
Web	Functions
Introduction	to	LANSA	Web	Functions
Developing	Applications	with	LANSA	Web	Functions
Executing	LANSA	Web	Function	Applications
WEBEVENT	Functions
LANSA	Generated	HTML	Pages
Default	Process	Pages
RDML	Tags
Graphic	Variables
Web	Components
Web	Function	Editor
Web	Development	Tips	&	Techniques
Web	Function	&	WEBEVENT	Tutorials
Appendix	A.	Header	Styles
Appendix	B.	LANSA	for	the	Web	XHTML

	

Edition	Date	November	8,	2013
©	LANSA

its:LANSA086.CHM::/LANSA/ed0200.htm
its:LANSA086.CHM::/LANSA/ed0300.htm
its:LANSA086.CHM::/LANSA/gs0i000.htm
its:LANSA086.CHM::/LANSA/ed0400.htm
its:LANSA086.CHM::/LANSA/ed0500.htm
its:LANSA086.CHM::/LANSA/ed0600.htm
its:LANSA086.CHM::/LANSA/ed0700.htm
its:LANSA086.CHM::/LANSA/ed0800.htm
its:LANSA086.CHM::/LANSA/ed0900.htm
its:LANSA086.CHM::/LANSA/ed1000.htm
its:LANSA086.CHM::/LANSA/ed1200.htm
its:LANSA086.CHM::/LANSA/ed1300.htm
its:LANSA086.CHM::/LANSA/edg600.htm
its:LANSA086.CHM::/LANSA/edi800.htm

1.	Introduction	to	LANSA	Web	Functions
As	a	LANSA	developer,	you	have	a	choice	of	using	Web	Applications	Modules
(WAMs)	or	LANSA	Web	Functions.
Web	functions	were	created	as	an	extension	to	the	original	LANSA	functions
that	are	part	of	the	core	the	LANSA	development	environment.	Web	functions
allow	you	to	deploy	Web	applications	using	HTML.	For	an	introduction	to
LANSA	Web	Functions,	review	the	following:
1.1	What	are	LANSA	Web	Functions?
1.2	Major	Features	of	LANSA	Web	Functions
1.3	LANSA	Web	Function	Architecture
1.4	What	is	the	Web	Functions	Wizard?
1.5	Programming	Language	Skills
1.6	How	Do	You	Develop	Applications	with	LANSA	Web	Functions?
1.7	LANSA	Web	Function	Transaction	Server
For	an	outline	of	the	implications	of	using	Web	Functions	or	WAMs,	refer	to	1.8
WEBEVENTs	or	WAMs?	.

Note:	Since	Version	9.1,	LANSA	Web	Functions	generate	XHTML
meeting	the	1.0	standards.	The	XHTML	1.0	standard	and	HTML	4.0
standards	are	almost	identical.	LANSA	Web	Functions	generate
HTML	meeting	the	4.0	standards.	In	this	guide,	the	term	HTML	will
be	used	described	to	generated	HTML/XHTML.	For	details	about
XHTML,	refer	to	LANSA	for	the	Web	XHTML.

