Reset A	'reset'	button	resets	all	fields	in	the	parent	<form>	(or	the	form
specified	in	the	form	property)	to	the	value	they	had	when	the	page
was	loaded.

Button A	'button'	button	has	no	default	action	when	clicked.	You	can	attach	a
custom	JavaScript	function	to	a	button	by	using	the	presubmitJS
property.

	

Use	std_button_v2	only	if	you	need	to	add	content	to	the	button
element.	For	all	other	cases,	use	std_button_s1.

	

Properties	-	Button	(std_button_s1	and	std_button_v2)
This	Button	weblet's	properties	are:

autofocus
caption
class
corners
disabled
form
formaction
formenctype
formmethod
formnovalidate
formtarget
hideIf

icon
iconPosition
iconShadow
id
inline
internal_id
mini
name
onClickExtraFields
onClickWamName
onClickWrName

presubmitJS
shadow
style
swatch
tabindex
title
transition
transitionDirection
type
useAjax
value

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

name
The	name	of	the	field	that	will	receive	the	value	of	this	weblet	when	it	is
submitted	to	a	webroutine.	When	a	weblet	is	generated,	or	dropped	on	a	field
from	the	current	webroutine's	WEB_MAP,	this	property	will	be	set	to	the	name
of	that	field.	If	the	field	that	you	want	the	value	submitted	to	has	a	different
name,	you	should	change	this	property	to	that	name.

Note:	In	the	XHTML	Technology	Service,	the	name	property	is	often
used	as	a	unique	ID.	This	is	not	the	case	for	the	jQuery	mobile
technology	service.	The	id	property	should	be	used	for	that.	If	the
weblet	value	is	not	to	be	submitted	to	the	server,	this	property	can	be
left	blank.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	name	of	a	field	in	a	target	webroutine.

value
The	value	of	the	button.	This	value	is	not	displayed	(use	the	caption	property
for	that).	It	is	the	value	that	is	submitted	to	the	target	webroutine	when	the
button	is	clicked.

Default	value
Blank

Valid	values
Any	string	value.

autofocus
Specifies	that	the	weblet	should	automatically	get	the	focus	when	the	page
loads.	There	must	be	only	one	field	on	a	page	with	this	property	set	to	true.
Setting	autofocus	to	true	on	more	than	one	field	may	produce	inconsistent
results	on	different	browsers.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

caption
The	caption	for	the	button.	This	is	the	default	content	for	the	button.		Custom
content	added	to	the	button	may	overwrite	this	value.

Default	value
Blank

Valid	values
Any	string	value.

class
The	CSS	class,	or	classes,	to	assign	to	the	weblet.	A	CSS	class	allows	you	to
specify	a	set	of	CSS	styles,	defined	in	an	external	stylesheet,	to	apply	to	a
weblet,	or	elements	within	a	weblet.	For	complex	weblets	made	from	multiple
HTML	elements,	the	class	is	applied	to	the	outermost	element	of	the	weblet.

Default	value
Blank

Valid	values
A	string	containing	one	or	more	space	separated	CSS	class	names.

corners
Specifies	if	the	button	should	have	rounded	corners.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

disabled
Specifies	if	the	weblet	should	be	disabled.	A	disabled	weblet	is	unusable	and
un-clickable.	Note	that	the	value	of	a	disabled	weblet	will	not	be	submitted	with
the	form.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

form
A	space-separated	list	of	form	IDs	that	specifies	the	form(s)	this	weblet	belongs
to.	When	a	form	is	submitted	by	clicking	a	submit	button,	all	the	fields	that
belong	to	the	form	are	sent	to	the	server.	By	default,	all	the	fields	that	are	inside
the	<form>	tag	belong	to	the	form.	This	property	allows	you	place	a	field	in
other	parts	of	the	document,	outside	of	the	<form>	tag,	or	inside	other	<form>
tags	and	still	have	its	value	submitted	with	the	form.
The	standard	LANSA	layouts	contain	a	single	<form>	tag	that	wraps	the	entire
page	so	it	is	usually	not	necessary	to	use	this	property	on	these	layouts.

Default	value
Blank

Valid	values
Space	separated	list	of	form	IDs.

formaction
A	URL	that	specifies	where	to	send	the	form-data	when	a	form	is	submitted.
Only	valid	for	type="submit".	Normally,	the	LANSA	runtime	framework	takes
care	of	working	out	the	correct	URL	based	on	the	onClickWrName	and
onClickWR	fields.	Setting	this	property	will	override	this	default	behaviour.

Default	Value
Blank

Valid	values
Any	valid	URL.

formenctype
Specifies	the	encoding	type	to	use	when	sending	the	form.	Only	valid	for
type="submit".	Normally	you	will	not	need	to	set	this	as	the	default	type	is	fine
for	sending	most	forms	to	LANSA	servers.	If	you	are	sending	a	form	to	a	non-
LANSA	server	then	specific	requirements	of	that	server	may	require	a	different
encoding	type.

Default	value
Blank	-	Use	the	value	specified	by	the	parent	<form>	element	which,	unless
otherwise	specified,	will	be	a	default	of	application/x-www-form-
urlencoded.

Valid	values
application/x-
www-form-
urlencoded

All	characters	are	encoded	before	sent	(spaces	are	converted
to	"+"	symbols,	and	special	characters	are	converted	to
ASCII	HEX	values).

multipart/form-
data

No	characters	are	encoded.	This	value	is	required	when	you
are	using	forms	that	have	a	file	upload	control.

text/plain Spaces	are	converted	to	"+"	symbols,	but	no	special
characters	are	encoded.

formmethod
Specifies	which	HTTP	method	to	use	to	send	the	form	data.	Only	valid	for
type="submit".

Default	value
Blank	-	Use	the	value	specified	by	the	parent	<form>	element	which,	unless
otherwise	specified,	will	be	a	default	of	POST.

Valid	values
'GET'	or	'POST'.

formnovalidate
Specifies	that	the	form	should	not	be	validated	prior	to	submission.	Only	valid
for	type="submit".	Setting	this	property	to	True	will	suppress	any	validation
that	has	been	turned	on	in	the	parent	<form>	element,	setting	it	to	False	will	not
turn	on	validation	that	has	been	turned	off	in	the	parent	<form>	element.
For	standard	shipped	layouts	the	<form>	validation	is	configured	with	the
validationMethod	property	of	the	layout	weblet.

Default	value
False.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

formtarget
Specifies	the	frame	or	window	in	which	to	display	the	response	after	submitting
the	form.	Only	valid	for	type="submit".
This	property	is	part	of	the	HTML	5	specification	and	is	provided	for
completeness.	Care	should	be	taken	with	its	use.	Different	mobile	browsers
have	different	levels	of	support	for	frames	and	windows	and	may	handle	this
property	differently.	It	may	also	cause	conflicts	with	jQuery	Mobile's	Ajax
mechanisms.

Default	value
Blank	-	Use	the	value	specified	by	the	parent	<form>	element	which,	unless
otherwise	specified,	will	be	a	default	of	blank	also	(display	in	the	current
page).

Valid	values
_blank,	_self,	_parent,	_top,	framename.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

icon
Specifies	the	jQuery	Mobile	icon	to	use	with	the	button.

Default	value
Default	-	no	icon	is	used

Valid	values
Any	of	the	values	listed	in	the	property	dropdown.

iconPosition
Specifies	the	position	of	the	button	icon	relative	to	the	button	text.

Default	value
Blank	-	uses	the	jQuery	Mobile	default	position	of	'Left'.

Valid	values
Left Position	the	icon	to	the	left	of	the	button	text.

Right Position	the	icon	to	the	right	of	the	button	text.

Top Position	the	icon	above	the	button	text.

Bottom Position	the	icon	below	the	button	text.

No	Text Draw	the	button	with	no	text	(icon	only).

iconShadow
Applies	the	theme	shadow	to	the	button's	icon	if	set	to	true.

Default	value
False	–	Don't	apply	a	shadow

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

inline
If	set	to	true,	this	will	make	the	button	act	like	an	inline	button	so	the	width	is
determined	by	the	button's	content.	If	set	to	false,	the	button	width	is	the	full
width	of	its	container,	regardless	of	the	content.

Default	value
False	-	the	button	is	as	wide	as	its	container.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

mini
If	set	to	true,	this	will	display	a	more	compact	version	of	the	weblet	that	uses
less	vertical	height.	This	can	be	useful	in	toolbars	and	other	places	where	space
is	tight.

Default	value
False	–Use	the	standard	size.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

onClickExtraFields
By	default,	the	button	generates	a	POST	request	and	automatically	submits	all
fields	in	its	parent	<form>	to	the	target	webroutine.	This	property	allows	you	to
specify	extra	fields	and	values	that	should	be	sent	to	the	target	webroutine	when
the	weblet	is	clicked.
This	property	can	only	be	set	by	using	the	custom	property	designer,	invoked
using	the	ellipses	button	in	the	property	sheet.

This	shows	an	output	field	in	the	current	webroutine	(#SELSEC)		and	a	literal
value	("FLT")	being	mapped	to	input	fields	(the	"Name"	column)	in	the	target
webroutine.
Note:	You	must	set	the	onClickWamName	and	onClickWrName	properties
before	editing	this	property	so	that	the	dropdown	in	the	"Name"	column	can	be
correctly	filled.

Default	Value
document('')/*/lxml:data/lxml:json[not(@id)]	(this	indicates	no	items	have
been	defined	for	this	weblet).

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

onClickWamName
Specifies	the	name	of	the	WAM	whose	webroutine	is	executed	when	this	weblet
is	clicked.	(The	webroutine	name	is	specified	in	the	onClickWrName	property.)
This	property	is	has	no	effect	if	the	type	property	is	set	to	"button"	or	"reset".

Default	value
If	not	specified,	the	current	WAM	is	used.	($lweb_WAMName).

Valid	values
The	name	of	a	WAM.	A	list	of	known	WAMs	can	be	displayed	by	clicking
the	corresponding	dropdown	button	on	the	property	sheet.

onClickWrName
Specifies	the	name	of	the	webroutine	that	is	executed	when	this	weblet	is
clicked.	(The	name	of	the	WAM	containing	the	webroutine	is	specified	in	the
onClickWamName	property.)
This	property	is	has	no	effect	if	the	type	property	is	set	to	"button"	or	"reset".

Default	value
No	default	value	applies	–	either	the	url	property	or	the	on_click_wrname
property	must	be	specified.

Valid	values
The	name	of	a	Webroutine.	The	Webroutine	must	exist	in	the	WAM	specified
in	the	onClickWamName	property.	A	list	of	known	Webroutines	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

presubmitJS
JavaScript	code	to	be	run	prior	to	the	submission	of	the	form.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	function,	or	JavaScript	code	followed	by	a	semicolon
(;).
If	you	want	to	execute	the	presubmit	JavaScript	only,	without	running	the
JavaScript	that	submits	the	request,	append	return	false;	to	your	presubmit
JavaScript.

shadow
Applies	the	drop	shadow	style	to	the	button	if	set	to	true.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

style
Specifies	a	CSS	style	string	to	apply	to	the	weblet.	This	property	allows	you	to
set	CSS	style	properties	for	this	weblet	that	will	override	any	values	defined	in
the	layout	stylesheets.

Default	value
Blank

Valid	values
Any	valid	CSS	properties	and	values,	separated	by	semi-colons

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

tabindex
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.	Note
that	this	may	not	be	supported	in	some	older	browsers.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	integer	value.

title
Specifies	extra	advisory	information	about	the	weblet.	This	is	usually	extra	non-
essential		information	to	help	a	user	understand	the	purpose	of	the	weblet.
Different	browsers	may	handle	it	in	different	ways.	for	example,	most	desktop
browsers	will	display	it	as	a	tooltip	when	the	mouse	hovers	over	the	weblet.
Assistive	technologies	like	screen	readers	will	read	it	to	the	user.	At	the	time	of
this	writing,	mobile	device	browsers	will	ignore	it.

Default	value
Blank

Valid	values
Any	valid	HTML	attribute	string.

transition
Specified	the	transition	to	use	when	displaying	the	next	page.	This	property	only
applies	if	the	next	page	is	loaded	with	Ajax.
Transition	effects	that	are	shipped	with	the	standard	jQuery	Mobile	are:

fade
pop
flip
turn
flow
slidefade
slide
slideup
slidedown,

See	the	jQuery	Mobile	documentation	for	information	on	creating	custom
transitions.

Note:	Not	all	devices	and	browsers	are	able	to	support	complex
transitions.	jQuery	mobile	will	automatically	fall	back	to	a	fade	or	no
transition	on	such	devices.

Default	value
slide

Valid	values
The	name	on	any	installed	transitions	or	none

http://jquerymobile.com/

transitionDirection
Specifies	the	direction	of	the	transition	animation.

Note:	If	the	relationship	property	is	set	to	"Back"	the	transition
direction	will	be	"reverse"	regardless	of	this	property	value.

Default	value
forward

Valid	values
forward	or	reverse.

type
Specifies	the	type	of	the	button.	There	are	three	possible	button	types:

Submit Tapping	a	submit	button	causes	the	<form>	that	the	button	belongs	to
to	be	sent	to	the	server.

Reset Tapping	a	reset	button	causes	the	browser	to	reset	all	field	in	the	form
to	the	initial	values	they	contained	when	the	page	was	loaded.

Button This	button	has	no	default	action	when	clicked.	You	must	use
JavaScript	to	define	custom	behavior.

Default	value
submit

Valid	values
submit,	reset,	button

useAjax
jQuery	normally	loads	pages	from	the	same	domain	using	an	Ajax	request	and
then	animates	the	page	content	into	place	when	the	load	is	complete.	This
usually	results	in	faster	loads	(scripts	and	styles	and	not	loaded	again)	and	a
more	app-like	appearance	to	you	site.
Sometimes	it	might	be	necessary	to	force	a	complete	reload	of	the	page.	This
will	most	likely	be	when	the	target	webroutine	uses	a	different	layout	and	needs
to	load	different	script	and	style	resources.
Setting	this	property	to	false	will	force	the	page	to	be	reloaded	without	an	Ajax
request.
See	the	"Linking	Pages"	section	of	the	jQuery	Mobile	documentation	for	more
information	on	how	pages	are	loaded.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

http://jquerymobile.com/

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.5	Checkbox	(std_checkbox)
This	weblet	creates	a	standard	checkbox	control	which	jQuery	Mobile	will
modify	to	fit	the	current	theme.	Note	that	a	checkbox	field	is	only	submitted	to	a
web	routine	if	the	checkbox	is	checked.	If	the	checkbox	is	not	checked,	no	value
is	submitted	and	the	field	in	the	web	routine	will	contain	its	default	value.

Properties	-	Checkbox	(std_checkbox)
This	weblet's	properties	are:

autofocus
disabled
form
hideIf
id

label
mini
name
rdmlxDataType
required

selectedValue
swatch
tabindex
title
value

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

name
The	name	of	the	field	that	will	receive	the	value	of	this	weblet	when	it	is
submitted	to	a	webroutine.	When	a	weblet	is	generated,	or	dropped	on	a	field
from	the	current	webroutine's	WEB_MAP,	this	property	will	be	set	to	the	name
of	that	field.	If	the	field	that	you	want	the	value	submitted	to	has	a	different
name,	you	should	change	this	property	to	that	name.

Note:	In	the	XHTML	Technology	Service,	the	name	property	is	often
used	as	a	unique	ID.	This	is	not	the	case	for	the	jQuery	mobile
technology	service.	The	id	property	should	be	used	for	that.	If	the
weblet	value	is	not	to	be	submitted	to	the	server,	this	property	can	be
left	blank.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	name	of	a	field	in	a	target	webroutine.

value
The	initial	value	of	the	checkbox.	This	value	is	compared	with	the	selectedValue
property	to	determine	if	the	checkbox	should	be	initially	checked.

Default	value
Blank

Valid	values
Any	string	value.

autofocus
Specifies	that	the	weblet	should	automatically	get	the	focus	when	the	page
loads.	There	must	be	only	one	field	on	a	page	with	this	property	set	to	true.
Setting	autofocus	to	true	on	more	than	one	field	may	produce	inconsistent
results	on	different	browsers.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

disabled
Specifies	if	the	weblet	should	be	disabled.	A	disabled	weblet	is	unusable	and
un-clickable.	Note	that	the	value	of	a	disabled	weblet	will	not	be	submitted	with
the	form.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

form
A	space-separated	list	of	form	IDs	that	specifies	the	form(s)	this	weblet	belongs
to.	When	a	form	is	submitted	by	clicking	a	submit	button,	all	the	fields	that
belong	to	the	form	are	sent	to	the	server.	By	default,	all	the	fields	that	are	inside
the	<form>	tag	belong	to	the	form.	This	property	allows	you	place	a	field	in
other	parts	of	the	document,	outside	of	the	<form>	tag,	or	inside	other	<form>
tags	and	still	have	its	value	submitted	with	the	form.
The	standard	LANSA	layouts	contain	a	single	<form>	tag	that	wraps	the	entire
page	so	it	is	usually	not	necessary	to	use	this	property	on	these	layouts.

Default	value
Blank

Valid	values
Space	separated	list	of	form	IDs.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

label
Specifies	the	label	text	to	use	for	the	weblet.	The	weblet	will	create	a	<label>
tag	with	this	value	and	make	sure	it	is	correctly	attached	to	the	input	field.

Default	Value
Blank	-	Automatically	generated	fields	will	have	a	value	from	the	repository
definition.

Valid	values
Any	string	value.

mini
If	set	to	true,	this	will	display	a	more	compact	version	of	the	weblet	that	uses
less	vertical	height.	This	can	be	useful	in	toolbars	and	other	places	where	space
is	tight.

Default	value
False	-	the	standard	size	is	used.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

rdmlxDataType
Specifies	the	RDMLX	data	type	of	the	field	associated	with	the	weblet.	This
helps	some	weblets	perform	data	validation.	This	property	is	normaly	set
automatically	when	you	generate	or	drop	a	field	onto	a	design.	You	may	need	to
set	it	yourself	if	you	drop	the	weblet	onto	a	design	and	then	later	associate	it
with	a	field.

Default	value
Blank	unless	automatically	set	by	the	WAM	editor.

Valid	values
A	|	delimited	string	starting	with	the	data	type	followed	by	extra	parameters
as	required	by	the	data	type:
integer|<max	length>
float|<max	length>
packed|<total	digits>|<fraction	digits>|<decimal	separator>
signed|<total	digits>|<fraction	digits>|<decimal	separator>
dec|<total	digits>|<fraction	digits>|<decimal	separator>
alpha|<keyboard	shift>|<max	length>
char|<keyboard	shift>|<max	length>
varchar|<keyboard	shift>|<max	length>
nchar|<keyboard	shift>|<max	length>
nvarchar|<keyboard	shift>|<max	length>

required
Specifies	that	the	checkbox	must	be	checked	before	the	form	can	be	submitted.
Note	that,	at	the	time	of	writing,	Safari	and	Internet	Explorer	do	not	support	this
property.

Note:	HTML	5	form	validation	can	be	turned	off	by	adding	a
novalidate	attribute	to	the	<form>	tag	or	submit	button	(this	is
automatically	done	by	setting	validationMethod	to	'none'	on	the
standard	shipped	layouts).	In	addition,	different	browsers	have
differing	levels	of	support	for	HTML	5	validation	and	there	are	many
ways	for	malicious	users	to	bypass	client-side	validation.	So,	while
client-side	validation	can	improve	the	user	experience,	you	should
never	rely	on	it.	Always	back	it	up	with	server-side	validation.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

selectedValue
Specifies	the	field	value	that	represents	the	selected	state.	When	the	checkbox	is
initialized,	the	actual	value	is	compared	with	this	value	(using	a	case	sensitive
comparison)	to	determine	if	the	checkbox	is	checked.	When	the	form	is
submitted,	this	is	the	value	that	is	sent	if	the	checkbox	is	checked.	No	value	is
sent	for	an	unchecked	checkbox.

Default	value
true

Valid	values
Any	string	value.

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

tabindex
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.	Note
that	this	may	not	be	supported	in	some	older	browsers.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	integer	value.

title
Specifies	extra	advisory	information	about	the	weblet.	This	is	usually	extra	non-
essential		information	to	help	a	user	understand	the	purpose	of	the	weblet.
Different	browsers	may	handle	it	in	different	ways.	for	example,	most	desktop
browsers	will	display	it	as	a	tooltip	when	the	mouse	hovers	over	the	weblet.
Assistive	technologies	like	screen	readers	will	read	it	to	the	user.	At	the	time	of
this	writing,	mobile	device	browsers	will	ignore	it.

Default	value
Blank

Valid	values
Any	valid	HTML	attribute	string.

9.4.6	Collapsible	Block	(std_collapsible)
A	Collabsible	Block	is	a	section	of	content	that	the	user	can	show	or	hide	by
clicking	on	its	header.

	A	collapsed
Collapsible	Block

	
An	expanded	Collapsible	Block

Properties	-	Collapsible	Block	(std_collapsible)
This	weblet's	properties	are:

collapseCueText
collapsed
contentSwatch
expandCueText

headerLevel
headerSwatch
headerText
hideIf

id
inset
internal_id

	

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

collapsed
Specifies	the	initial	state	of	the	weblet.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

contentSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
content	area	of	the	weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

headerLevel
The	header	section	of	the	weblet	is	rendered	inside	an	HTML	header	tag.	This
property	specifies	the	level	of	that	header	(h1,	h2,	h3,	h4,	h5,	h6,	h7	or	h8).	The
header	level	has	no	effect	of	the	visual	appearance	of	the	weblet	but	may	be
important	for	the	semantic	structure	of	your	document.	This	may	be	important
to	how	other	systems	such	as	search	engines	or	assistive	technologies	process
your	page.

Default	value
3

Valid	values
1,	2,	3,	4,	5,	6,	7	or	8.

headerSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
header	area	of	the	weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

headerText
Specifies	the	text	to	display	in	the	header	area.

Default	value
Collapsible	Block

Valid	values
Any	string	value.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

inset
By	default	collapsible	blocks	have	an	inset	appearance.	To	make	them	full	width
without	corner	styling	set	this	property	to	false.
Default	value
True	–	the	block	will	have	a	margin.
Valid	values

True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

collapseCueText
The	text	used	to	provide	audible	feedback	for	users	with	screen	reader	software.

Default	value
"click	to	collapse	contents"

Valid	values
Any	string	value.

expandCueText
The	text	used	to	provide	audible	feedback	for	users	with	screen	reader	software.

Default	value
"click	to	expand	contents"

Valid	values
Any	string	value.

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.7	Collapsible	Set	(std_collapsibleset)
The	Collapsible	Set	weblet	is	a	wrapper	that	can	be	placed	around	multiple
Collapsible	Block	weblets	to	create	an	accordian.	When	one	Collapsible	Block
is	expanded,	the	others	in	the	set	are	collapsed.	This	weblet	does	not	create	the
Collibsible	Block	weblets.	You	must	create	those	and	place	them	into	the
content	area	of	the	Collapsible	Set	weblet.

Properties	-	Collapsible	Set	(std_collapsibleset)
This	weblet's	properties	are:
hideIf
id
internal_id

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.8	Control	Group	(std_controlgroup)
The	Control	Group	weblet	is	a	wrapper	that	can	be	placed	around	multiple
buttons,	checkboxes	or	radio	buttons	to	group	them	together.	The	framework
will	automatically	remove	all	margins	between	buttons	and	round	only	the	top
and	bottom	corners	of	the	set.

	Examples	of
grouped	controls

	

Properties	-	Control	Group	(std_controlgroup)
This	weblet's	properties	are:

class
fieldContainWrapper
hideIf
hideLabel

id
internal_id
label
mini

orientation
style
swatch

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

class
The	CSS	class,	or	classes,	to	assign	to	the	weblet.	A	CSS	class	allows	you	to
specify	a	set	of	CSS	styles,	defined	in	an	external	stylesheet,	to	apply	to	a
weblet,	or	elements	within	a	weblet.	For	complex	weblets	made	from	multiple
HTML	elements,	the	class	is	applied	to	the	outermost	element	of	the	weblet.

Default	value
Blank

Valid	values
A	string	containing	one	or	more	space	separated	CSS	class	names.

fieldContainWrapper
jQuery	Mobile	will	handle	all	the	complexities	of	laying	out	labels	and	fields
vertically	on	small	screens	and	so	they	all	line	up	on	wide	screens.	To	do	this	it
needs	each	label/field	pair	to	be	wrapped	in	a	<div>	tag	with	specific	attributes.
Setting	fieldContainWrapper	to	true	and	using	the	label	property	to	set	the	label
text	will	take	care	of	all	of	this	for	you.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

hideLabel
Hides	the	label.	It	is	currently	not	possible	to	hide	the	label	for	this	weblet	so
that	it	is	still	accessible	to	assistive	technologies	(as	the	hideLabel	property	will
do	on	other	weblets)	so	setting	this	property	to	true	is	the	same	as	setting	the
label	property	to	a	blank	value.	This	property	exists	for	consistency	with	other
weblets	and	so	that,	should	future	browsers	make	it	possible	to	hide	the	label
accessibly,	that	will	automatically	happen	without	you	needing	to	change
anything.

Default	value
False	-	the	label	is	not	hidden.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

label
Specifies	the	label	text	to	use	for	the	weblet.	The	weblet	will	create	a	<label>
tag	with	this	value	and	make	sure	it	is	correctly	attached	to	the	input	field.	For
the	sake	of	accessibility,	it	is	recommended	that	you	provide	a	meaningful	label
for	all	weblets	even	if	you	do	not	intend	to	display	the	label.	Use	the	hideLabel
property	to	hide	the	label	while	keeping	it	available	for	assistive	technologies.

Default	Value
Blank	-	Automatically	generated	fields	will	have	a	value	from	the	repository
definition.

Valid	values
Any	string	value.

mini
If	set	to	true,	this	will	display	a	more	compact	version	of	the	weblet	that	uses
less	vertical	height.	This	can	be	useful	in	toolbars	and	other	places	where	space
is	tight.

Default	value
False	-	the	standard	size	is	used.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

orientation
Specifies	how	the	controls	in	the	group	should	be	arranged.

Default	value
vertical

Valid	values
horizontal	or	vertical.

style
Specifies	a	CSS	style	string	to	apply	to	the	weblet.	This	property	allows	you	to
set	CSS	style	properties	for	this	weblet	that	will	override	any	values	defined	in
the	layout	stylesheets.

Default	value
Blank

Valid	values
Any	valid	CSS	properties	and	values,	separated	by	semi-colons

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.9	Select	Menu	(std_dropdown)
The	select	menu	is	based	on	a	native	select	element,	which	is	hidden	from	view
and	replaced	with	a	custom-styled	select	button	that	matches	the	look	and	feel
of	the	jQuery	Mobile	framework.
By	default,	the	framework	leverages	the	native	OS	options	menu	to	use	with	the
custom	button.	When	the	button	is	clicked,	the	native	OS	menu	will	open.	When
a	value	is	selected	and	the	menu	closes,	the	custom	button's	text	is	updated	to
match	the	selected	value.
The	Select	Menu	weblet	also	offers	the	option	of	generating	custom	menus
instead	of	the	native	OS	menu.	The	custom	menu	supports	disabled	options,
multiple	selection	(whereas	native	mobile	OS	support	for	both	is	inconsistent)
and	adds	an	elegant	way	to	handle	placeholder	values.	See	the	useNativeControl
property	for	details.

Properties	-	Select	Menu	(std_dropdown)
This	weblet's	properties	are:

addErrorDiv
autofocus
class
corners
disabled
displayMode
fieldContainWrapper
form
hideIf
hideLabel
icon
iconPosition
iconShadow

id
inline
items
label
mini
multiple
multiSelectCodeField
multiSelectListname
name
overlaySwatch
placeholder
rdmlxDataType
required

selectorValueField
shadow
style
swatch
tabindex
title
updateFieldsToSubmit
updateOnFieldChange
updateProtocol
updateWamName
updateWrName
useNativeControl
value

name
The	name	of	the	field	that	will	receive	the	value	of	this	weblet	when	it	is
submitted	to	a	webroutine.	When	a	weblet	is	generated,	or	dropped	on	a	field
from	the	current	webroutine's	WEB_MAP,	this	property	will	be	set	to	the	name
of	that	field.	If	the	field	that	you	want	the	value	submitted	to	has	a	different
name,	you	should	change	this	property	to	that	name.

Note:	In	the	XHTML	Technology	Service,	the	name	property	is	often
used	as	a	unique	ID.	This	is	not	the	case	for	the	jQuery	mobile
technology	service.	The	id	property	should	be	used	for	that.	If	the
weblet	value	is	not	to	be	submitted	to	the	server,	this	property	can	be
left	blank.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	name	of	a	field	in	a	target	webroutine.

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

value
Specifies	the	initial	value	of	the	weblet.	This	value	will	be	compared	with	the
code	value	of	each	item	to	determine	which	item	to	initially	select.

Default	value
Blank

Valid	values
Any	string	value.

addErrorDiv
When	set	to	True,	a	<div>	element	will	be	added	just	after	the	weblet	to	display
validation	errors.	the	<div>	will	be	hidden	until	a	validation	error	occurs	and
will	be	hidden	again	when	the	error	is	cleared.
When	a	validation	method	has	been	set	the	error	<div>	will	reserve	some	space
for	itself	on	the	page	even	when	it	is	hidden	to	avoid	confusing	rearrangements
of	the	screen	when	the	error	is	displayed.	If	you	are	using	HTML	5	validation
on	the	form	but	not	on	this	field	then	you	may	want	to	set	this	property	to	False
to	reclaim	that	space.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

autofocus
Specifies	that	the	weblet	should	automatically	get	the	focus	when	the	page
loads.	There	must	be	only	one	field	on	a	page	with	this	property	set	to	true.
Setting	autofocus	to	true	on	more	than	one	field	may	produce	inconsistent
results	on	different	browsers.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

class
The	CSS	class,	or	classes,	to	assign	to	the	weblet.	A	CSS	class	allows	you	to
specify	a	set	of	CSS	styles,	defined	in	an	external	stylesheet,	to	apply	to	a
weblet,	or	elements	within	a	weblet.	For	complex	weblets	made	from	multiple
HTML	elements,	the	class	is	applied	to	the	outermost	element	of	the	weblet.

Default	value
Blank

Valid	values
A	string	containing	one	or	more	space	separated	CSS	class	names.

corners
Specifies	if	the	button	should	have	rounded	corners.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

disabled
Specifies	if	the	weblet	should	be	disabled.	A	disabled	weblet	is	unusable	and
un-clickable.	Note	that	the	value	of	a	disabled	weblet	will	not	be	submitted	with
the	form.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

displayMode
Controls	whether	the	weblet	accepts	input	or	is	output	only.

Default	value
Blank	(equivalent	to	'input').

Valid	values
input	or	output.

fieldContainWrapper
jQuery	Mobile	will	handle	all	the	complexities	of	laying	out	labels	and	fields
vertically	on	small	screens	and	so	they	all	line	up	on	wide	screens.	To	do	this	it
needs	each	label/field	pair	to	be	wrapped	in	a	<div>	tag	with	specific	attributes.
Setting	fieldContainWrapper	to	true	and	using	the	label	property	to	set	the	label
text	will	take	care	of	all	of	this	for	you.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

form
A	space-separated	list	of	form	IDs	that	specifies	the	form(s)	this	weblet	belongs
to.	When	a	form	is	submitted	by	clicking	a	submit	button,	all	the	fields	that
belong	to	the	form	are	sent	to	the	server.	By	default,	all	the	fields	that	are	inside
the	<form>	tag	belong	to	the	form.	This	property	allows	you	place	a	field	in
other	parts	of	the	document,	outside	of	the	<form>	tag,	or	inside	other	<form>
tags	and	still	have	its	value	submitted	with	the	form.
The	standard	LANSA	layouts	contain	a	single	<form>	tag	that	wraps	the	entire
page	so	it	is	usually	not	necessary	to	use	this	property	on	these	layouts.

Default	value
Blank

Valid	values
Space	separated	list	of	form	IDs.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

hideLabel
Hides	the	label	accessibly.	This	means	that	the	label	is	not	visible	but	it	is	still
available	to	assistive	technologies	like	screen	readers.

Default	value
False	-	the	label	is	not	hidden.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

icon
Specifies	the	jQuery	Mobile	icon	to	use	with	the	button.

Default	value
Default	-	a	down	arrow	icon	is	used

Valid	values
Any	of	the	values	listed	in	the	property	dropdown.

iconPosition
Specifies	the	position	of	the	button	icon	relative	to	the	button	text.

Default	value
Blank	-	uses	the	jQuery	Mobile	default	position	of	'Left'.

Valid	values
Left	-	position	the	icon	to	the	left	of	the	button	text.
Right	-	position	the	icon	to	the	right	of	the	button	text.
Top	-	position	the	icon	above	the	button	text.
Bottom	-	position	the	icon	below	the	button	text.
No	Text	-	draw	the	button	with	no	text	(icon	only).

iconShadow
Applies	the	theme	shadow	to	the	button's	icon	if	set	to	true.

Default	value
False	–	Don't	apply	a	shadow

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

items
An	XML	nodeset	specifying	the	items	to	appear	in	the	weblet.	This	can	only	be
set	by	the	designer.	To	invoke	the	designer	use	the	ellipse	button	in	the	property
sheet.	The	property	designer	can	be	used	to	specify	a	hard	coded	set	of	items	or
the	name	of	a	working	list	to	get	the	items	from.	When	using	a	working	list,	the
list	must	be	specified	as	*JSON	in	the	output	Web	Map.

This	graphic	shows	a	list	configured	with	4	items.	Check(select)	the	Default
Item	check	box	for	the	item	that	is	to	be	selected	if	no	value	is	preselected.	The
Selector	value	can	be	used	to	filter	the	list	down	to	a	smaller	set	of	displayed
values	at	runtime.

This	graphic	shows	the	items	property	editor	configured	to	use	a	working	list.
The	Selector	field	can	be	used	to	filter	the	list	down	to	a	smaller	set	of	displayed
values	at	runtime.

Default	value
document(")/*/lxml:data/lxml:dropdown	(this	indicates	no	items	have	been
defined	for	this	weblet.)

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

inline
If	set	to	true,	this	will	make	the	button	act	like	an	inline	button	so	the	width	is
determined	by	the	button's	content.	If	set	to	false,	the	button	width	is	the	full
width	of	its	container,	regardless	of	the	content.

Default	value
False	-	the	button	is	as	wide	as	its	container.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

label
Specifies	the	label	text	to	use	for	the	weblet.	The	weblet	will	create	a	<label>
tag	with	this	value	and	make	sure	it	is	correctly	attached	to	the	input	field.	For
the	sake	of	accessibility,	it	is	recommended	that	you	provide	a	meaningful	label
for	all	weblets	even	if	you	do	not	intend	to	display	the	label.	Use	the	hideLabel
property	to	hide	the	label	while	keeping	it	available	for	assistive	technologies.

Default	Value
Blank	-	Automatically	generated	fields	will	have	a	value	from	the	repository
definition.

Valid	values
Any	string	value.

mini
If	set	to	true,	this	will	display	a	more	compact	version	of	the	weblet	that	uses
less	vertical	height.	This	can	be	useful	in	toolbars	and	other	places	where	space
is	tight.

Default	value
False	-	the	standard	size	is	used.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

multiple
A	Boolean	property	that	controls	whether	multiple	selections	are	allowed	in	the
list	box.	If	multiple	selections	are	allowed,	the	multiSelectListname	and
multiSelectCodefield	properties	must	be	specified.
Note	that	mobile	browser	support	for	multiple	selections	is	inconsistent.	To
avoid	browser	compatability	issues,	you	may	want	to	set	useNativeControl	to
false	and	let	jQuery	Mobile	render	a	custom	interface	for	the	list.

Default	value
False

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

multiSelectCodeField
The	name	of	the	field	in	the	multiSelectListname	working	list	that	holds	the
code	value	of	the	selected	menu	items.

Default	value
Blank.

Valid	values
The	name	of	a	field.	Click	the	corresponding	dropdown	button	in	the
property	sheet	to	choose	from	a	list	of	known	fields.

multiSelectListname
The	working	list	that	contains	the	selected	entries	for	the	menu.	The	working
list	should	contain	only	the	code	field	that	is	specified	in	the
multiSelectCodeField	property.	If	the	multiple	property	is	false,	this
property	is	ignored.

Default	value
Blank.

Valid	values
The	name	of	a	working	list.	Click	the	corresponding	dropdown	button	in	the
property	sheet	to	choose	from	a	list	of	known	working	lists.

overlaySwatch
Specifies	the	default	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to
the	overlay	layer	for	the	dialog-based	custom	select	menus	and	the	outer	border
of	the	smaller	custom	menus.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

placeholder
Specifies	a	short	hint	that	describes	the	expected	value	of	the	input	field	(for
example,	a	sample	value	or	a	short	description	of	the	expected	format).	The	hint
is	displayed	in	the	field	when	it	is	empty,	and	disappears	when	the	field	gets
focus	or	contains	a	value	(details	vary	by	browser).

Default	value
Blank

Valid	values
Any	string	value.

rdmlxDataType
Specifies	the	RDMLX	data	type	of	the	field	associated	with	the	weblet.	This
helps	some	weblets	perform	data	validation.	This	property	is	normaly	set
automatically	when	you	generate	or	drop	a	field	onto	a	design.	You	may	need	to
set	it	yourself	if	you	drop	the	weblet	onto	a	design	and	then	later	associate	it
with	a	field.

Default	value
Blank	unless	automatically	set	by	the	WAM	editor.

Valid	values
A	|	delimited	string	starting	with	the	data	type	followed	by	extra	parameters
as	required	by	the	data	type:
integer|<max	length>
float|<max	length>
packed|<total	digits>|<fraction	digits>|<decimal	separator>
signed|<total	digits>|<fraction	digits>|<decimal	separator>
dec|<total	digits>|<fraction	digits>|<decimal	separator>
alpha|<keyboard	shift>|<max	length>
char|<keyboard	shift>|<max	length>
varchar|<keyboard	shift>|<max	length>
nchar|<keyboard	shift>|<max	length>
nvarchar|<keyboard	shift>|<max	length>

required
Specifies	that	a	value	must	be	entered	in	this	weblet	before	the	form	can	be
submitted.	.	Note	that,	at	the	time	of	writing,	Safari	and	Internet	Explorer	do	not
support	this	property.

Note:	HTML	5	form	validation	can	be	turned	off	by	adding	a
novalidate	attribute	to	the	<form>	tag	or	submit	button	(this	is
automatically	done	by	setting	validationMethod	to	'none'	on	the
standard	shipped	layouts).	In	addition,	different	browsers	have
differing	levels	of	support	for	HTML	5	validation	and	there	are	many
ways	for	malicious	users	to	bypass	client-side	validation.	So,	while
client-side	validation	can	improve	the	user	experience,	you	should
never	rely	on	it.	Always	back	it	up	with	server-side	validation.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

selectorValueField
The	name	of	a	field	whose	value	is	used	to	filter	the	list	supplied	to	the	weblet
into	a	smaller	list	for	display.	When	building	the	display	list,	this	value	is
compared	with	the	value	in	the	lists	"selector"	column.	If	a	match	is	found	the
entry	is	included	in	the	displayed	list.
This	can	be	useful	for	reducing	the	work	done	at	the	server.	Instead	of
calculating	the	list	entries	every	time	it	is	executed,	the	webroutine	could	output
a	pre-built	list	with	all	possible	values	and	a	selector	value.	The	browser	can
then	reduce	the	list	to	a	subset	based	on	the	selector	value.	Keep	in	mind,
however,	that	the	reduction	in	server	load	should	be	balanced	against	an
increase	in	network	bandwidth	used	sending	more	data	to	the	browser.
This	can	also	be	used	to	allow	a	dynamic	list	to	refresh	without	having	to	make
a	server	request.	If	the	field	being	monitored	for	updates	is	also	the
selectorValueField	then	the	weblet	can	rebuild	itself	by	applying	the	new
selector	value	to	the	list	initially	passed	to	it.

Default	value
Blank.	No	filtering	is	done.

Valid	values
The	name	of	any	output	field	in	the	current	Webroutine

shadow
Applies	the	drop	shadow	style	to	the	button	if	set	to	true.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

style
Specifies	a	CSS	style	string	to	apply	to	the	weblet.	This	property	allows	you	to
set	CSS	style	properties	for	this	weblet	that	will	override	any	values	defined	in
the	layout	stylesheets.

Default	value
Blank

Valid	values
Any	valid	CSS	properties	and	values,	separated	by	semi-colons

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

tabindex
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.	Note
that	this	may	not	be	supported	in	some	older	browsers.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	integer	value.

title
Specifies	extra	advisory	information	about	the	weblet.	This	is	usually	extra	non-
essential		information	to	help	a	user	understand	the	purpose	of	the	weblet.
Different	browsers	may	handle	it	in	different	ways.	for	example,	most	desktop
browsers	will	display	it	as	a	tooltip	when	the	mouse	hovers	over	the	weblet.
Assistive	technologies	like	screen	readers	will	read	it	to	the	user.	At	the	time	of
this	writing,	mobile	device	browsers	will	ignore	it.

Default	value
Blank

Valid	values
Any	valid	HTML	attribute	string.

updateFieldsToSubmit
Specifies	the	fields	and	values	to	submit	when	calling	the	"update"	webroutine
to	refresh	the	list	values.
This	property	can	only	be	set	by	using	the	custom	property	designer,	invoked
using	the	ellipses	button	in	the	property	sheet.

This	shows	an	output	field	in	the	current	webroutine	(#SELSEC)		and	a	literal
value	("FLT")	being	mapped	to	input	fields	(the	"Name"	column)	in	the	target
webroutine.
Note:	You	must	set	the	updateWamName	and	updateWrName	properties	before
editing	this	property	so	that	the	dropdown	in	the	"Name"	column	can	be
correctly	filled.

Default	Value
document('')/*/lxml:data/lxml:json[not(@id)]	(this	indicates	no	items	have
been	defined	for	this	weblet).

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

updateOnFieldChange
The	ID	of	a	field	to	monitor	for	changes.	If	a	change	occurs	in	the	monitored
field	the	select	box	will	refresh.	If	updateWamName	and	updateWrName
have	been	specified,	the	weblet	will	call	the	Webroutine	to	request	a	fresh	copy
of	the	working	list,	if	one	was	specified	in	the	items	property.	Otherwise	it	will
re-apply	the	selectorValueField	filter	to	the	list	it	already	has	and	rebuild	the
menu	list	from	that.
Fields	built	around	the	<input>	and	<select>	elements	can	be	monitored	(this	is
all	standard	fields	except	the	Text	Area).

Default	value
Blank	-	no	field	is	monitored.

Valid	values
The	ID	of	any	<input>	or	<select>	element	on	the	current	page.	For	standard
weblets,	this	is	the	same	as	the	id	property	of	the	weblet.

updateProtocol
The	HTTP	protocol	that	should	be	used	when	calling	the	update	webroutine.

Default	value
Blank.-	Uses	the	same	protocol	that	the	current	page	used.

Valid	values
http:	or	https:

updateWamName
The	name	of	the	WAM	to	be	invoked	when	refreshing	the	list.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM.	A	list	of	known	WAMs	can	be	displayed	by	clicking
the	corresponding	dropdown	button	on	the	property	sheet.

updateWrName
The	name	of	the	Webroutine	to	be	invoked	when	refreshing	the	list.	This
webroutine	must	be	defined	as	*JSON.

Default	value
Blank.

Valid	values
The	name	of	a	Webroutine.	The	Webroutine	must	exist	in	the	WAM	specified
in	the	updateWamName	property.	A	list	of	known	Webroutines	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

useNativeControl
Specifies	whether	the	browser	should	display	the	select	menu	using	its	own	UI
or	if	jQuery	Mobile	should	provide	the	UI.	Letting	the	browser	display	its	own
UI	provides	a	user	experience	that	is	specific	to	the	device	and	familiar	to	the
user.	Letting	jQuery	Mobile	display	the	UI	provides	a	user	experience	that	is
themeable	and	consistent	across	all	devices.
Support	for	multiple	selections	is	inconsistent	among	different	browsers	so,	if
your	menu	supports	multiple	selections,	you	may	need	to	set	this	property	to
False.
Keep	in	mind	that	there	is	overhead	involved	in	parsing	the	native	select	to
build	a	custom	menu.	If	there	are	a	lot	of	selects	on	a	page,	or	a	select	has	a	long
list	of	options,	this	can	impact	the	performance	of	the	page,	so	we	recommend
using	custom	menus	sparingly.

Default	value
True

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

9.4.10	File	Upload	(std_fileupload)
Properties	–	File	Upload

The	file	upload	weblet	allows	you	to	select	files	to	upload	to	the	application
server	(into	a	temporary	directory).	The	webroutine	that	receives	the	file
upload	can	then	manipulate	the	uploaded	files	as	required.

Use	the	context	menu	to	create	an	skeleton	for	the	Ajax	webroutine	for	handling
the	file	upload.

Properties	–	File	Upload

caption
class
disabled
failCallback
hideIf

id
inline
MaxFileSize
MaxNumberOfFiles
name

successCallback
tabindex
uploadWamName
uploadWrName

name
The	name	of	LOB	field	to	receive	the	uploaded	file	temporary	path.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

id
A	unique	id	for	the	weblet.	The	default	is	the	same	as	the	name	property	and
normally	you	would	leave	it	as	that.	In	some	special	circumstances	you	may
have	multiple	weblets,	in	multiple	forms,	visualizing	the	same	field.	In	those
cases	you	would	need	to	set	this	property	to	give	each	one	a	unique	ID.

Default	value
$name	The	same	as	the	name	property

Valid	values
Any	string	starting	with	a	letter	([A-Za-z])	followed	by	any	number	of
letters,	digits([0-9]),	hyphens	("-")	or	underscores	("_").

caption
Specifies	the	caption	for	the	button	to	add	files.

Default	value
Default:	"Select	files"

Valid	values
Any	string	value.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

inline
If	set	to	true,	this	will	make	the	file	upload	button	act	like	an	inline	button	so	the
width	is	determined	by	the	button's	content.	If	set	to	false,	the	button	width	is
the	full	width	of	its	container,	regardless	of	the	content.

Default	value
False	-	the	button	is	as	wide	as	its	container.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

uploadWamName
The	name	of	the	WAM	whose	Webroutine	receives	the	file	uploaded	by	this
weblet.

Default	value
The	current	WAM

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

uploadWrName
The	name	of	the	Webroutine	that	receives	the	file	uploaded	by	this	weblet.	It
must	be	a	JSON	webroutine.	Its	response	is	passed	to	the	optional	JavaScript
callback	functions	to	provide	feedback	to	the	user.

Default	value
Blank	–	a	Webroutine	name	must	be	specified.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	be	a	JSON
response	weboutine	and	exist	in	the	WAM	specified	in	the	uploadWamName
property.	A	list	of	known	JSON	Webroutines	can	be	displayed	by	clicking
the	corresponding	dropdown	button	on	the	property	sheet.

MaxFileSize
The	maximum	file	size	allowed	in	Megabytes.

Default	value
5	–	5Mb

Valid	values
An	integer	value.	Must	be	consistent	with	maximum	value	for	file	uploads
defined	in	the	application	server.	Note:	Browsers	may	have	their	own	limits.

MaxNumberOfFiles
The	maximum	number	of	files	allowed.

Default	value
1

Valid	values
An	integer	value.

successCallback
The	name	of	the	optional	JavaScript	function	to	call	when	the	file	is
successfully	uploaded.	The	function	is	called	with	two	arguments:	The	event
object	(null	if	not	available)	and	the	JSON	webroutine	response	from	the	file
upload	webroutine.

Default	Value
None

Valid	values
The	name	of	a	JavaScript	function.

failCallback
The	name	of	the	optional	JavaScript	function	to	call	when	the	file	upload	fails.
The	function	is	called	with	two	arguments:	The	event	object	(null	if	not
available)	and	a	constructed	JSON	webroutine	response	with	the	error	messages
(mimics	messages	issued	by	a	webroutine).

Default	Value
None

Valid	values
The	name	of	a	JavaScript	function.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.	If	the	browser	doesn't	support	ActiveX,	the	weblet	is
automatically	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()or	any	valid	expression	that	returns	True	or	False.

tabindex
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

9.4.11	Footer	(std_footer)
A	footer	bar	is	a	jQuery	Mobile	toolbar	at	the	bottom	of	the	page.	A	footer	can
be	positioned	at	the	bottom	of	the	page	or	"fixed"	to	the	bottom	of	the	screen	(so
it	remains	in	position	when	the	page	is	scrolled).	A	footer	can	also	be	configured
to	show	or	hide	itself	when	the	user	taps	on	the	screen.

Note:	The	standard	shipped	layouts	will	provide	a	footer	for	you.	The
footer	weblet	is	only	required	when	creating	a	custom	layout,	or	using
a	layout	that	does	not	provide	one.

Properties	-	Footer	(std_footer)s
This	weblet's	properties	are:

fullscreenMode
hideIf

id
internal_id

persistentFooterId
position
swatch

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

fullscreenMode
A	fullscreen	footer	is	a	footer	with	a	position	of	"fixed"	except	that	the	footer
overlays	the	page	content,	rather	than	reserving	a	place	in	the	document.	This	is
useful	for	immersive	apps	like	photo	or	video	viewers	where	you	want	the
content	to	fill	the	whole	screen	and	toolbars	can	be	hidden	or	summoned	to
appear	by	tapping	the	screen.	Keep	in	mind	that	the	footer	in	this	mode	will	sit
over	page	content	so	this	is	best	used	for	specific	situations.
This	property	is	ignored	unless	position	is	set	to	"fixed".

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

persistentFooterId
In	situations	where	the	footer	is	a	global	navigation	element,	you	may	want	it	to
appear	fixed	so	it	doesn't	scroll	out	of	view.	It's	also	possible	to	make	a	fixed
footer	persistent	so	it	appears	to	not	move	between	page	transitions.	This	can	be
accomplished	by	using	the	persistent	footer	feature	included	in	jQuery	Mobile.
To	make	a	footer	persistent	between	transitions,	assign	an	id	value	to	the
persistentFooterId	of	all	relevant	pages	and	use	the	same	id	value	for	each.	For
example,	by	setting	persistentFooterId	to	"myfooter"	to	the	current	page	and
the	target	page,	the	framework	will	keep	the	footer	anchors	in	the	same	spot
during	the	page	animation.	This	effect	will	only	work	correctly	if	the	footers	are
set	to	position="fixed"	so	they	are	in	view	during	the	transition.

Default	value
Blank	-	the	footer	is	not	persistent.

Valid	values
Any	string	value.

position
Footers	can	be	positioned	on	the	page	in	a	few	different	ways.	By	default,	the
footer	uses	the	"inline"	positioning	mode.	In	this	mode,	the	footer	sits	in	the
natural	document	flow	(the	default	HTML	behavior),	which	ensures	that	it	is
visible	on	all	devices,	regardless	of	JavaScript	and	CSS	positioning	support.
A	"fixed"	positioning	mode	fixes	the	footer	to	the	bottom	of	the	viewport	on
browsers	that	support	CSS	fixed	positioning	(which	includes	most	desktop
browsers,	iOS5+,	Android	2.2+,	BlackBerry	6,	and	others).	In	browsers	that
don't	support	fixed	positioning,	the	footer	will	fall	back	to	static,	inline	position
in	the	page.

Default	value
Inline

Valid	values
inline	or	fixed.

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.12	Layout	Grid	(std_gridlayout)
Using	multiple	column	layouts	isn't	generally	recommended	on	a	mobile	device
because	of	the	narrow	screen	width,	but	there	are	times	where	you	may	need	to
place	small	elements	side-by-side	(like	buttons	or	navigation	tabs,	for	example).
The	Layout	Grid	weblet	provides	a	simple	way	to	build	between	2	to	5	CSS-
based	columns.
Grids	are	100%	width,	completely	invisible	(no	borders	or	backgrounds)	and
don't	have	padding	or	margins,	so	they	shouldn't	interfere	with	the	styles	of
elements	placed	inside	them.
The	Layout	Grid	weblet	is	designed	to	repeat	the	same	content	in	each	cell	by
iterating	over	an	RDMLX	working	list.	If	you	want	to	create	a	custom	grid	with
different	content	in	each	cell,	you	should	create	the	necessary	HTML	directly.
You	can	find	more	details	in	the	"Content	Formatting"	section	of	the	jQuery
Mobile	documentation.

http://jquerymobile.com/

Properties	-	Layout	Grid	(std_gridlayout)
This	weblet's	properties	are:

columns			 internal_id			 isOutputOnly			 listname

columns
The	number	of	columns	in	the	grid.

Default	value
2

Valid	values
2	-	5

isOutputOnly
Indicates	that	the	list	specified	by	the	listname	property	is	only	being	used	by
this	weblet	for	output.	When	a	list	is	being	used	for	input,	the	LANSA
framework	needs	to	create	some	hidden	fields	and	do	some	extra	processing	to
make	sure	the	list	data	is	sent	to	the	server	correctly.	If	the	list	is	being	used	by
this	weblet	for	output	purposes	only,	you	can	slightly	improve	performance	and
reduce	the	risk	of	conflicts	with	other	weblets	using	the	same	list	if	you	set	this
property	to	True.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

listname
The	name	of	the	RDMLX	working	list	to	iterate	over.	One	cell	will	be	created
for	each	row	in	the	list.	If	no	list	is	specified	then	a	single	row	of	cells	will	be
created.

Default	value
Blank

Valid	values
The	name	of	a	working	list	output	by	the	current	webroutine.	A	list	of
available	working	lists	(as	defined	in	the	WAM)	can	be	selected	from	by
clicking	the	corresponding	dropdown	button	in	the	property	sheet.

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.13	Header	(std_header)
A	header	bar	is	a	jQuery	Mobile	toolbar	at	the	top	of	the	page.	A	header	can	be
positioned	at	the	top	of	the	page	or	"fixed"	to	the	top	of	the	screen	(so	it	remains
in	position	when	the	page	is	scrolled).	A	header	can	also	be	configured	to	show
or	hide	itself	when	the	user	taps	on	the	screen.
A	header	expects	a	certain	type	content	and	will	format	that	content	in	a	certain
way.	Specifically,	it	expecs	some	header	text	and	up	to	two	links	or	buttons.	The
header	text	will	be	centered	and	the	buttons	placed	on	each	side	of	the	header.
For	example:

If	you	need	to	create	a	header	that	doesn't	follow	the	default	configuration,
simply	wrap	your	custom	styled	markup	in	any	container,	such	as	div.	The
weblet	won't	apply	the	automatic	button	logic	to	the	wrapped	content.

Note:	The	standard	shipped	layouts	will	provide	a	header	for	you.	The
header	weblet	is	only	required	when	creating	a	custom	layout,	or	using
a	layout	that	does	not	provide	one.

Properties	-	Header	(std_header)
This	weblet's	properties	are:

fullscreenMode
hideIf

id
internal_id

position
swatch

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

fullscreenMode
A	fullscreen	header	is	a	header	with	a	position	of	"fixed"	except	that	the	header
overlays	the	page	content,	rather	than	reserving	a	place	in	the	document.	This	is
useful	for	immersive	apps	like	photo	or	video	viewers	where	you	want	the
content	to	fill	the	whole	screen	and	toolbars	can	be	hidden	or	summoned	to
appear	by	tapping	the	screen.	Keep	in	mind	that	the	header	in	this	mode	will	sit
over	page	content	so	this	is	best	used	for	specific	situations.
This	property	is	ignored	unless	headerPosition	is	set	to	"fixed".

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

position
Headers	can	be	positioned	on	the	page	in	a	few	different	ways.	By	default,	the
header	uses	the	"inline"	positioning	mode.	In	this	mode,	the	header	sits	in	the
natural	document	flow	(the	default	HTML	behavior),	which	ensures	that	it	is
visible	on	all	devices,	regardless	of	JavaScript	and	CSS	positioning	support.
A	"fixed"	positioning	mode	fixes	the	header	to	the	top	of	the	viewport	on
browsers	that	support	CSS	fixed	positioning	(which	includes	most	desktop
browsers,	iOS5+,	Android	2.2+,	BlackBerry	6,	and	others).	In	browsers	that
don't	support	fixed	positioning,	the	header	will	fall	back	to	static,	inline	position
in	the	page.

Default	value
Inline

Valid	values
inline	or	fixed.

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.14	HTML	List	(std_html_list)
Lists	are	used	for	data	display,	navigation,	result	lists,	and	data	entry	so	jQuery
Mobile	includes	a	wide	range	of	list	types	and	formatting	examples	to	cover
most	common	design	patterns.
A	jQuery	Mobile	list	starts	as	a	simple	HTML	list	(or).	jQuery
Mobile	will	apply	all	the	necessary	styles	to	transform	the	list	into	a	mobile-
friendly	list	view	with	right	arrow	indicator	that	fills	the	full	width	of	the
browser	window.	When	you	tap	on	the	list	item,	the	framework	will	trigger	a
click	on	the	first	link	inside	the	list	item,	issue	an	AJAX	request	for	the	URL	in
the	link,	create	the	new	page	in	the	DOM,	then	kick	off	a	page	transition.
The	HTML	List	weblet	defines	the	list	and	configures	various	options	and	list-
wide	defaults.	List	items	are	created	by	adding	one	or	more	HTML	List	Item
weblets	to	the	HTML	List	content.
If	lists	are	embedded	in	a	page	with	other	types	of	content,	an	inset	list	packages
the	list	into	a	block	that	sits	inside	the	content	area	with	a	bit	of	margin	and
rounded	corners	(theme	controlled).	Setting	the	inset	property	to	True	on	the	list
weblet	applies	the	inset	appearance.

	An	inset	list
with	4	items	(one	configured	as	a	divider)

Note:	all	standard,	non-inset	lists	have	a	-15	pixel	margin	to	negate	the
15	pixels	of	padding	on	the	content	area	to	make	lists	fill	to	the	edges
of	the	screen.	If	you	add	other	content	above	or	below	a	list,	the
negative	margin	may	make	these	elements	overlap	so	you'll	need	to
add	additional	spacing	in	your	custom	CSS.

	

Properties	-	HTML	List	(std_html_list)
This	weblet's	properties	are:

class
countSwatch
dividerSwatch
hasSearchFilter
hideIf

id
inset
internal_id
searchFilterSwatch

splitIcon
splitSwatch
swatch
type

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

class
The	CSS	class,	or	classes,	to	assign	to	the	weblet.	A	CSS	class	allows	you	to
specify	a	set	of	CSS	styles,	defined	in	an	external	stylesheet,	to	apply	to	a
weblet,	or	elements	within	a	weblet.	For	complex	weblets	made	from	multiple
HTML	elements,	the	class	is	applied	to	the	outermost	element	of	the	weblet.

Default	value
Blank

Valid	values
A	string	containing	one	or	more	space	separated	CSS	class	names.

countSwatch
Specifies	the	default	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to
any	count	indicators	in	the	list.

Default	value
Default	-	Uses	jQuery	Mobile's	default	swatch	(a).

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

	

http://jquerymobile.com/

dividerSwatch
Specifies	the	default	jQuery	Mobile	theme	swatch	to	use	for	list	dividers.

Default	value
Default	-	Uses	jQuery	Mobile's	default	swatch	(a).

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

hasSearchFilter
jQuery	Mobile	provides	a	very	easy	way	to	filter	a	list	with	a	simple	client-side
search	feature.	To	make	a	list	filterable,	simply	set	the	hasSearchFilter	property
to	True.	The	framework	will	then	append	a	search	box	above	the	list	and	add	the
behavior	to	filter	out	list	items	that	don't	contain	the	current	search	string	as	the
user	types.
For	details	of	more	advanced	filtering	options,	see	the	jQuery	Mobile
documentation	on	List	views.

Default	value
False	-	No	search	filter	is	added.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

http://jquerymobile.com/

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

inset
If	lists	are	embedded	in	a	page	with	other	types	of	content,	an	inset	list	packages
the	list	into	a	block	that	sits	inside	the	content	area	with	a	bit	of	margin	and
rounded	corners	(theme	controlled).	Setting	inset	to	True	applies	the	inset
appearance.

Note:	all	standard,	non-inset	lists	have	a	-15	pixel	margin	to	negate	the
15	pixels	of	padding	on	the	content	area	to	make	lists	fill	to	the	edges
of	the	screen.	If	you	add	other	content	above	or	below	a	list,	the
negative	margin	may	make	these	elements	overlap	so	you'll	need	to
add	additional	spacing	in	your	custom	CSS.

	

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

searchFilterPlaceholder
Specifies	a	short	hint	to	display	in	the	search	field.	The	hint	is	displayed	in	the
field	when	it	is	empty,	and	disappears	when	the	field	gets	focus	or	contains	data
(details	vary	by	browser).

Default	value
Blank	-	jQuery	Mobile	uses	its	default	of	"Filter	Items…"

Valid	values
Any	string	value.

searchFilterSwatch
Specifies	the	default	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to
the	search	field.

Default	value
Default	-	Uses	jQuery	Mobile's	default	swatch	(a).

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

splitIcon
Specifies	the	jQuery	Mobile	icon	to	use	for	the	button	in	a	split	button	list.

Default	value
Default	-	a	right	arrow	icon	is	used

Valid	values
Any	of	the	values	listed	in	the	property	dropdown.

splitSwatch
Specifies	the	default	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to
any	split	buttons	in	the	list.

Default	value
Default	-	Uses	jQuery	Mobile's	default	swatch	(a).

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

type
Specifies	the	type	of	HTML	list	to	create;	an	ordered	list	where	each	entry	is
numbered	or	an	unordered	list	where	the	entries	are	not	numbered.

Default	Value
Unordered	List

Valid	values
Ordered	List	or	Unordered	List

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.15	HTML	List	Item	(std_html_li)
The	HTML	List	Item	is	used	to	add	items	to	a	9.4.14	HTML	List	(std_html_list)
weblet.

Tip:	To	add	items	from	an	RDMLX	working	list,	place	an	HTML	List
Item	weblet	inside	an	RDMLX	Working	List	weblet.

Properties	-	HTML	List	Item	(std_html_li)
The	HTML	List	Item	(std_html_li)	weblet's	properties	are:

class
filterText
hideIf

id
internal_id

role
swatch

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

class
The	CSS	class,	or	classes,	to	assign	to	the	weblet.	A	CSS	class	allows	you	to
specify	a	set	of	CSS	styles,	defined	in	an	external	stylesheet,	to	apply	to	a
weblet,	or	elements	within	a	weblet.	For	complex	weblets	made	from	multiple
HTML	elements,	the	class	is	applied	to	the	outermost	element	of	the	weblet.

Default	value
Blank

Valid	values
A	string	containing	one	or	more	space	separated	CSS	class	names.

filterText
Specifies	alternate	text	to	use	for	this	row	when	filtering.	For	more	details	on
list	filtering,	see	the	hasSearchFilter	property	of	the	HTML	List	weblet.

Default	value
Blank	-	the	actual	contents	of	the	row	are	used	for	filtering.

Valid	values
Any	string	value.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

role
List	items	can	be	turned	into	dividers	to	organize	and	group	the	list	items.	This
is	done	by	setting	the	role	property	to	"List	divider".	A	list	divider	is	styled	with
the	bar	swatch	"a"	by	default	(light	grey	in	the	default	theme)	but	you	can
specify	a	theme	for	dividers	by	setting	the	dividerSwatch	property	in	the	parent
HTML	List	weblet.

Default	value
[None]

Valid	Values
[None]	and	List	divider.

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.16	Image	(std_image)
Displays	an	image.	Has	the	option	to	load	the	image	only	when	it	comes	into
view,	which	helps	render	the	page	faster.

Properties	–	Image	(std_image)
The	properties	for	this	weblet	are:

caption
height

hideIf
lazyLoad

relativeImagePath
width

relativeImagePath
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
be	displayed.

Default	value
Blank	–	no	image	is	displayed.

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

lazyLoad
If	true,	the	image	is	not	loaded	until	it	comes	into	view

Default	value
True.

Valid	values
true(),	false()or	any	valid	XPath	expression	that	returns	a	boolean	value.

width
Specifies	the	width	of	the	input	in	pixels.

Tip:	Always	specify	both	the	height	and	width	properties	for	images.
If	height	and	width	are	set,	the	space	required	for	the	image	is
reserved	when	the	page	is	loaded.	However,	without	these	properties,
the	browser	does	not	know	the	size	of	the	image,	and	cannot	reserve
the	appropriate	space	to	it.	The	effect	will	be	that	the	page	layout	will
change	during	loading	(while	the	images	load).

Default	value
Blank	-	the	browser	will	calculate	the	width	after	it	loads	the	image.

Valid	values
Any	integer	value.

height
Specifies	the	height	of	the	input	in	pixels.

Tip:	Always	specify	both	the	height	and	width	properties	for	images.
If	height	and	width	are	set,	the	space	required	for	the	image	is
reserved	when	the	page	is	loaded.	However,	without	these	properties,
the	browser	does	not	know	the	size	of	the	image,	and	cannot	reserve
the	appropriate	space	to	it.	The	effect	will	be	that	the	page	layout	will
change	during	loading	(while	the	images	load).

Default	value
Blank	-	the	browser	will	calculate	the	height	after	it	loads	the	image.

Valid	values
Any	integer	value.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

caption
Specifies	alternate	text	for	the	user,	if	he/she	for	some	reason	cannot	view	the
image	(because	of	slow	connection,	an	error	in	the	src	attribute,	or	if	the	user
uses	a	screen	reader).

Default	value
Blank

Valid	values
Any	string	value.

9.4.17	Loader	(std_loader)
Displays	a	small	loading	overlay	when	jQuery	Mobile	loads	in	content	via
AJAX,	or	when	you	want	to	perform	an	action	that	momentarily	blocks	user
interaction.
You	use	JavaScript	to	start/stop	the	loader	weblet:

Lstd.Weblets.stdLoader.start(my_id);	//	Displays	the	loader	with	an	id	of
"my_id"

Lstd.Weblets.stdLoader.stop();	//	Stops	theactive	laoder

Properties	–	Loader	(std_loader)
The	properties	for	this	weblet	are:

id
name
showIcon

showText
text
swatch

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

name
The	name	of	the	field	that	will	receive	the	value	of	this	weblet	when	it	is
submitted	to	a	webroutine.	When	a	weblet	is	generated,	or	dropped	on	a	field
from	the	current	webroutine's	WEB_MAP,	this	property	will	be	set	to	the	name
of	that	field.	If	the	field	that	you	want	the	value	submitted	to	has	a	different
name,	you	should	change	this	property	to	that	name.

Note:	In	the	XHTML	Technology	Service,	the	name	property	is	often
used	as	a	unique	ID.	This	is	not	the	case	for	the	jQuery	mobile
technology	service.	The	id	property	should	be	used	for	that.	If	the
weblet	value	is	not	to	be	submitted	to	the	server,	this	property	can	be
left	blank.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	name	of	a	field	in	a	target	webroutine.

showIcon
Set	to	true	to	show	the	jQuery	Mobile	loader	icon.

Default	value
True	–	icon	is	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

showText
Set	to	true	to	show	a	text	message.

Default	value
False	–text	message	is	not	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

text
The	text	message	to	show	when	the	loader	is	active.

Default	Value
Auto	–Default	message	"In	Progress	…"

Valid	values
Any	string	value.

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

9.4.18	Input	Box	(std_input)
The	Input	Box	weblet	creates	an	<input>	element.	The	<input>	element	is	the
basic	form	of	data	entry	in	HTML	pages.	It	is	used	to	create	every	type	of	input
control	(including	buttons)	that	HTML	supports	except	multi-line	text	fields.
The	jQuery	Mobile	framework	will	automatically	enhance	the	default	controls
for	the	mobile	environment	and	the	theme.
The	Input	Box	weblet	supports	all	HTML	5	input	attributes.	However,	since
HTML5	is	fairly	new	and	not	all	the	details	have	been	worked	out	yet,	not	all
web	browsers	support	HTML5	features	the	same	way,	or	at	all.	To	get	the	latest
information	on	which	browsers	support	what	features,	visit	the	Wufoo.com
HTML	5	page.

Tip:	Although	the	Input	Box	is	able	to	create	checkboxes	and	radio
buttons,	it	will	usually	be	easier	to	use	the	Checkbox	and	Radio
Button	Group	weblets	as	they	have	been	designed	to	make	working
with	RDMLX	easier.

http://wufoo.com/html5/

Properties	-	Input	Box	(std_input)
The	Input	Box	(std_input)	weblet's	properties	are:

accept
addErrorDiv
alt
autocomplete
autofocus
class
clearButton
clearButtonText
corners
disabled
displayMode
fieldContainWrapper
form
formaction
formenctype
formmethod

formnovalidate
formtarget
height
hideIf
hideLabel
id
label
list
max
maxlength
min
mini
multiple
name

pattern
placeholder
rdmlxDataType
readonly
required
size
src
step
style
swatch
tabindex
title
type
value
width

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

name
The	name	of	the	field	that	will	receive	the	value	of	this	weblet	when	it	is
submitted	to	a	webroutine.	When	a	weblet	is	generated,	or	dropped	on	a	field
from	the	current	webroutine's	WEB_MAP,	this	property	will	be	set	to	the	name
of	that	field.	If	the	field	that	you	want	the	value	submitted	to	has	a	different
name,	you	should	change	this	property	to	that	name.

Note:	In	the	XHTML	Technology	Service,	the	name	property	is	often
used	as	a	unique	ID.	This	is	not	the	case	for	the	jQuery	mobile
technology	service.	The	id	property	should	be	used	for	that.	If	the
weblet	value	is	not	to	be	submitted	to	the	server,	this	property	can	be
left	blank.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	name	of	a	field	in	a	target	webroutine.

value
Specifies	the	value	of	the	weblet.	For	text	input	types,	this	is	the	value	displayed
in	the	input.	For	button,	checkbox	and	radio	types,	this	it	the	value	that	will	be
submitted	if	the	input	is	selected	when	the	form	is	submitted.

Default	value
Blank

Valid	values
Any	string	value.

accept
If	the	input	type	is	File,	this	property	specifies	the	type	of	files	the	server
accepts.	File	types	are	specified	by	using	a	comma	separated	list	of	MIME
types.	Wildcards	may	be	specified	so	that,	for	example,	you	can	specify	any
image	file	with	"image/*".	Go	to	the	IANA	web	site	for	a	full	list	of	valid
MIME	types.

Note:	Not	all	browsers	support	this	attribute	and	browsers	may	not
recognize	all	MIME	types	so	do	not	rely	on	this	property	to	validate
files.	Always	validate	them	on	the	server.

	

Note:	LANSA	servers	do	not	handle	inputs	of	type	"file".	This
property	is	only	useful	when	submitting	to	a	third	party	server.

Default	value
Blank	-	all	file	types	are	accepted.

Valid	values
Comma	separated	list	of	MIME	types.

http://www.iana.org/assignments/media-types/index.html

addErrorDiv
When	set	to	True,	a	<div>	element	will	be	added	just	after	the	weblet	to	display
validation	errors.	the	<div>	will	be	hidden	until	a	validation	error	occurs	and
will	be	hidden	again	when	the	error	is	cleared.
When	a	validation	method	has	been	set	the	error	<div>	will	reserve	some	space
for	itself	on	the	page	even	when	it	is	hidden	to	avoid	confusing	rearrangements
of	the	screen	when	the	error	is	displayed.	If	you	are	using	HTML	5	validation
on	the	form	but	not	on	this	field	then	you	may	want	to	set	this	property	to	False
to	reclaim	that	space.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

alt
Specifies	alternate	text	for	the	user,	if	he/she	for	some	reason	cannot	view	the
image	(because	of	slow	connection,	an	error	in	the	src	attribute,	or	if	the	user
uses	a	screen	reader).	This	property	is	only	valid	when	type="image".

Default	value
Blank

Valid	values
Any	string	value.

autocomplete
Specifies	whether	or	not	an	input	field	should	have	autocomplete	enabled.
Autocomplete	allows	the	browser	to	predict	the	value.	When	a	user	starts	to
type	in	a	field,	the	browser	should	display	options	to	fill	in	the	field,	based	on
earlier	typed	values.	The	autocomplete	property	works	with	the	following
<input>	types:	text,	search,	url,	tel,	email,	password,	datepickers,	range,	and
color.

Note:	This	is	not	an	ajax	autocomplete.	The	browser	remembers	the
values	previously	entered	in	the	field	and	uses	that	history	to	provide
the	autocomplete	functionality.	It	may	be	undesitable	to	have	this
option	turned	on	on	some	fields	for	security	reasons	(for	example,	user
and	password	fields)	or	because	it	is	not	helpful	to	the	user	(numeric
entry	fields	perhaps).

Default	value
Default	-	uses	the	browser	default.	This	is	usually	"on"	but	my	depend	on
user	preferences.

Valid	values
on,	off	or	Default.	Note	that	a	value	of	"on"	will	never	override	a	user
preference	setting	disabling	this	feature.

autofocus
Specifies	that	the	weblet	should	automatically	get	the	focus	when	the	page
loads.	There	must	be	only	one	field	on	a	page	with	this	property	set	to	true.
Setting	autofocus	to	true	on	more	than	one	field	may	produce	inconsistent
results	on	different	browsers.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

class
The	CSS	class,	or	classes,	to	assign	to	the	weblet.	A	CSS	class	allows	you	to
specify	a	set	of	CSS	styles,	defined	in	an	external	stylesheet,	to	apply	to	a
weblet,	or	elements	within	a	weblet.	For	complex	weblets	made	from	multiple
HTML	elements,	the	class	is	applied	to	the	outermost	element	of	the	weblet.

Default	value
Blank

Valid	values
A	string	containing	one	or	more	space	separated	CSS	class	names.

corners
Specifies	if	the	input	field	should	have	rounded	corners.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

disabled
Specifies	if	the	weblet	should	be	disabled.	A	disabled	weblet	is	unusable	and
un-clickable.	Note	that	the	value	of	a	disabled	weblet	will	not	be	submitted	with
the	form.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

displayMode
Controls	whether	the	weblet	accepts	input,	is	output	only,	or	is	hidden.	Setting
displayMode	to	'hidden"	is	equivalent	to	setting	the	type	property	to	'hidden'.

Default	value
Blank	(equivalent	to	'input').

Valid	values
input,	output	or	hidden

fieldContainWrapper
jQuery	Mobile	will	handle	all	the	complexities	of	laying	out	labels	and	fields
vertically	on	small	screens	and	so	they	all	line	up	on	wide	screens.	To	do	this	it
needs	each	label/field	pair	to	be	wrapped	in	a	<div>	tag	with	specific	attributes.
Setting	fieldContainWrapper	to	true	and	using	the	label	property	to	set	the	label
text	will	take	care	of	all	of	this	for	you.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

form
A	space-separated	list	of	form	IDs	that	specifies	the	form(s)	this	weblet	belongs
to.	When	a	form	is	submitted	by	clicking	a	submit	button,	all	the	fields	that
belong	to	the	form	are	sent	to	the	server.	By	default,	all	the	fields	that	are	inside
the	<form>	tag	belong	to	the	form.	This	property	allows	you	place	a	field	in
other	parts	of	the	document,	outside	of	the	<form>	tag,	or	inside	other	<form>
tags	and	still	have	its	value	submitted	with	the	form.
The	standard	LANSA	layouts	contain	a	single	<form>	tag	that	wraps	the	entire
page	so	it	is	usually	not	necessary	to	use	this	property	on	these	layouts.

Default	value
Blank

Valid	values
Space	separated	list	of	form	IDs.

formaction
A	URL	that	specifies	where	to	send	the	form-data	when	a	form	is	submitted.
Only	valid	for	type="submit".	Normally,	the	LANSA	runtime	framework	takes
care	of	working	out	the	correct	URL	based	on	the	onClickWrName	and
onClickWR	fields.	Setting	this	property	will	override	this	default	behaviour.

Default	Value
Blank

Valid	values
Any	valid	URL.

formenctype
Specifies	the	encoding	type	to	use	when	sending	the	form.	Only	valid	for
type="submit".	Normally	you	will	not	need	to	set	this	as	the	default	type	is	fine
for	sending	most	forms	to	LANSA	servers.	If	you	are	sending	a	form	to	a	non-
LANSA	server	then	specific	requirements	of	that	server	may	require	a	different
encoding	type.

Default	value
Blank	-	Use	the	value	specified	by	the	parent	<form>	element	which,	unless
otherwise	specified,	will	be	a	default	of	application/x-www-form-
urlencoded.

Valid	values
application/x-
www-form-
urlencoded

All	characters	are	encoded	before	sent	(spaces	are
converted	to	"+"	symbols,	and	special	characters	are
converted	to	ASCII	HEX	values).

multipart/form-
data

No	characters	are	encoded.	This	value	is	required	when
you	are	using	forms	that	have	a	file	upload	control.

text/plain Spaces	are	converted	to	"+"	symbols,	but	no	special
characters	are	encoded.

formmethod
Specifies	which	HTTP	method	to	use	to	send	the	form	data.	Only	valid	for
type="submit".

Default	value
Blank	-	Use	the	value	specified	by	the	parent	<form>	element	which,	unless
otherwise	specified,	will	be	a	default	of	POST.

Valid	values
'GET'	or	'POST'.

formnovalidate
Specifies	that	the	form	should	not	be	validated	prior	to	submission.	Only	valid
for	type="submit".	Setting	this	property	to	True	will	suppress	any	validation
that	has	been	turned	on	in	the	parent	<form>	element,	setting	it	to	False	will	not
turn	on	validation	that	has	been	turned	off	in	the	parent	<form>	element.
For	standard	shipped	layouts	the	<form>	validation	is	configured	with	the
validationMethod	property	of	the	layout	weblet.

Default	value
False.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

formtarget
Specifies	the	frame	or	window	in	which	to	display	the	response	after	submitting
the	form.	Only	valid	for	type="submit".
This	property	is	part	of	the	HTML	5	specification	and	is	provided	for
completeness.	Care	should	be	taken	with	its	use.	Different	mobile	browsers
have	different	levels	of	support	for	frames	and	windows	and	may	handle	this
property	differently.	It	may	also	cause	conflicts	with	jQuery	Mobile's	Ajax
mechanisms.

Default	value
Blank	-	Use	the	value	specified	by	the	parent	<form>	element	which,	unless
otherwise	specified,	will	be	a	default	of	blank	also	(display	in	the	current
page).

Valid	values
_blank,	_self,	_parent,	_top,	framename.

height
Specifies	the	height	of	the	input	in	pixels.	This	property	is	only	valid	when
type="image".

Tip:	Always	specify	both	the	height	and	width	properties	for	images.
If	height	and	width	are	set,	the	space	required	for	the	image	is
reserved	when	the	page	is	loaded.	However,	without	these	properties,
the	browser	does	not	know	the	size	of	the	image,	and	cannot	reserve
the	appropriate	space	to	it.	The	effect	will	be	that	the	page	layout	will
change	during	loading	(while	the	images	load).

Default	value
Blank	-	the	browser	will	calculate	the	height	after	it	loads	the	image.

Valid	values
Any	integer	value.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

hideLabel
Hides	the	label	accessibly.	This	means	that	the	label	is	not	visible	but	it	is	still
available	to	assistive	technologies	like	screen	readers.

Default	value
False	-	the	label	is	not	hidden.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

label
Specifies	the	label	text	to	use	for	the	weblet.	The	weblet	will	create	a	<label>
tag	with	this	value	and	make	sure	it	is	correctly	attached	to	the	input	field.	For
the	sake	of	accessibility,	it	is	recommended	that	you	provide	a	meaningful	label
for	all	weblets	even	if	you	do	not	intend	to	display	the	label.	Use	the	hideLabel
property	to	hide	the	label	while	keeping	it	available	for	assistive	technologies.

Default	Value
Blank	-	Automatically	generated	fields	will	have	a	value	from	the	repository
definition.

Valid	values
Any	string	value.

list
Specifies	the	ID	of	a	<datalist>	element	containing	a	list	of	values	the	browser
can	use	as	suggestions	as	the	user	is	typing.	This	property	provides	functionality
similar	to	autocomplete	except	that	the	suggested	values	are	provided	by	the
<datalist>	element	rather	than	the	values	the	user	has	previously	entered	in	this
field.

Default	value
Blank

Valid	values
The	ID	of	a	<datalist>	element	in	the	current	document.

http://www.w3schools.com/html5/tag_datalist.asp
http://www.w3schools.com/html5/tag_datalist.asp

max
Specifies	the	maximum	value	for	an	<input>	element.	Only	valid	for	the
following	input	types:	number,	range,	date,	datetime,	datetime-local,	month,
time	and	week.

Note:	The	exact	details	of	how	a	browser	may	use	the	value	may	vary.
For	example,	one	browser	may	prevent	the	user	from	entering	invalid
numbers	while	another	may	just	use	the	value	for	field	validation.

Default	value
Blank	-	no	maximum	value	is	specified.

Valid	values
Any	value	consistent	with	the	<input>	type	(for	example,	a	number	for
type=number,	a	date	for	type=date).

maxlength
Specifies	the	maximum	number	of	characters	allowed	in	the	<input>	element.
The	browser	does	not	distinguish	between	SBCS	and	DBCS	characters	so	this
property	will	not	limit	the	data	length	of	the	field.	If	the	rdmlxDataType
property	is	correctly	set	and	form	validation	turned	on,	the	LANSA	framework
will	validate	the	data	length	of	the	field.

Default	value
Blank	-	no	maximum	length.

Valid	values
Any	integer	value.

min
Specifies	the	minimum	value	for	an	<input>	element.	Only	valid	for	the
following	input	types:	number,	range,	date,	datetime,	datetime-local,	month,
time	and	week.

Note:	The	exact	details	of	how	a	browser	may	use	the	value	may	vary.
For	example,	one	browser	may	prevent	the	user	from	entering	invalid
numbers	while	another	may	just	use	the	value	for	field	validation.

Default	value
Blank	-	no	minimum	value	is	specified.

Valid	values
Any	value	consistent	with	the	<input>	type	(for	example,	a	number	for
type=number,	a	date	for	type=date).

mini
If	set	to	true,	this	will	display	a	more	compact	version	of	the	weblet	that	uses
less	vertical	height.	This	can	be	useful	in	toolbars	and	other	places	where	space
is	tight.

Default	value
False	-	the	standard	size	is	used.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

multiple
Specifies	that	the	user	is	allowed	to	enter	more	than	one	value	in	the	<input>
element.	This	property	is	only	valid	for	input	types	"email"	and	"file".

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

pattern
Specifies	a	regular	expression	that	the	<input>	element's	value	is	checked
against.	The	browser	will	not	allow	the	form	to	submitted	if	the	<input>	value
does	not	pass	this	check.	The	pattern	property	works	with	the	following	input
types:	text,	search,	url,	tel,	email,	and	password.
The	value	used	for	this	property	is	actually	a	partial	regular	expression.	A
regular	expression	is	normally	used	to	find	a	bit	of	text	in	a	larger	string.	For
validation	purposes,	this	pattern	must	match	the	whole	value,	not	just	a
substring.	To	achieve	this,	the	pattern	is	modified	to	anchor	it	to	the	beginning
and	end	of	the	value	by	adding	^(?:	to	the	beginning	of	the	pattern	and)$	to	the
end.

Tip:	Learn	more	about	JavaScript	regular	expressions	in	this
JavaScript	tutorial.

Default	value
Blank

Valid	values
A	valid	JavaScript	regular	expression.

http://www.w3schools.com/js/js_obj_regexp.asp

placeholder
Specifies	a	short	hint	that	describes	the	expected	value	of	the	input	field	(for
example,	a	sample	value	or	a	short	description	of	the	expected	format).	The	hint
is	displayed	in	the	field	when	it	is	empty,	and	disappears	when	the	field	gets
focus	or	contains	a	value	(details	vary	by	browser).

Default	value
Blank

Valid	values
Any	string	value.

rdmlxDataType
Specifies	the	RDMLX	data	type	of	the	field	associated	with	the	weblet.	This
helps	some	weblets	perform	data	validation.	This	property	is	normaly	set
automatically	when	you	generate	or	drop	a	field	onto	a	design.	You	may	need	to
set	it	yourself	if	you	drop	the	weblet	onto	a	design	and	then	later	associate	it
with	a	field.

Default	value
Blank	unless	automatically	set	by	the	WAM	editor.

Valid	values
A	|	delimited	string	starting	with	the	data	type	followed	by	extra	parameters
as	required	by	the	data	type:
integer|<max	length>
float|<max	length>
packed|<total	digits>|<fraction	digits>|<decimal	separator>
signed|<total	digits>|<fraction	digits>|<decimal	separator>
dec|<total	digits>|<fraction	digits>|<decimal	separator>
alpha|<keyboard	shift>|<max	length>
char|<keyboard	shift>|<max	length>
varchar|<keyboard	shift>|<max	length>
nchar|<keyboard	shift>|<max	length>
nvarchar|<keyboard	shift>|<max	length>

readonly
Sets	the	read-only	state	of	the	input.	A	read-only	input	field	cannot	be	modified
(however,	a	user	can	tab	to	it,	highlight	it,	and	copy	the	text	from	it).
The	readonly	attribute	can	be	set	to	keep	a	user	from	changing	the	value	until
some	other	conditions	have	been	met	(like	selecting	a	checkbox,	etc.).	Then,	a
JavaScript	can	remove	the	readonly	value,	and	make	the	input	field	editable.

Default	value
False	-	the	input	is	editable.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

required
Specifies	that	a	value	must	be	entered	in	this	weblet	before	the	form	can	be
submitted.	.	Note	that,	at	the	time	of	writing,	Safari	and	Internet	Explorer	do	not
support	this	property.

Note:	The	required	attribute	works	with	the	following	input	types:
text,	search,	url,	tel,	email,	password,	date	pickers,	number,	checkbox,
radio,	and	file.

	

Note:	HTML	5	form	validation	can	be	turned	off	by	adding	a
novalidate	attribute	to	the	<form>	tag	or	submit	button	(this	is
automatically	done	by	setting	validationMethod	to	'none'	on	the
standard	shipped	layouts).	In	addition,	different	browsers	have
differing	levels	of	support	for	HTML	5	validation	and	there	are	many
ways	for	malicious	users	to	bypass	client-side	validation.	So,	while
client-side	validation	can	improve	the	user	experience,	you	should
never	rely	on	it.	Always	back	it	up	with	server-side	validation.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

size
Specifies	the	visible	width,	in	characters,	of	the	<input>	element.	The	size
attribute	works	with	the	following	input	types:	text,	search,	tel,	url,	email,	and
password.
This	only	specifies	the	visible	width	of	the	input,	not	the	length	of	data	that	can
be	entered.	See	the	maxlength	property	to	limit	the	length	of	entered	data.
The	size	value	is	measured	in	numbers	of	characters.	Each	browser	has	slightly
different	techniques	for	determining	how	to	convert	this	number	into	an	actual
number	of	pixels	on	screen.	For	more	accurate	control	of	the	width	of	the
<input>,	use	CSS	to	set	the	width.

Default	value
Blank	-	the	browser	uses	its	own	default	size,	usually	around	20.

Valid	values
Any	integer	value.

src
Specifies	the	URL	of	the	image	to	use	as	a	submit	button.	This	property	is	only
valid	when	type="image".

Default	value
Blank

Valid	values
Any	valid	URL.

step
Specifies	the	legal	number	intervals	for	an	<input>	element.	For	example:	if
step="3",	legal	numbers	could	be	-3,	0,	3,	6,	etc.		The	step	attribute	can	be	used
together	with	the	max	and	min	properties	to	create	a	range	of	legal	values.	The
step	property	works	with	the	following	input	types:	number,	range,	date,
datetime,	datetime-local,	month,	time	and	week.

Note:	most	browsers	will	default	this	value	to	1.	This	has	the	effect	of
making	fractional	values	invalid.	If	you	are	using	browser	validation
and	need	to	allow	fractional	values,	set	this	to	'any'.

Default	value
Blank	-	no	step	specified.

Valid	values
Any	numeric	value	or	'any'.

style
Specifies	a	CSS	style	string	to	apply	to	the	weblet.	This	property	allows	you	to
set	CSS	style	properties	for	this	weblet	that	will	override	any	values	defined	in
the	layout	stylesheets.

Default	value
Blank

Valid	values
Any	valid	CSS	properties	and	values,	separated	by	semi-colons

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

tabindex
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.	Note
that	this	may	not	be	supported	in	some	older	browsers.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	integer	value.

title
Specifies	extra	advisory	information	about	the	weblet.	This	is	usually	extra	non-
essential		information	to	help	a	user	understand	the	purpose	of	the	weblet.
Different	browsers	may	handle	it	in	different	ways.	For	example,	most	desktop
browsers	will	display	it	as	a	tooltip	when	the	mouse	hovers	over	the	weblet.
Assistive	technologies	like	screen	readers	will	read	it	to	the	user.	At	the	time	of
this	writing,	mobile	device	browsers	will	ignore	it.

Default	value
Blank

Valid	values
Any	valid	HTML	attribute	string.

type
The	type	attribute	specifies	the	type	of	<input>	element	to	display.	The	full	list
of	types	defined	in	HTML	5	is	shown	below.	Not	all	types	are	supported	by	all
browsers.	To	get	the	latest	information	on	which	browsers	support	what
features,	visit	the	Wufoo.com	HTML	5	page.

Note:	When	using	a	type	of	"number"	browsers	will	default	the	step
property	to	1	which	may	prevent	the	entry	of	fractional	values.	Make
sure	you	also	set	the	step	property	correctly.

	

Value Description
button Defines	a	clickable	button	(mostly	used	with	a	JavaScript	to

activate	a	script)

checkbox Defines	a	checkbox

color Defines	a	color	picker

date Defines	a	date	control	(year,	month	and	day	(no	time))

datetime Defines	a	date	and	time	control	(year,	month,	day,	hour,	minute,
second,	and	fraction	of	a	second,	based	on	UTC	time	zone)

datetime-
local

Defines	a	date	and	time	control	(year,	month,	day,	hour,	minute,
second,	and	fraction	of	a	second	(no	time	zone)

email Defines	a	field	for	an	e-mail	address

file Defines	a	file-select	field	and	a	"Browse..."	button	(for	file
uploads)

hidden Defines	a	hidden	input	field

image Defines	an	image	as	the	submit	button

month Defines	a	month	and	year	control	(no	time	zone)

number Defines	a	field	for	entering	a	number

password Defines	a	password	field	(characters	are	masked)

http://wufoo.com/html5/

radio Defines	a	radio	button

range Defines	a	control	for	entering	a	number	whose	exact	value	is	not
important	(like	a	slider	control)

reset Defines	a	reset	button	(resets	all	form	values	to	default	values)

search Defines	a	text	field	for	entering	a	search	string

submit Defines	a	submit	button

tel Defines	a	field	for	entering	a	telephone	number

text Default.	Defines	a	single-line	text	field	(default	width	is	20
characters)

time Defines	a	control	for	entering	a	time	(no	time	zone)

url Defines	a	field	for	entering	a	URL

week Defines	a	week	and	year	control	(no	time	zone)

Default	value
text

Valid	values
A	value	from	the	table	above.

clearButton
If	true,	shows	a	button	to	clear	the	contents	of	the	input	field.

Default	value
False	–	Clear	button	not	enabled.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

clearButtonText
The	text	description	for	the	optional	clear	button,	useful	for	assistive
technologies	like	screen	readers.

Default	value
"Clear	text".

Valid	values
Any	string	value.

width
Specifies	the	width	of	the	input	in	pixels.	This	property	is	only	valid	when
type="image".

Tip:	Always	specify	both	the	height	and	width	properties	for	images.
If	height	and	width	are	set,	the	space	required	for	the	image	is
reserved	when	the	page	is	loaded.	However,	without	these	properties,
the	browser	does	not	know	the	size	of	the	image,	and	cannot	reserve
the	appropriate	space	to	it.	The	effect	will	be	that	the	page	layout	will
change	during	loading	(while	the	images	load).

Default	value
Blank	-	the	browser	will	calculate	the	width	after	it	loads	the	image.

Valid	values
Any	integer	value.

9.4.19	Messages	(std_messages)
The	Messages	weblet	displays	messages	created	with	the	RDMLX	Message
command.

Properties	-	Messages	(std_messages)
This	weblet's	properties	are:
hideIf
swatch

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.	If	False,	the
weblet	will	be	visible	if	there	are	messages	to	display,	hidden	otherwise.

Default	value
False	-	the	weblet	will	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
a

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

9.4.20	Mobiscroll	Date	and	Time	Picker	(std_mobiscroll)
The	Mobiscroll	weblet	is	a	customizable	date	and	time	picker	optimised	for
mobile	devices.	Full	details	can	be	found	on	the	Mobiscroll	Project	site.

http://mobiscroll.com/

Properties	-	Mobiscroll	Date	and	Time	Picker	(std_mobiscroll)
This	weblet's	properties	are:

class
dateFormat
dateOrder
disabled
endYear
fieldContainWrapper
form
hideIf
hideLabel

id
label
mode
name
pickerTheme
rows
showOnFocus
startYear
stepHour

stepMinute
stepSecond
style
swatch
timeFormat
timeWheels
title
type
value

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

name
The	name	of	the	field	that	will	receive	the	value	of	this	weblet	when	it	is
submitted	to	a	webroutine.	When	a	weblet	is	generated,	or	dropped	on	a	field
from	the	current	webroutine's	WEB_MAP,	this	property	will	be	set	to	the	name
of	that	field.	If	the	field	that	you	want	the	value	submitted	to	has	a	different
name,	you	should	change	this	property	to	that	name.

Note:	In	the	XHTML	Technology	Service,	the	name	property	is	often
used	as	a	unique	ID.	This	is	not	the	case	for	the	jQuery	mobile
technology	service.	The	id	property	should	be	used	for	that.	If	the
weblet	value	is	not	to	be	submitted	to	the	server,	this	property	can	be
left	blank.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	name	of	a	field	in	a	target	webroutine.

value
Specifies	the	initial	value	of	the	weblet.	this	value	must	conform	to	a	specific
format.	If	you	use	an	RDMLX	date	or	time	field	the	format	will	be	correct.	If
you	use	other	fields	such	as	a	numeric	field	with	an	edit	mask,	it	is	your
responsibility	to	ensure	the	format	output	by	your	webroutine	is	correct.	The
format	to	use	will	depend	on	the	value	of	the	type	property:

Type Format
date yyyy-mm-dd

time HH:ii:ss

datetime yyyy-mm-ddTHH:ii:ss

	

Where	yyyy	is	a	4	digit	year	value,	mm	a	two	digit	month	value,	dd	a	two	digit
day	value,	HH	a	two	digit	hour	value	in	24	hour	format,	ii	a	two	digit	minute
value	and	ss	a	two	digit	second	value.

Default	value
Blank

Valid	values
Any	valid	date,	time	or	datetime	value	formatted	as	above.

class
The	CSS	class,	or	classes,	to	assign	to	the	weblet.	A	CSS	class	allows	you	to
specify	a	set	of	CSS	styles,	defined	in	an	external	stylesheet,	to	apply	to	a
weblet,	or	elements	within	a	weblet.	For	complex	weblets	made	from	multiple
HTML	elements,	the	class	is	applied	to	the	outermost	element	of	the	weblet.

Default	value
Blank

Valid	values
A	string	containing	one	or	more	space	separated	CSS	class	names.

dateFormat
Specifies	the	format	for	parsed	and	displayed	dates	(m	-	month	of	year	(no
leading	zero),	mm	-	month	of	year	(two	digit),	M	-	month	name	short,	MM	-
month	name	long,	d	-	day	of	month	(no	leading	zero),	dd	-	day	of	month	(two
digit),	y	-	year	(two	digit),	yy	-	year	(four	digit).

Default	value
Blank	–	Uses	the	localised	default	as	defined	in	the	current	std_messages	file
(see	3.10	Localization	for	details).

Valid	values
Any	string	using	formatting	characters	described	above.

dateOrder
Specifies	the	display	order	and	formating	for	the	month/day/year	wheels.	(m	-
month	of	year	(no	leading	zero),	mm	-	month	of	year	(two	digit),	M	-	month
name	short,	MM	-	month	name	long,	d	-	day	of	month	(no	leading	zero),	dd	-
day	of	month	(two	digit),	D	-	day	of	week	(short),	DD	-	day	of	week	(long),	y	-
year	(two	digit),	yy	-	year	(four	digit).	The	options	also	controls	if	a	specific
wheel	should	appear	or	not,	for	example,	use	'mmyy'	to	display	month	and	year
wheels	only,	'mmD	ddy'	to	display	both	day	of	week	and	date	on	the	day	wheel.

Default	value
Blank	–	Uses	the	localised	default	as	defined	in	the	current	std_messages	file
(see	3.10	Localization	for	details).

Valid	values
Any	string	using	formatting	characters	described	above.

disabled
Specifies	if	the	weblet	should	be	disabled.	A	disabled	weblet	is	unusable	and
un-clickable.	Note	that	the	value	of	a	disabled	weblet	will	not	be	submitted	with
the	form.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

endYear
Specifies	the	last	displayed	year	on	the	year	wheel.

Default	value
Blank	–	uses	the	current	year	+	10.

Valid	values
Any	valid	4	digit	year.

fieldContainWrapper
jQuery	Mobile	will	handle	all	the	complexities	of	laying	out	labels	and	fields
vertically	on	small	screens	and	so	they	all	line	up	on	wide	screens.	To	do	this	it
needs	each	label/field	pair	to	be	wrapped	in	a	<div>	tag	with	specific	attributes.
Setting	fieldContainWrapper	to	true	and	using	the	label	property	to	set	the	label
text	will	take	care	of	all	of	this	for	you.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

form
A	space-separated	list	of	form	IDs	that	specifies	the	form(s)	this	weblet	belongs
to.	When	a	form	is	submitted	by	clicking	a	submit	button,	all	the	fields	that
belong	to	the	form	are	sent	to	the	server.	By	default,	all	the	fields	that	are	inside
the	<form>	tag	belong	to	the	form.	This	property	allows	you	place	a	field	in
other	parts	of	the	document,	outside	of	the	<form>	tag,	or	inside	other	<form>
tags	and	still	have	its	value	submitted	with	the	form.
The	standard	LANSA	layouts	contain	a	single	<form>	tag	that	wraps	the	entire
page	so	it	is	usually	not	necessary	to	use	this	property	on	these	layouts.

Default	value
Blank

Valid	values
Space	separated	list	of	form	IDs.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

hideLabel
Hides	the	label	accessibly.	This	means	that	the	label	is	not	visible	but	it	is	still
available	to	assistive	technologies	like	screen	readers.

Default	value
False	-	the	label	is	not	hidden.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

label
Specifies	the	label	text	to	use	for	the	weblet.	The	weblet	will	create	a	<label>
tag	with	this	value	and	make	sure	it	is	correctly	attached	to	the	input	field.	For
the	sake	of	accessibility,	it	is	recommended	that	you	provide	a	meaningful	label
for	all	weblets	even	if	you	do	not	intend	to	display	the	label.	Use	the	hideLabel
property	to	hide	the	label	while	keeping	it	available	for	assistive	technologies.

Default	Value
Blank	-	Automatically	generated	fields	will	have	a	value	from	the	repository
definition.

Valid	values
Any	string	value.

mode
Specifies	the	type	of	picker	displayed	whenthe	user	taps	the	field.	there	are	two
possible	types:
scroller	–	The	user	swipes	the	screen	to	rotate	selection	wheels.
clickpick	–	The	user	taps	on	+/-	buttons	to	change	the	displayed	values.

Default	value
scroller

Valid	values
scroller	or	clickpick.

pickerTheme
Sets	the	picker's	visual	appearance.	The	supplied	themes	are:	'jQuery	Mobile',
'Android',	'Android	ICS',	'Sense-UI'	and	'iOS'.

Tip:	It's	possible	to	create	custom	themes	in	css	by	prefixing	any	css
class	used	in	the	scroller	markup	with	the	theme	name,	for	example,
.my-theme	.dww	{	/	My	CSS	/	},	and	set	the	pickerTheme	property	to
'my-theme'.

Default	value
jQuery	Mobile

Valid	values
jQuery	Mobile,	iOS,	Android,	Android	ICS,	Sense-UI	or	any	theme	defined
as	described	above.

rows
Specifies	the	number	of	visible	rows	on	the	wheel.

Default	value
3

Valid	values
Any	positive	integer.	The	weblet	will	attempt	to	honour	whatever	number
you	enter	here,	however,	a	value	larger	than	the	number	that	can	fit	on	the
users	screen	will	result	in	alignment	issues	and	an	inability	to	access	the	set
and	cancel	buttons.

showOnFocus
When	true,	the	picker	will	automatically	display	when	the	field	gets	the	focus.	If
you	set	this	property	to	false	it	is	your	responsibility	to	show	the	picker	at	a	time
of	your	choosing	using	JavaScript.	For	example,	if	the	weblet	has	an	id	of
"MyDatePicker"	the	following	code	would	display	the	picker:
$("#MyDatePicker").scroller("show");

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

startYear
Specifies	the	first	displayed	year	on	the	year	wheel.

Default	value
Blank	–	uses	the	current	year	-	10.

Valid	values
Any	valid	4	digit	year.

stepHour
Specifies	the	steps	between	hours	on	the	timepicker.

Default	value
1

Valid	values
Any	integer	value	between	1	and	24.

stepMinute
Specifies	the	steps	between	minutes	on	the	timepicker.

Default	value
1

Valid	values
Any	integer	value	between	1	and	60.

stepSecond
Specifies	the	steps	between	seconds	on	the	timepicker.

Default	value
1

Valid	values
Any	integer	value	between	1	and	60.

style
Specifies	a	CSS	style	string	to	apply	to	the	weblet.	This	property	allows	you	to
set	CSS	style	properties	for	this	weblet	that	will	override	any	values	defined	in
the	layout	stylesheets.

Default	value
Blank

Valid	values
Any	valid	CSS	properties	and	values,	separated	by	semi-colons

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

tabindex
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.	Note
that	this	may	not	be	supported	in	some	older	browsers.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	integer	value.

timeFormat
The	format	for	parsed	and	displayed	times	(h	-	12	hour	format	(no	leading	zero),
hh	-	12	hour	format	(leading	zero),	H	-	24	hour	format	(no	leading	zero),	HH	-
24	hour	format	(leading	zero),	i	-	minutes	(no	leading	zero),	ii	-	minutes
(leading	zero),	s	-	seconds	(no	leading	zero),	ss	-	seconds	(leading	zero),	a	-
lowercase	am/pm,	A	-	uppercase	AM/PM).

Default	value
Blank	–	Uses	the	localised	default	as	defined	in	the	current	std_messages	file
(see	3.10	Localization	for	details).

Valid	values
Any	string	using	formatting	characters	described	above.

timeWheels
Specifies	the	display	order	and	formating	for	the	hour/minute/second	wheels.	(h
-	12	hour	format	(no	leading	zero),	hh	-	12	hour	format	(leading	zero),	H	-	24
hour	format	(no	leading	zero),	HH	-	24	hour	format	(leading	zero),	i	-	minutes
(no	leading	zero),	ii	-	minutes	(leading	zero),	s	-	seconds	(no	leading	zero),	ss	-
seconds	(leading	zero),	a	-	lowercase	am/pm,	A	-	uppercase	AM/PM)..	The
options	also	controls	if	a	specific	wheel	should	appear	or	not,	for	example,	use
'HHii'	to	display	hours	(24	hour	format)	and	minutes	wheels	only,	'hhiissa'	to
display	hours	(12	hour	format),	minutes,	seconds	and	am/pmwheels.

Default	value
Blank	–	Uses	the	localised	default	as	defined	in	the	current	std_messages	file
(see	3.10	Localization	for	details).

Valid	values
Any	string	using	formatting	characters	described	above.
	

title
Specifies	extra	advisory	information	about	the	weblet.	This	is	usually	extra	non-
essential		information	to	help	a	user	understand	the	purpose	of	the	weblet.
Different	browsers	may	handle	it	in	different	ways.	for	example,	most	desktop
browsers	will	display	it	as	a	tooltip	when	the	mouse	hovers	over	the	weblet.
Assistive	technologies	like	screen	readers	will	read	it	to	the	user.	At	the	time	of
this	writing,	mobile	device	browsers	will	ignore	it.

Default	value
Blank

Valid	values
Any	valid	HTML	attribute	string.

type
Specifies	the	data	type	being	displayed	in	the	weblet.

Default	value
date

Valid	values
date,	time	or	datetime.

9.4.21	Navigation	Bar	(std_navbar)
jQuery	Mobile	has	a	very	basic	navbar	widget	that	is	useful	for	providing	up	to
5	buttons	with	optional	icons	in	a	bar,	typically	within	a	header	or	footer.	There
is	also	a	persistent	navbar	variation	that	works	more	like	a	tab	bar	that	stays
fixed	as	you	navigate	across	pages.
A	Navigation	bar	is	created	using	an	unordered	HTML	list	().	To	add	a
button	to	the	Navigation	bar,	add	a	list	item	(use	the	HTML	List	Item	weblet	or
insert	the		directly	into	the	source)	and	then	place	an	Anchor	into	the
list	item.	You	can	add	any	number	of	buttons	to	a	Navigation	bar.	If	you	add
more	than	5	the	Navigation	Bar	will	simply	wrap	to	multiple	lines.

Tip:	to	make	a	button	appear	as	selected,	add	the	class	"ui-btn-active"
to	the	corresponding	icon.

Properties	-	Navigation	Bar	(std_navbar)
This	weblet's	properties	are:

id
class
hideIf					

iconPosition
swatch
internal_id

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

class
The	CSS	class,	or	classes,	to	assign	to	the	weblet.	A	CSS	class	allows	you	to
specify	a	set	of	CSS	styles,	defined	in	an	external	stylesheet,	to	apply	to	a
weblet,	or	elements	within	a	weblet.	For	complex	weblets	made	from	multiple
HTML	elements,	the	class	is	applied	to	the	outermost	element	of	the	weblet.
To	make	the	Navigation	Bar	persistent,	add	the	value	"ui-state-persist"	to	the
class.

Default	value
Blank

Valid	values
A	string	containing	one	or	more	space	separated	CSS	class	names.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

iconPosition
Specifies	the	position	of	the	button	icon	relative	to	the	button	text	in	any	buttons
in	the	Navbar.

Default	value
Blank	-	uses	the	jQuery	Mobile	default	position	of	'Left'.

Valid	values
Left	-	position	the	icon	to	the	left	of	the	button	text.
Right	-	position	the	icon	to	the	right	of	the	button	text.
Top	-	position	the	icon	above	the	button	text.
Bottom	-	position	the	icon	below	the	button	text.
No	Text	-	draw	the	button	with	no	text	(icon	only).

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.22	Progress	bar	(std_progressbar)
Display	status	of	a	determinate	process.	It	can	also	be	used	to	display	a	value	as
a	percentage	of	its	maximum	value.

Note	:	For	indeterminate	progress,	use	the	Loader	weblet	(std_loader)
that	provides	the	standard	jQuery	Mobile	icon	(with	an	optional	text
message).

Properties	–	Progress	bar
The	properties	for	this	weblet	are:

caption
delayClose
hideIf

max
name
overlay

swatch
transitory
value

name
The	name	of	the	weblet.	If	the	weblet	represents	a	field	from	your	WAM,	this
should	be	the	name	of	the	field.	If	the	weblet	does	not	represent	a	field,	you	may
wish	to	use	your	own	name	if	using	JavaScript	or	XSL	that	references	the
weblet.	If	nominating	a	name	is	not	a	consideration,	the	default	name	should	be
used,	as	determined	by	LANSA.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name,	in	single	quotes.	This	can	be	a	nominal	choice,	or	the	name	of	a
field,	the	value	of	which	is	set	by	the	weblet.

value
The	value	to	set	the	weblet	to.The	ratio	of	this	value	to	the	maximum	value	is
used	to	represent	the	current	progress.

