Web Application Modules (WAMs)

Before You Begin

An Introduction to WAMs

WAMs Deconstructed

Essential Topics

Advanced Topics

Execute WAM Applications

WAM and WEBEVENT Interoperability
Technology Services

Weblets for XHTML Technology Service
Weblets for jQMobile Technology Service
WAM Tutorials

Appendix A. XSL and XML Conformance
Appendix B. WAM XML Structure
Appendix C. Deprecated Weblets

Edition Date May 29, 2015
© LANSA

its:LANSA087.CHM::/lansa/wamengm0_0010.htm
its:LANSA087.CHM::/lansa/wamengm1_0010.htm
its:LANSA087.CHM::/lansa/wamengm2_0010.htm
its:LANSA087.CHM::/lansa/wamb1_250.htm
its:LANSA087.CHM::/lansa/wamengb4_0010.htm
its:lansa087.chm::/lansa/wamb1_205.htm
its:Lansa087.chm::/lansa/wamengb1_0015.htm
its:Lansa087.chm::/lansa/wamengb1_0025.htm
its:Lansa087.chm::/lansa/wamengb8_0005.htm
its:lansa087.chm::/lansa/WamEngb9_0005.htm
its:LANSA087.CHM::/lansa/tutorial_begin.htm
its:LANSA087.CHM::/lansa/wamb3_0005.htm
its:LANSA087.CHM::/lansa/wamengbb_0010.htm
its:LANSA087.CHM::/lansa/wamengbc_begin.htm

Before You Begin

e The LANSA for the Web WAM technology is an extension of the LANSA
development environment. If you have Repository and RDML/RDMLX
skills, you can apply them to building Web-based applications.

e Before any development efforts begin, you must have a properly installed
and configured LANSA for the Web system that supports the WAM
technology.

e You will need a properly configured Web Server and a properly configured
LANSA Application/Data Server.

e Your development system must have Internet Explorer 6.0 or later and
MSXML Core Services 6.0 XML Parser. The MSXML parser is installed
during the Visual LANSA install.

e For details about the installation and configuration of LANSA for the Web,
refer to the Installing LANSA on Windows Guide.

e If you are using WAMs for the very first time, we recommended that you
read An Introduction to WAMs which will give you an outline of all the
components of WAMs and WAMs Deconstructed, which will give you a
more in-depth understanding of the WAM components. We also recommend
that you complete the WAM Tutorials. For information about the WAM
tutorials refer to WAM Tutorials.

e Weblets are shipped with the software to provide wizards or building blocks
that facilitate the rapid development of HTML browser-based applications.
To create your own Weblets, or complex HTML pages, you will need XSL,
HTML and JavaScript skills.

e The XSL used for transformation of the XML WEBROUTINE document
conforms to the standard W3C XSL 1.0 specification. Refer to XSL 1.0
references for information.

its:lansa087.chm::/lansa/wamengm1_0010.htm
its:lansa087.chm::/lansa/wamengm2_0010.htm
its:LANSA087.CHM::/lansa/tutorial_begin.htm

1. An Introduction to WAMs

This chapter gives you a very simple overview of LANSA's WAM architecture
and explains each component.

This introduction doesn't describe the minutiae of every technology, command
and parameter. Rather, it is a solid overview so that you can approach the use of
WAMs with confidence. It is assumed that you have a working knowledge of
the Visual LANSA Application Development Environment.

Why did LANSA develop WAM technology?

There are a number of reasons, but two key points stand out:

1. Web technologies are evolving very quickly. HTML is no longer the only
way to deliver web content. It is imperative that web application development
in LANSA is readily adaptable to new technologies as they emerge.

2. It is clear that application development is heading towards a component-
based future so it is imperative that web application development in LANSA
allows you to take full advantage of component-based techniques.

1.1 What is a WAM?

Web Application Modules (WAMs) are LANSA's solution for building
applications that deliver their User Interface in a form of XML, typically via a
web browser.

WAMs consist of two distinct pieces: an Application Logic Layer and a
Presentation Layer.
Here's what happens:

The Application Logic Layer is provided by RDMLX code, maintained in the
LANSA Editor. The data output by the Application Logic Layer and destined
for the Presentation Layer is in the form of XML.

the Presentation Layer is also maintained in the LANSA Editor. When you
create your Application Logic Layer you generate a default "best guess"
Presentation User Interface in XSL. The RDMLX does not need to be compiled
to generate the Presentation User Interface. Once the XSL is generated you can
update it using the LANSA Editor.

Your business data (in the form of XML) is exchanged between these two layers
by means of familiar fields and working lists. The following diagram
summarizes the architecture:

FIELDS &
APPLICATION WORKING LISTS PRESEMTATION

LOGIC LAYER LAYER (#ML +
(RDMLX) %5L)

1.2 The BIG Advantage of the WAM Architecture

The separation of Application Logic and Presentation Layers introduces a new
level of flexibility to LANSA's web solution.

Separating the business logic from the User Interface helps to "future-proof"
your WAM applications. Potentially, your XHTML (eXtensible Hypertext
Markup Language) browser-based applications of today can be deployed
tomorrow using the User Interface technology of the day (whether that be
XAML, AUIML or some other technology yet to be invented) without having to
change your business logic.

the Presentation Layer uses a Technology Service (TSP) to generate the User
Interface for each potential platform. Currently, one of the most common
Technology Services in the web world is XHTML. This is one TSP that LANSA
generates for, delivering a User Interface that will look good in Internet
Explorer or some other browser.

The other TSP that LANSA generates for is PocketPC XHTML, which is
basically the same as the default XHTML but designed to fit a handheld device.

Other TSPs can be introduced with relative ease, allowing a single WAM to
have multiple user interfaces by selecting the appropriate TSP. This means that
the same application can be run on different devices, making for the perfect
separation of Application Logic and presentation.

1.3 Other Great Things about WAMs

There are other powerful advantages to adopting LANSA's WAM technology. In
the Presentation Layer these include:

¢ Industry standard architecture: WAM:s are based on industry standard
technologies including XML and XSL. This ensures that your WAM
applications are open and flexible.

¢ An editor: the LANSA Editor lets you "paint" your WAM's User
Interface using point-and-click. When more power is needed, the Ul can
be edited at source code level with round-trip support, i.e. you can edit
the source code and then revert to using the LANSA Editor for further
work.

e Shipped and user-definable "Weblets": Weblets are XSL-based
components used for encapsulating common field visualizations and other
User Interface elements. Weblets are designed to promote re-use in the
Presentation Layer. LANSA ships with a range of ready-to-use Weblets
for common User Interface elements, but you can also build your own.

In the Application Logic Layer, WAMs exploit and build on much of LANSA's
traditional application development strengths:

e Repository-based: LANSA's repository-based approach to application
development captures business rules and domain knowledge and ensures
that it is consistently applied throughout an application.

e Component-based: in LANSA parlance, WAMs are components and are
capable of making use of other LANSA components. This offers the
potential for you to build upon the repository-based approach and further
extend the separation between business rules, Application Logic and the
User Interface. You can build common business logic components that
can be shared between browser-based applications, rich-client
applications and integration projects.

o Single skill set: the Application Logic for WAMs is built using the same
RDML programming language that is used throughout LANSA. For
example, LANSA developers with 5250 green screen backgrounds can
quickly and easily learn how to produce sophisticated web browser-based
applications.

Let's now look more closely at the key components of the Application Logic
and Presentation Layers.

1.4 The Application Logic Layer

WAMs, as the name indicates, are the modules of a web application and contain

your application's logic. The Application Logic Layer contains RDMLX code,
maintained in the LANSA Editor.

You can have as many or as few WAMs making up your application as you like.
An entire application can be contained in a single WAM, or it can be spread
across multiple WAMs.

1.4.1 Webroutines

A WAM may contain one or more Webroutines. These contain your Application
Logic. They can be thought of in much the same way as subroutines. Indeed, a
Webroutine is defined in a similar manner to a subroutine, using the
Webroutine/Endroutine command combination, as follows:

Webroutine Name(MyWebroutine)

Endroutine

To execute this Webroutine from a browser (i.e. to initiate this Webroutine), a
user would enter a URL that looks something like this:

http://www.MyWebSite.com/cgi-bin/lansaweb?
wam=MY WAM &webrtn=MyWebroutine

Note that, when the Endroutine statement is reached, control is passed back to
the Presentation Layer.

What the Presentation Layer shows is the web page associated with that
Webroutine. Yes, each Webroutine is capable of having its own web page that it
shows to the user. More about this in 1.5 The Presentation Layer.

Of course, you will often want to pass data back and forth between the
Application Logic Layer and the Presentation Layer. This is done with 1.4.2
Web Maps.

1.4.2 Web Maps

Web Maps are the interfaces for the exchange of data between your Webroutines
and the Presentation Layer.

The specification of a web map that outputs a Department description to the
Presentation Layer would look something like this:

Webroutine Mame(My\Webroutine)
Web_Map For(*output) Fiekds(#DEPTDESC)

Endroutine

Note the For parameter of the Web_Map command.
The parameter values can be:

*input — this defines data that is coming from the Presentation Layer into the
Webroutine.

*output — this defines data that is going from the Webroutine to the
Presentation Layer.

*both — this defines data that comes into the Webroutine from the
Presentation Layer and is sent from the Webroutine to the Presentation Layer.

The fourth value, *none is described in 1.4.3 Being Stateless.

Say you had a Webroutine whose job it was to accept a Department Code as
input and then to output a Department Description. The specification of its Web
Maps would look like this:

Webroutine Mame(My'Webroutine)

Web_Map For(finput) Fiekds(#DEFTMENT)
Web_Map For(*output) Fiekds(#DEFTDESC)

Endroutine

The department code is *input to the Webroutine when it is executed and the
Department Description is *output to the Presentation Layer when the
Webroutine ends. These settings are very strict. That is, the value of
DEPTMENT, as specified in this example, is only ever input to the Webroutine.
Once the Webroutine ends, its value is not sent back to the Presentation Layer.
Similarly, when the Webroutine begins executing, DEPTDESC has no value, as
it is only ever output by the Webroutine.

This is where the For parameter value of *both is very useful if your
Webroutine needs to accept certain information as input as well as to be able to
output it. A classic example of this is that of a simple file maintenance
application. When a user wants to edit information about a Department, , the
Webroutine should *output that information to the Presentation Layer in order
to show it, but it should also be able to accept it as *input, as it may have been
changed by the user. So the web map might look a bit like this:

Webroutine Name(My'\Webroutine)
Web_Map For(*both) Fields(#DEPTMENT #DEPTDESC)

Endroutine

As well as fields, working lists can be used to pass data back and forth. Simply
specify the name of the working list on your Web Maps, just like this:

You can either use the identifier or the name of the field in the Web_Map
command. The XSL and XML will be generated using the identifier. The WAM
Editor will in most cases display the name but still use the identifier under the
covers.

Def_List Name(#WLDEPTS) Fiekds(#DEPTMENT #DEPTDESC) Type(*Working)

Webroutine Name(MyWebroutine)
Web_Map For(*both) Fields(#ANLDEPTS)

Endroutine

Attributes for Fields in Web Maps

Note the For parameter of the Web_Map command affects which fields and
working lists are exchanged between the Presentation Layer and the
Webroutine. You might find it helpful to think of all the relevant Web_Map
commands as defining a parameter list for your Webroutine.

However, the For parameter of the Web_Map command does not affect how the
field is presented — that is the job of the Presentation Layer.

While you may want certain values to be for (*both), you may not want the user
to be able to change them, or indeed see them, on the web page. To do this, you
can specify the following attributes for fields in Web Maps:

*output — the data is displayed on the web page, but the user cannot change
it.

*hidden — the data is passed between the logic and Presentation Layers, but
the user cannot see it.

*private — the data is passed between the logic and Presentation Layers, but
the data is not merged into the XSL. (This has specialized uses where the
value of a field or contents of a list are referenced during the XSL
transformation process but do not need to be generated into the final page).

Note: *input is also a valid attribute, and is the default.

Remember, though, that how the field is represented is the responsibility of the
Presentation Layer. The field attributes you set in your web map to control this
are only effective when the web design is generated for the Webroutine. After
that you can alter how the field is represented using the LANSA Editor. What
this also means is that field attributes specified in the web map should only be
regarded as an indication of your intentions, as ultimately the Presentation
Layer controls how the field is represented.

Here's an example where a DEPTMENT is to be passed back and forth and
displayed, but you don't want the user changing its value:

Webroutine Mame(My\Webrouting)
Web_Map For(*both) Fields((#DEPTMENT *output) #DEPTDESC)

Endroutine

Particular things to note about this example are:
e The only effect of specifying the *output field attribute is to make field

#DEPTMENT output-only when generating the web design for the
Webroutine — it does not mean that the field remains as output-only on the
web page as it may be changed using the LANSA Editor.

o [f field #/DEPTMENT is output-only on the web page, the web page will
not POST the field value back to the next Webroutine. For example, if
the Webroutine posts its data back to the same Webroutine, then it will
not work because the value of field #DEPTMENT, being output-only, will
not be posted. If, however, this Webroutine is invoked by some other
Webroutine that does POST a value for field #DEPTMENT, then this use
will work.

As you can see, specifying *output as a field attribute has a very different
meaning and effect to using for(*output) on the Web_Map command.

Webroutines generate Presentation Layer XSL when Compiled

When a Webroutine that has Web Maps is compiled, appropriate XSL for the
Presentation Layer is generated. In the case of *input and *both Web Maps,

LANSA will typically generate a web page for the Webroutine that displays
those fields and/or working lists.

Exactly what is generated for the Presentation Layer is described in 1.5.2 What
is Generated for the Presentation Layer by Default?

Global Web Maps

If you specify a web map outside the bounds of a Webroutine, it becomes a
global web map. This means that every Webroutine in the WAM adopts that
web map.

You will find many uses for global Web Maps, and you will see examples of
using them in this guide, such as in 1.4.3 Being Stateless.

Until now, we have described Web Maps that have been specified in
Webroutines such as in this example:

rBegin_Com Role(*EXTENDS #PRIM_WAM)
DCref_List Name(#WLDEFTS) Fields(#DEFTMENT #DEFTDESC) Type(®AWorking)
Webroutine Name(MyWebroutine)
Web_ Map For(*both) Fields(#SECTION #SECDESC)
‘Web_ Map For{*both) Fields(#NLDEPTS)
our RDMLX code here
Endroutine

Webroutine Name(MyOtherWebrouting)
‘Web_Map For(*both) Fiekds(#NLDEPTS)

Endroutine

~End_Com

In the following global web map example, note the placement of the web map
for the WLDEPTS working list. Both MyWebroutine and MyOtherWebroutine
will adopt this web map when compiled. Note also that MyWebroutine also has
its own, local, web map specified.

~Begin_Com Role(*EXTENDS 2PRIM_W.AM)
Def_List Name(#WLDEPTS) Fields($DEPTMENT #DEPTDESC) Type(*Working)
Web_Map For(*both) Fiekds(#WLDEPTS)

Ehwebroutine Name(MyWebroutine)
Web_ Map For(*both) Fields(#SECTION #SECDESC)

T your ROMLX code here.
~Endroutine
Ehwebroutine Name(MyOtherWebrouting)

* some more RDMLX code here.

—Endroutine

~End_Com

Controlling Webroutine Flow Programmatically

As well as Webroutines being executed from the Presentation Layer, which is
described later, they can also be executed under program control using the Call
and Transfer RDML commands. Consider the following code:

rBegin_Com Role(*EXTENDS #PRIM_W.AM)

Ehwebroutine Name(Initialize)
Web_Map For(*output) Fields(#DEPTMENT)

Transfer Toroutine(ShowPage)
~Endroutine

Ehwebroutine Name(ShowPage)
Web_Map For(*both) Fields(#DEFTMENT)

—Endroutine

~End_Com

Imagine that the user executes the Initialize Webroutine by keying a URL into
their browser. It places a value into DEPTMENT.

The Transfer command then transfers control to the ShowPage Webroutine,
which accepts DEPTMENT's value. Note that the appropriate mapping takes
place as part of the transfer, according to the web map definitions for the current
Webroutine. The ShowPage Webroutine doesn't actually do anything, but ends,
outputting DEPTMENT's value as it does. Control is then passed to the
Presentation Layer, which shows ShowPage's web page.

Note that the Endroutine command of the Initialize Webroutine is never
executed, as control is transferred to ShowPage. Consequently, no page shows
for the Initialize Webroutine.

This use of Transfer illustrates a slightly more advanced technique, whereby a
single Webroutine in the WAM can be responsible for showing the Presentation
Layer. Using this technique, all other Webroutines can be used solely to perform
Application Logic. All of them transfer control to the ShowPage Webroutine as
the last thing they do.

You may find that this technique can simplify your application. What this means
is that your application may be made up of multiple WAMs, each WAM using
only one Webroutine to display a web page. To further support this, the Transfer
command also supports transfer between WAMs:

Transfer Toroutine(ZMYWAMSS ShowPage)

The Call command is similar to the Transfer command in that it executes a
Webroutine. The difference is that control is not transferred — the Webroutine is
executed fully, right through to the Endroutine command and control is then
returned to the executing Webroutine. Note that the web page for the called
Webroutine is not shown.

1.4.3 Being Stateless

One of the key points about WAMs is that they are stateless. In fact, any
internet-based application is stateless. What this means is that when a WAM is
executed from the Presentation Layer, it runs (a job is initiated on the server),
produces some output (a web page), and then ends (the job on the server ends
and control is transferred back to the browser).

The job starting and ending, to all intents and purposes, is a "transaction". Any
data that needs to be maintained for the user's web "session", i.e. span multiple
transactions, must be kept somewhere. A good example of this is when a user
logs on to a website. The fact that they're logged on needs to be maintained
across multiple transactions, as certain functions of the application may only be
executed if they are logged on.

In a windows or green screen application, this is all implicit — the user's job
stays alive in memory, waiting for the next move from the user. But on the web,
we don't know what the user might do next — they might key in a new URL, hit
the back button, close the browser and so on.

Data to be displayed on the web page is moved back and forth courtesy of Web
Maps. Even data that is hidden is moved back and forth. But this shouldn't
happen in the case of "session" data. This is data that is important to the
Application Logic Layer only, and doesn't influence what happens in the
Presentation Layer.

WAMs supports this idea of session data by using a special value of *none in
the For parameter of the web map and a value of *persist in the web map's
options parameter. A web map to maintain the log on status of a user might look
like this:

rBegin_Com Role(*EXTENDS #PRIM_WAM)

Web_Map For(*none) Fields(#LOGGEDON) Options(*PERSIST)

‘Webroutine Name(ShowPage)
Web_Map For(*both) Fields(#DEFTMENT)

Endroutine

—~End_Com

Note the placement of the web map. Because it is global, all Webroutines in the
WAM will adopt it. It makes a lot of sense to code your session data Web Maps
in this way — so that the data is mapped in and out at all times.

There are other parameters and settings that need to be taken into account when
coding for session data, but you should now have the basic idea. Refer to WAM
Session Management for more information.

its:LANSA087.CHM::/lansa/wamb1_130.htm

1.4.4 How Reusable Parts can Play a Role

As with all applications, internet-based or not, there may be functionality that
needs to be used in more than one place. Again, a good example is the "log on"
function (recording the user id, date and time of logon in a database, etc), which
may be the same across different WAM applications.

LANSA's Reusable Parts can provide the necessary level of modularity. Simply
use the Define_com command to declare the appropriate parts and use them for
the Application Logic. Here's an example:

rBegin_Com Role(*EXTENDS #PRIM_WN.AM)
Web_Map For(*none) Fiekds(#LOGGEDCON) Opticns(*PERSIST)

Ehwebroutine Mame(Logon)
Web_Map For(finput) Fields(#USER #PASSWORD)

Define_Com Class(#ADHLOGON) Name(#UserServices)
rIf (ZUserSendices ValidateLogOnDetails(#USER, #PASSWORD 1)
#HOGGEDON = Trus
Transfer Toroutine(LoegOnSuccessful)
Else

Transfer Toroutine(LogOnFaied)

~Endif

~Endroutine

Ehwebroutine Name(LogOnSuccessful)
~Endroutine

Ehwebrouting Mame(LogOnFailed)

—Endroutine

~End_Com

The Logon Webroutine accepts a user id and password from some other
Webroutine that is displayed at the Presentation Layer. An instance of the
Reusable Part ADHLOGON comes alive and its ValidateLogOnDetails method
is used to validate the user id and password. If successful, the #LOGGEDON
field (declared as persistent session data) is set to True and control is transferred
to the LogOnSuccessful Webroutine. If logon is unsuccessful, control is

transferred to the LogOnFailed Webroutine.

As you can see, this is a great technique to ensure your Application Logic is
encapsulated in a single place so that it can be used over and over by other
WAMs.

1.5 The Presentation Layer

What is the Presentation Layer?

The following diagram shows the path from a Webroutine to the "glass" of the
device the user is looking at. The Presentation Layer consists of everything to

the right of the Webroutine box.
WEBLET
®5L

i

WEBROUTINE | — AML 3 W51 — WEB PAGE
(DATA) (TRANSFORMATION) (PRESENTATION)

When the Webroutine ends, field and working list data (as defined on *output
and *both Web Maps) is written out to an XML document. This is merged with
the XSL generated for the User Interface (including the XSL of any Weblets
being used) and then transformed into a document that is displayed to the user
(in this instance, a web page in the form of XHTML).

1.5.1 The Editor

The area of the LANSA Editor where a Web Design is maintained is a visual
editor: you use it to 'paint’ your web designs. Any WAM that you have open in
the Source tab of the LANSA Editor can have its Webroutines' web pages
designed in the Design tab.

To open a Web Design for a WAM's Webroutine, select the green arrow, also
known as the Webroutine Design Glyph, immediately to the right of the
Webroutine command. If the Webroutine does not have a Web Design for the
active Technology Service Provider, one will be automatically generated.
Otherwise the Design tab will load with the selected Webroutine's Web Design
for the current Technology Service Provider.

The following composite graphic shows what it might look like:

- L m. ¢ WAMDO - wam 001 - LANSA Editor [
B o Dessn Teon @
i -
®.
gt .,‘e‘srmm RestoeeM5L Refresh External Rsourcss Refresh
Repository Design Source | Repository Details - Cross References o
I Repository Web Page | 5L | kML Wit [LARSA XHTHL] »

Harrss Diship...
o Global Web Mags.
4 o \Web Map

& EMPNO Empl..

Hew = x| =
e
+ il Active Partition [DEM)

W Webrourtine We,

Messages:

Empinyes Number [8HCDE

@bl m G & Webroutine Oulpart

Weh Design Language Description
& WA Erygish

. & WRD Englsh
w4 T XHTML
i Assistant | @ Web Designs
Fieady LAMNSA TRUNKE "5 DEM devaser POXTASK ENG Audt Courer Colors LANGSA XHTML

The Design tab's Web Page is the visual display of the XSL source that is used
to generate the web page that the user sees. You can look at the actual,
underlying XSL, by selecting the XSL tab. Similarly, the XML can be viewed by
clicking that tab.

A few additional tabs that act as aids and detailers in the page-painting process
are also available. These tabs can be arranged to the left, right or bottom of the
Editor's window, or they may be free floating. For details about the LANSA
Editor's main features, refer to Setting up Your Workspace in the User Guide.

In the main Editor's pane, as shown above are:

e The Outline tab shows fields and lists, as well as other elements contained
in the Web Page currently being edited. Clicking on an entry in this list
selects the corresponding control in the Web Page tab. If a drag and drop
operation is hovering over an HTML or XSL element in the design, that
element will be highlighted in the Outline tab to give a visual feedback
and assist with drag and drop operations.

e The Web Design tab showing all Web Designs for all languages and all
Technology Service Providers for the current Webroutine. This tab is
useful for deleting Web Designs, rolling back changes, creating language
copies and so on.

In the left hand pane in the graphic, you will see:

e The Repository tab that lists all the available objects that are stored in the
Repository. LANSA Fields can be dragged and dropped (either as a field
or as a list) from the Repository to the Web Page. You can also drag and
drop from the Repository into the Webroutine Output tab, and from
Webroutine Output tab to the Web Page.

e The Details tab shows a Properties for the control that is currently
selected in the Web Page tab.

e The Webroutine Output tab shows fields and lists that are in the Web
Maps available to the current Webroutine. You can drag and drop directly
from this list to the Web Page, or from the Repository to this tab, if
required.

You would use the WebRoutine Output tab when you want to:

change the order of fields in a list before dropping the list on the design. It
nnot be done elsewhere.

move fields and lists between web maps, moving them from local web maps to
bbal web maps and vice versa.

To move objects between the Repository and the WebRoutine Output tab, you
would organize your screen layout to show both tabs at the same time.

its:lansa012.chm::/lansa/L4wUsr1_0010.htm

1.5.2 What is Generated for the Presentation Layer by Default?

When a WAM is compiled, some default User Interface pieces are built, based
on the Web Maps specified. These are different depending on whether fields or
working lists are being mapped. For example, this Webroutine maps two fields:

Webroutine Mame(My\Webrouting)
Web_Map For{*both) Fields((ZDEPTMENT *output) #DEFTDESC)

Endroutine

and will generate a User Interface in the form of a web page that looks
something like this:

Departrnent Ccld‘.'i-i.BEE o]
Department Description| ABCDEF GHIKLMNOPQRS

As you can see, a table has been generated with two columns and a row for each
field. The *output attribute on DEPTMENT means that it cannot be modified by
the user, whilst the implied attribute of *input for DEPTDESC means that it is
input-capable.

For this Webroutine, that specifies a working list:
Dief_List Name(#WLODEPTS) Fields(#DEPTMENT #DEPTDESC) Type(™Working)

‘Webroutine Name(MyWebrouting)
Web_Map For(*both) Fiekds(#WLDEFPTS)

Endroutine

a web page will be generated that looks something like this:

Home Servic

Meszages:

[dept e partment
===
L LR A LT PO
[apcD [ABCDEFGHLIKLMNOPGRS

|aBcD [ABCDEFGHLIKLMNOPGRS
[aBCcD [ABCDEFGHLIKLMNOPGRS

A table has been generated with two columns, each representing a field in the
list, and with each row of the table representing an entry in the list. By default,
three rows of the table are shown for design purposes.

These default pieces of User Interface are all well and good, but what if you
want to do something a bit more 'webby', such as visualize fields as clickable
images or hyperlinks? This is where 1.5.3 Weblets come in.

1.5.3 Weblets

Weblets are pieces of XSL that can take information about Fields and Working
Lists and present them in different ways.

At this introductory level, think of Weblets as being visual building blocks with
which the user interacts on the web page. Weblets provide hyperlinks, push
buttons, clickable images and so on. Often, they can be used to visualize fields
and working lists.

For example, you might want the user to be able to click on a Department Code
or description of their choosing to perform some action. By dragging and
dropping the Anchor Weblet onto the columns in the LANSA Editor, the Dept
Code and Department Description are displayed as hyperlinks, causing:

this: to become this:

De Department
ode Dascriptio

|ABCD |ABCDEFGHIIKLMNOPQRS

i s,

ABCD ABCDEFGHIIKI MNOPORST]

|ABCD |ABCDEFGHIIKLMNOPQRS ' { ' ABCD ABCDEFCHIKLMNOPQRST
|ABCD |ABCDEFGHIIKLMNOPQRS \ e teer =T .
{

i
et W D

Following is a list of some of the Weblets that are shipped as standard with
Visual LANSA:

Item

& Anchor
s Attachment Panel

i‘_‘il Banner

B Dynamic HTML menu bar
[Grid

E| Horizontal splitter

[Large List

& List paging buttons

[EQ List paging images

[Listbox

[£3] Memo using a field

[£3] Memo using a list

=ma Menu item

Messages

1| Mavigation panel
[=] Panel
-\, Prompter
[Push button
[Push button with images
8 Radio button
& Radio group
Standard basic layout
¥ Standard hidden fields

Description
Standard Hyperlink
Panel with attachment layout manager
Standard Banner

Standard DHTML Menu

Standard Grid

Standard horizontal splitter

Standard Large List

Standard List Paging Buttons
Standard List Paging Images

Standard listbox

Standard Textarea

Textarea from a list

Standard Menu Item

Standard Messages

Mavigable panel

Standard Panel

Standard Prompter

Standard Button

Standard Image Button

Standard Radio Button

Static radio buttons

Standard Layout

Standard Hidden Fields

Standard Layout Schema #1

[C] standard layout schema #1
[C] standard layout schema #2 Standard Layout Schema #2

[C] standard layout schema #3 Standard Layout Schema #3

[C] standard layout schema #4 Standard Layout Schema #4

[C] standard layout schema #5 Standard Layout Schema #5

E Tree view Standard treeview control IE only
=] Tree view target Standard treeview contral IE only
|:|'_| Vertical splitter Standard vertical splitter

Along with the more recognizable types of User Interface widget, such as list
boxes and push buttons, you will see some 'standard layout schemas'. These
Weblets give your web pages a basic look and feel and provide:

a place to display a company logo
a framework for various menus
a place where application messages get sent.

Standard layout schema 1, for example, is the one you've seen many times
elsewhere in this document. It looks like this:

Home Services Contact About

Messages:

Standard layout schema 2 looks a bit different - it has a left aligned column, for
instance:

Home Services Contact About

Messages:

Content Heading

Lorem ipsurm dolor Sit amet consect etuer adipi
scing elit sed diam nonumnry nibh evismod tinunt
ut laoreet dolore magna aliquam erat volut,

Ut wisi enim ad minim veniam, quis nostrud exerci
tation ullameorper suscipit lobortis nisl ut aliquip ex
#3 COMMOMD CONSSQUAL.

Duis autem vel gurm iriure dolor in hendrerit in
wulputare velit esse molestie consequat, vel illum
dolore eu feugiat nulla facilisis at vero eros et
accumsan 1 1wsto odio dignitsim qui blandit
praesent luptatum zzrl delenit augue duis dolore te
fewgait nulla facilisi.

Weblets, just like standard Visual LANSA User Interface controls, have
properties to control their look and behavior. These are shown on the Property
tab, which you access by clicking on the Details tab when the Weblet is
selected. Following is the Property Sheet for the Anchor Weblet:

Properties I

<xsl:call-template: | -
Mame I Value |
" B - chor
rf_IWith Parameters
ri= name SDEFTMENT /@id
ri=d value SDEPTMENT
ri=l currentrowhfield STOROWNLIM
= currentrownumyval position(’)
i reentryfield STDRENTRY
= reentryvalue fi]
i hide_if False
ri= formname LANSA
i url Javascript:void():

s on_dick_wamname |sfweb_WAMName

= on_dick_wrname

= protocal

ri= show_in_new_window False

ris target_window_name | <xsfif xmifnsacsl= "http:/ S www. wT.ong /1949
™ pos_absolute_design

i width_design

= relative-image-path

ri= absoluteimagepath | <xsfif xmifnsocsl= "hittp:/ www. w3.ong /1949
=™ class std_anchor

= mouseover_dass

= text_cass std_anchor_text

ri= presubmit_js

i tab_index

Note the name and value parameters/properties near the top of the sheet. The
name of the Weblet instance is the same name as the LANSA field it's
visualizing (DEPTMENT) and its value is set to the field's value.

Look down the sheet at some of the other properties. The on_click_wamname
and on_click_wrname properties, for instance, specify the name of the WAM
and Webroutine to be invoked when the user clicks on the Anchor. Back in
MYWAMO1, the DepartmentSelected Webroutine might look something like
this:

Ewebroutine Mame(DepartmentSelected)
Web_Map For(finput) Fields(#DEFTMENT)

Transfer Toroutine(ShowPage)

~Endroutine

Weblets can play a non-visual role, such as supplying underlying Javascript

code or other, non-displayable components of the web page.

1.6 A WAM Example - Beginning to End

Let's walk through a simple two-page web example in order to reiterate what
happens at key points in the execution of a WAM.

The initial page, when displayed in a browser, looks like this:

Home Services Contact About

ACME Couriers Consignment Status Enquiry

Consignment Note number A1234567890 Check Consignment

As you can see, it's a Consignment Status Enquiry. It provides for a
Consignment Note Number to be entered. The Check Consignment button can
then be clicked to retrieve the information from the database and display the
status of the Consignment. So, we have three steps. To keep it simple, we'll have
a Webroutine for each step:

¢ one to show the initial page, as above (ConsignmentEnquiry),

e one to receive and validate the Consignment Note Number
(CheckConsignment),

¢ and one to fetch and show the data from the database
(ShowConsignment).

To begin with, how do you display the initial page? You may enter a URL.:

| £ http://localhost/CGI-BIN/lansaweb?webapp=WDWAMO1 + webrtn=ConsignmentEnquiry+ ml= LANSA:XHTML+ part=WEX+ lang=ENG| +

Note the webapp=WDWAMO01 and webrtn=ConsignmentEnquiry
parameters. These indicate the name of the WAM (WDWAMO01) and
Webroutine (ConsignmentEnquiry) to be executed.

Or you may execute this from some other part of a bigger WAM application,
perhaps by clicking on an Anchor (or Hyperlink), by pushing a button or by
selecting a menu item. Regardless of the method, the mechanism is the same: a
Webroutine, sitting inside a WAM, is executed.

So, what does the underlying code for our initial ConsignmentEnquiry
Webroutine look like? Here it is:

Webroutine Name(ConsignmentEnguiry) Desc(CACME Courners Consignment Status Enguiry”)
Web_Map For(*both) Fielkds(#NDCONSIGN)

Endroutine

The key here is the web map for the WDCONSIGN field. It is defined as *both,
meaning that its value will be read in at the start of the Webroutine and written
out when the Webroutine ends. Remember, when you compile the WAM,
LANSA will create some XSL to display WDCONSIGN on the web page.

It won't, however, give you a push button. So, you right-click on the Webroutine
and open its page in the LANSA Editor. Drag and drop a push button Weblet
onto the design and set its properties:

Properties
<xsl:call-template>
Mame Value
> B < _btton
rJWith Parameters
ri= name concat('o', position(), '_LANSA_12385"
= caption Check Consignment

ri=l currentrowhfield STDOROWNLM
= currentrownumval position|’)

= reentryfield STDRENTRY
= reentryvalue M

i hide_if False

ri=l formname LANSA

= pos_absolute_design

i width_design

i height_design

= on_dlick_wamname WDWAMO1

= on_dick_wrname ConsignmentEnguiry

ri= protocol

ri= show_in_new_window False

i target_window_name <xesii xomifnsocsi= "hitp: S www w3.ong /1 999/X51 /T

ri= disabled False

ri= title

= dass std_button

= mouseover_dass std_button mouscover
ri= presubmit_js

= tab_index

i default_button

Note the caption, on_click_wamname and on_click_wrname property
settings. The on_click properties executes the CheckConsignment Webroutine in
the WDWAMO1 WAM when the button is clicked.

So far, then, the flow of this little application looks like this:

ConsignmentEngquiry
YWEBROUTIME

PRESEMNTATION
LAYER

CheckConsignment /

WEBROUTIME

Now, back in the LANSA Editor, enter the following RDMLX code for the
CheckConsignment Webroutine:

Ehwebroutine Name(CheckConsignment)
Web_Map For(finput) Fields(m@WDCONSIGN)

Check_For In_Fie(WDCONST) With

_Key(EANDCONSIGN)
rIf_Status Is(*EQUALKEY)
Transfer Torout ;E[Er'::--.m:::-rs gnment)

[Else

Transfer Toroutine(ConsignmentEnguiry)

—Endif

—~Endroutine

Again, note the web map. Its For(*input) setting means that WDCONSIGN is
mapped into the Webroutine when it's invoked — by the user clicking the push
button, in this instance.

The Consignment status file is checked to see if the entered Consignment Note
Number exists. If it does exist, control is transferred to the ShowConsignment
Webroutine. If it doesn't exist, an appropriate error message is issued and
control is transferred to the original ConsignmentEnquiry Webroutine.

Note that the CheckConsignment Webroutine never ends, and so never displays
a web page. It always transfers control to either the ShowConsignment or

ConsignmentEnquiry Webroutines.
The flow for this part of the WAM, then, looks like this:

‘/ ShowConsignment
YWEBROUTIMNE

FRESEMNTATION
LAYER

CheckConsignment
WEBROUTIME

X . .
\ ConsignmentEncuiry /

WEBROUTINE

Now have a look at the code for the ShowConsignment Webroutine:

Ebwebroutine Mame(ShowConsignment) Desc"ACME Couriers Consignment Status Enguiny’)
Web_ Map For(*both) Fields((ZENDCONSIGN “output))
Web_Map For(*output) Fields((ZENDCONSTS *output))

Fetch Fields(#NDCONSTS) From_File(WDCONST) With_Key@FNDCOMSIGN)

~Endroutine

Again, note the Web Maps. The Consignment Note Number (WDCONSIGN)
comes in courtesy of the *both web map.

The status field, WDCONSTS, is fetched from the database using the
Consignment Note Number as a key.

The Webroutine ends. The Consignment Note Number and Status fields are
mapped out of the Webroutine.

Control is transferred to the Presentation Layer, which displays the
Consignment Note Number and Status. Note too the *output attributes on the
fields, which means they will be displayed as output-only.

Let's run the WAM from the beginning, assuming a valid Consignment Note
Number has been entered:

£ http://localhost/CGl-BIN/lansaweb?webapp=WDWAMOL +webrtn= ConsignmentEnquiry+ ml=LANSA:XHTML+ part=WEX+lang=ENG| ~

[Webroutine Wame{ConsignmentEnguiry) Desc('ACME Consignment Status Enquirv')@
Web_Map For(*BOTH) Fields(#WDCONSIGH)

Endroutine

Home Services Contact About

ACME Consignment Status Enquiry
Consignment Note Number A1234567820

[Webroutine Wame({CheckConsignnent)@
‘ Web Hap For{*input) Fields(#WDCONSIGH)

* yalidation code herd

zhow the consignment status
Transfer Toroutine(ShowConsignment)

Endroutine

= Webroutine NamefShowConsignment) Desci'ACHE Consignment Status Engquiry')@
Web Map For{*BOTH) Fields((#VDCONSIGH *cutput))
Web Map For(®*0UTFUT) Fields((#WDCONSt=s #output))

* fetch the consignment status from the file

Endroutine

Home Services Contact About

ACME Consignment Status Enquiry

Consignment Note Number A1234567890
Consignment Status Shipped on 12/24/2010

Check Another

N

=l Webroutine Mame({ConzignmentEnguiry) Desc('ACHE Consignment Status Enguiry')@
Web_Hap For(*BOTH) Fislds{#WDCONSIGH)

Endroutine

Note the Check Another push button. It simply takes us back to where we
started by re-executing the ComponentEnquiry Webroutine.

1.7 WAM Wizards
The Visual LANSA Application Wizards guide you in the creation of complex
Visual LANSA applications using a series of predefined steps.
Before you can run a Visual LANSA Wizard:
e Visual LANSA needs to be installed and correctly configured
e The partition needs to be Web enabled

e The system needs to have a web server installed and configured to run
WANMs if the execute option is selected.

To access the wizards, in the LANSA editor, select the Tools tab, and in the
Utilities group, click on Wizards.

£, il LANGA hﬂkww;ﬂﬁ
Visual LANSA
¥ Start
Welcome [
Select the wizard you would ke to execute |
!-__ﬁ' i
B {
i
|
——c) i
{
i
[
Avaiable Wizards !
LanSA Web Mobde Apphcatian
LAMSA Web jCuwery Themead CRUD Application
Web Appbcation Layout Manages Wizard
F Cancel
o |

To start, click on any of the wizards in the Available Wizards list.

Each Wizard contains a list of questions which are listed with a 3, once you
answer each question, the 3¢ becomes a . You need to answer all the questions
before you can the Finish the wizard.

You can navigate between the different questions by using the back ¢ e
and next = det buttons.

The up 4% and down ¥ arrows at the bottom right corner of the wizard dialog

are used to scroll through the messages, if any messages are displayed in the
message bar.

The Wizards available are:

e 1.7.1 LANSA Web Mobile Application This wizard generates LANSA
Web Mobile Browser applications with the ability to filter, view lists and
show Header/Detailer forms including a Sampler to showcase the types of
controls that can be used within your own LANSA Web Mobile
applications.

e 1.7.2 LANSA Web jQuery Themed CRUD Application
This wizard generates a complete LANSA for the Web CRUD (Create,
Read, Update, Delete) application over any LANSA or keyed files.
Features include:

jQuery themed using your selected site layout or the default
Drilldown to related files
Searches over application data.

e 1.7.3 Web Application Layout Manager Wizard
This wizard provides an easy way to customise and generate the site
layout for your web application. Features include:

Colour scheme and look and feel

Multiple content areas

Ability to use both LANSA weblets and jQuery weblets
Enable Web 2.0 sites using AJAX.

1.7.1 LANSA Web Mobile Application

This wizard generates a totally customisable jQuery Mobile WAM. Depending
on your answers, the generated WAM will include one or more of the following:

e A Sampler webpage containing all the controls available to users. This
page is for the whole application.

e A user defined Webpage using one or more of the following:
Heading

Text Block
[mage
Form elements. This element contains a collection of popular form controls.
Link
List view. This control can contain one or more of the following:
- List Data, which is data dynamically loaded from RDML. There

is only one list data per list. If you add another list control then you
can specifiy another List Data.

- Divider
- Static Menu Item, which will link to one of the previously created
webpages.

Samgler Webeputene 4 y -

« 2 [wcalhost = a8 =

Sampler Webroutine

Data Input Widgets

1.7 WAM Wizards

1.7.2 LANSA Web jQuery Themed CRUD Application
This wizard generates a WAM and a WAM layout to perform file maintenance
operations.

You can choose to restrict the generated WAM to Read only operations or you
can authorise Create, Update or Delete operations.

The fields displayed on the Add and ShowRecord pages as well as the columns
on the SearchList page are customizable. You can drill down to another WAM
provided it matches the AccessRoute details.

Following is an example of the wizard with file PSLMST:

Home Services Contact About
Persannel Searches
by Employes Mumber by Department Code, Section Code, Employes Mumbear by Employes Summame, Employes Ghvan Mamai
Employes Mumber Sa "

[Hlummbrer = L e _ Code
B A0070 BROWMN VEROMICA INF D

& | A00S0 BLOCCS FRED JOHMN ALAM FLT 03

- A01592 SMITHSON FRED AL 3

& ADS07 MISS SIMPS0N ANNE ALID 03

& Ai00 JONES BEM ADM |01

& ANDDZ SMYTHE JOHN A oz

& |aio03 SMITHE ROBERT FLT o2

& Al D04 SMITHSON PALUL AL 03

& AlDOS SMITHS PETER ADM 0z

& A1 D06 SMITHERS JACK TRVL 03

& ALDDT SMELL CEDRCE ALD ol

& Al 008 SHEDDON ALLAM AuD al

& Al D0 SMASHALL DraMiAM AUD 02

& 21010 PERRY WILLLAM AUD 03

@ a0 PERAB CHRISTOPHER aUD 01

B, a2 PALIL PATRICK ACM ol

=, AlDl2 FATTISON CEORGE ADM al

B A1014 MOORE N ADR 0z

& anms WoDs BRADLEY ADM 01

& 106 TURMER JACK FLT o1

1 wEgE ~amy P

T 1.7 WAM Wizards

1.7.3 Web Application Layout Manager Wizard

Depending on the answers the user provides, the wizard will generate a layout
weblet to the requirements you have specified, and a subfolder in the images
folder of the webserver. The following might be included depending on the
answers provided:

e A CSS file containing the styles in the webserver images subfolder with
its matching external resource object.

e A JavaScript file containing additional JavaScript code in the webserver
images subfolder and its matching external resource object.

e A sample WAM using the generated layout. In this case a WAM layout is
also created to reference the generated layout weblet.

Home | Services | Comtact About

Massages
» Sample 1ext mescage
HTML Controls "
:)
Mena Lisk Cantent Heading
2o i = Lorem ipsum dolor
Menu Link HTML Controls = LANSA Weblets | jQuery Weblets
sit amet conzect
Menu Link ng whit
Menu Link e
HTML Contrals i i
Menu Link ut aoreet dolore
mapgny shquam erat
H1 Text H2 Text H3 Text Ha Text 3 Tt e g
Bold Text Matlc Text Undertined Text Strong Text Big Taxt
Ernptiined Text CoEpuLET GuBpLL Sample oparise Sample FePerieripy T ——
suscipit bobortis nisl
ut sliquip ex =a
This is a sample paragraph of teat. This Is a sampbe DIV_ Lorem This Is a sample SPAN. Loren g
Hiperink Lorem ipswm dolor sit amet, fesum dolor sit amet, fpsum dolor sit amet, consatebur
consetetur sadipscing consstetur sadipscing sadipacing Duds awben vel eum
irture dodor in
hendrarit in
wulpuat "
® Samgls ltem 1 = Sampls lbem 1 i Sample lbem 1 1. Sampls lkam 1 &
b sat,
» Lamgple liem i = fample lbem 2 3. Sample lbem 3 7. Sample ltem i
: el illum d
» Lample Item ¥ = Lample ltem . Sample Item 3 5 Cample ltem 1 <
= i feugiat nulla facilist
* Sampls Item 4 = Zamphe |tem 4 . Sample ftem 4 4, Samphe Irem 4
* Sampls ltem 5 = Zample ltom § v. Semple lbem 5 5. Sample ltom §
blandit prassent
Carmmn HTAAL Tuhin b Saamnis T Takis with
1 18 HT AL & MSAXHT fracs1d and Fleldset luptatum z=zril delenit

Refer to WAMO25 - Using the Layout Wizard to step through the
Wizard.