its:LANSA086.CHM::/LANSA/EDI800.htm

1.1	What	are	LANSA	Web	Functions?
A	LANSA	Web	Function	is	simply	a	LANSA	function	that	has	been	Web-
enabled	to	allow	access	over	the	Internet.	Web	functions	are	procedural	LANSA
functions.	They	are	part	of	a	LANSA	process.	A	Web-enabled	function	can	be
executed	using	a	browser	or	using	a	5250	terminal.	Specialized	WEBEVENT
Functions	are	also	procedural	functions,	but	have	been	designed	primarily	for
Internet	access	only.
By	using	LANSA	Web	Functions,	you	can	build	Web	applications	quickly	and
easily.	Web	Functions	integrate	seamlessly	with	the	LANSA	Application
Development	Environment	(either	Visual	LANSA	or	LANSA	for	iSeries).	You
can	build	graphical	HTML	applications	using	the	same	Repository	and	RDML
skill	set	used	to	build	your	iSeries	and	Windows	applications.	In	fact,	a	LANSA
program	can	be	deployed	to	the	iSeries,	Windows	or	the	Web	using	a	single
RDML	program	definition.
LANSA	Web	Functions	allow	you	to	build	dynamic	data	retrieval	applications
for	the	Web.	They	also	allow	you	to	deploy	the	applications	across	a	number	of
combinations	of	platforms	including	the	iSeries,	Windows,	UNIX	and	Linux.
Some	of	these	platforms	can	be	used	as	the	Application/Data	Server	and/or	the
Web	Server,	which	allows	you	to	deploy	your	applications	in	a	Multi-Tiered
architecture.
LANSA	Web	Functions	shield	you	from	the	technologies	you	have	to	learn	to
deploy	Web-enabled	applications.	You	do	not	need	to	learn	code-intensive	CGI
or	Java	Servlets	to	build	dynamic	Web	applications.	You	simply	use	LANSA's
repository-based	4GL	environment	to	build	your	application	definition.	LANSA
allows	the	developer	to	work	at	the	4GL	level.	LANSA	will	automatically
generate	the	HTML	pages	for	you.	LANSA	Web	Functions	hide	much	of	the
complexity	from	the	developer.
The	LANSA	Web	Function	architecture	includes	a	Transaction	Server	that	can
provide	your	user	sessions	with	a	persistent	connection	between	their	browser
and	your	Data	Server.	Persistent	connections	are	not	available	in	the	HyperText
Transfer	Protocol	(HTTP),	the	protocol	used	in	serving	the	Web.
The	huge	growth	and	demand	for	Internet	access	to	businesses	has	prompted
LANSA	to	extend	its	offering	beyond	the	traditional	application	development
environment.	LANSA	offers	a	set	of	application	specific	frameworks	to	help
companies	deploy	their	e-business	solutions	at	an	even	more	astounding	rate.
Along	with	LANSA's	powerful	application	development	environment,	Web

developers	will	now	benefit	from	Commerce	Edition	and	the	Web	Functions
Wizard	to	help	accelerate	Web	application	development.

1.2	Major	Features	of	LANSA	Web	Functions
Some	of	the	major	features	of	LANSA	Web	functions	include:

Programmable	templates	to	create	LANSA	applications	for	the	Web.
Seamless	integration	of	CGI.
Support	for	Java	Servlets	and	IIS	Plug-in	(using	ISAPI	technology).
Automatic	generation	of	frame-based	applications.
Automatic	generation	of	graphical	HTML	pages.
Support	for	multiple	clients,	including	Network	Stations.
Support	of	Multi-Tiered	deployment	architecture.
Detailed	knowledge	of	CGI,	ISAPI	or	Java	Servlets	is	not	required.
Transaction	Server	incorporated.

Note:	Since	Version	9.1,	LANSA	Web	Functions	generate	XHTML
meeting	the	1.0	standards.	The	XHTML	1.0	standard	and	HTML	4.0
standards	are	almost	identical.	LANSA	generates	HTML	meeting	the
4.0	standards.	In	this	guide,	the	term	HTML	will	be	used	to	describe
the	generated	HTML/XHTML.

	

1.3	LANSA	Web	Function	Architecture

A	LANSA	Web	Function	Application	uses	three	basic	software	components:
LANSA	Development	Environment	(resides	on	the	Application/Data	Server)
LANSA	for	the	Web	(resides	on	the	Application/Data	Server)
Web	Server	(can	reside	on	the	same	machine	as	the	Application/Data	Server,
or	can	be	a	separate	machine	for	multi-tier	architecture).