Default	value
Zero:	0%	of	progress

Valid	values
0	to	maximum	value.

max
The	value	that	represents	100%	of	progress.	This,	together	with	the	current
value	are	used	to	determine	the	progress	shown	by	the	progress	bar.

Default	value
100

Valid	values
A	numeric	value	greater	than	zero.

caption
Caption	to	show	on	progress	bar	once	it	reaches	its	maximum	value.

Default	value
Auto:	"Complete"

Valid	values
Single-quoted	text.

transitory
Show	progress	bar	only	while	its	value	is	greater	than	zero	until	it	reaches	its
maximum	value.

Default	value
False()

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

overlay
For	transitory	progress	bars:	Overlay	the	progress	bar	at	the	center	of	the
viewport.	This	prevents	users	from	interacting	with	the	page	while	the	progress
bar	is	displayed.

Default	value
False()

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

delayClose
For	transitory	progress	bars:	Delay	time	(in	milliseconds)	to	keep	the	progress
bar	before	closing	it.

Default	value
500

Valid	values
An	integer	value

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

9.4.23	Radio	Button	Group	(std_radbuttons)
The	radio	button	group	weblet	creates	a	set	of	radio	buttons	linked	to	an
RDMLX	field.	The	number	of	buttons	and	button	values	can	be	established
from	a	working	list	or	a	static	set	of	values	defined	via	the	items	property	of	the
weblet.

	

Properties	-	Radio	Button	Group	(std_radbuttons)
This	weblet's	properties	are:

id
name
value
disabled
displayMode

fieldContainWrapper
form
hideIf
hideLabel
items

label
mini
orientation
rdmlxDataType
selectorValueEq
swatch

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

name
The	name	of	the	field	that	will	receive	the	value	of	this	weblet	when	it	is
submitted	to	a	webroutine.	When	a	weblet	is	generated,	or	dropped	on	a	field
from	the	current	webroutine's	WEB_MAP,	this	property	will	be	set	to	the	name
of	that	field.	If	the	field	that	you	want	the	value	submitted	to	has	a	different
name,	you	should	change	this	property	to	that	name.

Note:	In	the	XHTML	Technology	Service,	the	name	property	is	often
used	as	a	unique	ID.	This	is	not	the	case	for	the	jQuery	mobile
technology	service.	The	id	property	should	be	used	for	that.	If	the
weblet	value	is	not	to	be	submitted	to	the	server,	this	property	can	be
left	blank.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	name	of	a	field	in	a	target	webroutine.

value
Specifies	the	value	of	the	weblet.	The	weblet	will	compare	this	value	with	the
code	value	of	each	item	to	determine	which	radio	button	to	set	as	initially
selected.

Default	value
Blank

Valid	values
Any	string	value.

disabled
Specifies	if	the	weblet	should	be	disabled.	A	disabled	weblet	is	unusable	and
un-clickable.	Note	that	the	value	of	a	disabled	weblet	will	not	be	submitted	with
the	form.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

displayMode
Controls	whether	the	weblet	accepts	input	or	is	output	only.

Default	value
Blank	(equivalent	to	'input').

Valid	values
input	or	output.

fieldContainWrapper
jQuery	Mobile	will	handle	all	the	complexities	of	laying	out	labels	and	fields
vertically	on	small	screens	and	so	they	all	line	up	on	wide	screens.	To	do	this	it
needs	each	label/field	pair	to	be	wrapped	in	a	<div>	tag	with	specific	attributes.
Setting	fieldContainWrapper	to	true	and	using	the	label	property	to	set	the	label
text	will	take	care	of	all	of	this	for	you.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

form
A	space-separated	list	of	form	IDs	that	specifies	the	form(s)	this	weblet	belongs
to.	When	a	form	is	submitted	by	clicking	a	submit	button,	all	the	fields	that
belong	to	the	form	are	sent	to	the	server.	By	default,	all	the	fields	that	are	inside
the	<form>	tag	belong	to	the	form.	This	property	allows	you	place	a	field	in
other	parts	of	the	document,	outside	of	the	<form>	tag,	or	inside	other	<form>
tags	and	still	have	its	value	submitted	with	the	form.
The	standard	LANSA	layouts	contain	a	single	<form>	tag	that	wraps	the	entire
page	so	it	is	usually	not	necessary	to	use	this	property	on	these	layouts.

Default	value
Blank

Valid	values
Space	separated	list	of	form	IDs.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

hideLabel
Hides	the	label.	It	is	currently	not	possible	to	hide	the	label	for	this	weblet	so
that	it	is	still	accessible	to	assistive	technologies	(as	the	hideLabel	property	will
do	on	other	weblets)	so	setting	this	property	to	true	is	the	same	as	setting	the
label	property	to	a	blank	value.	This	property	exists	for	consistency	with	other
weblets	and	so	that,	should	future	browsers	make	it	possible	to	hide	the	label
accessibly,	that	will	automatically	happen	without	you	needing	to	change
anything.

Default	value
False	-	the	label	is	not	hidden.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

items

An	XML	nodeset	specifying	the	items	to	appear	in	the	weblet.	This	can	only	be
set	by	the	designer.	To	invoke	the	designer	use	the	ellipse	button	in	the	property
sheet.	The	property	designer	can	be	used	to	specify	a	hard	coded	set	of	items	or
the	name	of	a	working	list	to	get	the	items	from.

This	shows	a	list	configured	with	4	items.	Check	the	Default	Item	check	box	for
the	item	which	is	to	be	selected	if	no	value	is	preselected.	The	Selector	value	can
be	used	to	filter	the	list	down	to	a	smaller	set	of	displayed	values	at	runtime.

	
This	shows	the	items	property	editor	configured	to	use	a	working	list.	The
Selector	field	can	be	used	to	filter	the	list	down	to	a	smaller	set	of	displayed
values	at	runtime.

Default	value
document(")/*/lxml:data/lxml:radiobutton	(this	indicates	no	items	have	been
defined	for	this	weblet.)

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)	To	invoke	the	designer
use	the	ellipse	button	in	the	property	sheet.

label
Specifies	the	label	text	to	use	for	the	weblet.	The	weblet	will	create	a	<label>
tag	with	this	value	and	make	sure	it	is	correctly	attached	to	the	input	field.	For
the	sake	of	accessibility,	it	is	recommended	that	you	provide	a	meaningful	label
for	all	weblets	even	if	you	do	not	intend	to	display	the	label.	Use	the	hideLabel
property	to	hide	the	label	while	keeping	it	available	for	assistive	technologies.

Default	Value
Blank	-	Automatically	generated	fields	will	have	a	value	from	the	repository
definition.

Valid	values
Any	string	value.

mini
If	set	to	true,	this	will	display	a	more	compact	version	of	the	weblet	that	uses
less	vertical	height.	This	can	be	useful	in	toolbars	and	other	places	where	space
is	tight.

Default	value
False	-	the	standard	size	is	used.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

orientation
Specifies	how	the	radio	items	should	be	arranged	relative	to	each	other.

Default	value
vertical

Valid	values
horizontal	or	vertical.

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

rdmlxDataType
Specifies	the	RDMLX	data	type	of	the	field	associated	with	the	weblet.	This
helps	some	weblets	perform	data	validation.	This	property	is	normaly	set
automatically	when	you	generate	or	drop	a	field	onto	a	design.	You	may	need	to
set	it	yourself	if	you	drop	the	weblet	onto	a	design	and	then	later	associate	it
with	a	field.

Default	value
Blank	unless	automatically	set	by	the	WAM	editor.

Valid	values
A	|	delimited	string	starting	with	the	data	type	followed	by	extra	parameters
as	required	by	the	data	type:
integer|<max	length>
float|<max	length>
packed|<total	digits>|<fraction	digits>|<decimal	separator>
signed|<total	digits>|<fraction	digits>|<decimal	separator>
dec|<total	digits>|<fraction	digits>|<decimal	separator>
alpha|<keyboard	shift>|<max	length>
char|<keyboard	shift>|<max	length>
varchar|<keyboard	shift>|<max	length>
nchar|<keyboard	shift>|<max	length>
nvarchar|<keyboard	shift>|<max	length>

selectorValueEq
This	value	is	used	in	order	to	limit,	to	a	subset,	the	list	items	shown	in	the
weblet.	A	selector	value	or	selector	field	must	have	been	specified	in	the	items
property	editor.

Default	value
Blank.

Valid	values
Any	string	value.

9.4.24	RDMLX	Working	List	(std_repeater)
The	RDMLX	Working	List	weblet	provides	a	flexible	mechanism	to	process
working	lists.	It	does	not	generate	any	output	directly.	It	repeats	whatever
content	you	place	in	its	content	area	once	for	each	row	in	the	working	list.
The	most	common	approach	to	handling	repeating	content	in	modern	semantic
HTML	pages	is	to	place	it	in	an	HTML	list	(or)	and	wrap	each	"row"
of	repeating	content	with	list	item	()	tags.	This	is	the	approach	taken	by
jQuery	Mobile	lists.	The	RDMLX	working	list	weblet	allows	you	to	create	any
repeating	content	you	like	such	as	table	rows,	divs,	etc.
To	create	a	jQuery	Mobile	list,	start	by	dropping	an	HTML	List	weblit	onto	your
design.	Then	drop	a	RDMLX	Working	List	weblet	into	the	content	area	of	the
HTML	List.	Set	the	listname	property	to	the	name	of	your	working	list.	Next,
drop	an	HTML	List	Item	weblet	into	the	working	list	content	area.	Finally,	place
the	content	you	want	repeated	for	each	row	into	the	list	item	content	area.

Referencing	column	values
The	data	from	your	webroutine	is	output	as	an	XML	document	and	passed	to	the
webroutine	design	for	converting	into	the	final	HTML	output.	In	order	to	access
the	webroutine	output,	the	design	needs	an	XPath	expression	to	tell	it	where	to
find	the	required	data	in	the	XML.	When	you	need	to	access	data	from	a	field,
you	don't	normally	need	to	worry	about	this.	You	just	enter	the	field	name	in	the
property	editor	(e.g	#EMPNO)	and	the	LANSA	Editor	automatically	converts
that	into	the	necessary	XPath	(for	example,	key('field-value',	'EMPNO')).

	Property	Tab	showing	a
field	name	in	the	property	value	and	the

corresponding	XPath	expression	in	the	XPath	entry	box	below.

It	is	not	possible	to	use	this	shorthand	technique	when	referencing	columns	in	a
list.	Instead,	you	need	to	reference	the	column	with
lxml:column[@name='COLNAME']

	
Property	tab	showing	a	column	value	being	referenced.

XPath	expressions	such	as	this	must	be	entered	into	XPath	entry	area	at	the
bottom	of	the	properties	tab.	Attempting	to	enter	the	expression	in	the	property
directly	will	result	in	incorrect	behavior	or	an	error	as	the	editor	will	attempt	to
treat	it	as	a	string.

Note:	All	field	and	column	name	references	in	XPath	expressions
must	be	uppercase.	All	references	to	repository	fields	must	use	the
object	name	for	the	field.

Properties	-	RDMLX	Working	List	(std_repeater)
This	weblet's	properties	are:
internal_id
isOutputOnly
listname

isOutputOnly
Indicates	that	the	list	specified	by	the	listname	property	is	only	being	used	by
this	weblet	for	output.	When	a	list	is	being	used	for	input,	the	LANSA
framework	needs	to	create	some	hidden	fields	and	do	some	extra	processing	to
make	sure	the	list	data	is	sent	to	the	server	correctly.	If	the	list	is	being	used	by
this	weblet	for	output	purposes	only,	you	can	slightly	improve	performance	and
reduce	the	risk	of	conflicts	with	other	weblets	using	the	same	list	if	you	set	this
property	to	True.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

listname
The	name	of	the	RDMLX	working	list	to	iterate	over.	The	weblet	content	will
be	reproduced	for	each	row	in	the	list.	If	no	list	is	specified	then	a	single	row	of
cells	will	be	created.

Default	value
Blank

Valid	values
The	name	of	a	working	list	output	by	the	current	webroutine.	A	list	of	available
working	lists	(as	defined	in	the	WAM)	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

internal_id
A	unique	ID	used	by	the	WAM	Editor	and	the	weblet	to	connect	the	weblet	to
custom	content	contained	within	the	webroutine	design.	This	property	is
automatically	configured	by	the	WAM	Editor	and	should	not	be	modified
manually.

9.4.25	HTML	Textarea	(std_textarea)
The	HTML	Textarea	creates	a	<textarea>	element	which	can	be	used	for	the
display	and	input	of	long	text	values	spanning	multiple	lines.

	

Properties	-	HTML	Textarea	(std_textarea)
The	HTML	Textarea	(std_textarea)	weblet's	properties	are:

addErrorDiv
autofocus
class
cols
corners
disabled
displayMode
fieldContainWrapper
form

hideIf
hideLabel
id
label
maxlength
mini
name
placeholder
rdmlxDataType

readonly
required
rows
style
swatch
tabindex
title
value
wrap

id
A	unique	ID	for	the	weblet.	This	property	is	not	required	but,	if	supplied,	allows
the	weblet	to	be	directly	referenced	by	CSS	or	JavaScript.	The	value	must	be
unique	within	the	page.

Note:	jQuery	Mobile	loads	pages	using	Ajax	and	inserts	them	into	the
current	page,	optionally	performing	an	animation	as	it	does.	This
means	that	the	content	for	two	webroutines	may	both	exist	in	a	page
for	a	brief	period	of	time.	If	both	webroutines	contain	a	weblet	with
the	same	ID	and	you	have	any	custom	CSS	or	JavaScript	that
references	the	weblet	during	this	period	of	time	you	may	get
unexpected	results.	For	this	reason,	you	should	aim	to	make	an	ID
globally	unique.	Weblets	that	are	automatically	generated	to	represent
fields	do	this	by	concatenating	the	name	of	the	webroutine	with	the
name	of	the	field.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have
the	value	automatically	set.

Valid	values
The	rules	for	valid	characters	and	formatting	in	an	ID	attribute	vary
depending	on	the	version	of	HTML	you	want	to	support.	For	specific	details,
look	at	the	appropriate	specifications:	http://www.w3.org/
To	ensure	compatibility	with	all	versions	of	HTML,	CSS	and	JavaScript
libraries	such	as	jQuery,	you	should	stick	to	the	following	rules:
Must	begin	with	a	letter	A-Z	or	a-z
Can	be	followed	by:	letters	(A-Za-z),	digits	(0-9),	hyphens	("-"),	and
underscores	("_")

http://www.w3.org/

name
The	name	of	the	field	that	will	receive	the	value	of	this	weblet	when	it	is
submitted	to	a	webroutine.	When	a	weblet	is	generated,	or	dropped	on	a	field
from	the	current	webroutine's	WEB_MAP,	this	property	will	be	set	to	the	name
of	that	field.	If	the	field	that	you	want	the	value	submitted	to	has	a	different
name,	you	should	change	this	property	to	that	name.

Note:	In	the	XHTML	Technology	Service,	the	name	property	is	often
used	as	a	unique	ID.	This	is	not	the	case	for	the	jQuery	mobile
technology	service.	The	id	property	should	be	used	for	that.	If	the
weblet	value	is	not	to	be	submitted	to	the	server,	this	property	can	be
left	blank.

Default	value
Blank.	Weblets	that	are	automatically	generated	to	represent	fields	will	have	the
value	automatically	set.

Valid	values
The	name	of	a	field	in	a	target	webroutine.

value
Specifies	the	text	displayed	in	the	textarea.

Default	value
Blank

Valid	values
Any	string	value.

	

addErrorDiv
When	set	to	True,	a	<div>	element	will	be	added	just	after	the	weblet	to	display
validation	errors.	the	<div>	will	be	hidden	until	a	validation	error	occurs	and
will	be	hidden	again	when	the	error	is	cleared.
When	a	validation	method	has	been	set	the	error	<div>	will	reserve	some	space
for	itself	on	the	page	even	when	it	is	hidden	to	avoid	confusing	rearrangements
of	the	screen	when	the	error	is	displayed.	If	you	are	using	HTML	5	validation
on	the	form	but	not	on	this	field	then	you	may	want	to	set	this	property	to	False
to	reclaim	that	space.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

autofocus
Specifies	that	the	weblet	should	automatically	get	the	focus	when	the	page
loads.	There	must	be	only	one	field	on	a	page	with	this	property	set	to	true.
Setting	autofocus	to	true	on	more	than	one	field	may	produce	inconsistent
results	on	different	browsers.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

class
The	CSS	class,	or	classes,	to	assign	to	the	weblet.	A	CSS	class	allows	you	to
specify	a	set	of	CSS	styles,	defined	in	an	external	stylesheet,	to	apply	to	a
weblet,	or	elements	within	a	weblet.	For	complex	weblets	made	from	multiple
HTML	elements,	the	class	is	applied	to	the	outermost	element	of	the	weblet.

Default	value
Blank

Valid	values
A	string	containing	one	or	more	space	separated	CSS	class	names.

corners
Specifies	if	the	input	field	should	have	rounded	corners.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

cols
Specifies	the	visible	width,	in	characters,	of	the	<textatea>	element.	This	only
specifies	the	visible	width	of	the	input,	not	the	length	of	data	that	can	be
entered.	See	the	maxlength	property	to	limit	the	length	of	entered	data.
The	cols	value	is	measured	in	numbers	of	characters.	Each	browser	has	slightly
different	techniques	for	determining	how	to	convert	this	number	into	an	actual
number	of	pixels	on	screen.	For	more	accurate	control	of	the	width	of	the
<textarea>,	use	CSS	to	set	the	width.

Default	value
Blank	-	the	browser	uses	its	own	default	size,	usually	around	20.

Valid	values
Any	integer	value.

disabled
Specifies	if	the	weblet	should	be	disabled.	A	disabled	weblet	is	unusable	and
un-clickable.	Note	that	the	value	of	a	disabled	weblet	will	not	be	submitted	with
the	form.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

displayMode
Controls	whether	the	weblet	accepts	input,	is	output	only	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
input,	output	or	hidden

fieldContainWrapper
jQuery	Mobile	will	handle	all	the	complexities	of	laying	out	labels	and	fields
vertically	on	small	screens	and	so	they	all	line	up	on	wide	screens.	To	do	this	it
needs	each	label/field	pair	to	be	wrapped	in	a	<div>	tag	with	specific	attributes.
Setting	fieldContainWrapper	to	true	and	using	the	label	property	to	set	the	label
text	will	take	care	of	all	of	this	for	you.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

form
A	space-separated	list	of	form	IDs	that	specifies	the	form(s)	this	weblet	belongs
to.	When	a	form	is	submitted	by	clicking	a	submit	button,	all	the	fields	that
belong	to	the	form	are	sent	to	the	server.	By	default,	all	the	fields	that	are	inside
the	<form>	tag	belong	to	the	form.	This	property	allows	you	place	a	field	in
other	parts	of	the	document,	outside	of	the	<form>	tag,	or	inside	other	<form>
tags	and	still	have	its	value	submitted	with	the	form.
The	standard	LANSA	layouts	contain	a	single	<form>	tag	that	wraps	the	entire
page	so	it	is	usually	not	necessary	to	use	this	property	on	these	layouts.

Default	value
Blank

Valid	values
Space	separated	list	of	form	IDs.

hideIf
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False	-	the	weblet	will	always	be	shown.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

hideLabel
Hides	the	label	accessibly.	This	means	that	the	label	is	not	visible	but	it	is	still
available	to	assistive	technologies	like	screen	readers.

Default	value
False	-	the	label	is	not	hidden.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

label
Specifies	the	label	text	to	use	for	the	weblet.	The	weblet	will	create	a	<label>
tag	with	this	value	and	make	sure	it	is	correctly	attached	to	the	input	field.	For
the	sake	of	accessibility,	it	is	recommended	that	you	provide	a	meaningful	label
for	all	weblets	even	if	you	do	not	intend	to	display	the	label.	Use	the	hideLabel
property	to	hide	the	label	while	keeping	it	available	for	assistive	technologies.

Default	Value
Blank	-	Automatically	generated	fields	will	have	a	value	from	the	repository
definition.

Valid	values
Any	string	value.

maxlength
Specifies	the	maximum	number	of	characters	allowed	in	the	textarea.	The
browser	does	not	distinguish	between	SBCS	and	DBCS	characters	so	this
property	will	not	limit	the	data	length	of	the	field.	If	the	rdmlxDataType
property	is	correctly	set	and	form	validation	turned	on,	the	LANSA	framework
will	validate	the	data	length	of	the	field.

Default	value
Blank	-	no	maximum	length.

Valid	values
Any	integer	value.

mini
If	set	to	true,	this	will	display	a	more	compact	version	of	the	weblet	that	uses
less	vertical	height.	This	can	be	useful	in	toolbars	and	other	places	where	space
is	tight.

Default	value
False	-	the	standard	size	is	used.

Valid	Values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

placeholder
Specifies	a	short	hint	that	describes	the	expected	value	of	the	input	field	(for
example,	a	sample	value	or	a	short	description	of	the	expected	format).	The	hint
is	displayed	in	the	field	when	it	is	empty,	and	disappears	when	the	field	gets
focus	or	contains	a	value	(details	vary	by	browser).

Default	value
Blank

Valid	values
Any	string	value.

rdmlxDataType
Specifies	the	RDMLX	data	type	of	the	field	associated	with	the	weblet.	This
helps	some	weblets	perform	data	validation.	This	property	is	normaly	set
automatically	when	you	generate	or	drop	a	field	onto	a	design.	You	may	need	to
set	it	yourself	if	you	drop	the	weblet	onto	a	design	and	then	later	associate	it
with	a	field.

Default	value
Blank	unless	automatically	set	by	the	WAM	editor.

Valid	values
A	|	delimited	string	starting	with	the	data	type	followed	by	extra	parameters
as	required	by	the	data	type:
integer|<max	length>
float|<max	length>
packed|<total	digits>|<fraction	digits>|<decimal	separator>
signed|<total	digits>|<fraction	digits>|<decimal	separator>
dec|<total	digits>|<fraction	digits>|<decimal	separator>
alpha|<keyboard	shift>|<max	length>
char|<keyboard	shift>|<max	length>
varchar|<keyboard	shift>|<max	length>
nchar|<keyboard	shift>|<max	length>
nvarchar|<keyboard	shift>|<max	length>

readonly
Sets	the	read-only	state	of	the	textarea.	A	read-only	field	cannot	be	modified
(however,	a	user	can	tab	to	it,	highlight	it,	and	copy	the	text	from	it).
The	readonly	attribute	can	be	set	to	keep	a	user	from	changing	the	value	until
some	other	conditions	have	been	met	(like	selecting	a	checkbox,	etc.).	Then,	a
JavaScript	can	remove	the	readonly	value,	and	make	the	textarea	field	editable.

Default	value
False	-	the	textarea	is	editable.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

	

required
Specifies	that	a	value	must	be	entered	in	this	weblet	before	the	form	can	be
submitted.	.	Note	that,	at	the	time	of	writing,	Safari	and	Internet	Explorer	do	not
support	this	property.

Note:	HTML	5	form	validation	can	be	turned	off	by	adding	a
novalidate	attribute	to	the	<form>	tag	or	submit	button	(this	is
automatically	done	by	setting	validationMethod	to	'none'	on	the
standard	shipped	layouts).	In	addition,	different	browsers	have
differing	levels	of	support	for	HTML	5	validation	and	there	are	many
ways	for	malicious	users	to	bypass	client-side	validation.	So,	while
client-side	validation	can	improve	the	user	experience,	you	should
never	rely	on	it.	Always	back	it	up	with	server-side	validation.

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

rows
Specifies	the	visible	height,	in	lines,	of	the	<textatea>	element.	This	only
specifies	the	visible	height	of	the	textarea,	not	the	length	of	data	that	can	be
entered.	See	the	maxlength	property	to	limit	the	length	of	entered	data.	The
textarea	will	automatically	add	a	scrollbar	if	necessary.
The	rows	value	is	measured	in	numbers	of	lines.	The	exact	height	will	vary
depending	on	the	font	settings	being	used.	For	more	accurate	control	of	the
height	of	the	<textarea>,	use	CSS	to	set	the	height.

Default	value
Blank	-	the	browser	uses	its	own	default	size,	usually	2.

Valid	values
Any	integer	value.

style
Specifies	a	CSS	style	string	to	apply	to	the	weblet.	This	property	allows	you	to
set	CSS	style	properties	for	this	weblet	that	will	override	any	values	defined	in
the	layout	stylesheets.

Default	value
Blank

Valid	values
Any	valid	CSS	properties	and	values,	separated	by	semi-colons

swatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
weblet.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

tabindex
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.	Note
that	this	may	not	be	supported	in	some	older	browsers.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	integer	value.

title
Specifies	extra	advisory	information	about	the	weblet.	This	is	usually	extra	non-
essential		information	to	help	a	user	understand	the	purpose	of	the	weblet.
Different	browsers	may	handle	it	in	different	ways.	for	example,	most	desktop
browsers	will	display	it	as	a	tooltip	when	the	mouse	hovers	over	the	weblet.
Assistive	technologies	like	screen	readers	will	read	it	to	the	user.	At	the	time	of
this	writing,	mobile	device	browsers	will	ignore	it.

Default	value
Blank

Valid	values
Any	valid	HTML	attribute	string.

wrap
Specifies	how	the	text	in	a	text	area	is	to	be	wrapped	when	submitted	in	a	form.
The	property	takes	two	values;	"soft"	or	"hard".
When	set	to	"soft"	no	extra	wrapping	is	done.	Only	line	breaks	inserted	by	the
user	are	send	to	the	server.
When	set	to	"hard"	the	text	will	be	"word	wrapped"	(that	is,	wrapped	at	the
nearest	word	boundary	before	the	maximum	line	length)	by	using	the	value	of
the	cols	property	as	the	maximum	line	length.

Note:	this	property	affects	how	the	text	is	formatted	for	submission	to
the	server.	It	has	no	effect	on	how	the	text	is	displayed	in	the	browser.

Default	value
soft	-	no	wrapping	is	done

Valid	values
soft	or	hard.

9.5	Layout	Weblets
	

Basic	Layout
(std_layout_v2)

A	simple	one-column	layout	with	an	optional	header	and
footer.

Flexible	Layout
(std_flex_layout)

A	layout	weblet	with	two	content	areas:	A	main	content
area	and	a	secondary	or	sidebar	content	area.	Automatically
adjusts	to	fit	the	content	area	on	small	(phone)	screens.

	

its:lansa087.CHM::/lansa/WamEngb9_0160.HTM
its:lansa087.chm::/Lansa/WamEngb9_0165.htm

9.5.1	Basic	Layout	(std_layout_v2)
The	Basic	Layout	weblet	is	a	simple	one-column	layout	with	an	optional	header
and	footer.

Properties	-	Basic	Layout	(std_layout_v2)
This	weblet's	properties	are:

addBackButton
backButtonSwatch
backButtonText
contentSwatch	(deprecated)
footerFullscreenMode
footerPosition

footerSwatch
headerFullscreenMode
headerPosition
headerSwatch
pageSwatch
persistentFooterId

showFooter
showHeader
showMessages
validationErrorDisplay
validationTime
windowTitle

addBackButton
jQuery	Mobile	has	a	feature	to	automatically	create	and	append	"back"	buttons
to	any	header.	The	framework	only	adds	a	back	button	to	pages	that	have	been
loaded	via	ajax.	Any	page	loaded	completely	by	the	browser	is	treated	as	the
"home"	page	and	does	not	have	a	back	button.
This	is	primarily	useful	in	chromeless	installed	applications,	such	as	those
running	in	a	native	app	webview	or	web	applications	where	you	have	control	of
the	application	entry	point.	When	people	may	enter	your	application	at	different
points	from	search	engine	or	from	bookmarks	you	should	avoid	back	buttons
and	create	buttons	that	explicitly	state	where	tapping	them	will	go.

Default	value
False	-	no	back	button	is	added	to	headers.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

backButtonSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
back	button.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

backButtonText
Specifies	the	text	to	display	in	any	added	back	button.

Default	value
Blank	-	jQuery	Mobile	will	use	its	default	of	"Back".

Valid	values
Any	string	value.

contentSwatch	(deprecated)
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
content	area	of	the	layout.

Default	value
Default	-	Uses	the	jQuery	mobile's	default	swatch.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

footerFullscreenMode
A	fullscreen	footer	is	a	footer	with	a	position	of	"fixed"	except	that	the	footer
overlays	the	page	content,	rather	than	reserving	a	place	in	the	document.	This	is
useful	for	immersive	apps	like	photo	or	video	viewers	where	you	want	the
content	to	fill	the	whole	screen	and	toolbars	can	be	hidden	or	summoned	to
appear	by	tapping	the	screen.	Keep	in	mind	that	the	footer	in	this	mode	will	sit
over	page	content	so	this	is	best	used	for	specific	situations.
This	property	is	ignored	unless	footerPosition	is	set	to	"fixed".

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

footerPosition
Footers	can	be	positioned	on	the	page	in	a	few	different	ways.	By	default,	the
footer	uses	the	"inline"	positioning	mode.	In	this	mode,	the	footer	sits	in	the
natural	document	flow	(the	default	HTML	behavior),	which	ensures	that	it	is
visible	on	all	devices,	regardless	of	JavaScript	and	CSS	positioning	support.
A	"fixed"	positioning	mode	fixes	the	footer	to	the	bottom	of	the	viewport	on
browsers	that	support	CSS	fixed	positioning	(which	includes	most	desktop
browsers,	iOS5+,	Android	2.2+,	BlackBerry	6,	and	others).	In	browsers	that
don't	support	fixed	positioning,	the	footer	will	fall	back	to	static,	inline	position
in	the	page.

Default	value
Inline

Valid	values
inline	or	fixed.

footerSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
footer	area	of	the	layout.

Default	value
Default	-	Uses	the	jQuery	mobile's	default	swatch.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

headerFullscreenMode
A	fullscreen	header	is	a	header	with	a	position	of	"fixed"	except	that	the	header
overlays	the	page	content,	rather	than	reserving	a	place	in	the	document.	This	is
useful	for	immersive	apps	like	photo	or	video	viewers	where	you	want	the
content	to	fill	the	whole	screen	and	toolbars	can	be	hidden	or	summoned	to
appear	by	tapping	the	screen.	Keep	in	mind	that	the	header	in	this	mode	will	sit
over	page	content	so	this	is	best	used	for	specific	situations.
This	property	is	ignored	unless	headerPosition	is	set	to	"fixed".

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

headerPosition
Headers	can	be	positioned	on	the	page	in	a	few	different	ways.	By	default,	the
header	uses	the	"inline"	positioning	mode.	In	this	mode,	the	header	sits	in	the
natural	document	flow	(the	default	HTML	behavior),	which	ensures	that	it	is
visible	on	all	devices,	regardless	of	JavaScript	and	CSS	positioning	support.
A	"fixed"	positioning	mode	fixes	the	header	to	the	top	of	the	viewport	on
browsers	that	support	CSS	fixed	positioning	(which	includes	most	desktop
browsers,	iOS5+,	Android	2.2+,	BlackBerry	6,	and	others).	In	browsers	that
don't	support	fixed	positioning,	the	header	will	fall	back	to	static,	inline	position
in	the	page.

Default	value
Inline

Valid	values
inline	or	fixed.

headerSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
header	area	of	the	layout.

Default	value
Default	-	Uses	the	jQuery	mobile's	default	swatch.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

pageSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
whole	page	(including	header,	content	and	footer).

Default	value
Default	-	Uses	the	jQuery	mobile's	default	swatch.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

persistentFooterId
In	situations	where	the	footer	is	a	global	navigation	element,	you	may	want	it	to
appear	fixed	so	it	doesn't	scroll	out	of	view.	It's	also	possible	to	make	a	fixed
footer	persistent	so	it	appears	to	not	move	between	page	transitions.	This	can	be
accomplished	by	using	the	persistent	footer	feature	included	in	jQuery	Mobile.
To	make	a	footer	persistent	between	transitions,	assign	an	id	value	to	the
persistentFooterId	of	all	relevant	pages	and	use	the	same	id	value	for	each.	For
example,	by	setting	persistentFooterId	to	"myfooter"	to	the	current	page	and
the	target	page,	the	framework	will	keep	the	footer	anchors	in	the	same	spot
during	the	page	animation.	This	effect	will	only	work	correctly	if	the	footers	are
set	to	position="fixed"	so	they	are	in	view	during	the	transition.

Default	value
Blank	-	the	footer	is	not	persistent.

Valid	values
Any	string	value.

showFooter
If	True,	the	layout	will	add	a	jQuery	mobile	footer	bar	to	the	bottom	of	the
layout.	See	the	"Toolbars"	section	of	the	jQuery	Mobile	documentation	for	more
details.
The	footer	bar	is	a	customizable	content	area.	To	customize	it,	right-click	on	the
footer	and	select	a	option	from	the	"Content	area	for	content.footer"	menu.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

http://jquerymobile.com/

showHeader
If	True,	the	layout	will	add	a	jQuery	mobile	header	bar	to	the	bottom	of	the
layout.	See	the	"Toolbars"	section	of	the	jQuery	Mobile	documentation	for	more
details.
The	header	bar	is	a	customizable	content	area.	To	customize	it,	right-click	on
the	header	and	select	a	option	from	the	"Content	area	for	content.header"	menu.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

http://jquerymobile.com/

showMessages
If	True,	the	Messages	weblet	will	be	placed	at	the	top	of	the	content	area	to
display	any	messages	from	the	Webroutine.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

validationErrorDisplay
Specifies	how	validation	errors	are	displayed.	See	Field	Validation	for	more
details.

Default	value
Blank	-	use	the	browsers'	default	mechanism

Valid	values
'Browser	Default'	or	'Error	Div'

validationTime
Specifies	when	validation	errors	are	displayed.	See	Field	Validation	for	more
details.

Default	Value
After	Submit	-	validation	is	done	when	the	user	presses	the	submit	button.

Valid	Values
Immediately,	After	Focus	or	After	Submit.

windowTitle
Specifies	a	title	for	the	page.	The	value	of	this	property	is	used	to	set	the	<title>
tag	of	the	page.

Default	value
$lweb_context/lxml:webroutine-title	-	this	is	an	XPath	expression	that
references	the	Webroutine	description.

Valid	values
Any	string	value.

9.5.2	Flexible	Layout	(std_flex_layout)
Flexible	Layout	is	a	layout	weblet	with	two	content	areas:	A	main	content	area
and	a	secondary	or	sidebar	content	area.	The	layout	automatically	adjusts	the
position	of	the	secondary	content	area	on	small	(phone)	screens.

Properties	-	Flexible	Layout	(std_flex_layout)
The	Flexible	Layout	(std_flex_layout)	weblet's	properties	are:

addBackButton
backButtonSwatch
backButtonText
contentSwatch
(deprecated)
footerFullscreenMode
footerPosition

footerSwatch
headerFullscreenMode
headerPosition
headerSwatch
pageSwatch
persistentFooterId

showFooter
showHeader
showMessages
sidebarPositionSmallScreen
validationErrorDisplay
validationTime
windowTitle

addBackButton
jQuery	Mobile	has	a	feature	to	automatically	create	and	append	"back"	buttons
to	any	header.	The	framework	only	adds	a	back	button	to	pages	that	have	been
loaded	via	ajax.	Any	page	loaded	completely	by	the	browser	is	treated	as	the
"home"	page	and	does	not	have	a	back	button.
This	is	primarily	useful	in	chromeless	installed	applications,	such	as	those
running	in	a	native	app	webview	or	web	applications	where	you	have	control	of
the	application	entry	point.	When	people	may	enter	your	application	at	different
points	from	search	engine	or	from	bookmarks	you	should	avoid	back	buttons
and	create	buttons	that	explicitly	state	where	tapping	them	will	go.

Default	value
False	-	no	back	button	is	added	to	headers.

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

backButtonSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
back	button.

Default	value
Default	-	Uses	the	weblet's	default	swatch	or	inherits	the	swatch	from	the
container.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

backButtonText
Specifies	the	text	to	display	in	any	added	back	button.

Default	value
Blank	-	jQuery	Mobile	will	use	its	default	of	"Back".

Valid	values
Any	string	value.

contentSwatch	(deprecated)
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
content	area	of	the	layout.

Default	value
Default	-	Uses	the	jQuery	mobile's	default	swatch.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

footerFullscreenMode
A	fullscreen	footer	is	a	footer	with	a	position	of	"fixed"	except	that	the	footer
overlays	the	page	content,	rather	than	reserving	a	place	in	the	document.	This	is
useful	for	immersive	apps	like	photo	or	video	viewers	where	you	want	the
content	to	fill	the	whole	screen	and	toolbars	can	be	hidden	or	summoned	to
appear	by	tapping	the	screen.	Keep	in	mind	that	the	footer	in	this	mode	will	sit
over	page	content	so	this	is	best	used	for	specific	situations.
This	property	is	ignored	unless	footerPosition	is	set	to	"fixed".

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

footerPosition
Footers	can	be	positioned	on	the	page	in	a	few	different	ways.	By	default,	the
footer	uses	the	"inline"	positioning	mode.	In	this	mode,	the	footer	sits	in	the
natural	document	flow	(the	default	HTML	behavior),	which	ensures	that	it	is
visible	on	all	devices,	regardless	of	JavaScript	and	CSS	positioning	support.
A	"fixed"	positioning	mode	fixes	the	footer	to	the	bottom	of	the	viewport	on
browsers	that	support	CSS	fixed	positioning	(which	includes	most	desktop
browsers,	iOS5+,	Android	2.2+,	BlackBerry	6,	and	others).	In	browsers	that
don't	support	fixed	positioning,	the	footer	will	fall	back	to	static,	inline	position
in	the	page.

Default	value
Inline

Valid	values
inline	or	fixed.

footerSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
footer	area	of	the	layout.

Default	value
Default	-	Uses	the	jQuery	mobile's	default	swatch.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

headerFullscreenMode
A	fullscreen	header	is	a	header	with	a	position	of	"fixed"	except	that	the	header
overlays	the	page	content,	rather	than	reserving	a	place	in	the	document.	This	is
useful	for	immersive	apps	like	photo	or	video	viewers	where	you	want	the
content	to	fill	the	whole	screen	and	toolbars	can	be	hidden	or	summoned	to
appear	by	tapping	the	screen.	Keep	in	mind	that	the	header	in	this	mode	will	sit
over	page	content	so	this	is	best	used	for	specific	situations.
This	property	is	ignored	unless	headerPosition	is	set	to	"fixed".

Default	value
False

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

headerPosition
Headers	can	be	positioned	on	the	page	in	a	few	different	ways.	By	default,	the
header	uses	the	"inline"	positioning	mode.	In	this	mode,	the	header	sits	in	the
natural	document	flow	(the	default	HTML	behavior),	which	ensures	that	it	is
visible	on	all	devices,	regardless	of	JavaScript	and	CSS	positioning	support.
A	"fixed"	positioning	mode	fixes	the	header	to	the	top	of	the	viewport	on
browsers	that	support	CSS	fixed	positioning	(which	includes	most	desktop
browsers,	iOS5+,	Android	2.2+,	BlackBerry	6,	and	others).	In	browsers	that
don't	support	fixed	positioning,	the	header	will	fall	back	to	static,	inline	position
in	the	page.

Default	value
Inline

Valid	values
inline	or	fixed.

headerSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
header	area	of	the	layout.

Default	value
Default	-	Uses	the	jQuery	mobile's	default	swatch.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

pageSwatch
Specifies	the	jQuery	Mobile	theme	swatch,	or	color	scheme,	to	apply	to	the
whole	page	(including	header,	content	and	footer).

Default	value
Default	-	Uses	the	jQuery	mobile's	default	swatch.

Valid	values
Any	single	letter	from	a-z.	The	shipped	them	only	contains	swatches	a-b.	See
the	jQuery	Mobile	documentation	on	themes	for	details	of	how	to	create	your
own	themes.

http://jquerymobile.com/

persistentFooterId
In	situations	where	the	footer	is	a	global	navigation	element,	you	may	want	it	to
appear	fixed	so	it	doesn't	scroll	out	of	view.	It's	also	possible	to	make	a	fixed
footer	persistent	so	it	appears	to	not	move	between	page	transitions.	This	can	be
accomplished	by	using	the	persistent	footer	feature	included	in	jQuery	Mobile.
To	make	a	footer	persistent	between	transitions,	assign	an	id	value	to	the
persistentFooterId	of	all	relevant	pages	and	use	the	same	id	value	for	each.	For
example,	by	setting	persistentFooterId	to	"myfooter"	to	the	current	page	and
the	target	page,	the	framework	will	keep	the	footer	anchors	in	the	same	spot
during	the	page	animation.	This	effect	will	only	work	correctly	if	the	footers	are
set	to	position="fixed"	so	they	are	in	view	during	the	transition.

Default	value
Blank	-	the	footer	is	not	persistent.

Valid	values
Any	string	value.

showFooter
If	True,	the	layout	will	add	a	jQuery	mobile	footer	bar	to	the	bottom	of	the
layout.	See	the	"Toolbars"	section	of	the	jQuery	Mobile	documentation	for	more
details.
The	footer	bar	is	a	customizable	content	area.	To	customize	it,	right-click	on	the
footer	and	select	a	option	from	the	"Content	area	for	content.footer"	menu.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

http://jquerymobile.com/

showHeader
If	True,	the	layout	will	add	a	jQuery	mobile	header	bar	to	the	bottom	of	the
layout.	See	the	"Toolbars"	section	of	the	jQuery	Mobile	documentation	for	more
details.
The	header	bar	is	a	customizable	content	area.	To	customize	it,	right-click	on
the	header	and	select	a	option	from	the	"Content	area	for	content.header"	menu.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

http://jquerymobile.com/

showMessages
If	True,	the	Messages	weblet	will	be	placed	at	the	top	of	the	content	area	to
display	any	messages	from	the	Webroutine.

Default	value
True

Valid	values
True,	False,	or	any	valid	XPath	expression	that	returns	a	boolean	value.

sidebarPositionSmallScreen
Tells	the	layout	how	to	position	the	sidebar	content	on	screens	that	are	too	small
for	it	to	be	displayed	at	the	side	of	the	main	content	(for	example,	phone
screens).

Default	value
Top

Valid	values
top,	bottom	or	hidden.

validationErrorDisplay
Specifies	how	validation	errors	are	displayed.	See	Field	Validation	for	more
details.

Default	value
Blank	-	use	the	browsers'	default	mechanism

Valid	values
'Browser	Default'	or	'Error	Div'

validationTime
Specifies	when	validation	errors	are	displayed.	See	Field	Validation	for	more
details.

Default	Value
After	Submit	-	validation	is	done	when	the	user	presses	the	submit	button.

Valid	Values
Immediately,	After	Focus	or	After	Submit.

windowTitle
Specifies	a	title	for	the	page.	The	value	of	this	property	is	used	to	set	the	<title>
tag	of	the	page.

Default	value
$lweb_context/lxml:webroutine-title	-	this	is	an	XPath	expression	that
references	the	Webroutine	description.

Valid	values
Any	string	value.

9.6	Utility	Weblets
	

Weblet	name Description

Standard	hidden
fields	(std_hidden)

For	LANSA	Product	Centre's	internal	use	only.	Refer	to
Hidden	for	information.

Standard	locale
(std_locale)

For	LANSA	Product	Centre's	internal	use	only.	Refer	to
Local	for	information.

Standard	script
(std_script)

For	LANSA	Product	Centre's	internal	use	only.	Refer	to
JavaScript	and	the	Script	Weblet	for	information.

End	of	Page
Scripts
(scriptAtEnd)

For	LANSA	Product	Centre's	internal	use	only.	Refer	to
JavaScript	and	the	Script	Weblet	for	information.

Standard	variables
(std_variables)

For	LANSA	Product	Centre's	internal	use	only.	Refer	to
Variables	for	information.

std_keys A	set	of	xsl:key	elements	used	by	field	references	in	XSL.
Refer	to	Keys	for	information.

std_types For	LANSA	Product	Centre's	internal	use	only.	Refer	to
Types	for	information.

std_util For	LANSA	Product	Centre's	internal	use	only.

CSS	Styles
(std_style_v2)

Default	style	that	is	used	for	all	generated
WEBROUTINE	pages.

	

its:lansa087.chm::/lansa/WAMEngm2_0065.htm
its:lansa087.chm::/lansa/WAMEngm2_0190.htm
its:lansa087.chm::/lansa/WAMEngm2_0050.htm
its:lansa087.chm::/lansa/WAMEngm2_0050.htm
its:lansa087.chm::/lansa/WAMEngm2_0040.htm
its:lansa087.chm::/lansa/WAMEngm2_0205.htm
its:lansa087.chm::/Lansa/WAMEngm2_0060.htm

WAM	Tutorials
If	you	haven't	read	the	other	sections	of	the	Web	Application	Modules	Guide,
you	will	find	an	outline	of	the	things	you	need	to	understand	before	you	can
obtain	any	benefit	from	the	following	exercises	in	the	topic	What	is	a	WAM?
Before	you	start	the	exercises,	make	sure	you	have	the	material	you	require	as
listed	in	Before	You	Begin.
The	exercises	provided	are:

WAM005	-	Create	Your	First	WAM
WAM010	-	Using	WEB_MAPs
WAM015	-	Working	Lists
WAM020	-	WAM	Navigation
WAM025	-	Using	the	Layout	Wizard
WAM030	-	Employee	Enquiry
WAM035	-	An	Employee	Update	WAM
WAM040	-	Add	dropdown	lists	for	Department	and	Section
WAM045	-	A	Dynamic	Selector	Dropdown	list	using	a	Select	Field
WAM050	-	A	Section	Maintenance	Application
WAM055	-	Using	LANSA	Debug
WAM060	-	Employee	Maintenance	using	Advanced	Weblets
WAM065	-	Controlling	List	Output
WAM070	-	Hiding	Techniques
WAM075	-	Using	a	Tree	View	Weblet
WAM080	-	Session	Management
WAM085	-	Enhancing	the	User	Interface
WAM090	-	Using	a	List	Row	Weblet
WAM095	-	LOB	Data	Types	and	Stream	Files
WAM100	-	Using	Cascading	Style	Sheets
WAM105	-	Create	Your	Own	Weblet
WAM110	-	Create	Your	Own	Layout	Weblet
WAM115	-	Check	in	WAMs	to	IBM	i
WAM120	-	Using	the	Menu	Bar	Weblet

WAM125	-	Define	a	Dynamic	Menu
WAM130	-	Output	a	Web	Page	to	a	File
WAM135	-	Using	the	Google	Static	Maps	API

Before	You	Begin
Some	extra	files	are	needed	to	complete	these	tutorials.	Where	these	files	are
required,	they	are	listed	at	the	beginning	of	the	tutorial.	Before	you	begin,	you
can	download	the	extra	files	from	the	documentation	page	of	the	LANSA	web
site.	Go	to	Documentation	-	Current	Version	and	then	look	down	the	list	for	the
Extra	files	in	the	Web	Guide	section	as	shown	here:

The	zip	file	includes	a	readme.txt	file	with	instructions	for	what	you	need	to	do
with	these	files,	but	the	same	instructions	are	also	inlcuded	at	the	beginning	of
each	exercise	in	which	you	will	use	them.
You	also	need	to	ensure	you	have	the	Personnel	Demonstration	Files	in	the
partition	you	will	be	using.

If	you	require	instructions	how	to	do	this,	go	to	Partition	Initialization.

http://www.lansa.com/support/docs/index.htm
its:lansa011.chm::/Lansa/l4wADM02_0025.htm

What	is	a	WAM?
A	WAM	is	a	component	that	supports	the	web	paradigm.	A	WAM	outputs	XML
containing	the	fields	and	lists	that	are	to	be	passed	into	its	output	web	page.	This
web	page	is	created	via	an	XSLT	transformation.	The	XSL	reads	the	output
XML	and	generates	the	XHTML.	A	web	server	associated	with	your	web
application	then	forwards	this	XHTML	to	the	user's	browser.
The	XSLT	transformation	uses	other	LANSA	XSL	components,	known	as
weblets.	These	weblets	provide	web	components	that	can	be	added	into	a	page
and	configured.	They	have	properties	which	can	be	set	both	at	design	time	and
run	time	as	required.	Weblets	include	relatively	simple	components	such	as	a
push	button	or	clickable	image	as	well	as	much	more	complex	components	such
as	a	grid,	or	tree	view.
The	web	page	layout	is	controlled	by	a	layout	weblet.	A	layout	weblet	is
assigned	when	the	WAM	is	compiled	and	may	be	modified	both	at	design	time
and	run	time.
The	WAM	Design	view	provides	a	graphical	editor	that	enables	the	developer	to
define	the	appearance	and	behavior	of	the	web	page	that	is	output	for	a	web
routine.	A	weblet	such	as	a	push	button	can	be	dropped	onto	the	page	and	then
set	up	via	its	properties	using	the	Details	tab.
A	WAM	usually	contains	a	number	of	web	routines.	Each	web	routine	is	a
program	entry	point	–	it	can	be	invoked	via	link	on	a	web	page	for	example.
When	a	web	routine	ends,	it	outputs	its	fields	and	lists	as	an	XML	document.
Mapping	of	data	into	and	out	of	a	web	routine	is	controlled	by	WEB_MAP
statements.	A	WEB_MAP	defines	whether	fields	are	mapped	into	or	out	of	the
web	routine,	or	in	both	directions,	via	a	FOR()	parameter.	Fields	and	lists	are
mapped	via	the	WEB_MAP	FIELDS()	parameter.	Fields	and	lists	may	have
display	attributes	that	control	whether	the	field	is	input	capable	(the	default)	or
output	only.	Other	field	attributes	such	as	*private	and	*hidden,	may	be	used.

Some	Example	WEB_MAP	Statements

WEB_MAP	FOR(*OUTPUT)	FIELDS(#EMPNO)
Field	EMPNO	is	mapped	out	of	this	Web	Routine.	EMPNO	is	input	capable	on
the	page.
WEB_MAP	FOR(*INPUT)	FIELDS(#EMPNO)

Field	EMPNO	is	mapped	into	this	Web	Routine.	EMPNO	is	not	mapped	out	of
this	Web	Routine	to	the	page.
WEB_MAP	FOR(*BOTH)	FIELDS((#EMPNO	*OUTPUT)
#SURNAME	#GIVENAME)
Fields	are	mapped	into	and	out	of	this	Web	Routine.	Field	EMPNO	is	output	on
the	page	and	therefore	cannot	be	mapped	into	the	next	Web	Routine.
WEB_MAP	FOR(*BOTH)	FIELDS((#STDRENTRY	*HIDDEN))
Field	STDRENTRY	is	mapped	into	and	out	of	this	Web	Routine.	STDRENTRY
is	a	hidden	field	defined	in	the	XHTML	but	not	shown	on	the	web	page.
A	WAM	application	should	be	considered	as	having	two	layers:

WAM	Architecture

A	WAM	contains	one	or	more	WebRoutines
A	WebRoutine	usually	outputs	a	web	page
Web_Maps	define	fields	and	lists	that	may	be	mapped	into	and	out	of	the
WebRoutine

Web_Maps	defined	at	WAM	level	apply	to	all	WebRoutines
A	WAM	adopts	a	standard	layout
All	WebRoutine	layouts	share	the	wam_layout	(initially)
The	WebRoutine	web	page	contains	fields	and	lists	that	are	mapped	for
*output	or	*both
Developer	completes	WebRoutine	page	design	using	a	graphical	editor
(the	Design	View)
Weblets	provide	XSL	that	add	web	components	such	as	push	buttons	to
the	web	page
Weblets	are	set	up	(programmed)	using	a	property	sheet	on	the	Details
tab.

Stateless	Programming
One	of	the	key	points	to	understand	about	WAMs	is	that	they	are	stateless.	In
fact,	any	internet-based	application	is	stateless.	What	this	means	is	that	when	a
WAM	is	executed	from	the	Presentation	Layer,	it	runs	(a	job	is	initiated	on	the
server),	produces	some	output	(a	web	page),	and	then	ends	(the	job	on	the	server
ends	and	control	is	transferred	back	to	the	browser).
The	job	starting	and	ending,	to	all	intents	and	purposes,	is	a	"transaction".	Any
data	that	needs	to	be	maintained	for	the	user's	web	"session",	i.e.	span	multiple
transactions,	must	be	kept	somewhere.	As	you	complete	the	following	simple
example	WAM,	you	will	begin	to	see	how	a	web	application	needs	to	be
designed	to	handle	this	"stateless"	model.

Using	Long	Names
Components	can	be	defined	using	Long	Names.	This	is	an	optional	setting	at
Partition	level.	When	you	create	a	WAM,	form	or	a	reusable	part	using	a	Long
Name,	Visual	LANSA	will	assign	a	unique	Identifier	(this	is	up	to	10	characters
in	length).	As	you	are	creating	a	new	component,	you	may	choose	to	assign
your	own	Identifier,	which	provides	complete	control	to	a	team	of	developers,
of	both	Long	Names	and	Identifiers.
See	the	topic	LANSA	Object	Names	in	the	Technical	Reference	guide	for	further
information.
This	workshop	assumes	that	Long	Names	are	enabled.

WAM005	-	Create	Your	First	WAM
Objectives

To	create	your	first	Web	Application	Module	(WAM)	and	become
familiar	with	the	LANSA	Editor's	Design	view.
To	create	a	WebRoutine	in	your	Web	Application	Module.	You	will	create
a	WebRoutine	that	will	use	different	weblets	to	call	itself.	It	will	display	a
different	message	depending	on	which	weblet	is	used.
To	understand	the	basics	of	how	the	WEB_MAP	command	is	used	within
a	WebRoutine	(covered	in	much	more	detail	in	WAM010	-	Using
WEB_MAPs).
To	introduce	you	to	re-entrant	programming.
To	compile	a	Web	application	that	was	created	using	a	WAM.
To	understand	the	compile/generate	cycle	of	WAM	development.

To	achieve	these	objectives,	you	will	complete	the	following	steps:
Step	1.	Start	Visual	LANSA
Step	2.	Create	a	WAM
Step	3.	Create	the	ReentryTest	WebRoutine
Step	4.	Compile	the	WAM
Step	5.	Open	the	Design	view
Step	6.	Editing
Step	7.	Use	a	Weblet
Step	8.	Make	STDRENTRY	visible	for	testing
Step	9.	Test	the	WAM
Step	10.	Hide	STDRENTRY
Summary

Before	you	Begin
In	order	to	complete	this	exercise,	the	demonstration	Personnel	System	must
have	been	installed	in	this	partition.
In	order	to	create	a	WAM:

You	must	use	an	RDMLX	Enabled	Development	partition.
Field	Types	such	as	Date	and	Time	must	also	be	enabled	in	the	partition.

The	partition	must	be	web	enabled.
You	must	have	a	valid	LANSA	for	the	Web	license	to	develop	with
WAMs.

For	details,	refer	to	the	LANSA	for	i	User	Guide	and	the	Web	Administrator
Guide.

Step	1.	Start	Visual	LANSA
WAMs	are	created	using	Visual	LANSA	and	may	be	deployed	to	a	variety	of
servers	such	as	Windows	and	IBM	i.	In	this	step,	you	will	log	on	to	Visual
LANSA.
1.		Start	the	Visual	LANSA	Development	Environment	and	log	on	to	the	DEM
partition	(recommended)	or	any	other	partition	being	used	for	training.	The
partition	must	contain	the	Personnel	System	files.

Step	2.	Create	a	WAM
In	this	step,	you	will	create	a	Web	Application	Module	that	will	eventually
contain	the	RDMLX	code	for	your	First	WAM.
1.		In	the	LANSA	Editor	window,	select	File,	then	New	and	Web	Application
Module:

					The	New	WAM	dialog	will	appear:

2.		In	the	New	WAM	dialog	box:
a.		Enter	a	Name	of	iiiFirstWAM	(where	iii	are	your	initials).
b.		Enter	a	Description	of	My	First	WAM.
c.		Leave	the	Layout	Weblet	field	blank.
d.		Select	a	Framework	Personnel	&	Payroll.
e.		Click	the	Create	button	to	create	the	new	WAM.

Note:

When	you	leave	the	Layout	Weblet	field	blank,	your	WAM	will	automatically
generate	a	wam	layout	based	on	Theme	Layout	#1	–	One	Column
(std_themelet1_1col.xsl).	You	will	create	and	use	your	own	layout	using	a	wizard
in	a	later	exercise.
Frameworks	allow	related	components	to	be	grouped	together.	The	framework

assigned	to	a	component	may	be	changed	at	any	time.	The	Personnel	&	Payroll
Framework	has	been	selected	for	this	new	WAM.	The	new	WAM	will	be	given	a
ComponentFramework	property	HUMAN	RESOURCES-Personnel.

3.		The	New	WebRoutine	dialog	will	appear.	Deselect	the	Show	this	dialog	.	.	.	
option	and	select	Cancel.	You	will	create	your	WebRoutines	manually	in	the
editor.	You	will	use	this	dialog	in	a	later	exercise.

4.		The	LANSA	Editor	will	now	display	the	WAM's	RDMLX	code.	At	this
stage,	it	will	not	contain	any	WebRoutines:

Step	3.	Create	the	ReentryTest	WebRoutine
In	this	step,	you	will	use	the	LANSA	Editor	to	create	the	code	for	a	new
WebRoutine	that	will	give	you	an	understanding	of	Weblets	and	re-entrant
programming.	You	will	use	a	WEB_MAP	statement	to	specify	the	fields	that	are
passed	in	and	out	of	the	WebRoutine.	Your	initial	code	looks	like	the	following:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)
	
End_Com
	

1.		Immediately	following	the	BEGIN_COM,	insert	the	following	RDMLX
code	to	create	a	WebRoutine	named	ReentryTest:
WebRoutine	Name(ReentryTest)	Desc('Test	WAM')
Endroutine
	

2.		This	WebRoutine	will	require	three	fields	that	are	both	incoming	and
outgoing.
a.		STDRENTRY	will	be	used	to	control	the	functionality	of	the	WebRoutine
each	time	it	is	called.

b.		GIVENAME	and	SURNAME	are	to	demonstrate	the	different	display
modes	for	fields	on	the	page.

c.		Add	the	following	WEB_MAP	statement	to	the	WebRoutine:
Web_Map	For(*BOTH)	Fields((#Givename	*input)	(#Surname	*output)
(#Stdrentry	*hidden))	

The	STDRENTRY	field	will	be	used	to	identify	the	execution	state.
The	STDRENTRY	field	is	qualified	as	hidden	so	as	not	to	be	visible	on	the

page.
The	GIVENAME	field	will	accept	input.
The	SURNAME	field	will	be	output	only.
3.		Set	up	a	CASE	loop	using	the	field	STDRENTRY	to	display	different
messages.
Case	Of_Field(#Stdrentry)
When	Value_Is(=	A)

Message	Msgtxt('Push	Button	was	pressed')
When	Value_Is(=	B)
Message	Msgtxt('Hyperlink	was	clicked')
When	Value_Is(=	C)
Message	Msgtxt('Check	Box	was	changed')
When	Value_Is(=	D)
Message	Msgtxt('Radio	Button	was	selected')
When	Value_Is(=	E)
Message	Msgtxt('Dropdown	was	changed')
Otherwise
Message	Msgtxt('Page	loaded	normally')
Endcase	

4.		Set	GIVENAME	and	SURNAME	to	your	name.
#Givename	:=	'your	first	name'
#Surname	:=	'your	last	name'	

					Your	finished	WebRoutine	should	appear	as	follows:
Webroutine	Name(ReentryTest)	Desc('Test	WAM')
Web_Map	For(*BOTH)	Fields((#Givename	*input)	(#Surname	*output)
(#Stdrentry	*hidden))
Case	Of_Field(#Stdrentry)
When	Value_Is(=	A)
Message	Msgtxt('Push	Button	was	pressed')
When	Value_Is(=	B)
Message	Msgtxt('Hyperlink	was	clicked')
When	Value_Is(=	C)
Message	Msgtxt('Check	Box	was	changed')
When	Value_Is(=	D)
Message	Msgtxt('Radio	Button	was	selected')
When	Value_Is(=	E)
Message	Msgtxt('Dropdown	was	changed')
Otherwise
Message	Msgtxt('Page	loaded	normally')
Endcase
#Givename	:=	'your	first	name'
#Surname	:=	'your	last	name'
Endroutine	

Step	4.	Compile	the	WAM
In	this	step,	you	will	learn	how	to	compile	the	WAM.
1.		Make	sure	you	have	the	iiiFirstWAM	(where	iii	are	your	initials)	open	in	the
LANSA	Editor.

2.		Click	on	the	dialog	box	launcher	in	the	Compile	group	on	the	ribbon	to
display	the	Compile	options	dialog:

3.		On	the	Compile	options	dialog,	ensure	that	only	the	Technology	Services,
LANSA:XHTML	is	selected.	These	tutorials	will	be	generating	web
applications	for	the	browser	only.

					These	options	will	be	retained	for	future	compiles.

4.		Click	OK	to	compile	the	WAM.	The	status	of	the	compile	is	displayed	in	the
Compile	tab:

					The	compile	will	generate	a	browser	web	page	design	(XSL)	for	you.
					The	generator	performed	the	following	steps:
Generated	your	WAM-specific	layout	Weblet,	called	iiiFirstWAM_layout.	You

can	see	this	in	the	Repository	under	Weblets	in	the	Web	View.
Generated	the	WebRoutine	web	page	design	using	the	layout

iiiFirstWAM_layout.
Placed	the	WebRoutine	description	as	a	heading	on	the	web	page.
Included	a	messages	Weblet	on	the	page.

Placed	all	fields	mapped		FOR(*OUTPUT)	or	FOR(*BOTH))	and	their	captions
in	a	table	on	the	web	page.
Inserted	a	hidden	DIV	at	the	bottom	of	the	page.	In	the	Design	view	this	has	the

title	"Hidden	Content"	shown.	You	can	add	anything	that	you	want	to	be	hidden
here	and	at	run	time,	it	will	not	be	displayed	on	the	page	regardless	of	its	display
mode.

Step	5.	Open	the	Design	view
After	creating	the	WebRoutine	RDMLX	within	the	LANSA	Editor,	you	can	edit
the	web	page	design	for	your	WebRoutines.	In	this	step,	you	will	select	the
ReentryTest	WebRoutine	created	in	Step	1	and	open	the	Design	view.
1.		After	the	compile	has	completed	successfully,	open	the	ReentryTest
WebRoutine	in	the	Design	view.

a.		Click	the	Open	Design	 button	to	open	WebRoutine	ReentryTest	in	the
Design	view.

	

b.		The	Design	view	will	open	for	the	WebRoutine.
					The	Design	view	will	appear	something	like	the	following:

Once	a	WebRoutine	has	been	compiled,	a	web	page	design	with	a	WAM-
specific	layout	(that	you	can	modify)	and	field	entry	controls	are	generated	and
can	be	edited	in	the	Design	view.	
Note:	Because	you	now	have	a	layout	Weblet	that	is	only	used	by	the
iiiFirstWAM	WAM,	you	can	open	it	and	edit	it	without	affecting	the	layout
of	any	other	WAMs.

					The	left	hand	pane	includes	these	views	used	for	working	with	WAMs:
	Outline	-	shows	fields	and	lists,	as	well	as	other	elements	contained	in	the	XSL

page	currently	being	edited.

	Details		-	allows	the	editing	of	attributes	of	selected	XSL	and	HTML	elements,
as	well	as	Weblet	parameter	values.

	WebRoutine	Output	-	shows	all	the	fields	and	lists	available	for	drag	and	drop
onto	the	web	page.	These	are	all	the	fields	and	lists	specified	on	the	WebRoutine's
WEB_MAP	FOR(*OUTPUT)	or	WEB_MAP	FOR(*BOTH)	statements	in	RDML.

					The	right	hand	Design	tab	contains	the	following	Views:

Web	Page		-	allows	WYSIWYG	editing	of	the	web	page.
XSL		-	allows	text	editing	of	the	XSL	source.
XML	-	allows	text	editing	of	the	input	XML	source.
					The	bottom	pane	contains	the	following	View:

	Web	Designs	-	lists	all	WebRoutines	for	the	current	WAM	open	in	the	editor.
Every	WebRoutine	on	the	tab	represents	a	web	page	design	using	certain
technology	in	certain	a	Language.

Step	6.	Editing
In	this	step,	you	will	perform	some	simple	editing	tasks	in	the	Design	view	and
preview	your	changes	in	order	to	become	familiar	with	the	Editor.	You	will	add
a	table,	add	text	and	Weblets	to	the	table	and	set	the	Weblet's	parameters.
1.		Make	sure	you	are	in	the	Design	View	by	clicking	on	the	Design	tab.	To
insert	the	table	into	the	Design	View:
a.		Right-click	the	mouse	in	the	middle	of	the	page,	under	the	table	that	was
generated	from	the	compile,	to	open	the	context	menu:

b.		Select	Insert	HTML	from	the	context	menu	and	choose	the	Table	sub
menu	item:

c.		Create	a	table	with	5	rows	and	2	columns	in	the	Insert	Table	dialog	box.
Press	OK.

You	will	now	see	an	HTML	table	has	been	added	in	the	Design	View.
Notice	that	the	top	row	contains	asterisks	(that	is	"**").	These	characters	are

inserted	so	that	you	can	easily	access	the	table	cells.	Without	the	asterisks	the	table
cells	would	have	no	visible	width.	After	editing	the	table,	you	can	simply	delete	the
asterisks.

2.		Place	the	cursor	into	the	top,	leftmost	cell	of	the	new	table	in	the	Design
View.

3.		Type	the	text	"Push	Button"	into	the	first	cell	of	the	table.	This	column	will
be	used	as	labels	for	the	weblets	that	will	be	added	to	the	second	column.

4.		Now	that	this	column	has	an	entry	you	can	delete	the	placeholder	"*"
characters	from	the	first	table	cell	by	placing	the	cursor	next	to	them	and
using	the	Delete	button.

5.		Insert	the	names	of	the	other	Weblet	labels	in	the	four	remaining	blank	rows
of	the	left	column:	"Hyperlink",	"Check	Box",	"Radio	Group"	and
"Dropdown".	There	is	no	need	to	include	the	quotation	marks.

					Your	Design	View	will	now	appear	something	like	this:

6.		In	the	Design	View,	select	the	top	left	cell	again	by	clicking	in	it.	(That	is,	the
table	cell	containing	the	text	"Push	Button".)	There	should	be	no	"Grips"
around	anything	at	this	point	and	the	cursor	should	be	blinking	inside	the	cell.

	

7.		Select	the	Details	View		in	the	left	pane:

					You	will	now	see	all	the	properties	of	the	table	cell:

8.		Click	the	Menu	button	on	the	Details	tab	and	make	sure	the	Show	If	Empty
option	is	selected	and	that	the	"aria-"	Attributes	are	not	selected.

					The	Show	If	Empty	option	displays	properties	for	the	cell	which	currently	do
not	have	a	value.

9.		In	the	Details	View,	locate	the	class	property.
a.		Click	in	the	class	value	column	and	use	the	dropdown	list	to	set	the
property	to	bold	and	press	Enter:

					The	text	will	immediately	become	bold.	What	you	have	done	is	applied
one	of	the	caption	styles	provided	with	the	Cascading	Style	Sheet	(CSS)
shipped	with	the	LANSA	product.	The	default	style	is	not	bold.

b.		Set	the	class	property	to	bold	for	the	remaining	cells	in	the	left	column.
					The	Design	view	should	appear	something	like	the	following:

10.	Click	the	Save	button	to	save	your	changes	to	ReentryTest:

11.	Select	the	new	table	by	clicking	on	one	of	its	corners:

					A	selected	web	page	element	is	displayed	with	"handles"	as	shown	in	the
screen	picture.

12.	Scroll	down	to	the	style	property.	Style	is	a	composite	property	consisting	of
other	properties.

13.	Click	on	the	icon	to	the	left	of	the	property	to	expand	the	style's	individual

properties.	You	can	modify	these	properties	directly.

14.	Scroll	down	to	style's	border-style	property.	Select	outset	from	the
dropdown	list.	Click	on	another	property	and	you	should	immediately	see	the
border	of	the	cell	change	to	an	outset	appearance.

15.	Experiment	by	changing	other	properties,	such	as	the	background	color,	or
inserting	other	HTML	elements	into	the	page.	Using	styles	in	this	way	sets	an

inline	style	for	the	HTML	element	that	you	are	editing.	You	will	usually	want
to	control	styles	via	a	Cascading	Style	Sheet	(CSS).	Refer	to	exercise
WAM100	-	Using	Cascading	Style	Sheets	for	more	information	about	CSSs.

16.	Right-click	the	web	page	design	and	select	Undo	from	the	context	menu	to
remove	the	changes	made	in	14.

					Alternatively,	you	could	also	have	used	the	Ctrl+Z	keys	to	undo.

Step	7.	Use	a	Weblet
In	this	step,	you	will	learn	how	to	drag	and	drop	Weblets	onto	the	web	page.
The	Weblets	will	each	be	configured	to	call	the	WebRoutine	with	a	different
reentry	value.
1.		Make	sure	ReentryTest	is	open	in	the	Design	view.
2.		Select	the	Favorites/Weblet	Templates	tab	in	the	left	pane	to	see	a	list	of	all
the	Weblets	in	your	repository.	(Make	sure	that	Standard	Weblets	is	specified
in	the	dropdown	list	so	that	all	standard	Weblets	are	listed.)

					Hint:	If	Weblet	Templates	is	not	shown	on	your	Favorites	tab,	select	the
Repository	tab	and	expand	Web	/	Active	Technology	and	then	use	the	right
mouse	menu	to	make	Weblet	Templates	a	Favorite.

	

3.		Select	the	Push	button	Weblet	from	the	list	and	drag	and	drop	it	into	the	cell
that	is	to	the	right	of	the	"Push	Button"	caption	in	the	table	in	Design	View.

4.		Select	the	button	and	display	the	Details	tab	in	the	left	pane	to	display	the
Weblet's	properties.	The	italicized	and	gray	values	indicate	default	values.

In	the	Details	View,	click	in	the	value	column	of	the	caption
property	and	type	in	Press	Me.

					The	button's	caption	will	immediately	change	to	Press	Me.
					If	necessary,	drag	the	right	handle	on	the	push	button	so	that	the	caption	is
displayed	as	a	single	line.

Set	the	on_click_wrname	property	to	ReentryTest	by	selecting
this	value	from	the	value	dropdown.

	Note:
					You	should	always	use	the	dropdown	list	to	select	this	property	rather
than	type	it	in,	as	spelling	mistakes	or	typing	errors	are	one	of	the	biggest
causes	of	problems	at	design	time.

					Always	complete	the	on_click_wrname	property	before	the	next	step.	The
Design	of…	dialog	uses	the	WebRoutine	defined	in	the	on_click_wrname
property	to	populate	the	list	of	mapped	fields	in	the	Fields	dropdown	list.

c.		Click	on	the	submitExtraFields	property	and	then	click	the	Ellipsis	button
to	open	the	Design	of	….	dialog.

d.		Select	the	field	STDRENTRY	in	the	left	hand	Name	field.
e.		Enter	a	value	of	A,	in	the	Value	column,	leaving	the	Literal	checkbox
selected.

f.		Click	OK	to	confirm	your	changes	and	close	this	dialog.
Note:	The	fields	shown	in	the	dropdown	for	the	Name	column	in	the	Design	of
submitExtraFields	Property	dialog	are	the	fields	mapped	for	*INPUT	or
*BOTH	for	the	WebRoutine	which	is	defined	as	the	on_click_wrname	property
for	this	weblet.
In	Value,	if	you	specify	a:

Literal	value,	you	are	returning	a	fixed,	hard	coded	value	for	this	field
when	this	button	is	clicked.
Field,	you	are	returning	the	field	value	when	this	button	is	clicked.

5.		In	the	Design	View,	click	on	the	table	cell	where	the	Push	Button	weblet	was
dropped.	Again,	make	sure	that	you	select	the	cell	and	not	the	button.	Delete
the	asterisks	in	the	cell	by	placing	the	cursor	in	the	cell	next	to	them	and
using	the	backspace	key.

					Hint:	With	the	push	button	selected	you	can	use	the	arrow	keys	to	move	left
or	right	into	the	table	cell.

6.		In	the	Details	View,	set	the	align	property	of	the	cell	to	right.

7.		Now	add	the	remaining	Weblets	by	selecting	them	in	the	Weblets	Templates
View	and	dragging	them	into	the	appropriate	right	hand	cell	based	on	the	left
hand	cell	label.	The	Weblets	you	will	use	are	the	Anchor,	Check	Box,	Radio

Group	and	Combo	Box.

8.		All	of	the	remaining	weblets	have	default	of	STDRENTRY	for	their
reentryfield	property.	Set	the	reentryvalue	property	for	each	of	these	Weblets.
Check	the	RDMLX	to	see	what	value	should	be	used	for	each	weblet.	For
example:
When	Value_Is(=	B)
Message	Msgtxt("Hyperlink	was	clicked.")
	

9.		Set	the	on_click_wrname	property	for	the	anchor,	check	box	and	radio	group
to	ReentryTest.

10.	Set	the	on_change_wrname	property	for	the	combo	box	to	ReentryTest.
					Notice	that	you	are	not	required	to	change	the	on_click_wamname	or
on_change_wamname.	By	default	these	values	will	be	the	WAM	name	that
initiated	the	web	page.

11.	Set	the	value	property	for	the	anchor	to	Click	Me.
12.	Set	the	caption	property	for	the	check	box	to	Click	Me.
13.	Set	the	align	property	for	all	of	the	cells	containing	weblets	to	right.
					Your	page	should	now	appear	as	follows:

Step	8.	Make	STDRENTRY	visible	for	testing
In	this	step,	you	will	learn	how	to	select	and	change	a	hidden	field	on	the	page.
When	testing	a	WAM,	if	you	are	running	into	problems,	sometimes	you	may
want	to	make	a	hidden	field	visible	for	a	better	understanding	of	what	is
happening.
1.		Select	a	hidden	field:

a.		Select	the	Outline	tab	on	the	left.	Every	object	on	the	page	will	be	listed
here	regardless	of	what	it	is,	or	what	its	display	mode	is.

b.		On	the	Outline	tab,	expand	the	Content	mode="content.hidden"	group
and	select	STDRENTRY.	In	the	Design	View,	STDRENTRY	will	now	be
selected	at	the	top	of	the	Hidden	Content	section	at	the	bottom	of	the	web

page,	with	"Grips"	around	it.

c.		Right	click	on	the	highlighted	field	in	the	Hidden	Content	area	and	select
Replace	with	Input	Field.	Be	careful	not	to	deselect	STDRENTRY	until
you	have	changed	it	into	an	input	field.	If	it	does	happen	to	become
deselected	and	you	can	no	longer	see	it,	select	it	again	in	the	Outline	tab.

2.		Select	the	field	STDRENTRY	in	the	Hidden	Content	area	and	use	the	right
mouse	menu	to	Cut	it.	Click	on	the	main	page	area	below	the	new	table	and
use	the	right	mouse	menu	to	Paste	the	field	here.	Your	design	should	now
look	like	the	following:

3.		Save	the	changes	to	the	layout.

Step	9.	Test	the	WAM
In	this	step,	you	will	test	the	WAM.
1.		ReentryTest	should	still	be	open	in	the	Design	view.	If	not,	open	it.
2.		Click	the	Execute	button	on	the	ribbon	to	run	your	WAM	in	the	Web
Browser.

3.		Use	each	Weblet	and	see	that	the	appropriate	messages	are	given.	If	they	are
not,	check	the	STDRENTRY	to	see	what	its	value	is	and	make	sure	the
Weblet	itself	has	the	correct	reentryvalue	set.	Make	any	necessary	changes
and	test	again.

4.		When	you	are	satisfied	that	the	page	is	functioning	correctly,	close	the
browser	window.

Step	10.	Hide	STDRENTRY
In	Step	9.	Test	the	WAM,	you	have	confirmed	that	the	WAM	is	functioning
properly,	so	you	don't	need	STDRENTRY	to	be	visible	for	testing.	You	will	hide
it	again	in	this	step.
1.		Open	ReentryTest	in	the	Design	view.
2.		Drag	STDRENTRY	back	into	the	Hidden	Content	area	at	the	bottom	of	the
web	page.

3.		At	run	time	it	will	now	be	hidden,	but	if	you	would	like	to	make	it	hidden	in
the	Design	View	also,	right	click	on	the	field	and	select	Change	to	Hidden
Field.

4.		Save	the	changes	to	the	layout.

Summary
Important	Observations

A	WAM	layout	is	created	using	Theme	Layout	Weblet	#1	–	One	Column
by	default	if	a	layout	is	not	selected	on	the	Create	WAM	dialog.
If	a	WAM	has	not	been	compiled,	if	a	WebRoutine	is	opened	in	the
Design	View,	the	web	page	will	be	generated	using	std_themelet1_1col
weblet	and	the	fields	and	lists	mapped	for	output	in	the	WebRoutine.

					Note:	In	this	case	the	web	page	will	not	be	re-generated	when	the	WAM	is
compiled	unless	the	Generate	XSL	–	All	WebRoutines	option	is	selected.
There	are	more	details	on	this	subject	in	later	exercises.

Once	a	WAM	is	compiled,	a	web	page	with	a	WAM	specific	layout	(that
you	can	modify)	and	field	entry	controls	is	generated	for	each
WebRoutine	that	can	be	edited	in	the	Design	view.	You	can	drag	and	drop
fields	and	lists	marked	FOR(*OUTPUT)	or	FOR(*BOTH)	onto	your
page	at	any	time	from	the	Design	view's	WebRoutine	Output	tab.
Weblets	are	reusable	XSL	snippets	or	components	that	can	be	plugged
into	either	your	WebRoutine	page	or	other	Weblets.	There	are	standard
Weblets	that	encapsulate	HTML	buttons,	hyperlinks,	menu	items,	radio
buttons,	dropdown	lists,	etc.
When	viewing	a	list	of	available	Weblets	in	Weblet	Templates	view,	you
will	notice	a	Weblet	with	a	Description	of	Push	button	will	also	have	a
Details	column	showing	std_button_v2.	Std_button_v2.xsl	is	an	XSL
document	consisting	of	one	or	more	<xsl:template>	element.
The	Compile	options	dialog,	lets	you	choose	whether	or	not	to	re-generate
the	XSL	for	existing	WebRoutines.	By	default,	a	compile	will	always
generate	XSL	for	new	WebRoutines	ONLY.	That	is,	the	web	page	design
for	each	new	WebRoutine	is	generated	automatically.
The	generated	web	page	includes	all	fields	and	LISTS	in	your
WEB_MAPs	marked	FOR(*OUTPUT)	or	FOR(*BOTH).	Fields	mapped
with	a	FOR(*INPUT)	keyword,	are	incoming	fields	to	the	WebRoutine.
They	are	not	available	when	creating	the	web	page	output	by	this
WebRoutine.
The	compile	generates	a	WAM-specific	layout	Weblet.	Its	name	is	WAM
Identifier	followed	by	_layout	(e.g.	iiifirst_layout)	where	iiifirst	is	the
WAM's	Identifier.

The	generated	web	page	also	has	a		Messages	(std_messages)	Weblet	on
the	page,	a		WebRoutine	description	in	a	heading	and	a	Hidden	Content
DIV	where	you	may	place	objects	that	you	do	not	want	to	be	displayed	on
the	page.

Tips	&	Techniques
You	can	compile	from	either	the	LANSA	Editor	directly,	or	from	the
Repository	or	Last	Opened	tabs.
It	is	not	necessary	to	do	a	compile	to	generate	the	web	page,	since	a	build
also	generates	it,	but	without	doing	a	full	compile.
When	compiling,	the	Generate	XSL	option	always	defaults	to	the	New
WebRoutines	option.
The	Generate	XSL	All	WebRoutines	option	will	generate,	or	re-generate
the	XSL	for	ALL	WebRoutines	in	the	WAM	and	will	lose	any	changes
made	to	the	web	pages	in	the	Design	view.
You	can	make	a	hidden	field	visible	for	debugging	purposes.

What	I	Should	Know
How	to	create	a	Web	Application	Module	(WAM).
How	to	define	a	WebRoutine.
How	to	use	a	WEB_MAP	statement	to	define	inputs	and	outputs	to	a
WebRoutine.
How	to	open	the	Design	view	for	a	specific	WebRoutine.
How	to	use	some	of	the	basic	editing	features	of	the	Design	view.
How	to	create	a	table.
How	to	use	a	Weblet.
How	to	compile	a	WAM.
What	a	compile	generates.

	

WAM010	-	Using	WEB_MAPs
Objectives

To	demonstrate	how	the	WEB_MAP	affects	the	transfer	of	data	between
two	WebRoutines.

In	this	exercise,	you	will	see	how	fields	are	mapped	from	the	WebRoutine
executing	on	the	server	to	the	page	and	from	the	page	back	to	the	WebRoutine.
First	you	will	create	a	WebRoutine	that	will	pass	all	of	the	fields	as	input	and
output.	Since	all	of	the	fields	will	be	both	input	to	and	output	from	the
WebRoutine,	the	data	will	be	preserved	when	it	calls	itself.	You	will	make
changes	to	the	fields	and	test	this.
You	will	create	a	second	WebRoutine	that	will	not	take	all	of	the	fields	as	input.
You	will	transfer	between	the	two	WebRoutines	to	see	how	some	data	is	lost,	to
better	illustrate	how	the	WEB_MAP	statement	works.
To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Create	a	new	WAM
Step	2.	Add	WebRoutines	to	the	new	WAM
Step	3.	Compile	the	WAM	and	Open	for	Editing
Step	4.	Add	buttons	to	the	WebRoutine
Step	5.	Understand	the	Web	Routine
Step	6.	Change	the	Employee	Number	field
Step	8.	Add	buttons	to	the	WebRoutines
Step	9.	Understand	WEB_MAP
Summary

Before	you	Begin
In	order	to	complete	this	exercise,	you	should	have	completed	the	following:
WAM005	-	Create	Your	First	WAM

Step	1.	Create	a	new	WAM
In	this	step,	you	will	create	a	new	Web	Application	Module	that	will	eventually
demonstrate	the	use	of	the	WEB_MAP	statement.
1.		In	the	LANSA	Editor	window,	click	the	New	button	and	choose	Web
Application	Module.

					The	New	WAM	dialog	will	appear:

	

2.		In	the	New	WAM	dialog	box:
a.		Enter	a	Name	of	iiiUsingWebMaps	(where	iii	are	your	initials).
b.		Enter	a	Description	of	Using	WEB_MAPs	Demo.
c.		Leave	the	Layout	Weblet	field	blank.
d.		Select	the	Personnel	&	Payroll	Framework.
e.		Click	the	Create	button	to	create	the	new	WAM.

3.		The	LANSA	Editor	will	now	display	the	WAM's	RDMLX	code.	At	this
stage,	it	will	not	contain	any	WebRoutines.

Step	2.	Add	WebRoutines	to	the	new	WAM
In	this	step,	you	will	add	the	RDMLX	code	consisting	of	multiple	WebRoutines
to	the	newly	created	WAM.
1.		Immediately	following	the	BEGIN_COM,	insert	the	following	RDMLX
code	to	create	a	WebRoutine	named	WMdemo:
Webroutine	Name(WMdemo)	Desc('WEB_MAP	WR1')
Endroutine	

2.		All	fields	in	the	WebRoutine	will	be	both	incoming	and	outgoing,	so	they
will	be	specified	FOR(*BOTH).	By	default,	all	of	the	fields	will	be	displayed
as	input	fields.	You	could	write	the	following	WEB_MAP	statement	for	the
WebRoutine:
WEB_MAP	FOR(*BOTH)	FIELDS(#EMPNO	#GIVENAME	#SURNAME	#ADDRESS1	#POSTCODE	(#STDRENTRY	*HIDDEN))
	

					However,	a	GROUP_BY	may	be	used	in	a	WEB_MAP,	so	you	will	use	the
following	code:
Begin_Com	Role(*EXTENDS	#PRIM_WAM)
Group_By	Name(#Empdata)	Fields(#empno	#surname	#givename	#address1
#postcode)
Webroutine	Name(WMdemo)	Desc('WEB_MAP	WR1')
Web_Map	For(*BOTH)	Fields(#empdata	(#stdrentry	*hidden))
.	.	.	WebRoutine	

The	STDRENTRY	field	will	be	used	to	control	the	logic	within	the	WAM.
Included	in	this	logic	will	be	an	IF	Statement	that	will	test	the	value	of
STDRENTRY	to	determine	if	the	other	fields	should	be	replaced	(Refreshed)	with
data	from	the	Personnel	Master	File.
The	STDRENTRY	field	should	not	be	visible	on	the	HTML	page.
The	other	fields	will	be	used	to	demonstrate	how	the	WEB_MAP	works.
					Note:	A	WEB_MAP	statement	with	Keyword	FOR(*BOTH)	specifies	that
the	fields	listed	in	the	WEB_MAP	are	both	input	to	and	output	from	the
WebRoutine.

A	WEB_MAP	FOR(*INPUT)	is	for	fields	that	will	only	be	received	as	input	to
the	WebRoutine.
A	FOR(*OUTPUT)	is	used	in	cases	where	fields	will	be	sent	out	from	the

WebRoutine	only.

A	FOR(*NONE)	option	will	be	explained	in	a	later	exercise.
					In	the	Fields()	keyword	of	WEB_MAP,	the	fields	are	specified	with	their
display	mode.	The	display	mode	attribute	only	plays	a	role	for	fields	that	are
FOR(*OUTPUT)	or	FOR(*BOTH).	
By	default,	all	fields	are	displayed	on	the	web	page	as	input	fields.	To	change
the	way	the	fields	display	on	the	web	page,	the	display	mode	can	be	set	to
*INPUT,	*OUTPUT,	*HIDDEN,	or	*PRIVATE.

					*HIDDEN	fields	are	included	in	the	page	as	hidden	fields.	That	is,	their
values	are	mapped	but	they	are	not	shown	on	the	web	page.

					*PRIVATE	fields	are	not	shown	on	the	web	page	but	are	available	in	the
XML	for	use	in	weblets	such	as	a	dropdown	lists.

3.		Add	the	code	to	initialize	the	fields	in	the	WebRoutine.	Since	EMPNO	is
both	incoming	to	and	outgoing	from	the	WebRoutine,	its	value	should	never
be	lost.	If	EMPNO	is	blank,	that	means	it	is	the	first	time	entering	the
WebRoutine.	You	will	retrieve	a	valid	employee	number	by	simply	reading
the	first	record	from	the	Personnel	Master.
If	Cond(#empno	=	*blanks)
Select	Fields(#empdata)	From_File(pslmst)
Leave
Endselect
Endif
	

Note	the	following	about	this	code:
The	SELECT	loop	with	an	unconditional	LEAVE,	will	return	values	for	the	first
record	read.	Typically	you	should	not	rely	on	values	returned	outside	a	SELECT
loop	because	the	returned	values	may	be	unpredictable.	This	technique	has	been
used	for	the	sake	of	simplicity.	An	alternative	could	be:
Fetch	Fields(#EMPDATA)	From_file(PSLMST)
	

With	no	key	specified,	the	FETCH	will	return	the	first	record	in	the	file.
4.		A	Read	button	will	be	required	to	read	data	from	the	Personnel	Master	file
when	an	Employee	Number	has	been	entered	on	the	web	page.	The	read	will
do	a	FETCH	on	the	Personnel	Master,	using	EMPNO	as	the	key	and	will	be
triggered	by	a	button	calling	the	WebRoutine	with	a	STDRENTRY	value	of
'R'.
If	Cond(#stdrentry	=	R)

Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
Endif	

					Your	finished	WebRoutine	should	appear	as	follows:
Group_By	Name(#Empdata)	Fields(#empno	#surname	#givename	#address1
#postcode)
Webroutine	Name(WMdemo)	Desc('WEB_MAP	WR1')
Web_Map	For(*BOTH)	Fields(#empdata	(#stdrentry	*hidden))
If	Cond(#empno	=	*blanks)
Select	Fields(#empdata)	From_File(pslmst)
Leave
Endselect
Endif
If	Cond(#stdrentry	=	R)
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
Endif
	
EndroutineWebRoutine
	

Step	3.	Compile	the	WAM	and	Open	for	Editing
In	this	step,	you	will	compile	the	WAM.
1.		You	should	still	have	the	WAM		iiiUsingWebMaps	(where	iii	are	your
initials)	open	in	the	LANSA	Editor.

2.		Click	the	 	Compile	button	on	the	LANSA	Editor	toolbar		to	compile	the
WAM	component.

3.		After	the	compile	completes	successfully,	open	the	WMdemo	WebRoutine	in
the	Design	view	by	right	clicking	on	the	green	arrow	next	to	the	WMDemo
WebRoutine	statement	and	selecting	Open	Design/LANSA	XHTML.

					The	Design	view	should	appear	something	like	the	following:

Step	4.	Add	buttons	to	the	WebRoutine
In	this	step,	you	will	learn	how	to	add	a	row	to	the	generated	table	and	then
create	the	buttons	that	will	invoke	this	WebRoutine.	A	reentrant	WebRoutine	is
designed	so	that	from	the	web	page	that	is	presented	to	the	user,	after	the
WebRoutine	ends,	navigation	elements	are	provided	that	will	allow	the
WebRoutine	to	be	initiated	once	again.	Data	on	the	page	will	be	used	in	the
WebRoutine	to	control	the	logic	performed	by	the	routine.	This	technique	is
used	to	reduce	the	number	of	WebRoutines	required	for	a	particular	application.
1.		Add	a	new	row	to	the	table:

a.		Right	click	in	the	table	that	contains	the	data	entry	fields.	For	example
click	to	the	right	of	the	Employee	Number	field	input	box	and	then	right
click.

b.		Select	the	TableItems	menu	item	and	choose	the	Add	Rows…option	from
the	pop-up	menu.	Click	OK.	A	row	will	be	added	to	the	end	of	the	table.

2.		This	step	adds	the	Read	button:
a.		From	the	Favorites	/	Weblet	Templates	tab,	drag	and	drop	a	Push	button
weblet	into	the	leftmost	cell	of	the	newly	added	row.

b.		Click	on	the	empty	space	of	the	cell	containing	the	button.
c.		Select	the	Details	View.
d.		Set	the	align	property	to	left.

3.		Set	the	Read	button	properties:
a.		Select	the	new	button	in	the	Design	View.

b.		Set	the	caption	to	Read.
c.		Set	the	on_click_wrname	to	WMdemo.
d.		Click	in	the	Value	column	for	the	submitExtraFields	property	and	use	the
Ellipsis	button	to	open	the	Design	of…	dialog.	In	the	Name	column	select
STDRENTRY	from	the	dropdown	list.	In	the	Value	column	enter	R	and
leave	the	checkbox	as	Literal.	Click	OK	to	close	the	dialog	and	save	your
changes.	The	button	click	will	return	the	field	STDRENTRY	with	a	value
of	R.

4.		Add	the	button	to	reload	the	WebRoutine:
a.		From	the	Weblet	Templates	tab,	drag	and	drop	a	Push	button		weblet	into
the	rightmost	cell	of	the	newly	added	row.

b.		Click	on	the	empty	space	of	the	cell	containing	the	button.
c.		Select	the	Details	View.
d.		Set	the	align	property	to	right.

5.		Set	the	button's	properties:
a.		Select	the	new	button	in	Design	View.
b.		Set	the	caption	to	WMDemo.
c.		Set	the	on_click_wrname	to	WMdemo.
d.		Click	in	the	Value	column	for	the	submitExtraFields	property	and	use	the
Ellipsis	button	to	open	the	Design	of…	dialog.	In	the	Name	column	select
STDRENTRY	from	the	dropdown	list.	In	the	Value	column	enter	'	'	and
leave	the	checkbox	as	Literal.	Click	OK	to	close	the	dialog	and	save	your
changes.	The	button	click	will	return	the	field	STDRENTRY	with	a	blank
value.

	

6.		Save	the	changes	to	WMdemo.

Step	5.	Understand	the	Web	Routine
In	this	step,	you	will	test	the	WebRoutine	and	gain	an	understanding	of	how	it
works.
1.		WMdemo	should	still	be	open	in	the	Design	view,	if	not,	open	it.

2.		Click	the	 	Run	button	on	the	toolbar	to	run	the	WebRoutine	in	the
browser.'

					This	will	open	your	default	Web	Browser	and	request	the	URL	to	execute	the
WebRoutine	WMdemo.

3.		What	happens	when	no	logic	in	the	WebRoutine	is	executed?
a.		Click	on	the	WMDemo	Button.
					This	will	execute	the	WMdemo	WebRoutine.	Notice	nothing	has	changed
or	been	lost.

b.		Try	changing	any	field	except	Employee	Number.	Click	the	WMDemo
button	again	to	see	that	the	data	has	been	preserved.	The	data	on	the	web
page	was	sent	to	the	WMdemo	WebRoutine	where	the	WEB_MAP
FOR(*BOTH)	accepted	the	values	as	input.

					The	RDML	logic	will	not	be	executed	as	EMPNO	is	not	blank	and
STDRENTRY	is	not	equal	R.	When	the	ENDROUTINE	is	encountered,
the	field's	values	are	sent	out	to	the	web	page	as	the	WEB_MAP	is
designated	FOR(*BOTH),	that	is	both	input	and	output.

4.		Let	us	look	at	the	effect	when	some	of	the	logic	in	the	WebRoutine	is
executed.

					As	you	have	changed	some	fields,	click	the	Read	button.	Recall,	the	read
logic,	that	does	a	FETCH	on	the	Personnel	Master	with	the	Employee
Number	as	the	key.

					The	data	on	the	web	page	should	be	refreshed	with	the	values	for	the	key
EMPNO.	This	is	because	the	field	STDRENTRY	is	set	to	R.

					The	WEB_MAP	accepts	the	EMPNO	and	STDRENTRY	fields	along	with
other	data	from	the	page.	The	FETCH	using	the	EMPNO	field	is	executed
and	the	data	for	the	other	fields	on	the	page	is	set	to	the	values	from	the
master	file	PSLMST.

					If	there	is	no	employee	record	for	the	value	of	EMPNO,	the	original	values
are	returned	to	the	web	page.	When	the	ENDROUTINE	is	encountered,	the

field's	values	are	sent	out	to	the	web	page	as	the	WEB_MAP	is	designated
FOR(*BOTH)	that	is	both	input	and	output.

5.		What	happens	if	you	change	the	Employee	Number	field?	Or	change
Employee	Number,	as	well	as	some	other	fields?
a.		Now	click	the	WMDemo	button?	The	data	is	preserved	,	as	it	should	be,
as	long	as	employee	number	is	not	blank.

b.	Click	the	Read	button.	If	an	employee	number	that	exists	on	the	PSLMST
was	entered,	the	details	for	that	employee	will	be	displayed.	Suitable
employee	number	values	are	A0090,	A0070	or	A1001.

					In	both	cases,	when	the	ENDROUTINE	is	encountered,	the	field's	values
are	sent	to	the	web	page	as	the	WEB_MAP	is	designated	FOR(*BOTH)
meaning	the	fields	are	both	input	and	output	from	the	WebRoutine.

6.		To	force	the	WebRoutine	to	select	the	first	employee	again,	click	the
WMDemo	button	with	no	employee	number	present.

					By	this	point	you	should	understand	what	the	buttons	are	doing.
This	exercise	demonstrated	how	WEB_MAPS	with	all	fields	with	a
FOR(*BOTH)	keyword	send	and	accept	data	from	the	web	page.

Step	6.	Change	the	Employee	Number	field
In	this	step,	you	will	change	Employee	Number	to	be	an	output	only	field.	This
will	prevent	the	field	from	being	changed	and	change	the	behavior	you
experienced	in	the	last	step.	You	need	to	be	aware	that	fields	that	are	displayed
as	output	are	generated	as	text	on	the	page.	Since	it	is	text	and	not	a	field,	the
necessary	tags	to	pass	the	field	to	the	next	WebRoutine	are	not	generated.
You	must	add	the	field	EMPNO	a	second	time	as	a	hidden	field	to	preserve	the
data.
You	will	also	see	the	dangers	of	generating	XSL	for	ALL	WebRoutines	on
compile,	as	opposed	to	only	generating	the	XSL	for	new	WebRoutines.
1.		Change	the	GROUP_BY	to	display	Employee	Number	as	output	only.
Group_By	Name(#Empdata)	Fields((#empno	*output)	#surname	#givename
#address1	#postcode)	

2.		Click	the	Compile	button	in	the	LANSA	Editor	toolbar	to	compile	the	WAM
component.

3.		After	the	compile	completes	successfully,	reopen	the	WMdemo	WebRoutine
in	the	Design	view.

4.		Notice	that	the	Employee	Number	field	has	not	changed.	You	could	still
input	a	value	to	it.	This	is	because	a	compile,	by	default,	generates	the	XSL
for	NEW	WebRoutines	only.

					An	input	capable	field	in	the	Design	view:

					An	output	field	in	the	Design	view:

					Note:	This	is	the	safe	Compile	option	because	the	web	page	design	for	all
existing	WebRoutines	will	remain	unchanged	when	a	WAM	is	recompiled.

					You	may	choose	to	re-generate	the	XSL	for	all	WebRoutines	by	changing	the
default	of	the	WAM	Compile	Options	from	New	WebRoutines	to	All
WebRoutines.	If	this	is	done	then	all	XSL	Editing	changes	will	be	lost	for	all
WebRoutines	in	the	WAM.	Therefore	you	would	only	select	this	option	if	you
wish	to	discard	all	your	web	page	design	changes	for	the	WAM's
WebRoutines.

					The	following	images	depicts	the	effect	on	WMDemo	if	this	option	was
taken.	Please	do	not	perform	these	steps.	They	are	only	for	information.
You	will	continue	the	exercise	at	point	5.

					If	check	All	WebRoutines	in	the	Compile	options	window	is	selected,	the
Design	view	would	appear	something	like	the	following:

					Notice	Employee	Number	is	displayed	as	an	output	field	now,	but	the
buttons	added	in	the	previous	step	have	been	lost.

					If	you	were	to	take	this	approach,	you	would	have	to	re-add	a	row	to	the
table	and	recreate	the	buttons.

5.		Add	EMPNO	to	the	page	again.
a.		From	the	WebRoutine	Ouput	tab,	select	the	EMPNO	field	and	drag	it	into
the	top	right	cell	of	the	table,	to	the	right	of	the	EMPNO	field	that	is
currently	on	the	page.

b.		Delete	the	caption	that	was	added	when	you	added	the	field	(this	caption
will	already	be	selected	after	dragging	the	field	onto	the	page).

6.		Hide	the	input	capable	instance	of	EMPNO
a.		Drag	the	original	EMPNO	field	(not	the	one	you	just	added)	into	the
Hidden	Content	area	at	the	bottom	of	the	page.

Fields	in	the	Hidden	Content	DIV	will	not	be	displayed	on	the	page	in	the
browser,	but	will	be	visible	in	the	Design	View.
If	you	would	like	to	hide	the	field	in	the	Design	View	also,	right	click	on	it	and

select	Replace	wth	hidden	field.

					Note:	You	can	change	the	display	mode	of	a	field	at	any	time	in	the	Design
view	by	right	clicking	the	field	and	selecting	Change	to	Input	Field,	Change
to	Output	Field,	or	Change	to	Hidden	Field,	without	having	to	change	the
WEB_MAP.

					However,	note	that	if	you	want	to	map	the	field	into	the	WebRoutine,	the
Web_Map	must	have	a	FOR(*INPUT)	or	FOR(*BOTH)	parameter.

7.		Save	your	changes	and	test	the	page	again.

Step	7.	Add	the	RDMLX	for	the	second	WebRoutine
In	this	step,	you	will	create	the	RDMLX	code	for	a	second	WebRoutine	to
demonstrate	how	data	is	passed	between	WebRoutines.
1.		Immediately	following	the	ENDROUTINE	for	WMdemo,	insert	the
following	RDML	code	to	create	a	WebRoutine	named	WMdemo2:
Webroutine	Name(WMdemo2)	Desc('Web_Map	Demo	WR2')
Endroutine	

2.		This	WebRoutine	will	require	two	outgoing	fields	(ADDRESS1	and
POSTCODE)	and	four	fields	that	are	both	incoming	and	outgoing
(GIVENAME,	SURNAME,	EMPNO	and	STDRENTRY).	EMPNO	and
STDRENTRY	must	be	FOR(*BOTH)	to	support	the	functionality	of	the
WebRoutine.	The	other	four	fields	were	arbitrarily	divided	to	show	the
behavior	of	the	WEB_MAP,	but	don't	necessarily	represent	a	practical	use.
Add	the	following	WEB_MAP	statements	to	the	WebRoutine:
Web_Map	For(*BOTH)	Fields((#empno	*output)	#givename	#surname
(#stdrentry	*hidden))
Web_Map	For(*output)	Fields(#Address1	#POSTCODE)	

The	STDRENTRY	field	will	be	used	to	determine	what	button	was	pressed,	and
decide	what	logic	to	execute.
The	STDRENTRY	field	should	not	be	visible	on	the	HTML	page.
The	EMPNO	field	should	be	output	only,	so	the	user	cannot	change	it.
The	other	fields	will	be	used	to	demonstrate	how	the	WEB_MAP	works.
3.		The	logic	for	the	Read	button	will	be	the	same	as	in	WMdemo,	that	is,	it	will
FETCH	the	record	from	the	Personnel	Master	when	the	STDRENTRY
value	is	'R'.
If	Cond(#stdrentry	=	R)
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
Endif	

					Your	finished	WebRoutine	should	appear	as	follows:
Webroutine	Name(WMdemo2)	Desc('Web_Map	Demo	WR2')
Web_Map	For(*BOTH)	Fields((#empno	*output)	#givename	#surname
(#stdrentry	*hidden))
Web_Map	For(*output)	Fields(#Address1	#POSTCODE)
If	Cond(#stdrentry	=	R)

Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
Endif
Endroutine	

4.		Click	the	 	Compile	button	in	the	LANSA	Editor	toolbar	to	compile	the
WAM	component.

Step	8.	Add	buttons	to	the	WebRoutines
In	this	step,	you	will	add	a	row	to	the	table	and	then	create	the	buttons	that	will
reload	the	WebRoutine,	as	you	did	in	Step	4.	Add	buttons	to	the	WebRoutine.
You	will	also	add	a	button	to	call	WMdemo.
Finally,	in	the	WMdemo	web	page	you	will	add	a	button	to	call	WMdemo2.
1.		Open	the	new	WebRoutine,	WMdemo2	in	the	Design	view.
2.		This	step	adds	a	new	row	to	the	bottom	of	the	table:

a.		Right	click	on	the	table	that	contains	the	data	entry	fields.
b.		Select	the	Table	Items	menu	item	and	choose	the	Add	Rows	option	from
the	pop-up	menu.

3.		Now	add	the	Read	button:
a.		From	the	Favorites/Weblet	Templates	View,	drag	and	drop	the	Push	button
weblet	into	the	leftmost	cell	of	the	new	row.

b.		Click	on	the	empty	space	of	the	cell	containing	the	button.
c.		Select	the	Details	View.
d.		Set	the	align	property	to	left.

4.		Set	the	Read	button	properties:
a.		Select	the	new	button	in	Design	View.
b.		Set	the	caption	property	to	Read.
c.		Set	the	on_click_wrname	property	to	WMdemo2.
d.		Click	the	Ellipsis	button	for	the	submitExtraFields	property	and	set	the
returned	field	Name	to	STDRENTRYand	the	Value	to	R	to	indicate	that
the	users	wants	to	refresh.

e.		Click	OK	to	confirm	the	change.
5.		This	step	adds	the	button	to	reload	the	WebRoutine:

a.		From	the	Favorites/Weblet	Templates	View,	drag	and	drop	the	Push	button
weblet	into	the	rightmost	cell	of	the	newly	added	row.

b.		Click	on	the	empty	space	of	the	cell	containing	the	button.
c.		Select	the	Details	View.
d.		Set	the	align	property	to	right.

6.		Set	the	button's	properties:
a.		Select	the	new	button	in	Design	View.
b.		Set	the	caption	property	to	WMDemo2.
c.		Set	the	on_click_wrname	property	to	WMdemo2.
d.		Click	in	the	Value	column	for	the	submitExtraFields	property	and	use	the
Ellipsis	button	to	open	the	Design	of…	dialog.

e.		In	the	Name	column	select	STDRENTRY	from	the	dropdown	list.	In	the
Value	column	enter	'	'	and	leave	the	checkbox	as	Literal.

f.		Click	OK	to	close	the	dialog	and	save	your	changes.	The	button	click	will
return	the	field	STDRENTRY	with	a	blank	value.

7.		Add	a	hidden	copy	of	the	field	EMPNO	to	the	page:
a.		From	the	WebRoutine	Output	View,	select	the	EMPNO	field	and	drag	it
into	the	top	right	cell	of	the	table.

b.		Delete	the	caption	that	was	added	when	you	added	the	field.
c.		Change	the	new	EMPNO	field	to	an	Input	Field.
d.		Drag	the	new	EMPNO	field	into	the	Hidden	Content	area	at	the	bottom	of
the	web	page.

e.		If	you	would	like	to	hide	the	field	in	the	Design	View	also,	right	click	on	it
and	select	Change	to	hidden	field.

					Note:	The	hidden	EMPNO	field	is	required	so	that	a	value	will	be	mapped
into	the	WebRoutine	WMDemo2,	when	the	WMDemo2	button	is	clicked.

8.		Add	the	button	to	transfer	to	WMdemo.	From	the	Favorites/Weblet	Templates
View,	drag	and	drop	the	Push	button	weblet	into	the	rightmost	cell	of	the
newly	added	row.

9.		Set	the	button's	properties:
a.		Select	the	new	button	in	Design	View.
b.		Set	the	caption	property	to	WMDemo.
c.		Set	the	on_click_wrname	property	to	WMdemo.
d.		Click	in	the	Value	column	for	the	submitExtraFields	property	and	use	the
Ellipsis	button	to	open	the	Design	of…	dialog.	In	the	Name	column	select
STDRENTRY	from	the	dropdown	list.	In	the	Value	column	enter	'	'	and
leave	the	checkbox	as	Literal.	Click	OK	to	close	the	dialog	and	save	your

changes.	The	button	click	will	return	the	field	STDRENTRY	with	a	blank
value

10.	Save	your	changes	to	WebRoutine	WMdemo2.
11.	Open	WebRoutine	WMdemo	in	the	Design	view.	To	do	this,	select	the
Outline	tab	and	double	click	on	theWMdemo	entry:

12.	Add	a	new	button	in	WMdemo,	to	invoke	the	WebRoutine	WMdemo2.
From	the	Favorites/Weblet	Template	View,	drag	and	drop	the	Push	button
weblet	into	the	rightmost	cell	of	the	bottom	row.

13.	Set	the	button's	properties:
a.		Select	the	new	button	in	Design	View.

b.		Set	the	caption	property	to	WMDemo2.
c.		Set	the	on_click_wrname	property	to	WMdemo2.
d.		Click	in	the	Value	column	for	the	submitExtraFields	property	and	use	the
Ellipsis	button	to	open	the	Design	of…	dialog.

e.		In	the	Name	column	select	STDRENTRY	from	the	dropdown	list.	In	the
Value	column	enter	'	'	and	leave	the	checkbox	as	Literal.

f.		Click	OK	to	close	the	dialog	and	save	your	changes.	The	button	click	will
return	the	field	STDRENTRY	with	a	blank	value.

14.	Save	your	changes	to	WMdemo.

Step	9.	Understand	WEB_MAP
In	this	step,	you	will	test	out	the	WebRoutines	that	you	have	just	created	and	see
the	WEB_MAP	in	action.
1.		Open	WMdemo	in	the	Design	view.
2.		Use	the	Execute	button	in	the	toolbar	to	run	the	WebRoutine	in	the	web
browser.

3.		Click	the	WMDemo2	button	and	observe	that	some	of	the	data	in	these	fields
is	not	transferred	to	the	WMDemo2	WebRoutine.