T 1.7 WAM Wizards

2. WAMs Deconstructed

Prerequisite Reading

Before reading this chapter, we recommend that you read An Introduction to
WAMs for an overview of LANSA's WAM Architecture.

its:lansa087.chm::/lansa/wamengm1_0010.htm

2.1 The Relationship Between WAMs, Webroutines, Weblet and
Weblet Templates

After reading An Introduction to WAMs you should have a clear picture of what
WAMs and webroutines are, so we'll now shift the focus and explain, in more
depth, weblets and weblet templates, and how they interact with WAMs and
webroutines to build up and customize the presentation layer.

Let's review some WAM concepts. You should already be familiar with most of
these concepts:

Simplistically, each webroutine is comprised of two parts: the RDMLX
portion encapsulating the application logic (in the Application Logic
Layer), and the XSL/XML portion defining the presentation interface (in
the Presentation Layer, also known as the Web Design).

A WAM includes one or more webroutines.

All webroutines are defined in the RDMLX code of a WAM using a
simple WEBROUTINE / ENDROUTINE construct. The webroutine
definition may include WEB_MAP commands to pass field and working
list information to and from the presentation layer.

The RDMLX code of a WAM can also include method routines
(MTHROUTINE) and subroutines (SUBROUTINE). If you need a

refresher on these concepts refer to the LANSA Technical Reference
Guide.

Webroutines are generally presented as a user interface (for example,
HTML for a web browser), but can be generated as a non-visual
presentation if the appropriate Technology Services are defined.

Typically, opening a webroutine in the LANSA Editor opens the
Extensible Stylesheet (XSL) object generated for the webroutine so it can
be viewed and modified as required. The initial presentation in the
LANSA Editor is based on the internally defined LXML (a list
representation of XML tags) and the XSL/XML objects, which can be
generated during a build. We'll review these objects again later in this
document.

A weblet includes one or more weblet templates. Weblet Templates
determine how a weblet is applied for a technology service or another
variant which requires different XSL, like inline lists.

The presentation of a webroutine can be modified by dragging and

its:lansa087.chm::/lansa/wamengm1_0010.htm

dropping weblet templates onto the webroutine's Web Page tab in the
LANSA Editor.

e Weblet Templates are Technology Service specific. This means that while
a consistent set of weblets is shown in your LANSA repository, when you
change your current Technology Service the list of available Weblet
Template will be modified.

The following diagram shows the relationship between a webroutine (the
application logic) and the generated XSL, XML and various weblets (the
presentation layer):

WEBROUTINE
COMPILE or BUILD s
LML XML AL ﬂ
(INTERMAL) (DATA) (STYLESHEET) |[<— ;vSELBLET
T ! &~ TRANSFORMATION
WEB PAGE
(PRESEMTATION)

2.1.1 What happens when I build or compile a WAM?

Let's review the process of building or compiling a WAM to see how this
impacts the development process.

The easiest way to see what happens when a WAM is built or compiled is to
create a simple WAM and review the resulting objects.

Let's use a very simple WAM (named KWAM10) with a single webroutine
(KWAM1001):

FUMCTION OPTIOMS{*DIRECT)
BEGIM_COM ROLE(*EXTEMNDS #PRIM_WAM)

—HWEBROUTINE MAME({kwarn1001)
L WEE_MAP FOR{*both) FIELDS(#deptment)

EMDROUTINE
END_COM

The first time a Web Design is generated, the appropriate layout objects will be
generated too. Any subsequent generation will NOT regenerate the layout
objects. All changes to the generated layout are performed using the LANSA
Editor.

Don't dwell on this too long as layouts will be explained in great detail later in
this document.

The objects associated with the WAM layout are:

e A single layout variables object is created for the WAM —
kwam10_layout.variables.xml

e A single layout XSL stylesheet is created for the WAM —
kwam10_layout.xsl

Additional XML and XSL objects are generated or regenerated for each
webroutine during the build or compile phase if you select the appropriate
Generate XSL options in conjunction with one or more Technology Services.
These XML and XSL objects can also be generated or regenerated for a specific
webroutine when you explicitly ask them to be using the small green arrow
immediately to the right of the RDMLX WEBROUTINE command. This set of
objects will be created for each Partition Language and each selected
Technology Service combination using the directory structure

L AX_WIN9S\X_LANSA\X_<Partition>\web\<Provider>\
<Technology Service>\<language>.

The objects associated with the Generate XSL settings are:

e An XSL stylesheet is created for each webroutine —
kwam10.kwam1001.xsl

e A variables document is created for each webroutine. (This is related to
the XSL object and is independent of the LXML information stored
internally.) — kwam10.kwam1001.variables.xml

If you perform a build, the default system settings, to Generate XSL for all New
Webroutines (that is, webroutines that have not previously had XSL/XML
objects generated), will be applied. The compile options for a WAM allow more
control of this process.

When compiling a WAM, the Generate XSL options allow for the generation of
XSL to be bypassed, or XSL can be generated for All Webroutines or only for
New Webroutines. You can also generate XSL for a single webroutine on
demand using the small green arrow immediately to the right of the RDMLX
WEBROUTINE command

6 It is important to remember that by selecting Generate XSL for
All Webroutines you will regenerate the XSL and in doing so will lose
any modifications applied in the LANSA Editor. The same applies
when regenerating XSL on demand.

LL BT you are doing Multilingual Development...

The XSL objects associated with the default partition language are
published in the LANSA repository and replicated for other languages.
This process allows you to effectively have a single set of XSL
information for each Technology Service for all languages. While it is
possible to have a different set of XSL published for each language,
this approach is generally not recommended unless you require very
distinct interfaces for each language. It is a better approach to use
Multilingual Variables as this requires only one Web Design and hence
is easier to maintain.

In addition to the XML and XSL objects generated, whenever a WAM is
compiled (this does not apply for the build option) a set of RDMLX objects
associated with the WAM will always be created or recreated. The same set of
objects is created for a WAM as for any other RDMLX compilable object, for

example:

A dynamic link library object kwam10.dll is created in the partition
execute directory

LAXC WIN9S\X LANSA\X <Partition>\execute

A program file, kwam10.pgm is created in the partition source
directory ...\X_WIN95\X_LANSA\X_<Partition>\source

A text file, kwam10.txt is created in the partition source directory
+AX_WIN9S\X_LANSA\X_ <Partition>\source

That covers the files generated to support a WAM, but there is one final piece
required to the complete the picture. When the WAM is built or compiled,
LXML (a list representation of XML tags) information is ALWAYS generated,
or regenerated, for each webroutine. This LXML information is stored internally
in the LANSA database and is independent of Technology Service and
Language.

Automatic regeneration of the LXML information is important as it ensures that
any modifications to WEB_MAP definitions are available in the Webroutine
Output tab. The LXML can be viewed in the LANSA Editor by selecting the
XML tab.

Some modifications to the generated LXML (cookies and TSML nodes added
by the LANSA Editor) are retained when the LXML is regenerated.

This is a concise view of the WAM build and compile processes. As you can
see, in the diagram below, some objects are generated for the WAM and apply to
all the webroutines in the WAM, while other objects are generated for each
webroutine (and some information is stored internally):

BEL

F
XSL
WAM /
K‘\
WRs — | TXT
/_'_,_,.,-'-"""J
XML \
/ \ PGM
' /A
LAYOUT LAYOUT
XSL XML

2.1.2 What are Weblets and Weblet Templates?

Weblets are snippets of XSL code designed to encapsulate common HTML
functions and, in doing so, hide their complexity. Weblet Templates are an
additional level of granularity within a Weblet, defining sub-sections of the
weblet XSL code applicable to a specific Technology Service and other possible
conditions.

All weblets are stored in the LANSA repository and can be created, opened or
modified in the LANSA Editor. Weblets, and consequently Weblet Templates,
are reusable and can be dragged and dropped onto the Web Page of any
webroutine to assist in building up the desired Presentation Layer or Web
Design. While you can drag and drop both Weblets and Weblet Templates to
get the same result (in most cases) it is useful to get into the habit of working
with Weblet Templates to ensure the selected weblet is supported with the
current Technology Service. The Weblet Groupings can also make it easier to
locate the appropriate weblet to be used. For example, if you are using inline
list there is a Weblet Template grouping Inline Templates to identify all the
weblets defined to be "inline-aware" for the current Technology Service.

LANSA supplies a standard set of weblets. Weblets, like all XSL and XML
objects in LANSA, are Technology Service specific. Most shipped weblets are
supported for both Technology Services provided by LANSA, that is, XHTML
(eXtensible Hypertext Markup Language) and JQMOBILE (jQuery Mobile).

Typically weblets are used to visualize data on a web page. For example
standard weblets are provided to visualize a field as a checkbox or a radio
button, or a working list could be visualized as a dropdown list or a tree. There
are also standard weblets provided for formatting the layout of a web page,
message presentation, menus and other elements commonly included on web
pages that are not specifically related to data on the interface. Additional non-
visualized weblets are provided to give access to commonly required
information, for example the variables and style weblets (which are described in
2.5 Variables and 2.7 Cascading Style Sheets (CSS) and the Style Weblet).

2.1.3 How do I use Weblets?

To get a feeling for how weblets can be used to build up the presentation layer,
let's look at a simple example.

The goal in this example is to construct a simple search page to allow to a
department code to be entered and then a search for department records
initiated.

Create a WAM and name it WAMSTART.

ce New WAM EX
Mame WAMSTART Create
Description Start Page

Cancel
Layout Weblet

Framework Administration (ADMINISTRATICON) ki
Group -
Identifier WAMSTART

Once the WAM has been created you are presented with a dialog to create a
webroutine. You can dismiss this dialog and start editing the WAM yourself, or
you can use the dialog to fill in the details for your new webroutine and then go
straight to the Design phase and let the RDMLX/Web Design interaction
automatically build the web maps in the RDMLX source for you. In this
example we will use the dialog to create a webroutine.

Mew Webroutine n

Enter a Webroutine name and choose Create to begin designing your Web Page

Webroutine details

Create
Mame |
Description Cancel
Service Mame Cloze
Response *DEFAULT - return a Web Page b

Web Page design details

Generate ¥5L = Open Design Provider Technology Service
L Ll LANSA JOMOBILE
LANSA KHTML

Show this dialog when Web Application Module with ne Webroutines is opened

You will now automatically be taken into the Web Design phase and see the
following Web Design.

Desgn | Source | Multiingual Detads | Cross References
WebPage x5 [

Home

Meassages:

Drag the DEPTMENT field from the Repository and drop it on the Web Design.
This operation will also add a web map to the RDMLX Source.

Desgr | Source | Multingual Detalls Cross References
WebPage (sl |

Messages:

Department Code|ABCD

To facilitate the search you want to add a push button to the page. To do this,
open the Weblet Templates in the Repository and locate the push button weblet.
Simply drag the push button onto the Design view where you want it to be
displayed.

Desgn | Source | Multingual Detalls | Cross References
viebPage [xs. [

Messages:

uDepaamentgode[}‘Etb .
O Caption P]

=] =] =]

Ensure the focus is on the newly added push button. Select the Details tab to
review the push button's properties.

Properties

<xsl:call-template: | -
Mame | Value |
= name std_button
_With Parameters
ri= name concat{o', position(), '_LAMSA_45307
ri= caption Search
ri= currentrowhfield STOROWNUM
s currentrownumyal position{)
i reentryfield STORFNTRY
ri= reentryvalue M
ri= hide_jif False
ri= formname LANSA
= pos_absolute_desian

i width_design

ri=l height_design

ris on_dick_wamname | $fweb_WAMName

i o _click_wrname deptsearch

= protocol

i show_in_new_window False

ri= target_window_name | <xsfif xmifnsocsf= "hittp:/ www. w3 or

= disabled False

ri=d title

= dass std_button

ri= mouseover_class std_button_mouscover
ri= presubmit_js

i tab_index

i default_button

Change the caption property to Search and the on_click_wrname property to
deptsearch. This indicates that when the push button is clicked on the resulting
web page, a webroutine deptsearch (defined in the current WAM) will be
executed. Note that this webroutine is currently not defined so it must be added
to the WAM before the push button will execute correctly.

In this example, the appearance and functionality of the web page generated for
webroutine kwam1001 is modified by dropping a field onto the design,
including a reference to the push button weblet and customizing the properties
as required.

Non-visualized weblets can be applied in the same way but you will need to
review the XSL tab to ensure a reference to the weblet has been added as
required.

Before executing the WAM it must be compiled but be careful not to regenerate
the XSL for All webroutines as this will replace the manual changes to the XSL
applied by dragging and dropping the weblet template.

2.1.4 How do I know where and when to use a Weblet?

You will be applying visualized weblets to your presentation, so the question of
when and where to use a weblet is really a design consideration relating to how
you want to view and modify information on the resulting web page.
For example, if you defined the following webroutine:

DEFIME FIELD #vesorna) TYPE{*char) LEMGTH{1) DESC({"res ar Ma')

=FWEBRCUTIMNE MAME(warn0190)
L WEBR_MAP FOR(*both) FIELDS(#vesarno)

EMDROUTIME

then compiled the webroutine to generate a default presentation interface for
XHTML, the resulting web page would look something like this:

Yes or No

Notice that the default representation for the mapped value is an input capable
field.

By dragging the Checkbox weblet (or the Boolean field visualization weblet)
onto the field value you can change the presentation of the data so it is viewed
and responds as a checkbox:

Yes

v Tip — If you define the field #Y ESORNO as type *BOOLEAN,
the visual representation would automatically be a checkbox.

=_mmYVV—"-
Refer to Standard Field Visualizations for details of the visualized weblets
shipped with LANSA, including typical usage for each weblet.

The use of non-visualized weblets requires a thorough understanding of the
purpose of the respective weblet. The purpose and application of the various
non-visualized weblets shipped with LANSA is outlined later in this document.

its:lansa087.chm::/lansa/wamengb2_0020.htm

2.1.5 Can I create my own Weblets?

Yes, you can create your own weblets to implement your site's standards or to
encapsulate commonly used XSL code by using the New menu and choosing
Weblet in the LANSA Editor's tool bar. You can then add the appropriate XSL
code to define your weblet. Typically you will not need to add XML for the
weblet. The XML tab is by default not visible in the LANSA Editor.

We recommend that you use a naming prefix other than std_ for any weblets
you create. To simplify the management of your Weblets, create your own
weblet grouping, and assign this to any weblets you create.

Remember you will need to create a version of your weblet for each Technology
Service you intend to use the weblet with.

6 Do not modify the weblets shipped with LANSA as these will be
replaced during subsequent LANSA software upgrades.

6 If you create a new weblet using a standard weblet as a template,

remember to change the name of the xsl:template as well as the file
name. Two weblets with the same xsl:template name cannot be used
together on the same layout or webroutine.

2.2 Technology Services

Before you launch into any WAM development it is important to understand
what Technology Services are and how they impact your WAM development.

What is a Technology Service?

Technology Services apply to the Presentation Layer or Web Design of a WAM.
They allow common business logic (the RDMLX) to render a presentation on
multiple types of client. This is an important concept as it allows the RDMLX
of a single WAM to be presented in multiple technology formats, on multiple
devices, separating application logic from the presentation technology.

So essentially a Technology Service defines the presentation output of a
WEBROUTINE.

Which Technology Service should I use?
It depends on how you want to deliver your web solution.

Two of the most commonly used Technology Services are shipped with Visual
LANSA to support the presentation layer for WAMs. These are XHTML
(eXtensible Hypertext Markup Language) to support a standard web browser
interface and JQMOBILE (jQuery Mobile) designed for mobile devices.

If you want to present your web application in a format other than XHTML or
JQMOBILE, you will need to create your own Technology Service.

Can I create my own Technology Services?

Yes, you can define additional Technology Services but the implementation and
resulting XSL are entirely your responsibility.

Technology Services are defined in the LANSA Editor. To create a new
Technology Services, use the New button from the toolbar and select
Technology Services. Then fill in the details for your new Technology Service.

You will need to create your own XSL Stylesheet template documents to
support your new Technology Service. These documents should be saved in the

appropriate LANSA directory ...\X_WIN95\X_LANSA\web\tsp. These
templates will be used to generate the initial XSL presentation of a
WEBROUTINE.

Refer to Technology Services for further information about creating your own
Technology Service.

its:LANSA087.CHM::/lansa/wamengb1_0025.htm

8Do not add additional Technology Services to the LANSA
provider as the LANSA provided Technology Services may be
extended or changed in future versions.

How do I generate XSL for a particular Technology Service?

When you create a new webroutine you get the option to generate XSL for
existing Technology Services. If you only intend to execute your finished web
application on a web browser you would not select the JQMOBILE Technology
Service.

If you want to generate XSL for a different Technology Service at a later stage
you can do so by right mouse clicking on the Webroutine Design Glyph,
choosing Generate XSL and then the Technology Service Provider you are
interested in.

Design | Source | Repository Details | Cross References

* COMPONENT: STD_WAM

Function Options(*DIRECT)
Begin_Com Role(*EXTENDS #PRIM WAM)

=l Webroutine Name(main) Desc('Main page')@

Web_Map For(*BOTH) Fields(#EMPNO #SURN Open Design 4
Endroutine Generate X5L 3 All
iy Execute > LANSA JOMOBILE
Debug » LAMNSA XHTML

How do I view the presentation for a specific Technology Service?

The default Technology Service for the LANSA Editor is XHTML. Use the Web
menu in the LANSA Editor to view the JQMOBILE design (if it was generated)
or any other Technology Services you have created and subsequently generated
Wed Designs for.

2.3 Structure of a Webroutine's XSL

We have examined what objects are created when you compile a WAM and the
role of Technology Services with these objects. Now let's delve further into the
workings of the WAM by opening the XSL generated for a webroutine in the
LANSA Editor.

Using the same WAM definition (KWAM10), you can open the KWAM1001
Webroutine XSL object (that is, kwam10.kwam1001.xsl) in the LANSA
Editor's Design tab by clicking on the @ Webroutine Design Glyph or by right
mouse clicking @, choosing Open Design and then the Technology Service
Provider you are interested in..

Design | Source | Repository Details | Cross References

* COMPONENT: STD_WAM

Function Options(*DIRECT)
Begin_Com Role(*EXTENDS #PRIM WAM)

= Webroutine Name(main) Desc(’'Main page')

Web_Map For(*BOTH) Fields(#EMPNO #SURN LENLE MIMORIL

LANSA XHTML

Open Design

Endroutine Generate XSL

End_Com B

- v * v

Debug

Now that the Web Design is open in the LANSA Editor, select the Outline tab.
You may need to explicitly open it from the LANSA Editor's View menu,
choosing Views and then Outline or by pressing F6. You will see a tree view
representing the various weblets, HTML, XML and XSL structures that make
up the presentation. A prominent feature high in the tree view is the reference to
the automatically generated WAM layout kwam10_layout.xsl. There is also a
field description and value included in the XSL (but are not represented as
weblets) for the mapped field DEPTMENT. In addition, the XSL contains the
weblet std_button which is the display for a push button.

= 2 Y KwaMio
2] =L kwami001
s = @ xsl:template match="/"
-] i layout (kwam10_layout.xsl)
= O xsl:template match="/lxml;data"

® DEPTMENT :description

¥ DEFTMEMT:value
: [std_button {std_button.xs) - Push button
|
]
[=] web Ancestor Elements | #ffs Outline | <% Compile |:| Common Controls q'g:j Propagation Q Web Designs

If you double click on the WAM layout weblet in the Outline tab (or press right
click and choose Weblet: kwam10_layout - Open from the context menu), it will
open the kwam10_layout.xsl weblet in the LANSA Editor as well. Looking at
the Outline tree structure of this WAM layout shows references to more weblets,
in this case std_themelet1_1col. We begin to understand how weblets are
reused, even in the automatically generated XSL objects.

Back to our WAM layout weblet, looking at the Outline tree you can quite
simply deduce from this that the WAM layout is based on the standard one
column themed layout weblet named std_themelet1_1col.

= E Y KwaM1o
2| = A= kwam10_layout
-] A kwam10_layout.xsl
= O xsl:template name="Tayout"
[std_themeleti icol {std_themeletl icol.xsl) - Theme Layout Weblet #1 - One Column

B
[[=] Web Ancestor Elements | s Outline | =% Compile |:| Commaon Controls qgr;a Propagation Q Web Designs

You can verify this in the Design tab:

Desgn | Mubingual Deinls Cross Refererces
Weblet Template | g AL Rewwam10_kayout [LARSA XHTHL]

Webroutine Title

Also notice that the WAM layout weblet has no references to WebRoutine-
specific details (that is, the mapped webroutine information). It is the shell that
provides structure and a consistent interface for the page.

Note that for the purpose of this introduction to the structure of a Webroutine's
XSL, we are using an example based on the std_themelet1_1col weblet.

Because the shipped layout weblets (prefixed by std_) must never be modified,
it is recommended that you always build your own site layout weblet. The site
layout weblet can, of course, be modified as you require for your web site. The
easiest way to create your own site layout is to use the Web Application Layout
Manager Wizard.

If you were using your own site layout weblet named kwamsite, the Outline tree
would look like the following:

s Outline | (1) Assistant 1 Preview | =% Compile O'n"u'eb Diesigns

=l @ Y Kwamio
2|5 AE kwam10_layout
] = & kwam10_layout.xs|
= O wsl:template name ="ayout”
7 kwamsite (owamsite. xsl) - KWAM site layout

o

+]
In the following text, the std_themelet1_1col weblet name would be replaced by
the kwamsite weblet name when using a site layout. All other details would be
the same if the Web Application Layout Manager Wizard was used to
generate this site layout.
Still looking at the WAM layout weblet, if you click on the Details tab, the
property settings for the weblet kwam10_layout.xsl are exposed. These are
currently set to the default values. Changing these properties will change the
layout interface accordingly.

its:lansa087.CHM::/LANSA/WamEngm1_0120.HTM

Details

kwam10_layout

PR WY

Properties 3
<xskcall-template> ©

Mame Value 2
I st _themelet_icol [
rZWith Parameters .
i window_title Swindow_title ZI;I
ri= has_form shas_form ":;
= show_title Sshow_title f
o title_text Stitle_text i
= width_type Swidth_type }
i width Swidth "E
ri= javascript_files Sjavascript_files
= jQueryMoConflict §iQueryMoConflict ',
i css_files gcss_files é
= output_charset Soutput_charset r
= backcompat_theme Shackcompat_theme 2

e A i, A, O, i

At this point, if you move back to the Outline tab, you can continue to drill
down through the weblets to further investigate how the basic webroutine
kwam1001 is constructed. From the WAM Layout weblet you can double click
on the std_themelet1_1col weblet so it too opens in the LANSA Editor. Note
that you must not update this shipped standard weblet.

= @ Y KwWAMID
2| @ A= kwam10_layout
| il std_themelet1_icol
= A std_themeleti_icol xs|
=) bslitemplate name="std_themeleti_icol"|
¥ hidden_fields (std_hidden.xsl) - Standard hidden fields
messages (std_messages.xsl) - Messages
E sript (std_script. xsl) - Standard script
£ style (std_style_v2.xsl) - Style default
= =8 xshapply-templates select="*"
Q xsl:template match="/1xml:data™
= =8 xshapply-templates select="*" mode ="content. footer”
@ xsl:template match="/1xml:data” mode="content. footer™
= =8 xshapply-templates select="*" mode ="content.header”
Q xsl:template match="/xml:data” mode="content.header™
= =8 xshapply-templates select="*" mode ="content.hidden™
Q wslitemplate match="{lxml:data” mode="content.hidden™

-
]
Web Ancestor Elements | #ffs Qutline | =% Compile |:] Common Controls @j Propagation G Web Designs

Looking at the structure of the std_themelet1_1col weblet in the Outline tab (or

the Design view) you will see references to page content areas identified by the
template names content.header, content.hidden and content.footer. Even
though the kwam10_layout does not specifically show these names in the
Outline view, they are available as editable areas of both the kwam10_layout
and the kwam1001 webroutine Web Designs using the LANSA editor.

e Review the std_themeletl_1col weblet in the Design view to observe the
relationship between this weblet and the WAM layout kwam10_layout.

e Close the std_themeletl_1col weblet without updating to return to
editing the kwam10_layout Weblet for the WAM.

To update any of the page content areas, position the cursor to the content area
to be modified (header, footer or hidden) and press right click. The context
menu option Content Area for the applicable page content will be available to
allow you to Replace or Expand the content:

Deson | Muiskngusl Detsls Cress References
Wiebiet Template | x5y i lewami 10_Lewout [LANSA XHTHL] * -

Messages: Copy

Webroutine 1

Sive To Conbend
Select All Ciele &

Wiew Sounce

o Qutire | (i) Agsiwiaet Prevrm (gl Vil Detrn =l —
= & g SWaMID = 4
i fovearm 10_fryout 2 Contend Ares Tor “content.hesder™ r Replace comtent

& lowam 10_layout. el 5 Expand conienl

(D) sl rempilate rame = ey’ Properties

mpmaite (ovamabe, we] - AN ote yout
If the content area is modified, it will then appear in the outline view for the
WAM layout kwam10_layout. For example:

Oipem “aamaibe” to edit

Cemgn | Multingusl Detals | Cross References
Weblet Tempiste g | ae Eowam10_Eyyout [LARSA HTHL] * -

™ Add content for contentheader here ™

Messages:

Webroutine Title

i Outline | (1) Assistant | Preview Q Web Designs

=/ @ @Y KkwaM1D
2| = A= kwam10_layout
: = A2 kwam10_layout.xsl
=] O wsl:template name="Tayout”
= [C1 std_themeletl_icol (std_themeletl_icol.xsl) - Theme Layout Weblet #1 - One Column
O wsl:template match="/lxml:data” mode ="content.header”

Now let's look in more detail how the Webroutine layout kwam1001_layout is
constructed from each of its related weblets.

First, open the XSL tab for the kwam1001_layout weblet and scroll to the top
of the XSL. You don't need to understand the code but observe the references to
"import" other XSL documents:

<xsl:import href="std themeletl lcol.xs1" />

<xsl:import href="std types.xs1l" />

These imports indicate that the kwam1001_layout weblet refers to a set of
weblets (that is, XSL documents), which, although they may not always be
visualized, are important elements in the definition.

From the Outline view of the kwam10_layout WAM Layout weblet, double
click on the std_themeletl_1col weblet so it also opens in the LANSA Editor.
Review the updated Outline view expanded to include the std_themelet1_1col
weblet.

s Outline | [i) Assistant | || Preview () Web Designs
=/ @) KwaM1D
o|@ Al kwaml0_layout
: = A3 kwam10_layout,xsl
=] O wsl:template name ="Tayout”™
= [C] std_themelet1_icol (std_themeletl 1col.xsl) - Theme Layout Weblet #1 - One Column
: € xsl:template match="/luml:data” mode="content. header™
= = std_themeletl_icel
: = A3 std_themeletl_1icol.xsl
=] O wsl:template name="std_themelet1_1icol”
* hidden_fields (std_hidden.xsl) - Standard hidden fields
messages (std_messages.xusl) - Messages
@ script (std_script. xsl) - Standard script
style (std_style_v2.xsl) - Style default
=5 xsl:apply-templates select="*"
| =8 xsl:apply-templates select="*" mode="content. footer”
[+ = xsl:apply-templates select=""" mode ="content.header™
[+ = xsl:apply-templates select="*" mode ="content. hidden™

| [F F

E

Py

Again, open the XSL tab for the std_themelet1_1col weblet, scroll to the top of
the XSL and observe the references to "import" other XSL documents:

<xsl:import href="std variables.xs1" />
<xsl:import href="std types.xs1l" />
<xsl:import href="std hidden.xs1" />
<xsl:import href="std style v2.xs1" />
<xsl:import href="std script.xs1" />
<xsl:import href="std menubar.xsl"™ />
<xsl:import href="std messages.xsl" />

These imports indicate that the std_themelet1_1col weblet refers to another set
of weblets (that is, XSL documents), which, although they may not always be
visualized, are important elements in the definition.

For now, all you need know if that these different weblets are referred to in the
shipped standard layouts and as such are "available" to any other weblets, which
in turn refer to these layouts. We will describe what these various weblets do in
the following sections of this document.

The following diagram summarizes what we have just described about the
structure of a webroutine's generated XSL:

WEBROUTINE
HEL
WAk LAY QLT
WEBLET
STAMDARD
LAYOUT
WEBLET
STAMDARD STAMDARD STAMDARD STAMDARD
VARIABLES TYPES STYLE HIDDEM
WEBLET WEBLET WEBLET WEBLET
i 4y o
STAMDARD STAMDARD STAMDARD STAMDARD
SCRIPT FORM IMIT MESSAGES MEMLI
WEBLET WEBLET WEBLET WEBLET

You will find more details of each of these pieces elsewhere in this guide.

2.4 WAM Layouts and Layout Weblets

In previous descriptions we have touched upon the concepts of WAM layouts
and Layout weblets. Now it is time to explain:

2.4.1 What is a WAM Layout?

2.4.2 What is a Layout Weblet?

2.4.3 What do Layouts Determine/Control?

2.4.4 How is a WAM layout assigned to a WAM?

2.4.5 How do I Create my Own Site Layout?

2.4.6 Can I Change the WAM Layout used by a Webroutine?

2.4.7 Can I Change the Layout Weblet associated with a WAM Layout?

You can easily create your layout using the Web Application Layout
management Wizard Web Application Layout Manager Wizard.

its:lansa087.chm::/lansa/WAMEngm1_0120.HTM

2.4.1 What is a WAM Layout?

A WAM layout weblet is a specific type of weblet that is used to give structure
to the web page. Typically, it will define any titles, menus, message presentation
or logos to be displayed. The WAM layout also controls the Cascading Style
Sheet or other documents to be applied. (We'll get to this later in 2.7.2 What
CSS files are loaded and how do I add my own?)

Header
Site navigation

Logo image | | | |
Page navigation
Messages
_LEft Main Content Right
Sidebar Webroutine XSL Sidebar
Webroutine X5L Webroutine XSL

Footer

The WAM layout weblet is used as the basis for any presentation associated
with the WAM's webroutines.

A single WAM layout is generated for each WAM regardless of how many
webroutines are defined within the WAM. If your web application includes
multiple WAMSs, the same layout can be applied to all the WAMs in your
application. This way, you can guarantee a consistent interface.

Contrary to what the name suggests, a WAM layout does not have to be made of
visual elements — although it usually is.

The non-visual elements of a layout include references to XSL documents for:
Standard variables

Standard data types

Style
JavaScript
Default hidden fields

2.4.2 What is a Layout Weblet?

If you have many WAM layouts and want them to share common elements, you
can place the common elements in a Layout Weblet. Similar to other weblets,
the purpose of the Layout Weblet is to reuse functionality and avoid
unnecessary duplication. Refer to Create a Weblet in the Visual LANSA User
Guide for details about Weblets.

Three themable Layout Weblets (Themelets) are shipped with Visual LANSA
(std_themelet1_[1-3]col). These layouts can be used for any WAM-specific
layouts or as a starting point for creating your own site Layout Weblets.

The easiest way to create your own site layouts is to use the Web Application
Layout Manager Wizard.

When you create a new WAM you can select the site's Layout Weblet.

The WAM layout that is automatically created is based on the Layout
you nominate.

&) New WAM e
Marme SAMPLE Create
Description Sample WaAM

Cancel
Layout Weblet std_themeletl_2col
Framework Administration B
Group -
Identifier SAMPLE

its:lansa012.chm::/lansa/l4wusr04_0335.htm
its:lansa087.chm::/lansa/WAMEngm1_0120.HTM

2.4.3 What do Layouts Determine/Control?

The layout (A standalone WAM layout or a Layout weblet based WAM layout)
is a key element in the generated webroutine presentation. It ensures that a
consistent interface is available across webroutines.

When you view your webroutine in the LANSA Editor's Outline tab, the layout
weblet is generally at the highest level in the outline tree. This indicates that all
weblets below the layout in the tree can refer to the documents specified in the
layout weblet.

Some of the things controlled by layouts include:

The appearance of any menus

Available menu options

The appearance of a message box

The Cascading Style Sheet to be applied

Access to common JavaScript functions

Definition of any global hidden fields

Standard variable definitions which may be referenced in other weblets
Whether a visual layout should be applied.

Of course if you define your own layout, you can decide what common
elements need to be included in the interface.

2.4.4 How is a WAM layout assigned to a WAM?

A WAM-specific layout weblet is automatically generated for a WAM the first
time it is built or compiled unless one already exists.

By default, when XSL is generated, the processor checks if a WAM-specific
layout weblet already exists for the WAM. If a WAM layout does not exist, a
new WAM layout weblet is generated and stored in the repository where the
name is composed of the WAM name followed by "_layout". After it has been
generated, your WAM-specific layout weblet is referenced by all the
webroutines in the associated WAM. Any changes to the WAM-specific layout
weblet will be reflected in all of the WAM's webroutines.

The Generate XSL options on a WAM compilation do not regenerate the WAM-
specific layout. A WAM-specific layout is generated only once. Any subsequent
modifications to the WAM-specific layout, or the assignment of a different
layout, must be performed in the LANSA Editor.

2.4.5 How do I Create my Own Site Layout?

The easiest way is to run the Web Application Layout Manager Wizard.

To create a layout weblet from scratch, select the Weblet option in the LANSA
Editor's New toolbar dropdown list. In the New Weblet dialog select the Layout
Weblet option to create a Layout weblet.

Alternatively, you can use any of the shipped layout weblets as a basis for
creating your own.

its:lansa087.chm::/lansa/WAMEngm1_0120.HTM

2.4.6 Can I Change the WAM Layout used by a Webroutine?

In the WAM Editor's Designer tab, drag and drop the WAM Layout you want to
use. It will replace the existing WAM Layout.

2.4.7 Can I Change the Layout Weblet associated with a WAM
Layout?

After a WAM layout weblet has been created for a WAM, you can open and edit
this weblet in much the same as any other weblet. You can modify the properties

associated with the WAM layout or you can replace the Layout weblet it is
based on, using an alternative Layout weblet as the base.

To change the layout weblet used as a template for the WAM layout:
1. Open the WAM layout weblet in the LANSA Editor. Select the Design tab.

2. In the Repository tab, locate the weblet to be used as a layout. Drag this new
layout weblet onto the WAM-specific layout weblet. The new layout will be
displayed below the old layout.

3. Select the old layout and delete it.

4. Save the changes.

6It is important to execute the above steps in the prescribed order.
By adding a new layout weblet to be used as the template, all existing

objects are moved under this new template. After this step is complete,
you can safely remove the old layout template without removing the
dependant objects.

2.5 Variables

The variables weblet — std_variables — is not visualized.

The sole purpose of the std_variables weblet is to define a set of variables with
default values. These default values can in turn be referenced in appropriate
weblet properties or used in other weblet's XSL source. For variables defined in
std_variables to be referenced by other weblets, the referencing weblet must
include a specific import of the std_variables.xsl document.

For example, the std_menu_item weblet includes the following statement in the
XSL source:

<xzl:import href="std variasbhles.xsl"™ />

Further down in the XSL is a reference to a variable $lweb_WAMName
(defined in std_variables) to resolve the name of the currently executing WAM
at runtime.

2.5.1 How can I Change the Value of a Shipped Variable?

Variables in XSL are not like the variables you have come across in other
programming environments. In XSL, the term variable is used in its
mathematical sense to mean a placeholder. This means that, once defined, a
variable cannot be changed.

It is possible to override a variable in certain contexts. To do this correctly you
need to have a good understanding of XSLT import precedence. The variables
defined in std_variables provide access to environment parameters and specific
parts of the source Ixml data. If you need to change the default value of a
variable then change the source data rather than the variable.

If you wish to create your own variables then create your own xxx_variables
weblet and import it into your layouts or weblets as required.

We do not recommend that you change the std_variables weblet as this may be
changed by future updates.

6 If you reinstall Visual LANSA, any changes made to the standard

shipped weblets will be overwritten.

2.5.2 How can I Create my own Variables?

The safest way to create your own variables is to create your own xxx_variables
weblet and import this wherever you need access to the new variables.

You can use the existing std_variables weblet as a guide but don't attempt to
redefine variables already defined in std_variables. This is not necessary and
may result in strange and unexpected behavior.

Some knowledge of XSLT, and a thorough understanding of where and how
variables are used, is required before attempting to create your own variables.

2.6 Localized Variables

The locale definitions weblet — std_locale — is not visualized.

The purpose of the std_locale weblet is to define a set of variables with default
values that may differ for different locales (regional settings). These default
values can in turn be referenced in appropriate weblet properties or used in other
weblet's XSL source. For variables defined in std_locale to be referenced by
other weblets, the referencing weblet must import std_variables.xsl which itself
imports std_locale.xsl.

This weblet is shipped in different languages with variables set to locale specific
values.

For example, the std_style_v2 weblet refers to the variable
$lweb_std_css_language_overlay to obtain the name of a language specific style
sheet to be applied to the layout.

You can create your customized version of localizable variables, for example, if
you want to customize variable $lweb_std_css_language_overlay.

2.7 Cascading Style Sheets (CSS) and the Style Weblet

The std_style weblet adds the CSS stylesheets needed by the WAM, any
additional CSS stylesheets you nominate (indirectly via your layout) and
external resources CSS stylesheets used by your WAM.

Together, the std_style weblet and external Cascading Style Sheet definitions
can be used to tailor the overall appearance of your web page interface.

Let's start with the basics:

2.7.1 What are Cascading Style Sheets and how do they work?
2.7.2 What CSS files are loaded and how do I add my own?
2.7.3 Can I create my own Style Weblet?

2.7.4 What Cascading Style Sheets are available?

2.7.1 What are Cascading Style Sheets and how do they work?

A Cascading Style Sheet tells the browser how to display page elements.
Cascading Style Sheet information determines things like the fonts and color
schemes, visual effects, alignment, border size and color, but may also be used
to define images and other features related to the interface. These properties can
be assigned to individual elements identified by an ID, or groups of elements
identified by type, location and class.

A detailed description of CSS is beyond the scope of this document. However,
there are many good books and online resources that cover the subject in detail.
A good place to start online is the free tutorial at W3Schools.

Many of the shipped weblets include style (or class) properties. The default
style applied to a property, and the full set of styles available in the dropdown
list associated with these properties, relate directly back to the CSS file
referenced on the WAM's related layout.

v Cascading styleheets are shipped minified (Most whitespace
removed). Non-minified version of these files are also shipped in the
same directory.

LANSA also ships with a set of CSS files defined specifically for use
with the PocketPC Technology Service.

http://www.w3schools.com/css/

2.7.2 What CSS files are loaded and how do I add my own?

The std_style_v2 weblet takes care of creating all the <link> tags needed to load
the CSS files so you need to include it in the <head> section of your layouts.
The std_style_v2 weblet always loads std_style.min.css into every layout. This
defines the non-theme related properties of all LANSA supplied weblets.

It then loads any CSS files defined by its theme_css_filename and css_files
properties. These properties are provided for backwards compatibility with
layouts built with older versions of the weblet. For new layouts, you should
specify none' in theme_css_filename and use External Resources to define
additional CSS files you want to include.

Next, it adds any CSS files defined as External Resources (which we mentioned
above) referenced in the webroutine, layout or weblets used by the webroutine.

Finally, the std_style_v2 weblet loads a stylesheet defined by the variable
$lweb_std_css_language_overlay. This variable is defined in the std_locale
weblet and provides a means to apply language specific CSS modifications.

¥ Before External Resources and jQuery UI support, the default LANSA theme
was included in std_styles.css and always loaded. Any custom themes added
with the theme_css_filename property had to take this into account and undo any
styles from the default theme that they didn't want. From LANSA version 12
SP1 the styles associated with this default theme are separated into their own
CSS file (theme_default.css). For backwards compatibility this theme is still
loaded before any theme specified in theme_css_filename.

New themes can remove theme_default.css and start with a blank canvas by
specifying 'none' in the theme_css_filename property.

The css_files property provided a mechanism for individual webroutines to add
special purpose CSS files to the page such as a CSS file needed by a custom
weblet. External Resources are a much more powerful mechanism for doing this,
allowing weblets to define their own CSS requirements and having that
automatically communicated through to std_style_v2. The css_files property is
no longer necessary and is included only for backwards compatibility.

Notes:

its:LANSA087.CHM::/lansa/wamengm2_0190.htm

The CSS filenames passed in arguments to std_style_v2 are assumed to be
relative to the style sub-directory. The value of the style sub-directory is defined
by the variable $lweb_style_path. By default, this variable refers to the sub-
directory /style directly under the web server image directory. We recommend
that you do not change this value.

From version 13.0, WAM output is in UTF-8.

<link> elements for the ccs_files property didn't have a charset attribute,
therefore they were assumed to be in the same character set as the main
document. To preserve backwards compatibility, they now have a charset
attribute that defaults to "shift_jis" for language JPN and to "is0-8859-1" for all
other languages. If you need to nominate a different character set, use the
css_files_charset property in weblet std_style_v2 (you will need to add this
parameter to your site layout). A better approach is to register your extra CSS
files as external resources and include them as such.

2.7.3 Can I create my own Style Weblet?

The standard style weblet should handle most of your needs but, if you want to
create your own style weblet, you can. The standard style weblet provides
functionality that is essential to the correct operation of the LANSA supplied
weblets and layouts. You should always call it from within your custom style
weblet or design your weblet, as shown in the example below, to work alongside
the standard style weblet.

<xsl:import href="std_style_v2.xsl" />

<xsl:template name="my_style">
<xsl:call-template name="style">
<xsl:with-param name="theme_css_filename"/>
<xsl:with-param name="css_files"/>
</xsl:call-template>

<!-- Custom style functionality here -->
</xsl:template>

You must not use a template name of "style".

If you name the template of your custom weblet "style" then you will cause an
infinite loop.

2.7.4 What Cascading Style Sheets are available?

The main CSS stylesheets mentioned in 2.7.1 What are Cascading Style Sheets
and how do they work? are in the main style directory under the images
directory.

The themed CCS stylesheets are under the jQuery subdirectory—under a
subdirectory named after the theme.

See External Resources Shipped with LANSA for a list of the other stylesheets
available to WAMs.

its:lansa087.chm::/lansa/wamengb3_0090.htm

2.8 JavaScript and the Script Weblet

2.8.1 Can I create my own Script Weblet?
2.8.2 How do I Format inline JavaScript for a Weblet Property?
The script weblet — std_script — is not visualized.

The std_script weblet loads a number of external JavaScript files and initializes
a number of JavaScript variables and functions used by the LANSA weblets. It
should be included in the <head> section of all layouts.

The external JavaScript files referenced are a small set of JavaScript files
installed on the web server to support WAMs. These scripts are loaded into a
subdirectory /script directly under the image directory. If you create your own
script weblet, ensure that the scripts included in the shipped std_script weblet
are included in your script weblet.

¥ These files are shipped minified (Most whitespace removed). The

non-minified versions of these files are also shipped in the same
directory.

If you wish to provide your own localized versions of the JavaScript messages,
make a copy of std_script_messages.min.js and translate the messages. Then
edit the language specific version of the std_locale weblet and update the
lweb_script_messages_file and Iweb_script_messages_file_charset variables.

To add your own JavaScript files to a page or layout, Enroll your JavaScript file
as a Web Images external resource. Add the external resource to the webroutine
or weblet that requires it. The corresponding <script> element will be added at
runtime automatically.

Notes:

m Every layout has a javascript_files property, which is passed to the
std_script weblet. This parameter takes a comma-delimited list of file
names (assumed to be relative to the /script directory).

» From Version 13.0, WAM output is in UTF-8. <script> elements for the
javascript_files property didn't have a charset attribute, therefore they
were assumed to be in the same character set as the main document. To
preserve backwards compatibility, they now have a charset attribute that
defaults to "shift_jis" for language JPN and to "is0-8859-1" for all other
languages. If you need to nominate a different character set, use the

javascript_files_charset property in weblet std_script (you will need to
add this parameter to your site layout). A better approach is to register
your extra JavaScript files as external resources and include them as such.

Several of the shipped weblets also include small inline JavaScript functions
in the XSL.

