Web Functions

e Introduction to LANSA Web Functions

e Developing Applications with LANSA Web Functions
e Executing LANSA Web Function Applications
e WEBEVENT Functions

e LANSA Generated HTML Pages

e Default Process Pages

e RDML Tags

e Graphic Variables

e Web Components

e Web Function Editor

e Web Development Tips & Techniques

e Web Function & WEBEVENT Tutorials

e Appendix A. Header Styles

e Appendix B. LANSA for the Web XHTML

Edition Date November 8, 2013
© LANSA

its:LANSA086.CHM::/LANSA/ed0200.htm
its:LANSA086.CHM::/LANSA/ed0300.htm
its:LANSA086.CHM::/LANSA/gs0i000.htm
its:LANSA086.CHM::/LANSA/ed0400.htm
its:LANSA086.CHM::/LANSA/ed0500.htm
its:LANSA086.CHM::/LANSA/ed0600.htm
its:LANSA086.CHM::/LANSA/ed0700.htm
its:LANSA086.CHM::/LANSA/ed0800.htm
its:LANSA086.CHM::/LANSA/ed0900.htm
its:LANSA086.CHM::/LANSA/ed1000.htm
its:LANSA086.CHM::/LANSA/ed1200.htm
its:LANSA086.CHM::/LANSA/ed1300.htm
its:LANSA086.CHM::/LANSA/edg600.htm
its:LANSA086.CHM::/LANSA/edi800.htm

1. Introduction to LANSA Web Functions
As a LANSA developer, you have a choice of using Web Applications Modules
(WAMs) or LANSA Web Functions.

Web functions were created as an extension to the original LANSA functions
that are part of the core the LANSA development environment. Web functions
allow you to deploy Web applications using HTML. For an introduction to
LANSA Web Functions, review the following:

1.1 What are LANSA Web Functions?

1.2 Major Features of LANSA Web Functions

1.3 LANSA Web Function Architecture

1.4 What is the Web Functions Wizard?

1.5 Programming Language Skills

1.6 How Do You Develop Applications with LANSA Web Functions?
1.7 LANSA Web Function Transaction Server

For an outline of the implications of using Web Functions or WAMs, refer to 1.8
WEBEVENTSs or WAMs? .

Note: Since Version 9.1, LANSA Web Functions generate XHTML
meeting the 1.0 standards. The XHTML 1.0 standard and HTML 4.0
standards are almost identical. LANSA Web Functions generate

HTML meeting the 4.0 standards. In this guide, the term HTML will
be used described to generated HTML/XHTML. For details about
XHTML, refer to LANSA for the Web XHTML.

its:LANSA086.CHM::/LANSA/EDI800.htm

1.1 What are LANSA Web Functions?

A LANSA Web Function is simply a LANSA function that has been Web-
enabled to allow access over the Internet. Web functions are procedural LANSA
functions. They are part of a LANSA process. A Web-enabled function can be
executed using a browser or using a 5250 terminal. Specialized WEBEVENT
Functions are also procedural functions, but have been designed primarily for
Internet access only.

By using LANSA Web Functions, you can build Web applications quickly and
easily. Web Functions integrate seamlessly with the LANSA Application
Development Environment (either Visual LANSA or LANSA for iSeries). You
can build graphical HTML applications using the same Repository and RDML
skill set used to build your iSeries and Windows applications. In fact, a LANSA
program can be deployed to the iSeries, Windows or the Web using a single
RDML program definition.

LANSA Web Functions allow you to build dynamic data retrieval applications
for the Web. They also allow you to deploy the applications across a number of
combinations of platforms including the iSeries, Windows, UNIX and Linux.
Some of these platforms can be used as the Application/Data Server and/or the
Web Server, which allows you to deploy your applications in a Multi-Tiered
architecture.

LANSA Web Functions shield you from the technologies you have to learn to
deploy Web-enabled applications. You do not need to learn code-intensive CGI
or Java Servlets to build dynamic Web applications. You simply use LANSA's
repository-based 4GL environment to build your application definition. LANSA
allows the developer to work at the 4GL level. LANSA will automatically
generate the HTML pages for you. LANSA Web Functions hide much of the
complexity from the developer.

The LANSA Web Function architecture includes a Transaction Server that can
provide your user sessions with a persistent connection between their browser
and your Data Server. Persistent connections are not available in the HyperText
Transfer Protocol (HTTP), the protocol used in serving the Web.

The huge growth and demand for Internet access to businesses has prompted

LANSA to extend its offering beyond the traditional application development
environment. LANSA offers a set of application specific frameworks to help

companies deploy their e-business solutions at an even more astounding rate.
Along with LANSA's powerful application development environment, Web

developers will now benefit from Commerce Edition and the Web Functions
Wizard to help accelerate Web application development.

1.2 Major Features of LANSA Web Functions

Some of the major features of LANSA Web functions include:

Programmable templates to create LANSA applications for the Web.
Seamless integration of CGI.

Support for Java Servlets and IIS Plug-in (using ISAPI technology).
Automatic generation of frame-based applications.

Automatic generation of graphical HTML pages.

Support for multiple clients, including Network Stations.

Support of Multi-Tiered deployment architecture.

Detailed knowledge of CGI, ISAPI or Java Servlets is not required.
Transaction Server incorporated.

Note: Since Version 9.1, LANSA Web Functions generate XHTML
meeting the 1.0 standards. The XHTML 1.0 standard and HTML 4.0

standards are almost identical. LANSA generates HTML meeting the
4.0 standards. In this guide, the term HTML will be used to describe
the generated HTML/XHTML.

1.3 LANSA Web Function Architecture

The Web Server and Application/Data can be on a single platform
{ASI400 or Windows), or they can be on multiple platforms.

|
Web Server

:n DR

Web Application/Data
Server Server

A LANSA Web Function Application uses three basic software components:
m LANSA Development Environment (resides on the Application/Data Server)
m LANSA for the Web (resides on the Application/Data Server)

m Web Server (can reside on the same machine as the Application/Data Server,
or can be a separate machine for multi-tier architecture).

The LANSA development environment has been used to build mission critical
transaction based applications by thousands of companies worldwide. The
LANSA Repository and 4GL technologies are proven technologies. They are
reliable and productive. The LANSA Repository secures your data and
maintains its integrity by enforcing centralized business rules. LANSA's 4GL
(RDML) allows you to build applications quickly. Maintenance of LANSA
applications is easy since working with a 4GL significantly reduces
maintenance effort.

LANSA Web Functions are simply an extension of the LANSA development
environment. LANSA's Web solution allows you to use your existing
development skills. You still work with LANSA's Repository and 4GL (RDML)
to develop and deploy your applications on the Internet. When compiling your
RDML programs, you can simply indicate that the application will be enabled
for the Web. LANSA's architecture allows you to Web enable existing LANSA
applications by simply recompiling. LANSA protects your investment in your

application systems. You can also develop new applications using WEBEVENT
technology that are specific to the Web environment.

To complete the solution, you simply require TCP/IP and the Web serving
software which provides the connection to the network
(Internet/Intranet/Extranet). The Web Server and Application/Data Server can
be located on the same machine (using an iSeries) or you can use a multi-tier
architecture where different machines are used for the Web Server and the
Application/Data Server. For example, you could use a Linux or Windows Web
Server with an iSeries Application/Data Server.

1.4 What is the Web Functions Wizard?

The Web Functions Wizard allows you to quickly and easily customize the
presentation of your LANSA Web Function Applications. The Wizard is not
used to create your LANSA functions. It is used to alter their appearance using
Web-based functions executed from your browser. The Wizard removes the
need to manually code HTML and JavaScript. It simplifies the implementation
of graphic variables and Web components. You can change the look-and-feel of
your applications without having to recompile any of the functions in your
application.

The Web Functions Wizard allows the RDML programmer to concentrate on the
functionality of the application, without having to worry about the presentation
attributes. The presentation can be quickly assembled using simple menu
choices and presentation options. The Wizard gives you the flexibility of
deciding which components to include or exclude from the presentation.

The Web Functions Wizard removes the need for in-depth knowledge of HTML
or JavaScript. The Wizard allows you to convert the default look-and-feel of a
LANSA function into a contemporary Web look-and-feel. The pre-shipped
images, color schemes and presentation schema reduce the need for specialized
graphical skills as part of the application development and implementation.

For example, the screen shown is the default look-and-feel of applications
generated by LANSA Web Functions.

a Data Entry - Microsoft Internet Explorer
J File Edit “iew Fawvoites Toolz Help |
= x> x>
j"‘?‘v"‘v@ﬁ@@@ jLinks
Back Fansard Stop Refresh Home Search Favortes Histon
Data Entry —
Employee no.... I
Surname........ I
Given names.... I
Address 1...... I
Address 2...... I
Country I
Product Product Stock
Code Description Cluant
[PCMODOOT IBM Aptiva ProLine
[PCMODO02 Hewlett-Packard Brio SB | 5
[PCMODO03 (Dell Dimension XPS BA00R | 12
[PCMODO0Y |Compag Prosignia 230 | 4
et |
TPowerenBy4 |
] nd B
LLUEL =
|@ I_ I_ E‘j Local intranet 4

Using the Web Functions Wizard, you can convert this 5250 look-and-feel to a
modern, state-of-the art look-and-feel as shown. There is no manual
modification to the HTML and no recompilation of the function.

3 Data Entry - Microzoft Intesnet Explores

| Fie Edt View Fovodtes Tooks Help

. T BT A

Eack Farivand Stop

Refrezh Home

QA o I B

Seaich Favoites History Mal

Q_w

5

Edr Discassz Relsted

M&MIE bitlpe A1 37 76 20 452/ CG1-BIN/LANSAWEE MWwWEBEVENT+LONTBCE30N TE4BTO0SACE 094+w EB-ENG

=] @Go ||Liks

|Aspect]| Catalog|

Data Entry

Employee no,ml

Online Shopping

Do you know these sites are built with LANSA

www. Fotbal com

[Announcements
@ Wireless accessibility
for your AS/ 400

applications LANSS WL,

@ San Diego COMMOMN =

-

R O Surname........ I March 12-17, 2000,
Given names....| e
Layout Wizard Storias
Onfine Shopping Address 1..... I 1. Song File
Hame Page Address 2...... | 2 m o
Product Cataley CDI.II'ItW 5, Mikasa
B. Chown
Product Product Stock s
W‘ Code Description l:luant
(WHITEH PCMODO001 IBM Aptiva ProLine
PCMOD002 Hewlet-Packard Brio SB 5
PCMOD003 Dell Dimension *PS BS00OR 12 e
PCMOD004 [Compadg Prosignia 330 4
le
=
2] || 8 Local inanet v

For more details, refer to the Web Functions Wizard Guide.

1.5 Programming Language Skills

By using LANSA Web Functions, developers apply their existing Repository
and RDML skills to build Web-based applications. Although LANSA Web
Functions can use CGI, Java Servlets or ISAPI technology, there is no
requirement for a developer to have any knowledge of either of these interfaces.

There are NO new RDML commands introduced by LANSA Web Functions.
The only programming skill required is RDML.

The HTML generation occurs when the LANSA process/function is compiled.
The generated HTML is then stored as LANSA internal tables and not as static
documents, as in conventional HTML programming.

The browser-based Web Functions Wizard allows developers to quickly and
easily modify the user navigation, presentation and layout of LANSA functions
without editing HTML or JavaScript.

You do not need to modify any of the LANSA generated HTML. However, if
you want to modify the presentation of the HTML page, knowledge of HTML is
essential. You will also need to understand the LANSA tags used in the HTML.

LANSA Web Functions use a number of JavaScript functions. If you need to use
additional JavaScript functions in your applications, you will require a good
knowledge of JavaScript. Note: If JavaScript support is disabled in your
browser, you will not be able to execute any of these JavaScript functions.

1.6 How Do You Develop Applications with LANSA Web
Functions?

Ppp'Il:'a'il:-ﬁ L
Database

- HTML Tool

(D) Bul Graphics Designer
' 4) HTML pages are

B2 Generalse ! {IJ:? B edited, if required
which are ¢ fune on called
. (U2) LAMEA YWeb

5 . £ L 111‘ \ -&Q . .
Developer (D3) enerates HTM qu:urr:r:u.f: (U4)-HT ML Torm generateu;i_,-"
{D1) Execites whigh are clored as « dynamcally and -

LANSA ternplates LANS intenal file O et

- U1 User links to
" Weh Server
LANS A i e e i >
Reposto
— Developetr's work flowe = =% Uszarszwork flow

LANSA Web Function Applications are created using the same LANSA
development environment used to create your iSeries or Windows applications.
The development process is as follows:

m As with any LANSA application, the developer begins by populating the
LANSA Repository. Fields and files are defined to create the application
database.

m Next, the developer executes LANSA templates or manually codes RDML to
create a set of functions. These programs might include a complex set of
transactions, which inquire or update a set of database files.

m When the RDML function is compiled, an RPG or C/C++ program
(depending upon the Application/Data Server being used) is created along
with HTML forms, which are stored in internal LANSA files.

m Using the browser-based Web Functions Wizard, the user navigation,
presentation and layout of the functions can be altered.

= Optionally, the LANSA HTML can be manually edited to enhance the
graphical presentation. LANSA Web extensions such as Web Components
may also be defined and used to enhance the HTML presentation.

= The developer's work is now complete.

At this point, the developer can have both a host version of the application and

an HTML version of the application from the same set of code. When a browser

requests a LANSA Web Function Application, the following occurs:

m A user links to the Web Server and requests a LANSA Web Function
Application page.

m LANSA for the Web is called and manages the "application connection".

» The RDML function or program is executed on the Application/Data Server.
The RDML function accesses the database.

m LANSA for the Web uses the stored forms to dynamically generate the

HTML with the data required by the RDML function, and presents the
information to the user.

1.7 LANSA Web Function Transaction Server

Sends request

Sends request

«Maintains a persistent
connection state.

= baintains relationship
between clients and jobs.

Transaction Server maintains a relationship between clients and jobs.

When executing applications over the Internet, the HyperText Transfer Protocol
(HTTP) is used. HTTP does not support a persistent connection state. There is
no concept of a user session. Each request is a new request, which is unrelated
to any previous request. To overcome this limitation, LANSA for the Web
provides a Transaction Server for Web Functions.

Note: The state management feature of the transaction server is only required if
you have Web-enabled existing procedural applications which require session or
state management. If you are developing applications specifically for the Web
using WEBEVENT functions, this technology is not required.

The LANSA for the Web Transaction Server is used to maintain a persistent
connection between the client devices and the Application/Data Server. The
Transaction Server uniquely identifies each user and allocates a unique LANSA
job for each user. Subsequent requests from users, which are known to the
Transaction Server, are routed to the appropriate LANSA job which is active.

The Transaction Server maintains a connection state for each user and caters for
unsynchronized page requests. An unsynchronized page request can happen as a
result of the Back button supported in the browser paradigm. For example, the
user can page back to previous functions and then request a page. This
unsynchronized page request can be disallowed since the request is not the
logical sequence expected by the active application on the Server. If an
unsynchronized page request has been made, the user will be informed that the
request is not valid and the current display page will be refreshed (shown) to the

user.

LANSA allows you to write specialized Web Functions so that your typical
Internet user can still use the Back button to navigate in your applications. This
style of application is achieved by using the *WEBEVENT option in your
function. For more details, refer to WEBEVENT Functions.

The Transaction Server shields the developer from the complexities of
maintaining connection states and allows you to concentrate on application
design and development. The Transaction Server also includes a Transaction
Monitor, which is used to monitor the activities of the LANSA jobs in process.
LANSA for the Web allows you to specify a system wide timeout period or to
have customized timeout periods for each user who is allowed to access your
application.

The Transaction Server also allows you to limit the number of concurrent users
on the Server. This feature allows you to restrict the number of active jobs
running on your Server, thus limiting the amount of resources used by your Web
applications.

?‘ WEBO001 - Types of LANSA Web Functions

its:lansa086.CHM::/LANSA/ED0400.htm
its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

1.8 WEBEVENTSs or WAMSs?

WEBEVENT functions and WAMs can be mixed in a single application.

If you already have applications developed using WEBEVENTS, those existing
applications will continue to serve the purpose for which they were designed
and you will be able to modify and enhance them into the future. WEBEVENT
technology has been significantly extended with the addition of support for new
data types, language syntax and constructs and the removal of significant
limitations on field and list sizes.

However, a point may come in the lifecycle of your LANSA web applications
when it is appropriate to begin using WAMs. You may wish to exploit WAMs in
existing WEBEVENT applications in these circumstances:

e When you have a requirement to extend an existing web application beyond
the browser - perhaps to hand-held devices. Of course, this is a business
requirement, which may necessitate adopting WAM technology.

e When you are extending an existing web application with a significant
number of discrete "chunks" of new functionality. You might develop these
new parts using WAMs.

¢ When making major revisions driven by business requirements that will
substantially impact large parts of your application. Depending on the extent
of the impact, you might decide that this is an opportune time to "future-
proof" your web applications with WAMs.

Some of the implementation details of WEBEVENT and WAM applications are
different and there are certain considerations and certain techniques you need to
adopt. Refer to WAM and WEBEVENT Interoperability Techniques for details.

In general, you should use WAMs for new web applications.

Why did LANSA develop WAM technology?

Two key points stand out:

1. Web technologies are evolving very quickly. HTML is no longer the only
way to deliver web content. It is imperative that web application development
in LANSA is more readily adaptable to new technologies as they emerge.

2. It is clear that application development is heading towards a component-
based future and LANSA offers support for component-based development.

its:lansa087.chm::/lansa/WAMEngb1_0015.htm

WEBEVENT are functions and their architecture is not best-suited to a
component-based world. For this reason, it is imperative that LANSA allows you
to take full advantage of component-based techniques.

2. Developing Applications with LANSA Web Functions
If you are developing a LANSA Web Function Application for the very first
time, you should review the following:

2.1 Before You Begin Checklist

2.2 Web Enabling a LANSA Process

2.3 Types of Web Functions

2.4 Example of a Procedural Function

2.5 Example of a WEBEVENT Function

2.6 Shipped LANSA Web Function Templates

2.7 Compiling Functions

2.8 Using the e-Business Framework Wizard

For an introduction to executing LANSA Web Function Applications, you
should review the following:

2.9 Calling LANSA Web Processes and Functions
2.10 Executing Applications: Process Menu
2.11 Executing Applications: WEBEVENT

For more details about executing LANSA Web Function Applications, refer to
Executing LANSA Web Function Applications.

its:lansa086.CHM::/LANSA/GS0I000.HTM

2.1 Before You Begin Checklist

e Before you begin your development efforts, you should have a properly
installed and configured LANSA for the Web system. You will need a
properly configured Web Server and a properly configured Application/Data
Server. For details about the installation and configuration of LANSA for the
Web, refer to the Installing LANSA on Windows Guide and the Installing
LANSA on iSeries Guide.

?‘ If you are using LANSA Web functions for the very first time, it is
recommended that you complete the Tutorials.

its:lansa086.CHM::/LANSA/ED1300.htm

2.2 Web Enabling a LANSA Process

A LANSA process is like a menu as it acts as the parent or container for the
functions in your Web application. In order to execute your LANSA functions

using the Web, the functions must be part of a Web or XML enabled LANSA
process.

Once you have created a LANSA process, you must then Web enable it. To do
this:

a.Select the Process in the Repository tab.
b.Select the Definition tab.

P LANSA Editor - PSLSYS (Process) - Personnel System Main Menu

File Edit Miew Options Yerify Web Debug Tools Window Help
Brw ~| THD| XA O0DH PG OES:2 QA @~ & H
|4 || Functions Drefinition | Attachments | Special Entries F‘aramEI:E_< b
PaLEYS w0 i
- ||= & Details
Menu style Menu skyle Sa8CLLA
@. SAACLIA Anticipated usage Heawy
_ Optimize For remote communications Mo
© Action bar Enahle For web Yes
Anticipated usage Generake XML Yes
) Light i
= & Multilingual Details
(&) Heavy English Personnel Syskem Main Me
Frangais Menu principal de gestion
|:| Optimize For remote communications
Enable for web
£ >
Generate xML =
x|
Descriptionis) ; : a
English |Personnel System |
Francais [Menu principal de g.
......... e
L@ b g (1) Assistant
ready LAaNSA1 DEM PCEUSER PCRTASE EMG

c.Select Details in the Definition tab or select the Details tab.

d.In the Details tab, select (tick) the Enable for Web and/or Enable for XML
options.

The Enable for the Web option allows you to generate HTML. The Enable for

XML option allows you to generate XML. You may use one or both of these
options.

Note: XML support for web functions should only be used for pre-

existing XML-enabled processes. For new development, please
consider using WAMs.

Once these options are selected, subsequent compiles of the functions in the
selected LANSA process will automatically generate the required HTML and/or
XML.

%% Compile options g|
| Process/Function Compile Options
&' Processes & Functions (1) [«]'Compile process only if necessary |

Zompile all process Functions
Compile Functions only iF necessary

|:| Keep generated source

Debug enabled

Generate HTML
Yalidate numerics

Generate XML

[IUse Default Settings] I (] 4 l [Zancel]

The generated forms are stored in the LANSA internal tables. You can edit
these forms by using the Web Function Editor.

If you have existing LANSA processes, you can simply Web or XML enable
them and then recompile the functions to generate the required forms.

2.3 Types of Web Functions

With LANSA for the Web, you can deploy two types of functions:
e Procedural Functions
e WEBEVENT Functions

Procedural Functions

LANSA allows you to Web enable your existing procedural LANSA
applications for execution over the Web. LANSA provides a transaction server
to maintain the state of the functions as they execute. For details, refer to
LANSA Web Function Transaction Server.

For example, the Personnel Demonstration system executes on 5250 terminals
using an iSeries and executes under Windows on a PC. This application was
written as a procedural function in 1987. This application was written as a
procedural function in 1987. The Personnel Demonstration system can be Web-
enabled and recompiled, and then it can be executed over the Internet. Refer to
2.10 Executing Applications: Process Menu. and you can try it out for yourself.
The Personnel System has been web enabled for you and you can try it out for
yourself. See Note following.

When a procedural function executes over the Web, the user cannot use the
browser's Back button. In order to navigate within the application, the user must
use the Cancel button (which is equivalent to an F12=Cancel request) which is
automatically included into the application by LANSA for the Web. The
application executes in a procedural mode just like it would using a 5250
terminal on the iSeries.

All procedural functions that will run on the web should have the EXIT_KEY
enabled. Having the EXIT_KEY disabled could result in unpredictable behavior.
For example, a function might never timeout or, in some circumstances, use an
abnormally large amount of CPU time.

WEBEVENT Functions

LANSA allows you to code functions specifically for the Internet user and the
browser paradigm. In the browser paradigm, a persistent connection is not
required. Each page is independent. You cannot dictate the navigation path of
your application to the user. The Internet user has a Back button in the browser
which allows them to go back several pages and resubmit a request.

A function is defined to be a WEBEVENT function by specifying the following

its:lansa086.CHM::/LANSA/Ed0280.htm

option in the FUNCTION command:
FUNCTION OPTIONS(*WEBEVENT)

With WEBEVENT functions, the LANSA function will terminate after a
DISPLAY or REQUEST command is executed. No other logic will be executed
after the HTML page for the function is sent. Using this technique, you must
code your functions to properly process the information when the user decides
to submit a screen with data. The logic of the RDML function must be written
specifically for WEBEVENT. You cannot simply add the *WEBEVENT
keyword to your functions.

The majority of your newly created Web applications will be written as
WEBEVENT functions.

For more details, refer to WEBEVENT Functions.

?‘ WEBO001 - Types of LANSA Web Functions

Note: The LANSA Personnel Demonstration System was originally
created in 1987 to execute on a System 38. This same application can
still be executed on IBM i as well as Windows, WEB and Linux
platforms. The original database and application are virtually
unchanged. There have been some extensions to the database to
demonstrate RDMLX concepts.

There are two web versions of the Personnel System, one uses
WEBEVENT technology and the other uses WAMs. These are
included with the IBM i demonstration material and can be checked
out to a Visual LANSA environment as required. These applications
can be used to give you ideas of how to create and include the
elements required for both WEBEVENT and WAM processing.

webevent (web enabled RDML or RDMLX partition):
http://<web server>/cgi-bin/lansaweb?
procfun+lansadem+ldem+dem

wam (web enabled RDMLX partition, only supported for technology
service LANSA:XHTML):

http://<web server>/CGI-BIN/lansaweb?
webapp=LWAMDEM-+webrtn=ldemhome+ml=LANSA:XHTML+

its:lansa086.CHM::/LANSA/ED0400.htm
its:lansa086.CHM::/LANSA/WEB01_TUTORIAL.htm

2.4 Example of a Procedural Function

A simple header / detail function is a good example of a procedural function
which requires the transaction server. If you execute the FRENQO2 template,
you can create a procedural function which requests search information and then
displays the detailed results.

The overall structure of the RDML in the function might appears as follows:

FUNCTION OPTIONS(*DIRECT)
GROUP_BY NAME#HEADER)...
DEF_LIST LIST(#LIST)...

BEGIN_LOOP

REQUEST FIELDS(#DEPTMENT)...

FETCH FIELDS(#HEADER)...

SELECT FIELDS(#LIST)...

ADD_ENTRY TO_LIST(#LIST)

ENDSELECT

DISPLAY FIELDS(#HEADER)... BROWSELIST(#LIST)
END_LOQOP

When the function encounters the REQUEST statement, a page is sent to client
browser and the function must wait for a response from the user. The function is
still active and the transaction server maintains the state of the function. When
the user responds, the function continues until the DISPLAY statement when a
page of search results is sent back to the client browser. The function is still
active and the transaction server continues to maintain the state.

If the browser's Back button is used to return to the REQUEST page, the
transaction server will detect the sequence error when the REQUEST page is
submitted to the Web Server again. The transaction server knows that the
LANSA function is expecting input from the DISPLAY statement and not the
REQUEST statement. The DISPLAY page will be sent to the client browser
again with an error message.

With Web applications, you may wish to allow the user to go back and change
the requested information using the browser's Back button. WEBEVENT
functions are designed specifically for this type of functionality.

?‘ WEBO001 - Types of LANSA Web Functions

its:lansa086.CHM::/LANSA/WEB01_TUTORIAL.htm

2.5 Example of a WEBEVENT Function

The simple header / detail function can also be written to execute as a Web
event function. If you execute the FRWEBENQO1 template, you can create a
WEBEVENT function which request search information and then display the
detailed results. The function created by FRWEBENQO1 is a re-entrant
WEBEVENT function. For more details about re-entrant functions, refer to
Handling Re-entrant Functions.

The overall structure of the RDML in the function will appear very different to
the procedural example. The function will contain a REQUEST for the search
data and a DISPLAY of the search results. However, the location of the
processing logic is very different in the WEBEVENT function. WEBEVENT
functions terminate immediately after processing a REQUEST or DISPLAY
statement.

When the WEBEVENT function encounters the REQUEST statement, a page is
sent to the client's browser and the function terminates. There is no need to
maintain the state, as the LANSA function is no longer active.

When the user responds, the function must execute again because it has
terminated. The function receives the information from the REQUEST and will
select the required data to execute the DISPLAY statement. Again, once the
DISPLAY is executed, the function terminates.

If the browser's Back button is used to return to the REQUEST page, there is no
problem. When the user submits the REQUEST again, the function simply
executes again. It receives the information from the REQUEST and will select
the required data to execute the DISPLAY statement as before.

LANSA automatically handles the exchange of the data. The developer must
properly code the RDML in the function knowing that a function terminates
once a REQUEST or DISPLAY statement is encountered. The function is
written with the processing logic always preceding the screen display.

For more detailed examples, refer to WEBEVENT Functions.

?‘ WEBO001 - Types of LANSA Web Functions

its:lansa086.CHM::/LANSA/ED0440.htm
its:lansa086.CHM::/LANSA/ED0400.htm
its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

2.6 Shipped LANSA Web Function Templates

e LANSA for the Web ships sample templates for generating WEBEVENT
functions:

e FRWEBADDOI1 Data entry for *“WEBEVENT.

e FRWEBENQO1 Page at a time with detail display.

Template FRWEBADDO1 creates a simple data entry WEBEVENT function.

Template FRWEBENQO1 creates a WEBEVENT function that has a generic
search which displays the results of the search in a page at a time browse list.
The user can select any of the browse list entries for a more detailed display of
information.

2.7 Compiling Functions

If a LANSA process has the appropriate flags set, LANSA will generate the
HTML and/or XML pages for the functions when the functions are compiled.
(Refer to 2.2 Web Enabling a LANSA Process.) The compile will also create the
RPG or C/C++ program objects which provide the application programming
logic on the Application/Data Server.

%% Compile options g|
| Process/Function Compile Options
&' Processes & Functions (1) [«]'Compile process only if necessary |

Zompile all process Functions
Compile Functions only iF necessary

|:| Keep generated source

Debug enabled

Generate HTML
Yalidate numerics

Generate XML

[IUse Default Settings] I (] 4 l [Zancel]

If for some reason, you do not want the HTML or XML pages generated, you
can deselect the Generate options before compiling the function. Note that if
you do this, when a LANSA Process is compiled, there is no generation of
HTML or XML.

The LANSA Web function pages are stored in LANSA internal files. This
allows for easier backup/restore and maintenance procedures. These pages
cannot be accessed without going through LANSA, thus preventing
unauthorized editing. You can access these pages by using the Web Function
Editor.

When compiling WEBEVENT functions, warning messages may appear as the
function logic is checked to ensure that it will execute properly as a
WEBEVENT function. For more details, refer to Considerations for
WEBEVENT Functions.

?‘ WEBO001 - Types of LANSA Web Functions

its:lansa086.CHM::/LANSA/ED0450.htm
its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

2.8 Using the e-Business Framework Wizard

Once you have created your LANSA Web processes and functions, you can use
the e-Business Framework Wizard to customize the user navigation,
presentation and layout of your functions. The e-Business Framework Wizard
allows you to use browser-based functions to customize the presentation of your
HTML pages used in your LANSA Web function applications. The e-Business
Framework Wizard is primarily used with WEBEVENT applications.

{1 1

ADYANCED SOFTWARE MADE SIMPLE e-Business, Framework

Use this wizard to tomize the pr tation of your LANSA applications.

Home
e The DEFAULT Process modifies your system defaults for browse list, layout, left menu, horizontal menu, right

menu and style shest. Modify DEFAULT values with care as the changes may irmpact more than your curent

Welcome to the e-Business Framework Wizard
Define Process Group

application.
File Search = Towaork with a subset of processes which comprise your LANSA for the Web application, use the "Define
Process Group” to nominate @ generic start for the group of processes which comprise your application.
Help

All browse lists from subset of processes are available when the browse list option is selected. The DEFAULT
Language: browse list relates to the default system variables used for browse list presentation is no specific browse list
English = values have been defined. (This is particularily useful for browse list standardization across your application).

To get started simply select the language you want your HTML pages generated in (if you are working in a
rultilingual system), select the web page characteristics to be modified or reviewed, select a process to review
(unless warking with browse lists or system variables) and then GO!

Characteristics to modify:
Layout i

All Processes:

[

GO

The e-Business Framework Wizard allows you to:

e Change the value of LANSA graphic variables.

e Change the presentation of your LANSA browse lists.
e Change the layout of your application.

e (Customize Menu components.

e Adopt layouts.

The e-Business Framework Wizard simplifies the development of your Web

function applications. It uses sentence like-descriptions for the variables and
hides their names from the developers. Components are built using questions
and answers instead of manually coding HTML or JavaScript.

For more details about the e-Business Framework Wizard, refer to the
Introduction to the e-Business Framework Wizard in the Web
Functions Wizard Guide.

its:lansa089.chm::/lansa/ww2_001.htm

2.9 Calling LANSA Web Processes and Functions

For complete details about calling LANSA processes and functions,
refer to Executing LANSA Web Function Applications

Once you have compiled the functions in your Web-enabled process, you are
ready to call or execute the application over the Web. If you are using a
procedural function, you can call the LANSA process or you can call the
LANSA function directly. If you are using a WEBEVENT function, you must
call the LANSA function directly.

LANSA for the Web uses URLs to call your LANSA Web function applications.
The URL to call your LANSA applications involves invoking the LANSAWEB
or LANSAXML program. The URL syntax to call your Web-enabled HTML
application is:

http://<web server>:port/CGI-BIN/LANSAWEB?<parameters>
and for XML it is:

http://<web server>:port/CGI-BIN/LANSAXML.?<parameters>

Calling a LANSA Process

The parameters to call to a LANSA process are:
PROCESS+<process name>+<partition>+<language>

where, partition and language are optional.

For example, if you want to create a link to the PSLSY'S process in the DEM
partition, your URL might be entered as:

http://www.lansa.com/CGI-BIN/LANSAWEB?
PROCESS+PSLSYS+DEM+ENG

Calling a LANSA Function Directly

The parameters to call a LANSA function are:

PROCFUN+<process name>+<function name>+[<partition>]+
[<language>]
For example, if you want to execute the ENROL function in the PSLSYS
process in the DEM partition, your URL might be entered as:

http://www.lansa.com/CGI-BIN/LANSAWEB?
PROCFUN+PSLSYS+ENROL+DEM+ENG

its:lansa086.CHM::/LANSA/GS0I000.HTM

WEBEVENT functions must always be called directly.
?‘ WEBO001 - Types of LANSA Web Functions

its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

2.10 Executing Applications: Process Menu

When executing a LANSA process using LANSA for the Web, the application
has a frameset look and feel. The frameset style divides the working area of the
browser into two areas - the Menu area and the Client (body) area.

iJ Filz Edt “iow Go Favorics Holo

ls- - enads mnad

“anven | LRLEE

HOME + MENU

»Full Employee Listing
B Enral a Mew Employes

»Bronsevartal Emplovee Enrol a New Employee
ajd Skill Files :
P Emploves Business Pronz

|»

MNurher _ist

FlProduce Salary Commitment Employee Number |
Reoorts

FPerform General Employes Employee Burname: > 72, I
Search - Employee Given Name(s) . .|
_?‘..fTeIephone Mumbar Searca

FleptSectondE mployee Street Mo and Name |

Window EnJuiry
FPersonrel Table
Maintenancs Meru State and Country.... |

B Exit fram svstem
; Fost{Zip Code | vl
Home Phone.Number. ing |
Business Phone Number . . [_ _____________________

Department Code |ADM|N|STHATIDN _'J I-:J
| »

|

SuburborTown !

You can choose to have the frameset style persistent by selecting the "Always
show frames for CUA/SAA style processes" option in the LANSA for the Web
Administrator.

Once a LANSA process has been called, the user can execute any of the
functions listed in the menu. These functions cannot be WEBEVENT functions.
These functions should only be procedural functions. Procedural functions have
their state managed by the LANSA Web Transaction Server and the user cannot
use the browser's Back button.

If the frameset style is not persistent selecting a menu item which calls a
LANSA function will refresh the display of your browser. The menu frameset
will not be displayed while the browser is displaying a LANSA function.

B Cnral a Mew Cmployee - Microsoft Intemet Crplarer
| il r

F;u:rhe; Hep |

Oic@x3y HRaC

LLUEL

HOME [SE] wE=

|l 1inks

IG=

K. SEARCH HELF

|»

- Enrol a New Employee

Employes Number |

Employse Surname |

Employse Given Mame{s)

Strest Mo and Hame . -

Suburb or Town

State and Country . . _ .

Post 1 Zip Code .00 I 0
Home Phone Murmber . . . I
Business Phone Number . . I

Department Code |ADMINISTRATION =l : i T

If you were to call the procedural function directly, it would appear exactly as
shown when called from a process menu.

LANSA Web functions have been designed to allow all the generated HTML
pages to have a consistent look and feel. By default, all HTML pages generated
will have the same Menu Area background for all LANSA processes and the
same Client Area background for all LANSA functions. Each LANSA function
will have the same set of images displayed in the same positions in each of their
respective HTML pages. The same set of images is displayed at the top
(standard header) and the bottom (standard footer) of the HTML pages.

LANSA Web functions have a default set of image settings to be used with your
pages. You can override these defaults if you wish, or you can specify additional
settings which will be used by your LANSA Web functions.

For details about how to call a LANSA process, refer to 2.9 Calling LANSA
Web Processes and Functions.

?‘ WEBO001 - Types of LANSA Web Functions

its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

2.11 Executing Applications: WEBEVENT
WEBEVENT functions must always be called directly. They cannot be called
from a LANSA process menu.

When executing a LANSA function directly using LANSA for the Web, the
application does not use a frameset.

/] Display Sections - Microsoft Internet Explorer

J File Edit Wiew Favortes Tool: Help

J<=,».@f§ﬁ

Back AT Stop Refresh Home

Q G 3

Search Fawortez History

B @

L ET Frint
Jﬁl‘-.gdless IE JCGI-BIMALAMSAWER MWEBEVEMT +LO21 EID4DDEEBEBDDDZ1EEDE4+DEM+ENGj E'J?GD “ Links *

LLLEL :

Display Sections

Mext Page | Mew Search |

Dept Section Section

Code Code Description
AT 01 INTERMAL ADMD SEWV
& AT 02 PURCHASING SECTICH
& AT 03 ACCOUNTING SECTION
& AT 04 SATES AND MAREETING
o AT 05 MATNTENANCE

bnilln) LOGSH
[

|&] Done |_|_|§ Internet A

When a user invokes a LANSA function, it will refresh the display of your
browser. Its presentation is based on the layout of the function.

LANSA Web functions have been designed to allow all the generated HTML
pages to have a consistent look and feel. Each LANSA function will have the
same set of images displayed in the same positions in each of their respective
HTML pages. The same set of images is displayed at the top (standard header)

and the bottom (standard footer) of the HTML pages. However, the default user
buttons for navigation in procedural functions will not be displayed. The user
navigation is controlled by developer defined buttons or links in the function.

For details about how to call a LANSA function directly, refer to 2.9 Calling
LANSA Web Processes and Functions.

?‘ WEBO001 - Types of LANSA Web Functions

its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

3. Executing LANSA Web Function Applications

LANSA Web Function Applications are generally hosted from your corporate
Web site. In order to set up your Web site and execute your LANSA Web
Function Applications, you should review the following:

3.1 No Existing Web Site

3.2 Integrating with an Existing Web Site

3.3 Before You Deploy Your Applications
3.4 Uniform Resource Locator (URL) Syntax
3.5 Calling a LANSA Process

3.6 Calling a LANSA Function Directly

3.7 Passing Parameters to a LANSA Function
3.9 Debugging using iSeries Batch Debug
3.10 Debugging using Visual LANSA

3.11 Invoking the iSeries Spool File Facilities
3.12 Event Logging

3.13 Enabling Event Logging

3.14 Logging User Defined Fields

3.1 No Existing Web Site

If you do not have an existing Web site, you will need to obtain a registered
Internet domain name and an Internet Protocol (IP) address for your site. These
can be arranged with any Internet Service Provider (ISP). Your ISP will be able
to advise you on the best way of attaching your Web Server on the Internet.

Once you have attached your Web Server on the Internet and have set up your
Web site, you will need to have a home page for your Web site.

To create your own home page, you can use a number of Web tools such as
Microsoft Front Page. Your home page can be created using a simple text editor
to enter your HTML.

Once you have a home page created, save the file as INDEX.HTM. (If you have
changed the name of the index page in the Web Server configuration, this file
should be saved to the new name instead. By default, the Web Server will use
the INDEX.HTM page.)

Copy the INDEX.HTM file to the home directory of your Web Server.

After you have set up your Web site and the home page, you can then deploy
your Web enabled LANSA applications on the Internet by following the
instructions in 3.2 Integrating with an Existing Web Site.

3.2 Integrating with an Existing Web Site

If you already have an existing Web site, you can quickly integrate your
LANSA applications into your Web site by simply including a link to the
LANSA application from your selected HTML page.

The syntax of the Uniform Resource Locator (URL) to link to your LANSA

applications is described in the 3.4 Uniform Resource Locator (URL) Syntax
section of this guide. There is no limit to the number of links you can create.

You can link to a LANSA process or directly to a LANSA function.

To use Multi-Tier deployment with a Web Server other than an iSeries, you
must use LANSA for the Web Java Servlet Support or LANSA for the Web IIS-
Plug-In.

Your existing Web site does not have to be running on an iSeries. Your existing
Web Server can be running on any platform. The important thing is that you
have a Data\Application Server that caters for your LANSA application. The
URL is used to link your Web-enabled LANSA applications to your existing
Web site.

3.3 Before You Deploy Your Applications

At this stage, it is assumed that you have installed and have correctly configured
the Web Server.

Once your LANSA processes and functions have been compiled successfully,
you are ready to test them. You will need a browser capable of supporting
HTML V3.2 or later. The browser must be capable of supporting the use of
frames as well as JavaScript.

Before you test your applications, you may want to review the Web Server and
Data/Application Server settings using the LANSA for the Web Administrator.

3.4 Uniform Resource Locator (URL) Syntax

Uniform Resource Locators provide a standard method of identifying resources
that are available using Internet protocols. LANSA for the Web uses URLs to
launch your LANSA Web Function Applications.

It is recommended that you create an HTML page that contains the URLs of all
your LANSA applications. This page can also be used as the Home Page of your
Web site.

The URL to call your LANSA applications involve invoking the LANSAWEB
or LANSAXML program, with appropriate parameters. By default, the
LANSAWEB/LANSAXML program resides in the CGI-BIN library defined in
your Web Server.

The URL syntax to call your Web-enabled HTML application is:
http://<web_server>:<port>/CGI-BIN/LANSAWEB?<parameters>
and for XML it is:
http://<web_server>:<port>/CGI-BIN/LANSAXML?<parameters>
where:

<web_server> is the name of your Web Server, as registered to a Domain
Name Server(DNS);

<port> is the port identifier defined for your LANSA system. This parameter is
optional if your LANSA system is assigned the default port 80;

<parameters> is a list of parameters passed to the LANSAWEB/LANSAXML
program. (Refer to 3.5 Calling a LANSA Process, 3.6 Calling a LANSA
Function Directly and 3.7 Passing Parameters to a LANSA Function.)

Note: the URL sub-path "/CGI-BIN/LANSAWEB?" and "/CGI-
BIN/LANSAXML?" MUST be in upper case if you are using Java Servlet.

3.5 Calling a LANSA Process

You can link a call to a LANSA process using the following parameters in your

call to the LANSAWEB/LANSAXML program.
PROCESS+<process_name>+<partition>+<language>

where:

PROCESS (can be in lower-case) is the keyword instruction to LANSA for the
Web to execute a LANSA process;

<process_name> is the name of the LANSA process you want to execute;

<partition> is the LANSA partition. This parameter is optional. If this
parameter is not specified, the default LANSA partition will be used;

<language> is the partition language you wish to use. This parameter is also
optional. If a partition language is not specified, the default partition language
will be used.

If you use the <language> parameter, the <partition> parameter must also be
specified, otherwise, the <language> parameter is assumed to be the
<partition> parameter.

Note that each parameter is delimited by the plus (+) character as in this
example:

http://<web_server>/cgi-bin/lansaweb?process+<process_name>+
<partition>

As an example, to create a link to a web system showing LANSA's web-enabled
Personnel Demonstration, which shows a 5250 (green screen) application, your
URL might appear as follows:

http://<web_server>/cgi-bin/lansaweb?process+pslsys+<partition>

To execute an alternative link to the Personnel Demonstration, using the process
specifically designed as a WEB interface, your URL might appear like this:

http://<web_server>/cgi-bin/lansaweb?process+lansadem+
<partition>

For XML, your link would be like this:
http://<web_server>/cgi-bin/lansaxml?process+pslsys+<partition>

To call a LANSA function directly, refer to 3.6 Calling a LANSA Function
Directly.

3.6 Calling a LANSA Function Directly
You can execute a LANSA function directly using the following parameters in
your call to the LANSAWEB/LANSAXML program.

PROCFUN+<process_name>+<function_name>+<partition>+
<language>

where:

PROCFUN (can be in lower-case) is the keyword instruction to LANSA for
the Web to execute a LANSA function directly;

<process_name> is the name of the LANSA process containing the function;
<function_name> is the name of the LANSA function you want to execute;

<partition> is the LANSA partition. This parameter is optional. If this
parameter is not specified, the default LANSA partition will be used;

<language> is the partition language you wish to use. This parameter is also
optional. If a partition language is not specified, the default partition language
will be used.

If you use the language parameter, the <partition> parameter must also be
specified, otherwise, the <language> parameter will be interpreted as the
<partition> parameter.

Note that each parameter is delimited by the plus (+) character as in this
example:

http://<web_server>/cgi-bin/lansaweb?procfun+<process_name>+
<function_name>+<partition>

As an example, to create a link to a web system showing LANSA's web-enabled
Personnel Demonstration, which shows a 5250 (green screen) application, your
URL might appear as follows:

http://<web_server>/cgi-bin/lansaweb?procfun+pslsys+enrol+
<partition>

To create a link to the same Personnel Demonstration using the process
specifically designed as a WEB interface, your URL might appear like this:

http://<web_server>/cgi-bin/lansaweb?procfun+lansadem+ldem+
<partition>

For passing parameters when calling a LANSA function, refer to 3.7 Passing
Parameters to a LANSA Function.

3.7 Passing Parameters to a LANSA Function

You can pass parameters to a LANSA function that is executed directly.

If you want to pass parameters to a LANSA function, you would extend the
URL of calling a LANSA function directly to include:

+FUNCPARMS+paraml+...+paramb
The keyword, FUNCPARMS (can be in lower-case), is used to indicate that

the rest of the URL are the parameters to the function. Each parameter must
follow the syntax:

<field_name>(tllld):value
where

<field_name> i {he name of the field to receive the parameter

T is the field type (A for alphanumeric, P for packed and S
for signed, L for lowercase alpha fields)

Lll is the length of the field value with leading zeros

D is the number of decimal positions

Value is the value of the parameter.

For example, if you wanted to pass a value of '"A0001' to the EMPNO field, the
syntax of the parameter would be:

EMPNO(A0050):A0001
Your final URL might appear as follows:

http://www.lansa.com/cgi-bin/lansaweb?
PROCFUN+PSLSYS+ENROL+WEB+FUNCPARMS+EMPNO(A0050):A0!(

Note that the length of the field includes leading zeros and the delimiting
character used is the colon (:) character.

If the value of the parameter includes embedded blanks, you must surround the
value with double quote (") characters.

You are allowed to specify up to 20 function parameters in a URL.

For a method of passing parameters, you may also wish to refer to

HTTP Header Variables in the Installing LANSA on Windows Guide.

its:LANSA085.CHM::/LANSA/jmp_0464.htm

3.8 Specifying a Task Identifier

If your LANSA partition is enabled for Task Tracking, you will need to specify
a task to run your LANSA function. To use task tracking, extend the URL
syntax discussed above to include:

+TASK_ID+<task_identifier>
where <task_identifier> is a valid task defined for the LANSA partition.

Note that if your LANSA partition is enabled for Task Tracking and you want to
run the Layout Wizard in this partition, a task identifier must be specified in the
URL.

3.9 Debugging using iSeries Batch Debug

LANSA for the Web allows your RDML functions to be debugged in batch on
the iSeries. This feature requires the use of an iSeries display device that is not
currently signed on.

To invoke batch debugging of your RDML functions, you would extend the
URL syntax discussed above to include:

+BDEBUG+<device>+<message_queue>
where

<device> is the name of the iSeries display device;
<message_queue> is the name of the message queue you wish to use.

The <device> and <message_queue> parameters are optional. If you do not
specify a display device, the debugging information will be directed to any
active display device on your network.

Your LANSA functions must be compiled for debugging purposes to use this
option.

For example, if you want to debug the ENROL function in the PSLSYS process
in the WEB partition, your URL might appear as follows:

http://www.lansa.com/cgi-bin/lansaweb?
PROCFUN+PSLSYS+ENROL+WEB+BDEBUG+QPADEV0001

Note: It is very important that the device specified is not allocated.

Make sure that no one is signed on to the device.

Also see
3.10 Debugging using Visual LANSA

3.10 Debugging using Visual LANSA

For set up and a detailed description of debugging using the Visual LANSA
development environment, please refer to the Interactive Debugging in the
LANSA for Web Housekeeping Guide.

In addition, when you compile your LANSA functions, you must select the
Debug enabled option as described in Compile and run the Program in the
Developers Guide in order to build binaries with debugging capability.

In the following description, Debug Host or Debugger computer is referring to
the computer where a Visual LANSA development environment is running and
to be used for interactive debugging. That is not the Data/Application Server
where the Web Functions run, unless of course you have both the Visual
LANSA and the Data/Application Server running on the same machine.

Also see
3.10.1 Start Development Environment Debugging Session

3.10.2 Start Web Browser Debugging Session
3.9 Debugging using iSeries Batch Debug

its:LANSA085.CHM::/LANSA/lwbengh4_0010.htm
its:Lansa013.chm::/lansa/l4wdev06_0290.htm

3.10.1 Start Development Environment Debugging Session

In the Repository tab of the LANSA Editor, locate the Web function to be
debugged. Right click on it to open the context menu. Select Execute from the
context menu.

Item | Description e
&N
Fo
=N -y
= @‘ PSLSYS Personnel System Main Menu
| EMPLIST Full Employee Listing
3' EMROL iy
— BTl R anang :s O —
l«] INQUIRE P
| PHONE . _
[SALARY % | Compile
I sEARCH ||[B Execute
3 SMAME Debug *
L] WINDOW
@‘ PSLSYS_AB % Delete from Repository
& PSLTAB
& PSLUTL Find
&' PSLUTLY
&0 &4 Checkin
&R & checkout
< |
1l | copy f
Copy Mame
L Properties
B= | CrossReferences
ga Security Settings
& | Features
& | PsLsys b

The Execute dialog will be displayed:

Function az Client to ary Server [manual connection] Al
Function az Client to RDRL System | Server
Function as Client to RDML System | Server
Function ag Client ta Unis Server
Function az Client to Windows Server
| Function az wWindows Application

Il Function in ‘Web Browser
Process az Client to any Server [manual connection)
Procesz az Client to RDRL System i Server
Procesz az Client to BDRML= Spstem | Server
Procesz az Clent to Unix Server
| Process as Client to Windows Server o

Prompt for additional execution parameters

[(] l [Cancel] [Help]

Select either Function in Web Browseror Process in Web Browser to execute the
selected Web function.

Select (check) the option Prompt for additional execution parameters to open
the following dialog where you can specify that you want Debugging to be
activated. If the Prompt for additional execution parameters option is not
selected, the function or process will be run without any debugging session.

Function in Web Browser D|§|@

Wwieb Server Mame W
Wwieb Server Port IBﬂi
[ebug INi
[Debug Host m

Device |d [Syztem i only) *BLAME.
Mezzage queues [System i only] |*BLAME,

EIK Eanu:el| Help| Farameter Help

Check that the Web Server Name and Web Server Port are correct for your
installation.

Change the Debug parameter from N to Y to start the Web function for
debugging.

For IBM i batch debug, you need to specify the Device Id and Message Queue.
(IBM i Batch Debug is not done within the Visual LANSA Development
Environment.)

Debug Host is set by default according to LANSA Debug Settings (see Debug

in LANSA Settings in the User Guide) and refers to the Visual LANSA
development environment that you want to use for interactive debugging.

its:lansa012.chm::/lansa/l4wusr01_2030.htm

Normally, it refers to the current development environment you are using. If you
want to temporarily use a different development environment (which can be on
a different computer) for the debugging session, you may change Debug Host to
a value such as mydevenv:51234. This is name of the computer with the
development environment that you want to use and the network port number
used by the Visual LANSA Debug Service of that development environment.
You will find this information in the Debug dialog of the LANSA Settings of the
development environment you want to use for debugging.

P LANSA Settings

Debug x|
General Debugger Location
|] Computetr Mame

L4
Source Debug Service

.

l_"‘ Pork 51234 > | Reset Al

Design
Start debug service with LANSA Editor

Debug service is starked and running with port 51234

EE Reset Editar
®al
)

Break at firsk executable statement

The parameters Device Id and Message Queue are not used for Visual LANSA
interactive debugging.

3.10.2 Start Web Browser Debugging Session

To start interactive debugging for your RDML (Windows only) or RDMLX
functions from a web browser, extend the URL syntax to include:

+BDEBUG+REMOTE=<debug_host>

where <debug_host> consists of the name of the computer where the
development environment that you want to use for debugging is running and the
network port number used by the Visual LANSA Debug Service of that
development environment and the 2 pieces of information are separated with a
colon "', for example, mydevenv:51234. You can find both information from
the LANSA Settings dialog of the development environment you want to use for
debugging. (See LANSA Settings - Debug in Getting Started with Visual
LANSA)

For example, assuming the computer name of the Development Environment
that you want to use is mydevenv and the Visual LANSA Debug Service for that
development environment is using network port number 51234, to debug the
ENROL function in the PSLSY'S process in the WEB partition, your URL might
appear as follows:

http://www.lansa.com/cgi-bin/lansaweb?
PROCFUN+PSLSYS+ENROL+WEB+BDEBUG+REMOTE=mydevenv:51.

3.11 Invoking the iSeries Spool File Facilities

This feature is only available for the iSeries Data/Application Server.
In order to use the Spool File Facility, it must be enabled using the

LANSA for the Web Administrator or LANSA for the Web Servlet
Administrator.

You can launch any of the Spool File facilities directly by entering the
parameters in your call to the LANSAWEB CGI script program.

To retrieve the page for entry of spool file selection criteria, use the following
parameter:
PRINT
For example:
http://www.lansa.com/cgi-bin/lansaweb? PRINT

To retrieve a list of spool files a PRINTLIST request is entered with the
selection criteria as follows:

PRINTLIST+<user_name>+<output_queue>+<outq_library>+
<form>+<userdata>+<status>

Note that each parameter is delimited by the plus (+) character.

<user_name> is the name of the owner of the spool files which are to be
shown in the list. This may be a specific user or *ALL.

<output_queue> is the name of the output queue which contains the spool
files which are to be shown in the list. This may be the name of a specific output
queue or *ALL.

<outq_library> is the library which contains the output queue previously
specified. This may be a specific library name, *LIBL or *CURLIB.

<form> is the form type of the spool files which are to be shown in the list.
This may be a specific form type, *ALL or *STD.

<userdata> is the user data of the spool files which are to be shown in the list.
This may be a specific user data information or *ALL. User data can contain
lower case values. If you wish to enter a lower case value, enclose the parameter
in single quotation marks.

<status> is the spool file status which is to be used for selection of spool files.
This value may be one of the following:

*ALL *CLOSED *DEFERRED *FINISHED
*HELD *MESSAGE *OPEN *PENDING
*PRINTING *READY *SAVED *SENDING
*WRITING

For example:

http://www.LANSA.com/CGI-BIN/LANSAWERB?
PRINTLIST+GROUPAUSR+qprint+*LIBL+*ALL+*ALL+*ALL
or

http://www.lansa.com/CGI-BIN/LANSAWEB?
PRINTLIST+GROUPAUSR+*ALL+*LIBL+*ALL+'ListH5'+*ALL

To display a spool file, a REPORT request plus details which identify the spool
file are entered as follows:

REPORT+<job_name>+<user_name>+<job_number>+
<spool_filename>+<spool_file_number>+<from_page>+<to_page>
Note that each parameter is delimited by the plus (+) character. The details that
identify the spool file are similar to those on the OS/400 command DSPSPLF.
<job_name> is the name of the job which created the spool file.

<user_name> is the name of the user profile under which the job which
created the spool file was run.

<job_number> is the system assigned job number of the job which created the
spool file.

<spool_filename> is the name of the spool file to be displayed.
<spool_file_number> is the number of the job's spooled file that is to be
displayed.

<from_page> is an optional parameter and may contain the number of the

first page you wish to display. If this parameter is not provided it is assumed to
be 1.

<to_page> is an optional parameter and may contain the number of the last
page you wish to display. If this parameter is not provided it is assumed to be
the final page of the spool file.

For example:

http://www.lansa.com/CGI-BIN/LANSAWEB?
REPORT+WEB0000001+WEBUSER+'092926'+QPJOBLOG+'0001'+'1'+'2'

3.12 Event Logging

LANSA for the Web provides support for event logging. Event logging is also
commonly known as 'click tracking'. Event logging allows you to track the
navigation of the users of your Web Function Applications. It creates a log
record for every page served up by LANSA for the Web. The information from
the event logger can help you answer typical questions like:

e How long did the user stay at my site?
e How many pages did the user access at my site?
e How is the customer using my site?

LANSA for the Web also allows you to trace user defined data as well as system
data. The data traced can be easily queried for data mining purposes.

You can trace two levels of information — summary information and detailed
information. The summary information provides information about:

e Date and time the user first accessed your site. The page accessed is also
logged.

e Date and time the last page was accessed.

e Number of pages accessed.

e Web user profile, if any.

e [P Address, if available.

e HTTP Referrer, if available.

The summary information is stored in a LANSA table, DC@W26.

The detailed information provides information about each page accessed,
including:

e Date and time the page was accessed.
e User defined trace information.
The detailed information is stored in a LANSA table, DC@W27.

To remove recorded event logging entries in these files on the iSeries, call the
Cleanup program as follows:

CALL W3@P2210 PARM('<WEBPGMLIB>' '<DATE>")
where

<WEBPGMLIB> is your lansa web program library
<DATE> is the date in YYYYMMDD format

3.13 Enabling Event Logging

If you want to enable event logging, you are required to include the <RDML

TRACE> tag in either your process specific layout page
(<process_name>_LAYOUT) or the default layout page
(DEFAULT_LAYOUT). If you do not have a process specific layout page, it is
suggested that you create your process specific layout page with a copy of the
contents of the default layout page.

Enabling event logging using the layout pages permits you to have tracing over
the entire application. By doing so, it is possible to tell how long a user has been
using your application. Alternatively, you may enable logging over specific
pages. This is done by putting <RDML TRACE> at the top of each your
HTML pages.

The <RDML TRACE> tag is used to instruct LANSA for the Web to look up
the trace page and determine which level of tracing is to be applied to your
application. The appropriate tracing information will be written to the relevant
files depending on the keywords specified in the trace file.

When determining the level of tracing, LANSA for the Web looks up either the
process specific trace page (<proces_ name>_TRACE) or the default trace page,
DEFAULT_TRACE. This trace file must only contain a single line with either
TRACE_SUMMARY or TRACE_DETAILED as the keyword. Note that the
keyword is in upper case.

The TRACE_SUMMARY keyword indicates that you only want to log
summary information and the logging information is stored in the DC@W26
(summary) file. This is a default keyword in the DEFAULT_TRACE page. A

new trace identifier is assigned for each process or procfun request made.
The TRACE_DETAILED keyword extends on the summary level tracing
permitting you to log user defined fields. The detailed information is kept in the
DC@W?27 (detailed) file. This file contains information on how each of the
pages was accessed for each trace identifier.

3.14 Logging User Defined Fields

LANSA for the Web allows you to trace fields within your functions. If you
want to trace information in your function, you will need to have event logging
enabled at the detailed level and you must include a LANSA standard field,
STDTRCFLD, in your RDML function. This is defined as a CHAR(100) field
in the LANSA Repository.

The Event Logging facility allows you to trace up to 10 fields in your RDML
function. The nominated field names are concatenated together into the
STDTRCFLD field. The first trace field is defined in position 1 to 10 of the
STDTRCFLD, the second trace field in position 11 to 20, and so on. For
example, if you want to trace the EMPNO, SURNAME and GIVENAME
fields, these field names are concatenated together. Each of the field names that
are less than 10 characters are padded with blanks. In this case, the value of the
STDTRCFLD field would be:

EMPNO SURNAME GIVENAME

You use the STDTRCFLD field as a *HIDDEN attribute as part of your display
or request commands in your functions.

When detailed event logging is enabled in LANSA for the Web, it will check the
value of the STDTRCFLD field to determine the user defined fields to trace.
The field value length of each of the user defined trace fields is limited to 50
bytes. LANSA for the Web will truncate the data if the length is greater than 50.
The trace fields and their contents are logged to the respective fields in the
detailed file (DC@W27).

4. WEBEVENT Functions

WEBEVENT functions are designed to support the browser paradigm and the
use of the Back button. To understand how to create WEBEVENT functions,
refer to the following:

4.1 What is a WEBEVENT Function?

4.2 How Does WEBEVENT Work?

4.3 How is WEBEVENT Different?

4.4 WEBEVENT Templates

4.5 WEBEVENT Example

4.6 Automatic Data Exchange

4.7 WEBEVENT Routing

4.8 WEBEVENT Keywords

4.9 Considerations for WEBEVENT Functions
4.10 WEBEVENT Data and Function Timeout

?‘ WEBO003 - Coding WEBEVENT Functions

its:lansa086.CHM::/LANSA/web03_TUTORIAL.htm

4.1 What is a WEBEVENT Function?

LANSA allows you to create a special type of RDML Web function specifically
for use with the Internet. This Web function is called a WEBEVENT function.

The WEBEVENT function is designed specifically for the Internet user and the
browser paradigm. In the browser paradigm, a persistent connection is not
required. Each page is independent. You cannot dictate the navigation path of
your application to the user. The Internet user has a Back button in the browser,
which allows them to go back several pages and resubmit a request.

A function is defined to be a WEBEVENT function by specifying the following
option in the RDML FUNCTION command:

FUNCTION OPTIONS(*WEBEVENT)

With WEBEVENT functions, the LANSA function will terminate after a
DISPLAY or REQUEST command is executed. No other logic will be executed
after the HTML page for the function is sent. Using this technique, you must
code your functions to properly process the information when the user decides
to submit a screen with data. The logic of the RDML function must be written
specifically for WEBEVENT. You cannot simply add the *WEBEVENT
keyword to your functions.

WEBEVENT functions cannot use any of the standard function keys, i.e. Exit,
Cancel, Add, Change, Delete, Prompt, etc. because the function terminates once
the display is sent. Instead, navigation can be controlled by keywords in the
USER_KEYS parameter of the DISPLAY or REQUEST command (or by using
links from one page to another). Each description of the user key is a keyword
that is used to link one LANSA function to another. Each of these user keys will
be displayed as a button. When the user selects a button, the linked function will
be called.

When the linked function is called, all form variables, hidden fields and any
browse list data will automatically be exchanged with the called function. For
more details, refer to 4.6 Automatic Data Exchange.

For a detailed example of writing WEBEVENT functions, refer to 4.5
WEBEVENT Example.

?‘ WEBO003 - Coding WEBEVENT Functions

its:lansa086.CHM::/LANSA/web03_TUTORIAL.htm

4.2 How Does WEBEVENT Work?

If you execute the standard FRENQO2 template to create a procedural
header/detail style function, it generates a function with REQUEST and
DISPLAY screens. The overall structure of the RDML in the function might
appear as follows:

FUNCTION OPTIONS(*DIRECT)
GROUP_BY NAME#HEADER)...
DEF_LIST LIST(#LIST)...

BEGIN_LOOP

REQUEST FIELDS(#DEPTMENT)...

FETCH FIELDS(#HEADER)...

SELECT FIELDS(#LIST)...

ADD_ENTRY TO_LIST(#LIST)

ENDSELECT

DISPLAY FIELDS(#HEADER)... BROWSELIST(#LIST)
END_LOQOP

To convert this to a WEBEVENT function, you might divide the single function
into two functions: FUNCO001 and FUNCO002. FUNCO001 will REQUEST the
information to be located and FUNCO002 will DISPLAY the data.

The function structure would appear something like the following:
FUNCO001:

FUNCTION OPTIONS(*DIRECT *WEBEVENT)
CHANGE FIELD#DEPTMENT) TO(*DEFAULT)
REQUEST FIELDS(#DEPTMENT)...USER_KEYS((01 SEARCH))

FUNCO002:

FUNCTION OPTIONS(*DIRECT *WEBEVENT)
GROUP_BYNAME#HEADER)...
DEFINELIST(#LIST)...
FETCHFIELDS(#DEPTMENT)... NOT_FOUND(RO01)
SELECTFIELDS(#LIST)...
ADD_ENTRYTO_LIST(#LIST)
ENDSELECT

RO1: DISPLAYFIELDS(#HEADER)... BROWSELIST(#LIST)

When the user executes the LANSA WEBEVENT function, FUNCO001 will
simply send the REQUEST for the search data and then terminate. For example,

it might ask for a Department Code. Within FUNCO001, a user key is nominated.
This user key is called Search and is linked to FUNCO002.

After the user enters the data, the Search button will be pressed. This button is a
link to the FUNCO002 function. FUNCO00?2 is called and the input data from
FUNCO0O0L1 is passed from the browser to FUNCO002. Because this is a
WEBEVENT function, the variables from FUNCO001 are passed to FUNCO002 as
if FUNCO002 were being called from within FUNCOO1. This is automatically
handled by LANSA.

FUNCO002 will take the search parameters from FUNCO001 and select the data
from the files to build a browse list with the results. FUNCO002 will display
these results and then it will terminate. Like FUNCO0O01, it can nominate user
keys and linked functions. For example, it might link back to FUNCO001 or it
might link to a FUNCO003 which provides details of a selected transaction.

If the user presses the Back button in the browser, they can return to the
REQUEST screen in FUNCO0O01 and enter new data. When the user presses the

Search button, FUNCO002 is simply called once again. The information is
exchanged so that FUNCO002 can execute properly.

Note: If you are using browse lists, the lists should match exactly in FUNCO001
and FUNCO002 so that the data is passed properly. For more details, refer to 4.6
Automatic Data Exchange.

For a detailed example of writing WEBEVENT functions, refer to 4.5
WEBEVENT Example.

?‘ WEBO003 - Coding WEBEVENT Functions

its:lansa086.CHM::/LANSA/web03_TUTORIAL.htm

4.3 How is WEBEVENT Different?

The WEBEVENT function is not coded like a procedural LANSA function. The
key differences include:

WEBEVENT functions automatically terminate immediately after sending
the page to the user, that is, immediately after a REQUEST or DISPLAY
statement.

WEBEVENT functions are designed with their processing logic first. The
last operation must be the REQUEST or DISPLAY. The logic of the RDML
function must be written specifically for this style of function.

WEBEVENT functions cannot use any of the standard function keys, i.e.
Exit, Cancel, Add, Change, Delete, Prompt, etc. because the function
terminates once the display executes.