					This	is	because	ADDRESS1	and	POSTCODE	are	output	only,	so	although
they	are	sent	to	WMDemo2	by	clicking	the	WMDemo2	button	on	the
WMDemo	web	page	and	are	shown	on	the	web	page	for	WMDemo2,	they
are	not	accepted	by	the	WMDemo2	WebRoutine	as	input,	therefore	the	values
of	the	fields	are	lost	when	transferring	to	the	WebRoutine	WMDemo2.

4.		Click	the	Read	button	to	populate	all	of	the	fields	again.	Now	click	the
WMDemo	button.	See	that	all	of	the	data	is	preserved.	All	of	the	fields	are
output	from	WMdemo2	and	they	are	all	accepted	as	input	to	WMdemo,	so
data	will	not	be	lost.

5.		The	employee	number	is	always	retained	in	its	output	field	because	the	web
page	for	WMDemo	and	WMDemo2	WebRoutines	contain	a	hidden	copy	of
employee	number,	which	is	mapped	into	the	WebRoutine.

					Note:	In	web	applications,	it	is	often	necessary	to	display	a	key	field	value
for	output	and	have	a	hidden	copy	of	the	field	on	the	page,	in	order	to	pass	a
value	into	the	next	WebRoutine.

Summary
Important	Observations

The	WEB_MAP	statement	allows	you	to	specify	which	incoming	and
outgoing	fields	the	WebRoutine	maps	between	the	web	page	and	the
RDMLX	code.	The	WEB_MAP	statement's	FOR()	selector	specifies
whether	the	fields	are	mapped	as		incoming	(*INPUT),	outgoing
(*OUTPUT),	or	both	(*BOTH).
Only	fields	in	a	WEB_MAP	statement	with	a	FOR(*OUTPUT)	or
FOR(*BOTH)	can	be	placed	on	the	web	page.
The	Fields()	attributes	specify	the	display	mode	of	the	field	on	the	page.
Acceptable	field	attributes	are	*INPUT,	*OUTPUT	and	*HIDDEN.	If
unspecified,	the	default	is	*INPUT.	These	attributes	determine	whether
the	field	accepts	input,	as	an	input	text	box,	only	displays	an	output	value,
or	is	hidden	on	the	page.
Hidden	fields	may	be	needed	if	fields	that	are	shown	as	output	values	on
the	web	page,	but	their	value	must	be	posted	to	the	web	server.	This	is
often	the	case	for	key	fields	when	the	WebRoutine	is	performing	an
update.
The	order	in	which	fields	appear	when	generated	is	the	same	as	their
sequence	in	the	WEB_MAPs,	although	when	data	is	mapped	to	and	from
the	WEB_MAPs	they	are	mapped	by	field	names	and	not	position.
A	WebRoutine	may	have	multiple	WEB_MAPs.
If	the	output	of	one	WebRoutine	does	not	match	the	input	of	the
WebRoutine	that	it	is	calling,	no	error	will	be	generated.	The	data	will
simply	not	be	passed	into	the	WebRoutine	that	was	called.

Tips	&	Techniques
In	addition	to	specifying	WEB_MAPs	inside	WebRoutine	blocks,	you	are
allowed	to	declare	WEB_MAPs	inside	a	BEGIN_COM	block	of	a	WAM.
This	technique	allows	you	to	map	fields	and	lists	into	every	WebRoutine
in	your	WAM	without	having	to	explicitly	define	WEB_MAPs	in	each
WebRoutine.
You	can	change	the	WEB_MAP	after	the	first	compile,	but	you	must
update	the	web	page	for	the	fields	affected.	e.g.	if	a	field's	display
attribute	was	changed	in	the	WEB_MAP	from	*input	to	*output,	the	web

page	could	be	corrected	either	by	changing	the	field	on	the	page	to
"Output	Field"	or	delete	the	field	and	drag	and	drop	it	onto	the	page	from
the	WebRoutine	Output	tab.
You	can	modify	the	display	mode	of	a	field	in	the	Design	view	without
having	to	change	the	WEB_MAP	by	right	clicking	the	field	and	changing
to	the	appropriate	display	mode.	However,	note	that	if	you	change	a	field
to	be	*INPUT	in	the	Design	view,	then	it	must	be	mapped	into	the
WebRoutine	using	For(*input)	or	For(*both)	in	order	for	the	value	to	be
processed.
Similarly	if	you	change	a	field	to	be	*OUTPUT	in	the	Design	view,	and	it
is	mapped	into	the	WebRoutine	as	For(*input)	the	field	value	will	never
be	received	by	the	WebRoutine.
For	consistency,	we	recommend	you	control	field	input	and	output
attributes	via	their	WEB_MAP	statements,	rather	than	by	tweaking	the
Design	view.

What	I	Should	Know
How	the	WEB_MAP	works.

WAM015	-	Working	Lists
Objectives

To	demonstrate	how	to	use	and	change	Working	Lists	on	the	page.
In	this	exercise,	you	will	create	a	WAM	with	a	single	WebRoutine	that	will
populate	a	working	list.	This	WebRoutine	will	have	no	other	function,	but	will
teach	you	how	to	use	a	working	list	on	a	page	and	how	to	condition	the	field's
display	modes.
To	achieve	this	Objective,	you	will	complete	the	following:
Step	1.	Create	a	new	WAM
Step	2.	Add	RDMLX	code	to	the	new	WAM
Step	3.	See	how	the	working	list	is	displayed
Step	4.	Change	the	display	mode	of	fields	in	the	list
Step	5.	Use	the	generate	XSL	for	all	WebRoutines	option
Step	6.	Modify	the	list	in	the	Design	view
Summary

Before	you	Begin
In	order	to	complete	this	exercise,	you	should	have	completed	the	following:

WAM005	-	Create	Your	First	WAM
WAM010	-	Using	WEB_MAPs

Step	1.	Create	a	new	WAM
In	this	step,	you	will	create	a	new	Web	Application	Module	that	you	will	use	to
become	familiar	with	working	lists.
1.		In	the	LANSA	Editor	window,	click	the	New	button	choose	Web	Application
Module.

2.		In	the	New	WAM	dialog	box:
a.		Enter	a	Name	of	iiiWorkingLists	(where	iii	are	your	initials).
b.		Enter	a	Description	of	Working	List	Demo.
c.		Leave	the	Layout	Weblet	value	blank.
c.		Click	the	Create	button	to	create	the	new	WAM.

3.		The	LANSA	Editor	will	now	display	the	WAM's	RDMLX	code.	At	this
stage,	it	will	not	contain	any	WebRoutines.

Step	2.	Add	RDMLX	code	to	the	new	WAM
In	this	step,	you	will	add	the	RDMLX	code	to	the	newly	created	WAM.
1.		Create	a	WebRoutine	named	ListMain	with	a	description	of	List
Demonstration.

2.		Define	a	list	that	will	contain	information	from	the	Personnel	Master	file.
Def_List	Name(#emplist)	Fields(#empno	#givename	#surname	#address1
#phonehme)	Type(*working)	Entrys(*max)	

Note:	In	RDMLX	programs	you	should	usually	define	lists	using	Entrys(*max).
As	well	as	having	an	upper	limit	which	is	only	limited	by	the	platform,	lists
defined	in	this	way	are	dynamic	and	only	occupy	the	memory	required	for	their
current	number	of	entries.
3.		Add	code	to	the	WebRoutine	to	populate	the	list	with	data	from	PSLMST.
Clr_List	Named(#EMPLIST)
Select	Fields(#emplist)	From_File(pslmst)
Add_Entry	To_List(#emplist)
Endselect
	

4.		Create	a	WEB_MAP	and	add	list	EMPLIST	to	it,	so	the	list	can	be	displayed
on	the	page.

					Your	finished	WebRoutine	should	appear	as	follows:
Webroutine	Name(ListMain)	Desc('List	Demonstration')
Web_Map	For(*both)	Fields(#emplist)
Def_List	Name(#emplist)	Fields(#empno	#givename	#surname	#address1
#phonehme)	Type(*working)	Entrys(*max)
Clr_List	Named(#EMPLIST)
Select	Fields(#emplist)	From_File(pslmst)
Add_Entry	To_List(#emplist)
Endselect
Endroutine	

5.		Compile	the	WAM.	When	you	compile	a	WAM,	it	is	always	saved	first.

Step	3.	See	how	the	working	list	is	displayed
In	this	step,	you	will	see	how	the	list	is	displayed	on	the	page.
1.		Open	the	WebRoutine	ListMain	in	the	Design	view.
2.		In	the	Editor,	click	the	Execute	button	on	the	toolbar	to	run	the	WebRoutine
in	the	web	browser.

					Notice	all	of	the	fields	in	the	list	are	input	fields.	When	you	define	the	fields
in	the	DEF_LIST	statement,	you	can	specify	the	display	mode	just	like	in	the
WEB_MAP	statement.

Step	4.	Change	the	display	mode	of	fields	in	the	list
In	this	step,	you	will	change	the	display	mode	of	the	fields	in	the	list.
1.		Change	the	field	definitions	in	the	DEF_LIST	command	to	output	and	make
PHONEHME	hidden.
DEF_LIST	NAME(#EMPLST)	FIELDS((#EMPNO	*OUTPUT)	(#GIVENAME	*OUTPUT)	(#SURNAME	*OUTPUT)	(#ADDRESS1	*OUTPUT)	(#PHONEHME	*HIDDEN))	TYPE(*WORKING)	ENTRYS(100)
	

					Hint:	You	could	use	the	F4	Command	Assistant,	and	expand	the	Fields
parameter,	enabling	you	to	enter	an	*output	attribute	to	each	field.

					If	the	Assistant	is	initially	shown	with	the	bottom	tabs,	you	can	use	the	left
hand	dotted	bar,	to	drag,	float	and	resize	it.	When	you	close	the	Assistant,	the
size	and	position	is	remembered.

					When	you	click	in	each	field	it	will	be	selected.	Move	the	cursor	right,	add	a
space	and	type	*out.	The	value	*output	and	*out	are	synonymous.

2.		Compile	the	WAM	and	open	WebRoutine	ListMain	in	the	Design	view.

						Notice	all	the	fields	are	still	showing	as	input	fields.	For	existing
WebRoutines,	changes	made	to	the	WEB_MAP	statements,	after	the	first
compile	do	not	affect	the	page	design.

3.		To	update	the	list	definition,	remove	the	list	from	the	page	and	add	it	back:
a.		Right	click	on	an	empty	space	in	the	list	and	select	Delete	Entire	List.

b.		Open	the	WebRoutine	Output	view	and	drag	the	list	back	onto	the	page.
Notice	that	the	fields	in	the	list	are	now	correctly	shown	as	output.

c.		Save	your	changes.

4.		Click	the	Execute	button	on	the	toolbar	to	run	the	WebRoutine	in	the	browser
and	see	how	the	page	will	look.

					Notice:	Home	phone	number	column	is	visible	in	the	Design	view,	but	is
hidden	when	you	run	the	WebRoutine	in	the	browser.

Step	5.	Use	the	generate	XSL	for	all	WebRoutines	option
In	this	step,	you	change	the	WEB_MAP	again,	but	instead	of	removing	the	list
from	the	page	and	adding	it	again,	you	will	generate	the	XSL	for	all
WebRoutines.
1.		Change	the	field	definitions	in	the	DEF_LIST	command	to	input,	or	do	not
specify	a	display	mode	so	they	default	to	input.
Def_List	Name(#emplist)	Fields(#empno	#givename	#surname	#address1
#phonehme)	Type(*working)	Entrys(*max)	

2.		Save	your	changes.
3.	Open	the	Compile	options	dialog	by	clicking	the	Menu	button	on	Compile
section	of	the	Home	ribbon.

4.		Make	sure	Generate	XSL	is	checked	and	check	All	WebRoutines.

5.		Click	OK.
6.		Open	ListMain	in	the	Design	view	again.	Notice	the	list	fields	are	all	input
capable	again.

Remember:	When	you	generate	the	XSL	for	All	WebRoutines,		changes	you
have	made	to	ANY	WebRoutines	in	the	WAM	will	be	lost.

Step	6.	Modify	the	list	in	the	Design	view
In	this	step,	you	will	make	changes	to	the	list	inside	the	Design	view.
Change	the	field	definitions	in	the	Design	view	by	right	clicking	on	the	field	in
the	list	and	selecting	one	of	Change	to	Input	Field,	Change	to	Output	Field,	or
Change	to	Hidden	Field.	When	you	make	this	change	in	the	Design	view,	the
field	attribute	is	not	modified	in	the	RDMLX.
1.		Change	GIVENAME	to	an	output	field,	by	right	clicking	on	the	field	and
selecting	Change	to	Output	Field.

						After	making	the	change,	the	list	in	the	Design	view	will	appear	something
like	the	following:

2.		Change	SURNAME	to	a	hidden	field,	by	right	clicking	on	the	field	and
selecting	Change	to	Hidden	Field.

					After	making	the	change,	the	list	in	the	Design	view	will	appear	something
like	the	following:

3.		Save	your	changes	to	WebRoutine	LISTMAIN.
4.		Now	change	Surname	to	an	output	field.
					Since	SURNAME	is	hidden,	you	will	not	immediately	be	able	to	select	it	in

the	Design	View.	To	change	it,	take	the	following	steps:
a.		Select	the	Outline	tab.
b.		If	necessary,	expand	the	tree	view	so	that	field	SURNAME	is	shown.
Select	SURNAME.

c.		Select	the	Details	tab.	This	will	show	the	properties	for	SURNAME.
d.		On	the	Details	tab,	change	the	Type	property	to	text.	Select	this	value
from	the	dropdown	list.

					The	Surname	column	will	be	shown	as	input.	You	may	need	to	re-open	the
WebRoutine	in	the	Design	view	to	refresh	the	list's	appearance.

5.		Change	the	caption	for	the	ADDRESS1	column.
a.		Select	the	caption	textAddress	Line	1.	You	should	see	grips	around	the
selection.

b.		Delete	the	Address	Line	1	heading	text	using	the	Delete	key
c.		Alternatively	you	could	use	the	right	mouse	context	menu	as	shown	in	the
picture	following.	This	shows	you	are	deleting	the	<xsl:for-each>	that
outputs	this	HTML	element.

d.		Type	Street	Address	where	the	old	caption	used	to	be.
6.		Set	the	vertical	alignment	for	the	cell:

a.		Place	the	cursor	in	the	cell	where	you	entered	the	"Street	Address"
caption.

b.		Open	the	Details	View.
c.		Set	the	vAlign	property	to	bottom.

7.		Save	your	changes.	Execute	the	WAM	in	the	browser	to	test	your	changes.

Summary
Important	Observations

Hidden	list	columns	are	visible	in	Design	View,	but	are	not	shown	when
run	in	the	browser.
When	modifying	a	column	in	a	list	on	a	page,	the	resulting	modifications
are	applied	to	all	rows	in	this	column.

Tips	&	Techniques
Lists	can	also	be	placed	on	the	page	by	dragging	and	dropping	a	list	from
the	WebRoutine	Output	view.

What	I	Should	Know
How	lists	are	rendered	in	the	web	page.
How	to	customize	the	columns	in	a	lists.

WAM020	-	WAM	Navigation
Objectives

To	demonstrate	navigation	between	WebRoutines	within	the	RDMLX
code.

In	this	exercise,	you	will	create	a	WAM	that	will	look	up	an	employee's
information	based	on	an	employee	number.	This	WebRoutine	will	use	re-entrant
programming.
You	will	then	create	two	more	WebRoutines	that	will	do	the	same	lookup,	but
will	be	executed	differently	from	the	main	WebRoutine.	This	will	show	you
different	ways	to	navigate	through	WebRoutines	within	the	RDML,	as	well	as
demonstrate	the	fact	that	there	are	many	different	ways	to	accomplish	the	same
task.
To	achieve	this	Objective,	you	will	complete	the	following:
Step	1.	Create	a	new	WAM
Step	2.	Add	RDMLX	code	to	the	new	WAM
Step	3.	Add	Buttons	and	the	Dropdown	list	to	the	WebRoutine
Step	4.	Test	and	Understand	the	WebRoutine
Step	5.	Add	Weblet	to	a	List
Summary

Before	you	Begin
In	order	to	complete	this	exercise,	you	should	have	completed	the	following:

WAM005	-	Create	Your	First	WAM
WAM010	-	Using	WEB_MAPs
WAM015	-	Working	Lists

Step	1.	Create	a	new	WAM
In	this	step,	you	will	create	a	new	Web	Application	Module	that	you	will	use	to
learn	the	CALL	and	TRANSFER	statements.
1.		In	the	LANSA	Editor	window,	click	the	New	button	and	choose	Web
Application	Module.

2.		In	the	New	WAM	dialog	box:
a.		Enter	a	Name	of	iiiNavigation	(where	iii	are	your	initials).
b.		Enter	a	Description	of	Navigation	Demo.
c.		Leave	Layout	Weblet	blank.
d.		Click	the	Create	button	to	create	the	new	WAM.

3.		The	LANSA	Editor	will	now	display	the	WAM's	RDMLX	code.	At	this
stage,	it	will	not	contain	any	WebRoutines.

Step	2.	Add	RDMLX	code	to	the	new	WAM
In	this	step,	you	will	add	RDMLX	code,	defining	three	WebRoutines.
1.		Immediately	following	the	BEGIN_COM,	insert	the	following	RDML	code
to	create	three	new	WebRoutines	named	NavMain,	NavCall	and	NavTrans:
Webroutine	Name(NavMain)	Desc('Navigation	Home')
Endroutine
Webroutine	Name(NavCall)	Desc('Navigation	CALL')
Endroutine
Webroutine	Name(NavTrans)	Desc('Navigation	TRANSFER')
EndroutineWebRoutineWebRoutine	

2.		Define	a	List	containing	EMPNO	in	WebRoutine	NavMain.	This	list	will
hold	all	of	the	valid	employee	numbers	from	the	personnel	master.	You	will
use	this	list	to	populate	a	dropdown	list,	so	you	will	only	be	able	to	search	for
an	employee	that	exists.	Add	the	following	code	in	the	WebRoutine:
Def_List	Name(#EMPLST)	Fields(#EMPNO)	Type(*WORKING)
Entrys(*MAX)
Clr_List	Named(#EMPLST)
Select	Fields(#EMPNO)	From_File(PSLMST)
Add_Entry	To_List(#EMPLST)
Endselect	

3.		Add	a	GROUP_BY	immediately	following	the	BEGIN_COM.	This	will
be	used	in	each	WebRoutine's	WEB_MAP	and	FETCH	commands	and	to	re-
set	field	values	to	default	values.
Group_By	Name(#empdata)	Fields(#surname	#givename	#address1	#address2
#address3	#postcode	#phonehme	#phonebus	#deptment	#section	#salary
#startdte	#termdate)
	

					Hint:	Use	the	F4	Command	Assistant		to	define	the	Group_By.	Use	the
Fields	in	File	tab	to	select	fields	from	file	PSLMST.

4.		All	fields	in	the	WebRoutine	NavMain	will	be	both	incoming	and	outgoing,
so	they	will	be	specified	FOR(*BOTH).	All	of	the	fields	from	PSLMST	will
be	used.

					By	default,	all	the	fields	will	be	displayed	as	input	fields.
					The	EMPLST	list	should	be	mapped	with	a	*PRIVATE	attribute,	because	it

will	be	used	to	populate	the	combo	box	weblet	for	EMPNO.
					Add	the	following		WEB_MAP	statement	to	the	WebRoutine	NavMain:
WEB_MAP	FOR(*BOTH)	FIELDS(#EMPNO	#EMPDATA	(#EMPLST	*PRIVATE))
	

Fields	and	lists	with	a	*PRIVATE	attribute	will	not	be	shown	on	the	page	and
will	not	be	mapped	back	into	the	WebRoutine.
The	fields	defined	in	the	Group_by	will	be	used	to	output	the	data	that	was

retrieved	from	the	file.
5.		The	field	STDRENTRY	will	be	used	to	determine	which	logic	to	execute.	It
should	be	mapped	as	a	hidden	field	into	and	out	of	each	WebRoutine.

					Immediately	below	the	BEGIN_COM	add	the	following	WEB_MAP.
This	is	a	global	WEB_MAP	which	applies	to	all	WebRoutines
Web_Map	For(*both)	Fields((#stdrentry	*hidden))
	

6.		In	WebRoutine	NavMain	set	up	a	CASE	loop	using	the	field	STDRENTRY
which	will	determine	how	to	perform	the	search.	Add	this	code	before	the
CLR_LIST	and	SELECT	logic	you	added	earlier.
Case	Of_Field(#STDRENTRY)
When	Value_Is('=	A')
Fetch	Fields(#EMPDATA)	From_File(PSLMST)	With_Key(#EMPNO)
Message	Msgtxt("Logic	executed	within	this	WebRoutine.")
When	Value_Is('=	B')
Transfer	Toroutine(NavTrans)
Message	Msgtxt("This	message	will	not	be	displayed.")
When	Value_Is('=	C')
Call	Webroutine(NavCall)
Message	Msgtxt("Back	from	the	CALL.")
When	Value_Is('=	D')
Message	Msgtxt("Back	from	the	TRANSFER.")
When	Value_Is('=	E')
#EMPDATA	:=	*DEFAULT
EndcaseWebRoutine
	

7.		Extend	your	logic	for	handling	the	list	of	employees,	EMPLIST.	The	list
needs	to	be	built	every	time	WebRoutine	NavMain	executes,	but	also	needs	to
preserve	the	current	value	of	employee	number,	EMPNO.

a.		Define	a	work	field	EMPNOW	based	on	EMPNO
b.		Save	current	value	of	EMPNO	in	EMPNOW
c.		After	the	list	is	built	restore	EMPNO	to	EMPNOW,	provided	EMPNOW
is	not	blank.

					Your	code	should	look	like	the	following:
Define	Field(#empnow)	Reffld(#empno)
#empnow	:=	#empno
Clr_List	Named(#EMPLST)
Select	Fields(#EMPNO)	From_File(PSLMST)
Add_Entry	To_List(#EMPLST)
Endselect
If	(#empnow	*NE	*blanks)
#empno	:=	#empnow
	
Endif
	

					Your	WAM	at	this	stage	should	appear	as	follows:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)
Web_Map	For(*both)	Fields((#stdrentry	*hidden))
Group_By	Name(#empdata)	Fields(#surname	#givename	#address1	#address2
#address3	#postcode	#phonehme	#phonebus	#deptment	#section	#salary
#startdte	#termdate)
Webroutine	Name(NavMain)	Desc('Navigation	Home')
Web_Map	For(*both)	Fields(#empdata	(#emplst	*private))
Def_List	Name(#EMPLST)	Fields(#EMPNO)	Type(*WORKING)
Entrys(*MAX)
Case	Of_Field(#STDRENTRY)
When	Value_Is('=	A')
Fetch	Fields(#EMPDATA)	From_File(PSLMST)	With_Key(#EMPNO)
Message	Msgtxt("Logic	executed	within	this	WebRoutine.")
When	Value_Is('=	B')
Transfer	Toroutine(NavTrans)
Message	Msgtxt("This	message	will	not	be	displayed.")
When	Value_Is('=	C')
Call	Webroutine(NavCall)

Message	Msgtxt("Back	from	the	CALL.")
When	Value_Is('=	D')
Message	Msgtxt("Back	from	the	TRANSFER.")
When	Value_Is('=	E')
#EMPDATA	:=	*DEFAULT
Endcase
*
Define	Field(#empnow)	Reffld(#empno)
#empnow	:=	#empno
Clr_List	Named(#EMPLST)
Select	Fields(#EMPNO)	From_File(PSLMST)
Add_Entry	To_List(#EMPLST)
Endselect
If	(#empnow	*NE	*blanks)
#empno	:=	#empnow
Endif
Endroutine
Webroutine	Name(NavCall)	Desc('Navigation	CALL')
Endroutine
Webroutine	Name(NavTrans)	Desc('Navigation	TRANSFER')
Endroutine

End_ComWebRoutineWebRoutineWebRoutineWebRoutine
	

Note:	It	is	necessary	to	rebuild	the	list	of	employees	(EMPLST)	every	time	the
NavMain	WebRoutine	is	executed	in	order	to	populate	the	dropdown	list	of
employee	numbers.	There	are	better	ways	to	handle	this,	which	will	be	covered
in	later	exercises.
10.	Create	the	WEB_MAP	for	NavCall.
					The	WEB_MAP	will	be	very	similar	to	the	one	in	NavMain:

However	EMPNO	is	the	only	field	that	needs	to	be	taken	as	input.
All	the	employee	fields	need	to	be	output	from	the	WebRoutine.	Use	the
GROUP_BY	to	map	the	employee	fields.
Note	that	you	have	a	global	WEB_MAP	for	the	field	STDRENTRY
which	applies	to	every	WebRoutine.
The	field's	display	modes	do	not	matter	since	this	WebRoutine	will	not
actually	display	anything.

					Add	the	following	WEB_MAP	statements	to	the	WebRoutine:
Web_Map	For(*BOTH)	Fields(#EMPNO)
Web_Map	For(*OUTPUT)	Fields(#EMPDATA)
	

11.	Add	the	FETCH	to	NavCall.
Fetch	Fields(#EMPDATA)	From_File(PSLMST)	With_Key(#EMPNO)
	

					Your	finished	NavCall	WebRoutine	should	appear	as	follows:
Webroutine	Name(NavCall)	Desc('Navigation	CALL')
Web_Map	For(*BOTH)	Fields(#EMPNO)
Web_Map	For(*OUTPUT)	Fields(#EMPDATA)
Fetch	Fields(#EMPDATA)	From_File(PSLMST)	With_Key(#EMPNO)
Endroutine	

12.		Create	the	WEB_MAP	for	WebRoutine	NavTrans.	These	WEB_MAPs	will
be	identical	to	NavCall.
Web_Map	For(*BOTH)	Fields(#EMPNO)
Web_Map	For(*OUTPUT)	Fields(#EMPDATA)
	

13.	Add	the	FETCH,	set	STDRENTRY	to	'D'	and	TRANSFER	back	to
NavMain.
Fetch	Fields(#EMPDATA)	From_File(PSLMST)	With_Key(#EMPNO)
#STDRENTRY	:=	'D'
Transfer	Toroutine(NavMain)
	

					Your	finished	NavTrans	WebRoutine	should	appear	as	follows:
Webroutine	Name(NavTrans)	Desc('Navigation	TRANSFER')
Web_Map	For(*BOTH)	Fields(#EMPNO)
Web_Map	For(*OUTPUT)	Fields(#EMPDATA)
Fetch	Fields(#EMPDATA)	From_File(PSLMST)	With_Key(#EMPNO)
#STDRENTRY	:=	'D'
Transfer	Toroutine(NavMain)
Endroutine
	

14.	Save	and	compile	the	WAM.

Step	3.	Add	Buttons	and	the	Dropdown	list	to	the	WebRoutine
In	this	step,	you	will	add	a	row	to	the	fields	table	and	then	add	the	buttons	that
will	reload	the	WebRoutine.	The	NavMain	WebRoutine	is	reentrant,	that	is,	it
calls	itself.
1.		Open	NavMain	in	the	Design	view.
2.		Delete	the	"Employee	Number"	caption	by	highlighting	it	and	pressing
Delete	on	the	keyboard.

3.		Move	the	EMPNO	field	to	the	top	left	cell,	where	you	just	deleted	the
caption.
a.		Click	on	the	EMPNO	field,	it	will	be	selected	with	"grips"	around	it.
b.		Drag	the	field	to	the	top	leftmost	cell	(where	the	"Employee	Number"
caption	was	deleted	from	in	the	previous	step).

4.		Add	and	configure	the	combo	box	weblet:
a.		In	the	Design	View,	drag	a	Combo	Box	weblet	from	the	Favorites/Weblet
Templates	tab	and	drop	it	on	top	of	the	EMPNO	field.

b.		Set	up	the	combo	box	properties	as:

Property Value

listname EMPLST

codefield EMPNO

captionfield EMPNO

	

c.		Notice	the	name	and	value	properties	are	already	set.	By	dragging	the
weblet	onto	the	field,	the	weblet	will	inherit	the	name	and	value	of	the
field.

5.		Change	the	colspan	property	of	the	top	leftmost	cell	to	2.
					Your	design	should	now	look	like	the	following:

6.		Fields	Department	code	and	Section	may	have	combo	box	field
visualizations	defined	in	the	Repository.	If	necessary	use	the	context	menu	to
change	these	to	Replace	with	input	field.	

7.		Add	four	buttons	to	the	top	row	of	the	table	(to	the	right	of	the	combo	box):
a.		From	the	Weblet	Templates	tab,	drag	and	drop	four	Push	button	weblets
into	the	top	row.	Insert	a	space	between	each	of	the	weblets.

b.		Set	the	push	button	caption	properties	to	Search,	Transfer	Search,	Call
Search	and	Clear.	Adjust	the	width	of	each	button	if	necessary.

c.		Set	the	on_click_wrname	property	to	NavMain	for	each	button.
d.		Select	each	push	button,	and	click	the	Ellipsis	button	for	the
submitExtraFields	property.	Set	the	Name	column	to	STDRENTRY	and
set	the	Value	column	to	the	correct	literal	value.	Review	your	WebRoutine
NavMain	RDMLX	code	to	find	the	required	values.

8.		Save	your	changes.

Step	4.	Test	and	Understand	the	WebRoutine
In	this	step,	you	will	test	the	WebRoutine,	to	understanding	how	it	works.
1.		NavMain	should	still	be	open	in	the	Design	view,	if	not,	open	it.
2.		Click	the	Execute	button	on	the	toolbar	to	run	the	WebRoutine	in	the
browser.

3.		Test	the	buttons.
					You	will	notice	that	all	three	searches	function	identically.	The	only	way	to
differentiate	them	is	the	messages	they	generate.

					Also	notice	the	message	This	message	will	not	be	displayed,	is	not	displayed.
At	the	time	of	a	TRANSFER,	control	is	passed	to	another	WebRoutine	and
the	current	WebRoutine	is	terminated.

					With	a	CALL,	the	current	WebRoutine	will	still	be	executing	and	waiting	for
control	to	be	returned	from	the	WebRoutine	it	had	called.

Step	5.	Add	Weblet	to	a	List
In	this	step,	you	will	use	the	WAM	created	in	exercise	WAM015
(iiiWorkingLists)	and	add	an	Anchor	weblet	to	the	EMPNO	field	in	the	list.	You
will	set	up	this	link	to	call	the	search	in	iiiNavigation.	
If	you	leave	iiiNavigation	open	in	the	editor,	when	setting	the	on_click_xxxx
properties	in	the	following	steps,	you	will	be	able	to	select	the	WAM	name
and	WebRoutine	name	from	a	dropdown	list.

1.	Open	WAM	iiiWorkingLists	in	the	LANSA	editor.
2.		Open	ListMain	in	the	Design	view.
3.		This	step	will	add	an	anchor	weblet	to	the	list	and	configure	its	properties:

a.		From	the	Weblet	Templates	tab,	drag	and	drop	the	Anchor	weblet	onto	the
EMPNO	field.

					Notice	the	anchor	is	applied	to	every	row	in	the	table.
b.		Set	the	currentrowhfield	property	to	EMPNO.
c.		Set	the	currentrownumval	property	to	$EMPNO.
d.		Set	the	reentryvalue	property	to	A.
e.		Set	the	on_click_wamname	property	to	iiiNavigation.
f.		Set	the	on_click_wrname	property	to	NavMain.

					This	will	call	NavMain	with	a	reentry	value	of	'A'	(remember,	that	is	the
local	search)	and	will	also	pass	the	employee	number	of	the	clicked	link.

					Note:	You	can	display	help	text	for	weblet	properties:

Currentrowhfield	is	the	name	of	the	field	that	will	contain	the	current	row's
specified	value.

Currentrownumval	is	the	value	of	the	field	specified	in	the	currentrowhfield
property.	To	specify	a	field	value	in	a	list	use	the	syntax	$FIELDNAME.
These	properties	enable	the	WebRoutine	called	via	the	on_click_wrname
property	to	process	values	for	the	current	row.
4.		Save	and	run	your	modified	WebRoutine	LISTMAIN	in	a	browser.	Test	the
link	to	iiiavigation	/	NavMain.	The	employee	details	for	the	employee
number	selected	in	iiiWorkingLists	should	be	displayed.

					You	can	use	the	browser	back	button	to	return	to	iiiWorkingLists.

Summary
Important	Observations

You	can	navigate	to	WebRoutines	in	the	RDMLX	as	well	invoking	them
from	the	web	page.
TRANSFER	leaves	the	current	WebRoutine.
CALL	returns	control	to	the	calling	WebRoutine	after	completion.
A	field's	input	box	can	be	replaced	with	a	weblet,	to	display	the	field
values	differently,	just	by	dragging	and	dropping.
The	Combo	box	weblet	can	be	used	to	display	a	dropdown	list,	which
uses	specified	list	entries	to	populate	the	dropdown	items.
The	list	that	populates	the	Combo	box	is	specified	via	weblet	properties,
via	the	Details	View.
The	Combo	box	weblet	can	be	made	to	invoke	a	WebRoutine	on	selection
change.

Tips	&	Techniques
Not	all	lists	have	to	be	represented	as	browse	lists.	You	can	use	a	list	for
other	purposes,	as	in	the	case	of	this	page,	which	uses	EMPLST	to
populate	a	dropdown	list.
Any	field	input	boxes	can	be	replaced	with	weblets,	just	by	dragging	and
dropping	a	weblet	onto	them.

What	I	Should	Know
How	the	TRANSFER	and	CALL	commands	work.
There	is	more	than	one	way	to	go	about	developing	an	application.
Depending	on	the	situation,	certain	methods	work	better	than	others.	You
should	always	consider	your	options	and	try	to	determine	which	method
will	work	best	for	the	given	task.
How	to	replace	fields	with	weblets.
How	to	attach	lists	to	a	weblet	using	its	listname	property.

WAM025	-	Using	the	Layout	Wizard
Objectives
To	create	a	WAM	layout	using	the	Layout	Wizard.
The	Web	Application	Layout	Manager	Wizard	enables	you	to	define	your	own
layout	that	can	then	be	used	for	each	WAM	you	create.	The	wizard	can	create	a
layout	based	one	of	three	shipped	designs	which	can	adopt	one	of	two	styles.
Each	layout	can	also	adopt	a	theme	that	controls	the	color	scheme	the	layout
will	have.	Once	you	have	defined	your	own	layout,	it	could	be	modified	to	meet
your	company's	requirements.
Your	layout	may	have	one	main	area	(the	Main	application	Content	Area)	or
include	one	or	two	sidebars	as	shown	below:

A	layout	may	adopt	one	of	two	styles
Style1	has	no	border	between	areas
Style2	defines	a	different	color	border	between	areas:

Themes	allow	you	to	select	one	of	nine	color	schemes	to	apply	to	your	layout.
Three	examples	are	shown	below:

You	can	also	choose	between	fixed	or	fluid	layout	width.	The	fluid	layout	is
more	flexible	because	its	content	area	will	include	scroll	bars	if	your	content
does	not	fit	within	the	space	available.	For	example	some	of	your	web	pages
may	include	lists	with	a	large	number	of	columns.
Once	you	have	created	a	layout	you	could	start	to	modify	its	appearance	or
content.	For	example,	replace	the	fixed	text	such	as	'LANSA	Advanced
Software	Made	Simple'.	You	will	look	at	layouts	in	more	detail	in	WAM110	-
Create	Your	Own	Layout	Weblet.
To	create	your	layout	you	will	complete	the	following:
Step	1.	Use	the	Web	Application	Layout	Manager	Wizard.
Step	2.	Execute	the	generated	Demo	WAM
Step	3.	Examine	the	new	layout
Summary

Before	you	Begin
In	order	to	complete	this	exercise,	you	should	have	completed	the	following:

WAM005	-	Create	Your	First	WAM
WAM010	-	Using	WEB_MAPs
WAM015	-	Working	Lists
WAM020	-	WAM	Navigation

Step	1.	Use	the	Web	Application	Layout	Manager	Wizard.
1.		Start	the	wizard	from	the	Tools	ribbon	in	the	Utilities	grouping:

2.		Select	the	Web	Application	Layout	Manager	Wizard.

3.		Click	Next	to	continue.
4.		Enter	the	following	Site	Layout	Details:

a.		Site	Layout	Name:										iiilay01
b.		Site	Layout	Description:		iii	Workshop	Layout
c.		Generate	a	WAM	using	this	Site	Layout.

					If	Generate	Site	Style	or	Generate	Site	Script	is	selected,	an	Application
Images	Directory	field	will	be	displayed.	The	Application	Images
Directory	will	use	an	existing	folder	if	entered.	If	a	new	folder	name	is
entered	this	will	be	created	in	c:\Program	Files
(x86)\LANSA\Webserver\Images.

					The	new	folder	could	be	used	to	store	application	specific	images.
					Note	that	you	would	also	need	to	later,	set	this	folder	up	on	the	IBM	i
server.

d.		Click	Next.
5.		Enter	the	Web	Application	Details:

a.		Name:										iiiLAYTST	for	this	exercise.	In	your	own	WAMs	you	may
use	a	long	name.

b.		Description:		Layout	Demo
c.		Select	the	Sample	WebRoutines	to	show	themed	Weblets	option.

d.		Click	Next.
					The	Wizard	creates	a	sample	WAM	for	you.
6.		Select	one	of	the	Site	Themes.
					The	color	scheme	will	be	displayed	when	selected.

7.		Click	Next.
8.		In	the	Application	Content:

a.		Select	the	One	Content	Area:
b.		Select	the	Fluid		Site	Layout	Width	option.

c.		Click	Finish.
9.		Select	the	Compile	and	Execute	Application	option.

10.	Click	Generate.
First,	your	layout	iiilay01	is	generated.
Next,	your	WAM	is	generated	together	with	its	WAM	layout	which
references	iiilay01.
Third,	your	WAM	is	opened	in	the	browser.

					Note:	The	appearance	of	your	WAM	will	depend	on	the	Theme	that	you
selected	in	the	Wizard	questionnaire.

The	demo	WAM	contains	three	WebRoutines	that	demonstrate:
					Basic	HTML	controls
					LANSA	weblets
					jQuery	enabled	weblets
					The	WebRoutines	can	be	invoked	from	the	menu	at	the	top	of	the	content
area.

Step	2.	Execute	the	generated	Demo	WAM
1.		Open	your	iii	Demo	Layout	WAM	(iiiLAYTST)	in	the	editor	so	that	you	can
review	its	RDMLX	code	as	you	are	running	the	WAM.	If	it	is	not	already
started	in	the	browser,	run	the	SampleHTML	WebRoutine	from	the	Design
view.

					Note	that	this	page	contains	sample	standard	HTML	only.	The	WebRoutine
SampleHTML	contains	no	web_maps	or	code	except	for	a	MESSAGE
command.

2.		Invoke	the	WebRoutine	SampleWeblets1	by	selecting	LANSA	Weblets	in
the	menu	at	the	top	of	the	content	area.

					This	web	page	contains	output	for	standard	LANSA	weblets.	These	have	all
been	supported	since	WAMs	were	introduced	into	the	Visual	LANSA	product
in	2005.	Note	that	they	adopt	the	color	scheme	for	your	chosen	Theme.	For
example	the	menu	button,	the	list	and	tab	pages.
a.		Review	the	SampleWeblets1	WebRoutine.	This	has	a	web_map	for	the
list	that	supports	the	tree	view	weblet	(car	manufacturers	and	models).	The
tree	view	list	is	populated	by	method	routine	BuildSampleTree.

b.		Note	that	the	content	for	all	other	controls	on	this	page	has	been	hard
coded.	For	example,	the	weblet's	items	property	defines	the	content	for	the
combo	box	and	list	box.

3.		Invoke	the	WebRoutine	SampleWeblets2	by	selecting	the	jQuery	Weblets
option	in	the	menu	at	the	top	of	the	content	area.

					This	page	demonstrates	the	new	weblets	that	were	introduced	in	V12	SP1
(June	2011).	These	weblets	will	all	be	used	and	explained	in	more	detail	in
later	exercises.

					A	number	of	these	new	weblets	are	AJAX	enabled,	which	means	a	single
control	can	be	refreshed	from	the	server.	For	example,	the	list	that	defines	the
content	of	a	Dynamic	select	box	can	be	refreshed	by	invoking	a	new	type	of
WebRoutine.
a.		Review	the	page	content.	Note	that	the	weblets	reflect	the	color	scheme	of
your	chosen	Theme,	including	the	more	complex	weblets	such	as	the	bar
charts	and	pie	charts.	If	possible	review	the	appearance	of	other	student's
layouts	who	may	have	selected	a	different	Theme.

b.		Notice	that	the	dropdown	lists	for	car	manufacturer	and	car	models	are

dynamic.

					When	car	manufacturer	changes,	the	car	models	dropdown	list	is
refreshed	with	a	new	list	by	calling	a	special	WebRoutine.	The	rest	of	the
page	is	unchanged.

c.		Type	an	appropriate	letter	into	the	AutoComplete	input	field.

					The	list	that	is	displayed,	is	also	populated	by	a	special	response
WebRoutine.	Once	again	this	is	the	only	part	of	the	web	page	that	has
been	updated.

d.		Review	the	RDMLX	code	for	the	SampleWeblets2	WebRoutine.	Notice
that	it	outputs	lists	for	dropdown	lists,	charts	and	tree.	These	lists	are	built
by	invoking	method	routines.

e.		At	this	stage,	we	will	leave	an	explanation	of	the	special	WebRoutines
that	handle	the	dynamic	dropdown	list	and	auto	complete	input	field.
These	will	be	implemented	in	later	exercises.

Step	3.	Examine	the	new	layout
In	this	step	you	will	find	your	new	layout	in	the	Repository	and	open	it	in	the
editor.
1.		Layouts	are	special	type	of	weblet.	Expand	the	Web	/	Weblets	group	on	the
Repository	tab	to	locate	your	layout.	Double	click	on	it	to	open	it	in	the
editor.

2.		In	the	Design	view,	select	the	Menu	Bar	item.

3.		On	the	Details	tab,	select	the	items	value,	and	click	on	the	Ellipsis	 	button
to	open	the	Design	of	menu_items	Property	dialog.

4.		Select	each	menu	item	and	define	its	Action	URL	based	on	the	following:

Home http://www.lansa.com

Services http://www.lansa.com/services/index.htm

Contact http://www.lansa.com/about/contactus.htm

About http://www.lansa.com/about/index.htm

	

5.		Click	OK	to	close	the	dialog	and	save	your	layout.
6.		Open	your	iii	Demo	Layout	WAM	(iiiLAYTST)	in	the	editor	and	run	the
SampleHTML	WebRoutine	in	the	browser	from	the	Design	tab.	Test	your
menu	items	which	should	open	the	relevant	pages	within	the	LANSA	web
site.	Use	the	browser	back	button	to	return	to	your	application	web	page.

					This	illustrates,	in	one	simple	way,	how	your	layout	can	be	developed	and	all
WAM	layouts	based	on	this	standard	layout	will	adopt	changes	made	to	the

common	layout.

Summary
Important	Observations

The	layout	wizard	allows	you	to	quickly	and	easily	create	a	standard
layout	that	can	be	adopted	when	creating	your	application	WAMs
In	a	later	exercise	you	will	see	how	this	layout	can	be	modified	to	match
your	company	requirements	in	more	detail.
The	fonts	and	color	schemes	used	by	your	layout	are	controlled	by
Cascading	Style	Sheet	files	(CSS).	In	a	later	exercise	you	will	see	how
these	CSS	files	can	be	edited	to	meet	your	company	requirements	exactly.

Tips	&	Techniques
Start	your	web	application	development	by	creating	a	standard	layout	and
then	specify	this	layout	as	each	WAM	is	created.
This	layout	does	not	have	to	be	complete	in	every	respect.	You	can
modify	it	later	and	all	your	WAMs	will	implement	these	changes.

What	I	Should	Know
How	to	use	the	Web	Application	Layout	Manager	Wizard,	to	create	a
layout.

WAM030	-	Employee	Enquiry
Objectives

To	create	a	simple	web	application
The	WAM	prompts	the	user	to	enter	an	Employee	number	and	then
following	a	button	press,	displays	Employee	Details.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Create	Employee	Enquiry	WAM
Step	2.	Create	a	Begin	WebRoutine
Step	3.	Open	the	Design	View
Step	4.	Add	a	Push	Button	Weblet
Step	5.	Create	WebRoutine:	Details
Summary

Before	You	Begin
In	order	to	complete	this	exercise,	you	should	have	completed	all	the
preceding	exercises.

Step	1.	Create	Employee	Enquiry	WAM
1.		In	the	LANSA	Editor,	click	the	New	button	and	choose	Web	Application
Module.	The	New	WAM	dialogue	will	appear.

2.		In	the	New	WAM	dialogue	box	enter:
a.		Name:		iiiEmpEnquiry	where	iii	are	your	initials
b.		Description:		Employee	Enquiry
c.		Layout	Weblet:		iiilay01	–	the	new	layout	you	created	in	exercise
WAM025

d.		Select	any	suitable	Framework,	such	as	Personnel	&	Payroll
e.		Click	the	Create	button	to	create	a	new	WAM

Step	2.	Create	a	Begin	WebRoutine
In	this	step	you	will	create	the	code	for	a	new	WebRoutine	that	will	be	used	to
enter	the	employee	number.	The	WEB_MAP	statement	will	specify	the	fields
that	are	passed	in	and	out	of	the	WebRoutine.
1.		Immediately	following	the	BEGIN_COM,	insert	the	following	RDML	code
to	create	WebRoutine	named	Begin.
Webroutine	Name(Begin)	Desc('Select	Employee')Endroutine
	

2.		This	WebRoutine	will	produce	a	web	page	with	employee	number	as	an
input	field.	You	will	add	a	push	button	to	invoke	a	second	WebRoutine.	The
Begin	WebRoutine	will	not	require	any	incoming	fields.	It	will	have	one
outgoing	field,	EMPNO.	Add	the	following	WEB_MAP	statement	to	the
WebRoutine.
Web_Map	For(*output)	Fields(#empno)
	

					The	EMPNO	field	will	be	used	to	enter	the	employee	number	to	be	retrieved
and	displayed.

					Remember	that	by	default,	fields	defined	on	a	WEB_MAP	statement	are
input	capable.

					For	further	information	about	the	WEB_MAP	statement,	refer	to	the	LANSA
Technical	Reference	Guide.

					Note:	you	can	press	F1	on	any	statement	in	the	LANSA	editor	to	display
help	directly	from	the	LANSA	Technical	Reference	Guide.

					Your	completed	WebRoutine	should	appear	as	follows:
Webroutine	Name(Begin)	Desc('Select	Employee')
Web_Map	For(*output)	Fields(#empno)
Endroutine	

3.		Compile	your	WAM.

Step	3.	Open	the	Design	View
After	compiling	your	WAM,	you	can	edit	the	web	pages	for	your	WebRoutines.
1.		In	this	case	your	WAM	contains	just	one	WebRoutine.	If	you	select	the
Design	tab,	it	will	open	the	first	WebRoutine	in	the	Design	view.	You	will	use
other	methods	to	open	a	WebRoutine	in	the	Design	view	later	in	this	exercise.

					Your	web	page	should	look	like	the	following:

Step	4.	Add	a	Push	Button	Weblet
In	this	step	you	will	add	a	column	to	the	table	containing	employee	number,	and
drag	a	push	button	weblet	into	the	new	cell.
1.		Notice	that	the	table	is	shown	in	the	editor	with	a	double	line	border.	This	is
to	make	the	table	visible	for	editing.	The	table	will	not	have	a	border	when
you	run	the	WebRoutine	in	the	browser,	unless	you	have	edited	the	table
definition	and	defined	a	border.

					If	you	click	anywhere	in	this	table,	you	can	use	the	right	mouse	menu	(also
known	as	the	context	menu)	to	select	the	Table	Items	menu.	Hint:	Select	the
employee	number	input	box	and	move	the	cursor	right	to	position	into	the
table	cell.

					Select	the	Add	columns…	option	to	add	a	column(s)	to	the	right	hand	side	of
the	table.

					You	should	now	see	something	like	this:

					Note	that	the	new	column	contains	characters	**.	These	are	placeholders	so
that	it	is	easy	to	drag	and	drop	into	this	cell.	You	will	later	remove	them.

2.		On	the	Favorites	tab,	select	the	 	tab.	Ensure	that	Standard
Weblets	is	selected	using	the	dropdown	list	at	the	top	of	this	tab.	Drag	and
drop	a	Push	Button	into	the	new	cell	at	the	right	hand	side	of	the	table:

3.		Use	the	keyboard	cursor	keys	to	position	into	the	table	cell	that	now	contains
the	pushbutton	and	delete	the	two	asterisks	(they	have	done	their	job).	For
example	select	the	push	button	and	move	right	using	the	cursor	key.	You	are
now	positioned	in	the	table	cell	(you	have	the	<td>	tag	selected)	and	can
delete	the	*	character.

a.		Set	focus	on	the	push	button,	select	the	 	Details	view	to	show	the
weblet's	Properties.

b.		Set	the	caption	of	the	button	to	Details.	Note:	quotes	are	not	required.
c.		Set	the	on_click_wrname	property	to	Details	(note	that	you	have	not	yet
written	a	WebRoutine	named	'Details').

d.Click	the	ellipsis	buuton	for	the	submitExtraFields	property.	Complete	the
Design	of	submitExtraFields	Property	dialog:

Select	field	Name	EMPNO
Enter	Value	EMPNO	and	select	Field	radio	button
Click	OK.

					Your	Design	view	should	now	look	something	like	this:

4.		Save	your	changes.	In	the	Design	view	you	are	actually	editing	an	XSL
document.It	is	good	practice	to	save	your	work	regularly.

Step	5.	Create	WebRoutine:	Details
1.		Select	the	Source	tab	to	return	to	your	WAM's	RDMLX	code	and	add	a	new
WebRoutine	named	Details.

					This	WebRoutine	needs	to:
receive	a	value	for	the	EMPNO	field	from	the	browser
retrieve	the	employee	record	using	a	FETCH	command	from	the	file	PSLMST,
display	values	for	EMPNO,	GIVENAME,	SURNAME,	ADDRESS1,

ADDRESS2,	ADDRESS3,	POSTCODE,	PHONEHME,	PHONEBUS,
DEPTMENT,	SECTION,	SALARY,	STARTDTE	and	TERMDATE.	All	these
fields	should	be	mapped	for	output,	at	this	stage	you	are	writing	an	enquiry
WebRoutine.

					Hint	#1	:	Remember	it's	a	good	programming	technique	to	use	a
GROUP_BY	to	define	a	set	of	fields.	You	can	also	use	a	GROUP_BY	to	map
fields	into	or	out	of	the	WebRoutine.	Remember	to	set	all	fields	in	the	group
as	*OUTPUT	to	ensure	they	are	displayed	and	cannot	be	changed	(you	can
also	use	*OUT	to	save	on	typing).

					Hint	#2:	Always	create	a	GROUP_BY	command	with	the	F4	Command
Assistant.	This	dialog	allow	you	to	quickly	select	fields	from	a	file	definition.
You	can	then	also	define	the	*out	attribute	against	each	field,	while	using	this
dialog.

					To	do	this,	click	in	one	of	the	Fields	and	Attributes	values,	use	the	cursor	key
to	move	right,	then	type	space,	followed	by	*out.

					Hint	#3	:	Think	about	what	fields	are	"input"	to	the	WebRoutine	and	which
fields	are	"output"	from	the	WebRoutine	(to	be	displayed	on	the	web	form).
This	affects	the	For()	parameter	required	on	the	web_map.

					Hint	#4:	As	with	all	database	programming,	consider	how	to	handle	an	error
condition.	For	example	you	could	use	an		IF_STATUS	to	display	an	error
message	if	the	Employee	record	is	not	found.	The	LANSA	I/O	status	is
returned	as	field	IO$STS	and	the	IF_STATUS	command	compares	with	this
field.

					Hint:	#5:	In	a	WAM,	a	validation	error	on	an	I/O	command	will	branch	to
the	EndRoutine,	unless	you	have	written	VAL_ERROR(*next).

					Your	WAM	code	should	now	look	like	the	following:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')
Group_By	Name(#empdata)	Fields((#empno	*output)	(#surname	*out)	(#givename	*out)	(#address1	*out)	(#address2	*out)	(#address3	*out)	(#postcode	*out)	(#PHONEHME	*out)	(#PHONEBUS	*out)	(#DEPTMENT	*out)	(#SECTION	*out)	(#SALARY	*out)	(#STARTDTE	*out)	(#TERMDATE	*out))
WebRoutine	Name(begin)
Web_Map	For(*output)	Fields(#empno)
Endroutine
Webroutine	Name(details)	Desc('Employee	Details')	
Web_Map	For(*output)	Fields(#empdata)
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)	Val_Error(*next)
If_Status	Is_Not(*OKAY)
Message	Msgtxt('Employee	not	found')
Endif
Endroutine
End_Com
	

2.		Compile	your	WAM.	The	changes	you	made	to	the	"Begin"	WebRoutine	web
page	will	be	retained.	XSL	and	XML	will	be	built	for	your	new	WebRoutine
only,	as	part	of	the	compile.

3.		To	open	the	Design	view	for	the	Details	WebRoutine,	use	the	 	icon	in	the
source	code.	Your	web	page	should	look	like	the	following:

4.		The	fields	DEPTMENT	and	SECTION	may	have	a	dropdown	weblet
visualization	defined	in	the	Repository.	In	this	case	their	value	will	not	be
shown	when	they	are	output	fields.	You	will	be	using	field	visualizations	in	a
later	exercise.	If	their	value	is	not	currently	shown,	select	each	in	turn	and	use
the	context	menu	option	Change	to	Output	Field.	This	will	display	these
fields	as	normal	output	fields.

					Save	your	changes	using	the	Save	 	button	on	the	toolbar.
5.		On	the	Design	ribbon	click	on	the	Open	WebRoutine	button.

					Select	the	Begin	WebRoutine	and	click	OK	to	display	it	in	the	Design	view.

6.		On	the	toolbar,	click	the	 	Execute	icon	to	execute	the	WAM	in	the
browser.	Your	web	page	should	look	like	the	following:

					Enter	an	Employee	number	(for	example,	A0070,	A0090	or	A1234)	and
click	the	Details	button.

					The	details	web	page	should	then	be	displayed.

					To	select	another	employee,	return	to	the	Select	Employee	by	using	the
browser	back	button.	In	later	exercises,	you	will	learn	how	you	to	add	a
Return	button	on	the	Details	page	to	return	to	the	Begin	WebRoutine.

7.		You	have	completed	this	exercise.

Summary
Important	Observations

The	WEB_MAP	statement	allows	you	to	specify	which	incoming	and
outgoing	fields	the	WebRoutine	maps	between	the	web	page	and	the
WebRoutine.	The	WEB_MAP	statement's	FOR()	selector	specifies
whether	the	fields	are	mapped	as	an	incoming	(*INPUT),	outgoing
(*OUTPUT),	or	both	(*BOTH).
Only	fields	in	a	WEB_MAP	statement	with	a	FOR(*OUTPUT)	or
FOR(*BOTH)	can	be	placed	on	the	web	page.
Acceptable	field	attributes	are	*INPUT	and	*OUTPUT	(also	*in	and
*out).	If	unspecified,	the	default	is	*INPUT.	These	attributes	determine
whether	the	field	accepts	input,	as	input	text	box,	or	only	displays	output.

Note	an	important	distinction	here:
The	WEB_MAP	FOR()	parameter	determines	whether	fields	and	lists	are

mapped	into	the	WebRoutine,	out	of	the	WebRoutine	or	in	both	directions.
A	field's	*INPUT	or	*OUTPUT	attribute	determines	whether	the	field	will	be

input	capable	on	the	page	(the	default)	or	output	only.
Note	also	that	fields	with	an	*output	attribute	cannot	be	mapped	back	into
a	WebRoutine.

You	can	open	a	WebRoutine	in	the	Design	view	using	the	 icon	in	the
RDMLX	source
You	can	drag	and	drop	fields	and	lists	marked	FOR(*OUTPUT)	or
FOR(*BOTH)	onto	your	page	at	any	time	from	the	 	tab.

Tips	&	Techniques
Weblet	properties	can	be	assigned	string	literals	or	XPath	expressions.
The	XSL	processor	then	evaluates	the	XPath	expression.	XPath
expressions	accept	general	logical	comparison	operators	<,	>,	!=	<=,	>=
etc.,	as	well	as	mathematical	operators	*,/,+,-	etc.	
For	a	quick	reference	to	XPath	see:
www.mulberrytech.com/quickref/XSLT_1quickref-v2.pdf.
For	a	more	detailed	reference,	see	www.w3schools.com.
With	the	WAM	open	in	the	editor,	you	can	compile	from	the	Home	ribbon
or	open	the	Compile	options	dialog	from	the	Menu	button	on	the	Compile
group	on	the	Home	ribbon.

http://www.mulberrytech.com/quickref/XSLT_1quickref-v2.pdf
http://www.w3schools.com

You	can	also	use	a	context	menu	by	selecting	a	WAM	in	the	Repository
tab	or	Favorites/Last	Opened	tab.
For	a	new	WebRoutine,	it	is	not	necessary	to	do	a	compile	to	generate	the
XSL,	since	a		 	Build	also	generates	the	XML	/	XSL,	but	without	doing
a	full	compile.
Note:	XSL	can	be	generated	for	a	selected	WebRoutine	using	the	context
menu	option,	WebRoutine:	nnnnnnn	/	Generate	XSL	in	the	LANSA
Editor.

	

What	I	Should	Know
How	to	create	a	simple	enquiry	WAM.
How	to	open	the	Design	view	for	a	specific	WebRoutine.
What	is	generated	by	a	WAM	compile.
A	WAM	may	contain	more	than	one	WebRoutine
A	WebRoutine	name	may	be	up	to	20	characters	long.
There	is	one	WAM	layout	generated	for	each	WAM	with	the	name
xxx_layout,	where	xxx	=	the	WAM	name.
By	default,	fields	are	visualized	as	a	label	and	edit	box
Fields	are	displayed	in	a	table
A	WebRoutine	may	be	called	by	a	weblet	such	as	a	push	button,	via	its
on_click_wrname	property.
Field	names	or	a	group_by	may	be	used	to	define	fields	in	a	web_map.

WAM035	-	An	Employee	Update	WAM
Objectives
To	create	an	employee	update	WAM	iiiEmpUdate	–	Employee	Update,
starting	from	iiiEmpEnquiry	–	Employee	Enquiry.
All	the	screen	fields	except	employee	number	need	to	be	made	input	capable,
and	an	Update	button	will	be	added	to	the	Details	page.

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Create	WAM	iiiEmpUpdate	–	Employee	Update
Step	2.	Compile	your	WAM	and	complete	the	Details	web	page
Step	3.	Test	the	Employee	Update	WAM
Summary

Before	You	Begin

In	order	to	complete	this	exercise,	you	should	have	completed	all	the
preceding	exercises.

Step	1.	Create	WAM	iiiEmpUpdate	–	Employee	Update
1.		Select	WAM	iiiEmpEnquiry	–	Employee	Enquiry	on	your	Favorites	/	Last
Opened	tab	and	use	the	context	menu	to	Copy	it	to	create	iiiEmpUpdate	–
Employee	Update.

					On	the	Active	Designs	dialog,	select	only	the	Begin	WebRoutine:

					In	the	Active	Designs	you	selected	only	the	BEGIN	WebRoutine.	This	will
copy	the	XML	and	XSL	for	this	WebRoutine	only.	In	the	new	WAM
iiiEmpUpdate	you	are	redesigning	the	DETAILS	web	page,	making	most	of
the	fields	input	capable.	When	you	compile	iiiEmpUpdate	having	made	your
RDMLX	changes	to	the	DETAILS	WebRoutine,	the	correct	start	position	will
be	generated	for	the	new	DETAILS	web	page.

2.		Change	the	GROUP_BY	so	that	all	fields	are	input	capable	except	for
EMPNO,	currently	they	are	all	displayed	for	output	only.		Once	again	use	the

F4	Command	Assistant	to	make	these	changes.
3.		You	need	to	ensure	that	the	fields	are	both	sent	to	the	web	page	and	received
back	from	it,	since	this	time	you	are	displaying	and	updating	employee	fields.
Remember	that	fields	in	a	WEB_MAP	are	by	default	mapped	with	an
*INPUT	attribute.	In	order	to	display	and	update	employee	data,	your	fields
will	need	to	be	mapped	For(*both).

4.		The	Details	WebRoutine	now	needs	to	performs	two	roles.	It	FETCHs	a
record	when	invoked	from	the	Begin	WebRoutine,	and	UPDATEs	the	record
when	re-entered	via	an	Update	button.	The	field	STDRENTRY	will	be	used
to	control	which	logic	to	perform.

					Note	#1:	STDRENTRY	is	a	single	character	field	which	is	defined	as	the
default	field	returned	by	a	number	of	weblets.	This	is	simply	a	convention
and	you	may	prefer	to	replace	it	with	a	longer	field	which	supports	a	more
meaningful	input	values	such	as,	ENQUIRE,	UPDATE	or	DELETE.				

						Note	#2:	You	should	now	map	field	STDRENTRY	For(*both)	as	a	hidden
field.

5.		Modify	the	Details	WebRoutine	using	a	CASE	/	ENDCASE	loop	for	field
STDRENTRY,	so	that	when	the	Details	WebRoutine	is	called	from	the	Begin
WebRoutine	(returning	a	STDRENTRY	value	of	M)	the	employee	record	is
fetched.	When	the	Details	WebRoutine	is	re-entered	from	the	Details	web
page	a	value	of	U	should	perform	an	UPDATE	to	the	employee	file.	The
Update	push	button	will	return	STDRENTRY	with	a	value	of	'U'.

					The	Employee	Number	(EMPNO)	should	be	output	on	the	Details	page	so
that	the	key	field	cannot	be	changed.	An	output	field	on	the	web	page	cannot
be	mapped	back	into	the	next	WebRoutine.	Of	course	the	WAM	needs	the
Employee	Number	to	perform	the	update.

					This	is	a	common	situation	with	all	web	applications.	One	solution	is	to
output	a	hidden	work	field	containing	the	Employee	Number	and	use	this	to
perform	the	update.

6.		Define	a	work	field	EMPNOW	based	on	EMPNO.	Map	field	EMPNOW	for
*both	as	a	*hidden	field.	You	could	map	both	STDRENTRY	and	EMPNOW
for	all	WebRoutines	by	defining	this	map	at	the	WAM	level	(that	is
immediately	following	the	Define_Com).	WEB_MAPs	defined	at	the	WAM
level	are	global	and	apply	to	all	WebRoutines.

7.In	the	Details	webroutine,	when	called	from	the	Begin	webroutine,	set
EMPNOW	to	the	value	of	EMPNO.

8.When	the	Details	WebRoutine	is	called	by	the	Update	button,	set	EMPNO	to
the	value	of		EMPNOW.

9.		Consider	how	to	add	logic	to	the	Details	WebRoutine	to	return	to	the	Begin
page	if	the	update	is	successful.
Hint:	remember	the	TRANSFER	command	that	you	implemented	in	an
earlier	exercise.

10.		Your	WAM	should	now	look	something	like	the	example	following.	The
changed	and	new	code	compared	with	iiiEmpEnquiry	is	shown	in	red.
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')
Group_By	Name(#EMPDATA)	Fields((#empno	*out)	#SURNAME	#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME	#PHONEBUS	#DEPTMENT	#SECTION	#SALARY	#STARTDTE	#TERMDATE)
Define	Field(#EMPNOW)	Reffld(#EMPNO)
Web_Map	For(*BOTH)	Fields((#STDRENTRY	*HIDDEN)	(#EMPNOW	*HIDDEN)
WebRoutine	Name(begin)
Web_Map	For(*output)	Fields(#empno)
Endroutine
WebRoutine	Name(Details)	Desc('Employee	Details')
Web_Map	For(*BOTH)	Fields(#EMPDATA)
Case	(#STDRENTRY)
When	('=	M')
Fetch	Fields(#EMPDATA)	From_File(PSLMST)	With_Key(#EMPNO)	Val_Error(*NEXT)
If_Status	Is_Not(*OKAY)
Message	Msgtxt('Employee	not	found')
Transfer	Toroutine(Begin)
Endif
Change	Field(#EMPNOW)	To(#EMPNO)
When	('=	U')
#EMPNO	:=	#EMPNOW
Update	Fields(#EMPDATA)	In_File(PSLMST)	With_Key(#EMPNO)	Val_Error(*NEXT)
If_Status	Is(*OKAY)
Transfer	Toroutine(Begin)
Endif
Endcase
Endroutine
End_Com
	

Step	2.	Compile	your	WAM	and	complete	the	Details	web	page
1.		Compile	your	WAM	and	open	the	Begin	WebRoutine	in	the	Design	view.
Notice	that	it	is	a	copy	of	the	web	page	design	from	WAM	iiiWAM030,	that
you	included	in	the	Copy	process.	The	Details	push	button	is	already	defined.
a.		Select	Details	push	button	and	on	the	Details	tab,	click	on	the	Ellipsis
button	for	the	submitExtraFields	property	to	display	the	Design	of….
dialog.	Select	STDRENTRY	in	the	Name	column	and	enter	M	as	a	literal
in	the	Value	column

b.		Click	OK	to	close	the	dialog	and	confirm	the	change.
2.		Open	the	Details	WebRoutine	in	the	Design	view.	Your	web	page	should
look	like	the	following:

3.		As	before	the	Department	and	Section	fields	may	be	defined	in	the
Repository	with	a	dropdown	weblet	visualization.	You	will	be	using	these	in	a
later	exercise.	For	now	you	will	make	them	normal	input	fields.	To	do	this,
select	the	Department	dropdown	list	and	using	the	context	menu,	select
Replace	with	Input	Field.	Repeat	this	step	for	the	Section	field.

4.		Select	within	the	table	containing	the	fields,	and	use	the	context	menu	Table
Items	to	Add	Row….	A	row	will	be	added	to	the	bottom	of	the	table.

5.		Select	the	bottom	right	hand	cell	in	the	table	and	use	the	Detail	tab	to	set	its

align	property	to	right.	Drag	and	drop	a	push	button	weblet	into	this	bottom
right	hand	cell.	Ensure	that	the	button	is	selected,	and	use	the	Detail	tab	set	up
the	button	properties	as	follows:

Property Value

caption Update

on_click_wrname Details

submitExtraFields Field	Name:	STDRENTRY
Literal	Value:	U

	

Note:
a.		Select	the	on_click_wrname	property	and	set	its	value	from	the	dropdown
list.

b.		Then	use	the	Ellipsis	button	for	the	submitExtraFields	value,	to	open	the
Design	of…	dialog.

6.		Save	your	changes.
					Your	page	should	now	look	like	the	following:

Step	3.	Test	the	Employee	Update	WAM
1.		On	the	Design	ribbon	us	the	Open	Webroutine	button	to	open	the	Begin
WebRoutine	in	the	Design	view.

2.		Use	the	 	Execute	button	on	the	Home	ribbon	to	run	it	in	the	browser.
Ensure	that	you	can	display	and	update	an	employee.	When	your	update	is
successful	you	should	be	returned	to	the	Begin	web	page.

3.		Try	to	perform	an	invalid	update.	For	example,	make	the	surname	field
blank.	Note	that	the	Details	web	page	is	redisplayed	and	validation	errors	are
displayed	in	the	message	area	at	the	top	of	the	page.

Summary
Important	Observations

Fields	defined	in	a	WEB_MAP	will	be	input	capable	unless	the	field	has
an	*output	attribute
The	field	STDRENTRY	is	the	default	field	returned	by	many	weblets
such	as	a	hyperlink,	a	check	box	or	a	radio	button.
Push	buttons	are	may	return	a	number	of	fields	via	the	submitExtraFields
property.	You	must	use	the	Ellipsis	button	for	this	property	and	set	up	the
field(s)	and	values(s)	to	be	returned	in	the	Design	of…	dialog.	Always
specify	the	on_click_wrname	property	before	using	the	Design	of…
dialog.
WebRoutines	often	use	a	CASE	loop	for	field	STDRENTRY	to	handle
different	execution	logic.

Tips	&	Techniques
Web	applications	often	need	to	use	a	work	field	to	pass	back	a	value	for
*output	key	fields,	such	as	employee	number	in	this	example
Fields	may	be	changed	from	input	to	output	in	the	Design	view
You	can	open	a	WebRoutine	in	the	Design	view	from	the	RDML	source
editor	using	the	 	Open	WebRoutine	icon.	See	example	following:

	

What	You	Should	Now	Know
You	can	set	on_click_wrname	by	selecting	from	a	dropdown	list	–
provided	the	WebRoutine	is	defined	in	your	RDML	code.
How	to	code	a	simple	WAM	to	perform	display/update	logic.
How	to	use	the	TRANSFER	command	to	invoke	a	WebRoutine.

WAM040	-	Add	dropdown	lists	for	Department	and	Section
Objectives
The	fields	DEPTMENT	and	SECTION	are	defined	in	two	table	files	DEPTAB
and	SECTAB.	Sections	belong	to	a	department	and	the	SECTAB	file	is
therefore	keyed	on	DEPTMENT	and	SECTION.
In	this	exercise	you	will	replace	the	fields	DEPTMENT	and	SECTION	with	a
combo	box	weblet,	and	link	each	weblet	to	a	working	list	of	values	based	on	the
table	files	DEPTAB	or	SECTAB.	Because	sections	belong	to	a	department,	if
the	department	selected	is	changed,	the	list	of	sections	will	need	to	be	refreshed.
Your	finished	Details	page	will	look	like	the	following:

To	achieve	these	objectives,	you	will	complete	the	following:
Review	The	The	Dynamic	Select	Box	Weblet	and	Automatic	Updating.
Step	1.	Create	iiiWAM040	-	iii	Employee	Update	-	Enhanced
Step	2.	Add	Dynamic	Select	Boxes	to	the	Details	Web	Page
Step	3.	Make	the	Sections	Dropdown	list	dynamic

Summary

Before	You	Begin
In	order	to	complete	this	exercise,	you	should	have	completed	all	the	preceding
exercises.
The	Dynamic	Select	Box	Weblet
The	dynamic	select	box	weblet	produces	a	dropdown	list	containing	a	list	of
values.

The	list	of	values	is	usually	provided	by	a	working	list	output	by	the
WebRoutine.	Alternatively	the	weblet's	items	property	may	be	used	to	define	a
hard	coded	list	of	values.
The	list	may	contain	two	or	three	columns.	The	codefield	defines	a	value	to	be
returned	when	an	entry	is	selected	and	the	captionfield	defines	a	description	that
will	be	displayed	in	the	dropdown	list.	An	optional	third	column	defines	a
selector	field	that	defines	a	group	of	values	that	should	be	displayed	when	a
related	field	value	changes.
The	web_map	must	define	the	working	list	for	output	and	the	list	must	be
defined	as	using	JSON	format.	For	example:
Web_map	For(*output)	Fields((#deptdd	*json))

JSON	stands	for	JavaScript	Object	Notation.	JSON	is	a	lightweight	data-
interchange	format.	See	http://www.json.org/	for	more	information.
Automatic	Updating
The	dynamic	select	box	weblet	is	AJAX	enabled.	This	means	it	is	capable	of
invoking	a	specially	defined	"response"	WebRoutine	that	rebuilds	and	outputs
the	list	that	supports	the	dropdown	list.
The	dynamic	select	box	can	monitor	another	field	and	automatically	refresh
itself	whenever	that	field	is	updated.	If	the	weblet	has	been	filled	using	a

http://www.json.org/

working	list	then	you	will	need	to	create	a	JSON	WebRoutine	that	will	output	a
fresh	copy	of	the	working	list.	The	weblet	will	call	this	WebRoutine	each	time	it
needs	to	refresh.
Only	this	JSON	data	is	refreshed	and	the	rest	of	the	page	is	unchanged.	This
design	can	provide	very	responsive	web	applications.		For	example,	this
WebRoutine	rebuilds	a	list	of	sections	when	department	changes:
WebRoutine	Name(USectDD)	Response(*JSON)
Web_Map	For(*input)	Fields(#deptment)
Web_Map	For(*output)	Fields((#sectdd	*JSON))
#com_owner.buildDD2	I_Dept(#deptment)	I_Sect(#section)
Endroutine
*
Mthroutine	Name(BuildDD2)
Define_Map	For(*input)	Class(#deptment)	Name(#i_dept)
Define_Map	For(*input)	Class(#section)	Name(#i_sect)
#deptment	:=	#i_dept
Clr_List	Named(#sectdd)
Select	Fields(#sectdd)	From_File(sectab)	With_Key(#deptment)
Add_Entry	To_List(#sectdd)
Endselect
If	(#i_sect	*NE	*blanks)
#section	:=	#i_sect
Endif
Endroutine
	

These	properties	set	up	the	dynamic	select	box	weblet	to	automatically	call	a
WebRoutine	to	refresh:

updateOnFieldChange	–	the	name	of	the	field	to	be	monitored
updateWamName	–	the	name	of	the	WAM	to	invoke.	Only	required	if	not
the	current	WAM
updateWrName	–	the	name	of	the	WebRoutine	to	invoke
updateFieldsToSubmit	–	the	name	of	one	or	more	fields	to	be	submitted
when	the	monitored	field	changes.

Step	1.	Create	iiiWAM040	-	iii	Employee	Update	-	Enhanced
In	this	step	you	will	create	iiiEmpUpdate_MK2	–Employee	Update	Enhanced,
by	copying	WAM	iiiEmpUpdate	and	then	add	logic	to	handle	working	lists	for
departments	and	sections.
1.		Select	WAM	iiiEmpUpdate	on	the	Favorites/Last	Opened	tab	and	use	the
context	menu	to	copy	it.

2.		In	the	Create	WAM	dialog	define	your	new	WAM	as	–	iiiEmpUpdate_MK2
–	Employee	Update		Enhanced.

3.		In	the	Active	Designs	dialog,	leave	the	Begin	and	Details	WebRoutine
checked.	You	are	creating	a	copy	of	iiiEmpUpdate	including	its	layouts	
(XSL).

4.		In	the	new	WAM,	iiiEmpUpdate_MK2,	define	working	lists	for	department
and	section	fields.	Define	the	lists	immediately	following	the	Begin_com.
Your	code	should	look	like	the	following:
Def_List	Name(#deptdd)	Fields(#deptment	#deptdesc)	Type(*Working)
Entrys(*max)
Def_List	Name(#sectdd)	Fields(#section	#secdesc)	Type(*Working)
Entrys(*max)
	

5.		Create	a	method	routine	BuildDD1	to	clear	and	build	the	department	list,
DeptDD.	This	routine	will	require	the	following	logic:
a.		Map	for	input	a	variable	based	on	DEPTMENT.	This	will	enable	the
routine	to	position	the	list	to	the	current	value	of	DEPTMENT.

b.		Clear	the	list	DEPTDD
c.		Add	entries	to	DEPTDD	for	all	records	in	file	DEPTAB	–	Department
code	table

d.		Reset	DEPTMENT	to	the	input	variable	value.

					Your	completed	code	should	look	like	the	following:
Mthroutine	Name(BuildDD1)
Define_Map	For(*input)	Class(#deptment)	Name(#i_dept)
Clr_List	Named(#deptdd)
Select	Fields(#deptdd)	From_File(deptab)
Add_Entry	To_List(#deptdd)
Endselect
#deptment	:=	#i_dept
Endroutine
	

6.		Create	a	method	routine	BuildDD2	to	clear	and	build	the	sections	list,
SectDD.	This	routine	will	require	the	following	logic:
a.		Map	for	input	a	variable	based	on	DEPTMENT.	This	will	enable	the
routine	to	rebuild	the	list	of	sections	for		the	current	value	of	DEPTMENT.

b.		Map	for	input	a	variable	based	on	SECTION.	This	will	enable	the	routine
to	position	the	list	to	the	current	value	of	SECTION.

c.		Set	DEPTMENT	to	the	value	of	the	input	variable.
d.		Clear	the	list	SectDD
e.		Add	entries	to	the	list	from	the	SECTAB	–	Section	code	table,	using
DEPTMENT	as	key.

f.		If	the	passed	variable	for	SECTION	is	not	blank,	set	SECTION	to	the
value	of	the	input	variable

					Your	completed	code	should	look	like	the	following:
Mthroutine	Name(BuildDD2)
Define_Map	For(*input)	Class(#deptment)	Name(#i_dept)
Define_Map	For(*input)	Class(#section)	Name(#i_sect)
#deptment	:=	#i_dept
Clr_List	Named(#sectdd)
Select	Fields(#sectdd)	From_File(sectab)	With_Key(#deptment)
Add_Entry	To_List(#sectdd)
Endselect
If	(#i_sect	*NE	*blanks)
#section	:=	#i_sect
Endif
Endroutine

7.		In	this	step	you	will	make	changes	to	your	existing	Details	WebRoutine.
a.		Add	the	lists	DeptDD	and	SectDD	to	the	web_map	with	a	JSON	attribute.
Your	code	should	look	like	the	following:

Web_Map	For(*BOTH)	Fields(#EMPDATA	(#deptdd	*json)	(#sectdd	*json))
	
b.		At	the	end	of	the	Details	WebRoutine	invoke	the	new	method	routines,
passing	the	value	of	DEPTMENT	and	SECTION	as	required.	Your
WebRoutine	should	look	like	the	following.	Unchanged	code	isn't	shown.

WebRoutine	Name(Details)	Desc('Employee	Details')
Web_Map	For(*BOTH)	Fields(#EMPDATA	(#deptdd	*json)	(#sectdd	*json))
.	.	.	.
.	.	.	.
Endcase
#com_owner.BuildDD1	I_Dept(#deptment)
#com_owner.BuildDD2	I_Dept(#deptment)	I_Sect(#section)
Endroutine
	

8.		Compile	your	WAM.

Step	2.	Add	Dynamic	Select	Boxes	to	the	Details	Web	Page
In	this	step	you	will	add	dynamic	select	boxes	to	replace	the	department	and
section	code	fields,	and	test	your	WAM.
1.		Open	the	Details	WebRoutine	in	the	Design	view.	Drag	and	drop	a	Dynamic
Select	Box	weblet	onto	the	department	and	the	section	field	input	values.

					With	one	of	the	Dynamic	Select	Boxes	selected	in	the	Design	view,	select	the
Details	tab.	Notice	that	the	weblet	has	adopted	the	field	name	and	value:

2.		In	the	Design	view,	select	the	DEPTMENT	dynamic	select	box	weblet	and
use	the	Details	tab	to	define	its	properties	as	follows:

Property Value

listname DEPTDD

codeField DEPTMENT

captionField DEPTDESC

	

3.		Select	the	Section	dynamic	select	box	weblet	and	define	its	properties	as
follows:

Property Value
SECTDD

Listname

codeField SECTION

captionField SECDESC

	

					Note:	All	properties	can	be	selected	from	a	dropdown	list.
4.		Adjust	the	width	of	dynamic	select	dropdowns,	so	that	the	department	and
section	descriptions	will	be	visible.

5.		Save	your	changes	and	test	your	WAM	by	running	the	Begin	web	page.
					At	this	stage:
Both	the	dropdown	lists	should	be	populated,	the	section's	dropdown	list

containing	only	the	sections	for	the	current	department.
When	employee	details	are	displayed,	the	dropdown	lists	should	display	the

correct	value	for	the	employee.	You	could	use	your	WAM	iiiEmpUpdate	to	check
this.
If	you	select	a	different	section	and	update	the	employee,	the	update	should	be

processed	correctly.
The	section's	dropdown	list	is	populated	once	only,	so	if	you	change	department,

it	will	contain	an	incorrect	list	of	values.	You	will	correct	this	in	the	next	step.

Step	3.	Make	the	Sections	Dropdown	list	dynamic
In	this	step	you	will	define	a	new	response	WebRoutine	which	the	AJAX
enabled	Dynamic	Select	box	for	sections	will	invoke.
1.		Select	the	Source	tab.
2.		Create	a	new	response	WebRoutine,	that	will	be	invoked	by	the	sections
dynamic	select	box	when	DEPTMENT	changes.	The	requirements	for	this
WebRoutine	are:

The	WebRoutine	statement	must	have	a	Response()	keyword	with	a	value	of
*JSON
A	web_map	for	input,	field	DEPTMENT

A	web_map	for	output	of	the	list	SectDD,	defined	as	a	*JSON	list
Invoke	the	buildDD2	method	routine	passing	DEPTMENT	and	SECTION
Your	code	should	look	like	the	following:
WebRoutine	Name(USectDD)	Response(*JSON)
Web_Map	For(*input)	Fields(#deptment)
Web_Map	For(*output)	Fields((#sectdd	*JSON))
#com_owner.buildDD2	I_Dept(#deptment)	I_Sect(#section)
Endroutine

3.		Compile	your	WAM.
4.		Open	WebRoutine	Details	in	the	Design	view.
5.		Select	the	Section's	dynamic	select	box	and	set	up	additional	properties	as
follows:

updateOnFieldChange DEPTMENT

updateWrName uSectDD

updateFieldsToSubmit Field:	DEPTMENT
Field	Value:	DEPTMENT

	

6.		Set	the	updateFieldsToSubmit	property	by	selecting	the	Value	column	and
clicking	on	the	Ellipsis	 	button	to	open	the	Design	of…	property's	dialog.

a.		Select	a	field	Name	of	DEPTMENT
b.		For	Value,	enter	DEPTMENT.
c.		Select	the	Field	radio	button.

7.		Click	OK	to	close	the	dialog.
8					Save	your	WAM.
9.		Test	your	WAM	by	running	the	Begin	webroutine.	You	should	now	be	able
to	select	a	new	department	and	notice	that	the	sections	dropdown	list	is
refreshed.

					In	a	later	exercise,	you	will	learn	more	about	using	the	dynamic	select	box
weblet.

Summary
Important	Observations

The	Dynamic	Select	Box	weblet	is	AJAX	enabled.	Its	entries	can	be
defined	by	a	working	list	using	a	*JSON	attribute.
A	dynamic	select	box	can	dynamically	refresh	its	list	of	values	by	calling
a	response	WebRoutine	when	a	monitored	field	value	changes.	The
response	WebRoutine	must	have	a	Response(*JSON)	keyword.

Tips	&	Techniques
Method	routines	can	be	used	in	a	Web	Application	Module.

What	You	Should	Now	Know
How	to	implement	dynamic	select	box	weblets	using	a	working	list.
How	to	setup	a	dynamic	select	box	to	refresh	its	list	of	values	from	the
server.

WAM045	-	A	Dynamic	Selector	Dropdown	list	using	a	Select	Field
Objectives
This	example	changes	the	implementation	of	the	Dynamic	Selector	Dropdown
list	weblet	for	section	code,	by	making	use	of	a	third	field	in	the	sections
working	list.	The	working	list	will	now	be	defined	as:
Def_List	Name(#sectdd)	Fields(#deptment	#section	#secdesc)	Type(*Working)
	

The	list	of	sections	will	now	be	built	once	only	and	the	selector	field
(DEPTMENT)	will	enable	the	weblet	to	select	the	correct	values	to	show,	based
on	the	value	of	field	DEPTMENT.	A	response	WebRoutine	for	the	Dynamic
Selector	for	SECTIONS	is	no	longer	required.
The	Dynamic	Selector	weblet	for	field	SECTION	will	now	to	be	set	up	to	only
display	values	that	match	the	selector	field,	DEPTMENT.
The	list	SECTDD	will	now	contain	all	values	from	the	table	SECTAB.	This
technique	works	well	if	the	total	number	of	sections	is	small,	as	in	this	case.
However,	if	the	possible	list	of	department	codes	and	section	codes	is	large
(1,000's	for	example	rather	than	100's),	then	the	solution	implemented	in
exercise	WAM040	will	be	a	better	solution.	As	usual	there	is	a	trade	off	to
consider.	Is	it	better	to	output	all	values	of	section	to	the	web	page	once,	or	to
refresh	the	list	of	sections	every	time	the	department	code	changes?	Bear	in
mind	that	this	second	approach	is	itself	efficient	because	it	uses	AJAX
techniques	to	only	refresh	the	sections	list	and	not	the	whole	web	page.
To	demonstrate	this	technique	you	will	complete	the	following	:
Step	1.	Create	WAM	iiiDynamSelector	–	Dynamic	Selector	using	Select	Field
Step	2.	Setup	the	Dynamic	Selector	Dropdown	list	for	Sections
Summary

Before	You	Begin
You	should	complete	all	preceding	exercises.

Step	1.	Create	WAM	iiiDynamSelector	–	Dynamic	Selector	using
Select	Field
1.		Create	WAM	iiiDynamSelector	–	Dynamic	Selector	using	Select	Field	by
copying	WAM	iiiEmpUpdate_MK2	including	the	Active	Designs:

2.		Change	the	definition	of	the	SECTDD	list	to	include	DEPTMENT:
Def_List	Name(#sectdd)	Fields(#deptment	#section	#secdesc)	Type(*Working)
	

3.		Remove	the	USect_DD	WebRoutine,	which	is	no	longer	required.
4.		In	the	Details	webroutine,	move	the	code	to	invoke	the	BuildDD2	method
routine	to	the	position	shown,	at	the	end	of	the	When	(=	M)	logic.	The	moved
code	is	shown	in	red.	This	routine	will	be	now	be	invoked	once	only,	when
the	Details	WebRoutine	is	initially	called	from	the	Begin	web	page.
WebRoutine	Name(Details)	Desc('Employee	Details')
Web_Map	For(*BOTH)	Fields(#EMPDATA	(#deptdd	*json)	(#sectdd	*json))
Case	(#STDRENTRY)
When	('=	M')
Fetch	Fields(#EMPDATA)	From_File(PSLMST)	With_Key(#EMPNO)	Val_Error(*NEXT)
If_Status	Is_Not(*OKAY)
Message	Msgtxt('Employee	not	found')
Transfer	Toroutine(Begin)
Endif
Change	Field(#EMPNOW)	To(#EMPNO)
	
#com_owner.BuildDD2	I_Dept(#deptment)	I_Sect(#section)
	

5.		Change	the	BuildDD2	method	routine	to	match	the	following:

					The	Select	now	reads	all	records	(no	With_key(#deptment)).

					An	If	/	Endif	block	has	been	removed
					The	code	shown	in	red	has	been	added.
Mthroutine	Name(BuildDD2)
Define_Map	For(*input)	Class(#deptment)	Name(#i_dept)
Define_Map	For(*input)	Class(#section)	Name(#i_sect)
Clr_List	Named(#sectdd)
*	Read	all	Section	records	
Select	Fields(#sectdd)	From_File(sectab)
Add_Entry	To_List(#sectdd)
Endselect
Loc_Entry	In_List(#sectdd)	Where((#deptment	=	#i_dept)	And	(#section	=	#i_sect))
Endroutine
	

					The	LOC_ENTRY	statement	sets	the	values	of	DEPTMENT	and	SECTION
to	the	values	retrieved	for	the	current	employee.

6.		Compile	your	WAM.

Step	2.	Setup	the	Dynamic	Selector	Dropdown	list	for	Sections
1.		Open	the	Details	WebRoutine	in	the	Design	view.
2.		Select	the	Dynamic	Selector	weblet	for	field	SECTION	and	change	its
properties	as	shown:

Property Value

listname SECTDD

selectorField DEPTMENT

selectorValueField DEPTMENT

codeField SECTION

captionField SECTDESC

updateOnFieldChange DEPTMENT

updateWrName 	

updateFieldsToSubmit 	

	

					Note	that	the	updateWrName	and	updateFieldToSubmit	properties	no
longer	have	a	value.

3.		Save	your	changes
4.		Execute	your	WAM	in	the	browser	to	test	(run	the	begin	WebRoutine).

a.		Change	department	and	section	code	values.
b.		Redisplay	the	employee	and	ensure	that	the	changes	have	been	correctly
processed.

Summary
Important	Observations

As	noted	in	the	Objectives	section,	choosing	the	best	technique	to	use
requires	a	good	understanding	of	your	database	and	application.

Tips	&	Techniques
The	Dynamic	Select	weblet	may	be	used	in	a	number	of	other	ways.	See
the	Web	Application	Modules	guide	for	further	details.
For	example,	change	the	size	property	to	5,	to	display	section	codes	as
shown.

The	weblet	also	supports	multiple	selections	and	return	a	list	of	fields	to	a
WebRoutine.
The	updateFieldsToSubmit	may	be	a	list	of	field	names,	rather	than	a
single	value.

What	You	Should	Know
You	should	now	be	aware	that	the	Dynamic	Selector	weblet	has	a	large
number	of	features	that	may	be	used	to	enhance	your	user	interface	and
the	applications	functionality.

WAM050	-	A	Section	Maintenance	Application
Objectives

This	exercise	introduces	an	application	that	includes	a	list	which	is	used
to	present	a	result	set	which	enables	selection	of	a	single	entry	to	maintain
a	record.
To	write	a	Section	Maintenance	WAM	to	display,	update,	delete	and	add
sections.	The	main	page	will	be	based	on	a	list	of	sections	for	the	selected
department.
To	show	how	lists	can	be	used	in	a	WebRoutine	web	page.
To	implement	an	example	of	the	AutoComplete	weblet.

Your	completed	application	will	look	like	the	following:

To	achieve	these	objectives	you	will	complete	the	following	steps:

Step	1.	Create		iiiSecMaint	-	Section	Maintenance	WAM
Step	2.	Add	a	Details	WebRoutine
Step	3.	Create	iiiSecAdd	-	Add	Section	WAM
Step	4.	Complete	the	AddSect	WebRoutine
Step	5.	Set	up	the	'New	Section'	button	on	the	Begin	page	for	ii	SecMainti
Summary

Before	You	Begin
In	order	to	complete	this	exercise,	you	should	have	completed	all	the
preceding	exercises.

The	AutoComplete	Weblet
The	AutoComplete	weblet	provides	suggestions	while	you	type	into	the	field.
The	suggestions	are	provided	by	a	WebRoutine	using	Ajax.

A	sourceWrName	property	defines	a	called	WebRoutine,	which	supports	the
AutoComplete	weblet	by	returning	a	list	as	JSON	data.	The	WebRoutine	must
have	a	Response(*JSON)	keyword.	The	weblet	calls	this	WebRoutine	when	you
type	into	the	input	box.
A	listName,	labelField	and	ValueField	define	the	list	of	values	that	the
AutoComplete	weblet	displays.
Note:	The	AutoComplete	weblet	in	this	exercise	will	display	matching
department	codes	by	reading	the	file	DEPTAB	using	Generic(*yes).	This
provides	a	simple	introduction	to	implementing	this	weblet,	but	does	not
provide	a	realistic	example.	Since	the	file	DEPTAB	has	a	very	small	number	of
records	a	complete	list	of	values	shown	in	a	combo	box	would	be	a	better
implementation.	You	will	also	use	the	Dynamic	List	Box	that	was	part	of	the
previous	exercise.

Step	1.	Create		iiiSecMaint	-	Section	Maintenance	WAM
To	design	and	develop	your	WAM	applications,	just	like	any	other	new
application,	you	need	to	begin	by	focusing	on:

What	is	the	business	process?
The	user	interface
A	new	web	application	will	require	many	WAMs	and	many	web	pages.
Start	by	drawing	up	a	plan	of	the	web	site	and	the	navigation	it	will
require.
What	WebRoutines	will	be	required?
What	working	lists,	group_bys,	working	fields	need	to	be	defined?
What	weblets	can	be	used	to	enhance	the	user	interface?
What	working	lists	will	be	required	to	support	these	weblets?
How	do	fields	and	lists	need	to	be	mapped	into	and	out	of	each
WebRoutine?
In	a	new	WAM	create	your	WebRoutines	and	WEB_MAPS	before	coding
your	application	logic
When	you	add	a	new	WebRoutine	to	a	WAM,	the	XML/XSL	will	be	built
at	compile	time.

Avoid	creating	very	large	WAMs	with	too	many	WebRoutines.	Each	time	a
WebRoutine	is	invoked	from	the	browser,	the	WAM	loads	and	then	unloads.
Many	small	WAMs	is	a	much	better	design	and	will	be	easier	to	maintain.

1.		Create	a	new	WAM.
					Name:	iiiSecMaint
					Description:	Section	Maintenance
					Layout	weblet:	iiilay01
					Consider	the	first	two	screen	captures	shown	in	the	Objectives	section	that
show	the	Begin	WebRoutine	in	operation.	This	WebRoutine	initially	displays
a	list	of	sections	that	is	empty	and	an	input	field	for	a	department	code.	An
AutoComplete	weblet	will	replace	the	Department	Code	input	field.	A	Select
push	button	invokes	the	Begin	WebRoutine	that	builds	a	list	of	sections	for
the	department	and	displays	this	list.

					Consider	what	working	lists	will	be	needed	to	handle	this	web	page	and	what
logic	will	be	necessary?
a.		Define	a	work	field	DEPT_IN	based	on	DEPTMENT,	this	will	be	the
department	code	input	field.

b.		Define	working	list	DEPTS,	to	support	the	AutoComplete	weblet.	The	list
contains	the	field	DEPTMENT	only.

c.		Define	working	list	SECTLIST,	to	support	the	list	of	sections	containing
STDSELECT,	SECTION,	SECDESC,	SECADDR1.	Note:	All	fields	apart
from	STDSELECT	should	have	an	*output	attribute.

d.		Map	STDRENTRY	globally	as	a	hidden	field.
2.		Define	a	WebRoutine	named	Begin,	based	on	the	following	pseudo	code

Map	field	DEPT_IN	for	*	bothMap	for	*output	the	Sections	working
list,	SECTLISTCase	of	field	STDRENTRY*	Select	Push	ButtonWhen
=	Sclear	list	SECTLISTselect	fields	in	working	list	from	the	section
table	with	the	key	dept_inadd	entry	to	working	listend	of	select
loopend	of	case	loop
3.		Define	a	response	WebRoutine	AutoComplete	to	build	the	list	DEPTS	to
support	the	AutoComplete	weblet

Define	WebRoutine	AutoComplete	with	a	Response(*JSON)
keywordMap	DEPT_IN	for	inputMap	list	DEPTS	for	output	as	a
*JSON	listConvert	the	first	character	of	DEPT_IN	to	uppercaseclear
list	of	departmentsSelect	DEPTMENT	from	the	file	DEPTAB	with	the
key	DEPT_IN,	with	a	Generic(*yes)	keywordAdd	an	entry	to	the
department	listend	selectend	subroutine
					Your	completed	code	should	now	look	like	the	following:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')
Define	Field(#dept_in)	Reffld(#deptment)
Def_List	Name(#depts)	Fields(#deptment)	Type(*Working)
Def_List	Name(#sectlist)	Fields(#STDSELECT	(#SECTION	*out)	(#SECDESC	*out)	(#SECADDR1	*out))	Type(*Working)
Web_Map	For(*both)	Fields((#stdrentry	*hidden))
WebRoutine	Name(Begin)	Desc('Select	a	Department')
Web_Map	For(*both)	Fields(#dept_in	#sectlist)
Case	(#stdrentry)

When	(=	S)
Clr_List	Named(#sectlist)
Select	Fields(#sectlist)	From_File(sectab)	With_Key(#dept_in)
Add_Entry	To_List(#sectlist)
Endselect
Endcase
Endroutine
WebRoutine	Name(AutoComplete)	Response(*JSON)
Web_Map	For(*input)	Fields(#dept_in)
Web_Map	For(*output)	Fields((#depts	*json))
#dept_in	:=	#dept_in.substring(1,	1).upperCase
Clr_List	Named(#depts)
Select	Fields(#deptment)	From_File(deptab)	With_Key(#dept_in)	Generic(*yes)
Add_Entry	To_List(#depts)
Endselect
Endroutine
End_Com
	

4.		Compile	your	WAM	and	open	the	Begin	WebRoutine	in	the	Design	view.
					Your	web	page	should	look	like	the	following:

5.		Drag	and	drop	an	jQuery	UI	AutoComplete	weblet	onto	the	Department
Code	field.	Select	the	Details	tab	and	set	up	the	AutoComplete	properties:

Property Value

sourceWrName AutoComplete

Listname DEPTS

valueField DEPTMENT

	

6.	If	the	Select	column	(field	STDSELECT)	is	shown	as	an	input	field	(i.e.	it
does	not	have	a	clickable	image	weblet	field	visualization	defined	in	the
Repository),	drop	a	Clickable	Image	weblet	into	the	field	in	the	first	column.

7.		With	the	clickable	image	selected,	select	the	Details	tab	and	set	up	its
properties:

Property Value

currentrowhfield SECTION

currentrownumvalue $SECTION

Rentryvalue S

tooltip Select	a	Section

on_click_wrname Details

	

Note:

To	return	a	field	value	from	a	list	define	the	value	as	$FIELDNAME	(upper
case).	i.e.	$SECTION	in	this	case.
Although	'SECTION'	is	an	*output	field	in	the	list,	you	can	return	a	field
value	via	the	clickable	image	weblet.
The	Details	WebRoutine	is	not	yet	defined	in	your	WAM,	so	you	need	to
type	in	this	value	for	the	on_click_wrname	property.

8.		Select	a	clickable	image	weblet.	Set	the	relative_image_path	by	clicking
in	the	Value	column,	and	then	using	the	Elipsis	 	button	and	select	the
/normal/16	folder	and	then	select	any	suitable	image.	See	the	example
following:

9.		Select	the	column	heading	"Std	*WEBEVENT	template	field"	and	delete	it.
10.	If	the	field	SECTION	has	a	dropdown	field	visualization	defined	in	the
Repository,	it	will	not	be	displayed	in	the	list	–	since	it	is	an	*output	field.	If
necessary,	select	the	field	SECTION	in	the	list	and	use	the	context	menu	to
select	the	option	Replace	with	an	Output	Field.

11.	Select	anywhere	in	the	table	containing	"Department	Code"	and	the
AutoComplete	weblet.	Use	the	context	menu,	and	select	the	option	Table
Items	/	Add	columns…	to	add	one	column	to	the	right.	Add	a	push	button
into	this	new	column	and	remove	the	*	placeholder	characters	from	this	cell.

					Set	up	the	push	button	properties:

Property Value

caption Select

on_click_wrname Begin

submitExtraFields Field	Name:	STDRENTRY
Literal	Value:	S

	

					Note:	Whenever	possible,	set	a	weblet	property	value	by	selection	from	its
dropdown	list.	Using	a	list	of	values	provided	by	the	editor,	when	available,
will	help	to	minimize	errors	in	your	XSL.

12.	Save	your	changes	and	run	the	web	page	in	the	browser.	Your	page	should
look	like	the	following:

Step	2.	Add	a	Details	WebRoutine
1.		This	WebRoutine	will	support	display,	update	and	delete	of	the	selected
Section	record.	Consider	the	logic	that	needs	to	be	supported	by	this
WebRoutine.
a.		What	fields	and	lists	need	to	be	mapped?
b.		How	to	control	the	code	to	be	executed	each	time	this	WebRoutine	is
invoked?

c.		What	work	fields	will	be	required	to	retain	key	values?
d.		Whether	to	transfer	control	back	to	the	Begin	WebRoutine	after	a
successful	update	or	deletion?

2.		At	the	WAM	level,	define	a	work	field	and	a	Group_by	statement.
a.		Define	a	work	field,	SECTW	based	on	field	SECTION.	This	will	retain
current	value	of	SECTION.

b.		Define	a	Group_by,	SEC_DETL	for	all	fields	in	the	file	SECTAB.	Fields
DEPTMENT	and	SECTION	should	have	a	display	attribute	of	*output.

3.		Create	a	Details	WebRoutine	based	on	the	outline	following:
Map	for	*both	the	Group_by	for	Section	fields	and	fields	DEPT_IN	and

SECTW.	Fields	DEPT_IN	and		SECTW	should	be	hidden	fields.
Use	field	STDRENTRY	to	determine	why	the	WebRoutine	was	called.
When	called	initially,	fetch	the	Section	record	and	save	department	and	section

code	in	work	fields.
When	called	for	update,	set	up	department	and	section	code	from	work	fields	and

update	the	record.
If	the	update	is	successful,	output	a	message	and	transfer	to	the	Begin

WebRoutine.	Consider	how	the	Begin	routine	should	redisplay	Sections	for	current
department.
Output	a	message	if	the	update	is	not	successful.
When	called	for	delete,	set	up	department	and	section	code	from	work	fields,

delete	the	record,	if	successful,	output	a	message	and	transfer	to	Begin
WebRoutine.
Output	a	message	if	the	delete	is	not	successful.

					Your	complete	code	for	the	Details	WebRoutine	should	look	like	the
following:
WebRoutine	Name(Details)	Desc('Section	Details')
Web_Map	For(*BOTH)	Fields(#SEC_DETL	(#SECTW	*HIDDEN)	(#dept_in	*hidden))
Case	Of_Field(#STDRENTRY)
*	Initial	call	from	clickable	image
When	Value_Is(=	S)
Fetch	Fields(#SEC_DETL)	From_File(SECTAB)	With_Key(#dept_in	#SECTION)
#dept_in	:=	#DEPTMENT
#SECTW	:=	#SECTION
*	Update	button	clicked
When	Value_Is(=	U)
*	ensure	that	DEPTMENT	and	SECTION	can	be	redisplayed	if	a	validation	error	occurs
#DEPTMENT	:=	#dept_in
#SECTION	:=	#SECTW
Update	Fields(#SEC_DETL)	In_File(SECTAB)	With_Key(#dept_in	#SECTW)	Val_Error(*NEXT)
If_Status	Is(*OKAY)
#STDRENTRY	:=	L
Message	Msgtxt('Section	changed')
Transfer	Toroutine(BEGIN)
Else
Message	Msgtxt('Error	occurred	on	update')
Endif
*	Delete	button	clicked
When	Value_Is(=	D)
Delete	From_File(SECTAB)	With_Key(#dept_in	#SECTW)	Val_Error(*NEXT)
If_Status	Is(*OKAY)
#STDRENTRY	:=	S
Message	Msgtxt('Section	deleted')
Transfer	Toroutine(BEGIN)
Else
Message	Msgtxt('Error	occurred	on	deletion')
Endif
Endcase
Endroutine
	

4.		Recompile	your	WAM	and	open	the	Design	view	for	the	Details
WebRoutine.	Your	page	should	look	like	the	following:

5.		If	the	Department	and	Section	code	fields	have	a	combo	box	field
visualization	weblet	defined	in	the	Repository,	select	each	of	them	and	use
the	context	menu	to	Replace	with	output	field.	Fields	with	a	visualization
weblet	defined,	will	not	display	on	the	page	in	"output"	mode.

6.		Use	the	context	menu	to	Add	a	row	to	the	bottom	of	the	table,	and	drop	a
Push	Button	with	Image	into	each	cell.

7.		Set	up	the	push	button	properties	based	on	the	following:

Property Value

caption Update

left_relative_image icons/normal/16/check_mark_16.png

on_click_wrname Details

submitExtraFields Field	Name:	STDRENTRY
Literal	Value:	U

caption Delete

left_relative_image icons/normal/16/cross_16.png

on_click_wrname Details

submitExtraFields Field	Name:	STDRENTRY
Literal	Value:	D

	

					The	left_relative_image	and	submitExtraFields	properties	should	be	selected
using	the	Ellipsis	button	and	the	Design	of…	dialog.

8.		Save	your	web	page	design.
					Your	completed	design	should	look	like	the	following:

9.		Re-test	your	WAM.	Check	what	happens	on	a	successful	update	or	delete.
Check	what	happens	after	an	update	with	a	validation	error.

Step	3.	Create	iiiSecAdd	-	Add	Section	WAM
This	simple	logic	could	be	incorporated	into	WAM	iiiSecMaint,	however,	you
will	instead	create	a	new	WAM	to	illustrate	building	a	multi-WAM	application.
1.		Review	the	following	web	page:

The	AutoComplete	weblet	will	support	the	department	code	input	field
All	other	fields	will	be	entered
A	New	button	will	be	added	to	the	Begin	page	for	iiiSecMaint	to	call	iiiSecAdd.
The	Add	Section	WAM	will	return	to	Section	Maintenance	Begin	WebRoutine

when	a	section	is	successfully	added.
Section	Maintenance	Begin	WebRoutine	will	then	list	the	sections	for	the

department	for	which	a	section	was	added.
2.		Create	a	new	WAM	iiiSecAdd–	Add	Section	using	Layout	Weblet	iiilay01.
Consider	what	common	definitions	and	logic	you	could	copy	from
iiiSecMaint.	What	WEB_MAPs	will	be	required	in	the	'AddSect'
WebRoutine?

3.		Create	a	basic	outline	for	your	WAM	based	on	the	following	pseudo	code

Define	a	work	field	DEPT_IN	based	on	DEPTMENTDefine	a

Group_by	of	all	fields	for	the	Section	table.	All	fields	should	be	input
capableMap	field	STDRENTRY	for	*both,	as	a	*hidden	field
Define	a	WebRoutine	"AddSect"
Map	field	DEPT_IN	for	*bothMap	group_by	for	Section	fields	for
*both,	all	fields	should	be	input	capable.	DEPTMENT	should	be	a
hidden	fieldEnd	routine
					Your	code	should	now	look	like	this:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')
Define	#DEPT_IN	Reffld(#DEPTMENT)
Group_By	Name(#SECT_DETL)	Fields((#DEPTMENT	*hidden)	#SECTION	#SECDESC	#SECADDR1	#SECADDR2	#SECADDR3	#SECPCODE	#SECPHBUS)
*
Web_Map	For(*BOTH)	Fields((#STDRENTRY	*HIDDEN))
*
WebRoutine	Name(AddSect)	Desc('Add	Section')
Web_Map	For(*BOTH)	Fields(#Dept_In	#SECT_DETL)
*	----------------------------
*	Add	section	logic	goes	here
*	----------------------------
Endroutine
End_Com
		

Step	4.	Complete	the	AddSect	WebRoutine
1.		Your	AddSect	WebRoutine	will	handle	the	initial	call	from	the	Begin	web
page	in	iiiSecMaint	and	the	call	from	the	Save	button'	on	the	AddSect	web
page	itself.

					Create	your	logic	for	WebRoutine	AddSect	based	on	the	following	pseudo
code:

CASE	of	STDRENTRY*	when	called	from	Begin	WebRoutineWhen
=	NChange	DEPTMENT	to	DEPT_IN	(value	passed	in	from
iiiSecMaint)Change	SECTION	to	*null	(value	is	passed	in	from
iiiSecMaint)*	when	Save	button	clicked		When	=	AChange
DEPTMENT	to	DEPT_IN	(the	input	value	on	the	web	page)Insert	to
Section	fileIf	Status	is	*OKAYOutput	messageChange	STDRENTRY
to	LTransfer	to	WebRoutine	iiiSecMaint.BeginEndifEndcase
					Your	completed	RDMLX	code	should	look	like	the	following:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')
Group_By	Name(#SECT_DETL)	Fields((#DEPTMENT	*hidden)	#SECTION	#SECDESC	#SECADDR1	#SECADDR2	#SECADDR3	#SECPCODE	#SECPHBUS)
Define	Field(#dept_in)	Reffld(#deptment)
Web_Map	For(*BOTH)	Fields((#STDRENTRY	*HIDDEN))
WebRoutine	Name(ADDSECT)	Desc('ADD	SECTION')
Web_Map	For(*BOTH)	Fields(#dept_in	#SECT_DETL)
Case	Of_Field(#STDRENTRY)
*	New	button	clicked	in	iiiSecMaint
When	(=	N)
#deptment	:=	#dept_in
#SECTION	:=	*NULL
*	Add	button	clicked
When	(=	A)
#deptment	:=	#dept_in
Insert	Fields(#SECT_DETL)	To_File(SECTAB)	Val_Error(*NEXT)
#STDRENTRY	:=	*NULL
If_Status	Is(*OKAY)
Message	Msgtxt('Section	successfully	added')
#stdrentry	:=	L
Transfer	Toroutine(#iiiSecMaint.BEGIN)

Endif
Endcase
Endroutine
End_Com	
	

2.		Compile	your	WAM	and	open	in	the	Design	view.	It	should	look	like	the
following:

3.		If	necessary	change	the	Department	Code	to	an	input	field.	Drop	an
AutoComplete	weblet	onto	the	department	field	value.	Set	up	the	weblet
properties	based	on:

Property Value

sourceWamName iiiSecMaint

sourcewrName AutoComplete

listName DEPTS

valueField DEPTMENT

	

					Note	that	the	AutoComplete	weblet	is	calling	the	response	WebRoutine	you
created	in	WAM	iiiSecMaint.