2.8.1 Can I create my own Script Weblet?

The standard script weblet should handle most of your needs but, if you want to
create your own script weblet, you can. The standard script weblet provides
functionality that is essential to the correct operation of the LANSA supplied
weblets and layouts. You should always call it from within your custom weblet
or design your weblet, as shown in the example, to work alongside the standard
script weblet.

<xsl:import href="std_script.xsl" />

<xsl:template name="my_script">
<xsl:call-template name="script">
<xsl:with-param name="javascript_files"/>
<xsl:with-param name="trap_script_errors"/>
</xsl:call-template>

<!-- Custom script functionality here -->
</xsl:template>

You must not use a template name of "script".

If you name the template of your custom weblet "script" then you will cause an
infinite loop.

2.8.2 How do I Format inline JavaScript for a Weblet Property?

Any weblet property where JavaScript is a valid or expected value will accept
an inline JavaScript enclosed in single quotes. The format of the JavaScript is
your responsibility.

All inline JavaScript must end with a semicolon (;) For example, 'alert("hello
world");'. Note that, because the JavaScript must be enclosed in single quotes
(this is done for you in the background), you cannot use a single quote within
the code. If you need to do this, consider creating a function in an external
JavaScript file and calling it from your inline code.

Most properties that expect JavaScript are executed in response to an event or
just prior to performing some action. For example, the presubmit_js property of
the std_button weblet is executed just before the form is submitted to the server.
This gives you the opportunity to provide some extra processing or to cancel the
event/action. To cancel the event/action you must use "return false;"

For example:
if (confirmWithUser() == false) return false;

(where confirmWithUser is a function you have defined in an external
JavaScript file)

6 JavaScript Notes:

1: Do not use return or return true in your inline JavaScript. This has a
similar effect to return false in that it stops execution of the LANSA
JavaScript but it does not stop the browser from performing its default
event handling. This may result in strange and unexpected behavior.

2: The { and } characters have a special meaning in XSLT and cannot
be used in a JavaScript property. Doing so will cause strange behavior.
If you need to write more complex JavaScript that requires these
characters you should create a separate JavaScript function and call it
from your property.

3: Previous versions of the documentation advised ending the
JavaScript with a double backslash (//) to cancel the default
processing. This technique has the same effect as using return and
should not be used.

2.9 Messages

The messages weblet — std_ messages — formats the presentation of any
application messages on a web page.

Message presentation is automatically incorporated at the top of all the standard
shipped layouts which means you generally do not have to review, modify or
even apply the std_messages weblet to your presentation.

Home | Services Contact About

Messages:
« Messages are displayed like this

Main page
Department Code

Search

A show_messages property is included on each shipped layout to indicate
whether the message box generated by std_messages should be incorporated
into the layout. The default setting for this property is to show messages. If you
do not want to show messages or choose to display your messages in a different
window, this property should be changed to false.

You can modify the basic appearance such as background color, of the message
box interface by redefining the appropriate style sheet classes in your own CSS
file. Alternately if you want a completely different visualization of the messages
you will need to create your own version of the std_messages weblet and refer
to this as required in your presentation interface.

2.10 Types
The type weblet — std_types — is not visualized.

The std_types weblet defines the type of information that is valid to be entered
for a weblet property. Types are declared in the XSL source by providing an
attribute wd:type, assigning a type name and then detailing the type of
information which is valid for this type.

For example, locate the following code in the std_types document:

<pd:rtype name="std:border stwle:

<uwd:enumeration value="'dashed'"™ />
<uwd:enumeration value="'dotted'"™ />
<wd:enumeration value="'double'"™ />
<uwd:enumeration value="'groove'"™ />
<wd:enumeration value="'inset'"™ />
<ud:enumeration value="'outset'"™ />
<wd:enumeration value="'ridge'"™ />
<uwd:enumeration valuse="'solid'"™ />
<ud:enumeration value="'window-inset'™ />
</wd: types

It is easy to deduce from this type definition that any weblet property that refers
to this type std:border_style will relate to a border style and include a valid set
of values which correspond to the values on the wd:enumeration statements.

To verify this, add a panel (std_panel) weblet to a web page and select the

3 petsils tab to review the associated panel properties. Check the values available
in the dropdown list associated with the border property. As you would expect
the dropdown's values match the wd:enumeration statements.

Properties I
<xsl:call-template= | -
Mame |Hmue |
5
name std_panel
r_IWith Parameters
= name concat{o', position(), '_LANSA_316607
ri= panes document(")/=lxml:data/lxml;panes[@id=
= | - m|
ri= border _width dashed -
= hide_if dotted
double
il class groove
i snap_to_grid inset
= grid_size '?EEEt -
ridge
r= pos_absolute Sl:lliglj -
i width J00pE
ri= height 200pt

Now open the std_panel weblet and review the XSL source to see how the

relationship between a weblet property and the type is established.

First of all note that the std_types document is imported into the std_panel
weblet's XSL source:

<xzl:import href="std types.xs1" />

Now scan down the XSL source and you will find a relationship defined
between the weblet property and the type definition.

<xslitemplate name="std panel:

<xsliparam name="horder"™ wd:type="std:border style” e

So it all comes together!

v Tip: If you are defining your own weblets, you may refer to the
types defined in the std_types document to indicate what values are
valid for your weblet properties. It is not anticipated that you will need
to create your own types.

2.11 Hidden

The hidden fields weblet — std_hidden — is not visualized.

This weblet provides access to a group of internally defined and evaluated
properties. The values assigned to the respective properties are determined in
the RDMLX definition and are required to execute a webroutine in a web
browser.

The standard hidden information is:
SERVICENAME
WEBAPP
WEBROUTINE
PARTITION
LANGUAGE
SESSIONKEY
LW3TRCID

The hidden information relates directly to the values that can be included on a
URL to invoke a webroutine. For example you may execute a webroutine
MaintainRecord in WAM WAMEXO0?2 directly from a web browser using the
URL:

http://<server>/cgi-bin/lansaweb?
wam=WAMEX02&webrtn=MaintainRecord&part=DEX

or alternately, assuming the servicename WAMEXO02 Maintenance has been
assigned to the webroutine, the URL may look like this:

http://<server>/cgi-bin/lansaweb?
srve=WAMEX02_Maintenance&part=DEX

In both examples the language, tracing and any other undeclared parameter
values will assume the default value.

2.12 Keys

The keys weblet — std_keys — is not visualized.

The standard keys weblet declares a set of named keys, which can be used in
other XSL documents to allow easy access to complex XML documents. Use of
key information requires a thorough understanding of XSL and XML.

This weblet is imported into many weblets to support use of the key function in
these weblets.

Further Reading

For further information about WAMs and their use refer to: Weblets and Weblet
Templates.

its:LANSA087.CHM::/lansa/wamengb2_0010.htm

2.13 Inline Lists

Rationale

Weblet XSL templates are heavily parameterized in order to give the WAM
developer the ability to customize the results.

For example, the std_anchor weblet has the ability to change its appearance
when the mouse hovers over it. To activate this behavior, the developer assigns
a value to the mouseover_class property. The following XSLT is executed at
runtime to see if the property has been set and, if so, adds
onmouseover/onmouseout event handlers to the anchor:

<xsl:if test="$mouseover_class !="">
<xsl:attribute name="onmouseover'>
<xsl:text>this.className="'</xsl:text>
<xsl:value-of select="$mouseover_class" />
<xsl:text>'</xsl:text>
</xsl:attribute>
<xsl:attribute name="onmouseout">
<xsl:text>this.className="'</xsl:text>
<xsl:value-of select="$class" />
<xsl:text>'</xsl:text>
</xsl:attribute>
</xsl:if>

Once the WEBROUTINE design has been saved, the value of
$mouseover_class never changes but this code is still executed every time the
webroutine is run. If the weblet is in a list, the code is executed again for every
row of the list.

Now, in most cases, many of the parameters (weblet properties) are constant and
don't depend on runtime values. It is more efficient to apply these properties
once at design time instead of doing it every time at runtime. This is particularly
important in the case of lists (even more so for large lists).

This is what inline lists do. Inline lists differ from standard lists in that the XSL
is done at design time. All weblet properties that can be applied at design time
are resolved, and special extension elements and functions are used to allow
WAMs to use runtime values where needed.

Applying the XSL during design time means that you can't customize
an inline list with information (such as field values) that is only
available at runtime. This is a trade-off. If you need this extra
flexibility you use a standard list. If you don't need it you can benefit
from the better performance provided by an inline list.

2.13.1 Creating an Inline List

There are two ways to make your list an inline list.

1. Setting the Inline property of your WAM to Lists will make all lists in the
WAM inlined by default.

FUNCTION OPTIONS(*DIRECT)
BEGIN_COM ROLE(*EXTENDS #PRIM_WAM) INLINE(Lists)

END_COM

2. Marking an individual list as inline in the WEB_MAP.

WEBROUTINE NAME(MyWebroutine) DESC('Sample Webroutine')
WEB_MAP FOR(*OUTPUT) FIELDS((#DEPTLIST *INLINE))

ENDROUTINE

If any XSL already exists when you change a list to or from inline, the XSL will
need to be regenerated or the list deleted and re-added to the XSL.

If inline lists are turned on at the WAM level, an individual list can be
marked as not inline in the WEB_MAP like this:

WEB_MAP FOR(*OUTPUT) FIELDS((#{DEPTLIST
*NOINLINE))

2.13.2 Using Weblets in an Inline List

Weblets must be "inline-aware" before they can be used in an inline list. An
alert will notify you if you attempt to drop a weblet that is not inline-aware onto

an inline list.
LANSA Editor X

@ & standard weblet has been dropped inside an inlined lisk,

This weblet can not be used inside an inlined list,

For the most part, inline weblets look and behave the same as their non-inline
counterparts. The key difference is that the inline weblet is generated when you
drop it onto a list and, again, each time you change a property. Because of this,
there are a few considerations that you need to be aware of.

Accessing field and column values

In a non-inline list, you would access the value of a column with the
$COLUMNNAME XSL variable or a field value with an XPath expression such
as key ('field-value', FIELDNAME"). Because the XSL in an inline weblet is
executed at design time, no XSL like this cannot be used to access runtime data.
There are several special XSL extension functions you can use to access runtime
data in a weblet property. These are:

wd:column-value((COLUMNNAME') — returns the value of the specified
lumn. You can type #COLUMNNAME into the property and the LANSA editor
11 automatically translate it to a wd:column-value for you.

wd:field-value(FIELDNAME') — returns the value of the specified field.

wd:variable("'VARNAME') — returns the value of the specified MTXT or System
riable.

wd:row-index() — returns the row number of the current row of the list. The
mber will be right-padded with zeros to a length of 4 digits.

These are XSL functions and should be entered in the XPath expression area.

1

&

(;;er XPath expression for the currently selected property {
ved:column-valued DEPTMENT') = £F | web Design }

A o & XHTML

& 4

& Wt -

G WR3 3

value * :
The value to set the weblet to, IF the weblet visualizes a field, this is the }.
walue of the Field. | % 1

_ A

[Details | G4 webroutine Output =] web Ancestor Elements | #fis OLIL.
Ready It el Y mhin B gl kA g e F'

These extensions functions need to remain in the result document after
the XSL transformation is done (they are parsed by the WAM runtime
after the XSL is executed). For this reason, when they are processed
by the XSL processor they just echo themselves. For example, a
weblet property of "{wd:column-value(COLUMNNAME")}" results

in the string "{wd:column-value(COLUMNNAME")}" in your
property variable. You can place this string directly into any HTML
attribute. If you want to place it into the HTML content you should
first convert it into a special tag using the wdTagFromAttr.private
template provided in std_util.xsl.

Accessing Context Data

As with field and column values, the context information normally available in
the <Ixml:context> section of the webroutine XML cannot be accessed by XSL
at runtime. Use these XSL extension functions to access context data in a
weblet property:

wd:web-user()
wd:webapplication()
wd:webapplication-title()
wd:webroutine()
wd:webroutine-title()
wd:service-name()
wd:partition()
wd:language()

wd:images-path()
wd:action-request()
wd:layout-name()
wd:dbcs()
wd:align-right()
wd:check-numeric()
wd:debug()
wd:trace()

wd:task()

Runtime data cannot be used in all properties

Some weblet properties affect how a weblet is constructed, others are passed to
the browser to control CSS or JavaScript behavior. Because an inline weblet is
constructed at design time, you cannot use runtime data to affect the
construction. For example, see the display_mode property in any of the
standard visualization weblets. A value of 'input’ will generate an HTML
<input> tag. A value of 'output' will generate a . If you need to use
runtime data in these properties, you should use a non-inline list.

The exceptions to this are some boolean properties like hide_if and disabled.

wd:boolean properties

Some boolean properties like hide_if and disabled, whose values affect how a
weblet is constructed, can still accept runtime data through the use of a string
containing a wd:boolean expression.

The syntax of a wd:boolean expression is designed to optimize runtime
performance, so it may not be easy to read. Properties that accept a wd:boolean
expression will provide you with an expression editor dialog so that you don't
need to be able to read the expression. Click the ellipsis button to the right of
the property to open the property editor:

ikisabied | =
Refreshing Inline Weblets

Inline Weblets used in a webroutine are not automatically updated when the
weblet is changed. To update an inline weblet it must be refreshed. You can do
this in several ways:

Modify a property of the weblet

Open the Webroutine in the Design tab then right click on the weblet and select
efresh Inlined Weblet" from the context menu.

Open the Webroutine in the Design tab and select Refresh Inlined Weblets... from
> Web menu.

Select WAMSs from the Repository or Favorites tab and select Refresh Inlined
>blets... from the context menu. This is the recommended way to refresh inlined
blets for a larger number of WAMs and webroutines.

When you select WAMs from the Repository or Favorites tab every WAM and
webroutines will be opened to verify if there are any inlined weblets in the
»broutine and if they are out-of-date. Depending on how many WAMs and
:broutines are selected, their complexity and the number of inlined weblets this
cess might take a while.

When you open a webroutine the LANSA editor will tell you if it contains
inlined weblets that need to be refreshed.

Out-ofdate inlined weblets]|

One or more inlined weblets have been updated since they were placed on this webroutine.
To update the copy used in this webroutine, use the Refresh Inlined Weblets option in the
Web menu.

[Don't show this message again in this Visual LANSA session:

Note that this message only applies to the webroutine being opened. If you have
multiple webroutines in a WAM you need to open each webroutine to check for
differences in weblet version.

When you chose Refresh Inlined Weblets you will be able to select which
weblets you wish to update.

¥ Refresh out-of date inlined weblets

E3
The following inlined weblets have been updated since they were placed on the web design. Select the
weblets you wish to refresh.
ﬁar!'le I Description I Refresh
ﬁrﬂ DEPTWAM Handle Departments
=R ﬁfﬂ SHOWDEPTS [LANSA XH.. Cancel
& & std_char.inline

: 1= std_anchor.inline
= std_dick_image.inline
----- ..—I:I std_dropdown.inline

l

By default all Weblets are pre-selected. It is recommended that you refresh all of
them.

3. Essential Topics

After you have read An Introduction to WAMs we recommend that you become
familiar with the following topics:

3.1 Using CHECKNUMERIC in WAMs

3.2 WAM Application Design

3.3 Developing for Multiple Languages

3.4 Using Cookies in Your WAM Application
3.5 Using the Service Name

3.7 Deleting Objects

3.8 LOB Data Types and Stream Files

3.9 WAM External Resources

3.10 Using jQuery

3.11 Theming WAMs

3.12 Localization

3.13 JSON Support

3.14 Saving a WAM's Output to a File

3.15 Document Type Declaration (DOCTYPE)

its:lansa087.chm::/lansa/wamengm1_0010.htm

3.1 Using CHECKNUMERIC in WAMs

To enable numeric validation in WAMSs, use the CHECKNUMERIC selector for
the WAM. This is specified on the BEGIN_COM command.

FUNCTION OFTIONS(*DIRECT)
FBEGIN_COM ROLE(*EXTENDS #PRIM_WAM) CheckNumeric({ves)

If CHECKNUMERIC is not specified in the RDMLX code for the WAM, the
default is based on the System Information value for Web validate numerics. To
find the Web validate numerics, open System Information in the Repository,
expand Compile and Edit Options. The setting is located under Process and
functions compile defaults.

If CHECKNUMERIC is applied and an invalid number is entered at runtime the
following warning is issued:

Microzoft Internet Explorer 3

! E Invalid number. The number must contain only digits (no more than 15 before the decimal point and no mere than O after).
L

3.2 WAM Application Design

e When designing a LANSA Web application, you must determine the number
of WAMs required by your application and the WEBROUTINES that will
belong to each WAM. Typically, you will divide your application into
functional areas where each area is represented by a WAM.

e You must also understand WAM session management (refer to WAM
Session Management) when designing your WAM/WEBROUTINE
structures. By default, each WAM maintains its own session state
independent of other WAMs, but you may chain WAM sessions.

e Modularize your WAM applications by using other RDMLX components.
Use RDMLX Components in your WEBROUTINESs and assign business
rule processing to them. This design will provide a good foundation for code
re-use across different presentation technologies, such as GUI and browser-
based applications.

e Using a WEBROUTINE Service Name provides greater flexibility when
deploying WAM applications. For example, it allows applications to be re-
deployed to a different Partition, WAM or WEBROUTINE without having
to modify any external URL references to it.

its:LANSA087.CHM::/lansa/wamb1_130.htm

3.3 Developing for Multiple Languages

WAMs support the development of Web applications executing in multiple
languages from a single RDMLX WAM code base. WEBROUTINE and weblet
XSL stylesheets are language sensitive.

It is possible to save and deploy separate distinct stylesheet for distinct
languages. For example, you can create different presentation pages and weblets
for English and Chinese languages.

How you will approach the task of developing and maintaining WAMs for
multiple languages depends on your application.

If your web application will have the same appearance for all languages (i.e.
same menus and same page layout for the respective webroutines) the simplest
way to implement a multilingual application is to supply all text values as
Multilingual Variables (*MTXT), which can be used for the appropriate
captions in the weblet properties. This approach simplifies the management and
distribution of your application, as only a single set of XSL source exists for
each webroutine and layout.

If your web application requires a different interface for each webroutine based
on the language, then you will need to create appropriate webroutine and layout
XSL to support each language. This obviously is the less ideal approach as you
will have more objects to maintain.

If a language specific page does not exist at execution time, a partition default
page is used for presentation output. So while it is possible to have different
pages for different languages, it is also possible to have a single page, which is
presented for multiple languages.

Field captions and list headings are language dependent and will be presented
according to the requested language. Multiligual variables are supported and can
be referenced in the WEBROUTINE XSL. Where weblets allow you to specify
a caption, you can specify Multilingual variable rather than specifying language
dependent literal text. Weblets will display the text according to the language
the WAM is being executed for.

Important:
1. The values of multilingual text variables referenced in webroutine

and weblet XSL are resolved when the WAM or weblet is saved.
2. If you deploy a WAM or weblet, the values from the source system

|| are taken in the deployment package. ||

At runtime, a language can be requested by passing a language keyword in the
URL 'lang' parameter. For example the following URL requests an English
language page:
http://localhost/cgi-bin/lansaweb?
srve=LEWAMO01_SearchQuery&part=DEM&lang=ENG

For more details, refer to the LANSA Multilingual Application Design Guide.

3.4 Using Cookies in Your WAM Application

You can control how cookies are set in the browser by adding a special cookies
section to your Input XML file for a WEBROUTINE. For example:

<Ixml:server-instructions>
<Ixml:cookies>
<Ixml:cookie name="USRID">
<Ixml:value field-name="EMPNQO"></lxml:value>
<lxml:expires field-name="EXPDAT"></Ixml:expires>
<Ixml:domain field-name="DOMAIN"></Ixml:domain>
<lxml:path field-name="PATH"></Ixml:path>
<Ixml:secure field-name="SECFLAG"></Ixml:secure>
<Ixml:httponly field-name="HTTPFLAG"></Ixml:httponly>
</Ixml:cookie>
</Ixml:cookies>
</Ixml:server-instructions>

This example demonstrates the format of the cookies section that is required if
you wish to set cookies in the browser from WEBROUTINE field values. The
Ixml:cookie element contains all the required cookie information. Its name
attribute specifies the name used to store the cookie, as well as the LANSA field
name that will contain the cookie value on subsequent WEBROUTINE
requests.

Note: The cookies section must be inside the server-instructions section, as
shown in the example.

The following table describes the elements:
Element Description
Ixml:value The value to store for the cookie.

Ixml:expires The expiry date of the cookie in GMT format. If this is not
specified, the cookie will expire when the browser is closed.

Ixml:domain The domain name to make the cookie available to all
subdomains of the specified domain. If unspecified, the cookie
is only available to the pages of the domain that set the cookie.

Ixml:path The path of the cookie even though it may be being set on a
page from a different directory. This value can be used to

ensure that a cookie set in one subdirectory is available in
another by specifying a path of a parent directory used by both
subdirectories. If a /' value is specified, then the cookie is
available in all subdirectories of the domain. If unspecified, the
cookie is only available in the path it was set in.

Ixml:secure A value of true indicates that the cookie is only available to
pages from secure SSL. domains.

Ixml:httponly Supported by most modern browsers. A value of true indicates
that the cookie should not be accessible via non-HTTP APIs
(for example, JavaScript).

The above elements may also specify a field-name attribute that contains the
name of the field storing the cookie values as shown in the first example.

The following example show how cookie values can be specified directly in the
XML:

<Ixml:cookies>
<Ixml:cookie name="LSTACT">
<lxml:value>Inquiry</Ixml:value>
<Ixml:expires>Thu, 31 Dec 2020 10:00:00 GMT</Ixml:expires>
<Ixml:domain>acme.com</Ixml:domain>
<lxml:path>/home</lxml:path>
<Ixml:secure>true</Ixml:secure>
<lxml:httponly>true</Ixml:httponly>
</Ixml:cookie>
</Ixml:cookies>

3.5 Using the Service Name

It is possible to have different URLs (see below) to invoke the same webroutine
as a webpage.
Let's look at the definition for an example webroutine, MaintainRecord:

: This is the entry point to the WaM,

FWEBROUTINE MAME(MaintainRecord) SERVICENAME{MaintEmployee) ONENTRYI*SESSIONSTATUS_NONE)

Based on the WEBROUTINE definition, this webroutine can use the optional

ServiceName property on the WEBROUTINE definition to invoke the WAM:
http://<server>/cgi-bin/lansaweb?srve=MaintEmployee&part=DEX

The ServiceName does not require further qualification, as it must be unique

across the partition.

The second URL option uses the combination of WAM name and the

webroutine name as a unique combination.

http://<server>/cgi-bin/lansaweb?
wam=WAMEX02&webrtn=MaintainRecord &part=DEX

3.6 Using Session Status

Let's have a look at a simple implementation of session management.

First, set the BEGIN_COM command in the WAM RDMLX to indicate that
each webroutine in this WAM must have an active session status before it can
be executed UNLESS otherwise indicated by the ONENTRY parameter
associated with the specific webroutine.

* Zeccion status rust be active to execute the Webroutines in this WaM unless

* otherwise indicated by the OnEntry parameter of the specific WebRoutine

BEGIMN_COM ROLEC*EXTEMDS #PRIM_WAM) SESSIONSTATUS Active)

The entry point webroutine, in this example MaintainGrid, will be allowed to
execute with no session status, as indicated by

ONENTRY (*SESSIONSTATUS_NONE). All other webroutines in the WAM
(which do not have this parameter setting) require an active session status by
default.

This entry webroutine sets the session status to active and can now invoke other
webroutines in the WAM, which require an active session status.

* This 15 the entry point to the WAaM,
=FWEBROUTINE NAME(MaintainGrid) ONENTRY(*SESSIONSTATUS _MNOME)

* set the session to active,
#oom_owner.SessionsStatus 1= Active

* transfer to the routine that will display the the web page.
TRAMNSFER TOROQUTIME! ShowGrid)

—EMDROUTIME

So what happens if the session status is invalid (for example, if I try to invoke
another webroutine in this same WAM which does not have the
ONENTRY (*SESSIONSTATUS_NONE) setting)?

An invalid session status fires a SessionInvalid event, which can be handled to
issue the appropriate information to the user.

* Handle invalid session status
“FEVTROUTIME HAMDLING #com_owner.SessionInvalid)

\‘ TRAMZFER TOROUTIMNE(#AWAMEX99. SessionlsInvalid)

EMDROUTIME

3.7 Deleting Objects
WAMs

When you delete a WAM from the LANSA Editor, the WAM RDMLX and
all of its WebRoutine XSL stylesheets for all languages and Technology
Services are also deleted. The default WAM layout can optionally be deleted
when you delete a WAM. Other weblets used by the WAM are not deleted.

If the option to delete orphan webroutine designs when closing is enabled
(the default setting), you don't need to remove them manually. Otherwise,
the XSL Stylesheets are not automatically deleted, and will still appear as an
item in the LANSA Editor's Outline view and the Web Designs tab. You can
delete them from the WAM Editor's Outline view.

When you check-in a WAM, its RDMLX source and all XSL Stylesheets for
all languages and Technology Services are checked-in. The WAM's layout
weblet is also checked-in.

When you check-out a WAM, its RDMLX source and all XSL Stylesheets
for all languages and Technology Services are checked-out. Please note that
the WAM's layout weblet is not checked-out.

When you create a new partition language, you need to republish your
WAM's webroutines. This is not done automatically.

Weblets

When you delete a Weblet in the WAM Editor's Weblet view, you are
deleting the Weblet for all languages and all Technology Services.

Be aware that if other Weblets or Webroutine XSL Stylesheets use a Weblet
you deleted, you will get errors when opening those documents in the
LANSA Editor, or when executing the WAM that uses them. Any references
to deleted Weblets must be removed by editing the Webroutine's XSL
Source.

Weblets can be checked-in or out in the LANSA Editor's Repository view.

When you create a new partition language, you need to republish your
Weblets. This is not done automatically.

3.8 LOB Data Types and Stream Files

WAMs allow you to serve stream files that:

e You don't want to store on your Web server

e Documents whose contents are stored in your application data base.
e Documents created on demand.

You can serve the contents of LOB data types (BLOBs and CLOBs) and stream
files located in your Application Server with special webroutines.

You create these file serving webroutines by defining the Response parameter in
the Webroutine command:

HWebroutine Name (SEND SZMPLE) Desc('Sample Document') Response (§HTTPR) @

* MYPATH i1s the directory where the sample documents are stored
#HTTPR.ContentFile := §MYPATH + "=zample’
Endroutine

The webroutine can contain RDMLX code to create the contents of the file or
determine which file to send. The only requirement is that you set the
ContentFile to the file name that you want to serve.

You can also send the contents of a string. In this case, you need to set the
content type. The charset is assumed to be the current encoding. If that is not the
case, you need to set the Charset property.

EHlebroutine Name(SEND_SAMPLE2) Desc('Sample ContentString’) Response(#HTTPR2)@&
Define Field(#VAR) Type(*String)
#VAR = "<html><body><hl>My Page</hl></body></html>"
#HTTPRZ.ContentString := #VAR
#HTTPR2.ContentType := "text/html’

Endroutine

Also see

File Request

LOB/File Content Type

LOB/File Properties

Custom HTTP Headers

CLOBs and Files with Text Content

Compression

3.8.1 File Request

You request the LOB/file by invoking the webroutine. For example:

http://myhost/cgi-bin/lansaweb?
wam=LOBSAMPLE&webrtn=SEND_SAMPLE&mI=LANSA:XHTML
&part=DEX&lang=ENG

You can use the Standard LOB Visualization (std_lob) weblet if you want to
show it as an anchor. You need to specify the webroutine that handles the
request. You don't need to drop it on top of a LOB field. You can drop the LOB
weblet on an empty space.

For example:

Properties
<xsl:call-template> -
Mame Value
7 name std_lob
rJWith Parameters
ri= name concat(o', position(), '_LANSA_21183)
ri= value
ri=l currentrowhfield STDROWNUM
= currentrownumyval position()
= reentryfield STDRENTRY
= reentryvalue f]
= hide_if False
ri=l formname LANSA
= on_dick_wamname Sfweb WAMName
™ on_dick_wrname SEMD_SAMPLE T
ri= protocol SEMD_SAMPLE

i show _in_new_window SHOW_PAGE

= target_window_name =XsET XIS XsI— NI WWW. Wa.orgy 19997 xsl /1
= pos_absolute_design

i width_design

= relative-image-path

i absolute-image-path <xslif xmfnsocsi= "hitp:/ fwww. w3.ong /1999,/X51 /1
= dass std_anchor

= mouseover_dass

= text_class std_anchor_text

ri= presubmit_js

= tab_index

3.8.2 LOB/File Content Type

LANSA determines the content-type of the LOB or file based on the file
extension. You normally don't need to add the content-type header. If the prefix
is not known, the content type defaults to "application/octet-stream". To

override the content-type, you add the content-type header as described later in
this section.

3.8.3 LOB/File Properties

The Response variable has properties to set the following:

ContentType: If you need to override the default determined from the
file extension or the file extension is unknown. By default LANSA
uses the file extension to determine the content type.

Charset: to override the character set for files with text content. By
default, LANSA determines the character set from the file's CCSID
(IBM i) or the Byte Order Mark (other platforms).

AttachmentFileName: To ask the user to save the file as an
attachment with a suggested name. If not defined, a content-
disposition header is not added.

Compression: True/False. Use gzip encoding to compress the file.
The default value is False.

RemoveFile: True/False. If True, the file is removed after it is sent to
the user agent. The default value is False.

Note: You don't need to remove LOB files that you read from LANSA
files. They are automatically cleaned up for you by the LANSA
runtime when the request is completed.

For example:

* Explicit content type
#HTTFR.ContentType := 'application/pdf’

* Save file a= an attachment. Suggest to =ave a=z "'mysample.pdf’
¥HTTEFR.AttachmentFilename := 'mysample.pdf’

* Compress file using geip encoding
¥HTTEFR.Compression := True
=

* Remove file after i1t is =sent
#HTTEE.RemoveFile := True

3.8.4 Custom HTTP Headers
To add other HTTP headers, use the AddHeader method:

* Custom HTTP Header example: Don't cache
¥HTTPR.AddHeader ("Pragma', "no-cache')

3.8.5 CLOBs and Files with Text Content

CLOBs and files that have text content-type are sent as text therefore the file
encoding has an impact in how LANSA handles the file.

For IBM i, LANSA uses the file CCSID attribute to determine the character-set
of the content. You can override this character-set by specifying the Charset

property.

Special Case for UTF-16
The IBM i HTTP Server doesn't serve text content in UTF-16. Text
content in UTF-16 is transcoded to UTF-8. The exceptions are XML

documents. XML documents encoded in UTF-16 are sent with
content-type application/xml (binary).

For Windows and Linux, the only encodings that are detected automatically are
UTF-16 and UTF-8 files. LANSA uses the Byte Order Mark (BOM) of the file
to determine the encoding. To set the character-set for other text files, specify
the Charset property of the HTTP response.

3.8.6 Compression

You can compress the file by setting the Compression property or adding the
HTTP header content-encoding: gzip.

Note that compression is CPU intensive and is performed each time
the file is sent (that is, the compressed file is not cached). You need to

balance the CPU utilization with the reduced size achieved with
compression.

3.9 WAM External Resources

The RDMLX Repository object External Resource provides the ability to store,
in the Repository, all externally created resources associated with an application.
These could include

e Images

e (Cascading Style Sheets (CSS)

e JavaScript files.

For Web development, LANSA uses external resources to ship:

e Themelets

e jQuery and jQuery UI Libraries

e CSS and Javascript files associated with the new jQuery Weblets.
Cross References

External Resources used by WAMs and weblets appear in the cross-references.
This makes it easier to include dependent objects when creating deployment

packages.

Further Information

Specifying scripts and styles

Web External Resource Locations
Order of External Resource Inclusion
Shipped WAM External Resource

3.9.1 Specifying scripts and styles

WAMs and weblets can nominate which JavaScript and CSS stylesheets they
require. The JavaScript and CSS stylesheets need to be first enrolled in Visual
LANSA.

Refer to the Visual LANSA User Guide for how to Register Single External
Resources or the Developer Guide for how to Register Multiple External
Resources and then Using External Resources with WAMs for how to link them
to your Weblets.

You can add scripts and styles external resources to both webroutines and
weblets. The standard practice is to add the CSS stylesheets that provide the
theme (See Theming WAMSs) to your site layout and scripts and other styles to
your webroutines or weblets as required.

The WAM runtime consolidates the scripts and styles so that they are only
added once to the output page. Refer to Order of External Resource Inclusion.

T 3.9 WAM External Resources

its:lansa012.chm::/lansa/L4wUsr04_0405.htm
its:lansa013.chm::/lansa/L4wDev07_0350.htm
its:lansa012.chm::/lansa/l4wusr04_0420.htm
its:lansa087.CHM::/lansa/WAMEngb3_0070.htm

3.9.2 Web External Resource Locations

The location attribute determines where the web external resource goes in the
web page.

Further information

Locations

Resolution of different locations

Locations

The following table lists the locations available for styles and scripts.
Type Location Description
Style header Inside the XHTML <header>
body-top Immediately after the XHTML <body> starts
Script header Inside the XHTML <header>
body-top Immediately after the XHTML <body> starts
body-bottom Just before the XHTML <body> ends

async Script is loaded asynchronously after the DOM is ready

Choose the location according to your needs. For example, place scripts that are
not needed until the web page is complete either at the end of the page or load it
asynchronously.

Resolution of different locations

If a given web external resource has different locations when used by more than
one weblet (or between the location provided by the weblet and that provided by
the webroutine) the 'highest' precedence will be used, according to this table:

Precedence
header
body-top
body-bottom

async

In the case of scripts, you should avoid using different locations as it might
produce runtime JavaScript errors.

3.9.3 Order of External Resource Inclusion

The order in which scripts and styles are included is important. External
resources are added in the order in which they are found. If a webroutine or
weblet imports weblets that themselves have external resources, they are added
at the point in which the weblet import is encountered. The following example
shows the order of inclusion:

WebRoutine

Weblet import 1
ExtRes11

ExtRes1z

Weblet import 2
ExtRes11
ExtResz1

ExtResz2

ExtRes01

ExtRes0z

The external resources order of inclusion is:
ExtRes11

ExtRes12
ExtRes21 - Note that the import of External Resource 11 isn't repeated.
ExtRes22
ExtRes01
ExtRes02

This order ensures that you can include scripts and styles in the correct sequence
when there are dependencies between the files (for example, JavaScript
functions that rely on existing JavaScript libraries being present). For further
details about the sequencing of external resources, refer to Using External

SR T o

its:lansa012.chm::/lansa/l4wusr04_0420.htm

Resources in the Visual LANSA User Guide.
T 3.9 WAM External Resources

3.9.4 Shipped WAM External Resources

LANSA ships the following external resources, which are used by some of the
standard weblets.

Name Type Description

XMCO001 Style Mobiscroll CSS

XMCO1L Style jQuery Mobile Core LANSA Styles
XMCJIQM Style jQuery Mobile Core Structural CSS

XMJ001 Script Mobiscroll JavaScript
XMJO1L Script jQMobile Core LANSA Library
XMJ02L Script jQuery Mobile File Upload Plugin Extension

XMJJjQM Script jQuery Mobile Core JavaScript Library

XMJQC Script jQuery Core JavaScript for jQMobile TSP
XMTO00J Style jQuery Mobile Default Theme Icons
XMTO01J Style jQuery Mobile 1.3.2 Compatible Theme
XMTO02) Style jQuery Mobile Default Theme

XWC001 Style jQuery Widgets Extensions CSS
XWC002 Style jQuery TimePicker Plugin CSS
XWCFUO1 Style jQuery File Upload Plugin CSS

XWJ001 Script jQuery Widgets Extensions
XWJ002 Script jQuery Timepicker Plugin
XWJ003 Script LANSA JSON JavaScript Library
XWJ004 Script CKEditor JavaScript Library

XWIJ004E Script CKEditor Extensions
XWJ004J Script CKEditor Plugin for jQuery
XWIJ005 Script Google Charts

XWJ007
XWJDCJS1
XWIJFUO1
XWIJFUO02
XWJLLPO1

XWIMODZR

XwWJQC
XWJQUI
XWTO01J
XWTO1L
XWTO01L101
XWT01L102
XWTO02J
XWTO2L
XWT02L101
XWT02L102
XWTO03J
XWTO3L
XWTO03L101
XWTO03L102
XWT04J
XWTO04L
XWT04L101
XWT04L102
XWTO05J

Script
Script
Script
Script
Script
Script
Script
Script
Style
Style
Style
Style
Style
Style
Style
Style
Style
Style
Style
Style
Style
Style
Style
Style
Style

jQuery File Upload Plugin Extension
Douglascrockford/json-js

jQuery Iframe Transport Plugin

jQuery File Upload Plugin

Lazy Loader Plugin for jQuery

Modernizr JavaScript Library

jQuery Core JavaScript Library

jQuery UI JavaScript Library

Redmond — jQuery UI Widgets

Redmond — LANSA Theme Extensions
Redmond — LANSA Style # 1 Themelet
Redmond — LANSA Style # 2 Themelet
Pepper Grinder — jQuery UI Widgets

Pepper Grinder — LANSA Theme Extensions
Pepper Grinder — LANSA Style # 1 Themelet
Pepper Grinder — LANSA Style # 2 Themelet
Cupertino — jQuery UI Widgets

Cupertino — LANSA Theme Extensions
Cupertino — LANSA Style # 1 Themelet
Cupertino — LANSA Style # 2 Themelet
Smoothness — jQuery Ul Widgets
Smoothness — LANSA Theme Extensions
Smoothness — LANSA Style # 1 Themelet
Smoothness — LANSA Style # 2 Themelet
UI Darkness — jQuery UI Widgets

XWTOS5L Style UI Darkness — LANSA Theme Extensions
XWTO5L101 Style UI Darkness — LANSA Style # 1 Themelet
XWTO5L102 Style UI Darkness — LANSA Style # 2 Themelet
XWTO06J Style UI Lightness — jQuery UI Widgets
XWTO6L Style UI Lightness — LANSA Theme Extensions
XWTO06L101 Style UI Lightness — LANSA Style # 1 Themelet
XWTO06L102 Style UI Lightness — LANSA Style # 2 Themelet
XWTO07] Style Blitzer — jQuery Ul Widgets

XWTO7L Style Blitzer — LANSA Theme Extensions
XWTO07L101 Style Blitzer —- LANSA Style # 1 Themelet
XWTO07L102 Style Blitzer —- LANSA Style # 2 Themelet
XWTO08J Style South Street — jQuery UI Widgets
XWTO08L Style South Street — LANSA Theme Extensions
XWTO08L101 Style South Street — LANSA Style # 1 Themelet
XWTO08L102 Style South Street — LANSA Style # 2 Themelet

T 3.9 WAM External Resources

3.10 Using jQuery

Libraries shipped with LANSA

LANSA ships the jQuery Core, jQuery Ul and jQuery Mobile libraries. The
JavaScript and CSS files are shipped as External Resources (See list of Shipped
WAM External Resources).

Using jQuery in your own weblets

These libraries are used by some of the standard weblets shipped with LANSA.
You can also use them in your own weblets or JavaScript. You need to include
the appropriate external resources either in your weblet or your layout or
webroutine (according to your needs).

LANSA may upgrade the jQuery, jQuery UI and jQuery Mobile
libraries in future versions of LANSA.

Also see
jQuery Tools and Tips

3.10.1 jQuery Tools and Tips

Working with other JavaScript libraries
jQuery enabled XHTML layouts have the jQueryNoConflic property. If set to
true, jQuery.noConfict() is called to relinquish the $ name. You need to include

the other JavaScript library that uses the $ name before you include jQuery
Core.

Escaping LANSA field and column names in jQuery ID selectors

LANSA field names may have '$' in their names. List column names have '." as
separators in their qualified names (for example, LIST1.0001.EMPNO). To get
the field ID that you can use in a jQuery ID selector, you can use the LANSA
jQuery global extension lansa.makeSafeld().

var myvar = jQuery(jQuery.lansa.makeSafeld("LIST1.0001. EMPNQO"));
This is equivalent to:

var myvar = jQuery("#LIST1\\.0001\\.EMPNQO");

3.11 Theming WAMs

Most weblets use the jQuery Ul visual design theme, which makes it easier for
you to customize colors, fonts and other visual design elements on your web
pages. Themable layouts (themelets) provide a matching layout for your WAMs.

LANSA ships the following jQuery UI themes:
e Redmond

e Pepper Grinder

e (Cupertino

e Smoothness

e UI Darkness

e UI Lightness

e Blitzer

e South Street

Aside from the shipped standard themelets (two different styles) you can create
your own themeable layout using the Web Application Layout Manager Wizard.

To implement a theme, add the jQuery UI stylesheet and either the base LANSA
Theme extensions (for example, external resource XWTO1L for the Redmond
theme) or the corresponding LANSA themelet styles (for example, external
resource styles XWT01J and XWTO01L101 for the Redmond theme) to your
WAM layout.

Alternatively, add them to your site layout so that all your WAMs share the
same theme.

its:lansa087.CHM::/lansa/wamengm1_0120.HTM

3.12 Localization

Some weblets have language dependent settings. The weblets use the ISO
language or ISO language-country code for localizing text and other locale
preferences, such as date and time formats. Weblets taking advantage of this
setting have 'auto' default settings for localizable properties. Using these default
settings is the easiest way of localizing your WAMs.

Refer to ISO language code in the Administrator's Guide for information about
localization.

WAMs use the ISO language code nominated in the partition language
definition, not the user agent's language code.

Supported languages may vary for some weblets based on third party
software.

Most localizable strings are stored in JSON files in the script/i18n subdirectory
of the images directory.

Also see
Technology Service Providers
3" Party Libraries

its:lansa011.chm::/lansa/l4wadm05_1010.htm

3.12.1 Technology Service Providers

Within theil18n directory, each Technology Service has its own directory
containing localizable strings.

The strings for each language are stored in a file with the name:
std_messages-<lang-code>.json

where <lang-code> is a 2 letter ISO language code followed by an optional
country code. For example "de-AT" represents German ("de") as used in Austria
(HATH).

All strings used by the LANSA framework are defined in std_messages-en.json
and this file is always loaded by the framework first. This way, if no translation
is found the will at least be some string to use. Next, the framework will load
and merge the language file for the current language followed by the country

specific file. For example, if the partition language code is "de-AT" the
framework will load the following files in this order:

e std_messages-en.json
e std_messages-de.json
e std_messages-de-AT.json

This means that when defining the std_messages-de-AT file, you don't need to
duplicate and maintain every string. Instead, you only need to define the strings
that are different from the version found in std_messages-de.json.

3.12.2 34 Party Libraries

3" Party libraries may use different mechanisms to handle localizable strings.
Refer to the documentation for each library for specific details. Wherever
possible, 3" party localization files will be found under scripts/i18n (e.g.
jQuery) however, if specific requirements of the library prevent this, the

localization files will be found within that library's home directory (e.g. jQuery
UI and CKEditor).

3.13 JSON Support

How to use JSON in WAMs
WAMs supports Javascript Object Notation (JSON) in two ways:
Posting JSON data

Refer to JSON Convenience Wrapper for details on how to post fields and
lists using JSON.

JSON Response Webroutines

The webroutine's web maps (fields and lists) is sent as a JSON response with
MIME type application/json and encoded in UTF-8. You can use these
webroutines to send responses to Ajax requests.

Def List Name(#1istB1) Fields(#deptment #deptdesc) Type(*working)

* Basic 150N response
EHdebroutine Name(SAMPLE1) Response(*1SON)@
Web Map For{*output) Fields(#empno #givename #surname #list@1)

* Prepare response
Endroutine
*= 150N response with captions

EHdebroutine Name(SAMPLE2) Response(*]SON) Options(*METADATA)@
Web Map For{*output) Fields(#empno #givename #surname #1ist@1)

* Prepare response
-

Endroutine

Some of the weblets shipped by LANSA use JSON response webroutines to
update data using Ajax requests.

To make it easier for you to use JSON response webroutines, convenience
functions are shipped in JavaScript file std_json.js. To include this JavaScript
file in your weblets or webroutines, add the shipped external resources XWJ1JQ
(jQuery Core) and XWJ003 (LANSA JSON Library).

This file defines JSON convenience wrapper objects that let you access a JSON
response webroutine fields, lists and context information. See JSON
Convenience Wrapper for details.

Also see

JSON Lists

JSON Lists

You can output a list in JSON format using the *JSON attribute in your
WEB_MAP in a webroutine that produces a normal page.
EHlebroutine Name(SAMPLE) Desc('Sample JSON List')@
def list name(#listl) type(*working) fields(#deptment #deptdesc)

web_map for(*output) fields({(#1listl =IS0OMN))
* Populate list

=

Endroutine

JSON lists WEB_MAPs don't appear on the output page. You use them via
JavaScript using the JavaScript object Lstd.Json.List.