The	LANSA	development	environment	has	been	used	to	build	mission	critical
transaction	based	applications	by	thousands	of	companies	worldwide.	The
LANSA	Repository	and	4GL	technologies	are	proven	technologies.	They	are
reliable	and	productive.	The	LANSA	Repository	secures	your	data	and
maintains	its	integrity	by	enforcing	centralized	business	rules.	LANSA's	4GL
(RDML)	allows	you	to	build	applications	quickly.	Maintenance	of	LANSA
applications	is	easy	since	working	with	a	4GL	significantly	reduces
maintenance	effort.
LANSA	Web	Functions	are	simply	an	extension	of	the	LANSA	development
environment.	LANSA's	Web	solution	allows	you	to	use	your	existing
development	skills.	You	still	work	with	LANSA's	Repository	and	4GL	(RDML)
to	develop	and	deploy	your	applications	on	the	Internet.	When	compiling	your
RDML	programs,	you	can	simply	indicate	that	the	application	will	be	enabled
for	the	Web.	LANSA's	architecture	allows	you	to	Web	enable	existing	LANSA
applications	by	simply	recompiling.	LANSA	protects	your	investment	in	your

application	systems.	You	can	also	develop	new	applications	using	WEBEVENT
technology	that	are	specific	to	the	Web	environment.
To	complete	the	solution,	you	simply	require	TCP/IP	and	the	Web	serving
software	which	provides	the	connection	to	the	network
(Internet/Intranet/Extranet).	The	Web	Server	and	Application/Data	Server	can
be	located	on	the	same	machine	(using	an	iSeries)	or	you	can	use	a	multi-tier
architecture	where	different	machines	are	used	for	the	Web	Server	and	the
Application/Data	Server.	For	example,	you	could	use	a	Linux	or	Windows	Web
Server	with	an	iSeries	Application/Data	Server.

1.4	What	is	the	Web	Functions	Wizard?
The	Web	Functions	Wizard	allows	you	to	quickly	and	easily	customize	the
presentation	of	your	LANSA	Web	Function	Applications.	The	Wizard	is	not
used	to	create	your	LANSA	functions.	It	is	used	to	alter	their	appearance	using
Web-based	functions	executed	from	your	browser.	The	Wizard	removes	the
need	to	manually	code	HTML	and	JavaScript.	It	simplifies	the	implementation
of	graphic	variables	and	Web	components.	You	can	change	the	look-and-feel	of
your	applications	without	having	to	recompile	any	of	the	functions	in	your
application.
The	Web	Functions	Wizard	allows	the	RDML	programmer	to	concentrate	on	the
functionality	of	the	application,	without	having	to	worry	about	the	presentation
attributes.	The	presentation	can	be	quickly	assembled	using	simple	menu
choices	and	presentation	options.	The	Wizard	gives	you	the	flexibility	of
deciding	which	components	to	include	or	exclude	from	the	presentation.
The	Web	Functions	Wizard	removes	the	need	for	in-depth	knowledge	of	HTML
or	JavaScript.	The	Wizard	allows	you	to	convert	the	default	look-and-feel	of	a
LANSA	function	into	a	contemporary	Web	look-and-feel.	The	pre-shipped
images,	color	schemes	and	presentation	schema	reduce	the	need	for	specialized
graphical	skills	as	part	of	the	application	development	and	implementation.
For	example,	the	screen	shown	is	the	default	look-and-feel	of	applications
generated	by	LANSA	Web	Functions.

Using	the	Web	Functions	Wizard,	you	can	convert	this	5250	look-and-feel	to	a
modern,	state-of-the	art	look-and-feel	as	shown.	There	is	no	manual
modification	to	the	HTML	and	no	recompilation	of	the	function.

For	more	details,	refer	to	the	Web	Functions	Wizard	Guide.