4.		The	Section	field	should	be	an	input	field,	change	it	if	necessary.
5.		Add	a	row	to	the	bottom	of	the	table	and	add	a	push	button	with	image	to	the
right	hand	cell.	Make	the	cell	right	align.	Set	up	the	push	button	properties	as
shown:

Property Value

caption Save

left_relative_image icons/normal/16/check_mark_16.png

on_click_wrname AddSect

submitExtraFields Field	Name:	STDRENTRY
Literal	Value:	A

	

6.		Save	these	changes.	Your	completed	AddSect	page	should	look	like	the
following:

Step	5.	Set	up	the	'New	Section'	button	on	the	Begin	page	for	ii
SecMainti
1.		Open	the	Begin	WebRoutine	in	WAM	iiiSecMaint	in	the	Design	view.

a.		Add	a	new	row	to	the	table	containing	the	Department	AutoComplete
weblet.

b.		Set	the	left	hand	cell	in	the	new	row,	to	align	left.
c.		Add	a	button	with	image	to	the	bottom	left	hand	cell.
					Hint:	If	you	have	a	problem	selecting	inside	the	table,	select	the	push
button	and	move	the	cursor	right,	to	position	in	the	table	cell.	Enter	two	*
characters.	Now	right	click	and	use	Table	Items	/	Add	Rows…

d.		Delete	the	place	holder	characters.
2.		Set	up	the	New	Section	push	button	properties	as	shown:

Property Value

Caption New	Section

left_relative_image icons/normal/16/star_16.png

On_click_WamName iiiSecAdd

On_click_wrname AddSect

submitExtraFields
	

Field	Name:	STDRENTRY
Field	Value:	N

	

a.		Adjust	the	width	of	the	push	button	to	display	the	caption	as	one	line.
b.		Save	your	changes.

					Your	completed	Begin	page	should	look	like	the	following:

3.		Save	these	changes	and	run	the	Begin	WebRoutine	for	WAM	iiiSecMaint	to
test	iiiSecAdd.

Adding	a	new	section	should	return	to	the	Select	a	Department	web	page
and	display	a	list	of	sections	for	the	department	concerned.
Trying	to	add	a	section	with	invalid	or	missing	data	should	redisplay	the
Add	Section	web	page,	with	error	messages.

Summary
Important	Observations

A	working	list	is	displayed	on	the	web	page	as	a	table
Columns	in	the	list	may	be	input	capable	or	output	only.
Columns	in	the	list	table	may	have	weblets	applied	to	them.
Like	fields,	lists	may	be	mapped	for	*output,	*input	or	*both.
The	clickable	image	weblet	can	return	a	current	row	field	and	value	and	a
STDRENTRY	value	to	the	WebRoutine	it	calls.
A	second	WAM	can	be	invoked	simply	by	specifying	the
on_click_wamname	property.
The	AutoComplete	weblet	can	be	implemented	to	invoke	a	response
WebRoutine	in	an	existing	WAM,	as	used	in	exercise	WAM050	-	A
Section	Maintenance	Application.

Tips	&	Techniques
Display,	update	and	delete	logic	can	easily	be	included	in	a	single
WebRoutine	by	using	a	CASE	loop	for	field	STDRENTRY
Note	that	anchor	weblets	can	also	be	used	on	fields	in	a	browselist,	to
select	a	row	–	see	later	exercise.

What	You	Should	Now	Know
How	working	lists	are	handled	in	the	web	page.
How	to	select	an	entry	from	a	browselist.
How	to	design	an	application	with	a	number	of	WAMs.

WAM055	-	Using	LANSA	Debug
Objectives
To	learn	how	to	use	interactive	debug	with	WAMs.
Initially	this	exercise	assumes	you	are	running	your	WAMs	locally.	A	later	step
will	demonstrate	running	debug	as	the	WAM	executes	on	the	IBM	i	server.
To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Get	Started	with	Debug
Step	2.	Use	Breakpoints
Step	3.	Use	Break	on	Value	Condition
Step	4.	Use	Debug	when	the	WAM	is	running	on	the	server
Summary

Before	You	Begin
In	order	to	complete	this	exercise,	you	must	have	completed	exercise
WAM050.

Step	1.	Get	Started	with	Debug
This	exercise	uses	iiiSecMaint	-	Section	Maintenance,	which	must	be
compiled	with	debug	enabled.
Note:	You	can	check	if	your	WAM	is	debug	enabled	in	the	Repository	tab	or
Last	Opened	tab	in	the	LANSA	Editor.

If	necessary	use	the	Verify	/	Compile	menu	option	to	recompile	your	WAM
debug	enabled.

Step	2.	Use	Breakpoints
1.		Open	WAM	iiiSecMaint	in	the	editor.	Set	a	breakpoint	on	the	WebRoutine
name(Begin)	statement.	To	set	the	breakpoint,	select	the	line	and	then	use	F9
or	use	the	context	mouse	menu	option	Set	As	Breakpoint	option.	Breakpoint
lines	are	highlighted	in	red.

					Your	source	code	should	now	look	like	the	following:

2.		Open	the	WebRoutine	Begin	in	Design.	Run	the	WAM	in	debug	mode	using

the	 	Run	in	Debug	button	on	the	Home	ribbon,	or	use	the	Verify	/	Debug
menu	option	from	the	Toolbar	Menu	button:

					Note:	You	can	use	the	History	button	on	the	Home	ribbon,	to	run	a
WAM/WebRoutine	executed	earlier.

3.		When	the	WAM	starts	in	debug	mode	in	the	browser,	it	will	immediately
switch	focus	to	the	LANSA	Editor,	because	WebRoutine	Begin	is	run
immediately,	and	it	has	a	breakpoint	defined,	the	breakpoint	WebRoutine
statement	will	be	highlighted	in	yellow.	This	is	the	statement	that	is	about	to
be	executed	as	shown:

					Note:	in	debug,	program	variables	are	shown	on	the	Variables	tab,	in	the	left
hand	side	pane,	including	working	lists.

					A	Debug	ribbon	is	shown	at	the	top	of	the	editor:

a.		Use	the	Continue	Execution	button	or	F5,	to	run	straight	through	this
WebRoutine.

					The	initial	page	will	be	displayed	in	the	web	browser.
b.		Start	typing	into	the	department	code	input	box	and	notice	that	debug
stops	at	the	AutoComplete	WebRoutine:

					This	happened	because	Debug	has	a	general	setting	to	Break	at	first
executable	statement.	To	check	this,	select	Editor	Settings	on	the	File
menu:

c.		Select	the	Debug	icon.

d.		Uncheck	the	Break	at	first	executable	statement	setting	and	click	OK.	
Press	F5	to	continue	running	the	WAM.

e.		With	a	valid	department	such	as	ADM	or	AUD	entered,	click	the	Select
button.	Focus	will	return	to	the	WebRoutine	statement	for	Begin	in	the
editor	and	it	will	be	highlighted	in	yellow	as	before.

f.		 	Use	the	Step	Into	button	or	F8,	to	step	through	the	WebRoutine	one	line
at	a	time.	If	necessary	use	F5	to	run	through	to	the	end	of	the	Begin
WebRoutine.

g.		 Use	the	Run	to	Cursor	button	to	run	all	code	up	to	the	cursor	position.
To	try	this,	press	F5	to	run	through	to	the	end	of	the	WebRoutine.	Enter	a
department	code	and	click	the	Select	button.	In	the	Editor,	position	the
cursor	on	the	following	statement	in	the	Begin	WebRoutine.	Click	the	Run
to	Cursor	button.	You	should	run	all	code	up	to	the	SELECT	statement
and	then	stop.

					SELECT	FIELDS(#sec_list)	FROM_FILE(sectab)	WITH_KEY(#deptment)
h.		 	Use	the	Step	Out	button	to	run	the	code	up	to	next	breakpoint.	In	the
editor	set	the	SELECT	statement	to	be	a	breakpoint	and	run	the	Begin
WebRoutine	again.	Now	use	the	Step	Out	button	to	execute	the	routine	up
to	the	SELECT	statement.	You	could	also	have	used	the	F5	key	to	achieve
this.	Use	F8	to	run	around	the	SELECT	loop.	Notice	the	changing	values
of	the	variables	shown	in	the	Variable	tab.	That	is,	the	value	of	variables
DEPTMENT,	SECTION,	SECDESC	etc.	If	necessary	now	use	F5	to	run
to	the	end	of	the	WebRoutine.

i.		 	Use	the	Step	Over	button	to	execute	the	procedure	called	by	the	current
line	and	break	at	the	line	following	the	current	line.	Step	Over	is	identical
to	Step	Into	except	when	the	current	statement	contains	a	call	to	a
procedure,	Step	Over	executes	this	procedure	as	a	unit	and	then	steps	to
the	next	statement	in	the	current	procedure.

j.		 Use	the	Toggle	Breakpoint	button	on	the	Debug	ribbon.	In	the	web
browser,	enter	a	department	code	and	click	the	Select	button.	In	the
LANSA	Editor,	clear	the	breakpoint	on	the	SELECT	statement.	To	do	this,
select	the	SELECT	line,	and	use	the	F9	key,	or	the	Toggle	Breakpoint
button	on	the	Debug	ribbon	to	clear	this	breakpoint.

4.		Set	a	breakpoint	on	the	line
					ADD_ENTRY	TO_LIST(#sec_list).

					Use	the	right	mouse	menu	and	select	 	Breakpoint	Properties,	and	set	the
pass	count	to	3	and	press	OK.

5.		Remove	the	breakpoint	from	the	Begin	WebRoutine	statement.
a.		Press	F5	twice	to	run	to	the	end	of	the	WebRoutine.
b.		When	focus	returns	to	the	LANSA	Editor,	expand	the	SECT_LIST	entry
in	the	Variables	tab.

					Note:	The	list	SECT_LIST	contain	2	entries	currently.

					Also	notice	the	Breakpoint	tab	shows	a	passcount	of	3	for	this	breakpoint.
i.e.	the	ADD_ENTRY	statement	is	about	to	be	executed	for	the	third	time.

					If	the	Breakpoints	tab	is	not	visible,	select	it	from	the	Home	ribbon	/	

	Views	gallery.
d.		Press	F5	to	continue	running.	Note	that	each	time	the	program	breaks,	2
more	entries	have	been	added	to	the	list	(the	third	entry	is	about	to	be
added).

5.		Click	OK	to	save	the	condition	and	press	F5	to	continue	running	the	WAM.
The	breakpoint	will	next	occur	when	SECTION	has	the	chosen	value.

Step	3.	Use	Break	on	Value	Condition
A	breakpoint	may	have	a	variable	value	associated	with	it,	meaning	that	that
debug	will	break	at	this	statement	only	when	the	value	condition	is	true.	To	set	a
break	on	value	condition	you	must	first	run	the	WAM	in	debug	mode	with	a
breakpoint	set	for	the	statement	required.	While	running	in	debug.	Select	the
Variable	tab,	select	a	variable	and	define	a	Break	on	value	condition	for	this
variable.	This	condition	will	be	saved	until	it	is	removed.	Continue	running	the
WAM	in	debug	mode	and	this	statement	will	now	break	only	when	the
variable's	Break	on	value	condition	is	true.
At	this	point	your	WAM	iiiSecMaint	should	have	a	breakpoint	defined	on	the
statement:
Add_Entry	To_List(#sectlist)

1.		First	run	the	WAM	normally	(not	in	debug	mode)	and	review	the	list	of
section	codes	for	the	department	you	are	using,	for	example	ADM.	Decide
which	section	code	value	you	want	to	break	on,	for	example	SECTION	=	05.

2.		Run	the	WAM	again,	this	time	in	debug	mode,	enter	a	department	code	and
click	the	Select	button.

3.		When	debug	breaks	on	the	ADD_ENTRY	statement	select	the	field
SECTION	on	the	Variables	tab	and	use	the	context	menu	to	set	the	Break	on
Value	condition:

4.		Set	the	condition	to	SECTION	=	05	(or	your	chosen	value).

5.		Click	OK	to	save	the	condition	and	press	F5	to	continue	running	the	WAM.
The	breakpoint	will	next	occur	when	SECTION	has	the	chosen	value.

						The	variable	is	highlighted	on	the	Variables	tab	to	show	it	has	a	Break	on
Value	setting.

	

Step	4.	Use	Debug	when	the	WAM	is	running	on	the	server
To	complete	this	step	you	must	be	using	a	Slave	Workstation	installation	of
Visual	LANSA	with	a	Master	Repository	on	an	IBM	i	server.
Debug	with	the	WAM	running	on	the	server,	requires	communication	from	the
developer's	PC	to	the	IBM	i	server	and	from	the	IBM	i	server	to	the	developer's
PC.
Visual	LANSA	Debug	is	a	service	that	is	started	when	VL	starts.	See	File	/
Editor	Options	and	select	Debug:

This	shows	that	the	debug	service	is	running	on	Port	51234.
The	IBM	i	server's	communication	to	the	developer's	PC	may	rely	on	a	locally
defined	Domain	Name	Server	(DNS)	to	resolve	the	developer's	PC	Name	to	an
IP	address.	Alternatively	a	routing	entry	must	be	defined	for	each	developer's
PC	including	the	IP	Address	for	the	PC:

To	access	this	screen	use	the	LANSA/CONFIGURE	IBM	i	command	and
select,	COMMS_EXTENSIONS	followed	by
COMMS_ROUTING_RECORDS.	See	the	LANSA	for	i	User	Guide	for
detailed	information.
LANSA	Web	running	on	the	IBM	i	must	be	configured	to	allow	interactive
debug.	This	setting	enables	you	to	ensure	that	debug	can	only	operate	on	your
development	or	test	system.	The	LANSA	Web	Administrator	enables	this	setting
to	be	enabled:

Restart	LANSA	Web	after	changing	this	setting.	The	Web	Administrator	Clean
Up	option	will	restart	LANSA	for	the	Web.

1.	Check	in	your	WAM	iiiSecMaint.	Its	WAM	layout,	iiisecma_layout	and	the

common	WAM	layout	iiilay01	will	be	included	automatically.	Check	this
by	selecting	the	WAM	and	using	the	Cross	Reference	dialog.

					Make	sure	you	check	the	options	to	compile	the	WAM	and	make	it	debug
enabled.

2.		In	the	Local	Cross	References	dialog	expand	the	WAM	layout.
iiisecma_layout.
a.		Select	the	common	layout,	iiilay01	and	click	the	green	cross	button	as
shown,	to	add	it	to	the	list	of	objects	to	be	checked	in.

					If	required,	you	can	select	any	other	locally	defined	object	and	click	the
green	cross	button	as	shown	to	include	these	in	the	check	in.

3.		Review	the	Check-in	tab	and	ensure	that	your	check-in	and	compile	was
successful.

4.		You	now	need	to	change	your	WAM	execution	settings,	so	that	when	you	run
the	WAM	from	the	Design	view,	it	is	run	on	the	IBM	i	server.
a.		From	the	File	tab,	open	the	Editor	Options	dialog	and	select	the	WAM
settings.

b.		Change	the	Application	Base	URL	setting	to	point	to	the	server	name	for
your	LANSA	IBM	i	system.	Alternatively	specify	an	IP	Address.

c.		Use	the	Test	button	to	check	your	entry	is	correct.
d.		Click	OK	to	save	your	changes.
					When	you	run	your	WAM	it	will	now	execute	on	the	IBM	i	server.

5.		From	the	Design	view,	Run	your	Begin	WebRoutine	to	prove	you	can	run	the
WAM	on	the	IBM	i	server.

6.		You	should	currently	have	the	ADD_ENTRY	statement	set	as	a	break	point.
Run	your	WAM	again,	this	time	in	Debug	mode.	You	will	now	be	able	to
debug	your	WAM	exactly	as	before,	when	you	were	running	the	WAM
locally.

Summary
Important	Observations

Your	Visual	LANSA	system,	PC	and	LANSA	for	the	Web	must	be
correctly	configured	to	support	interactive	debug	of	WAMs.	Refer	to	the
Interactive	Debugging	in	the	Web	Administration	Guide	for	set	up	details.

Tips	and	Techniques
For	debug	support,	make	sure	that	the	local	Windows	user,	that	is	the
default	user	for	web	jobs,	is	a	member	of	the	Group	LANSA	and
Administrator
In	the	LANSA	Web	Administrator	for	the	local	system,	use	the	Configure
Data/Application	Server	to	make	sure	that	the	Allow	Interactive	Debug
option	is	checked.
For	remote	debug	you	need	to	use	LANSA	Web	Administrator	for	the	IBM
i	server	to	Allow	Interactive	Debug.	If	you	have	a	local	DNS	then	no
other	changes	are	needed.	Without	a	local	DNS	you	need	to	configure	the
LANSA	Listener	on	the	IBM	I,	adding	an	entry	for	each	developer	PC
name	and	IP	Address.
Debug	is	supported	via	a	Windows	service	running	on	the	developer	PC,
which	is	started	with	Visual	LANSA.

What	You	Should	Know
WAMs	can	be	debugged	interactively	when	run	locally	and	also	remotely
when	the	WAM	is	run	on	the	server	(IBM	i	or	Windows).

its:lansa085.chm::/lansa/lwbengh4_0010.htm

WAM060	-	Employee	Maintenance	using	Advanced	Weblets
Objectives
To	introduce	a	number	of	new	weblets	and	techniques.

Dynamic	Select	Boxes	for	department	and	sections	are	linked.	The
sections	combo	box	is	repopulated	when	department	changes.
The	Search	button	populates	a	list	of	employees	on	the	left	hand	side.
The	page	is	divided	into	two	resizable	areas	by	a	Vertical	Splitter	weblet.
A	Details	WebRoutine	is	called	by	selecting	the	hyperlink	on	employee
number	(an	Anchor	weblet)
The	Details	WebRoutine	outputs	to	the	area	on	the	right	hand	side	defined
by	a	Nav	Panel.

A	Tab	Pages	weblet	enables	employee	details	and	a	list	of	skills	to	be
shown	on	the	Navigation	panel.
A	Save	button	on	each	tab	page	enables	employee	details	or	skills	to	be
updated.
A	Dynamic	select	box	weblet	is	also	used	in	skill	code	column	of	the
employee	skills	list.	A	New	Skill	button	adds	a	blank	skill	entry	at	the	top
of	the	list	and	the	Save	button	then	inserts	a	new	skill.

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Create	WAM	iiiEmpMaint	–	Employee	Maintenance
Step	2.	Set	up	the	ShowPage	web	page	design
Step	3.	Complete	the	ShowPage	web	page	design
Step	4.	Define	the	Details	WebRoutine
Step	5.	Extend	the	Details	WebRoutine	for	update
Step	6.	Extend	the	Details	WebRoutine	to	add	new	employee	skill
Step	7.	Control	which	Tab	is	redisplayed
Step	8.	Replace	Date	Acquired	with	a	Date	field	(Optional).
Step	9.	Change	Grade	to	a	Dropdown	list	(Optional)
Summary

Before	You	Begin
Complete	all	preceding	exercises	in	this	workshop.

Step	1.	Create	WAM	iiiEmpMaint	–	Employee	Maintenance
1.		Create	a	new	WAM:
					Name:	iiiEmpMaint
					Description:	Employee	Maintenance
					Layout	Weblet:	iiilay01
2.		Begin	by	defining	the	lists	needed	to	support	the	main	page	WebRoutine,
ShowPage.

Define	a	working	list,	DEPTS	for	fields	in	the	file	DEPTAB
Define	a	working	list,	SECTS	for	section	code	and	description	from	file
SECTAB

					These	lists	will	support	Dynamic	Select	Box	weblets	for	department	and
section	codes.

Define	a	working	list,	EMPLOYS	for	fields	EMPNO,	FULLNAME,
POSTCODE,	PHONEBUS,	and	PHONEHME.	All	fields	should	be
defined	with	an	output	attribute.	This	list	of	employees	will	be	displayed
on	the	left	hand	side	of	the	vertical	splitter	weblet.
Define	a	Group_by,	EMPS	for	fields	EMPNO,	SURNAME,
GIVENAME,	POSTCODE,	PHONEBUS,	PHONEHME
Map	the	field	STDRENTRY	for	both,	as	a	hidden	field

					Your	code	should	look	like	the	following:
Function	Options(*direct)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')
*	Support	web	page	ShowPage
Def_List	Name(#depts)	Fields(#deptment	#deptdesc)	Type(*Working)
Def_List	Name(#sects)	Fields(#section	#secdesc)	Type(*Working)
Def_List	Name(#employs)	Fields((#empno	*out)	(#fullname	*out)	(#postcode	*out)	(#PHONEHME	*out)	(#PHONEBUS	*out))	Type(*Working)
Group_by	Name(#emps)	Fields(#empno	#surname	#givename	#postcode	#phonebus	#phonehme)
Web_Map	For(*both)	Fields((#stdrentry	*hidden))
End_Com
	

3.		Define	a	ShowPage	WebRoutine.

Define	a	web_map	for	output	for	lists	DEPTS,	SECTS,		mapped	as	JSON
data	and	list	EMPLOYS.

Define	a	web_map	for	both,	for	fields	DEPTMENT	and	SECTION
Define	a	CASE	loop	for	field	STDRENTRY
When	=	S

Clear	list	EMPLOYS
Select	fields	in	EMPS	from	file	PSLMST1	with	key	DEPTMENT	and	SECTION
Fullname	=	Surname	+	Givename
Add	entry	to	EMPLOYS
End	select

End	Case
Your	code	should	look	like	the	following:
WebRoutine	Name(ShowPage)
Web_Map	For(*output)	Fields((#depts	*json)	(#sects	*json)	#employs)
Web_Map	For(*both)	Fields(#deptment	#section)
Case	(#stdrentry)
When	(=	S)
Clr_list	#EMPLOYS
Select	Fields(#emps)	From_File(pslmst1)	With_Key(#deptment	#section)
#fullname	:=	#surname	+	',	'	+	#givename
Add_Entry	To_List(#employs)
Endselect
Endcase
Endroutine
	

4.		Define	a	method	routine	BuildDepts	to	populate	list	DEPTS.
					The	routine	should:
Define	an	input	parameter,	named	i_dept,	based	on	DEPTMENT
Clear	the	list
Select	all	entries	from	file	DEPTAB,	and	add	to	list
If	i_dept	is	blank,	position	to	the	first	entry
Else	set	DEPTMENT	to	I_DEPT
5.		Define	a	method	routine	BuildSects	to	populate	list	SECTS.
					The	routine	should:

Define	an	input	parameter,	named	i_dept,	based	on	DEPTMENT
Clear	the	list
Select	entries	from	file	SECTAB	with	a	key	of	I_DEPT	and	add	to	list
Position	to	the	first	entry
Your	new	code	should	look	like	the	following:
Mthroutine	Name(BuildDepts)
Define_Map	For(*input)	Class(#deptment)	Name(#i_dept)
Clr_List	Named(#depts)
Select	Fields(#depts)	From_File(deptab)
Add_Entry	To_List(#depts)
Endselect
If	(#i_dept	=	*blanks)
Get_Entry	Number(1)	From_List(#depts)
Else
#deptment	:=	#i_dept
Endif
Endroutine
Mthroutine	Name(BuildSects)
Define_Map	For(*input)	Class(#deptment)	Name(#i_dept)
Clr_List	Named(#sects)
Select	Fields(#sects)	From_File(sectab)	With_Key(#i_dept)
Add_Entry	To_List(#sects)
Endselect
Get_Entry	Number(1)	From_List(#sects)
Endroutine
	

6.		Invoke	these	method	routines	at	the	end	of	the	WebRoutine	ShowPage
					Your	code	should	look	like	the	following.	New	code	is	shown	in	red.
.
#com_owner.BuildDepts	I_Dept(#deptment)
#com_owner.buildsects	I_Dept(#deptment)
Endroutine
	

7.		The	Dynamic	Select	Box	weblet	will	be	set	up	to	invoke	a	response
WebRoutine	to	re-populate	the	list	SECTS	when	field	DEPTMENT	changes.

					This	will	require	a	WebRoutine,	UpdSects	defined	as	follows:

The	WebRoutine	must	be	defined	with	a	Response()	keyword	with	the	value
*JSON
Map	for	input	field	DEPTMENT
Map	for	output	the	list	SECTS	as	*JSON	data
Invoke	the	BuildSects	method	routine,	passing	DEPTMENT
					Your	code	should	look	like	the	following:
WebRoutine	Name(updsects)	Response(*JSON)
Web_Map	For(*input)	Fields(#deptment)
Web_Map	For(*output)	Fields((#sects	*json))
#com_owner.BuildSects	I_Dept(#deptment)
Endroutine

8.		Compile	your	WAM.

Step	2.	Set	up	the	ShowPage	web	page	design
1.		Open	the	ShowPage	WebRoutine	in	the	Design	view.
					It	should	look	like	the	following:

2.		Click	anywhere	in	the	table	containing	department	code	and	using	the
context	menu	select	the	Table	Items	/	add	Columns…	option,	to	add	3
columns.

a.		Move	the	section	code	and	its	label	into	the	3rd	and	4th	columns	(top	row),
using	drag	and	drop.

b.		Drop	a	push	button	with	image	into	the	5th	cell,	top	row
c.		Click	in	the	bottom	row,	and	use	the	context	menu,	Table	Items	/	Delete
Row	to	delete	this	row.

d.		Click	in	the	cell	containing	the	section	code	label,	if	necessary	use	the
cursor	keys	to	ensure	you	are	in	the	table	cell	(<td>	tag)	and	use	the
Details	tab	to	change	its	class	to	caption.

e.		Select	the	department	code	label	and	delete	it.	Type	Department:	into	the

cell.	Change	the	cell	class	to	caption.
f.		Select	the	section	code	label	and	delete	it.	Type	Section:	into	this	cell.
g.		Select	each	of	the	new	cells	using	the	cursor	keys,	and	delete	the	*	place
holder	characters.

h.Save	your	changes.
3.		Select	the	push	button	and	set	up	its	properties	on	the	Details	tab:

Property Value

caption Search

left_relative_image icons/normal/16/zoom_16.png

on_click_wrname ShowPage

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	Value:	S

	

4.		Select	the	table	and	changes	its	Align	property	to	center.	You	should	be	able
to	click	on	a	corner	of	the	table	to	select	it.

5.		Save	your	changes
					Your	page	should	look	like	the	following:

6.		Drag	and	drop	a	Dynamic	Select	Box	onto	the	field	DEPTMENT,	set	up	its
properties	as	shown:

Property Value

listname DEPTS

codeField DEPTMENT

captionField DEPTDESC

	

		Adjust	the	width	of	the	dynamic	select	box.
7.		Drag	and	drop	a	Dynamic	Select	Box	onto	the	field	SECTION	and	set	up	its
properties	as	shown:

Property Value

Listname SECTS

codeField SECTION

captionField SECDESC

updateWrName updsects

updateOnFieldChange DEPTMENT

updateFieldsToSubmit Field	Name:	DEPTMENT
Value:	Field	DEPTMENT

	

			Adjust	the	width	of	the	dynamic	select	box.		

		Complete	the	updateFieldsToSubmit	property	by	clicking	on	the	Ellipsis	
button	in	the	value	column,	to	open	the	Design	of….Property	dialog.
a.		Select	DEPTMENT	in	the	Name	column.
b.		Select	the	Field	checkbox	and	enter	DEPTMENT	in	the	Value	column.

8.		Save	your	changes.
9.		Execute	the	ShowPage	WebRoutine	in	the	browser.

Changing	selected	department	should	refresh	the	section's	dropdown	list.
The	Search	button	should	populate	the	list	of	employees.

Step	3.	Complete	the	ShowPage	web	page	design
In	this	step	you	will:

Add	a	Vertical	Splitter	weblet	to	the	page	and	move	the	employees	list
onto	its	left	hand	side.
Add	a	Nav	Panel	to	the	right	hand	side	of	the	vertical	splitter	and	give	this
a	name
Add	an	Anchor	weblet	to	the	employee	number	column	in	the	employees
list	and	set	the	weblet	up	to	invoke	a	Details	WebRoutine	and	output	to
the	nav	panel.
You	will	create	the	Details	WebRoutine	in	the	next	step.

1.		In	this	step	you	will	temporarily	remove	the	employees	list	from	the	page.
With	the	ShowPage	WebRoutine	open	in	the	Design	view,	select	anywhere
inside	the	employees	list	and	use	the	context	menu,	to	select	the	Delete	Entire
List	(EMPLOYS)	option:

2.		Drag	and	drop	a	Vertical	Splitter	onto	the	page.
					Set	up	its	properties	as:

Property Value

Width 100%

Height 500px

40

Left_proportion_percent

	

3.		Select	the	WebRoutine	Output	tab,	and	drag	and	drop	the	list	EMPLOYS
onto	the	left	side	of	the	Vertical	Splitter:

4.		Save	your	changes.
5.		Drag	and	drop	a	Navigation	Panel	onto	the	right	side	of	the	vertical	splitter.

					With	the	Navigation	Panel	selected	set	up	its	properties:

Property Value

name EmpDtl

border none

border_width 0px

height 450px

	

6.		Drag	and	drop	an	Anchor	weblet	into	the	Employ	Number	column	in	the
employees	list.	With	the	Anchor	weblet	selected,	set	up	its	properties	as:

Property Value

Currentrowhfield EMPNO

Currentrownumvalue $EMPNO

Rentryvalue D

On_click_wrname Details

target_window_name EmpDtl

	

					Type	in	the	Details	WebRoutine	name,	because	you	haven't	yet	defined	it.
7.		Save	your	changes.

Step	4.	Define	the	Details	WebRoutine
The	Details	WebRoutine:

Will	be	invoked	by	selecting	an	employee	in	the	employees	list,	using	the
Anchor	weblet	(also	known	as	a	hyperlink).	Output	for	the	Details
WebRoutine	will	be	shown	on	the	ShowPage	web	page.
Output	will	be	displayed	in	the	Navigation	Panel	on	the	right	of	the
Vertical	Splitter.
Will	handle	display	and	update	of	employee	and	employee	skills	data.	It
will	also	handle	adding	a	new	skill	for	the	employee.

1.		At	the	top	of	your	WAM,	begin	by	defining	fields,	lists	or	group_by	that	will
be	required	to	support	the	Details	WebRoutine.
a.		Define	a	working	list,	EMPSKLS	for	employee	skills	containing
SKILCODE,	GRADE,	COMMENT,	DATEACQ,	DATEACQR	and
EMPNO	.	DATEACQR	and	EMPNO	should	be	hidden.

b.		Define	a	work	field	EMPNOW	based	on	EMPNO
c.		Define	a	group_by,	EMPDATA	containing	fields	EMPNOW,	SURNAME,
GIVENAME,	ADDRESS1,	ADDRESS2,	ADDRESS3,	POSTCODE,
PHONEBUS	and	PHONEHME.	EMPNOW	should	be	output.

					Your	code	should	look	like	the	following:
Def_List	Name(#empskls)	Fields((#SKILCODE	*out)	#GRADE	#COMMENT	#DATEACQ	(#dateacqr	*hidden)	(#empno	*hidden))	Type(*Working)
*
Define	Field(#empnow)	Reffld(#empno)
Group_By	Name(#empdata)	Fields((#empnow	*out)	#SURNAME	#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME	#PHONEBUS)
	

2.		Create	a	Details	WebRoutine.	Initially	you	will	create	a	simple	version	of
this	WebRoutine	and	then	extend	it.
a.		Map	field	EMPNO	for	both	as	a	hidden	field.
b.		Map	for	both,	Group_by,	EMPDATA	and	list	EMPSKLS.	EMPSKLS
should	be	mapped	with	a	*private	attribute.	*Private	means	it	will	not	be
automatically	shown	on	the	web	page.

					Your	code	should	look	like	the	following:
WebRoutine	Name(Details)
Web_Map	For(*both)	Fields((#empno	*hidden))

Web_Map	For(*both)	Fields(#empdata	(#empskls	*private))
Endroutine
	

3.		In	this	step	you	will	add	logic	to	your	Details	WebRoutine	using	a	CASE
loop	for	STDRENTRY	(this	is	mapped	globally	as	a	hidden	field).

					Note	the	following:
Field	EMPNOW	is	shown	on	the	Details	web	page	as	an	output	field.	EMPNO	is

mapped	as	a	hidden	field	and	will	be	used	for	employee	update.	EMPNO	is	passed
into	the	Details	WebRoutine	by	the	Anchor	weblet.

					Code	your	Details	WebRoutine	based	on	the	following:
Change	EMPNOW	to	EMPNO
Case	loop	on	STDRENTRY
When	=	D

Fetch	fields	in	EMPDATA	from	file	PSLMST	with	key	EMPNO
Clear	list	EMPSKLS
Select	EMPSKLS	from	file	PSLSKL	with	key	EMPNO
Add	entry	to	EMPSKLS
Endselect

When	=	U
Update	fields	in	EMPDATA	in	file	PSLSMT	with	key	EMPNO.	Go	to	next

statement	on	validation	error.
If	status	is	not	OK,	issue	an	error	message
Else
Issue	an	"employee	changed"	message	including	employee	number.
Endcase
					Your	code	should	look	like	the	following:
WebRoutine	Name(Details)
Web_Map	For(*both)	Fields((#empno	*hidden))
Web_Map	For(*both)	Fields(#empdata	(#empskls	*private))
Web_Map	For(*both)	Fields((#skilcode	*hidden))
#empnow	:=	#empno
Case	(#stdrentry)

When	(=	D)
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
Clr_List	Named(#empskls)
Select	Fields(#empskls)	From_File(pslskl)	With_Key(#empno)
Add_Entry	To_List(#empskls)
Endselect
*	update	employee
When	(=	U)
Update	Fields(#empdata)	In_File(pslmst)	With_Key(#empno)	Val_Error(*next)
If_Status	Is_Not(*okay)
Message	Msgtxt('Error	occurred	on	employee	update')
Else
Message	Msgtxt('	Employee	'	+	#empno	+	'	was	changed')
Endif
Endcase
Endroutine
	

4.		Compile	your	WAM	and	open	the	Details	WebRoutine	in	the	Design	view.
					Your	web	page	should	look	like	the	following:

5.		Drag	and	drop	a	Tab	Pages	weblet	(not	Tab	Pages	(deprecated))	onto	the

page.

a.		Click	on	the	Tab	Pages	weblet	to	select	it.	On	the	Details	tab	set	up	its
tabs	properties	by	clicking	on	the	Ellipsis	 	button,	that	will	open	the
Design	of…	Properties	dialog:

b.		Select	each	tab	page	entry	in	the	list	and	set	up	its	properties:

Property Value

caption Details

image icons/normal/16/folder_16.png

	

	

Property Value

caption Skills

image icons/normal/16/contract_16.png

	

c.		Delete	Tab	Page	3.
d.		Save	your	changes	by	clicking	OK.

6.		Click	on	the	Tab	Pages	weblet	to	select	it	and	set	its	height	and	width
properties:

Property Value

content_width 450px

content_height 400px

	

7.		Save	your	changes.	Your	page	should	now	look	like	the	following:

8.		Click	on	a	corner	of	the	employees	fields	table	to	select	it.	Use	the	context
menu	to	select	Cut.
a.		Click	on	the	Tab	Pages	weblet	to	select	it.
b.		Click	on	the	Details	tab	to	ensure	the	correct	tab	sheet	is	selected.
c.		Use	the	context	menu	to	Paste	the	table	into	the	tab	folder	Details	tab.
					Your	page	should	now	look	like	the	following:

9.	Save	your	changes.
10.	Click	on	the	Skills	tab	to	select	it	and	drag	and	drop	a	jQuery	Enabled	Grid
onto	the	Skills	tab	page.

11.	Select	the	Grid	and	set	up	its	properties:

Property Value

Listname EMPSKLS

	

12.		Click	on	the	Details	tab	page	and	save	your	changes.	This	will	make
Details,	the	default	tab	at	run	time.

13.	The	Details	web	page	will	be	displayed	inside	the	Navigation	Panel	on	the
ShowPage	web	page.	The	Details	web	page	therefore	requires	a	blank	layout.
a.		On	the	Favorites	/	Weblet	Templates	tab,	using	the	dropdown	at	the	top,
select	Layout	Weblets:

b.		Drag	and	drop	the	Simple	blank	layout	onto	the	page.	Your	design	should
now	look	like	the	following:

	
14.	You	need	to	ensure	that	this	blank	page	adopts	the	same	theme	as	your
common	layout	iiilay01.
a.		On	the	Favorites	/	Weblet	Templates	tab,	select	Layout	Weblets	in	the	top
dropdown	list.

b.		Right	click	on	the	layout	Workshop	Layout	and	use	the	context	menu	to
select	Cross	References:

c.		Make	a	note	of	the	Style	External	Resources	being	used.	In	this	example
these	are	XWT08J	and	XWT08L1.

						Close	this	dialog.
d.		In	the	Design	view	for	WebRoutine	Details,	on	the	Design	ribbon,	select
the	External	Resources	button.	Use	the	Add	button	to	add	the	two	Styles
required.

e)		Your	Design	should	now	look	like	the	following,	but	refelecting	your
chosen	theme:

					Note	the	Font	used	for	the	field	labels.
					Note	also	the	background	used	for	a	non-selected	tab.	The	color	may	not
be	shown	in	the	Design	view.	Check	your	results	in	the	next	step.

15.	Save	your	changes.
16.	Execute	the	ShowPage	WebRoutine	in	the	browser	to	test	your	application:

Selecting	an	employee	should	display	details	on	the	right	side	of	the
Vertical	Splitter.	The	Details	tab	will	be	shown	initially,	as	it	was	saved	as
the	default.
Selecting	the	Skills	tab	will	display	a	grid	of	employee	skills.
Selecting	another	employee	will	display	the	Details	tab	again.

					Later	you	will	enhance	the	application	to	remember	the	current	tab	and
display	it	for	the	next	employee	selected.

Step	5.	Extend	the	Details	WebRoutine	for	update
In	this	step	you	will:

Make	the	Details	tab	handle	update.
Extend	the	Details	WebRoutine	to	handle	update	of	Employee	skills
Add	a	Save	button	to	the	Skills	tab.

1.		Open	the	Details	WebRoutine	in	the	Design	View.	The	Details	tab	should	be
shown.	If	necessary	select	the	Details	tab	and	save	your	WAM	to	make	this
the	default.

2.		On	the	Details	tab,	select	anywhere	in	the	table	containing	the	fields	and	use
the	context	menu	to	select	Table	Items/Add	Rows….	to	add	1	row	to	the
bottom	of	the	table.

3.		Click	in	the	left	hand	cell	of	the	new	row	and	set	its	align	property	to	left.
4.		Drag	and	drop	a	Push	Button	with	Image	into	the	bottom	left	cell	of	the	table.
Set	up	the	button	as	follows:

Property Value

Caption Save

left_relative_image icons/normal/16/check_mark_16.png

on_click_wrname Details

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	value:	U

	

5.		This	step	adds	a	Message	weblet	to	this	page:
a.		Select	the	tab	pages	weblet.	Move	the	cursor	right	and	press	enter.	This
should	create	a	blank	space	above	the	tab	pages	weblet.

b.		Drag	and	drop	a	Messages	weblet	into	the	space	immediately	above	the
Tab	Pages	weblet.	Your	design	should	now	look	like	the	following:

6.		Select	the	Messages	weblet	and	set	its	target_window_name	property	to
_top.	This	will	route	messages	from	this	page	to	the	messages	weblet	on	the
page	in	which	it	is	embedded.

					Save	your	changes.
7.		Retest	your	WAM.	The	update	employee	details	logic	has	already	been
included	in	the	Details	WebRoutine.	You	should	now	be	able	to	change
employee	data	and	save	the	changes.	Try	making	an	invalid	change,	such	as	a
blank	surname.

8.		To	handle	update	of	employee	skills	the	CASE	loop	in	WebRoutine	Details
requires	new	logic.

The	employee	skills	list	EMPSKLS	is	mapped	for	both.	The	list	should	be	read
to	process	updates	to	the	employee	skills	file	PSLSKL.
The	SKILCODE	in	EMPSKLS	is	mapped	for	*output.	In	order	to	update	the

employee	skill	record,	this	key	value	will	need	to	be	saved	in	a	hidden	field	in	the
list.
When	the	list	is	read	(SELECTLIST)	the	key	value	SKILCODE	will	be	set	from

the	hidden	field.
The	list	contains	a	hidden	field	-	DATEACQR.	This	will	be	used	to	recognize	list

entries	for	existing	records.	This	will	be	important	when	you	extend	the	logic	to
handle	insert	of	a	new	employee	skill.

a.		Define	a	work	field	SC	based	on	field	SKILCODE
b.		Add	field	SC	to	list	EMPSKLS	as	a	hidden	field.	Your	code	should	look
like	the	following:

Define	Field(#sc)	Reffld(#skilcode)					
Def_List	Name(#empskls)	Fields((#SKILCODE	*out)	#GRADE
#COMMENT	#DATEACQ	(#dateacqr	*hidden)	(#empno	*hidden)	(#sc
*hidden))	Type(*Working)	Entrys(*max)
c.		Change	the	existing	logic	which	builds	the	employee	skills	list,	to

populate	the	hidden	field	SC.	Your	code	should	look	like	the	following.
The	new	code	is	shown	in	red.

Select	Fields(#empskls)	From_File(pslskl)	With_Key(#empno)
#sc	:=	#skilcode
Add_Entry	To_List(#empskls)
Endselect
	
d.		Add	new	logic	to	update	employee	skills	based	on	the	following:

When	=	S
Read	list	EMPSKLS	using	SELECTLIST/ENDSELECT
Change	SKILCODE	to	SC
If	DATEACQR	is	not	*zeroes
					Update	fields	in	list	EMPSKLS	in	file	PSLSKL	with	key	EMPNO	and
SKILCODE.	Go	to	next	line	on	validation	error.

End	if
End	select
If	status	is	OK,	issue	message,	employee	'Skills	for	nnnn	were	changed',	end	if,

where	nnnn	is	employee	number.
					Your	code	should	look	like	the	following:
When	(=	S)
Selectlist	Named(#empskls)
#skilcode	:=	#sc
If	(#dateacqr	*NE	*zeroes)
Update	Fields(#empskls)	In_File(pslskl)	With_Key(#empno	#skilcode)	Val_Error(*next)
Endif
Upd_Entry	In_List(#empskls)
Endselect
If_Status	Is(*okay)
Message	Msgtxt('Skills	for	'	+	#empno	+	'	were	changed')
Endif
Endcase
	

8.		Compile	your	WAM.
9.		Open	the	Details	WebRoutine	in	the	Design	view.

a.		On	the	Skills	tab,	select	the	grid	and	move	to	the	right	using	the	cursor
keys	and	press	enter.	This	will	position	the	cursor	immediately	below	the
grid.

b.		Use	the	context	menu,	Insert	HTML,	Table	to	insert	a	table	with	one	row
and	two	columns.

10.	Click	in	each	cell	of	the	new	table	and	change	the	align	property	to	left.
11.	Drag	and	drop	a	Push	Button	with	Image	into	the	right	hand	cell	and	set	it
up	as	follows:

Property Value

caption Save

left_relative_image icons/normal/16/check_mark_16.png

on_click_wrname Details

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	Value:	S

	

12.		Remove	the	*	place	holder	characters	from	the	right	hand	cell.	Leave	them
in	the	left	cell.

13.	Click	on	the	Details	tab	page	to	select	it	and	then	Save	your	changes.
14.	Re-test	your	WAM.	Note	that	on	the	Home	ribbon,	you	can	use	History
button	in	the	Runtime	gallery,	to	re-run	any	VL	component.

You	should	be	able	to	change	any	employee	skills	data	and	save	changes
with	the	Save	button.
Errors	such	as	Date	Acquired	=	zero	or	other	validation	errors	will
display	messages	in	the	messages	weblet.
After	the	Save	button	is	processed	the	Details	tab	is	redisplayed,	because
this	is	the	default	tab.	You	will	fix	this	issue	in	a	later	enhancement.

Step	6.	Extend	the	Details	WebRoutine	to	add	new	employee	skill
In	this	step	you	will	extend	the	WebRoutine	Details	to	insert	a	new	employee
skill.

A	New	Skill	push	button	on	the	Skills	tab	will	refresh	the	grid	with	a
blank	first	entry.
The	SKILCODE	will	now	be	an	input	field	in	the	list	EMPSKLS	and	the
hidden	field	SC	will	no	longer	be	needed.
The	SKILCODE	column	in	the	grid	will	be	customized	using	a	Dynamic
select	box.
The	Dynamic	select	box	will	be	populated	with	a	list	of	skills	from	the
table	SKLTAB.	A	new	method	routine	will	build	this	list.
When	the	Skills	Save	button	is	processed,	an	employee	skill	will	be
inserted	if	the	DATEACQR	field	is	zero

1.		Change	the	definition	of	list	EMPSKLS	so	that	SKILCODE	is	input	capable,
removing	the	hidden	field	SC.	Your	code	should	look	like	the	following:
Def_List	Name(#empskls)	Fields(#SKILCODE	#GRADE	#COMMENT
#DATEACQ	(#dateacqr	*hidden)	(#empno	*hidden))	Type(*Working)
Entrys(*max)
	

2.		Delete	the	definition	of	field	SC	and	remove	all	code	which	refers	to	it.
3.		Define	a	Group_by	SKL_LIST	for	fields	SKILCODE,	GRADE,
COMMENT,	DATEACQ,	DATAECQR.	This	will	be	used	to	clear	employee
skills	list	fields	before	adding	a	blank	entry	for	insert.

4.		Define	a	working	list	SKILLS	containing	fields	SKILCODE,	SKILDESC.
This	list	will	mapped	for	output	to	populate	the	skill	code	Dynamic	select
box.

					LANSA	definition	statements	can	be	placed	anywhere	in	your	code.	It	is
usual	to	place	them	at	the	top	of	the	program	code.

					Your	new	code	should	look	like	the	following:
Group_By	Name(#skl_list)	Fields(#skilcode
#grade	#comment	#dateacq	#dateacqr)
Def_List	Name(#skills)	Fields(#skilcode	#skildesc)	Type(*Working)
Entrys(*max)
	

5.		Add	a	new	When	clause	to	the	Details	WebRoutine,	that	will	handle	a
request	from	the	New	Skill	button	to	add	a	blank	entry	as	the	first	entry	in	the
employee	skills	list.	This	will	allow	insert	of	a	new	employee	skill.

					The	logic	should	be	based	on	the	following:
When	=	N

Change	SKL_LIST	to	default	values
Add	entry	to	EMPSKLS	after	*Start
Message	'Complete	new	skill	inthe	first	list	entry'
					Your	new	code	should	look	like	the	following:
*	add	new	top	row	to	skills	list
When	(=	N)
#skl_list	:=	*default
Add_Entry	To_List(#empskls)	After(*START)
Message	Msgtxt('Complete	new	skill	in	the	first	list	entry')
	

6.		When	processing	a	list	entry,	a	value	of	zero	for	Date	Acquired
(DATEACQR)	means	the	entry	is	new.

					Add	the	following	new	logic	to	the	CASE	loop,	for	when	STDRENTRY	=	S.
					New	code	is	shown	in	red.
When	(=	S)
Selectlist	Named(#empskls)
If	(#dateacqr	*NE	*zeroes)
Update	Fields(#empskls)	In_File(pslskl)	With_Key(#empno	#skilcode)	Val_Error(*next)
Else
Insert	Fields(#empskls)	To_File(pslskl)	Val_Error(*next)
Endif
Endselect
If_Status	Is(*okay)
Message	Msgtxt('Skills	for	'	+	#empno	+	'	were	changed')
Endif
	

7.		Create	a	method	routine	BuildSkills	to	populate	the	skills	list	SKILLS.
a.		Clear	the	list	SKILLS
b.		Select	all	records	from	file	SKLTAB	and	add	entries	to	list	SKILLS

c.		Position	to	the	first	entry
					Your	code	should	look	like	the	following:
Mthroutine	Name(BuildSkills)
Clr_List	Named(#skills)
Select	Fields(#skills)	From_File(skltab)
Add_Entry	To_List(#skills)
Endselect
Get_Entry	Number(1)	From_List(#skills)
Endroutine
	

8.		Add	an	output	web_map	for	the	SKILLS	list	to	the	Details	WebRoutine	as
JSON	data.	Your	code	should	look	like	the	following:
Web_Map	For(*output)	Fields((#skills	*JSON))

9.		Invoke	the	BuildSkills	method	at	the	end	of	the	Details	WebRoutine.	Your
code	should	look	like	the	following.	New	code	is	shown	in	red.
Endcase

#com_owner.BuildSkills
Endroutine
	

10.	Compile	your	WAM.
11.	Open	the	Details	WebRoutine	in	the	Design	view.
12.		Select	the	Skills	tab,	and	select	the	Grid	weblet.	On	the	Details	tab	use	the
Ellipsis	button	for	the	grid_col_properties	value	to	open	the	Design	of	….
dialog.	With	SKILCODE	field	selected,	select	the	Customize	Column	check
box	and	then	click	OK	to	close	the	dialog.

13.	Drop	a	Dynamic	select	box	into	the	Skill	Code	column.	See	the	image
below	showing	how	the	editor	will	highlight	the	column	when	the	cursor	is	in
the	correct	position.

					Adjust	the	width	of	the	dropdown	so	that	it	can	display	skill	description.
14.	Select	the	Dynamic	select	box	and	set	up	its	properties	as	shown:

Property Value

listName SKILLS

codeField SKILCODE

captionField SKILDESC

	

15.	Add	a	push	button	with	image	weblet	into	the	into	the	single	row	table
below	the	grid.	Set	up	the	button	properties	as:

Property Value
caption New	Skill

left_relative_image icons/normal/16/contract_16.png

on_click_wrname Details

submitExtraFields Field	Name:	STDRENTRY

	 Literal	Value:	N

	

					Adjust	the	width	of	the	push	button	to	display	the	caption	as	single	line.				
					Remove	the	place	holder	characters	from	table	cell.
16.	Select	the	Details	tab	page	and	then	Save	your	changes.	Your	Skills	tab	page

should	look	like	the	following:

17.	Retest	your	WAM.	Select	an	employee	and	select	the	Skills	tab.	The
Dynamic	select	box	for	skills	should	display	the	correct	skill	description	in
each	row.

Click	the	New	Skill	button	to	add	a	new	row	at	the	top	of	the	skills	grid.
Select	a	skill	and	complete	the	grade,	comment	and	date	acquired	column.	Note

that	the	date	acquired	is	a	six	digit	date	in	the	format	DD/MM/YY.
Click	the	Save	button	to	process	the	skills	in	the	EMPSKLS	list	and	update	or

insert	to	the	employee	skills	file.
Validation	errors	will	display	messages	at	the	top	of	the	page.

Step	7.	Control	which	Tab	is	redisplayed
At	present	the	Details	WebRoutine	has	no	control	over	whether	the	Details	or
Skills	tab	is	redisplayed.	This	can	easily	be	achieved	by	introducing	a	field	that
is	mapped	to	set	the	tab_index	property.
1.		Define	a	one	character	field	TABINDEX.
Define	Field(#tabindex)	Type(*char)	Length(1)

2.		In	the	Details	WebRoutine	extend	the	web_map	for	EMPNO	to	include
TABINDEX	as	a	hidden	field.
Web_Map	For(*both)	Fields((#empno	*hidden)	(#tabindex	*hidden))

3.		In	the	CASE	loop,	set	the	TABINDEX	in	each	When	clause,	as	follows:

When	=	D #Tabindex	:=	'1'
When	=	U #Tabindex	:=	'1'
When	=	N #Tabindex	:=	'2'
When	=	S #Tabindex	:=	'2'

4.		Recompile	your	WAM.
5.		Open	the	Details	WebRoutine	in	the	Design	view.		Select	the	Tab	Pages
weblet	and	set	the	selected_tab_index_field	to	TABINDEX.	(Select	from	the
dropdown).

6.		Ensure	the	Details	tab	page	is	selected	and	Save	your	changes
7.		Re-test	your	WAM.	When	working	with	the	Skills	tab,	the	Skills	tab	should
now	be	redisplayed	after	the	New	Skill	or	the	Save	push	button	has	been	used.

Note:	This	is	a	limited	implementation,	using	simply	the	tab_index_field
property.	Using	a	hidden	Nav	Panel	on	each	tab	page,	it	is	possible	to	return
current	tab	index	to	a	WebRoutine.	This	allows	a	design	which	supports
selecting	a	different	employee	and	always	displaying	the	last	tab	page	used
(Details	or	Skills).

Step	8.	Replace	Date	Acquired	with	a	Date	field	(Optional).
In	this	step	you	will	replace	the	Date	Acquired	column	in	the	employee	skills
list	(EMPSKLS)	with	field	STD_DATEX.	This	is	a	Date	type	field	and	has	a
default	visualization	of	a	Date	Picker	weblet.
Note:	The	default	Date	Picker	visualization	for	field	STD_DATEX	will	be
automatically	implemented	when	the	field	is	included	on	the	page,	or	is	a
column	in	a	simple	list	weblet.
When	used	as	a	column	in	the	Grid	weblet	the	default	visualization	is	not
recognised	and	you	will	need	to	add	the	jQuery	UI	DatePicker	weblet	to	this
column.
1.		Change	the	definition	of	working	list	EMPSKLS	as	shown:
					Changes	are	shown	in	red.
Def_List	Name(#empskls)	Fields(#SKILCODE	#GRADE	#COMMENT	#std_datex
Entrys(*max)

Note:	The	virtual	field	DATEACQ	will	still	be	required	in	the	list	to	update	the
employee	skills	record.	The	real	field	DATEACQR	cannot	be	used	for	update.
2.		In	WebRoutine	Details,	when	the	employee	skills	list	is	populated,	set	up
field	STD_DATEX	with	the	value	of	field	DATEACQ:

					Changes	are	shown	in	red.
When	(=	D)
#tabindex	:=	'1'
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
Clr_List	Named(#empskls)
Select	Fields(#empskls)	From_File(pslskl)	With_Key(#empno)
#std_datex	:=	#dateacq.asdate(SYSFMT6)
Add_Entry	To_List(#empskls)
Endselect

3.		When	a	new	list	entry	is	added	for	insert,	set	up	field	STD_DATEX	using
current	date,	and	give	GRADE	a	default	value	(see	Step	9.	Change	Grade	to	a
Dropdown	list	(Optional)).

					Changes	are	shown	in	red.
When	(=	N)
#tabindex	:=	'2'
#skl_list	:=	*default

#std_datex	:=	#std_datex.Now
#grade	:=	P
Add_Entry	To_List(#empskls)	After(*START)
Message	Msgtxt('Complete	new	skill	in	top	row')

4.		When	employee	skills	are	updated,	set	up	field	DATEACQ:
					Changes	are	shown	in	red.
When	(=	S)
#tabindex	:=	'2'
Selectlist	Named(#empskls)
#dateacq	:=	#std_datex.asnumber(DDMMYY)
If	(#dateacqr	*NE	*zeroes)
Update	Fields(#empskls)	In_File(pslskl)	With_Key(#empno	#skilcode)
Val_Error(*next)
If_Status	Is_Not(*okay)
Message	Msgtxt('Errors	occurred	on	skills	updates')
Endif
Else
Insert	Fields(#empskls)	To_File(pslskl)	Val_Error(*next)
If_Status	Is_Not(*okay)
Message	Msgtxt('Insert	failed')
Else
Message	Msgtxt('Skills	for	'	+	#empno	+	'	were	changed')
Endif
Endif
Endselect
	

5.		At	the	top	of	the	program,	override	the	column	heading	for	STD_DATEX,
with	the	following:
Override	Field(#std_datex)	Colhdg('Date'	'Acquired'	'')
	

6.		Compile	your	WAM.
7.		Open	the	Details	WebRoutine	in	the	Design	view	and	select	the	Skills	tab.

a.With	the	Tab	Pages	weblet	selected,	change	its	content_width	to	600px,	so
that	the	new	date	column	will	be	visible	in	the	Design	view.

b.		Select	the	grid.	Open	the	Design	of…	dialog	using	the	ellipsis	button	for
the	grid_column_properties	value.	Select	Customize	Column	for	field

STD_DATEX	and	click	OK.

c.		On	the	Weblet	Templates	tab,	select	jQuery	UI	in	the	dropdown.	Drop	a
jQuery	UI	Datepicker	weblet	into	the	new	Date	Acquired	column.

d.		With	the	jQuery	UI	Datepicker	selected,	on	the	Details	tab,	change	the
dateFormat	to	dd/mm/yyyy	(or	use	the	format	suitable	for	your	region).

e.		Select	the	Details	tab	page	and	save	your	changes.
8.		Retest	your	WAM.	Date	Acquired	in	the	Skills	grid	will	now	be	displayed	in
dd/mm/ccyy	format.	Selecting	a	Date	Acquired	will	display	the	calendar
prompt.

	
9.		Change	a	Date	Acquired	and	Save	the	changes.	Redisplay	the	employee
skills	to	show	the	date	was	updated	correctly.

10.	Add	a	new	skill.	The	Date	Acquired	column	should	initially	contain	current
date.

Step	9.	Change	Grade	to	a	Dropdown	list	(Optional)
In	this	step	you	will	replace	the	Grade	column	in	the	Skills	grid	with	a	combo
box	weblet	and	set	it	up	with	a	hard	coded	list	of	values.
1.		Open	the	Details	WebRoutine	in	the	Design	view.

a.		Select	the	Skills	tab.
b.		Select	the	Employee	Skills	Grid.
c.		On	the	Details	tab,	select	the	grid_col_properties	value	and	use	the
Ellipsis	button	to	display	the	Design	of…	Properties	dialog.

d.		Select	the	GRADE	field	and	select	the	Customize	Column	checkbox.
Click	OK	to	close	the	dialog.

e.		On	the	Weblet	Templates	tab,	select	Standard	Weblets	in	the	dropdown
and	drag	and	drop	a	combo	box	weblet	into	the	GRADE	column.	Increase
the	width	of	the	combo	box	so	that	grade	description	can	be	displayed.

2.		Select	the	combo	box	weblet,	to	set	up	its	properties.
a.		Leave	the	name	property	as	@id	This	is	correct	for	identifying	a	field	in	a
Grid	weblet	(different	to	a	list).

b.		Note	that	the	value	property	is	.	(a	dot).	This	is	correct	and	means	value
from	current	row/column.

c.		Select	the	items	property	value	and	click	the	Ellipsis	button	to	open	the
Design	of…	dialog.

d.		In	the	Item	Properties	group	box,	set	up	a	list	of	Captions	and	Values
based	on	the	following	table:

Caption Value

Pass P

DistinctionD

Merit M

Fail F

	

e.				Click	Add	New	to	add	each	entry	to	the	list.
f.		Click	the	OK	button	to	save	the	changes.
					Your	design	should	look	like	the	following:

3.		Save	the	WAM.
4.		Re-test	your	WAM.	The	Employee	Skills	grid	should	look	like	the	following,
displaying	the	correct	caption	for	the	GRADE	fields:

5.		Change	some	grades	and	Save	the	changes.	Redisplay	skills	for	this
employee	number,	to	show	that	grade	values	were	passed	into	the	Details
WebRoutine.

Summary
Important	Information

This	WAM	combines	a	number	of	weblets	to	build	a	Windows	like
interface.	This	may	not	be	appropriate	in	all	cases,	for	example	this
design	would	not	suit	a	public	website	or	a	web	site	designed	for	an
occasional	user.
The	exercise	demonstrates	how	a	fairly	complex	WAM	can	be	built	and
tested	in	stages.
The	Dynamic	Select	Box	uses	AJAX	technology	to	call	a	response
WebRoutine	that	refreshes	its	list	of	values.
A	Grid	column	may	be	customized	using	a	field	visualization	weblet.
The	Navigation	Panel	enables	one	area	of	the	web	page	to	be	refreshed
(the	Navigation	panel	is	an	iFrame	in	HTML	terminology).

Tip	&	Techniques
When	a	new	field	has	been	mapped	for	a	WebRoutine,	this	can	be
reflected	in	the	web	page	(actually	the	XSLT	transformation	that	produces
the	XHTML)	using	the	WebRoutine	Output	tab,	and	dropping	the	new
field	onto	the	page.
The	WebRoutine	Output	tab	reflects	the	XML,	which	is	always	updated
by	a	compile.
jQuery	weblets	require	lists	to	be	mapped	as	*JSON	data.

What	I	Should	Know
How	to	combine	a	number	of	weblets	to	construct	a	Windows-like
interface.

WAM065	-	Controlling	List	Output
Objectives
When	you	output	a	list	to	your	web	page,	you	should	always	consider	whether
there	is	a	need	to	limit	the	number	of	entries	that	will	be	displayed.
If	you	output	a	large	list:

The	application	may	perform	badly.
The	user	will	need	to	scroll	down	the	page	to	find	the	entries	he	is
interested	in,	or	will	need	to	scroll	through	the	list	or	grid	to	find	the
entries	he	wants.

If	you	are	an	IBM	i	developer	you	will	be	familiar	with	writing	output	to	sub-
files,	which	the	5250	terminal	is	then	able	to	scroll	through.	In	the	web,	if	you
add	500	entries	to	the	list,	they	will	all	be	loaded	to	the	page	immediately.
This	exercise	demonstrates	how	the	list	paging	weblet	can	be	used	together	with
program	logic	to	load	a	list	with	one	page	of	entries	at	a	time.	This	provides	one
simple	technique	that	could	be	used.
From	your	own	experience	of	using	web	sites	you	will	be	familiar	with	a
number	of	alternative	techniques.	For	example	a	set	of	page	links,	which	enable
the	user	to	jump	to	another	page	of	results.	These	other	techniques	could	also	be
implemented	in	a	WAM.
When	designing	applications	that	may	bring	back	a	large	set	of	results,	you
should	always	consider	as	many	ways	as	possible	for	the	user	to	limit	his	query
to	find	only	the	entries	he	is	looking	for.

The	employee	enquiry	application:
Enables	employee	numbers	to	be	selected	using	the	AutoComplete	weblet
The	search	displays	employees	with	a	fixed	page	size	of	10	entries
The	list_paging_weblet	enables	the	user	to	page	forward	and	backward	to
display	all	the	employees	found	by	the	search

Note:	The	code	provided	in	this	exercise	can	be	copied	from	the	WAM	tutorials
in	the	VL	online	guide.
To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Create	WAM	iiiEmpSearch	–	Employee	Search
Step	2.	Add	List	Paging	Images	weblet
Step	3.	Add	AutoComplete	Weblets	(optional)
Summary

Before	You	Begin
You	should	have	completed	all	the	preceding	exercises	in	this	workshop.

Step	1.	Create	WAM	iiiEmpSearch	–	Employee	Search
1.		Create	a	new	WAM

					Name:	iiiEmpSearch
					Description:	Employee	Search
					Weblet	Template:	iiilay01
2.		Define	the	following	work	fields:
*	Fields
Define	Field(#empnof)	Reffld(#empno)	Desc('First	entry	on	current	page')
Define	Field(#empnow)	Reffld(#empno)	Desc('Last	entry	on	current	page')
Define	Field(#cur_page)	Reffld(#std_num)	Desc('Current	page	number')
Define	Field(#empfrom)	Reffld(#empno)	Desc('From	Employee')
Define	Field(#empto)	Reffld(#empno)	Desc('To	Employee')
Define	Field(#total)	Reffld(#std_count)	Desc('Total	entries	this	search	')
	

3.		Define	the	following	working	lists:
*	lists
Def_List	Name(#emplist)	Fields((#empno	*out)	(#surname	*out)	(#givename	*out)	(#postcode	*out)	(#phonehme	*out))	Counter(#std_count)	Type(*Working)
Entrys(*max)
	

4.		Define	the	following	global	map.
*	Global	Maps
Web_Map	For(*both)	Fields((#stdrentry	*hidden))
	

					Many	weblets	return	a	value	in	the	field	STDRENTRY,	so	it	usually	needs	to
be	mapped	as	a	hidden	field.	You	will	add	other	fields	to	this	global	web_map
as	you	develop	this	WAM.

5.		Create	a	WebRoutine	search	using	the	following	code.
WebRoutine	Name(search)
Web_Map	For(*both)	Fields(#empfrom	#empto	#emplist)
Case	(#stdrentry)
When	(=	s)
#com_owner.browse	I_Empfrom(#empfrom)	I_Empto(#empto)
Endcase

Endroutine
	

					EMPFROM	and	EMPTO	will	provide	search	values	for	employee	number.
The	current	page	of	results	will	be	displayed	by	the	list	EMPLIST.	A	push
button	will	return	a	STDRENTRY	value	of	S,	which	will	perform	the	method
routine	browse.

					Ignore	the	error	Feature	name	browse	is	not	a	member….'.	This	routine	is
defined	in	the	next	step.

Important	Note:	This	WAM,	when	completed,	will	comprise	around	130
statements.	To	save	time,	much	of	this	code	is	provided.	Make	sure	you	review
each	section	of	code	as	it	is	added,	either	at	the	time	you	are	doing	it	or	later.	As
with	all	programming	tasks,	you	should	approach	WAM	development	a	stage	at
a	time,	and	test	your	initial	code,	before	moving	on	to	add	additional	logic.
6.		Create	the	browse	method	routine	using	the	following	code:
Mthroutine	Name(browse)
Define_Map	For(*input)	Class(#empno)	Name(#i_empfrom)
Define_Map	For(*input)	Class(#empno)	Name(#i_empto)
Clr_List	Named(#emplist)
Select	Fields(#emplist)	From_File(pslmst)	Where((#std_count	<=	10)	And	(#empno	<	#i_empto))	With_Key(#i_empfrom)	Val_Error(*next)	Options(*startkey	*endwhere)
Add_Entry	To_List(#emplist)
If	(#std_count	=	1)
#empnof	:=	#EMPNO
Endif
#empnow	:=	#EMPNO
Endselect
#cur_page	+=	1
Endroutine
	

					You	will	add	more	logic	to	this	routine	in	a	later	step.
					Review	the	browse	routine,	which:
Accepts	two	input	values	for	EMPNO.

Clears	the	working	list	EMPLIST.	Note	that	STD_COUNT	is	the	Counter()
variable	for	this	list.
Selects	records	from	file	PSLMST	while	STD_COUNT	is	less	than	or	equal	to

10	and	the	employee	number	is	less	than	I_EMPTO.

Reads	the	file	using	a	startkey	and	an	endwhere.	The	read	will	end	when	the
Where()	condition	is	false.
The	SELECT	reads	the	next	10	records	or	stops	when	the	end	value	for	the

search	is	reached.
Adds	entries	to	list	EMPLIST
Maintains	EMPNOF	as	the	first	entry	in	the	current	list	and	EMPNOW	as	the

last	entry	in	the	current	list
Increments	current	page	(CUR_PAGE)
7.		Add	the	following	as	hidden	fields	in	the	global	web_map:
					EMPNOF,	EMPNOW	and	CUR_PAGE.
					Note	that	this	web_map	maps	the	fields	for	*both.	Their	current	value	will	be
mapped	back	into	each	WebRoutine	that	is	invoked	from	the	web	page.

8.		Compile	your	WAM	and	open	the	search	WebRoutine	in	the	Design	view.	It
should	look	like	the	following:

9.		Select	the	employee	number	input	box	in	the	table	containing	employee
numbers,	and	use	the	context	menu	Table	Items	/	Add	Columns…	to	add	one
column	to	the	table.

10.	Drop	a	Push	button	with	image	into	the	new	top	cell.
					Remove	the	placeholder	characters.
11.	Select	the	push	button	and	set	up	the	push	button	as	follows,	using	the
Details	tab:

Property Value

caption Search

left_relative_image_path icons/normal/16/zoom_16.png

on_click_wrname search

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	Value:	S

	

12.		Set	the	tab_index	for	the	push	button	and	employee	number	fields	as
follows

Element Tab_index

EMPFROM 1

EMPTO 2

Push	Button 3

	

13.	Save	your	changes.	Your	web	page	should	look	like	the	following:

14.	Execute	your	WAM	in	the	browser.	Enter	search	values	for	employee
number	such	as	A0070	and	A2000.	Your	results	should	look	like	the
following:

Step	2.	Add	List	Paging	Images	weblet
1.		In	the	Design	view,	click	anywhere	in	the	employee	list	and	use	the	context
menu,	Table	Items	/	Add	Rows…	to	add	one	row	to	the	bottom	of	this	table.

					Hint:	Click	in	one	of	the	columns	such	as	Given	Name	and	then	use	the
context	menu.

2.		Select	inside	the	left	hand	cell	of	this	new	row	and	use	the	Details	tab	to	set
its	colspan	to	5.

3.		Drag	a	List	paging	images	weblet	into	the	new	row.	Your	web	page	should
look	like	the	following:

4.		Save	your	changes.
5.		Select	the	list	paging	images	weblet	and	use	the	Details	tab	to	set	up	its
properties:

Property Value

prevcondfield STDPREV

nextcondfield STDMORE

Rentryfield STDRENTRY

on_page_wrname page

on_search_wrname search

	

					You	will	observe	that	STDPREV,	STDMORE	and	STDRENTRY	are	already
defined.	All	these	fields	are	defined	in	the	repository.	To	use	this	weblet	you

must	ensure	they	are	mapped	appropriately.
					The	WebRoutine	page	is	not	yet	defined,	so	you	must	type	in	this	value.
6.		Save	your	changes.
You'll	find	a	detailed	definition	of	all	weblets	in	the	Web	Application	Modules
guide.
STDPREV	and	STDMORE	are	used	to	show	or	hide	the	next	and	previous
images.	STDPREV	=	Y	will	hide	the	previous	image.
The	weblet	returns	a	value	in	STDRENTRY	when	the	more	or	previous	image	is
selected.

The	more	image	returns	M	in	STDRENTRY
The	previous	image	returns	P	in	STDRENTRY
The	search	image	returns	blank	in	STDRENTRY.

7.		Add	STDPREV	and	STDMORE	as	hidden	fields	in	the	global	web_map,
which	should	now	look	like	the	following:
*	Global	Maps
Web_Map	For(*both)	Fields((#stdrentry	*hidden)	(#empnof	*hidden)
(#empnow	*hidden)	(#cur_page	*hidden)	(#stdmore	*hidden)	(#stdprev
*hidden))

8.		Create	a	page	WebRoutine	based	on	the	following:
WebRoutine	Name(page)
Web_Map	For(*both)	Fields(#empfrom	#empto)
Web_Map	For(*output)	Fields(#emplist)
Case	(#stdrentry)
When	(=	M)
#com_owner.browse	I_Empfrom(#empnow)	I_Empto(#empto)
When	(=	P)
#com_owner.previous	I_Empfrom(#empnof)	I_Empto(#empfrom)
Endcase
#stdrentry	:=	D
Transfer	Toroutine(search)
Endroutine
	

Ignore	errors		shown	because	the	previous	method	routine	does	not	yet	exist.
Review	the	page	WebRoutine	which:

Maps	fields	EMPFROM	and	EMPTO,	in	and	out.
Maps	the	list	EMPLIST	out.
EMPNOF	and	EMPNOW	represent	the	first	and	last	entry	in	the	list	EMPLIST.
For	more,	the	browse	method	routine	is	invoked	with	EMPNOW	as	the	from

employee	number	value.
For	previous,	the	previous	method	routine	is	invoked	with	EMPNOF	as	the

from	employee	number	value.
9.		Create	the	previous	method	routine	based	on	the	following:
Mthroutine	Name(previous)
Define_Map	For(*input)	Class(#empno)	Name(#i_empfrom)
Define_Map	For(*input)	Class(#empno)	Name(#i_empto)
Clr_List	Named(#emplist)
Select	Fields(*all)	From_File(pslmst)	Where((#std_count	<=	10)	And	(#empno	>=	#i_empto))	With_Key(#i_empfrom)	Val_Error(*next)	Options(*startkey	*endwhere	*backwards)
Add_Entry	To_List(#emplist)	After(*start)
If	(#std_count	=	1)
#empnow	:=	#EMPNO
Else
#empnof	:=	#EMPNO
Endif
Endselect
#cur_page	-=	1
If_Status	Is(*beginfile)
Message	Msgtxt('No	more	records')
#stdprev	:=	*blank
Else
#stdprev	#stdmore	:=	Y
Endif
Endroutine
	

Review	the	previous	method	routine,	which:
Maps	in	from	employee	number	and	to	employee	number	values.
Clears	the	list	EMPLIST
Selects	record	from	file	PSLMST	with	a	startkey,	reading	backwards,	with	an

endwhere	condition.
The	read	ends	when	10	records	have	been	added	to	the	list,	or	the	current

employee	number	is	equal	to	or	greater	than	the	I_EMPTO	value.	This	field
contains	the	'From	Employee'	value.
EMPNOF	and	EMPNOW	are	maintained,	allowing	for	the	read	being

backwards.
Current	page	number	(CUR_PAGE)	is	decremented.
Beginning	of	file	is	detected	with	a	message.
STDPREV	and	STDMORE	are	maintained,	and	control	showing	and	hiding	the

more	and	previous	images.
10.	Extend	the	browse	method	routine	to:
Manage	STDPREV	and	STDMORE
Detect	end	of	file
Detect	the	employee	number	to	value	has	been	reached.
					Your	code	should	look	like	the	following.		New	code	is	shown	in	red.
.	.	.	.	
Endselect
#cur_page	+=	1
If	(#cur_page	>=	2)
#stdprev	:=	Y
Else
#stdprev	:=	*blanks
Endif
If_Status	Is(*endfile)
Message	Msgtxt('No	more	records')
#stdmore	:=	*blank
Endif
If	(#empno	>=	#empto)
Add_Entry	To_List(#emplist)
Message	Msgtxt('End	of	Search')
#stdmore	:=	*blank
Endif
Endroutine
	

11.	In	the	Search	WebRoutine	add	code	to	initialize	the	STDPREV	and
STDMORE	fields.

					Your	code	should	look	like	the	following.	New	code	is	shown	in	red.

When	(=	s)*	Search	Button#stdprev	:=	*blank#stdmore	:=
Y#com_owner.browse	I_Empfrom(#empfrom)	I_Empto(#empto)
12.		Compile	and	test	your	WAM	in	the	browser.

a.		With	search	values	such	as	from	A0070	to	A2000	you	should	be	able	to
page	forward	until	A2000	is	reached	(or	the	next	nearest	record	if	A2000
does	not	exist)	and	then	page	back	until	A0070	is	reached.

b.		Perform	a	search	from	A0070	to	A0090.	The	More	and	Previous	images
should	not	be	displayed.

13.	Notice	that	when	the	Search	web	page	is	initially	displayed,	the	list	images
weblet	is	shown.	To	hide	this	when	the	page	is	initially	displayed,	make	the
following	changes:
a.		Add	the	field	STD_COUNT	to	the	global	WEB_MAP	as	a	hidden	field
b.		Open	the	Search	webroutine	in	the	Design	view	and	select	the
std_list_images	weblet.	Define	the	hide_if	property	for	the	std_list_images
as:

#STD_COUNT	=	0
					This	logic	must	be	added	in	the	Xpath	expression	editor	for	the	hide_if
property.	Note	that	the	field	name	must	be	in	upper	case.

14.	Recompile	your	WAM	and	re-test.	The	list	images	weblet	should	be	hidden
when	the	Search	page	is	first	displayed.

Step	3.	Add	AutoComplete	Weblets	(optional)
This	step	adds	Autocomplete	weblets	for	the	To	and	From	employee	number
fields.	You	may	choose	not	to	complete	this	step	to	save	time.
At	present,	to	use	this	enquiry	you	need	to	know	suitable	employee	numbers.
Adding	an	AutoComplete	weblet	for	the	from	and	to	employee	fields	and	a
supporting	response	WebRoutine,	will	bring	back	and	display	a	list	of	matching
employee	numbers	as	you	type	into	the	weblet.
1.		Create	the	Empno_Prompt	response	WebRoutine	based	on	the	following
code:
WebRoutine	Name(Empno_Prompt)	Response(*JSON)
Web_Map	For(*input)	Fields(#empno)
Web_Map	For(*output)	Fields((#emp_dd	*json))
Def_List	Name(#emp_dd)	Fields(#empno	#std_code)	Counter(#std_count)	Type(*Working)
Clr_List	Named(#emp_dd)
Select	Fields(#emp_dd)	From_File(pslmst)	Where(#std_count	<=	3)	With_Key(#empno)	Options(*startkey	*endwhere)
#std_code	:=	#empno
Add_Entry	To_List(#emp_dd)
Endselect
Endroutine
	

The	Empno_Response	WebRoutine:
Must	have	the	Response(*JSON)	keyword	on	the	WebRoutine	statement.
This	routine	will	be	called	by	the	AutoComplete	weblet	and	returns	a
small	list	of	employee	numbers	as	JSON	data.
Maps	the	field	EMPNO	for	input
Maps	the	list	EMP_DD	for	output	as	JSON	data.
Defines	a	working	list	EMP_DD	containing	EMPNO.	A	second	field	has
been	added	to	ensure	the	fields	are	recognized	by	the	Details	tab	dialog.
Clears	the	list	EMP_DD
Selects	up	to	3	entries	from	the	file	PSLMST	using	EMPNO	as	a	startkey
Adds	entries	to	the	list	EMP_DD
Returns	the	list	EMP_DD	to	the	AutoComplete	weblet.

2.		Compile	your	WAM.
3.		Open	the	search	WebRoutine	in	the	Design	view.

4.		Drop	an	AutoComplete	weblet	onto	to	the	EMPFROM	field	and	the	EMPTO
field.

5.		Set	up	both	AutoComplete	weblets	as	follows:

Property Value

minLength 2

Delay 150

sourceWrName Empno_Prompt

termField EMPNO

listName EMP_DD

valueField EMPNO

	

					For	more	information	on	all	weblets	see	the	Web	Application	Modules	Guide.
					See	also	the	help	available	for	each	property	from	the	Details	tab:

					The	minLength	value	is	the	characters	to	be	typed	before	the	WebRoutine	is

called
					The	delay	value	is	the	number	of	milliseconds	the	weblet	waits	to	activate
itself	after	the	last	keystroke.

					The	termField	is	the	value	passed	to	the	WebRoutine	defined	in
sourceWrName.

					The	listName	is	the	response	list	to	be	displayed	as	a	dropdown	list.
					The	valueField	is	the	list	value	to	be	displayed.
6.		If	necessary	reduce	the	width	of	the	AutoComplete	input	boxes	to	suit	the
field	EMPNO	(up	to	5	characters).

7.		Save	your	changes.
8.		Execute	your	WAM	in	the	browser	and	test	the	AutoComplete	weblet.	You
should	get	the	following	results:

Summary
Important	Information

Other	techniques	you	could	use	to	control	a	large	list	of	results,	include
showing	a	list	of	the	page	numbers	available,	as	below,	and	enabling	the
user	to	jump	to	the	page	required.
This	example	also	enables	the	user	to	change	the	number	of	entries	per
page.	One	simple	way	to	do	this	is	to	add	an	anchor	to	the	page	size	value
and	use	this	to	switch	between	two	values	such	as	10	and	25.

Another	more	sophisticated	technique	uses	a	working	list,	displayed	as	a
single	row,	as	in	this	example.	This	makes	it	easy	to	handle	any	number
of	pages	and	disable	the	link	for	the	current	page.

Tips	&	Techniques
The	technique	used	here	will	work	well	on	large	files.
Of	course	your	search	criteria	would	likely	be	much	more	sophisticated
than	used	here.
The	SELECT_SQL	statement	will	enable	you	to	read	one	or	more	files
rapidly	and	also	implement	much	more	flexible	search	criteria.	See	also
the	free	format	version	of	SELECT_SQL.
The	Autocomplete	weblet	includes	a	cache	property.	If	cache	=	true,	the
selection	will	be	refined	locally	as	you	continue	to	type,	rather	than	going

back	to	the	server.	For	example	the	following	initial	response:

	will	be	refined	to	the	following	as	you	continue	to	type	into	the	input	box,
without	making	a	second	call	to	the	server:

What	You	Should	Know
How	to	implement	the	list	paging	images	weblet.	You	could	also	have
used	the	list	paging	buttons	weblet
How	to	implement	the	AutoComplete	weblet.

WAM070	-	Hiding	Techniques
Objectives

To	demonstrate	different	hiding	techniques.
In	this	exercise,	you	will	learn	about	a	number	of	ways	to	conditionally	hide
objects	on	a	page.	The	conditions	will	be	based	on	a	field	value	that	you	will	set
in	the	RDML.	Some	of	the	hiding	techniques	will	only	be	available	to	certain
types	of	objects,	while	one	of	the	techniques	can	be	applied	to	anything	on	the
page.	This	requires	the	XSL	Source	to	be	manually	edited.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Create	a	new	WAM
Step	2.	Edit	the	HideMain	WebRoutine	web	page
Step	3.	Apply	the	Conditional	Hides
Step	4.	Test	the	WAM
Summary

Before	You	Begin
In	order	to	complete	this	exercise,	you	must	first	complete	all	the
previous	Exercises.

Step	1.	Create	a	new	WAM
1.		Create	a	new	WAM:
					Name:		iiiHideTech
					Description:	Hiding	Techniques
					Layout	Weblet:	iiilay01
2.		In	this	step,	you	will	add	the	RDMLX	code	to	demonstrate	different	hiding
techniques.

					Use	the	DEFINE	command	to	define	the	following	work	fields.

Field Type Length Default	Value

CLASSHIDE *char 10 *blanks

HIDEIF *char 10 *blanks

XSLIF *char 10 *blanks

	

3.		Create	a	WebRoutine	named	HideMain	with	a	description	of	'Hiding
Techniques'.
WebRoutine	Name(HideMain)	Desc('Hiding	Techniques')
Endroutine
	

4.		Add	a	WEB_MAP	for	*both.	Include	the	fields	you	have	just	created	as	well
as	STDRENTRY.	Define	all	as	hidden	fields	as	follows:
Web_Map	For(*BOTH)	Fields((#CLASSHIDE	*HIDDEN)	(#HIDEIF	*HIDDEN)	(#XSLIF	*HIDDEN)	(#STDRENTRY	*HIDDEN))
	

5.		Add	a	CASE	loop	based	on	STDRENTRY	for	three	different	values	A,	B
and	C.

					Note:	Classes	are	case	sensitive	(#CLASSHIDE	:=	'hidden').	'hidden'	must
be	lower	case.

					Your	code	should	look	like	the	following:
Case	Of_Field(#STDRENTRY)
When	Value_Is(=	A)

If	Cond(#CLASSHIDE	=	*BLANKS)
#CLASSHIDE	:=	'hidden'
Else
#CLASSHIDE	:=	*BLANKS
Endif
When	Value_Is(=	B)
If	Cond(#HIDEIF	=	*BLANKS)
#HIDEIF	:=	'HIDE'
Else
#HIDEIF	:=	*BLANKS
Endif
When	Value_Is(=	C)
If	Cond(#XSLIF	=	*BLANKS)
#XSLIF	:=	'HIDE'
Else
#XSLIF	:=	*BLANKS
Endif
Endcase
	

					The	complete	WAM	source	code	can	be	found	in	WAM	070.	Appendix
6.		Compile	your	WAM

Step	2.	Edit	the	HideMain	WebRoutine	web	page
In	this	step,	you	will	set	up	the	web	page	for	the	HideMain	WebRoutine	in	the
Design	view.
1.		Open	the	HideMain	WebRoutine	in	the	Design	view.
2.		Use	the	context	menu,	Insert	HTML	/	Table	to	add	a	3	row	by	3	column	table
to	the	page.

3.		Select	the	table	and	set	the	table's	width	property	to	80%.
4.		Set	the	align	property	of	each	individual	cell	to	center.
5.		Set	the	class	property	of	each	cell	in	the	top	row	to	bold.
6.		Add	text,	to	clarify	the	technique	used,	to	each	of	the	three	cells	in	the	top
row.	The	headings	should	be	Hidden	Class,	hide_if,	and	xsl:if.

7.		Add	a	Combo	box	weblet	to	each	of	the	three	cells	in	the	middle	row.
8.		Add	a	Push	button	weblet	to	each	of	the	three	cells	in	the	bottom	row.
9.		Configure	the	three	Hide/Show	Push	buttons	using	this	table.

	 Property Value

	 caption Hide/Show

	 on_click_wrname HideMain

Table	Column	1 submitExtraFields Field	Name:	STDRENTRY
	 Literal	Value:	A

Table	Column	2 submitExtraFields Field	Name:	STDRENTRY
	 Literal	Value:	B

Table	Column	3 submitExtraFields
	

Field	Name:	STDRENTRY
	 Literal	Value:	C

	

					The	Design	view	should	appear	something	like	the	following:

10.	Save	your	changes.

Step	3.	Apply	the	Conditional	Hides
In	this	step,	you	will	conditional	hide	the	dropdowns	using	different	techniques.
1.		Set	the	hidden	class	for	the	first	dropdown	list.
					Set	the	first	Dropdown's	class	property	to	#CLASSHIDE.	The	WAM's
RDML	conditions	this	field	to	contain	either	*blanks	or	'hidden'.

					Note:	Select	the	class	property	value	and	then	use	the	XPath	editor	to	enter
#CLASSHIDE.

					Click	the	 	icon	to	confirm	this	change.	Note	that	the	XPath	editor	has
added	the	required	XSL	expression:
key('field-value',	'CLASSHIDE')
	

2.		Set	the	hide_if	condition	for	the	second	dropdown	list.
Select	the	hide_if	property	value	and	use	the	XPath	expression	window	to
define	the	condition	#HIDEIF	=	'HIDE'.		Press	the	 	button	to	confirm	this
change.

					Note:	The	field	name	must	be	entered	in	upper	case.
					Once	again,	the	field	is	conditioned	in	the	WAM's	RDML,	and	when	the
condition	specified	in	the	hide_if	property	is	true,	the	object	will	be	hidden.

3.		Set	the	xsl:if.
a.		Select	the	third	combo	box.
b.		Select	the	XSL	tab.	The	block	of	code	that	generates	the	selected	item	will
be	highlighted.

					You	must	enclose	this	highlighted	code	within	the	xsl:if	tags.	The	syntax
for	the	xsl:if	is:

					<xsl:if	test="test">
										code	to	be	hidden
					</xsl:if>
					Where	test	is	the	condition	on	which	the	code	will	be	hidden.
c.		Enclose	the	code	for	the	third	dropdown	with	the	xsl:if	condition.	The
condition	to	hide	is	when	#XSLIF	is	'HIDE',	so	test	will	be	key('field-
value',	'XSLIF')	!=	'HIDE'.

					That	is,	output	the	combo	box	to	the	page	if	XSLIF	is	not	equal	to
'HIDE'.

					The	XSL	code	should	look	like	the	following.	New	code	is	shown	in	red.
<xsl:if	test="key('field-value',	'XSLIF')	!=	'HIDE'">

			<xsl:call-template	name="std_dropdown">
						<xsl:with-
param	name="name"	select="concat('o',	position(),	'_LANSA_28762')"	/>
			</xsl:call-template>
</xsl:if>
	

Using	the	XSL	Editor
The	editor	has	autocomplete	functionality.	As	you	type,	press	enter	to	select	the
prompted	code.	Once	you	complete	the	<xsl:if	with	the	>	character,	the	end	if
(</xsl:if>)	will	be	generated.	Move	the	"end	if"	logic	after	the	</xsl:call-
template>.
Note:	If	you	click	on	the	Design	tab	or	try	to	save	your	XSL	while	your	xsl
changes	contain	errors,	the	errors	will	be	reported	on	the	Go	To	tab	as	shown
in	this	example.	In	this	case,	there	is	a	missing	double	quote	at	the	end	of	the
test	condition.

					Note	that	the	line	in	error	is	highlighted.
					Attempts	to	save	xsl	with	errors	may	also	show	these	dialogs:

4.		Press	OK,	to	continue	editing	your	XSL.	In	this	case,	the	error	is	a	missing
double	quote	at	the	end	of	the	test	condition.

						On	the	Design	ribbon,	you	can	use	the	Restore	XSL	dialog	to	restore	the
previous	verified	XSL	or	continue	editing.

5.		If	necessary,	correct	any	errors	in	your	XSL	and	save	the	changes	to	the

HideMain	web	page.

Step	4.	Test	the	WAM
In	this	step,	you	will	test	WAM.
1.		Run	WebRoutine	HideMain	in	the	browser.
2.		Test	all	three	buttons.	Pressing	each	button	will	hide	the	object	if	it	is	visible,
or	make	the	object	visible	if	it	is	hidden.	The	buttons	will	appear	to	function
in	the	same	way,	but	you	know	what	is	going	on	behind	the	scenes,	and	can
see	the	different	techniques	in	action.

3.		If	your	hide	/	show	logic	is	not	working	you	will	need	to	check	both	your
RDML	and	on	the	Design	tab,	the	definition	of	the	push	buttons	and	combo
boxes.	If	necessary	use	debug	to	resolve	any	errors.

4.		Close	the	browser.

Summary
Important	Observations

You	can	apply	the	hidden	class	to	any	object	with	a	class	property.
You	can	set	the	hide_if	property	to	hide	weblets.
When	an	object	does	not	have	a	class	or	hide_if	property,	you	can	still
hide	it	from	within	the	XSL	code	using	an	xsl:if.

Tips	&	Techniques
Once	the	objects	on	the	page	are	set	up	correctly	(conditionally	hidden
based	on	a	field)	you	will	use	the	RDML	to	control	the	field	to	hide	the
object.

What	I	Should	Know
How	to	hide	object	using	a	hidden	class,	the	hide_if	property,	and	an
xsl:if.

WAM	070.	Appendix
Use	the	following	RDMLX	source	code	to	create	iiiHideTech	in	Step	1	of	this
exercise.
Replace	the	Layoutweblet()	keyword	with	your	common	layout	name.
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')
WebRoutine	Name(HideMain)
Web_Map	For(*BOTH)	Fields((#CLASSHIDE	*HIDDEN)	(#HIDEIF	*HIDDEN)	(#XSLIF	*HIDDEN)	(#STDRENTRY	*HIDDEN))
Define	Field(#CLASSHIDE)	Type(*char)	Length(10)
Define	Field(#HIDEIF)	Type(*char)	Length(10)
Define	Field(#XSLIF)	Type(*char)	Length(10)
Case	Of_Field(#STDRENTRY)
When	Value_Is(=	A)
If	Cond(#CLASSHIDE	=	*BLANKS)
#CLASSHIDE	:=	'hidden'
Else
#CLASSHIDE	:=	*BLANKS
Endif
When	Value_Is(=	B)
If	Cond(#HIDEIF	=	*BLANKS)
#HIDEIF	:=	'HIDE'
Else
#HIDEIF	:=	*BLANKS
Endif
When	Value_Is(=	C)
If	Cond(#XSLIF	=	*BLANKS)
#XSLIF	:=	'HIDE'
Else
#XSLIF	:=	*BLANKS
Endif
Endcase
Endroutine
End_Com
	

WAM075	-	Using	a	Tree	View	Weblet
Objectives
The	Tree	View	weblet	provides	an	expandable	collapsible	tree.	It	can	be	useful
as	a	site	navigation	system	or	for	visualizing	complex	hierarchical	data.

The	Tree	View	is	filled	with	data	from	a	working	list.	Similar	to	the	VL	Tree
View,	the	source	data	may	be	unlevelled,	where	each	entry	has	an	id	and
specifies	the	id	of	its	parent,	or	levelled,	where	the	tree	builds	itself	from	a
sorted	list	based	on	key	columns	in	the	list.
When	using	unlevelled	source	data,	the	list	can	be	configured	to	use	AJAX	to
request	child	entries	from	the	server	when	a	branch	is	opened	by	the	user.
This	exercise	demonstrates	how	to	build	an	expandable	tree	view.	It	will	also
show	how	to	display	detail	data	when	an	entry	at	each	level	is	selected.

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Create	WAM	iiiTreeView	–	Using	a	Tree	View	Weblet
Step	2.	Make	the	Tree	View	Expand
Step	3.	Display	Details	for	a	Selected	Department
Step	4.	Display	Details	for	Sections	and	Employees

Summary

Before	You	Begin
You	should	complete	all	preceding	exercises	before	starting	this	exercise.

Step	1.	Create	WAM	iiiTreeView	–	Using	a	Tree	View	Weblet
Unlevelled	List
In	an	unlevelled	list	each	entry	tells	the	Tree	View	exactly	where	it	fits	in	the
tree	structure	by	specifying	its	parent	ID.	As	a	minimum,	an	unlevelled	list	must
contain	columns	with	the	following	data:

Field Tree	View
Property

Description

ID list_id_field A	unique	ID	string	to	identify	the	entry.

Parent
ID

list_parent_id_field The	ID	string	of	the	parent	entry.	An
empty	string	indicates	a	top	level	entry.

Caption list_caption_field The	text	to	display	for	the	entry.

	

	
The	Tree	View	processes	the	list	entries	in	the	supplied	order	and	cannot	add	an
entry	to	a	parent	that	doesn't	exist.	It	is	your	responsibility	to	ensure	the	list	is
sorted	so	that	parent	items	come	before	their	children	and	items	at	the	same
level	are	in	display	order.
Additional	list	fields	may	be	used	to	control	the	tree	view	behaviour	and
appearance:

List_image_field
List_open_image_field
List_is_selected_field
List_is_expanded_field
List_onselect_wamname_field
List_onslect_wrname_field

Refer	to	Tree	View	(std_treeview_v2)	Properties	for	further	details.
Your	WAM	will	build	an	initial	list	based	on	the	department	table	(DEPTAB),
so	that	initially	the	tree	will	contain	a	single	level.	You	will	later	add	routines	to
handle	expanding	the	tree	view	at	each	level.
Note:	The	supplied	code	can	be	copied	from	the	WAM	tutorials	in	the	Visual

its:lansa087.chm::/lansa/WAMEngb8_0495.htm

LANSA	online	guide.	Most	of	the	code	to	support	the	tree	view	is	provided,	but
you	should	ensure	that	you	review	it	in	detail	so	that	you	become	familiar	with
the	concepts.
1.		Create	a	new	WAM:
					Name:	iiiTreeView
					Description:	Using	a	Tree	View	Weblet
					Layout	Weblet:	iiilay01

					Make	a	note	of	the	Identifier	which	is	assigned	to	this	WAM.	You	will	need
to	use	the	Identifier	when	setting	the	WAM	Name	field	in	the	working	list
which	builds	the	tree	view.	JavaScript	will	call	the	WAM/WebRoutine	to
display	details	for	the	selected	level.	This	requires	the	WAM	Identifier,	not
the	Long	Name.

2.		Define	the	fields	and	lists	required	to	support	the	tree	view
Define	Field(#listid)	Reffld(#std_name)
Define	Field(#listpid)	Reffld(#std_name)
Define	Field(#listcapt)	Reffld(#std_desc)
Define	Field(#onsubid)	Reffld(#std_name)
Define	Field(#onsublvl)	Reffld(#std_code)
Define	Field(#haschld)	Reffld(#std_flag)
Define	Field(#selwam)	Reffld(#std_name)
Define	Field(#selwrn)	Reffld(#std_name)
Define	Field(#currid)	Reffld(#std_name)
Def_List	Name(#emptree)	Fields(#listid	#listpid	#listcapt	#haschld	#selwam	#selwrn)	Type(*Working)
Def_List	Name(#ancestor)	Fields(#listid)	Type(*Working)	Entrys(3)
	

					The	list	named	ancestor	will	be	explained	in	a	later	step.
3.		Define	a	WebRoutine	deptview	which:

Maps	for	both,	the	lists	EMPTREE	and	ANCESTOR	as	JSON	data
Clears	and	builds	the	list	EMPTREE	reading	all	records	from	the	department

table
Populates	the	list	fields	for	each	entry
					Note:
The	parent		id	(field	LISTPID)	is	blank	for	the	top	level	in	the	tree	view.
The	"has	children"	field	(HASCHLD)	is	Y	as	this	is	the	top	level	entry.
WAM	name	and	WebRoutine	fields	in	the	list	define	the	routine	to	call	if	this

entry	is	selected.	The	WAM	name	must	be	the	Identifier	which	you	noted	earlier
					Your	code	should	look	like	the	following.	Substitute	your	initials	for	iii.
WebRoutine	Name(deptview)
Web_Map	For(*both)	Fields((#emptree	*json))
Web_Map	For(*both)	Fields((#ancestor	*json))
Clr_List	Named(#emptree)
Select	Fields(#deptment	#deptdesc)	From_File(deptab)
#listid	:=	#deptment
#listcapt	:=	#deptdesc
#listpid	:=	*blanks
#haschld	:=	Y
#selwam	:=	iiiTRE_2
#selwrn	:=	DEPDET
Add_Entry	To_List(#emptree)
Endselect
Endroutine
	

4.		Compile	the	WAM	and	open	the	deptview	WebRoutine	in	the	Design	view.
5.		Drop	a	tree	view	weblet	onto	the	page.	Select	the	tree	view	weblet	and	drag
the	center	right	hand	"handle"	to	make	the	tree	view	wider	to	allow	room	for
three	levels	and	descriptions	to	be	displayed.

6.		Set	up	the	tree	view	properties	as	follows:

Property Value

Listname EMPTREE

item_image icons/normal/16/operator_16.png	***

list_caption_field LISTCAPT

list_id_field LISTID

list_onselect_wamname SELWAM

list_onselect_wrname SELWRN

list_haschildren_field HASCHLD

list_parent_id_field LISTPID

	

***	select	the	image	using	the	Ellipsis	button.	Drill	down	by	selecting	the
normal	and	16	folders.

7.		Save	your	changes	and	run	the	WAM	in	the	browser.	Your	tree	view	should
display	description	for	all	departments:

Step	2.	Make	the	Tree	View	Expand
In	this	step	you	will	add	a	new	treeexpand	WebRoutine	to	handle	expanding
departments	to	add	the	department's	sections	and	expanding	sections	to	add
employees	for	the	selected	section.

The	tree	view	weblet	is	AJAX	enabled	and	will	invoke	the	expand
WebRoutine	when	an	entry	in	the	tree	is	selected.
The	response	WebRoutine	invoked	by	the	tree	view	must	have	a
WebRoutine	statement	with	the	keyword	Response(*JSON)
As	before	the	lists	are	mapped	as	JSON	data.
Two	additional	fields	must	be	mapped	into	the	WebRoutine,	one
containing	the	level	number	being	expanded	(ONSUBLVL)	and	the	other
the	id	of	the	selected	entry	(ONSUBID).
Depending	on	the	value	of	field	ONSUBLVL	,	the	WebRoutine	should
add	entries	from	the	section	table	(SECTAB)	or	the	employees	file
(PSLMST).
Table	DEPTAB	is	keyed	on	DEPTMENT
Table	SECTAB	is	keyed	in	DEPTMENT	and	SECTION
File	PSLMST	is	keyed	on	EMPNO
Field	LISTID	contains	a	unique	id	for	each	list	entry.	Its	value	must	be
constructed	based	on	these	key	relationships.
LISTID	for	sections	=	DEPTMENT	+	SECTION
LISTID	for	employees	=	EMPNO
The	parent	id	field	LISTPID	must	be	set	using	the	same	values.	For
example,	LISTPID	for	an	employee	will	be	a	DEPTMENT	+	SECTION
value.
The	list	ancestors	is	returned	by	the	tree	view	weblet	and	contains	1	to	3
entries,	depending	on	the	level	being	expanded.	As	its	name	suggests,	an
entry	contains	one	field	corresponding	to	the	parent	of	the	expanding
entry.
The	WebRoutine	must	retrieve	the	appropriate	entry	in	the	ancestors	list
to	construct	the	key(s)	to	read	the	file	and	expand	the	selected	entry.
For	section	entries,	field	LISTID	contains	the	concatenated	value	of
DEPTMENT	plus	SECTION.	The	value	of	SECTION	can	be	extracted
from	LISTID	using	the	SUBSTRING	intrinsic	function	with	a	start

position	calculated	from	the	actual	length	of	field	DEPTMENT.	For
example:

#std_num	:=	(#deptment.CurChars	+	1)
.
#section	:=	#listid.substring(#std_num)

1.		Add	the	following	code	and	then	review	its	logic.	Change	iii	to	your	initials.
Ensure	that	the	WAM	name	contains	your	WAM	Identifier.
Webroutine	Name(treeexpand)	Response(*json)
Web_Map	For(*input)	Fields((#ancestor	*json))
Web_Map	For(*output)	Fields((#emptree	*json))
Web_Map	For(*input)	Fields(#onsubid	#onsublvl)
Clr_List	Named(#emptree)
Case	(#onsublvl)
*	Level	1	expanding	–	add	sections
When	(=	'1')
#deptment	:=	#onsubid
Select	Fields(#deptment	#section	#secdesc)	From_File(sectab)	With_Key(#deptment)
#listid	:=	#deptment	+	#section
#listcapt	:=	#secdesc
#listpid	:=	#deptment
#haschld	:=	Y
#selwam	:=	iiiTRE_2
#selwrn	:=	SECDET
Add_Entry	To_List(#emptree)
Endselect
*	Level	2	expanding	–	add	employees
When	(=	'2')
Get_Entry	Number(1)	From_List(#ancestor)
#deptment	:=	#listid
#std_num	:=	(#deptment.CurChars	+	1)
Get_Entry	Number(2)	From_List(#ancestor)
#section	:=	#listid.substring(#std_num)
Clr_List	Named(#emptree)
Select	Fields(#empno	#surname	#givename)	From_File(pslmst1)	With_Key(#deptment	#section)
#listid	:=	#empno
#listcapt	:=	#surname	+	',	'	+	#givename
#listpid	:=	#deptment	+	#section
#haschld	:=	N

#selwam	:=	iiiTRE_2
#selwrn	:=	EMPDET
Add_Entry	To_List(#emptree)
Endselect
Endcase
Endroutine
	

2.		Compile	your	WAM	and	open	the	deptview	WebRoutine	in	the	Design	view.
Select	the	tree	view	and	complete	setting	up	its	properties,	as	follows:

Property Value

onexpand_wrname TREEEXPAND

onsubmit_id_field ONSUBID

onsubmit_level_field ONSUBLVL

onsubmit_ancestor_list ANCESTOR

	

3.		Save	your	changes	and	execute	your	WAM	in	the	browser.	Click	the	Expand
icon	to	test	the	expanding.	(Clicking	the	text	to	display	the	details	for	this
level,	will	be	completed	in	the	next	step.)

					You	should	now	be	able	to	expand	a	department	to	add	sections	belonging	to
this	department	and	then	expand	a	section,	adding	employees	belonging	to
this	section.

Step	3.	Display	Details	for	a	Selected	Department
In	this	step	you	will	add	a	WebRoutine	to	display	details	for	the	selected
department.	Details	will	be	displayed	on	the	right	hand	side	of	the	web	page,
inside	a	Navigation	panel.	The	Navigation	panel	weblet	enables	output	to	be
sent	to	this	area	of	the	page	(in	HTML	terms	the	Navigation	panel	is	an	iFrame),
without	refreshing	the	whole	page.
1.		Create	a	WebRoutine	DepDet	to	display	department	details.
Field	ONSUBID	should	be	mapped	into	the	routine
Fields	DEPTMENT	and	DEPTDESC	should	be	mapped	for	output	with	an

output	attribute
Fetch	department	fields	based	on	the	value	of	ONSUBID
					Your	code	should	look	like	the	following
WebRoutine	Name(DepDet)
Web_Map	For(*input)	Fields(#onsubid)
Web_Map	For(*output)	Fields((#deptment	*out)	(#deptdesc	*out))
#deptment	:=	#onsubid
Fetch	Fields(*all)	From_File(deptab)	With_Key(#deptment)
Endroutine
	

2.		Compile	your	WAM.
3.		Open	the	DeptView	WebRoutine	in	the	Design	view.	In	this	step	you	will
add	a	table	with	1	row	and	2	columns	to	the	web	page,	and	move	the	tree
view	into	its	left	column.
a.		Position	your	cursor	to	the	right	of	the	Tree	View	and	press	enter	to	insert
a	blank	line	below	it.

Hint:	Select	the	tree	view,	move	the	cursor	right	using	the	cursor	key	and
press	enter

b.		Use	the	context	menu	to	Insert	HTML		/		Table	with	1	row	and	two
columns,	below	the	tree	view.

c.		Select	the	tree	view	and	use	the	context	menu	to	Cut	it.
d.		Position	the	cursor	in	the	left	hand	column	of	the	table	and	use	the
context	menu	to	Paste	the	tree	view	into	it.

e.		Save	your	changes.	Your	web	page	should	now	look	like	the	following:

4.		In	this	step	you	will	add	a	Navigation	panel	weblet	into	the	right	hand	cell	of
the	table	and	set	up	the	tree	view	to	output	details	for	a	selected	entry	to	this
nav	panel.
a.		Drop	a	Navigation	panel	weblet	into	the	right	hand	cell	of	the	table.
b.		Select	the	Navigation	panel.	Use	the	Details	tab	to	change	its	name	to
dtl_panel.

					Note:	You	are	changing	the	name	property	below	the	With	Parameters
heading:

c.		Change	the	Navigation	panel	Size_panel_to_content	to	Yes.
d.		Change	the	Navigation	panel	border	property	to	none.
e.		Select	the	tree	view.	Using	the	Details	tab,	change	its
target_window_name	property	to	dtl_panel.

f.		Change	the	tree	view's	node_text_click	property	to	Select.	This	will	select
an	entry	to	display	details	when	the	entry's	text	is	clicked.

g.		Remove	the	place	holder	characters	from	the	table	cells.
h.		With	the	cursor	positioned	in	the	left	hand	table	cell,	change	its	vAlign
property	to	top.	This	will	position	the	tree	view	at	the	top	of	the	table	cell.

i.		With	the	cursor	positioned	in	the	right	hand	table	cell,	change	its	vAlign
property	to	top.

j.		Save	your	changes.
5.		In	this	step	you	will	set	up	the	web	page	for	WebRoutine	DepDet,	by	giving
it	a	blank	layout.	This	WebRoutine	will	be	displayed	within	the	Navigation
panel	on	the	DeptView	web	page	and	therefore	does	not	require	a	layout.
a.		Open	the	DepDet	WebRoutine	in	the	Design	view.
b.		On	the	Favorites	/	Weblet	Templates	tab,	select	Layout	Weblets	in	the	top
combo	box:

c.		Drag	and	drop	the	Simple	blank	layout	onto	the	web	page.
d.		From	the	Design	ribbon	select	External	Resources	button.	In	the	Manage
External	Resources	dialog,	add	the	Style	external	resources	which	are
required	by	your	chosen	common	standard	layout.

					This	will	add	these	style	sheets	into	the	XSL	for	this	WebRoutines	web	page
and	ensure	that	its	contents	are	consistent	with	your	common	layout	theme.

					Note:	If	necessary,	find	your	common	layout	(iiilay01)	and	use	the	context
menu	Cross	References	option	to	find	the	external	resources	being	used.

					Your	design	should	now	look	like	the	following:

6.		Save	your	changes.

Step	4.	Display	Details	for	Sections	and	Employees
In	this	step	you	will	complete	the	WAM	by	adding	WebRoutines	to	display
details	for	sections	and	employees.
1.		Define	a	Group_by	SECDATA	for	fields	SECTION,	SECDESC,
SECADDR1,	SECADDR2	SECADDR3,	SECPCODE	and	SECPHBUS.	All
fields	should	have	an	output	attribute.