3.13.1 JSON Convenience Wrapper

LANSA ships a JavaScript library that provides you with an easy way to get to
the fields and lists returned in JSON responses or to post data in JSON. You also
use the list methods to get to JSON lists returned in a web page. To use this
library, add external resources XWJDCJS1 (JavaScript file json2.js) and
XWIJ003 (JavaScript file std_json.js) to your webroutine.

Also see

Requesting a Webroutine

Getting Fields

Processing Lists

Getting Messages

Context Data

Building a JSON Request

Adding Fields to the JSON Request
Adding a List to the JSON Request
Defining JSON Request List Headers
Adding Entries to the JSON Request List
Posting the Json Request

Requesting a Webroutine

The Lstd.Json.getWebroutine(options) method provides a way for your
JavaScript code to call a Webroutine. Any webrouting can be called with this
method but only a JSON Response Webroutine can return data to it. The single
options parameter is a JavaScript object containing zero or more of the
following properties:

Wam The WAM being called. If not present, the current WAM is used.

webroutine The Webroutine being called. If not present, the current
webroutine is used.

Fields A JavaScript object containing the input values to send to the
Webroutine. For example:

{
GIVENAME: "William",
SURNAME: "Shakespeare"

}

Lists A JavaScript object containing lists to send to the Webroutine.
Each list is an array or rows and each row is an object containing
column values. For example:

{
LISTO1: [

{DEPTMENT: "ADM", DEPTDESC: "Administration"},
{DEPTMENT: "FIN", DEPTDESC: "Finance"}

]

}

callback A JavaScript function that will be called when the Ajax request is
completed. This function is only called on successful completion
of a call to a JSON Response Webroutine. It will be passed a
single parameter containing a Webroutine object that represents
the Webroutine output.

Putting it all together, you get something like this:

/*

* Get webroutine (Ajax request)

* Webroutine (wr) is passed to the callback wrapped in an Lstd.Json.Wr object
*/

var options = {

wam: "SampleWam",

webroutine: "Samplel",

fields: {

GIVENAME: "John",

SURNAME: "Smith"

}s

lists: {

LISTO1: [

{DEPTMENT: "ADM", DEPTDESC: "Administration"},
{DEPTMENT: "FIN", DEPTDESC: "Finance"}

]

}s

callback: function(wr) {
// Code to handle the Ajax response goes here

}
b

Lstd.Json.getWebroutine(options);

The Webroutine object passed to the callback function contains a number of
methods for getting the fields and lists returned from the server.

Getting Fields
Captions are only available if your webroutine has Options(*METADATA)

/I Get field

var empno = wr.field("EMPNQ");

var empnoLabel = empno.label();

var empnoDesc = empno.description();
var empnoHeadings = empno.headings();
var empno Value = empno.value();

Processing Lists

Captions are only available if your webroutine has Options(*METADATA)

/l Get list
var list01 = wr.list("LISTO01");

/! Get list header details
var listO1Hdr = list01.headers();

var deptHdr = listO1Hdr.col("DEPTMENT");
var deptHeadings = deptHdr.headings();

/I Get list entries
var listO1Entries = listO1.entries();
var rowCount = listO1Entries.rowCount();

list01Entries.each(function(entry) {
var rowNumber = entry.row();
var deptValue = entry.col("DEPTMENT");

};

Getting Messages

// Webroutine messages
var msgs = wr.messages();
var msgsCount = msgs.count();

// Process each message
msgs.each(function(m) {
alert("Message: " + m);

};

Context Data

WAM and webroutine context information is also available.

var ar = [
"action-request",
"images-path",
"language",
"partition",
"service-name",
"session-key",
"session-key-name",
"session-key-method",
"technology-service",
"user-id",
"webapplication",
"webapplication-title",
"webroutine",
"webroutine-title"];

// List context items
for (x in ar) alert(ar[x] + ": " + wr.context(ar[x]));

Building a JSON Request

Start by creating a WebRoutine request object:
var wr = Lstd.Json.factory();

Adding Fields to the JSON Request

Add/change field values. If a field is already defined, its value is replaced.

wr.field("EMPNQO", "AA010");
wr.field("GIVENAME", "John");
wr.field("SURNAME", "Smith");
wr.field("SALARY", 1000);

Adding a List to the JSON Request

Get a JSON list object by adding a list to the WebRoutine request object.
var listl = wr.addList("LISTO1");

Defining JSON Request List Headers

Define the list headers by setting the column names.
listl.headers(["DEPTMENT", "DEPTDESC"));

Adding Entries to the JSON Request List

Add entries to the list. The column count must match the number of column
names set with the headers() method.

var entries = list1.entries();
entries.add(["ADM", "Administration"]);
entries.add(["MKT", "Marketing"]);

Posting the JSON Request

Post the request. If you don't provide a WAM name, it defaults to the current
WAM.

In this example "wrb" is the WebRoutine JSON object returned by Webroutine
"MyResponse".

wr.post({wam: "MyWam", webroutine: "MyResponse", callback:
function(wrb) {
// Handle the response here

s

3.14 Saving a WAM's Output to a File

In addition to running a WAM from a web browser, you can also run a WAM
from the X_RUN command line to save the output to a stream file.

The syntax for the X_RUN command line for a Windows platform is:

¥_DBUN PROC=*WAMEP
WHOD={wam name}
WRTH={web_routine name} °
WAML= {markup_ lancuage} 3
PART={partition}
LANG={lanquaga} "
TEER={u=ser}
WASP={output_ file path}

Where:

the ending "\' for each line is added as a line continuation indicator to make the
command line easier to read in this documentation. The above is meant to be a
single command line to be submitted inside a command prompt.

Note: For IBM i and Linux, the actual command line required is slightly
different but the X_RUN arguments required are much the same.

The following X_RUN arguments are essential to run a WAM and save the
output to a stream file:

Argument Value

PROC "*WAMSP" is the special fixed value to activate this function.
WMOD WAM name to be executed.

WRTN WebRoutine name in the WAM to be executed.

WAML Markup language to run the WAM in the WMOD argument.
Optional. The default is LANSA:XHTML.

PART Partition where the WAM in the WMOD argument, belongs.
LANG Language for running the WAM in the WMOD argument,.

USER User for running the WAM in the WMOD argument. Optional
for some platforms.

WASP Output file path where the WAM output will be saved. The path
required follows the syntax of the platform where the WAM is

executed.

For example, for Windows, you would enter:
C:\Temp\wam_output.html (with backward slash characters).

For IBM i, it is the IFS format and with Linux, uses forward slash
characters.

Additional X_RUN arguments can be added. For example, ITRO, ITRM and
ITRL can be used to enable tracing. Refer to the X_RUN Parameter Summary
in the Visual LANSA Technical Reference for more information.

For example:

X_RUON PROC=*WAMSP WHOD=mywam WRTHN=myrtn WAML=LANSA:XHTHML *
PART=DEM LANG=*DFT USER=PCHKUSER WASP=C:"Temp'myrtn_html

Where, for Windows:

the above command line executes WebRoutine myrtn of WAM mywam in
partition DEM using the markup language LANSA:XHTML and saves the
output html into the stream file C:\Temp\myrtn.html.

For Linux, the equivalent command line would be:

¥_run PROC=*AMEP WHMOD=mywam WETH=myrtrn WAML=LANSA:=HTML °
PART=DEM LAMNG=*DFT USER=PCKUSER WASP= /tmp myrtn.html

Note that the x_run command is in lower case and the output file path is in the
UNIX format.

For IBM i, the equivalent command line would be:

call x_run (“PREOC=*WAMEP WHOD=wmywam WETH=myrtrn WAML=LANSAL:=HTHL
PART=DEM LAMNG=EMNG WASP=/tuwp myrtn_ html’})

There are a few limitations when running a WAM in this manner:

e As there is no interaction with a web browser, no posted data can be passed
to the WAM. Similarly, any HTTP request-related information, such as
HTTP cookies, are not available. What this means is that any WEB_MAP
for input fields or lists for the WebRoutine will not be updated with values,
so fields would retain their default values and any lists would be empty.

e For IBM i, the output stream file will be created using the code page for the
user profile used to submit the X_RUN command.

e A WAM that creates an Active session will still create a WAM session but

its:Lansa015.CHM::/lansa/depb3_0005.htm

that session would not be available for use by any subsequent WAM.

e A WAM that requires an Active session will get the Invalid Session event
fired. For this and the reason above, WAM session management should be
avoided for WAMs to be run in this manner.

3.15 Document Type Declaration (DOCTYPE)

This topic covers the use of the DOCTYPE declaration for directing a layout
mode (what is called browser DOCTYPE "sniffing" or switching), not for DTD
validation.

To add a DOCTYPE declaration to a WAM, use the xsl:output element. For
example:

<xsl:output method="xml" omit-xml-declaration="yes" encoding="UTF-8"
indent="no" doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"

doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
/>

To avoid conflict between the different weblets and the main webroutine XSL,
we recommend you define your DOCTYPE declaration in your layout weblet
only.

The LANSA shipped themelets use the strict DOCTYPE to trigger standards
mode. The older layout weblets don't use any DOCTYPE.

HTMLS5 uses the simplified DTD-less <IDOCTYPE html> to trigger standards
mode in browsers. XSL doesn't support this DOCTYPE declaration.

As some devices might look for the simplified DOCTYPE to detect if the
document is HTML5, the WAM runtime outputs the simplified HTML5
DOCTYPE if the xsl:output uses the XSL-friendly legacy-compat DOCTYPE:

<xsl:output method="xml" omit-xml-declaration="yes" encoding="UTF-8"
indent="no" doctype-system="about:legacy-compat" />

4. Advanced Topics

4.1 TRANSFER Statements in WEBROUTINESs
4.2 CALL Statements in WEBROUTINESs
4.3 WAM Session Management

4.1 TRANSFER Statements in WEBROUTINEs

In its simplest form, each WEBROUTINE in a WAM is associated with one
XSL stylesheet, which defines the presentation layer, also known as the Web
Design. Once a WEBROUTINE is invoked, only that WEBROUTINE's page
will be returned. Sometimes, however, it is necessary to "redirect” execution to
a different page from RDMLX. For example, a WEBROUTINE might be
requested but the session has expired. In this case, it may be necessary to
display an error page or a different page to the one requested.

Another example is a Logon page with a single logon button to invoke a Logon
WEBROUTINE. This WEBROUTINE authenticates the user and depending on
whether the user is a registered user or a guest, it would "redirect" to the
appropriate WEBROUTINE and present the appropriate page. There are many
other examples where it may be necessary to "redirect" from one
WEBROUTINE to another.

This "redirection" can be accomplished with the use of a TRANSFER
statement. The fields are mapped to the target WEBROUTINE according to that
WEBROUTINE's WEB_MAP statements. Only fields and lists specified on the
incoming WEB_MAPs are passed to the target WEBROUTINE.

The TRANSFER statement has the following properties:
Property Description

TOROUTINE Specify the name of a WEBROUTINE to transfer to. You can
specify another WAM, in this case the WAM name followed
by a WEBROUTINE name separated by a dot
(e.g. #MYWAM.Browse).

A Service Name can also be specified, if prefixed with the
*SERVICE modifier.

The value can also be provided from a field, if prefixed with
the *EVALUATE modifier.

OnEntry This property is used for mapping incoming fields and lists
into the target WEBROUTINE. This property can be one of:

*MAP_NONE (does not map any fields or lists),
*MAP_ALL (maps all required fields and lists),

*MAP_LOCAL (only fields and lists on WEBROUTINE's
WEB_MAPs are mapped),

*MAP_SHARED (only WAM level WEB_MAP fields and
lists are mapped, not WEBROUTINE level).

The default value is *MAP_ALL.

When a TRANSFER is performed, the target WEBROUTINE assumes control
of execution and the source WEBROUTINE does not regain control. When the
target WEBROUTINE is exited, that WEBROUTINE's page is returned, as if
the WEBROUTINE was invoked directly from the browser.

The following are some examples of TRANSFER statement:

TRANSFER TOROUTINE(Browser)

TRANSFER TOROUTINE(#MY WAM.Browser)
TRANSFER TOROUTINE(*SERVICE EmployeeBrowse)
change #WEBRTN 'wam1.routinel'

TRANSFER TOROUTINE(*EVALUATE #WEBRTN)

4.2 CALL Statements in WEBROUTINESs

You may also use a CALL statement to redirect execution to another
WEBROUTINE. The CALL statement has similar semantics to the TRANSFER
statement, except the called WEBROUTINE returns control back to the calling
WEBROUTINE and execution continues from that point onwards.

The CALL statement has the following properties:
Property Description

WEBROUTINE Specify the name of a WEBROUTINE to transfer to. You
can specify another WAM, in this case WAM name
followed by a WEBROUTINE name separated by a dot
(e.g. #MYWAM.Browse).

A Service Name can also be specified, if prefixed with
*SERVICE modifier.

The value can also be provided from a field, if prefixed with
*EVALUATE modifier.

OnEntry This property is used for mapping incoming fields and list
into the target WEBROUTINE. This property can be one of:

*MAP_NONE (does not map any fields or lists),
*MAP_ALL (maps all required fields and lists),

*MAP_LOCAL (only fields and lists on WEBROUTINE's
WEB_MAPs are mapped),

*MAP_SHARED (only WAM level WEB_MAP fields and
lists are mapped, not WEBROUTINE level).

The default value is *MAP_ALL.

OnExit This property used for mapping outgoing fields from the
target WEBROUTINE. This property can be one of:

*MAP_NONE (does not map any fields or lists),
*MAP_ALL (maps all required fields and lists),

*MAP_LOCAL (only fields and lists on WEBROUTINE's
WEB_MAPs are mapped),

*MAP_SHARED (only WAM level WEB_MAP fields and
lists are mapped, not WEBROUTINE level).

The default value is *MAP_ALL.

The following are some examples of CALL statement:

CALL WEBROUTINE(Browser)

CALL WEBROUTINE(#MY WAM.Browser)

CALL WEBROUTINE(*SERVICE EmployeeBrowse)
CALL WEBROUTINE(*EVALUATE #WEBRTN)

4.3 WAM Session Management

A user Web interaction with a server involves many requests from the same
user/client to the server. Each request from a server's perspective is a unique
request. The HTTP protocol is stateless and does not provide an implicit
mechanism for maintaining a continuous session across multiple Web requests
for the same user/client. Refer to Being Stateless for further information.

To overcome these challenges, most transactional web-based applications
provide their own mechanism for session management. A WAM uses a
declarative, implicit, secure session management mechanism. Session
management has been designed to be as transparent as possible to the rest of the
application.

Web session data or state is stored in a database on the server and is identified
with a unique session key that is passed between the server and browser. Since
the browser does not have a mechanism to explicitly terminate a session, a
timeout mechanism is provided which expires a session once there are no more
requests from the same user within a specified time period.

For more details, review the following:

4.3.1 Session Management Configuration
4.3.2 Session Key Method

4.3.3 The WEB_MAP *PERSIST Keyword
4.3.4 Session State Maintenance

4.3.5 The Mechanics of Session Management
4.3.6 WAM Session Properties

4.3.7 WAM Session Example

4.3.8 Session States

A WAM application has the facility to store session state on the server in a
server independent way. To declare session state, it is necessary to set
OPTIONS attribute of fields or lists to *PERSIST. Using *PERSIST ensures
that whatever changes are made to those fields and lists, they are always
accessible on the server once a WEBROUTINE is executed in the context of
that session. Storing the actual session state in a database enables a multi-stream
execution environment. Consequently, it is possible to setup and configure
multiple application servers, on separate boxes, for greater scalability.
Individual WEBROUTINE requests could be shared amongst all available
servers. When a request is made, the session state (i.e. all the fields and lists

its:LANSA087.CHM::/lansa/wamengm1_0060.htm

marked OPTIONS(*PERSIST)) is reloaded from a single database into server
memory before WEBROUTINE RDMLX is executed. The session state is
unloaded when the WEBROUTINE exits.

4.3.1 Session Management Configuration

Session configuration is done by directly specifying values for WAM properties.
There are properties for configuring how the session key is stored in the browser
and for setting the inactivity timeout period of the session. (You will find details
in 4.3.6 WAM Session Properties.)

By default, each WAM maintains its own session state independent of other
WAMs; however, you can chain multiple WAM sessions as a single session.
Chaining is useful in situations where multiple WAMs comprise a single Web
application.

WAMs allow you to specify the behavior on session expiry or when a session is
invalid. You can provide an event handler for the event that is signaled when a
session is invalid or expired. The code in the event handler might show a
custom error page, or re-direct to a logon page, or provide some other
functionality.

4.3.2 Session Key Method

To identify a session with the client, a unique session key is allocated to the
session when the session is created. This session key is returned back to the
browser.

To identify that a request belongs to a particular session, the browser must pass
the session key back to the server with each request. The passing of the session
key is done transparently to the rest of the application.

A WAM supports three ways of maintaining the session key in the browser:
1. It can be stored in a hidden field that is returned for every page.

2. It can be passed back in a URL.

3. It can be stored in a cookie maintained in the browser memory. You have a
choice of standard cookie or secure cookie. If you choose secure cookies the
session key will only be passed via an SSL. (HTTPS) connection to prevent
any chance of eavesdropping on session key. This implies that an application
using secure cookie mechanism must be served to the browser via an HTTPS
protocol.

The third method, secure cookies, is considered the most secure because they
are the most difficult to steal either visually or programmatically.

The hidden field Session Key Method doesn't work in jQuery Mobile

because of the way pages are loaded without doing a full page refresh.
Use either the URL or cookie methods instead.

4.3.3 The WEB_MAP *PERSIST Keyword

The *PERSIST option can be used inside OPTIONS property of a WEB_MAP.
WANMs are designed to execute in a server-side Web-based environment. In
order to achieve maximum scalability and minimize resource utilization, a
WAM Component is stateless. Any WAM memory state is maintained only
while a WEBROUTINE is being executed. At the completion of
WEBROUTINE execution, any memory state (such as field and list values) are
destroyed. (For more information, refer to 4.3 WAM Session Management.

It is possible to declare fields and lists to retain or persist data that is to be
available across WEBROUTINE executions for the duration of a Web session.
Persistence is achieved by declaring an OPTIONS(*PERSIST) on a WEB_MAP
for fields or lists. In addition to declaring an OPTIONS(*PERSIST) the
WEBROUTINE needs to have an initial SessionStatus set to Active. This is
done by, either setting it for the WAM or by setting
OnEntry(*SessionStatus_Active) keyword for individual WEBROUTINE. By
setting SessionStatus to Active, in this way, ensures that the WEBROUTINE
will load the session state before it starts execution.

You can use the following syntax to declare session data, which is not mapped
in or out of WEBROUTINEs:

WEB_MAP FOR(*NONE) FIELDS field and/or list names with a # prefix OP

When a FOR(*NONE) declaration is used, the declared fields and lists will not
be mapped in or out of WEBROUTINES, but their values will be available in
WEBROUTINE RDMLX across WEBROUTINE executions. If the above
WEB_MAP is declared at WAM level, (i.e. after BEGIN_COM but outside of
any WEBROUTINE block), then every WEBROUTINE, that requires a session
(i.e. its initial SessionStatus is not None), will have access to these fields and
lists as they form session state.

4.3.4 Session State Maintenance

One of the biggest advantages of WAM session management is the ability to
maintain state or data for a particular session without using server memory
(which is a limited resource). WAMs provide a declarative mechanism
(described in 4.3.3 The WEB_MAP *PERSIST Keyword) to identify fields and
lists that must be maintained for the session beyond the scope of a single
request. Fields and lists declared as session data are maintained in a database
and are then moved in and out of server memory for each request from a
session. This mechanism allows distinct application servers (in a multiple server
configuration) to service individual requests even from the same session, as
long as a single database is used for session state storage.

The time between two requests from a session must be within an inactivity
timeout period. Each request resets the inactivity timeout. If a request occurs
outside of the timeout period for a session, the session is deemed expired and
appropriate action must be taken at the application level to handle this situation.
For example, an RDMLX event handler must be written to deal with an invalid
session key. (If an event handler is not provided, a generic error page is
returned.)

When a session has expired, it is not immediately removed from the database. It
is just flagged as expired. A separate clean up process is run to perform expired
session clean up. This process can be configured as a background process that
can be executed from the database at off-peak times. Refer to WAM Session
Clean Up in the Web Administration Guide for information about clearing the
database.

its:LANSA085.CHM::/lansa/lwbengh1_0030.htm

4.3.5 The Mechanics of Session Management

There is a pre-set configurable pool of Web jobs for processing WEBROUTINE
requests. A Web job currently processing a request will load the necessary state
and reset the internal state, and then make itself available for the next request
which may come from a different Web session altogether. The load is shared by
Web jobs at the individual request level and not the session level. As a result, it
is possible to have a much larger number of active browser sessions than Web
jobs running.

The stateless nature of WAM execution environment has an important
implication. A WAM Component's state only exists for the duration of
WEBROUTINE execution. Unless fields and lists are declared as *PERSIST,
their values are destroyed and not available for the next request after
WEBROUTINE exit. Consequently, any other RDMLX Components
instantiated during WEBROUTINE execution will be destroyed upon
WEBROUTINE termination. However, any *PERSIST fields and lists, live
beyond the lifetime of a request and are still available. They can span multiple
WEBROUTINE requests until session termination.

Session Management Summary

Following is a summary of important features of the WAM execution
environment:

e A WAM Component is a type of RDMLX Component. It can instantiate and
invoke other non-visual RDMLX Components.

e Each WEBROUTINE in a WAM can be invoked from the browser. It can
also be exposed via a Service Name mechanism.

e A WAM supports the concept of a Web session. The session key to identify
the Web session is stored in the browser.

e When a WEBROUTINE request is made from a browser (or other type of
client device), a WAM Component is created, its requested WEBROUTINE
is executed, and the WAM Component is destroyed. This process reduces the
server resource usage and ensures maximum scalability.

e Since WAM execution maintains state on a per-request basis, a configurable
pre-defined number of Web jobs can service many Web sessions and the
requests can be shared amongst multiple application server machines.

e Any data, (i.e. fields, lists, other Component state), is destroyed upon
WEBROUTINE termination and is not available on subsequent request.

e Any field or list marked with OPTIONS(*PERSIST) to declare it as session
state are not destroyed but stored in a database on the server. It is possible to
change this data in one WEBROUTINE request and have it available for
subsequent WEBROUTINE requests.

¢ If no requests have been made for a session within a specified timeout
period, the session is deemed expired. Any further requests from the same
session will result in a SessionInvalid event being triggered. An event
handler for this event can be used to handle session

4.3.6 WAM Session Properties

Session configuration is done by directly specifying values for WAM properties.
There are properties for configuring how the session key is stored in the
browser, for setting the inactivity timeout period of the session and so on. By
default, each WAM maintains its own session state independent of other WAMs.

The following table describes session management related WAM properties:

Property Value Description

SessionKeyMethod | URL, Cookie, | This is the method of storing a
SecureCookie,| session identifier, known as a

or session key, in the browser. The
HiddenField | secure cookie method is considered
the most secure. This property is
not available at runtime.

SessionStatus Active, At runtime, this property can be
Invalid, queried to determine the status of
Expired, or the Web session. You can also
None control creation and deletion of a

session by setting this property to
Active or Invalid, respectively. At
design time, this property can be set
on a WAM wide basis, which
applies to every WEBROUTINE, or
for an individual WEBROUTINE
by using OnEntry keyword. Setting
a value of Active at design time,
ensures that a session is validated
before executing a WEBROUTINE.
A value of None allows a
WEBROUTINE to be executed,
even when a session is invalid or
expired. SessionStatus can then be
set to Active inside this
WEBROUTINE to create a new
session and return the session key to
the browser. This property is

available both at design time and
runtime.

SessionTimeout A numeric A timeout value determines a period
value in of time after which a session is
seconds. If set | deemed expired if no request has
to 0, a system | been received. Any subsequent
wide default | requests for WEBROUTINESs
is used. If set | requiring a session (SessionStatus
to—1 an set to Active), will not execute the
infinite WEBROUTINE, but will trigger a
timeout is SessionInvalid event. The timeout
used (i.e. applies to all WEBROUTINES in
there is no the WAM.
timeout). The session state may still be in the

session store, since you can
schedule a clean up done later.
This property is not available at
runtime.

SessionGroupName | Any Every WAM maintains its own
alphanumeric | session state and is separate to other
value WAMs. If more than one WAM

participates in a Web application, it
is possible to have all required
WAMs reference the same session
state by assigning the same
identifier in this property for all
participating WAMs. This property
is not available at runtime.

All WEBROUTINESs in a WAM are assigned an initial SessionStatus value from
a WAM-defined SessionStatus property. However, SessionStatus can be
overridden by using an OnEntry keyword for a WEBROUTINE with the

following values:

Value

Description

*SessionStatus__Active An active session is assumed for the
WEBROUTINE to be entered for execution.

*SessionStatus_None No session is required for the WEBROUTINE
to be entered for execution.

*SessionStatus_Of WAM | This is the default if the OnEntry keyword is
unspecified. Assumes the value of the WAM's
SessionStatus property.

4.3.7 WAM Session Example

It is important to understand the SessionStatus property for managing your
WAM sessions.

The following is an example of a typical WAM which a manages a session:

FUNCTION OPTIONS(*DIRECT)
BEGIN_COM ROLE(*EXTENDS #PRIM_WAM) SESSIONSTATUS(Active

*The following line declares Session state #CUSTNAME field
WEB_MAP FOR(*NONE) FIELDS(#CUSTNAME) OPTIONS(*PERSIST)

WEBROUTINE NAME(Start) DESC('Initial Page') OnEntry(*SessionStatus_]I
WEB_MAP FOR(*OUTPUT) FIELDS(#USERID #PASSWORD)
ENDROUTINE

WEBROUTINE NAME(Logon) DESC('Logon Page') OnEntry(*SessionStatus
WEB_MAP FOR(*INPUT) FIELDS(#USERID #PASSWORD)

* Some authentication logic, if authentication fails can TRANSFER back to St

* The following line will create a session, when WEBROUTINE exits
#COM_SELF.SessionStatus := Active

TRANSFER TOROUTINE(WelcomePage)
ENDROUTINE

WEBROUTINE NAME(WelcomePage) DESC("Welcome Page")
ENDROUTINE

WEBROUTINE NAME(Logoff) DESC('Logoff page')
#COM_SELF.SessionStatus := Invalid
ENDROUTINE

* The following event handler will handle invalid sessions and

* TRANSFER back to starting page, for logon

EVTROUTINE HANDLING(#COM_OWNER.SessionInvalid) OPTIONS(*N
TRANSFER TOROUTINE(Start)

ENDROUTINE

END_COM

e SessionStatus is set to Active. By default , WEBROUTINE:S in this WAM
require a session to be valid before they are executed. SessionTimeout is 5
minutes.

e Two WEBROUTINES, Start and Logon, override SessionStatus to None, by
using OnEntry(*SessionStatus_None) keyword. The Start WEBROUTINE
presents a page requesting logon details. Since this is an initial page, it must
be executed whether there is a valid session or not. Hence, a SessionStatus of
None.

e Logon WEBROUTINE is invoked from a Start page, when a button to logon
is pressed. At this point, there is still no valid session so this WEBROUTINE
must also be allowed to execute without a session.

e Logon validates the user id and password and, if valid, sets SessionStatus to
Active. Setting SessionStatus from None to Active will create a new session
when Logon WEBROUTINE exits.

e Logon WEBROUTINE performs a TRANSFER to WelcomPage
WEBROUTINE. We now have an Active session, so WelcomePage is
allowed to execute (it requires an Active session). When WelcomePage exits,
a session key for the new session is passed back to the browser. This session
key will be returned from now on for every new WEBROUTINE request
from the same browser and allows the server to identify the session.

e There is also a SessionInvalid handler which simply TRANSFERs to Start
page. This handler is invoked whenever there is an attempt to invoke a
WEBROUTINE with a non-existent or invalid session key or when a valid
session key is provided but the session has expired (no requests for more
than 5 minutes). When a session is invalid or expired, a Start page requesting
user id and password is always displayed in the browser.

¢ You can also provide a Logout button or menu in your WAM application so
the session is explicitly invalidated. In such circumstances, the button
invokes a Logoff WEBROUTINE, which sets SessionStatus to Invalid and
invalidates the session on WEBROUTINE exit.

4.3.8 Session States

A session can be in one of four states:
State Meaning

Invalid The session key used to identify the session is not provided, or it
does not match any session key the server knows about

Expired The session key identifies a valid session, however the previous
request from the same session has exceeded the SessionTimeout
period.

Active The session key identifies a known valid session and the last request
from the same server was within the SessionTimeout period.

None Used declaratively at design time to denote WEBROUTINES that
can execute without a valid session context. If SessionStatus is set to
Active at WAM level, you must have at least one WEBROUTINE
with OnEntry(*SessionStatus_None) keyword to allow entry to the
WAM application to create a new session, via this WEBROUTINE.

Conceptually invalid or expired sessions are treated the same. They are both
session statuses that prevent execution of WEBROUTINE:s that require a valid
session context (i.e. WEBROUTINESs with a SessionStatus property set to
Active).

A WAM is able to handle invalid or expired sessions by providing a
Sessionlnvalid event handler. This handler can TRANSFER to another
WEBROUTINE or perform some other action to handle invalid or expired
sessions. Sessionlnvalid handler removes the need for every WEBROUTINE to
perform checks to verify session (if your application requires one). All session
checking is done at WAM level and the SessionInvalid event is triggered to
allow the WAM to customize invalid session handling.

If a SessionInvalid handler is not provided, the standard WAM invalid session
page is returned to the browser.

When a session has expired, session state is not deleted from the session
database immediately. This technique is used to reduce load on the server at
peak times. The Transaction Monitor performs periodic cleanup of expired

session states. It is also possible to turn off periodic cleanup and schedule
cleanup to be performed at designated off-peak times.

5. Execute WAM Applications

5.1 Build or Compile your WAM

5.2 Deployment and Runtime Environment
5.3 WAM Uniform Resource Locator (URL)
5.4 Mapping Posted HTTP Data to Fields
5.5 How is the Output Presentation Created?

5.1 Build or Compile your WAM

You can Build a WAM using this icon & on your LANSA Editor's toolbar
or
you can Compile it using this icon

When you use these icons, the options selected for the build will be either the
defaults supplied with LANSA or the options selected for your last compile.

What is the difference between a Build and a Compile?

The Build process is optional and doesn't create any executable objects. The
build process:

e saves the WAM
e performs a full function check (FFC) of your code
e [f the Web Designs do not already exist:
e generates a design (XSL Stylesheet) for the WAM Layout and
e Web Designs (XSL Stylesheets) for the webroutines.

The Compile process is the same as a Build EXCEPT that the executable
objects are produced and the webroutine XSL generation can be controlled.

You must Compile a WAM before it can be run, but you can do as many, or as
few, Builds as you like.

Both the Build and Compile generate Web Designs for your webroutines. In
addition, when required, and not found, a layout design is generated for the
WAM. The layout design can subsequently be modified in the LANSA Editor if
required.

Compile Options

To view or change the options for your Compile, select the Compile process
from the Verify menu. This opens the Compile Options dialog box.

et Compile options “

W WAMSs (1)] Compile only if necessary
Debug enabled
Generate X5L
O All webroutines
® MNew Webroutines

Technology services
[LANSA:JQMOBILE
LANSA:XHTML

Use Default Settings Ok Cancel

The options in this dialog are self explanatory but details can be obtained in
Component Compile Options in the LANSA Technical Reference Guide.

The compile options selected are retained for future compiles, with the
exception of the XSL Generation, which is always set to only generate New
webroutines as a safeguard.

The options to be very careful about are:
Generate XSL
All webroutines

If you choose this option, webroutine Web Designs will be re-generated. Any
modifications that you have already made to these webroutine's designs via the
LANSA Editor will be overwritten.

New webroutines

This is the default option. This option will cause Web Designs to be generated
only for new webroutines and will not overwrite any designs, which already
exist.

Technology services

Select the Technology Services that you will be using with this WAM.

its:lansa015.chm::/lansa/l4wtgu04_0100.htm

5.2 Deployment and Runtime Environment

Following is a description of the deployment and runtime environment of
WAM-based Web applications.

Review the following topics:
5.2.1 WAM and XSL Deployment
5.2.2 Multi-tier Deployment

5.2.1 WAM and XSL Deployment

Once your WAMs are developed and the web pages have been designed and
tested, the application is ready to be deployed to production. You can use the
LANSA Deployment Tool to create a deployment package.

The Deployment Tool allows you to select the WAMSs to deploy and along with
all of their dependent objects including the WEBROUTINE Web Designs (XSL
Stylesheets).

Deploying your whole application is simply a matter of:

e selecting the necessary WAMs

e selecting all the cross-references settings to include associated objects
e selecting the Technology Service (LANSA XHTML is the default)

e creating a deployment package

e deploying the package to the production environment.

If your application uses any static external objects, such as image files, script
pages or other HTML pages that are not identified to the Deployment Tool, then
these objects must be deployed separately.

Refer to the WAM section of the WAM Application with Windows Application
Database in the Deployment Tool Guide.

its:lansa022.chm::/Lansa/l4wdplb2_0025.htm

5.2.2 Multi-tier Deployment

LANSA for the Web supports both Single-tier and Multi-tier installations.

A Single-tier installation includes the Web Server and Data/Application Server
on a single machine. A Multi-tier installation has the Web Server on one
machine and the Data/Application Server on a separate machine.

If you install a Multi-tier configuration with a Windows IIS web server, the XSL
Processing of your WAMs, by default, is moved to the Web Server tier, thereby
distributing the processing load across the tiers. This option is configurable in
Web Administrator, Local Configuration of your LANSA ISAPI Plugin.

For details, refer to Multi-Tier Web System Setup in the Web Administration
Guide.

its:Lansa085.chm::/lansa/iwinb7_0500_a.htm

5.3 WAM Uniform Resource Locator (URL)

There are two methods for invoking WEBROUTINESs from a browser using a
URL.

The unique combination of the WAM and WEBROUTINE can be specified:
http://localhost/cgi-bin/lansaweb?wam=<WAM name>&webrtn=
<WEBROUTINE name>&ml=<TS name>&part=
<PARTITION name>&lang=<LANGUAGE name>

If a service name has been associated with a webroutine, the unique service
name can be specified:

http://localhost/cgi-bin/lansaweb?srve=<Service name>&ml=
<TS name>&part=<PARTITION name>&lang=<LANGUAGE name>

Either of the above methods to invoke a webroutine can be extended to include
parameters on the URL (similar to WEBEVENTS). Any fields used as
parameters on the URL must be mapped for input on the webroutine. The basic
syntax is shown in the following example:

http://server/cgi-bin/lansaweb?
w=wam&r=rtn&f(fieldname)=fieldvalue&f(fieldname2)=fieldvalue2

The following table describes each URL keyword:

Keyword Short Required Description
name version

field f Optional. Values can be passed into a mapped field by
adding the required field (fieldname)=
fieldvalue parameter to the URL. For
example,

field(Section)=AB.

language lang or Optional. If The language identifier determines which

1 unspecified, language is to be used for presentation of
then the page. It is possible to create
partition WEBROUTINE XSL and weblet
default stylesheets for specific languages separate
language is from partition default language. If a page or
used. weblet for a specified language does not

exist a partition, the default language page
is returned.

markup

ml

partition part or

srve

webapp

p

waimn or
w

Optional. If
not
specified, a
configured
default is
used.

Optional. If
not
specified, a
forced
configured
partition is
always
used.

Mandatory.
Must
appear as
the first
keyword.
Either
webapp or
srve
keyword
must be
used.

Mandatory.
Must
appear as
the first
keyword.
Either
webapp or
srve
keyword
must be

The Technology Service to use to render the
page. In case of HTML, a default
LANSA:XHTML Technology Service is
used. The default value can be changed
using the LANSA for the Web
Administrator.

The Partition identifier specifies which
LANSA partition to use. If a forced
Partition is configured on the server (this is
done using the LANSA for the Web
Administrator), this parameter is ignored.

The Service Name that is enrolled and
mapped to a particular WAM,
WEBROUTINE, Partition and Language. If
this parameter is used and the specified
Service Name is enrolled (can be specified
in ServiceName property of a
WEBROUTINE), then partition and
language parameters do not need to be
specified as these values are read from the
registered entry. If specified, the values will
override the registered entry.

For further information, refer to Using the
Service Name.

The name of the WAM that contains the
WEBROUTINE to be invoked.

its:lansa087.chm::/lansa/wamengb3_0055.htm

used.

webrtn T Mandatory. The name of the WEBROUTINE to be
Must invoked.
appear as
the second
keyword.

Must be
used with
the webapp
keyword.

A similar alternative notation is also supported (for backwards compatibility
with previous versions). Note the '+' used instead of the '&' to separate keyword-
value pairs.

Invoking a WAM and WEBROUTINE:

http://localhost/cgi-bin/lansaweb?webapp=<WAM name>+webrtn=
<WEBROUTINE name>+ml=<TS name>+part=<PARTITION name>+lang=
<LANGUAGE name>

Invoking the service name:

http://localhost/cgi-bin/lansaweb?srve=<Service name>+ml=
<TS name>+part=<PARTITION name>+lang=<LANGUAGE name>

To prevent the use of cached pages, when LANSA issues a GET request, It
appends a timestamp to the url so the request is interpreted as a request for a
"different" resource. For example:
http://localhost/cgi-bin/lansaweb?
wam=WAMO01&webrtn=WR01&mI=LANSA:XHTML&part=DEX&lang=EN
1343366108313

5.4 Mapping Posted HTTP Data to Fields

When a browser form is submitted to the server, the named input boxes are also
submitted with the data they contain. The submitted data is in name/value pair
format for each of the input boxes on the form. The server can then process the
submitted values and produce the result page.

When a WEBROUTINE page is presented in the browser, that page has input
boxes (or other more complex controls) for each of the fields in outgoing
WEB_MAPs. Each input box uses the same field name on the form as the field
name in the WEB_MAP. (No prefixes are used.)

When this page is submitted to another WEBROUTINE, the WAM runtime
assigns the input values to the fields specified in that WEBROUTINE's
incoming WEB_MAP statements based on the field names that match the name
of the input box. Hence, the posted values are assigned to appropriate fields and
are available once the WEBROUTINE begins execution.

o [m]
File Edt View Favouites Tool: Help n
ciack - = - @ [@ QSexch (HFavoite: EBMeda 3 - S »

Addeess IE} hittpe /Neonpcriew.'cg-bindansaweb Twebapp=L PCw/aM 0 +webj ,;‘:’ﬁtl Links *

Aovancen SoFrware Mane Sinpie #SURN’:ME
| #GIVENAME
L
y #ADDRESS1
Employee Surname BLOGGS
Employee Given Name(s)/JOE v #ADDRESSZ
Street Mo and Name 12 Erith Street i #ADDRESS3
Suburb or Town Bexwith -
State and Country Zenda =
Employee Salary | 5000000 M

; Browser Farm
" . owser F
Subenit
- submits
_MameValue

E Local intranet pairs

WEBROUTINE NAME(AddEmployee)
WEB_MAP FOR(*BOTH) FIELDS((#SURNAME

*OUTPUT) (#GIVENAME *OUTPUT) (#ADDRESS1
*OUTPUT) (#ADDRESS2 *OUTPUT) (#ADDRESS3
*OUTPUT) (#SALARY *OUTPUT))

* Add Employee to the Database
MESSAGE MSGTXTEmployee add successiul’)

ENDROUTINE

5.5 How is the Output Presentation Created?

After a WEBROUTINE is invoked from the browser and the incoming fields
and lists have been received (as mapped in its WEB_MAP statements), the
RDMLX code of the WEBROUTINE is executed until ENDROUTINE
statement is encountered. The RDMLX logic might retrieve data from a
database or perform calculations using the incoming fields.

Once the WEBROUTINE has completed, it sends back any outgoing fields and
lists (as mapped in its WEB_MAP statements) to the LANSA Data/Application
Server. The outgoing field and list values are then used to create an Input XML
document in the format described in Appendix B. WAM XML Structure.

B RO LTINE NAhE AddEmployee)
WYEB_MAP FORCE OTH) FIELDS(H S URMAWE
=0 LR LIT) ¢4 G RENAE OUTPUT) (#200 RES 51
=0 UTRUT) (4 ADDRESS *0UT PUT I (#A0DR ES 53
=OUTRUT) 45 ALARY "OLTPLT

* Add BEmplee to the Databass
MESSAGE M SGTE T Employee add successil)
BEMOROLUTINE

Create Input
»ML docurment

Input =ML

docurment msL Stylesheet
containing published for
value of the the

fields declared WEBROUTINE,
in the

WAE MAP,

Transform the input <ML —
document using the ®SL
Stylesheet,

!

Resulting print out is as shown in
Mapping Posted HTTR Data to Flelds,

The XSL Stylesheet for the WEBROUTINE, based on the required Technology
Service and Language, is used to transform the Input XML document (at
runtime) into the required presentation. For example, HTML is used as the

its:LANSA087.CHM::/lansa/wamengbb_0010.htm

default Technology Service. The transformed presentation output (HTML) is
then returned by the Web Server back to the browser.

6. WAM and WEBEVENT Interoperability

LANSA V11.0 significantly extends the LANSA's ability to build web browser
and internet based applications by providing a new type of component called a
WAM (Web Application Module).

Prior to V11.0 the main instrument used to construct web browser applications
was a special type of RDML function called a WEBEVENT function.

WEBEVENT functions continue to be fully supported and have been
significantly enhanced in LANSA V11.0. There is little or no benefit in
converting existing WEBEVENT functions to WAM components. However,

you may benefit by extending and enhancing your existing WEBEVENT-based
web applications.

A number of techniques for constructing web applications that contain a mixture
of WAM components and WEBEVENT functions are described in the following
topics:

6.1 A WAM Form Invoking a WEBEVENT Form

6.2 AWEBEVENT Form Invoking a WAM Form

6.3 A WAM Container Form Managing WEBEVENT Forms

6.4 A WEBEVENT Container Form Managing WAM Forms

6.5 Sharing Information between WAMs and WEBEVENT Functions

6.1 A WAM Form Invoking a WEBEVENT Form

The primary mechanism for invoking a WEBEVENT form is via a JavaScript
function called HandleEvent(). A similar JavaScript based method of invoking a
WEBEVENT form from a WAM form is also provided but called
HandleWebEvent().

Here's how you can invoke a WEBEVENT form from a WAM form:
1. Use the JavaScript function named HandleWebEvent() that is provided.

This function can be called in the same way the HandleEvent() function is
called now.

2. There are no additional properties on weblets to navigate to a Webevent
(such as there is for Webroutines). HandleWebEvent() can be called from the
presubmit_js property of most weblets, or via user defined JavaScript. It is
possible, for example, to directly set JavaScript to execute by setting the
onlick attribute value, document. LANSA.SEARCH.onclick =
"HandleWebEvent('MYPROC', MYFUNC', null, null,

'ASURNAME', 'ASTDRENTRY")"

3. The parameters are HandleWebEvent(Process, Webevent, Form, Target,
"ASURNAME", "ASTDRENTRY", ...), a variable number of parameters on
the end can be passed for fields, the values of which are to be passed to the
WebEvent. The parameters are all characters strings except for Form, which
should be the actual form DHTML object (eg. document. MYFORM). It is
important to provide a single character prefix before the field name. The
prefix is A for Alphanumeric, P for Packed and S for Signed fields, or Q for
RDMLX fields. This prefix is required so that a WEBEVENT being invoked
is able to exchange the passed field values.

4. The JavaScript function gets the values for the fields from the specified Form
parameter (or default "LANSA" form if Form is null), creates a temporary
form and inserts the fields and their values into the temporary form for
posting to the url, and then performs an HTTP post to the url. Note, the field
names passed as parameters to HandleWebEvent() must all be prefixed with a
single character prefix denoting the field type. WAM field references do not
require prefixes, but WEBEVENT functions do, hence the JavaScript code
retrieves the specified field values from a WAM form without this single
character prefix, but posts field names to the WEBEVENT function with the
prefix.

5. As aresult, a WebEvent LANSA function is executed passing the specified
field values and a WebEvent page is shown in the browser.

Example
How a WAM form can initiate a WEBEVENT form and pass information to it:

@| i::;‘ http://localhost/cgi-bin/lansaweb?wam=WAMSTARTwebrtn=>5earck D~ | (= Start Page

Home Services (

Employee Surname

Search

Consider a Search WAM form, which submits to a Browse WEBEVENT, but
passing the entered SURNAME field value.

In LANSA Editor's Details tab you enter 'HandleWebEvent("MYPROC",
"MYFUNC", null, null, "ASURNAME", "ASTDRENTRY™"); return false;' for
presubmit_js property of the Search button.

ri= title

= text_class i

L= Inresubmit_js ull, null, "ASURMAME", "ASTDREMTRY"): return false: B
= confirm Falsa

= confirmText

= tab_index

= default hutton i
£ >

Enter XPath expression for the currently selected property g
'HandleWebEvent{™MYPROC", "™YFUNC™, null, null, "ASURMNAME", "ASTDRENTRY™); return false;'

presubmit_js
Javascript code to run prior to submitting, must be followed by a sermicolon.