WEBEVENT functions control user navigation using the USER_KEY'S
parameter of the DISPLAY or REQUEST command or by using links from
one page to another. For details, refer to 4.7 WEBEVENT Routing.

The LANSA function terminates after the REQUEST or DISPLAY so the
transaction server is not required to maintain state. (Note: the transaction
server is still used to process LANSA Web function jobs). The user is able to
use the browser's Back button if they wish.

The exchange of data between WEBEVENT functions is automatically
handled by LANSA.

WEBEVENT functions are not procedural. You must call your WEBEVENT
functions directly using the PROCFUN keyword. These functions cannot be
executed from a process menu.

?‘ WEBO003 - Coding WEBEVENT Functions

its:lansa086.CHM::/LANSA/web03_TUTORIAL.htm

4.4 WEBEVENT Templates

LANSA includes web function application templates, which will create

WEBEVENT functions. The templates include:

e FRWEBADDO1 Data entry for *WEBEVENT. FRWEBADDO1 creates a
simple data entry WEBEVENT function.

e FRWEBENQO1 Page at a time with detail display. FRWEBENQO1 creates a
WEBEVENT function that has a generic search, and then displays the results
of the search in a page at a time browse list. You can select entries from the
browse list for a more detailed display of information.

?‘ WEBO01 - Types of LANSA Web Functions

its:lansa086.CHM::/LANSA/WEB01_TUTORIAL.htm

4.5 WEBEVENT Example

In order to understand how to design and program WEBEVENT functions, the
following step-by-step example has been included:

4.5.1 Procedural Add an Employee Function

4.5.2 Changes Required to Restructure for WEBEVENT
4.5.3 Handling Re-entrant Functions

4.5.4 Final WEBEVENT Function

4.5.5 More Complex Example

?‘ WEBO003 - Coding WEBEVENT Functions

its:lansa086.CHM::/LANSA/web03_TUTORIAL.htm

4.5.1 Procedural Add an Employee Function

Consider a very common data entry function such as the type of function
created by the FRADDO1 template.

FUNCTION OPTIONS(*DIRECT)
GROUP_BY NAME#PANEL) FIELDS(#EMPNO #SURNAME)

MESSAGE MSGID(DCU0010) MSGF(DC@MO01) MSGDTA(‘employ
BEGIN_LOOP

REQUEST FIELDS(#PANEL) DESIGN(*DOWN) IDENTIFY (*DES
INSERT FIELDS(#PANEL) TO_FILE(PSLMST)

MESSAGE MSGID(DCU0011) MSGF(DC@MO01) MSGDTA('employ
CHANGE FIELD(#PANEL) TO(*NULL)

END_LOOP

In this example, you have a single function, which must be converted to follow
the rules of the WEBEVENT function. The behavior of the function should be
as follows:

e When the function is first called, it simply displays a data entry panel and
then the function ends.

e The user will enter data into the function and call the function again.

e When the data is passed to the function, it executes and attempts to insert the
data to the file.

e I[f there are errors, then the error messages must be displayed.

e [f there are no errors, a completion message is sent and the fields are reset.
e The function displays the data entry panel and the function ends.

Refer to 4.5.2 Changes Required to Restructure for WEBEVENT.

4.5.2 Changes Required to Restructure for WEBEVENT
For this function to be re-written using the FUNCTION
OPTIONS(*WEBEVENT) style, the following changes must be made:

e REQUEST must be the last statement executed in the function, so the
commands must be reorganized.

e The MENU_KEY is not allowed in the REQUEST statement.

e BEGIN_LOOP and END_LOOP must be removed and replaced by
statements to determine if the function is executing for the first time.

The overall changes required are shown below.

FUNCTION OPTIONS(*DIRECT *WEBEVENT)
GROUP_BY NAME#PANEL) FIELDS(#EMPNO #SURNAME...)

If the function has data to be inserted...

INSERT FIELDS(#PANEL) TO_FILE(PSLMST) VAL_ERROR(...)
MESSAGE MSGID(DCU0011) MSGF(DC@MO01) MSGDTA('employee
CHANGE FIELD(#PANEL) TO(*NULL)

End of the If logic.
REQUEST FIELDS(#PANEL) DESIGN(*DOWN) IDENTIFY (*DESC)

In order to determine if the function is executing for the first time or if it has
data to be inserted, you need to use a variable to determine the state of the
function. Refer to 4.5.3 Handling Re-entrant Functions.

4.5.3 Handling Re-entrant Functions

In this example of a WEBEVENT function, a single function is being written to
call itself. This example is described as re-entrant. The same function is re-
entered in order to process the Web page. This is a common approach as it
allows the RDML logic associated with a page to be contained in the same
function as the Web page itself.

In this function example, you must exchange a hidden field called RENTRY.
This field tells the function if it is being called for the first time or if it is being
called to process data.

For example:

FUNCTION OPTIONS(*DIRECT *WEBEVENT)
GROUP_BY NAME#PANEL) FIELDS(#EMPNO #SURNAME... (REN
DEFINE FIELD(#RENTRY) TYPE(*CHAR) LENGTH(1)
IF COND(#RENTRY *EQY")
INSERT FIELDS(#PANEL) TO_FILE(PSLMST)VAL_ERROR(T01)
MESSAGE MSGID(DCU0011) MSGF(DC@MO01) MSGDTA (employee'
CHANGE FIELD#PANEL) TO(*NULL)
ENDIF

TO01 CHANGE FIELD#RENTRY) TO(Y)
REQUEST FIELDS(#PANEL) DESIGN(*DOWN) IDENTIFY (*DESC)..

When the function is called for the first time, the RENTRY field will have a
value of NULL. The function simply displays the REQUEST asking the user to
enter data for the file. Notice that RENTRY is set to YES before the function
terminates.

The user key for the SUBMIT button will indicate that the next function to be
called is itself. (For details, refer to 4.8 WEBEVENT Keywords.)When the
function is called a second time, the variables are passed to the function and the
RENTRY field is YES. The function knows it must perform the insert to the
data file.

Also note how the TO1 label is used. If errors occur during the INSERT, the
function must display the current data. The reset of the #PANEL fields to
*NULL is skipped.

Refer to 4.5.4 Final WEBEVENT Function.

4.5.4 Final WEBEVENT Function

The add function can be re-written using the WEBEVENT style as shown
below:

FUNCTION OPTIONS(*DIRECT *WEBEVENT)

DEFINE FIELD(#RENTRY) TYPE(*CHAR) LENGTH(1)
GROUP_BY NAME(#PANEL) FIELDS(#EMPNO #SURNAME #
IF COND(‘#RENTRY *EQ Y")

INSERT FIELDS(#PANEL) TO_FILE(PSLMST) VAL_ERRC

CHANGE FIELD(#PANEL) TO(*NULL)

MESSAGE MSGID(DCU0011) MSGF(DC@MO01) MSGDTA (‘e

ENDIF

TOl1 CHANGE FIELD#RENTRY) TO(Y)

REQUEST FIELDS(#PANEL) DESIGN(*DOWN) IDENTIFY (*
An entry must be added to the WEBEVENT Links table using the Web Function
Editor to link this process/function (via the user key1) to itself. The function
would present an HTML page of input fields, as well as a button. When the

button is clicked, the function would call itself and pass the data to be inserted
into the PSLMST file.

4.5.5 More Complex Example

Imagine you have a more complex RDML function, which has three screens. It
might look something like the following example. Using the re-entrant
technique, you use a CASE statement and direct the processing to the correct
part of the function based on the last screen processed.

FUNCTION OPTIONS(*DIRECT *WEBEVENT)

CASE OF_FIELD(#RENTRY)
WHEN VALUE_IS(=1)
CHANGEFIELD(#RENTRY) TO(2)

DISPLAY FIELDS(...) USER_KEYS((01 SUBMIT))
WHEN VALUE_IS(=2)
CHANGE FIELD#RENTRY) TO(*NULL)

DISPLAY FIELDS(...) USER_KEYS((01 RETURN))
OTHERWISE
CHANGE FIELD#RENTRY) TO(1)

REQUEST FIELDS(...) USER_KEYS((01 SEARCH))
ENDCASE

In this example, the #RENTRY field is set in each branch of the CASE

statement in order to control how the function will execute the next time it is
called.

4.6 Automatic Data Exchange

LANSA automatically handles all data interchange between WEBEVENT
functions.

When a linked function is called from your WEBEVENT function, the
following will automatically be exchanged:

e all form variables
e hidden fields
e all browse list data.

It is very important that the browse list definitions must be identical in all
respects in all called functions as well as the current function being executed. If
you have more than one DEF_LIST command in your function, all the browse
lists will be exchanged even though you are only displaying one of the browse
lists in your function.

If you exceed the LANSA exchange list limit, you can turn on the Enable
Extended Exchange flag in the Web Administrator. Once you have enabled this
option, you will have to recompile your functions. The Enable Extended
Exchange flag is on the Miscellaneous tab of the Configure Data/Application
Server in the LANSA for the Web Administrator. LANSA for the Web
Administrator will have been installed when you installed LANSA for the Web.
Refer to the Exchange List item in the Summary of Platform Differences.

When you create WEBEVENT functions, you MUST NOT use commitment
controls as each function is effectively a new job. This style of application does
not cater for database cursors.

To understand how and when this data is purged, refer to 4.10 WEBEVENT
Data and Function Timeout.

its:LANSA085.CHM::/LANSA/ede400.htm

4.7 WEBEVENT Routing

There are several techniques which can be used to link your WEBEVENT
functions:

1. USER_KEYS and KEYWORDS

Navigation from one WEBEVENT function to another can be controlled by
keywords in the USER_KEY'S parameter of the DISPLAY/REQUEST
command. Each description of the user key is a keyword that is used to link one
LANSA function to another. Each of these user keys will be displayed as a
button. When the user selects a button, the linked function will be called. The
keywords and their linked functions are set up using the Web Function Editor.
For more details, refer to 4.8 WEBEVENT Keywords.

2. Web Link Web Components
Web link components are only used with WEBEVENT functions. You can use
Web link components to link to other functions, instead of using Keywords.

Web link components also allow you to display the links as images instead of
buttons. These components allow you to dynamically change the links as well as
the presentation of the links, without having to recompile your WEBEVENT
functions. For more details, refer to Web Link.

3. Standard HTML Links

If you wish to link to another function but do not want to pass any information
to the next function, you may use a standard hypertext link.
4. JavaScript

Using the HandleEvent function in the default JavaScript used by LANSA Web
functions, you can control the navigation between WEBEVENT functions.

its:lansa086.CHM::/LANSA/ED0960.htm

4.8 WEBEVENT Keywords

To control the application flow in WEBEVENT functions, you can use the
USER_KEYS parameter in your RDML function along with Keywords in the
Web Function Editor.

For example:
REQUEST FIELDS(#PANEL) DESIGN(*DOWN) IDENTIFY (*DESC) E

The USER_KEYS parameter will cause a button to appear on the function.

The keywords and their linked functions are set up using the Web Function
Editor. Select the Tools action bar category and the Keywords option. You can
add new links or maintain existing links. For more details, refer to Keywords.

Add Keyword E3 |

Language: Drezcription:

Process: || IENG j I
Function: I
I—

K.epward:

Linked Process:

Linked Function:

ak I Cancel |

The Process, Function and Keyword parameters are used to identify the specific
process and function and user key being pressed. The Linked Process and
Linked Function are the names of the process and function to be called when the
button is pressed. In the case of a re-entrant function, the names will still remain
the same. The Description is used to define the words which will appear on the
button.

Very Important: The keyword is case sensitive! If you use
"SUBMIT" in uppercase in your RDML USER_KEY statement, then

you must use "SUBMIT" and not "submit" when defining the
keywords.

?‘ WEBO003 - Coding WEBEVENT Functions

its:lansa086.CHM::/LANSA/JMP_0250.htm
its:LANSA086.CHM::/LANSA/web03_tutorial.htm

4.9 Considerations for WEBEVENT Functions

Following are some important considerations when creating WEBEVENT
functions:

You cannot call WEBEVENT functions from a process menu. You must not
use the PROCESS keyword in your URL syntax. Since WEBEVENT
functions terminate as soon as a DISPLAY or REQUEST command is
executed, the LANSA job is terminated.

You must call WEBEVENT functions directly. You must use the PROCFUN
keyword in your URL syntax.

Navigation between WEBEVENT functions can be handled by User Keys
and Keywords.

If you are creating the function links manually, you should use the
HandleEvent JavaScript function to process the call instead of using an
anchor block (<A HREF>) tag. The HandleEvent function redirects the
request to the same Web job at the Data/Application Server whereas the
anchor block request starts a new Web job.

If you use navigation by using an HTML , no data will be
passed to the called WEBEVENT function.

WEBEVENT functions must not use commitment control as each function is
effectively a new job. This style of application does not cater for database
Cursors.

WEBEVENT functions cannot use function keys such as Exit, Cancel, Add,
Change, Delete, Prompt, etc. because the function has already terminated.

You must check the STDHEADER page you are using for your
WEBEVENT function. All function keys must be enclosed within an
<RDML BUTTON> LANSA tag. If a function key does not have an RDML
BUTTON tag, you will need to enclose these function keys with a pairing of
<RDML BUTTON="&WEBEVENT"> and </RDML> tags. Your header
should have no function keys, i.e. no buttons.

WEBEVENT functions expect to have only one REQUEST or DISPLAY
screen used per function. This does not mean that you cannot have more than
one REQUEST statement, but simply that in the flow of logic only one
statement should be encountered. A compiler warning message may be
displayed if more than one REQUEST or DISPLAY is used in the function.

There will be RDML executed after the REQUEST or DISPLAY. The

WEBEVENT function will terminate after the DISPLAY/REQUEST
command is executed. No other logic will be executed after the HTML page
for the function is sent. A compiler warning is issued if statements are
encountered after the REQUEST or DISPLAY.

Do not use DISPLAY or REQUEST or POP_UP commands in a subroutine.
These commands are not allowed in subroutines for *WEBEVENT
functions.

Output fields are not exchanged between WEBEVENT functions. When the
linked function is called, all form variables, hidden fields and any browse list
data will be exchanged to the called function.

If you are using browse lists, the lists should match exactly in the calling and
called WEBEVENT functions so that the data is passed properly.

Check that your INSERT or UPDATE or other validations commands do not
use *LASTDIS.

?‘ WEBO003 - Coding WEBEVENT Functions

its:LANSA086.CHM::/LANSA/web03_tutorial.htm

4.10 WEBEVENT Data and Function Timeout

It is important to understand how WEBEVENT function data is handled as it
relates to the jobs being maintained by the transaction server.

A LANSA WEBEVENT function terminates as soon as it has processed a
DISPLAY or REQUEST command. However, the Web job is reserved for the
user, pending further interaction unless you have coded the function to terminate
the job immediately.

The LANSA for the Web Transaction Monitor will terminate a WEBEVENT
function if the timeout period has elapsed. However, if you continue to interact
with this WEBEVENT function, LANSA will automatically allocate a new job
for the request and handle the data interchange. Your data is still intact. (You
must not use the Job Identifier as the unique identifier, as any restarted
WEBEVENT functions may not be allocated to the same job at the
Data/Application Server.)

When WEBEVENT functions time out, LANSA maintains the data for these
jobs temporarily at the Data/Application Server. When the user interacts with
these functions subsequently, the temporary data is restored and the user is not
impacted — a new LANSA job has been allocated and the temporary data
restored for the function.

LANSA for the Web holds the temporary data for a specified period of time.
This temporary data is cleared when the inactive time of the job exceeds this
purge time period. The purge period time is set in the Purge WEBEVENT
function data option on the Transaction Monitor tab when you configure the
Data/Application Server using the LANSA for the Web Administrator. If the
user interacts with the function after the purge time, browse list data will not be
exchanged as it has been purged. For more details, refer to the Installing LANSA
on Windows Guide.

Terminating WEBEVENT Jobs Immediately

LANSA Web functions provide you with a LANSA tag, <RDML
MERGE="&END">, to indicate that the Web job is to be freed immediately
(after the DISPLAY or REQUEST command) and returned to the pool of pre-
started Web jobs.

This tag should only be used for functions, which have no user interaction once
the function terminates. It should not be used for functions that have a browse
list, which must be exchanged with a subsequent function.

For more details, refer to Using <RDML MERGE="&END">.

its:lansa086.CHM::/LANSA/ED1230.htm

5. LANSA Generated HTML Pages

LANSA Web Functions generate pages meeting both the HTML 4.0
standard and the XHTML 1.0 standard. In this guide, the term HTML

will be used to describe generated HTML/XHTML pages. For details
about XHTML, refer to LANSA for the Web XHTML.

LANSA Web Functions will generate the required HTML pages when you
compile your functions. If you are planning on modifying these pages, you
should review the following:

5.1 Page Security

5.2 Identifying Generated Pages

5.3 Modifying the Process Menu

5.4 Versioning of Pages

5.5 Comparing Versions

5.6 HTML Page Structure

5.7 LANSA Field Names in HTML Pages
5.8 HTML Generation Skeleton

?‘ WEBO004 - LANSA Generated HTML Pages

its:LANSA086.CHM::/LANSA/EDI800.htm
its:lansa086.CHM::/LANSA/web04_TUTORIAL.htm

5.1 Page Security

Under a traditional HTML development, each HTML page is an HTML
document that resides in a directory. Your application may require hundreds of
HTML documents scattered over numerous directories. The HTML pages are
exposed to anyone who can gain access to the directories. The HTML pages can
also be altered without your knowledge.

Using LANSA Web functions, the HTML pages are kept as LANSA internal
files for easier backup/restore and maintenance procedures. The HTML pages
cannot be accessed without using the Web Function Editor which prohibits
unauthorized editing.

LANSA Web Functions also include special tags which are stored in HTML
pages. These tags are processed when the pages are read from the LANSA
internal files and then served to the client browser or computing device.

The images files, static pages and embedded objects (audio, video,
etc.) which are used as part of the pages must be stored in the Web
Server directories.

5.2 Identifying Generated Pages

In order to modify the LANSA generated HTML pages, you will use the Web
Function Editor. You must also know how to identify the pages associated with
processes and functions.

When LANSA processes are compiled, no HTML is generated for the process.
When a Web enabled LANSA process is executed, LANSA automatically
generates the process menu page based on the DEFAULT_INDEX and
DEFAULT_CONTENT pages. The DEFAULT_INDEX page is used to
initialize the Menu Area of the browser. The DEFAULT_CONTENT page is
used to initialize the contents area of the process menu. For more details, refer
to 5.3 Modifying the Process Menu.

When a LANSA Web function is compiled, LANSA generates an HTML page
for each REQUEST or DISPLAY statement within the function. Each HTML
page adopts the following naming convention:

<process name> <function name><display sequence>

The <process name> is the name of the LANSA process. If the length of the
process name is less than 10 characters, it is padded with spaces.

The <function name> is the name of the LANSA function. If the length of the
function name is less than 7 characters, it is padded with spaces.

The <display sequence> is the logical sequence of the screen in the function.

For example, the first screen displayed, a REQUEST statement, in the FUNCO1
function of PROCO1 process will adopt the name:

PROCO01 FUNCO1 001

and the second screen displayed, a DISPLAY statement, will adopt the name:
PROCO01 FUNCO1 002

Refer to Open . . .(XML/HTML mode).

?‘ WEBO004 - LANSA Generated HTML Pages

its:lansa086.CHM::/LANSA/JMP_0610.htm
its:lansa086.CHM::/LANSA/web04_TUTORIAL.htm

5.3 Modifying the Process Menu

LANSA does not create a stored HTML page for a process. The process menu
HTML page is automatically generated based on the current process definition
and the default HTML process page definitions. The LANSA Process Menu is
used for your procedural Web applications. (If you are creating WEBEVENT
functions, you should call them directly using the PROCFUN keyword.)

The process menu is divided into two areas:
e process index (default_index) and
e process content (DEFAULT_CONTENT).

B Penzorenl Syztem Main Mo - Nolzcapn M= & |
Ele Edt Mew [o Window O 5

] &« @& 3 5 d 3

LT %4 INDEX | o= CONTENT
i pokmrad: i Loca f PROCESS+P5L5 TS #WEBENG

Personnel S /7
Main Menu / Welcome to V

¥ Full Ergloyee Listing
* Enrol a Mew Emaloyse
* | Browselblamtan Emplopes

e e Aspect Computing Pty Ltd

Ty | LLUEL

Eersonne] Table 5
Mamtenance herm |
¥ | Euit from systam |

-
- |Decument Done i

The process index lists the functions which can be executed in the process. The
list of functions is built when the process is called. The rules are based on the
LANSA process definition. For example, the function control table will
determine the order in which the functions are listed.

The generic HTML for the process index is stored in DEFAULT_INDEX.

If the HTML in this file is changed, it will impact all of the LANSA processes in
the partition. You should create a process specific version of this page. Refer to
Customizing Process Specific Pages.

The process content is an information area of the process menu and the HTML
for the process content is stored in DEFAULT_CONTENT. If the HTML in this

its:lansa086.CHM::/LANSA/ED0620.htm

file is changed, it will impact all of the LANSA processes in the partition. You
should create a process specific version of this page. Refer to Customizing
Process Specific Pages.

its:lansa086.CHM::/LANSA/ED0620.htm

5.4 Versioning of Pages

When a Web enabled LANSA function is compiled, the HTML pages for the
function are stored in a LANSA internal file. The pages in this file can be edited
using the Windows-based Web Function Editor. (Since the pages are stored on
the Data/Application Server, the Editor executes as a client/server application.)

When you manually edit the HTML, you now have a version of the HTML
which does not match the original version that was generated by LANSA.

LANSA allows you to save the previous versions of your pages. The LANSA
for the Web Administrator allows you to define whether or not you want to save
the previous versions of the generated page. It also allows you to specify the
number of sets you want to save. Up to 10 versions can be saved. When you
open an HTML page, the Web Function Editor allows you to specify the version
of page to be accessed.

Each time a Web function is (re)compiled and HTML generation is selected,
LANSA generates a new version of the pages for each screen. Any manual
changes you have made can then be copied from the previous version back into
the current version. For example, when a Web function is first compiled, the
page will be version 0. Now you edit this page. It is still version 0. When the
Web function is recompiled, version 0 would become version 1 and the newly
compiled version becomes version 0. The most recent or current version is
always version 0. The higher the number the older the version. So version 0 =
current version, version 1 = previous version, version 2 = (previous - 1) version,
etc.

When LANSA generates the HTML for a particular Web function, it does not
check to see if the current page (if any) has been modified. The backup feature
must be enabled to prevent LANSA from overwriting the manually edited
version of the page when the recompile is performed. If the backup feature is
enabled, LANSA will save the current page before generating a new page for
the Web function being compiled.

Note: You can only save changes to version 0. You may open any version of a
page, but you can only save the page as version 0. For example, if you open
version 3 of the page and make changes, it cannot be resaved as version 3. It can
only be saved as version 0. This rule ensures that your previous versions are not
corrupted.

For more details, refer to the Web Function Editor Open (Basic) mode and Save
As features.

its:lansa086.CHM::/LANSA/JMP_0620.HTM
its:lansa086.CHM::/LANSA/ED1010.htm

?‘ WEBO004 - LANSA Generated HTML Pages

its:lansa086.CHM::/LANSA/web04_TUTORIAL.htm

5.5 Comparing Versions

The Web Function Editor provides a special compare and contrast feature for
comparing versions of your pages. You can open an HTML page and then select
another version of the page to compare with the opened page. The Editor will
highlight the differences in the pages as you scroll through the documents.

You can configure the colors used to identify the inserted and deleted records in
the documents. The HTML which was inserted is shown in one color, followed
by the HTML, (if any), which was deleted shown in another color. For example,
when a new line of HTML is simply inserted, it will be shown as an inserted
line. When a line of HTML is changed, it will show the new inserted line and
the old original line of HTML (deleted) which was changed.

The Editor supports both horizontal and vertical split screens when comparing
pages .You can specify synchronized scrolling so that the two documents scroll
at the same time.

The compare and contrast features are useful in cases where you have modified
the page of a function and then recompiled the function. Using compare and
contrast, you can quickly identify your modifications and reapply them to the
latest version of the function. You could either open the most recent version and
compare the changes from the earlier version, or you could open the earlier
version and compare the changes from the most recent generation.

For more details, refer to Web Function Editor Compare feature.

its:lansa086.CHM::/LANSA/ED1020.htm

5.6 HTML Page Structure

When you compile a LANSA Web function, an HTML page is created for each
display (REQUEST or DISPLAY) in the function. Each display is divided into a
number of page components:

function layout (including default JavaScript and styles)
standard header
function HTML
standard footer.

The page components are embedded using special LANSA tags such as
<RDML LAYOUT>, <RDML MERGE> and <RDML COMPONENT>. For
more details, refer to RDML Tags.

For example, a typical LANSA Web function might produce the following
generated HTML page:

<RDML LAYOUT>

<I-- Process : xxxxxxxxxx Test Process -=>
<!-- Function : xxxxxxx Display Sections -->
<l--Page :001 -->

<I-- Generated by - XXXXXXXXX -->
<!-- Created by user - XXXXXXXXX -->
<!-- Time and Date - XXXXXXXXXXXX -->

<form action="/<RDML MERGE="&CGI">/LANSAWEB?FUNCTION+
<RDML MERGE="&SESSION">"

method="post" name="LANSA">

<RDML MERGE="&HIDDEN">

<RDML COMPONENT="STDHEADER">

<center><h1><RDML MERGE="@FUNCTION"></h1></center>

...main body of function will appear here...

its:lansa086.CHM::/LANSA/ED0700.htm

<RDML COMPONENT="STDFOOTER">

</form>

When the page is presented to the client browser, there will be just one HTML
page. For the developer, each of the page components can be separate
documents which can be shared and reused. For more details about these
components, refer to Standard HTML Page Components.

Using standard page components for items like layout pages, headers, footers,
etc. allows the developer to create common and shared definitions for the
HTML pages. This approach greatly increases productivity because the
developer does not need to repeat common information. Application
maintenance is also significantly reduced as the developer need only change a
single definition instead of modifying each function.

LANSA ships a set of standard HTML page components. These standard page
components can be embedded into other HTML pages or they can be used as

default pages. Standard page components are used to minimize the maintenance
effort. For more details about these components, refer to Shipped Default Pages.

For example, the component STDHEADER displays a company logo and
includes all the application navigation buttons. The STDHEADER is embedded
into the HTML generated for every LANSA Web function. To change the
company logo, you would only need to modify one file, STDHEADER. You do
not need to modify the HTML in every function.

Each LANSA Web function will include a standard header and a standard footer
in the generated HTML. LANSA Web functions allow you to use various styles
for your standard header. You can choose between a static
(STDHEADER_STYLE1) or a dynamic header. If you choose to have a
dynamic header, you have the additional choice of implementing either a
scrolling (STDHEADER_STYLE?2) or a non-scrolling
(STDHEADER_STYLE3) header. LANSA allows you to configure a header
which can be used for all pages for a particular LANSA process. For more
details, refer to Header Styles.

its:lansa086.CHM::/LANSA/ED0630.htm
its:lansa086.CHM::/LANSA/ED0610.htm
its:lansa086.CHM::/LANSA/EDG600.htm

5.7 LANSA Field Names in HTML Pages

When you review the HTML generated for your LANSA Web functions, you
may notice that your LANSA field names have a one character prefix added to
each field name. The LANSA generated HTML uses the following specific field
naming conventions:

A<field name> = Alphanumeric fields

P<field name> = Packed numeric fields

S<field name> = Signed numeric fields

L<field name> = Lowercase alpha fields.

For example, if your RDML contains a field #NAME, where #NAME is an
alphanumeric field, then you will see a field name ANAME used in your HTML
page. If field #COUNT is packed, then you will see PCOUNT.

If you customize your HTML page, you must use this naming convention.

This field naming convention allows LANSA to overcome some of the
limitations of HTML and the browser where there is no designation of field
types. The HTML page and the browser do not know the difference in the type
of field. This naming convention is only used by LANSA.

5.8 HTML Generation Skeleton

LANSA allows you to control the generated HTML page structure or skeleton.

If you are planning to modify the HTML generation skeleton, you should
review the following:

5.8.1 What is the HTML Skeleton?
5.8.2 How Do I Use the HTML Skeleton?
5.8.3 Considerations for Using the HTML Skeleton

5.8.1 What is the HTML Skeleton?

LANSA provides an HTML skeleton or template to generate the HTML pages
for your LANSA Web functions.

LANSA allows you to customize the HTML skeleton. The default HTML
skeleton WEBSKEL is contained in the LANSA data library. (For LANSA for
iSeries, file DC@F28 is used. For Visual LANSA, a WEBSKEL.S file is used.)
This skeleton must not be modified.

If you wish to create your own customized HTML skeleton, you should create
the skeleton in a new source member. (For LANSA for iSeries, create a member
in the DC@W?22 file. For Visual LANSA, create a <filename>.S file in the
partition source directory.) You can create a default skeleton or you can create a
skeleton which is specific to a partition, process or function.

When the HTML for a Web function is generated, LANSA will search for
source members to be used as the HTML skeleton. The following search order
is used:

e function name for a WEBEVENT function only
® process name

e partition name

e special value DEFAULT".

If none of these source members are found, then the default shipped HTML
skeleton WEBSKEL will be used.

Sample HTML skeletons are shipped. For example, file member named
SSISAMPLE is an example of an SST HTML skeleton and looks like this:

<table border="0" cellpadding="0" cellspacing="3">
<tbody>

%W3FLD
</tbody>
</table>

%W3BRW

<RDML MERGE="&END">

5.8.2 How Do I Use the HTML Skeleton?

If you identify a standard change which needs to be made to the structure of all
of your Web functions in a process or in a partition, then you have identified an
opportunity to use an HTML skeleton to make this structural change. Creating
your own HTML skeleton allows you to control some parts of the default
structure of the HTML generated by LANSA Web functions. For example, if
you do not want to use a STDFOOTER in your Web functions, it can be
removed from the skeleton.

For example, the current HTML skeleton uses the same background for all of
your LANSA Web functions. The graphic variable *LW3CLNTBKGND is used
to control the client background. If you want to create a specific background for
your applications in a partition or in a process or in a specific function without
manually editing the HTML each time, you can create a new skeleton.

To create a client background which is partition specific, you need to do the
following:

1. Create a new text Web component called MYBACKGND which will be used
to store the specification for the client background you wish to use.
Remember that the Web component is stored at the partition level.

2. Edit the HTML skeleton and replace the line:

<body bgcolor="<RDML MERGE="*LW3CLNTCOLOR">"
background="
<RDML MERGE="*LW3CLNTBKGND">" <RDML COMPONENT="FORI

with:
<body bgcolor="<RDML MERGE="*LW3CLNTCOLOR">"

background="
<RDML COMPONENT="MYBACKGND">" <RDML COMPONENT="FOl

3. Save the customized HTML skeleton using the Partition Name.

When your Web function HTML is generated in the specific partition, it will
now use your new Web component to define the client background.

Once changes are made to the skeleton, you must recompile your Web
functions and regenerate the HTML for the changes to take effect.

5.8.3 Considerations for Using the HTML Skeleton

Following are some important considerations when customizing the Web
skeleton:

Never modify the shipped HTML skeleton WEBSKEL (stored in DC@F28
for the iSeries, or WEBSKEL.S for Windows) as your modifications will be
overwritten when a new version is shipped.

Save your customized skeletons in DC@W?22 for the iSeries or in the source
partition directory.

As new features are added to LANSA Web functions, the default Web
skeleton may change from one version to the next.

You can use the IBM Source Edit Utility (SEU Editor) or the command Edit
File (EDTF) to modify the HTML skeletons if you are using an iSeries
Data/Application Server. For a Windows Server, you can use a general text
editor.

Never modify any of the special tags beginning with %, for example
%W3FRM or %W3BRW.

Be very careful with changes to the table format.
Be sure to test your changes to the skeleton in a variety of situations.

Make sure that all developers know when you have customized the skeleton
if changes are made at the partition level.

You can use Web components and graphic variables in your skeleton.

Function level Web skeletons can only be created for WEBEVENT
functions.

Once changes are made to the skeleton, you must recompile your Web
functions for the changes to take effect.

If you are exporting your application, remember to export your Web skeleton
if you are planning on recompiling your application.

6. Default Process Pages

LANSA Web functions use a number of default HTML pages. These pages can
be used to enhance your Web function applications. To understand how to use
these pages, review the following:

6.1 What are Default Process Pages?
6.2 Shipped Default Pages

6.3 Other Default Pages

6.4 Customizing Process Specific Pages
6.5 User Defined Default Pages

6.6 Standard HTML Page Components
6.9 Process Specific Page Components

?‘ WEBO0O05 - LANSA Process Pages

its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm

6.1 What are Default Process Pages?

LANSA Web functions use a number of default HTML pages to define the
default structure of the generated HTML pages. The default pages are prefixed
with "DEFAULT _".

For example, the JavaScripts used in LANSA Web functions are stored in a page
named DEFAULT_SCRIPT. LANSA processes use two default HTML pages,
DEFAULT_INDEX and DEFAULT_CONTENT to create the process menu and
area content.

Whenever LANSA encounters a request to use a default page, it will search for
a process specific version of the page. If a process specific page is not found,
the default is used. This feature makes LANSA Web functions very flexible. For
example, you can define the default presentation of your process menus by
editing DEFAULT_INDEX and DEFAULT_CONTENT. If you create a process
specific version of the INDEX and/or CONTENT page, LANSA will substitute
these automatically without any HTML editing or RDML recompiling by the
developer. For more details, refer to 6.4 Customizing Process Specific Pages.

The default pages are partition specific. You can create your own user defined
default pages. Refer to 6.2 Shipped Default Pages and the installation guide for
your platform for more details about the shipped default pages.

6.2 Shipped Default Pages

Following is a list of the default pages shipped with LANSA Web functions.
You should avoid changing the contents of these pages as LANSA may update
them in future releases. For details of how to create a process-specific version of
these pages, refer to 6.4 Customizing Process Specific Pages.

These pages are partition-specific. They must be loaded as part of the

partition set up.

If you modify these pages, you must remember to export them if you
move your application to another partition or system. In order to select
these pages for export, you must register them as Web components.
Refer to for information about Web Application Deployment.

Page Name

Description

DEFAULT_CONTENT

The Default Content page is displayed in the
Content area of the browser when a process is
called.

DEFAULT_FRAMESET

Contains the default non-scrolling header style
frameset. One frameset holds the STDHEADER
page while the other frame holds the body of
your function.

DEFAULT_HIDDEN

Contains the hidden fields used to exchange
information. If you want to include other hidden
fields for your Web function application, you
can append the hidden fields to this page.

DEFAULT_INDEX

Default Process Menu page.
This is the default process menu-handling page.

its:LANSA022.CHM::/LANSA/LANSA022_begin.htm

DEFAULT_LAYOUT

Contains the layout used for any LANSA
processes that do not have a customized layout.

The default layout assumes a character mode
look-and-feel.

DEFAULT_SCRIPT

Contains all the JavaScript functions shipped
with the product. The page shipped with the
product has certain sections conditionally
disabled. These sections are for:

e static header support (no longer

recommended)

the calendar control support
numeric checking

DBCS support.

If you need to enable any of these sections, you
need to edit this page and remove the
appropriate <RDML ONCONDITION> tag.
Refer to tutorial WEBOO5 - LANSA Process
Pages.

DEFAULT_STYLE

Customize this page to embed cascading style
sheets for any LANSA process.

Refer to Cascading Style Sheets.

DEFAULT_TRACE

When using event logging, this page is used to
decide on the level of tracing for your Web
function application.

By default, the summary level of tracing is used
and requires this page to contain only the
keyword TRACE_SUMMARY.

A more detailed level of tracing requires this
page to contain the keyword
TRACE_DETAILED. This level of tracing is an
extension of the summary tracing by providing
information about how each page is used.

its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm
its:LANSA086.CHM::/LANSA/ed1240.htm

Information on this topic is also contained in
Enabling Event Logging.

For more default pages, refer to 6.3 Other Default Pages.

From the LANSA for the Web Administrator, Enable Partition copies the
shipped default pages according to your partition's default language. If the
shipped default pages do not exist for your partition's default language, then the
English pages will be used.

For translation purposes, it is possible to copy default pages by language other
than that of your partition's default language by using the W3@P2500 program.
The parameters would be:

Parameter Type Description

Partition CHAR(3) Partition to be enabled.

Partition CHAR(4) One of the partition's defined languages. It is not
Language necessarily the default language.

Shipped CHAR(4) The shipped language default pages to copy from.
Language

For example:
CALL W3@P2500 PARM('DEM' 'FRA' 'ENG")
This command copies the shipped ENG pages to FRA in the DEM partition.

its:LANSA086.CHM::/LANSA/gs0i120.htm

6.3 Other Default Pages

LANSA Web functions also allow you to create other default pages. These are
the pages that are not shipped with the product. You can create these pages
manually (using the Web Function Editor) to define the default attributes of
your Web function application.

Page Name

DEFAULT_HEADER

DEFAULT_HMENU

DEFAULT_LMENU

DEFAULT_MSGPRES

Description

This contains header information that is typically enca
by the <head> and </head> tags.

If you want to use a specific header for a particular LA
Web function, refer to the <RDML LAYOUT> LANS.

This contains the menu items for the Horizontal Menu
component. Typically, you should use the e-Business
Framework Wizard to create this page.

This contains the menu items for the Left Menu compc
Typically, you should use the e-Business Framework V
create this page.

Default presentation of LANSA messages in your Wet
function application. By default, the LANSA messages
presented in a list box.

You can override the format of the message presentatic
using this page and defining your own message presen
layout. If this page exists, it is used to present the LAN
messages in your Web function application.

An example of a DEFAULT_MSGPRES is shown belc
replaces the list box format with a list of messages.

<table border="0" width="100%">

<tr bgcolor="lightcyan">

<td><img src="

<RDML MERGE="*LW3IMGMESSAGES">" borc
</td>

its:LANSA086.CHM::/LANSA/ed0776.htm

DEFAULT_RMENU

DEFAULT_STYLE

<td>
<RDML MESSAGES>

</td>

</tr>

</table>

LANSA Web functions use a LANSA tag, <RDML
MESSAGES> to determine the position in the page to
the LANSA messages. The line in the page containing
will be repeated for each LANSA message in your We
function application.

In your message presentation page, you can embed oth
LANSA tags. The only restriction is that the line conta
the <RDML MESSAGES> tag must not contain any o
LANSA tags.

Refer to Message Presentation Layout.
Refer to tutorial WEBOOS5 - LANSA Process Pages.

This contains the menu items for the Right Menu comj
Typically, you should use the e-Business Framework V
create this page.

Default customized styles for your Web function appli
This page contains the cascading style sheets (CSS) de
for your applications.

By default, your application adopts the presentation sty
configured for the browser. If you want to override any
styles, you can achieve this by creating this default pag

An example of DEFAULT_STYLE is shown below. It
overrides the styles used for the <table> and <h1> tags
<style>
table {font-
family: <RDML COMPONENT="FONTPREF">
font-size: 10pt;
font-weight: normal }

its:lansa086.CHM::/LANSA/ED1220.htm
its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm

h1 {font-
family: <RDML COMPONENT="HEADER1FON'I
font-size: 12pt;
font-weight: bold}
</style>

For more details, refer to Cascading Style Sheets.

For more default pages, refer to 6.2 Shipped Default Pages.

If you modify these pages, you must remember to export them if you move your
application to another partition or system. In order to select these pages for
export, you must register these pages as Web components. Refer to for
information about Web Application Deployment.

its:lansa086.CHM::/LANSA/ED1240.htm
its:LANSA022.CHM::/LANSA/LANSA022_begin.htm

6.4 Customizing Process Specific Pages

LANSA Web functions allow you to customize any of the default pages to be
process specific. Whenever LANSA encounters a request to use a default page,
it will search for a process specific version of the page. If the process specific
page is found, it will automatically be used. If it cannot find a process specific
page, it will then use the default page.

To create a process specific page, use the following naming convention:
<process name>_<page identifier>

where <process name> is the name of the LANSA process and <page identifier>
is the name of the 'default’ page you want to customize for the process.

For example, if you want to customize a process specific Script page for the
PSLSYS process, you would create a page named PSLSYS_SCRIPT.

From time to time, LANSA may amend the default pages, either
during an upgrade or via an EPC (Expedited Program Change).

If such a change occurs, you must ensure that this change is reflected
in all process specific pages that you have created.

Examples of shipped DEFAULT pages which can be customized:

DEFAULT CONTENT Default Process Content
DEFAULT FRAMESET Default Frameset
DEFAULT_HIDDEN Default Hidden fields
DEFAULT_INDEX Default Process Menu page
DEFAULT_LAYOUT Default Layout
DEFAULT_SCRIPT Default Script Page

Example:

If a process is called PAYROLL, the process specific default pages would be
created as:

PAYROLL_CONTENT Default Process Content
PAYROLL_FRAMESET Default Frameset
PAYROLL_HIDDEN Default Hidden fields
PAYROLL_INDEX Default Process Menu page
PAYROLL_LAYOUT Default Layout
PAYROLL_SCRIPT Default Script Page

If you want to append additional lines to the default page for a specific process,

you can do this by using the <RDML PAGE> tag. For more details, refer to
<RDML PAGE>.

Caution: When exporting a web enabled function, process pages with
the above naming convention for the associated process are also
exported. For example, a function in process PAYROLL when
exported will export all HTML pages for the function and all HTML
pages starting with the characters 'PAYROLL_'. Therefore, ensure that
you do not create HTML pages that follow this naming convention
that conflict with the name of a process.

All process specific pages are automatically exported with the LANSA

process definition. These pages do not have to be registered as Web
components.

?‘ WEBO0O05 - LANSA Process Pages

its:lansa086.CHM::/LANSA/ED07A0.htm
its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm

6.5 User Defined Default Pages

LANSA Web functions provides you with facilities to exploit the functionality
of the default pages. This allows you to create your own user defined default
pages that may have process specific versions for certain LANSA processes.

To use this facility, the syntax of the default page is:

DEFAULT_UD<page name>
where <page name> is the name you have assigned to the page. The process
specific page will then adopt the naming convention of:

<process name>_UD<page name>

where <process name> is the name of the LANSA process.

For example, if you are using cookies in your LANSA Web function
applications, you might create a page named:

DEFAULT_UDCOOKIES

To define cookies for the PSLSYS process, you would create a page named:
PSLSYS_UDCOOKIES
You can access this user defined page by using the <RDML MERGE> tag with
the special Reserved Words as follows:
<RDML COOKIES="&UDCOOKIES">
For more details of this example, refer to <RDML COOKIES>.

its:lansa086.CHM::/LANSA/ED0780.htm
its:lansa086.CHM::/LANSA/ED07B0.htm
its:lansa086.CHM::/LANSA/ED0770.htm

6.6 Standard HTML Page Components

These standard HTML page Web components are used by the shipped LANSA
Web templates.

Page Description
STDFOOTER Standard Footer contains a standard set of buttons for
LANSA.

By default, this is included as a LANSA Web
component in every LANSA Web function generated.

STDHEADER Standard Header contains a display of the company logo
and a standard set of buttons for LANSA.

By default, this is included as a LANSA Web
component in every LANSA Web function generated.

STDMORE Web component used by the shipped Web templates.
STDNEXT Web component used by the shipped Web templates.
STDPREV Web component used by the shipped Web templates.

STDPROCFOOTER Standard Footer used for LANSA processes.
STDSEARCH Web component used by the shipped Web templates.
STDSELECT Web component used by the shipped Web templates.

6.7 Other HTML Page Components
These standard HTML page Web components are also shipped with LANSA

Web functions:
Page
STDHEADER STYLE1

STDHEADER_STYLE2

STDHEADER_STYLE3

STDPRINT

Description

STDHEADER page for Style #1 header style. This
is the static header style. If you want to use this
header style, copy this page to be the STDHEADER
page in your system.

For a description of the various header styles
supported by LANSA Web functions, refer to
Header Styles.

STDHEADER page for Style #2 header style. This
is the dynamic header style. If you want to use this
header style, copy this page to be the STDHEADER
page in your system.

For a description of the various header styles
supported by LANSA Web functions, refer to
Header Styles.

STDHEADER page for Style #3 header style. This
is the non-scrolling header style. If you want to use
this header style, copy this page to be the
STDHEADER page in your system.

For a description of the various header styles
supported by LANSA Web functions, refer to
Header Styles.

Default page for entry of spooled file selection
criteria.

This is the default page that is displayed in response
to a PRINT request to the CGI script program
LANSAWEB. LANSA will use a MY_STDPRINT
page if available, otherwise it will use the
STDPRINT page. These pages are retrieved from
partition "WEB", language "ENG".

its:lansa086.CHM::/LANSA/EDG600.htm
its:lansa086.CHM::/LANSA/EDG600.htm
its:lansa086.CHM::/LANSA/EDG600.htm

STDREPORTLIST

STDREPORT

If you do not have a partition "WEB", contact your
local LANSA product vendor for technical support.

Default page for display of spooled file list

This is the default page that displays the list of
spooled files that match the selection criteria
entered in the STDPRINT page. LANSA will use a
MY_STDREPORTLIST page if available,
otherwise it will use the STDREPORTLIST page.
These pages are retrieved from partition "WEB",
language "ENG".

If you do not have a partition "WEB", contact your
local LANSA product vendor for technical support.

Default page for display of a spooled file details.

The details of the requested spooled file are merged
with this page and displayed in response to a
REPORT request to the CGI script program
LANSAWEB. LANSA Web will use
MY_STDREPORT page if available, otherwise it
will use the STDREPORT page. These pages are
retrieved from partition "WEB", language "ENG".

If you do not have a partition "WEB", contact your
local LANSA product vendor for technical support.

6.8 Special XHTML Pages

These standard XHTML pages are shipped with LANSA Web functions. They
are used to embed the DOCTYPE declaration in XHTML documents:

Page
DTD_FRAMESET

DTD_STRICT

DTD_TRANSITIONAL

Description

XHTML 1.0 Frameset Document Type Definition.

The XHTML 1.0 Frameset DOCTYPE declaration is

merged into the Web page when the tag <RDML
MERGE="&DTD_FRAMESET"> is found.

If you modify this page, don't include RDML tags.

XHTML 1.0 Strict Document Type Definition.

The XHTML 1.0 Strict DOCTYPE declaration is
merged into the Web page when the tag <RDML
MERGE="&DTD_STRICT"> is found.

If you modify this page, don't include RDML tags.

XHTML 1.0 Transitional Document Type
Definition.

The XHTML 1.0 Transitional DOCTYPE
declaration is merged into the Web page when the
tag <RDML
MERGE="&DTD_TRANSITIONAL"> is found.

If you modify this page, don't include RDML tags.

For more details, refer to LANSA for the Web XHTML..

its:LANSA086.CHM::/LANSA/EDI800.htm

6.9 Process Specific Page Components

LANSA Web functions allow you to customize some of the shipped page
components to be process specific. The following components can be defined as
process specific:

e STDHEADER

e STDFOOTER

e STDBANNER

Whenever LANSA encounters a request for these components, it will search for
a process specific version of the component. If the process specific component
is found, it will automatically be used. If it cannot find a process specific
component, it will then use the default component.

To create a process specific component, you must create a page Web component
using the following naming convention:

<process name>_STDHEADER

<process name>_STDFOOTER

<process name>_STDBANNER
where <process name> is the name of the LANSA process. For details of
creating page Web components, refer to Page.

This approach in customizing the header, footer and banner components for
your LANSA processes allow you to tailor individual processes, without having
to edit any of the generated HTML. The customized headers and footers will be
automatically used by LANSA Web functions, provided the components
conform to the naming convention.

?‘ WEBOO05 - LANSA Process Pages

its:lansa086.CHM::/LANSA/ED0970.htm
its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm

7. RDML Tags

LANSA automatically embeds special tags into the generated HTML pages for
Web functions. These tags are used to dynamically build a required page when
served to the client device. An understanding of the LANSA tags is very
important if you are planning to modify the generated HTML pages. Review the
following:

7.1 What are LANSA Tags?

7.2 How Do LANSA Tags Work?
7.3 LANSA Tags Example

7.4 Using <RDML> and </RDML> Tags
7.5 <RDML BUTTON>

7.6 <RDML CHECKVALUE>
7.7 <RDML COMPONENT>

7.8 <RDML COOKIES>

7.9 <RDML FUNCTION>

7.10 <RDML INCLUDE>

7.11 <RDML LAYOUT>

7.12 <RDML MERGE>

7.13 <RDML MESSAGES>

7.14 <RDML NOTCONDITION>
7.15 <RDML ONCONDITION>
7.16 <RDML ONMODE>

7.17 <RDML PAGE>

7.18 <RDML PARENT>

7.19 <RDML SETTMPFLD>
7.20 <RDML SSI>

7.21 <RDML TRACE>

7.22 Reserved Words

?‘ WEBO007 - LANSA Tags

its:lansa086.CHM::/LANSA/web07_TUTORIAL.htm

7.1 What are LANSA Tags?

LANSA Web functions have special tags which can be seen when editing the
LANSA generated HTML. These tags are simply instructions to LANSA to
perform certain tasks when creating the final version of the HTML page which
will be transmitted to the client browser or other computing device.

LANSA tags are identified by a prefix of <KRDML>. For example,
<RDML COMPONENT="STDHEADER">

These tags are automatically embedded as part of the generated HTML
documents. LANSA tags can also be manually added by the developer.

These tags are not related in any way to LANSA RDML commands used in
functions. The word "RDML" was chosen because it is easily identified as being
LANSA related.

Once the generated HTML is processed by LANSA for the Web, these LANSA
tags are removed. The tags do not appear in the completed HTML page.

If you intend to create LANSA Web components, a good understanding of the

LANSA tags is essential as they will allow you to exploit the power of LANSA
for the Web for your Web Function Applications.

?‘ WEBO007 - LANSA Tags

its:lansa086.CHM::/LANSA/web07_TUTORIAL.htm

7.2 How Do LANSA Tags Work?

Many LANSA tags are automatically embedded into the generated HTML for a
Web function. For example, the inclusion of the standard header and footer
components are achieved using LANSA tags. Input fields on the Web page and
Message boxes are controlled by a LANSA tag. These tags are an important part
of LANSA generated HTML.

A Web developer may choose to enhance the generated HTML using the Web
Function Editor. The developer can modify the HTML to include more LANSA
tags. For example, the developer might add a Web component to display a drop
down box for an input field.

When the client or browser requests the LANSA Web function, the LANSA tags
are decoded as the HTML is dynamically generated. LANSA will follow the
instructions defined by the LANSA tags when creating the final HTML page.
For example, the following LANSA tags:

Employee Number is <RDML MERGE="EMPNQ">.

<RDML ONCONDITON="EMPNQO">

The Employee number is not blank.

</RDML>

<RDML NOTCONDITON="EMPNO">

The Employee number is blank.

</RDML>

will tell LANSA to insert the required value for the #EMPNO field and will
determine the appropriate text to display. If the EMPNO field has a value of
A0001, then the final HTML sent to the browser will appear as follows:

Employee Number is A00O1.
The Employee Number is not blank.

If the EMPNO field is blank, then the final HTML sent to the browser will
appear as follows:

Employee Number is .
The Employee Number is blank

Notice that when the document is served to the browser or computing device, it
contains no LANSA RDML tags. It is just HTML.

?‘ WEBO007 - LANSA Tags

its:lansa086.CHM::/LANSA/web07_TUTORIAL.htm

7.3 LANSA Tags Example

Consider the following example of LANSA generated HTML for a Web
function:

Line

1
2
3

. <html xmlns="http://www.w3.0rg/1999/xhtml">
. <header><title>Enrol Employee</title></header>
. <body bgcolor="white" background="

<RDML MERGE="*LW3CLNTBKGND">">

4

. <form action="/CGI-BIN/WEBPAGE?FUNCTION+

<RDML MERGE="&SESSION">" method="post">

9.

5
6.
7.
8

<RDML COMPONENT="STDHEADER">
<center><h1><RDML MERGE="&FUNCTION"></h1></center>

<RDML MERGE="&MESSAGES">

<td><h3><RDML MERGE="EMPNQO"></h3></td>

The LANSA tags include instructions for LANSA to:

set the background to the image you have configured (line #3)
set the session information (line #4)

include the Standard Header page (line #5)

display the Function description (line #6)

display LANSA messages if there are any (line #8)

display the multilingual description of the field (line #9).

It is important to remember that the tags only appear in the internal LANSA
HTML documents. The following line of HTML.:

<center><h1><RDML MERGE="&FUNCTION"></h1></center>
might appear as follows in the final HTML presented to the browser:
<center><h1>Enrol Employee<h1></center>

after the function name has been dynamically inserted into the HTML.

?‘ WEBO007 - LANSA Tags

its:lansa086.CHM::/LANSA/WEB07_TUTORIAL.htm

7.4 Using <RDML> and </RDML.> Tags

The LANSA <RDML> tags can be used almost anywhere in your Web function
HTML pages. For example:

<body background="<RDML MERGE="*LW3CLNTBKGND">">

will insert the background color (using the *LW3CNTBKGND graphic
variable) into the HTML tag.

If you have a LANSA <RDML> tag which has an associated </RDML> end
tag, then the </RDML> tag must be used in a separate line and it must not
contain any other LANSA tags.

The following is an example of the proper syntax with the </RDML> on a
separate line:

<RDML BUTTON="&HELP">
<input type="image" name="&CANCEL" src="
<RDML MERGE="*LW3IMGHELP">" />
</RDML>

Do NOT use the following types of statements:
<RDML BUTTON="&HELP">
<input type="image" name="&CANCEL" src="
<RDML MERGE="*LW3IMGHELP">" /></RDML>

As shown in the first example, you can include additional <RDML> tags within
an <RDML> </RDML> pair, but you cannot embed an <RDML> tag within
another tag.

Do NOT use the following type of statements:
<RDML COMPONENT="<RDML MERGE="EMPNQ">">

?‘ WEBO007 - LANSA Tags

its:lansa086.CHM::/LANSA/WEB07_TUTORIAL.htm

7.5 <RDML BUTTON>

Syntax:

Description:

<RDML BUTTON="<button>">
</RDML>

These tags are used to check the status of the specified button in
the LANSA Web function. If the particular button is not enabled
in the function, the lines encapsulated by these tags are ignored
by LANSA for the Web. Otherwise, the lines are processed
accordingly.

The <button> value can be one of the following 7.22 Reserved
Words:

&EXIT

& CANCEL
&ADD
&DELETE
& CHANGE
& PROMPT
&USER1
&USER2
&USER3
&USER4
&USERS

There is a special value, &KWEBEVENT, which is used in
conjunction with WEBEVENT functions. In this case, if the
function is a WEBEVENT function, the lines encapsulated by
these tags are ignored.

Consider the following example:

<RDML BUTTON="&USER1">
<input type="image" src="/IMAGES/USER1.GIF" name="&USER1" />
Click this button to search

</RDML>

If the Web function has a user key1 specified in the DISPLAY or REQUEST
command, (e.g. REQUEST FIELDS(#GROUP1) DESIGN(*DOWN)

USER_KEYS((01 'Search’)), then the statements within the start and end tags
are executed. In this case, an image will be displayed for the button along with
some text.

The <RDML BUTTON> tag should not be confused with the <RDML
MERGE=&BUTTONS> tag. The merge tag is used to embed the active buttons
into the HTML page whereas the <RDML BUTTON> tag is used to control
whether or not a block of HTML lines will be executed.

7.6 <RDML CHECKVALUE>

Syntax: <RDML CHECK VALUE="YES">
</RDML>

Description: These tags instruct LANSA to compare the current field value
with the value of each option in the Visual Web component. If
the values match, the HTML line is modified to make that
particular option selected.

In addition, these tags also instruct LANSA to modify the name
of the component accordingly — whether it is in a WEBEVENT
function or used in a browse list.

For example, a drop down Visual Web component might include the following:

<RDML CHECKVALUE="YES">
<select size="1" name="GENDER">
<option value="M">Male</option>
<option value="F">Female</option>
</select>

</RDML>

<RDML CHECKVALUE> is an instruction to LANSA to compare the current
value of the field with the values indicated by the individual parts contained in
the Visual Web component. If a matching value is found, LANSA modifies the
HTML line to highlight the value selected.

In the above example, if the current value is "F", LANSA will modify the line
containing the value and insert the HTML attribute selected="selected" in the
corresponding <option> element. When the browser displays this Web
component, the "Female" entry in the drop down is selected automatically.

7.7 <RDML COMPONENT>

Syntax: <RDML COMPONENT="<component>" MODE="<mode>">

Description: This tag instructs LANSA to include components into the HTML
page being processed. It allows you to use the Web component
technology provided by LANSA Web functions.

The MODE keyword allows you to specify the correct
component to use according to the screen mode. The mode can
be either "I" (input mode) or "O" (output mode). This keyword is
used for mode dependent Web components and is optional.

LANSA Web functions allow you to dynamically define the
component you want to use in conjunction with this tag. If you
want to dynamically set the component name, the syntax of the
tag is:

<RDML COMPONENT="&FLD_<field name>">

where <field name> is the name of your field in the RDML
function. This is the field that contains the name of the actual
component to use with the tag. The value of the field should be
set in the RDML function.

Once the <RDML COMPONENT> tag is embedded into the HTML, you can
change the definition of the Web component without having to edit the function
or to recompile the function. You can modify the contents of the Web
component independently.

For example, you can change the Visual Web component type from a drop down
to a set of radio buttons by just changing the definition of the Visual Web
component. Once the change is made, it will be reflected dynamically when the
Web component is next used. There is no recompiling or editing of the HTML
required.

The following example instructs LANSA to include a standard HTML header in
the page:
<RDML COMPONENT="STDHEADER">

The MODE keyword allows you to specify whether the component is used for
input or output, i.e. is the user entering data or is data simply being displayed to

the user. For example:
<RDML COMPONENT="DEPT" MODE="T">

indicates that a component called DEPT should be embedded when the page is
used for entering data or input. This component might be a drop down list or a
set of radio buttons which are used to enter a department code.

Dynamic Embedding of Components

LANSA Web functions allow you to dynamically define the component you
want to use in conjunction with the <RDML COMPONENT> tag. This is done
by using the special "&FLD_" designation with a field in your RDML function.
For example:

<RDML COMPONENT="&FLD_DEPTMENT">

In your RDML function, the DEPTMENT field will contain the name of the
component which you want to embed in your application. For instance, if you
were to CHANGE FIELD(#DEPTMENT) TO(ADM) in your function, then a
component named ADM would be used. This is similar to using the following
statement:

<RDML COMPONENT="ADM">

By using the &FLD_ feature, you are able to set the component name in your
function rather than coding the value into your HTML page.

7.8 <RDML COOKIES>

Syntax: <RDML COOKIES="<page name>">

Description: This tag allows you to set cookies in your application for your
own specific purposes.

If you want to use this tag, this tag must precede the <RDML
LAYOUT> tag in the page.

A cookie is a small piece of information which you can store on the client with a
Web browser. At a later time, you can retrieve the information back from the
browser. For example, cookies can be used by your application to identify the
user. LANSA allows you to treat cookies as fields in your application. You can
regard cookies as LANSA fields in your RDML function. Cookies are not used
by the LANSA web function transaction server to maintain a persistent state in
your application.

To set a cookie in your Web function, you will need to edit the HTML generated
for the function to include the LANSA cookie tag:

<RDML COOKIES="&UDCOOKIES">
<RDML LAYOUT>

<!-- Process : PCTEST PC Test -->
<!-- Function : TESTFUN Test Function -->
<l--Page :001 -—>

The <RDML COOKIES> tag should be one of the first lines on the page and it
must not be indented. It must precede the <RDML LAYOUT> tag.

In this example, a page called DEFAULT_UDCOOKIES is used. For more
details about user defined pages, refer to User Defined Default Pages. This page
can be created with the Web Function Editor and might contain the following
statement:

USRID=<RDML MERGE="EMPNQO">; expires=Fri, 23
Jun 2000 07:00:00 GMT

USRNM=<RDML MERGE="SURNAME">; expires=Fri, 23
Jun 2000 07:00:00 GMT

In this example, two cookies, USRID and USRNM, are set and will be stored on
the client by the browser. The cookie USRID contains the value of the EMPNO

its:lansa086.CHM::/LANSA/ED0660.HTM

field and the USRNM cookie contains the value of the SURNAME field.

Once you have set the cookies for your application, the cookies will be returned
to any of your LANSA applications as LANSA fields. In the example above, if
you want to read the value of the cookies, you will need to define fields in your
RDML function for USRID and USRNM.

Cookies are created and stored with the CGI-BIN location as the name. When a
process is setup with authentication a cookie will be created to correspond to the
AUTHLIB location. For any subsequent requests, the cookies will revert to
using the CGI-BIN location.

A client browser can be defined to not accept cookies. You must be

careful about how you plan to use cookies in your application.

7.9 <RDML FUNCTION>

Syntax: <RDML FUNCTION>

Description: This tag is used by the e-Business Framework Wizard in the
layout pages and instructs LANSA to embed the HTML for your
function at a particular point in the layout.

Do not modify this tag.

For example, the DEFAULT_LAYOUT pages might appear something like the
following:

<RDML MERGE="&DTD_TRANSITIONAL">

<html xmlIns="http://www.w3.0rg/1999/xhtml">

<head>

<title><RDML MERGE="&FUNCTION"></title>

<meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
<RDML MERGE="&STYLE">

</head>

<RDML MERGE="&STYLE">

<RDML MERGE="&SCRIPT">

<body bgcolor="<RDML MERGE="*LW3CLNTCOLOR">" background="
<RDML MERGE="*LW3CLNTBKGND">">

<RDML FUNCTION>

</body>

</html>

7.10 <RDML INCLUDE>

Syntax:

<RDML INCLUDE="<field name>">

Description: This tag can be used to include the contents of a physical file

into the HTML output. The filename of the file to be included is
given by the value of the field specified. This can be used as an
alternative to the SSI #include instruction.

The filename given must be a full absolute path valid for the
underlying operating system. On iSeries, the filename must be
valid for the IFS.

The content of the file to be included should be in native
encoding of the underlying operating system, for example, on
iSeries, the file is normally encoded in EBCDIC.

Note that the user profile used to run LANSA for the Web needs
to have sufficient privileges to read the file to be included.

If the file to be included does not exist or cannot be read, the
message "404 Object Not Found" will be included instead.

For example, on iSeries, if a field named INCFILE contains the value
"/temp/inc.html" and for the following HTML.:

Some text before include

<RDML INCLUDE="INCFILE">
Other text after include

The content of the file "/temp/inc.html" on the IFS will be included between the
two text only lines.

On Windows, the field should contain a value like "C:\Temp\inc.html".

7.11 <RDML LAYOUT>

Syntax: <RDML LAYOUT HEADER="<header page>">

Description: This tag instructs LANSA to use a layout page. It looks for a
process specific layout page, <process name>_LAYOUT. If it
does not exist, the default layout page, DEFAULT_LAYOUT, is
used.

This tag is generated by LANSA.

If you want to use a specific header page with a particular
function, you will need to edit the HTML page for the Web
function and extend this tag to include the HEADER attribute. In
this case, <header page> is the name of the page containing the
header information for the function.

In your LANSA Web functions, this tag will most often appear as follows:
<RDML LAYOUT>

<!-- Process :IIPROCO0O1 Test Process -->
<!-- Function : [IFNO01 Display Sections = -->
<l--Page :001 -->

Do NOT remove this tag as it is required if you are using the e-Business
Framework Wizard.

If you wish to use a specific header page, you can use the following tag:
<RDML LAYOUT HEADER="header1">
where "header1" is the HTML page created with the Web Function Editor.

7.12 <RDML MERGE>

Syntax: <RDML MERGE="<field>" EDITCODEI="<value>"
EDITWORDI="<value>" EDITCODEO="<value>"
EDITWORDO="<value>">

Description: This tag instructs LANSA to merge specific fields or information
into the document. The <field> can be:
o A field defined in your Web function.
e A system variable.

e A LANSA Web function reserved keyword. (For a list of
reserved keywords, refer to 7.22 Reserved Words). Field
names prefixed by either the '@' or '&' character are reserved.

The EDITCODE and EDITWORD attributes are automatically
inserted by LANSA based on the field definitions in the LANSA
repository. If input mode, EDITCODEI and EDITWORDI will
be used. If output mode, then EDITCODEO and EDITWORDO
will be used. Do not change these parameters.

For example, to set the background image for the HTML page you could use the
following:

<body background="<RDML MERGE="*LW3CLNTBKGND">">

To include the company LANSA system variable into an HTML heading, you
would use:

<h1><RDML MERGE="*COMPANY"></h1>
To merge the field #EMPNO from your RDML function, you would use:
<RDML MERGE="EMPNQO">

In multilingual applications, this token represents the description for a particular
field:

<RDML MERGE="&T0001+0001+0034">

To include the function name using the &FUNCTION reserved word, you
would use:

<RDML MERGE="&FUNCTION">

To include the workstation messages, you would use:
<RDML MERGE="&MESSAGES">

If there are any function keys which were not handled in the STDHEADER, this
tag will cause them to be displayed as buttons on the Web page:
<RDML MERGE="&BUTTONS">

For details of using the MERGE tag for data apportionment, refer to Automatic
Data Apportionment.

its:lansa086.CHM::/LANSA/ED1210.htm

7.13 <RDML MESSAGES>

Syntax: <RDML MESSAGES>

Description: This tag instructs LANSA to use the line containing this tag
repetitively, once for each message in the application. If you are
not using a customized message presentation, you will not use
this tag.

The RDML MESSAGES tag is used in a message presentation
layout standard page such as DEFAULT_MSGPRES or
<processname>_MSGPRES.

The line containing the <RDML MESSAGES> tag cannot
contain any other LANSA tags.

For example, the following is a sample standard message layout which you
might find in the DEFAULT_MSGPRES page:

<table border="0" cellpadding="3" cellspacing="0" width="100%">

<tr bgcolor="cyan">

<td><img src="

<RDML MERGE="*LW3IMGMESSAGES">" alt="Messages" border="0"
/></td>

<td>

<RDML MESSAGES>

</td>

</tr>

</table>

The <RDML MESSAGES> tag in the line is replaced by the message in the
application.