1.5	Programming	Language	Skills
By	using	LANSA	Web	Functions,	developers	apply	their	existing	Repository
and	RDML	skills	to	build	Web-based	applications.	Although	LANSA	Web
Functions	can	use	CGI,	Java	Servlets	or	ISAPI	technology,	there	is	no
requirement	for	a	developer	to	have	any	knowledge	of	either	of	these	interfaces.
There	are	NO	new	RDML	commands	introduced	by	LANSA	Web	Functions.
The	only	programming	skill	required	is	RDML.
The	HTML	generation	occurs	when	the	LANSA	process/function	is	compiled.
The	generated	HTML	is	then	stored	as	LANSA	internal	tables	and	not	as	static
documents,	as	in	conventional	HTML	programming.
The	browser-based	Web	Functions	Wizard	allows	developers	to	quickly	and
easily	modify	the	user	navigation,	presentation	and	layout	of	LANSA	functions
without	editing	HTML	or	JavaScript.
You	do	not	need	to	modify	any	of	the	LANSA	generated	HTML.	However,	if
you	want	to	modify	the	presentation	of	the	HTML	page,	knowledge	of	HTML	is
essential.	You	will	also	need	to	understand	the	LANSA	tags	used	in	the	HTML.
LANSA	Web	Functions	use	a	number	of	JavaScript	functions.	If	you	need	to	use
additional	JavaScript	functions	in	your	applications,	you	will	require	a	good
knowledge	of	JavaScript.	Note:	If	JavaScript	support	is	disabled	in	your
browser,	you	will	not	be	able	to	execute	any	of	these	JavaScript	functions.

1.6	How	Do	You	Develop	Applications	with	LANSA	Web
Functions?

LANSA	Web	Function	Applications	are	created	using	the	same	LANSA
development	environment	used	to	create	your	iSeries	or	Windows	applications.
The	development	process	is	as	follows:

As	with	any	LANSA	application,	the	developer	begins	by	populating	the
LANSA	Repository.	Fields	and	files	are	defined	to	create	the	application
database.
Next,	the	developer	executes	LANSA	templates	or	manually	codes	RDML	to
create	a	set	of	functions.	These	programs	might	include	a	complex	set	of
transactions,	which	inquire	or	update	a	set	of	database	files.
When	the	RDML	function	is	compiled,	an	RPG	or	C/C++	program
(depending	upon	the	Application/Data	Server	being	used)	is	created	along
with	HTML	forms,	which	are	stored	in	internal	LANSA	files.
Using	the	browser-based	Web	Functions	Wizard,	the	user	navigation,
presentation	and	layout	of	the	functions	can	be	altered.
Optionally,	the	LANSA	HTML	can	be	manually	edited	to	enhance	the
graphical	presentation.	LANSA	Web	extensions	such	as	Web	Components
may	also	be	defined	and	used	to	enhance	the	HTML	presentation.
The	developer's	work	is	now	complete.

At	this	point,	the	developer	can	have	both	a	host	version	of	the	application	and
an	HTML	version	of	the	application	from	the	same	set	of	code.	When	a	browser
requests	a	LANSA	Web	Function	Application,	the	following	occurs:

A	user	links	to	the	Web	Server	and	requests	a	LANSA	Web	Function
Application	page.
LANSA	for	the	Web	is	called	and	manages	the	"application	connection".
The	RDML	function	or	program	is	executed	on	the	Application/Data	Server.
The	RDML	function	accesses	the	database.
LANSA	for	the	Web	uses	the	stored	forms	to	dynamically	generate	the
HTML	with	the	data	required	by	the	RDML	function,	and	presents	the
information	to	the	user.

1.7	LANSA	Web	Function	Transaction	Server

When	executing	applications	over	the	Internet,	the	HyperText	Transfer	Protocol
(HTTP)	is	used.	HTTP	does	not	support	a	persistent	connection	state.	There	is
no	concept	of	a	user	session.	Each	request	is	a	new	request,	which	is	unrelated
to	any	previous	request.	To	overcome	this	limitation,	LANSA	for	the	Web
provides	a	Transaction	Server	for	Web	Functions.
Note:	The	state	management	feature	of	the	transaction	server	is	only	required	if
you	have	Web-enabled	existing	procedural	applications	which	require	session	or
state	management.	If	you	are	developing	applications	specifically	for	the	Web
using	WEBEVENT	functions,	this	technology	is	not	required.
The	LANSA	for	the	Web	Transaction	Server	is	used	to	maintain	a	persistent
connection	between	the	client	devices	and	the	Application/Data	Server.	The
Transaction	Server	uniquely	identifies	each	user	and	allocates	a	unique	LANSA
job	for	each	user.	Subsequent	requests	from	users,	which	are	known	to	the
Transaction	Server,	are	routed	to	the	appropriate	LANSA	job	which	is	active.
The	Transaction	Server	maintains	a	connection	state	for	each	user	and	caters	for
unsynchronized	page	requests.	An	unsynchronized	page	request	can	happen	as	a
result	of	the	Back	button	supported	in	the	browser	paradigm.	For	example,	the
user	can	page	back	to	previous	functions	and	then	request	a	page.	This
unsynchronized	page	request	can	be	disallowed	since	the	request	is	not	the
logical	sequence	expected	by	the	active	application	on	the	Server.	If	an
unsynchronized	page	request	has	been	made,	the	user	will	be	informed	that	the
request	is	not	valid	and	the	current	display	page	will	be	refreshed	(shown)	to	the