When you run this page in the browser, clicking on Search button will submit to
a WEBEVENT, showing its page in the browser, after it completes execution.

6.2 A WEBEVENT Form Invoking a WAM Form

The primary mechanism for invoking a WEBEVENT form is via a JavaScript
function called HandleEvent(). A similar JavaScript-based method of invoking a
WAM form from a WEBEVENT form, called HandleWAMEvent() is also
provided.

Here's how you can invoke a WAM form from a WEBEVENT form:

1. Use the provided JavaScript function named HandleWAMEvent().

This function can be called the same way HandleEvent() function is called
now.

2. The parameters are HandleWAMEvent(WAM, Webroutine, TechServ, Form,
Target, actionRequest, Partition, Language, optSessionKey, optDebugMode,
"ASURNAME", "ASTDRENTRY", ...), a variable number of parameters can
be passed for fields, the values of which are to be passed to the Webroutine. It
is important to provide a single character prefix before the field name. The
prefix is A for Alphanumeric, P for Packed and S for Signed fields, or Q for
RDMLX fields. Although this prefix is not required when passing field
values to a WAM WEBROUTINE, it is required to access the form field
value, as well as being more consistent with HandleWebEvent() JavaScript
function semantics.

The parameters of HandleWAMEvent are:
WAM The name of the target WAM.
Webroutine The name of the target WEBROUTINE.

TechServ The Technology Service to use, can be null for default
LANSA XHTML Technology Service

Form The form HTML object to get field values for submit from,
e.g. document. MYFORM for a form with "MYFORM"
name, can be null for default LANSA form.

Target The target iframe, frame or window where the result of
navigation will be displayed, null to navigate to a new page.

actionRequest If left null, is the default "cgi-bin/lansaweb" action request.

Partition The partition to execute the WAM from.

Language The language under which the WAM will execute.

optSessionKey Can optionally pass the session key, if the
SessionKeyMethod is URL, otherwise null.

optDebugMode Can pass the debug url keyword to allow debugging of the
WAM, otherwise null.

3. The JavaScript function gets the values for the fields from the specified Form
parameter (or default "LANSA" form if Form is null), creates a temporary
form and inserts the fields and their values into the temporary form for
posting to the url, and then performs an HTTP post to the url. Note, the field
names passed as parameters to HandleWebEvent() must all be prefixed with a
singe character prefix denoting the field type. WAM field references do not
require prefixes, but WEBEVENT functions do, hence the JavaScript code
retrieves the specified field values from a WEBEVENT form with this single
character prefix, but posts field names to the WAM function without the
prefix.

4. As aresult a Webroutine is executed passing the specified field values and a
Webroutine page is shown in the browser. The submitted fields must be
specified on the WEB_MAP FOR(*INPUT or *BOTH) for the values to be
set in the Webroutine.

Example

How a WEBEVENT form can initiate a WAM form and pass information to
it

1. Create a function and paste this code:

Function Options(*DIRECT *webevent)
sk

Define Field(#searchwam) Type(*char) Length(1)

Define Field(#wamname) Type(*char) Length(9)

Define Field(#webrname) Type(*char) Length(20)

Define Field(#techserv) Type(*char) Length(21)

Define Field(#currlang) Type(*char) Length(4) Default(*language)

%

Group_By Name(#webform) Fields((#stdrentry *hidden) #surname #searchwa
sk

Change Field(#wamname) To(<your wam name>)

Change Field(#webrname) To(<your wam webroutine name>)
Change Field(#stdrentry) To(NN)
sk

Request Fields(#webform) Exit_Key(*no) Menu_Key(*no) Prompt_Key(*no)
sk

2. Replace <your wam name> and <your webroutine name> with the
appropriate names.

Note that the WAM must exist in the same partition and will execute in the
same language using the default LANSA:XHTML technology service.
Otherwise, change the values of fields #techserv, #currlang and #partition
accordingly.

3. Using the LANSA Web Function Editor, create a Visual component type
Input and call it SEARCHWAM.

4. Name the page for the component SEARCHWAM as well.

5. Create a new page and past this code:

<button onclick="return
HandleWAMEvent('<SRDML MERGE="WAMNAME">',
'<RDML MERGE="WEBRNAME">'l '<RDML MERGE="TECHSERV">' ni

<script type="text/javascript">
/I<I[CDATA[
function CreateTempForm(ownerDoc)

{

var oTempForm = ownerDoc.createElement("form");

if (ocTempForm != null)

{
if (typeof oTempForm.setAttribute === "function")
{
oTempForm.setAttribute("method", "post");
}
else
{
oTempForm = ownerDoc.createElement("<form method=\"post\">
</form>");

}

}

return oTempForm;

}

function HandleWAMEvent(WAM, WebRoutine, techServ, Form, Target,
actionRequest, Partition, Language, optSessionKey, optDebugMode /*, field1,
field2, etc...*/)

{ if (Form == null)
{ Form = document. LANSA;
i}f (techServ == null)
{ techServ = "LANSA:XHTML";
}

var oTempForm = CreateTempForm(Form.ownerDocument);

if (ocTempForm != null)

{
Form.ownerDocument.body.appendChild(oTempForm);
var argLen = arguments.length;

if (argLen > 10)
{
for (var index = 10; index < argLen; index++)
{
var fieldNameWithPrefix = arguments[index];
var fieldName = fieldNameWithPrefix.substr(1,
fieldNameWithPrefix.length - 1);
for (var ind = fieldNameWithPrefix.length; ind < 10; ind++)

{
fieldNameWithPrefix +="";

}

var fieldValue = Form.elements|fieldNameWithPrefix].value;
InsertHidden(oTempForm, fieldName, fieldValue);

}
}

// Add STDANCHOR if available
var anchorField = Form.elements["ASTDANCHOR"];
if (anchorField != null)
{
InsertHidden(oTempForm, "STDANCHOR", anchorField.value);
}

var prevAction = oTempForm.action;

var prevTarget = oTempForm.target;

var action = "";

if (actionRequest == null || actionRequest.length <= 0)

{

actionRequest = "/cgi-bin/lansaweb";
}
action += actionRequest + "?wam="+ WAM + "&webrtn=" +
WebRoutine + "&ml=" + techServ + "&part=" + Partition + "&lang="+
Language;
if (optDebugMode != null && optDebugMode.length > 0)

{
action += "&debug=" + optDebugMode;

}
if (optSessionKey != null)
{
action += "&sid=" + optSessionKey;
}

oTempForm.action = action;

if (Target != null)
{
oTempForm.target = Target;
}
oTempForm.submit();
setTimeout(function() {
oTempForm.action = prevAction;
oTempForm.target = prevIarget;
oTempForm.parentNode.removeChild(oTempForm);
}, 100);

}

return false;

}
function InsertHidden(Form, FieldName, FieldValue)
{
if (Form == null)
{
return;
}

var field = Form.elements[FieldName];

if (field == null)
{

var elem = Form.document.createElement("input");

if (elem != null)

{
elem.setAttribute("type", "hidden");
elem.setAttribute("name", FieldName);
elem.setAttribute("value", FieldValue);
Form.appendChild(elem);

}

}

else

{
field.value = FieldValue;
}

}
/N>
</script>

6. Save the page as SEARCHWAM.
7. Compile your webevent functions generating the HTML.

8. Run this WEBEVENT example in the browser. Clicking a Search button
should navigate to the WAM and WEBROUTINE you nominated in
WAMNAME and WEBRNAME fields.

6.3 A WAM Container Form Managing WEBEVENT Forms

The primary mechanism for invoking a WEBEVENT form is via a JavaScript
function called HandleEvent(). A similar JavaScript based method of invoking a
WEBEVENT form from a WAM form, called HandleWebEvent() is also
provided.

Here's how you can invoke a WEBEVENT form from a WAM form:
1. Use the JavaScript function named HandleWebEvent() that is provided.

This function can be called the same way HandleEvent() function is called
now.

2. There are no additional properties on weblets to navigate to Webevent (such
as there is for Webroutines). HandleWebEvent() can be called from the
presubmit_js property of most weblets, or via user defined JavaScript. It is
possible, for example, to directly set JavaScript to execute by setting the
onclick attribute value:

document. LANSA.SEARCH.onclick =
"HandleWebEvent('MYPROC', MYFUNC', null, WEFrame',
'ASURNAME', 'ASTDRENTRY")"

3. The parameters are HandleWebEvent(Process, Webevent, Form, Target,
"ASURNAME", "ASTDRENTRY", ...), a variable number of parameters on
the end can be passed for fields, the values of which are to be passed to the
WebEvent. The parameters are all characters strings except for Form, which
should be the actual form DHTML object (e.g. document. MYFORM). It is
important to provide a single character prefix before the field name. The
prefix is A for Alphanumeric, P for Packed and S for Signed fields, or Q for
RDMLX fields. This prefix is required so that a WEBEVENT being invoked
is able to exchange the passed field values.

The Target parameter for the JavaScript function must be specified and must
be a name of the contained Navigation panel (std_nav_panel) weblet,
window, or your own <iframe> or <frame> HTML element.

4. The JavaScript function gets the values for the fields from the specified Form
parameter (or default "LANSA" form if Form is null), creates a temporary
form and inserts the fields and their values into the temporary form for
posting to the url, and then performs an HTTP post to the url. Note, the field
names passed as parameters to HandleWebEvent() must all be prefixed with a

single character prefix denoting the field type. WAM field references do not
require prefixes, but WEBEVENT functions do, hence the JavaScript code
retrieves the specified field values from a WAM form without this single
character prefix, but posts field names to the WEBEVENT function with the
prefix.

5. As aresult, a WebEvent LANSA function is executed passing the specified
field values and a WebEvent page is shown in the Target Navigation panel
(std_nav_panel), window, or your own <iframe> or <frame> HTML element.

Example

How a WAM form can initiate a WEBEVENT form and pass information to
it.

Consider a Search WAM form, which submits to a Browse WEBEVENT, but
passing the entered SURNAME field value, and shows the result in Navigation
panel (std_nav_panel) below the Search button.

1. In the LANSA Editor, drag and drop Navigation panel (std_nav_panel)
weblet onto the page, as shown below, and enter 'WEFrame' for its name
property. Select yes for its size_panel_to_content property, so that it resizes
itself to full size of the WEBEVENT page it navigates to.

2. Click on the Search button and enter 'HandleWebEvent("MYPROC",

"MYFUNC", null, "WEFrame", "ASURNAME",

"ASTDRENTRY"); return false;' for the presubmit_js property of the
Search button.

ri= title

= text_class

G Inresubmit_js e", "ASURMAME", "ASTDREMTREY"): return false; B
= confirm Falsa

s ronfirmTeyt N

&

Enter XPath expression for the currently selected property i

'HandleWebEvent{™MYPROC", "™MYFUNC", null, "WEFrame”, "ASURNAME", "ASTDRENTRY™); return
falze;'

presubmit_js
Javascript code to run prior to submitting, must be followed by a sermnicolon.

3. When you run this page in the browser, clicking on Search button will submit
to a WEBEVENT, showing its page in the Navigation panel (std_nav_panel)
weblet, on the same page.

6.4 A WEBEVENT Container Form Managing WAM Forms

The primary mechanism for invoking a WEBEVENT form is via a JavaScript
function called HandleEvent(). A similar JavaScript based method of invoking a
WAM form from a WEBEVENT form, called called HandleWAMEvent() is

also provided.

Here's how you can invoke a WAM form from a WEBEVENT form:
1. A JavaScript function named HandleWAMEvent() is provided.

This function can be called the same way HandleEvent() function is called

now.

2. The parameters are HandleWAMEvent(WAM, Webroutine, TechServ, Form,
Target, actionRequest, Partition, Language, optSessionKey, optDebugMode,
"ASURNAME", "ASTDRENTRY", ...), a variable number of parameters can
be passed for fields, the values of which are to be passed to the Webroutine. It
is important to provide a single character prefix before the field name. The
prefix is A for Alphanumeric, P for Packed and S for Signed fields, or Q for
RDMLX fields. Although this prefix is not required when passing field
values to a WAM WEBROUTINE, it is required to access the form field
value, as well as being more consistent with HandleWebEvent() JavaScript
function semantics.

3. The parameters of HandleWAMEvent are:

WAM
Webroutine

TechServ

Form

Target

actionRequest

Partition

The name of the target WAM.
The name of the target WEBROUTINE.

The Technology Service to use, can be null for default
LANSA XHTML Technology Service

The form HTML object to get field values for submit from,
e.g. document. MYFORM for a form with "MYFORM"
name, can be null for default LANSA form.

The target iframe, frame or window where the result of
navigation will be displayed, null to navigate to a new page.

If left null, is the default "cgi-bin/lansaweb" action request.

The partition to execute the WAM from.

Language The language under which the WAM will execute.

optSessionKey Can optionally pass the session key, if the
SessionKeyMethod is URL, otherwise null.

optDebugMode Can pass the debug url keyword to allow debugging of the
WAM, otherwise null.

4. The JavaScript function gets the values for the fields from the specified Form
parameter (or default "LANSA" form if Form is null), creates a temporary
form and inserts the fields and their values into the temporary form for
posting to the url, and then performs an HTTP post to the url. Note, the field
names passed as parameters to HandleWebEvent() must all be prefixed with a
single character prefix denoting the field type. WAM field references do not
require prefixes, but WEBEVENT functions do, hence the JavaScript code
retrieves the specified field values from a WEBEVENT form with this single
character prefix, but posts field names to the WAM function without it.

5. The Target parameter for the JavaScript function must be specified and must
be a name of the contained iframe, frame or window.

6. As aresult a Webroutine is executed passing the specified field values and a
Webroutine page is shown in the browser. The submitted fields must be
specified on the WEB_MAP FOR(*INPUT or *BOTH) for the values to be
set in the Webroutine.

Example

How a WEBEVENT form can initiate a WAM form and pass information to
it

1. Create a function and paste this code:

Function Options(*DIRECT *webevent)
sk

Define Field(#searchwam) Type(*char) Length(1)

Define Field(#wamname) Type(*char) Length(9)

Define Field(#webrname) Type(*char) Length(20)

Define Field(#techserv) Type(*char) Length(21)

Define Field(#frametgt) Type(*char) Length(20)

Define Field(#currlang) Type(*char) Length(4) Default(*language)

%

Group_By Name(#webform) Fields((#stdrentry *hidden) (#frametgt *noid) #st

%

Change Field(#wamname) To(<your wam name>)

Change Field(#webrname) To(<your wam webroutine name>)
Change Field(#frametgt) To(<your iframe name>)

Change Field(#stdrentry) To(NN)

sk

Request Fields(#webform) Exit_Key(*no) Menu_Key(*no) Prompt_Key(*no)
sk

2. Replace <your wam name>, <your wam name> and <your iframe name>
with the appropriate names.

Note that the WAM must exist in the same partition and will execute in the
same language using the default LANSA:XHTML technology service.
Otherwise, change the values of fields #techserv, #currlang and #partition
accordingly.

3. Using the LANSA Web Editor, create a Visual component type Input and call
it FRAMETGT.

4. Name the page for the component FRAMETGT as well.
5. Create a new page and past this code:

<iframe style="width:600px; height:400px" name='<RDML MERGE="FRAMN
</iframe>

6. Save the page as FRAMETGT.

7. Using the LANSA Web Function Editor, create a Visual component type
Input and call it SEARCHWAM.

8. Name the page for the component SEARCHWAM as well.

9. Create a new page and past this code:

<button onclick="return
HandleWAMEvent('<SRDML MERGE="WAMNAME">',
'<RDML MERGE="WEBRNAME">' '<RDML MERGE="TECHSERV">' ni

<script type="text/javascript">
//I<I[CDATA[

function CreateTempForm(ownerDoc)

{

var oTempForm = ownerDoc.createElement("form");

if (ocTempForm != null)

{
if (typeof oTempForm.setAttribute === "function")
{
oTempForm.setAttribute("method", "post");
}
else
{
oTempForm = ownerDoc.createElement("<form method=\"post\">
</form>");
}
}
return oTempForm;
}

function HandleWAMEvent(WAM, WebRoutine, techServ, Form, Target,
actionRequest, Partition, Language, optSessionKey, optDebugMode /*, field1,
field2, etc...*/)

{ if (Form == null)
{ Form = document. LANSA;
i}f (techServ == null)
{ techServ = "LANSA:XHTML";
}

var oTempForm = CreateTempForm(Form.ownerDocument);

if (oTempForm != null)

{
Form.ownerDocument.body.appendChild(oTempForm);
var argLen = arguments.length;

if (argLen > 10)
{
for (var index = 10; index < argLen; index++)
{
var fieldNameWithPrefix = arguments[index];
var fieldName = fieldNameWithPrefix.substr(1,
fieldNameWithPrefix.length - 1);
for (var ind = fieldNameWithPrefix.length; ind < 10; ind++)
{
fieldNameWithPrefix +="";
}
var fieldValue = Form.elements|fieldNameWithPrefix].value;
InsertHidden(oTempForm, fieldName, fieldValue);
}
}

// Add STDANCHOR if available
var anchorField = Form.elements["ASTDANCHOR"];
if (anchorField != null)
{
InsertHidden(oTempForm, "STDANCHOR", anchorField.value);
}

var prevAction = oTempForm.action;

var prevTarget = oTempForm.target;

var action = "";

if (actionRequest == null || actionRequest.length <= 0)

{
actionRequest = "/cgi-bin/lansaweb";
}
action += actionRequest + "?wam="+ WAM + "&webrtn=" +
WebRoutine + "&ml=" + techServ + "&part=" + Partition + "&lang="+
Language;
if (optDebugMode != null && optDebugMode.length > 0)
{
action += "&debug=" + optDebugMode;

}
if (optSessionKey != null)

{

action += "&sid=" + optSessionKey;

}

oTempForm.action = action;

if (Target != null)
{
oTempForm.target = Target;
}
oTempForm.submit();
setTimeout(function() {
oTempForm.action = prevAction;
oTempForm.target = prevTarget;
oTempForm.parentNode.removeChild(oTempForm);
}, 100);
}

return false;

}

function InsertHidden(Form, FieldName, FieldValue)
{

if (Form == null)

{

return;

}

var field = Form.elements[FieldName];

if (field == null)
{

var elem = Form.document.createElement("input");

if (elem != null)

{
elem.setAttribute("type", "hidden");
elem.setAttribute("name", FieldName);
elem.setAttribute("value", FieldValue);
Form.appendChild(elem);

}

}

else
{

field.value = FieldValue;
}

}
/N>
</script>

10. Save the page as SEARCHWAM.
11. Compile your webevent functions generating the HTML.

12. Run the above WEBEVENT example in the browser. Clicking a Search
button should navigate to a WAM and WEBROUTINE you nominated in
WAMNAME and WEBRNAME fields. The HTML response resulting from
executing the WEBROUTINE will be shown in the FRAMETGT component
on the same page as the WEBEVENT Search button.

6.5 Sharing Information between WAMs and WEBEVENT
Functions

Existing WEBEVENT functions sometimes share non-visible or server side
information amongst themselves using hidden browse list(s) and/or hidden
field(s) that often pass through the client browser on each web interaction. This
technique is a simple form of session state management.

This technique is acceptable for sharing information between WEBEVENT
functions, but it cannot be used to share information between WAMs and
WEBEVENT functions - or vice-versa.

There is a newer, better and clearer general-purpose technique for sharing
information between both WEBEVENT and WAM applications executing
within the same web session and it is described in:

6.5.1 Uniquely Identifying Shared Data

6.5.2 Sharing Data

6.5.3 Clean up Shared Data

6.5.4 Visual LANSA Framework and the 'Virtual Clipboard'

6.5.1 Uniquely Identifying Shared Data

Any interaction between a browser and a server via a stateless HT'TP protocol
can use a unique value passed between the browser and server. This serves as
special key to indentify other data maintained on the server that is never passed
to the browser and not visible. It is analogous to a key in a database that
identifies a row or multiple rows of data and can also server as a foreign key to
other tables of data.

WAMs use a similar technique, using a unique identifier which is used as a way
to determine the identity of the session and its access session state on the server.

You can use a similar method to share data between a WEBEVENT function
and a WAM. All that is required is to pass a special unique identifier key
between the browser and the server as the browser interaction progresses from
WEBEVENT to a WAM and vice versa. The browser can simply store this
value in a hidden field on the form, which is submitted with the form.

It is strongly recommended this identifier value is 32 bytes long and unique, to
identify unique server data sets. WAM forms, by default, maintain and submit
STDANCHOR field for this purpose. For WEBEVENT forms you should add
this field to your DISPLAY/REQUEST commands to ensure it is also placed on
your WEBEVENT forms. You should create this Alpha field of length 32 in
your repository and use it in both your WAM and WEBEVENT code to retrieve
data you wish to share between them. You can then use this field as a key into a
database table that maintains shared data, or use operating system files with the
key as a filename to maintain shared data.

6.5.2 Sharing Data

As an example, consider an application that needs to share a shopping cart. The
shopping cart may be represented by a list and may contain a product identifier,
product name, and quantity. Consider a WEBEVENT application where a
customer adds a number of products to a shopping cart list. In your
WEBEVENT code, you can assign a unique identifier to STDANCHOR and
then insert entries in the shopping cart list into a database table with
STDANCHOR as a key. Add STDANCHOR to the DISPLAY command to
ensure that its value is available in the form as a hidden field.

When a WEBEVENT form is shown in the browser, it will also contain the
STDANCHOR unique identifier. You can then navigate to a WAM using the
HandleWAMEvent() JavaScript function as described in 6. WAM and
WEBEVENT Interoperability.

HandleWAMEvent() automatically looks for the STDANCHOR field in the
form and submits its value as well.

On the WAM side, the STDANCHOR field needs to be placed on the
WEB_MAP to ensure it is mapped into the WebRoutine. When the target
WebRoutine is executed, it will receive the STDANCHOR identifier value and
any other field values passed via HandleWAMEvent() and mapped into the
WebRoutine on the WEB_MAP. In the WebRoutine, the shopping cart list can
then be retrieved from the database table using the STDANCHOR key. The
values can then be placed into a WAM list that belongs to WAM Session state
and the data keyed by STDANCHOR deleted from the database. Alternatively, a
special cleanup job can be scheduled to run to clean up stale data from the
database.

To pass data from a WAM to a WEBEVENT, the steps above can be performed
in reverse order. The HandleWebEvent() JavaScript function automatically
looks for the STDANCHOR field on the WAM form and submits it with the rest
of submitted data.

6.5.3 Clean up Shared Data

As described in 6.5.2 Sharing Data, maintaining shared data between WAMs
and WEBEVENT functions requires the data to be stored in some storage such
as database or files accessible to both. The nature of browser-based applications
is such that it is not always possible to know when a user has finished using the
application so that appropriate clean up of shared data can be performed.

It is for this reason that all browser-based applications that require transient data
to be maintained on the server need some kind of timeout mechanism to
determine when this data is stale and can be cleaned up.

For this reason, when sharing data using the STDANCHOR mechanism
described in 6.5.2 Sharing Data, it is recommended that a time stamp is also set
on the data whenever shared data is stored or updated. This time stamp can then
be used by the clean up job to determine the last time the data was used and
whether is is a candidate for clean up.

If your application has some kind of "Logout" function, it is recommended that
shared data clean up also occurs at this point. However, a user may not always
perform a "Logout", hence a clean up mechanism is still required to ensure stale
shared data is cleaned up.

6.5.4 Visual LANSA Framework and the 'Virtual Clipboard'

Visual LANSA Framework for the Web employs a 'virtual clipboard' facility for

sharing session data. Refer to The Virtual Clipboard in the Visual LANSA
Framework Guide.

its:Lansa048.chm::/lansa/lansa048_0840.htm

7. Technology Services

WAMs use XSL Technology both for generation of XSL Stylesheets and at
runtime to produce presentation output that is delivered to the browser (or other
user agent).

XSL Technology allows for transformations, the output of which is another XSL
Stylesheet. This is the purpose of the Technology Service XSL Stylesheet used
for generation.

The Input XML to the Technology Service XSL Stylesheet is an XML file
containing information about the fields and lists used in WebRoutines. This is
information such as field length, field type, its attributes and so on. This
information can be used by the Technology Service XSL Stylesheet to generate
the appropriate WebRoutine Stylesheet to reflect its fields and lists used in
WEB_MAPs.

LANSA supplies Technology Services for XHTML and jQuery Mobile. You
may need to create your own Technology Service for the following reasons:

e To implement other existing XML mark-up languages, such as BPEL, or
new ones as they appear.

e To interface with a supplier or customer that expects a custom XML format.

e To customize for specific user-agents (for example, HTML with Microsoft
Internet Explorer specific extensions).

To create a Technology Service, refer to

7.1 Create a Technology Service

7.2 TSML Document Structure

7.3 TSML Document Example

7.4 WebRoutine TSP Stylesheet and the LANSA Editor
7.5 Default Weblet for Technology Service

7.6 About Weblets and Weblet Templates

7.1 Create a Technology Service

To create a Technology Service, follow these steps:

Step 1. Create a Technology Service

Step 2. Create the Technology Service XSL Stylesheets

Step 2a. Create the WebRoutine TSP Stylesheet

Step 2b. Create the Weblet TSP Stylesheet

Step 2c. Copy your Technology Service Stylesheets to the TSP directory

Step 1. Create a Technology Service

You create a Technology Service using the LANSA Editor. The Provider and
Technology Service name uniquely identify the Technology Service.

When you create a Technology Service you define its properties. The properties
store definitions and options used by the LANSA Editor and the WAM runtime.
Also see

Editing Provider Definitions in the Visual LANSA User Guide

Technology Services in the Technical Reference Guide

Step 2. Create the Technology Service XSL Stylesheets

How WAMs use XSL stylesheets to transform the WebRoutine XML document
into different presentation formats and the purpose of Technology Services, is
described earlier in this guide. Refer to WAMs Deconstructed.

LANSA uses XSL stylesheets itself to generate the WebRoutine XML document
and the WebRoutine XSL stylesheet for a Technology Service as shown here:

its:Lansa012.chm::/lansa/l4wusr01_1610.htm
its:lansa015.chm::/lansa/l4wtgu04_0105.htm
its:LANSA087.CHM::/lansa/wamengm2_0010.htm

FDOMLX
Full
Function
Check

TEML
Document

> XSLT

Frocessor

il

0

Global
LML
Styleshest

sl sk
Styleshest

When XSL is generated for a WebRoutine, LANSA generates an in-memory
XML document named the Technology Service Markup Language (TSML)
document. This is the input document used to create both the WebRoutine
LXML document and the WebRoutine XSL stylesheet. A similar process is
followed for the WAM layout weblet.

When you create a Technology Service you need to provide two TSP

stylesheets:

e the first one to generate the WebRoutine XSL stylesheet
¢ the second one to generate the WAM layout weblet.

Your TSP Stylesheets must be encoded for UTF-8. That is, it should
include the statement <?xml version="1.0" encoding="UTF-8" ?>

The XSL used for transformation of the XML WebRoutine document

conforms with the standard W3C XSL 1.0 specification. Refer to XSL
1.0 references for information.

The Global LXML stylesheets are the same, regardless of Technology Service.
You don't need to create your own.

Refer to these sections for information about the Technology Service Markup
Language document:

7.2 TSML Document Structure
7.3 TSML Document Example

Step 2a. Create the WebRoutine TSP Stylesheet

The WebRoutine TSP stylesheet is used to create the WebRoutine XSL
stylesheet as shown in the diagram in Step 2.

You must follow this naming convention (Name must be all lower-case):
tsp_<provider>_<technology_service_name>_WebRoutine.xsl

Where <provider> is the Technology Service Provider and
<technology_service_name> is the Technology Service name. For example, for
LANSA:XHTML the WebRoutine TSP stylesheet name is:

tsp_lansa_xhtml_WebRoutine.xsl

The easiest way of creating a WebRoutine TSP stylesheet is to base it on the
ones provided by LANSA.

The shipped WebRoutine TSP stylesheets have two top-level
parameters (g_inliner_call and g_import_path). These are used to

support inline lists. An inliner call is when the generator needs to
insert the inline weblet.

Step 2b. Create the Weblet TSP Stylesheet

The Weblet TSP stylesheet is used to create the WAM Layout Weblet. When
you create a WAM, LANSA checks if it has a Layout weblet. If it doesn't have
one, it uses this TSP stylesheet to create one.

You must follow this naming convention (Name must be all lower-case):
tsp_<provider>_<technology_service_name>_webletbuilder.xsl

Where <provider> is the Technology Service Provider and
<technology_service_name> is the Technology Service name. For example, for
LANSA:XHTML the Weblet TSP stylesheet name is:

tsp_lansa_xhtml_webletbuilder.xsl

The easiest way of creating a Weblet TSP stylesheet is to base it on the ones
provided by LANSA.

Note: The shipped Weblet TSP stylesheets have templates for creating

other weblets. Currently the only weblet you need to implement in
your TSP stylesheet is the Layout weblet.

Step 2c. Copy your Technology Service Stylesheets to the TSP
directory

All TSP stylesheets must be placed in the TSP directory:
... <sysdir>\web\tsp
IBM i and Unix/Linux: ... <lansa root>/x_lansa/web/tsp

7.2 TSML Document Structure

The Technology Service Markup Language (TSML) document is produced by
Visual LANSA. It describes the fields and lists mapped (defined in
WEB_MAPS) in the WebRoutine, has context information from the WAM and
stores values from the existing LXML document (which will be replaced) so
they can be retained in the new XML/XSL to be generated. Its structure is very
similar to the LXML document (which can be viewed in the XML tab of the
Web Design in the LANSA Editor), but with additional meta-data used to create
the XSL stylesheet.

The TSML document is divided into the following sections:

Technology Service List

Used by Generation to determine how many XSL exist for a given Technology
Service. If there is only XSL (for the default language) and the WebRoutine
XSL is regenerated, then tsml nodes from the document about to be replaced
can be safely removed.

Server Instructions

These instructions are mapped directly into the LXML document. These
elements are used by the WAM runtime to prepare the HTTP response.

Weblets Section

Lists the weblets used for visualization by the tsml:field and tsml:list columns
referenced in the WebRoutine. The weblets list the parameters for template calls
used by each Technology Service.

LXML Data Section

Lists content that will map into LXML data islands in XSL stylesheets. For
example, it lists picklist entries for dropdowns.

Replaced-LXML Section

This section contains the portions of the current LXML document (to be
replaced by regeneration) that have values that should be retained. Currently
this section includes cookies, sample messages, field captions and sample
values, list captions and sample values and TSML data islands.

Context Section

This section in the TSML document contains contextual information about the
WebRoutine. Items such as WAM name, WebRoutine name, WebRoutine title
are available here. Note: Not all the context items map into context Ixml:items.

Some are used only during generation. For example, the tsml:layout-name item
names the layout weblet to import in the XSL stylesheet.

Options Section

The options section contains various options that may be modified for a
WebRoutine that may determine whether particular validation or presentation
functionality is enabled.

Messages Section
Maps into the LXML document messages section.

Fields Section

The fields section contains fields that appear as outgoing fields in WEB_MAP
statements in the WebRoutine. These are the fields that appear in the field list in
the LXML document. In addition to the caption and value elements, the
tsml:field has meta-data content such as display size, input-case and weblet
visualization (if available).

Lists Section

The lists section contains lists that appear as outgoing lists in WEB_MAP
statements in the WebRoutine. These are the lists that appear in the LXML
document. In addition to the column caption and value elements, the
tsml:column has the same meta-data content as the tsml:field element.

The LANSA Editor uses the WebRoutine TSP stylesheet to create
XSL for fields and lists. If your Technology Service is editable by the

LANSA Editor, your templates to create fields and lists must follow
the pattern used in the TSP stylesheets provided by LANSA.

7.3 TSML Document Example

The following is an example of the TSML document:

<?xml version="1.0" encoding="UTF-8"?>

<tsml:data full-

document="true" inline="none" xmlns:tsml="http://www.lansa.com/2002/XMI
Metadata">

<tsml:technology-service-list>

<tsml:technology-service used_by="LANSA_XHTML" lang-count="1" />

<tsml:server-instructions>
<tsml:client-charset />
<tsml:cookies />

<tsml:ssi />
</tsml:server-instructions>

<tsml:replaced-Ixml xmlns:Ixml="http://www.lansa.com/2002/XML/Runtime-
Data" />

<tsml:weblets>

<tsml:weblet name="std_dropdown.std_dropdown">
<tsml:technology-services>

<tsml:technology-service name="LANSA:XHTML" mod-
id="20120116205618000">

<tsml:template-params>

<tsml:template-param>
<tsml:param-name>display_mode</tsml:param-name>
<tsml:param-role>std:display_mode</tsml:param-role>
</tsml:template-param>

<tsml:template-param>
<tsml:param-name>items</tsml:param-name>
<tsml:param-role>std:picklist</tsml:param-role>
</tsml:template-param>

<tsml:template-param>
<tsml:param-name>pos_absolute</tsml:param-name>
<tsml:param-role>std:pos_absolute_design</tsml:param-role>
</tsml:template-param>

<tsml:template-param>

<tsml:param-name>width_design</tsml:param-name>
<tsml:param-role>std:width_design</tsml:param-role>
</tsml:template-param>

</tsml:template-params>

</tsml:technology-service>
</tsml:technology-services>

</tsml:weblet>

</tsml:weblets>

<tsml:lxml-data xmlns:Ixml="http://www.lansa.com/2002/XML/Runtime-
Data">

<Ixml:picklist id="9C3BBEF5861148FE8B36378F5F06EF26" field-
ref="GRADEX">

<Ixml:item>

<lxml:caption>

<Ixml:variable name="MTXTGRADED" />
</Ixml:caption>
<Ixml:value>D</Ixml:value>

</Ixml:item>

<Ixml:item>

<lxml:caption>

<Ixml:variable name="MTXTGRADEM" />
</Ixml:caption>
<Ixml:value>M</Ixml:value>

</Ixml:item>

<Ixml:item>

<lxml:caption>

<Ixml:variable name="MTXTGRADEP" />
</Ixml:caption>
<Ixml:value>P</Ixml:value>

</Ixml:item>

<Ixml:item>

<lxml:caption>

<Ixml:variable name="MTXTGRADEF" />
</Ixml:caption>
<Ixml:value>F</Ixml:value>

</Ixml:item>

</Ixml:picklist>

</tsml:Ixml-data>

<tsml:context>

<tsml:user-id>QOTHPRDOWN</tsml:user-id>
<tsml:webapplication>EMPWAM</tsml:webapplication>
<tsml:webapplication-title>Employee</tsml:webapplication-title>
<tsml:WebRoutine>skills</tsml: WebRoutine>
<tsml:WebRoutine-title>Employee skills</tsml:WebRoutine-title>
<tsml:service-name />

<tsml:partition>WEX</tsml:partition>

<tsml:language iso-lang="en">ENG</tsml:language>
<tsml:images-path>/images</tsml:images-path>
<tsml:action-request>/CGI-BIN/lansaweb</tsml:action-request>
<tsml:layout-name>empwam_layout</tsml:layout-name>
<tsml:timestamp>2012-03-07T10:30:00+10:00</tsml:timestamp>
</tsml:context>

<tsml:options>

<tsml:option name="DBCS">false</tsml:option>
<tsml:option name="align-right">true</tsml:option>
<tsml:option name="check-numeric">false</tsml:option>
<tsml:option name="debug" />

<tsml:option name="trace" />

<tsml:option name="task" />

</tsml:options>

<tsml:variables />
<tsml:messages />

<tsml:fields>

<tsml:field name="EMPNQ">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDE</tsml:sample-value>
<tsml:format>

<tsml:type>alpha</tsml:type>
<tsml:display-max-length>5</tsml:display-max-length>
<tsml:max-length>5</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift />

</tsml:format>

<tsml:caption ref="description">

<tsml:label>Employee no....</tsml:label>
<tsml:description>Employee Number</tsml:description>
<tsml:heading-1> Employ</tsml:heading-1>
<tsml:heading-2> Number</tsml:heading-2>
<tsml:heading-3 />

</tsml:caption>

</tsml:field>

<tsml:field name="GIVENAME">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDEFGHIJKLMNOPQRST</tsml:sample-value>
<tsml:format>

<tsml:type>alpha</tsml:type>
<tsml:display-max-length>20</tsml:display-max-length>
<tsml:max-length>20</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift>O</tsml:keyboardshift>
</tsml:format>

<tsml:caption ref="description">

<tsml:label>Given names....</tsml:label>
<tsml:description>Employee Given Name(s)</tsml:description>
<tsml:heading-1>Given name(s)</tsml:heading-1>
<tsml:heading-2 />

<tsml:heading-3 />

</tsml:caption>

</tsml:field>

<tsml:field name="SURNAME">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDEFGHIJKLMNOPQRST</tsml:sample-value>
<tsml:format>

<tsml:type>alpha</tsml:type>
<tsml:display-max-length>20</tsml:display-max-length>
<tsml:max-length>20</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift>O</tsml:keyboardshift>
</tsml:format>

<tsml:caption ref="description">
<tsml:label>Surname........ </tsml:label>

<tsml:description>Employee Surname</tsml:description>
<tsml:heading-1>Surname</tsml:heading-1>
<tsml:heading-2 />

<tsml:heading-3 />

</tsml:caption>

</tsml:field>

</tsml:fields>

<tsml:lists default-sample-size="5">

<tsml:list name="SKILLS" inline="false">
<tsml:mode>input</tsml:mode>
<tsml:list-header>

<tsml:header name="SKILCODE">
<tsml:heading-1>Skill</tsml:heading-1>
<tsml:heading-2>Code</tsml:heading-2>
<tsml:heading-3 />

</tsml:header>

<tsml:header name="SKILDESC">
<tsml:heading-1>Skill</tsml:heading-1>
<tsml:heading-2>Description</tsml:heading-2>
<tsml:heading-3 />

</tsml:header>

<tsml:header name="GRADEX">
<tsml:heading-1>Grade</tsml:heading-1>
<tsml:heading-2>0Obtained</tsml:heading-2>
<tsml:heading-3>for</tsml:heading-3>
</tsml:header>

<tsml:header name="DATEACQ">
<tsml:heading-1> Date Skl</tsml:heading-1>
<tsml:heading-2> Acquired</tsml:heading-2>
<tsml:heading-3 />

</tsml:header>

</tsml:list-header>

<tsml:list-entries>

<tsml:entry>

<tsml:column name="SKILCODE">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDEFGHIJ</tsml:sample-value>
<tsml:format>

<tsml:type>alpha</tsml:type>
<tsml:display-max-length>10</tsml:display-max-length>
<tsml:max-length>10</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift>O</tsml:keyboardshift>
</tsml:format>

</tsml:column>

<tsml:column name="SKILDESC">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDEFGHIJKLMNOPQRST</tsml:sample-value>
<tsml:format>

<tsml:type>alpha</tsml:type>
<tsml:display-max-length>20</tsml:display-max-length>
<tsml:max-length>20</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift>O</tsml:keyboardshift>
</tsml:format>

</tsml:column>

<tsml:column name="GRADEX">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>D</tsml:sample-value>
<tsml:format>

<tsml:type>alpha</tsml:type>
<tsml:display-max-length>1</tsml:display-max-length>
<tsml:max-length>1</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift />

</tsml:format>

<tsml:use-weblets>

<tsml:use-weblet name="std_dropdown.std_dropdown" technology-
service="LANSA:XHTML" />

</tsml:use-weblets>

</tsml:column>

<tsml:column name="DATEACQ">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>12/34/56</tsml:sample-value>
<tsml:format>

<tsml:type>signed</tsml:type>
<tsml:display-max-length>11</tsml:display-max-length>

<tsml:max-length>6</tsml:max-length>
<tsml:total-digits>6</tsml:total-digits>
<tsml:fraction-digits>0</tsml:fraction-digits>
<tsml:decimal-separator>.</tsml:decimal-separator>
</tsml:format>

</tsml:column>

</tsml:entry>

</tsml:list-entries>

</tsml:list>

</tsml:lists>

</tsml:data>

7.4 WebRoutine TSP Stylesheet and the LANSA Editor

The WebRoutine TSP stylesheet is used both during generation and by the
LANSA Editor when you drag and drop fields and or lists in the web designer.

7.4.1 Payload Wrapper XSL stylesheet
7.4.2 Sample Field Drag and Drop

7.4.1 Payload Wrapper XSL stylesheet

The LANSA Editor uses a Payload Wrapper" XSL stylesheet to transform a
field or list TSML node and get the contents to add to the design.

The Payload Wrapper XSL imports the WebRoutine TSP stylesheet (for the
currently active TSP). The output of this XSL is the contents that the LANSA
Editor needs to add to the design (XSL imports, Ixml data nodes, XSL for the
field or list)

Note that the Payload Wrapper expects some XSL templates to be defined in the
WebRoutine TSP Stylesheet.