2.		Create	a	new	WebRoutine	SecDet,	based	on	the	following:
Map	for	input	field	ONSUBID	and	list	ANCESTOR
Map	for	output	the	Group_by	SECDATA
Retrieve	the	first	entry	from	list	ANCESTOR	and	set	the	value	of	DEPTMENT

from	LISTID
Calculate	STD_NUM	based	on	the	actual	length	of	field	DEPTMENT	+	1
Assign	SECTION	by	substringing	from	ONSUBID,	starting	from	STD_NUM
Fetch	department	fields	with	the	key	DEPTMENT	and	SECTION
					Your	code	should	look	like	the	following:
Webroutine	Name(SecDet)
Web_Map	For(*input)	Fields(#onsubid	#ancestor)
Web_Map	For(*output)	Fields(#secdata)
Get_Entry	Number(1)	From_List(#ancestor)
#deptment	:=	#listid
#std_num	:=	(#deptment.CurSize	+	1)
#section	:=	#onsubid.substring(#std_num)
Fetch	Fields(*all)	From_File(sectab)	With_Key(#deptment	#section)
Endroutine

3.		Compile	the	WAM.
4.		Define	a	Group_by	EMPDATA	for	fields	EMPNO,	SURNAME,
GIVENAME,	ADDRESS1,	ADDRESS2,	ADDRESS3,	POSTCODE,
PHONEHME,	PHONEBUS,	DEPTMENT,	SECTION,	SALARY,
STARTDTE,	TERMDATE.	All	fields	should	have	an	output	attribute.

5.		Define	a	working	list	SKILLS,	for	fields	SKILCODE,	SKILDESC,
GRADE,	COMMENT,	DATEACQ.	All	fields	should	have	an	output
attribute.

6.		Open	the	WebRoutine	SecDet	in	the	Design	view.	Drop	the	Simple	blank

layout	onto	the	page.
7.		Use	the	Web	/	Manage	External	Resources	menu	option	to	give	the	web	page
the	theme	styles	to	match	your	common	layout.

8.		Save	your	changes.
9.		Create	a	new	WebRoutine	EmpDet.
Map	field	ONSUBID	and	list	ANCESTOR	for	input
Map	Group_by	and	list	SKILLS	for	output
Assign	EMPNO	to	the	value	of	ONSUBID
Fetch	employee	data	from	file	PSLMST	using	key	EMPNO
Clear	the	list	SKILLS
Build	the	list	SKILLS	from	file	PSLSKL	with	key	EMPNO
Fetch	SKILDESC	for	each	employee	skill	with	key	SKILCODE
					Your	code	should	look	like	the	following:
Webroutine	Name(EmpDet)
Web_Map	For(*input)	Fields(#onsubid	#ancestor)
Web_Map	For(*output)	Fields(#empdata	#skills)
#empno	:=	#onsubid
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
Clr_List	Named(#skills)
Select	Fields(#skills)	From_File(pslskl)	With_Key(#empno)
Fetch	Fields(#skildesc)	From_File(skltab)	With_Key(#SKILCODE)
Add_Entry	To_List(#skills)
Endselect
Endroutine

10.	Compile	the	WAM.
11.	Open	the	EmpDet	WebRoutine	in	the	Design	view.	Drop	the	Simple	blank
layout	onto	the	web	page.

12.		On	the	Design	ribbon	use	the	External	Resources	button,	then	Manage
External	Resources	dialog	to	add	the	Style	external	resources	to	match	those
used	in	your	common	layout.

13.	Open	the	SecDet	WebRoutine	in	the	Design	view.	Drop	the	Simple	blank
layout	onto	the	web	page.

14.	On	the	Design	ribbon	use	the	External	Resources	button,	then	Manage

External	Resources	dialog	to	add	the	Style	external	resources	to	match	those
used	in	your	common	layout.

15.	Save	your	changes.
16.	Test	your	WAM	by	running	the	DeptView	WebRoutine	in	the	browser.	You
should	be	able	to	expand	the	tree	view	and	select	a	department,	a	section	or
an	employee	to	display	its	details.

17.	You	probably	found	that	the	Navigation	panel	needed	more	space	to	display
employee	details.
a.		Open	the	DeptView	WebRoutine	in	the	Design	view
b.		Select	the	table	containing	the	tree	view	and	Navigation	panel.	Do	this	by
selecting	a	corner	of	the	table.	Alternatively,	click	anywhere	inside	the
table	and	use	the	Outline	tab	to	locate	and	select	the	table.

c.		Drag	the	right	hand	edge	of	the	table	to	the	right.
d.		Drag	the	bottom	of	edge	of	the	table	down.
e.		If	you	examine	the	Style	properties	for	the	table	you	will	see	its	current
size	in	pixels	(for	example,	width:	800px	and	height:	560px).

f.		You	can	also	hover	over	the	center	border	and	drag	this	to	the	left	to
match	the	size	of	the	tree	view	weblet.

g.		If	necessary	adjust	the	size	of	the	Navigation	panel	to	use	the	space	now
available

h.		Save	your	changes
i.		Re-test	your	WAM.

Summary
Important	Information

This	exercise	introduces	the	basics	of	building	an	unlevelled	tree,
handling	its	expansion	and	displaying	details	for	any	level.	See	the	Web
Application	Modules	guide	for	more	information.
Other	fields	in	the	tree	working	list	may	be	defined	to	control	open	and
closed	images,	and	whether	an	entry	is	currently	selected	or	expanded.
The	tree	view	is	supported	in	all	LANSA	supported	browsers.

Tips	&	Techniques
A	tree	view	could	be	used	as	an	application	menu.

What	You	Should	Know
How	to	set	up	and	use	a	tree	view	weblet	for	enquiry	purposes.

WAM080	-	Session	Management
Objectives
This	exercise	initially	shows	how	session	management	operates	using	a	single
WAM.
WAM	iiiSessionMng	demonstrates	how	various	WebRoutines	within	the	same
WAM	can	manipulate	and	share	data	that	is	automatically	stored	on	the	server.
There	are	a	number	of	key	concepts	to	understand	when	implementing	session
management.

Session	management	must	be	enabled	at	the	WAM	level.	For	example
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')	Sessionstatus(Active)
	

At	least	one	WebRoutine	must	have	an	Onentry()	keyword	of
*sessionstatus_none.	This	enables	the	WebRoutine	to	execute,	in	order	to
activate	a	session.
Other	WebRoutines	have	a	default	Onentry()	keyword	of
*sessionstatus_of_wam.	If	sessions	are	enabled	for	the	WAM,	then	a
session	must	be	active	for	this	WebRoutine	to	run.
The	WAM	should	contain	an	event	handling	routine	for
#com_owner.sessioninvalid	that	determines	what	happens	when	a	session
is	invalid	or	expired.	Usually	this	will	transfer	to	the	"login"	WebRoutine
to	force	a	session	to	be	established.
Fields	and	lists	to	be	stored	on	the	server	are	defined	via	a	special
web_map.	For	example	the	following	defines	two	working	lists	that	are	to
be	stored	as	persistent	data:

Web_Map	For(*none)	Fields(#empsave	#empdata)	Options(*PERSIST)
	
The	For(*none)	keyword	value	means	the	fields	are	not	mapped	to	and	from
the	web	page.

As	long	as	the	session	is	active,	each	time	the	WAM	starts,	the	persistent
fields	and	lists	are	restored.
Each	time	the	WAM	ends,	the	persistent	fields	and	lists	are	saved.
It's	important	to	understand	that	as	each	WebRoutine	executes,	it	shares
the	same	persistent	fields	and	lists	and	their	current	values	as	established
by	the	last	WebRoutine	to	execute.

For	more	details	refer	to	WAM	Session	Management.
A	second	WAM	will	be	developed	that	shares	the	session	established	by

iiiSessionMng.	This	will	demonstrate	how	more	than	one	WAM	may	share	a
session	and	the	persistent	fields	and	lists	which	session	management	enables.
WAMs	share	a	session	by	having	a	BEGIN_COM	statement	that	declares

Sessionstatus	active	and	has	a	common	Session	groupname.	For	example:
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')	Sessiongroupname(
	

Description	of	WAM	iiiSessionMng
The	Search	WebRoutine	web	page	will	look	like	the	following:

The	WebRoutine	search	will	build	and	display	a	list	of	employees,
searching	the	file	by	surname.	Each	search	adds	entries	to	a	working	list
that	is	displayed	and	a	second	persistent	working	list	which	is	stored	on
the	server.
WebRoutine	showsave	is	called	by	a	push	button	on	the	search	web	page.
This	second	routine	builds	and	displays	a	list	from	the	saved	list.
The	Clear	Saved	List	pushbutton	invokes	the	search	WebRoutine	to	clear
the	saved	list.
Other	functionality	will	be	added	in	later	steps.

To	meet	these	objectives	you	will	complete	the	following:
Step	1.	Create	Session	Management	1	WAM

its:lansa087.chm::/lansa/wamb1_130.htm

Step	2.	Retrieve	and	Store	Employee	Details
Step	3.	Create	Session	Management		2	WAM
Step	4.	Test	the	Session	Management	Application
Summary

Before	You	Begin
You	should	complete	all	preceding	exercises	in	this	workshop.

Step	1.	Create	Session	Management	1	WAM
1.		Create	a	new	WAM:
					Name:	iiiSessionMng
					Description:	Session	Management	1
					Layout	Weblet:	iiilay01
Again,	note	the	Identifier	assigned	to	this	WAM.	You	will	need	this
information	in	a	later	step.	Of	course	you	could	always	look	up	the	Identifier
in	the	Repository.

2.		Press	F7	to	display	the	WAM	properties.	To	enable	session	management,	set
SessionStatus	to	Active.

3.		Define	the	following	lists	and	global	web	maps:
*	list	of	employees	to	be	saved	on	the	server
Def_List	Name(#empsave)	Fields(#empno	#surname	#givename)	Counter(#std_count)	Type(*Working)	Entrys(99)
*	latest	search	list	of	employees
Def_List	Name(#empnew)	Fields((#empno	*out)	(#surname	*out)	(#givename	*out))	Type(*Working)	Entrys(99)
*	display	current	saved	list	of	employees.
Def_List	Name(#empdisp)	Fields(#stdselect	(#empno	*out)	(#surname	*out)	(#givename	*out))	Type(*Working)	Entrys(99)
*	Map	persistent	data
Web_Map	For(*none)	Fields(#empsave)	Options(*PERSIST)

*	Map	common	return	field	from	weblets
Web_Map	For(*input)	Fields((#stdrentry	*hidden))
	

					Note	that	working	list	EMPSAVE	is	mapped	as	persistent	data.
4.		Create	three	WebRoutines	based	on	the	following:
*	Initialize	WebRoutine	sets	sessionstatus	active
WebRoutine	Name(init)	Onentry(*SESSIONSTATUS_NONE)
#com_owner.sessionstatus	:=	active
Message	Msgtxt('Session	is	now	active')
Transfer	Toroutine(search)
Endroutine
*	Perform	search	and	display	results.
WebRoutine	Name(search)	Desc('Build	a	list	of	employees')
Web_Map	For(*both)	Fields(#surname)
Web_Map	For(*output)	Fields(#empnew)
Endroutine
*	Load	and	display	a	list,	from	the	saved	list
WebRoutine	Name(showsave)	Desc('Show	saved	list	of	employees')
Web_Map	For(*output)	Fields(#empdisp)
Endroutine
	

					Note	that	as	outlined	in	the	Objectives,	the	init	WebRoutine	may	be	executed
before	a	session	is	active.

5.		Add	the	initial	logic	to	WebRoutine	search.
when	STDRENTRY	is	S
This	should	clear	the	list	EMPNEW,	which	is	built	by	each	search.
Ensure	the	surname	is	not	blank
Build	the	list	EMPLIST	by	reading	the	logical	file	PSLMST2,	with	a	key	of

surname,	with	generic(*yes).
Add	entries	to	both	EMPNEW	and	the	saved	list	EMPSAVE.
					Your	code	should	look	like	the	following:
Case	(#stdrentry)
When	(=	S)
Clr_List	Named(#empnew)
Begincheck

Valuecheck	Field(#surname)	With_List(*BLANK)	In_List(*ERROR)	Not_Inlist(*NEXT)	Msgtxt('Surname	may	not	be	blank')
Endcheck
Select	Fields(#empsave)	From_File(pslmst2)	With_Key(#surname)	Nbr_Keys(*compute)	Generic(*yes)
Add_Entry	To_List(#empnew)
Add_Entry	To_List(#empsave)
Endselect
Endcase
	

6.		Add	the	initial	logic	to	the	showsave	WebRoutine
Output	the	list	EMPDISP	which	is	loaded	from	the	save	list	EMPSAVE.
When	STDRENTRY	is	L
If	the	saved	list	counter	value	(STD_COUNT)	is	greater	than	1

Clear	the	list	EMPDISP
Read	all	records	from	EMPSAVE	using	SELECTLIST
Add	entries	to	EMPDISP

Else
Output	message	'Saved	list	of	employees	is	empty'
Transfer	to	search	WebRoutine.

					Your	code	should	look	like	the	following:
Case	(#stdrentry)
When	(=	L)
If	(#std_count	>	1)
Clr_List	Named(#empdisp)
Selectlist	Named(#empsave)
Add_Entry	To_List(#empdisp)
Endselect
Else
Message	Msgtxt('Saved	employee	list	is	empty')
Transfer	Toroutine(search)
Endif
Endcase
	

7.		Add	an	event	handling	routine	for	session	invalid	to	transfer	to	the	search
init	WebRoutine.	Your	code	should	look	like	the	following:

Evtroutine	Handling(#COM_OWNER.sessioninvalid)
Message	Msgtxt('Session	Management	must	be	active')
Transfer	Toroutine(init)
Endroutine
	

8.		Compile	the	WAM.
9.		Open	the	Search	WebRoutine	in	the	Design	view.	Add	a	column	to	the	table
containing	employee	surname.	Drop	a	push	button	into	the	new	column.	Set
up	the	button	properties:

Property Value

caption Search

on_click_wrname Search

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	Value:	S

	

10.	Add	a	few	blank	lines	below	the	table	containing	the	employees	list	and
insert	a	table	with	1	row	and	3	columns.	Drop	a	push	button	into	the	left	hand
column	and	set	up	the	button	properties:

Property Value

Caption Show	Saved	List

On_click_wrname Showsave

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	Value:	L

	

Adjust	the	width	of	the	push	button	to	show	the	caption	as	a	single	line.			
Save	your	changes.	
					Your	page	should	look	like	the	following:

11.	Open	the	showsave	WebRoutine	in	the	Design	view.	Select	the	list,	move
the	cursor	right	and	press	enter	to	create	a	blank	line	below	the	list.	Drop	a
push	button	below	the	list	and	set	up	its	properties:

Property Value

Caption Return

On_click_wrname Search

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	Value:	M

	

					Your	web	page	should	look	like	the	following:

12.		Save	your	changes.
13.	Execute	your	WAM	in	the	browser	by	running	any	WebRoutine.	Control
will	pass	to	the	init	WebRoutine	which	will	enable	session	management,	and
transfer	to	the	search	WebRoutine.

					You	should	be	able	to	see	the	following	results:
A	list	of	employees	based	on	a	search	value	such	as	B	or	S.
Display	the	current	saved	list	in	WebRoutine	showpage.
Return	to	the	WebRoutine	search.
Perform	another	search	and	display	the	result	of	both	searches	in	the	showpage

WebRoutine.
Restart	the	WAM	from	the	init	WebRoutine	and	immediately	display	the	saved

list.
Q.		Why	is	the	list	empty?
A.		The	persistent	data	is	only	restored	if	the	session	is	already	active.
Running	WebRoutine	init	starts	a	new	session.

Step	2.	Retrieve	and	Store	Employee	Details
In	this	step	you	will	extend	the	WebRoutine	showsave,	to	fetch	employee
details.	This	will	be	invoked	via	a	clickable	image	weblet	in	the	list
EMPDISP	displayed	by	WebRoutine	ShowSave.
An	Employee's	details	will	be	stored	in	a	new	working	list	EMPDATA
that	will	hold	one	entry	and	will	also	be	mapped	as	persistent	data.
A	new	WebRoutine	showemp	will	display	the	stored	employee	details.
The	search	WebRoutine	will	be	extended	to	handle	clearing	the	lists
EMPSAVE	and	EMPDATA.

1.		Define	a	working	list	EMPDATA	for	employee	details:
Def_List	Name(#empdata)	Fields(#EMPNO	#SURNAME	#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME	#PHONEBUS	#DEPTMENT	#SECTION	#SALARY	#STARTDTE	#TERMDATE)	Counter(#listcount)	Type(*Working)	Entrys(1)
	

2.		Define	a	group	by	to	display	employee	fields
Group_By	Name(#empgrp)	Fields((#EMPNO	*out)	(#SURNAME	*out)	(#GIVENAME	*out)	(#ADDRESS1	*out)	(#ADDRESS2	*out)	(#ADDRESS3	*out)	(#postcode	*out)	(#PHONEbus	*out)	(#phonehme	*out)	(#DEPTMENT	*out)	(#SECTION	*out)	(#SALARY	*out)	(#STARTDTE	*out)	(#TERMDATE	*out))
	

3.		Extend	the	web_map	for	persistent	data	to	include	list	EMPDATA.
Web_Map	For(*none)	Fields(#empsave	#empdata)	Options(*PERSIST)
	

4.		Extend	case	loop	in	the	search	WebRoutine	to	clear	the	saved	lists.
When	(=	C)
Clr_List	Named(#empsave)
Clr_List	Named(#empdata)
Message	Msgtxt('Saved	employee	list	was	cleared')
	

5.		Extend	the	case	loop	in	the	showsave	WebRoutine	to	fetch	employee	data
and	add	an	entry	to	the	list	EMPDATA.
When	(=	D)
Clr_List	Named(#empdata)
Fetch	Fields(#empgrp)	From_File(pslmst)	With_Key(#empno)	Val_Error(*next)
If_Status	Is(*okay)
Add_Entry	To_List(#empdata)
Message	Msgtxt('Employee	details	saved')
Endif
Transfer	Toroutine(search)

	
6.		In	the	showsave	WebRoutine,	add	a	web_map	for	input	for	field	EMPNO.
This	value	will	be	passed	in	for	the	selected	row,	by	the	clickable	image.
Web_Map	For(*input)	Fields(#empno)
	

7.		Create	a	new	WebRoutine	showemp	to	retrieve	the	one	entry	from	the	list
EMPDATA	or	transfer	to	the	search	WebRoutine.
WebRoutine	Name(showemp)	Desc('Show	Saved	Employee')
Web_Map	For(*output)	Fields(#empgrp)
If	(#listcount	=	1)
Get_Entry	Number(1)	From_List(#empdata)
Else
Message	Msgtxt('Employee	details	not	available')
Transfer	Toroutine(search)
Endif
Endroutine
	

8.		Compile	your	WAM.
9.		Open	the	search	WebRoutine	in	the	Design	view.
10.	Add	a	push	button	into	the	table	at	the	bottom	of	the	page.	Set	up	the	button
properties:

Property Value

caption Show	Employee	Details

on_click_wrname showemp

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	Value:	D

	

11.	Add	a	third	push	button	into	the	table	at	the	bottom	of	the	page	and	setup	the
button	properties:

Property Value
Clear	Saved	Lists

caption

on_click_wrname search

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	Value:	C

	

12.		Remove	the	place	holder	characters	from	this	table.
13.	Save	your	changes.
14.	Open	the	showsave	WebRoutine	in	the	Design	view.
15.	Select	and	delete	the	column	heading	for	the	first	column.
16.	Drop	a	clickable	image	into	the	first	column	(field	STDSELECT).	Set	up	the
clickable	image	properties:

Property Value

currentrowhfield EMPNO

Currentrownumvalue $EMPNO

Reentryvalue D

On_click_wrname showsave

	

17.	Save	your	changes.
18.	Open	the	showemp	WebRoutine	in	the	Design	view.	Drop	a	push	button
onto	the	page	below	the	list.	Set	up	the	button	properties:

Property Value

Caption Return	to	Search

On_click_wrname search

submitExtraFields Field	Name:	STDRENTRY
Literal	Value:	M

	

19.	Save	your	changes.
20.	Test	your	WAM.

a.		You	should	now	get	the	following	results:
Retrieve	and	display	employee	search	results
Display	saved	list	of	employees
Select	an	employee	in	the	saved	list	using	the	clickable	image
Display	selected	employee	and	return	to	the	search	page
Display	the	saved	employee	data
Clear	both	saved	employee	list	and	employee	data

b.		Start	your	WAM	from	any	WebRoutine	except	WebRoutine	init.	You
should	be	transferred	to	the	init	WebRoutine	to	establish	a	session,	and
then	transferred	to	the	search	WebRoutine,	displaying	suitable	messages.

21.	In	your	WAM	source,	use	F7	to	display	WAM	properties	on	the	Details	tab.
Change	the	Session	Timeout	from	its	default	value	(300	seconds)	to	10	and
recompile	your	WAM.

22.	Test	your	WAM.
					Perform	a	search	and	display	the	saved	list.	This	should	be	displayed.
However,	due	to	the	very	short	time	out	(10	seconds)	by	the	time	you	return
to	the	search	web	page,	the	WAM	will	have	timed	out,	giving	appropriate
messages.	If	you	then	immediately	display	the	saved	employee	list,	there	will
be	no	entries.

					Note:	The	session	timeout	value	is	the	"wait	time"	for	the	response	from	the
client	(the	browser).	So	with	a	session	timeout	of	10	seconds,	whenever	you
delay	for	more	than	10	seconds,	the	session	will	time	out.	If	on	the	other	hand
you	keep	sending	requests	to	the	server	within	the	10	second	time	out
window,	the	session	will	never	time	out.

					Persistent	data	will	only	be	retrieved	if	the	session	is	active.	If	a	new
session	is	established,	due	to	time	out,	there	is	currently	no	persistent
data	for	that	session.

Step	3.	Create	Session	Management		2	WAM
In	this	step	you	will	create	a	second	WAM	and	enable	session	management	in
both	WAMs	so	that	they	share	a	common	Session	GroupName.	This	makes	both
WAMs	part	of	the	same	session.	The	new	WAM	will	contain	the	WebRoutines
showsave	and	showemp	and	the	session	invalid	event	handling	routine.
1.		Create	WAM	iiiSessionMng2	by	copying	WAM	iiiSessionMng.	Perform	the
copy	step	as	follows:
a.		Select	the	WAM	iiiSessionMng	on	the	Favorites	/	Last	Opened	tab	and
Copy	it	using	the	context	menu.

b.		In	the	Active	Designs	dialog,	select	only	SHOWEMP	and	SHOWSAVE.

2.		Delete	the	WebRoutines	INIT	and	SEARCH	from	the	new	WAM.
3.		Change	four	transfer	commands	to	specify	the	WAM	Identifier	as	well	as	the
WebRoutine	name,	for	example:
Transfer	Toroutine(#iiiSES_2.search)

4.		Press	F7	to	display	the	WAM	properties	on	the	Details	tab.	Change	the
Session	GroupName	to	IIIGROUP.

					Set	the	Session	Timeout	value	to	300.
5.		Compile	WAM	iiiSessionMng2.
6.		Open	the	showsave	WebRoutine	in	the	Design	view	and	give	the	Return
push	button	an	on_click_wamname	property	of	iiiSessionMng.

7.		Open	the	showemp	WebRoutine	in	the	Design	view	and	give	the	Return	to
Search	push	button	an	on_click_wamname	property	of	iiiSessionMng.

8.		Save	your	changes.
9.		If	necessary	open	WAM	iiiSessionMng	in	the	editor.
10.	Open	the	search	WebRoutine	in	the	Design	view.	Make	the	following
changes:

Push	Button Property Value

Show	Saved	List on_click_wamname iiiSessionMng2

Show	Employee	Details on_click_wamname iiiSessionMng

	

11	Save	your	changes.
12.		Press	F7	to	display	the	WAM	properties	on	the	Details	tab.	Change	the
Session	GroupName	to	IIIGROUP.

					Ensure	the	Session	Timeout	value	to	300.
13.	Compile	WAM	iiiSessionMng.

Step	4.	Test	the	Session	Management	Application
You	can	now	test	the	application	by	executing	any	WebRoutine	in	either	of	the
two	WAMs.	The	session	invalid	event	handling	routine	will	transfer	to	the	init
WebRoutine	in	iiiSessionMng,	which	will	make	the	session	active.

The	application	should	behave	exactly	the	same	as	before.	The	show
saved	list,	retrieve	employee	details	and	display	saved	employee	details
logic	is	now	performed	by	WAM	iiiSessionMng2.

Summary
Important	Observations

Session	Management	and	persistent	data	provide	powerful	and	easy	to
use	functionality.
Applications	that	handle	sensitive	data	can	be	made	to	time	out	after	a
given	wait	time
Your	application	could	establish	a	common	session	when	the	user	logs	in.
Common	data	that	is	established	at	log	in	could	be	made	available	to	all
WAMs	via	persistent	data.
Data	required	in	a	later	step	can	be	stored	as	persistent	data.
Persistent	data	involves	additional	database	I/Os.	Consider	carefully	how
much	data	needs	to	be	stored	and	restored	as	persistent	data.

Tips	&	Techniques
Persistent	data	is	secure	because	it	is	stored	on	the	server.
Persistent	data	is	secure	and	avoids	the	need	to	map	data	as	hidden	in	and
out	of	the	web	page	which	may	introduce	opportunities	to	"hack"	your
application.
Persistent	data	is	only	available	for	the	duration	of	the	session.	If	you
need	to	make	the	data	permanent,	then	your	application	must	store	it	in	a
database.
Before	implementing	Session	Management	in	your	own	applications,	see
the	Web	Application	Modules	guide	for	more	detailed	information	on
Session	Management

What	You	Should	Know
How	to	implement	session	management.

WAM085	-	Enhancing	the	User	Interface
Objectives

To	demonstrate	a	number	of	weblets	which	enhance	the	user	interface
provided	by	your	web	page.
To	illustrate	standard	field	visualization	weblets,	which	are	automatically
added	for	certain	field	types.
To	demonstrate	some	of	the	properties	of	these	field	visualization	weblets

To	meet	these	objectives	you	will	complete	the	following	steps:
Step	1.	Create	Repository	Field	Definitions
Step	2.	Create	Employee	Number	AutoComplete	WAM
Step	3.	Create	WAM	iiiEnhancedUI	–	Enhancing	the	Interface
Step	4.	Define	Work	Fields	and	Lists
Step	5.	Complete	WAM	RDMLX
Step	6.	Design	the	web	pages
Step	7.	Test	the	WAM
Step	8.	Improve	the	ShowPage	Page	Design
Step	9.	Insert	a	fieldset	around	each	table
Summary

Before	You	Begin
You	should	first	complete	all	preceding	exercises	in	this	workshop.
Review	the	following	Field	Visualations	description.

Field	Visualizations
Fields	defined	in	the	Repository	may	also	have	Field	Visualizations	defined.

These	visualizations	are	able	to	define	the	field's	appearance	in	Windows
desktop	applications	and	/	or	in	web	applications	built	using	WAMs.
Field	visualizations	for	the	web	are	weblets.
Fields	may	have	a	number	of	visualizations	for	Windows	and	web.
One	field	visualization,	must	be	defined	as	the	default	visualization,
which	will	be	the	appearance	option	that	is	automatically	selected.
For	web,	just	one	weblet	visualization	should	be	defined,	since	at	design
time	there	is	no	way	to	switch	between	visualizations,	except	by	deleting

one	and	adding	another.
Fields	may	have	a	static	picklist	defined	which	defines	a	set	of
descriptions	(or	captions)	and	values.	Weblets	such	as	a	combo	box	or
radio	button	group	will	use	this	picklist	to	populate	the	selection	options
in	the	web	page.
Field	visualizations	are	compiled	into	the	web	page	at	design	time.	A
change	to	the	definition	of	a	field's	visualization	in	the	Repository,	for
example	changing	a	radio	group	to	a	combo	box,	or	adding	or	removing
entries	in	the	picklist,	can	only	be	reflected	in	the	web	page	by	removing
that	field	from	the	web	page	and	re-adding	it.	It	follows	that	field
visualizations	defined	in	the	Repository	with	a	static	picklist,	are	only
useful	for	very	static	data	that	is	unlikely	to	ever	change,	such	as	"male	or
female"	or	"married,	single	or	divorced".
Note	also	that	field	types	such	as	Date,	DateTime	and	String	will
probably	always	benefit	from	having	a	weblet	such	as	datepicker,	so	their
automatic	visualization	definitions	in	the	Repository	are	always	useful.
There	are	other	field	visualization	options	that	only	apply	to	Windows
desktop	applications,	that	are	not	described	here.	For	more	information,
refer	to	Field	Visualization	Development	in	the	Visual	LANSA	Developer
Guide.

its:lansa013.CHM::/LANSA/l4wdev03_0170.HTM

Step	1.	Create	Repository	Field	Definitions
1.		Create	new	field	definitions	in	the	Repository:

Name Description Type Length Input	Attribute

iiiDATE Start	Date Date 10 	

iiiDTETME Last	Updated DateTime 25 	

iiiNOTE Comments String 512 LC

iiiGENDER Gender Alphanumeric 1 	

iiiTIME Create	Time Time 8 	

iiiCUREMP Current	Employee Alphanumeric 1 	

	

					Use	the	New	Field	dialog,	to	open	each	field	in	the	Editor	and	for	the	dialog
to	remain	open.	Fields	will	be	automatically	flagged	as	RDMLX	when	a	type
such	as	Date	is	selected:

2.		Review	the	Field	Visualization	for	the	fields	iiiDATE,	iiiDTETME,	iiiTIME
and	iiiNOTE.	They	each	have	been	given	a	suitable	weblet	visualization.

3.		Ensure	that	the	Input	attribute	of	field	iiiNOTE	allows	lower	case:

4.		Switch	to	the	Field	Visualization	definition	for	field	iiiGENDER.	Add	a
Static	Picklist	using	the	toolbar	button:

5.		Define	the	static	picklist	with	two	entries	as	shown:

6.		Open	the	Repository	Find	dialog	using	the	 	insert	Weblet	Template
toolbar	button.
a.		If	necessary,	in	the	Repository	Find	dialog,	select	Standard	Weblets	in	the
dropdown.

b.		Add	a	Radio	Group	weblet.

7.		Save	the	field	definition.

8.		Switch	to	the	Visualization	tab	for	field	iiiCUREMP.	Use	the	 	toolbar
button	to	add	a	Checkbox	weblet	visualization.

					The	Checkbox	weblet	will	return,	by	default,	values	of	Y	and	N	which	are
correct	values	for	field	iiiCUREMP.	In	this	case	a	static	picklist	is	not
required.

9.		Save	the	field	definition.

Step	2.	Create	Employee	Number	AutoComplete	WAM
This	step	illustrates	how	you	can	create	a	small	response	WAM	to	service	any
web	page	that	uses	an	AutoComplete	weblet	for	field	employee	number
(EMPNO).
1.		Create	a	new	WAM:
					Name:	iiiEmpAutoCmpl
					Description:	Employee	Number	AutoComplete
					Layout	Weblet:	iiilay01
2.		Copy	the	following	WebRoutine	from	WAM	iiiEmpSearch.
WebRoutine	Name(Empno_Prompt)	Response(*JSON)
Web_Map	For(*input)	Fields(#empno)
Web_Map	For(*output)	Fields((#emp_dd	*json))
Def_List	Name(#emp_dd)	Fields(#empno	#std_code)	Counter(#std_count)	Type(*Working)
Clr_List	Named(#emp_dd)
Select	Fields(#emp_dd)	From_File(pslmst)	Where(#std_count	<=	3)	With_Key(#empno)	Options(*startkey	*endwhere)
#std_code	:=	#empno
Add_Entry	To_List(#emp_dd)
Endselect
Endroutine
	

3.		Compile	the	new	WAM.

Step	3.	Create	WAM	iiiEnhancedUI	–	Enhancing	the	Interface
This	WAM	will	use	the	new	fields	that	you	have	just	created.	It	will	also	build
on	the	previous	exercise,	by	enabling	session	management	and	saving	a	working
list	of	each	set	of	data	entered.
This	WAM	will	operate	as	follows:

Executes	WebRoutine	begin	to	start	session	management	and	transfers	to
the	select	WebRoutine.
The	select	WebRoutine	requests	input	of	an	employee	number.	The
showpage	WebRoutine	is	invoked	via	a	push	button.
The	select	WebRoutine	also	supports	a	push	button	to	clear	the	saved	list
(SAVLIST).
The	select	WebRoutine	includes	a	push	button	to	invoke	the	showlist
WebRoutine.
The	showpage	WebRoutine	fetches	employee	data	and	displays	all	fields
(except	employee	number)	for	input
A	Save	button	invokes	the	showpage	WebRoutine	to	save	the	data	to	the
working	list	SAVLIST	and	transfers	back	to	the	select	WebRoutine.
The	showlist	WebRoutine	loads	the	saved	list	(SAVLIST)	into	the	list
EMPLIST	and	displays	this	list.

1.		Create	a	new	WAM:
					Name:	iiiEnhancedUI
					Description:	Enhancing	the	Interface
					Layout	weblet:	iiilay01
2.	Create	the	following	four	WebRoutines:
*	Start	session	and	transfer	to	select
Webroutine	Name(begin)	Onentry(*sessionstatus_none)
Endroutine

*	Request	an	employee	number
Webroutine	Name(select)	Desc('Select	an	Employee')
Endroutine

*	Fetch	employee	and	accept	input

Webroutine	Name(showpage)	Desc('Enter	employee	details')
Endroutine

*	Display	the	saved	working	list
Webroutine	Name(showlist)	Desc('Saved	list	of	employee	data')
Endroutine
	

3.		Note	that	the	begin	WebRoutine	has	an	onentry()	keyword	of
*sessionstatus_none.	This	will	be	the	first	WebRoutine	executed	to	start
session	management.

					Use	the	F7	key	to	display	the	WAM	properties	on	the	Details	tab	and	enable
session	management:

4.Save	your	changes.

Step	4.	Define	Work	Fields	and	Lists
1.		In	this	step	you	will	define	additional	fields	that	will	be	included	on	the	data
entry	web	page	ShowPage.	The	UI	for	these	fields	will	be	manually	set	up
using	weblets.
					Define	the	following	additional	fields	at	the	top	of	your	WAM	definition:
Define	Field(#marstat)	Type(*char)	Length(1)	Desc('Marital	Status')
Default('M')
Define	Field(#onleave)	Reffld(#std_flag)	Desc('On	Leave')	Colhdg('On'
'Leave')	Default('N')
Define	Field(#review)	Type(*string)	Length(512)	Desc('Last	Review	Notes')
Input_Atr(LC)
Define	Field(#termdte)	Type(*date)	Desc('Terminate	Date')	Input_Atr(ASQN
ISO)	Default(*SQLNULL)
	

2.		Define	the	following	work	field	and	working	lists.	Ensure	that	you	change	iii
to	your	initials.
Define	Field(#empnow)	Reffld(#empno)
Def_List	Name(#savlist)	Fields(#empno	#GIVENAME	#SURNAME	#IIIDATE	#IIIDTETME	#IIITIME	#IIICUREMP	#IIIGENDER	#IIINOTE	#marstat	#onleave	#review	#termdte)	Type(*WORKING)
Def_List	Name(#emplist)	Fields((#empno	*out)	(#GIVENAME	*out)	(#SURNAME	*out)	(#IIIDATE	*out)	(#IIIDTETME	*out)	(#IIITIME	*out)	(#IIICUREMP	*out)	(#IIIGENDER	*out)	(#IIINOTE	*out)	(#marstat	*out)	(#onleave	*out)	(#review	*out)	(#termdte	*out))	Type(*WORKING)
	

					Note	that	fields	in	list	EMPLIST	all	have	an	*output	attribute.
3.		Define	the	following	global	web_maps:
Web_Map	For(*both)	Fields((#stdrentry	*hidden))
Web_Map	For(*none)	Fields(#savlist)	Options(*persist)
	

					Note	that	the	list	SAVLIST	is	mapped	*none,	meaning	it	is	not	mapped	out
to	the	web	page.	It	has	an	Options()	keyword	of	*persist.	With	session
management	enabled,	this	list	will	be	saved	each	time	the	WAM	ends,	and
will	be	restored	before	the	first	WebRoutine	is	executed.	i.e.	every	time
something	starts	to	run	in	the	WAM.

4.		Save	your	changes.

Step	5.	Complete	WAM	RDMLX
1.		The	begin	WebRoutine	will	be	used	to	start	session	management	and	transfer
to	the	select	WebRoutine.	Add	the	following	code	to	the	begin	WebRoutine:
#com_owner.sessionstatus	:=	active
Message	Msgtxt('Session	is	active')
Transfer	Toroutine(select)
	

2.		The	select	WebRoutine	display	the	employee	number	for	input.	It	also
supports	push	button	to	clear	the	saved	list.	Add	the	following	code	to	the
select	WebRoutine.	Ensure	that	you	change	iii	to	your	initials.
Web_Map	For(*output)	Fields(#empno)
Case	(#stdrentry)
When	(=	C)
Clr_List	Named(#savlist)
Endcase
	

3.		The	showpage	WebRoutine	displays	all	employee	fields	for	input.	Employee
number	is	an	output	field.	Work	field	EMPNOW	is	mapped	as	a	hidden	field
to	store	current	employee	number.

					When	initially	invoked	from	the	select	WebRoutine,	the	employee	fields	are
retrieved.

					When	invoked	from	the	Save	push	button,	an	entry	is	added	to	the	saved	list.
					Add	the	following	code	to	the	showpage	WebRoutine.	Change	iii	to	your
initials.
Web_Map	For(*both)	Fields((#empno	*output)	#surname	#givename	#iiidate	#iiidtetme	#iiinote	#iiigender	#iiicuremp	#iiitime	(#empnow	*hidden)	#marstat	#onleave	#review	#termdte)
Case	(#stdrentry)
*	Invoked	from	select	WebRoutine
When	(=	S)
#empnow	:=	#empno
Fetch	Fields(#surname	#givename)	From_File(pslmst)	With_Key(#empno)
*	Save	push	button
When	(=	U)
#empno	:=	#empnow
Add_Entry	To_List(#savlist)
Transfer	Toroutine(select)

Endcase
	

4.		The	showlist	WebRoutine	is	invoked	via	a	push	button	on	the	select	web
page.	This	routine	clears	the	list	EMPLIST	and	populates	it	from	the	current
saved	list	SAVLIST.	Add	the	following	code	to	the	showlist	WebRoutine.
Web_Map	For(*output)	Fields(#emplist)
Clr_List	Named(#emplist)
Selectlist	Named(#savlist)
Add_Entry	To_List(#emplist)
Endselect
	

5.		Add	an	event	handling	routine	for	invalid	session.	This	will	transfer	to	the
begin	WebRoutine	if	the	WAM	is	invoked	with	an	invalid	or	expired	session
status.	The	begin	WebRoutine	executes	with	*sessionstatus_none.	Add	the
following	event	routine:
Evtroutine	Handling(#com_owner.sessionInvalid)
Message	Msgtxt('Session	has	expired')
Transfer	Toroutine(begin)
Endroutine
	

6.		Compile	the	WAM.

Step	6.	Design	the	web	pages
1.		Open	the	select	WebRoutine	in	the	Design	view.	It	should	look	like	the
following:

2.		Add	a	column	to	the	table	containing	employee	number	and	drop	a	Push
button	with	image	weblet	into	the	new	cell.	Delete	the	placeholder	characters.
Set	up	the	push	button	as	follows:

Property Value

caption Submit

left_relative_image_path icons/normal/16/zoom.png

on_click_wrname Showpage

submitExtraFields Field	Name:	STDRENTRY

	 Literal	Value:	S

	

					Your	page	should	look	like	the	following:

3.		Drop	an	jQuery	UI	AutoComplete	weblet	onto	the	Employee	Number	field
and	set	up	its	properties	as	follows:

Property Value

sourceWamName iiiEmpAutoCmpl

sourceWrName Empno_Prompt

termField EMPNO

listName EMP_DD

valueField EMPNO

	

					Note	that	if	the	WAM	iiiEmpAutoCmpl	is	open	in	the	editor,	you	will	be
able	to	select	all	of	these	values	from	a	dropdown.

4.		Use	the	context	menu	to	Insert	HTML	/	Table	with	one	row	and	two
columns,	below	the	existing	table.	Use	the	cursor	keys	to	move	to	the	left	of
this	new	table	and	press	Enter	a	number	of	times	to	position	this	table
towards	the	bottom	of	the	central	area	of	the	screen.

5.		Add	a	push	button	with	images	into	each	cell	of	the	new	table.	Set	up	the
push	buttons	as	follows:

Property Value

Caption Show	Saved	List

left_relative_image_path /icons/normal/16/blacklist_16.png

on_click_wrname Showlist

	

Property Value

Caption Clear	Saved	List

left_relative_image_path /icons/normal/16/cross_16.png

on_click_wrname Select

submitExtraFields Field	Name:	STDRENTRY
Literal	Value:	C

	

					Your	web	page	should	look	like	the	following:

6.		Save	your	changes.
7.		Open	the	ShowPage	WebRoutine	in	the	design	view.	Your	web	page	should
look	like	the	following:

a.		Note	that	Start	Date,	Last	Updated,	Comments,	Gender,	Current
Employee	and	Create	Time	are	all	shown	as	weblets.	For	example	click	on
the	Start	Date	field	and	select	the	Details	tab.	Note	that	this	is	the
std_datepicker	weblet.

					These	weblets	are	all	defined	as	weblet	field	visualizations	in	the
Repository.

b.		Select	Last	Review	Notes	and	then	Terminate	Date	and	check	their
definition	using	the	Details	tab.	Notice	that	they	have	also	been	defined	in
the	web	page	as	weblets	(std_varchar	and	std_DatePicker	respectively)
based	on	their	field	type.	These	are	fields	you	defined	in	the	WAM.

c.		The	single	character	(Alphanumeric)	fields	Marital	Status	and	On	Leave
are	input	fields.	In	the	Design	view	you	will	replace	these	with	weblets.

8.		Select	the	field	Start	Date	and	set	up	its	properties	as	follows:

Property Value

changeMonth True

changeYear True

showOtherMonths True

selectOtherMonths True

	

					You	will	be	able	to	see	the	effect	of	these	settings	once	you	test	the	WAM.
					Change	the	dateFormat	property	to	be	correct	for	your	region.	mm/dd/yyyy
is	the	default	value.

					Also	change	the	dateFormat	for	fields	Terminate	Date	and	Last	Updated	to
suit	your	region.

9.		Select	the	Comments	field	and	set	up	its	properties	as	follows:

Property Value

Type memo

word_wrap soft

	

					Note	that	the	Comments	field	is	now	a	memo	box.
10.	Select	the	Current	Employee	checkbox	and	change	its	caption	to	''.	The
caption	should	now	be	blank.

					Note	that	the	oncode	and	offcode	properties	for	the	check	box	weblet	are
values	of	Y	and	N	which	are	correct	for	this	field.	These	values	could	be
changed	if	necessary.

11.	Drop	a	Radio	Group	weblet	onto	the	field	Marital	Status.	On	the	Details
tab,	in	the	items	property's	value	column,	use	the	Ellipsis	button	to	open	the
Design	of…	dialog	to	define	three	captions	and	values	as	shown:

Caption Value

Married M

Single S

Divorced D

	

12.		Drop	a	Check	Box	weblet	onto	the	On	Leave	field	and	set	its	caption	to	''.
					Once	again	the	default	oncode	and	offcode	values	are	suitable	for	this	field.
13.	Select	the	Last	Review	Notes	field	(std_varchar	weblet)	and	set	its
properties	as	for	the	Comments	field	in	sub	step	9.		Select	the	Comments	field
and	set	up	its	properties	as	follows:.

14.	Select	the	Terminate	Date	field	(std_DatePicker	weblet)	and	set	its
properties	as	for	the	Start	Date	in	sub	step	8.		Select	the	field	Start	Date	and
set	up	its	properties	as	follows:.

15.	Save	your	changes.
16.	Drop	a	Push	Button	with	Image	weblet	into	the	bottom	right	of	the	table,
next	to	the	Terminate	Date	field.	Set	up	its	properties	as	follows:

Property Value

Caption Save

left_relative_image icons/normal/16/check_mark_16.png

on_click_wrname Showpage

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	Value:	U

	

17.	In	this	step	you	will	add	a	link	to	the	Show	Saved	List	page	to	return	to	the
Select	Employee	Number	page.
a.		Open	the	showlist	WebRoutine	in	the	Design	view.
b.		Drop	a	Push	Button	with	Images	onto	the	page,	below	the	list.
c.		Set	up	the	push	button	properties	as	follows:

Property Value

caption Select	Employee

left_relative_image icons/normal/16/zoom.png

on_click_wrname Select

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	Value:	T

	

					Note:	The	dateFormat	=	Auto	property	for	the	DatePicker	weblet,	will	be
correct	for	most	applications.	The	date	format	will	be	determined	by	the
partition's	ISO	Language	setting.	For	the	UK	this	should	be	en-GB	since	en
will	give	DD/MM/YYYY.

18.	Save	your	changes.

Step	7.	Test	the	WAM
The	WAM	should	be	executed	by	calling	the	begin	WebRoutine.	However,	note
that	calling	any	WebRoutine	initially,	will	transfer	control	to	the	begin
WebRoutine,	via	the	session	invalid	event	handling	routine.

On	the	Select	an	Employee	page,	you	can	enter	a	valid	employee	number
by	typing	a	character	and	selecting	from	the	response	in	the
AutoComplete	weblet.	Note	that	all	employee	numbers	begin	with	'A'
followed	by	a	four	digit	number.	The	weblet	is	set	up	to	invoke	the
response	WebRoutine	with	a	delay	of	150ms	after	you	stop	typing	and
after	2	characters	have	been	entered.
Data	can	then	be	entered	on	the	Enter	Employee	Data	web	page.	Note	that
initially	this	page	will	contain	employee	number,	surname	and	given
name	only.	You	can	enter	other	data	via	the	weblets	that	support	these
field	values.
Note	that	the	Start	Date	DatePicker	allows	year	and	month	to	be	selected,
within	a	10	year	range	of	current	date.	These	limits	can	be	adjusted	by
changing	the	weblet	properties.
The	Comments	std_varchar	weblet	applies	word	wrap	as	you	type	beyond
the	width	of	the	control.
Check	box	and	Radio	Group	return	values	according	to	your	selection.
The	Save	button	will	return	to	the	Select	an	Employee	web	page.
Enter	data	for	more	than	one	employee.
On	the	Select	an	Employee	page,	use	the	Show	Saved	List	button	to
display	the	current	saved	list	of	entries,	via	the	showlist	WebRoutine.
On	the	Select	an	Employee	page,	use	the	Clear	Saved	List	to	clear	the
saved	list	and	then	repeat	your	testing

Step	8.	Improve	the	ShowPage	Page	Design
In	this	step	you	will	change	the	layout	of	the	Enter	Employee	Details	page,	by
moving	the	fields	into	logical	groups	on	the	page.	You	will	also	insert
<fieldset>	tags	around	each	group	of	fields.

The	fieldset	tag	displays	a	"group	box"	around	an	area	of	the	screen.	The
fieldset	tag	may	include	a	<legend>	tag	that	defines	a	caption	displayed
at	the	top	left	corner	of	the	box.
The	fieldset	tag	must	enclose	the	complete	table,	if	a	table	is	being	used
to	lay	out	a	number	of	fields	and	labels.
The	fieldset	tags	may	not	enclose	a	number	of	rows	within	a	table.
For	more	information	on	all	HTML	and	related	topics,	see
www.w3schools.com

The	finished	page	design	(showpage)	will	look	like	the	following:

Figure	1.	Enter	Employee	Details

To	redesign	this	web	page,	follow	the	details	steps	provided.	However,	bear	in
mind	that	other	approaches	could	have	been	followed:

If	the	WAM	is	initially	compiled	before	any	web_maps	are	defined,	the
web	page	will	be	blank.

Recompiling	the	WAM	when	all	the	required	web_maps	have	been
defined,	will	list	the	field	and	list	mappings	on	the	WebRoutine	Output
tab.	The	page	may	then	be	defined	in	the	Design	view,	by	dragging	and
dropping	fields	into	their	required	locations.
If	the	default	web	page	design	has	been	generated,	based	on	your
web_maps,	you	may	simply	delete	the	fields,	lists	and	tables	from	the
page,	before	laying	out	the	required	design	and	dropping	fields	and	lists
back	onto	the	page	as	required.
In	this	exercise,	you	will	insert	new	elements	into	the	page	(tables)	and
drag	and	drop	fields	and	labels	on	the	page	in	the	Design	view	to	achieve
the	result	required.
As	you	work	through	this	part	of	the	exercise,	refer	Figure	1	for	guidance
on	the	end	result	required.

Editor	Undo	/	Redo	Feature
The	editor	which	enables	you	to	design	your	web	page	is	actually	editing	the
underlying	XSL	code	which	will	transform	XML	into	HTML	at	runtime.	The
Undo/Redo	feature	has	been	enhanced	in	V13	SP1	to	provide	more	powerful
and	easy	to	use	functionality.

The	Start	Date	was	changed,	making	the	dateFormat	=	dd/mm/yyy.	The
context	menu	shows	that	Undo	will	remove	the	property	change.	Alternatively,
Ctrl+Z	could	be	used.

Another	option	is	to	use	the	Undo	button	in	the	Clipboard	group	on	the	Home
ribbon.

Details	of	a	number	of	changes	are	stored.	The	above	example	shows	that	an
Undo	was	performed	after	a	field	label	had	been	deleted.	Redo	will	delete	this
label	text	again.	The	Start	Date	property	change	could	also	be	removed.
1.		Open	the	showpage	WebRoutine	in	the	Design	view.
2.		In	this	step	you	will	create	the	Personal	Details	area	containing	employee
number,	surname,	given	name,	gender,	marital	status,	current	employee	and
on	leave	fields.

					Insert	a	table	at	the	bottom	of	the	page	with	3	rows	and	6	columns
3.		Guided	by	the	finished	image	above,	drag	the	required	field	labels	and	field
value	(or	weblets)	into	their	required	positions	within	this	new	table.

					Note:	You	may	find	an	easier	approach	is	to	Cut	(Ctrl+X)	each	element	from
the	existing	table	and	then	Paste	(CTRL+V)	it	into	the	new	table.

4.		In	the	new	table,	select	each	table	cell	(that	is,	the	<td>	tag)	containing	a
field	label	and	set	its	class	property	to	caption.

5.		Remove	the	place	holder	characters	where	necessary.
					Your	page	should	now	look	like	the	following:

6.		Save	your	changes.
7.		Click	in	the	top	row	of	the	original	table,	which	is	now	empty,	and	use	the
context	menu	to	use	Table	Items	/		Delete	Rows….	to	delete	3	rows.	Repeat
this	step	as	necessary	in	the	other	empty	rows,	where	you	have	dragged	fields
into	the	new	table.

8.		Insert	another	new	table	at	the	bottom	of	the	page,	with	2	rows	and	4
columns.	Drag	the	date	and	time	fields	and	labels	into	the	new	table,	or	Cut
and	Paste	each	item.

9.		Select	each	cell	containing	a	label	and	change	its	class	to	caption.
10.	Remove	the	placeholder	characters.	Your	page	should	now	look	like	the
following:

11.	Once	again	make	the	original	table	smaller	by	deleting	the	empty	rows.	This
step	is	optional,	since	you	will	eventually	delete	this	whole	table.	Deleting
rows	makes	it	easier	to	drag	items	to	the	new	table.

12.	Insert	a	new	table	at	the	bottom	of	the	page	with	3	rows	and	2	columns.
Drag	the	comment	and	notes	fields	and	labels	into	this	new	table.	Review	the
image	in	16.	before	you	complete	this	step.

13.	Select	each	cell	containing	a	label	and	change	its	class	to	caption.	Remove
the	place	holder	characters.

14.	Add	some	**	characters	to	the	original	table,	so	that	it	remains	easily	visible
and	then	drag	the	Save	button	into	the	bottom	left	hand	cell.

15.		Drag	the	Save	button	into	the	bottom	left	cell	of	the	new	table.
16.	Save	your	changes.	Your	page	should	look	like	the	following:

17.	Select	the	corner	of	the	original	table	to	select	the	whole	table,	and	delete	it.
18.	Save	your	changes.

Step	9.	Insert	a	fieldset	around	each	table
In	this	step	you	will	insert	a	fieldset	around	each	table.	This	will	display	a	round
cornered	group	box	around	each	area.	You	will	also	add	a	legend	tag	in	each
fieldset	to	display	a	caption.
Lastly,	in	the	Design	view	you	will	insert	a	div	around	each	fieldset	and	size	it.
You	are	doing	this	to	size	the	fieldset	that	will	otherwise	have	the	same	width	as
its	container.	It	is	possible	to	size	the	fieldset	by	giving	it	a	class	and	using	CSS,
but	a	bug	in	IE	would	then	display	the	fieldset	with	square	corners.	Adding	the
div	avoids	this	issue.
1.		Select	the	top	table	containing	employee	details.	Select	a	corner	of	the	table.
Alternatively,	select	anywhere	in	the	table	and	use	the	Outline	tab,	to	select
the	table	itself.

					The	Design	view	should	now	look	like	the	following:

					Note	the	"handles"	around	the	table	that	is	currently	selected.
2.		Use	the	right	mouse	button	over	one	of	these	"handles"	and	select	Insert
HTML	/	Fieldset	to	insert	a	fieldset	around	this	table.	Your	design	should	look
like	the	following:

3.		Click	in	the	Legend	text	area	and	replace	it	with	Personal	Details.'
4.		Select	the	table	containing	Start	Date	and	insert	a	fieldset	around	this	table,
with	and	replace	Legend	text	with	Dates.

5.		Select	the	table	containing	Comments	and	insert	a	fieldset	around	this	table

with	the	legend	Comments.
6.		Save	your	changes.

7.		Run	your	application	to	see	the	results	in	the	browser.	Enter	some	data.	Your
page	should	look	like	the	following:

					Notice	that	the	group	boxes	span	the	full	width	of	the	web	page.	The	screen
shot	has	minimized	the	page	width.	With	the	browser	maximised	on	a	large
screen	the	blank	areas	on	the	right	look	a	little	unfinished.

					The	web	site	http://lorem-ipsum.perbang.dk/	may	be	used	to	generate	'mock
latin'	text	to	fill	up	your	memo	boxes.

http://lorem-ipsum.perbang.dk/

8.		With	the	showpage	WebRoutine	open	in	the	Design	view,	select	each
fieldset	border	and	use	the	context	menu	to	Insert	a	Div.	Check	you	have
selected	the	fieldset	by	looking	at	the	Properties	sheet	on	the	Details	tab.	It
should	display	<fieldset>	at	the	top.	Use	the	context	menu	to	Insert	HTML	/
DIV	around	the	fieldset.

9.		With	the	Div	selected	use	the	Details	tab,	to	expand	the	Style	properties	and
change	the	width	to	80%.

10.	Repeat	the	last	two	steps	for	the	other	two	fieldsets.
11.	Save	your	changes.
12.	Run	the	application.	Your	web	page	should	now	look	like	the	following:

Summary
Important	Information

Only	weblet	field	visualizations	that	are	likely	to	change	very
infrequently,	should	be	defined	in	the	Repository
Field	types	Date,	DateTime,	Time	and	String	will	be	given	weblet
visualizations	by	default.
The	Design	view	provides	a	powerful	graphical	editor,	that	enables	the
developer	to	rapidly	refine	the	page	design	and	layout.
You	will	always	require	some	knowledge	of	HTML	and	style	sheets
(CSS)	to	be	able	to	work	with	web	page	design.
Excellent	tutorials	for	all	web	languages	are	available	at
www.w3schools.com
If	your	application	is	aimed	at	the	consumer,	you	will	probably	keep	the
page	design	much	simpler	than	this	example,	possibly	spread	over	two	or
three	pages.

Tips	&	Techniques
This	exercise	has	demonstrated	some	aspects	of	some	of	the	weblets
available.	The	Web	Application	Modules	guide	provides	more	detailed
information	for	all	of	the	weblets.
You	should	be	aware	that	fields	supported	by	weblets	should	always	be
defined	with	a	suitable	default	value.	The	weblet	only	returns	a	value
when	the	user	selects	a	value.	e.g.	only	when	the	user	checks	or	un-
checks	a	check	box,	does	the	weblet	return	a	value.

What	You	Should	Know
How	to	make	use	of	the	available	weblets	to	enhance	the	user	interface.

http://www.w3schools.com

WAM090	-	Using	a	List	Row	Weblet
Objectives
In	the	exercises	which	you	have	completed	up	to	now,	lists	have	always	been
formatted	as	a	simple	table	with	column	headings	and	data	shown	in	columns.
This	exercise	demonstrates	how	you	can	present	a	list	as	a	series	of	formatted
rows.	Your	list	output	can	in	fact	be	formatted	almost	any	way	you	wish.
Achieving	the	result	you	want,	will	depend	on	your	skill	with	HTML	and	XSL
transformation.
This	exercise	provides	a	custom	weblet	(iii_ListRow)	for	you	to	use.	Although
you	will	not	be	examining	its	XSL	and	HTML,	it	will	demonstrate	how	list	data
can	be	treated	in	a	different	way.

The	List	Row	Weblet	(iii_ListRow)
The	main	concept	to	keep	in	mind	in	this	exercise	is	that	list	output	consists	of	a
repeating	set	of	data.	The	row	weblet	iii_ListRow	allows	you	to	associate	a
working	list	with	the	weblet	and	then	assign	the	fields	within	this	list	to
parameters	for	each	row.	The	working	list	needs	to	contain:

The	data	fields	–	the	values	you	want	to	output
Fields	holding	the	labels	(or	captions)	for	each	of	the	output	fields.
A	field	containing	a	path	and	file	name	for	a	small	employee	image.
Each	row	is	wrapped	in	a	<fieldset>	tag.	The	list	also	contains	a	field	and
label	field	for	the	<legend>	tag	that	provides	the	caption	at	the	top	left
corner	of	the	group	box	that	the	fieldset	provides.
The	WebRoutine	should	map	the	working	list	with	a	*private	attribute,
since	the	List	Row	weblet	will	format	the	output.

The	WAM	will	be	a	simple	enquiry	that	lists	employees	by	department.
To	complete	this	exercise,	complete	the	following:
Step	1.	Create	the	List	Row	Weblet	–	iii_ListRow
Step	2.	Create	WAM	iiiUseListRowWeblet
Step	3.	Set	Up	the	Web	Page
Summary

Before	You	Begin
Complete	the	preceding	exercises	in	this	workshop.
Step	3	of	this	WAM	requires	a	set	of	small	images	for	employees.	If	you	haven't
already	done	so,	you	can	download	these	from	the	documentation	page	of	the
LANSA	web	site	as	described	in	the	Before	You	Begin	section	at	the	start	of
these	WAM	Tutorials.
Copy	the	images	from	the	PHOTOS	folder	into	to	your	web	server	/images	path,
such	as:	C:\Program	Files	(x86)\LANSA\WebServer\images.	If	you	are
running	your	WAMs	on	the	IBM	i,	copy	this	folder	to:	
/LANSA_<PGMLIB>/webserver/images	where	<PGMLIB>	is	your
LANSA	program	library.

Step	1.	Create	the	List	Row	Weblet	–	iii_ListRow
1.		Create	a	new	weblet	as	shown:

					Give	the	weblet	a	Weblet	Group	of	Custom	Weblets.
					If	the	group	Custom	Weblets	does	not	already	exist,	type	the	name	into	the
Weblet	Group	combo	box	and	a	new	group	will	be	created.

2.		Copy	the	weblet	XSL	code	from	WAM090.	Appendix,	at	the	end	of	this
exercise	and	replace	the	default	code	in	your	new	weblet.

3.		Save	the	new	weblet	definition.
4.		Select	the	XSL	tab	and	use	the	Replace	dialog	to	replace	all	occurrences	of
iii_ListRow	with	the	same	name	using	your	initials	in	place	of	iii.	There
should	be	5	occurrences.

5.		Save	your	changes.
6.		Select	the	Design	view.	Your	weblet	design	should	look	like	the	following:

					A	row	is	defined	with	an	image	on	the	left	hand	side	and	data	fields	and	label
fields	arranged	in	three	rows	with	four	columns.

Step	2.	Create	WAM	iiiUseListRowWeblet
1.		Create	a	new	WAM:
					Name:	iiiUseListRowWeblet
					Description:	Using	a	List	Row	Weblet
					Layout	Weblet:	iiilay01
2.		Add	the	following	definitions	after	the	Begin_Com:
Define	Field(#fulladdr)	Reffld(#std_textl)
Define	Field(#location)	Reffld(#std_textl)
Define	Field(#DESC1)	Reffld(#std_desc)	Default('''Name:	''')
Define	Field(#DESC2)	Reffld(#std_desc)	Default('''Location:	''')
Define	Field(#DESC3)	Reffld(#std_desc)	Default('''Address:	''')
Define	Field(#DESC4)	Reffld(#std_desc)	Default('''Start	Date:	''')
Define	Field(#DESC5)	Reffld(#std_desc)	Default('''Monthly	Salary:	''')
Define	Field(#DESC6)	Reffld(#std_desc)	Default('''Annual	Salary:	''')
Define	Field(#DESC7)	Reffld(#std_desc)	Default('''Employee	Number:	''')
*
Group_By	Name(#empdata)	Fields(#empno	#SURNAME	#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#DEPTMENT	#SECTION	#SALARY	#mnthsal	#STARTDTE)
Def_List	Name(#emplist)	Fields(#empno	#fullname	#fulladdr	#location	#SALARY	#mnthsal	#STARTDTE	#std_textl	#DESC1	#DESC2	#DESC3	#DESC4	#DESC5	#DESC6	#DESC7)	Type(*Working)
*
Web_Map	For(*both)	Fields((#stdrentry	*hidden))
WebRoutine	Name(list)
Web_Map	For(*both)	Fields(#deptment)	/*	comment	*/
Web_Map	For(*output)	Fields((#emplist	*private))
Case	(#stdrentry)
When	(=	S)	/*	Build	list	of	employees	*/
Clr_List	Named(#emplist)
Select	Fields(#empdata)	From_File(pslmst1)	With_Key(#deptment)	Nbr_Keys(*compute)
Fetch	Fields(#deptdesc)	From_File(deptab)	With_Key(#deptment)	Keep_Last(15)
Fetch	Fields(#secdesc)	From_File(sectab)	With_Key(#deptment	#section)	Keep_Last(10)
#std_textl	:=	'PHOTOS/'	+	#EMPNO	+	'.jpg'
#fullname	:=	#givename	+	',	'	+	#surname
#fulladdr	:=	#address1	+	',	'	+	#address2	+	',	'	+	#address3	+	',	'	+	#postcode.asstring
#location	:=	#deptdesc	+	',	'	+	#secdesc
Add_Entry	To_List(#emplist)
Endselect
Otherwise

Message	Msgtxt('Enter	a	department	code	and	Search')
Endcase
Endroutine

3.		Review	the	supplied	code.
					The	only	unusual	part	of	this	WAM	is	that	it	defines	a	number	of	work	fields
used	to	define	the	labels	required	for	the	fields	to	be	output	in	each	row.

								The	working	list	EMPLIST	contains	the	required	fields	for	each	employee,
selected	from	the	logical	file	PSLMST1	with	a	key	of	DEPTMENT.

4.		Compile	the	WAM.

Step	3.	Set	Up	the	Web	Page
1.		Open	the	list	WebRoutine	in	the	Design	view.
2.		Add	a	column	to	the	table	containing	the	department	code.
3.		Drop	a	Push	button	into	the	new	cell	and	set	up	its	properties:

Property Value

Caption Search

On_click_wrname list

submitExtraFields
	

Field	name:	STDRENTRY
Literal	Value:	S

	

4.		Save	your	changes.
					Your	page	should	look	like	the	following:

5.		On	the	Favorites	/	Weblet	Templates	tab,	select	Custom	Weblets	in	the	top
combo	box.	Drop	the	Training	List	Row	Weblet	onto	the	page.	Your	page
should	look	like	the	following:

6.		Select	the	List	Row	Weblet,	Select	the	Details	tab	and	set	up	its	properties	as
follows:

Property Value

Listname EMPLIST

List_field_label_1 DESC1

List_field_value_1 FULLNAME

List_field_label_2 DESC2

List_field_value_2 LOCATION

List_field_label_3 DESC3

List_field_value_3 FULLADDR

List_field_label_4 DESC4

List_field_value_4 STARTDTE

List_field_label_5 DESC5

List_field_value_5 MNTHSAL

List_field_label_6 DESC6

List_field_value_6 SALARY

List_field_label_7 DESC7

List_field_value_7 EMPNO

List_image_field STD_TEXTL

	

7.		Save	your	changes.
					Your	design	should	look	like	the	following:

8.		This	step	will	give	the	list	row	weblet	the	correct	External	Resources	to
match	your	selected	page	layout	theme.	See	WAM060	–	Employee
Maintenance,	Step	4.	Define	the	Details	WebRoutine	where	you	used	Cross
References	for	your	layout	weblet	to	find	the	External	Resources	used	by
your	chosen	theme.

9.		With	the	Design	view	open,	select	the	Design	ribbon	/	External	Resources
button.	Knowing	your	external	resources	(the	cascading	style	sheets)	used	by
your	theme,	delete	the	default	files	used	by	the	weblet	code	provided	and	add
the	files	for	your	theme.

10.	Save	your	changes.
11.	This	step	requires	a	set	of	small	images	for	employees.	If	you	haven't
already	done	so,	you	can	download	these	now	following	the	instructions	in
Before	You	Begin	at	the	beginning	of	this	exercise.

12.	Test	your	WAM	and	list	employees	for	department	code	ADM.	At	the
moment	your	list	will	be	displayed	on	the	left	hand	side	of	the	page.

13.	In	the	Design	view	select	the	List	Row	weblet	and	use	the	context	menu	to
Insert	/	Div.	With	the	div	selected,	change	its	align	property	to	center.	Save
your	changes.

14.	Test	your	WAM.	The	list	will	now	be	displayed	in	the	center	of	the	web
page.

Summary
Important	Observations

Lists	may	be	presented	in	any	format	by	making	use	of	the	ability	to
create	your	own	weblets.	This	will	require	good	HTML	knowledge	and	a
working	knowledge	of	XSLT.
With	some	modifications	the	example	given	here	could	be	used	as	part	of
a	shopping	application.
Later	exercises	will	cover	creating	your	own	simple	weblet.
Once	you	have	completed	WAM105	–	Create	Your	Own	Weblet	and
WAM110	–	Create	Your	Own	Layout,	you	should	review	the	List	Row
weblet	provided	for	this	exercise.	Although	it	is	reasonably	complex,
once	you	understand	the	structure	of	weblets,	you	should	be	able	to
follow	its	logic	by	examining	its	different	sections.

Tips	&	Techniques
Lists	can	also	be	formatting	as	a	single	row.	This	is	useful	way	to	present
a	variable	number	of	options

What	You	Should	Know
Custom	weblets	provide	a	highly	flexible	way	to	enhance	the	user
interface	of	your	web	applications.	Although	the	investment	in	creating
and	testing	a	custom	weblet	may	be	quite	high,	as	a	reusable	component,
it	will	pay	off	many	times	and	simplify	work	for	other	developers.

WAM090.	Appendix
List	Row	Weblet	iii_ListRow	(XSL)
<?xml	version="1.0"	encoding="UTF-8"?>
<!--	LANSA	for	the	Web	-->
<xsl:transform	version="1.0"	exclude-result-prefixes="lxml	wd"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:lxml="http://www.lansa.com/2002/XML/Runtime-Data"
xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"
xmlns="http://www.w3.org/1999/xhtml">
<xsl:import	href="std_types.xsl"	/>
<xsl:import	href="std_keys.xsl"	/>
<xsl:import	href="std_anchor.xsl"	/>
<xsl:output	method="xml"	omit-xml-declaration="yes"	encoding="UTF-8"
indent="no"	/>
<wd:external-resources>
<wd:style	name="XWT08J"	/>
<wd:style	name="XWT08L101"	/>
</wd:external-resources>
<wd:definition>
<wd:group	name="Custom	Weblets"	/>
</wd:definition>
<lxml:data>
<lxml:list	name="">
<lxml:list-header>
<lxml:header	name="W1LABEL1">
<lxml:heading-1>List	Field	Label	1</lxml:heading-1>
<lxml:heading-2	/>
<lxml:heading-3	/>
</lxml:header>
<lxml:header	name="W1FIELD1">
<lxml:heading-1>List	Field	1</lxml:heading-1>
<lxml:heading-2	/>
<lxml:heading-3	/>
</lxml:header>
<lxml:header	name="W1LABEL2">
<lxml:heading-1>List	Field	Label	2</lxml:heading-1>
<lxml:heading-2	/>

<lxml:heading-3	/>
</lxml:header>
<lxml:header	name="W1FIELD2">
<lxml:heading-1>List	Field	2</lxml:heading-1>
<lxml:heading-2	/>
<lxml:heading-3	/>
</lxml:header>
<lxml:header	name="W1LABEL3">
<lxml:heading-1>List	Field	Label	3</lxml:heading-1>
<lxml:heading-2	/>
<lxml:heading-3	/>
</lxml:header>
<lxml:header	name="W1FIELD3">
<lxml:heading-1>List	Field	3</lxml:heading-1>
<lxml:heading-2	/>
<lxml:heading-3	/>
</lxml:header>
<lxml:header	name="W1LABEL4">
<lxml:heading-1>List	Field	Label	4</lxml:heading-1>
<lxml:heading-2	/>
<lxml:heading-3	/>
</lxml:header>
<lxml:header	name="W1FIELD4">
<lxml:heading-1>List	Field	4</lxml:heading-1>
<lxml:heading-2	/>
<lxml:heading-3	/>
</lxml:header>
</lxml:list-header>
<lxml:list-entries>
<lxml:entry>
<lxml:column	name="W1LABEL1"
id="SAMPLE_LIST.0001.W1LABEL1">Field	1	Label	Col	2</lxml:column>
<lxml:column	name="W1FIELD1"
id="SAMPLE_LIST.0001.W1FIELD1">Field	1	Value	Col	2</lxml:column>
<lxml:column	name="W1LABEL2"
id="SAMPLE_LIST.0001.W1LABEL2">Field	2	Label	Col	3</lxml:column>
<lxml:column	name="W1FIELD2"
id="SAMPLE_LIST.0001.W1FIELD2">Field	2	Value	Col	3</lxml:column>
<lxml:column	name="W1LABEL3"

id="SAMPLE_LIST.0001.W1LABEL3">Field	3	Label	Col	2</lxml:column>
<lxml:column	name="W1FIELD3"
id="SAMPLE_LIST.0001.W1FIELD3">Field	3	Value	Col	2</lxml:column>
<lxml:column	name="W1LABEL4"
id="SAMPLE_LIST.0001.W1LABEL4">Field	4	Label	Col	3</lxml:column>
<lxml:column	name="W1FIELD4"
id="SAMPLE_LIST.0001.W1FIELD4">Field	4	Value	Col	3</lxml:column>
<lxml:column	name="W1LABEL5"
id="SAMPLE_LIST.0001.W1LABEL3">Field	5	Label	Col	2</lxml:column>
<lxml:column	name="W1FIELD5"
id="SAMPLE_LIST.0001.W1FIELD3">Field	5	Value	Col	2</lxml:column>
<lxml:column	name="W1LABEL6"
id="SAMPLE_LIST.0001.W1LABEL4">Field	6	Label	Col	3</lxml:column>
<lxml:column	name="W1FIELD6"
id="SAMPLE_LIST.0001.W1FIELD4">Field	6	Value	Col	3</lxml:column>
<lxml:column	name="W1IMAGE"
id="SAMPLE_LIST.0001.W1IMAGE">IMAGE_FILE</lxml:column>
<lxml:column	name="W1LABEL7"
id="SAMPLE_LIST.0002.W1LABEL7">Field	7	Label
Legend</lxml:column>
<lxml:column	name="W1FIELD7"
id="SAMPLE_LIST.0002.W1FIELD7">Field	7	Value
Legend</lxml:column>
</lxml:entry>
<lxml:entry>
<lxml:column	name="W1LABEL1"
id="SAMPLE_LIST.0001.W1LABEL1">Field	1	Label	Col	2</lxml:column>
<lxml:column	name="W1FIELD1"
id="SAMPLE_LIST.0001.W1FIELD1">Field	1	Value	Col	2</lxml:column>
<lxml:column	name="W1LABEL2"
id="SAMPLE_LIST.0001.W1LABEL2">Field	2	Label	Col	3</lxml:column>
<lxml:column	name="W1FIELD2"
id="SAMPLE_LIST.0001.W1FIELD2">Field	2	Value	Col	3</lxml:column>
<lxml:column	name="W1LABEL3"
id="SAMPLE_LIST.0001.W1LABEL3">Field	3	Label	Col	2</lxml:column>
<lxml:column	name="W1FIELD3"
id="SAMPLE_LIST.0001.W1FIELD3">Field	3	Value	Col	2</lxml:column>
<lxml:column	name="W1LABEL4"
id="SAMPLE_LIST.0001.W1LABEL4">Field	4	Label	Col	3</lxml:column>

<lxml:column	name="W1FIELD4"
id="SAMPLE_LIST.0001.W1FIELD4">Field	4	Value	Col	3</lxml:column>
<lxml:column	name="W1LABEL5"
id="SAMPLE_LIST.0001.W1LABEL3">Field	5	Label	Col	2</lxml:column>
<lxml:column	name="W1FIELD5"
id="SAMPLE_LIST.0001.W1FIELD3">Field	5	Value	Col	2</lxml:column>
<lxml:column	name="W1LABEL6"
id="SAMPLE_LIST.0001.W1LABEL4">Field	6	Label	Col	3</lxml:column>
<lxml:column	name="W1FIELD6"
id="SAMPLE_LIST.0001.W1FIELD4">Field	6	Value	Col	3</lxml:column>
<lxml:column	name="W1IMAGE"
id="SAMPLE_LIST.0001.W1IMAGE">IMAGE_FILE</lxml:column>
<lxml:column	name="W1LABEL7"
id="SAMPLE_LIST.0002.W1LABEL7">Field	7	Label
Legend</lxml:column>
<lxml:column	name="W1FIELD7"
id="SAMPLE_LIST.0002.W1FIELD7">Field	7	Value
Legend</lxml:column>
<!--	<lxml:column	name="W1LABEL8"
id="SAMPLE_LIST.0002.W1LABEL8">Field	Label	Row	8</lxml:column>	-
->
</lxml:entry>
</lxml:list-entries>
</lxml:list>
</lxml:data>
<wd:template	name="iii_ListRow">
<wd:description	icon="icons/std_grid.ico">
<wd:name	lang="ENG">Training	List	Row	Weblet</wd:name>
</wd:description>
<wd:param	name="TRN	List">
<wd:tip	lang="ENG">The	name	of	the	weblet.</wd:tip>
</wd:param>
<wd:param	name="listname">
<wd:tip	lang="ENG">The	name	of	the	list	to	use	to	populate	the	cells	in	the
grid.</wd:tip>
</wd:param>
<wd:param	name="List_field_label_1">
<wd:tip	lang="ENG">The	name	of	the	field	in	the	list	to	use	as	a	label	in	list
entry,	Row	1,	Col	2.</wd:tip>

</wd:param>
<wd:param	name="List_field_value_1">
<wd:tip	lang="ENG">The	name	of	the	list	field	to	show	in	list	entry,	Row	1,
Col	2.</wd:tip>
</wd:param>
<wd:param	name="List_field_label_2">
<wd:tip	lang="ENG">The	name	of	the	field	in	the	list	to	use	as	a	label	in	list
entry,	Row	1,	Col	2.</wd:tip>
</wd:param>
<wd:param	name="List_field_value_2">
<wd:tip	lang="ENG">The	name	of	the	list	field	to	show	in	list	entry,	Row	1,
Col	2.</wd:tip>
</wd:param>
<wd:param	name="List_field_label_3">
<wd:tip	lang="ENG">The	name	of	the	field	in	the	list	to	use	as	a	label	in	list
entry,	Row	2,	Col	2.</wd:tip>
</wd:param>
<wd:param	name="List_field_value_3">
<wd:tip	lang="ENG">The	name	of	the	list	field	to	show	in	list	entry,	Row	2,
Col	2.</wd:tip>
</wd:param>
<wd:param	name="List_field_label_4">
<wd:tip	lang="ENG">The	name	of	the	field	in	the	list	to	use	as	a	label	in	list
entry,	Row	2,	Col	3.</wd:tip>
</wd:param>
<wd:param	name="List_field_value_4">
<wd:tip	lang="ENG">The	name	of	the	list	field	to	show	in	list	entry,	Row	2,
Col	3.</wd:tip>
</wd:param>
<wd:param	name="List_field_label_5">
<wd:tip	lang="ENG">The	name	of	the	field	in	the	list	to	use	as	a	label	in	list
entry,	Row	3,	Col	2.</wd:tip>
</wd:param>
<wd:param	name="List_field_value_5">
<wd:tip	lang="ENG">The	name	of	the	list	field	to	show	in	list	entry,	Row	3,
Col	2.</wd:tip>
</wd:param>
<wd:param	name="List_field_label_6">
<wd:tip	lang="ENG">The	name	of	the	field	in	the	list	to	use	as	a	label	in	list

entry,	Row	3,	Col	3.</wd:tip>
</wd:param>
<wd:param	name="List_field_value_6">
<wd:tip	lang="ENG">The	name	of	the	list	field	to	show	in	list	entry,	Row	3,
Col	3.</wd:tip>
</wd:param>
<wd:param	name="List_field_label_7">
<wd:tip	lang="ENG">The	name	of	the	field	in	the	list	to	use	as	a	label	in	the
fieldset	Legend.</wd:tip>
</wd:param>
<wd:param	name="List_field_value_7">
<wd:tip	lang="ENG">The	name	of	the	list	field	to	show	in	t.</wd:tip>
</wd:param>
<wd:param	name="even_row_class">
<wd:tip	lang="ENG">The	Cascading	Stylesheet	class	for	even	row	entries	in
the	list.</wd:tip>
</wd:param>
<wd:param	name="odd_row_class">
<wd:tip	lang="ENG">The	Cascading	Stylesheet	class	for	odd	row	entries	in
the	list.</wd:tip>
</wd:param>
</wd:template>

<xsl:template	name="iii_ListRow">
<xsl:param	name="listname"	wd:type="std:list_name_out"	/>
<xsl:param	name="List_field_label_1"	select="'W1LABEL1'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_value_1"	select="'W1FIELD1'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_label_2"	select="'W1LABEL2'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_value_2"	select="'W1FIELD2'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_label_3"	select="'W1LABEL3'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_value_3"	select="'W1FIELD3'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_label_4"	select="'W1LABEL4'"
wd:type="std:list_field_name[list=$listname]"	/>

<xsl:param	name="List_field_value_4"	select="'W1FIELD4'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_label_5"	select="'W1LABEL5'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_value_5"	select="'W1FIELD5'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_label_6"	select="'W1LABEL6'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_value_6"	select="'W1FIELD6'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_label_7"	select="'W1LABEL7'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_field_value_7"	select="'W1FIELD7'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="List_image_field"	select="'W1IMAGE'"
wd:type="std:list_field_name[list=$listname]"	/>
<xsl:param	name="even_row_class"	select="'even_row'"
wd:type="std:css_style_class[tagName='table']"	/>
<xsl:param	name="odd_row_class"	select="'odd_row'"
wd:type="std:css_style_class[tagName='table']"	/>
<xsl:param	name="hide_if"	select="false()"	wd:type="std:boolean"
wd:tip_id=""	/>
<input	type="hidden"	name="RESULTS.."
value="{count(/lxml:data/lxml:lists/lxml:list[@name=$listname]/lxml:list-
entries/lxml:entry[1])}"	/>
<xsl:if	test="$listname	!=	''	and	not($lweb_design_mode)">
<table	border="0"	cellspacing="0"	cellpadding="0">
<tr>
<td>
<xsl:for-each
select="/lxml:data/lxml:lists/lxml:list[@name=$listname]/lxml:list-
entries/lxml:entry">
<xsl:call-template	name="iii_ListRow.private">
<xsl:with-param	name="listrow"	select="."	/>
<xsl:with-param	name="listname"	select="$listname"	/>
<xsl:with-param	name="List_field_label_1"
select="$List_field_label_1"	/>
<xsl:with-param	name="List_field_value_1"
select="$List_field_value_1"	/>

<xsl:with-param	name="List_field_label_2"
select="$List_field_label_2"	/>
<xsl:with-param	name="List_field_value_2"
select="$List_field_value_2"	/>
<xsl:with-param	name="List_field_label_3"
select="$List_field_label_3"	/>
<xsl:with-param	name="List_field_value_3"
select="$List_field_value_3"	/>
<xsl:with-param	name="List_field_label_4"
select="$List_field_label_4"	/>
<xsl:with-param	name="List_field_value_4"
select="$List_field_value_4"	/>
<xsl:with-param	name="List_field_label_5"
select="$List_field_label_5"	/>
<xsl:with-param	name="List_field_value_5"
select="$List_field_value_5"	/>
<xsl:with-param	name="List_field_label_6"
select="$List_field_label_6"	/>
<xsl:with-param	name="List_field_value_6"
select="$List_field_value_6"	/>
<xsl:with-param	name="List_field_label_7"
select="$List_field_label_7"	/>
<xsl:with-param	name="List_field_value_7"
select="$List_field_value_7"	/>
<xsl:with-param	name="List_image_field"
select="$List_image_field"	/>
<xsl:with-param	name="even_row_class"
select="$even_row_class"	/>
<xsl:with-param	name="odd_row_class"
select="$odd_row_class"	/>
<xsl:with-param	name="hide_if"	select="$hide_if"	/>
</xsl:call-template>
</xsl:for-each>
</td>
</tr>
</table>
</xsl:if>
<!--	===	--
>

<xsl:if	test="not($hide_if)	or	$lweb_design_mode">
<xsl:if	test="$lweb_design_or_preview">
<xsl:call-template	name="std_script_reference.private"	/>
<xsl:call-template	name="std_style_reference.private">
<xsl:with-param	name="caller_name"	select="'std_button.xsl'"	/>
</xsl:call-template>
</xsl:if>
<!--	==	-->
<xsl:if	test="$listname	=	''	or	$lweb_design_mode">
<table	cellspacing="0"	cellpadding="0"	border="1">
<tbody>
<tr>
<td>
<xsl:for-each	select="document('')/*/lxml:data/lxml:list/lxml:list-
entries/lxml:entry">
<xsl:call-template	name="iii_ListRow.private">
<xsl:with-param	name="listrow"	select="."	/>
<xsl:with-param	name="listname"	select="$listname"	/>
<xsl:with-param	name="List_field_label_1"
select="$List_field_label_1"	/>
<xsl:with-param	name="List_field_value_1"
select="$List_field_value_1"	/>
<xsl:with-param	name="List_field_label_2"
select="$List_field_label_2"	/>
<xsl:with-param	name="List_field_value_2"
select="$List_field_value_2"	/>
<xsl:with-param	name="List_field_label_3"
select="$List_field_label_3"	/>
<xsl:with-param	name="List_field_value_3"
select="$List_field_value_3"	/>
<xsl:with-param	name="List_field_label_4"
select="$List_field_label_4"	/>
<xsl:with-param	name="List_field_value_4"
select="$List_field_value_4"	/>
<xsl:with-param	name="List_field_label_5"
select="$List_field_label_5"	/>
<xsl:with-param	name="List_field_value_5"
select="$List_field_value_5"	/>
<xsl:with-param	name="List_field_label_6"

select="$List_field_label_6"	/>
<xsl:with-param	name="List_field_value_6"
select="$List_field_value_6"	/>
<xsl:with-param	name="List_image_field"
select="$List_image_field"	/>
<xsl:with-param	name="even_row_class"
select="$even_row_class"	/>
<xsl:with-param	name="odd_row_class"
select="$odd_row_class"	/>
<xsl:with-param	name="hide_if"	select="$hide_if"	/>
</xsl:call-template>
</xsl:for-each>
</td>
</tr>
</tbody>
</table>
</xsl:if>
</xsl:if>
</xsl:template>

<xsl:template	name="iii_ListRow.private">
<xsl:param	name="listrow"	select="."	/>
<xsl:param	name="listname"	/>
<xsl:param	name="List_field_label_1"	/>
<xsl:param	name="List_field_value_1"	/>
<xsl:param	name="List_field_label_2"	/>
<xsl:param	name="List_field_value_2"	/>
<xsl:param	name="List_field_label_3"	/>
<xsl:param	name="List_field_value_3"	/>
<xsl:param	name="List_field_label_4"	/>
<xsl:param	name="List_field_value_4"	/>
<xsl:param	name="List_field_label_5"	/>
<xsl:param	name="List_field_value_5"	/>
<xsl:param	name="List_field_label_6"	/>
<xsl:param	name="List_field_value_6"	/>
<xsl:param	name="List_field_label_7"	/>
<xsl:param	name="List_field_value_7"	/>
<xsl:param	name="List_image_field"	/>
<xsl:param	name="even_row_class"	/>

<xsl:param	name="odd_row_class"	/>
<!--	xxxxxxxxxxxxxxxxxxxxxxxx	-->
<fieldset>
<legend	class="caption">

<xsl:value-of	select="lxml:column[@name=$List_field_label_7]	"	/>

<xsl:value-of	select="lxml:column[@name=$List_field_value_7]"	/>
</legend>
<table	cellspacing="0"	cellpadding="0"	width="750"	border="0"
__evenrc="{$even_row_class}"	__oddrc="{$odd_row_class}">
<xsl:attribute	name="class">
<xsl:choose>
<xsl:when	test="position()	mod	2	=	0">
<xsl:value-of	select="$even_row_class"	/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="$odd_row_class"	/>
</xsl:otherwise>
</xsl:choose>
</xsl:attribute>
<tbody>
<tr>
<td	style="height:	20px;"	valign="middle"	width="100"
align="center">

</td>
<td>
<table>
<tbody>
<tr>
<td	class="caption"	valign="middle"	width="10%">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">

<xsl:choose>
<xsl:when	test="$List_field_value_1	=	'W1LABEL1'">
<xsl:value-of	select="lxml:column[@name=$List_field_label_1]"	/>
</xsl:when>
<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_label_1"	/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="lxml:column[@name=$List_field_label_1]"	/>
</xsl:otherwise>
</xsl:choose>
</td>
<td	valign="middle"	width="25%"	align="left">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">
<xsl:choose>
<xsl:when	test="$List_field_value_1	=	'W1FIELD1'">
<xsl:value-of	select="lxml:column[@name=$List_field_value_1]"	/>
</xsl:when>
<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_value_1"
/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="lxml:column[@name=$List_field_value_1]"	/>
</xsl:otherwise>
</xsl:choose>
</td>
<td	class="caption"	valign="middle"	width="10%">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">
<xsl:choose>
<xsl:when	test="$List_field_label_2	=	'W1LABEL2'">
<xsl:value-of	select="lxml:column[@name=$List_field_label_2]"	/>
</xsl:when>
<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_label_2"	/>
</xsl:otherwise>

</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="lxml:column[@name=$List_field_label_2]"	/>
</xsl:otherwise>
</xsl:choose>
</td>
<td	valign="middle"	width="25%"	align="left">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">
<xsl:choose>
<xsl:when	test="$List_field_value_2	=	'W1FIELD2'">
<xsl:value-of	select="lxml:column[@name=$List_field_value_2]"	/>
</xsl:when>
<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_value_2"
/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="lxml:column[@name=$List_field_value_2]"	/>
</xsl:otherwise>
</xsl:choose>
</td>
</tr>
<tr>
<td	class="caption"	valign="middle"	width="10%">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">
<xsl:choose>
<xsl:when	test="$List_field_label_3	=	'W1LABEL3'">
<xsl:value-of	select="lxml:column[@name=$List_field_label_3]"	/>
</xsl:when>
<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_label_3"	/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="lxml:column[@name=$List_field_label_3]"	/>

</xsl:otherwise>
</xsl:choose>
</td>
<td	valign="middle"	width="25%"	align="left">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">
<xsl:choose>
<xsl:when	test="$List_field_value_3	=	'W1FIELD3'">
<xsl:value-of	select="lxml:column[@name=$List_field_value_3]"	/>
</xsl:when>
<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_value_3"
/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="lxml:column[@name=$List_field_value_3]"	/>
</xsl:otherwise>
</xsl:choose>
</td>
<td	class="caption"	valign="middle"	width="10%">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">
<xsl:choose>
<xsl:when	test="$List_field_label_4	=	'W1LABEL4'">
<xsl:value-of	select="lxml:column[@name=$List_field_label_4]"	/>
</xsl:when>
<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_label_4"	/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="lxml:column[@name=$List_field_label_4]"	/>
</xsl:otherwise>
</xsl:choose>
</td>
<td	valign="middle"	width="25%"	align="left">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">

<xsl:choose>
<xsl:when	test="$List_field_value_4	=	'W1FIELD4'">
<xsl:value-of	select="lxml:column[@name=$List_field_value_4]"	/>
</xsl:when>
<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_value_4"
/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="lxml:column[@name=$List_field_value_4]"	/>
</xsl:otherwise>
</xsl:choose>
</td>
</tr>
<tr>
<td	class="caption"	valign="middle"	width="10%">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">
<xsl:choose>
<xsl:when	test="$List_field_label_5	=	'W1LABEL5'">
<xsl:value-of	select="lxml:column[@name=$List_field_label_5]"	/>
</xsl:when>
<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_label_5"	/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="lxml:column[@name=$List_field_label_5]"	/>
</xsl:otherwise>
</xsl:choose>
</td>
<td	valign="middle"	width="25%"	align="left">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">
<xsl:choose>
<xsl:when	test="$List_field_value_5	=	'W1FIELD5'">
<xsl:value-of	select="lxml:column[@name=$List_field_value_5]"	/>
</xsl:when>

<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_value_5"
/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="lxml:column[@name=$List_field_value_5]"	/>
</xsl:otherwise>
</xsl:choose>
</td>
<td	class="caption"	valign="middle"	width="10%">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">
<xsl:choose>
<xsl:when	test="$List_field_label_6	=	'W1LABEL6'">
<xsl:value-of	select="lxml:column[@name=$List_field_label_6]"	/>
</xsl:when>
<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_label_6"	/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:value-of	select="lxml:column[@name=$List_field_label_6]"	/>
</xsl:otherwise>
</xsl:choose>
</td>
<td	valign="middle"	width="25%"	align="left">
<xsl:choose>
<xsl:when	test="$lweb_design_mode">
<xsl:choose>
<xsl:when	test="$List_field_value_6	=	'W1FIELD6'">
<xsl:value-of	select="lxml:column[@name=$List_field_value_6]"	/>
</xsl:when>
<xsl:otherwise>Value	of	 <xsl:value-of	select="$List_field_value_6"
/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>

<xsl:value-of	select="lxml:column[@name=$List_field_value_6]"	/>
</xsl:otherwise>
</xsl:choose>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
</fieldset>
</xsl:template>
</xsl:transform>
	

WAM095	-	LOB	Data	Types	and	Stream	Files
Objectives

To	demonstrate	how	to	develop	a	WAM	with	a	WebRoutine,	that	uses	the
Response()	parameter	to	output	a	file	to	the	browser.

In	order	to	complete	these	objectives,	you	will	follow	one	of	two	paths:
1.		If	you	are	using	the	VLF	application	and	DXDOCS	file	for	employee
documents	you	should	do	the	following:
Step	1.	Install	Required	Documents
Step	2.	Set	up	Documents	for	an	Employee
Step	3.	Create	WAM	to	Display	Employee	Documents
Step	4.	Enhance	Appearance	of		the	Documents	List		(Optional)
Step	5.	Set	up	the	Documents	List
Step	6.	Test	your	Enhanced	WAM
Summary

2.		If	you	are	NOT	using	the	VLF	application	and	DXDOCS	file	you	carry	out
these	steps:
Step	1.	Install	Required	Documents
Step	3a.	Create	WAM	to	Display	Employee	Documents
Step	4.	Enhance	Appearance	of		the	Documents	List		(Optional)
Step	5a.	Set	up	the	Documents	List
Step	6.	Test	your	Enhanced	WAM
Summary

Before	You	Begin
WAMs	allow	you	to	serve	stream	files	that:

You	don't	want	to	store	on	your	Web	server
Documents	whose	contents	are	stored	in	your	application	data	base.
Documents	that	are	created	on	demand.

You	can	serve	the	contents	of	LOB	data	types	(BLOBs	and	CLOBs)	and	stream
files	located	in	your	Application	Server	with	special	WebRoutines.

The	WebRoutine	can	contain	RDMLX	code	to	create	the	contents	of	the	file	or
determine	which	file	to	send.	The	only	requirement	is	that	you	set	the
ContentFile	to	the	file	name	that	you	want	to	serve.

Step	1.	Install	Required	Documents
In	this	exercise	you	will	need	some	files	from	the	zip	file	described	in	Before
you	Begin	section	at	the	start	of	WAM	Tutorials.
1.		You	will	need	the	following	files	to	complete	this	exercise:
V_Brown_CV.pdf
Employee_Confidentiality_Agreement.pdf
A0070_Details.doc
A0070_Holidays_2013.xls
A0070_Notes.txt
A0070_Presentation.ppt
MYDOCS.txt
					If	you	are	not	using	the	VLF	application	to	store	images	in	file	DXDOCS,
the	file	MYDOCS.txt	contains	a	list	of	the	files	to	be	displayed,	which	will	be
read	by	your	WAM.

					Copy	these	files	from	the	Extra	Files	to	the	folder:	C:\Program	Files
(x86)\LANSA\

	IBM	i
a.		If	you	are	running	your	WAMs	on	the	IBM	i,	copy	the	file	MYDOCS.txt
into	an	IFS	folder	such	as	/LANSA_d13pgmlib/	where	d13pgmlib	is
your	LANSA	program	library.

b.		Copy	all	other	files	into	the	IFS	folder,	such	as:

	/LANSA_d13pgmlib/webserver/images/
c.		Change	your	RDML	code	to	use	the	first	path	to	TRANSFORM_FILE.
Use	the	second	path	to	retrieve	the	files	to	send	to	the	web	server.

					WAM095.	Appendix	A	contains	sample	code	for	both	Windows	and	IBM
i	execution.

					Alternatively,	use	any	files	that	you	have	available	that	will	be	recognized	by
windows	and	can	be	opened	in	the	browser.

Note:	In	this	case	you	will	need	to	create	a	simple	text	file	MYDOCS.txt
containing	a	list	of	the	files	you	wish	to	display.

2.		A	later	step	requires	a	set	of	small	gif	images	for	each	file	type,	which	will
be	displayed	as	a	clickable	image	in	the	first	column	of	the	employee
documents	list.

Windows
					These	files	are	supplied	in	the	Extra	Files	zip	file.	Copy	the	files	from	the
File_GIFS	folder	to:
c:\Program	Files	(x86)\LANSA\WebServer\Images

doc.gif					
htm.gif
html.gif

pdf.gif					
ppt.gif
text.gif

txt.gif
xls.gif

IBM	i
					If	you	are	running	your	WAM	on	the	IBM	i,	copy	the	gif	files	to	the	IFS	for
example	to:

/LANSA_d13pgmlib/webserver/images/	where	d13pgmlib	is	the	name
of	your	program	library.

Scenario
This	exercise	may	be	completed	in	two	ways:
1.		Setting	up	documents	for	an	employee	in	the	file	DXDOCS	using	the
demonstration	Visual	Frameworks	application.	Continue	immediately	below
to	follow	this	approach

2.		Reading	an	employee	record	and	setting	up	a	working	list	containing	the
names	of	images	associated	with	the	selected	employee.	To	follow	this
approach,	go	directly	to	Step	3a.	Create	WAM	to	Display	Employee
Documents.

The	following	assumes	that	you	have	Visual	Frameworks	(VLF)	installed	in
the	partition	being	used	for	the	WAM	training	tutorials.

The	file	DXDOCS	is	maintained	by	the	Documents	command	handler	in	the
shipped	VLF	HR	Demo	Application	for	the	business	object,	Resources.

You	will	use	this	application	to	set	up	documents	for	at	least	one	employee.
Your	WAM	will	then	enable	these	documents	to	be	displayed	in	the	browser.
If	you	are	testing	your	WAM	applications	locally	(on	your	development	PC),
you	can	start	the	Visual	Framework	and	work	offline.	You	will	be	updating	the
DXDOCS	file	locally.
If	you	are	creating	WAM	applications	to	run	on	an	IBM	i	server,	your	Visual
Framework	must	be	configured	to	logon	to	the	IBM	i	server.	Your	documents
will	then	be	stored	in	the	file	DXDOCS	on	the	server.
You	can	find	more	details	on	how	the	Document	command	handler	works
(reusable	part	DX_DOCS)	in	the	comments	included	in	the	component	source
RDML.
The	WAM	you	will	build	in	this	exercise,	iiiDspEmpDocs	–	Display	Employee
Documents,	is	a	simple	WAM	that	displays	details	for	a	single	employee	and	a
list	of	associated	documents	retrieved	from	file	DXDOCS.	When	a	document	is
selected	it	will	be	displayed	in	a	new	browser	window.

File	DXDOCS
Review	the	DXDOCS	file	definition	in	the	Repository.	Note	that	the	file	keys
include	all	possible	VLF	instance	list		key	fields.	The	highest	level	key	contains
the	business	object	name.	In	this	case,	business	object	name	will	be
DEM_ORG_SEC_EMP.	See	the	Visual	LANSA	Framework		properties	sheet
for	the	Resources	business	object.	The	lowest	level	file	key	contains	the
document	file	name.	For	the	business	object	Resources,	the	file	key	will	be:

Field Value

DF_ELOID DEM_ORG_SEC_EMP

DF_ELKEY1 #DEPTMENT

DF_ELKEY2 #SECTION

DF_ELKEY3 #EMPNO

DF_ELFNAM File	Name

	

All	keys	not	shown	in	the	table	will	be	blank.

Understanding	BLOBs
Refer	to	the	Technical	Guide	for	a	detailed	explanation	of	how	to	use	the	BLOB
data	type.
BLOB	is	a	variable-length	binary	field	of	undefined	maximum	length.
The	most	common	operation	with	BLOBs	are	saving	files	into	the	database	and
retrieving	them	so	they	can	be	viewed/edited/etc.	In	RDMLX,	BLOB	fields	are
manipulated	as	filenames.
Following	is	an	example	of	saving	a	JPG	as	a	BLOB	field	in	a	database	file:

#MYBLOB	:=	'C:\temp\mypicture.jpg'
UPDATE	FIELDS(#MYBLOB)	IN_FILE(FILE1)
In	RDMLX	when	a	BLOB	or	CLOB	field	is	used,	keep	in	mind	that	the	field
contains	a	filename,	not	the	actual	data	in	the	object.	In	RDMLX,	LANSA	LOB
fields	will	be	manipulated	as	filenames.	It	is	only	in	database	IO	commands	that
the	BLOB	or	CLOB	actual	data	itself	is	handled	by	reading	from	or	writing	to
the	named	file.
Rather	than	the	default	property	.Value,	fields	of	type	BLOB	have	a	default
property	called	.FileName	to	clearly	indicate	that	changing	the	"value"	of	the
field	is	actually	changing	its	default	property	which	is	a	file	name	property.
When	BLOB	and	CLOB	data	is	read	from	the	database,	files	are	automatically
created	in	the	directory	structures	under	the	LPTH=	directory	(for	more
information,	refer	to	Standard	X_RUN	Parameters	in	the	Technical	Reference

its:lansa015.CHM::/lansa/DEPB3_0005.HTM

Guide).
You	can	use	the	VLF	Documents	command	handler	to	store	any	type	of
document	for	an	employee.	For	example:	PDF,	DOC,	XLS,	TXT	etc.

Step	2.	Set	up	Documents	for	an	Employee
Before	You	Begin
1.		Start	the	Visual	LANSA	Framework	(VLF)	from	the	VL	Framework	group
on	the	Tools	ribbon.

					If	this	is	the	first	time	VLF	has	been	run,	the	shipped	framework
(vf_sy0001_system.xml)	will	be	run	by	default.	If	necessary,	in	the	following
dialog	select	the	Open	Latest	Demonstration	Version	checkbox	to	select	the
latest	shipped	framework:

2.		Select	the	HR	Demo	Application	and	then	select	the	Resources	business
object.	Enter	B	in	the	mini	filter	in	the	toolbar	and	press	Enter	to	display
employees	in	the	Instance	list.	Select	employee	BROWN,	VERONICA,
A0070.

					Select	the	Documents	tab	for	this	employee.

3.		Open	Windows	Explorer	and	navigate	to	folder	c:\Program
Files\LANSA.	Drag	the	sample	files	(types:	doc,	txt,	ppt,	xls	and	pdf)	into
the	right	hand	Documents	panel	as	shown:

4.		Select	the	Save	Pending	Changes	button	to	save	the	documents	to	the	file

DXDOCS.

Step	3.	Create	WAM	to	Display	Employee	Documents
1.		Create	a	new	WAM:
					Name:	iiiDspEmpDocs
					Description:		Display	Employee	Documents
					Layout	Weblet:	iiilay01
2.		Define	your	WAM	based	on	the	following	logic:

Map	field	STDRENTRY	for	*both	as	a	*hidden	field
Define	a	Group_by,	EMPDATA	for	fields	EMPNO,		SURNAME,
GIVENAME,	ADDRESS1,	ADDRESS2,	ADDRESS3,	POSTCODE,
DEPTMENT	and	SECTION.
Define	a	working	list	DOCLIST,	containing	fields	DF_ELFNAM	and
PRIFILRRN.

					PRIFILRRN	should	be	a	hidden	field.

Define	a	WebRoutine	BEGIN
Map	field	EMPNO	for	*both
Map	fields	FULLNAME,	ADDRESS1,	ADDRESS2,	ADDRESS3,	POSTCODE,

DEPTMENT	and	SECTION	and	list	DOCLIST	for	*output.	These	fields	should
have	a	display	attribute	of	*output.
If	STDRENTRY	=	S

																			 -		Clear	list	DOCLIST
-		Fetch	fields	for	group_by		EMPDATA	from	file	PSLMST	with
the	key	EMPNO
-		FULLNAME	=	GIVENAME	+	',	'	+	SURNAME
-		Select	field	DF_ELFNAM	from	the	file	DXDOCS	with	the
key	'DEM_ORG_SEC_EMP',	DEPTMENT,	SECTION,
EMPNO	and	return	relative	record	number	to	PRIFILRRN
														Add	entry	to	DOCLIST
-		End	of	select

End	of	if
End	of	routine
Define	a	WebRoutine	SEND_DOCUMENT	with	a	Response	keyword	of	

#HTTPR
Map	for	*input	field	PRIFILRRN
Fetch	field	DX_ELBLOB	from	the	file	DXDOCS	with	the	relative	record
number	PRIFILRRN.
Set	#HTTPR	property	ContentFile	to		#DXELBLOB.FileName
End	of	routine

Note:	The	field	DX_ELBLOB	returns	the	file	into	a	local	temporary	directory,
using	an	8.3	filename.	For	example:

C:\DOCUME~1\pcuser\LOCALS~1\Temp\lobuser\pcuser\5152\dxdocs\dx_elblob\contract.pdf
This	path	may	be	defined	by	the	LPTH=directory	run	time	parameter.	If	the
LPTH	parameter	is	not	defined,	the	path	used	will	be	the	TPTH	setting.	The
default	value	for	this	path	is	the	user's	temporary	path,	for	example:
C:\Users\John\AppData\Local\Temp
This	can	be	quickly	found	using	%temp%	in	the	Explorer	address	bar.
For	further	information,	refer	to	the	Standard	X_RUN	Parameters	in	the
Technical	Reference	Guide.
3.		Compile	iiiDspEmpDocs	and	open	the	WebRoutine	BEGIN	in	the	Design
view.	It	should	look	like	the	following:

4.		Drop	a	Push	Button	weblet	alongside	the	employee	number	field.
					Set	up	the	push	button	properties:

its:lansa015.CHM::/lansa/DEPB3_0005.HTM

Property Value

Caption Details

On_click_wrname BEGIN

submitExtraFields
	

Field	Name:	STDRENTRY
Literal	value:	S

	

5.		Save	your	changes.
6.		Select	the	column	heading	"Document	long	file"	and	delete	it.
						Type	in	a	new	the	column	heading	"Employee	Documents".
		You	may	need	to	click	somewhere	else	in	the	layout,	to	refresh	the	column
heading	with	your	changes.

7.		Save	your	changes.
					Your	design	should	look	like	the	following:

8.		Drop	an	Anchor	weblet	into	the	file	name	column	of	the	list	(the	left	hand
column).	Ignore	the	increase	in	width	of	this	column.	At	run	time	it	will
display	with	the	width	of	the	actual	file	names.

					Set	up	the	Anchor	weblet	properties:

Property Value

Currentrowhfield PRIFILRRN

Currentrownumval $PRIFILRRN

On_click_wrname SEND_DOCUMENT

Show_in_new_window True

	

					Save	your	changes.
9.		Execute	and	test	your	WAM	in	the	browser.

a.		Enter	employee	number	A0070	and	select	the	Details	push	button.	Your
web	page	should	look	like	the	following:

b.		Select	one	of	the	documents	shown	in	the	list.	The	document	should	be
displayed	in	a	new	browser	window.

Continue	at	Step	4.	Enhance	Appearance	of		the	Documents	List		(Optional)

Step	3a.	Create	WAM	to	Display	Employee	Documents
Follow	this	step	if	you	did	not	set	up	documents	for	an	employee	using	the
demonstration	VLF	application,	in	the	file	DXDOCS.
This	WAM	will	display	a	fixed	list	of	documents	for	an	employee,	based	on	a
data	from	a	supplied	text	file.	To	simplify	building	the	list	of	documents,	the
WAM	reads	a	text	file	MYDOCS.txt	to	populate	a	working	list.	Another
working	list	is	populated	for	display.	A	later	step	will	add	another	column	to	this
list	which	will	contain	a	clickable	image.
1.		Create	a	new	WAM:
					Name:	iiiDspEmpDocs
					Description:	Display	Employee	Documents
					Layout	Weblet:	iiilay01
2.		Create	your	WAM	based	on	the	following	logic:

Map	field	STDRENTRY	for	*both	as	a	*hidden	field
Define	a	Group_By,	EMPDATA	for	fields,	EMPNO,	SURNAME,
GIVENAME,	ADDRESS1,	ADDRESS2,	ADDRESS3,	POSTCODE,
DEPTMENT	and	SECTION.
Define	a	working	list	DOCLIST	containing	fields	DF_ELFNAM
Define	a	working	list	MYDOCS	containing	field	STD_TEXTL
Define	a	work	field	RETCODE	with	reference	field	IO$STS
Define	a	webroutine	BEGIN
Map	field	EMPNO	for	*both
Map	fields	FULLNAME,	ADDRESS1,	ADDRESS2,	ADDRESS3,
POSTCODE,	DEPTMENT	and	SECTION	for	*output.	All	fields	should
have	a	display	attribute	of	*output
If	STDRENTRY	=	S
Clear	list	DOCLIST
Clear	list	MYDOCS
Fetch	group_by	EMPDATA	from	file	PSLMST	with	the	key	EMPNO
Use	the	BIF	transform_file	to	populate	the	list	MYDOCS	from	the	file
"C:\Program	Files	(x86)\LANSA\MYDOCS.txt"
Selectlist	MYDOCS

Change	DF_ELFNAM	to	STD_TEXTL
Add	an	entry	to	DOCLIST
Endselect
Endif

3.		Define	a	WebRoutine	SEND_DOCUMENT	with	a	Response	keyword	of
#HTTPR

Map	field	DF_ELFNAM	for	*input
Set	#HTTPR,	property	ContentFile	to	"C:\Program	Files	(x86)\LANSA\"
+	DF_ELFNAM
Endroutine

					Sample	code	is	supplied	in	WAM095.	Appendix	B.
4.		Compile	your	WAM.	Open	the	WebRoutine	BEGIN	in	the	Design	view,	it
should	look	like	the	following:

5.		Drop	a	Push	Button	weblet	alongside	the	employee	number	field.
					Set	up	the	push	button	properties:

Property Value
Caption Details

On_Click_wrname BEGIN

submitExtraFields STDRENTRY

Literal	Value:	S

	

6.		Save	your	changes.
7.		Select	the	column	heading	"Document	long	file"	and	delete	it.
					Type	in	a	new	column	heading	-	Employee	Documents.
					You	may	need	to	click	on	another	part	of	the	layout	to	refresh	the	column
heading.