user.
LANSA	allows	you	to	write	specialized	Web	Functions	so	that	your	typical
Internet	user	can	still	use	the	Back	button	to	navigate	in	your	applications.	This
style	of	application	is	achieved	by	using	the	*WEBEVENT	option	in	your
function.	For	more	details,	refer	to	WEBEVENT	Functions.
The	Transaction	Server	shields	the	developer	from	the	complexities	of
maintaining	connection	states	and	allows	you	to	concentrate	on	application
design	and	development.	The	Transaction	Server	also	includes	a	Transaction
Monitor,	which	is	used	to	monitor	the	activities	of	the	LANSA	jobs	in	process.
LANSA	for	the	Web	allows	you	to	specify	a	system	wide	timeout	period	or	to
have	customized	timeout	periods	for	each	user	who	is	allowed	to	access	your
application.
The	Transaction	Server	also	allows	you	to	limit	the	number	of	concurrent	users
on	the	Server.	This	feature	allows	you	to	restrict	the	number	of	active	jobs
running	on	your	Server,	thus	limiting	the	amount	of	resources	used	by	your	Web
applications.

WEB001	-	Types	of	LANSA	Web	Functions

	

its:lansa086.CHM::/LANSA/ED0400.htm
its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

1.8	WEBEVENTs	or	WAMs?
WEBEVENT	functions	and	WAMs	can	be	mixed	in	a	single	application.
If	you	already	have	applications	developed	using	WEBEVENTs,	those	existing
applications	will	continue	to	serve	the	purpose	for	which	they	were	designed
and	you	will	be	able	to	modify	and	enhance	them	into	the	future.	WEBEVENT
technology	has	been	significantly	extended	with	the	addition	of	support	for	new
data	types,	language	syntax	and	constructs	and	the	removal	of	significant
limitations	on	field	and	list	sizes.
However,	a	point	may	come	in	the	lifecycle	of	your	LANSA	web	applications
when	it	is	appropriate	to	begin	using	WAMs.	You	may	wish	to	exploit	WAMs	in
existing	WEBEVENT	applications	in	these	circumstances:

When	you	have	a	requirement	to	extend	an	existing	web	application	beyond
the	browser	-	perhaps	to	hand-held	devices.	Of	course,	this	is	a	business
requirement,	which	may	necessitate	adopting	WAM	technology.
When	you	are	extending	an	existing	web	application	with	a	significant
number	of	discrete	"chunks"	of	new	functionality.	You	might	develop	these
new	parts	using	WAMs.
When	making	major	revisions	driven	by	business	requirements	that	will
substantially	impact	large	parts	of	your	application.	Depending	on	the	extent
of	the	impact,	you	might	decide	that	this	is	an	opportune	time	to	"future-
proof"	your	web	applications	with	WAMs.

Some	of	the	implementation	details	of	WEBEVENT	and	WAM	applications	are
different	and	there	are	certain	considerations	and	certain	techniques	you	need	to
adopt.	Refer	to	WAM	and	WEBEVENT	Interoperability	Techniques	for	details.
In	general,	you	should	use	WAMs	for	new	web	applications.

Why	did	LANSA	develop	WAM	technology?

Two	key	points	stand	out:

1.		Web	technologies	are	evolving	very	quickly.	HTML	is	no	longer	the	only
way	to	deliver	web	content.	It	is	imperative	that	web	application	development
in	LANSA	is	more	readily	adaptable	to	new	technologies	as	they	emerge.