<?xml version="1.0" encoding="UTF-8"?>

<!-- (c) 2002, 2013 LANSA >

<!-- WAM Editor TSP Stylesheet Wrapper -->
<l-- $Workfile:: tsp_payload_wrapper.xsl $-->
<!-- $Revision:: 3 $ >

<xsl:transform version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xslt="http://www.lansa.com/2002/XSL/Transform-Alias"
xmlns:Ixml="http://www.lansa.com/2002/XML/Runtime-Data"
xmlns:tsml="http://www.lansa.com/2002/XML/Generation-Metadata"
xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"
xmlns:lansa_design="http://www.lansa.com/2002/XML/Design"
xmlns="http://www.w3.0rg/1999/xhtml"
exclude-result-prefixes="tsml">

<xsl:import href="%tsp_webroutine%.xsl"/>

<xsl:output method="xml" omit-xml-declaration="no"
encoding="UTF-8" indent="yes"/>
<xsl:namespace-alias stylesheet-prefix="xslt" result-prefix="xsl"/>

<xsl:template match="tsml:data[@full-document = 'false']">
<lansa_design:payload
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:Ixml="http://www.lansa.com/2002/XML/Runtime-Data"
xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"

xmlns:lansa_design="http://www.lansa.com/2002/XML/Design"
xmlns="http://www.w3.0rg/1999/xhtml]">

<lansa_design:imports>
<xsl:call-template name="weblet-imports"/>
</lansa_design:imports>

<xsl:apply-templates select="tsml:lxml-data"/>

<lansa_design:content>

<xsl:apply-templates select="*[not(self::tsml:Ixml-data)]"/>
</lansa_design:content>

</lansa_design:payload>

</xsl:template>

<xsl:template match="tsml:Ixml-data">
<lansa_design:Ixml-data>
<xsl:apply-imports />
</lansa_design:Ixml-data>
</xsl:template>

<xsl:template match="tsml:fields">
<xsl:apply-templates select="tsml:field" />
</xsl:template>

<xsl:template match="tsml:field">
<lansa_design:label>

<xsl:if test="(tsml:mode != 'hidden") and (tsml:mode != 'private")">
<xsl:call-template name="field-caption">
<xsl:with-param name="field" select="."/>
</xsl:call-template>

</xsl:if>

</lansa_design:label>
<lansa_design:value>

<xsl:if test="tsml:mode != 'private"">
<xsl:call-template name="field-value">
<xsl:with-param name="field" select="."/>
</xsl:call-template>

</xsl:if>

</lansa_design:value>
</xsl:template>

<xsl:template match="tsml:lists[not(@column-only)]">
<lansa_design:reference>

<xsl:apply-imports />

</lansa_design:reference>

<lansa_design:implementation>

<xsl:apply-templates select="tsml:list" mode="template_definition"/>
</lansa_design:implementation>

</xsl:template>

<xsl:template match="tsml:lists[@column-only]">
<xsl:apply-templates select="tsml:list"/>
</xsl:template>

<xsl:template match="tsml:lists[@column-only]/tsml:list">
<lansa_design:value>
<xsl:variable name="inline list"
select="(@inline = 'true") or ((@inline = 'default’) and
$g_inline_lists)"/>
<xsl:apply-templates select="./tsml:list-entries/tsml:entry/tsml:column"
mode="column_placement">
<xsl:with-param name="inline_list" select="$inline_list"/>
</xsl:apply-templates>
</lansa_design:value>
</xsl:template>
</xsl:transform>

7.4.2 Sample Field Drag and Drop

The following samples show the field, list and list column TSML nodes and the
resulting documents produced by by the Payload Wrapper XSL stylesheet. We
use Technology Service XHTML for these samples:

Dragging and Dropping a Field
Dragging and Dropping a List
Dragging and Dropping a List Column

Dragging and Dropping a Field
Field TSML Node
Field Drag and Drop output

Field TSML Node

This is the TSML Node for a field with a picklist visualized with weblet
std_dropdown:

<?xml version="1.0" encoding="UTF-8"?>

<tsml:data full-document="false" inline="none"
xmlns:tsml="http://www.lansa.com/2002/XML/Generation-
Metadata">

<tsml:weblets>

<tsml:weblet name="std_dropdown.std_dropdown">

<tsml:technology-services>

<tsml:technology-service name="LANSA:XHTML"
mod-id="20121221132340000">

<tsml:template-params>

<tsml:template-param>

<tsml:param-name>display_mode</tsml:param-name>

<tsml:param-role>std:display_mode</tsml:param-role>

<tsml:param-select>"input'</tsml:param-select>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>items</tsml:param-name>

<tsml:param-role>std:picklist</tsml:param-role>

<tsml:param-select>document(")/*/Ixml:data/Ixml:dropdown</tsml:param-

select>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>name</tsml:param-name>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>pos_absolute</tsml:param-name>

<tsml:param-role>std:pos_absolute_design</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>width_design</tsml:param-name>

<tsml:param-role>std:width_design</tsml:param-role>

</tsml:template-param>
</tsml:template-params>
</tsml:technology-service>
</tsml:technology-services>
</tsml:weblet>
</tsml:weblets>

<tsml:lxml-data xmlns:Ixml="http://www.lansa.com/2002/XML/Runtime-

Data">

<lxml:picklist id="380F247733D94ECDA37898AA9AEFCCD5"
field-ref="DAYOFWEEK">

<lxml:item default="true">

<lxml:caption>

<lxml:variable name="MTXTDEMCALENO05801" /></Ixml:caption>

<lxml:value>MON</Ixml:value>

</Ixml:item>

<lxml:item>

<lxml:caption>

<lxml:variable name="MTXTDEMCALENO06001" /></Ixml:caption>

<lxml:value>TUE</Ixml:value>

</Ixml:item>

<lxml:item>

<lxml:caption>

<lxml:variable name="MTXTDEMCALEN06201" /></Ixml:caption>

<lxml:value>WED</lxml:value>

</Ixml:item>

<lxml:item>

<lxml:caption>

<lxml:variable name="MTXTDEMCALENO06401" /></Ixml:caption>

<lxml:value>THU</Ixml:value>

</Ixml:item>

<lxml:item>

<lxml:caption>

<lxml:variable name="MTXTDEMCALENO06601" /></Ixml:caption>

<lxml:value>FRI</Ixml:value>

</Ixml:item>

<lxml:item>

<lxml:caption>

<lxml:variable name="MTXTDEMCALENO06801" /></Ixml:caption>

<Ixml:value>SAT</Ixml:value>

</Ixml:item>

<Ixml:item>

<lxml:caption>

<lxml:variable name="MTXTDEMCALENO07001" /></Ixml:caption>
<Ixml:value>SUN</Ixml:value>

</Ixml:item>

</Ixml:picklist>

</tsml:Ixml-data>

<tsml:fields>

<tsml:field name="DAYOFWEEK">

<tsml:mode>input</tsml:mode>

<tsml:sample-value>MON</tsml:sample-value>

<tsml:format>

<tsml:type>alpha</tsml:type>

<tsml:display-max-length>3</tsml:display-max-length>

<tsml:max-length>3</tsml:max-length>

<tsml:input-case>uppercase</tsml:input-case>

<tsml:keyboardshift />

</tsml:format>

<tsml:caption ref="description">

<tsml:label>Day of the week</tsml:label>

<tsml:description>Day of the week</tsml:description>

<tsml:heading-1>Day</tsml:heading-1>

<tsml:heading-2>of</tsml:heading-2>

<tsml:heading-3>the</tsml:heading-3>

</tsml:caption>

<tsml:use-weblets>

<tsml:use-weblet name="std_dropdown.std_dropdown"
technology-service="LANSA:JQMOBILE" />

<tsml:use-weblet name="std_dropdown.std_dropdown"
technology-service="LANSA:XHTML" />

</tsml:use-weblets>

</tsml:field>

</tsml:fields>

</tsml:data>

Field Drag and Drop output

The output of the transformation is shown . The LANSA Editor puts the
relevant sections in their appropriate location in the target document (the
WebRoutine XSL stylesheet)

<?xml version="1.0" encoding="UTF-8"?>

<lansa_design:payload xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:lxml=http://www.lansa.com/2002/XML/Runtime-Data
xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"
xmlns:lansa_design="http://www.lansa.com/2002/XML/Design"
xmlns="http://www.w3.0rg/1999/xhtml]">

<lansa_design:imports>

<xsl:import href="std_dropdown.xsl" />

</lansa_design:imports>

<lansa_design:Ixml-data>

<lxml:data>

<Ixml:picklist id="380F247733D94ECDA37898AA9AEFCCD5">

<lxml:item default="true">

<lxml:caption>

<lxml:variable name="MTXTDEMCALENO05801"></Ixml:variable>

</Ixml:caption>

<lxml:value>MON</Ixml:value>

</Ixml:item>

<lxml:item>

<lxml:caption>

<lxml:variable name="MTXTDEMCALENO06001"></Ixml:variable>

</Ixml:caption>

<lxml:value>TUE</Ixml:value>

</Ixml:item>

<lxml:item>

<lxml:caption>

<lxml:variable name="MTXTDEMCALEN06201"></Ixml:variable>

</Ixml:caption>

<lxml:value>WED</lxml:value>

</Ixml:item>

<lxml:item>

<lxml:caption>

<lxml:variable name="MTXTDEMCALENO06401"></Ixml:variable>

http://www.lansa.com/2002/XML/Runtime-Data

</Ixml:caption>

<Ixml:value>THU</Ixml:value>

</Ixml:item>

<Ixml:item>

<lxml:caption>

<Ixml:variable name="MTXTDEMCALENO06601"></Ixml:variable>
</Ixml:caption>

<Ixml:value>FRI</Ixml:value>

</Ixml:item>

<Ixml:item>

<lxml:caption>

<Ixml:variable name="MTXTDEMCALENO06801"></Ixml:variable>
</Ixml:caption>

<Ixml:value>SAT</Ixml:value>

</Ixml:item>

<Ixml:item>

<lxml:caption>

<Ixml:variable name="MTXTDEMCALENO07001"></Ixml:variable>
</Ixml:caption>

<Ixml:value>SUN</Ixml:value>

</Ixml:item>

</Ixml:picklist>

</Ixml:data>

</lansa_design:Ixml-data>

<lansa_design:content>

<lansa_design:label>

<label class="caption" for="DAYOFWEEK">

<xsl:value-of select="key('field-caption', ' DAY OFWEEK")/Ixml:description"
/>

</label>

</lansa_design:label>

<lansa_design:value>

<xsl:call-template name="std_dropdown">

<xsl:with-param name="name" select=""DAYOFWEEK"' />
<xsl:with-param name="value" select="key('field-value', ' DAYOFWEEK")" />
<xsl:with-param name="display_mode" select=""input"" />

<xsl:with-param name="items"

select="document(")/*/Ixml:data/lxml:picklist{@id =
'380F247733D94ECDA37898AA9AEFCCD5']" />
</xsl:call-template>

</lansa_design:value>

</lansa_design:content>

</lansa_design:payload>

Dragging and Dropping a List
List TSML Node
List Drag and Drop Output

List TSML Node

<?xml version="1.0" encoding="UTF-8"?>
<tsml:data full-document="false"
inline="none"
xmlns:tsml="http://www.lansa.com/2002/XML/Generation-
Metadata">

<tsml:weblets>

<tsml:weblet name="std_boolean.std_boolean">

<tsml:technology-services>

<tsml:technology-service name="LANSA:XHTML"
mod-id="20121220163646000"
proxy-format="__, PROXY">

<tsml:template-params>

<tsml:template-param>

<tsml:param-name>display_mode</tsml:param-name>

<tsml:param-role>std:display_mode</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>pos_absolute</tsml:param-name>

<tsml:param-role>std:pos_absolute_design</tsml:param-role>

</tsml:template-param>

</tsml:template-params>

</tsml:technology-service>

</tsml:technology-services>

</tsml:weblet>

<tsml:weblet name="std_input.std_input">

<tsml:technology-services>

<tsml:technology-service name="LANSA:JQMOBILE"
mod-id="20130301081954000">

<tsml:template-params>

<tsml:template-param>

<tsml:param-name>displayMode</tsml:param-name>

<tsml:param-role>std:display_mode</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>id</tsml:param-name>

<tsml:param-select>concat($lweb_WRName,'_',$name)</tsml:param-select>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>label</tsml:param-name>
<tsml:param-role>std:field_caption</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>maxlength</tsml:param-name>
<tsml:param-role>std:field_maxlength</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>name</tsml:param-name>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>rdmlxDataType</tsml:param-name>
<tsml:param-role>std:rdmlx_data_type</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>size</tsml:param-name>
<tsml:param-role>std:field_display_length</tsml:param-role>
</tsml:template-param>
<tsml:template-param>
<tsml:param-name>type</tsml:param-name>
<tsml:param-role>std:field_input_type</tsml:param-role>
<tsml:param-select>"text'</tsml:param-select>
</tsml:template-param>
</tsml:template-params>
</tsml:technology-service>
</tsml:technology-services>
</tsml:weblet>
<tsml:weblet name="std_datepicker.std_datepicker">
<tsml:technology-services>
<tsml:technology-service name="LANSA:XHTML"
mod-id="20121220142947000"
proxy-format="__, PROXY">
<tsml:template-params>
<tsml:template-param>
<tsml:param-name>allow_sqlnull</tsml:param-name>
<tsml:param-role>std:allow_sqglnull</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>display_mode</tsml:param-name>

<tsml:param-role>std:display_mode</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>pos_absolute</tsml:param-name>

<tsml:param-role>std:pos_absolute_design</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>size</tsml:param-name>

<tsml:param-role>std:field_size</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>width</tsml:param-name>

<tsml:param-role>std:width_design</tsml:param-role>

</tsml:template-param>

</tsml:template-params>

</tsml:technology-service>

</tsml:technology-services>

</tsml:weblet>

<tsml:weblet name="std_char.std_char">

<tsml:technology-services>

<tsml:technology-service name="LANSA:XHTML"
mod-id="20121220115335000">

<tsml:template-params>

<tsml:template-param>

<tsml:param-name>class</tsml:param-name>

<tsml:param-role>std:field_css_class</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>display_length</tsml:param-name>

<tsml:param-role>std:field_display_length</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>display_mode</tsml:param-name>

<tsml:param-role>std:display_mode</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>height</tsml:param-name>
<tsml:param-role>std:height_design</tsml:param-role>
</tsml:template-param>

<tsml:template-param>
<tsml:param-name>keyboard_shift</tsml:param-name>
<tsml:param-role>std:keyboard_shift</tsml:param-role>
</tsml:template-param>

<tsml:template-param>
<tsml:param-name>maxlength</tsml:param-name>
<tsml:param-role>std:field_maxlength</tsml:param-role>
</tsml:template-param>

<tsml:template-param>
<tsml:param-name>pos_absolute</tsml:param-name>
<tsml:param-role>std:pos_absolute_design</tsml:param-role>
</tsml:template-param>

<tsml:template-param>
<tsml:param-name>type</tsml:param-name>
<tsml:param-role>std:field_input_type</tsml:param-role>
</tsml:template-param>

<tsml:template-param>
<tsml:param-name>width</tsml:param-name>
<tsml:param-role>std:width_design</tsml:param-role>
</tsml:template-param>

</tsml:template-params>

</tsml:technology-service>

</tsml:technology-services>

</tsml:weblet>

</tsml:weblets>

<tsml:lists default-sample-size="5">
<tsml:list name="LISTO01" inline="false">
<tsml:mode>input</tsml:mode>
<tsml:list-header>

<tsml:header name="BOOL01">
<tsml:heading-1>Boolean</tsml:heading-1>
<tsml:heading-2>field</tsml:heading-2>
<tsml:heading-3 /></tsml:header>
<tsml:header name="DAT01">
<tsml:heading-1>Date</tsml:heading-1>

<tsml:heading-2>field</tsml:heading-2>

<tsml:heading-3 /></tsml:header>

<tsml:header name="CHRO01">

<tsml:heading-1>DBCS Char</tsml:heading-1>

<tsml:heading-2>field</tsml:heading-2>

<tsml:heading-3>length 10</tsml:heading-3>

</tsml:header>

</tsml:list-header>

<tsml:list-entries>

<tsml:entry>

<tsml:column name="BOOL01">

<tsml:mode>input</tsml:mode>

<tsml:sample-value>False</tsml:sample-value>

<tsml:format>

<tsml:type>boolean</tsml:type>

<tsml:display-max-length>5</tsml:display-max-length>

<tsml:max-length>1</tsml:max-length>

</tsml:format>

<tsml:use-weblets>

<tsml:use-weblet name="std_boolean.std_boolean"
technology-service="LANSA:JQMOBILE" />

<tsml:use-weblet name="std_boolean.std_boolean"
technology-service="LANSA:XHTML" />

</tsml:use-weblets>

</tsml:column>

<tsml:column name="DAT(01">

<tsml:mode>input</tsml:mode>

<tsml:sample-value>1/01/1900</tsml:sample-value>

<tsml:format>

<tsml:type>date</tsml:type>

<tsml:display-max-length>10</tsml:display-max-length>

<tsml:max-length>10</tsml:max-length>

<tsml:sql-nullable>true</tsml:sql-nullable>

</tsml:format>

<tsml:use-weblets>

<tsml:use-weblet name="std_input.std_input"
technology-service="LANSA:JQMOBILE" />

<tsml:use-weblet name="std_datepicker.std_datepicker"
technology-service="LANSA:XHTML" />

</tsml:use-weblets>

</tsml:column>

<tsml:column name="CHRO01">

<tsml:mode>input</tsml:mode>

<tsml:sample-value>ABCDEFGHIJ</tsml:sample-value>

<tsml:format>

<tsml:type>char</tsml:type>

<tsml:display-max-length>10</tsml:display-max-length>

<tsml:max-length>10</tsml:max-length>

<tsml:input-case>uppercase</tsml:input-case>

<tsml:keyboardshift>J</tsml:keyboardshift>

</tsml:format>

<tsml:use-weblets>

<tsml:use-weblet name="std_input.std_input"
technology-service="LANSA:JQMOBILE" />

<tsml:use-weblet name="std_char.std_char"
technology-service="LANSA:XHTML" />

</tsml:use-weblets>

</tsml:column>

</tsml:entry>

</tsml:list-entries>

</tsml:list>

</tsml:lists>

</tsml:data>

List Drag and Drop Output

<?xml version="1.0" encoding="UTF-8"?>
<lansa_design:payload xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform'
xmlns:Ixml="http://www.lansa.com/2002/XML/Runtime-Data"
xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"
xmlns:lansa_design="http://www.lansa.com/2002/XML/Design"
xmlns="http://www.w3.0rg/1999/xhtml]">
<lansa_design:imports>

<xsl:import href="std_boolean.xsl" />

<xsl:import href="std_char.xsl" />

<xsl:import href="std_datepicker.xsl" />
</lansa_design:imports>

<lansa_design:content>

<lansa_design:reference>

<xsl:apply-templates

select="/Ixml:data/Ixml:lists/Ixml:list{ @name="LISTO01']"
wd:listname="LIST01">

<xsl:with-param name="allowSort" select="true()" />
<xsl:with-param name="allowColResize" select="true()" />
<xsl:with-param name="hoverEffect" select="false()" />
<xsl:with-param name="selectableRows" select="false()" />
<xsl:with-param name="hide_header_if_empty" select="true()" />
</xsl:apply-templates>

</lansa_design:reference>

<lansa_design:implementation>

1

<xsl:template match="/1xml:data/Ixml:lists/Ixml:list{@name="LIST01']">
<xsl:param name="allowSort" wd:type="std:boolean" select="true()"

wd:tip_id="" />

<xsl:param name="allowColResize" wd:type="std:boolean" select="true()"
wd:tip_id="" />

<xsl:param name="hoverEffect" wd:type="std:boolean" select="false()"
wd:tip_id="" />

<xsl:param name="selectableRows" wd:type="std:boolean" select="false()"
wd:tip_id="" />

<xsl:param name="hide_header_if_empty" wd:type="std:boolean"
select="true()" wd:tip_id="" />

<xsl:variable name="thelist"

select="/Ixml:data/Ixml:lists/Ixml:list{ @name="LISTO01']" />

<input type="hidden" name="LISTO01.." value="{count(Ixml:list-
entries/Ixml:entry[1])}" />

<div class="std_grid_wrapper" id="LIST01_wrap">

<xsl:if test="$lweb_design_mode">

<xsl:attribute name="class">std_grid_wrapper_designtime</xsl:attribute>
</xsl:if>

<table class="std_grid ui-widget" id="LIST01">

<xsl:if test="not($hide_header_if_empty) or ($thelist/@row-count != 0)">
<thead>

<tr class="list-h ui-widget-header">

<th class="ltext BOOLO1 std_grid_sort_indicator" __decimalseparator=""
__formattype="boolean" __mode="input" __allowsort="true">
<xsl:for-each select="$thelist/Ixml:list-header/Ixml:header[1]/*[.//text()
[normalize-space(.)!="]]" wd:edit-as-list="false">

<xsl:value-of select="." /><xsl:if test="not(position() = last())">

</xsl:if>

</xsl:for-each>

<div class="std_grid_cell_sizer">

<xsl:if test="boolean(/Ixml:data/lxml:context[@design])">

<xsl:attribute name="class">hidden__ </xsl:attribute>

</xsl:if>

<xsl:comment>.</xsl:comment>

</div>

</th>

<th class="number DATO01 std_grid_sort_indicator" __decimalseparator=
_ formattype="date" __mode="input" __allowsort="true">
<xsl:for-each select="$thelist/Ixml:list-header/Ixml:header[2]/*[.//text()
[normalize-space(.)!="]]" wd:edit-as-list="false">

<xsl:value-of select="." /><xsl:if test="not(position() = last())">

</xsl:if>

</xsl:for-each>

<div class="std_grid_cell_sizer">

<xsl:if test="boolean(/Ixml:data/lxml:context[@design])">

<xsl:attribute name="class">hidden__ </xsl:attribute>

</xsl:if>

<xsl:comment>.</xsl:comment>

</div>

mn

</th>

<th class="utext CHRO1 std_grid_sort_indicator" __decimalseparator=
_ formattype="char" __mode="input" __allowsort="true">
<xsl:for-each select="$thelist/Ixml:list-header/Ixml:header[3]/*[.//text()
[normalize-space(.)!="]]" wd:edit-as-list="false">

<xsl:value-of select="." /><xsl:if test="not(position() = last())">

</xsl:if>

</xsl:for-each>

<div class="std_grid_cell_sizer">

<xsl:if test="boolean(/Ixml:data/lxml:context[@design])">
<xsl:attribute name="class">hidden__ </xsl:attribute>

</xsl:if>

<xsl:comment>.</xsl:comment>

</div>

</th>

</tr>

</thead>

</xsl:if>

<tbody class="ui-widget-content">

<xsl:for-each select="$thelist/Ixml:list-entries/Ixml:entry">
<xsl:variable name="BOOLO01" select="1xml:column[1]" />
<xsl:variable name="DATO01" select="Ixml:column[2]" />
<xsl:variable name="CHRO01" select="1xml:column[3]" />

<tr __oddrc="list-o" ___evenrc="list-e">

<xsl:attribute name="class">

<xsl:choose>

<xsl:when test="position() mod 2">list-o</xsl:when>
<xsl:otherwise>list-e</xsl:otherwise>

</xsl:choose>

</xsl:attribute>

<td class="BOOL01">

<xsl:attribute name="__ cellvalue"><xsl:value-of select="$BOOL01" />
</xsl:attribute>

<xsl:call-template name="std_boolean">

<xsl:with-param name="name" select="$BOOL01/@id" />
<xsl:with-param name="value" select="$BOOL01" />
<xsl:with-param name="display_mode" select=""input"" />
</xsl:call-template>

</td>

mn

<td class="DAT01">

<xsl:attribute name="__ cellvalue"><xsl:value-of select="$DATO01" />
</xsl:attribute>

<xsl:call-template name="std_datepicker">

<xsl:with-param name="name" select="$DAT01/@id" />
<xsl:with-param name="value" select="$DAT01" />

<xsl:with-param name="allow_sqlnull" select="true()" />
<xsl:with-param name="display_mode" select=""input"" />
<xsl:with-param name="size" select="10" />

</xsl:call-template>

</td>
<td class="CHRO01">
<xsl:attribute name="__ cellvalue"><xsl:value-of select="$CHRO01" />

</xsl:attribute>
<xsl:call-template name="std_char">
<xsl:with-param name="name" select="$CHRO1/@id" />
<xsl:with-param name="value" select="$CHRO1" />
<xsl:with-param name="class" select=""utext"" />
<xsl:with-param name="display_length" select="10" />
<xsl:with-param name="display_mode" select=""input"" />
<xsl:with-param name="keyboard_shift" select=""J" />
<xsl:with-param name="maxlength" select="10" />
<xsl:with-param name="type" select=""text"" />
</xsl:call-template>
</td>
</tr>
</xsl:for-each>
</tbody>
</table>
</div>
<script type="text/javascript'>
<xsl:text disable-output-escaping="yes">//<![CDATA[</xsl:text>
register_std_grid('LISTO1',{
columns: 3,
allowSort: <xsl:value-of select="$allowSort" />,
allowColResize: <xsl:value-of select="$allowColResize" />,
hoverEffect: <xsl:value-of select="$hoverEffect" />,
selectableRows: <xsl:value-of select="$selectableRows" />

};

<xsl:text disable-output-escaping="yes">//]]></xsl:text>
</script>

</xsl:template>

</lansa_design:implementation>

</lansa_design:content>

</lansa_design:payload>

Dragging and Dropping a List Column

List Column TSML Node
List Column Drag and Drop Output

List Column TSML Node

<?xml version="1.0" encoding="UTF-8"?>

<tsml:data full-document="false"
inline="none"
xmlns:tsml="http://www.lansa.com/2002/XML/Generation-Metadata">

<tsml:weblets>

<tsml:weblet name="std_input.std_input">

<tsml:technology-services>

<tsml:technology-service name="LANSA:JQMOBILE"
mod-id="20130102151636000">

<tsml:template-params>

<tsml:template-param>

<tsml:param-name>displayMode</tsml:param-name>

<tsml:param-role>std:display_mode</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>label</tsml:param-name>

<tsml:param-role>std:field_caption</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>maxlength</tsml:param-name>

<tsml:param-role>std:field_maxlength</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>rdmlxDataType</tsml:param-name>

<tsml:param-role>std:rdmlx_data_type</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>size</tsml:param-name>

<tsml:param-role>std:field_display_length</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>type</tsml:param-name>

<tsml:param-role>std:field_input_type</tsml:param-role>

</tsml:template-param>

</tsml:template-params>

</tsml:technology-service>

</tsml:technology-services>

</tsml:weblet>

<tsml:weblet name="std_char.std_char">

<tsml:technology-services>

<tsml:technology-service name="LANSA:XHTML"
mod-id="20121220115335000">

<tsml:template-params>

<tsml:template-param>

<tsml:param-name>class</tsml:param-name>

<tsml:param-role>std:field_css_class</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>display_length</tsml:param-name>

<tsml:param-role>std:field_display_length</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>display_mode</tsml:param-name>

<tsml:param-role>std:display_mode</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>height</tsml:param-name>

<tsml:param-role>std:height_design</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>keyboard_shift</tsml:param-name>

<tsml:param-role>std:keyboard_shift</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>maxlength</tsml:param-name>

<tsml:param-role>std:field_maxlength</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>pos_absolute</tsml:param-name>

<tsml:param-role>std:pos_absolute_design</tsml:param-role>

</tsml:template-param>

<tsml:template-param>

<tsml:param-name>type</tsml:param-name>

<tsml:param-role>std:field_input_type</tsml:param-role>

</tsml:template-param>

<tsml:template-param>
<tsml:param-name>width</tsml:param-name>
<tsml:param-role>std:width_design</tsml:param-role>
</tsml:template-param>

</tsml:template-params>

</tsml:technology-service>
</tsml:technology-services>

</tsml:weblet>

</tsml:weblets>

<tsml:lists
default-sample-size="5"
column-only="true">
<tsml:list name="LISTO01" inline="false">
<tsml:mode>input</tsml:mode>
<tsml:list-entries>
<tsml:entry>
<tsml:column name="CHRO01">
<tsml:mode>input</tsml:mode>
<tsml:sample-value>ABCDEFGHIJ</tsml:sample-value>
<tsml:format>
<tsml:type>char</tsml:type>
<tsml:display-max-length>10</tsml:display-max-length>
<tsml:max-length>10</tsml:max-length>
<tsml:input-case>uppercase</tsml:input-case>
<tsml:keyboardshift>J</tsml:keyboardshift>
</tsml:format>
<tsml:use-weblets>
<tsml:use-weblet name="std_input.std_input"
technology-service="LANSA:JQMOBILE" />
<tsml:use-weblet name="std_char.std_char"
technology-service="LANSA:XHTML" />
</tsml:use-weblets>
</tsml:column>
</tsml:entry>
</tsml:list-entries>
</tsml:list>
</tsml:lists>

</tsml:data>

List Column Drag and Drop Output

<?xml version="1.0" encoding="UTF-8"?>
<lansa_design:payload xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:Ixml="http://www.lansa.com/2002/XML/Runtime-Data"
xmlns:wd="http://www.lansa.com/2002/XSL/Weblet-Design"
xmlns:lansa_design="http://www.lansa.com/2002/XML/Design"
xmlns="http://www.w3.0rg/1999/xhtml]">
<lansa_design:imports>

<xsl:import href="std_char.xsl" />

</lansa_design:imports>

<lansa_design:content>

<lansa_design:value>

<xsl:call-template name="std_char">

<xsl:with-param name="name" select="$CHRO1/@id" />
<xsl:with-param name="value" select="$CHRO1" />
<xsl:with-param name="class" select=""utext"" />
<xsl:with-param name="display_length" select="10" />
<xsl:with-param name="display_mode" select=""input"" />
<xsl:with-param name="keyboard_shift" select=""J" />
<xsl:with-param name="maxlength" select="10" />
<xsl:with-param name="type" select=""text"" />
</xsl:call-template>

</lansa_design:value>

</lansa_design:content>

</lansa_design:payload>

7.5 Default Weblet for Technology Service

You can nominate a default weblet for a Technology Service. The default weblet
is used when a field has no weblet visualization. If no default weblet is
nominated, your WebRoutine XSL stylesheet should have templates to handle
non-weblet fields or list columns.

The nominated weblet must exist in your Technology Service. Add the
following instructions to the same level as the <xsl:output> instruction in your
WebRoutine XSL stylesheet. This example shows the default weblet for
Technology Service JQMOBILE:

<xsl:output method="xml" omit-xml-declaration="no" encoding="UTF-8"
indent="yes"/>
<xsl:namespace-alias stylesheet-prefix="xslt" result-prefix="xsl"/>

<!-- Default Weblet -->
<tsml:definition>

<tsml:default-weblet name="std_input.std_input" />
</tsml:definition>

7.6 About Weblets and Weblet Templates

7.6.1 What are weblets and weblet templates?
7.6.2 Field weblet visualization

7.6.1 What are weblets and weblet templates?

WAMs are shipped with a set of standard weblets for each Technology Service.
A weblet is a repository object that contains one or more weblet templates. A
weblet template is a reusable component that wraps some common functionality
and can be dragged and dropped onto your WebRoutine designs.

Although a weblet may contain many weblet templates, it is normal practice for
each weblet to contain only one template so the term "weblet" is often used to
refer to a weblet template. A weblet may exist in one or more of the Technology
Services.

Note: Weblets sometimes contain a second weblet template where the extra
template is a special version of the main template for use on inline lists. These
"inline" weblet templates do not show up in the Weblet Templates section of the
repository because the WAM Editor will automatically use the correct template
as required.

You should never modify the shipped weblets directly. Every time a
Partition Initialization with the Enable for the Web is executed, the
shipped weblets are re-imported and the weblets in the repository are
overwritten. If you wish to customize a weblet, make a copy of the
shipped weblet then modify the copy (including JavaScript functions

that the weblet uses as they might be changed in future versions).

The shipped weblets use a standard naming convention where the
weblet name is prefixed with 'std_". You should not use this prefix for
any custom weblets you create.

Also see
Weblets for XHTML Technology Service
Weblets for jQMobile Technology Service

its:lansa087.chm::/lansa/WAMEngb8_0005.htm
its:lansa087.chm::/lansa/WamEngb9_0005.htm

7.6.2 Field weblet visualization

You can define the weblet visualization of a field so that when a field is
included in a web_map, the generated page automatically uses the weblet
defined in field visualization. You can define the weblet visualization for each
Technology Service:

Begin_Com Role(*Weblet 'std_datetimepicker.std_datetimepicker")
Name(#WebletTemplate) Defaultweblet(True)

End_Com

Begin_Com Role(*Weblet 'std_mobiscroll.std_mobiscroll’)
Name(#WebletTemplate2) Defaultweblet(LANSA.JQMOBILE)
End_Com

You can further customize your field weblet visualization without the neee to
create custom weblets for different fields by defining default properties for the
weblets. This way, you can create weblets that can be customized via properties
instead of creating separate weblets:

Begin_Com Role(*Weblet 'std_input.std_input’)
Name(#WebletTemplateJQMOBILE) Defaultweblet(LANSA.JQMOBILE)
Default_Type(""email™)

End_Com

8. Weblets for XHTML Technology Service

This section documents the Weblet Templates that are shipped with the XHTML
Technology Service.

The Weblet Templates repository view displays templates by group. A weblet
template may belong to more than one group (right-click a weblet to configure).
The standard groups are:

Standard Weblets

Charting Weblets

Standard Field Visualizations
Layout Weblets

And if you are an existing user and need to refer to them, there's Deprecated
Weblets.

its:lansa087.chm::/Lansa/WAMEngb2_0015.htm
its:lansa087.chm::/Lansa/WAMEngb8_0740.htm
its:lansa087.chm::/Lansa/WAMEngb2_0020.htm
its:lansa087.chm::/Lansa/WAMengb8_0210.htm
its:lansa087.chm::/lansa/WAMEngb8_0461.htm

8.1 Standard Weblets

This section provides a description of the standard weblets, their properties and
how to use them in your own webroutines. You will not use every property
available for a weblet.

Weblet name

Anchor (std_anchor)

Attachment panel
(std_attach_panel_v2)

Autocomplete
(std_autocomplete)

Checkbox
(std_checkbox)

CKEditor
(std_ckeditor)

Clickable image
(std_click_image)

Combo box
(std_dropdown)

Dynamic Select Box
(std_dynamic_select)

Export to Excel
(std_toexcel)

File Upload
(std_fileupload)

Grid (std_grid_v2 and
std_grid_v3)

Description

The anchor weblet provides a hyperlink (or anchor)
control.

Provides a panel with five areas where content can
be dropped: left, top, right, center, and bottom.

While you type, the Autocomplete weblet provides
suggestions provided by a WebRoutine using Ajax.

Checkbox with a caption.

CKEditor is a WYSIWYG rich text editor.

Image that can be clicked on.

Drop down items can be specified via items property
in the LANSA Editor or they can come from a list.

An element that allows you to create a dropdown or
a list that can monitor another field and
automatically refresh itself when that field changes.

Allows you to export a table or grid to an Excel
spreadsheet.

Allows you to select files to upload to the application
server. The webroutine that receives the uploaded
files can manipulate them as required.

Grid control with sortable columns. Grid cells can be
populated from a list.

its:lansa087.chm::/lansa/wamengb2_0025.htm
its:lansa087.CHM::/lansa/WAMEngb8_0475.HTM
its:lansa087.CHM::/lansa/WAMEngb8_0745.HTM
its:lansa087.CHM::/lansa/WAMEngb2_0045.HTM
its:lansa087.CHM::/lansa/WAMEngb8_0750.HTM
its:lansa087.chm::/lansa/wamengb2_0050.htm
its:lansa087.chm::/lansa/wamengb2_0060.htm
its:lansa087.chm::/lansa/WAMEngb8_0570.htm
its:lansa087.CHM::/lansa/WAMEngb8_2090.HTM
its:lansa087.CHM::/lansa/WAMEngb8_2640.HTM
its:lansa087.chm::/lansa/wamengb2_0065.htm

Image (std_image) Image with the option to delay loading until the
image comes into view.

Horizontal splitter Horizontal splitter control that allows content to be
(std_splitter_horz) added for top and bottom splitter panes.

Large List Large list. Used for report like (output only) lists
(std_largelist) with very simple formatting. List can be sent as

XHTML or CSV (Comma-separated values).

Listbox (std_listbox) List box control. The items can come from a list or
specified directly through items property.

List paging buttons Buttons that can be used for browse list navigation.
(std_list_buttons)

List paging images Image buttons that can be used for browse list
(std_list_images) navigation.

Mark-up (std_markup) Used when you want to visualize the content in
output mode only. Companion to the CKEditor

weblet.
Memo using a list A multi-line edit control where each line is loaded
(std_textarea_v2) and stored to a list.
Memo using a field A multi-line edit control using a field. Superseded by
(std_list_textarea) std_textarea_v2.
Menu bar Provides the functionality of a menu bar that can
(std_menubar) invoke other web pages including other web
routines.
Menu item A hyperlink menu item. Used when creating HTML
(std_menu_item_v2) menus.
Messages Shows messages from a WEBROUTINE that have
(std_messages) been output with MESSAGE RDML command.
Navigation panel A panel that can navigate to a WEBROUTINE or a
(std_nav_panel) URL independently of the rest of the page.
Panel (std_panel) A panel that allows contents such as html or other

weblets to be dropped on it. All of its content is

its:lansa087.chm::/LANSA/WAMengb8_2450.HTM
its:lansa087.chm::/lansa/wamengb2_0120.htm
its:lansa087.CHM::/lansa/WAMEngb8_2525.HTM
its:lansa087.chm::/lansa/wamengb8_2530.htm
its:lansa087.CHM::/lansa/wamengb2_0075.htm
its:lansa087.CHM::/lansa/wamengb2_0075.htm
its:lansa087.CHM::/lansa/wamengb8_0755.htm
its:lansa087.chm::/lansa/wamengb2_0080.htm
its:lansa087.chm::/lansa/wamengb2_0130.htm
its:lansa087.CHM::/lansa/WAMb8_menubar.HTM
its:lansa087.chm::/lansa/wamengb2_0090.htm
its:lansa087.chm::/lansa/wamengb2_0095.htm
its:lansa087.chm::/lansa/wamengb2_0100.htm

Print Page
(std_printpage)

Progress bar
(std_progressbar)

Prompter
(std_prompter)

Push Button
(std_button_v2) &
Push Button with
Images
(std_image_button_v2)

Radio button
(std_rad_button)

Radio group
(std_radbuttons)

Tab pages
(std_tab_pages_v2)

TreeView
(std_treeview_v2)

Vertical splitter
(std_splitter_vert)

relatively positioned in the panel. It also has "snap to
grid" design time support.

Provides a hyperlink to print the current page.

Display status of a determinate or indeterminate
process.

A button that supports field prompting. The prompter
can invoke a WEBROUTINE, even from a different
WAM, for its pop up window page.

These weblets provide themable push buttons for
your web page.

The previous versions of these Weblets have been
deprecated.

A radio button.

A radio button group.

Tab control that allows content to be added for each
tab page. Tab pages can be changed, added and
deleted. You can modify tab captions through the
tabs property.

Provides an expandable collapsible tree

Vertical splitter control that allows content to be
added for left and right splitter panes.

its:lansa087.CHM::/lansa/WAMEngb8_2095.HTM
its:lansa087.chm::/LANSA/WAMengb8_2495.HTM
its:lansa087.chm::/lansa/wamengb2_0105.htm
its:lansa087.chm::/lansa/WAMEngb8_2085.htm
its:lansa087.chm::/lansa/wamengb2_0110.htm
its:lansa087.chm::/lansa/wamengb2_0115.htm
its:lansa087.chm::/lansa/wamengb2_3655.htm
its:lansa087.CHM::/lansa/WAMEngb8_0480.HTM
its:lansa087.chm::/lansa/wamengb2_0125.htm

8.1.1 Anchor (std_anchor)

QuickStart - Anchor Properties - Anchor

The anchor weblet provides a hyperlink (or anchor) control. It broadly
corresponds to the <a> (anchor) HTML element that designates the destination
of a hypertext link.

e The anchor weblet can display an image and/or text to represent the link and
can specify a destination that the WAM should navigate to when the link is
activated.

e The image or text can be static (specified as literals in the weblet properties)
or can be determined by nominated fields, system variables or multilingual
variables.

e The destination can be a url (such as http::/lansa//www.yourcompany.com/)
or you can specify a WAM and webroutine to be executed and optionally
identify a field whose value should be passed to the webroutine.

The anchor weblet looks like this (the department codes):

Dept Department
Code Description

ADM ADMINISTRATOR DEFT
AUD INTERMAL AUDITING
ELT FLEET ADMINISTRATION

The anchor weblet is frequently used with a field or a column in a list to provide
a quick and easy way to both select an item and initiate an action concerning
that item. In the example above, the department codes have been made into
anchors. When the user clicks a department code another webroutine is invoked
that displays details for the corresponding department. The currentrowhfield and
currentrownumval properties specify that the corresponding department code is
passed to that webroutine.

QuickStart - Anchor

To use an anchor with a column in a list, you would need to create a webroutine
that specifies the list in its WEB_MAP as *BOTH or *OUTPUT. When you
open the generated XSL in the LANSA Editor, you can change a column of the
list to function as an anchor as follows:

1. Click on the Weblets tab, select Standard Weblets from the drop-down list
near the top and locate the Anchor weblet.

2. Drag the Anchor weblet over the column in your list and release the left-
mouse button. The column's appearance changes to show that it is now an
anchor Click on an item in the column and then click on the Details tab You
should see that the name and value properties for the anchor weblet have
already been set according to the field upon which it was dropped.

3. Set the currentrowhfield and currentrownumval properties as described in the
property descriptions.

4. Set the on_click_wrname property to the name of the webroutine to be
invoked when the hyperlink is clicked If the webroutine is in a different
WAM to the current webroutine then you will need to set the
on_click_wamname property as well.

Properties - Anchor

The Anchor weblet's properties are:

absolute-image-path on_click_wrname show_in_new_window

currentrowhfield pos_absolute_design tab_index
currentrownumval presubmit_js target_window_name
formname protocol text_class

hide_if reentryfield url

mouseover_class reentryvalue value

name relative-image-path vf_wamevent

on_click_ wamname width_design

name

The name the weblet is identified with. If the weblet visualizes a field, this is the
name of the field. Normally, you would leave this as the default and let LANSA
use its own internal naming convention. However, you may want to use your
own name if using JavaScript or XSL that references the weblet.

Default value

Where the weblet visualizes a field the default name is the field name or
combines the field name with a row number (for fields in a list). Otherwise
the default name is an automatically generated, unique identifier.

Valid values
Single-quoted text.

value

This property specifies the text that is displayed for the hyperlink. If the weblet
visualizes a field, this will identify the field whose value is to be shown.

Default value
No default value applies — you must specify the value if you wish the
hyperlink to display text (the hyperlink may also display an image — see the
relative-image-path and absolute-image-path properties.

Valid values
Single-quoted text or the name of a field, system variable or multilingual text
variable (the corresponding ellipses button in the property sheet can be
clicked to choose one from a list).

currentrowhfield

The field name to be used to post to the target webroutine the value that is

specified in the currentrownumval property. The field name should be in single
quotes.

See the description of the currentrownumval property for further information.

Default value
'STDROWNUM'

Valid values
Single-quoted text.

Example

This example specifies the field name DEPTLINK as the field name to be
used to post the value to the target webroutine. The target webroutine would

need to have field DEPTLINK in its WEB_MAP for *BOTH or for *INPUT
in order to receive the value:

ﬂcurrenh’u'f\'hﬁeld 'DEPTLIME'

currentrownumval

The value to post to the target webroutine in the field specified in the
currentrowhfield property. If that field is alphanumeric, the value must be
specified in single quotes. If it is numeric, the value can be specified with or
without quotes.

This property is used in conjunction with the currentrowhfield property to
describe how to post values to a target webroutine. These two pieces of
information are required to accomplish this:

1. currentrowhfield: the field name that the target webroutine uses to refer to
the information

2. currentrownumval: a literal value or a field name in this (the source)
webroutine that contains the necessary information

Note: Despite the name of the property being currentrownumval, the field
name specified in currentrownumval is not required to be a numeric field.

Default value
position()

Valid values

Single-quoted text or the name of a field, system variable or multilingual text
variable.

reentryfield

The field name to be used to post to the WAM the value that is specified in the
reentryvalue property. The field name should be in single quotes.

See the description of the reentryvalue property for further information.

Note: this property is provided to support a re-entrant programming
technique that is commonly used in WEBEVENT applications. Web

applications that are designed from the outset to use WAMs do not
usually need to make use of that technique.

Default value
'STDRENTRY'

Valid values
Single-quoted text.

reentryvalue

The value to post to the target webroutine in the field specified in the
reentryfield property. If that field is alphanumeric, the value must be specified in
single quotes. If it is numeric, the value can be specified with or without quotes.

This property is used in conjunction with the reentryfield property to describe
how to post values to a target webroutine. These two pieces of information are
required to accomplish this:

1. reentryfield: the field name that the target webroutine uses to refer to the
information

2. reentryvalue: a literal value or a field name in this (the source) webroutine
that contains the necessary information

Note: this property is provided to support a re-entrant programming
technique that is commonly used in WEBEVENT applications. Web

applications that are designed from the outset to use WAMs do not
usually need to make use of that technique.

Default value
'D'
Valid values

Single-quoted text or the name of a field, system variable or multilingual text
variable.

hide_if
An expression which, if evaluated to be True, will hide the weblet.

Default value
False() (that is, the weblet will always be shown)

Valid values
Any valid XPath expression that returns a Boolean value.

Example
This example will hide the weblet if field #STD_FLAG is equal to 'X". The
expression should be entered in this form:
gehic=if ESPIGUER]
When the property loses focus, the expression is shown as follows:
=[E|hiu:|e_if key(field-value', 'STD_FLAG) ="Y'

formname
The name of the HTML form that is posted to the server.

Default value
'LANSA'

Valid values
A name for the form, in single quotes. A list of known form names is
available by clicking the corresponding dropdown button in the property
sheet.

url

This property may be used to specify a URL that the hyperlink will navigate to.
If specified, the URL may be specified as a literal value (for example

'http://www.mycompany.com/') or a field name may be specified that contains
the URL at run-time.

This property takes precedence over the on_click_wamname, on_click_wrname
and protocol properties. The latter properties are ignored if url is specified.
Default Value
javascript:void();' — equivalent to nothing.
Valid Values

A URL enclosed by single quotes or the name of a field, system variable or
multilingual variable that will contain the URL at run-time.

on_click_wamname

Specifies the name of the WAM whose webroutine is executed when the
hyperlink that represents this weblet is clicked. (The webroutine name is
specified in the on_click_wrname property.)

This property is ignored if the url property is specified.
Default value
If not specified, the current WAM is used. ($lweb_ WAMName)
Valid values

The name of a WAM in single quotes. A list of known WAM:s can be

displayed by clicking the corresponding dropdown button on the property
sheet.

on_click_wrname

Specifies the name of the webroutine that is executed when the hyperlink that
represents this weblet is clicked. (The name of the WAM containing the
webroutine is specified in the on_click_wamname property.)

This property is ignored if the url property is specified.

Default value
No default value applies — either the url property or the on_click_wrname
property must be specified

Valid values

The name of a Webroutine in single quotes. The Webroutine must exist in the
WAM specified in the on_click_wamname property. A list of known
Webroutines can be displayed by clicking the corresponding dropdown
button on the property sheet.

Example

This example specifies deptdetail as the name of the webroutine that will be
executed when the hyperlink is clicked. The name of the WAM containing
the webroutine is specified by the on_click_wamname property.
ﬂun_click_'f\'rname 'deptdetail’

protocol
The protocol (for example, http:// or https://) that should be used for navigation
to the Webroutine specified in the on_click_wrname property.

Typically you might use this property when it is necessary to switch to or from

secure-mode processing. Otherwise it is not usually necessary to specify this
property.

Default value
Blank. This is equivalent to the current protocol being used.
Valid values

A valid protocol, in single quotes. If specified, it is usually 'http:' or 'https:'.

show_in_new_window

A boolean property, the result of which determines whether response HTML for
the weblet should be shown in a new browser window.

Default value
false() — response HTML is shown in the current browser window.

Valid values
true(), false() or a valid expression.

target_window_name

The name of the window, or frame, in which the destination of the hyperlink
will be shown.

Default value
Blank — the destination of the hyperlink will be shown in the current window.