8.		Drop	an	Anchor	weblet	into	the	list's	file	name	column.	Ignore	the	increase
in	width	of	the	column.	At	run	time	it	will	be	displayed	with	the	width	of	the
actual	file	names.

					Set	up	the	Anchor	weblet	properties:

Property Value

Currentrowhfield DF_ELFNAM

Currentrownumval $DF_ELFNAM

On_click_wrname SEND_DOCUMENT

Show_in_new_window True

	

					Your	design	should	look	like	the	following:

9.		Save	your	changes.
10.	Execute	your	WAM	in	the	browser.	Any	employee	number	may	be	entered
(A0070,	A0090,	A1234	etc).	The	WAM	will	always	display	the	employee
details	and	a	fixed	list	of	documents.

					Click	on	one	of	the	documents	to	display	it.	The	way	that	the	browser	and
Windows	handles	the	request	will	depend	on	the	version	of	browser	and	the
version	of	Windows	being	used.	For	example,	in	Windows	7	with	MS	Office
installed	and	IE10,	the	txt	and	pdf	files	are	displayed	in	a	new	browser	tab.
The	Office	documents	prompt	to	be	displayed	in	the	required	Office	program.

Continue	with	Step	4.	Enhance	Appearance	of		the	Documents	List		(Optional)

Step	4.	Enhance	Appearance	of		the	Documents	List		(Optional)
This	step	adds	a	column	containing	a	suitable	image	to	the	list	of	documents,	as
shown:

1.		Extend	WAM	iiiDspEmpDocs	as	follows:
a.		Define	a	character	work	field	FILENAME,	length	8.
b.		Add	field	FILENAME	as	the	first	field	in	working	list	DOCLIST.

2.		The	field	FILENAME	needs	to	be	populated	with	the	name	of	the
appropriate	image	to	display	for	each	BLOB,	depending	on	its	file	type.	The
field		DF_ELFNAM	already	contains	the	long	file	name	for	each	BLOB
(document).

					Extend	the	BEGIN	WebRoutine	as	shown.	Within	the	SELECT	loop	add	the
following	logic,	before	the	ADD_ENTRY:

#std_count	:=	#df_elfnam.LastPositionOf('.')
#std_texts	:=	#df_elfnam.substring((#std_count	+	1),	4)
#filename	:=	#std_texts.trim	+	'.gif'
					See	WAM095.	Appendix	C	for	the	changed	code,	if	required.
3.		Recompile	your	WAM.
4.		Open	the	WebRoutine	BEGIN	in	the	Design	view.	Select	the	Employee
Documents	list	and	use	the	context	menu	to	Delete	Entire	List.

5.		Select	the	WebRoutine	Output	tab	and	drag	the	list,	DOCLIST,	back	onto	the
page.

6.		Delete	the	column	heading	text	for	Filename.	Delete	the	column	heading,
Document	long	file	and	replace	it	with	Employee	Documents.

If	you	are	not	using	the	VLF	and	the	DXDOCS	file,	continue	at	Step	5a.	Set	up
the	Documents	List	otherwise	continue	at	Step	5.	Set	up	the	Documents	List.

Step	5.	Set	up	the	Documents	List
Follow	this	step	when	the	DXDOCS	file	is	being	used	otherwise	go	to	Step	5a.
Set	up	the	Documents	List.
1.		Drag	and	drop	a	Clickable	Image	weblet	into	the	first	column	(filename)	and
set	up	the	weblet	as	follows:

Property Value

Currentrowhfield PRIFILRRN

Currentrownumvalue $PRIFILRRN

Rentryvalue S

Tooltip Select	image	to	display	document

on_click_wrname SEND_DOCUMENT

show_in_new_window True

relative_image_path $FILENAME

	

2.		Drag	and	drop	an	Anchor	weblet	into	the	second	column	(DF_ELFNAM)
and	set	up	the	weblet	as	follows:

Property Value

currentrowhfield PRIFILRRN

currentrownumvalue $PRIFILRRN

rentryvalue S

on_click_wrname SEND_DOCUMENT

show_in_new_window True

	

3.		Save	your	changes

Step	5a.	Set	up	the	Documents	List
Follow	this	step	when	you	are	NOT	using	the	DXDOCS	file.
1.		Drag	and	drop	a	Clickable	Image	weblet	into	the	first	column	(filename)	and
set	up	the	weblet	as	follows:

Property Value

currentrowhfield DF_ELFNAM

currentrownumvalue $DF_ELFNAM

rentryvalue S

tooltip Select	image	to	display	document

on_click_wrname SEND_DOCUMENT

show_in_new_window True

relative_image_path $FILENAME

	

2.		Drag	and	drop	an	Anchor	weblet	into	the	second	column	(DF_ELFNAM)
and	set	up	the	weblet	as	follows:

Property Value

currentrowhfield DF_ELFNAM

currentrownumvalue $DF_ELFNAM

rentryvalue S

on_click_wrname SEND_DOCUMENT

show_in_new_window True

	

3.		Save	your	changes.

Step	6.	Test	your	Enhanced	WAM
1.		Test	your	application	for	employee	A0070.	If	you	have	saved	other	types	of
document	for	this	employee,	your	results	will	look	like	this:

					If	you	are	not	using	the	DXDOCS	file,	your	WAM	outputs	a	fixed	list	of
documents	for	an	employee.

2.		You	should	now	be	able	to	click	on	the	hyperlink	in	the	Employee
Documents	column	or	the	clickable	image	in	the	first	column	to	display	a
document.

Summary
Important	Observations

Standard	Windows	documents	such	as	Adobe	Acrobat	(PDF),	Word
(DOC)	and	Excel	(XLS)	can	easily	be	displayed	by	a	WAM	WebRoutine
using	the	Response(#HTTPR)	parameter.
You	should	read	the	relevant	sections	in	the	Web	Application	Module
Guide	and	Technical	Reference	before	implementing	files	storing	BLOB
and	CLOB	data.

What	I	Should	Know
How	to	write	a	WebRoutine	that	is	using	the	Response()	parameter	to
output	a	document.
How	to	set	up	a	list	column	with	dynamic	images

WAM095.	Appendix	A
Using	DXDOCS	File	-	Sample	RDMLX	for	iiiDspEmpDocs
This	WAM	can	be	run	locally	or	on	IBM	i.
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	
Web_Map	For(*BOTH)	Fields((#stdrentry	*hidden))	
Group_By	Name(#empdata)	Fields(#EMPNO	#SURNAME	#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#deptment	#section)	
	
Def_List	Name(#doclist)	Fields(#df_elfnam	(#prifilrrn	*hidden))	Type(*Working)	
	
Webroutine	Name(Begin)	
Web_Map	For(*both)	Fields(#empno)	
Web_Map	For(*output)	Fields((#fullname	*out)	(#address1	*out)	(#address2	*out)	(#address3	*out)	(#postcode	*out)	(#deptment	*out)	(#section	*out)	#doclist)	
If	(#stdrentry	=	S)	
Clr_List	Named(#doclist)	
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)	
#fullname	:=	#givename	+	',	'	+	#surname	
Select	Fields(#df_elfnam)	From_File(dxdocs)	With_Key('DEM_ORG_SEC_EMP'	#deptment	#section	#empno)	Return_Rrn(#PRIFILRRN)	
Add_Entry	To_List(#doclist)	
Endselect	
Endif	
Endroutine	
	
Webroutine	Name(SEND_DOCUMENT)	Response(#HTTPR)	Desc('Sample	Document')	
	
Web_Map	For(*input)	Fields(#PRIFILRRN)	
	
Fetch	Fields(#df_elfnam	#dx_elblob)	From_File(dxdocs)	With_Rrn(#prifilrrn)	
#HTTPR.ContentFile	:=	#DX_ELBLOB.FileName	
	
Endroutine	
	
End_Com	
	

WAM095.	Appendix	B
Sample	RDMLX	for	iiiDspEmpDocs,	when	not	using	DXDOCS
file.
This	WAM	to	be	run	locally
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')
Web_Map	For(*BOTH)	Fields((#stdrentry	*hidden))
Group_By	Name(#empdata)	Fields(#EMPNO	#SURNAME	#GIVENAME
#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#deptment	#section)
	
Def_List	Name(#doclist)	Fields(#df_elfnam)	Type(*Working)
Def_List	Name(#mydocs)	Fields(#std_textl)	Type(*working)
	
Webroutine	Name(Begin)
Web_Map	For(*both)	Fields(#empno)
Web_Map	For(*output)	Fields((#fullname	*out)	(#address1	*out)	(#address2
*out)	(#address3	*out)	(#postcode	*out)	(#deptment	*out)	(#section	*out)
#doclist)
Define	Field(#retcode)	Reffld(#io$sts)
If	(#stdrentry	=	S)
Clr_List	Named(#doclist)
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
#fullname	:=	#givename	+	',	'	+	#surname
Use	Builtin(transform_file)	With_Args(#mydocs	'c:\Program	Files
(x86)\LANSA13\WAM095_DOCS.txt')	To_Get(#retcode)
Selectlist	Named(#mydocs)
#df_elfnam	:=	#std_textl.trim
Add_Entry	To_List(#doclist)
Endselect
Endif
Endroutine
	
Webroutine	Name(SEND_DOCUMENT)	Response(#HTTPR)	Desc('Sample
Document')
Web_Map	For(*input)	Fields(#DF_ELFNAM)
#HTTPR.ContentFile	:=	"C:\Program	Files	(x86)\LANSA13\"	+
#DF_ELFNAM
Endroutine

End_Com
	

This	WAM	to	be	run	on	the	IBM	i
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')
Web_Map	For(*BOTH)	Fields((#stdrentry	*hidden))
Group_By	Name(#empdata)	Fields(#EMPNO	#SURNAME	#GIVENAME
#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#deptment	#section)
Def_List	Name(#doclist)	Fields(#df_elfnam)	Type(*Working)
Def_List	Name(#mydocs)	Fields(#std_textl)	Type(*working)
Webroutine	Name(Begin)
Web_Map	For(*both)	Fields(#empno)
Web_Map	For(*output)	Fields((#fullname	*out)	(#address1	*out)	(#address2
*out)	(#address3	*out)	(#postcode	*out)	(#deptment	*out)	(#section	*out)
#doclist)
Define	Field(#retcode)	Reffld(#io$sts)
If	(#stdrentry	=	S)
Clr_List	Named(#doclist)
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
#fullname	:=	#givename	+	',	'	+	#surname
Use	Builtin(transform_file)	With_Args(#mydocs
'/LANSA_d13pgmlib/MYDOCS.txt')	To_Get(#retcode)
	
Selectlist	Named(#mydocs)
#df_elfnam	:=	#std_textl.trim
Add_Entry	To_List(#doclist)
Endselect
Endif
Endroutine
Webroutine	Name(SEND_DOCUMENT)	Response(#HTTPR)	Desc('Sample
Document')
Web_Map	For(*input)	Fields(#DF_ELFNAM)
#HTTPR.ContentFile	:=	"/LANSA_d13pgmlib/webserver/images/"	+
#DF_ELFNAM
	
Endroutine
End_Com
	

WAM095.	Appendix	C
Sample	RDMLX	for	Enhanced	Documents	List
Using	file	DXDOCS
Changes	are	highlighted	in	red	italics.
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)
Web_Map	For(*BOTH)	Fields((#stdrentry	*hidden))
Group_By	Name(#empdata)	Fields(#EMPNO	#SURNAME	#GIVENAME
#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#deptment	#section)
	
Def_List	Name(#doclist)	Fields(#filename	#df_elfnam	(#prifilrrn	*hidden))
Type(*Working)
Define	Field(#filename)	Type(*char)	Length(8)
Webroutine	Name(Begin)
Web_Map	For(*both)	Fields(#empno)
Web_Map	For(*output)	Fields((#fullname	*out)	(#address1	*out)	(#address2
*out)	(#address3	*out)	(#postcode	*out)	(#deptment	*out)	(#section	*out)
#doclist)
If	(#stdrentry	=	S)
Clr_List	Named(#doclist)
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
#fullname	:=	#givename	+	',	'	+	#surname
Select	Fields(#df_elfnam)	From_File(dxdocs)
With_Key('DEM_ORG_SEC_EMP'	#deptment	#section	#empno)
Return_Rrn(#PRIFILRRN)
#std_count	:=	#df_elfnam.LastPositionOf('.')
#std_texts	:=	#df_elfnam.substring((#std_count	+	1),	4)
#filename	:=	#std_texts.trim	+	'.gif'
Add_Entry	To_List(#doclist)
Endselect
Endif
Endroutine
	
Webroutine	Name(SEND_DOCUMENT)	Response(#HTTPR)	Desc('Sample
Document')
Web_Map	For(*input)	Fields(#PRIFILRRN)

	
Fetch	Fields(#df_elfnam	#dx_elblob)	From_File(dxdocs)	With_Rrn(#prifilrrn)
#HTTPR.ContentFile	:=	#DX_ELBLOB.FileName
Endroutine
End_Com
	

Not	Using	DXDOCS	File
WAM	running	locally
Changes	are	highlighted	in	red	italics.
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('iiilay01')
Web_Map	For(*BOTH)	Fields((#stdrentry	*hidden))
Group_By	Name(#empdata)	Fields(#EMPNO	#SURNAME	#GIVENAME
#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#deptment	#section)
	
Def_List	Name(#doclist)	Fields(#filename	#df_elfnam)	Type(*Working)
Def_List	Name(#mydocs)	Fields(#std_textl)	Type(*working)
	
Define	Field(#filename)	Type(*char)	Length(8)
Webroutine	Name(Begin)
Web_Map	For(*both)	Fields(#empno)
Web_Map	For(*output)	Fields((#fullname	*out)	(#address1	*out)	(#address2
*out)	(#address3	*out)	(#postcode	*out)	(#deptment	*out)	(#section	*out)
#doclist)
Define	Field(#retcode)	Reffld(#io$sts)
If	(#stdrentry	=	S)
Clr_List	Named(#doclist)
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
#fullname	:=	#givename	+	',	'	+	#surname
Use	Builtin(transform_file)	With_Args(#mydocs	'c:\Program	Files
(x86)\LANSA13\MYDOCS.txt')	To_Get(#retcode)
Selectlist	Named(#mydocs)
#df_elfnam	:=	#std_textl.trim
#std_count	:=	#df_elfnam.LastPositionOf('.')
#std_texts	:=	#df_elfnam.substring((#std_count	+	1),	4)
#filename	:=	#std_texts.trim	+	'.gif'
	
Add_Entry	To_List(#doclist)

Endselect
Endif
Endroutine
	
Webroutine	Name(SEND_DOCUMENT)	Response(#HTTPR)	Desc('Sample
Document')
Web_Map	For(*input)	Fields(#DF_ELFNAM)
#HTTPR.ContentFile	:=	"C:\Program	Files	(x86)\LANSA13\"	+
#DF_ELFNAM
Endroutine
End_Com

	

WAM	running	on	IBM	i
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)
Web_Map	For(*BOTH)	Fields((#stdrentry	*hidden))
Group_By	Name(#empdata)	Fields(#EMPNO	#SURNAME	#GIVENAME
#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#deptment	#section)
	
Def_List	Name(#doclist)	Fields(#filename	#df_elfnam	(#prifilrrn	*hidden))
Type(*Working)
Define	Field(#filename)	Type(*char)	Length(8)
Webroutine	Name(Begin)
Web_Map	For(*both)	Fields(#empno)
Web_Map	For(*output)	Fields((#fullname	*out)	(#address1	*out)	(#address2
*out)	(#address3	*out)	(#postcode	*out)	(#deptment	*out)	(#section	*out)
#doclist)
If	(#stdrentry	=	S)
Clr_List	Named(#doclist)
Fetch	Fields(#empdata)	From_File(pslmst)	With_Key(#empno)
#fullname	:=	#givename	+	',	'	+	#surname
Select	Fields(#df_elfnam)	From_File(dxdocs)
With_Key('DEM_ORG_SEC_EMP'	#deptment	#section	#empno)
Return_Rrn(#PRIFILRRN)
#std_count	:=	#df_elfnam.LastPositionOf('.')
#std_texts	:=	#df_elfnam.substring((#std_count	+	1),	4)
#filename	:=	#std_texts.trim	+	'.gif'

Add_Entry	To_List(#doclist)
Endselect
Endif
Endroutine
	
Webroutine	Name(SEND_DOCUMENT)	Response(#HTTPR)	Desc('Sample
Document')
Web_Map	For(*input)	Fields(#PRIFILRRN)
Fetch	Fields(#df_elfnam	#dx_elblob)	From_File(dxdocs)	With_Rrn(#prifilrrn)
#HTTPR.ContentFile	:=	#DX_ELBLOB.FileName
Endroutine
End_Com
	

WAM100	-	Using	Cascading	Style	Sheets
Objectives
To	learn	how	your	own	style	sheet	can	be	set	up	and	used	to	control	the
appearance	of	specific	elements	of	your	web	pages.
During	this	exercise	you	will	use:	Microsoft	Internet	Explorer,	Developer
Tools	(included	in	Internet	Explorer	V8,	V9	and	V10)	that	enable	the	structure
of	a	web	page	and	its	style	rules	to	be	explored	in	detail.
In	order	to	complete	this	exercise	you	will	complete	the	following:
Review	What	are	Cascading	Style	Sheets?	and	What	CSS	files	are	loaded	and
how	do	I	add	my	own?
Step	1.	Create	WAM	iii	Using	CSS
Step	2.	Create	new	Style	Sheet
Step	3.	Create	an	External	Resource
Step	4.	Apply	Style	Sheet	to	WAM	iiiUsingCSS
Step	5.	Apply	External	Resource	to	the	Common	Layout
Step	6.	Make	the	Style	Sheet	specific	to	lists	named	EMPLIST
Step	7.	Highlight	a	Column
Summary

Before	You	Begin
This	exercise	does	not	depend	on	knowledge	gained	from	all	preceding
exercises.	The	following	exercises	should	have	been	completed:

WAM005	-	Create	Your	First	WAM
WAM010	-	Using	WEB_MAPs
WAM015	-	Working	Lists
WAM020	-	WAM	Navigation
WAM030	-	Employee	Enquiry

What	are	Cascading	Style	Sheets?
A	Cascading	Style	Sheet	tells	the	browser	how	to	display	page	elements.
Cascading	Style	Sheet	information	determines	things	like	the	fonts	and	color
schemes,	DHTML	effects,	alignment,	border	size	and	color,	but	may	also	be
used	to	define	images	and	other	features	related	to	the	interface.	These
properties	can	be	assigned	to	individual	elements	identified	by	an	ID,	or	groups

of	elements	identified	by	type,	location	and	class.
Many	of	the	shipped	weblets	include	style	(or	class)	properties.	The	default
style	applied	to	a	property,	and	the	full	set	of	styles	available	in	the	dropdown
list	associated	with	these	properties,	relate	directly	back	to	the	CSS	file
referenced	on	the	WAM's	related	layout.
For	full	information	see	http://www.w3schools.com/css
Style	sheet	files	(CSS)	are	simply	text	and	can	be	edited	with	any	text	editor
such	as	Notepad.	If	you	are	working	with	style	sheets	it's	a	good	idea	to	obtain	a
specialist	style	sheet	editor.	There	are	a	number	available,	TopStyle	is	one
example.	They	will	make	your	editing	faster	and	more	accurate	and	make	it
easier	to	navigate	through	and	manage	a	large	number	of	styles	defined	in	a
style	sheet.	They	will	also	help	you	to	more	rapidly	learn	the	options	available
when	defining	styles.

What	CSS	files	are	loaded	and	how	do	I	add	my	own?
The	std_style_v2	weblet	takes	care	of	creating	all	the	<link>	tags	needed	to	load
the	CSS	files	so	you	need	to	include	it	in	the	<head>	section	of	your	layouts.
The	std_style_v2	weblet	always	loads	std_style.min.css	into	every	layout.	This
defines	the	non-theme	related	properties	of	all	LANSA	supplied	weblets.
It	then	loads	any	CSS	files	defined	by	its	theme_css_filename	and	css_files
properties.	These	properties	are	provided	for	backwards	compatibility	with
layouts	built	with	older	versions	of	the	weblet.	For	new	layouts,	you	should
specify	'none'	in	theme_css_filename	and	use	External	Resources	to	define
additional	CSS	files	you	want	to	include.
Next,	it	adds	any	CSS	files	defined	as	External	Resources	referenced	in	the
webroutine,	layout	or	weblets	used	by	the	webroutine.
Finally,	the	std_style_v2	weblet	loads	a	stylesheet	defined	by	the	variable
$lweb_std_css_language_overlay.	This	variable	is	defined	in	the	std_locale
weblet	and	provides	a	means	to	apply	language	specific	CSS	modifications.
For	more	detail	on	this	topic	see	the	Web	Application	Modules	guide.

What	Cascading	Style	Sheets	are	available?
The	main	CSS	stylesheets	are	in	the	main	style	directory	under	the	images
directory.
The	themed	CCS	stylesheets	are	under	the	jQuery	subdirectory—under	a
subdirectory	named	after	the	theme.
See	the	Web	Application	Modules	guide	for	a	full	list	of	the	other	stylesheets

http://www.w3schools.com/css/
its:LANSA087.CHM::/lansa/wamengm2_0190.htm

available	to	WAMs.

Cascading	Style	Sheets	in	Action
For	an	appreciation	of	how	the	shipped	style	sheets	combine,	this	image	is	the
begin	WebRoutine	in	WAM	iiiSecMaint	–	Section	Maintenance	with	the
themelet	stylesheets	removed:

This	image	is	the	begin	WebRoutine	with	the	SouthStreet	theme	style	sheets
applied:

Clearly,	to	change	the	appearance	of	any	element	on	your	web	page,	you	need	to

define	a	style	sheet	that	overrides	the	styles	defined	by	your	chosen	theme.

Use	CSS	with	Lists	and	Grids
This	exercise	will	demonstrate	how	to	change	the	appearance	of	elements	in	a
list.	The	exercise	is	about	how	to	identify	the	elements	you	wish	to	change	and
then	implement	these	changes	with	your	own	style	sheet.
To	use	CSS	effectively,	you	must	first	understand	how	the	how	the	screen
element	you	are	interested	in	is	constructed.
If	you	are	using	Internet	Explorer	8,	9	or	10	you	already	have	Developer	Tools
that	may	be	started	from	the	browser	Tools	menu,	or	by	using	F12.Tools	like
this	are	essential	for	understanding	how	your	page	is	constructed.	The	Mozilla
Firefox	browser	has	a	similar	optional	tool	known	as	Firebug.

This	screen	picture	shows	Developer	Tools	running	with	a	WAM	which	displays
a	list	of	employees:

Note	that	the	Select	element	by	click	 	icon	in	Developer	Tools	can	be	used	to
select	the	element	on	the	page	that	you	want	to	examine.
In	this	example	the	table	containing	the	employee	list	has	been	selected.	The
Developer	Tools	then	displays	the	HTML,	attributes	and	styles	for	the	selected
element.
Note:	Developer	Tools	also	has	good	display	source	features	that	will	help	you
to	see	in	more	detail	how	part	of	the	screen	is	defined.	You	will	use	these	later
in	this	exercise.
Using	Developer	Tools	and	selecting	the	table	containing	the	list,	shows	that	the
browselist	EMPLST	table	is	defined	as:																						For	clarity,	some	detail	has
been	omitted	from	this	code.
<DIV	style="WIDTH:	617px"	id=EMPLIST_wrap	class=std_grid_wrapper>
<TABLE	style="CURSOR:	default"	id=EMPLIST	class="std_grid	ui-
widget">
<THEAD>
<TR	class="list-h	ui-widget-header">
<TH	class="utext	EMPNO	std_grid_sort_indicator"	__allowsort="true"	__mode="input"	__formattype="alpha"	__decimalseparator="">
Employ

Number
<DIV	class=std_grid_cell_sizer><!--.--><!---->

</DIV>
</TH>
.
<TBODY	class=ui-widget-content>
<TR	class=list-o	__evenrc="list-e"	__oddrc="list-o">
<TD	class=EMPNO	__cellValue="A1003">
<INPUT	id=EMPLIST.0001.EMPNO	class=utext	onchange="return	isValidText(this,	'	')"	value=A1003	maxLength=5	size=5	name=EMPLIST.0001.EMPNO>
</TD>
<TD	class=GIVENAME	__cellValue="Robert">
<DIV	class=utext>Robert<!----></DIV>
</TD>
.	
</TR>
.	
</TBODY>
</TABLE>

Some	points	to	note:
A	list	is	wrapped	by	a	DIV	with	the	class	of	std_grid_wrapper.
The	DIV	also	has	an	id	of	<listname>_wrap,	where	<listname>	is	the
name	of	the	list	in	the	RDMLX.
For	a	grid,	the	wrapper	DIV	also	has	a	class	of	std_grid_wrapper.	The
id	is	LANSA_<gridname>_wrap	where	<gridname>	is	the	name
assigned	to	the	grid	in	the	Design	view.
The	DIV	wrapper	provides	the	size	and	position	for	the	grid,	drawing	any
scrollbars	as	necessary.
In	a	list,	the	row	class	names	are	alternated	between	list-o	and	list-e.
For	a	grid,	the	class	names	for	odd	and	even	rows	are	defined	by	the	grid
properties	odd_row_class	and	even_row_class,	which	have	default
values	of	odd_row	and	even_row.
A	list's	table	cells	(<td>	tags)	are	given	a	class	name	of	the	field	name.
This	provides	a	way	to	apply	styles	to	specific	columns.
Input	fields	are	given	a	class	that	represents	the	data	type	of	the	field.
Fields	of	type	alpha,	char	or	string	will	be	"text",	"utext"	or	"ltext"
depending	on	the	input	case	of	the	field.	Fields	of	type	packed,	signed,
integer,	float,	date,	time	or	datetime	will	have	a	class	name	of	"number".
Boolean	fields	will	be	"ltext"	and	all	other	fields	will	be	"text".

The	best	way	to	understand	how	it	all	fits	together	is	to	look	at	a	few	examples.

Step	1.	Create	WAM	iii	Using	CSS
1.		Create	a	new	WAM
					Name:	iiiUsingCSS
					Description:	Using	CSS
					Layout	weblet:	iiilay01
					Replace	the	default	RDMLX	code	with	the	source	provided	in	WAM100.
Appendix.	It	is	a	simple	WAM	that	looks	like	the	following.	It	displays	a	list
of	employees	as	a	browse	list	or	a	grid.

2.		Compile	your	WAM.	Open	the	begin	WebRoutine	in	the	design	view:
a.		Extend	the	table	containing	Employee	Surname	by	adding	a	row.
b.		Add	a	push	button	to	each	new	cell	and	set	up	the	push	button	properties
as	follows:

Property Value

Caption List

on_click_wrnameEmplist

Caption Grid

on_click_wrname empgrid

	

c.		Save	your	changes.
3.		Open	the	empgrid	WebRoutine	in	the	Design	view.	Add	a	Grid	weblet	to	the
page	and	link	it	to	list	EMPLIST.

4.		Save	your	changes.
5.		Run	the	begin	WebRoutine	in	the	web	browser.

a.		Enter	a	partial	surname	such	as	"S"	or	"B"
b.		Click	the	List	push	button	to	display	a	list	of	employees.
c.		Click	the	Grid	push	button	to	display	a	grid	of	employees.

Step	2.	Create	new	Style	Sheet
In	this	step	you	will	create	a	style	sheet	to	control	the	background	color	for	odd
and	even	rows	in	a	list.	To	do	this	you	first	need	to	understand	how	the
background	color	is	controlled	at	the	moment.
1.		Execute	WAM	iiiUsingCSS	in	the	browser	and	run	IE	Developer	Tools
(F12).

a.		Select	the	"Select"	tool	by	clicking	on	the	 	on	the	toolbar.
b.		Click	anywhere	on	a	list	row.
c.		Using	the	HTML	view,	select	a	TD	tag,	and	scroll	down	the	Style	view	to
find	the	CSS	that	controls	the	background.

					The	CSS	selector	.std_grid	TR.list-o	>	TD	applies	to	all	TD	tags	within	an
odd	row,	in	a	list,	which	is	a	table	with	a	class	of	std_grid.	The	CSS	is
structured	this	way,	due	to	the	need	for	cross	browser	compatibility.

2.		In	Notepad	use	File/New	to	start	a	new	document	and	add	the	following
code.
.std_grid	tr.list-o	>	td
{
					background-color:	#fffacd;
}
.std_grid	tr.list-e	>	td
{
					background-color:	#ffe4b5;
}	
	

3.		Save	your	style	sheet	as	iii_style.css,	where	iii	are	your	initials.	Use	Save	as

Type:	All	Files	to	save	the	file	with	the	css	extension.	
Make	sure	you	save	it	to:	C:\Program
Files\LANSA\WebServer\Images\style.

					Leave	Notepad	open.

Step	3.	Create	an	External	Resource
In	this	step	you	will	define	an	External	Resource	using	this	style	sheet
and	initially	apply	this	to	your	WAM	layout	for	iiiUsingCSS	only.
This	will	mean	that	style	sheet	iii_style.css	will	be	applied	only	to	all
WebRoutines	for	the	WAM	iiiUsingCSS.
In	a	later	step	you	will	apply	the	External	Resource	to	the	common	layout
iiilay01.	You	will	see	how	it	is	then	applied	to	all	WAMs,	sharing	this
common	layout.
In	a	later	step	you	will	also	change	your	style	sheet	so	that	it	targets	only
lists	with	an	id	of	EMPLIST.

1.		On	the	Favorites	tab,	select	External	Resource	/	External	Resource	from	the
New	button.

2.		Complete	the	details	as	shown	in	the	table,	but	note	the	following	steps:
a.		Begin	by	selecting	the	File	Name	using	the	Ellipsis	button	and	the	Open
dialog	to	select	the	new	style	sheet	you	saved	in	the	\style	folder.	The
LANSA	Folder	and	Description	will	also	be	automatically	completed.

c.		Uncheck	the	options	to	Open	in	the	Editor,	check	the	Close	checkbox.
	

Name III_STYLE

LANSA	FolderWeb	Images	Folder

Filename Style\iii_style.css

Description iii_style.css

	

d.		Click	Create	to	save	your	External	Resource	definition.
					You	have	created	an	External	Resource	entry	in	the	Repository,	which	can
now	be	used	to	apply	this	style	sheet	to	a	layout.

Step	4.	Apply	Style	Sheet	to	WAM	iiiUsingCSS
In	this	step	you	will	open	your	WAM	layout	in	the	editor	and	add	your	External
Resource	to	this	layout.	This	will	apply	the	style	sheet	iii_style.css	to	all
WebRoutines	in	this	WAM	only.
1.		On	the	Outline	tab,	open	your	WAM	layout	in	the	Design	view	by	double
clicking	on	the	WAM	layout	item.

					Note:	The	WAM	layout	is	named	using	the	WAM	Identifier	for	example
iiiusi_2_layout.xsl.	Your	name	may	be	slightly	different.

2.		Select	the	Design	ribbon	and	click	the	External	Resources	button,	to	open	the
Manage	External	Resources	dialog

3.		Click	the	Add	button,	select	your	external	resource	and	click	OK.	Click	OK
to	close	the	Manage	External	Resources	dialog.

4.		Save	the	WAM	layout.		
					The	editor	has	added	an	entry	to	the	WAM	layout	XSL	to	apply	the	style
sheet	defined	in	this	external	resource	to	the	WAM	layout.

5.		Close	the	WAM	layout.
6.		Execute	the	WAM	iiiUsingCSS,	WebRoutine	begin	in	the	browser.

a.		Enter	a	partial	surname	and	display	the	List	page	for	the	employees

b.		Use	the	browser	back	button	to	return	to	the	begin	page,	enter	a	partial
surname	and	display	the	Grid	page:

					Note:	The	cascading	style	sheet	has	not	been	applied	to	the	grid.	At	the
moment	it	defines	alternate	background	colors	for	a	list	only.

Step	5.	Apply	External	Resource	to	the	Common	Layout
In	this	step	you	will	open	the	common	layout	iiilay01	in	the	editor	and	apply
your	External	Resource	to	this	layout	and	test	the	results.
1.		Open	the	layout	iiilay01	in	the	editor.	You	could	do	this	by	opening	it
directly	from	the	Last	Opened	tab	on	the	Favorites	tab,	or	by	locating	it	on
the	Repository	tab	under	Weblets.

2.		With	the	common	layout	iiilay01	open	in	the	editor,	as	before	select	the
Design	ribbon	and	use	External	Resources	/	Manage	External	Resources
dialog	to	Add	the	external	resource	III_STYLE	to	the	layout.

3.		Save	the	common	layout	and	close	it.
4.		Open	the	WAM	layout	for	WAM	iiiUsingCSS	and	remove	the	external
resource	from	this	layout.

5.		Close	the	WAM	layout.
6.		Execute	the	begin	WebRoutine	in	the	browser	for	WAM	iiiUsingCSS.	You
should	obtain	the	same	results	as	before.	Your	style	sheet	for	list	alternate
rows	is	applied	to	the	list	on	the	List	page	and	is	not	applied	to	the	grid	on	the
Grid	page.

7.		Open	the	WAM	iiiEmpSearch	in	the	editor	and	execute	the	Search
WebRoutine	in	the	browser.	Enter	suitable	employee	numbers	to	display	a	list
of	employees.	Note	that	the	new	cascading	style	sheet	has	been	applied	to	the
list.

					All	WAMs	which	were	defined	using	the	common	layout	iiilay01	will	have
the	new	cascading	style	sheet	applied.	Any	web	page	containing	a	list	will
have	the	CSS	applied	giving	new	alternate	row	background	colors.

Step	6.	Make	the	Style	Sheet	specific	to	lists	named	EMPLIST
As	currently	defined,	the	background	color	changes	in	your	cascading	style
sheet,	apply	to	all	lists.
In	this	step	you	will	make	the	style	sheet	specific	to	lists	named	EMPLIST.
1.		Run	the	begin	WebRoutine	in	the	browser	for	WAM	iiiUsingCSS	and
display	a	list	of	employees.

					Use	the	IE	Developer	tools,	as	before,	to	select	the	List	(click	on	the	edge	of
the	List).

					Expand	the	tree	on	the	HTML	tab,	to	show	the	<table….>	tag	for	the	list
table.

					Note	this	has	an	id	of	EMPLIST.	It	is	given	an	id	equal	to	the	list	name
defined	in	the	RDML.

2.	Switch	to	Notepad,	where	you	should	still	have	your	style	sheet	file	open.
Change	the	code	to	the	following	and	save	the	file:
TABLE#EMPLIST	tr.list-o	>	TD
{
					background-color:	#fffacd;
}
TABLE#EMPLIST	tr.list-e	>	TD

{
					background-color:	#ffe4b5;
}
	

					Your	styles	for	odd	and	even	background	colors	are	now	defined	for	lists
named	EMPLIST	only.

11.	Run	WAM	iiiUsingCSS	and	display	the	list	of	employees,	which	should
reflect	your	style	sheet.

12.		Run	WAM	iiiSecMaint	to	display	sections	for	a	department.	This	list	should
not	reflect	your	stylesheet,	which	is	now	specific	to	a	list	with	an	id	of
EMPLIST.

Step	7.	Highlight	a	Column
In	this	step,	you	will	investigate	how	a	specific	column	can	be	identified	and
then	create	style	sheet	entry	to	change	the	background	color	for	this	column
only.
1.		Run	the	WAM	iiiUsingCSS	to	display	a	list	of	employees.	Using	IE
Developer	Tools	select	the	first	input	field	in	the	first	column	(Employee
Number).

					Note	that	the	<td>	tags	for	each	column	have	a	class	equal	to	the	field	name.
In	the	first	column	this	is	EMPNO.

2.		Add	this	code	to	your	style	sheet	and	save	the	changes:
TABLE#EMPLIST	tr.list-o	>	TD.EMPNO
{
					background-color:	#d78700;
}
TABLE#EMPLIST	tr.list-e	>	TD.EMPNO
{
					background-color:	#d78700;
}
	

					This	will	override	the	background	color	for	odd	and	even	rows	in	table	cells
with	a	class	of	EMPNO.

3.		Run	your	WAM	iiiUsingCSS	and	display	a	list	of	employees.	Your	results
should	look	like	the	following:

Summary
Important	Observations

You	should	be	able	to	extend	this	exercise	to	make	other	changes	to	your
list's	appearance	–	for	example	borders,	or	to	other	elements	on	your	web
pages.
As	long	as	you	are	applying	a	custom	CSS	over	the	default,	you	can't
break	anything,	so	feel	free	to	experiment.
Here	you	have	used	a	supplied	themelet	to	set	the	overall	appearance	of
your	application.	You	may	want	to	create	your	own	themelet	which
replaces	the	supplied	examples.

Tips	&	Techniques
If	you	have	not	worked	with	CSS	before,	take	a	look	at	the	tutorials	at
www.w3schools.com
You	may	also	want	to	take	a	look	at	these	articles	on	CSS	Selectors:
http://www.456bereastreet.com/archive/200509/css_21_selectors_part_1/
With	the	exception	of	the	tr.list-o	and	tr.list-e	styles	shown	earlier,	the
default	selectors	for	most	grid	related	styles	start	with	the	.std_grid	class
selector.	This	makes	them	easier	to	find	in	the	CSS	file	and	reduces	the
chances	of	accidental	conflicts	with	styles	used	elsewhere	(the	tr.list-o
and	tr.list-e	are	defined	as	they	are	for	backwards	compatibility	reasons).
In	the	event	of	a	conflict,	the	style	with	the	more	specific	selector	will
take	priority.	For	example,	the	default	style	for	grid	table	cells	is	defined
with	".std_grid	tbody	td".	It	will	override	any	conflicting	properties
defined	with	".std_grid	td".	So,	if	a	style	isn't	working	as	expected,	try
making	it	more	specific
When	working	on	web	application	development	ensure	that	your	browser
settings	check	for	newer	versions	of	stored	pages	"Every	time	I	visit	the
webpage".

http://www.w3schools.com
http://www.456bereastreet.com/archive/200509/css_21_selectors_part_1/

When	changing	entries	in	a	style	sheet,	be	aware	that	you	may	have
problems	with	cached	versions.	Cleared	your	browser	history	regularly.

What	You	Should	Know
The	essential	rules	for	creating	and	applying	style	sheets
How	to	use	the	IE	Developer	Tool	to	understand	the	construction	of	your
web	pages	at	a	detailed	level.

WAM100.	Appendix
Use	the	following	RDMLX	source	code	to	create	iiiUsingCSS	in	Step	1	of	this
exercise.
Def_List	Name(#emplist)	Fields(#empno	(#givename	*out)	(#surname	*out)	(#Address1	*out)	(#postcode	*out)	(#phonehme	*out)	(#salary	*out))	Type(*Working)
Define	Field(#hidesave)	Type(*char)	Length(1)
Define	Field(#hidedel)	Type(*char)	Length(1)
Define	Field(#hidenew)	Type(*char)	Length(1)
Define	Field(#hidesrch)	Type(*char)	Length(1)
Define	Field(#empnow)	Reffld(#empno)
Web_Map	For(*both)	Fields((#stdrentry	*hidden)	(#empnow	*hidden))
WebRoutine	Name(Begin)
Web_Map	For(*output)	Fields(#surname)
#hidedel	#hidesave	#hidesrch	:=	Y
Endroutine
WebRoutine	Name(empgrid)	Desc('Employee	Grid')
Web_Map	For(*input)	Fields(#surname)
Web_Map	For(*output)	Fields((#emplist	*private))
#hidedel	#hidesave	:=	Y
Execute	Subroutine(bldlist)
Endroutine
WebRoutine	Name(emplist)	Desc('Employee	List')
Web_Map	For(*input)	Fields(#surname)
Web_Map	For(*output)	Fields(#emplist)
#hidedel	#hidesave	:=	Y
Execute	Subroutine(bldlist)
Endroutine
Subroutine	Name(bldlist)
Clr_List	Named(#emplist)
Select	Fields(#emplist)	From_File(pslmst2)	With_Key(#surname)	Generic(*yes)
Add_Entry	To_List(#emplist)
Endselect
Endroutine
	

WAM105	-	Create	Your	Own	Weblet
Objectives
To	create	Toolbar	Menu	Item	weblet	and	a	Toolbar	weblet.	A	simple	WAM
application	will	then	be	used	to	test	the	Toolbar	weblet.
The	finished	application	will	look	like	the	following:

In	order	to	complete	this	exercise,	you	must	complete	the	following:
Review	Weblets
Step	1.	Create	Toolbar	Menu	Item	Weblet
Step	2.	Create	Toolbar	Weblet
Step	3.	Complete	Definition	of	Toolbar	Menu	Item	Weblet
Step	4.	Setup	iii_toolbar_menuitem	Properties	in	iii_toolbar
Step	5.	Apply	Toolbar	Weblet	to	an	Employee	Maintenance	WAM
Summary

Before	You	Begin
This	exercise	does	not	depend	on	knowledge	gained	from	all	the	preceding
exercises.	It	is	recommended	that	the	following	have	been	completed:
WAM005	-	Create	Your	First	WAM
WAM010	-	Using	WEB_MAPs
WAM015	-	Working	Lists

WAM020	-	WAM	Navigation

Weblets
Layouts	are	a	type	of	Weblet.	They	allow	you	to	customize	the	overall	look	and
feel	of	a	web	site	or	web	application.
Weblets	are	also	building	blocks	of	your	WAM	HTML	page.	They	can	be
categorized	into	2	main	groups.

Primitive	Weblets	typically	have	a	1-to-1	relationship	with	an	HTML
Tag/Element	(eg:	Push	Button,	Checkbox,	Combo	Box,	Anchor,
Clickable	Image,	an	Input	box,	etc)
Composite	Weblets	provide	additional	functionality	combining
Javascript,	CSS,	Primitive	Weblets	and	HTML	(eg:	Grid,	Tabsheets,	etc)

XSL	Templates
The	<xsl:template	name="my_template_name">	</xsl:template>	element	is
very	similar	to	the	SUBROUTINE	command	used	to	define	Subroutines	in
LANSA.
Parameters	can	be	received	by	a	template	by	defining
<xsl:param	name="param_name"	/>	elements	within	the	template.
Calling	XSL	Templates
The	<xsl:call-template	name="layout-form.private">	element	is	very	similar
to	the	EXECUTE	command	used	to	call	subroutines	in	LANSA.
Parameters	can	be	passed	on	the	call	using	this	element:
<xsl:with-param	name="param_name"	select="param_value"/>
To	learn	more	about	XSLT,	see	http://www.w3schools.com/xsl/default.asp

http://www.w3schools.com/xsl/default.asp

Step	1.	Create	Toolbar	Menu	Item	Weblet
In	this	step	you	will	create	a	Toolbar	Menu	Item	from	which	the	toolbar	will	be
built.	If	you	have	some	basic	HTML	knowledge,	then	you	will	know	that	a
menu	item	is	essentially	an	<a>	anchor	tag	that	can	have	an	href,	image	and
alternate	text	elements	etc	associated	with	it.	You	should	also	know	that	in	a
WAM	application	an	"href"	will	usually	call	a	JavaScript	function	to	call	a
WAM	/	WebRoutine.
1.		Create	a	new	weblet.	From	the	File	menu	select	New	/	Weblet	in	the	Visual
LANSA	Editor.
a.		In	Name	and	Description,	replace	iii	with	your	initials.

b.		Select	Custom	Weblets	as	the	Weblet	Group.
c.		Press	Create	to	create	your	weblet	and	the	Custom	Weblets	group.	Type
in	a	group	name	of	Custom	Weblets	if	this	does	not	exist.	The	weblet	will
open	in	the	Design	view.

					The	XSL	Source	for	your	weblet	should	currently	look	like	the	following:

2.		Select	the	Weblet	Template	tab	and	use	the	Details	tab	to	enter	a	name	of
iii_toolbar_menuitem.	Replace	iii	with	your	initials.

3.		Save	your	changes.
4.		You	will	now	add	the	skeleton	HTML	code	for	the	anchor	tag,	inside	the

					<xsl:template	...>…</xsl:template>,	as	follows:

					Copy	the	following	code	<a	href="jav......	code	and	paste	it	immediately
following	the	lines:

					Code	should	be	copied	from	WAM	Tutorials	in	the	Visual	LANSA	online
guide.

					The	new	code	is	highlighted	in	red.

					<xsl:template	name="iii_toolbar_menuitem">
						<!--	Give	your	template	an	appropriate	name	and	type	in	your	XSL	here	--
>
							<img	alt="Tooltip"	src="/images/icons/normal/16/folder_16.png
										

										
													Menu	Text
										

	

					In	later	steps	you	will	complete	this	outline	for	the	anchor	tag	code.

4.		Click		the	Save	 	button	on	the	editor	Toolbar	to	save	your	changes.

Step	2.	Create	Toolbar	Weblet
In	this	step	you	will	create	a	second	weblet	to	build	your	Toolbar	weblet.	This
will	simply	consist	of	a	single	row	table	with	4	cells.
1.		As	before,	create	a	new	weblet	using	New	/	Weblet,	Name	=	iii_toolbar,
Description	=	Toolbar,	Group	=	Custom	Weblets.	Replace	iii	with	your
initials.

2.		On	the	Details	tab	change	the	weblet		name	to	iii_toolbar.
3.		In	the	Design	view	use	the	context	menu	to	Insert	HTML	/	Table	with	1	row
and	4	columns.

4.		Save	your	changes.
5.		Select	each	cell	in	the	toolbar	table	and	use	the	Details	tab	to	set	it's	align
property	to	center.

6.		Switch	to	the	Favorites	tab,	find	your	iii_toolbar_menuitem	weblet.	Drag
and	drop	a	iii_toolbar_menuitem	into	each	of	the	four	cells	in	the	toolbar.
Your	toolbar	should	now	look	like	the	following	in	the	Weblet	Template
design	view.

7.		Use	the	cursor	keys	to	position	into	each	cell	(<td>	tag)	and	delete	the	*
place	holder	characters.

						Save	your	changes.
8.		Select	one	of	the	toolbar	menu	items	and	select	the	Details	tab.	Notice	that	at
present,	the	menu	items	have	no	properties	that	can	be	set.

Step	3.	Complete	Definition	of	Toolbar	Menu	Item	Weblet
In	this	step	you	will	complete	the	coding	of	the	toolbar	menu	item	weblet.	You
will	add	code	to:

Define	weblet	parameters
Define	elements	of	the	anchor	tag	(for	example,	IMG	ALT)	as	XSL
variables
Complete	JavaScript	for	HREF	to	set	reentry	field	value	and	call	wam	/
WebRoutine
Condition	the	<A>	HREF	and	IMG	tags	based	on	a	$hide_if	variable
Add	weblet	parameter	tooltips.

1.		Switch	to	the	iii_toolbar_menuitem	or	open	it	in	the	editor	if	necessary.
Select	the	XSL	tab.

2.		Immediately	following	the	<xsl:template	name="iii_toolbar_menuitem">
tag,	paste	in	the	following	code	to	define	the	weblet	parameters.	Review	the
comments	for	each	parameter	to	see	where	it	will	be	used.
	
<!--	Used	to	set	the	Menu	Text	on	the	toolbar	image	-->
						<xsl:param	name="menu_text"	wd:type="std:mtxt_variable"	select="'Caption'"	/>
						<!--	Used	to	set	the	image	use	for	the	toolbar	Icon	-->
						<xsl:param	name="menu_image"	wd:type="std:html_img_relative"
																	select="'/icons/normal/16/folder_16.png'"	/>
						<!--	Used	to	set	the	ALT	tag	on	the	toolbar	IMG	tag	-->
						<xsl:param	name="tooltip_text"	wd:type="std:mtxt_variable"
																	select="'Caption'"	/>
						<!--	Used	to	set	the	Rentry	Field	Name	when	the	toolbar	Icon	is	clicked	--
>
						<xsl:param	name="reentryfield"
																	wd:type="std:field_name_in[wam=$on_click_wamname]
[webrtn=$on_click_wrname]"
																	select="'STDRENTRY'"	wd:tip_id=""	/>
						<!--	Used	to	set	the	Rentry	Field	Value	when	the	toolbar	Icon	is	clicked-->
						<xsl:param	name="reentryvalue"	select="'M'"	wd:tip_id=""	/>
						<!--	Used	to	set	the	Menu	Text	on	the	toolbar	image	-->
						<xsl:param	name="hide_if"	wd:type="std:boolean"	select="false()"
																	wd:tip_id=""	/>

						<!-
-	Used	to	specify	the	WAMNAME	to	call	when	toolbar	Icon	is	clicked	-->
						<!--	It	will	default	to	the	current	WAM	if	no	value	is	specified	-->
						<xsl:param	name="on_click_wamname"	wd:type="std:wam"
																	select="/lxml:data/lxml:context/lxml:webapplication"	wd:tip=""	/>
						<!--	Used	to	specify	the	WebRoutine	to	call	when	toolbar	Icon	is	clicked	--
>
						<xsl:param	name="on_click_wrname"
																	wd:type="std:webroutine[wam=$on_click_wamname]"	wd:tip=""	/>
	

					This	block	of	code	defines	the	parameters	that	can	be	passed	into	the
template	when	the	toolbar	menu	item	template	is	called,	in	a	similar	way	to
calling	a	subroutine	with	parameters.	Once	defined	these	become	the
properties	that	can	be	set	in	the	Design	view	for	a	web	page	that	uses	this
weblet.

					For	example:	a	parameter,	named	menu_text,	has	a	default	value	of	'Caption'.
In	the	completed	anchor	tag	code	following,	note	that	the	variable
$menu_text	is	used	as	the	caption	text	below	the	toolbar	item	image.

3.		Save	your	changes.
4.		You	will	now	complete	the	code	for	the	<A>	anchor	tag.	Copy	the	following
code	and	paste	it	to	replace	the	skeleton	code	for	the	<A>	tag,	which	you
placed	there	earlier.

												<img	alt="
{$tooltip_text}"	src="/images/{$menu_image}"	border="0"	/>
												

												
															<xsl:value-of	select="$menu_text"	/>
												
	

					Note	the	following	points	about	these	changes:
The	value	for	the	alt	tag	has	been	replaced	with	a	variable	$tooltip_text
The	value	for	image	file	name	in	the	src	tag	has	been	replaced	with	a	variable

$menu_image
The	menu	text	inside	the	span	tag	is	now	generated	by	an	<xsl:value-of	which

outputs	the	value	of	variable	$menu_text

The	href	for	the	A	tag	has	been	defined	with	JavaScript	code	that	passes
$reentryfield	and	$reentryvalue	variables	to	the	InsertHidden	function
The	href	code	also	runs	the	HandleEvent	function	passing	$on_click_wamname

and	$on_click_wrname	variables.
5.		Save	your	changes
6.		In	this	step	you	will	add	xsl	code	to	condition	the	anchor	tag,	based	on	the
$hide_if	parameter.

					Note:	The	<xsl:if>	element	must	have	an	</xsl:if>	end	tag.	The	<xsl:if>
must	surround	the	entire	<A	HREF>	tag.	Add	the	highlighted	code	only:
<xsl:if	test="not($hide_if)">
							<a	href="javascript:	
						

</xsl:if>
	

					Hint:	The	XSL	editor	autocomplete	function	will	generate	the	</xsl:if>
when	you	complete	the	beginning	tag,	<xsl:if	.	.	.	>.	Move	this	to	the	required
position	after	the		tag.			

						The	variable	$hide_if	is	a	Boolean,	with	a	default	value	of	'false'	as	shown
in	the	parameter	definitions.

7.		In	this	step	you	will	add	Weblet	Parameter	tooltips	by	copying	in	the
following	code,	following	the	</wd:definition>.	Note	this	is	the	end	tag	for
the	block	beginning	<wd:definition>.	
Replace	iii	in	<wd:template	name	with	your	initials.
<wd:template	name="iii_toolbar_menuitem">
						<wd:description	icon="icons/userdefn.ico">
									<wd:name	lang="ENG">iii	Toolbar	Menu	Item</wd:name>
						</wd:description>
						<wd:param	name="menu_text">
									<wd:tip	lang="ENG">Menu	Text	to	display	below	the	image	on	the	toolbar	menu	item</wd:tip>
						</wd:param>
						<wd:param	name="menu_image">
									<wd:tip	lang="ENG">Image	to	display	on	the	toolbar	menu	item</wd:tip>
						</wd:param>
						<wd:param	name="tooltip_text">
									<wd:tip	lang="ENG">Tooltip	text	to	display	on	the	toolbar	menu	item</wd:tip>

						</wd:param>
</wd:template>
	

Note:
Tags	such	as	<wd:template	name="iii_toolbar_menu_item">	have	a
namespace	of	wd.	They	are	LANSA	defined	weblet	design	tags,	defined
by	the	standard	that	is	referenced	at	the	top	of	the	weblet	XSL.	See:
xmlns:wd=http://www.lansa.com/2002/XSL/Weblet-Design.
Standard	XSL	tags	have	a	namespace	of	xsl,	for	example,	<xsl:if…….>
The	<wd:template	</wd:template>	code	is	used	by	the	Design
view	to	define	the	icon	and	description	used	in	the	list	of	weblets,	and	the
tooltip	text	for	the	weblet	parameters.

8.		Look	towards	the	top	of	your	toolbar	XSL	to	find	the	statement:
					<xsl:import	href="std_types.xsl"	/>	and	add	the	following	line	after	that	line:
					<xsl:import	href="std_keys.xsl"	/>
The	std_keys	XSL	defines	xsl:key's		such	as	"field-caption"	and	"field-value"
that	are	used	during	transformation	to	extract	data	from	the	Data	XML	output
via	the	WebRoutine.

Step	4.	Setup	iii_toolbar_menuitem	Properties	in	iii_toolbar
In	this	step	you	will	complete	the	definition	of	the	toolbar	by	setting	up	the
properties	for	each	of	the	four	menu	items.
1.		If	necessary,	open	your	iii_toolbar	in	the	editor.
2.		In	the	Design	view	select	the	first	menu	item.	The	Details	tab	should	now
contain	properties	that	can	be	set	for	each	menu	item.

3.		Click	on	each	of	the	4	Menu	items	in	order	and	set	their	weblet	properties
on	the	Details	tab	as	follows:

					On	the	Details	Tab,	make	sure	to	take	note	of	the	tooltip/help	text	provided
for	each	weblet	property.	Some	of	these	tooltips	are	shipped	with	LANSA	for
standard	weblet	parameter	types	like	WAMName	and	WebRoutine	name	but
other	custom	properties	like	Menu	Text	also	have	tooltip	text	that	was	added
to	the	weblet	definition.

First	Menu	Item

Property	Name Value

menu_text Save

menu_image icons/normal/16/diskette_16.png

tooltip_text Save	a	changed	or	new	employee

reentryfield STDRENTRY	(the	default	value)

reentryvalue S

hide_if #HIDESAVE='Y'

on_click_wamname Leave	as	default	(current	WAM)

on_click_wrname #WRNAME

	

Second	Menu	Item

Property	Name Value

menu_text Delete

menu_image icons/normal/16/cross_16.png

tooltip_text Deletes	the	current	employee

reentryfield STDRENTRY	(the	default	value)

reentryvalue D

Hide_if #HIDEDEL='Y'

on_click_wamname Leave	as	default	(current	WAM)

on_click_wrname Maint

	

Third	Menu	Item

Property	Name Value

menu_text Search

menu_image icons/normal/16/zoom_16.png

tooltip_text Switch	to	the	Search	web	page

reentryfield STDRENTRY	(the	default	value)

reentryvalue M

Hide_if #HIDESRCH='Y'

on_click_wamname Leave	as	default	(current	WAM)

on_click_wrname Begin

	

Fourth	Menu	Item

Property	Name Value

menu_text New

menu_image icons/normal/16/contract_16.png

tooltip_text Switch	to	the	create	new	employee	web	page

reentryfield STDRENTRY	(the	default	value)

reentryvalue N

hide_if #HIDENEW='Y'

on_click_wamname Leave	as	default	(current	WAM)

on_click_wrname New

	

					Use	the	Ellipsis	button	to	find	an	image	for	the	menu_image	value.

4.		Save	your	changes.	You	have	now	completed	the	definition	of	your	toolbar
weblet,	which	should	look	like	the	following:

Step	5.	Apply	Toolbar	Weblet	to	an	Employee	Maintenance	WAM
In	this	step	you	will	create	a	new	WAM	based	on	supplied	RDMLX	code,	set	up
the	web	page	for	each	WebRoutine	and	then	add	the	toolbar	to	the	WAM	layout.
1.		Create	a	new	WAM	iiiEmpMaint_TB	–	Employee	Maintenance	with
Toolbar,	using	Weblet	Template	iiilay01,	based	on	the	code	supplied	in
WAM105.	Appendix	A	A.

2.		Compile	the	WAM.
3.		Examine	the	WAM	code	and	note	the	following:
Fields	HIDEDEL,	HIDESRCH,	HIDENEW,	HIDESAVE	are	globally	mapped	as

hidden	fields	–	these	fields	control	whether	the	tool	bar	icons	are	shown.
Field	WRNAME	is	also	mapped	globally	as	a	hidden	field.	This	is	used	to

control	which	WebRoutine	the	Save	button	calls.
The	WebRoutines	set	the	value	of	the	"HIDExxx"	fields	as	appropriate.	For

example	the	Begin	WebRoutine	shows	only	the	New	toolbar	icon.
4.		Open	the	begin	WebRoutine	in	the	Design	view,	add	a	row	to	the	table	and
add	pushbuttons	with	a	caption	of	List	and	Grid	and	with	on_click_wrname
values	of	emplist	and	empgrid	respectively.	These	buttons	do	not	require	a
submitFieldValues	property.

5.		Open	the	emplist	WebRoutine	in	the	Design	view.	Drop	an	Anchor	weblet
onto	the	employee	number	field	in	the	first	list	column.	Set	up	the	Anchor
weblet	properties	as	shown:

Property Value

currentrowhfield EMPNO

currentrownumval $EMPNO

Reentryvalue M

on_click_wrname maint

	

					Your	list	should	now	look	like	the	following:

6.		Save	your	changes.

7.		Select	the	 	Outline	tab.	Double	click	on	the	layout	iiiempma_layout.xsl	to
open	it.

					Note:	The	layout	name	uses	the	WAM	Identifier,	which	may	have	a
different	value	in	your	Visual	LANSA.

8.		With	the	wam	layout	open	in	the	editor,	click	on	the	header	area	and	using
the	context	menu,	select	Content	Area	for	"content.header"	and	Expand
content.

						The	layout	will	be	redisplayed,	with	the	change	area	highlighted	in	red.

9.		Select	the	Add	Content	area.	On	the	Weblet	Templates	tab,	select	Custom
Weblets	and	drop	your	iii_toolbar	weblet	onto	the	layout,	inside	red	Add
content	area.	This	is	actually	a	span	tag,	with	inline	styles	set,	giving	a	red
background	and	yellow	text.	Your	layout	will	now	look	like	the	following:

10.	Click	on	the	Add	content	area	to	select	it,	and	use	the	Details	tab	to	clear	its
inline	styles.	This	will	remove	the	red	background,	yellow	color	and	black
borders.	It	also	has	a	margin	of	10px	which	could	be	retained,	if	required.

					Delete	the	**	Add	content	text	from	inside	the	span,	leaving	just	your
toolbar	weblet.

					Your	page	should	look	like	the	following:

11.	Save	and	close	the	wam	layout.	You	have	added	the	toolbar	weblet	into	this
WAM	layout	only.	If	it	was	required	in	all	your	WAMs	you	could	have	added
it	into	your	common	layout,	iiilay01.

12.	Execute	your	WAM	in	the	browser	by	running	the	Begin	WebRoutine.	Test
the	operation	of	the	toolbar.	The	toolbar	items	will	be	hidden	when	not
required.	For	example,	the	Begin	WebRoutine	will	display	only	the	New
toolbar	item.

Summary
Important	Observations

Once	you	understand	the	elements	of	a	weblet's	code,	simple	weblets	can
be	developed	quite	easily.
More	complex	weblets	will	require	good	XSL,	HTML	and	possibly
Javascript	knowledge	in	order	to	design	and	create	them.

Tips	and	Techniques
Develop	a	weblet	in	small	steps	with	frequent	testing.
It	is	often	useful	to	add	text	between	tags	that	will	highlight	areas	in	your
prototype	design.

What	I	should	now	know
XSL	tags	tags	with	the	wd	namespace(for	example,	<wd:template
name=	.	.	.	>)	are	LANSA	weblet	design	tags	which	are	used	by	the
Design	view.

WAM105.	Appendix	A
Use	the	following	RDMLX	source	code	to	create	iiiEmpMaint_TB	in	Step	5	of
this	exercise.
	
DEF_LIST	NAME(#emps)	FIELDS(#empno	(#givename	*out)	(#surname	*out)	(#deptment	*out)	(#section	*out)	(#salary	*out))	COUNTER(#listcount)	TYPE(*Working)	ENTRYS(99)
DEFINE	FIELD(#hidesave)	TYPE(*char)	LENGTH(1)
DEFINE	FIELD(#hidedel)	TYPE(*char)	LENGTH(1)
DEFINE	FIELD(#hidenew)	TYPE(*char)	LENGTH(1)
DEFINE	FIELD(#hidesrch)	TYPE(*char)	LENGTH(1)
DEFINE	FIELD(#empnow)	REFFLD(#empno)
Define	Field(#wrname)	Type(*char)	Length(50)
GROUP_BY	NAME(#empmnt)	FIELDS(#SURNAME	#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME	#PHONEBUS)
GROUP_BY	NAME(#empadd)	FIELDS(#EMPNO	#SURNAME	#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME	#PHONEBUS	#DEPTMENT	#SECTION	#SALARY	#STARTDTE)
WEB_MAP	FOR(*output)	FIELDS((#hidesave	*hidden)	(#hidedel	*hidden)	(#hidenew	*hidden)	(#hidesrch	*hidden)	(#wrname	*hidden))
WEB_MAP	FOR(*both)	FIELDS((#stdrentry	*hidden)	(#empnow	*hidden))
WebRoutine	NAME(Begin)
WEB_MAP	FOR(*output)	FIELDS(#surname)
#hidedel	#hidesave	#hidesrch	:=	Y
ENDROUTINE
WebRoutine	NAME(empgrid)
WEB_MAP	FOR(*input)	FIELDS(#surname)
WEB_MAP	FOR(*output)	FIELDS((#emps	*private))
#hidedel	#hidesave	:=	Y
EXECUTE	SUBROUTINE(bldlist)
ENDROUTINE
WebRoutine	NAME(emplist)	DESC('Employee	List')
WEB_MAP	FOR(*input)	FIELDS(#surname)
WEB_MAP	FOR(*output)	FIELDS(#emps)
#hidedel	#hidesave	:=	Y
EXECUTE	SUBROUTINE(bldlist)
ENDROUTINE
WebRoutine	NAME(maint)
WEB_MAP	FOR(*both)	FIELDS((#empno	*out)	#empmnt)
#hidedel	#hidesave	#hidesrch	#hidenew	:=	N
#wrname	:=	'maint'
CASE	(#stdrentry)
WHEN	(=	S)

UPDATE	FIELDS(#empmnt)	IN_FILE(pslmst)	WITH_KEY(#empnow)	VAL_ERROR(*next)
IF_STATUS	IS(*OKAY)
MESSAGE	MSGTXT('Employee	changed')
TRANSFER	TOROUTINE(begin)
ENDIF
#EMPNO	:=	#EMPNOW
WHEN	(=	D)
DELETE	FROM_FILE(pslmst)	WITH_KEY(#empnow)	VAL_ERROR(*next)
IF_STATUS	IS(*OKAY)
MESSAGE	MSGTXT('Employee	deleted')
TRANSFER	TOROUTINE(begin)
ENDIF
#EMPNO	:=	#EMPNOW
OTHERWISE
FETCH	FIELDS(#empmnt)	FROM_FILE(pslmst)	WITH_KEY(#empno)
#empnow	:=	#empno
MESSAGE	MSGTXT('Enter	changes	and	Save')
ENDCASE
ENDROUTINE
WebRoutine	NAME(new)
WEB_MAP	FOR(*both)	FIELDS(#empadd)
#hidedel	#hidenew	:=	Y
CASE	(#stdrentry)
WHEN	(=	N)
#empadd	:=	*default
MESSAGE	MSGTXT('Enter	details	and	Save')
WHEN	(=	S)
INSERT	FIELDS(#empadd)	TO_FILE(pslmst)	VAL_ERROR(*next)
IF_STATUS	IS(*OKAY)
MESSAGE	MSGTXT('New	Employee	added')
ENDIF
ENDCASE
#wrname	:=	'new'
ENDROUTINE
SUBROUTINE	NAME(bldlist)
CLR_LIST	NAMED(#emps)
SELECT	FIELDS(#emps)	FROM_FILE(pslmst2)	WITH_KEY(#surname)	GENERIC(*yes)
ADD_ENTRY	TO_LIST(#emps)
IF	(#listcount	=	15)

MESSAGE	MSGTXT('First	15	entries	shown	only')
LEAVE
ENDIF
ENDSELECT
ENDROUTINE
	

WAM105.	Appendix	B
The	Utility	weblet	iii_keys	may	be	created	by	copying	the	following	XSL	code,
into	a	new	weblet	definition,	to	replace	the	default	code.
<?xml	version="1.0"	encoding="UTF-8"?>
<!--	(c)	2002	LANSA	-->
<!--	LANSA	Runtime-Data	XML	Webroutine	XSLT	keys	-->
<!--	$Workfile::	std_keys.xsl	$	-->
<!--	$UTCDate::	2011-02-17	23:35:34Z	$	-->
<!--	$Revision::	7	$	-->
<xsl:transform	version="1.0"	exclude-result-prefixes="lxml	wd"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:tsml="http://www.lansa.com/2002/XML/Generation-Metadata"
xmlns:lxml="http://www.lansa.com/2002/XML/Runtime-Data"
xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"
xmlns="http://www.w3.org/1999/xhtml">
<xsl:key	name="field-caption"
match="/lxml:data/lxml:fields/lxml:field/lxml:caption"
use="../@name"	/>
<xsl:key	name="field-value"
match="/lxml:data/lxml:fields/lxml:field/lxml:value"	use="../@name"	/>
<xsl:key	name="option"	match="/lxml:data/lxml:options/lxml:option"
use="@name"	/>
<xsl:key	name="variable"	match="/lxml:data/lxml:variables/lxml:variable"
use="@name"	/>
<xsl:key	name="weblet"	match="/lxml:data/lxml:weblets/lxml:weblet"
use="@name"	/>
<xsl:key	name="list"	match="/lxml:data/lxml:lists/lxml:list"	use="@name"	/>
<xsl:key	name="jsonlist"	match="/lxml:data/lxml:lists/lxml:json-list"
use="@name"	/>
<xsl:key	name="tsmllist"
match="lxml:data/tsml:data[@used_by	=
'LANSA_XHTML']/tsml:lists/tsml:list"
use="@name"	/>
<xsl:key	name="tsmlcolumn"
match="lxml:data/tsml:data[@used_by	=
'LANSA_XHTML']/tsml:lists/tsml:list/tsml:list-
entries/tsml:entry/tsml:column"

use="concat(ancestor::tsml:list/@name,'_',@name)"	/>
<wd:definition>
<wd:group	name="Utility	Weblets"	/>
</wd:definition>
</xsl:transform>
	

WAM110	-	Create	Your	Own	Layout	Weblet
Objectives
As	you	have	already	seen,	the	Web	Application	Layout	Manager	Wizard	enables
you	to	create	your	own	layout	based	on	one	of	the	supplied	designs	and	themes.
Bear	in	mind	that	the	appearance	of	this	style	of	layout	could	be	considerably
modified	by	simply	changing	the	CSS	associated	with	it.	This	standard	layout
can	then	be	applied	to	each	WAM	you	create.
You	may	require	your	WAM	layouts	to	closely	resemble	your	company	web	site
standards	and	appearance.	If	you	are	building	a	business	to	consumer
application,	then	this	will	certainly	be	the	case.	This	exercise	demonstrates	how
you	can	start	from	your	own	layout	and	embed	this	within	a	layout	weblet	so
that	it	can	be	applied	to	your	WAM	application.

What	is	a	WAM	Layout?
A	WAM	layout	is	a	specific	type	of	weblet	that	is	used	to	give	structure	to	the
web	page	associated	with	a	webroutine	and	to	interface	with	any	documents
referenced	in	the	layout	definition	for	functional	or	aesthetic	values.
By	default,	each	WAM	has	an	associated	WAM	layout	weblet,	which	is	used	as
the	basis	for	any	presentation	associated	with	the	WAM's	webroutines.	A	single
WAM	layout	is	generated	for	each	WAM	regardless	of	how	many	webroutines
are	defined	within	the	WAM.	If	your	web	application	includes	multiple	WAMs,
the	same	layout	can	be	applied	to	all	the	WAMs	in	your	application.	This	way,
you	can	guarantee	a	consistent	interface.
As	a	visual	element,	a	WAM	layout	typically	provides	the	structure	for	any
resulting	web	page.	In	this	role,	a	WAM	layout	can	define	any	titles,	menus,
message	presentation	or	logos	to	be	displayed.	The	WAM	layout	also	controls
the	Cascading	Style	Sheet	to	be	applied.
Your	layout	could	have	literally	any	appearance,	but	with	transactional	systems
there	will	always	be	some	kind	of	main	content	area,	for	example:

Contrary	to	what	the	name	suggests,	a	WAM	layout	does	not	have	to	be	made	of
visual	elements	-	although	it	usually	is.
The	non-visual	elements	of	a	layout	include	references	to	XSL	documents	for:

Standard	variables
Standard	data	types
Style
JavaScript
Default	hidden	fields

What	is	a	Layout	Weblet?
A	layout	weblet	is	simply	a	special	kind	of	weblet	which	contains	the	XSL	and
XHTML	which	together	with	appropriate	cascading	style	sheets,	defines	the
content	and	appearance	of	a	web	page.	Once	you	have	created	and	tested	your
own	layout	weblet,	you	can	use	it	as	a	common	layout	when	creating	each
WAM	which	makes	up	your	application.

What	do	Layouts	Determine	/	Control?
The	layout	is	a	key	element	in	the	generated	webroutine	presentation.	It	ensures
that	a	consistent	interface	is	available	across	WebRoutines.
When	you	view	your	WebRoutine	in	the	LANSA	Editor's	Outline	tab,	the	layout
weblet	is	generally	at	the	highest	level	in	the	outline	tree.	This	indicates	that	all
weblets	below	the	layout	in	the	tree	can	refer	to	the	documents	specified	in	the
layout	weblet.
Some	of	the	things	controlled	by	layouts	include:

The	appearance	of	any	menus
Available	menu	options
The	appearance	of	a	message	box
The	Cascading	Style	Sheet	to	be	applied

Access	to	common	JavaScript	functions
Definition	of	any	global	hidden	fields
Standard	variable	definitions	which	may	be	referenced	in	other	weblets
Whether	a	visual	layout	should	be	applied.

Of	course	if	you	define	your	own	layout,	you	can	decide	what	common
elements	need	to	be	included	in	the	interface.

How	is	a	WAM	Layout	assigned	to	a	WAM?
A	WAM-specific	layout	weblet	is	automatically	generated	for	a	WAM	the	first
time	it	is	built	or	compiled	unless	one	already	exists.
By	default,	when	XSL	is	generated,	the	processor	checks	if	a	WAM-specific
layout	weblet	already	exists	for	the	WAM.	If	a	WAM	layout	does	not	exist,	a
new	WAM	layout	weblet	is	generated	and	stored	in	the	repository	where	the
name	is	composed	of	the	WAM	Identifier	followed	by	"_layout".	After	it	has
been	generated,	your	WAM-specific	layout	weblet	is	referenced	by	all	the
webroutines	in	the	associated	WAM.	Any	changes	to	the	WAM-specific	layout
weblet	will	be	reflected	in	all	of	the	WAM's	webroutines.
The	Generate	XSL	options	on	a	WAM	compilation	do	not	regenerate	the	WAM-
specific	layout.	A	WAM-specific	layout	is	generated	only	once.	Any	subsequent
modifications	to	the	WAM-specific	layout,	or	the	assignment	of	a	different
layout,	must	be	performed	in	the	LANSA	Editor.

How	Do	I	Create	My	Own	Site	Layout?
As	you	have	already	seen	in	exercise	WAM025,	you	can	use	the	Web
Application	Layout	Manager	Wizard	to	create	a	common	layout	based	on	one	of
the	three	main	designs	supplied,	and	choose	one	of	nine	themes	to	control
background	and	foreground	colours	and	fonts	used.
To	create	a	layout	weblet	from	scratch,	select	the	Weblet	option	in	the	LANSA
Editor's	New	toolbar	button	dropdown	list.	In	the	dialog	select	the	Layout
Weblet	option	to	create	a	Layout	weblet.
Alternatively,	you	can	copy	one	of	the	shipped	layout	weblets	as	a	basis	to
creating	your	own.
In	this	exercise	you	will	begin	by	creating	your	"company	web	page"	layout
outside	of	LANSA,	together	with	a	style	sheet	to	control	its	appearance.	You
will	then	build	a	layout	template	based	on	this	company	layout	and	test	it	by
building	a	simple	WAM	which	uses	it.
To	achieve	these	objectives,	you	will	complete	the	following:

Step	1.	Create	a	Simple	Company	Test	Layout
Step	2.	Create	a	Layout	Template
Step	3.	Refine	Layout	Weblet	Definition
Step	4.	Test	the	New	Layout
Step	5.	Review	Structure	of	Layout	XSL	and	HTML
Summary

Step	1.	Create	a	Simple	Company	Test	Layout
The	layout	you	will	define	will	be	constructed	using	DIVs	and	CSS.	You	could
also	define	a	page	layout	using	tables.	If	you	search	the	Internet	on	this	topic,
you	will	find	a	number	of	forums	where	the	pro's	and	con's	are	discussed	at
great	length!

The	CSS	Box	Model
It's	important	to	understand	this	concept.	See	www.w3schools.com	for	more
information.
The	image	following	illustrates	the	box	model:

The	different	parts	are:
Margin	-	Clears	an	area	around	the	border.	The	margin	does	not	have	a
background	color,	it	is	completely	transparent
Border	-	A	border	that	goes	around	the	padding	and	content.	The	border
is	affected	by	the	background	color	of	the	box
Padding	-	Clears	an	area	around	the	content.	The	padding	is	affected	by
the	background	color	of	the	box
Content	-	The	content	of	the	box,	where	text	and	images	appear

In	order	to	set	the	width	and	height	of	an	element	correctly	in	all	browsers,	you
need	to	know	how	the	box	model	works.
If	the	following	is	the	CSS	applied	to	an	HTML	element:
width:250px;
padding:10px;
border:5px	solid	gray;
margin:10px;

http://www.w3schools.com

The	total	width	of	the	element	is	300px,	calculated	as:
250px	(width)
+	20px	(left	and	right	padding)
+	10px	(left	and	right	border)
+	20px	(left	and	right	margin)
=	300px

Acme	Company	Layout	Design
The	completed	layout	will	look	like	the	following:

This	layout	will	be	constructed	as	follows:

Each	area	is	defined	by	a	DIV	with	a	unique	id.	A	stylesheet	(CSS)	will	define
the	position,	size	and	appearance	of	each	DIV.	Other	content	is	defined	within
the	appropriate	DIV.	The	content	area	DIVs	are	nested	so	that	content,	contains
messages	and	form	content.
1.		Create	a	new	folder	in	\My	Documents	called	iii_layout.
2.		Copy	the	following	code	into	Notepad	and	save	it	into	\My
Documents\iii_layout	as	a	file	name	iii_acme_layout.html.
<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html	xmlns="http://www.w3.org/1999/xhtml"	xml:lang="en">
<head>
<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8"	/>
<title>	LANSA	|	Training	|	cross	browser	fixed	header/footer/left	column
layout	scrolling	middle	area	|	WAMs	|		</title>
<link	REL="stylesheet"	TYPE="text/css"	href="iii_acme_style.css">
</head>

<body	class="acme_layout">
<div	id="acme_header">Heading</div>

<div	id="acme_footer">footer</div>

<div	id="acme_sidebar">	<div	style="padding-top:400px">Left	Panel</div>
</div>

<div	id="acme_content">	<h2>Content	Area</h2>
<div	id="acme_messagesContainer">
<h2>Messages</h2>

</div>
<h2>Form	Content</h2>

</div>
</body>
</html>	

3.		Change	the	style	sheet	named	in	this	layout	as	iii_acme_style.css	to	use	your
initials.

					Use	the	Save	as	type	All	to	save	the	file	with	the	correct	extension.
4.		Review	the	contents	of	this	HTML	file.

a.		The	<!--DOCTYPE	puts	IE	into	standard	mode.
b.		Inside	the	<HTML	tag	the	page	content	is	declared	as	XHTML	and	the
primary	language	is	English	(EN).

c.		The	character	set	for	the	document	is	declared	inside	the	<meta	tag.
d.		The	<link	tag	declares	a	style	sheet	file	(CSS)	to	be	referenced	by	this
HTML	document.	As	this	does	not	currently	exist,	your	web	page	will
have	no	formatting,	except	browser	defaults.

e.		The	web	page	content	is	defined	as	DIVs	within	the	<body></body>	tags.
f.		In	each	DIV,	text	wrapped	by	<h2>	tags	to	identify	each	area.

g.		Each	DIV	has	an	id,	for	example	<div	id="acme_content_column">
</div>

i.		The	messages	DIV	is	defined	inside	the	content	div.
5.		Use	Windows	Explorer		to	navigate	to	\My	Documents\iii_layout	and	double
click	on	the	file	iii_acme_layout.html	to	open	it	in	the	default	browser.

					Your	web	page	will	currently	look	like	the	following:

					Leave	your	web	page	open	in	the	browser.
6.		Copy	the	following	code	into	Notepad	and	use	the	Save	as	type:	All	option	to
save	it	as	iii_acme_style.css,	to	folder	\My	Documents\iii_layout.
#acme_content
{
overflow:	auto;
position:absolute;
z-index:6;
top:160px;
bottom:50px;
left:200px;
right:0;
border:	solid;
border-color:	red;
padding:	10px;
}
html	{
height:100%;	
max-height:100%;	
padding:0;
margin:0;	
border:0;	
font-family:georgia,	palatino	linotype,	times	new	roman,	serif;
overflow:	hidden;	

}
body
{
height:100%;
max-height:100%;
overflow:hidden;
padding:0;
margin:0;
border:0;
border:	none;
}
#acme_header	
{position:absolute;
margin:0;
top:0;
left:0;
display:block;
width:100%;
height:160px;
z-index:5;
overflow:hidden;
font-family:georgia,	palatino	linotype,	times	new	roman,	serif;
border	:	solid;
border-color:	fuchsia;
}
#acme_footer	
{
position:absolute;
margin:0;
bottom:0;
left:0;
display:block;
width:100%;
height:50px;
font-family:	Verdana,	Geneva,	Arial,	Helvetica,	sans-serif;
z-index:5;
overflow:hidden;
border:	solid;
border-color:	aqua;

}
#acme_sidebar	
{
position:absolute;
left:0;
top:0;
bottom:	0;
width:200px;
height	:	100%;
z-index:4;
border:	solid;
border-color:	orange;
}
#acme_content	p	
{
padding:10px;
}
.bold	{font-size:1.2em;	font-weight:bold;}

dd	{display:none;}
.p1
{
font-size:	.4em;
color:	white;
}
#acme_messagesContainer
{
top:0px;	
min-height:	50px;
left:	0px;
overflow:	auto;
z-index:	6;
border:	solid;
border-color:	green;
}

					Notepad	is	not	an	ideal	editor	for	CSS	files.	For	your	own	work,	we
recommend	you	use	a	proper	stylesheet	editor	such	as	TopStyle.

					Leave	the	CSS	file	open	in	Notepad.

7.	Review	the	styles	sheet,	which	contains:
a.		Styles	for	each	id	used	in	your	web	page,	for	example
#acme_content{overflow	:	auto;	}

b.		The	head,	foot,	sidebar	and	content	DIVs	are	all	position	absolutely.
c.		acme_head	is	positioned	at	the	top	of	the	page	(top	:	0;	left	:	0;)
d.		acme_content	is	positioned	below	acme_head	and	to	the	right	of
acme_sidebar	(top	:	120px;	left	200px;)

e.		The	acme_head,	acme_foot,	acme_sidebar,	acme_content	and
acme_messagesContainer	DIVs	each	have	a	solid	coloured	border	(just	for
the	moment,	to	make	their	position	visible).

f.		acme_content	has	a	setting	of	overflow	:	auto.	This	will	provide	a	scroll
bar	if	the	content	exceeds	the	space	available.

8.		Refresh	your	web	page	which	should	still	be	open	in	the	browser.	It	should
look	like	the	following:

9.		Make	the	following	changes	to	your	Stylesheet	file	(CSS)
a.		Remove	the	border	and	border-color	styles	from	acme_head,	acme_foot,
acme_sidebar,	acme_content	and	acme_messagesContainer.

b.		Make	the	following	additions	to	the	styles	shown:
#acme_content
{
Background	:	#fafad2;
Color	:	#7b68ee;
}
#acme_header
{
	Background	:	#2ea129;
Color	:	#fff;
}
#acme_footer
{
Background	:	#2ea129;
Color	:	#fff;
}
#acme_sidebar
{
Background	:	#a19c29;
Color	:	#fff;
}
#acme_messagesContainer
{
Background	:	#ffffbb;
Color	:	black;
}
c.		Save	your	style	sheet.

10.	Refresh	your	web	page	in	the	browser.	It	should	now	look	like	the
following:

11.	Go	to	the	following	web	site:	http://generator.lorem-ipsum.info/
a.		Using	Notepad	to	edit	your	web	page	HTML	document,	copy	and	paste
text	from	the	lorem-ipsem	web	site	into	the	messages	DIV	and	the
content	DIV	below	the	messages	DIV	and	the	Form	Content	text.	Paste
enough	text	to	overflow	the	content	area	in	the	browser.

b.		Remove	the	Content	Area	text	(and	H2	tags)	from	the	top	of	the	content
DIV.

c.		Refresh	your	web	page	in	the	browser.	It	should	now	look	like	the
following:

http://generator.lorem-ipsum.info/

					Note	that	the	content	area	has	been	given	a	vertical	scroll	bar.

Step	2.	Create	a	Layout	Template
In	this	step	you	will	create	a	new	layout	weblet.	You	will	see	that	the	"create
new	layout	weblet"	function	provides	a	default	layout.	You	will	remove	much	of
this	content	and	replace	it	with	code	based	on	the	test	layout	which	you	created
in	Step	1.
1.		Use	the	New	/	Weblet	dialog	to	create	a	layout	weblet.
					Name:	iii_layout
					Description:	Acme	Company	Layout
					Weblet	Group:	Layout	Weblets
					Select	the	Layout	Weblet	checkbox.

2.		The	new	layout	weblet	will	open	in	the	editor.	In	the	Design	view,	click
above	the	top	of	the	layout	and	press	F7.	Select	the	Details	tab	to	display	the
layout	weblet	properties.
a.		Change	the	name	to	iii_layout.

b.		Save	the	change.
3.		Select	the	XSL	tab	and	change	the	<wd:template	name	to	iii_layout.

4.		Change	the	<wd:description.	.	.		<wd:name	to	Acme	Layout.

5.		As	you	continue	to	edit	the	XSL,	regularly	save	your	changes.
6.		As	you	edit	the	XSL,	the	syntax	will	be	checked,	and	any	errors	highlighted,
for	example:

7.		Delete	the	inline	style	declaration	<style></style>.	Delete	the	style	tags	and
everything	between	them.

					This	block	of	code	begins,	and	occupies	29	lines:
												<style	type="text/css">
#lpage_container	{
	

8.		Towards	the	end	of	the	XSL	there	are	7	<xsl:templates.	.	.>	blocks	of
code,	which	need	to	be	deleted.

					They	begin	below	the	main	template	<xsl:template	name="iii_layout:.	.
.	.	.</xsl:template>	definition:

<xsl:template	match="/lxml:data">	
<xsl:template	match="/lxml:data"	mode="content.sidebar1">	
<xsl:template	match="/lxml:data"	mode="content.sidebar2">	
<xsl:template	match="/lxml:data"	mode="content.header">	
<xsl:template	match="/lxml:data"	mode="content.navigation">	
<xsl:template	match="/lxml:data"	mode="content.footer">	
<xsl:template	match="/lxml:data"	mode="content.hidden">	

					Delete	from	the	lines	listed,	up	to	and	including	their	end	tag
</xsl:template>.

					Note:	Make	sure	you	do	not	delete	the	</xsl:transform>	at	the	end	of	the
document.

9.		Save	your	changes.
10.	Find	the	code	shown	below	and	mark	it	for	retention	by	adding	the	comment
lines	shown	around	it.

						New	code	is	highlighted	in	red,	italic.
					Hint:	Search	(Ctrl+F)	for	the	first	line	shown	using	lpage_content_column.
The	other	lines	shown	follow	immediately	after	this.
<!--	KEEP	-->
<div	id="lpage_content_column">
<div	id="lpage_content"	class="lpage_content_area">
<xsl:if	test="$show_title">
<h2	class="title">
<xsl:value-of	select="$title_text"	/>
</h2>
</xsl:if>
<div	wd:content="content">
<xsl:apply-templates	select="*"	/>
</div>
</div>
</div>
<!--	END	KEEP	-->
	

11.	Above	the	code	shown	in	10.	locate	the	following	line.	Delete	this	line,	and
everything	up	to	your	first	<!—keep	-->	comment	line.
<div	id="lpage_header"	wd:content="content.header">

					Hint:	Move	the	cursor	to	the	top	of	the	XSL	document	and	search	(Ctrl+F)
for	lpage_header.

12.	The	last	step	will	have	highlighted	as	an	error,	the	</div>	tag	below	your
<!—end	keep-->	comment	line.	Delete	this	</div>	and	everything	before:
	
</xsl:element>
	

					Note:	Do	not	delete	the	line	</xsl:element>.
13.	Save	your	changes.	You	should	have	no	errors	at	this	point.
14.	With	your	new	web	page	layout	(created	in	step	1)	open	in	Notepad:

a.Remove	the	text	which	you	added	from	the	web	site:
http://generator.lorem-ipsum.info/.

b.Copy	all	the	code	inside	the	<body></body>	tags	(not	including	the
body	tags)	and	paste	in	into	your	new	WAM	layout	within	the	<body>
</body>	tags.	These	are	below	the	</xsl:if>	and	before	<!—KEEP	-->.
Your	code	should	look	like	the	following.

					Inserted	code	is	shown	in	red.
</xsl:if>

<div	id="acme_header">Heading</div>
<div	id="acme_footer">footer</div>
<div	id="acme_sidebar">
<div	style="padding-top:400px">Left	Panel</div>
</div>
<div	id="acme_content">
<div	id="acme_messagesContainer">
<h2>Messages</h2>
</div>
<h2>Form	Content</h2>
</div>

<!--	keep	-->
15.	Change	the	class	of	the	<body>	tag	to	acme_layout.	This	line	should	now
look	like	the	following:

http://generator.lorem-ipsum.info/

<body	class="acme_layout">
	

16.	Move	the	code	(cut	and	paste)	shown	in	red	below,	from	within	the	block	of	
xsl	which	you	commented	to	keep,	into	the	position	shown,	immediately
before	the	<h2>Form	Content</h2>	line.

					Move	only	the	code	shown	in	red.
div	id="acme_header">Heading</div>
<div	id="acme_footer">footer</div>
<div	id="acme_sidebar">
<div	style="padding-top:400px">Left	Panel</div>
</div>
<div	id="acme_content">
<div	id="acme_messagesContainer">
<h2>Messages</h2>
</div>

<xsl:if	test="$show_title">
<h2	class="title">
<xsl:value-of	select="$title_text"	/>
</h2>
</xsl:if>

<h2>Form	Content</h2>
</div>

17.	Move	the	code	shown	in	red	below	from	the	xsl	you	commented	to	keep,
into	the	position	shown,	below	the	<h2>Form	Content</h2>	line.	The
moved	code	is	shown	in	red.
<div	id="acme_header">Heading</div>
<div	id="acme_footer">footer</div>
<div	id="acme_sidebar">
<div	style="padding-top:400px">Left	Panel</div>
</div>
<div	id="acme_content">
<div	id="acme_messagesContainer">
<h2>Messages</h2>
</div>
<xsl:if	test="$show_title">

<h2	class="title">
<xsl:value-of	select="$title_text"	/>
</h2>
</xsl:if>
<h2>Form	Content</h2>

<xsl:apply-templates	select="*"	/>
</div>

18.	Delete	the	remaining	saved	xsl.	i.e	everything	which	now	remains	within	the
comments	<!—keep	-->	and	<!—end	keep	-->.

19.	Save	your	changes.	At	this	point	you	have	your	basic	layout	defined.	No
stylesheet	is	associated	with	it	except	for	the	styles	defined	by	the
standard_style.xsl	weblet.

Step	3.	Refine	Layout	Weblet	Definition
In	this	step	you	will	define	a	style	External	Resource	for	your	new	style	sheet,
and	add	the	external	resource	to	your	layout.
1.		You	created	a	style	sheet	(iii_acme_style.css)	for	the	new	layout	in	Step	1.

a.		Copy	your	iii_acme_style.css	from	\My	Documents\iii_layout	to	your
Visual	LANSA	web	server	\images\style	folder.	The	path	name	should	be
similar	to:

					C:\Program	Files	(x86)\LANSA\WebServer\Images\style
					On	the	IBM	i,	copy	to	the	web	server	/images/style	folder	for	the
LANSA	installation	which	you	are	using.	The	path	name	will	be	similar
to:

					LANSA_<PGMLIB>/webserver/images/style
					Where	<PGMLIB>	is	your	LANSA	program	library.
b.		Create	an	External	Resource	for	this	style	sheet	using	the	File	menu	/
New	/	External	Resource	/	External	Resource	option.

					Enter	the	External	Resource	Name:	IIILAY01	(using	your	initials)	and
use	the	Ellipsis	button	for	the	File	Name	to	select	your	style	sheet	file.	The
LANSA	Folder	and	Description	will	be	automatically	filled.

c.		Click	the	Create	button	to	save	the	new	External	Resource	definition.	You
do	not	need	to	open	it	in	the	editor.

2.		With	your	layout	weblet	open	in	the	Design	view,	add	the	External	Resource
from	the	design	ribbon	External	Resource	option.

					At	the	same	time	also	add	External	Resources	for	styles	XWT08J	and
XWT08L101.	These	will	add	style	sheets	to	set	fonts,	colors	and	background
colors	for	your	page	contents	to	blend	with	the	green	header	and	footer	being
used	by	the	layout.

3.		Select	the	XSL	tab	and	delete	the	default	theme	external	resources	which
were	part	of	the	default	layout.
<wd:style	name="XWT01J"	/>
<wd:style	name="XWT01L"	/>
	

4.		Save	your	changes.	Your	layout	should	now	look	like	the	following:

5.		Remove	the	following	text:
a.		Delete	this	line,	which	was	defined	with	a	<div>	including	an	inline	style,
in	order	to	position	the	text	where	is	would	be	shown	and	not	hidden:

<div	style="padding-top:400px">Left	Panel</div>

	
					b.	Delete	the	following	text,	including	any	header	tags	associated	with	it	(e.g.
<h2></h2>)
Messages
Form	Content

6.		In	the	acme_header	DIV	replace	the	"Heading"	text	with	the	following.	This
may	be	copied	from		WAM	Tutorials	in	the	online	guide.

<h1>Acme	IT	Services</h1>

<h2>Software	for	Business</h2>

7.		In	the	acme_footer	DIV	replace	the	"footer"	text	with:
<span	style="padding-left:	10px;	padding-
top:5px">©	Acme	Ltd	2011

					These	changes	use	the		tag	to	position	the	text	using	inline	styles.	A
better	solution	would	be	to	give	these	span	tags	an	id	and	control	the
appearance	via	the	external	stylesheet.

8.		Save	your	changes	and	review	your	layout	in	the	Design	View.
9.		The	DIV	acme_messagesContainer	is	shown	in	the	Design	view	as	an	outline
box,	above	the	webroutine	title	text.	Select	this	area:

					Confirm	you	have	the	correct	element	selected	by	examining	the	Details	tab,
and	checking	the	id.

					From	the	Standard	Weblets	group,	drop	a	messages	weblet	into	the
acme_messagesContainer	DIV.

10.	Save	your	changes
					Your	design	should	look	like	the	following:

11.	On	the	Favorites/Weblet	Templates	tab,	select	jQuery	UI	group	from	the	top
combo	box.
The	acme_header	DIV	is	the	top	green	box	containing	the	text	"Acme	IT
Services"

a.		Select	the	acme_header	DIV		
b.		Drop	a	jQuery	UI	Menubar	into	the	acme_header	DIV.
c.		Select	the	menu	bar,	and	use	the	right	mouse	on	one	of	the	"handles"	to
Insert	HTML	/	Div.	This	will	insert	a	DIV	around	the	menu	bar,	which	can

then	be	given	an	id.	An	addition	to	the	style	sheet	for	this	id,	will	then
position	the	menu	bar.

d.		With	the	new	DIV	selected,	select	the	Details	tab	and	change	the	id	to
lpage_navBar.

e.		Add	the	following	style	to	your	style	sheet	iii_acme_style.css	and	save
the	style	file.	This	will	override	the	LANSA	styles	for	the	id
lpage_navBar.

#lpage_navBar
{
min-width:	396px;
min-height:	44px;
position:	absolute;
top:	10px;
left:	550px;
}
f.		Save	the	changes	to	your	layout	iii_layout.
g.		From	the	Design	ribbon	use	the	Refresh	/	Web	Browser	option	to	refresh
the	image	in	the	Design	view.	The	menu	bar	position	in	the	header	area
should	now	reflect	the	CSS	changes	you	added	for	lpage_navBar.

12.		With	the	menubar	selected,	set	up	the	menuitems	property	on	the	Details
sheet,	using	the	Ellipsis	button	button	to	open	the	Design	of…	dialog.	Define
a	top	level	menu	only	as:

Menu	Item Action	URL

Home http://www.lansa.com

Support http://www.lansa.com/support/index.htm

Contact	Us http://www.lansa.com/about/contactus.htm

About http://www.lansa.com/about/index.htm

	

13.	Save	your	changes.	Your	design	should	look	like	the	following:

14.	Your	layout	xsl:template	currently	contains	some	parameters	which	will	not
be	used.	Delete	the	following	code:
<xsl:param	name="width_type"	select="'fluid'"
wd:type="std:layout_width_type"	/>
<xsl:param	name="width"	select="'1000px'"	wd:type="std:css_length_unit"	/>
<xsl:param	name="sidebar1_width"	select="'20%'"	wd:tip_id=""
wd:type="std:css_length_unit"	/>
<xsl:param	name="content_width"	select="'50%'"	wd:tip_id=""
wd:type="std:css_length_unit"	/>
<xsl:param	name="sidebar2_width"	select="'30%'"	wd:tip_id=""
wd:type="std:css_length_unit"	/>
	

Step	4.	Test	the	New	Layout
1.		Create	a	new	WAM:
					Name:		iiiTestLayout
					Description:	Test	layout	iii_layout
					Layout	weblet:	iii_layout
2.		Add	the	following	RDMLX	code	after	the	Begin_com	and	compile	the
WAM.
Define	Field(#empnow)	Reffld(#empno)
Def_List	Name(#empskills)	Fields(#SKILCODE	#GRADE	#COMMENT	#DATEACQ	#GRADEDES)	Type(*Working)
Web_Map	For(*both)	Fields((#stdrentry	*hidden))
Webroutine	Name(begin)	Desc('Employee	Details	and	Skills')
Web_Map	For(*both)	Fields((#EMPNO	*out)	#SURNAME	#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME	#PHONEBUS	#DEPTMENT	#SECTION	#SALARY	#STARTDTE	#TERMDATE	#empskills	(#empnow	*hidden))
Case	(#stdrentry)
When	(=	U)
#empno	:=	#empnow
Update	Fields(*all)	In_File(pslmst)	With_Key(#empno)
Otherwise
Select	Fields(*all)	From_File(pslmst)
Leave
Endselect
#empnow	:=	#empno
Clr_List	Named(#empskills)
Select	Fields(#empskills)	From_File(pslskl)	With_Key(#empno)
Add_Entry	To_List(#empskills)
Endselect
Endcase
Endroutine

3.	Open	the	begin	WebRoutine	in	the	Design	view.
a.		Add	a	column	to	the	employee	fields	table.
b.		Drop	a	push	button	into	the	top	of	the	new	column
c.		Remove	the	place	holder	characters.
d.		Select	the	push	button	and	set	up	its	properties	as:

Property Value

Caption Save

On_click_wrname Begin

submitExtraFields Field	Name:	STDRENTRY
Literal	Value:	U

	

e.		Complete	the	submitExtraFields	property	using	the	Ellipsis	button:

f.		Save	your	changes.
g.		Execute	the	WAM	in	the	browser.	Your	web	page	should	look	like	the
following:

4.		Clear	the	surname	and	given	name	fields	and	click	the	Save	button.

Validation	errors	should	be	displayed	in	the	messages	weblet	at	the	top	of	the
content	area,	as	shown:

5.		Try	out	the	menu	bar.	Notice	that	the	menu	items	appearance	changes	for
hover	and	selection.	This	is	controlled	by	the	theme	style	sheet	defined	by	the
external	resource	XWT08L101.

Step	5.	Review	Structure	of	Layout	XSL	and	HTML
This	step	analyses	the	structure	of	the	layout	XSL,	to	explain	what	the	main
parts	of	the	program	are	doing.
1.		WAMs	use	the	XSL	Transformation	language	(XSLT)	to	process	the	XML
output	by	a	WebRoutine	to	produce	a	web	page	–	an	XHTML	document.	You
can	learn	more	about	XSL	at	the	www.w3schools.com	web	site.

					The	first	few	lines	of	code,	define	the	XSL	namespace	standards	used	in	the
document.
<?xml	version="1.0"	encoding="UTF-8"?>
<!--	(c)	2003,	2011	LANSA																						-->
<!--	XHTML	WAM	Layout																										-->
<!--	$Revision::	12																										$	-->
<xsl:transform	version="1.0"	exclude-result-prefixes="lxml	wd	tsml"
															xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
															xmlns:lxml="http://www.lansa.com/2002/XML/Runtime-Data"
															xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"
															xmlns:tsml="http://www.lansa.com/2002/XML/Generation-
Metadata"
															xmlns="http://www.w3.org/1999/xhtml">

					XSL	code	such	as	<xsl:if	.	.	.>	has	a	namespace	of	xsl	and	is	a	standard
defined	by	the	World	Wide	Web	consortium.

					XSL	code	such	as	<wd:external-resources.	.	.>	has	a	namespace	of	wd	and
is	LANSA	defined	standard.

2.		The	<xsl:import	.	./>	statements,	import	other	weblets	into	this	layout:
<!--	Standard	imports																																							-->
			<!--	Import	the	weblet	XSL	files	used	by	your	layout	here			-->
			<!--	e.g.																																																			-->
			<xsl:import	href="std_variables.xsl"	/>
			<xsl:import	href="std_types.xsl"	/>
			<xsl:import	href="std_hidden.xsl"	/>
			<xsl:import	href="std_style_v2.xsl"	/>
			<xsl:import	href="std_script.xsl"	/>
			<xsl:import	href="std_messages.xsl"	/>
			<xsl:import	href="std_menubar.xsl"	/>
			<xsl:output	method="xml"	omit-xml-declaration="yes"	encoding="UTF-8"

http://www.w3schools.com

															indent="no"	doctype-public="-//W3C//DTD	XHTML	1.0	Strict//EN"
															doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd"	/>

					When	the	messages	and	menu	bar	weblets	were	added	to	this	layout	in	the
graphical	editor,	import	statements	for	std_messages.xsl	and	std_menubar.xls
were	added.

3.		The	XSL	statements	which	begin	wd:	are	LANSA	weblet	design	statements
which	are	used	within	LANSA's	graphical	web	page	editor	(actually	an	XSL
editor).	wd:	is	a	LANSA	namespace.
<wd:external-resources>
						<wd:style	name="XWT08J"	/>
						<wd:style	name="XWT08L101"	/>
						<wd:style	name="IIILAY01"	/>
			</wd:external-resources>
			<wd:definition>
						<wd:default-theme	/>
						<wd:group	name="Layout	Weblets"	/>
			</wd:definition>
			<wd:template	name="iii_layout">
						<wd:description	icon="icons/std_layout.ico">
									<wd:name	lang="ENG">iii	Acme	Layout</wd:name>
						</wd:description>
			</wd:template>

					The	external	resources	will	define	links	to	external	style	sheets	to	be	used	by
web	pages	based	on	this	layout.

					These	tags	also	provide	a	name,	description,	group	name	and	icon	to	be	used
for	this	weblet	in	the	Repository.

4.		xsl:templates	are	like	subroutines.	They	can	be	called,	passing	parameters
into	the	template.
<xsl:template	name="iii_layout"	wd:role="std:layout">
						<xsl:param	name="window_title"
																	select="$lweb_context/lxml:webapplication-title"
																	wd:type="std:mtxt_variable"	wd:tip_id=""	/>
						<xsl:param	name="has_form"	select="true()"	wd:type="std:boolean"
																	wd:tip_id=""	/>
						<xsl:param	name="show_title"	select="true()"	wd:type="std:boolean"
																	wd:tip_id=""	/>
						<xsl:param	name="title_text"	select="$lweb_context/lxml:webroutine-
title"
																	wd:type="std:mtxt_variable"	wd:tip_id=""	/>
						<xsl:param	name="javascript_files"	select="''"	wd:tip_id=""	/>
						<xsl:param	name="jQueryNoConflict"	select="false()"	wd:type="std:boolean"
																	wd:tip_id=""	/>
						<xsl:param	name="css_files"	select="''"	wd:tip_id=""	/>
						<xsl:param	name="output_charset"
																	select="/lxml:data/lxml:server-instructions/lxml:client-charset"
																	wd:tip_id=""	/>
						<xsl:param	name="backcompat_theme"	select="false()"	wd:type="std:boolean"
																	wd:tip_id=""	/>

					When	you	compile	a	WAM	using	this	Layout	Weblet,	the	generated	WAM
layout	uses	the	layout	weblet	specified.	When	you	then	design	a
WebRoutines's	web	page,	these	parameters	will	be	shown	on	the	Details	tab
and	could	be	set	at	design	time	and	or	at	runtime.

5.		The	XHTML	definition	begins	here.	Note	that	an	xsl:if	is	testing	the	value	of
an	environment	language	variable	($lweb_ISO_language).	Further	down
another	xsl:if	refers	to	$window_title	which	is	the	value	of	a	boolean	input
parameter.
<html>
									<xsl:if	test="$lweb_ISO_language	!=	''">
												<xsl:attribute	name="xml:lang">
															<xsl:value-of	select="$lweb_ISO_language"	/>
												</xsl:attribute>
												<xsl:attribute	name="lang">
															<xsl:value-of	select="$lweb_ISO_language"	/>
												</xsl:attribute>
									</xsl:if>
									<head>
												<title>
															<xsl:value-of	select="$window_title"	/>
												</title>
												<xsl:choose>
															<xsl:when	test="$backcompat_theme">
																		<xsl:call-template	name="style">
																					<xsl:with-param	name="theme_css_filename"	select="''"	/>
																					<xsl:with-param	name="css_files"	select="$css_files"	/>
																		</xsl:call-template>
															</xsl:when>
															<xsl:otherwise>
																		<xsl:call-template	name="style">

																					<xsl:with-param	name="theme_css_filename"	select="'none'"	/>
																					<xsl:with-param	name="css_files"	select="$css_files"	/>
																		</xsl:call-template>
															</xsl:otherwise>
												</xsl:choose>
												<xsl:call-template	name="script">
															<xsl:with-param	name="javascript_files"
																															select="$javascript_files"	/>
															<xsl:with-param	name="trap_script_errors"	select="false()"	/>
															<xsl:with-param	name="jQueryNoConflict"
																															select="$jQueryNoConflict"	/>
												</xsl:call-template>
									</head>

					This	code	defines	the	contents	of	the	head	area	of	the	web	page.	The	XSL
logic	is	generating	XHTML	based	on	the	parameters	provided	at	runtime.

6.		Your	page	content	is	output	within	the	HTML	<body></body>	tags.
<body	class="acme_layout">
												<xsl:variable	name="containerName">
															<xsl:choose>
																		<xsl:when	test="$has_form">
																					<xsl:text>form</xsl:text>
																		</xsl:when>
																		<xsl:otherwise>
																					<xsl:text>div</xsl:text>
																		</xsl:otherwise>
															</xsl:choose>
												</xsl:variable>
												<xsl:element	name="{$containerName}">
															<xsl:attribute	name="id">lpage_container</xsl:attribute>
															<xsl:if	test="$has_form">
																		<xsl:attribute	name="onsubmit">return	_HandleDefaultSubmit(this);
</xsl:attribute>
																		<xsl:attribute	name="method">post</xsl:attribute>
																		<xsl:attribute	name="name">LANSA</xsl:attribute>
																		<xsl:attribute	name="action">
																					<xsl:value-of	select="$lweb_context/lxml:action-request"	/>?
</xsl:attribute>
																		<xsl:call-template	name="hidden_fields"	/>

															</xsl:if>
					The	xsl:choose	logic	(like	an	RDML	CASE	loop)	outputs	a	<form>	tag	or
a	<div>	depending	on	the	variable	$has_form.	Has_form	is	a	property	of	the
layout,	and	is	shown	on	the	Properties	sheet	on	the	Design	tab.

7.		This	section	is	largely	the	code	which	you	provided	and	represents	the	design
of	your	web	page,	when	combined	with	the	necessary	stylesheet.
<div	id="acme_header">
																		
																					<h1>Acme	IT	Services</h1>
																		
																		

																		
																					<h2>Software	for	Business</h2>
																		
																		<div	id="lpage_navBar">
																					<xsl:call-template	name="std_menubar">
																								<xsl:with-param	name="menu_items"
																																								select="document('')/*/lxml:data/lxml:menu[@id='E449B9B6900F4392AF69DE5097BB506E']"	/>
																								<xsl:with-param	name="name"
																																								select="concat('o',	position(),	'_LANSA_17914')"	/>
																								<!--	<xsl:with-param	name="listname"	select="?"	/>	-->
																								<!--	<xsl:with-param	name="orientation"	select="?"	/>	-->
																								<!--	<xsl:with-param	name="show_arrows"	select="?"	/>	-->
																								<!--	<xsl:with-
param	name="submit_selected_to"	select="?"	/>	-->
																					</xsl:call-template>
																		</div>
															</div>
															<div	id="acme_footer">
																		<span	style="margin-left:	10px;	padding-
top:5px">©	Acme	Ltd	2011
															</div>
															<div	id="acme_sidebar"></div>
															<div	id="acme_content">
																		<div	id="acme_messagesContainer">
																					<xsl:call-template	name="messages">
																								<!--	<xsl:with-

param	name="target_window_name"	select="?"	/>	-->
																					</xsl:call-template>
																		</div>
																		<xsl:if	test="$show_title">
																					<h2	class="title">
																								<xsl:value-of	select="$title_text"	/>
																					</h2>
																		</xsl:if>
																		<xsl:apply-templates	select="*"	/>
															</div>
												</xsl:element>
									</body>

					This	code	also	includes	the	menu	bar	and	messages	weblets	which	you	added
using	the	graphical	editor.