The RDML MESSAGES tag should not be confused with the <RDML
MERGE="&MESSAGES"> tag. This tag is used in your standard HTML pages.
It indicates where LANSA should embed the message window.

7.14 <RDML NOTCONDITION>

Syntax:

Description:

<RDML NOTCONDITION="<field>" VALUE="<value>">
</RDML>

These tags are used by LANSA to determine if the lines
encapsulated by these tags should be sent to the browser or not.

These tags allow you to programmatically set the contents of a
field depending on certain logical conditions.

The <field> can be:

e A field in your LANSA function.

e A system variable.

e Areserved keyword.

If the field, <field>, does not exist or the contents of the field is
blank or zero, then the lines are sent to the browser, provided the
<value> parameter is not specified.

The <value> parameter is optional. If the <value> is specified,
then the lines are only sent to the browser if the current field
value does not match the value parameter.

There are reserved <field> values. These are special instructions
for LANSA Web functions. These are:

e &DEBUG

Check if batch debugging is enabled in the initial URL request.
If it is, the subsequent URL is modified to include the BDEBUG
keyword before the request is submitted.

e &TASK

Check if a task identifier is specified in the initial URL request.
If it is, the subsequent URL is modified to include the TASK_ID
keyword and the task identifier before the request is submitted.

e &USETMPFLD<index>

This is an instruction to check the HTML working fields
identified by <index>. The <RDML SETTMPFLD> tag is used
to set the values of these working fields. This specialized field is
used to retrieve a particular working field. Do not use this

keyword if you do not understand this description!

If the field is numeric and fieldname does not exist or the value is "0", then the
lines encapsulated by the tags ARE sent to the browser.

If the field is alpha and fieldname does not exist or the value is "0" or is blank,
then the lines encapsulated by the tags ARE sent to the browser.

Consider the following example:

<RDML NOTCONDITION="DISCOUNT">
<h2>You do not have a discount.</h2>

</RDML>
If the field DISCOUNT does not exist, then the user will see the message.
Let the DISCOUNT field be numeric. If in the RDML function the DISCOUNT
field is 0, then the HTML will be used and the message will be displayed to the
user. When the discount is not zero, the user will not see the message.
Let the DISCOUNT field be alpha. If in the RDML function the DISCOUNT
field is blank, then the HTML will be used and the message will be displayed to
the user. If the discount is "50 percent"”, then the user will not see the discount
message displayed.

7.15 <RDML ONCONDITION>

Syntax:

Description:

<RDML ONCONDITION="<field>" VALUE="<value>">
</RDML>

These tags are used by LANSA to determine if the lines
encapsulated by these tags should be sent to the browser or not.

These tags allow you to programmatically set the contents of a
field depending on certain logical conditions.

The <field> can be:

e A field in your LANSA Web function.

e A system variable.

e Areserved keyword.

If the field, <field>, exists or the contents of the field is non-

blank or not zero, then the lines are sent to the browser, provided
the <value> parameter is not specified.

The <value> parameter is optional. If the <value> is specified,
then the lines are only sent to the browser if the current field
value matches the value parameter.

There are reserved <field> values. These are special instructions
for LANSA Web functions. These are:

e &DEBUG

Check if batch debugging is enabled in the initial URL request.
If it is, the subsequent URL is modified to include the BDEBUG
keyword before the request is submitted.

o &TASK

Check if a task identifier is specified in the initial URL request.
If it is, the subsequent URL is modified to include the TASK_ID
keyword and the task identifier before the request is submitted.
e &USETMPFLD<index>

This is an instruction to check the HTML working fields
identified by <index>. The <RDML SETTMPFLD> tag is used
to set the values of these working fields. This specialized field is
used to retrieve a particular working field. Do not use this

keyword if you do not understand this description.

If the field is numeric and fieldname does not exist or the value is "0", then the
lines encapsulated by the tags ARE NOT sent to the browser.

If the field is alpha and fieldname does not exist or the value is "0" or is blank,
then the lines encapsulated by the tags ARE NOT sent to the browser.

Consider the following example:

<RDML ONCONDITION="DISCOUNT">
<h2>Your discount amount is:</h2>
<RDML MERGE="DISCOUNT">
</RDML>
If the field DISCOUNT exists, then the user will see the message.
Let the DISCOUNT field be numeric. If in the RDML function the DISCOUNT
field is "0", then the HTML will not be used and information about the discount
will not be displayed to the user. When the discount is not zero, the user will see
the discount amount displayed.
Let the DISCOUNT field be alpha. If in the RDML function the DISCOUNT
field is blank, then the HTML will not be used and information about the
discount will not be displayed to the user. If the discount is "50 percent", then
the user will see the discount amount displayed.
The following example uses a value:
<RDML ONCONDITION="DISCOUNT" VALUE="50">
<h2>Your discount amount is 50.</h2>

<RDML MERGE="DISCOUNT">
</RDML>

7.16 <RDML ONMODE>

Syntax: <RDML ONMODE="<mode>">
</RDML>

Description: These tags are generated when you compile your functions that
may have more than one mode of operation for a particular
screen display. These tags instruct LANSA to carry out various
screen instructions (the lines encapsulated by these tags) based
on the current mode of operation.

The valid values for <mode> are:

e ADD - Add
e CHG - Change
e DLT - Delete

DSP - Display
These tags are used internally by LANSA Web functions. You
should not modify these tags.

The ONMODE tags are used in the HTML generated for a LANSA Web
function when there is more than one mode of operation for a particular screen
display. For example, an RDML DISPLAY statement may have ADD,
CHANGE, DELETE and DISPLAY modes.

Consider the following example:

<h2>Employee Number: </h2>

<RDML ONMODE="ADD">

<input type="text" name="EMPNQ" size="5" value="" />
</RDML>

<RDML ONMODE="DIS">

<RDML MERGE="EMPNQO">

</RDML>

If the DISPLAY is in an ADD mode, the user will be expected to enter a value
for EMPNO so the following HTML is sent to the user's browser:

<input type="text" name="EMPNO" size="5" value="" />
but when information is only being displayed to the user, the following

instruction is used:
<RDML MERGE="EMPNO">
which simply displays EMPNO as an output field in the user's browser.

7.17 <RDML PAGE>

Syntax: <RDML PAGE="<page>">

Description: This tag instructs LANSA to include another page (identified by
<page>) from the LANSA Web Repository.

This tag is useful when you need to create a process specific default page, but
you still want to include the original default page itself.

For example, you may want to include an additional JavaScript function for the
PSLSYS process, but still use all the other JavaScript functions shipped in
DEFAULT_SCRIPT. When you create the PSLSYS_SCRIPT page, the
DEFAULT_SCRIPT page is no longer used. To overcome this problem, you use
the RDML PAGE tag. Your PSLSYS_SCRIPT page might appear as follows:

<script type="text/javascript" language="javascript">

//<I[CDATA[

function handleTest()

{

.... your new function

}

111>

</script>

<RDML PAGE="DEFAULT_SCRIPT">

7.18 <RDML PARENT>

Syntax: <RDML PARENT="<parent>">

Description: This tag is used by the e-Business Framework Wizard when you
choose to adopt the layout of a particular LANSA process from
another LANSA process. It will instruct LANSA to use the
layout definition from the named process.

For more details, refer to the Adopt Layout - Technically
Speaking in the Web Functions Wizard Guide.

When specifying the name of the parent for the LANSA process, do not use the
same LANSA process name itself. If you do this, it will cause unpredictable
results on your system.

The PARENT tag will have no impact if a process specific layout exists. The
process specific components will be used over the adopted components in the
parent specified.

This tag is commonly used in the process specific layout pages. For example, if
PROCO0L1 is going to adopt the layout of PROCO02, then the following statement
would appear in the PROCO01_LAYOUT page:

<RDML PARENT="PROC02">

its:LANSA089.CHM::/LANSA/ww4_055.htm

7.19 <RDML SETTMPFLD>

Syntax:

<RDML SETTMPFLD="<index>" VALUE="<value>">

Description: These tags are used internally by the e-Business Framework

Wizard. Do not alter these tags unless you are extremely familiar
with the technical workings of the Wizard.

LANSA provides you with 10 working fields at the HTML level.
These fields are used to store temporary information that is
evaluated when the HTML is processed.

The temporary information is only valid within a single HTML
page request.

The <index> is base 0. To access the first working field, you
need to use 0 as the <index> parameter.

These tags are intended for use by advanced Web developers
only.

For example, you might see the following statements if you have used the e-
Business Framework Wizard:

<RDML SETTMPFLD="10" VALUE="1">
<RDML SETTMPFLD="11" VALUE="1">
<RDML SETTMPFLD="12" VALUE="1">

These tags are used to control the menu components which appear in the layout.

7.20 <RDML SSI>

Syntax: <RDML SSI="<state>">

Description: This tag is used to override the default setting for Server Side
Includes (SSI) support as set by the LANSA for the Web
Administrator.

The <state> can be either ON or OFF.
The main use of this tag is to enable SSI support at a function

level. This is especially useful if you only require SSI support in
a number of your functions.

If you want to use this tag, it must precede the <RDML LAYOUT> tag in the
page.

<RDML SSI="ON">

<RDML COOKIES="&UDCOOKIES">

<RDML LAYOUT>

<!-- Process : PCTEST P.C. Test -->

<!-- Function : TESTFUN Test Function -->

<l--Page :001 -=>

An example of a SSI instruction to launch a LANSA application is:

<!--#texec cgi="CGI-BIN/LANSAWEB?procfun+products+prodcat+web" -->
An example of an SSI instruction to include a static page is:

<!--#include virtual="/prdinfo.shtml" -->

7.21 <RDML TRACE>

Syntax:

<RDML TRACE>

Description: This tag is used to enable event logging. This tag is not

generated by LANSA. It is recommended that if you wish to use
event logging, then you should include this tag in your layout
page.

This tag is used to instruct LANSA to look up the trace page and
determine which level of tracing is to be applied to your
application. The appropriate tracing information will be written
to the relevant files depending on the keywords specified in the
trace file.

Note: Event Logging is only available when compiled with
extended exchange enabled.

For more information review Event Logging.

its:LANSA086.CHM::/LANSA/gs0i110.htm

7.22 Reserved Words

LANSA Web functions uses special keywords as part of the LANSA tag
definitions. These keywords are prefixed by either the '@' character or the '&'
character. Names prefixed by either the '@’ or '&' character are reserved for

internal use by LANSA.

The table below lists the major keywords used by LANSA Web functions.
These keywords are generally used in conjunction with the <RDML MERGE>
tag. (The keywords are also used with the RDML Button tag.) You can use any
of these reserved keywords to merge any of these fields into your application.

Keyword
&ADD
&BL<list name>
&BUTTONS
&BV_<button>
& CANCEL
&CGI

& CHANGE
& CHECKNUMERIC

&DBCS

&DD<drop down name>

Description

Display the Add key as a button.

Display the browse list identified by <list name>.
Display the buttons (function keys) of the function.
Retrieve the description of the button specified in <
Display the Cancel key as a button.

Merge the path where the CGI interface program is
LANSA for the Web configuration.

Display the Change key as a button.

This is used in DEFAULT_SCRIPT page to conditi
used to validate numeric data in the browser

This is used in DEFAULT_SCRIPT page to conditi
used to validate DBCS and SBCS data.

Processes the field to be a drop down. Data for the «
Web function.

This tag can be extended manually by using the SI7
The SIZE attribute allows you to visualize the drop
SPLIT attributes allow you to manipulate the preser

The example below is a list box for the DEPTMEN
to apportion the first 4 characters as the VALUE to
keyword is used, the description displayed in the lis

&DEBUG

&DELETE

&DEVICE

& DTD_FRAMESET
&DTD_STRICT
&DTD_TRANSITIONAL
&END

&EXIT
&FUNCHELP
&FUNCNAME
&FUNCTION
&HEADER

&HELP
&HIDDEN

&HMENU

&IMAGE

&JOBID

<RDML MERGE="&DDDO01" FIELD="DEPTM.

Determine if batch debugging is on. If batch debug;
append the appropriate keywords.

Display the Delete key as a button.

Merge the device name specified for batch debuggi
Merge the XHTML 1.0 Frameset DOCTYPE declai
Merge the XHTML 1.0 Strict DOCTYPE declaratic
Merge the XHTML 1.0 Transitional DOCTYPE de:

The <RDML MERGE="&END"> tag was introduc
tag allows LWEB_JOB jobs to return to the pool of
details, refer Using <RDML MERGE="&END">.

Display the Exit key as a button.

Display the help text associated with the selected fi
Embeds the current function name.

Display the function description.

Merge in the header information for the page.

If the HEADER attribute is specified in the <RDM]
associated with the attribute is used. If not, LANSA

page. If it does not exist, then it will look for the de
DEFAULT_HEADER.

Display the Help key as a button.

Embed the hidden fields used by LANSA Web func
internally and are defined in the DEFAULT_HIDDI

Merge the Horizontal Menu component. This tag is
e-Business Framework Wizard.

Merge the location where the images are stored. Th
configuration.

Merge the job identifier of the LANSA job.
Note that this attribute must not be used as a unique

its:lansa086.CHM::/LANSA/ED1230.htm

&LINKDESC
&LINKFUNC
&LINKPROC
&LMENU

&MESSAGES
&MSGQ
&PAGE
&PARTITION
&PARTLANG
& PROCNAME
& PROMPT
&RMENU

&ROWNUM

if your applications consist of WEBEVENT functic

WEBEVENT functions are restarted automatically
jobs may be assigned to a different job.

Embeds Description of User Key in WEBEVENT {
Embeds Linked Function Name of User Key in WE
Embeds Linked Process Name of User Key in WEE

Merge the Left Menu component. This tag is used i
Business Framework Wizard.

Check if there are any LANSA messages. If there a
Merge the message queue specified for batch debug
Embeds the current page identifier.

Embeds the current LANSA partition.

Embeds the current LANSA partition language.
Embeds the current process name.

Display the Prompt key as a button.

Merge the Right Menu component. This tag is used
Business Framework Wizard.

This keyword must only be used in browse list com
number of the browse list data.

An optional attribute for this tag is the FORMAT ke
format the row number. For example,

<RDML MERGE="&ROWNUM" FORMAT="4

instructs LANSA to format the row number as a 4-c
if necessary.

Typically, this tag is used if you want to configure y
appropriate name. In this case, the NAME attribute

NAME="__<field name>-<RDML MERGE="&I

where <field name> is the name of the field padded
characters.

For an example, refer to the SET Collection.

&SCRIPT

&SESSION
&SESSPL
&STYLE
&TASK
&Tnnn+ssss+eeee

&TRACEID

&UD<user defined page>

&USER1
&USER2
&USER3
&USER4
&USERS

Embed the JavaScript functions into the function. T
DEFAULT_SCRIPT page.

Include the encoded session identifier.

Include the encoded session identifier and the partit
Embeds the CSS page, if a CSS page exists.

Merge the current task identifier.

Retrieve the multilingual description for the field.

This is used for event logging. When event logging
allocated for each unique user to your site. This tag
the trace identifier.

Embeds the user defined page. LANSA will initiall
identified by <process>_UD<user defined page>. Ii
the DEFAULT_UD<user defined page> page.

Displays the user defined key #1 as a button.
Displays the user defined key #2 as a button.
Displays the user defined key #3 as a button.
Displays the user defined key #4 as a button.
Displays the user defined key #5 as a button.

8. Graphic Variables

The e-Business Framework Wizard handles the common set of graphic
variables. This means that you do not need to know the graphic
variables in detail. For example, if you use the e-Business Framework
Wizard, you do not need to know the name of the graphic variables.

The Wizard displays the descriptive name of the variables. For more
details, refer to 8.7 Graphic Variables and the e-Business Framework
Wizard and refer to the Web Functions Wizard Guide. See System
Wide Graphic Variables.

You only need to read this section if you want to have a detailed knowledge of
LANSA graphic variables.

You may wish to review the following:

8.1 What are Graphic Variables?

8.2 Why Use Graphic Variables?

8.3 Types of Graphic Variables

8.4 Default Graphic Variables

8.5 Process Level Graphic Variables

8.6 Browse List Graphic Variables

8.7 Graphic Variables and the e-Business Framework Wizard
8.8 Technically Speaking

?‘ WEBO06 - Graphic Variables

its:LANSA089.CHM::/LANSA/wizs02.htm
its:lansa086.CHM::/LANSA/web06_TUTORIAL.htm

8.1 What are Graphic Variables?

LANSA for the Web uses special variables to store HTML settings so that you
do not need to hard code information into your generated Web Function pages.
These variables hold values for commonly used options like company logo or

background images.

Graphic variables can store a wide range of settings for the HTML pages
generated. By storing information in graphic variables, it makes HTML
dynamic and easy to maintain. The values associated with graphic variables can
be changed dynamically without having to either edit the HTML or recompile
the function.

Developers can define their own graphic variables and use them in their
LANSA HTML pages. The Web Function Editor is used to define graphic
variables.

Graphic variables are used with the <RDML MERGE> tag. Refer to <RDML
MERGE> for details of the LANSA tags.

LANSA for the Web uses LANSA system variables to store the
graphic variables. Consequently, LANSA for the Web graphic

variables exist at the LANSA system level. If you add or change a
graphic variable, it can be used in all LANSA partitions.

its:lansa086.CHM::/LANSA/ED1000.htm
its:lansa086.CHM::/LANSA/ED0780.htm

8.2 Why Use Graphic Variables?

Imagine defining a background image which you want to include in your HTML
Web Function pages. In each of the HTML documents you could code the
following:

<body background="lansa.gif">

Now imagine that you wish to change the background to a new image file. You
would manually have to edit each Web Function page to make the change.
However, using a LANSA for the Web graphic variable and the LANSA RDML
tags, you can make this change without editing any HTML documents. The
LANSA Web Function application can include the following HTML statement
in each of the LANSA documents:

<body background="<RDML MERGE="*LW3CLNTBKGND">">
where *)LW3CLNTBKGND is set to "image.gif" to start.

To change to a new background, you simply change the value of
*LW3CLNTBKGND to "newimage.gif". Immediately, all pages served will
have the new background. No other changes are needed. You do not need to
recompile any Web functions. You do not need to edit the HTML.

?‘ WEBO06 - Graphic Variables

its:lansa086.CHM::/LANSA/web06_TUTORIAL.htm

8.3 Types of Graphic Variables

LANSA for the Web supports the following types of graphic variables:
e 8.3.1 Image File Graphic Variables

e 8.3.2 Color Graphic Variables

e 8.3.3 Text Graphic Variables

Image File variables allow you to associate the name of an image file with the
variable. The variable simply stores the name of an image file you wish to use.

Color variables allow you to customize the background and font color or other
colors set in your HTML attributes. For example, you would associate the
background color with the *LW3CLNTCOLOR graphic variable.

A Text variable allows you to associate text with a variable. This text could be
used in any number of ways depending on where you want to dynamically
define HTML and its attributes. For example, it could be used to set font sizes or

types.
The Web Function Editor is used to define graphic variables.

?‘ WEBOQO06 - Graphic Variables

its:lansa086.CHM::/LANSA/ED1000.htm
its:lansa086.CHM::/LANSA/web06_TUTORIAL.htm

8.3.1 Image File Graphic Variables

An Image File variable allows you to associate an image with the variable. This
variable is useful for displaying images on your applications. You can
dynamically change the image associated with the variable, without having to
edit the HTML or recompile the LANSA function.

If the graphic variable is an image file variable, the image associated with the
variable must be stored in the Image Location as configured in LANSA for the
Web using the LANSA for the Web Administrator.

The advantage of using graphic variables is that you can dynamically change
the image associated with the variable, without having to edit the HTML or
recompile the LANSA Web function. For example, you can customize settings
like the company logo. Instead of embedding the company logo into every
HTML page, you can define a graphic variable for the company logo. If the
company logo is changed, the change needs only be done once, by redefining
the graphic variable.

In the example below, the <RDML MERGE> tag is used to embed an image
defined by the *LW3IMGHOME variable, which is the image used for the
Home button.

<td width="5%"></td>
<td>
<input type="image" name="&HOME" src="
<RDML MERGE="*LW3IMGHOME">" />
<h5 align="center">Home</h5>
</td>

LANSA for the Web allows you to customize the background color or the
background image. You would associate the background color with the
*LW3CLNTCOLOR graphic variable, and the background image with the
*LW3CLNTBKGND graphic variable.

Note: If both graphic variables are defined in your system, the background
image would take precedence.

The Web Function Editor is used to define graphic variables.

?‘ WEBO06 - Graphic Variables

its:lansa086.CHM::/LANSA/ED1000.htm
its:lansa086.CHM::/LANSA/web06_TUTORIAL.htm

8.3.2 Color Graphic Variables

You can define a graphic variable and associate a color setting with the variable.
As an example, you can change the color of the Menu frame by changing the
color setting associated with the *LW3MENUCOLOR variable.

Graphic variables simply store the values as text. For color settings, the values
can be entered as hexadecimal values in RRGGBB (red green blue) or as the
color name. For example, you could enter the value "#FF0000" or the value
IVRED".

LANSA for the Web also allows you to define the color settings used in browse
lists. For more details, refer to 8.6 Browse List Graphic Variables.

The Web Function Editor is used to define graphic variables.

?‘ WEBO007 - LANSA Tags

its:lansa086.CHM::/LANSA/ED1000.htm
its:lansa086.CHM::/LANSA/WEB07_TUTORIAL.htm

8.3.3 Text Graphic Variables

This type of variable allows you to associate a string of text with a variable. You
can use the text graphic variables anywhere that you want a variable in your
HTML. The variable can hold a string of characters up to 255 characters long.
The text variable could contain a word, a number, a phrase, or even a complete
HTML string. The text associated with such a variable can be changed
dynamically without having to edit the HTML or recompiling the function.

For example, you could create a graphic variable called *LW3FONTFACE
which would store the name of the font you wish to use in your HTML. You
might give it a value of "COURIER". A graphic variable called
*LW3FONTSIZE could be used to control the font size. You might give it a
value of "12". These variables could be used as follows:

<font face="<RDML MERGE="*LW3FONTFACE">" size="

<RDML MERGE="*LW3FONTSIZE">">
You could also create a variable called *LW3COPYRIGHT. This variable could
be used to display the copyright information on your pages. For example, the
variable might be set to the following HTML string:

" All images and text are copyrighted by XYZ Inc. 2000"

The power of graphic variables is the ability to change these values
dynamically.

Imagine that you have multiple Web sites around the world. These sites are
mirror sites so your applications are identical. If you wanted to indicate to the
user which site they were actually using, you could create a graphic variable
called *LW3WEBSITE. The variable would have a different value on each
machine. It might have a value of "CANADA" or "AUSTRALIA". The HTML
would be identical. It would simply read:

You are accessing <RDML MERGE="*LW3WEBSITE">
On the Canadian mirror site, it would appear as:

You are accessing CANADA
The Web Function Editor is used to define graphic variables.

?‘ WEBO06 - Graphic Variables

its:lansa086.CHM::/LANSA/ED1000.htm
its:lansa086.CHM::/LANSA/web06_TUTORIAL.htm

8.4 Default Graphic Variables

LANSA for the Web provides a default set of graphic variables for use with
your Web functions. The following list of variables does not include the
process-specific or list-specific variables.

Default Graphic Variable Description

*LW3CPYLOGO Company logo.

*LW3IMGCANCEL Image file for the Cancel button.
*LW3IMGFBORDER Image file for the Standard Footer border.
*LW3IMGHBORDER Image file for the Standard Header border.

*LW3IMGHELP Image file for the Help button.
*LW3IMGHOME Image file for the Home button.
*LW3IMGLANSA Image file for the LANSA logo.

*LW3IMGMENUSELECT Selection image for process menu items.
*LW3IMGMESSAGES Image used in conjunction with LANSA

messages.
*LW3IMGMSGS Image file for the Messages button.
*LW3IMGOK Image file for the OK button.

*LW3MENUCOLOR Background color for the Menu area.
If no value is specified, the background defaults

to gray (#COCOCO).
*LW3SESSIONID Encoded job identifier. This is used in LANSA
tags.
*WEBIPADDR Returns the IP address of the current user.
*WEBMODE Returns a "Y' if the LANSA application is running

under Web enabled mode.

*WEBPATHINFO Returns the value attached to the PATH_INFO
Web server environment variable.

*WEBREFERRER Returns the value attached to the
HTTP_REFERER Web server environment
variable.

*WEBSCRIPTNAME Returns the value attached to the
SCRIPT_NAME Web server environment
variable.

*WEBUSER Web Server/400 or Internet Connection Server for
0S/400 user profile.

Reminder: Graphic Variables are defined at the LANSA system level. They are
shared by all partitions.

8.5 Process Level Graphic Variables

LANSA for the Web allows you to customize the graphic variables used for a
specific process and its functions. For example, you can customize the
background image used by the PSLSYS process by creating a
*LW3PBGI_PSLSYS graphic variable. This variable will be used instead of the
*LW3CLNTBKGND variable.

Process Customization

Default Graphic Variable Specific Graphic

*LW3CLNTBKGND

*LW3CLNTCOLOR

Variable

*LW3PBGI_<process
name>

*LW3PBGC_<process
name>

Description

Background image for
the Client (body) area.

A default image is
provided by LANSA for
the Web.

LANSA for the Web
allows you to either set
the background image or
the background color
(LW3CLNTCOLOR). If
both variables are set,
the background image
takes precedence.

Default background
color for the Client area.
If no value is associated
with the client
background
(*LW3CLNKBKGND),
the value associated with
this variable will be used
to set the background
color.

The background image
takes precedence over
the background color

setting.

*LW3IMGMENUSELECT *LW3PMSI_<process Image used for the menu

name> items in the process
menu.
*LW3MENUSEP *LW3PMSP_<process Image for menu
name> separator. This image is

used when the e-
Business Framework
Wizard builds the Menu
components.

*LW3RMENUBKGND *LW3RMBG_<process Color setting for the
name> Right Menu component.

Tip
To have a Default Background image (*LW3CLNTBKGND) and use a specific

background color for a process, you could define the background image for this
process to be empty (*LW3PBGL).

8.6 Browse List Graphic Variables

LANSA for the Web allows you to customize browse lists in your Web function
by using graphic variables. It is important to note that the HTML generated for
browse lists is controlled by LANSA for the Web and cannot be manually
edited. The use of graphic variables is an important method for customizing the
presentation of the browse lists in Web Functions.

If a specific browse list graphic variable exists, LANSA for the Web will use it.
Otherwise, it will use the default graphic variable. For example, you may wish
to customize the background colors for alternate rows used for a browse list
named EMPLIST. In this case, you will need to create a specific graphic
variable *)LW3BLACB_EMPLIST. This variable is used instead of the
*LW3BLACELLBCOLOR variable.

Reminder: Graphic Variables are defined at the LANSA system level, including
specific graphic variables. When you create a graphic variable for a specific
browse list name, it will impact all browse lists with that name in all partitions.

HTML Browse List Customization
Default Graphic Variable Specific Graphic Description

Variable
*LW3BLACELLBCOLOR *LW3BLACB_<list Background color for
name> alternate rows in browse
lists.

If you want to have a
transparent background,
specify *NONE as the
value of this variable.

*LW3BLACELLFCOLOR *LW3BLACF_<list Foreground color for
name> alternate rows in browse
lists.

*LW3BLCELLBCOLOR *LW3BLCCB_<list Background color for
name> entries in browse lists.

If you want to have a
transparent background,
specify *NONE as the
value of this variable.

*LW3BLCELLFCOLOR

*LW3BRWLSTMISC

*LW3BRWLSTSELECT

*LW3BLCCF_<list Foreground color for

name>

*LW3BLMS_<list
name>

*LW3BL_<list
name>

entries in browse lists.

Miscellaneous attributes to
be used in conjunction with
the <table> tag for setting
up a browse list. The
attributes defined for this
variable will be appended
as attributes of the <table>
tag for browse list.

You can override the
default setting of the
border, cellpadding and
cellspacing attributes by
using this variable.

The contents of this
variable allows you to
disable:

Borders around the
browse list.

Column headings.
Selection image.

Borders around empty
cells in the browse list.

To turn off any of the
above features, you will
need to define the variable
as a Text variable. The
content of the variable is
then set to be:

*Noxxxxx

where xxxxx can be up to
five characters, identifying
the feature to disable.

If you want to disable the
border around the browse

*LW3BRWLSTSELIMAGE *LW3BLI_<list

*LW3COLHDGBCOLOR

name>

*LW3BLBC_<list
name>

list, specify a 'B' character.

If you want to disable the
column heading in the
browse list, specify a 'C'
character.

If you want to disable the
selection image, specify an
'T" character.

If you do not want a
<table> HTML tag around
your browse list, specify a
"T" character.

If you do not want borders
displayed around empty
cells in your browse list,
specify a 'P' character.

Note that if you disable the
selection image, none of
the columns in the browse
list will be hyperlinked,
even though you have
enabled LANSA for the
Web to allow selection
from any column in a
browse list. For example,
*NOB would switch
borders off.

Default selection image for
browse lists.

Background color for
column headings for
browse lists.

If you want to have a
transparent background,
specify *NONE as the

value of this variable.

*LW3COLHDGFCOLOR *LW3BLFC_<list Foreground color for
name> column headings for
browse lists.

Note: LANSA for the Web disables the selection image column in browse lists
for WEBEVENT functions. This is because WEBEVENT functions terminate

as soon as the display command is processed. This means that the function is no
longer available to process your selection.

8.7 Graphic Variables and the e-Business Framework Wizard

Instead of using the PC-based LANSA Web Ultilities to modify the graphic
variables and components, you can make these modifications using the e-
Business Framework Wizard.

This picture shows the changes you can make to graphic variables using the e-
business frameworks.

Maintain WIZ_LISTZ Browse List

WARNING: Any modifications to a browse list variable will apply to all lists with
this name in all partitions

Apply Preview

o I lor Picker

Foreground color for odd numbered rows black Color calar Picker

Background color for even numbered rowes i lver Color Calar Picker

Foreground color for even numbered rows !hlmk Color ! Color Picker

Backg] ag lar Picker

Characteristics to modify: Foreground color for column headings 1whnz Calor] Color Picker
BROWYSE

Current Process:

Selection image for this browse List 1ba|lshcu:|.g|f Image

HTML Attributes used in conjunction with the <table> tag |::E||pﬂdding:"l" cellspacing="1"

¥ Table Barders

[C Column Headings
W Selection Image
[Table Tags

The e-Business Framework Wizard simplifies the development of your Web
applications.

Using the e-Business Framework Wizard, you do not need to know the exact
name of the graphic variable of the associated browse list attribute you want to
change. All possible attributes of a browse list are presented to you in a single

screen so that you can quickly and easily identify what you want or need to
change.

For more details about the e-Business Framework Wizard, refer to the

Web Functions Wizard Guide. See System Wide Graphic Variables

its:LANSA089.CHM::/LANSA/wizs02.htm

8.8 Technically Speaking

LANSA for the Web graphic variables are based upon LANSA system variables.
When you create a graphic variable using the Web Function Editor, a LANSA
system variable is automatically defined. Because graphic variables are defined
as system variables, they are system wide in LANSA. All partitions in the
LANSA system will use the same set of graphic variables.

Note: When you import or export your application, you are moving system
level variables! You will impact all partitions in your LANSA system.

A LANSA for the Web graphic variable must be defined as:

m a static (STATIC) alphanumeric (ALPHA) system variable in LANSA
m a variable with a length of 255 characters (decimals = 0)

m a variable which is evaluated by the 3GL program, W3@P2100.

9. Web Components

LANSA Web Functions uses Web component technology to build more
powerful applications. It is very important that you have a good understanding
of the Web component technology if you are building LANSA Web Function
Applications. Review the following:

9.1 Introduction to Web Components
9.2 Manually Defined Web Components
9.3 Generated Web Components

?‘ WEBO008 - Web Components

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.1 Introduction to Web Components

In order to understand what Web components are and how they are used, review
the following:

9.1.1 What are Web Components?

9.1.2 Web Component Architecture

9.1.3 Web Component Example

9.1.4 Types of Web Components

9.1.5 Web Components and Modes

9.1.6 Automatic Embedding of Web Components
9.1.7 Dynamically Embedding Web Components
9.1.8 Considerations for Using Web Components

9.1.1 What are Web Components?

Web component technology is a powerful way of enhancing your LANSA Web
Function applications. It allows you to create individual components (small
portions or modules of an application), that can be embedded and re-used in
your Web Function application.

For example, you can create a Web component, which is:

A drop down list that displays State or Province codes,

A single image or a group of buttons,
A static HTML page,
A complete menu with links to all of your applications.

You can create a Web component for almost any part of your application.

The Web component technology greatly simplifies the HTML pages and
significantly reduces the maintenance efforts because components are centrally
defined once and are automatically reused. Web components are an extension to
the basic LANSA architecture and can be thought of as a repository for building
Web Function applications. Components can be updated and generated
automatically. Changes can be made to components without having to recompile
RDML functions or edit HTML pages. The Web component technology in
LANSA Web Functions allows you to easily customize your HTML pages.

The e-Business Framework Wizard uses Web components extensively.
LANSA for the Web supports the following types of Web components:
e File

e Banner

e Page

e Script

o Text

e Web Link

e Visual

The type of LANSA Web component determines how LANSA handles the
component.

LANSA Web components are used in conjunction with the <RDML
COMPONENT> tag. This tag instructs LANSA to process the Web component
indicated by the tag. For more details, refer to <RDML COMPONENT>.

its:lansa086.CHM::/LANSA/ED0760.htm

9.1.2 Web Component Architecture

Web components are
biuilt for specific fields in
the repositary.

LANSA Web e

i - t
Repository “Repository” "7
Repository information HTML uses HTML reuses
is Used to build the repository LANSA Web
screens in the ROML definitions. COmporents.
function.

RDML » HTML

HTML is generated
based on the ROML
function specifications.

The Web component technology is really an extension of the LANSA
Repository architecture. The Web component registry acts like a Web
repository. It centrally defines and stores components which are used in the Web
Function HTML pages.

The LANSA Repository centrally stores much of the information about the
business application. This information is used by LANSA RDML functions. For
example, screen layouts for RDML functions are based on the field definitions
stored in the repository.

In much the same way, the LANSA Repository is used by the LANSA HTML
pages which are generated from the RDML functions. The LANSA RDML
function is used as the base for the pages while additional information for the
HTML definitions are read from the LANSA Repository.

The LANSA Repository also interacts with the Web repository or Web
component registry. For example, if a field has been defined with a drop down
GUI characteristic, a Web component is automatically generated for the field
and used in the page.

When the HTML is generated for a Web function, LANSA tags are used to
embed the Web components from the registry. The Web components can be
automatically added to the pages based on the field and component naming. For
example, if a field DEPTMENT has a corresponding Web component

DEPTMENT defined, this component will automatically be included into the
HTML pages. With the Web repository/registry, the field will automatically
have the same representation on all HTML pages. And if the representation is
changed in the Web component registry, it will immediately be changed for all
pages since the LANSA HTML is dynamically generated.

A key advantage of the Web component technology is that once the Web
component is embedded into the generated page, the definition of the Web
component can be changed without having to recompile the function or to edit
the HTML page.

Many Web components will be manually created by the developer and then
added to the HTML pages.

9.1.3 Web Component Example

Typically, an HTML page generated by LANSA consists of a number of Web
components. The STDHEADER and STDFOOTER pages are regarded as
LANSA Web components. These Web components are embedded into every
function generated by LANSA. The STDHEADER includes a company logo
and set of pushbuttons.

Web component technology allows you to modify an individual Web component
without having to modify every application which requires the Web component.
For example, you can modify the STDHEADER page and the changes will be
reflected in every application which uses the STDHEADER Web component.

Once the change is made to the STDHEADER, it is immediately available to be
used in all your HTML pages. RDML functions do not need to be recompiled.
HTML pages do not need to be edited. It is a very fast and easy way of
maintaining your Web Function applications.

For more details, refer to Standard HTML Page Components.
?‘ WEBO0O05 - LANSA Process Pages and WEB008 - Web Components

its:lansa086.CHM::/LANSA/ED0630.htm
its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.1.4 Types of Web Components

LANSA for the Web supports the following types of Web components for use
with Web Functions:

Manually Defined Components:
e 9.2.1 Banner

9.2.2 Text

9.2.3 Web Link

9.2.4 Page

9.2.5 Script

Generated components:

e 9.3.1 Visual Web Component (Check Box , Drop Down, List Box, Radio
Buttons).

e 9.3.4 File Web Component
The type of component determines how LANSA handles the Web component.

Manually defined Web components required the component definitions to be
entered by the developer. For example, the developer must enter the JavaScript
used in the Script component.

Generated Web components have their component definitions automatically
created by LANSA for the Web. For example, LANSA for the Web will
automatically generate the HTML for a Visual drop down component.

9.1.5 Web Components and Modes

LANSA for the Web allows you to define the following modes for Web
components used in Web functions:

e Input

e QOutput

e Not Applicable.

The input mode components are used when a REQUEST or DISPLAY screen is
input capable.

The output mode components are used when a REQUEST or DISPLAY screen
is output only. The output mode component is always used for hidden fields,
even on input capable screens.

The not applicable mode is used for components not used in the input or output
screen area. For example a STDFOOTER or STDHEADER page is defined as
not applicable since it is not part of the input or output screen area. The
component is used to define the structure of the page.

When you compile your LANSA Web function, LANSA checks if mode
dependent components exist for the fields defined in your function. If the mode
of operation is input capable, it will use the input mode Web component, if one
exists, to replace the field. If the mode of operation is output, it will use the
output mode Web component, if one exists, to replace the field.

If mode dependent Web components are used in your Web function
applications, these can be identified by the LANSA tag, <RDML
COMPONENT="<field name>" MODE="<mode>">.

For example, if you have the following RDML statement in your Web function:

REQUEST FIELDS((#STDNEXT *HIDDEN)(#DEPTMENT)

(DEPTDESC *OUTPUT))
and you have create Web components STDNEXT, DEPTMENT and
DEPTDESC, then the following Web components will appear in your HTML
page:

<RDML COMPONENT="STDNEXT " MODE="0">

<RDML COMPONENT="DEPTMENT " MODE="T">

<RDML COMPONENT="DEPTDESC " MODE="0">
The mode of the component is part of the component definition. For more
details, refer to the specific type of Web component you wish to create.

?‘ WEBO008 - Web Components

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.1.6 Automatic Embedding of Web Components

LANSA Web components are used in conjunction with the <RDML
COMPONENT?> tag. This tag instructs LANSA to process the Web component
indicated by the tag.
When a LANSA Web function is compiled, LANSA will check each field used
in the REQUEST or DISPLAY and it will automatically substitute a Web
component for the field, if a component exists. The Web component must also
be defined with the correct mode.
For example, the Web function displaying the DEPTMENT field in a
REQUEST statement would normally contain the following LANSA generated
HTML tag:

<RDML MERGE="DEPTMENT ">

The MERGE simply inserts the field. However, once an input mode Web
component named DEPTMENT is created for the DEPTMENT field, the
LANSA generated HTML will automatically contain the following tag when the
function is recompiled:

<RDML COMPONENT="DEPTMENT " MODE="1">

LANSA will embed the proper mode for the Web component. If there were no
input mode DEPTMENT Web component, then a MERGE tag would be used.

You must recompile your Web functions if you want LANSA to automatically
embed the Web components into the HTML pages. If you create Web
components after you have compiled your functions, you must recompile the
functions to embed the Web components, or you may manually edit the HTML
to include the <RDML COMPONENT> tags if you do not wish to recompile
your functions.

You can include *HIDDEN fields in your displays to add Web components to
your Web functions. All *HIDDEN fields are considered output mode
components.

You may also manually embed Web components by adding <RDML
COMPONENT?> tags to your HTML pages.

For more details, refer to <RDML COMPONENT>.

?‘ WEBO008 - Web Components

its:lansa086.CHM::/LANSA/ED0760.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.1.7 Dynamically Embedding Web Components

You can embed Web components dynamically in your Web function application
by using the RDML COMPONENT tag with the &FLD option. In most
situations, you will see the RDML COMPONENT tag used in LANSA HTML
with the component name explicitly specified. However, if you want to set the
name of the component when the function is executing, you can dynamically set
the component name.

For example, if you have an HTML page which displays product information,
the product displayed in the page is dependent on the product requested by the
user. In such a page, the information is dynamic. It depends on the product
selected when the function is executing.

In your Web function, you would need a field for the product component. It
might be called PRODUCT and would be defined as an alpha field. In the
HTML page, you would include the following line for the product component:

<RDML COMPONENT="&FLD_PRODUCT">

This line instructs LANSA to use the contents of the PRODUCT field as the
name of the Web component to embed.

In your Web function, you can dynamically set the value of the PRODUCT field
according to the user request.
CHANGE FIELD#PRODUCT) TO("ABC123")

Using the Web Function Editor, you would create a component named ABC123.
This component might include some text and images for the specific product.

9.1.8 Considerations for Using Web Components

Following are some important considerations when using Web components with
Web functions:

LANSA Web components are used in conjunction with the <RDML
COMPONENT> tag. This tag instructs LANSA to process the Web
component indicated by the tag.

If you use the NAME keyword when creating your HTML Web component,
do not use names longer than 10 characters. Some Browsers (e.g. Netscape)
may cause the LWEB_JOB to fail by sending invalid data to the stack.

Web components can be automatically embedded into an HTML page when
the RDML function is compiled. Components are embedded based on the
field name and the mode of the REQUEST or DISPLAY. For more details,
refer to 9.1.6 Automatic Embedding of Web Components.

Web components will be embedded for hidden fields in a display. The Web
component will be defined as output mode for hidden fields. Defining
hidden fields is a good method of embedding Web components.

If you create a new Web component after your RDML functions have been
compiled, you can manually edit the HTML page to use the <RDML
COMPONENT> tag, or you can recompile your functions to automatically
embed the components.

You can change the definition of a component without recompiling your
Web functions or editing your HTML pages.

A LANSA Web component can be embedded into another LANSA Web
component, provided they are not embedded recursively.

You can embed Web components dynamically in your application by using
the RDML COMPONENT tag with the &FLD option. For more details, refer
to 9.1.7 Dynamically Embedding Web Components.

LANSA Web components are created using the Web Function Editor. For
more details, refer to Components Menu.

Web components are defined at the partition level.

Web component names must be unique in a partition. You may only
duplicate a Web component name when there is a mode associated with the
component. For example, you can create three components named
DEPTMENT - one for Input mode, one for Output mode and one as Not
Applicable.

its:lansa086.CHM::/LANSA/ED1030.htm

¢ If you have manually created HTML pages using the Web Function Editor,
these pages should be registered as Page components, especially if you need
to export these pages with your system. (You should register the
DEFAULT_xxxxxx pages as components if you need to export these pages.
Refer to for information about Web Application Deployment.

?‘ WEBO008 - Web Components

its:LANSA022.CHM::/LANSA/LANSA022_begin.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2 Manually Defined Web Components

LANSA for the Web supports the following Manually Defined Components for
use with Web functions:

9.2.1 Banner

9.2.2 Text

9.2.3 Web Link

9.2.4 Page

9.2.5 Script.

Manually defined Web components required the component definitions to be
entered by the developer. For example, the developer must manually code the
JavaScript used in the Script component. If you are using page or script
component, you should refer to 9.2.6 Naming Page and Script Web
Components.

You use the Web Function Editor to create Web components.

?‘ WEBO008 - Web Components

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2.1 Banner

A banner Web component allows you to insert advertisement banners into your
Web function applications. Banners are a collection of images that are displayed
one at a time. These images have an associated URL, usually the URL of the
supplier of the advertisement.

A banner Web component allows you to define a banner once and to embed the
advertisement into any of your applications. A number of the layouts in the e-
Business Framework use a standard banner component, STDBANNER, in its
schema.

LANSA for the Web takes care of the cycling of the images associated with the
banner. The images of the banner have an associated sequence number. LANSA
for the Web will cycle through the images in the banner Web component
sequentially.

The banner Web component can be composed of other Web components. This
allows you to dynamically change the layout of your pages, if you require such
functionality.

The banner Web component is defined completely within LANSA for the Web,
that is, you do not have to define any HTML to use this component.

When defining the banner Web component as a list of Web components, the
Web components can consist of any type of Web components. For example, you
could create a banner Web component that consists of a Visual drop down Web
component, check box Web component, and radio button Web component. In
addition, the banner Web component can embed another banner Web
component. This allows you to customize the presentation of your data. A
banner Web component can be embedded into any HTML page in your
application.

For details about creating banner components, refer to Banner Component
(HTML mode).

?‘ WEBO008 - Web Components

its:lansa086.CHM::/LANSA/JMP_0050.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2.2 Text

A text Web component allows you to embed a piece of text into your Web
function application. The text could be an HTML string or any other text. The
text component is very similar to the text graphic variable, but the text
component has the advantage of being defined at the partition level instead of
the system level.

Using a text component allows you to define a string that can be manipulated
without having to edit HTML pages or recompile functions. For example, you
could create a text component called NEXTUPDATE. This variable could be
used to display the date that you plan to do your next update on your pages. You
might include this component in the STDFOOTER. The text component might
have the following value:

Next update of these pages will be 2001-12-31.

Using the NEXTUPDATE component, you can change the date of your next
update on all you Web pages with editing any HTML.

The length of the text is limited to 255 characters and the text entered may
include HTML tags.
Note: RDML tags as part of the text are not resolved.

For details about creating text components, refer to Text Component.

?‘ WEBO008 - Web Components

its:lansa086.CHM::/LANSA/JMP_0100.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2.3 Web Link

Web link components are only used with WEBEVENT functions. Web link
components define the link to other functions for your WEBEVENT functions.
You can use Web link components to link to other functions, instead of using the
Keywords command in the Web Function Editor.

Web link components allow you to display the links as images instead of
buttons. These components allow you to dynamically change the links as well as
the presentation of the links, without having to recompile your WEBEVENT
functions since you do not have to specify the USER_KEYS parameter in the
REQUEST or DISPLAY commands.

For details about creating Web link components, refer to Web Link Component.

?‘ WEBO008 - Web Components

its:lansa086.CHM::/LANSA/JMP_0120.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2.4 Page

Page Web components are the most common type of component used by Web
Function applications. A page Web component can be any block of HTML that
you wish to re-use or make independent of the RDML function. Once the
HTML is contained in a page component, it can be altered without requiring the
Web function to be recompiled. Page Web components are useful if you want to
embed some standard HTML into one or more of your applications.

The HTML of the component, is created by editing and saving a file, using the
Web Function Editor. The saved file can then be registered as a Page Web
component.

For example, the STDHEADER is a Page Web component. Notice that your
page can use LANSA tags and can even include LANSA components. (Be sure
that the components are not called recursively!)

For details about creating page Web components, refer to 9.2.6 Naming Page
and Script Web Components.

?‘ WEBO008 - Web Components

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2.5 Script

A Script Web component allows you to create a JavaScript or VBScript function
(or script fragment) and embed such a function into your Web function
application.

The script file is defined using the Web Function Editor. LANSA for the Web
does not validate the script functions specified in the script Web component.
Once the file is defined in the Web Function Editor, it must be registered as a
Web component.

LANSA for the Web does not restrict you to a particular script language. In
other words, you could be creating a JavaScript or VBScript script Web
Component. Again, LANSA for the Web does not validate the script functions
specified in the script Web component. You must ensure that the script you have
created is syntactically correct. You must verify your script before creating it as
a script Web component.

One difference between a Script Web component and other Web
components is that the last line of a Script Web component doesn't
include a carriage return (or carriage return/line feed pair on
Windows) at the end of the component. This prevents an unwanted

line break when the component content is just a script fragment, rather
than a complete script function. If you want the last line of your Script
web component to end with a carriage return, insert a blank line at the
end of the component.

If you are defining script functions, you should remember that these functions
should be included in the header of the HTML pages so that the functions are
loaded before they are called.

The JavaScript functions used by LANSA for the Web are contained in the
DEFAULT_SCRIPT component. You can also modify this component to
include your own JavaScript functions, and then save the file as a process-
specific page. Using this technique, you do not need to register the process-
specific page as a Web page component.

For details about creating script Web components, refer to 9.2.6 Naming Page
and Script Web Components and Script Component (HTML mode).

its:lansa086.CHM::/LANSA/JMP_0090.htm

9.2.6 Naming Page and Script Web Components

When you create a Page or Script Web component, you must complete two
steps:

1.Create the file with the HTML or JavaScript.
2.Register the file as a Page or Script component.

Using the Web Function Editor, you will need to create a new page to store the
code (HTML or JavaScript) for the component. Generally, you would make the
page name the same as the component name; however, these names do not need
to be the same. If you have more than one component with the same name,
because of input and output modes, you may want to define a naming
convention to identify the appropriate pages.

For example, an HTML page called SAMPLEOUT can be created and saved
using the Web Function Editor. This document might contain the following
code:

<h1>Here is some sample HTML.</h1>

This HTML will be embedded as a page component.

Using the Web Function Editor, you must now register this page as a Page
component. The Page component could be named SAMPLE and defined for
output mode. The SAMPLE component is linked to the SAMPLEOUT page.

Add Page Component [x| |

Component: SakPLE
Diesoription: ISampIe HTML Page

Page: |seMPLEOUT]

tode
= |nput
i Output
= Mot Applicable

ak I Cancel |

In your HTML page, you would now use the following statement to include the
component:

<RDML COMPONENT="SAMPLE" MODE="0">

When the tag is processed, the SAMPLE component definition will be read and
the content of the SAMPLEOUT page will be embedded.

For the input mode component, you might create a file named SAMPLEIN. The
file would be registered to a Page component also named SAMPLE, but the
component would be defined for input mode.

Add Page Component [x| |

Lomponent: SaMHLE

Desoription: ISampIe HTML Page

Page: |S&MPLEIN

Mode

= Mot Applicable

(] I Cancel

9.3 Generated Web Components

Unlike the 9.2 Manually Defined Web Components, generated Web components
have their definitions automatically created by LANSA for the Web. For
example, LANSA for the Web can automatically generate all of the HTML code
required for a visual drop down Web component.

LANSA for the Web has the following types of generated Web components for
use with Web functions:

9.3.1 Visual Web Component
9.3.4 File Web Component

The main difference between a Visual Web component and a File Web
component is that a Visual Web component is created as an HTML page in the
LANSA internal database, while the File Web component is created in a library
or directory on the Application/Data Server.

You may also wish to review the following:
9.3.2 Creating Visual Web Components
9.3.3 Using Triggers to Generate Visual Web Components.

It is important to note that the Visual and File Web components can also be
created manually.

?‘ WEBO008 - Web Components

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.3.1 Visual Web Component

LANSA for the Web can automatically generate four types of Visual Web
components for use with Web functions:

Check Box

Drop Down

List Box

e Radio Buttons.

Drop downs, list boxes and radio buttons can be associated with a file to define

their values, whereas a check box requires a defined value and description. All
of these components are generated as Input mode.

For example, the Department file (DEPTAB) contains a field called Department
Code. You can use a Visual Web component to have this field displayed as a
drop down list. The values in the drop down list can be based on the contents of
the Department file. LANSA for the Web will automatically create the HTML

page.

Generate Yizual Component E3 |

Component: IDEF'TMENT

E stenszion: HTk ¥

Sec. Eut: I

Yizual Type: IDru:up dowr j
— Repositony Data
File: DEPTAR

Field for W alue: DEPTHMEMT

Field for Dezcriptian: IDEF'TDESE

[T Use Librany List

— Static Data
Walle: I

Drezcription: I

] I Cancel |

The HTML page generated might appear like this:
<RDML CHECKVALUE="YES">

<select size="1" name="DEPTMENT">

<option value="ADM">ADMINISTRATION DPT</option>
<option value="AUD">INTERNAL AUDITING</option>
<option value="FLT">FLEET ADMINISTRATION</option>
<option value="GAC">GROUP ACCOUNTS DEP</option>
<option value="INF">INFORMATION SERVICES</option>
<option value="LEG">LEGAL DEPARTMENT</option>
<option value="MKT">MARKETING DEPARTMENT</option>
<option value="R&D">RESEARCH & DEVELOP</option>
<option value="TRVL">TRAVEL DEPARTMENT</option>
<option value=""> </option>

</select>

</RDML>

Note: Make sure that the values entered into the Repository Data section are
correct. That is, the file you specify exists and contains the fields you specify.

It is important to note that the HTML is based on the contents of the file
(LANSA table) at the time the Visual Web component is built. If a new
Department was added, you must rebuild the Web component. Also, refer to
9.3.3 Using Triggers to Generate Visual Web Components.

Visual Web components are really just a special type of Page Web component.
If you manually define a Visual Web component, you are simply defining a page
associated with the component. It is almost identical to defining a Page Web
component with the exception that Page Web components are able to support
the Not Applicable mode. Visual Web components can only be defined as Input
Mode or Output mode.

For details about creating a Visual Web Component, refer to 9.3.2 Creating
Visual Web Components.

?‘ WEBO008 - Web Components

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.3.2 Creating Visual Web Components

There are three methods for creating/maintaining Visual Web Components for
use with Web functions:

e Automatically (Input mode only)
e Manually (Input & Output mode)
e Using LANSA Triggers

Automatically created Visual components are built using the Components,
Generate Component - Visual option from the Web Function Editor. You can
create Check Box, Drop Down, List Box and Radio Buttons. These components
are all defined as Input mode. Refer to Generate Visual Component.

Visual Web components can be manually defined. You will manually create
Visual Web components when you need output components. Refer to Visual
Component. Reminder: You can use a Page Web component instead of
manually defining a Visual Web component.

LANSA Repository triggers can also be used with your application database so
that the contents of a file are used to update a Visual Web component. Refer to
9.3.3 Using Triggers to Generate Visual Web Components.

its:lansa086.CHM::/LANSA/JMP_0140.htm
its:lansa086.CHM::/LANSA/JMP_0110.htm

9.3.3 Using Triggers to Generate Visual Web Components

LANSA for the Web provides you with a program, W3@P2600, which can be
used to build input Visual Web components from data contained in a physical
file on the Data/Application Server. There is also a LANSA built-in function
(BIF) called WEB_BUILD_COMPONENT which can be used to call
W3@P2600. The W3@P2600 program and WEB_BUILD_COMPONENT BIF
can be used by LANSA functions to build components. By writing a LANSA
function to build or rebuild a component, you can automate the maintenance of
Web components.

It is recommended that you use the BIF rather than calling W3@P2600.

As an example, you will use the DEPTAB table from the Personnel

Demonstration system in LANSA. The DEPTMENT field has a Visual Web

component which is a drop down.

The parameters of the W3@P2600 program are:

e Name of the partition

e Name of the Web component

e Type of visualization

e Name of the physical file on the iSeries

e Name of the field in the physical file whose value will be used with the
VALUE keyword in the generated HTML

e Name of the field in the physical file whose value will be displayed as the
description in the Visual Web component

This program can be called from a trigger function on the DEPTAB file. This
trigger is set up to execute when the contents of the file changes. For example,
when the contents of the DEPTAB table changes, the trigger will execute and
call W3@P2600 to rebuild the DEPTMENT Visual Web component. Using this
approach, the Web application will always have the most recent information
without waiting for developers to update components.

Note: The W3@P2600 program only supports physical files. This means that
you cannot create a Web component using a logical file.

9.3.4 File Web Component

The File Web component allows you to use an external file to store HTML. The
file will be treated as a data stream file. The contents of the file will be sent to
the browser by LANSA, without interpreting any of the data streams contained
in the file. This component allows you to circumvent the 256-character
limitation in LANSA. This component is mainly used with output fields.

On the iSeries, the file is a standard physical file. The physical file will be
created when the file component is created. The library must be defined as part
of the file name.

On Windows, the file is a standard text file. The text file will be created when
the file component is created. The directory must be defined as part of the file
name.

A LANSA Object Access Module is not required to use the file, i.e. the file is
not identified to the LANSA Repository.

For example, you might have a large text document which needs to be displayed
as part of a Web page. This document is maintained as a standard PC word
processing file. Using tools like Word, you can save this document as an HTML
file. When the File Web component is embedded into your page, this
information will be sent to the browser.

Using the File Web component means that you do not have to create and edit
large documents within the Web Function Editor. (Remember, all files created
using the Web Function Editor are stored internally in the LANSA database.)
Also, because you are using a standard file object, it is also possible to execute
programs which read and write from this file before it is used in your Web page.

File Web components can be created manually and they can be automatically
generated by LANSA for the Web. If the File Web component is created
manually, then the File must be manually defined. LANSA for the Web will
create the file if it is automatically generated.

For details about manually creating a File Web component, refer to File
Component.

For details about automatically creating a File Web Component, refer to
Generate File Component (HTML mode).
iSeries Files

On the iSeries, your File Web components may use library lists. Library lists
can be very powerful. For example, if your application requires you to display

its:lansa086.CHM::/LANSA/JMP_0040.htm
its:lansa086.CHM::/LANSA/JMP_0150.htm

different data for the same field, depending on the user profile used to run the
application, then a library list can be used with the user profile and File Web
component.

A different file can be created for each user profile. Each file contains the
HTML to display the data. These files would be installed to the appropriate
library. The library list attached to the user profile would then be used to locate
the correct file.

When the application is executed, LANSA for the Web will use the File Web
component. However, it will use the library list attached to the user profile to
locate the correct file, since no library is attached to the file definition in the
Web component registry.

10. Function Editor

The Web Function Editor is used to enhance your Web Function applications. If
you are not familiar with the Web Function Editor, you should review:
10.1 Introduction to Web Function Editor

The Web Function Editor includes the following menu categories:
10.2 File Menu

10.3 Edit Menu

10.4 View Menu

10.5 Tags Menu (HTML mode)

10.6 Components Menu

10.7 Options Menu

10.8 Tools Menu

10.1 Introduction to Web Function Editor

In order to execute the Web Function Editor, you should review the following
topics:

10.1.1 What is the Web Function Editor?

10.1.2 Connecting to the Data/Application Server
10.1.3 Starting the Web Function Editor

10.1.4 Web Function Editor's Main Window

10.1.1 What is the Web Function Editor?

The Web Function Editor provides you with full text editing capabilities to
create and modify, the HTML/XML pages generated for your Web function
application. You manage your application's Components and Graphic Variables
using the Web Function Editor. The Editor also allows you to create and
maintain documents supporting XML transformations (for example XSL style-
sheets).

To accommodate specific HTML or XML editing tasks, you will need to specify
whether you want to run the Web Function Editor in XML or HTML mode.

If you have more generic tasks, you can use the BASIC mode. BASIC mode
provides the functionality valid for all modes and is a sub-set of the other modes
(i.e. XML or HTML).

Throughout this section of the document, mode-specific tasks are labeled as
such. Where there is no label (e.g. XML only) the task is valid for both modes.
Features not available with the current mode are grayed out on the Editor's
dialog boxes.

The Web Function Editor does not provide a facility for you to edit the
generated HTML/XML graphically as the LANSA generated pages include
LANSA Web components and LANSA tags. The effect of some LANSA tags
will not be shown until the LANSA function is run. In addition, if your partition
is multilingual, you will not be able see the descriptions of the fields, since these
are inserted when the function is executed.

T 10.1 Introduction to Web Function Editor

10.1.2 Connecting to the Data/Application Server

To use the Web Function Editor, LANSA Open must be installed. If, during the
installation, LANSA Open is not detected, the LANSA for the Web Function
install will install, by default, the components required for TCP/IP connectivity
between your workstation and the host.

User Profiles

When you start the Web Function Editor you will need to connect to the
Data/Application Server using a valid user profile.

For the AS/400, the user profile specified must be properly configured to use
the LANSA system.

T 10.1 Introduction to Web Function Editor

10.1.3 Starting the Web Function Editor

When you install the Web Function Editor, a shortcut icon is created on your
desktop. When you double click on the shortcut icon, the System Defaults
dialog is displayed.

System Defaults

Profiles: IMYSYSTEM

Profile Details

LAMSA Sygten: |My5ystem J Savefs..
Hozt Type: IBM i - Save

Partitiar: DEM Delete
Language: ENG Feset

| zend: |U$Ef

i)}

Password: | xxxxxxxx

b ode; HTML -

[+ Save Pazswaord
[&uto-connect on startup

] | Cancel |

Enter the connection parameters for the required system.

|

Advanced...

If you have previously saved the connection details as a Profile, select the
Profile that you require.

For more details about the parameters, go to the 10.2.13 Connect command on
the File menu.

Mode

The modes will be either:
e XML

e HTML or

e BASIC. Basic is used for more generic tasks. This mode supports
functionality valid for all modes and is a sub-set of the other modes (e.g.
XML or HTML).

Once you are connected successfully to the host, the 10.1.4 Web Function
Editor's Main Window is displayed.

T 10.1 Introduction to Web Function Editor

10.1.4 Web Function Editor's Main Window

You use this main window to gain access to all the Editor's functionality.

B LANSA HTML Editor,
File Edit Yew Tags Components Opkions Tools window Help

D] | 5Pledledl S| %]

Client Area

Language

o e

Connected - *LOCAL HTML [*LOCAL DEM EMG |PCHUSER A

Connection Status

The status bar at the bottom of the window displays your current connection
status, the mode, system, partition, language and User Id.

To change any of the connection details, or to reconnect to a different system,
choose the Connect command from the File menu. You will be asked to confirm
disconnecting from the current system. If you answer Yes, the System Defaults
dialog box will be opened and you can reconnect to the system.

M 10.1 Introduction to Web Function Editor

10.2 File Menu

The File Menu contains the following options:
10.2.1 New

10.2.2 Open . . .(XML/HTML mode)
10.2.3 Open (BASIC mode)

10.2.4 Close

10.2.5 Save

10.2.6 Save As

10.2.7 Save As (mode BASIC)

10.2.8 Save To Local (mode BASIC only)
10.2.9 Load From Local (mode BASIC only)10.2.10 Compare
10.2.10 Compare

10.2.11 Page Setup

10.2.12 Print

10.2.13 Connect

10.2.1 New

Use New command to define a new HTML/XML page.

If you are running in HTML mode, when you select this command, the Editor
pre-fills the client area with a default set of HTML/XHTML tags.

B LANSA HTML Editor E

File Edit Yiew Tags Components Options Tools ‘Window Help }
= on o 1 1 4
0= H %ei=d @ 5

B Untitled (=13
<ROML MERGE="80TD_TRANSITIONAL">

<htrl xrmlns="http: fhannee w3 orgf 1999 xhtml" >

<head=<title><Aitle>
</head=

<body bgcolor="white" background="">

</body =
=/html=>

Once you have defined the new HTML/XML page, it can be saved using either
the Save or Save As command from the File menu.

If you intend to use this newly created page as a LANSA Web component, you
will need to remove the first two lines (RDML MERGE..., <html xmlns....) and
register it as a Web component as described in Add a new Component. It can
then be used in conjunction with the <RDML COMPONENT> tag.

M 10.2 File Menu

10.2.2 Open . . .(XML/HTML mode)

If you are using the Open command in BASIC mode, then go to 10.2.3 Open
(BASIC mode).

Use the Open command to select existing HTML/XML pages stored in the
LANSA Repository. When you choose this command, you are presented with a
dialog box listing all the HTML or XML pages (depending on the mode)
currently stored in the partition.

Open HTML Page X
PSLSYS IMQUIREQD Process PSLSYS Func A
PSLSYS IMGQUIREDDZ Process PSLSYS Func
PSLSYS PHOME 0O Process PSLSYS Func
PSLEYS SaLaRy 00 Process PSLSYS Func

iCH :I &

SMHAKE 001 Process
PSLSYS wiAMDOW 001 Process PSLSYS Func
PSLSYS wWINDOW 002 Process PSLSYS Func e
< RIS T n.___...nl"'l [l l_.;. -

M ame: SEARCH 003" Yergion; |0 ﬂ
Language: |EMG bl

Drescription: |EIEIE" "Process PSLSYS Function SEARCH 003"

(] | Delete | Cancel |

To edit the HTML/XML pages, select one or more entries from the list of pages
and press OK. To identify the HTML page for a specific function, refer to
Identifying Generated Pages.

If you enter the first character of the Page's name, the list will be positioned at
the beginning of names starting with that character.

To delete HTML/XML pages from the LANSA Repository, select one or more
entries from list of pages and press the Delete button. You will be asked to
confirm your deletion instruction.

Version

The version number of the current HTML/XML page is 0. The previous copy of
the page will be version number 1, and so on. For more details, refer to
Versioning of Pages.

its:lansa086.CHM::/LANSA/ED0520.htm
its:lansa086.CHM::/LANSA/ED0540.htm

Language

If you are working with a multilingual partition, you can choose the language of
the page from the Language drop down list.

Second. Extension (XML Mode)

In HTML mode, this field will be hidden.

Secondary extension specifies the sub-extension (also called the XML
Application) to be used to identify the Component. This value enables you to
simplify the search for XML documents.

Opened Documents

When you select one or more pages to edit and press OK, the HTML/XML
pages will be displayed in the client area of the Editor. The pages will be
downloaded from the Application/Data Server. The download time will depend
upon the size of the documents and the speed of your connection. Once the
pages have been downloaded, you can then begin to edit the page.

B LANSA HTML Editor,

File Edit Yew Tags Components Opkions Tools window Help

RECEEEEE

E PSLSYS ENROL 001 (ENG-0)

“'f" E PSLSYS INQUIREOD1 (ENG-0)

s e sz

2 :F E PSLSYS INQUIREQO2 {ENG-0)

::q B PSLSYS SEARCH 001 (ENG-0)

<1 J<RDML LAY OUT:=

1.l < Process : PSLSYS Personnel System hain Menu

<l-- Function : SEARCH Perform General Employee Search
<1<k Page ;001 -

e
el 4= Generated by - LANSA,

' =l-- Created by user- PCRUSER
Y=l Time and Date - 20050225150041

=l-- RDML function sequence number - 0024 -

<form action="/<RDML MERGE="&CGI"=/LANSAWEB?FUNCTION+<RDML MERGE="&SESSION">"
method="post" name="LANSA">

<RDOML MERGE="8HIDDEN">

SOMkAl STk ARSI T="O TR AR -
| il

Ready ln1,Colt HTML *LOCAL DEM EMG PCHUSER

Each page opened is displayed in its own window. You can toggle between the
pages you are editing by selecting the Windows command from the menu bar
and choosing Tile Horizontally or Tile Vertically.

The HTML/XML page you are editing is shown in the Title Bar.