Valid values
The name of a window or frame, in single quotes. A list of known windows
and frames can be displayed by clicking on the corresponding dropdown
button in the property sheet.

pos_absolute_design

The absolute position of the weblet on the web page. Note that Position
Absolutely must be selected from the weblet's right-click menu for this property

to be used. The property will usually be set in pixels by dragging and dropping
the weblet.

Default value
Blank (not positioned)

Valid values

Valid 'left' and 'top' coordinates, in valid units of measurement, in single
quotes.

Example

In this example, Position Absolutely has been enabled for the weblet and the
weblet was positioned as required in the Design view of the LANSA Editor.
This resulted in the value shown for the pos_absolute_design property.
ﬂpus_ﬂbsulute_design 'position:absolute;left: 324pt; top: 162, 72pt;'

width_design
The width of the weblet on the web page.

Usually you would set the width of the weblet by dragging the grab-handles
around the weblet in the Design view of the LANSA Editor. Doing so updates

the value of the width-design property. However you can directly edit the
property value if required.

Default value
Blank (weblet uses its default width).

Valid values

A width, in a valid unit of measurement, in single quotes.

relative-image-path
The path and file name, relative to the images virtual directory, of the image to
be displayed.

Default value
Blank — no image is displayed.

Valid values
The path and name of an image, relative to the images directory, enclosed in
single quotes. An image can be chosen from a prompter by clicking the
corresponding ellipses button in the property sheet.

absolute-image-path

The path and file name of the image to be displayed. If specified, the
relative_image_path property should be left blank.

Default value
Blank — the default is to use the image specified in the relative_image_path
property.

Valid values
The path and name of an image enclosed in single quotes.

class
The Cascading Style Sheet (CSS) class name of the weblet.

Default value
The name of the shipped class for the weblet. For example, 'std_anchor'.

Valid values
Any valid class name from the Cascading Style Sheet, in single quotes. A list
of available classes can be selected from by clicking the corresponding
dropdown button in the property sheet.

mouseover_class

The Cascading Style Sheet (CSS) class name of the weblet when the mouse is
moved over it.

Default value
No default value applies for this weblet.

Valid values

Any valid class name from the Cascading Style Sheet, in single quotes. A list
of available classes can be selected from by clicking the corresponding
dropdown list in the property sheet. For example, the mouseover_class
property after the shipped mouseover class has been selected could be
"std_anchor_mouseover'.

text_class
The Cascading Style Sheet (CSS) class name of the text of the weblet.

Default value
The name of the shipped text class for the weblet.

Valid values
Any valid class name from the Cascading Style Sheet, in single quotes. A list
of available classes can be selected from by clicking the corresponding
dropdown button in the property sheet.

presubmit_js

JavaScript code to be run prior to navigating to the destination of the hyperlink.
JavaScript statements must be terminated by a semicolon.

Default value
Blank. No JavaScript is run.

Valid values
Any valid JavaScript statement(s).

tab_index

Determines the tab order of the weblet on the form. The tab_index property
value determines the tab order as follows:

1. Objects with a positive tab_index are selected in increasing tab_index order
(and in source order to resolve duplicates).

2. Objects with a tab_index of zero or blank (the default) are selected in source
order.

3. Objects with a negative tab_index are omitted from the tabbing order. Note
that this behavior is not defined in the HTML specifications and is only
supported by Internet Explorer and Firefox.
Default value

Blank. The weblet is selected in source order.
Valid values

Blank or a valid numeric value.

vi_wamevent
vf_wameventVLF WAM event string

Default value
Blank.

Valid values
String value. Comma (',") not allowed.

8.1.2 Autocomplete (std_autocomplete)
QuickStart — Autocomplete Properties — Autocomplete

The Autocomplete weblet provides suggestions while you type into the field.
The suggestions are provided by a webroutine using Ajax:

=
Sally
Sarah
SCatt

Sean

QuickStart — Autocomplete

To use the autocomplete weblet you can follow these steps:
1. Click on the Weblets tab, select Standard Weblets from the drop-down list
near the top and locate the jQuery UI Autocomplete weblet.

2. Drag and drop the weblet onto your page. Make sure the weblet is selected
and then click on the Details tab. Fill the properties as required.

3. While the autocomplete weblet is selected in the designer, right click and
from the context menu, select the option to create the Ajax WebRoutine.

4. In your RDMLX source, complete the code for the response webroutine
(created in step 3).

Properties — Autocomplete

The Autocomplete weblet's properties are:

cache labelField

class listName

delay matchContains
disabled maxlength
display_length minLength
display_mode namevalue
extraFields onchange_script
height pos_absolute
hide_if read_only

keyboard_shift scroll

scrollHeight

size
sourceWamName
sourceWrName
tab_index
termField

title

valueField

width

name

The name the weblet is identified with. If the weblet visualizes a field, this is the
name of the field. Normally, you would leave this as the default and let LANSA
use its own internal naming convention. However, you may want to use your
own name if using JavaScript or XSL that references the weblet.

Default value

Where the weblet visualizes a field the default name is the field name or
combines the field name with a row number (for fields in a list). Otherwise
the default name is an automatically generated, unique identifier.

Valid values
Single-quoted text.

value

The value to set the weblet to. If the weblet visualizes a field, this will identify
the field whose value is to be shown.

Default value

No default value applies — for most uses of this weblet you must specify a
field whose value is to be represented by the input box or left blank for users
to fill with suggested values.

Valid values

Single-quoted text or the name of a field, system variable or multilingual text
variable.

display_mode

Controls whether the weblet accepts input, displays output or is hidden. It will
only work in autocomplete mode if the weblet is in input mode.

Default value
Blank (equivalent to 'input").

Valid values
Literal values 'input’, 'output’ or 'hidden'. A list of allowable values is
available by clicking the corresponding dropdown button in the property
sheet. Alternately, you may enter the name of a field, system variable or
multilingual variable that will contain one of the allowable values at run-
time.

maxlength

Specifies the maximum number of characters the user can type in the weblet.

When the weblet visualizes a field, this is set to the number appropriate for the
field.

Default value

Blank (the weblet does not restrict the number of characters the user can
type).

Valid values
A numeric value.

size
The size of the weblet data in characters/bytes.

This property is currently not implemented — use the maxlength and/or
display_length properties instead.

display_length

The approximate size of the weblet input box in characters — the browser sizes
the input box according to the number of characters specified. If the width

property is specified, it takes precedence and the display_length property is
ignored.

Default value
Blank (the weblet assumes a default size).

Valid values
A numeric value.

keyboard_shift
The keyboard shift for the input field.

Default value

The keyboard shift of the field with this weblet visualization. Blank
otherwise.

Valid values
Char and String data types: "', 'W', 'J', 'E', 'O" and 'U’
Alpha data type: ', 'X','A", 'N', "W', 'T', 'D', 'M, 'J', 'E' and 'O’

IThe keyboard shift is currently only used to validate DBCS fields. “

minLength

The minimum number of characters a user has to type before the Autocomplete
activates. Zero is useful for local data with just a few items. Should be increased

when there are a lot of items, where a single character would match a few
thousand items.

Default value
1

Valid values
Numeric value.

delay

The delay in milliseconds the Autocomplete waits after a keystroke to activate
itself. A zero-delay makes sense for local data (more responsive), but can
produce a lot of load for remote data, while being less responsive.

Default value
300 milliseconds

Valid values
Numeric value in milliseconds.

sourceWamName

The name of the WAM whose Webroutine provides the response data for this
weblet.

Default value
The current WAM

Valid values
The name of a WAM in single quotes. A list of known WAM:s can be
displayed by clicking the corresponding dropdown button on the property
sheet.

sourceWrName

The name of the Webroutine that provides the response data for this weblet.

Default value
Blank — a Webroutine name must be specified.

Valid values

The name of a Webroutine in single quotes. The Webroutine must be a JSON
response weboutine and exist in the WAM specified in the sourceWamName
property. A list of known JSON Webroutines can be displayed by clicking
the corresponding dropdown button on the property sheet.

termField

The field name in the response handling webroutine that is to receive the current
value in the autocomplete field.

Default value
None. Required field.

Valid values

Single quoted text field. Field must be in WEB_MAP for *INPUT in the
response handling webroutine.

listName

[Optional] The name of the list in the response webroutine to store the
suggestion list. If left empty the first list (which should be the only list in the
response webroutine) will be used.

Default value
Blank: It uses the first list in response webroutine.

Valid values

Single quoted text . List must be in WEB_MAP for *OUTPUT in the
response handling webroutine.

labelField

The response data is a list, with either a label or value column or both. The label
column is displayed in the suggestion menu. The value will be inserted into the
input element after the user selected something from the menu. If just one
column is specified, it will be used for both, eg. if you provide only value-
properties, the value will also be used as the label.

Default value
Blank.

Valid values

Single quoted text. Column name but exist in list returned by the response
handling webroutine.

valueField

The response data is a list, with either a label or value column or both. The label
column is displayed in the suggestion menu. The value will be inserted into the
input element after the user selected something from the menu. If just one
column is specified, it will be used for both, eg. if you provide only value-
properties, the value will also be used as the label.

Default value
Blank.

Valid values

Single quoted text. Column name but exist in list returned by the response
handling webroutine.

extraFields

[Optional]. A comma separated list of fields to send to the webroutine providing
the response for this weblet.

Default value
Blank. No extra fields

Valid values
Comma separated list of fields. Fields must be input or hidden fields.

cache

Set to true to save the server response locally and filter it to narrow suggestions
as the user types more characters.

Default value
True.

Valid values
true(), false() or a valid expression.

matchContains

If set to true, autocomplete matches the entered characters anywhere in the
suggestions. Otherwise, autocomplete only matches suggestions that start with
the entered characters. This applies to narrowing the suggestions for cached

responses. The data source must have a selecion criteria consistent with this
property.

Default value
False.

Valid values
true(), false() or a valid expression.

hide_if
An expression which, if evaluated to be True, will hide the weblet.

Default value
False() (that is, the weblet will always be shown)

Valid values
Any valid XPath expression that returns a Boolean value.

class
The Cascading Style Sheet (CSS) class name of the weblet.

Default value
The name of the shipped class for the weblet.

Valid values
Any valid class name from the Cascading Style Sheet, in single quotes. A list
of available classes can be selected from by clicking the corresponding
dropdown button in the property sheet.

tab_index

Determines the tab order of the weblet on the form. The tab_index property
value determines the tab order as follows:

1. Objects with a positive tab_index are selected in increasing tab_index order
(and in source order to resolve duplicates).

2. Objects with a tab_index of zero or blank (the default) are selected in source
order.

3. Objects with a negative tab_index are omitted from the tabbing order. Note
that this behavior is not defined in the HTML specifications and is only
supported by Internet Explorer and Firefox.
Default value

Blank. The weblet is selected in source order.
Valid values

Blank or a valid numeric value.

title

Specifies a title for the weblet that may display as tip text as the mouse moves
over the weblet.

Default value
Blank — no tip text will be displayed.

Valid values
Single-quoted text or the name of a multilingual text variable (the
corresponding ellipses button in the property sheet can be clicked to choose
one from a list).

read_only

A boolean property, the result of which determines whether the content of the
weblet is read-only (that is, the user cannot modify the content).

Default value
Blank — equivalent to False (that is, the user can modify the contents).

Valid values
true(), false() or a valid expression.

Example
This example will set the weblet to read-only if field #STD_FLAG is equal
to "Y'". The expression should be entered in this form:
T - Flac =
When the property loses focus, the expression is shown as follows:
ﬂread_ﬂnly key(field-value', 'STD_FLAG) ="Y'

disabled

A boolean property, the result of which determines whether the weblet appears
enabled or disabled.

Default value
Blank — equivalent to False (that is, the weblet will always be enabled).

Valid values
true(), false() or a valid expression.

pos_absolute

The absolute position of the weblet on the web page. Note that 'Position
Absolutely' must be selected from the weblet's right-click menu for this property

to be used. The property will usually be set in pixels by dragging and dropping
the weblet.

Default value

Blank (this is equivalent to the weblet being positioned relatively).
Valid values

Valid 'left' and 'top' coordinates, in valid units of measurement, in single
quotes.

width

The width of the weblet on the web page.

Usually you would set the width of the weblet by dragging the grab-handles
around the weblet in the Design view of the LANSA Editor. Doing so updates

the value of the width and height properties. However you can directly edit the
property value if required.

Default value
Blank (this is equivalent to the weblet adopting its default width).
Valid values

A width, in a valid unit of measurement, in single quotes.

height
The height of the weblet on the web page.

Usually you would set the height and width of the weblet by dragging the grab-
handles around the weblet in the Design view of the LANSA Editor. Doing so

updates the value of the width and height properties. However you can directly
edit the property values if required.

Default value
Blank (this is equivalent to the weblet adopting its default height).
Valid values

A height, in a valid unit of measurement, in single quotes.

scroll

Whether to scroll when more results than configured via scrollHeight are
available.

Default value
False.

Valid values
true(), false() or a valid expression.

scrollHeight
Height of scrolled autocomplete suggestion box. Only activated if scroll is true.

Default value
180px.

Valid values
A height, in a valid unit of measurement, in single quotes.

onchange_script

JavaScript code bind to the jQuery UI autocomplete widget change event (when
the input box loses focus after the text has been changed). It has optional event
and ui object parameters. For example, myOnChangeEventHandler(event, ui).

Default value

Blank. No JavaScript is run.
Valid values

Any valid JavaScript statement(s).

onselect_script

JavaScript code bind to the jQuery UI autocomplete widget select event (when
the user selects an item from the autocomplete suggestion list). It has optional

event and ui object parameters. For example, myOnSelectEventHandler(event,
ui).

Default value
Blank. No JavaScript is run.

Valid values
Any valid JavaScript statement(s).

8.1.3 Attachment panel (std_attach_panel_v2)

QuickStart- Attachment panel Properties - Attachment panel

The Attachment panel weblet provides a panel with five areas where content
can be dropped: left, top, right, center, and bottom. Each of these has attachment
layout manager behavior. Contents can be inserted or other weblets dropped into
any of the five areas. Dropped weblets are sized according to attachment layout
manager rules when they are dropped.

The following is an example of the appearance of a nearly empty attachment
panel. In this example, just three of the attachment areas have been used. A
thick dashed border has been specified for the attachment panel and thin dotted
borders for the panels used in the three areas. The borders have been used for
clarity in this example — you do not have to use visible borders and you may not
wish to in your applications. Remember you can drag and drop other weblets
(such as input boxes, check boxes and push buttons) onto each of the layout
areas.

R A AR A A A A A A A AAAAAAAAAAAAAAANANY

TOP

EE IR A R A el EE R R TR T T R T R L T R R T R R R T R R R b b e s e e e e s o e S I EE IS EE S EE T

' k" ek kol

LEFT CENTER

AMANAAAAAASAAASASAAAAAAANARRAAEAN
L R L T N L R R R LR R LR TR I LT

The attachment panel is one of a number of weblets that you can use to aid the
creation of a consistent and visually appealing layout for your web pages. You
may also wish to review the horizontal and vertical splitters and the panel and
navigation panel weblets. This weblet (the attachment panel) is static — the user
is not able to resize or otherwise manipulate the size and position of the panels
that it contains.

Version 2 of the attachment panel deals with some browser compatability issues
by replacing the border and border_width properties with a single border
property and removes the class_top, class_left, class_center, class_right and
class_bottom properties. The class values can now be set using the "panes”
custom property editor which also allows you to set the size and alignment of
each pane.

QuickStart- Attachment panel

To use the attachment panel you can follow these steps:

1. Click on the Weblets tab, select Standard Weblets from the drop-down list
near the top and locate the Attachment panel weblet.

2. Drag and drop the weblet onto your page. Make sure the weblet is selected
and then click on the Details tab. Set any properties required for the
attachment panel, such as borders.

3. Now you can drag and drop or otherwise insert content into the required
panes or layout areas. You may find it easiest to drag and drop the Panel
weblet into each of the five layout areas that you wish to use. You can then
more easily size those panels and insert other weblets onto those child panels.

Properties - Attachment panel

The Attachment panel weblet's Properties are:

name panes
border pos_absolute
height width

hide_if

name

The name the weblet is identified with. Normally, you would leave this as the
default and let LANSA use its own internal naming convention. However, you

may want to use your own name if using JavaScript or XSL that references the
weblet.

Default value

An automatically generated, unique identifier.
Valid values

Single-quoted text.

panes

An XML node set specifying a set of panes to show and their properties. This is
a system generated value set up when you drag the attachment panel onto the

design view. Can only be set by the designer. To invoke the designer use the
ellipse button in the property sheet.

Default value

document(")/*/Ixml:data/Ixml:panes[@id="<unique id>'] (this is equivalent

to the current pane where the unique id is an automatically generated
identifier.)

Valid values

Not Applicable. (This value is system maintained.) To invoke the designer
use the ellipse button in the property sheet.

Example
Use the ellipse button on the property to open the designer:

B ' Design of panes Property A=l x|
:
Attachment Panel
Cahcel
PR P PP P PP RRPPPRRR T opPanel
Left
Panel

Center Panel

Panel Settings

Width: Height: lem
Alignment: Center »| Vertical Alignment: | TOP =
€55 Class: |

Tip: Click on a panel to edit it's settings.

The designer allows the following properties to be edited for each pane:

e Width/Height: You must supply a valid CSS length value

e Vertical/Horizontal alignment: Valid values are displayed in a dropdown
e (CSS Class: A CSS class to apply to the pane.

border

A CSS border value for the outer boundary of the weblet. For example "1px
dashed red'.

Default value
Blank (no border is shown).

Valid values

Any valid CSS border string. This consists of a width, a style and a color,
each separated by a space. Properties can be omitted from this list but must
be in this order. For example, "solid #ff0000" is valid. For more information
on the CSS border property, look at the W3C specification.

http://www.w3.org/TR/css3-background/

hide_if
An expression which, if evaluated to be True, will hide the weblet.

Default value
False() (that is, the weblet will always be shown)

Valid values
Any valid XPath expression that returns a Boolean value.

pos_absolute

The absolute position of the weblet on the web page. Note that 'Position
Absolutely' must be selected from the weblet's right-click menu for this property

to be used. The property will usually be set in pixels by dragging and dropping
the weblet.

Default value
Blank (not positioned).

Valid values

Valid 'left' and 'top' coordinates, in valid units of measurement, in single
quotes.

Example

In this example, Position Absolutely has been enabled for the weblet and the
weblet was positioned as required in the Design view of the LANSA Editor.
This resulted in the value shown for the pos_absolute_design property.
ﬂpus_ﬂbsulute_design 'position:absolute;left: 324pt; top: 162, 72pt;'

width

The width of the weblet on the web page.

Usually you would set the height and width of the weblet by dragging the grab-
handles around the weblet in the Design view of the LANSA Editor. Doing so
updates the value of the width-design and height_design properties. However
you can directly edit the property values if required.

Default value

" (this specifies that the attachment panel will use the full width available in
the containing element).

Valid values

A width, in a valid unit of measurement, in single quotes.

height
The height of the weblet on the web page.

Usually you would set the height and width of the weblet by dragging the grab-
handles around the weblet in the Design view of the LANSA Editor. Doing so
updates the value of the width-design and height_design properties. However
you can directly edit the property values if required.

Default value
250pt’
Valid values

A height, in a valid unit of measurement, in single quotes.

8.1.4 Push Button (std_button_v2) & Push Button with Images
(std_image_button_v2)

QuickStart- Push Button & Push Properties - Push Button & Push
Button with Images Button with Images

The Push Button weblets provide themable push buttons for your web page.
They look like this:

Click me

@ Click me

QuickStart- Push Button & Push Button with Images

To add a push button to your web page:

1. Click on the Weblets tab, select Standard Weblets from the drop-down list
near the top and locate either of the Push Button weblets.

2. Drag and drop the required weblet onto the web page. Click on the Details
tab.

3. Set the caption to specify the text to be displayed on the button. In the case
of the Push Button with Images, set the appropriate image properties. A left-
hand side image and a right-hand side image can be set.

4. Set the on_click_wrname properties to the name of the webroutine to be
invoked when the button is clicked. If the webroutine is in a different WAM
to the current webroutine then you will also need to set the
on_click_wamname property.

Properties - Push Button & Push Button with Images

All these properties are common to both button weblets except for those
indicated as std_image_button_vZ2 only.

caption left_absolute_image_path right_image_height
currentrowhfield left_image_height right_relative_image_path
currentrownumval left_relative_image_path show_in_new_window
confirm name submitExtraFields
confirmText on_click_ wamname tab_index

default_button on_click_wrname target_window_name
disabled pos_absolute_design text_class

formname presubmit_js title

height_design protocol vf_wamevent

hide_if right_absolute_image_path width_design

name

The name of the weblet. Normally, you would leave this as the default and let
LANSA use its own internal naming convention. However, you may want to use
your own name if using JavaScript or XSL that references the weblet.

Default value

concat('o’, position(), '_LANSA_n") — this is the internal name given to the
weblet by LANSA.

Valid values

A name enclosed in single quotes.

caption
The caption for the weblet.
Default value

'Caption’

Valid values
Single-quoted text or the name of a multilingual text variable (the
corresponding ellipses button in the property sheet can be clicked to choose
one from a list).

currentrowhfield

The field name to be used to post to the target webroutine the value that is

specified in the currentrownumval property. The field name should be in single
quotes.

See the description of the currentrownumval property for further information.
Default value
'STDROWNUM'
Valid values
Single-quoted text.

currentrownumval

The value to post to the target webroutine in the field specified in the
currentrowhfield property. If that field is alphanumeric, the value must be
specified in single quotes. If it is numeric, the value can be specified with or
without quotes.

This property is used in conjunction with the currentrowhfield property to
describe how to post values to a target webroutine. These two pieces of
information are required to accomplish this:

1. currentrowhfield: the field name that the target webroutine uses to refer to
the information

2. currentrownumval: a literal value or a field name in this (the source)
webroutine that contains the necessary information

Note: Despite the name of the property being currentrownumval, the field
name specified in currentrownumval is not required to be a numeric field.

Default value
position()

Valid values

Single-quoted text or the name of a field, system variable or multilingual text
variable.

left_relative_image_path

std_image_button_v2 only.

The path and name, relative to the images directory, of the image to be
displayed on the left of the weblet. If specified, the left_absolute_image_path
property should be left blank.

Default value
'ball_red.gif'

Valid values
The path and name of an image, relative to the images directory, enclosed in
single quotes. An image can be chosen from a prompter by clicking the
corresponding ellipses button in the property sheet.

left_absolute_image_path

std_image_button_v2 only.
The path and name of the image to be displayed on the left of the weblet. If
specified, the left_relative_image_path property should be left blank.

Default value
Blank — the default is to use the image specified in the
left_relative_image_path property.

Valid values
The path and name of an image enclosed in single quotes.

left_image_height
std_image_button_v2 only.
The height of the image on the left of the weblet.

Default value
'"12pt’

Valid values
A height, in a valid unit of measurement, enclosed in single quotes.

right_relative_image_path
std_image_button_v2 only.

The path and name, relative to the images directory, of the image to be
displayed on the right of the weblet. If specified, the right_absolute_image_path
property should be left blank.

Default value
Blank — by default, buttons do not display an image on the right.

Valid values
The path and name of an image, relative to the images directory, enclosed in
single quotes. An image can be chosen from a prompter by clicking the
corresponding ellipses button in the property sheet.

right_absolute_image_path

std_image_button_v2 only.
The path and name of the image to be displayed on the right of the weblet. If
specified, the right_relative_image_path property should be left blank.

Default value
Blank — the default is to use the image specified in the
right_relative_image_path property, if specified.

Valid values
The path and name of an image, enclosed in single quotes.

right_image_height
std_image_button_v2 only.
The height of the image on the right of the weblet.

Default value
'"12pt’

Valid values
A height, in a valid unit of measurement, enclosed in single quotes.

submitExtraFields

An XML nodeset specifying any extra fields (not already in the form being
submitted) that should be sent to the onClick webroutine. This will most
commonly be used when the weblet is used in a list or grid to specify values
from other columns in the list.

Default value
document(")/*/Ixml:data/Ixml:json[not(@id)] (this indicates no items
have been defined for this weblet).

Valid values

Not Applicable. (This value is system maintained.) To invoke the designer
use the ellipse button in the property sheet.

Example
This example shows the submitExtraFields property editor:
Name Value

[DEPTMENT | [SELDEPT Delete
"~ Literal ® Field

[SECTION =] |sELsECT Delete
T Literal {* i Field

Add

This shows how output fields in the current webroutine (the "Value" column)
can be mapped to input fields with a different name (the "Name" column)
defined in the onClick webroutine's WEB_MAP.

hide_if
An expression which, if evaluated to be True, will hide the weblet.

Default value
False() (that is, the weblet will always be shown)

Valid values
Any valid XPath expression that returns a Boolean value.

formname
The name of the HTML form that is posted to the server.

Default value
'LANSA'

Valid values
A name for the form, in single quotes. A list of known form names is
available by clicking the corresponding dropdown button in the property
sheet.

pos_absolute_design

The absolute position of the weblet on the web page. Note that 'Position
Absolutely' must be selected from the weblet's right-click menu for this property

to be used. The property will usually be set in pixels by dragging and dropping
the weblet.

Default value
Blank (not positioned).

Valid values

Valid 'left' and 'top' coordinates, in valid units of measurement, in single
quotes.

width_design
The width of the weblet on the web page.

Default value
Blank (weblet uses its default width).

Valid values
A width, in a valid unit of measurement, in single quotes.

height_design
The height of the weblet on the web page.

Default value
Blank (weblet uses its default height).

Valid values
A height, in a valid unit of measurement, in single quotes.

on_click_wamname
The name of the WAM to be invoked when the weblet is clicked.

Default value
$lweb_WAMName (this is equivalent to the current WAM).

Valid values
The name of a WAM in single quotes. A list of known WAM:s can be
displayed by clicking the corresponding dropdown button on the property
sheet.

on_click_wrname

The name of the Webroutine to be invoked when the weblet is clicked.

Default value
Blank — a Webroutine name must be specified.

Valid values
The name of a Webroutine in single quotes. The Webroutine must exist in the
WAM specified in the on_click_wamname property. A list of known
Webroutines can be displayed by clicking the corresponding dropdown
button on the property sheet.

protocol

The protocol (for example, http:// or https://) that should be used for navigation
to the Webroutine specified in the on_click_wrname property.

Default value
Blank. This is equivalent to the current protocol being used.

Valid values
A valid protocol, in single quotes. This is usually 'http:' or 'https:'.

show_in_new_window

A Boolean property, the result of which determines whether response HTML for
the weblet should be shown in a new browser window.

Default value
false() — response HTML is shown in the current browser window.

Valid values
true(), false() or a valid expression.

target_window_name
The name of the window, or frame, in which response HTML will be shown.

Default value
Blank — response HTML will be shown in the current window.

Valid values

The name of a window or frame, in single quotes. A list of known windows
and frames can be displayed by clicking on the corresponding dropdown
button in the property sheet, or a unique name can be entered.

' blank' will launch in a new window

_media' will launch a media panel in the current window
'_search' will launch a search panel in the current window

'_parent' will launch in the parent window (usually the current window)
'_top' will launch in the top window (usually the current window)

Note that _search and _media are supported by Internet Explorer 6 only.

disabled

A Boolean property, the result of which determines whether the weblet appears
enabled or disabled.

Default value
Blank — equivalent to False (that is, the weblet will always be enabled).

Valid values
true(), false() or a valid expression.

title

Text to be displayed as a Tool Tip for the weblet when the mouse is hovered
over it.

Default value
Blank — no Tool Tip text will be displayed.

Valid values
Single-quoted text or the name of a multilingual text variable (the
corresponding ellipses button in the property sheet can be clicked to choose
one from a list).

text_class
The Cascading Style Sheet class name for the caption in the push button.

Default value
None for the push button. 'std_image_button_text' for the image push
button.

Valid values
Any valid class name from the Cascading Style Sheet, in single quotes. A list
of available classes can be selected from by clicking the corresponding
dropdown button in the property sheet.

presubmit_js
JavaScript code to be run prior to the submission of the form.

Default value
Blank. No JavaScript is run.

Valid values
Any valid JavaScript function, or JavaScript code followed by a semicolon
G)-
If you want to execute the presubmit JavaScript only, without running the

JavaScript that submits the request (thus canceling the onclick event),
append return false; to your presubmit JavaScript.

confirm

If true, it presents a confirmation dialog box for the user to confirm the action
before proceeding. If the user clicks on the Cancel button in the confirmation
dialog box or closes the confirmation dialog box without clicking on the OK
button, the action to be performed by the button weblet is cancelled.

Default value
false() —No confirmation dialog box.

Valid values
true(), false() or a valid expression.
Example

This example shows the confirmation dialog box you would add to a Delete
button:

[)

£ Are you sure you want to delete the
Department: [ADM] 7

OK Cancel

confirmText

The text to display in the confirmation dialog box. Only applicalble if the
confirm property is set to true().

Default value
Blank — no text message.

Valid values
Single-quoted text, the name of a multilingual text variable (the
corresponding ellipses button in the property sheet can be clicked to choose
one from a list) or an XPath expression whose result is a string.

tab_index

Determines the tab order of the weblet on the form. The tab_index property
value determines the tab order as follows:

1. Objects with a positive tab_index are selected in increasing tab_index order
(and in source order to resolve duplicates).

2. Objects with a tab_index of zero or blank (the default) are selected in source
order.

3. Objects with a negative tab_index are omitted from the tabbing order. Note
that this behavior is not defined in the HTML specifications and is only
supported by Internet Explorer and Firefox.
Default value

Blank. The weblet is selected in source order.
Valid values

Blank or a valid numeric value.

default_button

A Boolean property, the result of which determines whether the button is the
default button for the form. Only one button on the form can be the default
button — setting to True will set all other buttons to False.

Default value
Blank - Equivalent to False.
Valid values

true(), false() or a valid expression.

vf_wamevent
VLF WAM event string

Default value
Blank.

Valid values
String value. Comma (',") not allowed.

8.1.5 Checkbox (std_checkbox)

QuickStart - Checkbox Properties - Checkbox

The checkbox weblet provides a checkbox control. It broadly corresponds to the
<input type="checkbox"> HTML element.

A checkbox control is typically used to represent a value that can have one of
two states. For example: on or off; yes or no; selected or unselected.

When used in a list (with no caption), the checkbox weblet looks like this:

Dept Department
Code Description

[ADM ADMINISTRATOR DEPT
W AUD INTERNAL AUDITING

[FLT FLEET ADMINISTRATION

Note: While the checkbox weblet includes properties such as
on_click_wrname that allow it to navigate to another webroutine when

clicked, It is not good user-interface design practice to initiate actions
from the click of a checkbox. Devices such as a push button, menu
item or anchor (hyperlink) should be used to accomplish this.

QuickStart - Checkbox

It is common to use a checkbox with a column in a list to indicate a data item or
selection state. To do so you would need to create a webroutine that specifies
the list in its WEB_MAP. When you open the generated XSL in the LANSA
Editor, you can change a column of the list to function as a checkbox as follows:

Click on the Weblets tab, select Standard Weblets from the drop-down list near
the top and locate the Checkbox weblet.

Drag the Checkbox weblet over the column in your list and release the left-
mouse button. The column's appearance changes to show that it is now a
checkbox. Click on an item in the column and then click on the Details tab. You
should see that the name and value properties for the checkbox weblet have
already been set according to the field upon which it was dropped.

Set the caption property as required. When used in a list you may not wish to
use a caption — to remove the caption, specify an empty string by specifying two
quote marks with no contained text.

You may need to set the oncode and offcode properties according to the values
used in your application to represent the on and off or selected and unselected
states.

Properties - Checkbox

The Checkbox weblet's Properties are:

alignment mouseover_class protocol
caption name reentryfield
class offcode reentryvalue
disabled on_click_ wamname tab_index

display_mode on_click_wrname target_window_name
formname oncode text_class
hide_if pos_absolute value

vf_wamevent

name

The name the weblet is identified with. If the weblet visualizes a field, this is the
name of the field. Normally, you would leave this as the default and let LANSA
use its own internal naming convention. However, you may want to use your
own name if using JavaScript or XSL that references the weblet.

Default value

Where the weblet visualizes a field the default name is the field name or
combines the field name with a row number (for fields in a list). Otherwise
the default name is an automatically generated, unique identifier.

Valid values
Single-quoted text.

value

The value to set the weblet to. If the weblet visualizes a field, this will identify
the field whose value is to be shown.

Default value

No default value applies — for most uses of this weblet you must specify a
field whose value is to be represented by the checkbox and/or that is used to
receive the state of the checkbox.

Valid values

Single-quoted text or the name of a field, system variable or multilingual text
variable.

display_mode
Controls whether the weblet accepts input, displays output or is hidden.

Default value
Blank (equivalent to 'input").

Valid values
Literal values 'input’, 'output’ or 'hidden'. A list of allowable values is
available by clicking the corresponding dropdown button in the property
sheet. Alternately, you may enter the name of a field, system variable or
multilingual variable that will contain one of the allowable values at run-
time.

caption
The caption for the weblet. The caption is displayed adjacent to the checkbox on
the web page.

Default value
'Caption’ (this is a placeholder default value - you will need to set a caption).

Valid values
Single-quoted text or the name of a multilingual text variable (the
corresponding ellipses button in the property sheet can be clicked to choose
one from a list).
If you do not want any caption displayed next to the checkbox (for example,
when it is used in a list) you may specify an empty string by specifying two
quote marks with no contained text.

oncode

The value that represents, or is used to set, a checked status for a checkbox.

Default value
IYI
Valid values
Single-quoted text or the name of a field, system variable or multilingual text

variable (the corresponding ellipses button in the property sheet can be
clicked to choose one from a list).

offcode

The value that represents, or is used to set, an unchecked status for a checkbox.

Default value
INI
Valid values
Single-quoted text or the name of a field, system variable or multilingual text

variable (the corresponding ellipses button in the property sheet can be
clicked to choose one from a list).

reentryfield

The field name to be used to post to the WAM the value that is specified in the
reentryvalue property. The field name should be in single quotes.

See the description of the reentryvalue property for further information.

Note: this property is provided to support a re-entrant programming technique
that is commonly used in WEBEVENT applications. Web applications that are
designed from the outset to use WAMs do not usually need to make use of that
technique.

Default value
'STDRENTRY'

Valid values
Single-quoted text.

reentryvalue

The value to post to the target webroutine in the field specified in the
reentryfield property. If that field is alphanumeric, the value must be specified in
single quotes. If it is numeric, the value can be specified with or without quotes.

This property is used in conjunction with the reentryfield property to describe
how to post values to a target webroutine. These two pieces of information are
required to accomplish this:

1. reentryfield: the field name that the target webroutine uses to refer to the
information

2. reentryvalue: a literal value or a field name in this (the source) webroutine
that contains the necessary information

Note: this property is provided to support a re-entrant programming technique
that is commonly used in WEBEVENT applications. Web applications that are
designed from the outset to use WAMs do not usually need to make use of that
technique.

Default value
'Ml
Valid values

Single-quoted text or the name of a field, system variable or multilingual text
variable.

hide_if
An expression which, if evaluated to be True, will hide the weblet.

Default value
False() (that is, the weblet will always be shown)

Valid values
Any valid XPath expression that returns a Boolean value.

Example
This example will hide the weblet if field #STD_FLAG is equal to 'X". The
expression should be entered in this form:
gehic=if ESPIGUER]
When the property loses focus, the expression is shown as follows:
=[E|hiu:|e_if key(field-value', 'STD_FLAG) ="Y'

formname
The name of the HTML form that is posted to the server.

Default value
'LANSA'

Valid values
A name for the form, in single quotes. A list of known form names is
available by clicking the corresponding dropdown button in the property
sheet.

on_click_wamname

Specifies the name of the WAM whose webroutine is executed when the
checkbox is clicked. (The webroutine name is specified in the on_click_wrname

property.) This property is ignored unless the on_click_wrname property is
specified.

Note: It is not good user-interface design practice to initiate actions

from the click of a checkbox. Devices such as a push button, menu
item or anchor (hyperlink) should be used to accomplish this.

Default value
If not specified, the current WAM is used. ($lweb_WAMName).
Valid values

The name of a WAM in single quotes. A list of known WAM:s can be

displayed by clicking the corresponding dropdown button on the property
sheet.

on_click_wrname

Specifies the name of the webroutine that is executed when the checkbox is
clicked. (The name of the WAM containing the webroutine is specified in the
on_click_wamname property.)

Note: It is not good user-interface design practice to initiate actions

from the click of a checkbox. Devices such as a push button, menu
item or anchor (hyperlink) should be used to accomplish this.

Default value
No default value applies.

Valid values

The name of a Webroutine in single quotes. The Webroutine must exist in the
WAM specified in the on_click_wamname property. A list of known
Webroutines can be displayed by clicking the corresponding dropdown
button on the property sheet.

protocol
The protocol (for example, http:// or https://) that should be used for navigation
to the Webroutine specified in the on_click_wrname property.

Typically you might use this property when it is necessary to switch to or from

secure-mode processing. Otherwise it is not usually necessary to specify this
property.

Default value
Blank. This is equivalent to the current protocol being used.
Valid values

A valid protocol, in single quotes. If specified, it is usually 'http:' or 'https:'.

target_window_name

The name of the window, or frame, in which the response HTML will be shown
upon navigation to the webroutine specified in the on_click_wrname property.

Default value
Blank — the response HTML will be shown in the current window.

Valid values
The name of a window or frame, in single quotes. A list of known windows
and frames can be displayed by clicking on the corresponding dropdown
button in the property sheet.

disabled

A boolean property, the result of which determines whether the weblet appears
enabled or disabled.

Default value
Blank — equivalent to False (that is, the weblet will always be enabled).

Valid values
true(), false() or a valid expression.

alignment
Determines whether the caption appears to the left or right of the checkbox.
Default value
Tight'
Valid values

'left’, 'right' or the name of a field or system variable that will contain one of
the preceding values at run-time.

pos_absolute

The absolute position of the weblet on the web page. Note that 'Position
Absolutely' must be selected from the weblet's right-click menu for this property

to be used. The property will usually be set in pixels by dragging and dropping
the weblet.

Default value
Blank (not positioned).

Valid values

Valid 'left' and 'top' coordinates, in valid units of measurement, in single
quotes.

Example

In this example, Position Absolutely has been enabled for the weblet and the
weblet was positioned as required in the Design view of the LANSA Editor.
This resulted in the value shown for the pos_absolute_design property.
ﬂpus_ﬂbsulute_design 'position:absolute;left: 324pt; top: 162, 72pt;'

class
The Cascading Style Sheet (CSS) class name of the weblet.

Default value
The name of the shipped class for the weblet.

Valid values
Any valid class name from the Cascading Style Sheet, in single quotes. A list
of available classes can be selected from by clicking the corresponding
dropdown button in the property sheet.

mouseover_class

The Cascading Style Sheet (CSS) class name of the weblet when the mouse is
moved over it.

Default value
No default value applies for this weblet.

Valid values
Any valid class name from the Cascading Style Sheet, in single quotes. A list
of available classes can be selected from by clicking the corresponding
dropdown button in the property sheet.

text_class
The Cascading Style Sheet (CSS) class name of the text of the weblet.

Default value
The name of the shipped text class for the weblet.

Valid values
Any valid class name from the Cascading Style Sheet, in single quotes. A list
of available classes can be selected from by clicking the corresponding
dropdown button in the property sheet.

tab_index

Determines the tab order of the weblet on the form. The tab_index property
value determines the tab order as follows:

1. Objects with a positive tab_index are selected in increasing tab_index order
(and in source order to resolve duplicates).

2. Objects with a tab_index of zero or blank (the default) are selected in source
order.

3. Objects with a negative tab_index are omitted from the tabbing order. Note
that this behavior is not defined in the HTML specifications and is only
supported by Internet Explorer and Firefox.
Default value

Blank. The weblet is selected in source order.
Valid values

Blank or a valid numeric value.

vf_wamevent
VLF WAM event string

Default value
Blank.

Valid values
String value. Comma (',") not allowed.

8.1.6 CKEditor Rich Text Editor (std_ckeditor)

QuickStart — CKEditor Properties — CKEditor Rich Text Editor

CKEditor is a rich text editor. It's a WYSIWYG editor, which means that the

text being edited on it looks as similar as possible to the results users have when
publishing it.

] Source i]l
B J U ax x, x2Q |

Shiles - Ianfat

QuickStart — CKEditor

To use the CKEditor weblet you can follow these steps:

1. Click on the Weblets tab, select Standard Weblets from the drop-down list
near the top and locate the CKEditor Rich Text Editor weblet.

2. Drag and drop the weblet onto your page. Make sure the weblet is selected
and then click on the Details tab.

3. Assign a field name to the CKEditor name property. The field would
normally be a string field long enough to store the expected content when
escaped (all markup text is escaped by the CKEditor).

Properties — CKEditor Rich Text Editor

autoGrow pos_absolute showSource
autoGrow_maxHeight resize_dir tab_index
autoGrow_minHeight resize_enabled toolbar

contentCss resize_maxHeight toolbarCanCollapse
height_design resize_maxWidth uiColor

hide_if resize_minHeight value

name resize_ minWidth valueFromField

onchange_script showElementsPath width_design

name

The name the weblet is identified with. If the weblet visualizes a field, this is the
name of the field. Normally, you would leave this as the default and let LANSA
use its own internal naming convention. However, you may want to use your
own name if using JavaScript or XSL that references the weblet.

Default value

Where the weblet visualizes a field the default name is the field name.
Otherwise the default name is an automatically generated, unique identifier.

Valid values
Single-quoted text.

value

The value to set the weblet to. If the weblet visualizes a field, this will identify
the field whose value is to be shown.

Default value
No default value applies

Valid values

Single-quoted text or the name of a field, system variable or multilingual text
variable.

valueFromField

If set to true and the value property is null, the CKEditor weblet will load the
value from the field that matches the CKEditor name attribute. Use this option if

your text content is large and you don't want the content to appear both in the
CKEditor weblet value and the webroutine field values list.

Default value
False()

Valid values

Any valid XPath expression that returns a Boolean value.

hide_if
An expression which, if evaluated to be True, will hide the weblet.

Default value
False() (that is, the weblet will always be shown)

Valid values
Any valid XPath expression that returns a Boolean value.

toolbar

The level of features to include in the editor. The Full option shows all the

options available in the CKEditor. Use the basic toolbar if you want to provide
simple editing capabilities only.

Default value
Basic

Valid values
Basic
Full

Example
CKEditor with basic toolbar:

showSource

When showing the full toolbar, whether to allow users to view/edit the HTML
source

Allowing users to add any markup in field values could be a security
vulnerability. Only use this option with care.

Default value
False.

Valid values
False(), true() or any valid XPath expression that returns a Boolean value.

showElementsPath

The elements path displays information about the HTML elements of the

document for a position of the cursor. It appears in the status bar of the
CKEditor.

Default value
True.

Valid values

False(), true() or any valid XPath expression that returns a Boolean value.

toolbarCanCollapse

Whether the toolbar can be collapsed by the user. If disabled, the collapser
button will not be displayed.

Default value
True.

Valid values
False(), true() or any valid XPath expression that returns a Boolean value.

pos_absolute

The absolute position of the weblet on the web page. Note that 'Position
Absolutely' must be selected from the weblet's right-click menu for this property

to be used. The property will usually be set in pixels by dragging and dropping
the weblet.

Default value

Blank (this is equivalent to the weblet being positioned relatively).
Valid values

Valid 'left' and 'top' coordinates, in valid units of measurement, in single
quotes.

width_design
The width of the weblet on the web page.

Usually you would set the width of the weblet by dragging the grab-handles
around the weblet in the Design view of the LANSA Editor. Doing so updates

the value of the width-design and height_design properties. However you can
directly edit the property value if required.

Default value
Blank.

Valid values

A width, in a valid unit of measurement, in single quotes.

height_design
The height of the weblet on the web page.

Usually you would set the height and width of the weblet by dragging the grab-
handles around the weblet in the Design view of the LANSA Editor. Doing so
updates the value of the width-design and height_design properties. However
you can directly edit the property values if required.

Default value
Blank.

Valid values

A height, in a valid unit of measurement, in single quotes.

resize_enabled

Whether to enable the CKEditor to be resized. If disabled the resize handler will
not be visible.

Default value
False.

Valid values
False(), true() or any valid XPath expression that returns a Boolean value.

resize_dir

The directions to which the editor resizing is enabled. Only applicable if the
CKEditor is enabled to be resized.

Default value
Both

Valid values
Both
Vertical
Horizontal

autoGrow

Whether to enable AutoGrow. Autogrow allows the content area to expand as
the user fills the content area.

Default value
False.

Valid values
False(), true() or any valid XPath expression that returns a Boolean value.

autoGrow_maxHeight

The maximum height to which the editor can reach using AutoGrow.