					The	<xsl:apply-templates	select="*"	/>	outputs	your	WebRoutine	fields
and	lists,	together	with	output	from	any	weblets	which	were	added	to	the
page,	such	as	Push	Buttons.

Summary
Important	Observations

You	have	created	your	own	company	layout	which	can	be	used	as	the
Layout	Weblet	when	creating	your	application	WAMs
Any	changes	you	make	to	this	common	layout,	will	affect	all	WAM
layouts	which	are	based	on	this	common	layout.
The	shipped	layout	designs	demonstrate	how	the	same	design	can	be
significantly	altered	simply	by	changing	the	style	sheets	associated	with
the	design.	Consider	this	option,	before	embarking	an	development	of	a
completely	new	layout.

Tips	&	Techniques
With	the	design	tools	now	available,	such	as	the	Microsoft	IE	Developer
Toolbar	and	a	professional	style	sheet	editor	you	can	rapidly	understand
the	detailed	design	of	any	web	page	you	may	want	to	adopt.

What	You	Should	Know
How	to	create	your	own	layout	weblet.
How	to	use	CSS	to	control	page	layout	which	is	based	on	DIVs.

WAM115	-	Check	in	WAMs	to	IBM	i
Objectives

To	check	in	and	compile	some	of	your	exercise	WAMs	and	their	layouts
to	the	IBM	i
To	run	the	WAMs	on	the	IBM	i

This	exercise	is	optional	and	will	depend	on	the	training	facilities	being	used.
Visual	LANSA	must	be	installed	as	a	Slave	Workstation	to	the	IBM	i	LANSA
Master.
All	the	files	and	most	of	the	fields	used	in	this	workshop	will	already	exist	on
the	IBM	i,	in	the	partition	being	used	for	training.
In	order	to	complete	this	exercise	you	will	perform	the	following:
Step	1.	Check	in	a	WAM	and	its	Layout
Step	2.	Run	a	WAM	on	the	IBM	ii
Step	3.	Run	a	WAM	in	debug	on	the	IBM	i
Summary

Before	You	Begin
This	exercise	assumes	that	you	have	completed	all	preceding	exercises.

Step	1.	Check	in	a	WAM	and	its	Layout
To	compile	and	run	your	WAM	on	the	IBM	i,	you	will	need	to	ensure	that	you
have	also	checked	in	any	dependent	objects.

Checking	in	a	WAM	also	checks	in	the	web	page	definition	for	each
WebRoutine.	The	WAM	layout	will	also	be	automatically	checked	in.
You	only	need	to	check	in	a	WAM	layout	once,	or	when	it	has	been
changed.	You	will	find	that	LANSA	V13	always	checks	in	the	WAM
layout	when	you	check	in	the	WAM.
When	checking	in	a	WAM,	you	should	use	the	Cross	References	dialog	to
select	and	check	in	any	dependent	objects.
If	your	WAM	layout	is	based	on	a	common	company	layout,	you	will
check	this	layout	in	the	first	time	you	check	in	a	WAM	which	uses	it	and
whenever	this	common	layout	has	been	changed.
Other	definitions	which	you	may	need	to	consider	are	any	custom	weblets
or	External	Resources	which	your	WAM	is	using.
You	can	check	in	using	the	context	menu	from	the	Repository	tab,	or	from
the	Last	Opened	tab.
With	the	WAM	open	in	the	editor,	you	can	also	check	in	from	the	Home
ribbon	/	Remote	Systems/	Check	in	button:

1.		On	the	Repository	tab	find	WAM	iiiEmpEnquiry	under	Web	/	Web
Application	Modules.	Use	the	context	menu	to	Check	In:

					The	Check	In	Options	dialog	opens.

2.		Select	the	WAM	layout	to	enable	the	 	Cross	References	toolbar	button.
Click	the	toolbar	button	to	open	the	Local	Cross	References	dialog:

3.		Select	the	common	layout	iiilay01	and	click	the	 	Add	for	check	in	button,
to	add	it	to	the	check	in	list	of	objects.

4.		Click	the	Close	button	to	close	this	dialog.	Your	check	in	dialog	should	look
like	the	following:

	Note:	The	common	layout	iiilay01	has	been	added	to	the	objects	to	be	check
in.				

					Ensure	that	the	Check	In	options	are	as	shown.
					When	you	check	in	a	WAM	for	compile	the	following	steps	occur:
A	C	program	for	the	WAM	RDMLX	code	is	generated	and	checked	in.
A	compile	job	is	submitted	on	the	IBM	i.
The	XSL	Transformations	for	all	WebRoutines	are	checked	in	for	the

Technology	Services	which	are	selected	in	the	check	in	options.
The	WAM	layout	is	checked	in.
As	noted,	you	need	to	also	check	in	any	other	dependent	objects	as	appropriate.
Your	new	WAM	is	locked	to	a	Task	Id.	Usually	this	will	be	the	Task	Id	you

selected	when	you	logged	in	the	Visual	LANSA.	The	lock	is	applied	using	your	PC

Name.	If	you	select	the	Keep	Locks	option	shown	in	the	Check	In	Options	dialog,
Visual	LANSA	will	keep	the	WAM	locked	using	Task	Id	and	PC	Name	and	you
could	continue	developing	the	WAM.	See	the	Visual	LANSA	Administrator's	Guide
for	further	details	on	this	subject.

5.		Confirm	the	check	in	by	clicking	the	OK	button.	The	Check	in	information
area	will	appear	at	the	foot	of	the	Editor	window	as	shown	in	this	example.

6.		Review	the	check	in	information	to	ensure	that	no	errors	have	occurred.

Step	2.	Run	a	WAM	on	the	IBM	ii
1.		Open	WAM	iiiEmpEnquiry	in	the	editor.	Open	the	begin	WebRoutine	in	the
Design	view.

2.		Use	the	Editor	Options	from	the	File	menu.

					Select	the	WAM	icon:

3.		Change	the	Application	Base	URL	setting	to	point	to	the	IBM	i	server.	This
could	be	specified	as	a	domain	name	or	an	IP	Address.

4.		Test	the	definition	by	clicking	the	Test	button:

5.		Close	the	settings	dialog	by	clicking	the	OK	button.
6.		With	the	WAM	iiiEmpEnquiry	open	in	the	editor,	open	the	begin
WebRoutine	in	the	Design	view	and	Run	in	the	browser.	Your	WAM	will	be
run	on	the	IBM	i.

Step	3.	Run	a	WAM	in	debug	on	the	IBM	i
With	your	WAM	checked	in	and	compiled	on	the	IBM	i	server,	you	can	now	run
it	in	debug	mode	from	Visual	LANSA,	while	it	is	running	on	the	IBM	i	server.
The	Base	Application	URL	settings	must	point	to	your	IBM	i	server.
1.		You	should	have	WAM	iiiEmpEnquiry	open	in	the	editor,	with	the	begin
WebRoutine	open	in	the	Design	view.	Check	the	debug	settings	from	the	File
/	Editor	Options,	select	the	Debug	icon.

					Ensure	the	Break	at	first	executable	statement	option	is	selected.	This	means
that	initially	you	do	not	need	to	set	any	breakpoints	in	the	program.

2.		Run	the	begin	WebRoutine	using	the		 	toolbar	button.
						The	WebRoutine	will	execute	in	debug	mode	with	the	WAM	executing	on
the	IBM	i	server.

					You	can	now	continue	to	set	breakpoints	and	use	other	debug	features.
					For	further	details,	refer	to	the	exercise	WAM055	-	Using	LANSA	Debug	if
required.

Summary
Important	Observations

In	this	exercise	you	selected	a	group	of	objects	for	check	in	by	name.	You
can	also	select	objects	to	check	in:
By	Task
By	building	a	static	Editor	List	or	maintaining	a	dynamic	editor	list	for
your	changes
By	sorting	the	Repository	tab	by	Date	Modified	and	selecting	changed
objects
By	reference	to	your	Last	Opened	tab
If	you	have	changed	design	of	a	WebRoutine's	web	page,	simply	check	in
the	WAM	again.	No	recompile	will	be	necessary
If	you	have	changed	a	common	layout	weblet,	check	this	in	and	the
WAM's	which	use	it	will	include	it	at	run	time.
If	you	have	changed	cascading	styles,	check	in	the	External	Resource
which	defines	this	style	file.

Tips	&	Techniques
Remember	that	the	details	of	a	Field	Visualization	weblet	are	locked	into
the	XSL	when	the	WebRoutine	web	page	is	created	and	saved.	If	a	field
visualization	has	been	changed,	for	example,	from	radio	button	group	to
dropdown,	checking	in	the	WAM	will	make	your	application	behave
correctly	without	checking	in	the	changed	field	visualization	details.
However,	you	should	check	the	field	in,	to	maintain	a	consistent
application	definition	in	the	Master	Repository.
Remember,	the	web	server	is	waiting	for	a	response	from	your	WAM,	so
the	web	server	could	time	out	if	you	spend	too	long	stepping	through
code	in	debug.

What	You	Should	Know
How	to	check	in	your	WAM	and	related	definitions
How	to	run	WAMs	on	the	IBM	i	server	from	Visual	Lansa.

WAM120	-	Using	the	Menu	Bar	Weblet
Objectives

To	demonstrate	how	to	set	up	the	jQuery	UI	Menubar	weblet	to	provide	a
fixed	application	menu.

The	menu	will	link	to	four	WAMs	which	handle	employee	enquiry	and
update.

To	achieve	this	objective	you	will	complete	the	following:
Step	1.	Define	the	Applications	Menu
Step	2.	Test	the	Applications	Menu
Summary

Before	You	Begin
You	should	complete	exercises	WAM025,	WAM030,	WAM035	WAM040	and
WAM045	which	create	and	then	use	the	common	layout	iiilay01.

Step	1.	Define	the	Applications	Menu
The	menu	needs	to	be	setup	with	WAM	name	and	WebRoutine	name	for	four
WAMs.	For	the	first	four	WAMs	using	the	common	layout,	the	information	is	as
follows.	Replace	iii	with	your	initials.
New	WAMs/Menu	Items

WAM	Name Identifier WebRoutine
Name

Menu	Caption

iiiEmpEnquiry 	 begin Enquiry

iiiEmpUpdate 	 begin Update

iiiEmpUpdate_MK2 	 begin Update	with
Dropdowns

iiiDynamSelector 	 begin Update	with	Dropdown
using	Selector

	

0.		Before	you	continue	with	this	exercise,	display	your	WAMs	on	the
Repository	tab	and	note	the	Identifiers	for	these	WAMs:

					Visual	LANSA	allocates	a	unique	10	character	Identifier	to	each	component
you	create	(if	Long	Names	is	enabled	at	partition	level).	When	calling	the

WAM	directly	in	a	URL,	the	Identifier,	not	the	long	names	must	be	used.
1.		Open	layout	iiilay01	in	the	editor.	In	exercise	WAM025	you	added	the
jQuery	UI	Menubar	weblet	to	this	layout	and	set	up	links	to	a	number	of
LANSA	website	pages.

2.		Select	the	menu	bar	weblet	and	use	the	Ellipsis	button	for	the	menu_items
property	to	open	the	Design	of…	dialog,	which	should	look	like	the
following:

3.		In	this	step	you	will	define	an	Applications	top	level	menu	item,	underneath
menu	item	Home	and	then	drag	it	into	the	top	level,	between	Home	and
Services.

					Click	in	the	menu	item	below	Home	and	in	the	Menu	Item	Properties,	enter
Applications.	The	Design	of	menu_items	Property	dialog	should	now	look
like	the	following:

4.		Click	on	the	Application	menu	item	and	hold	down	the	left	mouse	button	to
drag	Applications	into	position	between	Home	and	Services.	Position	the
cursor	on	the	left	hand	side	of	Services	when	you	release	the	left	mouse
button.	Your	design	should	look	like	the	following:

5.		Click	on	the	menu	item	Applications	to	display	the	sub-menu	item
underneath	it.	Enter	Employees	in	the	Menu	Item	Properties	Caption.	Your
design	should	look	like	the	following:

6.		Click	in	the	menu	item	to	the	right	of	Employees.	This	means	you	will	be
defining	a	sub-menu	for	Employees,	which	will	be	shown	during	the	design
step,	under	Services.	Define	Enquiry	as:

Property Value

Caption Enquiry

WAM iiiEMPEN

WebRoutine begin

	

	Note:	Your	WAM	Identifier	may	be	different	to	the	example	shown.
					Your	design	should	look	like	the	following:

7.		Continue	by	defining	the	next	three	sub-menu	items	for	Employees,	in	the
column	under	Services.	Refer	to	the	New	WAMs/Menu	Items	table	at	the
beginning	of	this	step	for	details.	Your	dialog	should	now	look	like	the
following:

8.		Click	OK	to	save	the	changes	and	close	the	dialog.	Your	menu	should	look
like	the	following:

9.		Save	your	layout.

Step	2.	Test	the	Applications	Menu
1.		Open	WAM	iiiEmpEnquiry	in	the	editor	and	open	the	begin	WebRoutine	in
the	Design	view.	Run	the	WAM	in	the	browser.

2.		Use	the	Applications	menu	to	run	the	Employee	Update	WAM:

3.		Test	all	four	menu	sub-items	to	ensure	that	the	links	have	been	correctly
defined.

Summary
Important	Observations

The	menu	bar	weblet	provides	the	functionality	of	a	menu	bar	that	can
invoke	other	web	pages	including	other	webroutines.
The	menu	bar	can	be	arranged	horizontally	or	vertically	and	the	top	level
menu	items	can	cause	further	menus	to	pop-up	as	the	mouse	moves	over
them.

Tips	&	Techniques
The	menu	items	can	be	defined	in	the	Webroutine	design	using	the	menu
item	designer	or	they	can	be	supplied	at	runtime	in	an	RDMLX	list.
The	weblet	is	based	on	the	jQuery	UI	menu	widget	and	requires	jQuery
and	jQuery	UI	to	operate	(the	weblet	will	automatically	add	the	required
external	resources	to	the	output	HTML).

What	Your	Should	Know
How	to	define	a	static	menu	using	the	jQuery	UI	Menubar	weblet.

WAM125	-	Define	a	Dynamic	Menu
Objectives
The	jQuery	UI	Menubar	can	be	defined	dynamically	using	a	working	list.	This
exercise	demonstrates	how	a	login	WAM	could	establish	a	custom	menu	for
each	group	of	users.

A	login	WAM	will	handle	two	users	ids	ADMIN	and	USER.
Only	the	ADMIN	user	will	have	access	to	the	Applications	menu

To	meet	these	requirements	the	login	WAM	requires	the	following:
Session	Management	must	be	enabled	only	if	the	login	is	valid
The	lists	MNUSAVE	and	MNULIST	which	define	the	menu	items,	must
be	built	with	menu	sub-items	for	Applications,	only	for	the	user	ADMIN.
All	WAMs	using	this	menu	must	be	part	of	the	same	session	group
WAMs	using	this	menu	must	transfer	to	the	login	WAM	if	a	session	is	not
active
A	working	list	must	be	output	with	fields	which	support	the	jQuery	UI
Menubar	weblet.
Two	versions	of	the	menu	list	are	required:
MNUSAVE	will	be	the	persistent	version	which	is	saved	and	restored	by
all	WAMs	using	this	menu.
MNULIST	will	be	the	output	version	of	the	list	which	defines	the
menubar	weblet	menu	items.
The	menu	bar	in	the	common	layout	iiilay01	must	be	set	up	to	use	the
menu	list,	MNULIST

To	meet	these	objectives	you	will	complete	the	following:
Step	1.	Create	the	Login	WAM
Step	2.	Redefine	the	Menubar	in	Layout	iiilay01
Step	3.	Test	your	Login	WAM
Step	4.	Make	Application	WAMs	part	of	Session
Step	5.	Test	the	Applications	Menu
Step	6.	Implement	Menu	for	all	Employee	WAMs	(Optional)
Summary

Step	1.	Create	the	Login	WAM
1.		Create	a	new	WAM	with:

					Name:	iiiAppLogin
					Description:	Application	Login
					Layout	weblet:	iiilay01

2.		Press	F7	to	display	WAM	properties.	Use	the	Details	tab	to	make
SessionStatus	active	and	define	a	SessionGroupName	of	iiisession.

3.		Add	the	following	definitions	of	fields	and	lists	which	will	define	the	menu
Define	Field(#mnuitmid)	Type(*string)	Length(3)
Define	Field(#prtitmid)	Type(*string)	Length(3)
Define	Field(#mnucapt)	Type(*char)	Length(30)	Input_Atr(LC)
Define	Field(#mnuurl)	Type(*string)	Length(256)
Define	Field(#mnuwam)	Type(*char)	Length(9)
Define	Field(#mnuwrnme)	Type(*char)	Length(30)
Def_List	Name(#mnusave)	Fields(#mnuitmid	#prtitmid	#mnucapt	#mnuurl	#mnuwam	#mnuwrnme)	Type(*Working)
Def_List	Name(#mnulist)	Fields(#mnuitmid	#prtitmid	#mnucapt	#mnuurl	#mnuwam	#mnuwrnme)	Type(*Working)
	

4.		Add	the	following	WEB_MAPs:
Web_Map	For(*output)	Fields((#mnulist	*private))
Web_Map	For(*none)	Fields(#mnusave)	Options(*persist)

Web_Map	For(*both)	Fields((#stdrentry	*hidden))
	

					Note	the	way	that	the	map	for	list	MNUSAVE	is	defined.	This	is	the
persistent	version	of	the	menu	list	which	will	be	shared	by	all	WAMs	making
up	this	application.

5.		Define	a	WebRoutine	login,	which	has	an	onentry	parameter	of
*sessionstatus_none.	This	WebRoutine	will	establish	a	session	for	valid	users
and	execute	the	subroutines	to	build	the	menu	list.
Webroutine	Name(login)	Onentry(*SESSIONSTATUS_NONE)
Web_Map	For(*both)	Fields(#userid	#passwd)
Message	Msgtxt('Enter	your	user	id	and	password')
Endroutine
	

					Note	that	the	fields	USERID	and	PASSWD	are	mapped	for	*both.	If	these
fields	do	not	exist	in	the	Repository,	define	them	in	your	WAM	as:
Define	Field(#USERID)	Type(*char)	Length(10)	Desc("User	ID")
Define	Field(#PASSWD)	Type(*char)	Length(10)	Desc("Password")
Input_Atr(ND)
	

6.		Define	a	method	routine	AddToMenu	which	will	add	each	entry	to	the	menu
list	MNUSAVE.	It	requires	six	input	parameters	which	will	define	the
required	menu	field	entries.	You	will	find	this	information	in	the	Web
Applications	Modules	Guide	/	8.1.18	Menubar	(std_menubar).	Your	code
should	look	like	the	following:
Mthroutine	Name(AddToMenu)
Define_Map	For(*input)	Class(#STD_STRNG)	Name(#itmid)
Define_Map	For(*input)	Class(#STD_STRNG)	Name(#pitmid)
Define_Map	For(*input)	Class(#STD_DESC)	Name(#caption)
Define_Map	For(*input)	Class(#STD_STRNG)	Name(#URL)
Define_Map	For(*input)	Class(#STD_DESCS)	Name(#WAM)
Define_Map	For(*input)	Class(#STD_DESCS)	Name(#WRNAME)
#mnuitmid	:=	#itmid
#prtitmid	:=	#pitmid
#mnucapt	:=	#caption
#mnuurl	:=	#URL
#mnuwam	:=	#WAM
#mnuwrnme	:=	#WRNAME

Add_Entry	To_List(#mnusave)
Endroutine
	

					If	necessary	add	field	STD_STRNG	to	the	Repository	as	a	STRING	field,
length	512.

7.		Define	a	subroutine	buildmenu	which	will	add	the	standard	menu	entries
which	will	be	available	for	all	users.	This	subroutine	will	be	invoked	once
when	the	user	logs	in,	so	it	should	begin	by	clearing	MNUSAVE.	It	should
call	the	method	routine	AddToMenu	to	define	and	add	each	menu	entry.	Your
code	should	look	like	the	following:
Subroutine	Name(buildmenu)
Clr_List	Named(#mnusave)
*	Home
#com_owner.addtomenu	Itmid('1')	Pitmid('')	Caption('Home')	Url('http://www.lansa.com/')	Wam('')	Wrname('')
*	Applications
#com_owner.addtomenu	Itmid('2')	Pitmid('')	Caption('Applications')	Url('')	Wam('')	Wrname('')
*	Support
#com_owner.addtomenu	Itmid('3')	Pitmid('')	Caption('Support')	Url('http://www.lansa.com/support/index.htm')	Wam('')	Wrname('')
*	Contact	Us
#com_owner.addtomenu	Itmid('4')	Pitmid('')	Caption('Contact	Us')	Url('http://www.lansa.com/about/contactus.htm')	Wam('')	Wrname('')
*	About
#com_owner.addtomenu	Itmid('5')	Pitmid('')	Caption('About')	Url('http://www.lansa.com/about/index.htm')	Wam('')	Wrname('')
*
Endroutine
	

8.		Define	a	subroutine	buildapps	which	will	only	be	executed	for	the	ADMIN
user,	which	adds	entries	for	the	Employees	menu	and	sub-menu	items.	It
should	not	clear	the	list	MNUSAVE.	Your	code	should	look	like	the
following.

					As	before	you	must	look	in	the	Repository	for	your	WAMs	and	note	their
Identifiers	and	replace	the	values	shown	in	the	code	below..
Subroutine	Name(buildapps)
*	Employees
#com_owner.addtomenu	Itmid('50')	Pitmid('2')	Caption('Employees')	Url('')
Wam('')	Wrname('')
*	enquiry
#com_owner.addtomenu	Itmid('51')	Pitmid('50')	Caption('Enquiry')	Url('')

Wam(IIIEMPEN)	Wrname(BEGIN)
*	Update
#com_owner.addtomenu	Itmid('52')	Pitmid('50')	Caption('Update')	Url('')
Wam(IIIEMPUP)	Wrname(BEGIN)
*	Update	with	Dropdowns
#com_owner.addtomenu	Itmid('53')	Pitmid('50')	Caption('Update	with
Dropdowns')	Url('')	Wam(IIIEMP_3)	Wrname(BEGIN)
*	Update	using	Dropdown	with	Selector
#com_owner.addtomenu	Itmid('54')	Pitmid('50')	Caption('Update	using
Dropdown	with	selector')	Url('')	Wam(IIIEMP_4)	Wrname(BEGIN)
Endroutine
	

					Note:	All	menu	entries	must	have	a	unique	id.	Sub-menu	items	must	also
have	the	correct	parent	id.

9.		Define	a	new	WebRoutine	welcome.	The	login	WebRoutine	will	transfer	to
this	after	a	valid	login.	Welcome	will	clear	and	populate	the	output	menu	list
MNULIST	and	display	"welcome"	messages.	Your	code	should	look	like	the
following:
Webroutine	Name(welcome)
Web_Map	For(*input)	Fields(#userid)
Clr_List	Named(#mnulist)
Selectlist	Named(#mnusave)
Add_Entry	To_List(#mnulist)
Endselect
Message	Msgtxt('Welcome	'	+	#USERID)	Type(*STATUS)
Message	Msgtxt('You	are	logged	into	the	Personnel	Applications	System')	Type(*status)
Endroutine
	

					Note	that	the	USERID	is	mapped	into	this	WebRoutine	so	that	it's	available
in	the	welcome	message.

10.	In	this	step	you	will	complete	the	login	WebRoutine.
					The	login	button	will	be	set	up	to	return	STDRENTRY	with	a	value	of	L.
					A	CASE	loop	for	field	USERID	will	check	password,	make	the	session
status	active,	and	execute	one	or	both	build	menu	subroutines.	It	will	then
transfer	to	the	welcome	WebRoutine.	Your	completed	login	WebRoutine
should	look	like	the	following:

Webroutine	Name(login)	Onentry(*SESSIONSTATUS_NONE)
Web_Map	For(*both)	Fields(#userid	#passwd)
Message	Msgtxt('Enter	your	user	id	and	password')
If	(#stdrentry	=	L)
Case	(#userid)
When	(=	ADMIN)
If	(#passwd	=	'14MIN')
#com_owner.sessionstatus	:=	active
Execute	Subroutine(buildmenu)
Execute	Subroutine(buildapps)
Transfer	Toroutine(welcome)
Else
Message	Msgtxt('Password	incorrect	for	this	user')
Endif
When	(=	USER)
If	(#passwd	=	'US5R')
#com_owner.sessionstatus	:=	active
Execute	Subroutine(buildmenu)
Transfer	Toroutine(welcome)
Else
Message	Msgtxt('Password	incorrect	for	this	user')
Endif
Endcase
Endif
Endroutine
	

11.	Compile	your	WAM.
12.	Open	the	login	WebRoutine	in	the	Design	view.

a.		Add	a	row	to	the	bottom	of	the	fields	table
b.		Add	a	push	button	with	image	to	the	bottom	right	hand	cell
c.		Set	up	the	push	button	as	follows:

Property Value
caption Log	In

left_relative_image icons/normal/16/user_16.png

on_click_wrname Login

submitExtraFields Field	Name:	STDRENTRY

	 Literal	Value:	L

	

13.		Save	your	changes.

Step	2.	Redefine	the	Menubar	in	Layout	iiilay01
1.		Open	the	layout	iiilay01	in	the	editor.
2.		Select	the	menu	bar	weblet.
3.		Open	the	Design	of	….	dialog	for	the	menu_items	property	and	delete	all	the
hard	coded	menu	items.	Click	OK	to	save	the	changes.

4.		Define	the	listname	property	as	MNULIST.
5.		Save	your	changes.

Step	3.	Test	your	Login	WAM
1.		Make	a	note	of	the	userid	and	password	values	which	have	been	hard	coded.
Execute	the	login	WebRoutine	and	login	as	ADMIN.	The	menu	bar	should
look	like	the	following:

2.		If	you	are	experiencing	problems,	try	using	debug	to	investigate.
3.		Run	the	Login	WebRoutine	again	and	log	in	as	USER.	The	menu	bar	should
display	the	Applications	top	level	menu	item,	but	no	sub-menu	items	will	be
shown.

Step	4.	Make	Application	WAMs	part	of	Session
In	this	step	you	will	enable	session	management	in	WAM	iiiEmpEnquiry	and
make	it	share	the	session	group	IIISESSION.	The	WAM	will	need	to	map	the
saved	and	output	menu	lists	in	the	same	way	as	already	implemented	in	the	log
in	WAM	iiiAppLogin.
1.		Open	WAM	iiiEmpEnquiry	in	the	editor.	Press	F7	to	display	the	WAM
properties	and	make	SessionStatus	active	and	SessionGroupName,
IIISESSION.

2.		Copy	and	paste	the	following	field,	list	and	web_maps	statements	from
iiiAppLogin.	In	a	real	application	the	menu	fields	would	be	defined	in	the
Repository.
Define	Field(#mnuitmid)	Type(*string)	Length(3)
Define	Field(#prtitmid)	Type(*string)	Length(3)
Define	Field(#mnucapt)	Type(*char)	Length(30)	Input_Atr(LC)
Define	Field(#mnuurl)	Type(*string)	Length(256)
Define	Field(#mnuwam)	Type(*char)	Length(9)
Define	Field(#mnuwrnme)	Type(*char)	Length(30)
Def_List	Name(#mnusave)	Fields(#mnuitmid	#prtitmid	#mnucapt	#mnuurl	#mnuwam	#mnuwrnme)	Type(*Working)
Def_List	Name(#mnulist)	Fields(#mnuitmid	#prtitmid	#mnucapt	#mnuurl	#mnuwam	#mnuwrnme)	Type(*Working)
Web_Map	For(*output)	Fields((#mnulist	*private))
Web_Map	For(*none)	Fields(#mnusave)	Options(*persist)
	

3.		Add	an	event	handling	routine	for	SessionInvalid.	This	will	transfer	to	WAM
iiiAppLogin	and	WebRoutine	login	if	any	WebRoutine	is	invoked	without	a
session	being	established	or	after	a	session	has	timed	out.	Change	iii	to	your
initials.
EVTROUTINE	HANDLING(#COM_OWNER.SessionInvalid)	OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
TRANSFER	TOROUTINE(#iiiAppLogin.login)
ENDROUTINE
	

4.		Change	the	initial	WebRoutine	in	iiiEmpEnquiry,	in	this	case	it	is
WebRoutine	begin,	to	clear	list	MNULIST	and	populate	it	from	MNUSAVE.
Your	WebRoutine	begin	code	should	now	look	like	the	following.	Changes
are	shown	in	red.
Webroutine	Name(begin)	Desc('Select	Employee')

Web_Map	For(*output)	Fields(#empno)
Clr_List	Named(#mnulist)
Selectlist	Named(#mnusave)
Add_Entry	To_List(#mnulist)
Endselect
Endroutine
	

					Remember	list	MNUSAVE	is	automatically	restored	when	the	WAM	runs,
because	session	management	is	active	and	the	list	is	mapped	as	persistent
data.	Both	field	values	and	lists	may	be	defined	as	persistent	data.

5.		Compile	iiiEmpEnquiry.

Step	5.	Test	the	Applications	Menu
1.		Execute	the	login	WebRoutine	in	iiiAppLogin	in	the	browser.	Log	in	as	user
ADMIN.

2.		From	the	menu	bar	select	Applications	/	Employees	/	Enquiry	to	execute
WebRoutine	begin	in	WAM	iiiEmpEnquiry.	With	the	Enquiry	WAM
running	check	that	the	Applications	menu	is	shown.	Close	the	browser.

3.		Execute	the	begin	WebRoutine	in	iiiEmpEnquiry	in	the	browser.	Your
application	should	transfer	to	the	log	in	WAM	so	that	a	session	can	be
established.	The	transfer	is	handled	via	the	event	handling	routine	for
SessionInvalid.

Step	6.	Implement	Menu	for	all	Employee	WAMs	(Optional)
1.		If	the	changes	made	in	Step	4.	Make	Application	WAMs	part	of	Session	are
applied	to	WAMs	iiiEmpUpdate,	iiiEmpUpdate_MK2	and	iiiDynamSelector
then	all	four	Employee	applications	may	be	run	from	the	menu	and	will
display	the	correct	menu.

Summary
Important	Observations

In	a	real	application	you	could	define	login	authority	in	a	database	file
with	a	small	application	to	manage	them.

Tips	&	Techniques
The	menu	bar	has	a	submit_selected_to	property,	which	will	send	the
menu	id	in	the	defined	field	to	the	WebRoutine	which	is	invoked.	This
could	enable	the	WebRoutine	to	behave	in	a	specific	way	when	it	is	first
invoked	from	the	menu.

What	You	Should	Know
How	to	implement	the	jQuery	UI	Menubar	using	a	working	list.

WAM130	-	Output	a	Web	Page	to	a	File
Objectives
Running	a	WAM	using	the	X_RUN	command,	enables	the	WebRoutine	output
to	be	saved	to	a	file.	This	enables	permanent	(instead	of	dynamic)	web	pages	to
be	created	from	your	application.	This	may	be	an	advantage	when	seeking	to
optimize	search	engines	searches	over	your	public	web	site.	It	can	also	be	used
as	a	method	of	saving	results	which	will	be	fixed	for	a	period	of	time	(for
example	monthly	statistics)	rather	than	repeatedly	running	a	WAM	to	calculate
the	same	set	of	results	for	each	user	enquiry.
Output	to	a	file	from	a	WebRoutine	is	supported	for	Windows,	IBM	i	and	Linux
servers	but	you	need	to	be	aware	of	differences	with	the	X_RUN	command
parameters	used.	See	a	Saving	a	WAM's	Output	to	a	File	for	more	details.
Since	the	WebRoutine	output	goes	directly	to	an	HTML	file,	it	can	only	contain
output	generated	by	the	WebRoutine.
To	demonstrate	WAM	output	to	a	file	on	Windows	and	IBM	i	(if	available)	you
will	complete	the	following:
Step	1.	Output	Employee	Enquiry	to	a	File
Step	2.	Run	WAM	to	output	to	a	file	in	Windows
Step	3.	Run	WAM	to	output	a	file	on	IBM	i
Summary

Before	You	Begin
Complete	the	introductory	exercises,	WAM005,	WAM010,	WAM015	and
WAM020	before	starting	this	exercise.

its:lansa087.chm::/lansa/WAMEngb3_0210.htm

Step	1.	Output	Employee	Enquiry	to	a	File
This	exercise	uses	a	simple	enquiry	WAM.	When	running	in	the	browser,	an
employee	number	is	requested	via	WebRoutine	begin.	A	second	WebRoutine
details	is	invoked	which	displays	employee	data.
Using	X_RUN	the	details	WebRoutine	is	invoked,	passing	employee	number	as
a	parameter	so	that	the	web	page	containing	data	for	the	requested	employee	can
be	written	to	a	file.
To	execute	a	WAM,	the	parameters	required	by	the	X_RUN	command	for
Windows	are	as	follows:

Argument Value

PROC *WAMSP	is	the	value	to	activate	the	"output	to	file"	function

WMOD WAM	Name

WRTN WebRoutine	Name

WAML Mark	up	language,	e.g.	LANSA:HTML

PART Partition

LANG Language,	e.g	ENG

USER User.	Optional	for	some	platforms

WASP Output	file	path	where	the	output	will	be	saved.	Format	depends
on	platform.
e.g.	for	Windows
c:\temp\wam_output.html

	

The	format	of	the	X_RUN	command	for	Windows	is:
X_RUN	PROC=*WAMSP	WMOD=IIIEmpEnqToFile	WRTN=DETAILS	etc.
	

					The	X_RUN	command	does	not	have	a	parameter	to	input	a	field	and	value.
X_RUN	does	have	a	user	defined	parameter	UDEF,	which	is	a	256	long
character	field.	To	use	the	UDEF	parameter,	a	simple	modification	to	the
WebRoutine	is	required	to	retrieve	the	UDEF	value	using	the	Built-in

Function	GET_SESSION_VALUE.	If	the	value	returned	by	the	BIF	is	non
blank,	the	details	WebRoutine	can	retrieve	employee	data	using	the	session
value	as	employee	number.

1.		Create	a	new	Employee	Enquiry	WAM	and	complete	its	code	by	copying	the
following	code.
					Name:	iiiEmpEnqToFile
					Description:	Employee	Enquiry	to	File
					Layout	Template:	iiilay01
Group_By	Name(#empgroup)	Fields((#SURNAME	*OUT)	(#GIVENAME	*OUT)	(#ADDRESS1	*OUT)	(#ADDRESS2	*OUT)	(#ADDRESS3	*OUT)	(#POSTCODE	*OUT)	(#PHONEHME	*OUT)	(#PHONEBUS	*OUT)	(#DEPTMENT	*OUT)	(#SECTION	*OUT)	(#SALARY	*OUT)	(#STARTDTE	*OUT)	(#TERMDATE	*OUT))
Webroutine	Name(begin)	Desc('Select	Employee')
Web_Map	For(*output)	Fields(#empno)
Endroutine
Webroutine	Name(DETAILS)	Desc('Employee	Details')
Web_Map	For(*BOTH)	Fields((#EMPNO	*OUTPUT))
Web_Map	For(*OUTPUT)	Fields(#empgroup)
Fetch	Fields(#empgroup)	From_File(PSLMST)	With_Key(#EMPNO)	Val_Error(*NEXT)
If_Status	Is_Not(*OKAY)
Message	Msgtxt('Employee	not	found')
Endif
Endroutine
	

2.		Add	logic	to	the	details	WebRoutine	to	retrieve	session	value.	If	non	blank,
use	as	employee	number.

					Add	the	following	code	in	WebRoutine	Details,	immediately	before	the
FETCH	command.
Define	Field(#retcode)	Type(*char)	Length(2)
Use	Builtin(get_session_value)	With_Args(UDEF)	To_Get(#STD_QSEL	#retcode)
If	(#std_qsel	*NE	*blanks)
#empno	:=	#std_QSEL.trim
Endif
	

3.		Compile	your	WAM.
4.		Open	the	begin	WebRoutine	in	the	design	view.

a.		Add	a	right	hand	column	to	the	table	containing	employee	number.
b.		Drag	and	drop	a	push	button	weblet	into	the	new	column.

c.		Change	the	caption	to	Select.
d.		Set	the	push	button	on_click_wrname	property	to	invoke	the	Details
WebRoutine.

e.		The	submitExtraFields	property	does	not	need	to	be	specified.
f.		Remove	the	place	holder	characters.
g.		Save	your	changes.

5.		Run	the	begin	WebRoutine	in	the	browser	and	ensure	that	the	details
WebRoutine	executes	normally	when	invoked	from	the	begin	web	page.	
Enter	an	employee	number	such	as	A0090,	A0070	or	A1001.

Step	2.	Run	WAM	to	output	to	a	file	in	Windows
This	step	will	run	the	details	WebRoutine	in	Windows	using	the	X_RUN
command	and	pass	in	the	employee	number	using	the	UDEF,	a	user	defined	run
time	parameter.
The	X_RUN.EXE	program	is	in	the	Visual	LANSA	\execute	folder,	for
example:
C:\Program	Files\LANSA_D12\X_WIN95\X_LANSA\execute

You	could	add	this	path	to	your	Windows	Path	environment	variable,	in	which
case	the	X_RUN	program	will	be	found	when	it	is	run	from	a	simple	batch	file.
For	this	exercise	you	will	create	a	DOS	batch	file	using	Notepad	and	set	up	the
required	path.
1.		Open	Notepad	and	add	the	following	code:
cd\
cd	program	files\lansa\x_win95\x_lansa\execute
x_run	PROC=*WAMSP	WMOD=iiiEMP_4	WRTN=DETAILS	WAML=LANSA:XHTML	PART=DEM	LANG=ENG	USER=D12PGMLIB	WASP=C:\temp\iiiEMPDET.html	UDEF=A0090
	

	Important:	With	your	WAM	open	in	the	editor,	select	the	Repository	Details
tab	to	find	its	Identifier.	This	must	be	used	in	the	X_RUN	(that	is,	replace
WMOD=IIIEMP_4	in	this	code).

					If	necessary	change	the	change	directory	command	(cd)	to	reflect	your
Visual	LANSA	installed	path.

					Review	the	X_RUN	command	carefully	and	correct	it	for	your	Visual	Lansa
path,	partition	name,	user	and	output	HTML	file	name.

					The	specific	X_RUN	parameters	you	may	need	to	change	are:
WMOD	–	WAM	Identifier
PART	–	partition	name
USER	–	user	name	(use	your	Visual	LANSA	profile	name)
WASP	–	The	output	path	and	file	name.	Use	your	initials
UDEF	–	The	employee	number
					Create	a	c:\temp	folder	if	necessary.
2.		Use	the	Save	as	Type:	All	to	save	the	file	as	iiiWAMOUT.bat	in	folder
c:\temp

3.		Navigate	to	c:\temp	with	Windows	Explorer	and	double	click	on
iiiWAMOUT.bat	to	run	it.	The	DOS	command	prompt	should	briefly	open
and	close.

4.		Check	folder	c:\temp	for	the	output	file	iiiEMPDET.html.
5.		If	your	run	does	not	output	the	file	iiiEMPDET.html,	check	the	batch	file
carefully	for	errors	and	try	again.

					When	running	your	WAM	locally,	you	can	also	check	for	errors	in	the	Visual
Lansa	Error	Log.

					See	also	the	Web	Runtime	Error	Log	from	the	Error	Logs	menu.
6.		When	your	WAM	has	created	the	output	file,	double	click	on	it	to	open	it
directly	in	your	PC's	default	browser.	It	should	look	like	the	following:

					No	cascading	style	sheets	have	been	applied.
7.		Copy	the	output	file	iiiEMPDET.html	to	your	Visual	LANSA	web
server\images	path,	such	as:
C:\Program	Files\LANSA\WebServer\Images
	

8.		Open	the	file	by	putting	the	following	URL	into	your	browser	address	bar:
http://localhost/images/iiiempdet.html
	

					Your	web	page	should	now	be	displayed	correctly	formatted,	because	the
cascading	style	sheets	have	been	applied.	See	below:

Step	3.	Run	WAM	to	output	a	file	on	IBM	i
1.		Check	in	and	compile	WAM	iiiEmpEnqToFile.	Its		layout	will	be	included	in
the	check	in	list	of	objects,	automatically.	Also	check	in	the	common	layout
iiilay01,	if	it	has	not	been	checked	in	before.	Review	the	Check	In	tab	to
ensure	the	Check	In	was	successful

2.		Start	an	emulator	session.	Log	on	with	your	Visual	LANSA	user	id	and
password.	Call	the	command	processor	with
					CALL	QCMD

					Display	a	full	screen	by	pressing	F11.
3.		Enter	the	following	command:
LANSA	REQUEST(X_RUN)	PARM01('PROC=*WAMSP')
PARM02('WMOD=IIIEMP_4')	PARM03('WRTN=DETAILS')
PARM04('WAML=LANSA.XHTML')	PARM05('PART=TRN')
PARM06('LANG=ENG')	PARM07('WASP=/TMP/IIIEMPDET.HTML')
PARM08('UDEF=A0090')					

					Note:	You	can	copy	this	command	string	from	WAM	Tutorials	in	the	online
guide	and	use	the	Edit/Paste	menu	option	in	Client	Access	emulator	to	copy
the	command	into	the	5250	screen.	Then	press	F4	to	prompt	the	LANSA
command.				

					Correct	the	call	command	for	your	WAM	Identifier	name,	partition	name	and
user	name.	Check	that	your	IBM	i	has	a	/tmp	folder	in	the	IFS	or	use	a
suitable	alternative	folder.

					Press	Enter	to	run	the	WAM.
4.		Use	WRKLNK	to	view	the	/tmp	folder	and	find	your	output	HTML	file.
					Note:	Your	call	command	should	have	run	successfully	because	your	library
list	was	correct,	so	that	the	X_RUN	program	was	found.	You	logged	on	a
LANSA	developer	and	therefore	had	the	correct	library	list.

					If	you	were	creating	a	CL	program	to	run	this	job,	you	would	need	to
establish	the	correct	library	list.	For	example:
ADDLIBLE	<PGMLIB>
LANSA	REQUEST(X_RUN)	PARM01('PROC=*WAMSP')
PARM02('WMOD=IIIEMP_4')	PARM03('WRTN=DETAILS')
PARM04('WAML=LANSA.XHTML')	PARM05('PART=TRN')

PARM06('LANG=ENG')	PARM07('WASP=/TMP/IIIEMPDET.HTML')
PARM08('UDEF=A0090')
	

					where:	<PGMLIB>	is	your	LANSA	program	library.
					You	could	also	consider	error	handling	in	the	modified	details	WebRoutine.
What	to	do	if	the	UDEF	variable	is	non-blank	but	the	FETCH	employee
record	is	unsuccessful?

					Once	again,	if	you	have	access	to	the	/tmp	folder	from	Windows	explorer	the
iiiempdet.html	can	be	opened	in	the	browser,	but	it	will	be	unformatted.

5.		Copy	the	output	HTML	file	to	the	appropriate	IBM	i	web	server	/images
folder.	For	example:
CPY	OBJ('/tmp/iiiempdet.html')

TODIR('/lansa_<PGMLIB>/webserver/www/htdoc
s/images')	REPLACE(*YES)

					where	<PGMLIB>	is	your	LANSA	program	library.
					Check	that	the	TODIR	parameter	is	correct	for	you	installation	of	LANSA.
6.		Put	the	following	URL	into	your	browser	address	bar:
http://10.44.10.238/images/iiiempdet.html
	

					where:	10.44.10.238	is	your	IBM	i	IP	Address	(or	use	its	server	name).	Your
saved	web	page	should	now	be	displayed	correctly	formatted	and	the	required
style	sheets	(CSS)	will	have	been	included.

Summary
Important	Observations

For	further	details	on	using	this	facility	see	the	Saving	a	WAM's	Output	to
a	File.

Tips	&	Techniques
The	user	defined	parameter	accepted	by	X_RUN	is	a	256	long	character
string.	You	could	input	a	more	complex	key	(DEPTMENT	and	SECTION
to	identify	a	section	record	for	example)	by	concatenating	them	into
UDEF.	The	WebRoutine	would	then	split	the	UDEF	variable	into	its
known	parts.

What	You	Should	Know
How	to	implement	the	Save	WAM	output	to	a	file	feature.

its:lansa087.chm::/lansa/WAMEngb3_0210.htm

WAM135	-	Using	the	Google	Static	Maps	API
Objective
This	exercise	provides	a	very	simple	example	of	using	address	information	to
display	a	street	map	using	the	Google	Static	Map	API.	The	Google	Maps
facility	can	be	used	in	many	more	sophisticated	ways.	This	example	is	intended
to	illustrate	that	provided	you	have	good	address	data,	a	static	map	can	quite
easily	be	displayed.
The	information	to	build	this	example	was	taken	from:
http://code.google.com/apis/maps/documentation/staticmaps/#quick_example
See	the	following	URL	for	full	documentation:
http://code.google.com/apis/maps/documentation/staticmaps/
The	supplied	example	shows	how	the	following		tag	will	display	a	street
map	around	the	Brooklyn	Bridge,	New	York.
<img	src=http://maps.googleapis.com/maps/api/staticmap?
center=Brooklyn+Bridge,New+York,NY&zoom=14&size=512x512&maptype=roadmap
&markers=color:blue%7Clabel:S%7C40.702147,-74.015794&markers=color:green%7Clabel:G%7C40.711614,-74.012318
&markers=color:red%7Ccolor:red%7Clabel:C%7C40.718217,-73.998284&sensor=false>
	

A	simple	employee	enquiry	will	display	a	static	street	map	for	the	employee's
address.
To	meet	this	objective	you	will	complete	the	following:
Step	1.	Create	an	Employee	Enquiry	WAM
Step	2.	Add	logic	to	set	up	URL	to	Google	Map	Service
Summary

Before	You	Begin
Complete	the	introductory	exercises,	WAM005,	WAM010,	WAM015	and
WAM020.

http://code.google.com/apis/maps/documentation/staticmaps/#quick_example
http://code.google.com/apis/maps/documentation/staticmaps/

Step	1.	Create	an	Employee	Enquiry	WAM
1.		Create	a	new	WAM	with:

					Name:	iiiEmpEnqMap
					Description:	Employee	Enquiry	with	Map
					Layout	Template:	iiilay01
					Create	the	WAM	by	copying	the	following	code	into	the	default	WAM
source:

Group_By	Name(#empgroup)	Fields((#SURNAME	*OUT)	(#GIVENAME	*OUT)	(#ADDRESS1	*OUT)	(#ADDRESS2	*OUT)	(#ADDRESS3	*OUT)	(#POSTCODE	*OUT)	(#PHONEHME	*OUT)	(#PHONEBUS	*OUT)	(#DEPTMENT	*OUT)	(#SECTION	*OUT)	(#SALARY	*OUT)	(#STARTDTE	*OUT)	(#TERMDATE	*OUT))
Define	#ADDRESS	Type(*string)	Length(1000)
Webroutine	Name(begin)	Desc('Select	Employee')
Web_Map	For(*output)	Fields(#empno)
Endroutine
Webroutine	Name(DETAILS)	Desc('Employee	Details')
Web_Map	For(*BOTH)	Fields((#EMPNO	*OUTPUT)
(#ADDRESS	*hidden))
Web_Map	For(*OUTPUT)	Fields(#empgroup)
Fetch	Fields(#empgroup)	From_File(PSLMST)	With_Key(#EMPNO)	Val_Error(*NEXT)
If_Status	Is_Not(*OKAY)
Message	Msgtxt('Employee	not	found')
Transfer	Toroutine(begin)
Endif
Endroutine	

2.		Compile	the	WAM.
3.		Add	a	push	button	to	the	begin	web	page.

a.		Open	the	begin	WebRoutine	in	the	Design	view.
b.		Add	a	column	to	the	fields	table.
c.		Add	a	push	button	in	the	new	column.
d.		Set	up	the	button	with	a	caption	of	Details	and	an	on_click_wrname	of
details.

e.		Remove	the	*	placeholder	characters.
f.		Save	your	changes.

4.		Open	the	Details	WebRoutine	in	the	Design	view.

a.		Add	a	column	to	the	fields	table
b.		With	the	top	row	in	the	new	column	selected,	set	its	rowspan	property	to
14.

c.		Click	inside	the	new	column	and	use	the	context	menu	to	Insert	HTML	/
Div.	Your	design	should	look	like	the	following:

d.		With	the	DIV	still	selected,	select	the	Details	tab.	Expand	its	Style
property	and	set	the	following	properties:

Property Value

Height 340px

Margin-left 50px

Width 340px

	

					Your	design	should	look	like	the	following:

e.		Delete	the	*	place	holder	characters	from	this	column.
f.		Save	your	changes.
g.		Drop	a	clickable	image	weblet	into	the	DIV.
h.		Select	the	clickable	image	and	set	its	absolute_image_path	to
#ADDRESS.

		Enter	#ADDRESS	in	the	XPath	Expression	window.
i.		Save	your	changes.

Step	2.	Add	logic	to	set	up	URL	to	Google	Map	Service
In	this	step	you	will	extend	the	Details	WebRoutine	to	use	the	employee	address
fields	to	set	up	the	URL	string	which	will	be	output	as	the	#ADDRESS	field.
Review	the	example	Google	URL	provided	in	Objectives,	and	note	the
Brooklyn	Bridge	address	values	in	that	string.
An	employee	address	such	as:
70	MAIN	STREET	(field	ADDRESS1)
NEWTOWN	NSW	(field	ADDRESS2)
AUSTRALIA	(field	ADDRESS3)
Must	be	used	to	produce	a	string	inside	the	Google	URL	such	as:
MAIN+STREET,NEWTOWN,NSW,AUSTRALIA
Your	code	needs	to	do	the	following:

Remove	house	number
Remove	leading	spaces
Add	+	between	words	in	an	address	line
Add	a	comma	between	elements	in	field	ADDRESS2

1.		Define	two	work	fields	at	WAM	level	(below	the	Begin_com):
Define	Field(#addr1)	Reffld(#address1)
Define	Field(#addr2)	Reffld(#address2)
	

2.		In	the	Details	WebRoutine	add	the	following	logic,	immediately	after	the
FETCH	statement.
a.		Remove	numbers	and	first	space	character	from	ADDRESS1
#addr1	:=	#address1.removecharacters("1234567890").remove("	")
	
b.		Replace	space	character	(between	words)	with	a	+
#addr1	:=	#addr1.replace("	",	"+")
	
c.		Replace	space	character	in	ADDRESS2	with	comma.
#addr2	:=	#address2.replace("	",	",")
	
d.		Define	the	field	ADDRESS	as	the	complete	Google	URL

#ADDRESS	:=	'http://maps.googleapis.com/maps/api/staticmap?center='	+
#addr1	+	','	+	#addr2	+	','	+	#address3	+
'&zoom=14&size=340x340&maptype=roadmap&markers=color:blue%7C'	+
#addr1	+	','	+	#addr2	+	','	+	#address3	+	'&sensor=false'
	

					Note	that	the	size	value	in	the	URL	has	been	changed	to	340x340.
					All	other	values	use	the	supplied	example	values	for	example,	for	color.
These	could	all	be	adjusted	by	reference	to	the	Google	web	site	for	this
service.

3.		Compile	and	test	your	WAM.	Your	details	web	page	should	now	look	like
the	following:

Summary
Important	Information

You	should	read	the	terms	and	conditions	for	this	service.

Tips	&	Techniques
There	are	many	services	like	this	example	which	can	be	used	to	enhance
your	web	applications.

What	You	Should	Know
How	to	implement	the	Google	Static	Map	service.

	
	

Appendix	A.	XSL	and	XML	Conformance
LANSA	for	the	Web	WAMs	conform	to	the	following	W3C	XML	standards:

XML	1.0	standard:	http://www.w3.org/TR/REC-xml/
Namespaces	in	XML:	http://www.w3.org/TR/REC-xml-names/
XSLT	1.0	standard:	http://www.w3.org/TR/xslt
XPath	1.0	standard:	http://www.w3.org/TR/xpath

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath

Appendix	B.	WAM	XML	Structure
The	XML	document	produced	from	a	WEBROUTINE	invocation	at	runtime
has	a	standard	format.	All	fields,	lists	and	other	output	from	a	WEBROUTINE
are	defined	in	the	XML	document.	This	XML	document	is	used	as	input	to	the
transformation	using	the	WEBROUTINE	XSL	stylesheets	to	produce	the	final
presentation	output.	The	format	of	the	XML	document	must	be	well	known	and
standard	to	enable	correct	transformation	into	different	and	distinct	presentation
formats.
The	XML	document	is	divided	into	the	following	sections:
Context	Section
The	context	section	in	the	XML	document	contains	contextual	information
about	the	WEBROUTINE.	Items	such	as	WAM	name,	WEBROUTINE	name,
WEBROUTINE	title	are	available	here.
Options	Section
The	options	section	contains	various	options	that	may	be	modified	for	a
WEBROUTINE	that	may	determine	whether	particular	validation	or
presentation	functionality	is	enabled	or	not.
Messages	Section
The	messages	section	contains	messages	output	using	the	MESSAGE	RDML
command	at	runtime.
Fields	Section
The	fields	section	contains	fields	that	appear	as	outgoing	fields	in	WEB_MAP
statements	in	the	WEBROUTINE.	At	runtime,	the	outgoing	field	values	are
added	to	this	section	to	be	transformed	into	the	presentation	output.	Also
captions,	descriptions	and	headings	of	those	fields	are	added	to	this	section	both
at	runtime	and	design	time.
Lists	Section
The	lists	section	contains	lists	that	appear	as	outgoing	lists	in	WEB_MAP
statements	in	the	WEBROUTINE.	Headings	for	each	of	the	field	columns	and
field	values	for	each	of	the	list	rows	for	each	of	the	lists	are	added	to	this	section
at	runtime.	Headings,	but	not	actual	runtime	row	values,	are	also	available	in
this	section	at	design	time.	Generated	lists	have	an	attribute	inline="true"	if	they
are	inlined.	JSON	lists	are	sent	as	CDATA	sections.	JSON	lists	are	normally
consumed	by	JavaScript.

XML	Document	Example
The	following	is	an	example	of	the	XML	document:
	
<?xml	version="1.0"	encoding="UTF-8"?>
	<!--	Web	application	:	SAMPLEWAM							Test
						Webroutine						:	EmployeeEntry			Add	an	Employee
						Timestamp							:	2011-08-26T16:45:00	-->
	<lxml:data	xmlns:lxml="http://www.lansa.com/2002/XML/Runtime-Data">
				<lxml:context>
									<lxml:user-id>PCXUSER</lxml:user-id>
									<lxml:webapplication>SAMPLEWAM</lxml:webapplication>
									<lxml:webapplication-title>Test</lxml:webapplication-title>
									<lxml:webroutine>EmployeeEntry</lxml:webroutine>
									<lxml:webroutine-title>Add	an	Employee</lxml:webroutine-title>
									<lxml:service-name>SAMPLEWAM_EmployeeEntry</lxml:service-
name>
									<lxml:partition>DEM</lxml:partition>
									<lxml:language	iso-lang="en">ENG</lxml:language>
									<lxml:images-path>/IMAGES</lxml:images-path>
									<lxml:action-request>/CGI-BIN/lansaweb</lxml:action-request>
						</lxml:context>
						<lxml:options>
									<lxml:option	name="DBCS">false</lxml:option>
									<lxml:option	name="align-right">true</lxml:option>
									<lxml:option	name="check-numeric">true</lxml:option>
									<lxml:option	name="debug"	/>
									<lxml:option	name="trace"	/>
									<lxml:option	name="task"	/>
						</lxml:options>
						<lxml:external-resources>
									<lxml:script	name="XWJQC"	charset="utf-8"
location="header">jquery/1.9.1/jquery.min.js</lxml:script>
									<lxml:script	name="XWJQUI"	charset="iso-8859-1"
location="header">jquery-ui/1.10.3/js/jquery-ui.all.min.js</lxml:script>
									<lxml:script	name="XWJ001"	charset="utf-8"
location="header">script/std_jqueryui.min.js</lxml:script>
									<lxml:script	name="XWJ003"	charset="utf-8"
location="header">script/std_json.min.js</lxml:script>

									<lxml:style	name="XWC001"	charset="utf-8"
location="header">style/jquery/std_jqueryui.min.css</lxml:style>
									<lxml:style	name="XWT01J"	charset="iso-8859-1"
location="header">jquery-ui/1.10.3/css/redmond/jquery-
ui.all.min.css</lxml:style>
									<lxml:style	name="XWT01L101"	charset="utf-8"
location="header">style/jquery/redmond/std_themelet1_style1.min.css</lxml:style>
						</lxml:external-resources>
						<lxml:messages	/>
						<lxml:fields>
									<lxml:field	name="SURNAME">
												<lxml:caption>
															<lxml:label>Surname........</lxml:label>
															<lxml:description>Employee	Surname</lxml:description>
															<lxml:heading-1>Surname</lxml:heading-1>
															<lxml:heading-2	/>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="GIVENAME">
												<lxml:caption>
															<lxml:label>Given	names....</lxml:label>
															<lxml:description>Employee	Given	Name(s)</lxml:description>
															<lxml:heading-1>Given	name(s)</lxml:heading-1>
															<lxml:heading-2	/>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="EMPNO">
												<lxml:caption>
															<lxml:label>Employee	no....</lxml:label>
															<lxml:description>Employee	Number</lxml:description>
															<lxml:heading-1>		Employ</lxml:heading-1>
															<lxml:heading-2>		Number</lxml:heading-2>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>

									</lxml:field>
									<lxml:field	name="ADDRESS1">
												<lxml:caption>
															<lxml:label>Address	1......</lxml:label>
															<lxml:description>Street	No	and	Name</lxml:description>
															<lxml:heading-1>Address	line	1</lxml:heading-1>
															<lxml:heading-2	/>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="ADDRESS2">
												<lxml:caption>
															<lxml:label>Address	2......</lxml:label>
															<lxml:description>Suburb	or	Town</lxml:description>
															<lxml:heading-1>Address	line	2</lxml:heading-1>
															<lxml:heading-2	/>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="ADDRESS3">
												<lxml:caption>
															<lxml:label>Country</lxml:label>
															<lxml:description>State	and	Country</lxml:description>
															<lxml:heading-1>Country</lxml:heading-1>
															<lxml:heading-2	/>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="POSTCODE">
												<lxml:caption>
															<lxml:label>Post/zip	code..</lxml:label>
															<lxml:description>Post	/	Zip	Code</lxml:description>
															<lxml:heading-1>Post/zip</lxml:heading-1>
															<lxml:heading-2>Code</lxml:heading-2>
															<lxml:heading-3	/>
												</lxml:caption>

												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="PHONEHME">
												<lxml:caption>
															<lxml:label>Home	phone.....</lxml:label>
															<lxml:description>Home	Phone	Number</lxml:description>
															<lxml:heading-1>Home	phone</lxml:heading-1>
															<lxml:heading-2>Number</lxml:heading-2>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="PHONEBUS">
												<lxml:caption>
															<lxml:label>Business	ph....</lxml:label>
															<lxml:description>Business	Phone	Number</lxml:description>
															<lxml:heading-1>Business	Phone</lxml:heading-1>
															<lxml:heading-2>Number</lxml:heading-2>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="STARTDTER">
												<lxml:caption>
															<lxml:label>Start	date.....</lxml:label>
															<lxml:description>Start	date	(YYMMDD)</lxml:description>
															<lxml:heading-1>Start</lxml:heading-1>
															<lxml:heading-2>Date</lxml:heading-2>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="TERMDATER">
												<lxml:caption>
															<lxml:label>Term.	date.....</lxml:label>
															<lxml:description>Termination	Date	(YYMMDD)
</lxml:description>
															<lxml:heading-1>Term.</lxml:heading-1>
															<lxml:heading-2>Date</lxml:heading-2>

															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="DEPTMENT">
												<lxml:caption>
															<lxml:label>Department.....</lxml:label>
															<lxml:description>Department	Code</lxml:description>
															<lxml:heading-1>		Dept</lxml:heading-1>
															<lxml:heading-2>		Code</lxml:heading-2>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="SECTION">
												<lxml:caption>
															<lxml:label>Section........</lxml:label>
															<lxml:description>Section	Code</lxml:description>
															<lxml:heading-1>				Section</lxml:heading-1>
															<lxml:heading-2>					Code</lxml:heading-2>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="SALARY">
												<lxml:caption>
															<lxml:label>Salary.........</lxml:label>
															<lxml:description>Employee	Salary</lxml:description>
															<lxml:heading-1>Salary</lxml:heading-1>
															<lxml:heading-2	/>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="MNTHSAL">
												<lxml:caption>
															<lxml:label>Monthly	Salary</lxml:label>
															<lxml:description>Monthly	Salary</lxml:description>
															<lxml:heading-1>Monthly</lxml:heading-1>

															<lxml:heading-2>Salary</lxml:heading-2>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="STARTDTE">
												<lxml:caption>
															<lxml:label>Start	date.....</lxml:label>
															<lxml:description>Start	Date	(DDMMYY)</lxml:description>
															<lxml:heading-1>Start</lxml:heading-1>
															<lxml:heading-2>Date</lxml:heading-2>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
									<lxml:field	name="TERMDATE">
												<lxml:caption>
															<lxml:label>Term.	date.....</lxml:label>
															<lxml:description>Termination	Date	(DDMMYY)
</lxml:description>
															<lxml:heading-1>Term.</lxml:heading-1>
															<lxml:heading-2>Date</lxml:heading-2>
															<lxml:heading-3	/>
												</lxml:caption>
												<lxml:value	/>
									</lxml:field>
						</lxml:fields>
						<lxml:lists>
									<lxml:list	name="DEPTLIST"	row-count="5">
												<lxml:list-header>
															<lxml:header	name="DEPTMENT">
																		<lxml:heading-1>		Dept</lxml:heading-1>
																		<lxml:heading-2>		Code</lxml:heading-2>
																		<lxml:heading-3	/>
															</lxml:header>
															<lxml:header	name="DEPTDESC">
																		<lxml:heading-1>Department</lxml:heading-1>
																		<lxml:heading-2>Description</lxml:heading-2>
																		<lxml:heading-3	/>

															</lxml:header>
												</lxml:list-header>
												<lxml:list-entries>
															<lxml:entry>
																		<lxml:column	name="DEPTMENT"	id="DEPTLIST.0001.DEPTMENT"	/>
																		<lxml:column	name="DEPTDESC"	id="DEPTLIST.0001.DEPTDESC">Value	DEPTDESC	1</lxml:column>
															</lxml:entry>
															<lxml:entry>
																		<lxml:column	name="DEPTMENT"	id="DEPTLIST.0002.DEPTMENT"	/>
																		<lxml:column	name="DEPTDESC"	id="DEPTLIST.0002.DEPTDESC">Value	DEPTDESC	2</lxml:column>
															</lxml:entry>
															<lxml:entry>
																		<lxml:column	name="DEPTMENT"	id="DEPTLIST.0003.DEPTMENT"	/>
																		<lxml:column	name="DEPTDESC"	id="DEPTLIST.0003.DEPTDESC">Value	DEPTDESC	3</lxml:column>
															</lxml:entry>
															<lxml:entry>
																		<lxml:column	name="DEPTMENT"	id="DEPTLIST.0004.DEPTMENT"	/>
																		<lxml:column	name="DEPTDESC"	id="DEPTLIST.0004.DEPTDESC">Value	DEPTDESC	4</lxml:column>
															</lxml:entry>
															<lxml:entry>
																		<lxml:column	name="DEPTMENT"	id="DEPTLIST.0005.DEPTMENT"	/>
																		<lxml:column	name="DEPTDESC"	id="DEPTLIST.0005.DEPTDESC">Value	DEPTDESC	5</lxml:column>
															</lxml:entry>
												</lxml:list-entries>
									</lxml:list>
									<lxml:list	name="SECTLIST"	row-count="5">
												<lxml:list-header>
															<lxml:header	name="SECTION">
																		<lxml:heading-1>				Section</lxml:heading-1>
																		<lxml:heading-2>					Code</lxml:heading-2>
																		<lxml:heading-3	/>
															</lxml:header>
															<lxml:header	name="SECDESC">
																		<lxml:heading-1>Section</lxml:heading-1>
																		<lxml:heading-2>Description</lxml:heading-2>
																		<lxml:heading-3	/>
															</lxml:header>
												</lxml:list-header>
												<lxml:list-entries>

															<lxml:entry>
																		<lxml:column	name="SECTION"	id="SECTLIST.0001.SECTION"	/>
																		<lxml:column	name="SECDESC"	id="SECTLIST.0001.SECDESC">Value	SECDESC	1</lxml:column>
															</lxml:entry>
															<lxml:entry>
																		<lxml:column	name="SECTION"	id="SECTLIST.0002.SECTION"	/>
																		<lxml:column	name="SECDESC"	id="SECTLIST.0002.SECDESC">Value	SECDESC	2</lxml:column>
															</lxml:entry>
															<lxml:entry>
																		<lxml:column	name="SECTION"	id="SECTLIST.0003.SECTION"	/>
																		<lxml:column	name="SECDESC"	id="SECTLIST.0003.SECDESC">Value	SECDESC	3</lxml:column>
															</lxml:entry>
															<lxml:entry>
																		<lxml:column	name="SECTION"	id="SECTLIST.0004.SECTION"	/>
																		<lxml:column	name="SECDESC"	id="SECTLIST.0004.SECDESC">Value	SECDESC	4</lxml:column>
															</lxml:entry>
															<lxml:entry>
																		<lxml:column	name="SECTION"	id="SECTLIST.0005.SECTION"	/>
																		<lxml:column	name="SECDESC"	id="SECTLIST.0005.SECDESC">Value	SECDESC	5</lxml:column>
															</lxml:entry>
												</lxml:list-entries>
									</lxml:list>
									<lxml:json-list	name="LIST01"><![CDATA[{"list":{
												"LIST01":{"header":[
															{"name":"DEPTMENT","heading-2":"	Dept","heading-3":"Code"},
															{"name":"DEPTDESC","heading-2":"Department","heading-
3":"Description"},
															{"name":"PCK105","heading-1":"Packed","heading-2":"
(10,","heading-3":"5)"},
															{"name":"DAT01","heading-2":"Date","heading-3":"field"},
															{"name":"BOOL1","heading-2":"Boolean","heading-3":"Field"},
															{"name":"FLT01","heading-2":"Float","heading-3":"field"},
															{"name":"FLT04","heading-2":"Float","heading-3":"4"},
															{"name":"INT01","heading-1":"Integer","heading-
2":"field","heading-3":"1"},
															{"name":"INT02","heading-1":"Integer","heading-
2":"field","heading-3":"2"}],
															"entries":[
																	["ADM","Admin	>	Dept",23456.78900,"2011-08-

29",true,+1.234567000000000E+004,+1.234567E+004,12345,12345],
																	["SD","Sales\"	&	Dist",65432.12340,"2011-08-
29",false,+1.234567000000000E+004,+1.234567E+004,12345,12345]
]}}}
]]>
									</lxml:json-list>
						</lxml:lists>
	

Appendix	C.	Deprecated	Weblets
When	a	weblet	is	enhanced,	best	efforts	are	made	to	ensure	that	it	remains
backwards	compatible	so	that	existing	WAMs	continue	to	look	and	behave	as
they	always	did.	However,	sometimes,	changes	in	browser	behavior,	specific
implementation	requirements	of	new	features	or	other	technical	restrictions
make	it	impossible	to	implement	new	features	or	fixes	and	maintain	backwards
compatibility.
When	this	occurs,	a	new	weblet	is	created	and	the	old	weblet	is	left	unchanged.
The	new	weblet	will	usually	have	the	same	display	name	but	will	have	a
different	XSLT	template	name	(often	with	something	like	"_v2"	appended	to	the
name).
Weblets	that	have	been	deprecated	are	still	shipped	so	that	existing	WAMs
continue	to	work	as	before	but	they	are	normally	removed	from	the	Weblet
Templates	repository	display.	You	can	make	them	visible	in	the	list	by	turning
on	the	Show	deprecated	Weblets	option	in	the	XSL	tab	of	the	LANSA	Settings
dialog.
If	the	changes	to	the	weblet	properties	or	behavior	is	significant	then	the
documentation	for	the	deprecated	weblet	is	retained	in	this	section.
Weblets	in	this	category	include:

Weblet	name Description

Attachment	Panel
(std_attachment_panel)

Panel	with	five	areas	where	content	can	be	dropped,
Left,	Top,	Right,	Center,	and	Bottom.	Each	of	these
has	attachment	layout	manager	behavior.	Contents
can	be	inserted	or	other	weblets	dropped	into	any	of
the	five	areas.	Dropped	weblets	are	sized	according
to	attachment	layout	manager	rules	when	they	are
dropped.

Banner	(std_banner) Panel	that	scrolls	content	such	as	other	weblets,	text,
and	elements	dropped	into	it.

Date	(std_date) A	text	input	box	that	supports	the	display,	entry,
prompting	and	validation	of	dates.

DateTime
(std_datetime)

A	text	input	box	that	supports	the	display,	entry,
prompting	and	validation	of	date	and/or	time	values.

its:lansa087.chm::/lansa/wamengb2_0030.htm
its:lansa087.CHM::/lansa/WAMEngb2_0035.HTM

Dynamic	HTML	menu
bar	(std_dhtml_menu)

DHTML	Multilevel	Menu.

Push	Button
(std_button)	&	Push
Button	with	Images
(std_image_button)

A	button	with	images.	Images	can	be	on	the	left	or
right,	or	both,	of	the	caption.

Time	(std_time) A	text	input	box	with	added	features	to	support	the
display,	entry	and	validation	of	times.

Tree	view
(std_treeview)

Tree	control,	Internet	Explorer	version	only.

Tree	view	target
(std_treeview_target)

Panel	that	is	a	target	of	tree	control	selection	actions.

	

	
	
	
	

its:lansa087.chm::/lansa/wamengb2_0055.htm
its:lansa087.CHM::/lansa/WAMEngb2_0040.HTM
its:lansa087.chm::/Lansa/WAMengb8_0340.htm
its:lansa087.chm::/lansa/wamengb2_0135.htm
its:lansa087.chm::/lansa/WAMEngb2_0140.htm

Attachment	panel	(std_attachment_panel)
The	Attachment	panel	weblet	provides	a	panel	with	five	areas	where	content
can	be	dropped:	left,	top,	right,	center,	and	bottom.	Each	of	these	has	attachment
layout	manager	behavior.	Contents	can	be	inserted	or	other	weblets	dropped	into
any	of	the	five	areas.	Dropped	weblets	are	sized	according	to	attachment	layout
manager	rules	when	they	are	dropped.
The	following	is	an	example	of	the	appearance	of	a	nearly	empty	attachment
panel.	In	this	example,	just	three	of	the	attachment	areas	have	been	used.	A
thick	dashed	border	has	been	specified	for	the	attachment	panel	and	thin	dotted
borders	for	the	panels	used	in	the	three	areas.	The	borders	have	been	used	for
clarity	in	this	example	–	you	do	not	have	to	use	visible	borders	and	you	may	not
wish	to	in	your	applications.	Remember	you	can	drag	and	drop	other	weblets
(such	as	input	boxes,	check	boxes	and	push	buttons)	onto	each	of	the	layout
areas.

The	attachment	panel	is	one	of	a	number	of	weblets	that	you	can	use	to	aid	the
creation	of	a	consistent	and	visually	appealing	layout	for	your	web	pages.	You
may	also	wish	to	review	the	horizontal	and	vertical	splitters	and	the	panel	and
navigation	panel	weblets.	This	weblet	(the	attachment	panel)	is	static	–	the	user
is	not	able	to	resize	or	otherwise	manipulate	the	size	and	position	of	the	panels
that	it	contains.

QuickStart-	Attachment	panel
To	use	the	attachment	panel	you	can	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Attachment	panel	weblet.

2.		Drag	and	drop	the	weblet	onto	your	page.	Make	sure	the	weblet	is	selected
and	then	click	on	the	Details	tab.	Set	any	properties	required	for	the
attachment	panel,	such	as	borders.

3.		Now	you	can	drag	and	drop	or	otherwise	insert	content	into	the	required
panes	or	layout	areas.	You	may	find	it	easiest	to	drag	and	drop	the	Panel
weblet	into	each	of	the	five	layout	areas	that	you	wish	to	use.	You	can	then
more	easily	size	those	panels	and	insert	other	weblets	onto	those	child	panels.

Properties	-	Attachment	panel
The	Attachment	panel	weblet's	Properties	are:

border name

border_width panes

class_top,	class_left,	class_center,
class_right,	class_bottom

pos_absolute

height width

hide_if 	

its:lansa087.CHM::/lansa/WAMEngb2_0520.HTM

name
The	name	the	weblet	is	identified	with.	Normally,	you	would	leave	this	as	the
default	and	let	LANSA	use	its	own	internal	naming	convention.	However,	you
may	want	to	use	your	own	name	if	using	JavaScript	or	XSL	that	references	the
weblet.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

panes
An	XML	node	set	specifying	a	set	of	panes	to	show.	This	is	a	system	generated
value	set	up	when	you	drag	the	attachment	panel	onto	the	design	view.	You
cannot	modify	the	value	of	this	property.

Default	value
document(")/*/lxml:data/lxml:panes[@id='<unique	id>']	(this	is	equivalent
to	the	current	pane	where	the	unique	id	is	an	automatically	generated
identifier.)

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)

border
The	border	style	for	the	outer	boundary	of	the	weblet.	For	example	'dashed'.

Default	value
Blank	(no	border	is	shown).

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	pre-defined	border	styles.		Note	that	'window-inset'	is	only
supported	by	Internet	Explorer.

border_width
The	width	of	the	border	for	the	outer	boundary	of	the	weblet.	This	property	is
ignored	unless	a	border	style	is	selected	for	the	border	property

Default	value
Blank.	If	a	border	style	is	selected,	this	default	is	equivalent	to	the	'medium'
selection.

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	following	values:
'medium'
'thick'
'thin'

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

class_top,	class_left,	class_center,
class_right,	class_bottom
These	properties	specify	the	Cascading	Style	Sheet	(CSS)	class	names	for	the
five	layout	areas	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	corresponding	layout	area	of	the
weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

Example
In	this	example,	Position	Absolutely	has	been	enabled	for	the	weblet	and	the
weblet	was	positioned	as	required	in	the	Design	view	of	the	LANSA	Editor.
This	resulted	in	the	value	shown	for	the	pos_absolute_design	property.

width
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width-design	and	height_design	properties.	However
you	can	directly	edit	the	property	values	if	required.

Default	value
''	(this	specifies	that	the	attachment	panel	will	use	the	full	width	available	in
the	containing	element).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	height	and	width	of	the	weblet	by	dragging	the	grab-
handles	around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so
updates	the	value	of	the	width-design	and	height_design	properties.	However
you	can	directly	edit	the	property	values	if	required.

Default	value
'250pt'

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

Banner	(std_banner)

QuickStart-	Banner Properties	-	Banner

The	Banner	weblet	is	essentially	a	marquee	-	a	scrolling	area	of	text	-	which	can
be	added	to	any	pane	on	a	web	page.	A	banner	is	implemented	as	a	<marquee>
HTML	element.
Banners	can	be	used	to	display	information,	or	they	can	be	an	active	element	in
the	web	page	which	will	redirect	you	to	another	webpage	when	clicked.	They
are	typically	used	for	advertising	or	to	display	up	to	date	information	which
changes	regularly.

Firefox	has	a	bug	in	the	way	is	displays	a	banner	that	has	been	given	a
fixed	size,	has	a	"scroll"	value	of	"scroll"	or	"slide"	and	is	placed
somewhere	with	a	text	alignment	of	"center"	(such	as	a	table	cell	or
attachment	panel).		Firefox	places	the	"box"	for	the	banner	in	the
correct	place	but	calculates	the	location	of	the	content	assuming	the
banner	is	left	aligned.		The	content	is	then	only	visible	while	the
position	of	the	content	overlaps	the	position	of	the	box.

QuickStart-	Banner
A	banner	is	very	simple	to	set	up.	When	you	open	the	XSL	generated	for	the
webroutine	in	the	LANSA	Editor:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Banner	weblet.

2.		Drag	the	Banner	weblet	on	to	your	web	page	where	you	want	the	banner	to
be	displayed.

3.		Click	on	the	weblet	to	review	the	Details	tab.
4.		Set	the	value	property	to	the	appropriate	field,	system	variable,	multilingual
variable	or	text	literal	which	contains	the	text	to	display	in	the	marquee.

5.		If	you	want	the	text	to	be	an	active	element	in	the	page,	set	the
on_click_wrname	or	URL	property	to	direct	the	click	event	to	an	appropriate
page.

Properties	-	Banner
The	Banner	weblet's	Properties	are:

class
disabled
formname
height
hide_if
name
on_click_wamname
on_click_wrname
panes

pos_absolute
presubmit_js
protocol
reentryfield
reentryvalue
scroll
scroll_amount
scroll_delay

scroll_direction
scroll_loop_count
scroll_true_speed
show_in_new_window
target_window_name
URL
value
width

name
The	name	of	the	banner.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	However,	you	may	want	to	use
your	own	name	if	using	JavaScript	or	XSL	that	references	the	banner.

Default	value
An	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

Example
This	shows	the	default	name:

Or	you	can	enter	a	unique	name	like:

value
The	text	string	to	be	displayed	on	the	banner.

Default	value
Blank.

Valid	values
Single-quoted	text	can	be	entered	or	the	name	of	a	multilingual	text	variable,
system	variable	or	field	name	(the	ellipses	button	in	the	property	sheet	can	be
clicked	to	choose	one	from	a	list).

panes
An	XML	nodeset	specifying	a	set	of	panes	to	show.	This	is	a	system	generated
value	set	up	when	you	drag	the	banner	into	a	pane	on	the	design	view.

Note:	This	value	cannot	be	modified	and	is	for	information	only.

Default	value
document(")/*/lxml:data/lxml:panes[@id='<unique	id>']	(this	is	equivalent
to	the	current	pane	where	the	unique	id	is	an	automatically	generated
identifier.)

Valid	values
Not	Applicable.	(This	value	is	system	maintained.)

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	banner	will	always	be	shown)

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	hide	the	banner	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.

Default	value
Blank.

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

reentryvalue
The	value	to	post	into	the	field	specified	in	the	reentryfield	property.	If	that	field
is	alphanumeric,	the	value	must	be	specified	in	single	quotes.	If	it	is	numeric,
the	value	can	be	specified	with	or	without	quotes.

Default	value
Blank.

Valid	values
Any	appropriate	literal.

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'	(that	is,	document.LANSA)

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	banner
appears	enabled	or	disabled.

The	disabled	attribute	of	the	MARQUEE	tag	is	only	supported	by
Internet	Explorer.		The	banner	will	ensure	that	mouse	clicks	are
ignored	for	a	disabled	banner	in	all	browsers,	but	the	"grayed	out"
effect	produced	by	the	disabled	attribute	will	only	work	in	Internet
Explorer.

Default	value
Blank	–	equivalent	to	False:	the	banner	will	always	be	enabled.

Valid	values
true(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

Example
The	following	example	will	disable	the	banner	if	the	field	STD_FLAG	has	a
value	of	'X'.

URL
Indicates	the	URL	to	navigate	to	when	the	banner	is	clicked.	Must	be	prefixed
with	a	protocol	(for	example,	http://	or	https://).	This	property	should	not	be
entered	if	a	Webroutine	has	been	nominated	in	the	on_click_wrname	property.

Default	Value
Blank

Valid	Values
A	URL	enclosed	by	single	quotes.

on_click_wamname
The	name	of	the	WAM	to	be	invoked	when	the	banner	is	clicked.	This	property
should	not	be	entered	if	a	URL	has	been	nominated	in	the	URL	property.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_click_wrname
The	name	of	the	Webroutine	to	be	invoked	when	the	banner	is	clicked.	This
property	should	not	be	entered	if	a	URL	has	been	nominated	in	the	URL
property	but	must	be	entered	if	the	on_click_wamname	is	entered.

Default	value
Blank.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_click_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	specified	in	the	on_click_wrname	property.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes,	followed	by	a	colon.	This	is	usually	'http:'
or	'https:'.

show_in_new_window
A	Boolean	property,	the	result	of	which	determines	whether	response	HTML
from	the	banner	click	should	be	shown	in	a	new	browser	window.

Default	value
false()	–	response	HTML	is	shown	in	the	current	browser	window.

Valid	values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals,	XSL
variables	or	JavaScript	variables,	which	can	be	resolved	to	true()	or	false().

target_window_name
The	name	of	the	window,	or	frame,	in	which	response	HTML	will	be	shown.

Default	value
Blank	–	response	HTML	will	be	shown	in	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	recognized.	The	property	will	usually	be	set	in	pixels	by	dragging	and
dropping	the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

class
The	Cascading	Style	Sheet	class	to	be	applied	to	the	banner.

Default	value
'std_banner'.	This	is	the	default	class	for	the	banner	and	is	provided	with	the
all	shipped	cascading	styles	sheets.

Valid	values
Any	valid	class	name	selected	from	the	current	Cascading	Style	Sheet,	in
single	quotes.	A	list	of	available	classes	can	be	selected	from	by	clicking	the
corresponding	dropdown	button	in	the	property	sheet.

scroll
Controls	how	the	text	scrolls	in	the	marquee.

Default	value
Blank	–	equivalent	to	Scroll.

Valid	values
Blank	or	'alternate',	'scroll'	or	'slide'
'Scroll'	-	The	banner	content	scrolls	in	the	direction	specified	by	the
scroll_direction	property.		The	text	scrolls	off	the	end	of	the	banner	and	starts
over.
'Slide'	-	The	banner	content	scrolls	in	the	direction	specified	by	the
scroll_direction	property.		The	text	scrolls	to	the	end	of	the	banner	and
stops.		Note	that,	in	Firefox,	the	animation	does	not	stop.	The	text	will	scroll
off	the	end	of	the	banner	and	start	over,	making	'slide'	effectively	the	same	as
'scroll'.
'Alternate'	-	The	scroll_direction	reverses	when	the	content	reaches	the	edge
of	the	banner.

scroll_direction
Controls	the	direction	in	which	the	text	will	flow.

Default	Value
Blank	–	equivalent	to	Left.

Valid	Values
Blank	or	'down'	(top	to	bottom),	'left'	(left	to	right),	'right'	(right	to	left)	or
'up'	(bottom	to	top).
'Down'	-	top	to	bottom
'Left'	–	right	to	left
'Right'	–	left	to	right
'Up'	-	bottom	to	top.

scroll_loop_count
Controls	the	number	of	times	a	banner	will	play.
The	"end	state"	of	the	banner	after	it	has	played	scroll_loop_count	times	will
depend	on	the	value	of	the	scroll	property.	For	"scroll"	the	banner	will	be	blank.
For	"slide"	and	"alternate"	the	text	will	remain	visible	at	the	position	it	finished.

The	scroll_loop_count	property	is	ignored	by:	
							Firefox
							all	browsers	if	the	scroll	property	is	'slide'.

Default	Value
Blank.

Valid	Values
Blank,	-1	or	any	integer	value.
Blank	or	-1	will	cause	the	banner	to	loop	indefinitely	if	the	scroll	property	is
blank,	"scroll"	or	"alternate".

scroll_amount
Controls	the	number	of	pixels	the	text	moves	between	each	subsequent	drawing
of	the	weblet.

Default	Value
Blank.	This	allows	the	browser	to	set	it's	own	default.	The	default	may	vary
slightly	between	browsers	but	should	be	around	6	pixels.

Valid	Values
Any	integer	value.

scroll_delay
Controls	the	speed	of	the	scroll	by	specifying	the	delay,	in	milliseconds,
between	each	update	of	the	weblet.
To	avoid	overloading	the	client	CPU,	the	browser	will	automatically	round	any
value	less	than	60	milliseconds	up	to	60.		The	scroll_true_speed	parameter	can
be	used	with	Internet	Explorer	to	override	this	behaviour	and	honor	the
specified	scroll_delay.

Default	Value
Blank.	This	allows	the	browser	to	set	it's	own	default.	The	default	may	vary
slightly	between	browsers	but	should	be	around	85	milliseconds.

Valid	Values
Any	integer	value.

scroll_true_speed
To	avoid	overloading	the	client	CPU,	the	browser	will	automatically	round	any
value	of	scroll_delay	less	than	60	milliseconds	up	to	60.		The	scroll_true_speed
parameter	can	be	used	to	override	this	behaviour	and	honor	the	specified
scroll_delay.

Scroll_true_speed	is	currently	only	supported	by	Internet	Explorer.	
Because	of	this,	it	is	better	practice	to	always	use	a	value	of	60	or
greater	for	scroll_delay	and	increase	scroll_amount	to	get	the	speed
you	require.

	

Default	Value
False().

Valid	Values
True(),	false()	or	any	valid	expression,	involving	field	names,	literals	or	XSL
variables,	which	can	be	resolved	to	true()	or	false().

Example
This	example	will	use	the	appropriate	scrolling	properties	as	determined	by
the	evaluation	of	the	expression	#STD_FLAG	is	equal	to	'X'.	The	expression
should	be	entered,	and	is	shown	when	the	property	has	focus,	as	follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

presubmit_js
JavaScript	code	to	be	run	prior	to	the	submission	of	the	form.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	function,	or	JavaScript	code	followed	by	a	semicolon
(;).
If	you	want	to	execute	the	presubmit	JavaScript	only,	without	running	the
JavaScript	that	submits	the	request	(thus	canceling	the	onclick	event),
append	return	false;	to	your	presubmit	JavaScript.

Example
The	following	example	shows	a	message	box:

The	following	example	shows	a	message	box	and	cancels	the	submit
JavaScript:

Dynamic	HTML	menu	bar	(std_dhtml_menu)
The	Dynamic	HTML	menu	bar	weblet	provides	the	functionality	of	a	menu	bar
that	can	invoke	other	web	pages	including	other	webroutines.	The	menu	bar	can
be	arranged	horizontally	or	vertically	and	the	top	level	menu	items	can	cause
further	menus	to	pop-up	as	the	mouse	moves	over	them.	This	is	what	the	menu
bar	weblet	looks	like	when	arranged	horizontally	–	in	this	example,	two	levels
of	popup	menu	are	shown:

The	weblet	provides	just	four	properties	that	affect	its	orientation	and	size.	The
menu	items	themselves	are	specified	using	the	menu	item	designer.

QuickStart	-	Dynamic	HTML	menu	bar
To	use	the	Dynamic	HTML	menu	bar	weblet,	open	your	webroutine	in	the
LANSA	Editor	and	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	the	Dynamic	HTML	menu	bar	weblet.

2.		Drag	and	drop	the	weblet	onto	your	page	in	the	Design	view.	Make	sure	the
weblet	on	the	page	is	selected	and	then	click	on	the	Details	tab.

3.		Click	the	ellipsis	button	next	to	the	menu_items	property	to	open	the	menu
items	designer	and	define	your	menu	items.

Using	the	menu	item	designer
To	open	the	menu	item	designer,	follow	these	steps:
1.		Make	sure	the	Dynamic	HTML	menu	bar	weblet	on	your	page	is	selected
and	then	click	on	the	Details	tab.

2.		Move	the	mouse	pointer	over	the	menu_items	property	in	the	Details	tab.	An
ellipsis	should	appear	next	to	the	property	value.	Click	the	ellipsis	button	to
open	the	menu	items	designer.	A	window	like	the	one	shown	below	appears.

The	top-half	of	the	window	shows	a	representation	of	the	current	state	of	the
menu.	Note	that	this	is	always	shown	in	horizontal	orientation	irrespective	of
the	current	value	of	the	orientation	property.	In	this	part	of	the	window,	you	can:

click	on	items	to	complete	their	details	in	the	lower	half;
drag	and	drop	items	to	rearrange	them;

add	new	items	by	clicking	on	the	blank	items	shown	adjacent	to	the	currently
selected	item;
remove	items	by	selecting	them	and	clicking	the	Remove	button.

In	the	bottom-half	of	the	window	you	can	specify	the	details	for	the	selected
item	as	follows:
Caption
Specifies	the	text	that	appears	on	the	face	of	the	menu	item.	You	can	also	enter
the	text	directly	on	the	face	of	a	menu	item	by	clicking	on	it	in	the	top-half	of
the	window	and	typing.
Action	URL
Specifies	a	URL	that	the	menu	item	will	navigate	to	when	clicked.	You	can
specify	a	complete	URL	or	one	that	is	relative	to	the	current	page.	The	URL	can
invoke	another	webroutine	by	specifying	an	appropriate	URL.
Background	Image
Specifies	the	path	and	file	name	of	an	image	to	be	displayed	as	background	to
the	menu	item.
Width
Specifies	the	width	in	pixels	of	the	menu	item.	See	Understanding	menu	bar	and
menu	item	width	and	height	for	information	on	how	this	value	and	the	weblet
width	property	determine	the	menu	bar	and	item	width.
Height
Specifies	the	height	in	pixels	of	the	menu	item.	See	Understanding	menu	bar
and	menu	item	width	and	height	for	information	on	how	this	value	and	the
weblet	height	property	determine	the	menu	bar	and	item	height.

Understanding	menu	bar	and	menu	item	width	and	height
The	Dynamic	HTML	Menu	bar	weblet	has	width	and	height	properties.	In
addition,	you	can	specify	the	width	and	height	of	individual	menu	items	in	the
menu	item	designer.	Following	is	a	summary	of	how	these	values	work	together
to	determine	the	width	and	height	of	the	menu	bar,	the	top-level	items	and	the
items	in	pop-up	menus.	The	effect	of	these	width	and	height	values	can	also
vary	according	to	the	chosen	value	for	the	orientation	property	of	the	weblet.

Width
For	menu	items	in	pop-up	menus,	the	width	is	determined	by	the	width
specified	in	the	menu	item	designer	for	the	first	item	in	that	pop-up.	All	items	in
the	pop-up	have	the	same	width.	The	value	specified	for	the	width	property	of
the	weblet	does	not	affect	the	width	of	these	items.
For	the	top-level	menu	items	(those	that	are	shown	statically	on	the	page),	the
width	is	determined	as	follows:
If	a	value	is	specified	for	the	weblet	width	property,	then	it	applies	to	all	top-
level	menu	items	(it	overrides	the	width	that	may	have	been	specified	in	the
menu	item	designer	for	individual	items).
Otherwise,	the	width	depends	on	the	orientation	of	the	menu	bar	as	follows:

When	in	horizontal	orientation	('top'	is	specified	for	the	orientation	property)
the	widths	specified	for	individual	top-level	items	is	respected	(that	is,	they
can	be	different).
When	in	vertical	orientation	('left'	or	'right'	is	specified	for	the	orientation
property)	the	width	specified	for	the	first	top-level	item	applies	to	all	the	top-
level	items	(that	is,	they	are	all	the	same	width).

Height
For	menu	items	in	pop-up	menus,	the	height	specified	for	individual	items
applies.	That	is	the	items	can	have	different	heights,	both	within	one	pop-up
menu	and	across	different	pop-up	menus.	The	value	specified	for	the	height
property	of	the	weblet	does	not	affect	the	height	of	these	items.
For	the	top-level	menu	items	(those	that	are	shown	statically	on	the	page),	the
menu	item	height	depends	on	the	orientation	of	the	menu	bar	as	follows:

When	in	vertical	orientation	('left'	or	'right'	is	specified	for	the	orientation
property)	the	heights	specified	for	individual	top-level	items	is	respected
(that	is,	they	can	be	different).

When	in	horizontal	orientation	('top'	is	specified	for	the	orientation	property)
the	height	specified	for	the	first	top-level	item	applies	to	all	the	top-level
items	(that	is,	they	are	all	the	same	height).

If	a	value	is	specified	for	the	height	property	of	the	weblet,	it	does	not	alter	the
apparent	height	of	the	menu	items	(that	is	the	dimensions	of	the	visible
boundary	of	the	menu	item).	In	other	words,	the	top-level	menu	items	appear	to
be	the	same	size	irrespective	of	the	value	of	the	height	property.	Instead,	the
height	property	specifies	the	vertical	space	reserved	for	the	menu	bar	–	that	is,	it
affects	the	vertical	spacing	between	the	menu	bar	and	following	page	elements.
By	increasing	the	height	property	value	you	can	increase	the	space	between	the
menu	bar	and	following	page	elements.
By	decreasing	the	height	property	value	you	can	decrease	this	space,	even	to	the
point	that	the	menu	bar	can	apparently	overlap	following	page	elements	in	some
circumstances.
If	no	value	is	specified	for	the	height	property,	the	weblet	allocates	a	default
amount	of	space	according	to	the	height	of	the	first	or	all	top-level	menu	items,
depending	upon	the	orientation	of	the	menu	bar.

Properties	-	Dynamic	HTML	menu	bar
The	Dynamic	HTML	menu	bar	weblet's	properties	are:
menu_items
height
orientation
width

menu_items
An	XML	nodeset	that	specifies	the	menu	items.	This	is	a	system	generated
value	set	up	when	you	drag	the	menu	onto	the	design	view.
Do	not	directly	edit	the	value	shown.	Instead,	click	the	ellipsis	button	to	open
the	menu	items	designer.	Refer	to	Using	the	menu	item	designer	for	more
information.

Default	value
document('')/*/lxml:data/lxml:menu[@id='<unique	id>']
		where	the	<unique	id>	is	an	automatically	generated	identifier.

Valid	values
Not	Applicable	(this	value	is	system	generated	and	should	not	be	modified).

orientation
The	orientation	of	the	menu.	This	determines	the	positioning	of	the	top-level
menu	items	relative	to	each	other	and	the	direction	or	relative	location	that	pop-
up	menus	appear.

Default	value
'top'

Valid	values
Click	the	dropdown	button	next	to	this	property	in	the	property	sheet	to
select	one	of	the	following	values:
'top'	The	top-level	menu	items	are	arranged	horizontally	and	first-level	pop-
up	menus	appear	below	the	corresponding	top-level	menu	item.	Suitable	for
use	as	a	horizontal	menu	bar	across	or	near	the	top	of	the	page.
'left'	The	top-level	menu	items	are	arranged	vertically	and	first-level	pop-up
menus	appear	to	the	right	of	the	corresponding	top-level	menu	item.	Suitable
for	use	as	a	vertical	menu	bar	on	the	left	of	the	page.
'right'	The	top-level	menu	items	are	arranged	vertically	and	first-level	pop-up
menus	appear	to	the	left	of	the	corresponding	top-level	menu	item.	Suitable
for	use	as	a	vertical	menu	bar	on	the	right	of	the	page.

height
The	height	of	the	weblet	on	the	web	page.	See	Understanding	menu	bar	and
menu	item	width	and	height	for	information	on	how	this	property	and	the	menu
item	height	specified	in	the	menu	item	designer	determine	the	menu	bar	and
item	height.

Default	value
Blank	(See	Understanding	menu	bar	and	menu	item	width	and	height).

Valid	values
A	height	in	pixels.

width
The	width	of	the	top-level	menu	items	on	the	web	page.	See	Understanding
menu	bar	and	menu	item	width	and	height	for	information	on	how	this	property
and	the	menu	item	width	specified	in	the	menu	item	designer	determine	the
menu	bar	and	item	width.

Default	value
Blank	(See	Understanding	menu	bar	and	menu	item	width	and	height).

Valid	values
A	width	in	pixels.

Push	Button	(std_button)	&	Push	Button	with	Images
(std_image_button)
The	Push	Button	weblets	provide	windows-like	push	buttons	for	your	web	page.
They	look	like	this:

QuickStart-	Push	Button	&	Push	Button	with	Images
To	add	a	push	button	to	your	web	page:
1.		Click	on	the	Weblets	tab,	select	Standard	Weblets	from	the	drop-down	list
near	the	top	and	locate	either	of	the	Push	Button	weblets.

2.		Drag	and	drop	the	required	weblet	onto	the	web	page.	Click	on	the	Details
tab.

3.		Set	the	caption	to	specify	the	text	to	be	displayed	on	the	button.	In	the	case
of	the	Push	Button	with	Images,	set	the	appropriate	image	properties.	A	left-
hand	side	image	and	a	right-hand	side	image	can	be	set.

4.		Set	the	on_click_wrname	properties	to	the	name	of	the	webroutine	to	be
invoked	when	the	button	is	clicked.	If	the	webroutine	is	in	a	different	WAM
to	the	current	webroutine	then	you	will	also	need	to	set	the
on_click_wamname	property.

Properties	-	Push	Button	&	Push	Button	with	Images
All	these	properties	are	common	to	both	button	weblets	except	for	those
indicated	as	std_image_button	only.

caption left_image_height right_absolute_image_path

class left_relative_image_path right_image_class

currentrowhfield mouseover_class right_image_height

currentrownumval name right_relative_image_path

default_button on_click_wamname show_in_new_window

disabled on_click_wrname tab_index

formname pos_absolute_design target_window_name

height_design presubmit_js text_class

hide_if protocol title

left_absolute_image_path reentryfield width_design

left_image_class reentryvalue 	

name
The	name	of	the	weblet.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	However,	you	may	want	to	use
your	own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
concat('o',	position(),	'_LANSA_n')	–	this	is	the	internal	name	given	to	the
weblet	by	LANSA.

Valid	values
A	name	enclosed	in	single	quotes.

caption
The	caption	for	the	weblet.

Default	value
'Caption'

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

currentrowhfield
The	field	name	to	be	used	to	post	to	the	target	webroutine	the	value	that	is
specified	in	the	currentrownumval	property.	The	field	name	should	be	in	single
quotes.
See	the	description	of	the	currentrownumval	property	for	further	information.

Default	value
'STDROWNUM'

Valid	values
Single-quoted	text.

Example
This	example	specifies	the	field	name	DEPTLINK	as	the	field	name	to	be
used	to	post	the	value	to	the	target	webroutine.	The	target	webroutine	would
need	to	have	field	DEPTLINK	in	its	WEB_MAP	for	*BOTH	or	for	*INPUT
in	order	to	receive	the	value:

currentrownumval
The	value	to	post	to	the	target	webroutine	in	the	field	specified	in	the
currentrowhfield	property.	If	that	field	is	alphanumeric,	the	value	must	be
specified	in	single	quotes.	If	it	is	numeric,	the	value	can	be	specified	with	or
without	quotes.
This	property	is	used	in	conjunction	with	the	currentrowhfield	property	to
describe	how	to	post	values	to	a	target	webroutine.	These	two	pieces	of
information	are	required	to	accomplish	this:
1.		currentrowhfield:		the	field	name	that	the	target	webroutine	uses	to	refer	to
the	information

2.		currentrownumval:		a	literal	value	or	a	field	name	in	this	(the	source)
webroutine	that	contains	the	necessary	information

Note:	Despite	the	name	of	the	property	being	currentrownumval,	the	field
name	specified	in	currentrownumval	is	not	required	to	be	a	numeric	field.

Default	value
position()

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

left_relative_image_path
std_image_button	only.
The	path	and	name,	relative	to	the	images	directory,	of	the	image	to	be
displayed	on	the	left	of	the	weblet.	If	specified,	the	left_absolute_image_path
property	should	be	left	blank.

Default	value
'ball_red.gif'

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

left_absolute_image_path
std_image_button	only.
The	path	and	name	of	the	image	to	be	displayed	on	the	left	of	the	weblet.	If
specified,	the	left_relative_image_path	property	should	be	left	blank.

Default	value
Blank	–	the	default	is	to	use	the	image	specified	in	the
left_relative_image_path	property.

Valid	values
The	path	and	name	of	an	image	enclosed	in	single	quotes.

left_image_height
std_image_button	only.
The	height	of	the	image	on	the	left	of	the	weblet.

Default	value
'12pt'

Valid	values
A	height,	in	a	valid	unit	of	measurement,	enclosed	in	single	quotes.

right_relative_image_path
std_image_button	only.
The	path	and	name,	relative	to	the	images	directory,	of	the	image	to	be
displayed	on	the	right	of	the	weblet.	If	specified,	the	right_absolute_image_path
property	should	be	left	blank.

Default	value
Blank	–	by	default,	buttons	do	not	display	an	image	on	the	right.

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

right_absolute_image_path
std_image_button	only.
The	path	and	name	of	the	image	to	be	displayed	on	the	right	of	the	weblet.	If
specified,	the	right_relative_image_path	property	should	be	left	blank.

Default	value
Blank	–	the	default	is	to	use	the	image	specified	in	the
right_relative_image_path	property,	if	specified.

Valid	values
The	path	and	name	of	an	image,	enclosed	in	single	quotes.

right_image_height
std_image_button	only.
The	height	of	the	image	on	the	right	of	the	weblet.

Default	value
'12pt'

Valid	values
A	height,	in	a	valid	unit	of	measurement,	enclosed	in	single	quotes.

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.

Default	value
'STDRENTRY'

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

reentryvalue
The	value	to	post	into	the	field	specified	in	the	reentryfield	property.	If	that	field
is	alphanumeric,	the	value	must	be	specified	in	single	quotes.	If	it	is	numeric,
the	value	can	be	specified	with	or	without	quotes.

Default	value
'M'

Valid	values
Any	appropriate	literal.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'X'.	The
expression	should	be	entered,	and	is	shown	when	the	property	has	focus,	as
follows:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

pos_absolute_design
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height_design
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

on_click_wamname
The	name	of	the	WAM	to	be	invoked	when	the	weblet	is	clicked.

Default	value
$lweb_WAMName	(this	is	equivalent	to	the	current	WAM).

Valid	values
The	name	of	a	WAM	in	single	quotes.	A	list	of	known	WAMs	can	be
displayed	by	clicking	the	corresponding	dropdown	button	on	the	property
sheet.

on_click_wrname
The	name	of	the	Webroutine	to	be	invoked	when	the	weblet	is	clicked.

Default	value
Blank	–	a	Webroutine	name	must	be	specified.

Valid	values
The	name	of	a	Webroutine	in	single	quotes.	The	Webroutine	must	exist	in	the
WAM	specified	in	the	on_click_wamname	property.	A	list	of	known
Webroutines	can	be	displayed	by	clicking	the	corresponding	dropdown
button	on	the	property	sheet.

protocol
The	protocol	(for	example,	http://	or	https://)	that	should	be	used	for	navigation
to	the	Webroutine	specified	in	the	on_click_wrname	property.

Default	value
Blank.	This	is	equivalent	to	the	current	protocol	being	used.

Valid	values
A	valid	protocol,	in	single	quotes.	This	is	usually	'http:'	or	'https:'.

show_in_new_window
A	Boolean	property,	the	result	of	which	determines	whether	response	HTML	for
the	weblet	should	be	shown	in	a	new	browser	window.

Default	value
false()	–	response	HTML	is	shown	in	the	current	browser	window.

Valid	values
true(),	false()	or	a	valid	expression.

target_window_name
The	name	of	the	window,	or	frame,	in	which	response	HTML	will	be	shown.

Default	value
Blank	–	response	HTML	will	be	shown	in	the	current	window.

Valid	values
The	name	of	a	window	or	frame,	in	single	quotes.	A	list	of	known	windows
and	frames	can	be	displayed	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet,	or	a	unique	name	can	be	entered.
'_blank'	will	launch	in	a	new	window
'_media'	will	launch	a	media	panel	in	the	current	window
'_search'	will	launch	a	search	panel	in	the	current	window
'_parent'	will	launch	in	the	parent	window	(usually	the	current	window)
'_top'	will	launch	in	the	top	window	(usually	the	current	window)
Note	that	_search	and	_media	are	supported	by	Internet	Explorer	6	only.

disabled
A	Boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

text_class
std_image_button	only.
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	text	of	the	weblet.

Default	value
The	name	of	the	shipped	text	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

title
Text	to	be	displayed	as	a	Tool	Tip	for	the	weblet	when	the	mouse	is	hovered
over	it.

Default	value
Blank	–	no	Tool	Tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

class
The	Cascading	Style	Sheet	class	name	of	the	weblet.

Default	value
'std_button'	or	'std_image_button'	-	The	name	of	the	default	shipped	class	for
the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

mouseover_class
The	Cascading	Style	Sheet	class	name	of	the	weblet	when	the	mouse	is	moved
over	it.

Default	value
'std_button_mouseover'	-	The	name	of	the	default	shipped	mouseover	class
for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

left_image_class
std_image_button	only.
The	Cascading	Style	Sheet	class	name	of	the	left	image.

Default	value
Blank	–	the	image	is	displayed	without	the	application	of	a	style.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

right_image_class
std_image_button	only.
The	Cascading	Style	Sheet	class	name	of	the	right	image.

Default	value
Blank	–	the	image	is	displayed	without	the	application	of	a	style.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

presubmit_js
JavaScript	code	to	be	run	prior	to	the	submission	of	the	form.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	function,	or	JavaScript	code	followed	by	a	semicolon
(;).
If	you	want	to	execute	the	presubmit	JavaScript	only,	without	running	the
JavaScript	that	submits	the	request	(thus	canceling	the	onclick	event),
append	return	false;	to	your	presubmit	JavaScript.

Example
The	following	example	shows	a	message	box:

The	following	example	shows	a	message	box	and	cancels	the	submit
JavaScript:

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

default_button
A	Boolean	property,	the	result	of	which	determines	whether	the	button	is	the
default	button	for	the	form.	Only	one	button	on	the	form	can	be	the	default
button	–	setting	to	True	will	set	all	other	buttons	to	False.

Default	value
Blank	-	Equivalent	to	False.

Valid	values
true(),	false()	or	a	valid	expression.

Tree	View	(std_treeview)
The	Tree	View	weblets	provides	a	windows-like	tree	view	on	your	web	page.	It
can	be	used	to	produce	something	similar	to	this	example:

In	can	also	be	used	in	conjunction	with	the	Tree	View	Target
(std_treeview_target)	weblet,	which	responds	to	selection	events	from	the	tree
view	and	can	be	used	to	display	detail	information.	For	example,	the	Tree	View
Target	weblet	can	be	seen	displaying	employee	information	to	the	right	of	the
Tree	View	below:

QuickStart	-	Tree	View
Refer	to	An	In-Depth	Look	at	the	Tree	View	Weblet.

Properties	-	Tree	View
The	Tree	View	weblet's	properties	are:

bg_color
default_style
folder_closed_image
folder_open_image
formname
item_image
list_caption_field
list_haschildren_field
list_image_field
list_is_expanded_field

list_is_selected_field
list_onselect_wrname_field
list_open_image_field
list_parent_id_field
list_selected_style_field
list_style_field
list_subitem_group_field
list_tag_field
list_type_field
	

listname
listname_of_parents_of_selected
name
onexpand_wamname
pos_absolute_design
selected_style
width_design
xmlid
xmltyped
	

name
The	name	of	the	weblet.	Normally,	you	would	leave	this	as	the	default	and	let
LANSA	use	its	own	internal	naming	convention.	When	using	this	weblet	in
conjunction	with	the	Tree	View	Target	(this	would	normally	be	the	case),	it	is
recommended	that	a	name	be	entered,	as	the	Tree	View	Target	will	be	required
to	reference	it.	Using	this	name	will	be	clearer	than	using	the	LANSA-generated
name.