2.		It	is	clear	that	application	development	is	heading	towards	a	component-
based	future	and	LANSA	offers	support	for	component-based	development.

its:lansa087.chm::/lansa/WAMEngb1_0015.htm

WEBEVENT	are	functions	and	their	architecture	is	not	best-suited	to	a
component-based	world.	For	this	reason,	it	is	imperative	that	LANSA	allows	you
to	take	full	advantage	of	component-based	techniques.

2.	Developing	Applications	with	LANSA	Web	Functions
If	you	are	developing	a	LANSA	Web	Function	Application	for	the	very	first
time,	you	should	review	the	following:
2.1	Before	You	Begin	Checklist
2.2	Web	Enabling	a	LANSA	Process
2.3	Types	of	Web	Functions
2.4	Example	of	a	Procedural	Function
2.5	Example	of	a	WEBEVENT	Function
2.6	Shipped	LANSA	Web	Function	Templates
2.7	Compiling	Functions
2.8	Using	the	e-Business	Framework	Wizard
For	an	introduction	to	executing	LANSA	Web	Function	Applications,	you
should	review	the	following:
2.9	Calling	LANSA	Web	Processes	and	Functions
2.10	Executing	Applications:	Process	Menu
2.11	Executing	Applications:	WEBEVENT
For	more	details	about	executing	LANSA	Web	Function	Applications,	refer	to
Executing	LANSA	Web	Function	Applications.

its:lansa086.CHM::/LANSA/GS0I000.HTM

2.1	Before	You	Begin	Checklist
Before	you	begin	your	development	efforts,	you	should	have	a	properly
installed	and	configured	LANSA	for	the	Web	system.	You	will	need	a
properly	configured	Web	Server	and	a	properly	configured	Application/Data
Server.	For	details	about	the	installation	and	configuration	of	LANSA	for	the
Web,	refer	to	the	Installing	LANSA	on	Windows	Guide	and	the	Installing
LANSA	on	iSeries	Guide.

If	you	are	using	LANSA	Web	functions	for	the	very	first	time,	it	is
recommended	that	you	complete	the	Tutorials.

its:lansa086.CHM::/LANSA/ED1300.htm

2.2	Web	Enabling	a	LANSA	Process
A	LANSA	process	is	like	a	menu	as	it	acts	as	the	parent	or	container	for	the
functions	in	your	Web	application.	In	order	to	execute	your	LANSA	functions
using	the	Web,	the	functions	must	be	part	of	a	Web	or	XML	enabled	LANSA
process.
Once	you	have	created	a	LANSA	process,	you	must	then	Web	enable	it.	To	do
this:

a.Select	the	Process	in	the	Repository	tab.
b.Select	the	Definition	tab.

c.Select	Details	in	the	Definition	tab	or	select	the	Details	tab.
d.In	the	Details	tab,	select	(tick)	the	Enable	for	Web	and/or	Enable	for	XML
options.

The	Enable	for	the	Web	option	allows	you	to	generate	HTML.	The	Enable	for

XML	option	allows	you	to	generate	XML.	You	may	use	one	or	both	of	these
options.

Note:	XML	support	for	web	functions	should	only	be	used	for	pre-
existing	XML-enabled	processes.	For	new	development,	please
consider	using	WAMs.

Once	these	options	are	selected,	subsequent	compiles	of	the	functions	in	the
selected	LANSA	process	will	automatically	generate	the	required	HTML	and/or
XML.

The	generated		forms	are	stored	in	the	LANSA	internal	tables.	You	can	edit
these	forms	by	using	the	Web	Function	Editor.
If	you	have	existing	LANSA	processes,	you	can	simply	Web	or	XML	enable
them	and	then	recompile	the	functions	to	generate	the	required	forms.