Default value
Blank.

Valid values
A height, in a valid unit of measurement, in single quotes.

autoGrow_minHeight
The minimum height to which the editor can reach using AutoGrow.

Default value
Blank.

Valid values
A height, in a valid unit of measurement, in single quotes.

resize_maxHeight
The maximum editor height, in pixels, when resizing it with the resize handle.

Default value
3000 pixels

Valid values
A height in pixels.

resize_maxWidth
The maximum editor width, in pixels, when resizing it with the resize handle.

Default value
3000 pixels

Valid values
A width in pixels.

resize_minHeight

The minimum editor height, in pixels, when resizing it with the resize handle.
Note: It fallbacks to editor's actual height if that's smaller than the default value.

Default value
250 pixels

Valid values
A height in pixels.

resize_minWidth

The minimum editor width, in pixels, when resizing it with the resize handle.
Note: It fallbacks to editor's actual width if that's smaller than the default value.

Default value
750 pixels

Valid values
A width in pixels.

contentCss

The CSS file(s) to be used to apply style to the contents (comma separated list).
It should reflect the CSS used in the final pages where the contents are to be

used. Use the special value 'inherit' to apply the same CSS used in the
webroutine.

Default value
Inherit

Valid values
Comma separated list of stylesheets.

tab_index

Determines the tab order of the weblet on the form. The tab_index property
value determines the tab order as follows:

1. Objects with a positive tab_index are selected in increasing tab_index order
(and in source order to resolve duplicates).

2. Objects with a tab_index of zero or blank (the default) are selected in source
order.

3. Objects with a negative tab_index are omitted from the tabbing order. Note
that this behavior is not defined in the HTML specifications and is only
supported by Internet Explorer and Firefox.
Default value

Blank. The weblet is selected in source order.
Valid values

Blank or a valid numeric value.

uiColor
The toolbar area background color.

Default value
Theme: Defaults to a color matching the current theme.

Valid values
A color in #RRGGBB format.

onchange_script

JavaScript code to be run when the input box loses focus after the text has been
changed. JavaScript statements must be terminated by a semicolon.

Default value
Blank. No JavaScript is run.

Valid values
Any valid JavaScript statement(s).

8.1.7 Clickable Image (std_click_image)

QuickStart - Clickable Image Properties - Clickable Image

The Clickable Image weblet provides a mechanism by which an image can be

displayed on your web page that can be clicked on to perform an action. By
default, it shows a blue ball that looks like this:

QuickStart - Clickable Image

To use a clickable image with a column in a list, you would need to create a
webroutine that specifies the list in its WEB_MAP as *BOTH or *OUTPUT.
When you open the generated XSL in the LANSA Editor, you can change a
column of the list to function as a clickable image as follows:

Click on the Weblets tab, select Standard Weblets from the drop-down list near
the top and locate the Clickable Image weblet.

Drag and drop it onto the column in your list you want to be clickable. The
column's appearance changes to show that it is now an image. Click on an item
in the column and then click on the Details tab. You should see that the name
and value properties for the anchor weblet have already been set according to
the field upon which it was dropped.

Set the currentrowhfield and currentrownumval properties as described in the
property descriptions.

Set the on_click_wrname property to the name of the webroutine to be invoked
when the hyperlink is clicked. If the webroutine is in a different WAM to the
current webroutine then you will need to set the on_click_wamname property as
well.

Properties - Clickable Image

The Clickable Image weblet's properties are:

absolute_image_path mouseover_absolute_image_path relative_image_path

class mouseover_relative_image_path show_in_new_windoy
currentrowhfield name tab_index
currentrownumval on_click_ wamname target_window_name
disabled on_click_wrname tooltip

disabled_class pos_absolute url

formname presubmit_js value

height_design protocol vf_wamevent
hide_focus reentryfield width_design

hide_if reentryvalue

name

The name of the weblet. Normally, you would leave this as the default and let
LANSA use its own internal naming convention. However, you may want to use
your own name if using JavaScript or XSL that references the weblet.

Default value

concat('o’, position(), '_LANSA_n") — this is the internal name given to the
weblet by LANSA.

Valid values
A name in single quotes.

value

The value to set the weblet to. If the weblet visualizes a field, this is the value of
the field.

Default value
Blank.

Valid values
Single-quoted text or the name of a multilingual text variable, system
variable or field (the ellipses button in the property sheet can be clicked to
choose one from a list).

currentrowhfield

The name of the field that will contain the current row's specified value. This
property should only be used if the weblet is being used in a list.

Default value
'STDROWNUM' — in conjunction with the default value of position() for the
currentrownumval property, STDROWNUM will hold the list entry number.

Valid values
The name of a repository- or WAM-defined field, in single quotes. A list of
known field names is available by clicking the corresponding dropdown
button in the property sheet.

currentrownumval

The value to be placed in the field specified in the currentrowhfield property.
This property should only be used if the weblet is being used in a list.

Default value
Position() — in conjunction with the default value of STDROWNUM for the
currentrowhfield property, STDROWNUM will hold the list entry number.

Valid values

Any appropriate valid value. If specifying a field value from the current row
of a list, prefix the name of the field with '$'".

reentryfield

The field name to be used to post to the WAM the value that is specified in the
reentryvalue property. The field name should be in single quotes.

Default value
'STDRENTRY'

Valid values
Any repository- or WAM-defined field name. A list of known field names is
available by clicking the corresponding dropdown button in the property
sheet.

reentryvalue

The value to post into the field specified in the reentryfield property. If that field
is alphanumeric, the value must be specified in single quotes. If it is numeric,
the value can be specified with or without quotes.

Default value
IMI
Valid values
Any appropriate literal.

tooltip

Text to be displayed as a Tool Tip for the weblet when the mouse is hovered
over it.

Default value
"Tooltip'

Valid values
Single-quoted text or the name of a multilingual text variable, system
variable or field (the ellipses button in the property sheet can be clicked to
choose from a list).

hide_if
An expression which, if evaluated to be True, will hide the weblet.
Default value
False() (that is, the weblet will always be shown)
Valid values
Any valid XPath expression that returns a Boolean value.
Example

This example will hide the weblet if field STD_FLAG is equal to 'X'. The

expression should be entered, and is shown when the property has focus, as
follows:

hie ESORGTE

When the property loses focus, the expression is shown as follows:
ﬁEihidE_if key(field-value', 'STD_FLAG) ="X'

formname
The name of the HTML form that is posted to the server.

Default value
'LANSA'

Valid values
A name for the form, in single quotes. A list of known form names is
available by clicking the corresponding dropdown button in the property
sheet.

url

This property may be used to specify a URL that the weblet will navigate to
when clicked. If specified, the URL may be specified as a literal value (for

example 'http://www.mycompany.com/') or a field name may be specified that
contains the URL at run-time.

This property takes precedence over the on_click_wamname, on_click_wrname
and protocol properties. The latter properties are ignored if url is specified.

Default Value
javascript:void();' — equivalent to nothing.
Valid Values

A URL enclosed by single quotes or the name of a field, system variable or
multilingual variable that will contain the URL at run-time.

on_click_wamname
The name of the WAM to be invoked when the weblet is clicked.

Default value
$lweb_WAMName (this is equivalent to the current WAM).

Valid values
The name of a WAM in single quotes. A list of known WAM:s can be
displayed by clicking the corresponding dropdown button on the property
sheet.

on_click_wrname

The name of the Webroutine to be invoked when the weblet is clicked.

Default value
Not applicable — a Webroutine name must be specified.

Valid values
The name of a Webroutine in single quotes. The Webroutine must exist in the
WAM specified in the on_click_wamname property. A list of known
Webroutines can be displayed by clicking the corresponding dropdown
button on the property sheet.

protocol

The protocol (for example, http:// or https://) that should be used for navigation
to the Webroutine specified in the on_click_wrname property.

Default value
Blank. This is equivalent to the current protocol being used.

Valid values
A valid protocol, in single quotes. This is usually 'http:' or 'https:'.

show_in_new_window

A Boolean property, the result of which determines whether response HTML for
the weblet should be shown in a new browser window.

Default value
false() — response HTML is shown in the current browser window.

Valid values
true(), false() or any valid expression that returns True or False.

target_window_name
The name of the window, or frame, in which response HTML will be shown.

Default value
Blank — response HTML will be shown in the current window.

Valid values

The name of a window or frame, in single quotes. A list of known windows
and frames can be displayed by clicking on the corresponding dropdown
button in the property sheet.

' blank' will launch in a new window

_media' will launch a media panel in the current window
'_search' will launch a search panel in the current window

'_parent' will launch in the parent window (usually the current window)
'_top' will launch in the top window (usually the current window)

Note that _search and _media are supported by Internet Explorer 6 only.

disabled

A Boolean property, the result of which determines whether the weblet appears
enabled or disabled.

Default value
Blank — equivalent to False (that is, the weblet will always be enabled).

Valid values
true(), false()or any valid expression that returns True or False.

hide_focus

A Boolean property that, if evaluated to be True, will hide the focus rectangle
for the weblet when it has focus.

Default value
true()

Valid values
true(), false() or a valid expression that returns a Boolean value.

relative_image_path

The path and file name, relative to the 'images' directory, of the image to be
displayed. If specified, the absolute_image_path property should be left blank.

Default value
'ball_blue.gif'

Valid values
The path and name of an image, relative to the images directory, enclosed in
single quotes. An image can be chosen from a prompter by clicking the
corresponding ellipses button in the property sheet.

absolute_image_path

The path and file name of the image to be displayed. If specified, the
relative_image_path property should be left blank.

Default value
The default is to use the image specified in the relative_image_path property.

Valid values
The path and name of an image enclosed in single quotes.

mouseover_relative_image_path

The path and file name, relative to the 'images' directory, of an image to be
displayed when the mouse moves over the weblet.

Default value

Blank — the image does not change when the mouse is moved over the
weblet.

Valid values
The path and name of an image, relative to the images directory, enclosed in
single quotes. An image can be chosen from a prompter by clicking the
corresponding ellipses button in the property sheet.

mouseover_absolute_image_path

The path and file name of an image to be displayed when the mouse moves over
the weblet.

Default value
Blank — the default is to use the image specified in the
mouseover_relative_image_path property.

Valid values
The path and name of an image enclosed in single quotes.

pos_absolute

The absolute position of the weblet on the web page. Note that 'Position
Absolutely' must be selected from the weblet's right-click menu for this property

to be used. The property will usually be set in pixels by dragging and dropping
the weblet.

Default value
Blank (not positioned).

Valid values

Valid 'left' and 'top' coordinates, in valid units of measurement, in single
quotes.

width_design
The width of the weblet on the web page.

Default value
Blank (weblet uses its default width).

Valid values
A width, in a valid unit of measurement, in single quotes.

height_design
The height of the weblet on the web page.

Default value
Blank (weblet uses its default height).

Valid values
A height, in a valid unit of measurement, in single quotes.

class
The Cascading Style Sheet class name of the weblet.

Default value
'std_click_image' - The name of the shipped class for the weblet.

Valid values
Any valid class name from the Cascading Style Sheet, in single quotes. A list
of available classes can be selected from by clicking the corresponding
dropdown button in the property sheet.

disabled_class

The Cascading Style Sheet of the weblet when the disabled property is set to
True.

Default value
'std_click_image_disabled' - The name of the shipped disabled class for the
weblet.

Valid values
Any valid class name from the Cascading Style Sheet, in single quotes. A list
of available classes can be selected from by clicking the corresponding
dropdown button in the property sheet.

presubmit_js

JavaScript code to be run prior to the submission of the form.

Default value
Blank. No JavaScript is run.

Valid values
Any valid JavaScript function, or JavaScript code followed by a semicolon
G)-
If you want to execute the presubmit JavaScript only, without running the
JavaScript that submits the request (thus canceling the onclick event),
append return false; to your presubmit JavaScript.

Example
The following example shows a message box:
ﬂpresubmit_js ‘alert("Hello warld!");'
The following example shows a message box and cancels the submit
JavaScript:

ﬂpresubmit_js ‘alerti"Hella world!"); return False;'

tab_index

Determines the tab order of the weblet on the form. The tab_index property
value determines the tab order as follows:

1. Objects with a positive tab_index are selected in increasing tab_index order
(and in source order to resolve duplicates).

2. Objects with a tab_index of zero or blank (the default) are selected in source
order.

3. Objects with a negative tab_index are omitted from the tabbing order. Note
that this behavior is not defined in the HTML specifications and is only
supported by Internet Explorer and Firefox.
Default value

Blank. The weblet is selected in source order.
Valid values

Blank or a valid numeric value.

vf_wamevent
VLF WAM event string

Default value
Blank.

Valid values
String value. Comma (',") not allowed.

8.1.8 Combo Box (std_dropdown)

QuickStart - Clickable Image Properties - Combo Box

The combo box weblet builds a dropdown selection for a field. The values used
to build the dropdown can be from a working list or a static set of values
defined via the item property of the weblet. Each dropdown is implemented as a
<select> HTML tag. It looks like this:

Departrnent Code TRAVEL DEPARTMEMT b

ADMINISTRATOR DEPT
INTERMNAL AUDITIMNG
FLEET ADMINISTRATICN
GROUP ACCOUNTS
INFORMATION SERVMICES
LEGAL DEPARTMENT
MANAGEMNT INFORMATIO
MARKETING DEFARTMENT
SALES & DISTRIBUTION
i DE T

QuickStart - Combo Box

Each entry in a combo box is defined by an entry in a working list or a set of
items hardcoded in the combo box properties.

If you use a working list:

To use a working list to define the dropdown options, you need to create a
webroutine that specifies a field to store the selected value and the working list
of options in the WEB_MAP. When you open the XSL generated for the
webroutine in the LANSA Editor:

1. If the working list was not *HIDDEN on the WEB_MAP a default table
representation of the working list will be included on the web page. Delete
the table that visualizes the list. To do this, right-click in the list and select
Delete Entire List from the pop-up menu.

2. Click on the Weblets tab, select Standard Weblets from the drop-down list
near the top and locate the Combo Box weblet.

3. Drag the Combo Box weblet onto the field to store the value and release the
left-mouse button. This will display with dropdown options.

Itermm 1 -

4. Click on the weblet to review the Details tab. Notice that the name and value
properties have been set to indicate the field you dragged the weblet on to.
The value property indicates that on presentation of the web page any value
currently in this field will be used to set the selected drop down entry. When
the drop down value is changed the appropriate value will be place in the
field nominated on the name property — in this case the same field.

5. Change the listname property to the working list passed on the WEB_MAP.
The combo box representation should immediately change to represent the
working list.

6. Set the codefield and captionfield properties to the appropriate fields from
the working list.

If you use the items property:

To use a set of items hardcoded in the combo box properties, you would need to
create a webroutine that specifies a field in its WEB_MAP. When you open the
XSL generated for the webroutine in the LANSA Editor:

1. Click on the Weblets tab, select Standard Weblets from the drop-down list

near the top and locate the Combo Box weblet.

. Drag the Combo Box weblet onto the field to store the value and release the
left-mouse button. This will display with dropdown options.

Itermm 1 -

. Click on the weblet to review the Details tab. Notice that the name and value
properties have been set to indicate the field you dragged the weblet on to.
The value property indicates that on presentation of the web page any value
currently in this field will be used to set the selected drop down entry. When
the drop down value is changed the appropriate value will be place in the
field nominated on the name property — in this case the same field.

. Set up the list of items to be used as drop down options by selecting the
ellipses button on the items property. Proceed to define the require entries for
the drop down.

Properties - Combo Box

The Combo Box weblet's properties are:

captionfield = mouseover_class selector_value_eq
class name submit_tagfields
codefield on_change_wamname tab_index

disabled on_change_wrname tagfieldl
display_mode pos_absolute tagfield2

formname protocol tagfield3

hide_if reentryfield target_window_name
items reentryvalue value

listname selector_field vf_wamevent

width_design

name

The name of the dropdown. Normally, you would leave this as the default and
let LANSA use its own internal naming convention. If the weblet has been

dropped onto a field, or is to be used to display or populate a field, the field
name is used.

Default value

An automatically generated, unique identifier.
Valid values

Single-quoted text.
Example

This shows the default name is not associated with a field:
ﬂname concat{'o’, position{), '_LANSA 1318615

Or you when the weblet is associated with a field STD_FLAG:

T name 'STD_FLAG

value

The value to set the weblet to. If the weblet visualizes a field, this is the
value of the field or a default value.

Default value
Blank.

Valid values

Single-quoted text or the name of a multilingual text variable, system

variable or field (the ellipses button in the property sheet can be clicked to
choose from a list).

Example

This example indicates the value should be set to the current value of the
field #SECTION. When entered into the property this looks like this:

When focus is moved off the property the same value will appear as follows:
ﬁ?ivalue ke Figld-valug', 'SECTION"

display_mode
Controls whether the weblet accepts input or displays output.
Default value
'input’
Valid values
'Input’ or 'output'.

items

An XML nodeset specifying the items to appear in the weblet. Can only be set
by the designer. To invoke the designer use the ellipse button in the property
sheet. Leave blank if items are populated from a list specified in the listname
property.

Default value

document(")/*/Ixml:data/Ixml:dropdown (this indicates no items have been
defined for this dropdown.)

Valid values

Not Applicable. (This value is system maintained.) To invoke the designer
use the ellipse button in the property sheet.

Example

This example indicates that items have been setup in the designer to use as
dropdown values.

=|ikems docurnent(™)* lxml: dataflml:caption_walue_pairs[@id="4414173FA6064A059507F31 244630CF3"]
5

Using the ellipse button on the property you will see the designer and be able
to maintain the items to be displayed in the dropdown. The following view of
the designer indicates two entries have been set up for the dropdown. The
first entry has the literal value ' MONDAY" and the second entry uses a
multilingual variable to display the description for the code TUE. Check the
Default Item check box for the item which is to be selected if no value is
preselected.

Design DfItE ;-l De ||.}

—ltems
oo
“MTXTDEMCALENO&001

» Add New

X Remove (DEL)

—Item Propertes

Caption: I Or "MTXT Variable: |"MTXTDEMCALENO&001 J

Value: ITUE ™ Default Item

Selector Value: I

Tip: Select an item in the list to edit it.

listname

The name of the working list to use to populate the cells in the grid. Leave blank
if details are specified in the items property.

Default value
Blank.

Valid values

Single-quoted text. A list of available working lists (as defined in the WAM)
can be selected from by clicking the corresponding dropdown button in the
property sheet.

selector_field

The name of the field in the list specified in the listname property that can
contain a value to limit, to a subset, the list items shown in the weblet. This
property is used in conjunction with the selector_value_eq property.
Default value
Blank.

Valid values

Single-quoted text. A field, from the working list nominated in listname, can

be selected by clicking the corresponding dropdown button in the property
sheet.

selector_value_eq

This value is used in order to limit, to a subset, the list items shown in the
weblet. If a listname property is provided the associated field must be specified
in the selector_field property. If the items property designer has been used to

define the list of values the corresponding selector value entered in the designer
is used.

Default value
Blank.

Valid values

Single-quoted text or a numeric value. A field, from the working list
nominated in listname, can be selected by clicking the corresponding
dropdown button in the property sheet.

codefield

The name of the field in the list specified in the listname property that holds the
key value for each list item.

Default value
Blank.

Valid values
Single-quoted text. A field, from the working list nominated in listname, can
be selected by clicking the corresponding dropdown button in the property
sheet.

captionfield

The name of the field in the list specified in the listname property that holds the
caption for the each list item.

Default value
Blank.

Valid values
Single-quoted text. A field, from the working list nominated in listname, can
be selected by clicking the corresponding dropdown button in the property
sheet.

tagfield1

The name of a field in the list specified in the listname property that can contain
an additional value to be tagged onto a list item. This value is added as an
attribute with the name of the field prefixed with 'tag_'. This attribute can then
be specified in JavaScript code.
Default value
Blank.

Valid values
Single-quoted text. A field, from the working list nominated in listname, can

be selected by clicking the corresponding dropdown button in the property
sheet.

tagfield2

The name of a field in the list specified in the listname property that can contain
an additional value to be tagged onto a list item. This value is added as an
attribute with the name of the field prefixed with 'tag_'. This attribute can then
be specified in JavaScript code.
Default value
Blank.

Valid values
Single-quoted text. A field, from the working list nominated in listname, can

be selected by clicking the corresponding dropdown button in the property
sheet.

tagfield3

The name of a field in the list specified in the listname property that can contain
an additional value to be tagged onto a list item. This value is added as an
attribute with the name of the field prefixed with 'tag_'. This attribute can then
be specified in JavaScript code.
Default value
Blank.

Valid values
Single-quoted text. A field, from the working list nominated in listname, can

be selected by clicking the corresponding dropdown button in the property
sheet.

submit_tagfields

A Boolean property. Set to True if tag field values are to be submitted with the
rest of the form.

Default value
True().

Valid values

True(), false() or any valid expression, involving field names, literals, XSL
variables or JavaScript variables, which can be resolved to true() or false().

reentryfield

The field name to be used to post to the WAM the value that is specified in the
reentryvalue property. The field name should be in single quotes.

Default value
'STDRENTRY'

Valid values
Any repository- or WAM-defined field name. A list of known field names is
available by clicking the corresponding dropdown button in the property
sheet.

reentryvalue

The value to post into the field specified in the reentryfield property. If that field
is alphanumeric, the value must be specified in single quotes. If it is numeric,
the value can be specified with or without quotes.

Default value
IMI
Valid values
Any appropriate literal.

hide_if

A Boolean property. An expression which, if evaluated to be True, will hide the
weblet.

Default value
False() (that is, the grid will always be shown)

Valid values

True(), false() or any valid expression, involving field names, literals, XSL
variables or JavaScript variables, which can be resolved to true() or false().

Example

This example will hide the grid if field #STD_FLAG is equal to 'X'. The

expression should be entered, and is shown when the property has focus, as
follows:

pghice it ESPIGECERY

When the property loses focus, the expression is shown as follows:
ﬁEihidE_if key(field-value', 'STD_FLAG) ="X'

formname
The name of the HTML form that is posted to the server.

Default value
'LANSA’ (that is, document. LANSA)

Valid values
A name for the form, in single quotes. A list of known form names is
available by clicking the corresponding dropdown button in the property
sheet.

pos_absolute

The absolute position of the weblet on the web page. Note that 'Position
Absolutely' must be selected from the weblet's right-click menu for this property

to be recognised. The property will usually be set in pixels by dragging and
dropping the weblet.

Default value
Blank (not positioned).

Valid values

Valid 'left' and 'top' coordinates, in valid units of measurement, in single
quotes.

width_design
The width of the weblet on the web page.

Default value
Blank (weblet uses its default width).

Valid values
A width, in a valid unit of measurement, in single quotes.

on_change_wamname

The name of the WAM to be invoked when an item in the weblet is selected.

Note: It is not good user-interface design to initiate actions from the

click of a dropdown. Devices such as a push button, menu item or
anchor (hyperlink) should be used to accomplish this.

Default value
$lweb_WAMName (this is equivalent to the current WAM).

Valid values
The name of a WAM in single quotes. A list of known WAM:s can be
displayed by clicking the corresponding dropdown button on the property
sheet.

on_change_wrname

The name of the Webroutine to be invoked when an item in the weblet is
selected.

Note: It is not good user-interface design to initiate actions from the

click of a dropdown. Devices such as a push button, menu item or
anchor (hyperlink) should be used to accomplish this.

Default value
Blank.

Valid values

The name of a Webroutine in single quotes. The Webroutine must exist in the
WAM specified in the on_change_wamname property. A list of known
Webroutines can be displayed by clicking the corresponding dropdown
button on the property sheet.

protocol

The protocol (for example, http:// or https://) that should be used for navigation
to the Webroutine invoked by this weblet.

Default value
Blank. This is equivalent to the current protocol being used.

Valid values
A valid protocol, in single quotes. This is usually 'http:' or 'https:'.

target_window_name

The name of the window, or frame, in which response HTML will be shown. A
unique name can be entered or use the available selection for a predefined set of
values.
Default value

Blank — response HTML will be shown in the current window.

Valid values
The name of a window or frame, in single quotes.

A list of known windows and frames can be displayed by clicking on the

corresponding dropdown button in the property sheet, or a unique name can
be entered.

' blank' will launch in a new window

_media' will launch a media panel in the current window
'_search' will launch a search panel in the current window

'_parent' will launch in the parent window (usually the current window)
'_top' will launch in the top window (usually the current window)

Note that _search and _media are supported by Internet Explorer 6 only.

disabled

A Boolean property, the result of which determines whether the weblet appears
enabled or disabled.

Default value
Blank — equivalent to False (that is, the weblet will always be enabled).

Valid values
true(), false() or a valid expression.

class
The Cascading Style Sheet class to be applied to the weblet.

Default value
The name of the shipped class for the weblet.

Valid values
Any valid class name from the current Cascading Style Sheet, in single
quotes. A list of available classes can be selected from by clicking the
corresponding dropdown button in the property sheet.

mouseover_class

The Cascading Style Sheet class to be applied to the weblet when the mouse is
moved over it.

Default value
Blank.

Valid values

Any valid class name from the current Cascading Style Sheet, in single
quotes. A list of available classes can be selected from by clicking the
corresponding dropdown button in the property sheet. A shipped class of
'std_dropdown_mouseover' is supplied.

tab_index

Determines the tab order of the weblet on the form. The tab_index property
value determines the tab order as follows:

1. Objects with a positive tab_index are selected in increasing tab_index order
(and in source order to resolve duplicates).

2. Objects with a tab_index of zero or blank (the default) are selected in source
order.

3. Objects with a negative tab_index are omitted from the tabbing order. Note
that this behavior is not defined in the HTML specifications and is only
supported by Internet Explorer and Firefox.
Default value

Blank. The weblet is selected in source order.
Valid values

Blank or a valid numeric value.

vf_wamevent
VLF WAM event string

Default value
Blank.

Valid values
String value. Comma (',") not allowed.

8.1.9 Dynamic Select Box (std_dynamic_select)

QuickStart - Dynamic Select ~ 8.1.9 Dynamic Select Box
Box (std_dynamic_select)

The Dynamic Select Box is an HTML <select> element (which means it can
create a dropdown or a list) that is able to monitor another field and
automatically refresh itself when that field changes. The values used to build the
list can be from a working list or a static set of values defined via the item
property of the weblet.

QuickStart - Dynamic Select Box

Each entry in a Dynamic Select Box is defined by an entry in a working list or a
set of items hardcoded in the weblet properties.

If you use a working list:
To use a working list to define the dropdown options, you need to create a
webroutine that specifies a field to store the selected value and the working
list of options in the WEB_MAP. The working list must be defined as a
*JSON list. The working list will usually contain 2 or 3 columns:

A caption column containing the values to display in the list

A code column containg the code associated with each caption. The code is
the value that will be sent back to indicate the user's choice.

An optional selector column. This will be used in conjunction with the
selectorValueField property to filter the list displayed to the user

1. If the working list was not *HIDDEN on the WEB_MAP a default table
representation of the working list will be included on the web page. Delete
the table that visualizes the list. To do this, right-click in the list and select
Delete Entire List from the pop-up menu.

2. Click on the Weblets tab, select Standard Weblets from the drop-down list
near the top and locate the Dynamic Select Box weblet.

3. Drag the Dynamic Select Box weblet onto the field to store the value and
release the left-mouse button.

4. Click on the weblet to review the Details tab. Notice that the vf wamevent
and value properties have been set to indicate the field you dragged the
weblet on to. The value property indicates that on presentation of the web
page any value currently in this field will be used to set the selected entry.
When the weblet value is changed the appropriate value will be placed in the
field nominated on the name property — in this case the same field.

5. Change the listname property to the working list passed on the WEB_MAP.

6. Set the codefield and captionfield properties to the appropriate fields from
the working list.

7. Set the size property to indicate the desired height of the list box in rows (a
value of 1 will cause it to render as a dropdown).

If you use the items property:

To use a set of items hardcoded in the weblet properties, you would need to
create a webroutine that specifies a field for the selected value in its
WEB_MAP. When you open the XSL generated for the webroutine in the
LANSA Editor:

1. Click on the Weblets tab, select Standard Weblets from the drop-down list
near the top and locate the Dynamic Select Box weblet.

2. Drag the Dynamic Select Box weblet onto the field to store the value and
release the left-mouse button.

3. Click on the weblet to review the Details tab. Notice that the vf_wamevent
and value properties have been set to indicate the field you dragged the
weblet on to. The value property indicates that on presentation of the web
page any value currently in this field will be used to set the selected entry.
When the weblet value is changed the appropriate value will be place in the
field nominated in the name property — in this case the same field.

4. Set up the list of items to be used as drop down options by selecting the
ellipses button on the items property. Proceed to define the require entries for
the select box.

Automatic Updating

The dynamic select box can monitor another field and automatically refresh
itself whenever that field is updated. If the weblet has been filled using a
working list then you will need to create a JSON webroutine that will output a
fresh copy of the working list. The weblet will call this Webroutine each time it
needs to refresh.

1. Set the updateOnFieldChange to the id of the field you want to monitor. This
will usually be the name of a field but it can be the id of any HTML form
element capable of generating a change event. This field will be submitted to
the Webroutine supplying the new list.

2. Set the updateWamName and updateWrName properties to the name of
the WAM/Webroutine that will supply the new list. This webroutine must
output a new copy of the list defined in the listname property.

3.Set the updateFieldsToSubmit property to identify the input values to be
sent to the update webroutine.

It is not necessary to use an update webroutine to refresh the list. In many
simple cases you can supply all possible values to the weblet in the initial list

output by your main webroutine and filter the list using the selectorField.
The weblet will remember the initial list and reapply the selectorField filter
when doing a refresh, avoiding the need to send a request to the server and
wait for a response.

For example, if the updateOnFieldChange and selectorValueField properties
both specify the same field, the list will update itself by re-filtering every
time the user changes that field.

Deciding which approach to take is a balancing act. Using the selectorField
makes the list update more quickly but may result in a longer initial page
load as more data has to be sent to the browser. Using an update webroutine
will improve initial load and allows real time retrieval of the latest data or
allows more complex logic in the list construction but may introduce a delay
while the list is retrieved from the server.

Also see
QuickStart - Dynamic Select Box

Properties - Dynamic Select Box

The Dynamic Select Box weblet's properties are:

allowMultiSelect multiSelectListname size

captionField name tabIndex

class onChangeExtraFields updateFieldsToSubmit
codeField onChangeFormname updateOnFieldChange
disabled onChangeProtocol ~ updateProtocol
display_mode onChangeTarget updateWamName
hide_if onChangeWamName updateWrName

id onChangeWrName value

items position vf_wamevent
listname selectorField width

multiSelectCodefield selectorValueField

name

The name of the weblet. Normally, you would leave this as the default and
let LANSA use its own internal naming convention. If the weblet has been
dropped onto a field, or is to be used to display or populate a field, the field
name is used.

Default value
An automatically generated, unique identifier.

Valid values

Any string starting with a letter ([A-Za-z]) followed by any number of
letters, digits([0-9]), hyphens ("-") or underscores ("_").

id
A unique id for the weblet. The default is the same as the name property and
normally you would leave it as that. In some special circumstances you may

have multiple weblets, in multiple forms, visualizing the same field. In those
cases you would need to set this property to give each one a unique ID.

Default value
$name The same as the name property

Valid values

Any string starting with a letter ([A-Za-z]) followed by any number of
letters, digits([0-9]), hyphens ("-") or underscores ("_").

value

The value to set the weblet to. If the weblet visualizes a field, this is the
value of the field or a default value.

Default value
Blank.

Valid values

Any text or the name of a multilingual text variable, system variable or field
(the ellipses button in the property sheet can be clicked to choose from a
list).

size

The height (expressed as a number of lines) of the weblet. If the value is 1,
the weblet will display as a drop-down list. If it is greater than 1, it will
display as a list box.

Default Value
The weblet displays as a drop-down list.

Valid values
An integer value greater than 0.

display_mode

Controls whether the weblet accepts input or displays output.
Default value

'input’
Valid values

'Input’ or 'output'.

hide_if
A Boolean property. An expression which, if evaluated to be True, will hide
the weblet.

Default value
false() (that is, the weblet will always be shown)

Valid values

true(), false() or any valid expression, involving field names, literals, XSL
variables or JavaScript variables, which can be resolved to true() or false().

items

An XML nodeset specifying the items to appear in the weblet. Can only be
set by the designer. To invoke the designer use the ellipse button in the
property sheet. Leave blank if items are populated from a list specified in the

listname property.

Default value

document(")/*/Ixml:data/Ixml:select (this indicates no items have been

defined for this weblet.)
Valid values

Not Applicable. (This value is system maintained.) To invoke the designer

use the ellipse button in the property sheet.
Example

This example shows the item's property editor:

B " Design of items Property

ltems

Option B
Option C
Option D
Option E
Option F

ltem Properties

a Move Up

Down

v Add New
¥ Remove (DEL)

Caption: |Dpti0n A Or *MTET Yariabls: |

Value: |.t\ [Default Item

Selector Value: |

Tip: Select an item in the list to edit it.

0K

@
8

Canhicel

This shows a list configured with 6 items. Check the Default Item check box
for the item which is to be selected if no value is preselected. The Selector
value can be used to filter the list down to a smaller set of displayed values at

runtime.

listname

The name of the working list to use to populate the weblet list. Leave blank
if details are specified in the items property. If both the listname and items
properties are specified, the listname property will take priority.

Default value
Blank.

Valid values

Blank, or the name of an output working list that is defined as *JSON in the
current webroutine.

selectorField

The name of the field in the [listname] working list that contains a selector
value. The selector value is used to filter the working list into a smaller list of
values that are actually displayed at runtime. If the value of the selectorField
column matches the value in selectorValueField then the entry will be
included in the list.

Default value
Blank.

Valid values

A field, from the [listname] working list. A value can be selected by clicking
the corresponding dropdown button in the property sheet.

selectorValueField

The name of a field whose value is used to filter the list supplied to the
weblet into a smaller list for display. When building the display list, this
value is compared with the value in the lists "selector" column. If a match is
found the entry is included in the displayed list.

This can be useful for reducing the work done at the server. Instead of
calculating the list entries every time it is executed, the webroutine could
output a pre-built list with all possible values and a selector value. The
browser can then reduce the list to a subset based on the selector value.

This can also be used to allow a dynamic list to refresh without having to
make a server request. If the field being monitored for updates is also the
selectorValueField then the weblet can rebuild itself by applying the new
selector value to the list initially passed to it.

Default value
Blank. No filtering is done.

Valid values
The name of any output field in the current Webroutine.

codeField

The name of the field in the [listname] working list that holds the key value
for each list item.

Default value
Blank.

Valid values

A field, from the [listname] working. A value can be selected by clicking the
corresponding dropdown button in the property sheet.

captionField

The name of the field in the [listname] working list that holds the caption
value for each list item.

Default value
Blank.

Valid values

A field, from the [listname] working. A value can be selected by clicking the
corresponding dropdown button in the property sheet.

allowMultiSelect

A Boolean property that controls whether multiple selections are allowed in
the list box. If multiple selections are allowed, the multiSelectListname and
multiSelectCodefield properties must be specified. Note that only a listbox is
capable of multiple selections. If size is 1, this property will be ignored.

Default value
false() — only a single selection may be made in the list box.

Valid values
true(), false(), or a valid expression that returns True or False.

multiSelectListname

The working list that contains the selected entries for the list box. The
working list should contain only the code field that is specified in the
multiSelectCodefield property. If allowMultiSelect is false or size is 1, this
property is ignored.

Default value
Blank — only a single selection may be made in the list box.

Valid values

The name of a working list. Click the corresponding dropdown button in the
property sheet to choose from a list of known working lists.

multiSelectCodefield

The name of the field in the [multiSelectListname] working list that holds the
code value of the selected list box items.

Default value
Blank — only a single selection may be made in the list box.

Valid values

The name of a field. Click the corresponding dropdown button in the
property sheet to choose from a list of known fields.

onChangeWamName

The name of the WAM to be invoked when an item in the weblet is selected.

Default value
$lweb_WAMName (this is equivalent to the current WAM).

Valid values

The name of a WAM. A list of known WAMs can be displayed by clicking
the corresponding dropdown button on the property sheet.

onChangeWrName

The name of the Webroutine to be invoked when an item in the weblet is
selected.

Default value
Blank.

Valid values

The name of a Webroutine. The Webroutine must exist in the WAM specified
in the onChangeWamName property. A list of known Webroutines can be
displayed by clicking the corresponding dropdown button on the property
sheet.

onChangeFormname

The name of the HTML form to post to the server when calling the
onChange webroutine. Normally you will not need to change this property.
Advanced applications with multiple forms may need it to ensure the correct
form is sent.

Default value
'LANSA' (that is, document. LANSA)

Valid values

A name for the form. A list of known form names is available by clicking the
corresponding dropdown button in the property sheet.

onChangeExtraFields

An XML nodeset specifying any extra fields (not already in the form being
submitted) that should be sent to the onChange webroutine. This will most
commonly be used when the weblet is used in a list or grid to specify values
from other columns in the list.

Default value
document(")/*/Ixml:data/Ixml:json[not(@id)] (this indicates no items
have been defined for this weblet).

Valid values
Not Applicable. (This value is system maintained.) To invoke the designer
use the ellipse button in the property sheet.

Example
This example shows the onChangeExtraFields property editor:

Ehwebroutine Name(CheckConsignment)
Web_Map For(finput) Fields(m@WDCONSIGN)

Check_For In_Fie(WDCONST) With

2y (ENDCONSIGN)

rIf_Status Is(*EQUALKEY)
Transfer Toroutine(ShowConsignment)
~Elze

Message Msgbd(lmvalid Consignment Mote number. Please try again.”

Transfer Toroutine(ConsignmentEnguiry)

—Endif

—~Endroutine

This shows how output fields in the current webroutine (the "Value" column)
can be mapped to input fields with a different name (the "Name" column)
defined in the onChange webroutine's WEB_MAP.

onChangeProtocol

The protocol (for example, http:// or https://) that should be used when
calling the onChange webroutine.

Default value
Blank. This is equivalent to the current protocol being used.

Valid values
A valid protocol, in single quotes. This is usually 'http:' or 'https:'.

onChangeTarget

The name of the window, or frame, in which response HTML will be shown.
A unique name can be entered or use the available selection for a predefined
set of values.

Default value
Blank — response HTML will be shown in the current window/frame.

Valid values
The name of a window or frame, in single quotes.

A list of known windows and frames can be displayed by clicking on the
corresponding dropdown button in the property sheet, or a unique name can
be entered.

' blank' will launch in a new window

_media' will launch a media panel in the current window
'_search' will launch a search panel in the current window

'_parent' will launch in the parent window (usually the current window)
'_top' will launch in the top window (usually the current window)

Note that _search and _media are supported by Internet Explorer 6 only.

position

The absolute position of the weblet on the web page. Note that 'Position
Absolutely' must be selected from the weblet's right-click menu for this
property to be recognised. The property will usually be set in pixels by
dragging and dropping the weblet.

Default value
Blank (not positioned).

Valid values
Valid 'left' and 'top' coordinates, in valid units of measurement.

width
The width of the weblet on the web page.

Default value
Blank (weblet uses its default width).

Valid values
A width, in a valid unit of measurement.

disabled

A Boolean property, the result of which determines whether the weblet
appears enabled or disabled.

Default value
Blank — equivalent to False (that is, the weblet will always be enabled).

Valid values
true(), false() or a valid expression.

class
A CSS class to be applied to the weblet.

Default value
Blank

Valid values
Any valid class name from the current Cascading Style Sheet. A list of
available classes can be selected from by clicking the corresponding
dropdown button in the property sheet.

tabIndex
Determines the tab order of the weblet on the form. The tabIndex property
value determines the tab order as follows:

1. Objects with a positive tabIndex are selected in increasing tabIndex order
(and in source order to resolve duplicates).

2. Objects with a tabIndex of zero or blank (the default) are selected in source
order.

3. Objects with a negative tabIndex are omitted from the tabbing order. Note
that this behavior is not defined in the HTML specifications and is only
supported by Internet Explorer and Firefox.

Default value
Blank. The weblet is selected in source order.

Valid values
Blank or a valid numeric value.

updateOnFieldChange

The ID of a field to monitor for changes. If a change occurs in the monitored
field the select box will refresh.

Default value
blank

Valid values
The ID of any field on the current page capable of generating "change"
events. That means any text input fields, or select elements (dropdown lists
or list boxes). If updateWamName and updateWrName have been specified,
the weblet will call the webroutine to request a fresh copy of the [listhame]
working list. Otherwise it will re-apply the selectorValue filter to the list it
already has and rebuild the select list from that.

updateWamName
The name of the WAM to be invoked when refreshing the list.

Default value
$lweb_WAMName (this is equivalent to the current WAM).

Valid values

The name of a WAM. A list of known WAMs can be displayed by clicking
the corresponding dropdown button on the property sheet.

updateWrName

The name of the Webroutine to be invoked when refreshing the list. This
webroutine must be defined as *JSON.

Default value
Blank.

Valid values

The name of a Webroutine. The Webroutine must exist in the WAM specified
in the updateWamName property. A list of known Webroutines can be
displayed by clicking the corresponding dropdown button on the property
sheet.

updateFieldsToSubmit

An XML nodeset specifying any fields that should be sent to the update
webroutine.

Default value
document(")/*/1xml:data/Ixml:json (this indicates no items have been
defined for this weblet).

Valid values
Not Applicable. (This value is system maintained.) To invoke the designer
use the ellipse button in the property sheet.

Example
This example shows the updateFieldsToSubmit property editor:

| Design of updateFieldsToSubmit Property

Mame Yalue

DEPSEC - | |SELSECT Delete
| = |

" Literal ™ Field

i}

Cancel

Add

This shows how output fields in the current webroutine (the "Value" column)
can be mapped to input fields with a different name (the "Name" column)
defined in the update webroutine's WEB_MAP.

updateProtocol

The protocol (for example, http:// or https://) that should be used when
calling the update webroutine.

Default value
Blank. This is equivalent to the current protocol being used.

Valid values
A valid protocol, in single quotes. This is usually 'http:' or 'https:'.

vf_wamevent
VLF WAM event string

Default value
Blank.

Valid values
String value. Comma (',") not allowed.

8.1.10 Export to Excel (std_toexcel)

QuickStart — Export to Excel Properties — Export to Excel

The Export to Excel weblet allows you to export a table or grid to an Excel
spreadsheet.

Export to Excel

QuickStart — Export to Excel

You would typically use this weblet when your page has a table or grid with
tabular data that users would want to manipulate in a spreadsheet.

This weblet uses ActiveX and works only in MS Internet Explorer.
The weblet is disabled if the browser doesn't support ActiveX.

This weblet is to be used with tables that contain output fields only. If
the table contains Weblets or input elements, the result won't work as
expected.

1. Click on the Weblets tab, select Standard Weblets from the drop-down list
near the top and locate the Export to Excel weblet.

2. Drag and drop the weblet onto the web page.

3. Set the listname property with the name of the list you want to make
exportable.

4. Set the startingColumnIndex property with the index of the first column to
include in the export (first column has index 0).

5. Set the numberOfColums property with the numbers of columns to export.

6. Change the caption property if needed.

Properties — Export to Excel

The Export to Excel properties are:

caption listname

disabled name
height_design =~ numberOfColumns
hide_if pos_absolute

startingColumnIndex
tab_index

text_class

title

width_design

name

The name of the weblet. Normally, you would leave this as the default and let
LANSA use its own internal naming convention. However, you may want to use
your own name if using JavaScript or XSL that references the weblet.

Default value

concat('o’, position(), '_LANSA_n") — this is the internal name given to the
weblet by LANSA.

Valid values

A name enclosed in single quotes.

listname
The name of the working list to export. This property is required.

Default value
Blank.

Valid values

Single-quoted text. A list of available working lists (as defined in the WAM)
can be selected from by clicking the corresponding dropdown button in the
property sheet.

startingColumnIndex

The index of the column from which to start the export. The index of the first
column is zero.

Default value
0.

Valid values
An integer value. Must be less than the number of columns in the table.

numberOfColumns

The number of columns to include in the export

Default value

last — All columns from the starting column specified in
startingColumnIndex up to the last column in the table.

Valid values

An integer value. It should not exceed the last column, starting from the
column specified in startingColumnIndex.

caption
The caption for the weblet.

Default value
'Export to Excel'

Valid values
Single-quoted text or the name of a multilingual text variable (the
corresponding ellipses button in the property sheet can be clicked to choose
one from a list).

hide_if
An expression which, if evaluated to be True, will hide the weblet.

Default value
False() (that is, the weblet will always be shown)

Valid values
Any valid XPath expression that returns a Boolean value.

pos_absolute

The absolute position of the weblet on the web page. Note that 'Position
Absolutely' must be selected from the weblet's right-click menu for this property

to be used. The property will usually be set in pixels by dragging and dropping
the weblet.

Default valu