Default	value
concat('oTree',	ancestor-or-self::lxml:list/@name,position())	–	this	is	the
internal	name	given	to	the	tree	view	by	LANSA.

Valid	values
A	name	in	single	quotes.

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

xmlid
The	identifier	of	the	XML	Data	Island	containing	tree	items.	Leave	blank	to	use
the	default	id.

Default	value
concat('xmltree_',	$name)

Valid	values
A	name	for	the	data	island,	in	single	quotes,	or	a	valid	JavaScript	function
that	will	produce	a	valid	name	(the	default	name	uses	the	concat	function).

xmltyped
The	identifier	of	the	XML	Data	Island	containing	tree	item	types.	Leave	blank
to	use	the	default	id.

Default	value
concat('xmltreetype_',	$name)

Valid	values
A	name	for	the	data	island,	in	single	quotes,	or	a	valid	JavaScript	function
that	will	produce	a	valid	name	(the	default	name	uses	the	concat	function).

folder_closed_image
The	path	and	file	name,	relative	to	the	images	directory,	of	an	image	that
represents	closed	tree	nodes.

Default	value
'folder.gif'

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

folder_open_image
The	path	and	file	name,	relative	to	the	images	directory,	of	an	image	that
represents	open	tree	nodes.

Default	value
'folderopen.gif'

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

item_image
The	path	and	file	name,	relative	to	the	images	directory,	of	an	image	to	represent
a	leaf	node	of	the	tree.

Default	value
'ball_grn.gif'

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

listname
The	name	of	the	working	list	that	contains	the	items	used	to	populate	the	weblet.

Default	value
Blank.	A	valid	list	name	must	be	entered.

Valid	values
The	name	of	a	valid	working	list,	in	single	quotes.	A	list	of	valid	list	names
can	be	chosen	from	by	clicking	the	corresponding	dropdown	button	in	the
property	sheet.

list_caption_field
The	name	of	the	field	in	the	listname	working	list	that	contains	tree	item
captions.

Default	value
Blank.	A	valid	field	name	from	the	listname	working	list	must	be	specified.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

list_type_field
The	name	of	the	field	in	the	listname	working	list	that	contains	tree	item	types.
Leave	blank	if	not	using	types.

Default	value
Blank.	A	valid	field	name	from	the	listname	working	list	should	be	specified
if	using	types.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

list_image_field
The	name	of	the	field	in	the	listname	working	list	that	contains	a	tree	item's
image	path	and	file	name,	relative	to	the	images	directory.	Leave	blank	if	using
default	images.

Default	value
Blank.	Default	images	are	used.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

list_open_image_field
The	name	of	the	field	in	the	listname	working	list	that	contains	a	tree	item's
image	path	and	file	name,	relative	to	the	images	directory,	that	represents	an
expanded	node.	Leave	blank	if	using	default	images.

Default	value
Blank.	Default	images	are	used.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

list_tag_field
The	name	of	the	field	in	the	listname	working	list	that	contains	item	tags.	This	is
the	non-visible,	unique	identifier	of	the	tree	item	that	can	be	used	to	identify	it
when	selected	or	expanded.

Default	value
$list_caption_field.	The	field	used	to	store	the	tag	information	is	the	same
field	used	for	the	caption.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

list_onselect_wrname_field
The	name	of	the	field	in	the	listname	working	list	that	contains	the	name	of	the
Webroutine	in	the	current	WAM	that	is	to	be	invoked	when	a	tree	item	is
selected.

Default	value
Blank.	A	Webroutine	will	not	be	invoked	when	a	tree	item	is	selected.

Valid	values
The	name	of	a	valid	field,	in	single	quotes.	A	list	of	fields	in	the	listname
working	list	can	be	chosen	from	by	clicking	the	corresponding	dropdown
button	in	the	property	sheet.

list_haschildren_field
The	name	of	the	field	in	the	listname	working	list	that	determines	whether	a	tree
item	has	child	items.

Default	value
'STD_CODE'

Valid	values
The	name	of	a	valid	field,	in	single	quotes,	that	will	contain	a:
'Y'	(the	tree	item	has	child	items)	or	an
'N'	(the	tree	item	does	not	have	child	items).

list_subitem_group_field
The	name	of	the	field	in	the	listname	working	list	that	will	contain	the	depth	(or
level)	of	a	selected	item	from	the	root.	For	example,	a	direct	child	of	the	root
will	have	a	depth	of	2.

Default	value
'STD_LEVEL'

Valid	values
The	name	of	a	valid	numeric	field,	in	single	quotes.

list_is_selected_field
The	name	of	the	field	in	the	listname	working	list,	the	value	of	which	will
determine	if	a	tree	item	should	be	selected	when	displayed.

Default	value
Blank.	Tree	items	cannot	be	pre-selected.

Valid	values
The	name	of	the	field	in	the	working	list	that	will	contain	a	value	of	'True'	if
an	item	in	the	tree	should	be	selected.	If	set	to	'Freeze',	the	item	will	be
selected	but	the	associated	Tree	View	Target	weblet	(if	applicable)	will	not
be	reloaded.

list_is_expanded_field
The	name	of	the	field	in	the	working	list	that	will	control	a	tree	item's	expanded
state.

Default	value
Blank.	A	tree	item's	expanded	state	cannot	be	controlled.

Valid	values
The	name	of	the	field	in	the	working	list	that	will	contain	a	value	of	'True'	if
an	item	should	be	expanded,	and	'False'	if	it	should	not.

list_parent_id_field
The	name	of	the	field	in	the	working	list	that	will	contain	the	identifier	of	the
parent	of	the	tree	item.

Default	value
Blank.	A	tree	item's	parent	can	only	be	identified	by	using	the
listname_of_parents_of_selected	property.

Valid	values
The	name	of	the	field	in	the	working	list	that	will	contain	the	identifier	of	the
parent	of	the	tree	item.

list_style_field
The	name	of	the	field	in	the	working	list	that	controls	a	tree	item's	style.	This
allows	the	style	of	the	child	items	to	vary	from	the	parent.

Default	value
Blank.	The	tree	item	adopts	the	default	style.

Valid	values
The	name	of	the	field	in	the	working	list	that	will	contain	the	Cascading
Style	Sheet	style	of	the	tree	item.

list_selected_style_field
The	name	of	the	field	in	the	working	list	that	controls	a	selected	tree	item's
style.

Default	value
Blank.	The	selected	tree	item	adopts	the	default	style.

Valid	values
The	name	of	the	field	in	the	working	list	that	will	contain	the	Cascading
Style	Sheet	style	of	the	tree	item	when	it	is	selected.

onexpand_wamname
The	name	of	the	WAM	whose	Webroutine	will	be	invoked	when	an	item	in	the
tree	is	expanded.

Default	value
Blanks.	The	current	WAM	will	be	invoked.

Valid	values
The	name	of	a	WAM,	in	single	quotes.	A	selection	can	be	made	from	a	list	of
known	WAMs	by	clicking	on	the	corresponding	dropdown	button	in	the
property	sheet.

onexpand_wrname
The	name	of	the	Webroutine	that	will	be	invoked	when	an	item	in	the	tree	is
expanded.

Default	value
Blank.	The	current	Webroutine	is	the	default.

Valid	values
The	name	of	a	valid	Webroutine,	in	single	quotes.	A	selection	can	be	made
from	a	list	of	valid	Webroutines	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.

listname_of_parents_of_selected
The	name	of	the	working	list	returned	to	the	WAM	that	will	contain	a	list	of
parent	identifiers	for	the	currently	selected	or	expanded	tree	item.

Default	value
Blank.	A	list	of	parent	identifiers	is	not	passed	to	the	WAM.

Valid	values
The	name	of	a	valid	working	list,	in	single	quotes.	A	selection	can	be	made
from	a	list	of	valid	working	lists	by	clicking	on	the	corresponding	dropdown
button	in	the	property	sheet.

pos_absolute_design
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height_design
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

class
The	Cascading	Style	Sheet	class	name	of	the	weblet.

Default	value
'std_treeview'	-	The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

bg_color
The	background	color	of	the	weblet.

Default	value
Blank.	The	background	color	will	be	the	same	as	the	web	page.

Valid	values
A	valid	color,	either	in	#RRGGBB	format	or	a	valid	color	name,	in	single
quotes.	A	color	can	be	chosen	from	a	palette	by	clicking	on	the
corresponding	ellipses	button	in	the	property	sheet.

Example
Both	of	the	following	examples	will	set	the	background	color	to	red:

or

default_style
The	Cascading	Style	Sheet	inline	style	of	the	tree	control	items.

Default	value
Blank.	The	default	style	of	the	Cascading	Style	Sheet	is	used.

Valid	values
A	valid	Cascading	Style	Sheet	style	name,	in	single	quotes.

selected_style
The	Cascading	Style	Sheet	inline	style	of	the	selected	tree	control	items.

Default	value
Blank.	The	default	style	of	the	Cascading	Style	Sheet	is	used.

Valid	values
A	valid	Cascading	Style	Sheet	style	name,	in	single	quotes.

An	In-Depth	Look	at	the	Tree	View	Weblet
The	tree	view	weblet	provides	a	windows-like	tree	view	control	for	use	by	your
WAM	application.	Following	is	a	description	of	how	it	should	be	used.	This
description	is	rather	long,	and	has	been	divided	into	these	sections:
About	the	Tree	View	Examples
What	You	Need	to	Know
When	a	Webroutine	is	Invoked
Accessing	Key	Information
The	Tree	View	Target	Weblet
Using	a	Navigation	Panel
A	Closer	Look	at	WAMEX51
Invoking	the	WAM
Building	the	Tree	View
The	Role	of	the	Tree	View	Target	Weblet
Rebuilding	the	Tree	View
Processing	Expanding	Tree	Items
Accessing	Ancestor	Information
As	with	all	weblet	controls	that	display	a	list	of	information,	the	Tree	View
Weblet	is	primarily	driven	by	a	working	list	in	your	WAM.	Each	entry	in	the
working	lists	represents	a	tree	item.	Fields	in	the	working	list	control	the	tree
view	item's	appearance	and	behavior.	These	include	the	hidden	key	information
of	the	tree	item,	its	caption,	what	to	do	when	the	item	receives	focus	and	what	to
do	when	the	tree	item	is	expanded.
Depending	on	how	you	wish	to	utilize	the	tree	view,	different	techniques	are
used.	These	are	documented	in	What	You	Need	to	Know.

About	the	Tree	View	Examples
The	Tree	View	examples	supplied	are	WAMEX50	and	WAMEX51.
They	are	both	simple	examples	of	a	tree	that	contains	Department	branches
which,	when	expanded,	show	Section	branches	belonging	to	the	Department,
which,	in	turn,	show	Employees	belonging	to	the	Section.
Both	examples	use	a	Vertical	Splitter	weblet.	This	allows	the	Tree	View	weblet
to	be	displayed	on	the	left	of	the	web	page	and	details	for	a	selected	tree	item	to
be	displayed,	in	a	Tree	View	Target	weblet,	on	the	right	of	the	web	page.

WAM01	is	an	enquiry-only	example,	whereas	WAMEX51	allows	the	update	of
the	selected	department's	description.	Due	to	the	updating	of	the	tree,
WAMEX51	uses	additional	Weblets	and	slightly	different	coding	techniques	to
those	of	WAMEX50.
Both	examples	are	intended	to	give	you	a	good	introduction	to	the	Tree	View
weblet	and	how	it	interacts	with	other,	related	weblets,	as	well	as	the	underlying
WAM	code.

What	You	Need	to	Know
The	Tree	Working	List
In	all	cases,	you	will	need	a	working	list.	Remember	that	each	entry	of	the
working	list	represents	an	item	in	the	tree	view.	The	working	list	should	contain
fields	that	will	populate	the	list_*	properties	of	the	weblet.	Refer	to	Properties	-
Tree	View	for	a	list	of	these.	As	a	minimum,	however,	the	working	list	should
contain	the	following:

A	field	to	hold	a	caption	for	the	tree	item	It	can	be	any	free-format	text	string
that	describes	the	tree	item	In	the	example	WAMs,	this	is	the	Department
description,	the	Section	description,	or	the	name	of	an	Employee.
A	field	to	hold	the	key,	or	tag,	of	the	tree	item	In	the	example	WAMs,	this
field	holds	either	the	Department	Code,	Section	Code,	or	Employee	Number
Composite	keys	are	derived	by	querying	another	working	list	that	holds
ancestor	items	of	a	given	item	This	is	discussed	in	the	Accessing	Key
Information	section.
A	field	to	hold	the	name	of	the	Webroutine	to	be	invoked	when	a	tree	item	is
selected	When	a	tree	item	is	selected,	you	will	usually	want	to	perform	some
action,	such	as	display	the	details	associated	with	the	selected	item	In	the
example	WAMs,	a	Webroutine	is	invoked	to	display	details	of	Departments,
Sections	and	Employees	Refer	to	the	When	a	Webroutine	is	Invoked	section
for	more	information.
A	Sub-Item	Group	field	This	numeric	field	holds	the	nesting	level	of	the	tree
item	from	its	root	item	In	the	example	WAMs,	Departments	have	a	level	of
1,	sections	2	and	employees	3.
A	HasChildren	field	This	is	a	single-byte	field	that	should	contain	a	Y	or	N.
This	denotes	whether	or	not	the	tree	item	is	a	branch	that	can	be	expanded	in
order	to	display	dependant	information	In	the	example	WAMs,	each
Department	has	dependant	Sections,	so	this	field	is	set	to	Y	Likewise,
Sections	have	dependant	Employees,	so	this	field	is	also	set	to	Y	Employees,

however,	do	not	have	any	dependant	information,	so	this	field	is	set	to	N.
The	Parent	Items	Working	List
In	most,	if	not	all	cases,	your	tree	view	will	have	multiple	levels	and,	usually,
will	contain	data	that	follows	a	parent/child	pattern.	In	our	examples,	this	is	true
of	the	Department/Sections/Employees	data.
The	Parent	Items	working	list	is	passed	into	the	WAM,	providing	a	list	of
ancestors	of	an	item	that	has	been	selected	or	is	expanding.	As	such,	it	contains
just	one	field,	which	must	match	the	field	used	in	the	Tree	View	working	list	to
hold	a	tree	item's	key	information.	More	information	about	using	this	working
list	can	be	found	later	in	this	document.

When	a	Webroutine	is	Invoked
When	a	Tree	Item	is	Selected
The	list_onselect_wrname_field	property	of	the	tree	view	points	to	a	field	that
contains	the	name	of	the	Webroutine	that	is	to	be	invoked	when	the
corresponding	item	in	the	tree	is	selected.	In	the	example	WAMs,	this	is	set	to
ShowDepartmentDetail	for	each	Department	entry.
When	this	Webroutine	is	invoked,	certain	information	is	passed	into	it:
The	key	information	of	the	selected	tree	item.	This	is	the	field	that	is	specified
in	the	list_tag_field	property.	This	can	be	used	to	access	additional	or	related
information	that	is	relevant	to	the	tree	item.	A	Web_map	to	receive	this	field	is
required	at	all	times.
The	working	list	that	contains	the	identifiers	of	the	selected	tree	item's	parents
or	ancestors.	This	is	the	list	specified	in	the	listname_of_parents_of_selected
property.	See	the	Accessing	Key	Information	section	for	more	information.
When	a	Tree	Item	is	Expanded
The	onexpand_wrname	property	of	the	Tree	View	can	be	used	to	build	the
contents	of	a	branch	when	it	is	expanded.	In	the	example	WAMs,	when	a
Department	or	Section	branch	is	expanded,	the	TreeExpanding	Webroutine	is
invoked.
As	well	as	the	key	information	of	the	expanding	tree	item,	the	level	of	the	tree
item	is	passed	into	this	Webroutine,	along	with	the	tree	list	itself	and	the	list	of
parents	of	the	expanding	tree	item.	Based	on	the	level	of	the	expanding	tree
item,	the	appropriate	method	is	invoked	to	add	child	items	to	the	tree	for	the
selected	parent	item.
So,	a	level	of	1	indicates	that	a	Department	tree	item	is	being	expanded,	and	so

Sections	belonging	to	that	Department	are	added	to	the	tree.	A	level	of	2
indicates	that	a	Section	tree	item	is	being	expanded,	and	so	Employees	are
added.

Accessing	Key	Information
Because	a	tree	item	can	have	parent	tree	items,	a	working	list	to	hold	this
information	is	required.	It	should	be	defined	as	containing	just	the	field	that	is
specified	in	the	list_tag_field	property	of	the	tree.
It	must	be	specified	as	a	Web_map	for	the	Webroutine	that	is	used	to	display	the
main	tree	view	working	list.	In	WAMEX50,	the	ShowPage	Webroutine	has	a
Web_map	specified	for	the	list.
When	passed	into	the	WAM,	it	will	have	an	entry	for	each	of	the	selected	item's
parent	items.	Each	entry	contains	the	key	information	of	the	parent	item.	For
tree	items	that	do	not	have	any	parents,	the	list	will	be	empty.
A	Web_map	to	receive	this	list	is	only	required	if	you	wish	to	access
information	in	it.	This	would	typically	be	required	for	the	selection	Webroutine
and	the	Tree	Expanding	Webroutine.
In	the	example	WAMs,	when	a	Section	is	selected,	this	list	is	used	to	ascertain
the	key	value	of	the	Department	to	which	the	Section	belongs.

The	Tree	View	Target	Weblet
Usually,	you	will	want	to	display	additional	information	relating	to	a	tree	item
that	has	been	selected.
In	the	example	WAMS,	when	a	Department	is	selected,	the
ShowDepartmentDetail	Webroutine	is	invoked	to	show	additional	information
for	the	Department.
There	must	be	an	area	on	the	web	page	for	this	information	to	be	shown.	This	is
what	the	Tree	View	Target	weblet	is	used	for.	When	a	tree	item	is	selected,	the
Tree	View	Target	associated	with	the	tree	(via	the	Tree	View	Target's
treeview_name	property)	becomes	active,	or	gets	focus.	The	output	from	the
Webroutine	invoked	when	the	tree	item	is	selected	is	thus	directed	to	the	Tree
View	Target.
For	more	information	on	the	Tree	View	Target	(std_treeview_target)weblet,
refer	to	its	documentation.

Using	a	Navigation	Panel
In	WAMEX50,	which	is	a	simple	enquiry,	the	Tree	View	and	Tree	View	Target
weblets	are	displayed	by	the	ShowPage	Webroutine.	This	works	fine	for	enquiry

purposes.
It	becomes	slightly	more	complex,	however,	if	an	update	function	for	the	details
that	are	displayed	in	the	Tree	View	Target	weblet	is	introduced.	For	example,	if
the	user	changes	the	Department	description	and	presses	an	update	push	button,
you	would	expect	the	Tree	View	to	be	updated	with	the	new	description.
In	order	to	get	this	to	happen,	the	Tree	View	must	be	displayed	in	a	different
way	to	that	shown	in	WAMEX50.	Here,	the	Tree	View	is	directly	placed	in	the
left-hand	portion	of	the	Vertical	Splitter.
In	WAMEX51,	the	left-hand	portion	of	the	Vertical	Splitter	contains	a
navigation	panel.	This	panel	is	set	to	navigate	to	the	DepartmentTree
Webroutine.	This	is	the	Webroutine	that	contains	the	Tree	View	weblet.
Separating	it	out	like	this	means	the	Tree	View	can	be	easily	refreshed	on	the
web	page,	as	it	is,	in	effect,	in	its	own	sub-page	of	the	main	web	page.

A	Closer	Look	at	WAMEX51
To	help	reinforce	the	techniques	described,	this	section	contains	sections	of	the
WAM	code,	along	with	property	settings	of	the	Tree	View	and	associated
weblets.
The	List	Definitions
The	RDML	code	below	shows	the	field	and	list	definitions	that	are	used	by	the
Tree	View	weblet.

The	tvDepts	working	list	is	the	list	used	to	populate	the	Tree	View.	The	function
of	its	fields	is	as	follows:

TreeID,	used	to	hold	the	key	information	for	the	tree	item.
TreeCapt,	used	to	hold	the	caption	for	the	tree	item.
TreeLvl,	used	to	return	the	selected	tree	item's	level	to	the	WAM.
HasKids,	used	to	denote	whether	the	tree	item	has	children.
DetailsWR,	used	to	hold	the	name	of	the	Webroutine	to	be	invoked	when	the

tree	item	is	selected.
Selected,	used	to	control	whether	a	tree	item	should	be	selected.

The	Ancestors	list	is	used	to	receive	parent	tree	item	key	information	from	the
Tree	View	weblet	for	the	selected	tree	item.
Right-click	on	the	DepartmentTree	Webroutine	and	select	the	LANSA	Editor
option.	Once	the	LANSA	Editor	has	opened,	click	on	the	tree	itself	and	then
select	the	Details	tab.	The	properties	of	the	tree	view	will	be	shown,	as	follows:

Note	the	listname	property	contains	the	name	of	the	tree	view	working	list,
tvDepts.	Note	also	how	the	list_*,	onexpand_wrname	and
listname_of_parents_of_selected	properties	relate	back	to	fields	in	tvDepts.

Invoking	the	WAM
The	entry	point	of	the	WAM	(that	which	should	used	to	execute	the	WAM	via	a
browser	URL	or	from	another	WAM)	is	the	ViewDepartments	Webroutine.	It	is
designed	to	be	the	only	entry	point,	to	be	executed	only	once.	Any	initialization
logic	for	the	WAM	could	be	placed	here.	See	below:

In	this	example,	the	only	thing	it	has	to	do	is	set	the	Session	Status	to	Active.
This	controls	the	writing	out	and	reading	in	of	any	persistent	session	data	when
executing	Webroutines	in	the	WAM.
The	ShowPage	Webroutine	is	then	executed.	Again,	this	is	designed	to	be	the
only	place	in	the	WAM	used	to	display	the	web	page.	In	this	example,	no
Web_maps	specify	what	is	to	be	displayed	–	all	such	information	is	handled	by
other	Webroutines,	as	you	will	see.	Non-field	and	list	data	has	been	specified
via	the	LANSA	Editor,	and	so	the	ShowPage	Webroutine	shows	as	being
'empty'.

Building	the	Tree	View
1.		Right-click	on	the	ShowPage	Webroutine	and	select	the	LANSA	Editor
option.

2.		Click	on	the	left-hand	side	of	the	Vertical	Splitter	and	select	the	Details	tab	to
display	the	Navigation	Panel's	properties,	as	shown	below:

					Take	note	of	the	nav_wrname	property.	This	is	the	Webroutine	that	is
invoked	whenever	the	Navigation	Panel	is	displayed.	In	this	example,	it

points	to	the	DepartmentTree	Webroutine,	which	is	used	to	build	the	tree
view.

3.		Close	the	XML	editor	and	look	at	the	DepartmentTree	Webroutine	in	the
WAM	source,	as	shown	below:

Note	the	Web_map	definitions.	Because	this	Webroutine	is	used	to	display	the
tree	view,	it	has	Web_maps	for	the	working	list	that	represents	the	tree,	along
with	the	working	list	that	is	used	to	hold	ancestor	items	for	a	selected	tree	item.
Wherever	the	tree	view	working	list	is	specified	as	a	Web_map,	the	ancestor	list
must	also	be	specified	as	a	Web_map.	If	it	isn't,	your	WAM	won't	work
correctly.
BuildTree	is	a	Boolean	field	that	is	used	to	control	the	building	of	the	tree	view.
Its	default	(in	its	field	definition,	at	the	top	of	the	source)	is	True,	which	means
that	when	this	Webroutine	is	invoked	for	the	first	time,	by	the	Navigation	Panel,
the	tree	view	will	be	built.	BuildTree	is	then	set	to	False,	ensuring	that	the	tree	is
not	rebuilt	on	subsequent	invocations.
BuildDepartmentList	method:

Note	the	setting	for	each	entry	to	be	added	to	the	Tree	View	working	list.	Refer
to	List	Definitions	in	A	Closer	Look	at	WAMEX51	for	a	full	explanation	of

these.

The	Role	of	the	Tree	View	Target	Weblet
1.		Right-click	on	the	ShowPage	Webroutine	again	and	select	the	LANSA	Editor
option.

2.		Click	on	the	right-hand	side	of	the	Vertical	Splitter	and	then	click	the	Details
tab.	The	properties	for	the	Tree	View	Target	will	be	displayed.

					Note	the	treeview_name	property	points	to	the	name	of	the	Tree	View	weblet
as	defined	in	the	DepartmentTree	Webroutine.	This	indicates	that	the	Tree
View	Target	will	receive	selection	events	from	the	tree	view.	Effectively,	it
will	become	the	active,	target	portion	of	the	web	page	when	something	is
selected	in	the	tree.

					This,	in	combination	with	the	list_onselect_wrname_field	property	of	the
tree	view,	will	display	details	of	a	selected	Department,	Section	or	Employee.

3.		Close	the	LANSA	Editor.

DepartmentDetail	Webroutine	in	the	WAM	source:

This	is	the	Webroutine	that	is	invoked	when	a	Department	is	selected	in	the	tree
view.	Note	the	*input	Web_map.	This	is	the	field	specified	against	the
list_tag_field	property	of	the	list	view	weblet.	It	contains	the	identifier,	or	key,
of	the	selected	tree	item.
The	SelID	field	is	defined	as	a	persistent	session	field	(Web_map	with	*NONE
and	*PERSIST)	and	is	used	to	hold	the	selected	key	on	multiple	invocations	of
the	WAM.	This	is	used	when	rebuilding	the	tree.
When	the	Webroutine	ends,	because	the	active	portion	of	the	web	page	is	the
Tree	View	Target,	the	output	from	the	Webroutine	is	directed	to	it,	so	you	see
the	department	details	in	the	right-hand	portion	of	the	Vertical	Splitter.

Rebuilding	the	Tree	View

1.		Right-click	on	the	ShowDepartmentDetail	Webroutine	and	select	the
LANSA	Editor	option.	Note	that,	as	well	as	the	department	description,	an
Update	push	button	is	displayed.	Click	on	it	and	select	the	Details	tab.	Its
properties	will	be	displayed,	as	follows:

					Note	the	on_click_wrname	and	target_window_name	properties.	The
on_click_wrname	property	contains	the	name	of	the	Webroutine	to	invoke
when	the	push	button	is	clicked.

					The	target_window_name	property	is	used	to	direct	the	output	of	the	WAM
to	a	specified	window.	In	effect,	this	becomes	the	active	portion	of	the	web
page.	In	this	example,	the	Navigation	Panel	will	be	the	target	window.

2.		Close	the	LANSA	Editor.

UpdateDepartment	Webroutine	in	the	WAM	source:

Note	that	the	BuildTree	boolean	field	is	set	to	True,	indicating	that	the	tree
should	be	rebuilt.	Control	is	then	transferred	to	the	DepartmentTree	Webroutine,
from	where	the	tree	view	is	rebuilt.	Have	another	look	at	the	AddListEntry
method:

Note	the	If/Else/Endif	code.	Remember	the	SelID	field?	If	the	entry	being	added
to	the	tree	is	the	same	one	that	has	just	been	updated,	the	SELECTED	field	is
set	to	'freeze'.	SELECTED	is	a	field	in	the	tree	view	working	list	which	drives
the	list_is_selected_field	property	of	the	tree	view.	Setting	it	to	freeze	does	two
things:	it	pre-selects	the	tree	view	item	and	it	stops	the	TreeViewTarget	from
being	reloaded.

Processing	Expanding	Tree	Items
Open	the	DepartmentTree	Webroutine	in	the	LANSA	Editor	and	select	the	tree
view	weblet.	Click	the	Details	tab	to	display	its	properties.	Note	the
onexpand_wrname	property	is	set	to	TreeExpanding.	This	is	the	Webroutine	to
be	invoked	when	an	expander	(+)	of	a	tree	item	is	clicked	on.	Close	the	LANSA
Editor	and	have	a	look	at	the	TreeExpanding	Webroutine	in	the	WAM	source:

Note	the	*input	field	Web_maps:	the	TreeID	field,	which	holds	the	key
information	of	the	expanding	tree	item,	and	the	TreeLvl	field,	which	indicates
the	level	of	the	expanding	tree	item.	The	tree	view	working	list	is	also	passed	in,
along	with	the	list	of	ancestors	of	the	expanding	tree	item.	Note	that	the	tree
view	working	list	is	specified	as	*both	–	it	will	be	passed	to	the	DepartmentTree
Webroutine	at	the	end	of	the	TreeExpanding	routine.	Also,	the	ANCESTORS
list	is	*input	–	it	is	only	needed	by	this	routine.
The	Case	statement	determines	what	should	be	added	to	the	tree	view	working
list.	If	the	level	is	1,	it	means	a	Department	tree	item	is	being	expanded,	so
Sections	need	to	be	added.	If	it's	2,	a	Section	is	being	expanded	and	Employees
need	to	be	added.	Once	entries	have	been	added	to	the	tree	working	list,	control
is	transferred	back	to	the	DepartmentTree	Webroutine	which	displays	the	tree.
In	Accessing	Ancestor	Information,	the	focus	is	on	what	happens	if	a	Section
tree	item	is	being	expanded	in	order	to	show	what	you	need	to	do	to	retrieve
parent	key	information.

Accessing	Ancestor	Information
Refer	back	to	Processing	Expanding	Tree	Items.	When	processing	level	2,	the
SECTION	field	is	set	to	the	incoming	identifier	(this	was	set	when	the	Sections

were	added	to	the	tree	view	working	list	in	the	BuildSectionsList	method).	Of
course,	a	Section	has	a	parent	of	Department.
In	order	to	determine	the	Department	to	which	the	Section	being	expanded
belongs,	the	ANCESTORS	working	list	is	used.	This	list	contains	multiple
entries	of	the	TreeID	field.	A	Section	only	has	one	parent,	so	the	ancestor
working	list	will	contain	one	entry.	In	this	example,	the	GetAncestor	method	is
executed	to	retrieve	the	key	value	of	the	Section's	parent.
If	the	tree	contained	more	levels,	the	ANCESTOR	working	list	would	contain
more	than	one	entry	for	a	level	three	or	higher	item,	and	so	multiple	Get_entrys
could	be	used	to	build	up	the	full	list	of	parent	keys.
	
	
	
	
	
	
	
	
	

Tree	View	Target	(std_treeview_target)
The	Tree	View	Target	weblet	is	a	container-type	control	used	in	conjunction
with	the	Tree	View	weblet.	It	responds	to	selection	events	from	the	Tree	View
and,	as	such,	can	be	used	to	display	information	based	on	that	selection.
The	right-hand	portion	of	the	image	below	shows	it	in	action	(showing
information	for	the	selected	employee	in	the	tree	view):

QuickStart	-	Tree	View	Target
An	example	of	how	the	Tree	View	Target	weblet	interacts	with	the	Tree	View
weblet	is	included	in	An	In-Depth	Look	at	the	Tree	View	Weblet.

Properties	-	Tree	View	Target
The	Tree	View	Target	weblet's	properties	are:

treeview_name
formname
pos_absolute_design
width_design
height_designbg_color

wamname
wrname
reentryfield
reentryvaluereentryfield

tag_fieldname_alias
resize_to_content
class
bg_colortreeview_name

treeview_name
The	name	of	the	tree	view	weblet	this	tree	view	target	is	to	be	associated	with.
Selection	events	fired	by	the	tree	view	will	be	heard	by	this	target.	The	result	of
this	is	that	the	Tree	View	Target	becomes	the	'active'	panel,	and	will	have
content	directed	to	it	by	the	next	Webroutine	that	is	run.

Default	value
concat('oTree',	ancestor-or-self::lxml:list/@name,position())	–	this	is	the
internal	name	given	to	the	tree	view	by	LANSA.

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

formname
The	name	of	the	HTML	form	that	is	posted	to	the	server.

Default	value
'LANSA'

Valid	values
A	name	for	the	form,	in	single	quotes.	A	list	of	known	form	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

pos_absolute_design
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(not	positioned).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width_design
The	width	of	the	weblet	on	the	web	page.

Default	value
'100%'	(this	is	equivalent	to	the	weblet	adopting	the	width	of	its	container).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

height_design
The	height	of	the	weblet	on	the	web	page.

Default	value
Blank	(weblet	uses	its	default	height).

Valid	values
A	height,	in	a	valid	unit	of	measurement,	in	single	quotes.

wamname
The	name	of	the	WAM	to	be	invoked	when	an	item	in	the	associated	tree	view
is	selected.

Default	value
Blank	–	the	current	WAM	is	invoked,	but	only	if	the	wrname	property	is
specified.

Valid	values
A	valid	WAM	name,	in	single	quotes.	To	choose	from	a	list	of	known
WAMs,	click	the	corresponding	dropdown	button	in	the	property	sheet.

wrname
The	name	of	the	Webroutine	to	be	invoked	when	an	item	in	the	associated	tree
view	is	selected.

Default	value
Blank	–	the	current	WAM	is	invoked,	but	only	if	the	wrname	property	is
specified.

Valid	values
A	valid	WAM	name,	in	single	quotes.	To	choose	from	a	list	of	known
WAMs,	click	the	corresponding	dropdown	button	in	the	property	sheet.

reentryfield
The	field	name	to	be	used	to	post	to	the	WAM	the	value	that	is	specified	in	the
reentryvalue	property.	The	field	name	should	be	in	single	quotes.

Default	value
'STDRENTRY'

Valid	values
Any	repository-	or	WAM-defined	field	name.	A	list	of	known	field	names	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.

reentryvalue
The	value	to	post	into	the	field	specified	in	the	reentryfield	property.	If	that	field
is	alphanumeric,	the	value	must	be	specified	in	single	quotes.	If	it	is	numeric,
the	value	can	be	specified	with	or	without	quotes.

Default	value
'D'

Valid	values
Any	appropriate	literal.

tag_fieldname_alias
When	a	Webroutine	is	invoked	to	navigate	to	a	page	for	this	panel,	the	field
posted	to	it	is	the	tag	field,	as	specified	in	the	list_tag_field	property	of	the
associated	tree	view.	If	the	field	required	by	the	target	Webroutine	is	different	to
the	tag	field	name,	it	can	be	specified	here.

Default	value
Blank	–	the	field	name	specified	in	the	list_tag_field	property	of	the
associated	tree	view	is	used.

Valid	values
A	valid	field	name,	in	single	quotes.	Click	the	corresponding	dropdown
button	in	the	property	sheet	to	choose	from	a	list	of	known	field	names.

resize_to_content
A	Boolean	property	that	indicates	whether	the	panel	will	be	resized	to	the
content	size	of	the	page	navigated	to.

Default	value
true()	–	the	panel	will	be	resized.

Valid	values
true(),	false()	or	a	valid	expression.

class
The	Cascading	Style	Sheet	class	name	of	the	weblet.

Default	value
'std_treeview_target'	-	The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

bg_color
The	background	color	of	the	weblet.

Default	value
Blank.	The	background	color	will	be	the	same	as	the	web	page.

Valid	values
A	valid	color,	either	in	#RRGGBB	format	or	a	valid	color	name	,	in	single
quotes.	A	color	can	be	chosen	from	a	palette	by	clicking	on	the
corresponding	ellipses	button	in	the	property	sheet.

Example
Both	of	the	following	examples	will	set	the	background	color	to	red:

or

	

Date	(std_date)

QuickStart	-	Date Properties	-	Date

The	date	weblet	provides	a	text	input	box	control	with	added	features	to	support
the	display,	entry,	prompting	and	validation	of	dates.	It	broadly	corresponds	to
the	<input	type="text">	HTML	element.
An	example	of	the	weblet	is	shown	below.	In	this	example,	the	(optional)
calendar	prompt	button	has	been	clicked	and	the	calendar	prompt	window	is
visible.

The	date	weblet	is	best	used	with	fields	of	type	date.	If	you	use	this	type,	the
data	will	automatically	be	passed	in	the	format	expected	by	the	weblet.	You	can
use	the	date	weblet	with	fields	of	other	numeric	types	such	as	packed	or	signed,
but	it	is	your	responsibility	to	ensure	the	numeric	value	is	formatted	in	the
correct	ISO	format	expected	by	the	date	weblet.	For	example,	you	could	use	a
signed	(8,	0)	field	containing	a	date	in	YYYYMMDD	format	with	an	edit	word
('0		-	-	')	to	format	it	as	an	ISO	date	format.

QuickStart	-	Date
For	date	fields	that	have	std_date	as	their	default	visualization,	you	do	not	need
to	manually	add	them	to	your	web	page.	Simply	include	your	date	fields	in	your
web_map	or	in	a	list	that	is	present	in	your	web_map	and	they	will	be	visualized
using	the	date	weblet.	Similarly	fields	of	type	time	and	of	type	datetime	will	be
visualized	using	the	time	(std_time)	and	datetime	(std_datetime)	weblets.
If	you	do	need	to	add	the	date	weblet	to	your	page	manually,	simply	drag	the
date	field	from	the	Fields	tab	onto	your	page.	Alternatively,	open	the	XSL	for
your	webroutine	in	the	LANSA	Editor	and	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	Date	weblet.

2.		Drag	the	weblet	onto	your	page	in	the	Design	view.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		Set	the	name	and	value	properties	as	required	to	associate	the	weblet	with	the
required	field	in	your	webroutines	web_map.

4.		You	may	also	wish	to	set	the	date_mask	property	as	required.

Properties	-	Date
The	Date	weblet's	properties	are:

allow_sqlnull
button_image
button_title
class
date_mask
disabled

display_mode
hide_calendar
hide_if
name
onchange_script
pos_absolute

read_only
tab_index
title
value
width

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	and/or	that	is	used	to
receive	the	contents	of	the	input	box.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

Example
This	shows	how	the	value	is	specified	when	the	weblet	visualizes	a	field:

When	the	property	loses	focus,	the	value	is	shown	as	follows:

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

allow_sqlnull
A	Boolean	property	which	determines	if	the	date	value	can	be	left	blank.

Note:	This	property	must	be	consistent	with	the	fields's	repository
definition	(ASQN	attribute).

Default	value
false().	If	the	weblet	is	dropped	over	a	field,	it	defaults	to	the	ASQN	attribute
of	the	field's	repository	definition.

Valid	values
true(),	false()	or	a	valid	expression.

date_mask
Specifies	the	format	or	mask	used	to	display	and	enter	the	date	for	the	weblet.
This	is	a	string	containing	a	number	of	format	specifiers	that	tell	the	weblet	how
to	format	the	date.
See	the	DateTime	weblet	for	a	full	list	of	valid	format	specifiers.

Note:	this	specifies	the	presentation	format	the	weblet	uses.	The	input
and	output	date	received	from	and	returned	to	the	webroutine	are
always	in	ISO	format.	If	you	choose	a	different	presentation	format	by
setting	this	property,	the	weblet	will	convert	to	and	from	the	internal
representation	as	required.

Default	value
'YYYY-MM-DD'

Valid	values
Any	string	containing	valid	format	specifiers.

button_image
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
display	on	the	calendar	prompt	button.

Default	value
'fp_im003.gif'	(this	image	is	shipped	with	LANSA).

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

Example

title
Specifies	text	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

button_title
Specifies	text	for	the	calendar	button	(if	shown)	that	may	display	as	tip	text	as
the	mouse	moves	over	the	button.

Default	value
Blank	–	the	text	specified	for	the	title	property	is	used.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

read_only
A	boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	will	set	the	weblet	to	read-only	if	field	#STD_FLAG	is	equal
to	'Y'.	The	expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

hide_calendar
A	boolean	property,	the	result	of	which	determines	whether	the	calendar	button
is	shown	for	the	weblet.

Default	value
Blank	–	equivalent	to	false	(that	is,	the	calendar	button	will	be	shown).

Valid	values
true(),	false()	or	a	valid	expression.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.	The	weblet	will	reserve	a	minimum
width	based	on	the	data	to	be	displayed.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	property.	However	you	can	directly	edit	the	property
value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

onchange_script
JavaScript	code	to	be	run	when	the	input	box	loses	focus	after	the	text	has	been
changed.	JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

	

DateTime	(std_datetime)

QuickStart	-	DateTime Properties	-	DateTime

The	datetime	weblet	provides	a	text	input	box	control	with	added	features	to
support	the	display,	entry,	prompting	and	validation	of	date	and/or	time	values.
It	broadly	corresponds	to	the	<input	type="text">	HTML	element.
An	example	of	the	weblet	is	shown	below.	In	this	example,	the	(optional)
calendar	prompt	button	has	been	clicked	and	the	calendar	prompt	window	is
visible:

The	datetime	weblet	is	used	to	display	and	receive	input	for	fields	containing
dates,	times	or	datetimes.	If	your	field	contains	only	a	date	or	only	a	time	you
may	prefer	to	use	one	of	the	specialized	weblets	that	are	based	on	this	weblet:
std_date	or	std_time.
The	datetime	weblet	is	best	used	with	fields	of	date,	time	or	datetime	data	types.
If	you	use	these	types,	the	data	will	automatically	be	passed	in	the	format
expected	by	the	weblet.	You	can	use	the	datetime	weblet	with	fields	of	other
numeric	types	such	as	packed	or	signed,	but	it	is	your	responsibility	to	ensure
the	numeric	value	is	formatted	in	the	correct	ISO	format	expected	by	the
datetime	weblet.	For	example,	you	could	use	a	signed	(14,	0)	field	containing	a
date	and	time	in	YYYYMMDDHHMMSS	format	with	an	edit	word	('0		-	-	&	:	:
')	to	format	it	as	an	ISO	date	and	time	format.

its:lansa087.CHM::/lansa/WAMEngb2_3940.HTM
its:lansa087.CHM::/lansa/WAMEngb2_0350.HTM

QuickStart	-	DateTime
For	datetime	fields	that	have	datetime	weblet	as	their	the	default	visualization,
you	usually	do	not	need	to	manually	add	it	to	your	web	page.	Simply	include
your	datetime	fields	in	your	web_map	or	in	a	list	that	is	present	in	your
web_map	and	they	will	be	visualized	using	the	datetime	weblet.	Similarly	fields
of	type	date	and	of	type	time	will	be	visualized	using	the	date	(std_date)	and
time	(std_time)	weblets.
If	you	do	need	to	add	the	datetime	weblet	to	your	page	manually,	simply	drag
the	datetime	field	from	the	Fields	tab	onto	your	page.	Alternatively,	open	the
XSL	for	your	webroutine	in	the	LANSA	Editor	and	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	Datetime	weblet.

2.		Drag	the	weblet	onto	your	page	in	the	Design	view.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		Set	the	name	and	value	properties	as	required	to	associate	the	weblet	with	the
required	field	in	your	webroutines	web_map.

4.		You	may	also	wish	to	set	the	size	and	date_mask	properties	as	required.

Properties	-	DateTime
The	DateTime	weblet's	properties	are:

allow_sqlnull
button_image
button_title
class
date_mask
disabled
display_mode

display_in_utc
hide_calendar
hide_if
input_type
name
onchange_script
pos_absolute

read_only
size
tab_index
time_mask
title
value
width

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	and/or	that	is	used	to
receive	the	contents	of	the	input	box.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

Example
This	shows	how	the	value	is	specified	when	the	weblet	visualizes	a	field:

When	the	property	loses	focus,	the	value	is	shown	as	follows:

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

size
The	size	of	the	weblet	data	in	characters.	–	the	browser	sizes	the	input	box
according	to	the	number	of	characters	specified,	but	will	reserve	a	minimum
width	based	on	the	data	to	be	displayed.	Sizing	the	weblet	by	dragging	the	grab
handles	(or	manually	specifying	the	width	property)	can	increase	the	width	but
not	reduce	it	beyond	the	minimum	that	the	weblet	determines.

Default	value
24.

Valid	values
A	numeric	value.	Usually	you	set	this	according	to	the	field	definition.	If	the
weblet	is	to	display	only	a	date,	specify	10.	If	the	weblet	is	to	display	only	a
time,	specify	11	or	greater.	If	the	weblet	is	to	display	a	date	and	time,	specify
22	or	greater.	When	a	time	is	included	in	the	data,	remember	to	allow	room
for	the	AM/PM	indicator.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

	

input_type
Specifies	whether	the	weblet	displays	and	receives	time,	date	or	datetime	data.

If	the	weblet	is	to	display	and	receive	time	data	only,	then	you	may
prefer	to	use	the	Time	(std_time)	weblet	If	the	weblet	is	to	display	and
receive	date	data	only,	then	you	may	prefer	to	use	the	Date	(std_date)
weblet	instead	Both	of	these	weblets	are	a	specialization	of	the
Datetime	weblet.

Default	value
'datetime'

Valid	values
'timeonly',	'dateonly'	or	'datetime'.	A	list	of	the	valid	values	may	be	displayed
by	clicking	the	corresponding	dropdown	button	in	the	property	sheet.

display_in_utc
A	Boolean	property	which	determines	if	the	datetime	displays	the	datetime's
UTC		value	or	the	datetime's	local	value.

Default	value
false().	If	the	weblet	is	dropped	over	a	field,	it	defaults	to	the	DUTC	attribute
of	the	field's	repository	definition.

Valid	values
true(),	false()	or	a	valid	expression.

allow_sqlnull
A	Boolean	property	which	determines	if	the	datetime	value	can	be	left	blank.

Note:	This	property	must	be	consistent	with	the	fields's	repository
definition	(ASQN	attribute).

Default	value
false().	If	the	weblet	is	dropped	over	a	field,	it	defaults	to	the	ASQN	attribute
of	the	field's	repository	definition.

Valid	values
true(),	false()	or	a	valid	expression.

date_mask
Specifies	the	format	or	mask	used	to	display	and	enter	the	date	for	the	weblet
This	is	a	string	contains	a	number	of	format	specifiers	that	tell	the	weblet	how	to
format	the	date.
Valid	format	specifiers	are:

Format
Specifier

Description

YYYY Represents	the	year	as	a	four-digit	number.

YY Represents	the	year	as	a	two-digit	number.

MMMM Represents	the	name	of	the	month	as	defined	in
std_script_messages.js

MM Represents	the	month	as	a	number	from	01	through	12.	A	single-
digit	month	is	formatted	with	a	leading	zero.

M Represents	the	month	as	a	number	from	1	through	12.

DDD Represents	the	name	of	the	day	of	the	week	as	defined	in
std_script_messages.js

DD Represents	a	day	of	the	month	from	1	-	31	A	single	digit	day	is
formatted	with	a	leading	zero.

D Represents	a	day	of	the	month	from	1	-	31.

	

	

Note:	This	specifies	the	presentation	format	the	weblet	uses.	The	input
and	output	date	received	from	and	returned	to	the	webroutine	are
always	in	ISO	format.	If	you	choose	a	different	presentation	format	by
setting	this	property,	the	weblet	will	convert	to	and	from	the	internal
representation	as	required.

Default	value
'YYYY-MM-DD'

Valid	values
Any	string	containing	valid	format	specifiers

time_mask
Specifies	the	format	or	mask	used	to	display	and	enter	the	time	for	the	weblet.
This	is	a	string	containing	a	number	of	format	specifiers	that	tell	the	weblet	how
to	format	the	time.
Valid	formatspecifiers	are:

Format
Specifier

Description

HH Represents	the	hour	as	a	number	from	0	through	23,	that	is,	the
hour	as	represented	by	a	zero-based	24-hour	clock	that	counts	the
hours	since	midnight.	A	single-digit	hour	is	formatted	with	a
leading	zero.

H Represents	the	hour	as	a	number	from	0	through	23,	that	is,	the
hour	as	represented	by	a	zero-based	24-hour	clock	that	counts	the
hours	since	midnight.

hh Represents	the	hour	as	a	number	from	1	through	12,	that	is,	the
hour	as	represented	by	a	12-hour	clock	that	counts	the	whole	hours
since	midnight	or	noon.	A	single-digit	hour	is	formatted	with	a
leading	zero.

h Represents	the	hour	as	a	number	from	1	through	12,	that	is,	the
hour	as	represented	by	a	12-hour	clock	that	counts	the	whole	hours
since	midnight	or	noon.

mm Represents	the	minute	as	a	number	from	0	through	59.	A	single-
digit	minute	is	formatted	with	a	leading	zero.

m Represents	the	minute	as	a	number	from	0	through	59.

ss Represents	the	seconds	as	a	number	from	00	through	59.	A	single-
digit	second	is	formatted	with	a	leading	zero.

s Represents	the	seconds	as	a	number	from	00	through	59.

sss Represents	the	milliseconds	as	a	number	from	000	through	999	All
values	are	represented	as	three	digits.

t Represents	A.M.	or	P.M.

	

	

Note:	This	specifies	the	presentation	format	the	weblet	uses.	The	input
and	output	date	received	from	and	returned	to	the	webroutine	are
always	in	ISO	format.	If	you	choose	a	different	presentation	format	by
setting	this	property,	the	weblet	will	convert	to	and	from	the	internal
representation	as	required.

Default	value
'HH:mm:ss'

Valid	values
Any	string	containing	valid	format	specifiers

button_image
The	path	and	file	name,	relative	to	the	images	virtual	directory,	of	the	image	to
display	on	the	calendar	prompt	button.

Default	value
'fp_im003.gif'	(this	image	is	shipped	with	LANSA).

Valid	values
The	path	and	name	of	an	image,	relative	to	the	images	directory,	enclosed	in
single	quotes.	An	image	can	be	chosen	from	a	prompter	by	clicking	the
corresponding	ellipses	button	in	the	property	sheet.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

title
Specifies	text	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

button_title
Specifies	text	for	the	calendar	button	(if	shown)	that	may	display	as	tip	text	as
the	mouse	moves	over	the	button.

Default	value
Blank	–	the	text	specified	for	the	title	property	is	used.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

read_only
A	boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	will	set	the	weblet	to	read-only	if	field	#STD_FLAG	is	equal
to	'Y'.	The	expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

hide_calendar
A	boolean	property,	the	result	of	which	determines	whether	the	calendar	button
is	shown	for	the	weblet.

Default	value
Blank	–	equivalent	to	false	(that	is,	the	calendar	button	will	be	shown	if	the
weblet	displays	a	date	or	datetime).

Valid	values
true(),	false()	or	a	valid	expression.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	property.	However	you	can	directly	edit	the	property
value	if	required.
The	width	can	also	be	affected	by	the	size	property,	but	in	any	event,	the	weblet
will	reserve	a	minimum	width	based	on	the	data	to	be	displayed.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

onchange_script
JavaScript	code	to	be	run	when	the	input	box	loses	focus	after	the	text	has	been
changed.	JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

Time	(std_time)

QuickStart	-	Time Properties	-	Time

The	time	weblet	provides	a	text	input	box	control	with	added	features	to	support
the	display,	entry	and	validation	of	times.	It	broadly	corresponds	to	the
<input	type="text">	HTML	element.
An	example	of	the	weblet	is	shown	below	(for	clarity	it	is	shown	with	its	label):

The	time	weblet	is	best	used	with	fields	of	type	time.	If	you	use	this	type,	the
data	will	automatically	be	passed	in	the	format	expected	by	the	weblet.	You	can
use	the	time	weblet	with	fields	of	other	numeric	types	such	as	packed	or	signed,
but	it	is	your	responsibility	to	ensure	the	numeric	value	is	formatted	in	the
correct	ISO	format	expected	by	the	time	weblet.	For	example,	you	could	use	a
signed	(6,	0)	field	containing	a	time	in	HHMMSS	format	with	an	edit	word	('0	:
:	')	to	format	it	as	an	ISO	time	format.

QuickStart	-	Time
For	time	fields	for	which	this	weblet	is	the	default	visualization,	you	usually	do
not	need	to	manually	add	it	to	your	web	page.	Simply	include	your	time	fields
in	your	web_map	or	in	a	list	that	is	present	in	your	web_map	and	they	will	be
visualized	using	the	time	weblet.	Similarly	fields	of	type	date	and	of	type
datetime	will	be	visualized	using	the	date	(std_date)	and	datetime	(std_datetime)
weblets.
If	you	do	need	to	add	the	time	weblet	to	your	page	manually,	simply	drag	the
time	field	from	the	Fields	tab	onto	your	page.	Alternatively,	open	the	XSL	for
your	webroutine	in	the	LANSA	Editor	and	follow	these	steps:
1.		Click	on	the	Weblets	tab,	select	Standard	Field	Visualization	from	the	drop-
down	list	near	the	top	and	locate	the	Time	weblet.

2.		Drag	the	weblet	onto	your	page	in	the	Design	view.	Click	on	the	weblet	and
then	click	on	the	Details	tab.

3.		Set	the	name	and	value	properties	as	required	to	associate	the	weblet	with	the
required	field	in	your	webroutines	web_map.

Properties	-	Time
The	Time	weblet's	properties	are:

allow_sqlnull name time_mask

class onchange_script title

disabled pos_absolute value

display_mode read_only width

hide_if tab_index 	

name
The	name	the	weblet	is	identified	with.	If	the	weblet	visualizes	a	field,	this	is	the
name	of	the	field.	Normally,	you	would	leave	this	as	the	default	and	let	LANSA
use	its	own	internal	naming	convention.	However,	you	may	want	to	use	your
own	name	if	using	JavaScript	or	XSL	that	references	the	weblet.

Default	value
Where	the	weblet	visualizes	a	field	the	default	name	is	the	field	name	or
combines	the	field	name	with	a	row	number	(for	fields	in	a	list).	Otherwise
the	default	name	is	an	automatically	generated,	unique	identifier.

Valid	values
Single-quoted	text.

value
The	value	to	set	the	weblet	to.	If	the	weblet	visualizes	a	field,	this	will	identify
the	field	whose	value	is	to	be	shown.

Default	value
No	default	value	applies	–	for	most	uses	of	this	weblet	you	must	specify	a
field	whose	value	is	to	be	represented	by	the	input	box	and/or	that	is	used	to
receive	the	contents	of	the	input	box.

Valid	values
Single-quoted	text	or	the	name	of	a	field,	system	variable	or	multilingual	text
variable.

Example
This	shows	how	the	value	is	specified	when	the	weblet	visualizes	a	field:

When	the	property	loses	focus,	the	value	is	shown	as	follows:

time_mask
Specifies	the	format	or	mask	used	to	display	and	enter	the	time	for	the	weblet
This	is	a	string	containing	a	number	of	format	specifiers	that	tell	the	weblet	how
to	format	the	date.
See	the	DateTime	weblet	for	a	full	list	of	valid	format	specifiers.

Note:	this	specifies	the	presentation	format	the	weblet	uses.	The	input
and	output	date	received	from	and	returned	to	the	webroutine	are
always	in	ISO	format.	If	you	choose	a	different	presentation	format	by
setting	this	property,	the	weblet	will	convert	to	and	from	the	internal
representation	as	required.

Default	value
'HH:mm:ss'

Valid	values
Any	string	containing	valid	format	specifiers.

display_mode
Controls	whether	the	weblet	accepts	input,	displays	output	or	is	hidden.

Default	value
Blank	(equivalent	to	'input').

Valid	values
Literal	values	'input',	'output'	or	'hidden'.	A	list	of	allowable	values	is
available	by	clicking	the	corresponding	dropdown	button	in	the	property
sheet.	Alternately,	you	may	enter	the	name	of	a	field,	system	variable	or
multilingual	variable	that	will	contain	one	of	the	allowable	values	at	run-
time.

hide_if
An	expression	which,	if	evaluated	to	be	True,	will	hide	the	weblet.

Default	value
False()	(that	is,	the	weblet	will	always	be	shown)

Valid	values
Any	valid	XPath	expression	that	returns	a	Boolean	value.

Example
This	example	will	hide	the	weblet	if	field	#STD_FLAG	is	equal	to	'Y'.	The
expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

allow_sqlnull
A	Boolean	property	which	determines	if	the	time	value	can	be	left	blank.

Note:	This	property	must	be	consistent	with	the	fields's	repository
definition	(ASQN	attribute).

Default	value
false().	If	the	weblet	is	dropped	over	a	field,	it	defaults	to	the	ASQN	attribute
of	the	field's	repository	definition.

Valid	values
true(),	false()	or	a	valid	expression.

tab_index
Determines	the	tab	order	of	the	weblet	on	the	form.	The	tab_index	property
value	determines	the	tab	order	as	follows:
1.		Objects	with	a	positive	tab_index	are	selected	in	increasing	tab_index	order
(and	in	source	order	to	resolve	duplicates).

2.		Objects	with	a	tab_index	of	zero	or	blank	(the	default)	are	selected	in	source
order.

3.		Objects	with	a	negative	tab_index	are	omitted	from	the	tabbing	order.		Note
that	this	behavior	is	not	defined	in	the	HTML	specifications	and	is	only
supported	by	Internet	Explorer	and	Firefox.

Default	value
Blank.	The	weblet	is	selected	in	source	order.

Valid	values
Blank	or	a	valid	numeric	value.

title
Specifies	text	for	the	weblet	that	may	display	as	tip	text	as	the	mouse	moves
over	the	weblet.

Default	value
Blank	–	no	tip	text	will	be	displayed.

Valid	values
Single-quoted	text	or	the	name	of	a	multilingual	text	variable	(the
corresponding	ellipses	button	in	the	property	sheet	can	be	clicked	to	choose
one	from	a	list).

read_only
A	Boolean	property,	the	result	of	which	determines	whether	the	content	of	the
weblet	is	read-only	(that	is,	the	user	cannot	modify	the	content).

Default	value
Blank	–	equivalent	to	False	(that	is,	the	user	can	modify	the	contents).

Valid	values
true(),	false()	or	a	valid	expression.

Example
This	example	will	set	the	weblet	to	read-only	if	field	#STD_FLAG	is	equal
to	'Y'.	The	expression	should	be	entered	in	this	form:

When	the	property	loses	focus,	the	expression	is	shown	as	follows:

disabled
A	boolean	property,	the	result	of	which	determines	whether	the	weblet	appears
enabled	or	disabled.

Default	value
Blank	–	equivalent	to	False	(that	is,	the	weblet	will	always	be	enabled).

Valid	values
true(),	false()	or	a	valid	expression.

class
The	Cascading	Style	Sheet	(CSS)	class	name	of	the	weblet.

Default	value
The	name	of	the	shipped	class	for	the	weblet.

Valid	values
Any	valid	class	name	from	the	Cascading	Style	Sheet,	in	single	quotes.	A	list
of	available	classes	can	be	selected	from	by	clicking	the	corresponding
dropdown	button	in	the	property	sheet.

pos_absolute
The	absolute	position	of	the	weblet	on	the	web	page.	Note	that	'Position
Absolutely'	must	be	selected	from	the	weblet's	right-click	menu	for	this	property
to	be	used.	The	property	will	usually	be	set	in	pixels	by	dragging	and	dropping
the	weblet.

Default	value
Blank	(this	is	equivalent	to	the	weblet	being	positioned	relatively).

Valid	values
Valid	'left'	and	'top'	coordinates,	in	valid	units	of	measurement,	in	single
quotes.

width
The	width	of	the	weblet	on	the	web	page.	The	weblet	will	reserve	a	minimum
width	based	on	the	data	to	be	displayed.
Usually	you	would	set	the	width	of	the	weblet	by	dragging	the	grab-handles
around	the	weblet	in	the	Design	view	of	the	LANSA	Editor.	Doing	so	updates
the	value	of	the	width	property.	However	you	can	directly	edit	the	property
value	if	required.

Default	value
Blank	(this	is	equivalent	to	the	weblet	adopting	its	default	width).

Valid	values
A	width,	in	a	valid	unit	of	measurement,	in	single	quotes.

onchange_script
JavaScript	code	to	be	run	when	the	input	box	loses	focus	after	the	text	has	been
changed.	JavaScript	statements	must	be	terminated	by	a	semicolon.

Default	value
Blank.	No	JavaScript	is	run.

Valid	values
Any	valid	JavaScript	statement(s).

	

	Web Application Modules (WAMs)
	Before You Begin
	1. An Introduction to WAMs
	1.1 What is a WAM?
	1.2 The BIG Advantage of the WAM Architecture
	1.3 Other Great Things about WAMs
	1.4 The Application Logic Layer
	1.4.1 Webroutines
	1.4.2 Web Maps
	Attributes for Fields in Web Maps
	Webroutines generate Presentation Layer XSL when Compiled
	Global Web Maps
	Controlling Webroutine Flow Programmatically

	1.4.3 Being Stateless
	1.4.4 How Reusable Parts can Play a Role

	1.5 The Presentation Layer
	1.5.1 The Editor
	1.5.2 What is Generated for the Presentation Layer by Default?
	1.5.3 Weblets

	1.6 A WAM Example - Beginning to End
	1.7 WAM Wizards
	1.7.1 LANSA Web Mobile Application
	1.7.2 LANSA Web jQuery Themed CRUD Application
	1.7.3 Web Application Layout Manager Wizard

	2. WAMs Deconstructed
	2.1 The Relationship Between WAMs, Webroutines, Weblet and Weblet Templates
	2.1.1 What happens when I build or compile a WAM?
	2.1.2 What are Weblets and Weblet Templates?
	2.1.3 How do I use Weblets?
	2.1.4 How do I know where and when to use a Weblet?
	2.1.5 Can I create my own Weblets?

	2.2 Technology Services
	2.3 Structure of a Webroutine's XSL
	2.4 WAM Layouts and Layout Weblets
	2.4.1 What is a WAM Layout?
	2.4.2 What is a Layout Weblet?
	2.4.3 What do Layouts Determine/Control?
	2.4.4 How is a WAM layout assigned to a WAM?
	2.4.5 How do I Create my Own Site Layout?
	2.4.6 Can I Change the WAM Layout used by a Webroutine?
	2.4.7 Can I Change the Layout Weblet associated with a WAM Layout?

	2.5 Variables
	2.5.1 How can I Change the Value of a Shipped Variable?
	2.5.2 How can I Create my own Variables?

	2.6 Localized Variables
	2.7 Cascading Style Sheets (CSS) and the Style Weblet
	2.7.1 What are Cascading Style Sheets and how do they work?
	2.7.2 What CSS files are loaded and how do I add my own?
	2.7.3 Can I create my own Style Weblet?
	2.7.4 What Cascading Style Sheets are available?

	2.8 JavaScript and the Script Weblet
	2.8.1 Can I create my own Script Weblet?
	2.8.2 How do I Format inline JavaScript for a Weblet Property?

	2.9 Messages
	2.10 Types
	2.11 Hidden
	2.12 Keys
	2.13 Inline Lists
	2.13.1 Creating an Inline List
	2.13.2 Using Weblets in an Inline List

	3. Essential Topics
	3.1 Using CHECKNUMERIC in WAMs
	3.2 WAM Application Design
	3.3 Developing for Multiple Languages
	3.4 Using Cookies in Your WAM Application
	3.5 Using the Service Name
	3.6 Using Session Status
	3.7 Deleting Objects
	3.8 LOB Data Types and Stream Files
	3.8.1 File Request
	3.8.2 LOB/File Content Type
	3.8.3 LOB/File Properties
	3.8.4 Custom HTTP Headers
	3.8.5 CLOBs and Files with Text Content
	3.8.6 Compression

	3.9 WAM External Resources
	3.9.1 Specifying scripts and styles
	3.9.2 Web External Resource Locations
	Locations
	Resolution of different locations

	3.9.3 Order of External Resource Inclusion
	3.9.4 Shipped WAM External Resources

	3.10 Using jQuery
	3.10.1 jQuery Tools and Tips

	3.11 Theming WAMs
	3.12 Localization
	3.12.1 Technology Service Providers
	3.12.2 3rd Party Libraries

	3.13 JSON Support
	JSON Lists
	3.13.1 JSON Convenience Wrapper
	Requesting a Webroutine
	Getting Fields
	Processing Lists
	Getting Messages
	Context Data
	Building a JSON Request
	Adding Fields to the JSON Request
	Adding a List to the JSON Request
	Defining JSON Request List Headers
	Adding Entries to the JSON Request List
	Posting the JSON Request

	3.14 Saving a WAM's Output to a File
	3.15 Document Type Declaration (DOCTYPE)

	4. Advanced Topics
	4.1 TRANSFER Statements in WEBROUTINEs
	4.2 CALL Statements in WEBROUTINEs
	4.3 WAM Session Management
	4.3.1 Session Management Configuration
	4.3.2 Session Key Method
	4.3.3 The WEB_MAP *PERSIST Keyword
	4.3.4 Session State Maintenance
	4.3.5 The Mechanics of Session Management
	4.3.6 WAM Session Properties
	4.3.7 WAM Session Example
	4.3.8 Session States

	5. Execute WAM Applications
	5.1 Build or Compile your WAM
	5.2 Deployment and Runtime Environment
	5.2.1 WAM and XSL Deployment
	5.2.2 Multi-tier Deployment

	5.3 WAM Uniform Resource Locator (URL)
	5.4 Mapping Posted HTTP Data to Fields
	5.5 How is the Output Presentation Created?

	6. WAM and WEBEVENT Interoperability
	6.1 A WAM Form Invoking a WEBEVENT Form
	6.2 A WEBEVENT Form Invoking a WAM Form
	6.3 A WAM Container Form Managing WEBEVENT Forms
	6.4 A WEBEVENT Container Form Managing WAM Forms
	6.5 Sharing Information between WAMs and WEBEVENT Functions
	6.5.1 Uniquely Identifying Shared Data
	6.5.2 Sharing Data
	6.5.3 Clean up Shared Data
	6.5.4 Visual LANSA Framework and the 'Virtual Clipboard'

	7. Technology Services
	7.1 Create a Technology Service
	7.2 TSML Document Structure
	7.3 TSML Document Example
	7.4 WebRoutine TSP Stylesheet and the LANSA Editor
	7.4.1 Payload Wrapper XSL stylesheet
	7.4.2 Sample Field Drag and Drop
	Dragging and Dropping a Field
	Field TSML Node
	Field Drag and Drop output

	Dragging and Dropping a List
	List TSML Node
	List Drag and Drop Output

	Dragging and Dropping a List Column
	List Column TSML Node
	List Column Drag and Drop Output

	7.5 Default Weblet for Technology Service
	7.6 About Weblets and Weblet Templates
	7.6.1 What are weblets and weblet templates?
	7.6.2 Field weblet visualization

	8. Weblets for XHTML Technology Service
	8.1 Standard Weblets
	8.1.1 Anchor (std_anchor)
	QuickStart - Anchor
	Properties - Anchor
	name
	value
	currentrowhfield
	currentrownumval
	reentryfield
	reentryvalue
	hide_if
	formname
	url
	on_click_wamname
	on_click_wrname
	protocol
	show_in_new_window
	target_window_name
	pos_absolute_design
	width_design
	relative-image-path
	absolute-image-path
	class
	mouseover_class
	text_class
	presubmit_js
	tab_index
	vf_wamevent

	8.1.2 Autocomplete (std_autocomplete)
	QuickStart � Autocomplete
	Properties � Autocomplete
	name
	value
	display_mode
	maxlength
	size
	display_length
	keyboard_shift
	minLength
	delay
	sourceWamName
	sourceWrName
	termField
	listName
	labelField
	valueField
	extraFields
	cache
	matchContains
	hide_if
	class
	tab_index
	title
	read_only
	disabled
	pos_absolute
	width
	height
	scroll
	scrollHeight
	onchange_script
	onselect_script

	8.1.3 Attachment panel (std_attach_panel_v2)
	QuickStart- Attachment panel
	Properties - Attachment panel
	name
	panes
	border
	hide_if
	pos_absolute
	width
	height

	8.1.4 Push Button (std_button_v2) & Push Button with Images (std_image_button_v2)
	QuickStart- Push Button & Push Button with Images
	Properties - Push Button & Push Button with Images
	name
	caption
	currentrowhfield
	currentrownumval
	left_relative_image_path
	left_absolute_image_path
	left_image_height
	right_relative_image_path
	right_absolute_image_path
	right_image_height
	submitExtraFields
	hide_if
	formname
	pos_absolute_design
	width_design
	height_design
	on_click_wamname
	on_click_wrname
	protocol
	show_in_new_window
	target_window_name
	disabled
	title
	text_class
	presubmit_js
	confirm
	confirmText
	tab_index
	default_button
	vf_wamevent

	8.1.5 Checkbox (std_checkbox)
	QuickStart - Checkbox
	Properties - Checkbox
	name
	value
	display_mode
	caption
	oncode
	offcode
	reentryfield
	reentryvalue
	hide_if
	formname
	on_click_wamname
	on_click_wrname
	protocol
	target_window_name
	disabled
	alignment
	pos_absolute
	class
	mouseover_class
	text_class
	tab_index
	vf_wamevent

	8.1.6 CKEditor Rich Text Editor (std_ckeditor)
	QuickStart � CKEditor
	Properties � CKEditor Rich Text Editor
	name
	value
	valueFromField
	hide_if
	toolbar
	showSource
	showElementsPath
	toolbarCanCollapse
	pos_absolute
	width_design
	height_design
	resize_enabled
	resize_dir
	autoGrow
	autoGrow_maxHeight
	autoGrow_minHeight
	resize_maxHeight
	resize_maxWidth
	resize_minHeight
	resize_minWidth
	contentCss
	tab_index
	uiColor
	onchange_script

	8.1.7 Clickable Image (std_click_image)
	QuickStart - Clickable Image
	Properties - Clickable Image
	name
	value
	currentrowhfield
	currentrownumval
	reentryfield
	reentryvalue
	tooltip
	hide_if
	formname
	url
	on_click_wamname
	on_click_wrname
	protocol
	show_in_new_window
	target_window_name
	disabled
	hide_focus
	relative_image_path
	absolute_image_path
	mouseover_relative_image_path
	mouseover_absolute_image_path
	pos_absolute
	width_design
	height_design
	class
	disabled_class
	presubmit_js
	tab_index
	vf_wamevent

	8.1.8 Combo Box (std_dropdown)
	QuickStart - Combo Box
	Properties - Combo Box
	name
	value
	display_mode
	items
	listname
	selector_field
	selector_value_eq
	codefield
	captionfield
	tagfield1
	tagfield2
	tagfield3
	submit_tagfields
	reentryfield
	reentryvalue
	hide_if
	formname
	pos_absolute
	width_design
	on_change_wamname
	on_change_wrname
	protocol
	target_window_name
	disabled
	class
	mouseover_class
	tab_index
	vf_wamevent

	8.1.9 Dynamic Select Box (std_dynamic_select)
	QuickStart - Dynamic Select Box
	Properties - Dynamic Select Box
	name
	id
	value
	size
	display_mode
	hide_if
	items
	listname
	selectorField
	selectorValueField
	codeField
	captionField
	allowMultiSelect
	multiSelectListname
	multiSelectCodefield
	onChangeWamName
	onChangeWrName
	onChangeFormname
	onChangeExtraFields
	onChangeProtocol
	onChangeTarget
	position
	width
	disabled
	class
	tabIndex
	updateOnFieldChange
	updateWamName
	updateWrName
	updateFieldsToSubmit
	updateProtocol
	vf_wamevent

	8.1.10 Export to Excel (std_toexcel)
	QuickStart � Export to Excel
	Properties � Export to Excel
	name
	listname
	startingColumnIndex
	numberOfColumns
	caption
	hide_if
	pos_absolute
	width_design
	height_design
	disabled
	title
	text_class
	tab_index

	8.1.11 File Upload (std_fileupload)
	QuickStart � File Upload
	Properties � File Upload
	name
	id
	caption
	class
	hide_If
	uploadWamName
	uploadWrName
	MaxFileSize
	MaxNumberOfFiles
	successCallback
	failCallback
	disabled
	text_class
	tab_index

	8.1.12 Grid (std_grid_v2 and std_grid_v3)
	QuickStart - Grid
	Properties - Grid
	name
	listname
	listname_fixed_col_field
	sort_fixed_rows_with_body
	grid_hdr_properties
	grid_col_properties
	show_header
	hide_header_if_empty
	hide_if
	even_row_class
	odd_row_class
	formname
	pos_absolute
	width
	height
	allowSort
	allowColResize
	rowHoverEffect
	selectableRow
	onRowClickJS

	Customize Grid Columns
	Reference Column Values in Weblet Properties
	Grid Column Example

	8.1.13 Image (std_image)
	QuickStart - Image
	Properties � Image (std_image)
	relativeImagePath
	lazyLoad
	width
	height
	hideIf
	caption

	8.1.14 List Paging Images (std_list_images) and List Paging Buttons (std_list_buttons)
	QuickStart - List Paging Images & List Paging Buttons
	Properties - List Paging Images & List Paging Buttons
	name
	image_size
	prevcondfield
	nextcondfield
	show_first_last
	reentryfield
	hide_if
	formname
	pos_absolute_design
	width_design
	height_design
	on_click_wamname
	on_page_wrname
	on_search_wrname
	protocol
	page_count_fieldname
	class
	mouseover_class
	tab_index
	vf_wamevents

	8.1.15 Mark-up (std_markup)
	QuickStart � Mark-up
	Properties � Mark-up
	name
	value
	valueFromField
	hide_if
	class
	title
	pos_absolute
	width
	height

	8.1.16 Memo using a list (std_list_textarea_v2)
	QuickStart - Memo using a list
	Properties - Memo using a list
	listname
	list_text_fieldname
	name
	hide_if
	formname
	pos_absolute
	width_design
	height_design
	rows
	cols
	word_wrap_display
	word_wrap_onsubmit
	max_rows_onsubmit
	class
	read_only
	disabled
	tab_index
	onchange_script

	8.1.17 Large List (std_largelist)
	QuickStart - Large List
	Properties - Large List
	name
	listname
	format_target
	iframe_width
	iframe_height
	column_css_class
	src_wamname
	src_wrname
	fields_names_to_exchange
	csv_hyperlink_type
	csv_hyperlink_relative_image_path
	csv_hyperlink_text
	show_busybox
	wait_content

	8.1.18 List Box (std_listbox)
	QuickStart - List Box
	Properties - List Box
	name
	value
	display_mode
	items
	size
	allow_multi_selections
	multi_select_listname
	multi_select_codefield
	listname
	selector_field
	selector_value_eq
	codefield
	captionfield
	tagfield1, tagfield2, tagfield3
	submit_tagfields
	reentryfield
	reentryvalue
	hide_if
	formname
	pos_absolute
	height_design
	width_design
	on_select_wamname
	on_select_wrname
	protocol
	target_window_name
	disabled
	class
	mouseover_class
	tab_index
	vf_wamevent

	List Box Example

	8.1.19 Menu bar (std_menubar)
	QuickStart - Menubar
	Using the Menu Item Designer
	Using a List to Define the Menu
	Properties - Menu bar
	id
	listname
	menu_items
	orientation
	show_arrows
	submit_selected_to

	8.1.20 Menu item (std_menu_item_v2)
	QuickStart - Menu item
	Menu Item Appearance
	Layout and Size

	Properties - Menu item
	name
	caption
	href
	on_click_wamname
	on_click_wrname
	protocol
	is_selected_if_also
	force_selected
	hide_if
	target_window_name
	reentryfield
	reentryvalue
	formname
	style
	useJQueryUITheme
	class
	selected_class
	tab_index
	vf_wamevent

	8.1.21 Navigation Panel (std_nav_panel)
	QuickStart - Navigation Panel
	Properties - Navigation Panel
	name
	border
	border_width
	hide_if
	pos_absolute
	width
	height
	size_panel_to_content
	size_panel_to_content_axis
	scrolling
	class
	transparent
	nav_url
	formname
	nav_wamname
	nav_wrname
	protocol
	nav_asynchronously
	reentryfield
	reentryvalue
	wait_content
	wait_content_timeout
	wait_content_class
	wait_content_relative_image
	wait_content_absolute_image
	wait_content_image_alignment
	wait_content_image_class
	vf_wamevent

	8.1.22 Panel (std_ panel)
	QuickStart - Panel
	Properties - Panel
	name
	panes
	border
	border_width
	hide_if
	class
	snap_to_grid
	grid_size
	pos_absolute
	width
	height

	8.1.23 Print Page (std_printpage)
	QuickStart - Print Page
	Properties - Print Page
	caption
	hide_if
	disabled
	hide_focus
	relative_image_path
	absolute_image_path
	pos_absolute
	width_design
	height_design
	class
	disabled_class
	tab index

	8.1.24 Progress bar (std_progressbar)
	Properties � Progress bar
	name
	value
	max
	height
	width
	caption
	transitory
	indeterminate
	overlay
	delayClose
	hide_if

	8.1.25 Prompter (std_prompter)
	Properties - Prompter
	name
	caption
	relative_image_path
	absolute_image_path
	image_height
	image_width
	border
	border_width
	hide_if
	pos_absolute
	button_width
	button_height
	prompter_width
	prompter_height
	auto_resize
	button_class
	prompter_class
	button_mouseover_class
	formname
	prompter_url
	prompter_wamname
	prompter_wrname
	protocol
	field_name_to_exchange
	closing_url
	field_mapping
	closing_wrname
	reentryfield
	reentryvalue
	disabled
	title
	on_change_wamname
	on_change_wrname
	on_change_protocol
	on_change_reentryfield
	on_change_reentryvalue
	on_change_target_window_name
	pre_show_js
	tab_index
	vf_wamevent

	8.1.26 Radio Button (std_rad_button)
	QuickStart - Radio Button
	Properties - Radio Button
	name
	value
	caption
	code
	label_id
	reentryfield
	reentryvalue
	hide_if
	formname
	on_click_wamname
	on_click_wrname
	protocol
	target_window_name
	alignment
	disabled
	pos_absolute
	class
	mouseover_class
	text_class
	tab_index
	vf_wamevent

	8.1.27 Radio Group (std_radbuttons)
	QuickStart - Radio Group
	Properties - Radio Group
	name
	value
	display_mode
	items
	listname
	selector_field
	selector_value_eq
	codefield
	captionfield
	reentryfield
	reentryvalue
	hide_if
	formname
	on_click_wamname
	on_click_wrname
	protocol
	target_window_name
	alignment
	orientation
	show_groupbox
	group_title
	disabled
	pos_absolute
	width
	height
	class
	mouseover_class
	text_class
	groupbox_class
	tab_index
	vf_wamevent

	8.1.28 Horizontal Splitter (std_splitter_horz)
	QuickStart - Horizontal Splitter
	Properties - Horizontal Splitter
	name
	panes
	pos_absolute
	width
	height
	top_proportion_percent
	top_border
	bottom_border
	top_class
	divider_class
	bottom_class
	top_style
	bottom_style

	8.1.29 Vertical Splitter (std_splitter_vert)
	QuickStart - Vertical Splitter
	Properties - Vertical Splitter
	name
	panes
	pos_absolute
	width
	height
	left_proportion_percent
	left_border
	right_border
	left_class
	divider_class
	right_class
	left_style
	right_style

	8.1.30 Tab Pages (std_tab_pages_v2)
	QuickStart - Tab pages
	Using the Tab Item Designer
	Using CSS with the Tab Pages weblet
	How the Default CSS Works
	Adding your own CSS Styles

	Properties - Tab pages
	name
	tabs
	selected_tab_index
	selected_tab_index_field
	tab_alignment
	tab_image
	tab_selected_image
	tab_image_height
	tab_image_width
	tab_image_alignment
	listname
	caption_field
	image_field
	selected_image_field
	hide_if_true_field
	disable_if_true_field
	hide_if
	formname
	pos_absolute_design
	content_width
	content_height

	8.1.31 Tree View (std_treeview_v2)
	QuickStart - Tree View
	Unlevelled List
	Using Ajax with an Unlevelled List
	Levelled List
	Responding to item selection

	Properties - Tree View
	name
	listname
	listtype
	use_jQueryUI_theme
	jQueryUI_node_icon
	folder_closed_image
	folder_open_image
	item_image
	node_text_click
	key_fields
	display_fields
	list_caption_field
	list_image_field
	list_open_image_field
	list_id_field
	list_onselect_wamname_field
	list_onselect_wrname_field
	list_haschildren_field
	list_is_selected_field
	list_is_expanded_field
	list_parent_id_field
	onselect_wamname
	onselect_wrname
	onexpand_wamname
	onexpand_wrname
	onsubmit_id_field
	onsubmit_level_field
	onsubmit_ancestor_list
	target_window_name
	pos_absolute
	width
	height

	8.1.32 Memo using a field (std_textarea)
	QuickStart - Memo using a field
	Properties - Memo using a field
	name
	value
	maxlength
	keyboard_shift
	hide_if
	pos_absolute
	width_design
	height_design
	rows
	cols
	word_wrap
	class
	read_only
	disabled
	tab_index
	onchange_script

	8.2 Charting Weblets
	8.2.1 Common Chart Topics
	Chart Data
	Samples
	Transposing List Rows and Columns

	Chart Colors
	Chart Title, Label and Legends
	Chart Margins

	8.2.2 Google Bar Chart (std_gbar_chart)
	QuickStart � Google Bar Chart
	Properties � Google Bar Chart
	name
	chartType
	listName
	transpose
	labels
	labelsColor
	labelsFontSize
	rangeLabels
	rangeLabelsColor
	rangeLabelsFontSize
	barWidth
	spaceBetweenBars
	spaceBetweenGroups
	seriesColor
	bgColor
	hide_if
	pos_absolute
	width
	height
	titleText
	titleColor
	titleFontSize
	axesColor
	margins
	legendText
	legendPos
	legendOrder
	legendColor
	legendFontSize
	legendMargins

	8.2.3 Google Line Chart (std_gline_chart)
	QuickStart � Google Line Chart
	Properties � Google Line Chart
	name
	chartType
	listName
	transpose
	labels
	labelsColor
	labelsFontSize
	rangeLabels
	rangeLabelsColor
	rangeLabelsFontSize
	seriesColor
	bgColor
	lineThickness
	markerType
	markerColor
	hide_if
	pos_absolute
	width
	height
	titleText
	titleColor
	titleFontSize
	axesColor
	margins
	legendText
	legendPos
	legendOrder
	legendColor
	legendFontSize
	legendMargins

	8.2.4 Google Pie Chart (std_gpie_chart)
	QuickStart � Google Pie Chart
	Properties � Google Pie Chart
	name
	chartType
	listName
	transpose
	labels
	labelsColor
	labelsFontSize
	rotation
	seriesColor
	bgColor
	hide_if
	pos_absolute
	width
	height
	titleText
	titleColor
	titleFontSize
	margins
	legendText
	legendPos
	legendOrder
	legendColor
	legendFontSize
	legendMargins

	8.3 Standard Field Visualizations
	8.3.1 Alphanumeric (std_char)
	QuickStart - Alphanumeric
	Properties - Alphanumeric
	name
	value
	display_mode
	maxlength
	display_length
	type
	keyboard_shift
	hide_if
	class
	tab_index
	title
	word_wrap
	read_only
	disabled
	pos_absolute
	width
	height

	8.3.2 Boolean (std_boolean)
	QuickStart - Boolean
	Properties - Boolean
	name
	value
	display_mode
	hide_if
	pos_absolute
	class
	mouseover_class
	tab_index

	8.3.3 jQuery UI Datepicker (std_datepicker)
	QuickStart - Datepicker
	Properties - Datepicker
	name
	value
	display_mode
	hide_if
	allow_sqlnull
	dateFormat
	firstDay
	changeMonth
	changeYear
	yearRange
	showOtherMonths
	selectOtherMonths
	minDate
	maxDate
	shortYearCuttoff
	showInline
	showOn
	showMonthAfterYear
	buttonImage
	tab_index
	title
	buttonText
	disabled
	pos_absolute
	width
	autoSize
	showAnim
	duration
	onchange_script

	8.3.4 jQuery UI Datetimepicker (std_datetimepicker)
	QuickStart - Datetimepicker
	Properties - Datetimepicker
	name
	value
	display_mode
	hide_if
	display_in_utc
	allow_sqlnull
	dateFormat
	timeFormat
	firstDay
	changeMonth
	changeYear
	yearRange
	showOtherMonths
	selectOtherMonths
	minDate
	maxDate
	stepHour
	stepMinute
	stepSecond
	shortYearCuttoff
	hourMin
	hourMax
	minuteMin
	minuteMax
	showOn
	showMonthAfterYear
	buttonImage
	tab_index
	title
	buttonText
	disabled
	pos_absolute
	width
	autoSize
	showAnim
	duration
	onchange_script

	8.3.5 Float (std_float)
	QuickStart - Float
	Properties - Float
	name
	value
	display_mode
	maxlength
	size
	type
	hide_if
	class
	tab_index
	title
	read_only
	disabled
	pos_absolute
	width
	height

	8.3.6 Input box (std_input)
	QuickStart - Input box
	Properties - Input box
	name
	value
	display_mode
	maxlength
	size
	display_length
	type
	keyboard_shift
	hide_if
	class
	tab_index
	title
	read_only
	disabled
	pos_absolute
	width
	height
	onchange_script

	8.3.7 Integer (std_integer)
	QuickStart - Integer
	Properties - Integer
	name
	value
	display_mode
	maxlength
	size
	type
	hide_if
	class
	tab_index
	title
	read_only
	disabled
	pos_absolute
	width
	height

	8.3.8 Object (std_lob)
	QuickStart - Object
	Properties - Object
	name
	value
	currentrowhfield
	currentrownumval
	reentryfield
	reentryvalue
	hide_if
	formname
	on_click_wamname
	on_click_wrname
	protocol
	show_in_new_window
	target_window_name
	pos_absolute_design
	width_design
	relative-image-path
	absolute-image-path
	class
	mouseover_class
	text_class
	presubmit_js
	tab_index
	vf_wamevent

	8.3.9 jQuery UI Timepicker (std_timepicker)
	QuickStart - Timepicker
	Properties - Timepicker
	name
	value
	display_mode
	hide_if
	allow_sqlnull
	timeFormat
	hourMin
	hourMax
	minuteMin
	minuteMax
	stepHour
	stepMinute
	stepSecond
	tab_index
	title
	showOn
	buttonImage
	buttonText
	read_only
	disabled
	pos_absolute
	width
	autoSize
	showAnim
	duration
	onchange_script

	8.3.10 Varchar (std_varchar)
	QuickStart - Varchar
	Properties - Varchar
	name
	value
	display_mode
	maxlength
	display_length
	type
	keyboard_shift
	hide_if
	class
	tab_index
	title
	word_wrap
	read_only
	disabled
	pos_absolute
	width
	height

	8.4 Layout Weblets
	8.4.1 QuickStart - Standard Layouts
	8.4.2 Standard Theme Layouts (std_themelet1_[1-3]col)
	Properties - Standard Theme Layouts (std_themelet1_[1-3]col)
	Backcompat_theme
	content_side
	content_width
	css_files
	has_form
	output_charset
	show_title
	title_text
	javascript_files
	width
	width_type
	sidebar_width
	sidebar1_width
	sidebar2_width
	jQueryNoConflict
	window_title

	8.4.3 Standard Blank Layout (std_blank_layout)
	8.4.4 Standard Basic Layout (std_layout_V2 and std_layout[1-5]_v2)
	Properties - Standard Layouts(std_layout_V2 and std_layout[1-5]_v2)
	show_left_menu
	show_top_menu
	show_right_menu
	body_class
	form_class
	has_form
	no_layout
	show_title
	title_text
	show_messages
	onload_script
	onunload_script
	javascript_files
	theme_css_filename
	css_files
	output_charset
	trap_script_errors

	8.4.5 Utility Weblets
	8.4.6 Inline Templates
	8.4.7 jQuery UI
	8.4.8 WAM Layouts

	9. Weblets for jQMobile Technology Service
	9.1 jQMobile and the WAM Editor
	9.2 Field Validation
	9.2.1 RDMLX Data types
	9.2.2 Displaying Validation Errors
	9.2.3 Controlling When Validation Occurs

	9.3 Default Weblet
	9.4 Standard Weblets
	9.4.1 Anchor (std_anchor and std_anchor_s1)
	Properties - Anchor (std_anchor and std_anchor_s1)
	absoluteImagePath (std_anchor_s1 only)
	id
	value
	class
	corners
	countIndicator (std_anchor_s1 only)]
	countValue (std_anchor_s1 only)
	customIcon (std_anchor_s1 only)
	displayAs
	hideIf
	icon
	iconPosition
	iconShadow
	inline
	mini
	onClickExtraFields
	onClickWamName
	onClickWrName
	relationship
	relativeImagePath (std_anchor_s1 only)
	shadow
	style
	swatch
	tabindex
	transition
	transitionDirection
	url
	useAjax
	internal_id

	9.4.2 Autocomplete (std_autocomplete)
	Properties � Autocomplete (std_autocomplete)
	Id
	name
	placeholder
	minLength
	sourceWamName
	sourceWrName
	termField
	listName
	labelField
	valueField
	extraFields
	cache
	corners
	fieldContainWrapper
	filterSwatch
	itemsSwatch
	hideLabel
	label
	mini
	hideIf
	inset

	9.4.3 Boolean (std_boolean)
	Properties - Boolean (std_boolean)
	id
	name
	value
	autofocus
	class
	corners
	disabled
	displayMode
	falseDisplay
	falseValue
	fieldContainWrapper
	form
	hideIf
	hideLabel
	label
	mini
	rdmlxDataType
	style
	swatch
	tabindex
	title
	trueDisplay
	trueValue

	9.4.4 Button (std_button_s1 and std_button_v2)
	Properties - Button (std_button_s1 and std_button_v2)
	id
	name
	value
	autofocus
	caption
	class
	corners
	disabled
	form
	formaction
	formenctype
	formmethod
	formnovalidate
	formtarget
	hideIf
	icon
	iconPosition
	iconShadow
	inline
	mini
	onClickExtraFields
	onClickWamName
	onClickWrName
	presubmitJS
	shadow
	style
	swatch
	tabindex
	title
	transition
	transitionDirection
	type
	useAjax
	internal_id

	9.4.5 Checkbox (std_checkbox)
	Properties - Checkbox (std_checkbox)
	id
	name
	value
	autofocus
	disabled
	form
	hideIf
	label
	mini
	rdmlxDataType
	required
	selectedValue
	swatch
	tabindex
	title

	9.4.6 Collapsible Block (std_collapsible)
	Properties - Collapsible Block (std_collapsible)
	id
	collapsed
	contentSwatch
	headerLevel
	headerSwatch
	headerText
	hideIf
	inset
	collapseCueText
	expandCueText
	internal_id

	9.4.7 Collapsible Set (std_collapsibleset)
	Properties - Collapsible Set (std_collapsibleset)
	id
	hideIf
	internal_id

	9.4.8 Control Group (std_controlgroup)
	Properties - Control Group (std_controlgroup)
	id
	class
	fieldContainWrapper
	hideIf
	hideLabel
	label
	mini
	orientation
	style
	swatch
	internal_id

	9.4.9 Select Menu (std_dropdown)
	Properties - Select Menu (std_dropdown)
	name
	id
	value
	addErrorDiv
	autofocus
	class
	corners
	disabled
	displayMode
	fieldContainWrapper
	form
	hideIf
	hideLabel
	icon
	iconPosition
	iconShadow
	items
	inline
	label
	mini
	multiple
	multiSelectCodeField
	multiSelectListname
	overlaySwatch
	placeholder
	rdmlxDataType
	required
	selectorValueField
	shadow
	style
	swatch
	tabindex
	title
	updateFieldsToSubmit
	updateOnFieldChange
	updateProtocol
	updateWamName
	updateWrName
	useNativeControl

	9.4.10 File Upload (std_fileupload)
	Properties � File Upload
	name
	id
	caption
	class
	hideIf
	inline
	uploadWamName
	uploadWrName
	MaxFileSize
	MaxNumberOfFiles
	successCallback
	failCallback
	disabled
	tabindex

	9.4.11 Footer (std_footer)
	Properties - Footer (std_footer)s
	id
	fullscreenMode
	hideIf
	persistentFooterId
	position
	swatch
	internal_id

	9.4.12 Layout Grid (std_gridlayout)
	Properties - Layout Grid (std_gridlayout)
	columns
	isOutputOnly
	listname
	internal_id

	9.4.13 Header (std_header)
	Properties - Header (std_header)
	id
	fullscreenMode
	hideIf
	position
	swatch
	internal_id

	9.4.14 HTML List (std_html_list)
	Properties - HTML List (std_html_list)
	id
	class
	countSwatch
	dividerSwatch
	hasSearchFilter
	hideIf
	inset
	searchFilterPlaceholder
	searchFilterSwatch
	splitIcon
	splitSwatch
	swatch
	type
	internal_id

	9.4.15 HTML List Item (std_html_li)
	Properties - HTML List Item (std_html_li)
	id
	class
	filterText
	hideIf
	role
	swatch
	internal_id

	9.4.16 Image (std_image)
	Properties � Image (std_image)
	relativeImagePath
	lazyLoad
	width
	height
	hideIf
	caption

	9.4.17 Loader (std_loader)
	Properties � Loader (std_loader)
	id
	name
	showIcon
	showText
	text
	swatch

	9.4.18 Input Box (std_input)
	Properties - Input Box (std_input)
	id
	name
	value
	accept
	addErrorDiv
	alt
	autocomplete
	autofocus
	class
	corners
	disabled
	displayMode
	fieldContainWrapper
	form
	formaction
	formenctype
	formmethod
	formnovalidate
	formtarget
	height
	hideIf
	hideLabel
	label
	list
	max
	maxlength
	min
	mini
	multiple
	pattern
	placeholder
	rdmlxDataType
	readonly
	required
	size
	src
	step
	style
	swatch
	tabindex
	title
	type
	clearButton
	clearButtonText
	width

	9.4.19 Messages (std_messages)
	Properties - Messages (std_messages)
	hideIf
	swatch

	9.4.20 Mobiscroll Date and Time Picker (std_mobiscroll)
	Properties - Mobiscroll Date and Time Picker (std_mobiscroll)
	id
	name
	value
	class
	dateFormat
	dateOrder
	disabled
	endYear
	fieldContainWrapper
	form
	hideIf
	hideLabel
	label
	mode
	pickerTheme
	rows
	showOnFocus
	startYear
	stepHour
	stepMinute
	stepSecond
	style
	swatch
	tabindex
	timeFormat
	timeWheels
	title
	type

	9.4.21 Navigation Bar (std_navbar)
	Properties - Navigation Bar (std_navbar)
	id
	class
	hideIf
	iconPosition
	swatch
	internal_id

	9.4.22 Progress bar (std_progressbar)
	Properties � Progress bar
	name
	value
	max
	caption
	transitory
	overlay
	delayClose
	hideIf
	swatch

	9.4.23 Radio Button Group (std_radbuttons)
	Properties - Radio Button Group (std_radbuttons)
	id
	name
	value
	disabled
	displayMode
	fieldContainWrapper
	form
	hideIf
	hideLabel
	items
	label
	mini
	orientation
	swatch
	rdmlxDataType
	selectorValueEq

	9.4.24 RDMLX Working List (std_repeater)
	Properties - RDMLX Working List (std_repeater)
	isOutputOnly
	listname
	internal_id

	9.4.25 HTML Textarea (std_textarea)
	Properties - HTML Textarea (std_textarea)
	id
	name
	value
	addErrorDiv
	autofocus
	class
	corners
	cols
	disabled
	displayMode
	fieldContainWrapper
	form
	hideIf
	hideLabel
	label
	maxlength
	mini
	placeholder
	rdmlxDataType
	readonly
	required
	rows
	style
	swatch
	tabindex
	title
	wrap

	9.5 Layout Weblets
	9.5.1 Basic Layout (std_layout_v2)
	Properties - Basic Layout (std_layout_v2)
	addBackButton
	backButtonSwatch
	backButtonText
	contentSwatch (deprecated)
	footerFullscreenMode
	footerPosition
	footerSwatch
	headerFullscreenMode
	headerPosition
	headerSwatch
	pageSwatch
	persistentFooterId
	showFooter
	showHeader
	showMessages
	validationErrorDisplay
	validationTime
	windowTitle

	9.5.2 Flexible Layout (std_flex_layout)
	Properties - Flexible Layout (std_flex_layout)
	addBackButton
	backButtonSwatch
	backButtonText
	contentSwatch (deprecated)
	footerFullscreenMode
	footerPosition
	footerSwatch
	headerFullscreenMode
	headerPosition
	headerSwatch
	pageSwatch
	persistentFooterId
	showFooter
	showHeader
	showMessages
	sidebarPositionSmallScreen
	validationErrorDisplay
	validationTime
	windowTitle

	9.6 Utility Weblets

	WAM Tutorials
	Before You Begin
	What is a WAM?
	WAM005 - Create Your First WAM
	Step 1. Start Visual LANSA
	Step 2. Create a WAM
	Step 3. Create the ReentryTest WebRoutine
	Step 4. Compile the WAM
	Step 5. Open the Design view
	Step 6. Editing
	Step 7. Use a Weblet
	Step 8. Make STDRENTRY visible for testing
	Step 9. Test the WAM
	Step 10. Hide STDRENTRY
	Summary

	WAM010 - Using WEB_MAPs
	Step 1. Create a new WAM
	Step 2. Add WebRoutines to the new WAM
	Step 3. Compile the WAM and Open for Editing
	Step 4. Add buttons to the WebRoutine
	Step 5. Understand the Web Routine
	Step 6. Change the Employee Number field
	Step 7. Add the RDMLX for the second WebRoutine
	Step 8. Add buttons to the WebRoutines
	Step 9. Understand WEB_MAP
	Summary

	WAM015 - Working Lists
	Step 1. Create a new WAM
	Step 2. Add RDMLX code to the new WAM
	Step 3. See how the working list is displayed
	Step 4. Change the display mode of fields in the list
	Step 5. Use the generate XSL for all WebRoutines option
	Step 6. Modify the list in the Design view
	Summary

	WAM020 - WAM Navigation
	Step 1. Create a new WAM
	Step 2. Add RDMLX code to the new WAM
	Step 3. Add Buttons and the Dropdown list to the WebRoutine
	Step 4. Test and Understand the WebRoutine
	Step 5. Add Weblet to a List
	Summary

	WAM025 - Using the Layout Wizard
	Step 1. Use the Web Application Layout Manager Wizard.
	Step 2. Execute the generated Demo WAM
	Step 3. Examine the new layout
	Summary

	WAM030 - Employee Enquiry
	Step 1. Create Employee Enquiry WAM
	Step 2. Create a Begin WebRoutine
	Step 3. Open the Design View
	Step 4. Add a Push Button Weblet
	Step 5. Create WebRoutine: Details
	Summary

	WAM035 - An Employee Update WAM
	Step 1. Create WAM iiiEmpUpdate � Employee Update
	Step 2. Compile your WAM and complete the Details web page
	Step 3. Test the Employee Update WAM
	Summary

	WAM040 - Add dropdown lists for Department and Section
	Step 1. Create iiiWAM040 - iii Employee Update - Enhanced
	Step 2. Add Dynamic Select Boxes to the Details Web Page
	Step 3. Make the Sections Dropdown list dynamic
	Summary

	WAM045 - A Dynamic Selector Dropdown list using a Select Field
	Step 1. Create WAM iiiDynamSelector � Dynamic Selector using Select Field
	Step 2. Setup the Dynamic Selector Dropdown list for Sections
	Summary

	WAM050 - A Section Maintenance Application
	Step 1. Create iiiSecMaint - Section Maintenance WAM
	Step 2. Add a Details WebRoutine
	Step 3. Create iiiSecAdd - Add Section WAM
	Step 4. Complete the AddSect WebRoutine
	Step 5. Set up the 'New Section' button on the Begin page for ii SecMainti
	Summary

	WAM055 - Using LANSA Debug
	Step 1. Get Started with Debug
	Step 2. Use Breakpoints
	Step 3. Use Break on Value Condition
	Step 4. Use Debug when the WAM is running on the server
	Summary

	WAM060 - Employee Maintenance using Advanced Weblets
	Step 1. Create WAM iiiEmpMaint � Employee Maintenance
	Step 2. Set up the ShowPage web page design
	Step 3. Complete the ShowPage web page design
	Step 4. Define the Details WebRoutine
	Step 5. Extend the Details WebRoutine for update
	Step 6. Extend the Details WebRoutine to add new employee skill
	Step 7. Control which Tab is redisplayed
	Step 8. Replace Date Acquired with a Date field (Optional).
	Step 9. Change Grade to a Dropdown list (Optional)
	Summary

	WAM065 - Controlling List Output
	Step 1. Create WAM iiiEmpSearch � Employee Search
	Step 2. Add List Paging Images weblet
	Step 3. Add AutoComplete Weblets (optional)
	Summary

	WAM070 - Hiding Techniques
	Step 1. Create a new WAM
	Step 2. Edit the HideMain WebRoutine web page
	Step 3. Apply the Conditional Hides
	Step 4. Test the WAM
	Summary
	WAM 070. Appendix

	WAM075 - Using a Tree View Weblet
	Step 1. Create WAM iiiTreeView � Using a Tree View Weblet
	Step 2. Make the Tree View Expand
	Step 3. Display Details for a Selected Department
	Step 4. Display Details for Sections and Employees
	Summary

	WAM080 - Session Management
	Step 1. Create Session Management 1 WAM
	Step 2. Retrieve and Store Employee Details
	Step 3. Create Session Management 2 WAM
	Step 4. Test the Session Management Application
	Summary

	WAM085 - Enhancing the User Interface
	Step 1. Create Repository Field Definitions
	Step 2. Create Employee Number AutoComplete WAM
	Step 3. Create WAM iiiEnhancedUI � Enhancing the Interface
	Step 4. Define Work Fields and Lists
	Step 5. Complete WAM RDMLX
	Step 6. Design the web pages
	Step 7. Test the WAM
	Step 8. Improve the ShowPage Page Design
	Step 9. Insert a fieldset around each table
	Summary

	WAM090 - Using a List Row Weblet
	Step 1. Create the List Row Weblet � iii_ListRow
	Step 2. Create WAM iiiUseListRowWeblet
	Step 3. Set Up the Web Page
	Summary
	WAM090. Appendix

	WAM095 - LOB Data Types and Stream Files
	Step 1. Install Required Documents
	Step 2. Set up Documents for an Employee
	Step 3. Create WAM to Display Employee Documents
	Step 3a. Create WAM to Display Employee Documents
	Step 4. Enhance Appearance of the Documents List (Optional)
	Step 5. Set up the Documents List
	Step 5a. Set up the Documents List
	Step 6. Test your Enhanced WAM
	Summary
	WAM095. Appendix A
	WAM095. Appendix B
	WAM095. Appendix C

	WAM100 - Using Cascading Style Sheets
	Step 1. Create WAM iii Using CSS
	Step 2. Create new Style Sheet
	Step 3. Create an External Resource
	Step 4. Apply Style Sheet to WAM iiiUsingCSS
	Step 5. Apply External Resource to the Common Layout
	Step 6. Make the Style Sheet specific to lists named EMPLIST
	Step 7. Highlight a Column
	Summary
	WAM100. Appendix

	WAM105 - Create Your Own Weblet
	Step 1. Create Toolbar Menu Item Weblet
	Step 2. Create Toolbar Weblet
	Step 3. Complete Definition of Toolbar Menu Item Weblet
	Step 4. Setup iii_toolbar_menuitem Properties in iii_toolbar
	Step 5. Apply Toolbar Weblet to an Employee Maintenance WAM
	Summary
	WAM105. Appendix A
	WAM105. Appendix B

	WAM110 - Create Your Own Layout Weblet
	Step 1. Create a Simple Company Test Layout
	Step 2. Create a Layout Template
	Step 3. Refine Layout Weblet Definition
	Step 4. Test the New Layout
	Step 5. Review Structure of Layout XSL and HTML
	Summary

	WAM115 - Check in WAMs to IBM i
	Step 1. Check in a WAM and its Layout
	Step 2. Run a WAM on the IBM ii
	Step 3. Run a WAM in debug on the IBM i
	Summary

	WAM120 - Using the Menu Bar Weblet
	Step 1. Define the Applications Menu
	Step 2. Test the Applications Menu
	Summary

	WAM125 - Define a Dynamic Menu
	Step 1. Create the Login WAM
	Step 2. Redefine the Menubar in Layout iiilay01
	Step 3. Test your Login WAM
	Step 4. Make Application WAMs part of Session
	Step 5. Test the Applications Menu
	Step 6. Implement Menu for all Employee WAMs (Optional)
	Summary

	WAM130 - Output a Web Page to a File
	Step 1. Output Employee Enquiry to a File
	Step 2. Run WAM to output to a file in Windows
	Step 3. Run WAM to output a file on IBM i
	Summary

	WAM135 - Using the Google Static Maps API
	Step 1. Create an Employee Enquiry WAM
	Step 2. Add logic to set up URL to Google Map Service
	Summary

	Appendix A. XSL and XML Conformance
	Appendix B. WAM XML Structure
	Appendix C. Deprecated Weblets
	Attachment panel (std_attachment_panel)
	QuickStart- Attachment panel
	Properties - Attachment panel
	name
	panes
	border
	border_width
	hide_if
	class_top, class_left, class_center, class_right, class_bottom
	pos_absolute
	width
	height

	Banner (std_banner)
	QuickStart- Banner
	Properties - Banner
	name
	value
	panes
	hide_if
	reentryfield
	reentryvalue
	formname
	disabled
	URL
	on_click_wamname
	on_click_wrname
	protocol
	show_in_new_window
	target_window_name
	pos_absolute
	width
	height
	class
	scroll
	scroll_direction
	scroll_loop_count
	scroll_amount
	scroll_delay
	scroll_true_speed
	presubmit_js

	Dynamic HTML menu bar (std_dhtml_menu)
	QuickStart - Dynamic HTML menu bar
	Using the menu item designer
	Understanding menu bar and menu item width and height
	Properties - Dynamic HTML menu bar
	menu_items
	orientation
	height
	width

	Push Button (std_button) & Push Button with Images (std_image_button)
	QuickStart- Push Button & Push Button with Images
	Properties - Push Button & Push Button with Images
	name
	caption
	currentrowhfield
	currentrownumval
	left_relative_image_path
	left_absolute_image_path
	left_image_height
	right_relative_image_path
	right_absolute_image_path
	right_image_height
	reentryfield
	reentryvalue
	hide_if
	formname
	pos_absolute_design
	width_design
	height_design
	on_click_wamname
	on_click_wrname
	protocol
	show_in_new_window
	target_window_name
	disabled
	text_class
	title
	class
	mouseover_class
	left_image_class
	right_image_class
	presubmit_js
	tab_index
	default_button

	Tree View (std_treeview)
	QuickStart - Tree View
	Properties - Tree View
	name
	formname
	xmlid
	xmltyped
	folder_closed_image
	folder_open_image
	item_image
	listname
	list_caption_field
	list_type_field
	list_image_field
	list_open_image_field
	list_tag_field
	list_onselect_wrname_field
	list_haschildren_field
	list_subitem_group_field
	list_is_selected_field
	list_is_expanded_field
	list_parent_id_field
	list_style_field
	list_selected_style_field
	onexpand_wamname
	onexpand_wrname
	listname_of_parents_of_selected
	pos_absolute_design
	width_design
	height_design
	class
	bg_color
	default_style
	selected_style

	An In-Depth Look at the Tree View Weblet

	Tree View Target (std_treeview_target)
	QuickStart - Tree View Target
	Properties - Tree View Target
	treeview_name
	formname
	pos_absolute_design
	width_design
	height_design
	wamname
	wrname
	reentryfield
	reentryvalue
	tag_fieldname_alias
	resize_to_content
	class
	bg_color

	Date (std_date)
	QuickStart - Date
	Properties - Date
	name
	value
	display_mode
	hide_if
	allow_sqlnull
	date_mask
	button_image
	tab_index
	title
	button_title
	read_only
	disabled
	hide_calendar
	class
	pos_absolute
	width
	onchange_script

	DateTime (std_datetime)
	QuickStart - DateTime
	Properties - DateTime
	name
	value
	display_mode
	size
	hide_if
	input_type
	display_in_utc
	allow_sqlnull
	date_mask
	time_mask
	button_image
	tab_index
	title
	button_title
	read_only
	disabled
	hide_calendar
	class
	pos_absolute
	width
	onchange_script

	Time (std_time)
	QuickStart - Time
	Properties - Time
	name
	value
	time_mask
	display_mode
	hide_if
	allow_sqlnull
	tab_index
	title
	read_only
	disabled
	class
	pos_absolute
	width
	onchange_script