Once you have finished editing, the pages are kept in memory of the local PC
until they are saved to the Data/Application Server.

T 10.2 File Menu

10.2.3 Open (BASIC mode)

If you are using the Open command in HTML or XML mode, then go to Open .
. (XML/HTML mode).

The Open command displays the Open Page dialog box. This dialog box is
divided into Selection, List and Details areas.

Open Page
Euxtension: |HTM » | Second. Extension: |
DEBUG_SCRIPT Script function for debug S
DEFALULT_COMTEMT Default Process Content
DEFALLT_FRAMESET Default FRAMESET
DEFALLT_HIDDEM Default hidden fizlds
DEFALLT_IMDE Default Process Menuw page
DEFALLT_LAYOQUT Drefault Layout
DEFALLT_SCRIPT default script
DEFALLT_STYLE Default Cazcading Stule Sheel
NFFAINT TRACF Nefault Trare o’
£ >

Detailz

E stension: Second. Extension:
I ame: Wergion: |0 ﬂ
Language: |EMNG -

Dezcription: |

| | Cancel |

Selection Area

This area, in the upper part of the dialog box allows you to enter the search
criteria for the documents to be displayed in the List. The list will be populated
once you press the List button.

Extension

Select the file extension to be used to build the list of documents. Your selection
will be:

e HTM - for HTML documents
e XML - for LANSA XML documents

Second. Extension

its:lansa086.CHM::/LANSA/JMP_0610.htm

Enter the Secondary Extension (called the XML Application in the
Administrator) to be used when retrieving the list of documents. If you leave
this field blank, all the documents matching the Extension will be listed.

List
Press the List button to retrieve the documents matching the settings you have
entered in Extension and Second. Extension. The documents retrieved will be

displayed in the list. Depending on your selections, it may take some time
before the list is downloaded and displayed.

Details Area
This area displays the details for a document(s) that is highlighted in the list.

Extension
Displays the file extension for the selected document(s).

Second. Extension

Displays the Secondary Extensions (or XML Applications) for the selected
documents.

Version

The version number of the current page is 0. The previous copy of the page will
be version number 1, and so on.

Language

If you are working with a multilingual partition, you can choose the language of
the page from the Language drop down list.

Description
The description of the document that is selected.

T 10.2 File Menu

10.2.4 Close

The Close command closes the current page in the Editor.

If you made changes to a page and you have not saved the changes, you will be
prompted to save the changes before the Editor closes the page.

T 10.2 File Menu

10.2.5 Save

The Save command will save the current Page to the Application/Data Server.
The time to save the file will depend upon the size of the document and the
connection to the server. The cursor will change to an hour glass and the save
status is displayed on the status bar. Do not execute the application until the
document save has completed.

If the current page is untitled, you will be prompted to provide a name and
description for the page (please refer to the following sections: 10.2.6 Save As
for XML or HTML pages, or 10.2.7 Save As (mode BASIC) for all other pages.

You can only save changes if you are editing the version 0 page. You must use
the Save As option if you are editing an archived page (version 1 through 10).

If you have configured the Editor options to Enable archive functionality when
saving, you will be asked if you wish to archive previous versions of the file
before it is saved. For more details, refer to the Miscellaneous option of the
10.7.1 Configure command.

For more details about versions, refer to Versioning of Pages in LANSA
Generated HTML Pages.

If you lose your connection to the Application/Data Server while saving or
before saving, you should copy the document contents to another file on your
PC. Simply open another editor (such as NOTEPAD.EXE) and cut and paste the
text to this editor. Once you have reconnected to the server, open the file you
were saving. Cut and paste the text back into the Web Function Editor and try
saving again.

T 10.2 File Menu

its:lansa086.CHM::/LANSA/ED0540.htm
its:LANSA086.CHM::/LANSA/ed0500.htm

10.2.6 Save As

The Save As command allows you to save an existing HTML/XML page with a
different page name.

If you have opened an archived page (version 1 through 10), the changes can
only be saved as version 0. For example, if you open version 3 of a page, you
cannot save this page as version 3. It must be saved as version 0. This rule
ensures that your previous versions are not corrupted. For more details about
versions, refer to Versioning of Pages.

Also refer to the 10.2.5 Save command for more details about saving files back
to the Application/Data Server.

T 10.2 File Menu

its:lansa086.CHM::/LANSA/ED0540.htm

10.2.7 Save As (mode BASIC)

Selecting the Save As command when you are in BASIC mode will open the
enhanced Save Page dialog box. This dialog allows you to list the known pages
for the given Extension and Second. Extension or to directly specify the
parameters for the new page in the Details area.

Save Page

Euxtension: |HTM »| Second. E:-:tensiu:un:|

EMROL 00 cess PSLSYS Function (RS

PSLSYS IMQUIREQD Process PSLSYS Function |
PSLSYS IMQUIREDDZ Process PSLSYS Function |
PSLSYS PHOME 0O Process PSLSYS Function |
PSLSYS SaLaRy 00 Process PSLSYS Function !
PSLSYS SEARCH 0M Process PSLSYS Function !
PSLSYS SEARCH 002 Process PSLSYS Function !
PSLSYS SEARCH 003 Process PSLSYS Function !
PSISYS SMAMFE N Praress PSISYS Function '
L >

Dretails

Extension: |HTM - Second. Extenzion:

Mame: [FSLSYS EMROI
Language: |EMNG -

Dezcription: |F'ru:u:ess PSLSYS Function EMROL 0O

(] Cancel

The file extension and secondary extension in the Selection area are
those that are current for the document. If you want a different file

Extension and Second Extension (i.e. secondary extension) saved with
the document, you must enter them in the Details area.

T 10.2 File Menu

10.2.8 Save To Local (mode BASIC only)

This command allows you to save the current page to a file on a local drive.
Using a standard File Save As dialog, you specify the name of the file you want

to save the current page to. Any existing files of the same name will be
overwritten.

T 10.2 File Menu

10.2.9 Load From Local (mode BASIC only)

This command displays a standard windows File Open file dialog allowing you
to select a file. After pressing Open on the standard File Open dialog you will
be asked to confirm that you want to overwrite the contents of the current page
with the contents of the selected file. After confirming this, the content of the
current page will be replaced by the content of the file selected and the current
page will be marked as modified.

To replace the page on the host with the page loaded from Local, you can either
Save it with the same name or select the Save As command to save it with a
different name.

T 10.2 File Menu

10.2.10 Compare

To compare HTML, XML or Basic pages, select Compare from the File menu
and choose one of these commands, as appropriate:

e New Comparison - use when you do not have any pages open.

e Compare With - when you want to compare with a page that is already open.

e Compare With Version - when you want to compare with another version of
a page you already have open.

e When you have finished with the Compare select Close.

Version saved

Before you can compare different versions of your pages, you must first specify
how many versions of the pages that you want to save. To specify the number of
versions you want to save, set the number of copies on the Backup page of the
Data/Application Server Configuration in the LANSA for the Web
Administrator.

Save old before over-writing

If the backup feature is enabled in the Data/Application Server Configuration in
the LANSA for the Web Administrator, then, when LANSA generates the
HTML/XML for a particular Web function, it will save the current page before
generating a new page for the function being compiled.

Save with versioning

If previous versions are being saved (specified in the Backup page of the
Data/Application Server Configuration in the LANSA for the Web
Administrator) any changes made to an HTML/XML/BASIC page will be saved

to the version number opened.
T 10.2 File Menu

New Comparison

You use the New Comparison command when you do not have any HTML,
XML or BASIC pages open.

Compare HTML Page 1 F§|

PSLSYS EMPLISTOM Process PSLSYS Func A

PLLSYS EMROL 001 5 ;
PSLSYS EMROLZ 001 Process PSLSYS Func
PSLSYS IMGUIREDDT Process PSLSYS Func
PSLSYS IMGQUIREDDZ Process PSLSYS Func
FSLSYS PHOME 0O Process PSLSYS Func
PSLSYS SalaRy 00 Process PSLSYS Func
PSLSYS SEARCH 001 Process PSLSYS Func
PSLSYS SEARCH 002 Process PSLSYS Func
PSLSYS SEARCH 003 Process PSLSYS Func 3
£ b

Mame: |PSLSYS EMROI Yersion: |0 j
Language: |EMG -

Drescription: |PTDCESS PSL5Y'S Function EMROL 001

Cancel

Select the first page that you want to compare in the Compare dialog box. When
you press OK, the Compare dialog box will open again for you to select the
second document to compare with the one you have just selected.

When the pages are displayed, the differences between the two pages you have
selected are highlighted, using the colors you have chosen in the View page of
the Editor's Configuration options.

B LANSA HTML Editor - [Comparison of PSLSYS ENROL 001 (ENG-0):PSLSYS ENROLZ 001 (ENG-0)] =]
|:’| File Edit Wew Tags Components Options Tools Window Help i

D[| W] Seloblod] 2] & [0e]@)
PSLSYS ENROL 001 (ENG-0)
PSLEYS ENROLZ 001 (ENG-O)
<ROML LAY OUT=
<l- Process : PSLSYS Personnel System Main Menu -z
+z<!- Function : ENROL Enrol a New Employee -z L3

o]

Comparison of

<l- Page 00 -

<l-- Generated by - LANSA, -

<l-- Created by user- PCXUSER -
+=<!__Time and Date - 20050225150030 -
ol

<l-- RDML function sequence number - 0017 -

<farm action="/<RDOML MERGE="8&CG!">/LANSAWEBYFUNCTION+<RDML MERGE="8.2ESSI0N">"
method="post" name="LANZA">

<ROML MERGE="8&HIDDEMN">
<ROML COMPONEMNT="STDHEADER" =
zcenter=<hl=<ROML MERGE="&FLINCTION">=</h1==</center>

<hr f=

Ready HTML *ocaL |DEM [EnG pcrusER

T 10.2.10 Compare

Compare With

Select Compare With if you already have a page open and you would like to
compare that page with an archived page. When you select the Compare With
command, the Open HTML/XML/Basic Page dialog box (depending on the
current mode) is opened so that you can choose the page you want to compare
with your current page.

Open HTML Page X
PSLSYS EMROLZ 001 Procesz PSLSY'S Funo A
PSLEYS INQUIREQDT
_ INGUIREDD: 3 s
PSLSYS PHOME 001 Process PSLSYS Func
PSLSYS SALARY 001 Process PSLSYS Func
PSLSYS SEARCH OO Process PSLSYS Func
PSLSYS SEARCH 002 Process PSLSYS Func
PSLSYS SEARCH 003 Process PSLSYS Func
PSLSYS SHAME 001 Process PSLSYS Func
PSLEYS wiIMDOW 00 Process PSLSYS Func 3
£ »

Mame: |PSLSYS IMGLUIF arzion: |0 j
Language: |EMG -

D'ezcriptian: |F'ru:u:ess PSLSYS Function INQUIRE 002

Cancel

The pages are displayed in the orientation that you have specified in the View
page of the Editor's Configuration Options.

E L ANSA HTML Editor - [PSLSYS INQUIREDO1 (ENG-O)]

|:’| Eile Edit Wew Tags Components Options Tools ‘Window Help
D@ SPleiloil & [0
SYS INQUIREDDT (ENG-O)

Editing

ROML LAY OUT=
- Process : PSLEYS

Personnel Systerm Main Menu

=l Function : INQUIRE Browse/Maintain Employee and Sk
k- Page 001 -3

=l- Generated by - LANSA -
<l Created by user - PCXUSER -

- Tirne and Date - 20050225150032
- RDML function sequence number - 0020

=form action="/<ROML MERGE="8CGI">/LANSAVWEEB?FLIMI
method="post" name="LANSA"=>

=RDOML MERGE="&HIDDEN">

<ROML COMPONENT="STDHEADER"=
=centerz<h1><ROML MERGE="&FLUNCTION"></h1></cente
<br /=

<RDOML MERGE="&MEZSAGES">

62 pages retrieved

PSLSYS INQUIREOD1 (ENG-0)
e S INQUIREODZ (EMG-0)
<RDML LAY OUT=
<l- Process : PSLSYS Personnel Systerm Main Menu

=l- Function : INQUIRE ~ Browse/Maintain Employee and §

Comparison of

+x<!_Page :001 =
L —

<l- Generated by - LANSA
<l-- Created by user- PCXUSER
<l- Tirne and Date - 20050225150032

—x

+=<!.- RDML function sequence number - 0020

<farm action="/<ROML MERGE="8CGI">/LANZAWEBYFL
method="post" name="LANZA"=>

<RDML MERGE="8HIDDEN">

<RDML COMPOMENT="STDHEADER"=

“centerz<hl=<ROML MERGE="&FUNCTION"></h1=</cen

<hr f=

*LOCAL DEM EMG PCHUSER

Ln1, Cal 1 HTML

The vertical display feature allows you to locate the differences between the two
pages quickly as well as allowing you to incorporate any changes into the page

you are editing.
To close the comparison window, select

T 10.2.10 Compare

Close from this window's File menu.

Compare With Version

Choose the Compare With Version when you are editing an HTML/XML or
BASIC page and you would like to compare the page with an archived version
of the same page. The HTML Page Version dialog box is displayed.

HTML Page Yersion

Fage Yersion: ﬂ

QK | Cancel |

Enter the Page Version that you wish to open and press OK. The page you have
selected will be displayed side by side (or whatever orientation you have chosen
for comparisons when selecting your required options in the View configuring
the Editor) with the differences highlighted.

B LANSA HTML Editor - [PSLSYS ENROL 001 (ENG-0)] ['Z”E|E|
|{ Eile Edt wiew Tags Components Options Tools Window Help o =l
D || W] *ePleiloi] & 5[5

ENROL 001 (ENG-0)

i PSLSYS ENROL 001 (ENG.0)
i PSLSYS ENROL 001 (ENG-1)
<RDML LAYOUT> <RDML LAYQUT>

Comparison of

- Process : PSLSYS Personnel System Main Menu <l- Process : PSLSYS Personnel Systerm Main Menu
- Function : EMROL Enrol a Mew Employee & <l- Function : ENROL Enral a Mew Employes i
- Page 01 - <l- Page 0O -
- Generated by - LANSA, - =l Generated by - LANSA -
l- Created by user - DEVUSER -x ==l Created by user - DEVUSER
k- Time and Date - 20081001 164855 i Hz<l-Time and Date - 20081001164855
Fe
- ROML function sequence number - 0017 ke
=form action="/<ROML MERGE="&CGI"=/LANSAWEB?FLIN(<l-- RDML function sequence number - 0017

method="post" name="LANSA"=>
<farm action="/<RDML MERGE="&CGI">/LANSAWEB?YFU

<ROML MERGE="&HIDDEN"> method="post" name="LANSA">

<ROML COMPONENT="STDHEADER"= <RDML MERGE="8HIDDEMN"=>

=center=<h1><ROML MERGE="&FUNCTION"></h1></cente <RDML COMPONENT="STDHEADER" >

<br /= <center><h1=<RDOML MERGE="&FLINCTION"></h1=</cen
<ROML MERGE="&MESSAGES"> . <hr f= 3
[3 @ | 3
Ready Ln1, Col 1 HTML *LOCAL DEM [EMG PCRUSER

T 10.2.10 Compare

Close

To close the comparison window, choose Close from this window's File menu.

If you were editing an HTML/XML or BASIC page, you will be returned to that
window.

T 10.2.10 Compare

10.2.11 Page Setup

When you choose the Page Setup command from the File menu, the standard
Windows Page Layout dialog box is displayed so that you can customize the
page layout.

T 10.2 File Menu

10.2.12 Print

This command opens a standard Windows Print dialog box and prints the
HTML/XML or BASIC page currently open. You can choose to print the entire
page or a highlighted selection.

T 10.2 File Menu

10.2.13 Connect

Use the Connect command on the File menu to connect to a different host or to
change from the current Mode (HTML, XML or BASIC) to a different Mode.

When you have specified the details of the system to which you want to connect
in the Profile Details area, you can save the details as a Profile. Once you have
assigned a Profile name, you simply select a profile rather than enter the profile
details each time you wish to reconnect.

System Defaults F§|

Profiles;

Profile Details
LAMSA Sygten: |MYSYSTEM J Save fs..

Host Type: iS5 eries - Save

Partitiar: DEM Delete
Language: EMNG Reset

| zenid: |U$Ef

Fazzword: | *******

b ode; HTML «

[+ Save Pazswaord
[&uto-connect on startup

] | Cancel |

Although this dialog is similar to the System Defaults used by the LANSA for
the Web Administrator, there is no relationship with between the Profiles
recorded using Administrator's System Defaults and the Profiles recorded using
the Editor's System Defaults.

Mode

Enter the execution mode for the Editor. Possible modes are HTML, XML or
BASIC. Depending on the mode you choose, the mode-specific options will be
enabled/disabled once you are connected to a host system. The BASIC mode is

a more generic mode, allowing you to perform tasks common to all type of
pages (HTML, XML, XSL etc.).

If you select a Host Type of Other, then only Mode HTML and XML will be
available for selection.

Advanced...

|

Save Password
You can save the password for future use by selecting this option.
Auto connect on startup

If you select this option, and save the settings as a Profile, you will be connected
automatically to this system when you next start the editor.

Save As
Advanced

T 10.2 File Menu

Save As

If you want to reuse the connection parameters, then you can save them as a
Profile. Select the Save As... option and enter the Profile Name in the Save As
dialog box. Press OK to return to the System Defaults dialog.

Save As §|

Save the infarmation for the Selected
Connection az prafile.

Profile M ame; |M_I,I Connection|

] | Cancel |

Save

Press Save to save the current entries with the Profile Name you have specified.
If you have changed setting, remember to Save the changes before you press the
OK button to start the connection process.

Delete

To delete a Profile, select the profile to be deleted from the Profile drop down
list then press the Delete button. You will be asked to confirm the delete request.

You are not able to delete the <Default> profile.
Reset

Press Reset to return all the parameters for the Profile Details and the related
Advanced settings to their default values.

T 10.2.13 Connect

Advanced

When you press the Advanced button, the Advanced System Options dialog box
is displayed. This allows you to customize replacement characters for the '@’
and '#' symbols. You will only need to customize these characters if you are
running a non-English system.

Advanced System Options ﬁ]

Character to replace '@ with: |&

Character to replace '"#' with: |#

QK | Cancel |

T 10.2.13 Connect
Test Case:
Test Plan Writer: Torkel CronholmDate Written:

LANSA Version: 11.4Date Last Tested:

Purpose: Long userid/password: Use existing profiles, create new profiles,
modify profiles, delete profiles. Need to test with an earlier release of Web
Function Editor as well to ensure backwards compatibility within the constraints
defined in the test case. Need to trick the Web Function Editor into believing it is
using data from a never version of the Web Function Editor.

Comments:
Tester: Date Commenced: Date
Completed:

Test Expected

Results

Use the 11.3 version of the program and fill in Profile
Details.

Use a combination of entries for LANSA System, Host Type,
Partition, Language, Userid, Password, Mode, Save
Password and Auto-connect on startup as well as settings
under the Advanced area.

Save each entry with a new name using "Save As..."

The entries
are saved.

Open the 1
version of
program ai
ensure that
profiles art
present anc
that the da
correct.

Open the 1
version of
program ai
ensure that
profiles art

present anc

that the da

correct.
Use the 11.4 version of the program and fill in Profile The entries
Details. are saved.
Use a combination of entries for LANSA System, Host Type, | Open the 1
Partition, Language, Userid, Password, Mode, Save version of
Password and Auto-connect on startup as well as settings program ai

under the Advanced area.
Save each entry with a new name using "Save As..."

Only use Userids and Passwords that are NOT longer than
10 characters.

ensure that
profiles art
present anc
that the da
correct.

Open the 1
version of
program ai
ensure that
profiles art

present an(

that the da

correct.
Use the 11.4 version of the program and fill in Profile The entries
Details. are saved.
Change an entry to have Userid to be longer than 10 Open the 1
characters. Save the profile using "Save" version of

program ai

Change an entry to have Password to be longer than 10
characters. Save the profile using "Save"

Change an entry to have Userid and Password to be longer
than 10 characters. Save the profile using "Save"

ensure that
profiles art
present anc
that the Us
and/or

Password «
blank.

Open the 1
version of
program ai
ensure that
profiles art

present an
that the da
correct.
Use the 11.3 version of the program and fill in Profile The entries
Details. are saved.
Fill in Userid and Password for those entries done above and | Open the 1
save each entry using "Save" version of
program ai

ensure that
profiles art
present anc
that the da

correct.

Open the 1
version of
program ai
ensure that
profiles art

present anc
that the da
correct.
Use the 11.4 version of the program and press reset for a The entries
Profile. should be
blank exce
for Host T
which shot
be "IBM i’
Mode whic
should be
"HTML".
"Advancec
the @ shot
be "@" an
the # shoul
be "#"
Use the 11.4 version of the program. Connect to IBM i with | Connectior
a combination of correct short and long Userids and IBM i shot
Passwords. Correct here means that the Userid need to exist | succeed
exist on IBM i and passwords need to be correct. Use all
uppercase, all lowercase and a combination of
uppercase/lowercase for Password.
Use the 11.4 version of the program. Connect to IBM i with | Connectior
a combination of incorrect short and long Userids and IBM i shot
Passwords. Incorrect here means that the Userid must not not succee

exist on IBM i and/or passwords are incorrect.

Error mess
with returr

code 0x6 i
displayed.

8 | Use the 11.4 version of the program. Connect to Windows . Connecti
(Other) with a combination of correct short and long Userids | to Window
and Passwords. Correct here means that the Userid need to | should
exist exist on Windows and passwords need to be correct. succeed.
Use all uppercase, all lowercase and a combination of
uppercase/lowercase for Password.

9 | Use the 11.4 version of the program. Connect to Windows Connectior
(Other) with a combination of incorrect short and long Windows
Userids and Passwords. Incorrect here means that the Userid | should not
must not exist on Windows and/or passwords are incorrect. | succeed. E

message w
return code
0x6 is
displayed.
10| Use the 11.3 version of the program and delete a few of the | The entries

created profiles.

are deleted

Open the 1
version of
program ai
ensure that
profiles art
not presen

Open the 1
version of
program ai
ensure that
profiles art

not present

11| Use the 11.4 version of the program and delete a few of the | The entries
created profiles. are deleted
Open the 1
version of
program ai
ensure that
profiles art
not presen
Open the 1
version of
program ai
ensure that
profiles art
not presen
12| We need to ensure that future backwards compatibility is Open the 1
working, ie, that the program works with the next generation | version of
Userid /Passwords. program. £
profile dat;
11.3 level data has no version number, hence the lack of a you made |
version number is interpreted as version 0. 11.4 level data is | version
version 1. The next generation data (for the future) will be | pumber 2 1
any number larger then 1. If 11.3 finds data with show its
userid/password longer then 10 characters it will leave details
userid/password fields empty (as it does for version 1). If disabled.
11.4 finds data of a later version, ie, profiles data's version
number is > 1, it will disable the entire connection screen Open the 1
(except for where to chose the profile of course). version of
program. /
To test this, you need to manually edit the profiles data profile yot
version. made to
version
This is how to do it: Open registry (using regedit). Go to number 1 «

HKEY_CURRENT_USER\Software\LANSA\LANSAWEB.

Under this key look for a PROF# key (# being a number) will show

and add and set or change LW3_Version to 2 (for testing details

11.3 and 11.4) or 1 (for testing 11.3). enabled Bl
the Userld

IMPORTANT: REMEMBER TO SET THE LW3_Version and/or

VERSION BACK AFTER YOU FINISHED WITH THIS Password 1

TEST be displayt
as blank if
they are
longer thar
characters.

13
Test Case:

Test Plan Writer: Torkel CronholmDate Written:

LANSA Version: 11.4Date Last Tested:

Purpose: Connecting to backend where the nominated OS type is not the one

we actually are connecting to

Comments: In all tests ensure that all connection details expect for Host Type

are correct. The ONLY thing wrong should be the Host Type.

Tester: Date Commenced: Date
Completed:
Test Expected Results Pass/
Fail

1 | In Profiles Details specify a | Fails with message: "Connection

LANSA System for
Windows, but select IBM i
as Host Type. Connect.

failed. Connection defined as
IBM i but attempt was made to
connect to Windows"

In Profiles Details specify a
LANSA System for IBM i,
but select Other as Host
Type. Connect.

Fails with message: "Connection
failed. Connection defined as
Other but attempt was made to
connect to IBM i"

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

10.3 Edit Menu

The Edit menu commands are provided for you to edit your HTML/XML. The
Edit menu's commands allow you to:

Undo

Cut

Copy

Paste

10.3.1 Paste HTML (HTML only)
Select All

10.3.2 Clear All

Find

Replace

Except for the two LANSA for Web specific commands, these editing
commands work in the same way as the standard Microsoft Windows
commands.

10.3.1 Paste HTML (HTML only)

Paste HTML pastes text from the Clipboard into the active window in HTML
Format. This means that the text to be pasted includes the formatting HTML
tags (unlike the Paste command that only copies the text - not the HTML tags).

T 10.3 Edit Menu

10.3.2 Clear All

This command deletes all the HTML/XML lines from the document that is

currently displayed. You are asked to confirm your deletion before the lines are
actually deleted.

T 10.3 Edit Menu

10.4 View Menu
The View menu allows you to control the display of the Toolbar at the top of the
main window and the Status Bar at the bottom of the main window.

The display options are a toggle. If you select the Toolbar, it will be displayed.
If you select it again, it will not be displayed.

10.5 Tags Menu (HTML mode)

Use the Tags menu to insert HTML tags into your HTML page. The tags will be
inserted at the current cursor position.

E LANSA HTML Editor
File Edit Wiew WESEN Components Op

Break
Paragraph

Body
Head

Farm

Input

Fonk
Farmak
Headings

List

Preformatted

ROML

You will find the most commonly used HTML and LANSA tags in the Tags sub
menus.

10.5.1 Insert RDML Component

10.5.1 Insert RDML Component

When you choose the Component tags from the RDML sub-menu, the RDML
Component dialog box is opened to display the list of Web components
currently registered in the partition's Web Component Registry.

E LANSA HTML Editor
File Edit Miew Tags Components Opkions

D[] 2]edled| S| &[]

Tools

Window Help

<ROML MERGE="8DTD [— |
Insert RDML Component Bl

=<html xmlns="http: /A, J
DEBUG_SCRIPT Script funchion for debug [\!'
<head=<title=</titla:= DEFALULT_COMTENT Default process content | :'r
</head:> DEFALLT_FRAMESET Default FRAMESET §| _,J
DEFAULT_HIDDEM Drefault hidden figlds L3
=body bycolor="white" bad DEFALLT_INDEX Default process menu page *‘
DEFALLT_LaAYOQUT Drefault lapout i
DEFALLT_SCRIPT Drefault scripk ;?
</body> DEFAULT_STYLE Default Cazcading Style Sheet <
<fhtml= DEFALILT_TRALCE Drefault trace 1
DTD_FRAMESET #HTML 1.0 Frameset DTD y
DTOD_STRICT HHTML 1.0 Strict DTD | L
Cancel |

If you enter the first character of the Component's name, the list will be
positioned at the beginning of the names starting with that character.

Select a Component from the list and press OK. The component will be
automatically inserted into your HTML page.

T 10.5 Tags Menu (HTML mode)

10.6 Components Menu

The Components Menu contains the following options:
10.6.1 Maintain Component

10.6.2 Generate Component

10.6.3 Graphic Variables

10.6.1 Maintain Component

You use the Maintain command on the Components menu to maintain your
existing Web components or to add new Web components.

If you are running Task Tracking in LANSA, then when you add, change, or
delete Components, the Administrator will prompt you for the Task Id required
by the Task Tracking level.

When you select Maintain from the Components menu, the Components dialog
box is displayed with a list of the Web components in the Web Components
Registry of the current partition. From this dialog box you can Change or Delete
the components that are listed or you can Add new Web components. The dialog
boxes used to change or add Web components will vary depending on the type
of component you are working with.

E LANSA HTML Editor

File: Edit Miew Tags Components phions Tools Sdindow Help

Maintain Components

Component l Type i Description I I alue | E stension(z]

D DEBUG_SCRIPT Fage Script function far ... DEBUG_SCRIFT HTH
DEFALILT_COMTEMNT Default process c... DEFAULT COMTEMT

| |DEFAULT_FRAMESET Page Default FRAMESET Add... Insert

| |DEFAULT_HIDDEM Page Default hidden fields Change...

| |DEFAULT_IMDEX Fage Default process m. . Delete Del

: DEFALLT_Lay0UT Page Default layout Duplicate. ..

| |DEFAULT_SCRIPT Fage Default zcript ' OEFAOLT_SCRIFT

| |DEFAULT_STYLE Page Default Cascading... DEFAULT_STYLE

| |DEFALLT_TRACE Page Default trace DEFALLT_TRACE

DTD FRAMESET Paoe =HTML 1.0 Frame... OTD FRAMESET

| 1}

|

Close | Add.. Delete |

33 components retrieved HTML *LOCAL [DEM [EMi

Add
Press the Add button to Add a new Component.

Duplicate

If you select a component and press the right mouse button, a floating menu is
displayed. On this menu are these menu items: Change, Delete and Duplicate. If

you select Duplicate, the selected component will be used as a template for a
new component and its details will be displayed in the Add dialog box for the
type of component you have selected.

With this feature you can easily create components without having to enter
similar values over and over again.

Change

Select the component in the list and press the Change button. The dialog box
that is displayed will depend on the type of component you are changing.

Delete

To delete a component from the Web Component Registry, select the component
to be deleted in the list and press the Delete button. You will be asked to
confirm the deletion.

Add a new Component

Duplicate

Banner Component (HTML mode)
File Component

Page Component

Script Component (HTML mode)
Text Component

Visual Component

Web Link Component (HTML mode)

T 10.6 Components Menu

Add a new Component

After you press the Add button on the Maintain Components dialog box, the
Add Component dialog box is opened. This is always the first step in defining a
new Web component unless you use the Duplicate feature.

Add Component g|

Companent; ||
E stenzion:

Sec. Eut:

Tupe: Banner -

Continue. .. | Cancel |

Component

The new Web component's name. This is the name you will use in conjunction
with the <RDML COMPONENT> LANSA tag.

Extension

The file extension. This indicates the mode in which you are processing. If you
are in BASIC mode, you will need to select the file extension you require.

Sec. Ext. (XML mode)

Secondary extension specifies the sub-extension (also called the XML
Application) to be used to identify the Component. This value enables you to
simplify the search for XML documents.

Type

Select the Type of component from the drop down list of possible Web
component types.

Continue

To enter the component's details, press the Continue button. The details required
depends on the Type of component that you are creating. It could be a:

Banner Component (HTML mode)
File Component

Page Component
Script Component (HTML mode)

e Text Component
e Visual Component
e Web Link Component (HTML mode)

T 10.6.1 Maintain Component

Duplicate

If you are adding many new components, you can use the Duplicate feature to
easily create components without having to enter similar values over and over
again.

To use the Duplicate feature, simply select the component on which to base your
new component and right click with the mouse to display the pop-up menu.
Select Duplicate from the pop-up menu. The appropriate Add component dialog
box is opened with the entry fields pre-filled with the values of the selected
component.

T 10.6.1 Maintain Component

Banner Component (HTML mode)

Banner Web components allow you to create a banner as a list of images or as a
list of Web components. Banner Web components are used when you wish to
change the presentation or layout of your page periodically.

When defining the banner Web component as a list of Web components, the
Web components can consist of any type of Web components. For example, you
could create a Banner Web component that consists of a Visual drop down Web
component, check box Web component, radio button Web component. In
addition, the Banner Web component can embed another Banner Web
component.

This allows you to customize the presentation of your data. A Banner Web
component can be embedded into any HTML page in your application.

When you have chosen to create a Banner Web component, the Banner Type
dialog box is displayed.

Banner Type @

Select the tupe of banner you wish to create;

" Component
tode

" Input

" Dukput

* Mot Applicable

] | Cancel |

Banner Type

Select the type of banner you wish to create. A banner will consist of either
images or Web components. Your selection will be shown in the following
dialog box where you specify further details of the banner you have selected.

Mode

You can choose to define the Web component as a mode dependent Web
component by selecting the appropriate mode. For more details, refer to Web
Components and Modes.

T 10.6.1 Maintain Component

its:lansa086.CHM::/LANSA/ED0920.htm

Add/Change Banner Component

When you select the OK button, the Add or Change Banner Component dialog
box, as appropriate, is displayed. If you are creating a number of Banner
Components, you can use the Duplicate feature.

Add Banner Component @|
Component: WEBSTART Banner type: Image
Description; || [Digplay link in new window

|Ipdate frequency;

* Update eveny visit

" Update every week

" Update every n daps
" Update every n months

Banner [tems
Set Image Dezcription Click Count IJRL
< >

Add. |
QK | Cancel |

The Banner type you have chosen is displayed in the top right corner of the box.
You can work with either a set of images or a set of components. You use the
Add, Change or Delete to modify the definition of the banner Web component.

Description
The description of the Web component in the Web Component Registry.
Display link in new window

If this option is selected, it will open the URL / Link on a particular banner
image in a new browser window. By Default, the URL / Link on a banner image
will open in the current browser window.

Update frequency
Select the appropriate frequency in the list. Additional options will be requested,

depending on the frequency selected.

e Update every visit - Cycle through each image or component on a per visit
basis (i.e. each time the banner component is used — it will be updated to the
next item).

e Update every week - Cycle through each image or component on a
particular day of the week. For example, you could create a Banner
component that changes every Monday.

e Update every n days - Cycle through each image or component based on
number of days. For example, you could create a Banner component that
changes every 50 days.

e Update every n months - Cycle through each image or component on a
monthly basis. For example, you could create a banner Component that

changes every 3 months on the 10™ day of that month.
Banner Items

If you are using multiple banner images in a cycle, the images in the cycle are
shown in the Banner Items list in the dialog box.

Make Current

In the list of images, the image that is current is indicated by a tick in the Set
column.

To make a different image the current image, select the image you wish to make
current, right mouse click to bring up the popup window and choose the Make
Current command. This image will be the current image the next time the
Banner Web component is called.

Press the Add... or Change button to provide further details.
T Banner Component (HTML mode)

Add/Change Banner Detail

You reach the Add or Change Banner Detail dialog box by selecting the Add...
or Change button on the Add/Change Banner Component dialog box.

Add Banner Detail K]

Set: 0

Image:

|
Drezcription: |

Click Count: 0 ra
JRL:

Set

The number specified in Set controls the sequence in which images are cycled.
You should start at 0 and increment by 1 for each image. LANSA for the Web
assumes that the images assigned to the Banner Web component are assigned a
sequential number.

Image/Component

If you are displaying a list of images, enter the name of the Image file. The
Image file must reside in the Images location as defined for the
Data/Application Server in File Location in the Web Administrator.

If you are displaying Web components, this field will be entitled '‘Component'.
In this case, enter the name of the Web component to be displayed.

Description

This description is displayed when a mouse is positioned over the banner when
it is viewed in the browser.

URL

The URL of the supplier of the image. When you click on the image in the
Banner Web component, the URL will be used to locate the Web site attached to
the image. You will require the URL only if you are creating a list of Images.

its:lansa085.chm::/lansa/jmp_0340.htm

Click Count

LANSA for the Web provides you with a facility to keep count of the number of
times the image is selected when the banner is displayed. This feature allows
you to provide advertising space in your application.

Click-tracking only applies to Banner Web components that consist of images.

You can view the current click-tracking status of each individual item in a
Banner Component by looking at its details in this Banner Detail dialog box.
This number is automatically updated for each item each time the user clicks on
a banner to visit that particular Web site / URL.

The click-tracking counter is held field W11CLK in LANSA table DC@W11.

T Banner Component (HTML mode)

File Component

If you are adding or changing a File Web component, the Add/Change File
Component dialog box, as appropriate, will be displayed. If you are creating a
number of File Components, you can use the Duplicate feature.

Add File Component §|

Component: BRIT

Drezcription: |
File: |
Library:
tode
" Input
" Dutput

* Mot Applicable

QK | Cancel |

Description
Describes the component in the Web Component Registry.

File and Library

The file definitions are specified in these entry fields. LANSA does not validate
the existence of the file on the host. The file will not be created by LANSA. You
must create the file.

The file is treated by LANSA as a data stream file. LANSA does not validate
the content of the file. However, LANSA tags can be embedded in the file.

If you are connected to a host type Other then the Library entry field will be
disabled and the File entry field will allow for a full path filename.

For the AS/400 files, if a library is not specified, the library list of the user
profile at execution time will be used by LANSA to locate the file.

Mode

You can choose to define the Web component as a mode dependent Web
component by selecting the appropriate mode. For more details, refer to Web
Components and Modes in the Web Function Guide.

T 10.6.1 Maintain Component.

its:lansa086.CHM::/LANSA/ED0920.htm

Page Component

If you have selected a Page as your Component Type, the Add or Change Page
Component dialog box, as appropriate, is displayed. If you are creating a
number of Page Components, you can use the Duplicate feature.

Add Page Component EI

Component: WEEBDOC

Description: ||

Fage: |

ode
" Input
" Dutput
* Mot Applicable

QK | Cancel |

Description

Describes the component in the Web Component Registry.

Page

Specify the name of the HTML/XML page. A Page Web component allows you
to use an HTML/XML page as a Web component. The HTML/XML page must

be created using this Web Function Editor. In other words, the HTML/XML
page must be known to LANSA for the Web.

An example of a Page Web component is STDHEADER.
Mode

You can choose to define the Web component as a mode dependent Web
component by selecting the appropriate mode. For more details, refer to Web
Components and Modes in the Web Function Guide.

T 10.6.1 Maintain Component

its:lansa086.CHM::/LANSA/ED0920.htm

Script Component (HTML mode)

If you are working with a Script Web component as your Component Type, the
Add or Change Script Component dialog box, as appropriate, will be displayed.
If you are creating a number of Script Components, you can use the Duplicate
feature.

Add Script Component K|

Component: "WEBDOC

Dezcription: ||

Script; |

b ode
" Input
" Output
* Mot Applicable

QK | Cancel |

Description
Describes the component in the Web Component Registry.

Script

Specify the name of the HTML page containing the script functions. Script Web
components are treated by LANSA for the Web as HTML pages stored in the
LANSA internal tables. This Script Web component page must be created using
this Web Function Editor.

LANSA for the Web does not restrict you to a particular script language. In
other words, you could be creating a JavaScript or VBScript Script Web
Component.

LANSA for the Web does not validate the functions specified in the Script Web
component. You must ensure that the script you have created is syntactically
correct. You must verify your script before creating it as a Script Web
component.

Mode

You can choose to define the Web component as a mode dependent Web
component by selecting the appropriate mode. For more details, refer to Web
Components and Modes in the Web Function Guide.

T 10.6.1 Maintain Component.

its:lansa086.CHM::/LANSA/ED0920.htm

Text Component

If you are working with a Text Web component as your Component Type, the
Add or Change Text Component dialog box, as appropriate, is displayed. If you
are creating a number of Text Components, you can use the Duplicate feature.

Add Text Component K|

Component: WEBDOC

Drezcription: |

Text:

tode
" Input
" Dutput
* Mot Applicable

] | Cancel |

Description
Describes the component in the Web Component Registry.
Text

Enter the text associated with the component. The length of the text is limited to
255 characters. The text may include HTML/XML tags. RDML tags as part of
the text are not resolved.

Mode

You can choose to define the Web component as a mode dependent Web

component by selecting the appropriate mode. For more details, refer to Web
Components and Modes in the Web Function Guide.

T 10.6.1 Maintain Component.

its:lansa086.CHM::/LANSA/ED0920.htm

Visual Component

If you have selected a Visual Web component, the Add or Change Visual
Component dialog box, as appropriate, is displayed. If you are creating a
number of Visual Components, you can use the Duplicate feature.

Add ¥isual Component §|

Component: "WEBDOC

Drezcription: |

Fage:
tode
* [nput

" Dukput

] | Cancel |

Description

Describes the component in the Web Component Registry.

Page

Specify the name of the HTML/XML page. Typically, the name of the page will
be the same name as the Web component.

The named HTML/XML document must be created by the Web Function
Editor.

Mode

This indicates the mode of operation for the Visual Web component. If the
Visual Web component is to be used to replace an entry field, the mode should
be set to Input. If you want the Visual Web component to replace an output

field, select the Output option. For more details, refer to Web Components and
Modes.

T 10.6.1 Maintain Component

its:lansa086.CHM::/LANSA/ED0920.htm

Web Link Component (HTML mode)

If you are working with a Web Link component as your Component Type, the
Add/Change Web Link Component dialog box, as appropriate, is displayed. If

you are creating a number of Web Link Components, you can use the Duplicate
feature.

Add Web Link Component E]

Component: WEBDOC

Drezcription: |

Linked Process: |

Linked Function: |

Linked Description; |
[OnClick:

Type
{* Buttan

" Image

Description
Describes the Web component in the Web Component Registry.
Linked Process and Linked Function

The function to invoke when the link is selected is described by the Linked
Process and Linked Function fields. These fields are not enabled if the OnClick
check box is checked.

Linked Description

This is the text displayed if the component is a button. If the component is an
image, it is the text displayed when you position your mouse over the
image/button when it is displayed in the browser.

OnClick

If you check this box, you will be able to enter the commands to be executed in
case of an OnClick event. You may have to edit DEFAULT_SCRIPT or
<process name>_SCRIPT to add the Java Script Function. If OnClick is

checked, the fields Linked Function and Linked Process will be disabled.
Type

The Type determines if the link is displayed as a button or an image. If it is to be
displayed as an image, the image file name must also be supplied.

If an image is specified, the image file must be stored in the Images

directory defined in the File Location page of the Configure ... options
in the LANSA for the Web Administrator.

T 10.6.1 Maintain Component

10.6.2 Generate Component

The Generate Component command allows you to either generate an input
mode File Web component (File - HTML mode only) or an input mode Visual
Web component (Visual).

LANSA for the Web supports the automatic creation of mode dependent Web
components for:

e Drop downs

e List boxes

e Radio buttons

e Check boxes.

e Generate Visual Component

e Generate File Component (HTML mode)

e Considerations for using File Web Components

T 10.6 Components Menu

Generate Visual Component

Visual Web components can be used to enhance the presentation of your
functions.

When you select Visual ... from the Generate Component option, the Generate
Visual Component dialog box is displayed.

Generate Yisual Component

Component: |

Extenzion:

Sec. Ext:

Yizual Type: Check. box ﬂ

Form Element Mame Overide:

Repogitor Data
File:

Field far W alue:
Field for Description:

r
v

Static Data
Walue:

Dezcription:

] | Cancel

LT

Component
Specify the name of the Web component.
Sec. Ext. (XML mode)

Secondary extension specifies the sub-extension (also called the XML
Application) to be used to identify the Component. This value enables you to
simplify the search for XML documents.

Visual Type
Select the required Type from the drop down list.

Repository Data
If you have selected a Visual Type of Drop Down, List Box or Radio Button,

you will need to provide Repository-based information. LANSA for the Web
will build the visual Web component from the data contained in the file you
specify.

File

The name of the file. This file must be known to LANSA Repository on the
host. The HTML/XML generated is based on the data in this file.

Field for Value

The name of the field you want to use for the VALUE keyword in the resulting
HTML/XML. This is the field containing the data that will be returned to your
application at the Server.

Field for Description
The description of the entry displayed to the user.

Use Library List

Select this option if you want to use the user profile's library list to locate the
source file instead of the library associated with the file in the LANSA
Repository.

Include blank entry

By default, a blank entry is generated which is used when evaluating the
<RDML CHECKVALUE> tag. This sets the default field value to *BLANK. If
you do not want to generate a blank entry for the component, deselect this
option.

Static Data

If you are building a check box, you must enter the two values in this area.
Value

The value for the checked state of the check box.

Description

The description of the check box.

Form Element Name Override

This is used for HTML only. If a name is provided it will be used as the name of
the HTML form elements.

If not provided, the component name is used to name the form elements.

OK
When you select the OK button, the Visual Web component will be generated

automatically and the Web Component Registry updated to reflect the Web
component. The component will be created as an input Visual Web component.

If a Web component of the same name already exists, the new Visual Web
component will replace the existing Web component. The HTML/XML
associated with the existing Web component will be backed up before the new
Web component is created.

Note: Make sure that you enter correct values for the fields in the Repository
Data area, otherwise the component will not be generated.

T 10.6.2 Generate Component
Test Case:
Test Plan Writer: Torkel CronholmDate Written:

LANSA Version: 11.4Date Last Tested:
Purpose: Generate Visual Component from Web Function Editor dialog.

Comments: For all test cases it is assumed that the tester knows how to
generate a visual component, and how to ensure that it is created. The test has to
be performed on both a RDML and a RDMLX partition on both a Windows and
an IBM i backend, ie, on four combinations (RDML Windows, RDML IBM i,
RDMLX Windows, RDMLX IBM i). Some tests will not be applicable for
RDML partitions, such as tests on LL2 files.

Use the option to provide a Form Element Name Override for some of the tests.
Please indicate with an O) which test items this option was used on.

Use the option to provide a Use Library List for some of the tests. Please
indicate with an L) which test items this option was used on.

Use the option to provide a Include blank entry for some of the tests. Please
indicate with a B) which test items this option was used on.

Some of the tests should generate a web component where there already exists a
web component. Please indicate with an R) which test items this test was done
for.

For this test, suggested naming convention for components is iiiEVXY#LD,

where
Iii stands for the initials of the tester

E stands for Editor (the components can be generated by a BIF as well as from
command line)

V is for a Visual component

X is the type of component. Use C for Check box, D for Drop down, L for
ListBox and R for Radio button.

Y is for form element name override. Use Y for Yes and N for No.

is denoting LL1 or LL2 file where applicable. Use 1 for LL1, 2 for LL2 and 0
if not applicable).

L is for data type for Value when creating a Drop down, ListBox or Radio
button. Use A for Alpha, P for Packed, S for Signed, C for Char, D for Date, T
for Time, Z for DateTime, I for Integer, F for Float, S for String and omit if not
applicable.

D is for data type for Description when creating a Drop down, ListBox or Radio
button. Use A for Alpha, P for Packed, S for Signed, C for Char, D for Date, T
for Time, Z for DateTime, I for Integer, F for Float, S for String and omit if not
applicable.

Example: A tester named Douglas Noel Adams creating a Visual component
using a Drop down with element override for an LL2 file (using Alpha for Value
and Signed for Description) should name the component: DNAEVDY2AS.
Always name the form element name override in a consistent manner, ie, add _O
to the name to create the override. Form Element Name Override would be
DNAEVDY?2AS_O for this example.

For Check Box, use any test for Value and Description fields.

In test items 1 - 27 the tester will attempt create a visual component according to
above.

The expected result in test items 1 - 27 is that the component is created as per the

test.

Tester: Date Commenced: Date
Completed:
Test Expected Results Pass/
Fail
1 Checkbox:

2 Drop down, ListBox and Radio button
using LL2 file

Value: Alpha, Description: Alpha

3 Drop down, ListBox and Radio button
using LL2 file
Value: Packed, Description: Alpha

4 Drop down, ListBox and Radio button
using LL2 file
Value: Signed, Description: Alpha

5 Drop down, ListBox and Radio button
using LL2 file
Value: Char, Description: Alpha

6 Drop down, ListBox and Radio button
using LL2 file

Value: Date, Description: Alpha

7 Drop down, ListBox and Radio button
using LL2 file

Value: Time, Description: Alpha

8 Drop down, ListBox and Radio button
using LL2 file

Value: DateTime, Description: Alpha

9 Drop down, ListBox and Radio button
using LL2 file

Value: Integer, Description: Alpha

10 Drop down, ListBox and Radio button
using LL2 file

Value: Float, Description: Alpha

11 Drop down, ListBox and Radio button
using LL2 file

Value: String, Description: Alpha
12 Drop down, ListBox and Radio button
using LL2 file

Value: Alpha, Description: Alpha

13 Drop down, ListBox and Radio button

using LL2 file

Value: Alpha, Description: Packed

14 Drop down, ListBox and Radio button
using LL2 file
Value: Alpha, Description: Signed

15 Drop down, ListBox and Radio button
using LL2 file
Value: Alpha, Description: Char

16 Drop down, ListBox and Radio button
using LL2 file
Value: Alpha, Description: Date

17 Drop down, ListBox and Radio button
using LL2 file
Value: Alpha, Description: Time

18 Drop down, ListBox and Radio button
using LL2 file
Value: Alpha, Description: DateTime

19 Drop down, ListBox and Radio button
using LL2 file

Value: Alpha, Description: Integer

20 Drop down, ListBox and Radio button
using LL2 file

Value: Alpha, Description: Float

21 Drop down, ListBox and Radio button
using LL2 file

Value: Alpha, Description: String

22 Drop down, ListBox and Radio button
using LL1 file
Value: Alpha, Description: Alpha

23 Drop down, ListBox and Radio button
using LL1 file
Value: Packed, Description: Alpha

24 Drop down, ListBox and Radio button
using LL1 file
Value: Signed, Description: Alpha

25 Drop down, ListBox and Radio button
using LL1 file
Value: Alpha, Description: Alpha

26 Drop down, ListBox and Radio button
using LL1 file

Value: Alpha, Description: Packed

27 Drop down, ListBox and Radio button
using LL1 file

Value: Alpha, Description: Signed

28 Drop down, ListBox and Radio button
using incorrect LL1 file

29 Drop down, ListBox and Radio button
using incorrect LL2 file

30 Drop down, ListBox and Radio button
using correct LL1 file, but incorrect
fieldnames

31 Drop down, ListBox and Radio button
using correct LL2 file, but incorrect
fieldnames

32 Leave some of the required text fields
empty when generating a visual
component

33 Check the tab order in the dialog (Either
when in "Check Box" mode or in "Drop

down, ListBox and Radio" mode)

Error message in Web
Function Editor

Error message in Web
Function Editor

No message in Web
Function Editor, but the
components will not be
created

No message in Web
Function Editor, but the
components will not be
created

Error message in Web
Function Editor

Tab order is from top to
bottom, left to right

Generate File Component (HTML mode)

When you select File... from the Generate Component option, the Generate File
Component dialog box is displayed. Refer to Considerations for using File Web
Components.

Generate File Component &|

Component: ||

E stension:
Sec. Eut:

Yizual Tope: |Eheck b ﬂ

Repogitor Data
File:

Field for W alue;

Field for Description:

r
v

Static D1ata
Walue: |

Dezcription: |

File [aut file]: |

-

] | Cancel |

Most of the fields in this dialog box are identical to the Generate Visual
Component dialog box.

Component
Specify the name of the Web component.
Sec. Ext. (XML mode)

Secondary extension specifies the sub-extension (also called the XML
Application) to be used to identify the Component. This value enables you to
simplify the search for XML documents.

Visual Type
Select the required Type from the drop down list.

Repository Data

If you have selected a Visual Type of Drop Down, List Box or Radio Button,
you will need to provide Repository-based information. LANSA for the Web
will build the visual Web component from the data contained in the file you
specify.

File

The name of the file. This file must be known to LANSA Repository on the
host. The HTML/XML generated is based on the data in this file.

Field for Value

The name of the field you want to use for the VALUE keyword in the resulting
HTML/XML. This is the field containing the data that will be returned to your
application at the Server.

Field for Description
The description of the entry displayed to the user.

Use Library List

Select this option if you want to use the user profile's library list to locate the
source file instead of the library associated with the file in the LANSA
Repository.

Include blank entry

By default, a blank entry is generated which is used when evaluating the
<RDML CHECKVALUE> tag. This sets the default field value to *BLANK. If
you do not want to generate a blank entry for the component, deselect this
option.

Static Data

If you are building a check box, you must complete these two entries:

Value

The value for the checked state of the check box.
Description

The description of the check box.

File (out file)

Enter the target file specification. This file is created as a source physical file
and holds the generated HTML for the Web component.

Use library in component definition

Select this option if you want to use the user profile's library list to locate the
source file instead of the library associated with the file in the LANSA
Repository. This option is disabled if you are connected to a host type Other.

If this option is selected the library and file combination is used each time the
component is required in your application.

OK

When you select the OK button, the File component will be generated
automatically and the Web Component Registry will be updated to reflect the
new/modified component. The component will be created as an input File
component.

Note: Make sure that you enter correct values for the fields in the Repository
Data area, otherwise the component will not be generated.

If a Web component of the same name already exists, the new Visual Web
component will replace the existing Web component. The HTML/XML
associated with the existing Web component will be backed up before the new
Web component is created.

T 10.6.2 Generate Component

Considerations for using File Web Components

LANSA will automatically generate an empty AS/400 source physical file for
your AS/400 file Web components.

Using the Web Function Editor, select the Components menu and choose the
Generate Component - File.

You will need to enter the target AS/400 file specification (library name/file
name) in the AS/400 file (out file) field. This file will be created as a source
physical file and will be used to hold the "data", i.e. the HTML for the Web
component.

If the Use library in component definition option is selected, each time the
component is required in your application, the library and file combination is
used. Do not select the option if you want to use the user profile used by
LANSA for the Web to locate the file when you run your application. In this
case, the library specification of the file is not stored in the LANSA for the Web
component registry. This option is very useful if your application requires you
to display different data for the same field, depending on the user profile used to
run the application. You can use a different AS/400 file Web component for
each user. In this case, a different AS/400 file would be created, each containing
the HTML to display the data, for each user profile. These AS/400 files would
be installed in the appropriate AS/400 library. The library list attached to the
user profile would then be used to locate the correct file.

If the Use library in component definition option is not selected, the library for
this component will not be stored as part of the file definition in the Web
component registry. When the application is executed, LANSA for the Web will
still use the Web component, but, it will use the library list attached to the user
profile in order to locate the AS/400 physical file (since no library is attached to
the file definition in the Web component registry).

T 10.6.2 Generate Component

Test Case:

Test Plan Writer: Torkel CronholmDate Written:
LANSA Version: 11.4Date Last Tested:

Purpose: Generate File Component from Web Function Editor dialog.

Comments: For all test cases it is assumed that the tester knows how to
generate a file component, and how to ensure that it is created. The test has to be
performed on both a RDML and a RDMLX partition on both a Windows and an
IBM i backend, ie, on four combinations (RDML Windows, RDML IBM i,
RDMLX Windows, RDMLX IBM i). Some tests will not be applicable for
RDML partitions, such as tests on LL2 files.

Use the option to provide a Use Library List for some of the tests. Please
indicate with an L) which test items this option was used on.

Use the option to provide a blank entry for some of the tests. Please indicate with
a B) which test items this option was used on.

Some of the tests should generate a web component where there already exists a
web component. Please indicate with an R) which test items this test was done
for.

On IBM i ONLY, some of the tests should generate a web component where Use
library in component definition is selected. Please indicate with a U) which test
items this test was done for.

1) if you specify the name of the output file, eg, FILE123, it will be created in
the current library

2) if you specify the name of the output file, eg, POIDTALIB\FILE123, it will be
created in PO1IDTALIB. If you ticked the check box the component definition
will also include the library so the web runtime knows where to get the file

3) if you specify the name of the output file, eg, POIDTALIB\FILE123, it will be
created in PO1IDTALIB. If you DID NOT tick the check box the component
definition will NOT include the library so the web runtime will use the library
list to get the file

For this test, suggested naming convention for components is iiiEFX#LD, where
iii stands for the initials of the tester

E stands for Editor (the components can be generated by a BIF as well as from
command line)

F is for a Visual component

X is the type of component. Use C for Check box, D for Drop down, L for
ListBox and R for Radio button.

is denoting LL1 or LL2 file where applicable. Use 1 for LL1, 2 for LL2 and 0
if not applicable).

L is for data type for Value when creating a Drop down, ListBox or Radio
button. Use A for Alpha, P for Packed, S for Signed, C for Char, D for Date, T
for Time, Z for DateTime, I for Integer, F for Float, S for String and omit if not
applicable.

D is for data type for Description when creating a Drop down, ListBox or Radio
button. Use A for Alpha, P for Packed, S for Signed, C for Char, D for Date, T
for Time, Z for DateTime, I for Integer, F for Float, S for String and omit if not
applicable.

Example: A tester named Douglas Noel Adams creating a File component using
a Drop down with element override for an LL2 file (using Alpha for Value and
Signed for Description) should name the component: DNAEFD2AS.

For Check Box, use any test for Value and Description fields.

Ensure that the nominated file is physically created in the File System for both
Windows and IBM i. Also ensure that the nominated file overwrites the file if it
already exists. An easy way to do the overwrite test is to generate a different
type of component and check its contents afterwards.

In test items 1 - 27 the tester will attempt create a file component according to
above.

The expected result in test items 1 - 27 is that the component is created as per the
test.

Tester: Date Commenced: Date
Completed:
Test Expected Results Pass/

Fail

Checkbox:

Drop down, ListBox and Radio button
using LL2 file

Value: Alpha, Description: Alpha
Drop down, ListBox and Radio button
using LL2 file

Value: Packed, Description: Alpha
Drop down, ListBox and Radio button
using LL2 file

Value: Signed, Description: Alpha
Drop down, ListBox and Radio button
using LL2 file

Value: Char, Description: Alpha

Drop down, ListBox and Radio button
using LL2 file

Value: Date, Description: Alpha

Drop down, ListBox and Radio button
using LL2 file

Value: Time, Description: Alpha

8 Drop down, ListBox and Radio button
using LL2 file

Value: DateTime, Description: Alpha

9 Drop down, ListBox and Radio button
using LL2 file
Value: Integer, Description: Alpha

10 Drop down, ListBox and Radio button
using LL2 file
Value: Float, Description: Alpha

11 Drop down, ListBox and Radio button
using LL2 file
Value: String, Description: Alpha

12 Drop down, ListBox and Radio button
using LL2 file
Value: Alpha, Description: Alpha

13 Drop down, ListBox and Radio button
using LL2 file
Value: Alpha, Description: Packed

14 Drop down, ListBox and Radio button
using LL2 file

Value: Alpha, Description: Signed

15 Drop down, ListBox and Radio button
using LL2 file

Value: Alpha, Description: Char

16 Drop down, ListBox and Radio button
using LL2 file
Value: Alpha, Description: Date

17 Drop down, ListBox and Radio button
using LL2 file
Value: Alpha, Description: Time

18 Drop down, ListBox and Radio button
using LL2 file
Value: Alpha, Description: DateTime

19 Drop down, ListBox and Radio button
using LL2 file
Value: Alpha, Description: Integer

20 Drop down, ListBox and Radio button
using LL2 file

Value: Alpha, Description: Float

21 Drop down, ListBox and Radio button
using LL2 file

Value: Alpha, Description: String

22 Drop down, ListBox and Radio button
using LL1 file
Value: Alpha, Description: Alpha

23 Drop down, ListBox and Radio button
using LL1 file
Value: Packed, Description: Alpha

24 Drop down, ListBox and Radio button
using LL1 file
Value: Signed, Description: Alpha

25 Drop down, ListBox and Radio button
using LL1 file
Value: Alpha, Description: Alpha

26 Drop down, ListBox and Radio button
using LL1 file
Value: Alpha, Description: Packed

27 Drop down, ListBox and Radio button
using LL1 file

Value: Alpha, Description: Signed

28 Drop down, ListBox and Radio button
using incorrect LL1 file

29 Drop down, ListBox and Radio button
using incorrect LL2 file

30 Drop down, ListBox and Radio button
using correct LL1 file, but incorrect
fieldnames

31 Drop down, ListBox and Radio button
using correct LL2 file, but incorrect
fieldnames

32 Leave some of the required text fields
empty when generating a visual
component

33 Check the tab order in the dialog (Either
when in "Check Box" mode or in "Drop
down, ListBox and Radio" mode)

Error message in Web
Function Editor

Error message in Web
Function Editor

No message in Web
Function Editor, but the
components will not be
created

No message in Web
Function Editor, but the
components will not be
created

Error message in Web
Function Editor

Tab order is from top to
bottom, left to right

10.6.3 Graphic Variables

For more details about graphic variables, refer to Graphic Variables in the Web
Function Guide.

The Graphic Variables command allows you to Add, Change or Delete graphic
variables.

Graphic Variables FE|
M ame | Tope | Walue *
4 s LWIBL WIE_LIST2 *MOIB
LW 3BL WIZC55_M Text *MOEI
LW 3EBL WISC55_02 Text *MOEI
LW 3BL WISC55_03 Text *MOEI
Q *Lw3BL_WIZMENU Text *MOEBI
W LwIBLWIZOST Text “NOBLCI
Q *Lw3BLACE WIS _LIST2 Colar LooDDD
% *Liw3BLACE WIZC55_M Colar DooDDD e
£ *

Cloze | Add... | Change. .. | Delete |

Select a Graphic Variable in the list and press the Delete button to delete a
Graphic Variable. You will be asked to confirm your deletion.

Select a Graphic Variable in the list and press the Change... button to open the
Change Graphic Variable dialog box.

Press the Add... button to Add Graphic Variable, or use the Duplicate feature.

Duplicate

If you select a graphic variable and click the right mouse button, a floating
menu is displayed. On this menu are menu items: Change, Delete, Duplicate. If
you select Duplicate, the selected graphic variable will be used as a template for
a new component and its details will be displayed in the Add Graphic Variable
dialog box.

With this feature you can easily create multiple graphic variables without having
to re-enter the values.

Task Tracking

If you are using LANSA's Task Tracking, then you will be asked for the Task Id
when you add, change, or delete a Graphic Variable.

T 10.6 Components Menu

its:lansa086.CHM::/LANSA/ED0800.htm

Add Graphic Variable

For more details about graphic variables, refer to Graphic Variables.

Add Graphic Variable X

M amne: ||

Type: Color -

Walue: |

Name

Enter the name of this Graphic Variable. Note that the name must start with an
asterisk (*). If you have used the Duplicate feature, the name displayed will be
the name of the graphic variable you selected as a template for this new graphic
variable. In this case, you must change this name.

If the Graphic Variable displayed is not the one on which you wanted to base the
new graphic variable, press Cancel to return to the Graphic Variables list and
select the correct one.

Type

Select the Type from the drop down menu. Valid types include Color, File or
Text. For more details, refer to Types of Graphic Variables.

Value

Enter the value that you require for the Type selected. A maximum of 255
characters can be entered

If you are specifying an image file name, be sure that the specified image is
stored in the image location as defined using the LANSA for the Web
Administrator.

If you are specifying a color, you can use the name (such as limegreen) or the
hexadecimal value (such as #32CD32).

If you are specifying text, you can use HTML/XML tags in the text. Do not use
RDML tags in the text.

OK
Press the OK button when done.

T 10.6.3 Graphic Variables

its:lansa086.CHM::/LANSA/ED0800.htm
its:lansa086.CHM::/LANSA/ED0810.htm

Change Graphic Variable

For details refer to Graphic Variables.

Change Graphic Variable g]
M ame: *Lw IRMENUBKGHD
Type: Color [d
" alue: |Elf~3.'r'

Name

You cannot change the name. If the Graphic Variable displayed is not the one
you want to change, press Cancel to return to the Graphic Variables list and
select the correct one.

Type

Select the Type from the drop down menu. Valid types include Color, File or
Text. For more details, refer to Types of Graphic Variables.

Value

Enter the value that you require for the Type selected. A maximum of 255
characters can be entered

If you are specifying an image file name, be sure that the specified image is
stored in the image location as defined using the LANSA for the Web
Administrator.

If you are specifying a color, you can use the name (such as limegreen) or the
hexadecimal value (such as #32CD32).

If you are specifying text, you can use HTML/XML tags in the text. Do not use
RDML tags in the text.

OK
Press the OK button when done.
T 10.6.3 Graphic Variables

its:lansa086.CHM::/LANSA/ED0800.htm
its:lansa086.CHM::/LANSA/ED0810.htm

10.7 Options Menu

The Options Menu contains the following options:

10.7.1 Configure - to set the options that control your use of the Web Function
Editor.

10.7.2 Font - a standard windows Font dialog box.

10.7.3 Invoke Third Party Editor - use this command to start the third party
editor, if you using one.

10.7.1 Configure
The Configure command allows you to set the options you require when you are
using the Web Function Editor. These are:

Third Party Editor

View
Miscellaneous

The pages you use to specify your preferences will vary slightly depending on
whether you are working in HTML or XML mode. If you have been accustomed
to working with HTML pages and now you want to modify XML documents,
you should review your configuration options to see check if they are still
suitable while working in XML mode.

T 10.7 Options Menu

Third Party Editor

This page allows you to specify the HTML or XML Editor of your choice. You
do not have to use a third party editor.

Configuration Options @

Third Party Editar lHiew | Miscellansous |

E ditar: |nu:utepad.e:-:e

Browse. .

[Start Editor every time

[Automatically save changes after returning from E ditar

(] | Cancel | Help |

Editor

The name (including the path) of the editor you want to use. Press the Browse
button to locate the Editor on your PC.

You must not edit the LANSA generated HTML/XML using a graphical editor
even though the editing tool you use may allow you to. This is because the
generated HTML/XML contains LANSA Web components (some of them are
also HTML/XML pages). In addition, there are LANSA tags embedded. For
example, you cannot edit the <RDML MERGE="&BUTTONS"> tag
graphically since this is an instruction to LANSA when the Web function is
executed.

Start Editor every time

Select this option if you want to start the editor (that you have specified here)
every time you use the Open command to retrieve an HTML/XML page from
the LANSA Repository.

If this option is not selected, you can start your chosen editor by selecting
Invoke Editor from the Options menu.

Automatically save changes after returning from Editor
When you have finished editing the HTML/XML with your chosen editor, the

LANSA Web Function Editor will check if any changes have been made to the
HTML/XML. If there have been changes and if you have selected this option,
the HTML/XML is saved into the LANSA Repository.

If this option is not selected, you will have to save the changes manually by
selecting the Save command in the File menu.

T 10.7.1 Configure

View
This page allows you to choose the features to be used when you compare text.

Configuration Options @

Third Party Editor Migw l Miscellaneuus]

Compare Background Colors

Inzerted Text ;
Deleted Text - -

Edit and Compare ‘Windows

[Synchronized Scrolling

" Harizantal Split
* “ertical Split

(] | Cancel | Help |

Compare Background Colors
Define the colors to be used for the Inserted Text and Deleted Text.

Edit and Compare Windows

Select the Synchronize Scrolling option to synchronize the scrolling between
the two windows when comparing two HTML/XML pages.

The comparison windows can be split Horizontally or Vertically.
T 10.7.1 Configure

Miscellaneous
This page allows you to control the Most Recently Used list in the File menu.

Configuration Options @

Third Party Editor | Yiew Miscellaneaus |

tozt Recently Uzed Files Optionz
Items in MAL list: [4 j (Fange 0-10]

| ClearmpUList |

Max, Undo Actions: |30 ﬂ[Hange 1-32000)

[v Enable archive functionality when saving

(] | Cancel | Help |

Items in MRU list

Enter the number of items, in the range 0 to 10, that you would like retained for
listing in the File menu.

Clear MRU List
Press this button to clear the current Most Recently Used list.

Max. Undo Actions

Specify the number of actions you wish to retain so that you can undo them if
necessary. To undo actions, select Undo from the Edit menu.

Note that the higher the number you enter here, the more system resources that
will be used.

Enable archive functionality when saving

This option will only be enabled if the Administrator options have been set:
Enable automatic backup of generated HTML and XML

and

the Save previous copies is greater than zero.

If the box is checked, you will be asked if you wish to archive the previous
version of the file whenever a document is saved. If you answer Yes when
prompted, LANSA will save the original version of the document as Version 1.

For more details, refer to Versioning of Pages.
T 10.7.1 Configure

its:lansa086.CHM::/LANSA/ED0520.htm

10.7.2 Font

The Font command allows you to change the font settings in the Editor. It does
not change the font settings of the HTML/XML lines in the HTML/XML page.
If you need to change the font setting of a particular HTML/XML line, use the
 tag.

T 10.7 Options Menu

10.7.3 Invoke Third Party Editor

This command invokes the HTML/XML editor you have chosen to edit your
HTML/XML pages. This command is disabled if you have not chosen an editor.

T 10.7 Options Menu

10.8 Tools Menu

The Tools Menu contains the following options:
e 10.8.1 Keywords
¢ Add Keyword

e Maintain Keyword

10.8.1 Keywords

Keywords allow you to specify the links to other functions for WEBEVENT
functions. The links are identified by keywords, which are the values assigned
to the user defined keys (i.e. enter, continue, and so on) in your LANSA
functions.

The Keyword submenu from the Tools menu allows you to choose either Add or
Maintain. You can create a new keyword from either command, however, the
Add option is quicker if you simply want to create a new keyword - it saves you
waiting for the list of existing keywords to be displayed.

You cannot change a keyword. First you must delete the link, then add a new
keyword.

Alternatively, you can use Web link components to define the links instead of
using this command.

Add Keyword
Maintain Keyword

T 10.8 Tools Menu

Add Keyword
If you are creating a new keyword, select Add from the Keyword sub menu. The
Add Keyword dialog box is displayed.

This dialog box allows you to define the links to other LANSA functions for
your user defined keys.

Add Keyword X
Language: Drezcription:
Process: |ENG ﬂ |
Function:
Linked Process:
K. d:
i Linked Function:

] | Cancel |

Process, Function and Keyword
Specify the LANSA process, function and keyword respectively.

The keyword is case sensitive. If you use 'SUBMIT' in uppercase in your
RDML USER_KEY statement, then you must use 'SUBMIT" and not 'submit’
when defining the keywords.

Language

Select the language for the button's description (this option is only enabled if
you are connected to a multilingual partition).

Description

Specify the description for the button on the browser window.
Linked Process and Linked Function

Specify the linked function and Function.

T 10.8.1 Keywords

Maintain Keyword

To change some keyword details, or to delete a keyword, you need to select it
from a list of Processes. To limit the list you need to select from, when you
select the Maintain command, a Process dialog box is displayed for you to enter
a full or partial Process name.

Process E|
Process: W

Enter a full or partial process name.
Proceszes that match that full or partial name
will be retrieved.

] | Cancel |

Process

To limit the number of LANSA processes listed, enter a partial string sequence,
for example, "DEJ" to display all LANSA processes starting with "DEJ".

To display all the keywords in your system, leave this field blank.

When you select the OK button, the Maintain Keywords dialog box is displayed
listing all the processes matching the criteria that you have requested.

Maintain Keywords rg|
Process | Function | K.epwaord | D escription | Linked Process | Linked Fur
WIZaRD2 WIZEDd WIZSAY Apply WiZaRD2 WIZED4
WIZARD2 WIZL0Z WIZFIN Finish WiZaRD2 WiZL02
WIZARDZ2 WIZL0Z WIZHAT Mext WiZaRD2 WiZL02
WIZARD2 WIZMO4 WIZSAY Apply WiZaRD2 WIZ04
£ »

Close | Add. | | |

The list shows you the processes and functions to which the keywords belong.
The Keyword parameter is the value used to define the USER_KEYS parameter
in the DISPLAY or REQUEST command in your RDML function.

To change a keyword, select a Process in the list and press the Change... button.
The Change Keyword dialog box is displayed.

To delete a keyword, select a Process in the list and press the Delete button. You
will be asked to confirm your deletion.

To add a new keyword, press the Add button. The Add Keyword dialog box is
displayed. Alternatively, to add a new keyword, you can select New from the
Keyword command.

T 10.8.1 Keywords

Change Keyword

If you are changing a keyword, select a process in the list in the Maintain
Keywords dialog box and press the Change button. The Change Keyword
dialog box is displayed.

This dialog box allows you to define the links to other LANSA functions for
your user defined keys.

Change Keyword

Language: Drezcription:
Process: i |-‘5-DD|}'
Function:
li Linked Process; [WIZARDZ
e Linked Function; [WIZk04

] | Cancel |

Process, Function and Keyword

These are as specified for the Process you have chosen.

The keyword is case sensitive. If you use "SUBMIT" in uppercase in your
RDML USER_KEY statement, then you must use "SUBMIT" and not "submit"
when defining the keywords.

Language

The language for the button's description (this option is only enabled if you are
connected to a multilingual partition).

Description
The description for the button displayed in the browser window.

Linked Process and Linked Function
The linked function and Function.
Press OK to accept your changes or Cancel to dismiss this dialog box.

T Maintain Keyword

Test Case:

Test Plan Writer: Torkel CronholmDate Written:
LANSA Version: 11.4Date Last Tested:

Purpose: Test that the help file is loaded correctly. The help file is loaded with
the same language as the program is running in. The name of the help file is
LWEdt<LANG>.chm where <LANG> is either Eng, Fra of Jpn. Note that at the
time of writing, no LWEdtFra.chm or LWEdtJpn.chm file exists. Test for those
has to be simulated by using copies of other files. The help file(s) are located in
the WebUltilities folder of the configuration.

You can choose which language to run the program in by editing the registry
setting responsible for the language, ie,

HKEY_ LOCAL_MACHINE\SOFTWARE\LANSA\<encoded name of
path>\LWEBGEN. Item Language is either ENG, FRA or JPN

The French language DLL is named lwebefra.dll and is located in the
WebUtilities folder of the configuration.

The Japanese language DLL is named lwebejpn.dll and is located in the
WebUtilities folder of the configuration.

Comments:
Tester: Date Commenced: Date
Completed:

Test Expected Pass/

Results Fail

1 | Ensure you have a copy of the Eng help file | File present there
in the same folder as the program. after 11.4 install.

2 | Start the program in English. Use menu to | The Eng help file
go to Help - Contents is loaded

3 | Start the program in French. Ensure there is | The Eng help file
no LWEdtFra.chm file present. Use menu to | is loaded
go to Help - Contents
4 | Start the program in French. Ensure there is | The Eng help file
no LWEdtJpn.chm file present. Use menu to | is loaded
go to Help - Contents
5 | To test language version of the help file, you | N/A
can copy CHM files from elsewhere and
name them LWEdtFra.chm resp.
LWEdtJpn.chm
6 | Start the program in English. Use menu to | The Eng help file
go to Help - Contents is loaded
7 | Start the program in French. Ensure there is | The "Fra help
a LWEdtFra.chm file present. Use menu to | file" is loaded
go to Help - Contents
8 | Start the program in Japanese. Ensure there | The "Jpn help
is a LWEdtJpn.chm file present. Use menu | file" is loaded
to go to Help - Contents
9 | To test that the language DLL and the help | N/A
file go hand in hand, we need to simulate
that the chosen language DLL is missing.
10| Rename the FRA language DLL. N/A
11| Start the program in French. Ensure there is | Program will start

no LWEdtFra.chm file present. Use menu to

in English and

go to Help - Contents

Eng help file is
loaded

12| Start the program in French. Ensure there is | Program will start
a LWEdtFra.chm file present. Use menu to | in English and
go to Help - Contents Eng help file is
loaded
13| Rename the FRA language DLL back to N/A
what is what before step 10
14| Rename the JPN language DLL. N/A

15

Start the program in Japanese. Ensure there

Program will start

is no LWEdtJpn.chm file present. Use menu | in English and
to go to Help - Contents Eng help file is
loaded
16| Start the program in Japanese. Ensure there | Program will start
is a LWEdtJpn.chm file present. Use menu | in English and
to go to Help - Contents Eng help file is
loaded
17| Rename the JPN language DLL back to N/A

what is what before step 14

18

Test Case:

Test Plan Writer: Torkel CronholmDate Written:

LANSA Version: 11.4Date Last Tested:

Purpose: Test that the About Box has the correct information

Comments:
Tester: Date Commenced: Date
Completed:
Test Expected Results | Pass/
Fail
1| Start the program. Cancel from the connect | "LANSA Editor
screen. Do Help About. Mode
Version 11.4.0
(11404)
© 2007 LANSA"

2 | Exit the program

Program exits

3| Start the program and connect in HTML
mode.

"LANSA Editor
HTML Mode

Version 11.4.0
(11404)

© 2007 LANSA"

Exit the program

Program exits

Start the program and connect in XML
mode.

"LANSA Editor
XML Mode

Version 11.4.0
(11404)

© 2007 LANSA"

Exit the program

Program exits

Start the program and connect in BASIC
mode.

"LANSA Editor
BASIC Mode

Version 11.4.0
(11404)

© 2007 LANSA"

Exit the program

Program exits

12. Web Development Tips & Techniques

Following are some general Web development tips and techniques for building
your Web Function Applications:

12.1 HTML as Field Contents

12.2 Automatic Data Apportionment

12.3 Considerations for Browse Lists

12.4 Message Presentation Layout

12.5 Using <RDML MERGE="&END">

12.6 Cascading Style Sheets

12.7 Retrieve Additional Information from Browse List

12.8 Handle the ENTER key in Browsers

12.9 Embed a Calendar Control

12.10 Modify LANSA for the Web Messages

12.11 Set the Initial Focus in an HTML Page

12.12 Tailoring the DEFAULT_SCRIPT

12.13 Generate Static Page Output to the IFS (Integrated File System)
12.14 Integrate LANSA Applications with Static HTML Pages

12.15 CheckBox Visual Web Components

12.16 Extend LANSA Drop Downs

12.17 Modifying charset for non-English Systems

It is strongly recommended that you review the Web and Internet examples in
the LANSA SET (Samples Examples Templates) materials. These materials are
available on the LANSA Encyclopedia CD-ROM and the www.lansa.com Web
site. You might find the following types of samples and examples:

e Select Multiple Entries in List

e Checkbox Initial State

e Data Apportionment

e Buttons Linking to Same Function
e Determining Selected Row Number
e Expandable Menus

e Select a Date from a Calendar

http://www.lansa.com

Select a Start and End Date from a Calendar
Select a Date in Browse list

Input/Output Fields in Browse list Column
Input/Output Fields in Browse list Row
Downloading a File from IFS

Uploading a File to IFS

Everything about Browse lists

Handling Enter Key Problems

12.1 HTML as Field Contents

A technique that can be used to enhance your application is to embed the HTML
as the contents of one or more fields in your application. The HTML will be
accepted as browser instructions.

For example, if you wanted to embed hyperlinks into your application, the
HTML for the hyperlink could be the value of a particular field. The field could
be a working field in your RDML function. The value of the field can be
assigned programmatically.

For example, the DEPTAB file contains a Department Code and Department
Description. If you were to use a Department Description as follows:

<center>Adminstration Department</center>

then the HTML tags would be processed by the browser and only the data
would be displayed as follows:

Administration Department
The Department Description would appear centered in the display.

12.2 Automatic Data Apportionment

LANSA for the Web supports the automatic apportionment of data. This feature
is particularly useful for fields in your HTML form where the data can exceed
the 256-character limitation. For example, if you have a field in your HTML
form that accepts user feedback or comments, you would require this field to
accept more than 256 characters. However, LANSA fields are limited to 256
characters.

LANSA for the Web allows you to use a single field in your HTML form, but
yet if the data exceeds the field's length, the data will not be lost.

The technique used by LANSA for the Web is to use sibling fields, following
the naming convention:

<field name><sequence number>

The name of the sibling fields consists of two parts, the field name and a
sequence number. The length of the sibling field name must be 9 characters,
with the sequence number part padded with leading zeros.

For example, if your field name is COMMENT. The sibling fields would be
COMMENTO01, COMMENTO02, up to COMMENT99. However, if the field
name were COMMT, the sibling fields would be COMMT0001, COMMTO0002,
up to COMMT9999.

In other words, if the data length you intend to support is large, then the field
name should be short, to allow for more sibling fields.

If the sibling fields are used in your application, LANSA for the Web will
apportion the data and store each part of the divided data in the sibling fields. If
the number of fields is too small to hold all of the data, the rest of the data will
be lost.

As an example, if you wanted to create a component for the COMMENT field
that allows the user to type in as much comments/feedback as he wishes, you
can create a textarea component. This component can be created as an input
mode Visual Web component.

<RDML CHECKVALUE="YES">

<textarea name="COMMENT" rows="6" cols="75">
<RDML MERGE="COMMENT">

<RDML MERGE="COMMENTO01">

<RDML MERGE="COMMENTO02">

<RDML MERGE="COMMENTO03">

<RDML MERGE="COMMENT04">
<RDML MERGE="COMMENTO05">
</textarea>
</RDML>

You will notice that the field is only identified by a single name, COMMENT.
However, the data is populated using 6 fields, COMMENT, COMMENTO1,
COMMENT02, COMMENTO03, COMMENT04 and COMMENTO05, using the
<RDML MERGE> LANSA tag.

When the form is submitted to the Web server, LANSA for the Web will handle
the apportionment of the data automatically. It determines if the length of the
returned data is greater than 256 characters. If the length exceeds 256
characters, it will apportion the data into portions, with each portion split at 256
characters. The first 256 characters is stored in the COMMENT field. The
second portion is stored in COMMENTO1, the third in COMMENTO02, and so
on.

If the data length exceeds 1536 characters (256x6), then any data greater than
1536 characters will be lost, unless you have defined other sibling fields in your
application, i.e. COMMENTOG6, etc.

Refer to 12.2.1 Specifying Apportionment Position.

12.2.1 Specifying Apportionment Position

By default, LANSA for the Web uses 256 as the apportionment length. This is
useful if your fields are defined to be 256 characters. This default value is not
useful if your field length is less than 256 characters.

For such fields, LANSA for the Web allows you to specify the apportionment
position. If a apportionment position is specified, LANSA for the Web will
automatically apportion the data using the length specified.

To specify a apportionment position, the name attached to the field is modified,
using the following naming convention:

<field name>-Lnnn
where <field name> is the name of the field, padding with trailing blanks to 10

characters. This means that the eleventh (11™) position of the field name must
be the '-' character. The next character must be 'L', denoting apportionment
length.

nnn is the desired apportionment length.

Taking the example above, if the field lengths of COMMENT, COMMENTO01,
etc. was 75 characters, then the HTML line defining the text area would be
modified to be:

<textarea name="COMMENT -L075" rows="6" cols="75">If an
apportionment length is specified as part of the name of the text area, this
apportionment length will be used by LANSA for the Web to automatically
apportion the data.

If you are using large text areas in WEBEVENT functions, you may need to
enable Extended Exchange.

12.3 Considerations for Browse Lists

When working with a browse list for a LANSA Web function application, you
must adapt your thinking to the browser paradigm. Consider some of the
following points.

What works in the 5250 environment may not work on the Web.
Extending the browse list makes it longer and longer in LANSA for the Web.

The concept of "page at a time" in the 5250 environment is not the same for
the browser.

You should consider building browse lists to contain just ONE page and
work with the contents of that single page as it is displayed to the user.

Consider using "position to" logic so that only the relevant records are
retrieved and displayed. Using "position to" logic is a much better solution
than having the user either scroll through huge lists or page forward through
screen after screen.

Also, WEBEVENT functions do not support the use of a list with *SELECT
field.

12.4 Message Presentation Layout

LANSA for the Web allows you to customize the presentation of LANSA
messages in your application. By default, the LANSA messages are presented in
a list box style.

2 Enrol a New Employee - Microsoft Internet Explorer
J FEile Edit »iew Fawvorites Tools Help

e = - @aEIE-a-9FH -2 2

J Address I-@ hitp:f flansall: 1010/ CGFEIN LANSAVEB PFUNCTION« LO30F 741571324004 CEB 24591

LLLUEL

HOME MEML MHEXT BACK SEARCH HELP

Enrol a New Employee

A surname is required i’
_ Given name(s) must be specified

Addriess line 1 must be specilied

Post/zip code not in range 2000 wo 7999 =
Employee Number IA‘I 234

Employee Surname

Employee Given Name(s) I

Street No and Naine

Suburbor Townd. I

State and Country........

Post/ ZipCode IU

Hoime Phone Number |

Business FPhone Nunmber I

Departinent Code | -]

The Message Presentation layout standard page is only supported at the process
level. It is not supported at the function level.

You can override the format of the message presentation by using the standard
page feature. This is achieved by creating a standard page named as
DEFAULT_MSGPRES. In this standard page, you can define your own
message presentation layout. If this page is defined, LANSA for the Web will
use layout defined in this page to present the LANSA messages instead of the
default format (using a list box).

The DEFAULT_MSGPRES standard page is not shipped with the product. This
standard page is a facility that allows you to override the default message

presentation format.

An example of a DEFAULT_MSGPRES is shown below. This replaces the list
box format with a list of messages:

<table border="0" cellpadding="3" cellspacing="0" width="100%">

<tr bgcolor="cyan">

<td><img src="

<RDML MERGE="*LW3IMGMESSAGES">" alt="Messages" border="0" />
</td>

<td>

<RDML MESSAGES>

</td>

</tr>

</table>

A Enrol a New Emplayee - Microsoft Internet Explorer___________________________|

JEiIe Edit “iew Favorites Tools Help

[« -=» - QI E-A2-9mF =R

J Adcress I@ hitpcfflansald1:1 010/ CG-EINS LANSAWEB YFUNCTION + LOZ0F 731 47602 D071 CO812341

LLLEL

HOME MEML HE=T BACE SEARCH HELF

Enrol a New Emplovee

A surname is required

Given name(s) must be specified

Address line 1 raust he specified

Fost/zlp code not in range 2000 to 7999

Home phone number is required

Business phone number 1s required

Department code 1s requirecd

Invalid departiment code - press Prompt function key to select
Section code is required

Invalid section code - press Prompt function key to select
Salary maust be greater than zero

Start date 15 not valid - press Help function key

Employee Number |A1 234

Employee Surnaime I

Employee Given Name(s) I

Street Wo and WName

LANSA Web functions use a LANSA tag, <RDML MESSAGES> to determine
the position in the message presentation standard page to display the LANSA
messages. The line containing this tag will be repeated for each LANSA

message in your application.

In your message presentation standard page, you can embed LANSA tags. The
only restriction is that the line containing the <RDML MESSAGES> tag must
not contain any other LANSA tags.

When you run your LANSA Web enabled application, LANSA for the Web will
determine if there are any messages to display in your application. If there are
messages, it will check if there is a message presentation standard page. If such
a page exists, this page will be used to define the format of the message
presentation. If it does not exist, the default message presentation format will be
used.

12.5 Using <RDML MERGE="&END">

This tag allows the LWEB_JOB jobs to return to the pool of free jobs
immediately.

Under normal behavior, all LANSA jobs time out, whether they are the
traditional procedural style or WEBEVENT functions. When the jobs time out,
the user gets a 'Job Timed Out' message for the traditional procedural RDML
functions.

For WEBEVENT functions, LANSA for the Web manages the data exchange
(especially browse list data) and restarting of a new job automatically on
subsequent interactions. The user does not see a 'Job Timed Out' message.

For WEBEVENT functions, LANSA terminates as soon as a DISPLAY or
REQUEST command is processed. However, the LWEB_JOB is still reserved
for the user in case the user wants to interact further. The WEBEVENT job is
not returned to the pool of free jobs immediately, not until the job is timed out
(using the time out setting on your site).

The <RDML MERGE="&END"> tag is used with applications with high
transaction rates. Typically, these are functions that display search results. Once
the results are displayed, no further interaction with the function is expected
from the user.

LANSA for the Web does not save any data for these jobs. This means that no
browse list data is saved. If you include this tag in your HTML, DO NOT
expect browse list data or any of the HTTP environment variables (e.g.
*WEBUSER) to be exchanged between this function and any subsequent
function calls.

In summary, this tag should only be used for functions where you're absolutely
sure that there is no further interaction with the function or you're not relying on
the HTTP environment variables or the browse list does not need to be
exchanged.

12.6 Cascading Style Sheets

LANSA for the Web allows you to use cascading style sheets (CSS) with your
Web function applications. Cascading style sheets allow you to describe a style
that applies across one or more of your HTML pages. You can use CSS to
define the presentation of an HTML page, including the font (face, size and
color), background color, the positioning of elements within your HTML page
as well as text decoration such as italics or underline.

For more details on cascading style sheets, refer elsewhere for
information on Dynamic HTML (DHTML).

LANSA for the Web does not provide you with a CSS. You can create a CSS for
your applications by creating a standard page named as DEFAULT_STYLE. In
this page, you can define the presentation attributes of the elements in your
applications.

The DEFAULT_STYLE page allows you to embed the style information
directly into the HTML pages generated for your application. The CSS
definitions are encapsulated by the <style> and </style> HTML tags.

If you have Web enabled your LANSA applications prior to Release 7.5 H5, you
will need to recompile and regenerate the HTML for your functions.

Alternatively, you can modify the HTML pages manually and insert the
<RDML MERGE="&STYLE"> statement just after the line containing the
<title> element in the <head> section.

<RDML MERGE="&DTD_TRANSITIONAL">
<html xmlIns="http://www.w3.0rg/1999/xhtml">
<head>

<title><RDML MERGE="&FUNCTION"></title>
<RDML MERGE="&STYLE">

</head>

Example of Using a Cascading Style Sheet

FONTPREF1, FONTPREF2 and FONTPREF3 are created as Text Web
components. These Web components contain the font families designated for
the elements in your HTML page. The browser will attempt to locate and use
the fonts in the order they are specified in the Web component.

For example, FONTPREF1 can be:
"Lucida Handwriting","Arial","Times New Roman"

To enable the CSS support, you will need to create the DEFAULT_STYLE
page. An example of this page is provided below:

<style type="text/css">

body { font-family: <RDML COMPONENT="FONTPREF1">;
font-size: smallest;
color: gray;
margin-left: 5% }

table { font-family: <RDML COMPONENT="FONTPREF2">;
font-size: smallest;
color: gray }

h1, h2, h3 { font-family: <KRDML COMPONENT="FONTPREF1">;
font-size: large;
color: darkblue }

strong { font-family: <RDML COMPONENT="FONTPREF1">;
color: gray;
font-size: small }

input { font-family: <RDML COMPONENT="FONTPREF3">;
color: gray;
font-size: smaller }

select { font-family: <RDML COMPONENT="FONTPREF2">;
font-size: smallest }

</style>

The CCS1 specifications require the font names to be included in quotes. Some
browsers may work without the quotes, but regardless, font names should be
included in quotes.

12.7 Retrieve Additional Information from Browse List

LANSA for the Web allows you to retrieve additional information from a record
in a browse list. Typically, the information is stored in fields which have been
set up to be hidden in the browse list. In addition, these fields contain
information which are normally not required in the display.

By having these fields hidden, you can maximize the usage of the browser's
display area to display the browse list. You can then set up a field in the browse
list as a hot spot, i.e. a field which has a hyperlink to retrieve the additional
information.

When you select any of the hyperlinked fields, a separate browser window (like
the Help window) is used to display the additional information.

This feature will involve RDML programming. You will have to set the value of
a field programmatically, following the convention:

<a href="javascript:GetExtralnfo('<list name>',
'<entry number>"',

'<field #1>,

'<field #2>,

'<field #3>,

'<field #4>',

'<field #5>")"><text>

where
<list name> is the name of your browse list (DEF_LIST name),
<entry number> is the record number in the browse list,

<field #1> to <field #5> are the names of the fields you want to retrieve
information from,

<text> could be some text you set or the contents of another field concatenated
to this working field.

An example of the call would be:

<a href="javascript:GetExtralnfo('ListName', '001', 'field1’, 'field2’, 'field3’, '&:

The JavaScript function, GetExtralnfo, is provided for you by LANSA for the
Web. It is defined in the DEFAULT_SCRIPT page.

If you want to use this feature, you must observe the following:

Your browser must be enabled for JavaScript support.
Note the double quote (") characters used for the JavaScript function call.

Note the single quote (') used to delimit each parameter passed to the
JavaScript function, GetExtralnfo.

You can specify up to a maximum of 5 fields to retrieve the information.
Field parameters that are not used must be initialized to '&NULL'". (See
the sample HTML above).

You must not enable the Allow selection from any column in table option in
the LANSA for the Web Administrator.

12.8 Handle the ENTER key in Browsers

LANSA for the Web uses the onsubmit JavaScript method to detect when the
user has submitted the Form. The onsubmit JavaScript method calls a JavaScript
Function HandleENTERKey to check if the PROCESS and FUNCTION
Hidden Fields are Blank. If the fields are blank - an alert message is issued and
the form is NOT submitted as the HandleENTERKey Function returns False. In
WEBEVENT Functions, you can set the PROCESS and FUNCTION Hidden
fields to merge in the current process using the <RDML
MERGE="*PROCESS"> and the current Function using the <RDML
MERGE="*FUNCTION"> tags if the WEBEVENT Function is calling the
same Function to continue processing. The HandleENTERKey JavaScript as
well as the FORM Tag with the onsubmit method is shown below:

<form name="LANSA" method="post" action="CGI-BIN/LANSAWEB?
WEBEVENT+L0192D93983F9389E0293+WEB" onsubmit="return HandleElI

function HandleENTERKey()

{

if (document. LANSA._PROCESS.value ==" "l
document. LANSA. FUNCTION.value ==" "

{
alert("Form cannot be submitted using the ENTER button. Click on a BUT
return true;

}

else

{
return false;

}

}

12.9 Embed a Calendar Control

LANSA for the Web provides you with a calendar control that can be embedded
into your application.

a LAMSA Calendar - Microsoft Internet Explorer [lj[=] [E3

December =

This calendar control can enhance the presentation of your application if it
requires a calendar. If you need this calendar control, you will need to modify
the STDHEADER page, either the default or a process specific page.

You will want to include an extra image into the toolbar. When the image is
selected, it shows the calendar control. When you select a date from the
calendar control, it populates the field with the selected date.

You will need to include the following line into your STDHEADER page:

<img src="/IMAGES/TB_CAL.GIF" alt="Calendar" border="0" width="70" h

The calendar shipped with LANSA for the Web is configured to return the date
ina DD/MM/YY format.

In order to the use this JavaScript function (CallCalendar()), you must

remove the conditional RDML tags (ONCONDITION) from the calendar
JavaScript in the DEFAULT_SCRIPT.

12.10 Modify LANSA for the Web Messages

LANSA for the Web displays messages to the user under various circumstances.
For example, data validation message are displayed when records are inserted
into a file.

If you need to modify any of these messages, edit the LWEB.DAT file in the
LANSA shared library.

¢ Do not modify the sequencing of the lines within the file.

e Do not modify the JavaScript functions.

e Do not add or delete any lines in the file.

e Do not modify any of the words prefixed with the '%' character.

Multilingual Modifications

If you are using a non-English system and if you are encountering errors when
you select the 'Home' key or messages are not displayed correctly, you may
need to modify the syntax of the JavaScript functions.

You need to ensure that the following lines in the LWEB.DAT file look like this:
Note, in the following lines:

(1) represents the Primary Extension Name

(2) represents the Secondary Extension Name

(3) represents the Line Id.

(1) (2) Template (3) Text Data
Group
Name
HTM ERRORPAGE 0 <head><title>Error</title>
HTM ERRORPAGE 1 <script type="text/javascript"
language="javascript"> //<![CDATA[
HTM ERRORPAGE 2 function HomePage(){ parent.location="%s"; }
111>
HTM ERRORPAGE 3 </script></head><body><hr />

<h1>%s</h1>
<hr />

HTM ERRORPAGE 4 Return to Home
Page</body></htmI>
HTM HOMEPAGE 0 <head><title>Display Home Page</title>
HTM HOMEPAGE 1 <script type="text/javascript"
language="javascript"> //<![CDATA[

HTM

HTM

HTM
HTM

HOMEPAGE 2 function HomePage(){ parent.location="%s"; }
1>

HOMEPAGE 3 </script></head><body onload="HomePage()">
</body></html>

PREAMBLE 0 <!-- <?xml version="1.0"?> -->

PREAMBLE 1 <!DOCTYPE html PUBLIC "-

/IW3C//DTD XHTML 1.0

HTM
HTM
HTM
HTM
HTM

HTM

Transitional//EN"
PREAMBLE 2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
PREAMBLE 3 <html xmlns="http://www.w3.0rg/1999/xhtml">
RESETPAREN 0 <head><title>Reset Parent</title>
RESETPAREN 1 <script type="text/javascript"
language="javascript"> //<![CDATA[
RESETPAREN 2 function Reset(){ parent.location=
"%s://%s:%d/%s/%s?RESET+%s"; } /11>
RESETPAREN 3 </script></head><body onload="Reset()">
</body></html>

In particular, you need to ensure that the 'I" (Exclamation mark) character is
correct, as well as the '{' and '}' (braces) characters.

12.11 Set the Initial Focus in an HTML Page

LANSA for the Web provides you with a facility to run a JavaScript function
once the HTML page has been loaded by your browser.

By default, LANSA for the Web generates a LANSA tag that embeds a Web
component as part of the <body> tag.

<body bgcolor="<RDML MERGE="*LW3CLNTCOLOR">"

background="

<RDML MERGE="*LW3CLNTBKGND">" <RDML COMPONENT="FORI
This component is known as FORMINIT. This component does not exist in the
LANSA for the Web component registry, by default. However, this is a facility
which can be used to execute a JavaScript function as part of the form loading
function by the browser.

To activate this facility, create the FORMINIT Web component as a Text Web
component. Define the text to be:

onload="SetFocus()"

Once this FORMINIT Web component is defined, it means that for every
HTML page, it will attempt to execute the SetFocus function as part of the form
loading routine by the browser.

<body bgcolor="white"
background="/IMAGES/BACKGRD.GIF" onload="SetFocus()">

The JavaScript function, SetFocus, can be incorporated into your
DEFAULT_SCRIPT page. It traverses through all the elements defined in your
HTML form, looking for the first instance of an input field or a text area. Once
it has found any of these objects, it sets the initial focus to that form element.

function SetFocus()

{

var NumElements=document.LANSA.elements.length;

for (i=0; i<NumElements;i++)
{
if (document. LANSA.elements[i].type=="select-one" ||
document.LANSA.elements[i].type=="checkbox" ||
document. LANSA.elements[i].type=="textarea" ||

document. LANSA.elements[i].type=="text")

{
if (document. LANSA .elements[i].value!="")

document.LANSA .elements[i].select();

document. LANSA.elements[i].focus();
break;

}

}
}

12.12 Tailoring the DEFAULT_SCRIPT

The standard DEFAULT_SCRIPT shipped with LANSA for the Web is
extensive and contains some functions which are not essential for all
applications. Consequently it is possible to tailor the script to contain only the
functions required by your application. This will result in improved execution
performance because the volume of data being transferred to the browser is

reduced.

A tailored script can be created for a specific process and named

<process name>_SCRIPT
This script will be used when the specific process is executed.

If you wish to save your tailored script as DEFAULT_SCRIPT, it is

strongly recommended that you first save a back up version of the full
script.

Script function

SetButton

HandleSubmit

PathOnly
GetHelp

GetExtralnfo

SetSelect

Required/ When required

Optional
Optional

Optional

Required
Optional

Optional

Required

This function must be included if you are using
non-scrolling headers. Refer to Non Scrolling
Header.

This function must be included if you are using
non-scrolling headers. Refer to Non Scrolling
Header.

This function handles a request for Help, so it

must be included if your functions have Help
enabled.

This function is required if you are retrieving
additional information from a Browse List.
Refer to 12.7 Retrieve Additional Information
from Browse List.

its:lansa086.CHM::/LANSA/EDG610.htm
its:lansa086.CHM::/LANSA/EDG610.htm

SetNameLocation Required

CallCalendar Optional This function handles the Calendar control and
must be included if you have used this feature.
Refer to 12.9 Embed a Calendar Control.

SetDate Optional This function handles the Calendar control and
must be included if you have used this feature.
Refer to 12.9 Embed a Calendar Control

HandleEvent Optional This function is required for WEBEVENT
functions.

IsValidNumeric Optional This function is required if the Validate
numerics option on the Process/Function
compile was set to YES.

IsDigit Optional This function is required if the Validate
numerics option on the Process/Function
compile was set to YES.

IsValidDBCS Optional This is required if the LANSA development
language is DBCS.

IsDBCSChar Optional This is required if the LANSA development
language is DBCS.

12.13 Generate Static Page Output to the IFS (Integrated File
System)

The WEB_STATIC_PAGE Built-in Function allows you to output Static HTML
Pages directly to the IFS (Integrated File System). When you use this Built-in
Function, all DISPLAY / REQUEST statements in the RDML will be sent to the
IFS. Using this BIF to produce static HTML Pages allows users to access the
Static HTML, rather than dynamically generating the page each time a function
is run from the Browser. Static Pages can also be served up quicker than running
a LANSA function each time a user request is made from the Browser.

This Built-in Function can only be used in a Web-enabled process.

When using this BIF, the LANSA System owner or object owner must have
sufficient authority to create, delete and write to a file in the specified directory
or Default Path on the IFS - they will not be created. It is recommended that
DEFAULT_SCRIPT, STDHEADER, STDFOOTER, MESSAGES and
STYLESHEETS for the Process containing the Function be customized to be
suitable for a static page, thus reducing the size of the generated HTML Page. A
status message indicating the success or failure will be issued. Error Codes and
Descriptions in the status message can be found in IBM's standard file SYS in
library QSYSINC member ERRNO.

This Built-in Function can only be used in a Web-enabled process and
can only be run in BATCH mode. This is possible because there is no
screen interaction when using this BIF.

LANSA Functions that make use of the WEB_STATIC_PAGE BIF can be
executed via the Web Browser or a non-programmable terminal (NPT or green
screen). When the BIF is used and the function is run from the Browser, all
HTML will be sent to the IFS based on the parameters (e.g. Filename, Suffix,
Full Output Path on the IFS and Code page used to generate the IFS File) that
have been passed into the BIF. If no parameters are passed, default parameters
will be used. Refer to WEB_STATIC_PAGE in the LANSA Technical Reference
Guide for more information.

In a multi-tier deployment, IFS output will be sent to the Web server (front-end)
only when the function is executed from the Browser. If the Function is
executed from a non-programmable terminal in a multi-tier

scenario, IFS output will be sent to the Data Server (the back-end). Functions
using this BIF can also be submitted to run in Batch to generate or update static

its:LANSA999.CHM::/web_static_page.htm

HTML Pages.

This example of the WEB_STATIC_PAGE BIF will output Employee Details to
a static page on the IFS. Default Parameters will create the IFS File with the
Process/Function Name as the Default Filename and Panel Id as the Default
Suffix in the root directory of the IFS.(/).

FUNCTION OPTIONS(*DIRECT)

Sk 3k s ofe ok Sk e sfe Sk sk

GROUP_BY NAME#FLDLST) FIELDS((#EMPNO) (#SURNAME) (#

(#ADDRESS1) (#ADDRESS?2) (#POSTCODE) (#PHONE) (#FAX)

wkokkxkkk* The WEB_STATIC_PAGE BIF used here will send all

Fassskskkkdk DISPLAY/REQUEST statements to the IFS.

wdckxdckRkok Tt will be setup with Default Parameters.

USE BUILTIN(WEB_STATIC_PAGE)

dkdckxokkk Fetch Employee Details from Employee File for

wdckxdckRxdk the Employee No exchanged to his function.

FETCH FIELDS((*ALL)) FROM_FILE(PSLMST) WITH_KEY(A1234)

wdckxdckRxkk If Employee exists, output to IFS else send MESSAGE

[F_STATUS IS_NOT(*OKAY)

MESSAGE MSGTXT('Employee not Found in PSLMST File")

ENDIF

wdckRdckRxdk Output Display to IFS

DISPLAY FIELDS((#FLDLST))

When the WEB_STATIC_PAGE BIF is used, various parameters can be used to
setup the output path, filename and suffix parameters.

If the BIF is used as follows, the IFS File will be created in
/DIRECTORY 1/REPORT1/ with filename IFSFILE.htm.
USE BUILTIN WEB_STATIC_PAGE WITH_ARGS("IFSFILE™ "*NO'
"/DIRECTORY 1/REPORT1/"™)
If the BIF was setup as follows, the IFS File will be created in the root directory
(/) with filename IFSFILEOO1.htm — the Default Suffix is the PanellD.

USE BUILTIN WEB_STATIC_PAGE WITH_ARGS("IFSFILE"™
Hl*DFT"I Hl/”l)

12.14 Integrate LANSA Applications with Static HTML Pages

You can embed a LANSA application as part of your static pages or you can
embed a static page into your LANSA application. This technique uses the
Server Side Include (SSI) facilities provided by your Web serving product.

For more details on SSI support, refer to the Web serving product
manuals.

If you want to embed a LANSA application as part of your static page, you will
need to enable SSI support for that static page. In your static page, you will
include a SSI instruction to execute the LANSA application. In this scenario, the
HTML generated by the LANSA application will be part of the final HTML sent
to the browser, incorporating the static information from the static page.

If you are only using SSI in a number of your HTML pages, it is more expedient
to disable SSI Support at the system level (i.e. SSI Support is disabled in your
system definition) and enable the SSI support at the HTML page level by using
the <RDML SSI> tag.
If you want to enable an HTML page for SSI, make sure that the <RDML SSI>
tag is at the beginning of the page.

<RDML SSI="ON">

<RDML COOKIES="&UDCOOKIES">

<!-- Process : PSLSYS Personnel System Main Menu -->

<!-- Function : ENROL Enrol a New Employee -->

<l--Page :001 -->

An example of a SSI instruction to launch a LANSA application is:
<l--#exec cgi="CGI-BIN/LANSAWEB?procfun+products+prodcat+web"-->

Your Web Server product may not support parameter passing in the
URL syntax. In this case, you will need to create a CL program which
calls the LANSAWEB program.

For example, your CL program may be:

CALL PGM(WWWCGI/LANSAWEB) PARM(PROCFUN
PRODUCTS PRODCAT WEB)

If you want to embed a static page as part of your LANSA application, you can
also use the SSI feature. In this case, you will modify the HTML generated for

your application to include the SSI instruction to include the static page. You
must also enable the SSI support for your LANSA system.

An example of a SSI instruction to embed a static page is:
<!--#include virtual="prodinfo.htm"-->

12.15 CheckBox Visual Web Components

You can use checkboxes to enhance the presentation of your applications.
However, there is a limitation in using checkboxes in the interaction between
the browser and the Web server. This is a limitation in the interaction between
the browser and the Web Server. It is not a limitation imposed by LANSA for
the Web.

In HTML syntax, you can only define a value for the ON (selected) state for the
checkbox element. The browser only sends back a value for the checkbox if it is
selected. This means that if the checkbox is not selected, no value is sent back
by the browser.

You can visualize a field as a checkbox, by using the following HTML:
<input type="checkbox" name="RFLD" value="Y" />

This technique must only be deployed if the initial value of the
checkbox is unchecked.

Setting Initial State to Checked

If you visualize a field as a checkbox by just using the above technique, you
will have problems if the initial value of the field is to set the checkbox ON
(selected). If the user unchecks the checkbox, no value is sent back by the
browser. This means that your application will not know that the field has been
unchecked.

You can overcome this problem with a combination of a 'dummy’ field and a
JavaScript function.

This example should not be used to visualize fields in browse lists.

This technique will not work in browse lists.

Your checkbox Visual Web component would contain the following:

<input type="hidden" name="RFLD" value="<RDML MERGE="RFLD">"
size="1" />
<input type="checkbox" name="DUMMY" onclick="SetState(this, 'RFLD', 'Y
<script type="text/javascript" language="javascript">
//<![CDATA[
if (document. LANSA.RFLD.value=="Y")
document. LANSA.DUMMY.checked=true;
Mn1>

</script>
In the above example, RFLD is the actual name of the field you want to
visualize as a checkbox. Instead of visualizing this field as a checkbox, it is
hidden in the HTML. A 'dummy’ field is used to visualize the checkbox. When
the user clicks on the checkbox, a JavaScript function, SetState, is called to set
the value of the actual field, RFLD.

The initial value of RFLD is read as a result of the <RDML MERGE="RFLD">
LANSA tag. The JavaScript function will set the state of the checkbox (the
DUMMY field), dependent on the initial value of RFLD.

In this example, you assume that a value of '"Y" is the checked state. When the
checkbox is unchecked the value is 'N'.

Note that the HTML for the Web component is not encapsulated by the <RDML
CHECKVALUE> and </RDML> LANSA tags. You rely on the JavaScript
function attached to the Web component to set the initial state of the checkbox.

The SetState JavaScript function is used by the DUMMY field to set the value
of the actual field, RFLD. The third parameter of this function is the value for
the checked state whilst the fourth parameter is for the unchecked state.

The SetState JavaScript function can be embedded into your
DEFAULT_SCRIPT page:

function SetState(obj, RFIld, chkValue, unchkValue)
{
if (obj.checked)
RFld.value=chkValue;
else
RFld.value=unchkValue;
}

When the HTML form is submitted, the value attached to the RFLD field is
returned to your application. The value attached to the DUMMY field is
irrelevant since it is not used in your RDML function.

You will need to modify the check and unchecked values in the

function according to your application.

Using Checkboxes in Browse list

The above technique cannot be used for fields in browse lists because the names
of the fields in browse lists are changed by LANSA for the Web dynamically.

If you want to use checkboxes in browse lists with their initial set checked, you

will need to deploy the following technique. This technique is based on the
preceding example.

<input type="hidden" name="__{field name}-

<RDML MERGE="&ROWNUM" FORMAT=4> D"
value="<RDML MERGE="{field name}" size="{size}">" />
<input type="checkbox" name="DUMMY" value="<RDML MERGE="{field
name}'">"

onclick="SetCBState(this, '__{field name}-

<RDML MERGE="&ROWNUM"

FORMAT=4> D', 'Y'", 'N")"

<RDML ONCONDITION="{field name}">
checked="checked"

</RDML>

/>

{field name} is the name of the field you have defined in your DEF_LIST
command. This {field name} is padded with trailing blanks to 10 characters.

Note that this technique uses the <RDML ONCONDITION> tag to
determine the initial state of the checkbox.

This technique calls a different JavaScript function, SetCBState:

function SetCBState(obj, RFld, CY, CN)
{

var NumElements=document.LANSA.elements.length;

for (i=0; i<NumElements;i++)

{

if (document. LANSA .elements[i].name==RFId)

{

if (obj.checked) document. LANSA.elements[i].value=CY
else document. LANSA .elements[i].value=CN;

break;

}

}

}

12.16 Extend LANSA Drop Downs

LANSA for the Web provides you with two choices with visualizing your fields
as drop downs. You can either visualize the field as a Visual Web component or
the field can be defined to be a LANSA drop down in your LANSA Repository.

If your field is defined to be a LANSA drop down in your repository, LANSA
for the Web will automatically visualize the field as a drop down. LANSA drop
downs are useful when the data to populate the drop down is dynamic. Visual
Web components are useful when the data is fairly static in nature.

When you compile your function, the LANSA drop down fields are identified as
<RDML MERGE="&DD<name>" FIELD="<field>"> in the generated HTML.

LANSA for the Web allows you to extend the drop down in a number of ways.
You can choose to:

e Specify an offset position for the display of the drop down data.

e Specify that you wish to apportion the drop down data into VALUE and
DESCRIPTION parts. The VALUE part is returned to your program while
the DESCRIPTION part is displayed to the user.

e Visualize the drop down as a list box.
The syntax to extend the LANSA drop down is:

<RDML MERGE="&DD<name>" FIELD="<field>" OFFSET=
<position>" SPLIT
SIZE=<size>>

By default, you are unable to apportion the drop down data into its VALUE and
description parts. For example, the drop down data was "ADMAdministration",
this will be displayed in the drop down. The same value is also returned to your
program.

LANSA for the Web allows you to apportion the value of your drop down data.
In the example above, you may want "ADM" to be returned as the VALUE to
your program, but only display "Administration" in the drop down. You can
achieve this by editing the RDML tag and extending the tag.

The OFFSET keyword instructs LANSA for the Web to start from the offset
position when displaying the drop down data. In the example above, you may
only want to show "Administration" in the drop down, without the department
code, "ADM". In this case, the offset position would be 4.

If you only extend the RDML tag by specifying the OFFSET keyword, the
value returned to your application would be the drop down data. In the example,

this would be "ADMAdministration".

You can only use the SPLIT keyword if you specify an offset. If the SPLIT
keyword is specified, the value returned to your application will be the VALUE
portion of the apportioned data. In the example above, if the SPLIT keyword
were specified, "ADM" is the value returned to your application.
"Administration" will be the portion displayed to the user.

If you specify the SIZE keyword, you can convert the drop down into a list box.
The size attribute determines the size of your list box. For example, if you
specify SIZE=4, the LANSA drop down field will be visualized as a list box,
with the size of the list box set to be 4 entries deep.

12.17 Modifying charset for non-English Systems

Some HTML components shipped with LANSA include a meta tag reference to
charset 8859_1. Depending on your system this may need to be modified to a
charset appropriate for you installation.

For example:
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

These are the web components requiring modification in each partition in which
they are installed:

DEFAULT_LAYOUT
WIZLAYOO1
WIZLAYOO02
WIZLAYOO03
WIZLAYO04
WIZLAYOO05

Note: You will only have components WIZLAYOO01-WIZLAYOO5 if you have
installed the e-Business Framework Wizard.

WARNING: Re-installing LANSA for the Web and e-Business Framework
Wizard will re-set the charset to 8859_1.

Refer to IANA Encoding in the LANSA Integrator Guide for a list of codes.

its:lansa093.chm::/lansa/intb7_0510.htm

Tutorials for Web Functions & WEBEVENTSs

What are the Web Function Tutorials?

The LANSA Web Function Tutorials are a set of exercises designed to introduce
and reinforce the fundamental skills required to build Web Function
Applications with LANSA. The tutorials are integrated into the online
documentation.

To install the tutorials, refer to Tutorial Installation.

The following tutorials are included:

WEBO001 - Types of LANSA Web Functions

Web Functions Wizard Tutorials

WEBO002 - Coding a WEBEVENT Functions

WEBOO03 - iSeries Batch Debug

WEBO004 - LANSA Generated HTML Pages

WEBOO05 - LANSA Process Pages

WEBOO06 - Graphic Variables

WEBO007 - LANSA Tags

WEBO008 - Web Components

WEBO009 - Web Page Substitution (Optional - Advanced)
WEBO010 - Web Skeletons (iSeries)

WEBO11 - Using DEFAULT_HIDDEN

WEBO012 - Dynamic Components

WEBO013 - JavaScript and Browse Lists

WEBO014 - Browse Lists

WEBO15 - Data Apportionment

WEBO016 - Customizing Personnel Application (Optional)

Who Should Use the Tutorials?

The Tutorials can be used by novice and experienced LANSA developers who
wish to learn how to build Web function applications with LANSA for the Web.

In order to use the tutorials, you must be able to create LANSA processes and
functions using templates. You should know how to edit RDML and how to
create fields in the LANSA Repository.

Your Feedback

Your feedback regarding these tutorials will help us improve the overall quality
of the LANSA documentation and training. Please email your comments to
lansatraining@LANSA.com.au.

How Do I Use the Tutorials?

It is recommended that you complete the tutorials in sequence. The processes
and functions created in the first tutorials are reused in later tutorials.

The first steps in an exercise provide very precise descriptions of the tasks to be
performed. As the steps and tutorials progress, the instructions become much
more general.

All the tutorials use HTML. Be sure to use HTML mode when you use the Web
Function Editor.

The tutorials use the files from the Personnel Demonstration System.

What Partition Should I Use?

It is recommended that you use the DEM partition for the tutorial. The DEM is
automatically installed with a LANSA for iSeries system and is quickly set up
using Partition Initialization on a Visual LANSA system. The DEM system
contains the Personnel System demonstration system which contains the files
used by the tutorial.

If you do not use the DEM partition, you can set up another partition with the
Personnel System files. Remember, the partition must be properly Web-enabled.

If you do not use DEM, you can select any of your partitions when using the
tutorials. Testing or training partitions are ideal. You will need to import the
Personnel System demonstration files into the partition.

If you intend to set up another partition, it is recommended that you do NOT use
WERB as the partition identifier as this a reserved space and any changes to this
partition may affect other Web-enabled partitions in your system.

How Many Developers Can Use the Training?

There is no limit on the number of developers who may use the training at the
same time. However, it is important that developers have a unique identifier for
their work.

In the tutorial, each developer will use an object prefix iii which can be based
on his or her initials or could be assigned by a system coordinator. For example,
you will be asked to create a process named iiiPROCO1. If your initials are JDS,
you would create a process named JDSPROCO1.

mailto:lansatraining@LANSA.com.au

This iii prefix must be unique in the LANSA system (not just the partition) as
the iii prefix is used to create system variables. System variables are shared by
all partitions.

Setup Checklist

Check that these tasks have been completed before using the tutorials. If not, go
to the instructions following and complete them as applicable:

e Have you Web enabled the partition?

e Do you have the Personnel System demonstration files (DEPTAB, SECTAB,
PSLMST, etc.) installed into the partition?

e Have you loaded the graphic files used in tutorial WEB013? (See item 5 in
the iSeries Installation Steps below.)

e Have you installed the Web Functions Wizard into the partition?

You will require this information about your specific installation:

e The site address for your Web Server

e The partition being used

e A user profile and password with authority to the LANSA partition

e A user profile and password if process authentication has been set up.

Tutorial Installation

If you have not been able to answer "yes" the Setup Checklists question, you
will need to carry out some or all of the following steps.

iSeries Installation Steps

1.Select the partition to be used for training. (You may wish to create a new
partition.)

2.Use the PERSYS import on the LANSA iSeries Software CD-ROM to import
the Personnel System application into the partition.

3. Web enable the partition. For details, refer to the Task: Set up IBM i Partition
for Web Development in the Installing LANSA on IBM i Guide.

4. Use the LWEBWIZ2 import in the LANSA program library to import the
Web Functions Wizard into the partition.

5.This step is optional.

For the results as shown for Tutorial WEBO013, ten graphic files are required.
(These files will be supplied if you do the LANSA Web training in a

its:Lansa040.chm::/lansa/inseh_000.htm

classroom.)
You can create your own files, preferably images sized 144 x 155 pixels

(2.000 x 2.083 inches). Name the images emp1.jpg through to emp10.jpg

and load them to the LANSA default directory /images on your Web Server.

You should also specify the file names in the Business Phone field of
accessible records in the PSLMST file.

If these files are not in the /images directory, or not specified in the
PSLMST file, it will not affect the objective of the exercise. Instead of an
employee picture, you will simply see a box with an X, as no image is found.

Windows Installation Steps

If you have a DEM partition with the Personnel System files already installed in
your Visual LANSA system, then you should be albe to skip this step.

Create New Partition
If you wish to create a brand new partition:

1.Follow the instructions to create a new Partition in Create New Partition in the
Visual LANSA User Guide.

2.Initialize the new partition as described below.

Initialize a Partition

To prepare your new or existing partition for use with these Tutorials, you will
need to web enable the partition and install the Personnel System files. To do
this, complete the following steps:

1.Log off Visual LANSA if you are logged on.
2.Log on to Visual LANSA.

[Visual LANSA Logon]|
Uszer ID: |F'D<LISEF| DE User D LB
Pazgword: == Change DB Lu:ugu:un

Partition Current Language Tazk D

il

I_I,Istemlnlt Partitior it | Messagesl Eancell Help |

its:lansa012.chm::/lansa/l4wusr01_1625.htm

3.Highlight the partition to be used for training. If you don't have a partition to
use, then create it as described above.

4.Enter your password, but do not press OK.
5.Press the Partition Init... button to open the Partition Initialization dialog box.

[=] Partition Initialization B3 |

™ Mandatom Partition Initialization
[T Wisual L&MNSA Framewark:
¥ Enable for the Web

W i=-Buziness Framewark “Wizard
[T LaMSA Client field and file definitions

W Personnel System Demonstration material [including executable objects)

[T Run Demonstration

(] I Sha Lastl:cug...l Messagesl Eancell Help |

5.In the Partition Initialization dialog, select (that is, tick) the appropriate
options. These are:

e FEnable LANSA for the Web, if the partition is not yet web enabled.
e Web Functions Wizard.

e Personnel System Demonstration material, to obtain the data needed for the
tutorials.

WEBO001 - Types of LANSA Web Functions

Objective:

e To create a procedural function using a template and execute the process
menu and function over the Web.

e To highlight how the transaction monitor supports procedural functions.

e To create a WEBEVENT function using a template and execute this function
over the Web.

e To highlight the differences between procedural and WEBEVENT functions.
To achieve these objectives, you will complete the following steps:

Step 1. Create a Procedural Function

Step 2. Create a WEBEVENT Function

Step 3. Execute your Procedural Function
Step 4. Execute Your WEBEVENT Function
e Summary

Before You Begin

You may wish to review these topics and all of their related sections:
e Introduction to LANSA Web Functions

e Developing Applications with LANSA Web Functions

In order to complete the tutorials, you must have completed the installation as
described in the installation guide for the platform on which you are working.
Refer to Personnel Demonstration System for more details about the sample
files used in the tutorials. You will require the following information about your
specific installation:

e the site address for your Web server
e partition being used
e a user profile and password with authority to the LANSA partition

e if process authentication has been set up, you will require a user profile and
password.

its:LANSA086.CHM::/LANSA/ed0200.htm
its:LANSA086.CHM::/LANSA/ed0300.htm

Step 1. Create a Procedural Function

In this step, you will create a test process and a procedural test function. The test

function will use the FRENQO2 template to create a header/details style inquiry

function using the Department (DEPTAB) and Section (SECTAB) files.

1. Using the LANSA development environment, signon to the partition
nominated for the tutorials (usually DEM).

2. Create a new LANSA process named iiiPROCO00 Test Process (Procedural),
where iii are your initials. (If the process already exists, select a different set
of characters for iii.)

3. Enable your iiiPROCO00 process for web. If you need to know how, refer to
Web Enabling a LANSA Process.

4. Working with your iiiPROCO00 process, create a new function named iiiFNO
Display Sections Procedural. Be sure to specify that the function is generated
from an Application Template.

5. Select the FRENQO2Header/Detail Inquiry template and answer the
questions as shown below:

TEMPLATE QUESTION ANSWER

Enter the name of the base file to be used DEPTAB
by this template

Select related files to be used Select Section code table
SECTAB

Do you want this function to be part of an N
action-bar style process?

Fields in Header Area Select all fields

Fields in Detail/List Area Select DEPTMENT,
SECTION, SECDESC,
SECPHBUS

Design the fields in the header are DOWN DOWN
the screen or ACROSS the screen?

its:lansa086.CHM::/LANSA/ED0310.htm

6. You do not need to edit any of the RDML in this function.

7. Compile your iiiFNO function. For more details, refer to Compiling
Functions.

its:lansa086.CHM::/LANSA/ED0340.htm

Step 2. Create a WEBEVENT Function

In this step, you will create a test process and a test WEBEVENT function. The
test function will use the FRWEBENQO1 template to create a WEBEVENT
function which can be used to display information in the Department
(DEPTAB) and Section (SECTAB) files.

1. Create a new LANSA process named iiiPROCO01 Test Process

(WEBEVENT), where iii are your initials. (If the process already exists,
select a different set of characters for iii.)

2. Enable your iiiProc01 process for web. If you need to know how, refer to
Web Enabling a LANSA Process.

3. Working with your iiiPROCO1 process, create a new function named iiiFN1
Display Sections WEBEVENT. Be sure to specify that the function is
generated from an Application Template.

4. Select the FRWEBENQO1 template and answer the questions as shown
below:

TEMPLATE QUESTION ANSWER

Enter the name of the file to be SECTAB

used

Select keys to use for search Select DEPTMENT

Fields to appear in browse list Select DEPTMENT, SECTION,
SECDESC

How many entries per page 5

Fields to appear in detail Select all fields

What is the unique 2 character iii (where iii are your initials)

prefix

5. You do not need to edit any of the RDML in this function.

6. Compile your iiiFN1 function.

its:lansa086.CHM::/LANSA/ED0310.htm

Step 3. Execute your Procedural Function

In this step, you will execute your LANSA process menu and then execute your
procedural function. You will see the frames used with the process menu. As

you execute the procedural function, it will help you understand how the
LANSA for the Web transaction server operates.

1. Check that your iiiFNO function compiled successfully.

2. Open a browser window (Internet Explorer 5.0 or greater is recommended).
To execute your process menu, enter this URL:

http://<server domain name>/cgi-bin/lansaweb?process+iiiPROC00+
<Ppp~

where:

<server domain name> is the domain name or IP address of your Web
server

<ppp> is the LANSA partition
iii are your initials.

3. The process menu will appear something like this:

A Test Procedural Process - Microsoft Inlemet Explorer

File Edit Mics Favaritss Tools Hebp ‘
y 5 AL - = r
=L - @ w | A [@B Bl
Back Fansarnd! Stop Fefresh Home Search Favorites History Mal Piint Edt

Aelrtess [hip /101102102104 fegibinlans anen TpracessHprocilsifn00C+dam x| @hn H\inkx 3

-

Test Procedural T
Process 1
Welcome to

bd Lisplay Sections
Procecural)

2] Esil T Apphcalion

==

= LANSA Training & Doc
System=

LLUEL

|
|&1 Dane | InEmet s

4. Using the process menu in the left frame, click on the Display Sections
(Procedural) function to execute it.

5. Enter a Department code of ADM and press Next to see all Sections in the

Administration department. Your function might appear something like the
following:

A Display Sections [Froceduwral] - Microscft Inlemet Explorer

LOle L4t Miew Tavaritss Tools llep ‘
s A = =
.- .0 - I - s =
Back Farar! Stop Fefresh Home Search Favorites Higtory Mal Fiire Edir
Addecs I hiblp:e 41071021021 04CG1HBINALAMEAWEB?FUNCT ON L0 S0E00E0EES200M8F 2021 j @GD “ Link.s ¥

HOME © MENU © MEXT BALCK SEARCH HELP
Display Sections (Procedural)

Deparmment Code -ADM
Deparient Deycriptivn ADMITIISTEATION DPT

Soction :
Business Fhone

Descripticn

Number
9 01 DICERMAL ADM M SRV 579 2536

Q. FURCIZASING SLOTION 252 5472
ACCOUNTING SECTION 360 3632
9 04 SALES AND MARKEETTVG 364-2505
|&1 Dane | | Inemet

=
4

6. Press the Next button to return to the REQUEST for a Department Code.

This time enter a Department code of FLT and press Next to see all Sections
in the Fleet department

7. In order to demonstrate how the transaction server works, press the browser's
Back button to return to the REQUEST for a Department Code.

8. Enter a Department code of AUD and press the Next button. You should
receive the following type of error message:

The LANSA for the Web Transaction Server knows that the RDML function
is waiting for an input from the DISPLAY statement. To navigate in
procedural functions, you must use the buttons in the Web function
application. For more details, refer to Example of a Procedural Function.

9. Use the Menu button to return to the process menu.

Imvalid reqquest at this time - use menu or cancel

its:lansa086.CHM::/LANSA/Ed0210.htm
its:lansa086.CHM::/LANSA/ED0320.htm

Step 4. Execute Your WEBEVENT Function

In this step, you will execute your WEBEVENT function to help you
understand how it differs from the procedural function.

1. WEBEVENT functions are always called directly. To execute your
WEBEVENT function, enter this URL:

http: ff<=erver domain name-Jfogi-binflansaveb?procfun+iiPROC01+1iiFHO01 +<ppp -

where:

<server domain name> is the domain name or IP address of your Web
server

<ppp> is the LANSA partition
iii are your initials.

Your function might appear like this:

J File Edit “iew Favorites Toolz Help |

J@.@.@ﬁﬁ Q G oI B 4
Back Fonward Stop Refresh Home Search Favorites Histary (EE Frint
JAgdressl hitp: ##101.102.103. 104 cai-bind ansaweb Pprocfun+iproc i wifnd01 +dem j @GD HLlnks 2=
B
LLLEL
. .
Display Sections

Mext
Department..... |40k

ety L SASH

|@ Done

S

’_ ’_ |Q Intemet

2. Enter a Department code of ADM and press Next to see all Sections in the
Administration department. Your function might appear like this:

“J Display Sections - Microsoft Internet Explorer

J File Edit “iew Favorites Toolz Help

= =
Back Farard

> RGN A

Stop Refresh Home

-

b ail

Q [3

Search Favorites Histary

| ddess [@1 /C6 1IN LANGHWEBTWEBEVENT +L0213040D 5506800021 B30G4-DEMENG | > || Links 7

Display Sections

MNext Page | MNew Search |
Dept Section Section
Code Code Description
© ADMO01 DMTERITAL ADMINT SRV
© ADM 02 PURCHASING SECTICH
© ADM 03 ACCOUNTING SECTION
© ATM 04 SALES AND MARKETING
© ADM 05 MATNTENANCE
Powered hy LL:.U. EL:.
[
|@ Dane ’_|_|‘ Intemet 4

3. Use the browser's Back button to return to the previous screen.
4. Enter a Department code of FLT and press Next to see all Sections in the
Fleet department.

Notice that no error message is displayed. The WEBEVENT function fully
supports the browser's Back button. For more details, refer to Example of a

WEBEVENT Function.

its:lansa086.CHM::/LANSA/ED0330.htm

Summary

Important Observations

Procedural functions do not support the use of the browser's Back button. In
order to go back in the procedural paradigm, the user must use an equivalent
to the F12=Cancel key or button.

You must always call your WEBEVENT functions directly. You can not call
them from a process menu.

When testing your Web function applications, remember to use one of the
buttons (Next, Search, Menu, Ok, etc.) on the page to submit the data back to
the server. Do not press the Enter key unless specifically instructed. If you
wish to have the Enter key submit your page, you must add a JavaScript
function to handle this event. Refer to Handle the ENTER key in Browsers.

Tips & Techniques

The majority of your Web function applications will be built using
WEBEVENT functions.

If you are building applications for an Intranet, you may wish to Web enable
your existing LANSA applications instead of rebuilding WEBEVENT
applications.

What I Should Know

How to Web enable a LANSA process and its functions.
How to execute a LANSA process using a standard browser.
How to directly execute a LANSA function using a standard browser.

How procedural functions are different from WEBEVENT functions when
they execute over the Web.

Other Tutorials
You may wish to proceed to WEB002 - Coding a WEBEVENT Functions.

its:lansa086.CHM::/LANSA/ED1250.htm

Web Functions Wizard Tutorials

Depending on your final Web requirements, you could do the Web Functions
Wizard Tutorials now or you could do them all at the end of this workshop. The
Web Functions Wizard Tutorials are in the Web Functions Wizard Guide.

Objective:

To learn how to use the Web Functions Wizard to customize your LANSA Web
function applications. When you do the Wizard tutorials you will learn how to:

Customize browse lists and process specific layouts.
Use the Wizard to define menu components.

Adopt presentation layouts.

Customize a Presentation Layout

Customize a Menu Component

Customize System Wide Attributes

Import/Export an Application

its:LANSA089.CHM::/LANSA/tutorial_begin.htm

WEB002 - Coding a WEBEVENT Functions

Objectives:

e To understand how to create your own WEBEVENT functions by rewriting
a procedural Header/Detail style function as a WEBEVENT function.

e To understand how WEBEVENT RDML logic differs from procedural logic.
e To learn how to link WEBEVENT functions.
e To learn how to create re-entrant WEBEVENT functions.

To achieve these objectives, you will complete the following steps:

Step 1. Review Procedural Logic

Step 2. Create New Functions

Step 3. Define Keywords for Function Routing
Step 4. Test Your WEBEVENT Functions
Step 5. Re-entrant WEBEVENT Function

e Summary

Before You Begin

You may wish to review these topics and all of their related sections:

e WEBEVENT Functions

In particular, you should review the following:

e WEBEVENT Example

In order to complete the tutorials, you should have completed the following:
e WEBO0O01 - Types of LANSA Web Functions

its:lansa086.CHM::/LANSA/ED0400.htm
its:lansa086.CHM::/LANSA/ED0430.htm

Step 1. Review Procedural Logic

In this step, you will review the RDML logic of procedural functions and you
will redesign the function as two WEBEVENT functions. Each WEBEVENT
function will have just one display statement. For more details, refer to How Is
WEBEVENT Different?

1. Following is a sample of the code which is produced by the FRENQO02
template using the DEPTAB and SECTAB files:

FUNCTION OPTIONS(*NOMESSAGES *DEFERWRITE *DIRECT)
GROUP_BY NAMEM#HEADER) FIELDS(#DEPTMENT #DEPTDESC)
DEF_LIST

NAME(#iiiLIST) FIELDS((#LISTDUMMY *HIDDEN) #SECTION #SECDE
FdckxdckRkR* COMMENT(Loop until user EXITs or CANCELS)
BEGIN_LOOP

R10: REQUEST

FIELDS(#DEPTMENT) DESIGN(*DOWN) IDENTIFY (*DESC)
wdkkkxdkkk* COMMENT(Fetch file DEPTAB details)

FETCH

FIELDS(#HEADER) FROM_FILE(DEPTAB) WITH_KEY(#DEPTMENT) N
wokddkkxkdrk COMMENT(Select all file SECTAB details)

SELECT

FIELDS(#iiiLIST) FROM_FILE(SECTAB) WITH_KEY (#DEPTMENT)
ADD_ENTRY TO_LIST(#iiiLIST)

ENDSELECT

kKRR COMMENT(Display results to the user)

DISPLAY

FIELDS(#HEADER) DESIGN(*DOWN) IDENTIFY(*DESC) BROWSELIS"
wAckKAckR**R* COMMENT(Clear header and list and loop around)

CHANGE FIELD(#HEADER) TO(*DEFAULT)

CLR_LIST NAMED(#iiiLIST)

END_LOOP

Notes: You will use a list name of #iiiLIST, where iii=your initials.

2. Redesign this function using two WEBEVNT functions. For an example,
refer to How Does WEBEVENT Work? (Solutions are provided in Step 2.)

its:lansa086.CHM::/LANSA/ED0420.htm
its:lansa086.CHM::/LANSA/ED0410.htm

Step 2. Create New Functions

In this step, you will create two new functions with the code you have designed
from the previous step.

1. Create a new LANSA process named iiiPROC03 WEBEVENT Functions,
where iii are your initials. (If the process already exists, select a different set
of characters for iii.)

2. Enable your iiiPROCO3 process for web. If you need to know how, refer to
Web Enabling a LANSA Process.

3. Working with your iiiPROCO03 process, create a new function named iiiFN5
Request Department for Search. You will manually enter the code for the
function.

The RDML code in the function might appear something like this:

FUNCTION OPTIONS(*DIRECT *WEBEVENT)

CHANGE FIELD#DEPTMENT) TO(*DEFAULT)

REQUEST

FIELDS(#DEPTMENT) DESIGN(*DOWN) IDENTIFY (*DESC) MENU_KE

4. Working with your iiiPROCO03 process, create a new function named iiiFN6
Display Department/Section. You will manually enter the code for the
function. (TIP: You could start this new function by copying code from your
iiiFNO function.)

The RDML code in the function might appear something like this:

FUNCTION OPTIONS(*DIRECT *WEBEVENT)

GROUP_BY NAMEM#HEADER) FIELDS(#DEPTMENT #DEPTDESC)
DEF_LIST

NAME(#iiiLIST) FIELDS((#LISTDUMMY *HIDDEN) #SECTION #SECDE
CLR_LIST NAMED(#iiiLIST)

wAkskkxdkkkk COMMENT(Fetch file DEPTAB details)

FETCH

FIELDS(#HEADER) FROM_FILE(DEPTAB) WITH_KEY#DEPTMENT) N
FAdkskRxdkkkk COMMENT(Select the SECTAB file details)

SELECT

FIELDS(#iiiLIST) FROM_FILE(SECTAB) WITH_KEY (#DEPTMENT)
ADD_ENTRY TO_LIST(#iiiLIST)

ENDSELECT

wdckxdckRkkk COMMENT(Display results to the user)

its:lansa086.CHM::/LANSA/ED0310.htm

R10: DISPLAY
FIELDS(#HEADER) DESIGN(*DOWN) IDENTIFY (*DESC) BROWSELIS"

5. Compile the new functions.

Step 3. Define Keywords for Function Routing

In this step, you will use the Web Function Editor to define your WEBEVENT
function routing.

1. Start the Web Function Editor. You will be asked to enter these details:

System

Host Type

Partition

Language

User Profile

Password

Mode HTML

Be sure to specify HTML mode.

2. Use the Tools menu category and select the Keywords - Maintain option. Do
not enter a Process. Press the OK button to continue.

3. Press the Add button to create a link from the request function to the display
function when the user performs a search. Enter the following information:

Process 11iPROCO03
Function 11iFN5
Keyword SEARCH
Description Search

Linked Process | iiiPROC03
Linked Function| iiiFN6

4. Create another link from the display back to the request so another search
can be performed. Enter the following information:

Process 11iPROCO03
Function 11iFN6
Keyword RETURN
Description New Search

Linked Process | iiiPROC03
Linked Function| iiiFN5

Reminder: Keyword is case sensitive! It must match the keyword used in
your RDML.

For more information, you can use the online help in the Web Function
Editor.

5. Close the Maintain Keywords window.

Step 4. Test Your WEBEVENT Functions

1. Check that your functions compiled successfully.

2. Open a browser window (Internet Explorer 5.0 or greater is recommended)
and execute your iiiFN5 function as follows:

http://<server domain name>/cgi-bin/lansaweb?
procfun+iiiPROC03+iiiFN5+<ppp>

where:

<server domain name> is the domain name or IP address of your Web
server

<ppp> is the LANSA partition
iii are your initials
3. Test your new WEBEVENT function as follows:
e Enter a Department of ADM.

e Use the Search button to display a list of Sections in the ADM
department.

e Use the browser's Back button. Notice that the Department Code is ADM.
Enter a Department of FLT and repeat the search.

e Try using the New Search button to perform another search. Notice that
the Department Code is now blank when the REQUEST panel is
displayed.

4. Try executing your iiiFN6 WEBEVENT Display Department/Section
function directly from the browser.

Notice what happens. Why do you receive the error message that no record
could be found? For the answer, refer to the Important Observations in the
Summary.

Step 5. Re-entrant WEBEVENT Function

In this step, you will create a single re-entrant WEBEVENT function to perform
the same operations as the iiiFN5 and iiiFIN6 functions.

1. Working with your iiiPROCO03 process, create a new function named iiiFN7
Display Sections in Department. You will manually enter the code for the
function.

2. Write the RDML code as a re-entrant WEBEVENT function so that it
requests a Department Code and then displays the Sections in the
Department. For more details, refer to Handling Re-entrant Functions.

3. Compile your function.

4. Remember to register the keywords for the function. In this case, the
function links back to itself.

5. Test your function.

Solution

This is one possible solution to this exercise:

FUNCTION OPTIONS(*DIRECT *WEBEVENT)

DEFINE

FIELD#RENTRY) TYPE(*CHAR) LENGTH(1) DEFAULT(*BLANK)
GROUP_BY

NAME#HEADER) FIELDS((#DEPTMENT) (#DEPTDESC) (HRENTRY *H
DEF_LIST

NAME(#iiiLIST) FIELDS((#LISTDUMMY *HIDDEN) #SECTION #SECDE
IF COND('#RENTRY *NE Y")

CHANGE FIELD#HEADER) TO(*DEFAULT)

CHANGE FIELD#RENTRY) TO(Y)

REQUEST

FIELDS((#DEPTMENT) (#RENTRY *HIDDEN)) DESIGN(*DOWN) IDEN"
ELSE

CLR_LIST NAMED(#iiiLIST)

wdkkRxdkkk* COMMENT(Fetch file DEPTAB details)

FETCH

FIELDS(#HEADER) FROM_FILE(DEPTAB) WITH_KEY(#DEPTMENT) N
FAkkRxdkk* COMMENT(Select the SECTAB file details)

SELECT

FIELDS(#iiiLIST) FROM_FILE(SECTAB) WITH_KEY (#DEPTMENT)

its:lansa086.CHM::/LANSA/ED0440.htm

ADD_ENTRY TO_LIST(#iiiLIST)

ENDSELECT

wdckxdckRxkk COMMENT(Display results to the user)
R10: CHANGE FIELD#RENTRY) TO(*BLANK)

DISPLAY

FIELDS(#HEADER) DESIGN(*DOWN) IDENTIFY(*DESC) BROWSELIS"

RETURN))

ENDIF

The keyword entries are:

Process iiiPROCO03
Function iiiFN7
Keyword SEARCH
Description Search
Linked Process |1iiIPROCO03
Linked Function | 1iIFN7

Process iiiPROCO03
Function iiiFN7
Keyword RETURN
Description New Search
Linked Process |iiiPROCO03
Linked Function | iiiFN7

Summary

Important Observations

e The Data Exchange is automatically handled by LANSA for the Web. You
did not have to code exchange of data between iiiFN5 and iiiFN6. When you
execute iiiFNG6 directly, you receive an error message because no data was

passed to the function. iiiFN6 usually receives its data (i.e. the Department
Code) from iiiFNO5.

e The #RENTRY field must be included as a *HIDDEN variable in the
REQUEST statement so that it is passed along with the #DEPTMENT when
the iiiFN7 function is called to DISPLAY the search results.

e When you compile your re-entrant WEBEVENT function, you may have
received compile warnings about the structure of your function. For more
details, refer to Considerations for WEBEVENT Functions.

e If you have completed the Web Functions Wizard tutorials, you will notice
that the browse list presentation for your iiiLIST defaults to the layout you
defined with Wizard.

Tips & Techniques

e You can use Web Link components instead of keywords. For an example,
refer to WEBOO08 - Web Components.

e You can use the Web Functions Wizard to enhance the layout of your
function.

What I Should Know

e How to convert a procedural function into WEBEVENT function(s).

e How to write a re-entrant WEBEVENT function.

e How to use the Web Function Editor Keywords to link WEBEVENT
functions.

Other Tutorials

You are now ready to complete WEB004 - LANSA Generated HTML Pages.

its:lansa086.CHM::/LANSA/ED0450.htm

WEBO003 - iSeries Batch Debug

Objective:

e To learn how to use batch debug with WEBEVENT functions on the iSeries.
To achieve this objective, you must complete the following:

e Step 1. Identify Your Terminal ID

e Step 2. Call Your Function in Debug Mode

e Step 3. Enter valid data into your browser.

e Summary

Step 1. Identify Your Terminal ID

1. If you are using 5250 terminals or emulation sessions, signoff the session and
look at the display name in the top right corner of the signon screen.

=l Session B - [24 % 80]

(C) COPYRIGHT IBM CORP. 1988, 1999,

A6/ 053

2. Record the name of the device. Do not sign on to this device!

Step 2. Call Your Function in Debug Mode

Before you start this step, make sure that the 5250 device is displaying a user
login screen.

1. Using the browser, execute your process iiiPRO03 and function iiiFNO7 by
entering the URL for the LANSA function, and include the following:

+BDEBUG+devicewhere device is the name you recorded in Step 1

For example: the URL might look something like this:

http://siteaddress/cgi-bin/LANSAWEB?
PROCFUN+iiiPROCO03+iiiFN07+DEM+BDEBUG+QPADEV0001

2. Switch to the 5250 display you have nominated. You will see the standard
LANSA debug interface.

=¥ Session B - [24 x 80]

_ o] x|
Fle Edit Transfer Appearance Communication As Window Help
DCEPSA24E01 Turn Debugging Mode on

Mame of process to be debugged ITPROCOS

+

Mame of function to be debugged ITFHAQT +

Fl=Help F3=Exit F4=Prompt F12=Cancel

3. Specify the iiiPROCO03 process and iiiFN0O7 function for debug.
Press Enter to continue.

4. Your display screen shows three options. 1.DEBUG Interactively, 2. TRACE
All/Selective statements, and 3.COUNT statements.

Select option 1.DEBUG Interactively:

=¥ Session B - [24 x 80] g
i Appearance Communicaton ssist Window Help
Turn Debugging Mode on

elect DEBUG opt ion and p

FUNCTION o ion IIFHEOT from IIPROCE3 now locked by this job
Fl=Help F3=Exit Fd4=Prompt F12=C

5. Alisting of your RDML source code for function iiiFNO7 will appear.
Beside each statement you will notice there is a selection box. You can select
break points for individual lines of code or all lines of code.

For this exercise, use F20-Select all:

DEFINE
GROUP_BY

DEF_LIST NAME [5T) STD ' ¥HIDDEN) (#SECTION) (#

IF)" #R Y x
i (#HEADER)

REQUEST JEPT) (#REMTRY #HIDDEM)) DESIGM(+DOWM) IDENMT
11 PRO

F16=F/Fwd F17=F/Bkud

6. A listing of all fields referenced by your function should now appear. Please
select the fields, IO$STS and RENTRY.

Press Enter to allow your function to begin execution.

=1 Session B - [24 x 80] =lolx|
Fle Edit Transfer Appearance Communication Assist Window Help
FEDEBUGE2 Display Sections in Department
Mode
ect Function V“ariables to be displayed/printed at Breakpoints

Search For Wariable

Act Field name RPG name De iption Type Len Dec
DEPTDESC nartment Descr A 20

Y

1
1
]

PHEUS
SECTION

15

FZB=5elect All

7. The first executed line of source code will appear with the variables IO$STS
and RENTRY shown below it.

Press Enter to advance the debugger through each line of code. Remember,
for WEBEVENT functions, a screen is not sent to the browser until the
function terminates.

Take notice of the value of RENTRY and when it changes from blank to Y.
8. Press Enter until the DEBUG screen resets to a signon display.

Now that your function has terminated, a screen should be displayed in the
browser.

Step 3. Enter valid data into your browser.
1. Switch to your browser.

Enter a value of ADM in the search field and press the Next key to submit the
function.

Your iiiFNO7 will be executed once again.
2. Switch to the 5250 display screen you have nominated.
You should see the standard LANSA debug interface.

Simply press Enter. (The *FIRST options will automatically take the first
function in the debug process.)

3. Select Debug Interactively and press Enter.
4. Your previous break points should be selected. If not, press F20 again.

Your variables IO$STS and RENTRY should already be selected. If they are
not, then select them again.

5. Notice the value of RENTRY is still a Y. This value was set when the
function executed the first time. The value was stored in the hidden values.

Press Enter to move to next break point in the function.

You will be able to watch the function as it selects the data from the file and
prepares the output screen.

6. Press Enter until the function terminates and an iSeries signon is displayed.

7. Switch to your browser. You should see the list of sections displayed.

Summary

Important Observations

e The device used for batch debug must be active (i.e. the 5250 workstation
must be powered on or the 5250 emulation session started). A user should
not be signed on to the terminal. You cannot use batch debug if the display
station is already allocated.

e The interactive and batch debug have identical features.

e The batch debug can be nominated either in the URL directly, or it can be
called from your generated HTML pages.

Tips & Techniques

e Remember, you must not be signed on to the device nominated for batch
debug.

e WEBEVENT functions terminate immediately after the REQUEST or
DISPLAY statement.

¢ You cannot debug a function that is locked by a developer. A common
mistake is to have the function editor open while attempting to debug the
function.

What I Should Know
e How to use the batch debug with WEBEVENT functions.
How to set break points and how to display variables in your functions.

WEBO004 - LANSA Generated HTML Pages
Objective:

To execute the Web Function Editor and review some of the basic Editor
features.

To learn how to identify the LANSA generated HTML pages.

To review the HTML pages created for the iiiFNO5 Request Department
function. The HTML will be manually edited and the function will be
recompiled to show how versions and the Web Function Editor's Compare
and Contrast features work.

To become familiar with the default (page components) and HTML
documents generated by LANSA.

The focus of this tutorial is NOT the HTML code generated or the RDML tags
used by LANSA. You will review the use of LANSA tags in an upcoming
exercise.

To achieve these objectives, you complete the following steps:

Step 1. Open and Configure the Web Function Editor
Step 2. Identify Generated HTML Pages

Step 3. Edit the HTML Page for iiiFN05

Step 4. Modify and Recompile Function iiiFNO5

Step 5. Use Compare and Contrast to Review your HTML

Summary

Before You Begin
You may wish to review these topics and all their related sections:

LANSA Generated HTML/XML Pages

In order to complete the tutorials, you should have completed the following:

WEBO002 - Coding a WEBEVENT Functions

It is very important that you have configured LANSA for the Web to
allow for automatic backup of the generated HTML pages. Use the
LANSA for the Web Administrator to check these Data/Application
Server settings.

its:lansa086.CHM::/LANSA/ED0500.htm

Step 1. Open and Configure the Web Function Editor

In this step, you will start the Web Function Editor and configure the Editor
options.

1. Start the Web Function Editor. You will be asked to enter the following:

System
Host Type
Partition
Language
User Profile
Password

Mode HTML

Be sure to specify HTML mode.
2. Use the Options menu category and select the Configure option.

3. Select the View tab. Check the box for Synchronized Scrolling. Make sure
the Vertical Split radio button is selected. These options are used when
comparing versions of HTML pages.

Configuration Options

Third Party Editar View lMiaceIIﬂneuual

Compare Background Colors

Inserted Text |<p></p> -

Deleted Text - -

Edit and Compare Windows

¥ Synchronized Scrolling

" Haorizontal Split

i+ “erical Split

Ok Cancel | Help

4. Select the Miscellaneous tab. The option to Enable archive functionality
when saving allows you to archive manual changes to the HTML function.
Refer to Configure, Miscellaneous tab for further informtion.

Configuration Options

Third Party Editor | View Miscellaneous |

bost Recently Used Files Options

ltems in MR list. |4 i‘ (Range 0-10)

Clear BMRLI List

ba. Undo Actions: |50 i‘ (Range 1-32000)

Iv¥ Enable archive functionality when sawing

Ok Cancel Help

5. Press the OK button to save the settings.

its:LANSA086.CHM::/LANSA/jmp_0690.htm

Step 2. Identify Generated HTML Pages

In this step, you will simply identify the HTML pages created for function
iiiFNO7 which was compiled in WEB002 - Coding a WEBEVENT Functions.
(Remember to substitute iii with your initials.)

1. Review the RDML code used in your iiiFNO7 function. (Refer to Step 5. Re-
entrant WEBEVENT Function.) Count the number of REQUEST and
DISPLAY statements in the function.

2. Use the File menu category and select the Open option. A list of HTML
pages stored in the LANSA internal database will be displayed. = Not all of
these pages are generated from LANSA functions. Some pages are defaults
shipped with LANSA. Some pages are Page Web components defined by
developers.

3. Look for (but do not open) the iiiPROCO03 iiiFN07 pages from your re-
entrant WEBEVENT function.

Because iiiFN07 has two panels (REQUEST and DISPLAY)), you should see
two files listed:

iiiPROCO03 iiiFN07001
iiiPROCO03 iiiFN07002
The first page will be for the REQUEST panel and the second will be for

the DISPLAY panel. A single page is created for each display. For more
details, refer to Identifying Generated Pages.

its:lansa086.CHM::/LANSA/ED0510.htm

Open HTHML Page |

IIPROCOD [FNO00007 Process [IPROCO0D FL;I
[IPROCO0 [IFNOD0002 Procesz IPROCOD0 Fo
IIPROCOT NFWO0T00 Procesz IPROCOT Fo
IIPROCOT [IFNOQT002 Procesz [IPROCOT Fj
IIPROCOT [IFNODT003 Procesz IPROCOT F
IIPROCOT [IFNO0T004 Procesz IPROCOT Fo
IIPROCO3 [IFNO05007 Procesz IPROCO3 Fo
IIPROCO3 [IFNODED0T Procesz IPROCO3 Fo
IIPROCO3 [IFNO0700 Procesz IPROCO3 Fo
IIPROCO3 [IFNODFO02 Procesz IPROCO3 Fo =
DUTCCT [I=] S plginkinlnk! | m e IDUTCCT

< ———

T [
M amne: Wergion: ‘o

Language: |EMG x

Drezcription: I

] | Elete | Cancel

Step 3. Edit the HTML Page for iiiFN05

In this step, you will locate and open the HTML page of function iiiFNO5 which
was created in WEBO002 - Coding a WEBEVENT Functions.

1. Locate and open the iiiPROCO03 iiiFN05001 page which will have the HTML
for the REQUEST panel from your WEBEVENT function.

Reminder: The RDML code in your iiiFNO5 function might appear
something like this:

FUNCTION OPTIONS(*DIRECT *WEBEVENT)

CHANGE FIELD#DEPTMENT) TO(*DEFAULT)

REQUEST

FIELDS(#DEPTMENT) DESIGN(*DOWN) IDENTIFY(*DESC) MENU_KE
An HTML page will be downloaded from the LANSA Application/Data Server

to your Web Function Editor. This is the LANSA internal HTML which

includes LANSA tags, components, graphic variables, etc.

2. You will make two simple changes to this file. (These changes are being
made to show how a new version of HTML will be created when you save
the document, and when you recompile the function. The image file used in
this step is shipped with LANSA.)

Insert the bolded lines which will simply add an image and some text to the
page:

<RDML LAYOUT>

<!-- Process : IIIPROC0O3 WEBEVENT Functions -->
<!-- Function : IIIFNO05 Request Department for Search -->
<l--Page :001 -->

<!I-- Generated by - LANSA -->

<!-- Created by user - XXXXXXXXXX >

<!-- Time and Date - (000000000000 >

<!-- RDML function sequence number - 0003 -=>
<!-- This is a *WEBEVENT function >

<form method="post" name="LANSA"

action="/<RDML MERGE="&CGI">/LANSAWEB?WEBEVENT+
<RDML MERGE="&SESSPL">">

<RDML MERGE="&HIDDEN">

<RDML COMPONENT="STDHEADER">
<center><h1><RDML MERGE="&FUNCTION"></h1></center>

<RDML MERGE="&MESSAGES">

<basefont size="" />
<table border="0" cellpadding="0" cellspacing="3">
<tbody>

<tr>

</tr>

<tr>

<td><RDML MERGE="@T0001+0001+0020"></td>
<td><input name="ADEPTMENT " type="text" size="004" maxlength="004"
value="<RDML MERGE="DEPTMENT ">"
onfocus="SetNameLocation(ADEPTMENT ',03,29)" /></td>

</tr>

</tbody>
</table>

Enter a Department Code to see a listing of all Sections.

<RDML MERGE="&BUTTONS">
<RDML COMPONENT="STDFOOTER">

</form>

3. Save the file.

A message box will appear to ask you if you wish to archive the previous
version of the HTML page. Press the Yes button so that the original version of
the HTML page will be saved as Version 1. The current version is always
Version 0.

4. Use your browser to execute function iiiFINO5 to view your changes.

Notice that you have not recompiled your function.

Step 4. Modify and Recompile Function iiiFN05

In this step, you will modify the RDML in function iiiFNO5 and recompile the
function so that a new version of the HTML page is created. The changes made
in Step 3 will allow you to use the Compare and Contrast features in the Editor.

1. Working with the iiiFNO5 function in process iiiPRCOO03, use the LANSA
RDML Editor to view the RDML code in the function.

2. Manually edit the RDML code to add the #STD_DATE field to the
REQUEST statement. (You will not use the #STD_DATE field in this
exercise. This step will simply highlight how your RDML changes are
identified in the new HTML page.) Your RDML statement should appear as
follows:

REQUEST
FIELDS(#DEPTMENT #STD_DATE) DESIGN(*DOWN) IDENTIFY (*DES!(

3. Save the changes to the function and exit the RDML Editor.

4. Submit your iiiFNO5 function for recompile. This step will cause the HTML
page to be recreated.

Reminder: The current page is always Version 0. The previous HTML page,
which includes the manual changes you have just made, will be saved as
Version 1. The very first page created will now be Version 2. For more
details, refer to Versioning of Pages.

its:lansa086.CHM::/LANSA/ED0520.htm

Step 5. Use Compare and Contrast to Review your HTML

In this step, you will compare the HTML created when the function was
recompiled, to the manually edited HTML.

1. Check that the function iiiFNO5 has compiled successfully.
2. Using the Web Function Editor, open the iiiPROCO03 iiiFN05001 page.

3. Review the HTML. You will not see the manual HTML changes you made in
Step 3 since the recompile creates a new version of the HTML. (Your
changes have been saved as Version 1.)

4. Use the File action bar category and select the Compare With Version option.
Select Page Version 1 and press OK. The version of the HTML with your
changes will be displayed.

5. Scroll up and down through the HTML listing. The differences between the
two files will be highlighted in red and yellow. (These colors can be
configured in the editor.) For more details, refer to Comparing Versions.

1% LANSA HTML Editor - [IPROC03 [IFN005001 (ENG-0)] M=l &3
E"Eile Edit ¥iew Tags Components Options Tools MWindow Help =181 %]
] == P T =] =1

IIPROCO3 IIFNeeseel (B
IIPROCO3 IIFNBO5001 (EN
<RDHML HMERGE="&HMESSAGES">

IIPROCO3 IIFNOES5081 (ENG-0)

Editing
<RDML MERGE="&MESSAGES">

Comparison of

=<

<basefont size="" /> =<
<table border="0" cellpadding="0" cells [-<
K thody>

<{basefont size="" />
<tr> <table border:="0" cellpadding="0" cel
<ftr> <{tbody>
<tr>
Ktd><{strong>{RDML MERGE="&TOOO1+0801+00, <tr>
<td>{RDML COMPONENT="DEPTMENT * MODE=" <ftr>
K/tr> {tr>
<tr> <td><{strong><{RDML MERGE="&TBEO1+00061
Ktd>{strong>{RDML MERGE="&TOEO2+0021+00: <td><RDML COMPONENT="DEPTMENT * MODE
<td><input name="SSTD_DATE " type:z"text </tr>
<RDML MERGE="STD_DATE ™ EDITCODEI="Y%Y"> [*> Ktr>
onchange="if(*isUalidNumeric(this, '006° [+> <td><RDML MERGE="&T08862+8I
onfocus="SetNameLocation("SSTD_DATE ' ,0: [+> Ktd><input name="SSTD_DATE ~ type:
</tr> _J:J+T <RDML HERGE=ISTD_DQTE - EDITCODEjj
4 * 4 4
Ready [Ln1.Col1 [HTML [LO14550 [DEM [ENG [DCXUSER

6. Cut and paste the changes you made to your HTML in Step 3 to the current
version of the file.

7. Save the document.
8. Finally, open Version 1 of the iiiPROCO03 iiiFN05001 page. Try to save the

its:lansa086.CHM::/LANSA/ED0530.htm

document. Notice the error message displayed. Close the document without
saving it.

Summary

Important Observations

An HTML page is created for every REQUEST and DISPLAY statement in
a function.

The order of the REQUEST and DISPLAY statements determines the
document number.

Versions of HTML pages can be created when a document is saved. This
feature is controlled by the Web Function Editor options.

New versions of the HTML pages are created when a function is compiled.
This feature is enabled with the LANSA for the Web Administrator.

The current version of an HTML document is always Version 0.
You can only save your changes to an HTML document as Version 0.

Tips & Techniques

If you do not wish to use the automated archive and backup features, you can
backup your HTML by using the Save As option. You can manually save
your documents using different document names.

You can control the archiving and backup of the HTML pages from the Web
Function Editor options and from the LANSA for the Web Administrator set
up.

For an example of how to protect custom changes to your HTML, refer to
WEBO009 - Web Page Substitution (Optional - Advanced).

What I Should Know

How to use the basic features of the Web Function Editor to view HTML
pages.

How to identify the LANSA generated HTML pages.

How the Web Function Editor uses versions.

When versions of HTML pages are created.

Other Tutorials
You are now ready to complete WEBOO5 - LANSA Process Pages.

WEBO005 - LANSA Process Pages

Objective:
To highlight how process specific Web pages can be created.

To edit the message presentation used in your LANSA functions.

To create new standard headers and footers for your functions.

To edit the JavaScript to add a calendar control to the function.

e To introduce the component registry.

To achieve these objectives, you will complete the following steps:

Step 1. Create a Message Presentation Page for iiiPROCO03

Step 2. Create a Standard Header for Functions in Process iiiPROCO03
Step 3. Create a Standard Footer for Functions in Process iiiPROC03

Step 4. Component Registry

Step 5. Add the Calendar Control and Edit the Default JavaScript
Step 6. Test the Calendar Control

e Summary

Before You Begin

You may wish to review these topics and all of their related sections:

e Default Process Pages

In order to complete the tutorials, you must have completed the following:
e WEBO002 - Coding a WEBEVENT Functions

e WEBO004 - LANSA Generated HTML Pages

its:lansa086.CHM::/LANSA/ED0600.htm

Step 1. Create a Message Presentation Page for iiiPROC03

In this step, you will customize the presentation of the messages in a specific

process to replace the default list box style messages. You will create a very

simple list to display messages. (Remember to substitute iii with your initials.)

1. Using the Web Function Editor in HTML mode, create a new page. Use the
File menu category and select the New option.

2. Delete the default HTML which appears in the new document.
Enter the following HTML.:

LANSA Error Messages

<RDML MESSAGES>

3. Save the HTML document as iiiPROC03_MSGPRES.

4. Test your changes using your iiiFNO7 function. Try searching for a
Department which does not exist. Notice that you did not have to recompile
any functions or edit the function HTML. Your message should appear
something like the following:

Display Sections in Department

EEE

LANSA Error Messages

e No record found in file DEPTAR from DC@DEMOLIB matclung key supphed

Departinent Code =DD
Department Description

Step 2. Create a Standard Header for Functions in Process
iiiPROC03
In this step, you will create a new standard header page to be used specifically

with the functions in process iiiPROCO03. The new header will simply have
some additional heading text.

1. Make note of the current appearance of the function header and footer in any
of the functions in your iiiPROCO03 process.

2. Using the Web Function Editor, open the STDHEADER.
3. Insert the bolded lines which will simply add a heading to the page:

<I-- ->
<l-- LANSA for the Web -—>
<!-- Standard Header -—>

<!-- Last Modified: 11.3 2006-05-21 -->

<img src="<RDML MERGE="*LW3CPYLOGO">" alt="Logo" />

<h4> iii LANSA Web Applications</h4>

<RDML BUTTON="&WEBEVENT">

<script type="text/javascript" language="javascript">

/I<I[CDATA[

function ButtonClick(button)

{
document. LANSA._BUTTON.value=button; document. LANSA .submit();

}

Mn1>

</script>

</RDML>

<table cellpadding="0" cellspacing="0" border="0" width="100%" align="left
<tbody>

4. Use the Save As option to save the document as:
iiiPROCO03_STDHEADER.

Step 3. Create a Standard Footer for Functions in Process
iiiPROC03
In this step, you will create a new standard footer page to be used specifically

with the functions in process iiiPROCO03. The new footer will simply have an
additional copyright statement.

1. Open the STDFOOTER document.
2. Insert the highlighted lines which will add some text to the page:

<]-- >

<!-- LANSA for the Web -->
<!-- Standard Footer -->

<!-- Last Modified: 11.3 2006-05-21 -->

<p align="center"><img src="

<RDML MERGE="*LW3IMGFBORDER">" alt="" />

</p>

<h4 align="center">Powered by <img src="
<RDML MERGE="*LW3IMGLANSA">" align="middle" border="0" alt="L.
</h4>

<h4 align="center">Copyright LANSA 2007.</h4>

3. Use the Save As option to save the document as:

iiiPROC03_STDFOOTER

4. Execute your iiiFNO5 function. Notice that your changes to the header
and footer do not appear. At this point, you have only created the HTML
pages. The process specific component pages are not known to LANSA. You
must register the new pages in the component registry before they can be
used.

Step 4. Component Registry

1. Using the Web Function Editor, use the Component menu category and
select the Maintain option.

2. Press the Add button to define a new component.

3. Enter a component name of iiiPROC03_STDHEADER and use the
dropdown to select a Type of Page. Press Continue.

4. When the New Page Component dialog appears, enter the following:

Description| Standard Header
Page iiiPROC03_STDHEADER
Mode Not Applicable

5. Press OK to add the new component to the registry.

6. Repeat these steps to create a component named iiiPROC03_STDFOOTER
with the following information:

Description| Standard Footer
Page iiiPROC03_STDFOOTER
Mode Not Applicable

7. Execute your iiiFNO5 or iiiFN07 function (or any function in process
iiiPROCO03) and you will see the new header and footer. Notice that you did
not have to recompile any functions or edit the function HTML.

Step 5. Add the Calendar Control and Edit the Default
JavaScript

In this step, you will enable and test the calendar control JavaScript function.
You will also change the date format used in the JavaScript from MM/DD/YY
to DD/MM/YY.

1. Open the iiiPR0OCO03 iiiFN05001 page and insert the bolded lines which will
include a Calendar button beside the #STD DATE field.

<tr>
<td><RDML MERGE="@T0002+0021+0040"></td>
<td>
<input name="SSTD_DATE " type="text" maxlength="008" align="right"
<RDML MERGE="STD_DATE " EDITCODEI="Y">
onfocus="SetNameLocation('SSTD_DATE ',04,29)"></td>

<td>

<img src="/IMAGES/TB_CAL.GIF" alt="Calendar" border="0" width=

</td>
</tr>
</tbody>
</table>

2. Save the document.
3. Open the default JavaScript page called DEFAULT_SCRIPT.

4. Remove the conditions on the JavaScript for the Calendar functions by
deleting the two bolded lines in the following code:

<RDML ONCONDITION="USECALENDAR">
function CallCalendar()
{
if (document. LANSA._CALFLD.value != "&NULL")
{
var opt = "width=340,height=385,directories=no,toolbar=no,"
opt += "menubar=no,scrollbars=no,resizable=yes"

m"mon

win = window.open("/images/lcalen.htm", "calendar", opt)
win.opener=window

}
}
function SetDate(day, month, year)

{
var Field=document. LANSA. CALFLD.value;

if (day < 10)
day="0"+day;

if (month < 10)
month="0"+month;

if (year < 2000)
YearRet=year-1900;

else
YearRet=year-2000;

if (YearRet < 10)
YearRet="0"+YearRet;

var RDate=day+"/"+month+"/"+YearRet;

var NumElements=document.LANSA.elements.length;

for (i=0; i<NumElements;i++)

{
if (document. LANSA .elements[i].name==Field)
{
document. LANSA .elements[i].value=Rdate;
break;
}
}
}
</RDML>

5. Next, modify the script so that the calendar control returns the date in format

MM/DD/YY by changing the statement:
var RDate=day+"/"+month+"/"+YearRet;
to
var RDate=month+"/"+day+"/"+YearRet;

6. Use the Save As option to save the document as: 1liIPROCO03_SCRIPT

Step 6. Test the Calendar Control
1. Execute your iiiFNO5 function.
2. Position the cursor in the date field.

3. Press the Calendar button.

a LAMSA Calendar - Microsoft Internet Explorer [lj[=] [E3

December =

4. Select a date from the calendar. The date should be returned in MM/DD/YY
format.

Summary

Important Observations
e There is no DEFAULT_MSGPRES page shipped with LANSA.

e The STDHEADER and STDFOOTER are Web Page components. These
must be registered as components before they can be used.

e The DEFAULT_SCRIPT is a process specific page. It does not have to be
registered, as it is not a component.
Tips & Techniques

e Creating process specific pages allows you to customize your functions in a
specific process. You should not modify the DEFAULT pages unless the
change applies to all functions in the partition.

e All process specific pages will be automatically exported with the process
definition. These pages do not need to be registered as Web Page
components.

e Conditional LANSA RDML tags can be used to control the amount of text
being sent to the browser. The DEFAULT_SCRIPT uses these tags only to
send the required script functions.

What I Should Know

e How to use process specific pages and page components.

e How to customize the message presentation for functions.

e How to use the default JavaScript and calendar control function.

Other Tutorials
You are now ready to complete WEBO0O6 - Graphic Variables.

WEBO006 - Graphic Variables

Objective:

e To highlight how to create your own graphic variables in LANSA for the
Web.

e Optional: To review the graphic variables created by the Web Functions
Wizard.

If you are using the process specific or the browse list specific graphic

variables, you can use the Web Functions Wizard to create and change
these variables. You do not have to create these variables manually.

To achieve these objectives, you will complete the following steps:

Step 1. Create New Graphic Variables

Step 2. Add Graphic Variables to the Process Pages

Step 3. Test Your Graphic Variable.

Optional Step 4. Web Functions Wizard Graphic Variables
e Summary

Before You Begin

You may wish to review these topics and all their related sections:

e Graphic Variables

In order to complete this tutorial, you must have completed the following:
e WEBO002 - Coding a WEBEVENT Functions

e WEBO0OS - LANSA Process Pages

its:lansa086.CHM::/LANSA/ED0800.htm

Step 1. Create New Graphic Variables

1. Using the Web Function Editor, use the Component action bar category and
choose the Graphic Variables option.

2. Press the Add button to define a new graphic variable called
*WEBIiiIMAGE (where iii is your initials). It should be of the type FILE.
The image file name should be: LANSAANILGIF

(The LANSAANI.GIF file is shipped with the LANSA software.)

3. Define a new graphic variable called *WEBiiiCOLOR (where iii is your
initials). It should be type COLOR. The text should be: RED

4. Define a new graphic variable called *WEBIiiiCOPYRIGHT (where iii is
your initials). It should be type TEXT. The text should be: Copyright
LANSA 2006.

Step 2. Add Graphic Variables to the Process Pages
In this step, you will add the graphic variables to the process specific
STDFOOTER page created in WEB0O5 - LANSA Process Pages.

1. Use the Web Function Editor to update the iiiPROC03_STDFOOTER page.
Make the following changes (in bold):

<I-- ->

<!-- LANSA for the Web -->
<!-- Standard Footer -->

<!-- Last Modified: 9.1 2001-09-10 -->

<p align="center"><img src="
<RDML MERGE="*WEBIiiilMAGE">" alt="" />
</p>

<h4 align="center">Powered by <img src="
<RDML MERGE="*LW3IMGLANSA">" align="middle" border="0" alt="L.
</h4>

<h4 align=""center"><font size="5" color="
<RDML MERGE="*WEBIiiiCOLOR">">
<RDML MERGE="*WEBIiiiCOPYRIGHT" ></h4>

2. Save the document.

Step 3. Test Your Graphic Variable.

You will now test your graphic variables and demonstrate how they can be used
to minimize application maintenance.

1. Execute function iiiFNO5. Notice the new footer used in the function.

2. Use the Web Function Editor to change the name of the image file associated
with the graphic variable *WEBIiiilMAGE to: GRADIENT.GIF

3. Change the name of the color associated with the graphic variable
*WEBIiiCOLOR to #32CD32,which is limegreen.

4. Change the text associated with the graphic variable *WEBIiiiCOPYRIGHT
to Copyright LANSA 2001.

5. Without recompiling or editing your HTML, execute function iiiFNO5 again.
Notice the changes to the image and text.

Optional Step 4. Web Functions Wizard Graphic Variables

If you have completed the Web Functions Wizard Tutorials, you will have
created a number of different graphic variables.

1. Using the Web Function Editor, use the Component action bar category and
choose the Graphic Variables option.

2. Review the list of graphic variables and locate the following:
*LW3BLACB_iiiLIST2

*LW3BLACF_iiiLIST2

These are graphic variables created by the Web Functions Wizard for your
browse list, iiiLIST?2.

Summary

Important Observations

e The RDML MERGE tag is used to embed graphic variables.

e The color for a graphic variable can be specified using hexadecimal values
(e.g. #32CD32) or using color names (e.g. limegreen).

Tips & Techniques

e The text in a graphic variable can include HTML tags.

e Graphic variables should be used instead of hard coding values into your
HTML pages.

e You should use the Web Functions Wizard for your process or browse list
specific variables.

e If you wish to delete graphic variables, you must use the Web Function
Editor. Graphic variables cannot be deleted from the Web Functions Wizard.

e Remember that graphic variables are defined at the system level. They are
shared by all partitions.

What I Should Know
e How to create file, image and text graphic variables.

Other Tutorials
You are now ready to complete WEB0O7 - LANSA Tags.

WEBO007 - LANSA Tags

Objective:

e To highlight how LANSA tags are used in the HTML pages.

e To manually add some LANSA tags to the HTML.

e To show how HTML can be controlled using LANSA tags.

To achieve these objectives, you will complete the following steps:
Step 1. Review the LANSA Tags in iiiFN05

Step 2. Add LANSA Tags to iiiFN05001 HTML Page

Step 3. Modify Standard Process Footer

Step 4. Test the function
e Summary

Before You Begin

You may wish to review these topics and all of their related sections:
e What are LANSA Tags?

e How Do LANSA Tags Work?

e L ANSA Tags Example

e Using <RDML> and </RDML> Tags

e <RDML BUTTON>

e <RDML MERGE>

e <RDML NOTCONDITION>

In order to complete this tutorial, you must have completed the following:
e WEBO002 - Coding a WEBEVENT Functions

e WEBO004 - LANSA Generated HTML Pages

e WEBO0OS - LANSA Process Pages

its:lansa086.CHM::/LANSA/ED0710.htm
its:lansa086.CHM::/LANSA/ED0720.htm
its:lansa086.CHM::/LANSA/ED0730.htm
its:lansa086.CHM::/LANSA/ED0740.htm
its:lansa086.CHM::/LANSA/ED0750.htm
its:lansa086.CHM::/LANSA/ED0780.htm
its:lansa086.CHM::/LANSA/ED0790.htm

Step 1. Review the LANSA Tags in iiiFN05
1. Use the Web Function Editor to open the iiiPROCO03iiiFN05001 page.
2. Notice how the RDML MERGE statement is used in the following examples:

<RDML MERGE="&HIDDEN">

<RDML COMPONENT="STDHEADER">
<center><h1><RDML MERGE="&FUNCTION"></h1></center>

<RDML MERGE="&MESSAGES">

The MERGE can be used with special reserve words such as &HIDDEN for
embedding hidden variables or &KMESSAGES for embedding the LANSA
messages. The MERGE of &FUNCTION is used for the function description.

3. Notice how the RDML MERGE statement is used in the following field
example:

<td><RDML MERGE="&T0001+0001+0020"></td>
<td>

<input name="ADEPTMENT " type="text" size="004" maxlength="004"
value="<RDML MERGE="DEPTMENT ">"
onfocus="SetNameLocation(ADEPTMENT ',03,29)" /></td>

The MERGE is used to embed the field multilingual label <RDML
MERGE="&T0001+0001+0020">. It is also used to embed the field value
<RDML MERGE="DEPTMENT ">.

4. The <RDML COMPONENT="STDHEADER"> and<RDML
COMPONENT="STDFOOTER"> are used to embed the Web page
components. Notice that these statements do not have to be modified to use
the process specific pages, which were created in WEB0O05 - LANSA Process
Pages.

Step 2. Add LANSA Tags to iiiFN05001 HTML Page

In this step, you will use the RDML BUTTON and RDML ONCONDITION

tags to show you how they control the presentation of the HTML.

1. Using the Web Function Editor to edit the iiiPROCO03 iiiFN05001 page, add
the following NOTCONDITION tag around the text shown. (This text was

added in Tutorial 4. If it is not present, simply add all 3 lines to your page.)
Your text should appear as follows:

<RDML NOTCONDITION="DEPTMENT">

Enter a Department Code to see a listing of all Sections.
</RDML>

The NOTCONDITION tag will check if the DEPTMENT is blank. When it
is blank, it will use the HTML text within the NOTCONDITION tag.

2. Directly following this text, add an RDML BUTTON tag to display some

text depending upon the buttons which are enabled. Your text should appear
as follows:

<RDML BUTTON="&ADD">

This text will not be displayed since Add button is not enabled.
</RDML>

3. Save the document.

Step 3. Modify Standard Process Footer

In this step, you will add the date to the bottom of the standard footer by using a
LANSA system variable with the MERGE tag.

1. Open the iiiPROC03_STDFOOTER document.

2. Use a MERGE tag to include the LANSA system variables *DAYC,

*MONTHC and *YEARC. Add the following text to the end of the
STDFOOTER document:

<p align="center">

Date in DD/MM/YY format is: <RDML MERGE="*DAYC">/ <RDML VM
</p>

3. Save the document.

Step 4. Test the function

1. Execute your iiiFNO5 function. You should see the following text on the
screen:

Enter a Department Code to see a listing of all Sections.

The following text should not appear.
This text will not be displayed since Add button is not enabled.

At the bottom of the screen, you should see today's date:
Date in DD/MM/YY format is: 99/99/99

You function might appear something like the following:

A Request Department lor Search - Microsoft Intzrnet Ezplorer

Dle Cdit ‘Yiew Tavaitss Tools lep ‘
- AL = =
= o9 @ | A [@ | - Bl
Back Fanaarnd! Stop Fefresh Home Search Favorites History Mal Piint Edt
Adetess [€] hip./202.1.20442 o bn/lnsawat 7 odfur siprac0E+in05 dem x| @6e |j Links)

Bl

LLUEL
Department Code . . l_

Standard DATE .. . |/00/00

Enter'a Department Ceode to see a Lsting of all Sections)
Search
Powered by LLLIJ. E’I.JI.
Cupyright LAINSA 2001.
Diate i DDA Y format 1229703 /01 L
ol
|&1 Dane | | Inemet o

Summary

Important Observations

The RDML tags can be used almost anywhere in your LANSA generated
pages.

The </RDML> tags must always be on a separate line with no other
commands.

The RDML MERGE command can be used with fields, graphic variables,
and any LANSA system variable.

Tips & Techniques

You can use LANSA tags within your LANSA Web components.

The NOTCONDITION and ONCONDITION tags are a very powerful
method of controlling your HTML. For example, you can use these tags to
limit the amount of text being sent to the browser. The DEFAULT_SCRIPT
uses these tags to only send the required script functions.

What I Should Know

How to use LANSA tags in your generated pages.

Other Tutorials
You are now ready to complete WEB008 - Web Components

WEBO008 - Web Components
Objective:

To create some reusable Web components for your Web functions
application.

To show how components can be added manually and automatically in
LANSA.

To demonstrate how components can be used in other components.
To introduce the concept of modes and Web components.

You have already used page components when creating the process specific
STDHEADER and STDFOOTER in WEBO0O5 - LANSA Process Pages.

To achieve these objectives you will complete the following steps:

Step 1. Create a New Field in the Repository
Step 2. Create Visual Web Component

Step 3. Create a Text Web Component

Step 4. Banner Web Component

Step 5. Use Hidden Fields in Function

Step 6. Create a Web Link Component
Summary

Before You Begin
You may wish to review these topics and all of their related sections:

Introduction to Web Components

Banner

Text

Web Link

Page

Naming Page and Script Web Components
Visual Web Component

Creating Visual Web Components

In order to complete this tutorial, you must complete the following:

WEBO002 - Coding a WEBEVENT Functions
WEBO004 - LANSA Generated HTML Pages

its:lansa086.CHM::/LANSA/ED0910.htm
its:lansa086.CHM::/LANSA/ED0940.htm
its:lansa086.CHM::/LANSA/ED0950.htm
its:lansa086.CHM::/LANSA/ED0960.htm
its:lansa086.CHM::/LANSA/ED0970.htm
its:lansa086.CHM::/LANSA/ED0980.htm
its:lansa086.CHM::/LANSA/ED0990.htm
its:lansa086.CHM::/LANSA/ED09A0.htm

e WEBO0OS - LANSA Process Pages

Step 1. Create a New Field in the Repository

To demonstrate how components are automatically embedded for a field, you
must create a new field iiiDEPT (where iii are your initials) in the LANSA. The
iiiDEPT field will be copied from the DEPTMENT field.

1. From the LANSA development environment, work with the fields in the
LANSA Repository. Create a new field called iiiDEPT (where iii=your ID) by
copying the DEPTMENT field which already exists in the LANSA
Repository.

2. When you save the field, you may copy the help text, validation rules and
multilingual definitions for the field.

3. Edit the RDML in your iiiFNO7 function. Use the find and change utility in
the Web Function Editor to change all occurrences of DEPTMENT to
iiiDEPT. (There should be four changes.) Your RDML might appear as
follows:

FUNCTION OPTIONS(*DIRECT *WEBEVENT)

DEFINE

FIELD#RENTRY) TYPE(*CHAR) LENGTH(1) DEFAULT(*BLANK)
GROUP_BY

NAME#HEADER) FIELDS((#iiiDEPT) (#DEPTDESC) (#RENTRY *HIDD!
DEF_LIST

NAME(#iiiLIST) FIELDS((#LISTDUMMY *HIDDEN) #SECTION #SECDE
IF COND('#RENTRY *NE Y")

CHANGE FIELD#HEADER) TO(*DEFAULT)

CHANGE FIELD#RENTRY) TO(Y)

REQUEST

FIELDS((#iiiDEPT) (#RENTRY *HIDDEN)) DESIGN(*DOWN) IDENTIFY
ELSE

CLR_LIST NAMED(#iiiLIST)

wddkkRxdkkk* COMMENT(Fetch file DEPTAB details)

FETCH

FIELDS(#HEADER) FROM_FILE(DEPTAB) WITH_KEY (#iiiDEPT) NOT_
FAdkskRxkkk* COMMENT(Select the SECTAB file details)

SELECT

FIELDS(#iiiLIST) FROM_FILE(SECTAB) WITH_KEY (#iiiDEPT)
ADD_ENTRY TO_LIST(#iiiLIST)

ENDSELECT

wdckxdckRkkk COMMENT(Display results to the user)

R10: CHANGE FIELD#RENTRY) TO(*BLANK)

DISPLAY

FIELDS(#HEADER) DESIGN(*DOWN) IDENTIFY(*DESC) BROWSELIS"
RETURN))

ENDIF

4. Save the changes to the function and exit the editor.

5. Do NOT recompile your function. The function will be compiled once the
new component has been created for iiiDEPT.

Step 2. Create Visual Web Component

In this step, you will use the automated creation of Visual Web components to
build a drop down list showing all departments in the DEPTAB file. The Visual
Web component will be named iiiDEPT so that it will be automatically
embedded into the HTML for the iiiFNO7 function.

1. Start the Web Function Editor. Use the File menu category and select the
Open option to view a list of HTML pages in the partition. Notice that there is
no page with the name iiiDEPT.

2. Use the Components menu category and select the Generate Component -
Visual option.

3. Enter only the following information:

Component iliDEPT
Visual Type Drop down
File DEPTAB
Field for Value DEPTMENT

Field for description DEPTDESC

4. Press OK. LANSA for the Web will use the information in the DEPTAB file
to build the HTML code for the drop down.

5. Recompile your iiiFNO7 function.

6. Use the File menu category and select the Open option to view a list of
HTML pages in the partition. Open the iiiDEPT page. You will see a
complete list of departments based on the DEPTAB file. (If the contents of
the DEPTAB file are changed, you will need to rebuild the iiiDEPT
component or you can manually edit the HTML.)

7. Use the Component menu category and select the Maintain option to review
the Web components in the registry.

8. You should see that your iiiDEPT component is defined as INPUT mode. If
you attempt to change this component, you can only modify the description
and linked page.

9. Check that the iiiFNO7 function has compiled successfully, and then execute

your iiiFNO7. You will see a drop down for selecting the department code
field.

Using the drop down, select the Department Code of ADM and press the
Search button.

When the Sections in the Department are displayed, the iiiDEPT field is not
displayed using the iiiDEPT component (i.e. it is not displayed as a drop
down) as the mode of the display is output. For more details, refer to
Automatic Embedding of Web Components.

its:LANSA086.CHM::/LANSA/ed0930.htm

Step 3. Create a Text Web Component

In this step, you will create a simple Text Web component which will indicate
when the Web pages will be updated next. By using a Web component, you can

centralize the definition so that only a single change needs to be made to your
application.

1. Use the Components menu category and select the Maintain option. A list of
all components in the partition will be displayed.

2. Press the Add button to define a new component as follows:

Name: | iiiUPDATE

Type: | Text

3. Press the Continue button and then enter the following details:

Description: | Next Update

Text:
<center>Pages will be updated on January 1,
2002.</center>

Mode: Not Applicable

This component is created with a Not Applicable mode because it will be
used in the footer. It is not used in a REQUEST or DISPLAY.

4. Close the Component window.

5. Open the iiiPROC03_STDFOOTER page. At the bottom of the document,
add a LANSA tag to embed the component as follows:

<RDML COMPONENT="1iiUPDATE">

Note: The component names are case sensitive so be careful to use the
correct spelling of the component .

Tip: You can use the Tags menu category and select the RDML -

Component... option if you wish to see a list of components.

6. Execute your iiiFNO5 or iiiFNO7 function to see the new information in the
footer of the function.

7. Change the iiiUPDATE component so that the text reads as follows:

<center>Pages will be updated on December 31, 2002.
</center>

8. Test your function again. The change is made immediately. No HTML
editing or function recompiling was required.

Step 4. Banner Web Component

In this step, you will add an advertising banner to the standard header used in
your functions. This banner will link to the Visa, MasterCard and LANSA Web
Site. (Note: You may not be able to test the links if your Web Server does not

have access to the Internet.)

1. Create a new component as follows:

Name:

11iIBANNER

Type:

BANNER

2. Press the Continue button and enter the following:

Type:

Image

Mode:

Not Applicable

3. Press the OK button and enter the following:

Description:

Function Banner

Update frequency:

Update every visit

Display link in new window:

Check the box

4. Using the Add button, enter the following data for the banner items:

Set| Image Description | URL

0 | LANSA.GIF | LANSA http://www.lansa.com

1 | VISA.GIF Visa http://www.visa.com

2 | MCARD.GIF| MasterCard| http://www.mastercard.com

5. Press OK to save the component.
6. Open the iiiPROC03_STDHEADER page.

7. Include the banner component at the bottom of the function header by
inserting the following LANSA tag:

<RDML COMPONENT="iiiBANNER">

Note: The component names are case sensitive so be careful to use the
correct spelling of the component .

8. Test your changes by executing your iiiFNO5 or iiiFNO7 function. You
should see a new banner each time you perform a new search. (Note: You
may not be able to test the links to other Web sites if your Web Server does
not have access to the Internet.)

Step 5. Use Hidden Fields in Function

In this step, you will add a hidden field to the REQUEST panel in iiiFNO5 and
assign a Web Page component to the field. This component will contain the
HTML for displaying the CALENDAR button which you manually added to the
HTML. Using this technique, the calendar button will automatically be included
in the page without manually editing the HTML.

1. In the LANSA Editor, edit the RDML for your iiiFNO5 function. Add the
following RDML line to define a field in the function:

DEFINE FIELD(#iiiCOMP) TYPE(*CHAR) LENGTH(1)

The characteristics of this field are not important. The field is simply a
dummy hidden field which can be used for component substitution.

2. Modify the REQUEST statement so that it appears as follows:

REQUEST FIELDS((#DEPTMENT)(#STD_DATE)
(#iiiCOMP *HIDDEN)) DESIGN(*DOWN) IDENTIFY (*DESC) MENU_KE

3. Save and exit the RDML function but do NOT compile the function yet.

4. Create a new HTML page by using the File menu category and selecting the
New option.

5. Delete the default HTML which appears and enter the following HTML into
the page:

<img src="/IMAGES/TB_CAL.GIF" alt="Calendar" border="0" width="70" h

6. Save the file as iiiCOMP with description Hidden Field Component for
Calendar.

7. Use the Components menu category and select the Maintain option. A list of
all components in the partition will be displayed. Press the Add button to
define a new component as follows:

Name: | iiiCOMP
Type: | PAGE

Press the Continue button and then enter the following details:

Description: | Calendar Button
Page: 11iCOMP
Mode: OUTPUT

The mode of this component is very important. Because the field is hidden in
the REQUEST statement, this component must be an OUTPUT component.

. Now that the component has been created, you can submit the iiiFNO5
function for recompile. Remember, compiling the function will replace your
modified HTML with a new version.

. Check that the compile was successful and then test your function. You

should see the Calendar button at the top of your function. Notice that you did
not have to edit the HTML. The iiiCOMP was automatically embedded by
LANSA. You may wish to review the HTML page for function iiiFNO5 to
review how the hidden field was used in the HTML page.

Step 6. Create a Web Link Component

In this step, you will use a Web link component to control the flow between
WEBEVENT functions. You will add an image to act as a link between iiiFN0O5
and iiiFN06. This step will also demonstrate how you can embed components
within components.

1. Create a new component as follows:

Name: | iiiWEBLINK
Type: | Web Link

Press the Continue button and enter:

Description: Link to iiiFN06
Linked Process: iiiPROCO03
Linked Function: iiiFNO6

Linked Description: | Next Function
Type: IMAGE
Image: TB_NEXT.GIF

In order to add this component to your function, you will need to use an
RDML COMPONENT tag. If you manually edit the HTML, your changes
will be overwritten when you recompile the function. Instead, you will add
the iiiWEBLINK component to an existing component.

2. Using the Web Function Editor, open the iiiCOMP page you created for the
Calendar button.

Add the bolded line to your HTML so that it appears as follows:

<img src="/IMAGES/TB_CAL.GIF" alt="Calendar" border="0" width="70" h

<RDML COMPONENT="iiiWEBLINK">

3. Save the document.

You have now embedded the iiiWEBLINK component into the iiiCOMP.
When iiiCOMP is embedded into the HTML page, it will also embed the
1liWEBLINK component.

4. Test your iiiFNO5 function. (You do not need to recompile the function.) You
should see a Next button beside your Calendar button. Try using this button
instead of the Search button.

Summary

Important Observations

e The contents or data used for a Visual Web component will be determined
when the component is created. The Department Code drop down lists all
departments in the DEPTAB file when the component was created.

e The text in components may contain HTML tags.

e Component can be embedded into components provided that there is no
recursive embedding.

e Modes are very important to Web components especially when a component
is embedded automatically by LANSA for the Web.

¢ In this tutorial, two fields were used for Web component substitution:
iiiDEPT and iiiCOMP. iiiDEPT was created in the LANSA Repository but
iiiCOMP was defined in the RDML function. It is strongly recommended
that all field used in REQUEST or DISPLAY statements be created in the
LANSA Repository so that a common field definition is used when data is
automatically exchanged by LANSA for the Web. The iiiCOMP field was
created to demonstrate the use of hidden fields for Web component
substitution. These fields will never contain data. iiiCOMP is only used for
embedding a Web component.

Tips & Techniques

e Text Web components are very similar to text graphic variables. The main
difference is that the graphic variables are defined at the system level. Web
components are defined at the partition level.

e Remember, component names are case sensitive.

e Using a hidden field to automatically embed a component eliminates the
need to manually add components to your HTML pages.

e Embedding Web components into other Web components is a very powerful
development technique, but be very careful that you do not recursively
embed components.

e For more examples of Web components, refer to the SET Collection.

What I Should Know

e How to create Visual Web components.
e How to create Text, Banner, Web Link and Page Web components.

¢ How are modes used by Web components.
e How LANSA for the Web embeds components into HTML pages.
e How to embed Web components into other Web components.

Other Tutorials

You are now ready to complete WEB0O09 - Web Page Substitution (Optional -
Advanced). This tutorial is optional.

WEBO009 - Web Page Substitution (Optional - Advanced)

Note: If you copy and paste these HTML examples into the Web

Function Editor, use HTML Paste rather than Paste, so that the HTML
tags are copied with the text.

Objective:
e To demonstrate a technique which can be used so that custom changes to
your HTML will not be replaced when a function is recompiled.

e To show how to use a single field and a Web page component to substitute
for the display in a function so that changes to the HTML page are not lost
when a function is recompiled and the HTML is regenerated.

This tutorial is optional. It introduces some more advanced level
concepts, which are very important to developing WEBEVENT

function applications with LANSA for the Web. This tutorial provides
a very simple example to demonstrate the concept of Web page
substitution.

To achieve these objectives, you will complete the following steps:

e Step 1. Create a New Function

e Step 2. Create a New Web Component

e Step 3. Copy the HTML Code For Page Component iiiFNO8C

e Step 4. Test the Function

e Step 5. Add Fields to the iiiFNO8 Function

e Optional Step 6. Modifying iiiFN0O6

e Summary

Before You Begin

You may wish to review these topics and all of their related sections:
e WEBEVENT Functions

e Web Components

In order to complete the tutorials, you must have completed the following:
e WEBO002 - Coding a WEBEVENT Functions

e WEBO004 - LANSA Generated HTML Pages

its:lansa086.CHM::/LANSA/ED0400.htm
its:lansa086.CHM::/LANSA/ED0900.htm

e WEBOO06 - Graphic Variables
e WEBO008 - Web Components

Step 1. Create a New Function

In this step you will create a new function which is a duplicate of your iiiFN05
function. The iiiFNO08 function, like iiiFNO5, will be used with the iiiFN06
function to display a listing of sections. (Remember to substitute iii with your
initials.)

1. Working with your iiiPROCO03 process, create a new function named iiiFIN08

Request Department. (Tip: You may to copy your existing iiiFINO5 function to
start the iiiFNO8 function.)

2. The RDML code in your iiiFN08 function should appear as follows:

FUNCTION OPTIONS(*DIRECT *WEBEVENT)

DEFINE FIELD(#iiiFN08C) TYPE(*CHAR) LENGTH(1)

CHANGE FIELD#DEPTMENT) TO(*DEFAULT)

REQUEST

FIELDS((#iiiFN08C *NOID)) DESIGN(*DOWN) IDENTIFY (*DESC) MEN
REQUEST FIELDS((#DEPTMENT)

(#STD_DATE)) DESIGN(*DOWN) IDENTIFY (*DESC) MENU_KEY (*NO

Following are some important notes about this function:

The field iiiFNO8C is simply created for Web component substitution. The
field uses *NOID as no description is required. In Step 2, you will create the
HTML for this page component.

This function has two REQUEST commands. Only the first REQUEST will
be processed in the WEBEVENT function but HTML pages will be created
for both commands. You will use the generated HTML from the second
REQUEST to create the iiiFNO8C Page component.

3. Do not compile your function until after you define your Web component.

4. Use the Tools menu category and select the Keywords - Maintain option. Do
not enter a Process. Press the OK button to continue. Press the Add button to
create a link to by entering the following information:

Process 1iiPROCO03
Function 1iiFNO08
Keyword SEARCH

Description Search

Linked Process iiiPROC03

Linked Function iiiFN06

Step 2. Create a New Web Component

You will now create a Web Page component named iiiFNO8C which will be
used for displaying the fields in the REQUEST panel. Once this component is
created, the first REQUEST statement (which is used to create the display
which is sent to the browser) will produce the following generated HTML.:

<tr>

<td></td>

<td><RDML COMPONENT="iiiFN08C " MODE="1"></td>

</RDML>

</tr>

The iiiIFNO8C Web component will be created as a page Web component. The
page will contain the HTML code for the fields in the second REQUEST
statement, i.e. the screen with the fields you really want to send to the browser.

1. Create a new component as follows:

Name: | iiiFN08C
Type: | PAGE

Press the Continue button and enter the following:

Description: | HTML Page Layout for iiiFN8
Page: 11iFNO8C
Mode: INPUT

Press the OK button to create the component.
2. Submit the function for compile.

When the function is compiled, it will include the Web component you have
just defined.

The function compile will also create the HTML which will be used in the

11iIFNO8C page component.

Step 3. Copy the HTML Code For Page Component iiiFN08C

In this step, you will cut and paste the HTML code required for the iiiFN08C
page component. The HTML is actually created for you by LANSA. The second
REQUEST statement contains the HTML code required for the display.

1. Using the Web Function Editor, open a new document.
2. Delete the default HTML which appears in the new page.

3. Open the iiiPROCO03 iiiFN080002 HTML page. (This is the second
REQUEST statement.)

Copy all the HTML statements in the table definition, i.e. copy all code
between the following tags

<table border="0" cellpadding="0" cellspacing="3">
<tbody>

copy all HTML code here but do not include the table tags shown above and b

</tbody>
</table>

4. Paste the HTML code into your new page. Your code should appear
something like this:

<tr>

</tr>

<tr>

<td><RDML MERGE="&T0001+0001+0020"></td>
<td><input name="ADEPTMENT " type="text" size="004" maxlength="004"
value="<RDML MERGE="DEPTMENT ">"
onfocus="SetNameLocation(ADEPTMENT ',03,29)" /></td>

</tr>

<tr>

<td><RDML MERGE="&T0002+0021+0040"></td>
<td><input name="SSTD_DATE " type="text" maxlength="008"
align="right" <RDML MERGE="STD_DATE " EDITCODEI="Y">
onfocus="SetNameLocation('SSTD_DATE ',04,29)" /></td>

</tr>

5. Make the following changes to the HTML.:
a. Add some text instructing the user to enter a Department Code

b. Manually type the names of the DEPTMENT and STD_DATE fields
instead of using RDML MERGE

c. Include the Calendar button using HTML

d. Manually type the names of thinclude the next button using your
1liWEBLINK component.

The final pages should appear as follows (changes are in bold):

<tr>
<td>Enter a Department Code:</td>
</tr>
<tr>
<td>Department Code</td>
<td>
<input name="ADEPTMENT " type="text" size="004" maxlength="004"
value="<RDML MERGE="DEPTMENT ">"
onfocus="SetNameLocation(ADEPTMENT ',03,29)" /></td>
<td><RDML COMPONENT="iiiWEBLINK"></td>
</tr>
<tr>
<td>Standard Date</td>
<td><input name="SSTD_DATE " type="text" maxlength="008"
align="right" <RDML MERGE="STD_DATE " EDITCODEI="Y">
onfocus="SetNameLocation('SSTD_DATE ',04,29)" /></td>
<td>
<img src="/IMAGES/TB_CAL.GIF" alt="Calendar" border="0" width=
vspace="0" align="1left" /></td>
</tr>

6. Save the document as iiiFNO8C with description iiiFNO8 Page Component.

Step 4. Test the Function
In this step, you will execute your iiiFN08 function. The iiiFN08 can be
recompiled and the layout in your screen HTML will not be impacted

1. Execute your iiiFNO8 function. The page should appear something like the
following:

‘3 Request Department Code - Microsoft Internet Explorer |_ (O] x|
J File Edit “iew Fawaortes Tools Help |
J4=.ﬂ>.@ﬁ5 Q@ @ I |2 S H.,
Back Ecrvard Stop Refresh Home Search Favortes Higtory b il Frint Edit
JAgdress I@ http://203.4. 20442/ cai-bindanzaweb?prociun+iprocO3+ifnl08+dem j @Go H Links **|
|
Request Department Code
Enter a Department Code:
Department Code
Standard Date 0/00/00 CALENGA=
Search |
Powered by LI.LI.LE'LL
Copyright TAITSA 2001, =l
|@ Dane I_I_‘Q Internet 4

2. Edit the iiiFNO8C page and add the bold code:

<tr>

<td>Enter a Department Code:</td>

</tr>

<tr>

<td>Department Code</td>

<td>

<input name="ADEPTMENT " type="text" size="004" maxlength="004"
value="<RDML MERGE="DEPTMENT ">"
onfocus="SetNameLocation(ADEPTMENT ',03,29)" /></td>
<td><RDML COMPONENT="iiiWEBLINK"></td>

</tr>

<tr>

<td>Standard Date</td>

<td>

<input name="ASSTD_DATE " type="text" maxlength="008" align="right"
<RDML MERGE="STD_DATE " EDITCODEI="Y">
onfocus="SetNameLocation('SSTD_DATE ',04,29)" /></td>
<td>
<img src="/IMAGES/TB_CAL.GIF" alt="Calendar" border="0" width="70" h
</td>
</tr>

<tr><td>Press NEXT to search.</td></tr>

3. Save your changes.

4. Test your iiiFNO8 function to see your changes. (Reminder: The iiiFN06
function is linked to the iiiFNO5 function when you use the New Search
button. You must use the browser Back button or change the keyword links to
return to the iiiFNO8 function.)

5. Edit the RDML code in your iiiFN08 function to remove the
USER_KEYS((01 SEARCH)). The Web Link component will be used
instead. The REQUEST should now appear as follows:

REQUEST
FIELDS((#iiiFN08C *NOID)) DESIGN(*DOWN) IDENTIFY (*DESC) MEN

6. Recompile the iiiFNO8 function.
7. Test your iiiFNO08 function to see your changes.
The Search button should not appear.

Your text added in Step 2 is not impacted by the recompile because it is
stored in the Web Page component!

Step 5. Add Fields to the iiiFN08 Function

In this step, you will add another field to the REQUEST used in iiiFNO8 to see

how this will impact the iiiFNO8C Web page component being used for the

display.

1. Edit the RDML code in your iiiFNO8 function. Add the STD_NAME field to
the CHANGE and REQUEST statements. Your RDML should appear as
follows:

FUNCTION OPTIONS(*DIRECT *WEBEVENT)

DEFINE FIELD(#iiiFN08C) TYPE(*CHAR) LENGTH(1)

CHANGE FIELD#DEPTMENT #STD_NAME) TO(*DEFAULT)
REQUEST

FIELDS((#iiiFN08C *NOID)) DESIGN(*DOWN) IDENTIFY (*DESC) MEN
REQUEST FIELDS((#DEPTMENT)

(#STD_DATE) (#STD_NAME)) DESIGN(*DOWN) IDENTIFY (*DESC) M]

2. Compile the iiiFNO8 function.

3. Open the iiiPROCO03 iiiFN080002 HTML page. In this page, you will see the
STD_NAME field added to the list of input fields. You could copy this new
code to your iiiFNO8C component.

4. Edit the iiiFNO8C page and add the bolded code (notice that the label for
STD_NAME has been replaced by the words Requested By):
<tr>
<td>Enter a Department Code:</td>
</tr>
<tr>
<td>Department Code</td>
<td>
<input name="ADEPTMENT " type="text" size="004" maxlength="004"
value="<RDML MERGE="DEPTMENT ">"
onfocus="SetNameLocation((ADEPTMENT ',03,29)" /></td>
<td><RDML COMPONENT="iiiWEBLINK"></td>
</tr>
<tr>
<td>Standard Date</td>
<td>
<input name="SSTD_DATE " type="text" maxlength="008" align="right"

<RDML MERGE="STD_DATE " EDITCODEI="Y">
onfocus="SetNameLocation('SSTD_DATE ',04,29)" /></td>
<td>
<img src="/IMAGES/TB_CAL.GIF"
alt="Calendar" border="0" width="70" height="21" hspace="0" vspace="0" al
</td>
</tr>
<tr><td>Requested By</td>
<td>
<input name="LSTD_NAME " type="text" size="025" maxlength="025'
value="<RDML MERGE="STD_NAME ">"
onfocus="SetNameLocation('LSTD_NAME ',05,29)" /></td>
</tr>
<tr>
<td>Press NEXT to search.</td>
</tr>

5. Save your changes.

6. Test your iiiFNO8 function.

Optional Step 6. Modifying iiiFN06
In this step, you will modify the iiiFNO6 function so that it displays the
STD_NAME field which was added to the REQUEST in iiiFINO8.

1. Edit the RDML code in your iiiFNO6 function to display the STD_NAME
field by changing the GROUP_BY as follows:
GROUP_BY
NAMEM#HEADER) FIELDS(#DEPTMENT #DEPTDESC #STD_NAME)
2. Recompile your iiiFNO06 function.
3. Execute your iiiFNO8 function. Enter a Requested By name when you

perform your search using the NEXT button. The name should appear in the
list of sections displayed by iiiFNO6.

Summary

Important Observations

e A WEBEVENT function may contain more than one REQUEST and/or
DISPLAY statement. The HTML pages are created for each REQUEST and
DISPLAY, but only the first statement will be processed. By definition,
WEBEVENT functions terminate after a display is processed.

e Two REQUEST statements were used as a means of having LANSA
generate the HTML for the fields. Once you are an experienced LANSA
Web function developer, you may not require the second display statement.
For documentation purposes, the second display statement is very helpful to
other developers.

e In this example, a multilingual partition was used. The RDML MERGE tags
(for example <RDML MERGE="&T0001+0001+0020">) for the field labels
were removed and labels were manually entered. If you do not manually
replace the field labels with text, you must update the MERGE tags after a
function is recompiled.

Tips & Techniques

e You can use this technique with almost any display. The screen can include
input field, output fields, browse lists, etc.

e When using this technique, you should always use a REQUEST statement
for the Web Page component. Your second statement (i.e. the actual screen
layout) can be a REQUEST or DISPLAY. Using a REQUEST will simplify
the HTML generated as modes are not used.

e You can link WEBEVENT functions using keywords or by using Web Link
components. You may also use JavaScript and the HandleEvent function to
control navigation in WEBEVENT functions.

What I Should Know

e How to use a Web page component to replace the display so that recompiling
the function does not impact the customized HTML.

WEB010 - Web Skeletons (iSeries)
Objective:

In this exercise, you will modify LANSA's Web Skeletons in order to make a
change to the default layout of the Web functions used in your Personnel
System Web application. This exercise provides a simple example of how
the Web Skeleton can be used to control the structure of the HTML
generated by LANSA.

To introduce LANSA's Web Skeletons. It is important to remember that
there are many different uses for Web Skeletons. Web Skeletons simplify the
design process. They do not eliminate it.

To create a process level Web Skeleton. You will copy and then modify the
default Web Skeleton in order to create a process level Web Skeleton for
iiiPROCO03.

To recompile the functions in iiiPROCO03 to use the new Web Skeleton.

To achieve these objectives, you must complete the following:

Step 1. Copy Default Web Skeleton
Step 2. Edit the Web Skeleton

Step 3. Execute Your Function

Step 4. Recompile Your Function
Step 5. Execute Your Functions

Summary

Step 1. Copy Default Web Skeleton

In this step, you will copy the default Web Skeleton from DC@F28 and create a
process-specific Web Skeleton in DC@W22.

1. Locate the Default Web Skeleton.
From an OS400 command entry, type in STRPDM and press Enter.
Select option to Work with members.

From the Work with Members screen, enter the following:

File DC@F28

Library <LANSA data library> (default is DC@DTALIB)
Member Name | WEBSKEL

Type TXT

2. Copy the Web Skeleton to DC@W22.
Beside member WEBSKEL, select option 3 to copy and press Enter.

On the Copy Members screen, enter the following:

To File DC@W?22
New Name | iiiPROCO03

3. Locate the copied Web Skeleton in DC@W?22.

4. At the top of the Work with Members Screen, change the File to read
DC@W?22 instead of DC@F28 and press Enter.

5. Press F17 to Change using SDA
6. Change Member to iiiPROCO03 and press Enter.

Step 2. Edit the Web Skeleton

In this step, you will simply change the copied Web skeleton, by removing the
standard footer.

1. Edit your iiiPROCO03 Web skeleton (using option 2) and press Enter.
2. Review the Web skeleton. It should appear as follows:

<RDML LAYOUT>

<!-- Process : %PR %PRDS

<!-- Function : %FU %FUDS

<l--Page :%PG

<!-- Generated by - %PROD

<!-- Created by user - %USERI

<!-- Time and Date - %STAMP

<!-- RDML function sequence number - %SEQ

<l-- This is a *WEBEVENT function %IFWEV
%IFWEV

%W3FRM

<RDML MERGE="&HIDDEN">

<RDML COMPONENT="STDHEADER">

%W3TTL

<RDML MERGE="&MESSAGES">

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=3> %IFN

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=3 ALIGN=RIGH

<TBODY>

%W3FLD

</TBODY>

</TABLE>

<BR CLEAR="right"> %IFRLTB

%W3BRW

<RDML MERGE="&BUTTONS">

<RDML COMPONENT="STDFOOTER">

</FORM>

3. Remove the Standard Footer by deleting the line <RDML
COMPONENT="STDFOOTER">.

4. Insert the following, where the STDFOOTER used to be:

<CENTER><H3>Personnel System</H3>
</CENTER>

The bottom half of the Web Skeleton should now appear as follows:

%W3FLD

</TBODY>

</TABLE>

<BR CLEAR="right"> %IFRLTB

%W3BRW

<RDML MERGE="&BUTTONS">

<CENTER><H3>Personnel System</H3>
</CENTER>

</FORM>

5. Press the F3 Exit key, to the exit the screen. The Change/Create member
option should be defaulted to Y. Press Enter to save the changes.

Step 3. Execute Your Function

You will now execute the function before recompiling the function to use the

new Web Skeleton. Your existing function's HTML was created using the
default Web Skeleton.

1. Execute function iiiPROCO03/iiiFNO7 from your browser using the following
URL:

http://<host address>/cgi-bin/lansaweb?
procfun+iiiPROC03+iiiFNO7+partition+language

2. Notice that the Standard footer is used, because the function has not been
recompiled.

Step 4. Recompile Your Function

You will now recompile the function to use the new process-specific Web
Skeleton.

1. Recompile the function iiiPROCO03/iiiFNOQ7.

2. Also, recompile the function iiiPROCO00/iiiFN0O. This function should not
be impacted as the Web Skeleton is process-specific.

3. Ensure that the compiles completed successfully.

Step 5. Execute Your Functions

1. Execute your iiiFNO7 function, or if the browser is still open to the function,
press the Refresh/Reload button in the browser.

Notice that the footer has been replaced, as the new Web skeleton is used.

Your function might appear something like the following:

A Display Sections in Department - Microsoft Internet Explorer : =lo] x|
J Fle Edit Wew Favorites Tools Help i
| ¢Back ~ = ~ @ &t | @search GaFavorites (BHstory |EAw S F v D
JAgdressl | j a0 HLinks &
;'
LLLLEL
ii LANSA Web Applications

Display Sections in Department

Department Code . | j

Search |

Personnel System

[
|@ Done |7|7|G Internet Y

2. Execute your iiiFNOO function. Notice that this function is not changed as
the Web Skeleton is process-specific.

Summary

Important Observations
e The Web Skeleton can be used to modify the appearance of all function

pages under a specific process.

A function must be recompiled so that the HTML is regenerated in order for
the Web Skeleton changes to take effect.

The new Web Skeleton simply omitted the STD_FOOTER from all Web
functions in iiiPROCO03. This change cannot be made using the Wizard. It
cannot be done manually, but it would require editing the HTML for each
function. When a change is required to all functions, the Web Skeleton is a
good solution.

Tips & Techniques

The Web Skeleton is usually modified at the partition level to give all pages
in the partition the same look and feel.

NEVER modify the default Web Skeleton. When a new version of LANSA
for the Web is installed, the default Web Skeleton could be changed.

What I Should Know

What the Web Skeleton is.

How the Web Skeleton is used by LANSA when generating the HTML for a
function.

How to create and edit a process level Web Skeleton.
How to change the appearance of your Web pages using the Web Skeleton.

WEBO011 - Using DEFAULT_HIDDEN
Objective:

To create a simple Web site login screen. The login will simply be used to
identify the user so that you can customize or personalize the Web site to
their ID. (This login example has not been created to emphasize Web site
security.)

To store the value of the login field using a process level _HIDDEN so that it
can be shared or passed from function to function.

To demonstrate how to use <RDML PAGE=""> tag to simplify and
modularize your page structure.

To achieve these objectives, you must complete the following:

Step 1. Create Login Function

Step 2. Edit Standard Header for iiiPROCO03
Step 3. Test your Functions

Step 4. Create a Process Level _HIDDEN Page
Step 5. Test your Functions

Summary

Step 1. Create Login Function

In this step, you will create a new process iiiPROC04 which contains a login
function iiiFN10. The login function simply requests a user ID. (You will create
a new field in the Repository for the login ID.) The login ID will be added to the
STDHEADER so that it is displayed in each function. The login function will
have a link to the iiiFNO7 Display Sections function. The iiiFNO7 function will
be modified to check that a login has been entered. If no value has been entered,
the iiiFIN10 login will be called so that the user must be logged in to use
iiiFNO7.
1. From the LANSA development environment, work with the fields in the
LANSA Repository. Create a new field as follows:

Field Name| iiiLOGIN
(where iii is your course assigned ID)

Type A
Length 10

Description | Login:

2. Create a new LANSA process named iiiPROC04 Login Process, where iii is
your course assigned ID. (If the process already exists, select a different set of
characters for iii.)

3. Enable your iiiPROCO04 process for web. If you need to know how, refer to
Web Enabling a LANSA Process.

4. Working with your iiiPROCO04 process, create a new function named iiiFN10
Request Login. You will manually enter the code for the function.

5. Write the RDML Code to request the field iiiLOGIN. (This example does
not include any field/file level validation. You could include validation
routines inside the RDML to validate the login.)

One possible solution to this exercise is shown below (where iii is your
course assigned ID):

FUNCTION (*DIRECT *WEBEVENT)
REQUEST

its:lansa086.CHM::/LANSA/ED0310.htm

FIELDS((#iiiLOGIN)) EXIT_KEY(*NO) MENU_KEY(*NO) USER_KEYS(
6. Exit and save your RDML function.
7. Compile your functions.

8. Using the LANSA HTML editor, register the keywords to link your iiiFN10
Request Login function to your iiiFN007 Display Sections in Department
function

The keyword entries are specified as follows (where iii is your course
assigned ID):

Process 11iPROC04
Function 1iFN10
Keyword SUBMIT
Description Login

Linked Process | iiiPROC03
Linked Function| iiiFNO7

9. Working with your iiiPROCO03 process, manually edit your function iiiFNO7
so that it checks the value of iiiLOGIN. If the value is blank, then the iiiFN10
login function should be called. Your modified function might appear as
follows (where iii is your course assigned ID):

FUNCTION OPTIONS(*DIRECT *WEBEVENT)

GROUP_BY

NAME#HEADER) FIELDS((#iiiDEPT) (#DEPTDESC) (#RENTRY *HIDD]
DEF_LIST

NAME(#iiiLIST) FIELDS((#LISTDUMMY *HIDDEN) #SECTION #SECDE
[F COND(#iiiLOGIN *EQ *BLANKS)

CALL PROCESS(*DIRECT) FUNCTION(iiiFN10)

ENDIF

IF COND(#RENTRY *NE Y

10. Exit and save your RDML function.

11. Compile your function.

Step 2. Edit Standard Header for iiiPROC03

In this step, you will edit the standard header page to be used specifically with
iiiPROO0CO3 to include the iiiLOGIN field.

1. Using the LANSA HTML editor, open the iiiPROC03_STDHEADER.

2. Insert the bolded lines which will simply add a heading to the page (where iii
is your course assigned ID):

<l-- >

<l-- LANSA for the WEB -->
<I-- Standard Header -->
<l-- >

<IMG SRC="

<RDML MERGE="*LW3CPYLOGO">" WIDTH=221 HEIGHT=62>

<p>

<H4> iii LANSA Web Applications</H4>

<p>

Your login entered was: <RDML MERGE="iiiLOGIN">

<p>

<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0 WIDTH=100%
<TBODY>

4. Save the document.

Step 3. Test your Functions

1. Check that your functions compiled successfully.
2. Execute your function iiiPROC04/iiiFN10.

Enter iiiMYLOG as your login ID (where iii is your course assigned ID).

| File Esft Wiews Favories Took Help ‘-
oL o D 3] 4 e &
Back Foryward Stop Retresh Home Search
JAQd'ress |éj:fﬁa.225.1ss.Qs:cgi.hinn_ANSAWEB?PROCFUN+iiPROc04+iiFN010+TR1 j P Go ||L\hks i
=
LLELEL
Request Login
Login: ||IkLOG
. Login Now
7
Powered by PO?“REE"BYI‘
3! — ,J
2] Dane || e imernet i

3. Press the Login Now button.

Remember: Your login ID is automatically transferred to iiiFNO7 because it
is an input field.

4. The iiiFNQO7 Display Sections function will be displayed.

3 Display Sections in Department - Microsoft Internet Explorer

| File Eeit Wiew Favorfes Tools Help ‘“

2 -2 -8 B 2|&a °

Back Fartar] Stof Refresh Home Search

| Acldiress |@ INALANS SWEB FHEBEYENT+L 0240521 0529507 003045093+ TR1+ENG j &G0 ||L\hks .

' |
LLELEL

I LANSA Weh Applications

Your login entered waslIMYLOG

VISA

The Werld's Best o Pay

Display Sections in Department

Department Code .. | _—!

Search

Personnel System

Sl

] Done || e mternet

5. Select a department and press the Search button.

Notice that you are returned to function iiiFN10 Request Login because the
iiiLOGIN field contained in the standard process header is an output only
field. The value is not passed back to function iiiFNO7 when the function
attempts to display the sections in the selected department.

Step 4. Create a Process Level _HIDDEN Page

In this step, you will create a new HTML page called iiiPROC03_HIDDEN.
You will include iiiLOGIN field in this page so that the value will then be
passed to all functions contained in your iiiPROCO03 process. You will use the

<RDML PAGE=""> command to include standard DEFAULT_HIDDEN as part
of this page.

1. Using the LANSA for the Web editor, create a new HTML page.
2. When the new page appears, delete all of the default HTML code.
3. Add the following lines to the page:

<RDML PAGE="DEFAULT_HIDDEN">

<INPUT NAME="AIiiiLOGIN" TYPE="HIDDEN" SIZE="10" VALUE="
<RDML MERGE="iiiLOGIN">">

Note that 'A’ must precede AiiiLOGIN, to indicate that the field is
alphanumeric.

4. Save your document as iiiPROC03_HIDDEN.

Step 5. Test your Functions

In this step, you will retest your functions after creating the
iiiPROCO03_HIDDEN page. Notice that you do not need to recompile your
functions or edit any of the function HTML.

1. Execute your function iiiPROC04/iiiFN10.

Enter iiiMYLOG as your login ID (where iii is your course assigned ID) and
press the Login button.

2. Select a department and press the Search button.

a Display Sections in Department - Microsoft Internek E:-iiqlqréi_‘

File Edit View Favorites Tools Help |f::l'tv&

@Back -

Address |@ http:,|',|'Iu:u:alhu:ust,l'CGI-BIN,l'LP.NSF'.'-.-'-.-'EB?'-.-'-.-'EBE'-.-'ENT+REIC1SSEuEIEuEICDEIEuEulerQS.cJ 1G0 | Links

| S W GRS SR GRS R i

~ Display Sections in Department

Dep'u’tment Code = ADM -
Dep artment DE&'[:nptmn ﬁDLﬂIﬂSTRATOR DEPT

01 INTEEMAL ADIIN SEV &7% 2536
02 PURCHASING SECTION 852 6475 s :
03 | ACCOUNTING SECTION 560 3633 i .
04 SALES & MARKEETING 364-8205 shiathl
05 MATNTENANCE (02) 456-7896
06 PEESONMEL SECTION 367-4554
0% WEHICLE LMDJTENMCE (02) 562-2783

: New Search |

=
(@] http: ,l',l'Iu:u:thu:ust,l'CGI BINILANSAWEB?BANNER+RDF155E e |_ |_] Local intranet =

Notice that the value of iiiLOGIN is now returned to the iiiFNO7 function.

3. View the HTML source for the iiiFNO7 function.

Notice that iiiLOGIN field has been passed as a hidden field.
4. Re-execute your iiiFN10 Request login function.

Enter a different value for the login and press Login.

Notice that the new value is passed.

Summary

Important Observations

Only input capable fields, hidden fields or browse lists are passed from
function to function. The iiiLOGIN field was passed from
iiiPROCO04/iiiFN10 to iiiPROCO03/iiiFNO07 as an input capable field.

The iiiLOGIN field was not passed from iiiFNO7 back to iiiFNO7 (reentrant
function) because it was not an input capable or hidden field. By creating
iiiPROCO3_HIDDEN, the field could be exchanged to any functions in
iiiPROCO03.

Notice that the iiiFNO7 function does not include the iiiLOGIN field in the
REQUEST or DISPLAY statements, but the field can still be used by the
function and in the HTML STDHEADER.

The iiiLOGIN field must be used somewhere in iiiFNO7 (for example, the IF
statement or in a GROUP_BY) for the value of iiiLOGIN to be stored in the
function. Once it is stored in the function, it can be exchanged with the next

function using the iiiPROCO03_HIDDEN fields.

The Login function iiiFN10 is part of iiiPROCO04. If you were to link
iiiFNO7 back to iiiFN10, the iiiLOGIN would not be passed because
iiiPROCO3_HIDDEN is process-specific. iiiPROCO04 still uses
DEFAULT_HIDDEN. Also, iiiFN10 has iiiLOGIN defined as an input field
so it cannot use an exchanged value in _HIDDEN. The iiiLOGIN field
would have to be passed as a function parameter, browse list value or an
input capable field on a display.

Using the RDML PAGE tag allows you to include the standard
DEFAULT_HIDDEN page in your iiiPROC03 _HIDDEN page. You could
have copied the DEFAULT_HIDDEN page to iiiPROC03_HIDDEN and
added the iiiLOGIN field, however any future changes made to

DEFAULT HIDDEN would also have to be made to iiiPROC03_HIDDEN.
Using the RDML PAGE tag simplifies the maintenance of your code.

Changes to the DEFAULT_<pages> do not require the functions to be
recompiled. These pages are automatically embedded when the function
executes.

Tips & Techniques

Instead of adding iiiLOGIN to the iiiPROC03_HIDDEN, it could have been
added as a *HIDDEN field in each REQUEST or DISPLAY.

e Creating process-specific pages allows you to customize your functions in a
specific process. You should not modify the DEFAULT pages unless the
change applies to all functions in the partition.

e All process-specific pages will automatically be exported with the process
definition. These pages do not need to be registered as Web Page
components.

e The DEFAULT_HIDDEN page can be used to pass many values. The hidden
field must be used in the RDML function in order for the value to be stored
and passed to the next function. The field does not have to appear in a
REQUEST or DISPLAY statement.

e The <RDML PAGE=""> tag can be used to modularize your code and
simplify maintenance.
What I Should Know

e How to use DEFAULT_HIDDEN to store values to be passed from function
to function within a process.

e How to use the <RDML PAGE=""> tag to create modular code.

WEB012 - Dynamic Components

Objective:

e In this exercise, you will use the login field to add a dynamic component to
your function. The dynamic component is determined by the value of a field
instead of being coded into the HTML page. In this example, the data
entered in the login field will be used to determine the component. This
technique allows you to personalize the site based on the user login.

e To demonstrate how to include a page component using &FLD_<field
name>, which uses the value of the field as your component name instead of
the field name.

e To demonstrate how to use components so that HTML changes are not lost
when a function is re-compiled.

To achieve these objectives, you must complete the following:

Step 1. Create a New Page Component
Step 2. Modify iiiPROC03_STDHEADER
Step 3. Test Your Function

Summary

Step 1. Create a New Page Component

In this step, you will create a new page component that will be used as the
welcome. A very simple HTML page containing your name will be created.
(Using a Web publishing tool, this HTML page could be made very graphical.)

1. Using the LANSA for the Web editor, create a new HTML page.
2.When the new page appears, delete all of the default HTML code.
3. Add the following line to the page:

<CENTER>Hello (your name goes here)
</CENTER>

4. Save your document as iiiMYLOG with description Login Component.
(Remember: iiiMYLOG is the data entered by the user when they login.)

5. Using the LANSA for the Web editor, open the maintain components
window.

6. Select Add, to add a new component as follows (where iii is your course
assigned ID):

Component | iiiMYLOG
Type PAGE

Description| Login Welcome
Page 1HMYLOG
Mode Not Applicable

7. Close the Maintain Components window.

Step 2. Modify iiiPROC03_STDHEADER

In this step, you will modify the HTML for iiiPROC03_STDHEADER to use a
dynamic component based on the contents of the iiiLOGIN field. When
iiiLOGIN has a value of iiiMYLOG, it will include the component you created
in Step 1. Create a New Page Component.

1. Using the LANSA for the Web editor, open the iiiPROC03_STDHEADER
(where iii is your course assigned ID).

2. Insert the bolded lines which will simply add a heading to the page:

<l-- >

<l-- LANSA for the WEB -->
<I-- Standard Header -->
<l-- >

<IMG SRC="

<RDML MERGE="*LW3CPYLOGO">" WIDTH=221 HEIGHT=62>
<p>
<H4> iii LANSA Web Applications</H4>
<p>
Your login entered was: <RDML MERGE="iiiLOGIN">
<pP>
<RDML COMPONENT="&FLD_iiiLOGIN">
<p>
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0 WIDTH=100%
<TBODY>

3. Save the document.

Step 3. Test Your Function
1. Execute your function iiiPROC04/iiiFN10.

Enter iiiMYLOG as your login ID (where iii is your course assigned ID) and
press the Login button.

2. Notice how the value of the iiiLOGIN field is used to display the new
component iiiMYLOG.

J File Edit VWiew Favoites Toolzs Help |

J@.».@@éﬁ‘@

Back, Forward Stop Refrezsh Home Search

| Addiess [@] ALANSAWEBTWEBEVENT +L0275701443D5B30044DE004 TAT-ENG = ¥ Ga || Links >

-

LLUEL

I LANSA Web Applications

Tour logmn entered was IMMYLOG

Hello (your name goes here)

L f:a1 &1

Display Sections in Department

Department Code . I j
Search |
-
|&]1 Done [[@ Intemet 4

3. Using iiiFN10, try entering any other registered component in the login field.
For example, try your iiiBANNER component.

Summary

Important Observations

&FLD_<field name> components allow you to determine the component
name based on the value of a field. In this example, the field value was based
on user input. The value could also be set based on information in a database
file.

The importance of &FLD_<field name> is that you can use RDML to
control the value of the field during execution of the function.

Tips & Techniques

In some cases, you can use &FLD_<field name> as an alternative to
<RDML CONDITION> or <RDML NOTCONDITION> tags. Instead of
using conditional tags, you can control HTML components by setting the
field values (in the RDML) used in the &FLD_<field name>. For example,
IF a certain condition is met, then set the field value to COMP1, where
COMP1 is a component with the desired HTML.

You can embed components within components, provided that they are not
called recursively.

In this example, you created a very simple personalization based on the user
login. You could create a highly personalized Welcome screen if you
maintain additional data in a database for the login user ID. For example,
you could display the last time a user visited the site or you could show a list
of user preferences, etc.

Create page components to protect your HTML changes from being lost
when a function is recompiled.

Using &FLD_<field name> allows you to customize what a user/users might
see for the same page, depending on their login authority.

Remember to use the proper mode when defining your Web components.
The iiiMYLOG component uses mode Not Applicable because it appears in
the function header.

What I Should Know

How to use &FLD_<field name> to dynamically set a Web component based
on the value of a field.

How to embed a component within a component.

e How to create page components to protect HTML from being replaced when
a function is recompiled.

WEBO013 - JavaScript and Browse Lists

To achieve the results shown in this tutorial, you will need ten graphic files as
described in step 5 of the iSeries Installation Steps in Tutorials for Web
Functions & WEBEVENTS:.

If you do not have these files or if they are not specified in the PSLMST file,
you will simply see a box with an X, instead of a picture.

Objective:

In this exercise, you will modify the Display Sections inquiry function to
allow the user to display a list of all employees in a selected Department and
Section. You will allow the user to select a specific Department and Section
(a row in the browse list) to call a Employee List function. The Employee
List function will include an employee picture (in place of the PHONEBUS
field). This image will also be turned into a link, that will open a new
browser window containing the details for the selected employee.

To create a new JavaScript function which will pass parameters from the
browse list to the HandleEvent function.

To demonstrate the use of JavaScript to pass function parameters.
To demonstrate the ability to select a row in a browse list.

To demonstrate how to call a LANSA function and pass parameters or
funcparms.

To create an Employee Details function using the Web page substitution
techniques used in exercise WEBO09.

To achieve these objectives, you must complete the following:

Step 1. Create Fields to be used as Function Parameters

Step 2. Create iiiFN11 Employee List

Step 3. Edit Process Level _SCRIPT

Step 4. Create a Link Component

Step 5. Modify Function iiiFN0O7

Step 6. Test Changes

Step 7. Include New Component Link into Employee Browse List
Step 8. Build Function iiiFN12 Employee Details

Step 9. Test Your New Functions

Step 10. Execute function iiiFN12 from a Command Line (Optional)

e Step 11. Create Page Component for Function iiiFN12 (Optional)
e Step 12. Test Changes (Optional)

e Summary

Step 1. Create Fields to be used as Function Parameters

In this step, you will create two fields in the LANSA Repository. The
iiiDEPTWK and iiiSECTWK will be used to store the selected Department and
Section. These fields will also be added to the <process_hidden> HTML you

created in an earlier exercise. These fields will be required by the JavaScript
written later in the exercise.

1. From the LANSA Development Environment, work with the fields in the

LANSA Repository. Create two new fields as follows (where iii is your
course assigned ID):

Reference Field| SECTION

Field Name HDEPTWK
Reference Field| DEPTMENT

2. Using your LANSA for the Web HTML editor, open iiiPROC03_HIDDEN.
3. Add the following lines (where iii is your course assigned ID):

<INPUT NAME="AIiiiSECTWK" TYPE="HIDDEN" SIZE="2" VALUE='
<RDML MERGE="iiiSECTWK">">

<INPUT NAME="AIiiiDEPTWK" TYPE="HIDDEN" SIZE="4" VALUE='
<RDML MERGE="iiiDEPTWK">">

4. Save your document.

Step 2. Create iiiFN11 Employee List

In this step, you will create a function to display information (EMPNO,
GIVENAME, SURNAME) about the employees in a given department and
section. The values for department and section are passed in the iiiDEPTWK
and iiiSECTWK fields in the iiiPROCO03_HIDDEN.

1. Working with your iiiPROCO03 process, create a new function named iiiFN11
Employee List. You will manually enter the code for the function.

2. Write the RDML Code to build a browse list from the two parameters
passed, iiiDEPTWK and iiiSECTWK. (This example does not include any
field/file level validation. You could include validation routines inside the
RDML to validate that records were found for the browse list.)

Solution:

One possible solution to this exercise is shown below (where iii is your
course assigned ID):

FUNCTION (*DIRECT *WEBEVENT)

DEF_LIST

NAME(#iiiEMPLST) FIELDS((#EMPNO) (#GIVENAME) (#SURNAME))
[F COND(#iiiLOGIN *EQ *BLANKS)

CALL PROCESS(*DIRECT) FUNCTION(iiiFN10)

ENDIF

CLR_LIST NAMED(#iiiEMPLST)

SELECT

FIELDS((#iiiIEMPLST)) FROM_FILE(PSLMST1) WITH_KEY (#iiiDEPTWK
ADD_ENTRY TO_LIST(#iiiEMPLST)

ENDSELECT

DISPLAY

FIELDS((#iiiDEPTWK) (#iiiSECTWK)) BROWSELIST(#iiiEMPLST) EXIT

3. Exit and save your RDML function.
4. Compile your RDML function iiiPROCO03/iiiFN11.

Step 3. Edit Process Level _SCRIPT

In this step, you will edit your iiiPROCO03_SCRIPT. You will add a new
JavaScript function which will be used to store the Department and Section
values (using iiiPROC03_HIDDEN) before the next function is called using the
HandleEvent script shipped with LANSA.

1. Using the LANSA for the Web editor, open iiiPROC03_SCRIPT.

2. Add the following lines to an appropriate part of the page (where iii is your
course assigned ID):

function HandleEventDeptSect(Proc,Func,Dept,Sect)

{
document. LANSA.AiiiDEPTWK.value=Dept;
document. LANSA.AiiiSECTWK.value=Sect;
HandleEvent(Proc,Func);

}

4. Save your document.

Step 4. Create a Link Component

In this step, you will create a page component that will appear as a button to link
to another function. The button will use the HandleEventDeptSect JavaScript
function created in Step 3 to set the value of the work fields and then call the
next function.

1. Using the LANSA for the Web editor, create a new HTML page.
2. When the new page appears, delete all of the default HTML code.
3. Add the following lines to the page (where iii is your course assigned ID):

<INPUT TYPE="button" VALUE="Click Here" NAME="buttonl"
onClick="HandleEventDeptSect('iiiPROC03",'iiiFN11’,
'SRDML MERGE="DEPTMENT">''<RDML MERGE="SECTION">");">

NOTE: there is no space following any of the commas. Remember to use
uppercase characters for your iii identifier.

4. Save your document as iiiLINK with description Link Component.

5. Using the LANSA for the Web Editor, open the Maintain Components
window.

6. Press Add, to add a new component as follows (where iii is your course
assigned ID):

Component | iiiLNK

Type Page

Description| Link Component
Page 1HLNK
Mode OUTPUT

Step 5. Modify Function iiiFN07

In this step, you will make changes to function iiiFNO7. First, you will change
the browse list name from iiiLIST to iiiLIST1 so that you can customize the
appearance of this specific browse list using the Web Functions Wizard . Next,
you will define an iiiLNK field which will be added to the list of Sections
browse list. This field will be used for the link component iiiLNK to call the
Employee list function. Finally, you will add the DEPTMENT and iiiLNK fields
to the browse list.

1. Working with your iiiPROCO3 process, edit the function named iiiFNO7
Display Sections in Department.

2. Using the find and change facilities in the RDML editor, change all
occurrences of iiiLIST to iiiLIST1.

3. Add a DEFINE statement for the iiiLNK field as follows:
DEFINE
FIELD(#iiiLNK) TYPE(*CHAR) LENGTH(1) COLHDG(Find Employee)

4. Add the field DEPTMENT with an attribute of *HIDDEN to your browse
list (now called iiiLIST1). Also add your new field iiiLNK with an attribute
of *NOID to your browse list. Also, change the number of entries allowed for
the list to 9999. The RDML code should appear as follows:

DEF_LIST
NAME(#iiiLIST1) FIELDS((#LISTDUMMY *HIDDEN) (#SECTION) (#SE(

5. Exit and save your RDML function.

6. Compile your function.

Step 6. Test Changes

In this step, you will test your function and HTML documents that you created
in the previous steps.

1.

2.

3.

Execute your function iiiPROC04/iiiFN10.
Login using iiiMYLOG.
Select the Administration department and press the SEARCH button.

Notice the new button on the right column of your browse list. It has the
heading Find Employee, and says Click Here.

If these buttons are not properly aligned, check the code in the button
component found in Step 3.

3 Display Sections in Department - Microsoft Internet Explorer

| File Esft iews Favories Took Help ‘-
= s D B A Q &
Back Foe] Stop Retresh Home Search
| Acldiress |@ INALANS SWEBFNEBEYENT+L024D531 5544507 0062CE003+ TR +ENG j &G0 ||L\hks .
=
Display Sections in Department
Department Code ... ADM
Department Description . ADMINISTRATION DFT
. Find
B ; ~ Employees
01 INTERMAL ADMIN SRY 679 2536 Click Hera I
02 PURGHASING BECTION 952 6475 Click Hers [
03 ACCOUNTING SECTION 560 3633 Click Here I
04 SALES AND MARKETING 364-8905 Click Hers [
05 MAINTEMANCE 456 7896 Click Hare I
0f PERSONNEL SECTION 367-4854 Click Hers [
09 VEHICLE MAINTENANCE (02) 662-2783 Click Here I
New Search
Porconnal Syetam — I
] Done [e rternet /

Clicking on any of the buttons in the browse list will call the iiiFN11
Employee List function.

Tip: If the link does not work, check the bottom left corner of your browser
(Internet Explorer) for a tiny triangle with an apostrophe in it. This symbol
indicates that there is an error in your JavaScript. Double click this icon, to
view the error message.

Note: Most JavaScript errors occur due to typing errors. Check this first by
comparing the Java Script code to the code in Step 3. Edit Process Level

_SCRIPT.

4. When function iiiFN11 is called, a list of all employees in the selected
Department and Section will be displayed:

‘3 Employee List - Microsoft Internet Explorer H=l 3

J File Edit View Favoites Toolzs Help |

J@.».n@éﬁ‘@”

Back, Forward Stop Refrezsh Home Search
JAgdlessl j 6’60 “ Links **
Your login entered was IMIYL.OG =l

Employee List
IODEPTWRE ADM
OSECTWRK 02
41002 JTOHIT SMYTHE
41005 PETER SHITHS
41014 JOHIY MOCRE
ABRBE ME FRED JOHIN BLOGGS =

-
&1 [[|4 Intemet 4

If there are no employees, repeat the above procedure selecting a different
Department and Section.

Step 7. Include New Component Link into Employee Browse List

In this step, you will create a component that will contain a link using an <A
HREF> and an image (based on the value of the PHONEBUS field). This
component will be included in the browse list used in function iiiFN11 and it
will be used to call an Employee Details function (iiiFN12).

1. Using the LANSA for the Web editor, create a new HTML page.
2. When the new page appears, delete all of the default HTML code.

3. Add the following lines to the page (where iii is your course assigned ID and
ppp=partition):
<a href="/cgi-bin/lansaweb?procfun+iiiproc03+iiifn012+ppp+funcparms+
EMPNO(A0050):<RDML MERGE="EMPNQO">" target="New Employee">
<img src="/IMAGES/<RDML MERGE="PHONEBUS">" border="0">

Reminder: The <A HREF> link will not automatically exchange the

WEBEEVENT data as it uses a new Web job. The Employee Number
parameter is passed as part of the function call so that the iiiFN12 Employee
Details function can retrieve the required data from the PSLMST file. The
iiiFN12 Employee Details function is also opened in a new browser window.

4. Save your document as iiilMAGE with description Employee Image.

5. Using the LANSA for the Web editor, open the Maintain Components
window.

6. Select Add, to add a new component as follows (where iii is your course
assigned ID):

Component | 1iilIMAGE

Type Visual

Description| Employee Image Component
Page 1HIMAGE
Mode OUTPUT

7. Working with your iiiPROCO3 process, edit the function named iiiFN11
Employee List.

8. Define a new field iiilMAGE based on the ##HONEBUS field and add the
iiilMAGE field to the browse list iiiEMPLST. Also add the PHONEBUS
(which contains the name of the employee image graphic file name) as a
*HIDDEN field.

Your function should appear as follows (where iii is your course assigned
ID):

FUNCTION (*DIRECT *WEBEVENT)

DEFINE FIELD(#iiilMAGE) REFFLD(#PHONEBUS)

DEF_LIST

NAME(#iiiEMPLST) FIELDS((#iiilMAGE *NOID) (YEMPNO) (#GIVENAN
CLR_LIST NAMED(#iiiEMPLST)

SELECT

FIELDS((#iiiEMPLST)) FROM_FILE(PSLMST1) WITH_KEY (#iiiDEPTWK
ADD_ENTRY TO_LIST(#iiiEMPLST)

ENDSELECT

DISPLAY

FIELDS((#iiiDEPTWK) (#iiiSECTWK)) BROWSELIST(#iiiEMPLST) EXIT

9. Exit and save your RDML function.

10. Compile your function.

Step 8. Build Function iiiFN12 Employee Details

In this step, you will build the Employee Details function, iiiFN12. This
function will receive the employee number (EMPNO) from the calling function
by using the funcparms passed in the URL. It will then display the Employee

details.

1. Working with your iiiPROCO03 process, create a new function named iiiFIN12
Employee Details. You will manually enter the code for the function.

2. Write the RDML code to fetch the employee's data from the PSLMST file
based on the value of EMPNO, which is a parameter passed to the function.

Include a GROUP_BY statement so that the iiiLOGIN field is defined in the
function.

(This example does not include any field/file level validation. You could
include validation routines inside the RDML to validate that records were
found for the browse list.)

Solution:

One possible solution to this exercise is shown below (where iii is your
course assigned ID):

FUNCTION (*DIRECT *WEBEVENT)
FdKAGkxAR*** This Group by can be left out however your login
wdckkdckkkkok* - component will not appear without it.

GROUP_BY NAME(#LOGGROUP) FIELDS((#iiiLOGIN))
GROUP_BY

NAME#EMPLOYEE) FIELDS((#EMPNO *OUTPUT) (#GIVENAME *OU’
FETCH

FIELDS((#EMPLOYEE)) FROM_FILE(PSLMST) WITH_KEY (#EMPNO) It
REQUEST FIELDS(#EMPLOYEE) EXIT_KEY(*NO) MENU_KEY (*NO)

Notice that this RDML solution uses a REQUEST statement instead of a
DISPLAY statement. This technique is used to reduce the amount of HTML
generated by LANSA for the Web.

3. Exit and save your RDML function.
4. Compile your RDML function iiiPROCO03/iiiFN12.

Step 9. Test Your New Functions

In this step, you will test your new functions. You will execute function iiiFNO7
as before. When the Employee List function iiiFN11 executes, you should see
an employee image. When you click on an image, a new browser window
should appear containing the Employee Details function iiiFN12.

1. Execute your function iiiPROC04/iiiFN10.
2. Login using IIMYLOG.
3. Select the Administration department and press the SEARCH button.

Notice that the Click Here button appears exactly as it did in the previous
exercise.

4. Select Section 02.
5. Press the Click Here button for the Section.

An employee list should appear. If the images have been placed correctly on
the Web Server, an employee image should appear to the left of each name,
otherwise you should see a small box with an X in it. (This small box is the
standard browser default when an image cannot be found.)

‘3 Employee List - Microsoft Internet Explorer H=l 3
J File Edit View Favoites Toolzs Help |
) B A Q
Back, Forward Stop Refrezsh Home Search
JAgdlessl j 6o “ Links **
. =
Employee List
IODEPTWRE ADM
OSECTWREK 02

Al1002 JOHIT SMYTHE

A1005 PETER SMITHS

I
[[d Intemet 4

5. Click on the employee image. (If no image exists, click on the box with the
X.)

6. A new browser window should appear as function iiiFN12 executes.

The window will contain the employee details:

‘J Employee Details - Microsoft Internet E xplorer |_ (O] =]
J File Edit View Favoites Toolz Help |n
- = / =
e s D 2] A a ?
Biack Forward Stop Refrezsh Home Search
JAgdlessl | j ™ Go ‘ I Links ™
Your login entered was: -l

Toe Wor s Beet sy o Pay

Employee Details

Employee no.... £1002

Given names.... JOHN
Surname........ SMYTHE

Address 1...... 20 Cobbitty Avenue,
Address 2...... WEREDTGTONM
Country 5

Postizip code.. 2100

Home phone..... 047 2% 0442

Salary......... 25,000.00

Department..... ADN

Eecﬁon v 92 - B
l& [0 Intermet “

7. Notice that the function header is not displayed as your iiiLOGIN field has
no value. The hidden fields (including all of _hidden) are not passed when
using an <A HREF> link. You must include the fields as function parameters
when using this type of link.

Step 10. Execute function iiiFN12 from a Command Line
(Optional)

In this step, you will call function iiiFN12 directly using a URL from the
browser. This step is similar to using the <A HREF> link. It will allow you to
call a function directly and practice parameter passing. You will add the
iiiLOGIN parameter to the funcparms being passed.

1. Open a new browser window. To execute iiiFN12 directly, enter the
following URL.:

http://<server address>/cgi-bin/lansaweb?
procfun+iiiproc03+iiifn012+ppp+funcparms +EMPNO(A0050):
<employee number>

where:

<server address>=supplied IP address
ppp=partition

iii=your course assigned ID

<employee number>=valid employee number such as A1002

Notice that your browser window displays the employee information
exactly as it did in the previous exercise.

‘J Employee Details - Microsoft Internet E xplorer M=l B3

J File Edit VWiew Favoites Toolzs Help |

@ . o+ D B A Q
Back, Forward Stop Refrezsh Home Search
JAgdless I@ rocFLIN+IPROCO3+IFNO 2+ TR1+FLINCPARMS +E MPHOA0050]. 41002 j @ Go “ Links *
LEUEL
I LANSA Web Applications

Tour logn entered was:

Employee Details

Employee no.... 41002

Given names.... JOHIT
Surname........ SMYTHE

Address 1...... 20 Cobbitty Avenue,
Address 2...... WEREDTGTONT

|@ '_ '_ | Intemet

El
4

You will now add the iiiLOGIN parameter to the command line entered
in Step 1. You will add the following to the URL:

+iiiLOGIN(A0100):iiiMYLOG

so that the URL might now appear as:

http://<server address>/cgi-bin/lansaweb?
procfun+iiiproc03+iiifn012+DEM-+funcparms +EMPNO(A0050): A1002+iiil.(

4. Notice you should now see your iiiMYLOG header component displayed:

‘J Employee Details - Microsoft Internet E xplorer H=l 3

J File Edit VWiew Favoites Toolzs Help |

J<~‘=.-b.@ﬁ@”

Back, Forward Stop Refrezsh Home Search

I Tr T FUNCEARMS EMPHOL B
LLLEL »

I LANSA Web Applications

Your login entered was IMIYLOG

Hello (your name goes here)

VisA

Tt Wor s Boet liay 1 Py

Employee Details B

Employee no.... 41002
Given names.... JOHIN

Surname........ SMYTHE

Address 1...... 20 Cobbitty Avenue,

Address 2...... WEREDTGTONT |
#

|@ ,_ ,_ | Intemet

Step 11. Create Page Component for Function iiiFN12 (Optional)

In this step, you will create a page component for the HTML of function
iiiFN12. The page component will allow you to easily manipulate the
appearance of iiiFN12 and it will prevent changes to the HTML from being
replaced when the function is recompiled. You will also change the HTML to
display the Employee photo.

1. Using the LANSA for the Web Editor, open a new document.
2. Delete the default HTML which appears in the new page.
3. Open the iiiPROCO03 iiiFN120001 HTML page.

4. Copy all the HTML statements in the table definition, i.e. copy all code
between the following tags

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=3>
<ITBODY>

copy all HTML code here but do not include the table tags shown above and b

</TBODY>
</TABLE>

5. Paste the HTML code into your new page. Your code should appear as
follows:

<TR>

</TR>

<TR>

<TD><RDML MERGE="@T0001+0001+0015">
</TD>

<ID><RDML MERGE="EMPNO "></TD>

</TR>

<TR>

<TD><RDML MERGE="@T0002+0016+0030">
</TD>

<ITD><RDML MERGE="GIVENAME "></TD>

</TR>

<TR>

<TD><RDML MERGE="@T0003+0031+0045">

</TD>

<ITD><RDML MERGE="SURNAME "></TD>

</TR>

<TR>

<TD><RDML MERGE="@T0004+0046+0060">
</TD>

<ITD><RDML MERGE="ADDRESS1 "></TD>

</TR>

<TR>

<TD><RDML MERGE="@T0005+0061+0075">
</TD>

<TD><RDML MERGE="ADDRESS2 "></TD>

</TR>

<TR>

<TD><RDML MERGE="@T0006+0076+0090">
</TD>

<TD><RDML MERGE="ADDRESS3 "></TD>

</TR>

<TR>

<TD><RDML MERGE="@T0007+0091+0105">
</TD>

<TD><RDML MERGE="POSTCODE " EDITCODEO="3"></TD>
</TR>

<TR>

<TD><RDML MERGE="@T0008+0106+0120">
</TD>

<ITD><RDML MERGE="PHONEHME "></TD>

</TR>

<TR>

<TD><RDML MERGE="@T0009+0121+0135">
</TD>

<ITD><RDML MERGE="SALARY " EDITCODEO="1"></TD>

</TR>

<TR>

<TD><RDML MERGE="@T0010+0136+0150">
</TD>

<ITD><RDML MERGE="DEPTMENT "></TD>

</TR>

<TR>

<ITD><RDML MERGE="@T0011+0151+0165">
</TD>

<ITD><RDML MERGE="SECTION "></TD>

</TR>

<TR>

<TD><RDML MERGE="@T0012+0166+0180">
</TD>

<ITD><RDML MERGE="PHONEBUS "></TD>

</TR>

6. Delete all of the field labels whose format is:
<<RDML MERGE="@T...">

and replace the labels with field descriptions.
Also add an tag to display the PHONEBUS as an image.
The final pages might appear as follows(changes are in bold):

<TR>

</TR>

<TR>

<TD>Employee Number</TD>
<TD><RDML MERGE="EMPNO "></TD>
</TR>

<TR>

<TD>First Name</TD>
<TD><RDML MERGE="GIVENAME "></TD>
</TR>

<TR>

<TD>Last Name</TD>
<TD><RDML MERGE="SURNAME "></TD>
</TR>

<TR>

<TD>Address Line 1</TD>
<TD><RDML MERGE="ADDRESS1 "></TD>
</TR>

<TR>

<TD>City</TD>
<TD><RDML MERGE="ADDRESS2 "></TD>

</TR>

<TR>

<TD>State</TD>

<TD><RDML MERGE="ADDRESS3 "></TD>

</TR>

<TR>

<TD>Postal Code</TD>

<TD><RDML MERGE="POSTCODE " EDITCODEO="3"></TD>
</TR>

<TR>

<TD>Home Phone</TD>
<TD><RDML MERGE="PHONEHME "></TD>

</TR>

<TR>

<TD>Salary</TD>

<TD><RDML MERGE="SALARY " EDITCODEO="1"></TD>
</TR>

<TR>

<TD>Department</TD>

<TD><RDML MERGE="DEPTMENT "></TD>

</TR>

<TR>

<TD>Section</TD>

<TD><RDML MERGE="SECTION "></TD>

</TR>

<TR>

<TD>Employee Image</TD>
<TD><IMG SRC="/images/<RDML MERGE="PHONEBUS ">"></TD>
</TR>

REMINDER: Add the tag to display the image in the
PHONEBUS field.

7. Save the document as iiiFIN12P with description iiiFN12 Page Component.

8. Using the LANSA for the Web editor, open the Maintain Components
window.

9. Select Add, to add a new component as follows (where iii is your course
assigned ID):

Component | 1iiFN12P

Type Page

Description | iiiFN12 Page Component
Page iiiFN12P
Mode OUTPUT

10. Close the Maintain Components window.

11. Working with your iiiPROCO03 process, edit the function named iiiFIN12
Employee Details.

12. Define a working field named iiiFN12P to be used with the output Web
page component and insert a REQUEST command prior to the existing
REQUEST command in the function. The new REQUEST will display only
one field iiiFN12P with attributes of *OUTPUT and *NOID.

Your finished code might appear as follows (where iii is your course
assigned ID):

FUNCTION (*DIRECT *WEBEVENT)

DEFINE FIELD(#iiiFN12P) TYPE(*CHAR) LENGTH(1)

GROUP_BY

NAME#EMPLOYEE) FIELDS((#EMPNO *OUTPUT) (#GIVENAME *OU’
FETCH

FIELDS(#EMPLOYEE)) FROM_FILE(PSLMST) WITH_KEY#EMPNO) IC
REQUEST

FIELDS((#iiiFN12P *OUTPUT *NOID)) EXIT_KEY(*NO) MENU_KEY (*}
REQUEST FIELDS(#EMPLOYEE) EXIT_KEY(*NO) MENU_KEY (*NO)

13. Exit and save your RDML function.
14. Compile your RDML function iiiPROCO03/iiiFN12.

Step 12. Test Changes (Optional)
1. Execute your function iiiPROC04/iiiFN10.
Login using IIIMYLOG
2. Select the Administration department and press the SEARCH button.

Notice that the Click Here button appears exactly as it did in the previous
exercise.

3. Press the Click Here button for the appropriate Section which contains the
employee images.

4. Click on the employee image.

5. A new window should appear showing the employee details:

‘J Employee Details - Microsoft Internet E xplorer |_ (O] =]
J File Edit View Favoites Toolz Help |-
e . 5@ A Q i
Biack Forward Stop Refrezsh Home Search
JAgdless I@ eb?prachun+|PROCO3+IFMOT 2+ TR +funcparms+E MPNO[ADDS0]:A1005 j ™ Go ‘ I Lirks ¥
Employee Details 4
Employee Numher 41005
First Name PETER
Last Name SNITHS
Address Linel 72 Mullane Awverme,
City BAULKHAW HILLS
State NEW,
Postal Code 2147
Home Phone 6744316
Salary 40,000.00
Department ADM
Section 02
Employee Image 12
|

&7 Done [0 Intermet

X

Summary

Important Observations

There are many techniques for linking or calling functions. This exercise
showed two different examples. The first example used the existing
HandleEvent JavaScript function used in LANSA for the Web. In order to
pass parameters to the called function, the <process>_HIDDEN fields were
used.

JavaScript requires that a field be on the page in order to change its value.
The fields iiiDEPTWK and iiiSECTWK were added to our _ HIDDEN for
this purpose.

When you use an <A HREF> to execute a function, no data is exchanged to
the called WEBEVENT function. (The <A HREF> starts a new Web job, as
it is calling a new function.) It is exactly the same as calling a function for
the first time from a new browser window. The function parameters
(funcparms) had to be used to overcome this limitation. In this example, the
Employee Number was passed and the called function used this value to
fetch the required data.

In the image example, the image uses the default image directory of your
Data/Application Server. You could place these images in any directory and
simply add the directory to either the component or the field where the
image value is stored in the file.

When you execute a function from the browser command line, you must
pass the parameters you wish the function to use. Parameters are not passed
automatically. You added the iiiLOGIN parameter as a funcparm so that the
STDHEADER displayed the proper component.

If you wish to use the iiiLOGIN component, you must use the iiiLOGIN
field somewhere in the function as well as passing the parameter to the
function. In Step 8, you included a GROUP_BY statement including
iiiLOGIN. You could also put the field in a second request or an IF
statement that does nothing. If iiiLOGIN is not defined somewhere in the
function, the value cannot be used in the STDHEADER.

Tips & Techniques

Always create a working field if there is a possibility of more than one
function using the field. We could have used the DEPTMENT and
SECTION fields, however they will likely be required by other functions,

and if the values are hidden this could cause some problems. These
problems are avoided by creating the temporary holding fields. A good Web
site layout will ensure that you know where this needs to be done.

JavaScript can be difficult to debug. There are free or shared software
programs available that can make this job easier.

Creating a component style button is one way of including a link in a browse
list. You can also use images or text as links.

Using HandleEvent is one way of creating a link inside an LANSA function.
Another technique is to use the <A HREF> and to add your funcparms to
this line, using <KRDML MERGE="<fieldname>"> .

In this example, the employee image file names were placed in the
PHONEBUS field. If you have an existing database, you can attempt to use
an existing field, however, a better technique is to create a parallel file for
storing the Web related data. For example, you could create a PLSMT?2 file
with the same key (EMPNO) but with fields for the images, email addresses,
etc.

If possible, avoid using <A HREF> tags to call separate WEBEVENT
functions, as it does not pass any hidden values with it. Instead, modify the
HandleEvent JavaScript or review the example given in the online
documentation about passing parameters in LANSA for the Web.

In this example, a new window was opened when using the <A HREF> to
call the next function. This is a good technique as it emphasizes the fact that
there is no data being passed.

What I Should Know

How to add a link to a browse list.

How to create process-specific JavaScript to be used with the
DEFAULT_SCRIPT.

How to pass function parameters within a LANSA function.

How to build a browse list using the parameters passed from another
function.

How to add an image to a browse list using a page component.
How to pass function parameters to a LANSA function using funcparms.

WEB(014 - Browse Lists
Objective:

In this exercise, you will learn how to customize the browse list used in the
Employee List function. In the Web page substitution exercises, you learned
how to protect your HTML by using Web page components. Using similar
techniques, you can learn how to customize the presentation of browse lists.

To demonstrate how to customize a browse list's appearance.

To demonstrate the various manipulation techniques associated with browse
lists.

To achieve these objectives, you must complete the following:

Step 1. Create Page Component for Function iiiFN11
Step 2. Test Changes

Step 3. Create Graphic Variable for Browse List
Step 4. Test Changes

Step 5. Customize Browse List

Step 6. Test Changes

Step 7. Add Table Tags Around Browse List
Step 8. Test Changes

Step 9. Add Column Headings To Browse List
Step 10. Test Your Functions

Summary

Step 1. Create Page Component for Function iiiFN11

In this step, you will create a page component for the iiiFN11 Employee List
function which contains a browse list. The page component will allow you to
easily manipulate the appearance of the browse list and it will prevent changes
to the HTML from being replaced when the function is recompiled.

1. Using the LANSA for the Web Editor, open a new document.
2. Delete the default HTML which appears in the new page.
3. Open the iiiPROCO03 iiiFN11001 HTML page.

Copy all the HTML statements in the table definition, i.e. copy all code
between the following tags:

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=3>
<ITBODY>

copy all HTML code here including the tag below, but do not include the table

<RDML MERGE="@BLIiiiEMPLST ">

4.Paste the HTML code into your new page.
Your code should appear as follows:

<TR>

</TR>

<TR>

<TD><RDML MERGE="@T0021+0323+0337">
</TD>

<RDML ONMODE="DIS">

<TD><RDML MERGE="1iiDEPTWK "></TD>

</RDML>

<RDML ONMODE="DLT">

<TD><RDML MERGE="1iiDEPTWK "></TD>

</RDML>

<RDML ONMODE="ADD">

<TD>

<INPUT NAME="AIiiiDEPTWK" TYPE="TEXT" SIZE="004" MAXLENGT

VALUE="<RDML MERGE="iiiDEPTWK ">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>

</RDML>

<RDML ONMODE="CHG">

<TD>

<INPUT NAME="AiiiDEPTWK" TYPE="TEXT" SIZE="004" MAXLENGT
VALUE="<RDML MERGE="iiiDEPTWK ">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>

</RDML>

</TR>

<TR>

<TD><RDML MERGE="@T0022+0338+0352">
</TD>

<RDML ONMODE="DIS">

<TD><RDML MERGE="iiiSECTWK "></TD>

</RDML>

<RDML ONMODE="DLT">

<TD><RDML MERGE="iiiSECTWK "></TD>

</RDML>

<RDML ONMODE="ADD">

<TD>

<INPUT NAME="AiiiSECTWK" TYPE="TEXT" SIZE="002" MAXLENGT
VALUE="<RDML MERGE="iiiSECTWK ">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>

</RDML>

<RDML ONMODE="CHG">

<TD>

<INPUT NAME="AiiiSECTWK" TYPE="TEXT" SIZE="002" MAXLENGT
VALUE="<RDML MERGE="iiiSECTWK ">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>

</RDML>

</TR>

</TBODY>
</TABLE>

<RDML MERGE="@BLIiiiEMPLST ">

5. Manually type the names of the iiiDEPTWK and iiiSECTWK fields instead

of using the <RDML MERGE="@T....... " tags.
The final pages should appear as follows(changes are bold):
<TR>
</TR>
<TR>

<TD>Department</TD>
<RDML ONMODE="DIS">

<TD><RDML MERGE="iiiDEPTWK "></TD>

</RDML>

<RDML ONMODE="DLT">

<TD><RDML MERGE="iiiDEPTWK "></TD>

</RDML>

<RDML ONMODE="ADD">

<TD>

<INPUT NAME="AiiiDEPTWK" TYPE="TEXT" SIZE="004" MAXLENGT
VALUE="<RDML MERGE="iiiDEPTWK ">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>
</RDML>

<RDML ONMODE="CHG">

<TD>

<INPUT NAME="AiiiDEPTWK" TYPE="TEXT" SIZE="004" MAXLENGT
VALUE="<RDML MERGE="iiiDEPTWK ">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>
</RDML>

</TR>

<TR>

<TD>Section</TD>

<RDML ONMODE="DIS">

<TD><RDML MERGE="iiiSECTWK "></TD>

</RDML>

<RDML ONMODE="DLT">

<TD><RDML MERGE="iiiSECTWK "></TD>

</RDML>

<RDML ONMODE="ADD">

<TD>

<INPUT NAME="AiiiSECTWK" TYPE="TEXT" SIZE="002" MAXLENGT
VALUE="<RDML MERGE="iiiSECTWK ">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>

</RDML>

<RDML ONMODE="CHG">

<TD>

<INPUT NAME="AiiiSECTWK" TYPE="TEXT" SIZE="002" MAXLENGT
VALUE="<RDML MERGE="iiiSECTWK ">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>

</RDML>

</TR>

</TBODY>
</TABLE>

<RDML MERGE="@BLIiiiEMPLST ">

6. Save the document as iiiFN11P with description iiiFN11 Page Component.

7. Using the LANSA for the Web editor, open the Maintain Components
window.

8. Select Add, to add a new component as follows (where iii is your course
assigned ID):

Component | 1iiFN11P

Type Page

Description | iiiFN11 Page Component
Page iiiFN11P
Mode OUTPUT

9. Close the Maintain Components window.

10. Working with your iiiPROCO03 process, edit the function named iiiFN11
Employee List.

Define a new field iiiFN11P which will be used for the Web page component
iiiFN11P.
You will manually insert a Display command prior to the display command

that is already in this function. It will display only one field iiiFN11P with an
attribute of *NOID.

The finished code might appear as follows:

FUNCTION (*DIRECT *WEBEVENT)

DEFINE FIELD(#iiilMAGE) REFFLD(#PHONEBUS)

DEFINE FIELD(#iiiFN11P) TYPE(*CHAR) LENGTH(1)

DEF_LIST NAME(#iiiEMPLST) FIELDS((#iiilMAGE *NOID)(#EMPNO)
(#GIVENAME) (#SURNAME)(#PHONEBUS *HIDDEN))

CLR_LIST NAMED(#iiiEMPLST)

SELECT

FIELDS((#iiiEMPLST)) FROM_FILE(PSLMST1) WITH_KEY (#iiiDEPTWK
ADD_ENTRY TO_LIST(#iiiEMPLST)

ENDSELECT

DISPLAY

FIELDS((#iiiFN11P *NOID)) EXIT_KEY(*NO) MENU_KEY (*NO)
DISPLAY

FIELDS((#iiiDEPTWK) (#iiiSECTWK)) BROWSELIST(#iiiEMPLST) EXIT

11. Exit and save your RDML function.
12. Compile your RDML function iiiPROCO03/iiiFN11.

Step 2. Test Changes

You may wish to test your changes before continuing. It is always a good idea
to ensure that the function displays properly after creating a component page.

1. Execute your function iiiPROC04/iiiFN10.
2. Login using iiiMYLOG.
3. Select the Administration department and press the SEARCH button.

Notice that the Click Here button appears exactly as it did in the previous
exercise.

4. Press the Click Here button for the appropriate Section containing the
employee images.

The iiiFN11 should appear as before, except that it is now using the iiiFN11P
Web page component.

Step 3. Create Graphic Variable for Browse List

In this step, you will create a graphic variable for your browse list in iiiFN11.
The LANSA for the Web Editor will be used to manually create the graphic

variable. The Web Functions Wizard could also be used to configure the browse
list.

1. Using the LANSA for the Web editor, open the Graphic Variables window.
2. Click the Add button.

3. Create a new Graphic Variable as follows (where iii is your course assigned
ID):

Name: *LW3BL_iiiEMPLST
Type: TEXT
Value: *NOBPCIT

4. Click OK. Close the Graphic Variables window.

Step 4. Test Changes

In this step, you will test the changes made to the browse list by the graphical
variable.

1. Execute your function iiiPROC04/iiiFN10.
2. Login using iiiMYLOG.
3. Select the Administration department and press the SEARCH button.

Notice that the Click Here button appears exactly as it did in the previous
exercise.

4. Press the Click Here button for the appropriate Section which contains the
employee images.

‘3 Employee List - Microsoft Internet Explorer H=l 3
J File Edit View Favoites Toolzs Help |

J@.».@éﬁ‘@

Back, Forward Stop Refrezsh Home Search

JAgdlessl j 6’60 |J Links **
| The War s Beet Wiy tn Fay | ;|

Employee List

Department AT
Section 02

&1 [[@ Intemet 4

You will notice that the layout of the information is not well organized, as

your graphic variable specified no table tags. (The browse list appearance
will be improved in the upcoming steps.)

Step 5. Customize Browse List

In this step, you will create a page component for the browse list used in
function iiiFN11. This component will allow you to customize the browse list
appearance. After adding the component to the browse list, all other fields will
be hidden so that only the component appears on your Web page. This
technique is the best way to manipulate the layout of a browse list without
having recompiles affect the changes.

1. Using the LANSA for the Web editor, create a new HTML page.
2. When the new page appears, delete all of the default HTML code.
3. Add the following lines to the page:

<TR>

<TD VALIGN="MIDDLE"><RDML COMPONENT="1iilMAGE"></TD>
<TD VALIGN="MIDDLE"><RDML MERGE="GIVENAME"></TD>
<TD VALIGN="MIDDLE"><RDML MERGE="SURNAME"></TD>
<TD VALIGN="MIDDLE"><RDML MERGE="EMPNQO"></TD>

</TR>

Notice that you have changed the order of the fields from the order used in
the browse list.

4. Save the document as iiiBL 11 with description iiiFN11 Browse List
Component.

5. Using the LANSA for the Web editor, open the Maintain Components
window.

6. Select Add, to add a new component as follows (where iii is your course
assigned ID):

Component iiiBL11

Type Page

Description iiiFN11 Browse List Component
Page iiiBL.11

Mode OUTPUT

7. Close the Maintain Components window.

8. Working with your iiiPROCO03 process, edit the function named iiiFN11
Employee List.

Define a new field iiiBL.11 which will be used for the Web page component
iiiBL11.
DEFINE FIELD(#iiiBL11) TYPE(*CHAR) LENGTH(1)

Change the browse list by removing the iiilMAGE field as this component is
now embedded using the iiiBL.11 Web component. Change the remaining
fields to use an attribute of *HIDDEN. Finally, add the field iiiBL.11 with an
attribute of *NOID to the beginning of the list.

The DEF_LIST should appear as follows:

DEF_LIST NAME#iiiEMPLST) FIELDS((#iiiBL11 *NOID)
(#EMPNO *HIDDEN) (#GIVENAME *HIDDEN) (#SURNAME *HIDDEN)
(#PHONEBUS *HIDDEN)) ENTRY S(9999)

9. Exit and save your RDML function.
10. Compile your RDML function iiiPROCO03/iiiFN11.

Step 6. Test Changes
Execute your function iiiPROC04/iiiFN10.

2. Login using iiiMYLOG.
3. Select the Administration department and press the SEARCH button.

Notice that the Click Here button appears exactly as it did in the previous
exercise.

3. Press the Click Here button for the appropriate Section which contains the
employee images:

‘3 Employee List - Microsoft Internet Explorer

J File Edit View Favoites Toolzs Help |

Back FrAEn d Stop Refresh Haome ‘ Search

| The War s Beet Wiy tn Fay | ;l

Employee List

Department AT
Section 02

TOHN SMYTHE A1002 Rl

&1 [[|4 Intemet 4

Your iiiFNO1 browse list should be displayed as before, except that the fields
being displayed are controlled by the iiiBL.11 Web page component which is
substituted for the <RDML MERGE="@BLiiiEMPLST "> in the iiiFN11P.
If you view the source for the page, you will notice that the <TR> and <TD>
tags are being sent to the browser (as part of the iiiBL. component); however,
the <TABLE> tags have not be added so the data is not formatted. The
<TABLE> tags will be added in the next step.

Notice that the EMPNO field is now displayed as the last field based on the
order of the table data you specified in the iiiBL.11 Web page component.

Step 7. Add Table Tags Around Browse List

In this step, you will correct the appearance of the browse list on the employee
list screen. You will do this by adding table tags around the browse list tag
inside of the HTML component iiiFN11P.

1. Using the LANSA for the Web Editor, open the HTML page iiiFN11P.

2. Edit the page by placing the following open and close table tag around the
browse list tag. *Hint: This tag can be recognized by searching for <RDML
MERGE="@.

<TABLE BORDER="1" cellpadding="10" cellspacing="1">
</TABLE>

3. Your page should contain the following code:

</TBODY>
</TABLE>

<TABLE BORDER="1" cellpadding="10" cellspacing="1">

<RDML MERGE="@BLiiiEMPLST">
</TABLE>

4. Save the document.

Step 8. Test Changes

Execute your function iiiPROC04/iiiFN10.

a. Login using iiiMYLOG.
b. Select the Administration department and press the SEARCH button.

Notice that the Click Here button appears exactly as it did in the previous
exercise.

3. Press the Click Here button for the appropriate Section which contains the
employee images.

—~
5 .
Back Farare Stop Refresh Home:
| Adetess [@ IN/LANSAW/E B 7WEBEVENT +L 0275361 E4FEB0M000F 28053+ TR1-ENG L] @G0 | Links >

Employee List B

Department ADM
Section 02

JOHN SMYTHE | A1002

PETER SMITHS | A1005

[[ntemet

N

Step 9. Add Column Headings To Browse List

In this step, you will add column headings to your table to give the data in your
browse list meaning. This will also be done in the page component iiiFN11P.

1. Using the LANSA for the Web editor, open the HTML page iiiFN11P.

2. Edit the page by placing the following code between the <TABLE> tag you
just added in the step above and the <RDML MERGE="@BLiiiEMPLST">
line.

<TR>

<TD ALIGN="LEFT">Employee
Photo</TD>

<TD COLSPAN="2" ALIGN="LEFT">Employee
Name</TD>
<TD ALIGN="LEFT">Employee
 Number</TD>

</TR>

3. The final HTML code for iiiFN11P should appear as follows:

<TR>

</TR>

<TR>
<TD>DEPARTMENT:</TD>
<RDML ONMODE="DIS">

<TD><RDML MERGE="DEPTMENT "></TD>

</RDML>

<RDML ONMODE="DLT">

<TD><RDML MERGE="iiiDEPTWK "></TD>

</RDML>

<RDML ONMODE="ADD">

<TD>

<INPUT NAME="AiiiDEPTWK" TYPE="TEXT" SIZE="004" MAXLENGT
VALUE="<RDML MERGE="iiiDEPTWK ">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>
</RDML>

<RDML ONMODE="CHG">

<TD>

<INPUT NAME="AiiiDEPTWK" TYPE="TEXT" SIZE="004" MAXLENGT
VALUE="<RDML MERGE="iiiDEPTWK ">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>
</RDML>

</TR>

<TR>

<TD>SECTION:</TD>

<RDML ONMODE="DIS">

<TD><RDML MERGE="SECTION"></TD>

</RDML>

<RDML ONMODE="DLT">

<TD><RDML MERGE="iiiSECTWK "></TD>

</RDML>

<RDML ONMODE="ADD">

<TD>

<INPUT NAME="AiiiSECTWK" TYPE="TEXT" SIZE="002" MAXLENGT
VALUE="<RDML MERGE="iiiSECTWK ">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>
</RDML>

<RDML ONMODE="CHG">

<TD>

<INPUT NAME="AiiiSECTWK" TYPE="TEXT" SIZE="002" MAXLENGT
VALUE="<RDML MERGE="iiiSECTWK ">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>
</RDML>

</TR>

</TBODY>
</TABLE>

<TABLE BORDER="1" cellpadding="10" cellspacing="1">
<TR>

<TD ALIGN="LEFT">Employee
Photo</TD>

<TD COLSPAN="2" ALIGN="LEFT">Employee
Name</TD>
<TD ALIGN="LEFT">Employee
 Number</TD>

</TR>

<RDML MERGE="@BLiiiEMPLST ">

</TABLE>

4. Save the document.

Step 10. Test Your Functions

In this step, you will test the changes made above, as this will ensure that the
changes to your function iiiFN12 have occurred. It is also a good idea to ensure
that the function displays after creating a component page.

1. Execute your function iiiPROC04/iiiFN10.
2. Login using iiiMYLOG.
3. Select the Administration department and press the SEARCH button.

Notice that the Click Here button appears exactly as it did in the previous
exercise.

3. Press the Click Here button for the appropriate Section containing the
employee images.

ST R raf Q
Back Famward Stop Refresh Home: Sear
| deress [] rte:1192 168 33 95/ CR1-BIN LANS AWEE MWEBEVENTSL0275351EF 7] @ Bo || Links)

H -
Employee List =
Department ADM
Section 0z
Employee Employee Employee
Photo Name Mumber

JOHT SMYTHE | A1002

S nlan e

o prrrrres ||y sone
[@ Intemet

P

Summary

Important Observations

Creating a page component is one way of enhancing the appearance of any
page. You can use them stand alone or inside other components.

The <RDML MERGE="@BLiiiEMPLST "> tag is very important when
customizing a browse list. LANSA dynamically generates the browse list
HTML so you cannot edit it directly. By using Web page components, and
by knowing the list content, you can control the browse list presentation.

The graphical variable*LW3BL _iiiEMPLST is very important. The
*NOBPCIT settings allow you to customize the browse list presentation as
described in Step 7 and 9.

The iiiBL11 Web page component allows you to control the browse list
presentation. You can add images (as in the case of the iiilMAGE
component) or you can change the order that the information is presented. It
is very important to note that the iiilMAGE component works because
PHONEBUS is a hidden field in the browse list. PHONEBUS contains the
data required by the iiilMAGE component.

The use of the two DISPLAY statements is very important to this technique.
Only the first DISPLAY is executed when the function is called. However,
the data defined in the browse list of the second DISPLAY will be
exchanged with the function.

DISPLAY

FIELDS((#iiiFN11P *NOID)) EXIT_KEY(*NO) MENU_KEY (*NO)
DISPLAY

FIELDS((#iiiDEPTWK) (#iiiSECTWK)) BROWSELIST(#iiiEMPLST) EXIT

Once the iiiBL.11 Web page component was inserted into the browse list, the
browse list definition was altered so that all fields were made to be hidden
and the iiilMAGE component was removed. The iiilMAGE field was
included directly in the iiiBL.11 component.

DEF_LIST NAME(#iiiEMPLST) FIELDS((#iiiBL11 *NOID)
(#EMPNO *HIDDEN) (#GIVENAME *HIDDEN) (#SURNAME *HIDDEN)
(#PHONEBUS *HIDDEN)) ENTRY S(9999)

Tips & Techniques

The browse list customization technique described in this exercise is a very

common method of enhancing the presentation of your Web functions.

What I Should Know
e How to build a browse list inside a Web page component.
e How to customize a browse list.

WEBO015 - Data Apportionment
Objective:

In this exercise, you will learn how data apportionment is performed with
LANSA for the Web. You will create a single screen which allows the user to
enter some comments into an input text area in the browser. When the screen
is submitted, the entered text will be divided into a group of working fields.
The working fields will be redisplayed on the screen, just below the input
text area.

To learn how to overcome the 256 character field limitation for input fields
used with text areas in the browser.

To learn how to create a page component containing both input and output
components using only one REQUEST.

To achieve these objectives, you must complete the following:

Step 1. Create iiiFN13 — Contact Us

Step 2. Create a New Page Component

Step 3. Compile and Test Your Function iiiFN13
Step 4. Using JavaScript Alerts (Optional)
Summary

Step 1. Create iiiFN13 — Contact Us

In this step, you will create function iiiFN13 Contact Us in process iiiPROCO03.
This function will simply request data using an input text area and then it will
display the contents of the fields after the data apportionment has taken place.

1. Working with your iiiPROCO03 process, create a new function named iiiFN13
Contact Us. You will manually enter the code for the function.

2. Write the RDML Code to perform the following tasks:

e Define a field called iiiCOMENT to be used for Web page component
substitution.

e Define three fields named COMMNT, COMMNTO001, and COMMNTO002.
These fields will be used as the input fields from the text area. Fields are
alpha, length 20.

e Define three fields named COMOUT, COMOUT001, COMOUTO002. These
fields will be used to display the values of the COMMNT fields.

e Change the values of COMOUT, COMOUT001, AND COMOUTO003 to the
values of COMMNT, COMMNT001 AND COMMNTO002.

e Change COMMNT, COMMNT001, COMMNTO002 fields to *BLANKS.

e Request the page component iiiCOMENT. Include a SUBMIT user key
which will call iiiFN13 (re-entrant WEBEVENT function).

Solution:

One possible solution to this exercise is shown below (where iii is your course
assigned ID):

FUNCTION (*DIRECT *WEBEVENT)

DEFINE FIELD(#iiiCOMENT) TYPE(*CHAR) LENGTH(1)
DEFINE FIELD(#COMMNT) TYPE(*CHAR) LENGTH(20)
DEFINE FIELD(#COMMNTO001) TYPE(*CHAR) LENGTH(20)
DEFINE FIELD(#COMMNTO002) TYPE(*CHAR) LENGTH(20)
DEFINE FIELD(#COMOUT) TYPE(*CHAR) LENGTH(20)
DEFINE FIELD(#COMOUTO001) TYPE(*CHAR) LENGTH(20)
DEFINE FIELD(#COMOUTO002) TYPE(*CHAR) LENGTH(20)
CHANGE FIELD(#COMOUT) TO(#COMMNT)

CHANGE FIELD(#COMOUTO001) TO(#COMMNTO001)
CHANGE FIELD(#COMOUTO002) TO(#COMMNTO002)
CHANGE

FIELD(#COMMNT #COMMNTO001 #COMMNTO002) TO(*BLANKS)
REQUEST
FIELDS((#iiiCOMENT *NOID)) EXIT_KEY(*NO) MENU_KEY(*NO) USE

3. Exit and save your RDML function.

4. Do not compile the function at this time.

Step 2. Create a New Page Component

In this step, you will create the new page component iiiCOMENT that will be
used with the function you created in Step 1. It will be a very simple page
containing one input text area (3 rows by 20 characters wide) and three output
fields to display the contents of the text box. You will also register your key
word SUBMIT to create a WEBEVENT link so that iiiFN13 calls itself.

1. Using the LANSA for the Web editor, create a new HTML page.
2. When the new page appears, delete all the default HTML code.
3. Add the following lines to the page:

Please enter your question below:

<RDML CHECKVALUE="YES">
<TEXTAREA NAME="COMMNT -
L020" WRAP="PHYSICAL" ROWS=3 COLS=20>
<RDML MERGE="COMMNT">
<RDML MERGE="COMMNTO001">
<RDML MERGE="COMMNTO002">
</TEXTAREA>
</RDML>

<p>
Your text is stored as:

COMMNT field: <RDML MERGE="COMOUT ">

COMMNTO001 field: <RDML MERGE="COMOUTO001">

COMMNTO002 field: <RDML MERGE="COMOUT002">

Important Note: Be sure to enter the text area command exactly as show.
There should be 4 blank spaces between COMMNT and -L.020.

<TEXTAREA NAME="COMMNT -L020" WRAP="PHYSICAL"
ROWS=3 COLS=20>

4. Save your document as iiiCOMENT with description Data Apportionment

Component.

5. Using the LANSA for the Web editor, open the Maintain Components
window.

6. Select Add, to add a new component as follows. (where iii is your course
assigned ID):

Component 1iiICOMENT
Type PAGE

Description | Data Apportionment Component

Page iiiCOMENT

Mode Input

7. Close the Maintain Components window.

8. Use the Tools menu category and select the Keywords — Maintain option.
Do not enter a process. Press the OK button to continue. Press the add button
to create a link to by entering the following information:

Process iiiPROC03
Function iiiFN13
Keyword SUBMIT
Description Submit Request
Linked Process | iilPROCO03
Linked Function | 1iFN13

Step 3. Compile and Test Your Function iiiFN13

In this step, you will compile your function iiiFN13 so that the new component
is recognized. Remember that without the recompile you will not see the
component you just created.

1. Compile your function iiiPROCO03/iiiFN13.
Check that your compile completed successfully.
Execute your function iiiPROC03/iiiFN13.

Enter any information you like into the text box in less than 60 characters.

A L

Press the Submit Request button to view the output.

Jv-.’*.-@mm‘m

Back Earmard Stop Refresh Hame Search

| Bdhess [@] /LANSAWEE PWEBEVENT +L0215CE1 350058400820 B056+TR1+ENG ¥ || @G

VIsA

Tt Worlf's Beet Uiy te: Py

Contact us

Please enter your question helow:

Enter sour text here, Erter :‘J
raore than G0 characters. j

Your text is stored as:

CONMIT FIELD: Enter you text here
CONWIT FIELD: please ensure thati
CONMWIT FIELD: tis longer than 60

Submit Reguest

Personel System

6. Enter more than 60 characters.

Notice what happens to the data when you click the Submit Request button.

J Back FEormard Stop Refresh Home | Se

J Address i@ http://192.168.33.95/cqgi-bin/lanzaweb ?procfun+iproc03+ifn0l 3+t j

Tour login entered was:

Contact us

Please enter your question helow:

Enter your text here il
in less than 60 characters _!

Your text is stored as:
CONMMIT FIELD:
COMMIT FIELD:
COMMIT FIELD:

The error message is displayed:

Tour login entered was:

Microzoft Internet Explorer

& fou have exceeded the maximum size for this field.

RN T

Ty

Step 4. Using JavaScript Alerts (Optional)

In this step, you will add JavaScript to your component iiiCOMENT to ensure
that the user cannot add anymore text than is available.

Using the LANSA HTML Editor, open your iiiCOMENT page.
Add the following code to the HTML for the text area:

onkeyup="ChkLngTBox(this,60);"

The code should now appear something like below.

<RDML CHECKVALUE="YES">

<TEXTAREA NAME="COMMNT -

L020" WRAP="PHYSICAL" ROWS="3" COLS="20" onkeyup="ChkLngTB:
<RDML MERGE="COMMNT">

<RDML MERGE="COMMNT001">

<RDML MERGE="COMMNT002">

</TEXTAREA>

</RDML>

3. Add the following code to the very bottom of the HTML for iiiCOMENT:

<SCRIPT LANGUAGE="JavaScript">

function ChkLngTBox(object,mylength)

{

var x=object.value

var mylength

if (x.length >= ++mylength){

alert("You have exceeded the maximum size for this comment field.");
x=x.substr(0,mylength);

object.value=x;

}

}
</SCRIPT>

4. Save your page iiiCOMENT.
5. Execute your function iiiPROCO03/iiiFN013 and attempt to key in more than

60 characters.
Notice that no compile is necessary for this change to occur.

A message should appear, telling you that you have exceeded the maximum
size for this field. If it does not, check that there is not a script error or that
you have mistyped a variable name. (Remember: JavaScript is a case
sensitive language.

7J Contact us - Microsoft Intemet Explorer =10[x]

J File Edit “iew Favorites Tools Help |

‘@,»-@ﬁj‘@”

Back Fnan Stop Refresh Home Search
| Address | @) hp://132 16833 95/cgibin/lansawebprociun+iproc3+indi 3 =] @ Go |J Links >

LLLEL

I LANSA Web Applications

-

Tour login entered was:

Microsoft Internet Explorer

& *fou have exceeded the masimum size for this field

Contact us

Flease enter your question helow:

123456789012345 67890;‘
12345675901234567390
1234567590 he

s

|@ Daone l_l_‘a Internet

Summary

Important Observations

In this example, the data apportionment fields were only defined as 20
characters. In your applications, your fields could be much larger (up to 256
characters).

Data apportionment provides a solution to the 256 character field limitation
by parsing the data into a grouping of related fields. A user could enter 500
characters of text which cannot be stored in a single LANSA field. Using
data apportionment, the text can be stored in two fields.

In this example, the fields were simply written back out to the screen to
show you how the data apportionment is performed. In your application,
these fields might be written to a database file.

Tips & Techniques

The fields used for the data apportionment must be exactly 9 characters in
length. If the primary field name is EXAMPLE, then the related field names
would be EXAMPLEO1 and EXAMPLEOQ2, etc.

When specifying the length of the data apportionment (default length is 256
characters), the "-Lnnn" text specification must start in the eleventh
position, i.e. the field name must allow for 10 characters (9 character field
name plus a blank). For example:

<TEXTAREA NAME="COMMNT -L020" WRAP="PHYSICAL"
ROWS=3 COLS=20>

The column width of the text area does not have to equal the length of the
apportionment fields, however it does help to determine if the text area
apportionment is working correctly. In this example, the text area could have
been ROWS=6 COLS=10, or ROWS=2 COLS=30.

JavaScript can be very helpful in ensuring that the correct data enters your

system. Along with the line added to the text area in the above example you
could also add onChange="ChkLngTBox(this,60);" after the last quote of the
onkeyup. This will also catch an overflow if the user pastes data to the field.

What I Should Know

How to add a text area to a LANSA Web page.
How to use data apportionment to solve the 256 character field limitation.

e How to use data apportionment to enhance Web pages.

WEBO016 - Customizing Personnel Application (Optional)

Objective:

e In this optional exercise, you may use the Web Functions Wizard (described
in the Web Functions Wizard Guide to customize your Personnel System
application. You could complete this exercise before you begin exercise
WEBO10 (i.e. before you have started building your application) or after you
have completed exercise WEBO15 (i.e. after all the functions have been
created).

e To customize the color schemas or presentation layout of your Personnel
System application.

e To define the menu components for your application.

e To define the user navigation within the application.

To achieve these objectives, you must complete the following:
e Step 1. Design Your Layout

e Step 2. Test

e Summary

javascript:void(0);openCHM('lansa089.chm','lansa');

Step 1. Design Your Layout
In this step, you will design the general navigation and layout of the application.
1. Decide on the general layout you would like to use for your application.

2. Determine the menu components that you will require to create the desired
user navigation.

You might want to create links to the Login and Contact Us functions using a
vertical menu.

Or, you might want to create DHTML menus for the various department and
section functions.

3. Execute the Web Functions Wizard to build your application interface.

4. Tip: Remember that you can adopt layouts between your processes in order
to quickly create a common look-and-feel to your application.

Step 2. Test

1. Execute your test application and verify that the user navigation works as
designed.

Summary

Important Observations

You can create your layouts before you create your processes and functions.
The Web Functions Wizard creates a layout definition which will be used by
the processes and functions once they are created. Obviously, if a function
has not been created, you cannot test the link to the function.

Remember, the STDTABFLR field must be included in your functions as a
hidden field or it can be added to DEFAULT_HIDDEN, if you wish the
selected function to be highlighted.

Tips & Techniques

Using the Web Functions Wizard , you can quickly and easily define the
layout and user navigation for your application. Try different layouts and
schemas.

Remember to make note of the visualization and color selected, as the
Wizard does not show your existing settings.

Think carefully when specifying the Reuse Job and Start in New Window
options. You must understand the type of function executing and the
navigation required to and from the function.

Reminder: If you are using a tool bar, you will not usually select the Start in
New Window option.

Do not use the user defined visual style for the Horizontal Menu
components.

What I Should Know

How to use the Web Functions Wizard to customize your application.

Personnel Demonstration System

For details about the Personnel Demonstration System shipped with the LANSA
software, review the following:

Personnel System Demonstration Files

Physical Database Map of Personnel System

Sample Data in the Personnel Files

For details about installing the Personnel Demonstration System, refer to the
Tutorials for Web Functions & WEBEVENTs.

Personnel System Demonstration Files

The company has a simple organizational structure. It is divided into
departments such as Administration, Audit, Information Services, Legal, Travel,
etc. Each of these departments may have one or more sections such as
Accounting, Purchasing, Sales, etc. The Department table (DEPTAB) stores the
list of departments. The Section table (SECTAB) is used to store the sections
within each department.

The Personnel Master file (PSLMST) stores details about each employee. For
example, the employee's name, address, and telephone number are stored in this
master file. As each employee works in a section of a department, this
information is also stored in the Personnel Master file.

Each employee also has a list of skills. For example, an employee might have
Cobol, C and C++ programming skills or management and administration skills.
A Skills table (SKLTAB) is used to store the skill codes. A Personnel Skills file
(PSLSKL) stores the specific skills of each employee.

The Personal Event Log file (PSLEVENT) allows significant events and notes
to be recorded against an employee. It logically extends the PSLMST file. It is
an RDMLX file and therefore will only be available in an RDMLX partition.

The Personnel Time Sheet file (PSLTIMES) records employee time sheet
details. Details are recorded by week number (1 to 52) within a year for each
employee. It is designed mostly for use with L/Client and to show extensive
trigger power by performing relatively complex calculations and storing them in
the DBMS without the application needing to know what is happening. Note
that all the data is created and stored in the DBMS when information is created
or updated, which means that L/Client applications have read access to it
without needing to use the triggers. It is an RDMLX file and therefore will only
be available in an RDMLX partition. It contains examples of a number of
RDMLX field types including BLOB.

The physical database layout follows.

Physical Database Map of Personnel System
(Including Virtual and Predetermined Join Fields)

PSLSEL PSIMST PSLTIMES
SELTAH EMPHO* <-—-- [EMPHO* ----> | EMPNO*
SKILCODE* —-——=Z SKILCODE* SURNAME EMPTSYELR*
SKILDESC DATEAC QR GIVENAME EMPTSWEEE*
GRADE ADDRESS L EMPTSTASE*
COMMENT ADDRESSZ EMPTSWATE
ADDRESS 3 EMPTSWEND
datedcy POSTCODE EMPTSTSAT
gradedes PHONEHME EMPTST SN
PHONEET S EMPTSTMON
STARTDTER EMPTSTTUE
DEPTAB SECTAB TEEMDATER EMPTSTUWED
DEPTMENT* ----» | DEPTMENT* --—-> | DEPTMENT EMPTSTTHI
DEPTDESC SECTION* ----» | 3ECTION EMPTSTFRI
SECDESC SALARY EMPTSVIAT
SECADDEL EMPTSV AN
SECADDEZ mnthsal EMPTSVMON
SECADDES startdte EMPTSVTUIE
SECPCODE termdate EMPTSVIED
SECPHEUS EMPTSVTHI
EMPTSVFRI
PSLEVEHT EMPTSTOTH
EMPHNO* EMPTSTOTV
EMPEVTNTIM* EMPTSMAXH
EMPEVTLAT EMPTSMARD
EMPEVITIM EMPTSMINH
EMPEVTTYP EMPTSMIND
EMPEVTNTE
EMPEVTURD
EMPEVTUDT
EMPEVTDOC
pifriven
pifsurnam
expertdsc
*file kevya expertaug

Historical note: The LANSA Personnel Demonstration System was
originally created in 1987 to execute on a System 38. This same
application can still be executed on IBM i as well as Windows, WEB
and Linux platforms. The original database and application are
virtually unchanged but there have been some extensions to the
database to demonstrate RDMLX concepts.

This shows how LANSA can protect your investment in your
applications.

There are two web versions of the Personnel System, one uses
WEBEVENT technology and the other uses WAMs. These are
included with the IBM i demonstration material and can be checked
out to a Visual LANSA environment as required. These applications
can be used to give you ideas of how to create and include the
elements required for both WEBEVENT and WAM processing.

webevent (web enabled RDML or RDMLX partition):
http://<web server>/cgi-bin/lansaweb?
procfun+lansadem+ldem+dem

wam (web enabled RDMLX partition, only supported for technology
service LANSA:XHTML):

http://<web server>/CGI-BIN/lansaweb?
webapp=LWAMDEM+webrtn=ldemhome+ml=LANSA:XHTML+

Sample Data in the Personnel Files

Following is a list of some of the sample data in the Personnel File which may
be contained in the files. As developers may edit these files, the data you see
may have been different to the following:

DEPTAB: SECTAB: PSLMST:
DEPTMENT DEPTMENT/SECTION EMPNO
ADM ADM 01 17 employees
ADM 02 A1002
A1005
A1014
A8888
ADM 03
ADM 04
ADM 05
AUD AUD 01
AUD 02
AUD 03
FLT FLT 01
FLT 02
FLT 03
INF INF 01
INF 02

INF 03

Appendix A. Header Styles

LANSA for the Web provides support for different styles of headers for Web
function applications. Generally speaking, the header styles can be either static
or dynamic. In addition, the headers can either have a scrolling or non-scrolling
attribute.

Static Header

Dynamic Header

Scrolling Header

Non-Scrolling Header

Frameset Definition

Limitations of non-scrolling headers

Combination Of Scrolling And Non Scrolling Header Styles
Override Header Style

Adopted Header Style

Static Header

Static headers are used where the buttons for your LANSA functions do not
change from one function to another. All the buttons defined in the
STDHEADER page are displayed for every function.

To use this header style in your application, copy the STDHEADER_STYLE1
page to the STDHEADER page in your system.

GEFEEY

| B2

0K - Cancel Messages Help

The standard header consists of:
e a company logo displayed at the top left hand corner.
e a set of buttons (with configurable images) consisting of:

Button Description

Home A button, which emulates an Exit key and will take you back to a
nominated home page.

Menu This will take you back to the Process Menu level. This button
emulates a Cancel key, until you are returned to the Process Menu
level.

OK Equivalent to the <Enter> key.
Cancel Equivalent to Cancel (F12).
Messages Equivalent to Messages (F14).

Help Equivalent to Help (F1). Help is displayed in a new browser
window, with the toolbar and menu bar disabled.

The static header style provided by LANSA for the Web incorporates images for
the standard buttons.

Static headers are used where you want to provide a consistent headers
throughout your application. However, you will need to be careful with your

functions to ensure that the buttons used in the static header are always enabled.
Static headers do not have the capability to check the state of a particular button.
Static headers assume that the buttons displayed are always enabled.

If your functions do not have the same set of buttons enabled all the time, you
must use the dynamic header style.

To comply with the XHTML 1.0 transitional document type definition, LANSA
uses JavaScript functions. JavaScript support must be enabled in your browser.

Dynamic Header

LANSA for the Web provides support for dynamic display of buttons in the
Standard Header.

LLUEL

HOME MENL MEXT

ALK SEARCH HELP

This means that you can define all the buttons used in your applications in the
Standard Header component. By encapsulating each of these buttons with the

<RDML BUTTON> tag, LANSA for the Web will dynamically enable or
disable the particular button, according to its status in your application.

<img src="<RDML MERGE="*LW3CPYLOGO">" alt="Logo" />

<RDML BUTTON="&WEBEVENT">
<script type="text/javascript" language="javascript">
//<![CDATA[
function ButtonClick(button)
{
document. LANSA._BUTTON.value=button; document. LANSA.submit();
}
111>
</script>
</RDML>
<table cellpadding="0" cellspacing="0" border="0" width="100%" align="left
<tbody>
<tr valign="bottom">
<td width="470" height="21" nowrap="nowrap">
<RDML BUTTON="&EXIT">

<img src="/IMAGES/TB_HOME.GIF" alt="Home" border="0" width="55" he

</RDML>
<RDML BUTTON="&CANCEL">

<img src="/IMAGES/TB_MENU.GIF" alt="Menu" border="0" width="55" he

</RDML>
<RDML BUTTON="&WEBEVENT">

<img src="/IMAGES/TB_NEXT.GIF" alt="Next" border="0" width="55" heig

</RDML>
<RDML BUTTON="&CANCEL">

<img src="/IMAGES/TB_BACK.GIF" alt="Back" border="0" width="55" hei

</RDML>
<RDML BUTTON="&ADD">

<img src="/IMAGES/TB_ADD.GIF" alt="Add" border="0" width="45" heigh

</RDML>
<RDML BUTTON="&CHANGE">

<img src="/IMAGES/TB_CHG.GIF" alt="Change" border="0" width="65" he

</RDML>
<RDML BUTTON="&DELETE">

<img src="/IMAGES/TB_DLT.GIF" alt="Delete" border="0" width="65" heig

</RDML>
<RDML BUTTON="&PROMPT">

<img src="/IMAGES/TB_SRCH.GIF" alt="Search" border="0" width="70" he

</RDML>
<RDML BUTTON="&WEBEVENT">

<img src="/IMAGES/TB_HELP.GIF" alt="Help" border="0" width="55" heig

</RDML>
</td>
</tr>
</tbody></table><br clear="all" />

Dynamic headers are very powerful as the buttons shown in the header, when
the function is executed, are the buttons that are enabled for the function. This is
unlike static headers, where the displayed buttons may not be valid for the
function.

For example, in one of your functions, you have disabled the Exit key. This will
be detected in dynamic headers and the Exit key (and hence the Home button)
will not be displayed. However, in static headers, the Exit key (and hence the
Home button) will still be displayed if the Exit key was defined in your static
header.

Dynamic headers allow you to define all the buttons used in your application in
a single Web component, the STDHEADER component. LANSA for the Web
will then determine the status of each button in the component dynamically.

It is recommended that you incorporate the dynamic buttons support

provided as the default header style in LANSA Web function
applications.

The dynamic header style page shipped with LANSA for the Web uses a Tool
Bar to display the buttons. The trend in Web applications is to use Tool Bars
instead of images to represent actions.

LANSA for the Web provides you with a collection of images in GIF format.
These images are used to build the Tool Bar in the STDHEADER component.
These images are prefixed with "TB_". LANSA for the Web also provides you
with templates of images that can be used to create your own set of images for
the Tool Bar. The images were created using Paint Shop Pro.

If you have changed the header style and you want to restore the
default header style, then copy the STDHEADER_STYLE? page to
be the STDHEADER page in your system.

Scrolling Header

The scrolling header style embeds the STDHEADER component into the
HTML generated for the function. The buttons in the component are part of the
HTML displayed in your browser. This means that as you use the scroll bars in
your browser, you are scrolling through the body of the function, which includes
the buttons in your STDHEADER component.

In HTML terminology, your buttons and the body of the function are displayed
within the single frame.

This style is not user friendly as your STDHEADER component is usually at the
top of the page. If your HTML page displays many fields, the buttons of your
function may not be visible if you have scrolled down through the body of your
function.

For functions with large display, it would be ideal if you could have the buttons
displayed in a static frame and the body of the function in a separate frame.
These are the features provided by the non-scrolling style.

To comply with the XHTML 1.0 transitional document type definition, LANSA
uses JavaScript functions. JavaScript support must be enabled in your browser.

Non-Scrolling Header

LANSA for the Web also provides you with a non-scrolling header style for

Web function applications. With this style, the STDHEADER page is loaded
into a separate frame and your LANSA function is loaded into another frame.
This feature allows you to scroll through the body of your function, while the

buttons remain static. This means that the buttons are available to you all the
time.

Before deploying this header style in your application, read the
Limitations of non-scrolling headers list to understand the limitations

of this header style.

Bl Browse/Maintain Employee and Skill Files - Microsoft Internet Explorer
| Ele Edit Miew Go Favortes Help [&]
e~ =-0d 038 ARE=

JAddressHLinks 4ZBest of the Web #FMicrosoft 45Product Mews 4HToday's Links &3'Weh Gallery

Le

HOME tEML MHEXT BACE, SEARCH HELFP
Department Code |MARKETING DEPARTMENT =] : : Al
Section Code i |02 !
Start Date (DDMMYY) . . . |1,r‘01f90 :

Termination Date (DDMMYY) IUfOUfOO : : : J

Date Skl Skill Skill

 None
RPG Fail
|10f1[],-'9£ RPG PROGRAMMING PROGRAMMING THINKS THROUGH IS | Pass
& herit
© Distinction H

|@ Dane | I_’_’_|® Internet zone g

To enable this feature, you must install the STDHEADER_STYLE3
page as the default STDHEADER page. You can use the Web

Function Editor to open the STDHEADER_STYLE3 page and then
save the page as STDHEADER.

Next, you will need to set the Use Non-Scrolling Header option in the
Presentation tab of the LANSA Administrator described in the Installing LANSA
on Windows Guide. This means that you want all your functions to adopt the
non-scrolling header style.

<RDML BUTTON="&EXIT">

<td width="55" height="21" nowrap="nowrap">

<img src="/IMAGES/TB_HOME.GIF" alt="Home" border="0" width="55" he

</td>
</RDML>
<RDML BUTTON="&CANCEL">

<td width="55" height="21" nowrap="nowrap">

<img src="/IMAGES/TB_MENU.GIF" alt="Menu" border="0" width="55" he

</td>
</RDML>
<RDML BUTTON="&WEBEVENT">

<td width="55" height="21" nowrap="nowrap">

<img src="/IMAGES/TB_NEXT.GIF" alt="Next" border="0" width="55" heig

</td>
</RDML>

The non-scrolling header style uses JavaScript functions. JavaScript

support must be enabled in your browser.

its:lansa085.chm::/Lansa/JMP_0320.htm

Frameset Definition

The non-scrolling style uses the frameset feature in HTML. Basically, it divides
your browser into two frames. One frame holds the STDHEADER page while
the other frame holds the body of your function.

The HTML used to define the frameset is stored in DEFAULT FRAMESET.
This is the default frameset definition.

<RDML MERGE="&DTD_ FRAMESET">
<]-- >

<!-- Default Frameset definition -->
<!-- Last Modified: 9.1 2001-10-03 -->

<html xmlIns="http://www.w3.0rg/1999/xhtml">
<head>
<title><RDML MERGE="&FUNCTION"></title>
<meta http-equiv="pragma" content="no-cache" />
</head>
<frameset rows="125, *" border="0" frameborder="no" framespacing="0" scrc
<frame name="LHEADER" src="/<RDML MERGE="&CGI">/LANSAWE
PAGE+<RDML MERGE="&SESSION">+STDHEADER" />
<frame name="LBODY" src="/<RDML MERGE="&CGI">/LANSAWEB?
PAGE+<RDML MERGE="&SESSION">+
<RDML MERGE="&PAGE">" />
<noframes>
<body>You cannot view the documents with your current browser</body>
</noframes>
</frameset>
</html>

The <frameset> border, frameborder, framespacing and scrolling
attributes are not part of the XHTML 1.0 frameset document type
definition. They have not been removed to keep the appearance of
existing applications.

You can modify this file or you can create a frameset definition for a particular
LANSA process, by following the naming convention:

<process>_FRAMESET

where <process> is the name of your LANSA process.

If a frameset page exists for the process, this page will be used instead of
DEFAULT_FRAMESET.

You can customize the height of each frame in this page. You can also choose to
orientate the frames vertically, instead of horizontally. If you modify the
DEFAULT_FRAMESET or create a process specific page, do not modify the
names assigned to the frames.

You will want to customize the height of the frames to optimize the
usage of the browser's display area. The height of the header frame

should be big enough to display the page. This will then provide
maximum area to display the body of the function.

Limitations of non-scrolling headers

If you intend to use non-scrolling header style in your Web function
applications, you should be aware of some of the limitations of this style.

e If you use the Back button of your browser to display previous pages, this
causes problems. The non-scrolling header style uses framesets and each
frame is a self-contained page. The browser remembers the sequencing of

the pages in its memory cache. It does not know the relationship of the
frames.

e On a page request, LANSA for the Web will display the body of the function
initially. It will then determine if the header needs to be refreshed. If it does,
it sends a new header page to the header frame. This means that the last
frame to be refreshed is the header frame. When you select the Back button
of your browser, it will load the previous page of the header frame, without
refreshing the body of the function. This may cause the header and the
function to be out of synchronization.

e If you select the 'Refresh’ or 'Reload' command in your browser, only the
body of the function is loaded. The request to refresh does not reload the
frameset definition.

e [t is recommended that this header style is not used for WEBEVENT
functions.

It is recommended that the non-scrolling header style be used only
with Intranet or Extranet applications, where you can provide

instructions to your users, and can control the type of browsers they
use.

Combination Of Scrolling And Non Scrolling Header Styles

LANSA for the Web allows you to have both scrolling and non-scrolling header
styles in your Web function applications. You can customize your functions to
have the different header styles.

However, if you want to have both scrolling and non-scrolling header styles,
you will need to be very careful as a single STDHEADER component cannot be
used for both scrolling and non scrolling header styles.

In the scrolling header style, the header component is embedded into the HTML
page of the function.

In the non-scrolling header style, the header and the body of the functions are
regarded as separate HTML pages.

Both header styles use JavaScript functions to emulate the selection of an action
in the function. If JavaScript support is disabled in your browser, you will not be
able to use the buttons from the standard headers.

If you intend to use a combination of scrolling and non-scrolling
header styles in your application, you should spend time familiarizing

yourself with the differences in the HTML used in the different header
styles.

Override Header Style

The setting Use Non Scrolling Header in the Presentation tab of the LANSA
Administrator applies to all your functions. However, you can override this
setting for specific LANSA processes. This allows you to have a combination of
scrolling and non-scrolling header styles in your applications.

If you want to override the system setting for a particular LANSA process, you
create an HTML page following the naming convention:

<process>_FRAME
where <process> is the name of your LANSA process.

This style-override page only contains a single character, eithera "Y' or 'N'. A'Y"
character indicates that you want the non-scrolling header style enabled for the
<process> process. A 'N' character indicates that you do no want the non-
scrolling style enabled for the process.

Do not embed any comments at the start of this page. The first

character in the page is used to determine the override.

LANSA for the Web will check if a style override page exists for the process. If
it exists, it will be used to determine which header style to use in the function. It
the page does not exist, LANSA for the Web will check the option set in the
LANSA Administrator.

If the setting in your style override page is different from the global setting in
the LANSA Administrator, you must ensure that there is a corresponding
<process>_STDHEADER component that is compatible with the style.
Otherwise, your application may not work properly.

its:lansa085.chm::/LANSA/jmp_0320.htm

Adopted Header Style

If your application contains functions that call other functions attached to
different processes, the header style adopted for the application will be
dependent on the first function called. This means that if the first function called
is set up to have a non-scrolling header, then all the subsequent functions called
from within the same LANSA job will adopt the non-scrolling header.

This means that the other functions called must also have the same header style.
If the other functions have been set up to have different header styles, it would
appear as though they have adopted the style of the first function. However,
because of the conflicting HTML/JavaScript techniques used in the two
different styles, your functions will not operate properly.

Appendix B. LANSA for the Web XHTML

LANSA for the Web generates Web pages compatible with the XHTML 1.0
specification. The XHTML 1.0 standard and HTML 4.0 standards are almost
identical. In this guide, the term HTML is used to describe LANSA for the Web
generated HTML/XHTML pages. This section of the guide provides specific
details about the XHTML generated by LANSA for the Web.

For details about XHTML, review the following topics:
Introduction to XHTML 1.0

Converting HTML to XHTML 1.0

XHTML Document Type Definition (DTD)

Serving XHTML Pages as Pure XML Pages

Introduction to XHTML 1.0

If you are new to XHTML, you should review:
What is XHTML 1.0?

Why use XHTML 1.0?

Compatibility with HTML

What is XHTML 1.0?

Following are some important facts about XHTML.:

XHTML is also referred to as Extensible-HTML.
XHTML 1.0 is a reformulation of HTML 4.01 as an XML 1.0 application.

The three XHTML 1.0 document type definitions (DTD) correspond to
the ones defined by HTML 4.

XHTML is designed to provide a path to extend HTML in the future in a
way that is compatible with XML.

XHTML is intended as a replacement for HTML.

XHTML 1.0 is almost identical to HTML 4.01.

XHTML 1.0 can be viewed with current generation user agents, including
the major browsers if certain guidelines are followed. (Refer to
Converting HTML to XHTML 1.0.)

Why use XHTML 1.0?

There might not be an immediate business need forcing you to move to
XHTML. However, it is recommended that you start using XHTML for new
developments or modifications. This approach will make it easier to migrate to
XHTML 1.0 or future versions of XHTML so that you can quickly take
advantage of new business opportunities.

New user agents, like portable devices, will probably use newer versions of
XHTML. Because XHTML conforms to XML syntax rules, the XHTML
generated by LANSA for the Web can be processed by XML parsers.

The compatibility between XHTML 1.0 and HTML 4.0 allows you to continue

to support all of your existing browser interfaces while allowing for future
computing devices.

Compatibility with HTML

Your existing HTML applications are compatible with the XHTML pages and
markup language generated by the LANSA for the Web runtime.

Web pages can use a mix of both HTML and XHTML elements.

For details about the differences between HTML and XHTML, refer to
Converting HTML to XHTML 1.0.

Converting HTML to XHTML 1.0

XHTML 1.0 is a reformulation of HTML 4.01 as an XML 1.0 application.
Hence, XHTML 1.0 is almost identical to HTML 4.01. In order to make your
HTML compatible with XHTML, some very simple rules need to be followed.

Review the following:

XHTML Syntax Rules

XML Declaration

You may also need to refer to XHTML Document Type Definition (DTD) .

XHTML Syntax Rules

These guidelines will help you write Web pages that conform to the XHTML
1.0 transitional document type definition and that are compatible with current
browsers.

Documents must be well formed

All elements must be nested within the <html> root element. Sub elements must
be in pairs and correctly nested within their parent element.

Root element namespace

The root element of the document must designate the XHTML namespace using
the xmlns attribute. The namespace for XHTML is defined to be
http://www.w3.0rg/1999/xhtml.

For example:
<html xmlIns="http://www.w3.0rg/1999/xhtml">

Mandatory tags in all XHTML pages
These tags must be defined in all pages:
<html><head><title></title></head><body></body></html>

Title element must be first element in header
This is wrong:
<html xmlIns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="pragma" content="no-cache" />
<title>Handle Banner Request</title>
</head>

This is correct:

<html xmIns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Handle Banner Request</title>

<meta http-equiv="pragma" content="no-cache" />
</head>

All XHTML elements should be in lower case
For example:
<table> not <TABLE>.

All attributes should also be in lower case
For example:
<table width="544" border="0" cellpadding="0" cellspacing="0">

All attributes must have values contained by single or double
quotation marks
This is wrong:

<table width=544 border=0 cellpadding=0 cellspacing=0>

This is correct:
<table width="544" border="0" cellpadding="0" cellspacing="0">

When possible, avoid multiple spaces or line breaks within an
element's tags

Subject to line length constraints the W3C makes this recommendation because
different user agents may treat white space and line breaks differently.

For example:
Do not write this:

<tablewidth="544"
border="0"
cellpadding="0"
cellspacing="0">

Write it like this:
<table width="544" border="0" cellpadding="0" cellspacing="0">

All nonempty elements must have a closing tag

For example:
<p> ... </p>

Empty elements must also be closed (with syntax for HTML
compatibility)
Leave a blank space before the self-closing '/' in empty element tags.
For example:

Elements must be nested correctly
For example:

<p>This is correct</p>
<p>This is not correct</p>

Attribute minimization is forbidden
This is wrong:

<dl compact>

<input checked />

<input readonly />

<input disabled />

<option selected />

<frame noresize />

This is correct:

<dl compact="compact">
<input checked="checked" />
<input readonly="readonly" />
<input disabled="disabled" />
<option selected="selected" />
<frame noresize="noresize" />

The id Attribute replaces the Name Attribute

HTML 4.01 defines a name attribute for the elements a, applet, frame, iframe,
img, and map. In XHTML the name attribute is no longer used and the attribute
id is used instead.

To preserve compatibility with HTML browsers, use both attributes as in the

following example:
<img src="home.gif" alt="Return to home" border="0" id="home" name="hon

Replace ampersands in attribute values with character entity
This is wrong:

<input type="button" value="Bob & Alice" />

This is correct:

<input type="button" value="Bob & Alice" />

i

 tag must have the alt=""attribute

This is really an HTML 4.0 requirement. Because XHTML 1.0 is based on
HTML 4.0, this is required.
This is wrong:

This is correct:

Handle special characters in JavaScript

Special characters like < and & in scripts may be treated as start of markup by
XML parsers. Also entities such as & and < will be recognized as entity
references. To avoid this, the W3C specification suggests that you wrap the
content of the script within a CDATA marked section so that it can be ignored
by the XML parser.

Example according to the W3C:

<head>

<title>Script Test</title>

<script type="text/javascript" language="javascript">
<I[CDATA[

function HomePage(){parent.location="/home/index.html";}
11>

</script>

</head>

<body onload="HomePage()"></body>

However, when sent as HTML, the Java Script parsers in current browsers do
not understand the CDATA keyword and may cause a syntax error. The solution
is to comment out the CDATA keywords as a Java Script comment:

<head>

<title>Script Test</title>

<script type="text/javascript" language="javascript">
//<![CDATA[

function HomePage(){parent.location="/home/index.html";}
1>

</script>

</head>

<body onload="HomePage()"></body>

This should be used instead of the technique to comment out the scripts for
browsers that do not support JavaScript using <!-- and //-->.

Summary: To comment out lines to the HTML parser <!-- --> is used. To write
comments inside <script></script>, the // is used so it will be ignored by the
JavaScript parser. To make the CDATA section invisible to the JavaScript
parser, but visible to the XML parser, you use // <![CDATA[and //]]>.

Location of scripts

Scripts must be located either between the <header></header> or between the
<body></body> tags.

XML Declaration

XML documents normally include an XML declaration in its first line.
Example:

<?xml version="1.0" encoding="1S0O-8859-1"?>

According to the W3C recommendation, an XML declaration is not required in
all XML documents. Unless you need your web pages to be handled as XML
documents, do not include the XML declaration.

By default, LANSA for the Web does not include this declaration.

Warning: Some user agents will render the Web page as an XML tree
instead of rendering the page as HTML content if they see the XML

declaration. For more information, refer to Serving XHTML Pages as
Pure XML Pages.

XHTML Document Type Definition (DTD)

The W3C standards for XHTML recommend that a DOCTYPE declaration be
included in your documents. For more details, refer to Document Type
Definition (DTD).

If your applications don't conform to the XHTML 1.0 specification and you

want to avoid the insertion of the DOCTYPE declaration in your pages refer to
How to Avoid the Insertion of the DOCTYPE Declaration.

Document Type Definition (DTD)

According to the XHTML 1.0 W3C recommendation
(http://www.w3.org/TR/xhtml1/) section 3.1.1, there must be a DOCTYPE
declaration in the document prior to the root element.

The public identifier included in the DOCTYPE declaration must reference one
of the three Document Type Definitions found in
http://www.w3.org/TR/xhtml1/#dtds using the respective Formal Public
Identifier. The system identifier may be changed to reflect local system
conventions.

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/DTD/xhtml1-strict.dtd">

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/DTD/xhtml1-frameset.dtd">

LANSA for the Web ships with default pages for each of these Document Type
Definitions.

If you download the Document Type Definitions and install them on your web
server, then you can change the DOCTYPE declarations so you don't need to
refer to the w3.org web site.

Note: LANSA for the Web uses either the Transitional DTD or the
Frameset DTD (for pages that contain frames). It does not use the

Strict DTD, as strict XHTML requires that all style information be
provided via style sheets and not embedded in the XHTML page.

Some old browsers may have problems avoiding the display of the DOCTYPE
declaration. Current generation browsers correctly hide them from being
displayed.

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/#dtds

How to Avoid the Insertion of the DOCTYPE Declaration

If your applications do not conform to the XHTML 1.0 specification and you
want to avoid the insertion of the DOCTYPE declaration in your pages, follow
these steps:

Step 1. Replace the Transitional DOCTYPE declaration with a blank line
Using the LANSA for the Web Function Editor, modify the special page
DTD_TRANSITIONAL in your partition and replace it with a blank space (You
cannot save an empty page).

Step 2. Replace the Frameset DOCTYPE declaration with a blank line
Using the LANSA for the Web Function Editor Editor, modify the special page

DTD_FRAMESET in your partition and replace it with a blank space (You
cannot save an empty page).

Step 3. Do not include the RDML DTD merge tag in custom Spooled File
Utility Pages

If you have created your own custom versions of STDPRINT,
STDREPORTLIST or STDREPORT pages, do not include the <RDML
MERGE="&DTD_TRANSITIONAL"> tag in those pages. The Spooled File
Utility retrieves the special DOCTYPE pages from partition " WEB' and
language 'ENG' and not from your current partition.

Serving XHTML Pages as Pure XML Pages

The following information is provided if you are intending to serve

your LANSA for the Web XHTML pages as pure XML pages instead
of HTML/XHTML pages.

Internet media type (MIME type) for XHTML

As of the publication of the XHTML 1.0 W3C recommendation, the general
recommended MIME labeling for XML-based applications was not resolved. It
makes no recommendation about MIME labeling for XHTML documents that
do not need backward compatibility with HTML user agents.

Because you want to preserve compatibility with HTML user agents, continue
using MIME type text/html.

Note: There are issues relating to the inclusion of the XML declaration
in XHTML documents. In principle, user agents should rely on the
MIME type to determine if a document should be handled as an
HTML or XML document. However, some versions of current

browsers "sniff" an incoming Web page and if they see the XML
declaration, they handle the document as an XML document
regardless of the HTTP MIME type sent by the Web server. To avoid
this problem the shipped DTDs do not include the XML declaration.

If you want to serve your Web pages as pure XML documents, then you follow
these steps:
Step 1. Add the XML declaration to the DOCTYPE pages

Using the LANSA for the Web Function Editor, add the XML declaration in the
DOCTYPE pages DTD_FRAMESET, DTD_STRICT and
DTD_TRANSITIONAL. Use an encoding appropriate to your language's
character set.

For example:

% LANSA HTML Editor - [DTD_TRANSITIONAL (ENG-0)]

E File Edit View Tags Components Options Tools ‘Window Help =18 x
WEFIEEEERER
<?xml version="1.8" encoding:"I50-8859-1"7)) -

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://wuw.w3.org,

v
1] 3

Peady Ln1.Cal4d |HTML |LO14550 DEM ENG [DCXUSER

Step 2. Change the LANSA for the Web server configuration
If you are using CGI-BIN:

1. Add the following row to table LWEB.DAT located in the LANSA shared
library:

Column | Value
XLWPEN | 'HTM'
XLWSEN | Blanks
XLWGRP | 'MIMETYPE '
XLWLID | 0

XLWMDF| Y

XLWDTA | text/xml
XLWSP1 | Blanks

2. Uncomment the XML declaration in the PREAMBLE group. Add the
encoding appropriate to your language's character set.

Column | Value

XLWPEN | 'HTM'

XLWSEN | Blanks

XLWGRP | 'PREAMBLE '

XLWLID | 0

XLWMDF| Y

XLWDTA | <?xml version="1.0" encoding="1SO-8859-1"7>
XLWSP1 | Blanks

If you are using Java Servlet:

1. Add line MIMETYPE=text/xml to configuration file
L4W3SERV.CFG.

2. Set the current directory to the home of the Java Servlet LAW3Servlet.jar.

3. Extract LAW3Resource.properties from jar file L4W3Servlet.jar
(Select the properties file relevant to your locale). Use the Java command:

jar -xf LAW3Servlet.jar
com/lansa/web/servlet/L4W3Resource.properties

4. Locate the properties file in the subdirectory tree com/lansa./web/servlet

under your current directory.

5. Change the value of property PROO in the properties file, to uncomment the
XML declaration.

6. Update the jar file. Use the Java command:

jar uf L4AW3Servlet.jar
com/lansa/web/servlet/L4W3Resource.properties

7. If your jar file is on an iSeries, you will need to recompile the jar file. Use
the OS/400 command (replace path with the actual IFS path to the jar file):

CRTJVAPGM CLSF('/path/L4W3Servlet.jar') OPTIMIZE(40)

	Web Functions
	1. Introduction to LANSA Web Functions
	1.1 What are LANSA Web Functions?
	1.2 Major Features of LANSA Web Functions
	1.3 LANSA Web Function Architecture
	1.4 What is the Web Functions Wizard?
	1.5 Programming Language Skills
	1.6 How Do You Develop Applications with LANSA Web Functions?
	1.7 LANSA Web Function Transaction Server
	1.8 WEBEVENTs or WAMs?

	2. Developing Applications with LANSA Web Functions
	2.1 Before You Begin Checklist
	2.2 Web Enabling a LANSA Process
	2.3 Types of Web Functions
	2.4 Example of a Procedural Function
	2.5 Example of a WEBEVENT Function
	2.6 Shipped LANSA Web Function Templates
	2.7 Compiling Functions
	2.8 Using the e-Business Framework Wizard
	2.9 Calling LANSA Web Processes and Functions
	2.10 Executing Applications: Process Menu
	2.11 Executing Applications: WEBEVENT

	3. Executing LANSA Web Function Applications
	3.1 No Existing Web Site
	3.2 Integrating with an Existing Web Site
	3.3 Before You Deploy Your Applications
	3.4 Uniform Resource Locator (URL) Syntax
	3.5 Calling a LANSA Process
	3.6 Calling a LANSA Function Directly
	3.7 Passing Parameters to a LANSA Function
	3.8 Specifying a Task Identifier
	3.9 Debugging using iSeries Batch Debug
	3.10 Debugging using Visual LANSA
	3.10.1 Start Development Environment Debugging Session
	3.10.2 Start Web Browser Debugging Session

	3.11 Invoking the iSeries Spool File Facilities
	3.12 Event Logging
	3.13 Enabling Event Logging
	3.14 Logging User Defined Fields

	4. WEBEVENT Functions
	4.1 What is a WEBEVENT Function?
	4.2 How Does WEBEVENT Work?
	4.3 How is WEBEVENT Different?
	4.4 WEBEVENT Templates
	4.5 WEBEVENT Example
	4.5.1 Procedural Add an Employee Function
	4.5.2 Changes Required to Restructure for WEBEVENT
	4.5.3 Handling Re-entrant Functions
	4.5.4 Final WEBEVENT Function
	4.5.5 More Complex Example

	4.6 Automatic Data Exchange
	4.7 WEBEVENT Routing
	4.8 WEBEVENT Keywords
	4.9 Considerations for WEBEVENT Functions
	4.10 WEBEVENT Data and Function Timeout

	5. LANSA Generated HTML Pages
	5.1 Page Security
	5.2 Identifying Generated Pages
	5.3 Modifying the Process Menu
	5.4 Versioning of Pages
	5.5 Comparing Versions
	5.6 HTML Page Structure
	5.7 LANSA Field Names in HTML Pages
	5.8 HTML Generation Skeleton
	5.8.1 What is the HTML Skeleton?
	5.8.2 How Do I Use the HTML Skeleton?
	5.8.3 Considerations for Using the HTML Skeleton

	6. Default Process Pages
	6.1 What are Default Process Pages?
	6.2 Shipped Default Pages
	6.3 Other Default Pages
	6.4 Customizing Process Specific Pages
	6.5 User Defined Default Pages
	6.6 Standard HTML Page Components
	6.7 Other HTML Page Components
	6.8 Special XHTML Pages
	6.9 Process Specific Page Components

	7. RDML Tags
	7.1 What are LANSA Tags?
	7.2 How Do LANSA Tags Work?
	7.3 LANSA Tags Example
	7.4 Using <RDML> and </RDML> Tags
	7.5 <RDML BUTTON>
	7.6 <RDML CHECKVALUE>
	7.7 <RDML COMPONENT>
	7.8 <RDML COOKIES>
	7.9 <RDML FUNCTION>
	7.10 <RDML INCLUDE>
	7.11 <RDML LAYOUT>
	7.12 <RDML MERGE>
	7.13 <RDML MESSAGES>
	7.14 <RDML NOTCONDITION>
	7.15 <RDML ONCONDITION>
	7.16 <RDML ONMODE>
	7.17 <RDML PAGE>
	7.18 <RDML PARENT>
	7.19 <RDML SETTMPFLD>
	7.20 <RDML SSI>
	7.21 <RDML TRACE>
	7.22 Reserved Words

	8. Graphic Variables
	8.1 What are Graphic Variables?
	8.2 Why Use Graphic Variables?
	8.3 Types of Graphic Variables
	8.3.1 Image File Graphic Variables
	8.3.2 Color Graphic Variables
	8.3.3 Text Graphic Variables

	8.4 Default Graphic Variables
	8.5 Process Level Graphic Variables
	8.6 Browse List Graphic Variables
	8.7 Graphic Variables and the e-Business Framework Wizard
	8.8 Technically Speaking

	9. Web Components
	9.1 Introduction to Web Components
	9.1.1 What are Web Components?
	9.1.2 Web Component Architecture
	9.1.3 Web Component Example
	9.1.4 Types of Web Components
	9.1.5 Web Components and Modes
	9.1.6 Automatic Embedding of Web Components
	9.1.7 Dynamically Embedding Web Components
	9.1.8 Considerations for Using Web Components

	9.2 Manually Defined Web Components
	9.2.1 Banner
	9.2.2 Text
	9.2.3 Web Link
	9.2.4 Page
	9.2.5 Script
	9.2.6 Naming Page and Script Web Components

	9.3 Generated Web Components
	9.3.1 Visual Web Component
	9.3.2 Creating Visual Web Components
	9.3.3 Using Triggers to Generate Visual Web Components
	9.3.4 File Web Component

	10. Function Editor
	10.1 Introduction to Web Function Editor
	10.1.1 What is the Web Function Editor?
	10.1.2 Connecting to the Data/Application Server
	10.1.3 Starting the Web Function Editor
	10.1.4 Web Function Editor's Main Window

	10.2 File Menu
	10.2.1 New
	10.2.2 Open . . .(XML/HTML mode)
	10.2.3 Open (BASIC mode)
	10.2.4 Close
	10.2.5 Save
	10.2.6 Save As
	10.2.7 Save As (mode BASIC)
	10.2.8 Save To Local (mode BASIC only)
	10.2.9 Load From Local (mode BASIC only)
	10.2.10 Compare
	New Comparison
	Compare With
	Compare With Version
	Close

	10.2.11 Page Setup
	10.2.12 Print
	10.2.13 Connect
	Save As
	Advanced

	10.3 Edit Menu
	10.3.1 Paste HTML (HTML only)
	10.3.2 Clear All

	10.4 View Menu
	10.5 Tags Menu (HTML mode)
	10.5.1 Insert RDML Component

	10.6 Components Menu
	10.6.1 Maintain Component
	Add a new Component
	Duplicate
	Banner Component (HTML mode)
	Add/Change Banner Component
	Add/Change Banner Detail

	File Component
	Page Component
	Script Component (HTML mode)
	Text Component
	Visual Component
	Web Link Component (HTML mode)

	10.6.2 Generate Component
	Generate Visual Component
	Generate File Component (HTML mode)
	Considerations for using File Web Components

	10.6.3 Graphic Variables
	Add Graphic Variable
	Change Graphic Variable

	10.7 Options Menu
	10.7.1 Configure
	Third Party Editor
	View
	Miscellaneous

	10.7.2 Font
	10.7.3 Invoke Third Party Editor

	10.8 Tools Menu
	10.8.1 Keywords
	Add Keyword
	Maintain Keyword
	Change Keyword

	12. Web Development Tips & Techniques
	12.1 HTML as Field Contents
	12.2 Automatic Data Apportionment
	12.2.1 Specifying Apportionment Position

	12.3 Considerations for Browse Lists
	12.4 Message Presentation Layout
	12.5 Using <RDML MERGE="&END">
	12.6 Cascading Style Sheets
	12.7 Retrieve Additional Information from Browse List
	12.8 Handle the ENTER key in Browsers
	12.9 Embed a Calendar Control
	12.10 Modify LANSA for the Web Messages
	12.11 Set the Initial Focus in an HTML Page
	12.12 Tailoring the DEFAULT_SCRIPT
	12.13 Generate Static Page Output to the IFS (Integrated File System)
	12.14 Integrate LANSA Applications with Static HTML Pages
	12.15 CheckBox Visual Web Components
	12.16 Extend LANSA Drop Downs
	12.17 Modifying charset for non-English Systems

	Tutorials for Web Functions & WEBEVENTs
	WEB001 - Types of LANSA Web Functions
	Step 1. Create a Procedural Function
	Step 2. Create a WEBEVENT Function
	Step 3. Execute your Procedural Function
	Step 4. Execute Your WEBEVENT Function
	Summary

	Web Functions Wizard Tutorials
	WEB002 - Coding a WEBEVENT Functions
	Step 1. Review Procedural Logic
	Step 2. Create New Functions
	Step 3. Define Keywords for Function Routing
	Step 4. Test Your WEBEVENT Functions
	Step 5. Re-entrant WEBEVENT Function
	Summary

	WEB003 - iSeries Batch Debug
	Step 1. Identify Your Terminal ID
	Step 2. Call Your Function in Debug Mode
	Step 3. Enter valid data into your browser.
	Summary

	WEB004 - LANSA Generated HTML Pages
	Step 1. Open and Configure the Web Function Editor
	Step 2. Identify Generated HTML Pages
	Step 3. Edit the HTML Page for iiiFN05
	Step 4. Modify and Recompile Function iiiFN05
	Step 5. Use Compare and Contrast to Review your HTML
	Summary

	WEB005 - LANSA Process Pages
	Step 1. Create a Message Presentation Page for iiiPROC03
	Step 2. Create a Standard Header for Functions in Process iiiPROC03
	Step 3. Create a Standard Footer for Functions in Process iiiPROC03
	Step 4. Component Registry
	Step 5. Add the Calendar Control and Edit the Default JavaScript
	Step 6. Test the Calendar Control
	Summary

	WEB006 - Graphic Variables
	Step 1. Create New Graphic Variables
	Step 2. Add Graphic Variables to the Process Pages
	Step 3. Test Your Graphic Variable.
	Optional Step 4. Web Functions Wizard Graphic Variables
	Summary

	WEB007 - LANSA Tags
	Step 1. Review the LANSA Tags in iiiFN05
	Step 2. Add LANSA Tags to iiiFN05001 HTML Page
	Step 3. Modify Standard Process Footer
	Step 4. Test the function
	Summary

	WEB008 - Web Components
	Step 1. Create a New Field in the Repository
	Step 2. Create Visual Web Component
	Step 3. Create a Text Web Component
	Step 4. Banner Web Component
	Step 5. Use Hidden Fields in Function
	Step 6. Create a Web Link Component
	Summary

	WEB009 - Web Page Substitution (Optional - Advanced)
	Step 1. Create a New Function
	Step 2. Create a New Web Component
	Step 3. Copy the HTML Code For Page Component iiiFN08C
	Step 4. Test the Function
	Step 5. Add Fields to the iiiFN08 Function
	Optional Step 6. Modifying iiiFN06
	Summary

	WEB010 - Web Skeletons (iSeries)
	Step 1. Copy Default Web Skeleton
	Step 2. Edit the Web Skeleton
	Step 3. Execute Your Function
	Step 4. Recompile Your Function
	Step 5. Execute Your Functions
	Summary

	WEB011 - Using DEFAULT_HIDDEN
	Step 1. Create Login Function
	Step 2. Edit Standard Header for iiiPROC03
	Step 3. Test your Functions
	Step 4. Create a Process Level _HIDDEN Page
	Step 5. Test your Functions
	Summary

	WEB012 - Dynamic Components
	Step 1. Create a New Page Component
	Step 2. Modify iiiPROC03_STDHEADER
	Step 3. Test Your Function
	Summary

	WEB013 - JavaScript and Browse Lists
	Step 1. Create Fields to be used as Function Parameters
	Step 2. Create iiiFN11 Employee List
	Step 3. Edit Process Level _SCRIPT
	Step 4. Create a Link Component
	Step 5. Modify Function iiiFN07
	Step 6. Test Changes
	Step 7. Include New Component Link into Employee Browse List
	Step 8. Build Function iiiFN12 Employee Details
	Step 9. Test Your New Functions
	Step 10. Execute function iiiFN12 from a Command Line (Optional)
	Step 11. Create Page Component for Function iiiFN12 (Optional)
	Step 12. Test Changes (Optional)
	Summary

	WEB014 - Browse Lists
	Step 1. Create Page Component for Function iiiFN11
	Step 2. Test Changes
	Step 3. Create Graphic Variable for Browse List
	Step 4. Test Changes
	Step 5. Customize Browse List
	Step 6. Test Changes
	Step 7. Add Table Tags Around Browse List
	Step 8. Test Changes
	Step 9. Add Column Headings To Browse List
	Step 10. Test Your Functions
	Summary

	WEB015 - Data Apportionment
	Step 1. Create iiiFN13 � Contact Us
	Step 2. Create a New Page Component
	Step 3. Compile and Test Your Function iiiFN13
	Step 4. Using JavaScript Alerts (Optional)
	Summary

	WEB016 - Customizing Personnel Application (Optional)
	Step 1. Design Your Layout
	Step 2. Test
	Summary

	Personnel Demonstration System
	Personnel System Demonstration Files
	Sample Data in the Personnel Files

	Appendix A. Header Styles
	Static Header
	Dynamic Header
	Scrolling Header
	Non-Scrolling Header
	Frameset Definition
	Limitations of non-scrolling headers
	Combination Of Scrolling And Non Scrolling Header Styles
	Override Header Style
	Adopted Header Style

	Appendix B. LANSA for the Web XHTML
	Introduction to XHTML 1.0
	What is XHTML 1.0?
	Why use XHTML 1.0?
	Compatibility with HTML

	Converting HTML to XHTML 1.0
	XHTML Syntax Rules
	XML Declaration

	XHTML Document Type Definition (DTD)
	Document Type Definition (DTD)
	How to Avoid the Insertion of the DOCTYPE Declaration

	Serving XHTML Pages as Pure XML Pages