2.3	Types	of	Web	Functions
With	LANSA	for	the	Web,	you	can	deploy	two	types	of	functions:

Procedural	Functions
WEBEVENT	Functions

Procedural	Functions
LANSA	allows	you	to	Web	enable	your	existing	procedural	LANSA
applications	for	execution	over	the	Web.	LANSA	provides	a	transaction	server
to	maintain	the	state	of	the	functions	as	they	execute.	For	details,	refer	to
LANSA	Web	Function	Transaction	Server.
For	example,	the	Personnel	Demonstration	system	executes	on	5250	terminals
using	an	iSeries	and	executes	under	Windows	on	a	PC.	This	application	was
written	as	a	procedural	function	in	1987.	This	application	was	written	as	a
procedural	function	in	1987.	The	Personnel	Demonstration	system	can	be	Web-
enabled	and	recompiled,	and	then	it	can	be	executed	over	the	Internet.	Refer	to	
2.10	Executing	Applications:	Process	Menu.	and	you	can	try	it	out	for	yourself.
The	Personnel	System	has	been	web	enabled	for	you	and	you	can	try	it	out	for
yourself.	See	Note	following.
When	a	procedural	function	executes	over	the	Web,	the	user	cannot	use	the
browser's	Back	button.	In	order	to	navigate	within	the	application,	the	user	must
use	the	Cancel	button	(which	is	equivalent	to	an	F12=Cancel	request)	which	is
automatically	included	into	the	application	by	LANSA	for	the	Web.	The
application	executes	in	a	procedural	mode	just	like	it	would	using	a	5250
terminal	on	the	iSeries.
All	procedural	functions	that	will	run	on	the	web	should	have	the	EXIT_KEY
enabled.	Having	the	EXIT_KEY	disabled	could	result	in	unpredictable	behavior.
For	example,	a	function	might	never	timeout	or,	in	some	circumstances,	use	an
abnormally	large	amount	of	CPU	time.

WEBEVENT	Functions
LANSA	allows	you	to	code	functions	specifically	for	the	Internet	user	and	the
browser	paradigm.	In	the	browser	paradigm,	a	persistent	connection	is	not
required.	Each	page	is	independent.	You	cannot	dictate	the	navigation	path	of
your	application	to	the	user.	The	Internet	user	has	a	Back	button	in	the	browser
which	allows	them	to	go	back	several	pages	and	resubmit	a	request.
A	function	is	defined	to	be	a	WEBEVENT	function	by	specifying	the	following

its:lansa086.CHM::/LANSA/Ed0280.htm

option	in	the	FUNCTION	command:
FUNCTION	OPTIONS(*WEBEVENT)

With	WEBEVENT	functions,	the	LANSA	function	will	terminate	after	a
DISPLAY	or	REQUEST	command	is	executed.	No	other	logic	will	be	executed
after	the	HTML	page	for	the	function	is	sent.	Using	this	technique,	you	must
code	your	functions	to	properly	process	the	information	when	the	user	decides
to	submit	a	screen	with	data.	The	logic	of	the	RDML	function	must	be	written
specifically	for	WEBEVENT.	You	cannot	simply	add	the	*WEBEVENT
keyword	to	your	functions.
The	majority	of	your	newly	created	Web	applications	will	be	written	as
WEBEVENT	functions.
For	more	details,	refer	to	WEBEVENT	Functions.

WEB001	-	Types	of	LANSA	Web	Functions

Note:	The	LANSA	Personnel	Demonstration	System	was	originally
created	in	1987	to	execute	on	a	System	38.		This	same	application	can
still	be	executed	on	IBM	i	as	well	as	Windows,	WEB	and	Linux
platforms.	The	original	database	and	application	are	virtually
unchanged.		There	have	been	some	extensions	to	the	database	to
demonstrate	RDMLX	concepts.

There	are	two	web	versions	of	the	Personnel	System,	one	uses
WEBEVENT	technology	and	the	other	uses	WAMs.		These	are
included	with	the	IBM	i	demonstration	material	and	can	be	checked
out	to	a	Visual	LANSA	environment	as	required.		These	applications
can	be	used	to	give	you	ideas	of	how	to	create	and	include	the
elements	required	for	both	WEBEVENT	and	WAM	processing.

webevent	(web	enabled	RDML	or	RDMLX	partition):
http://<web	server>/cgi-bin/lansaweb?
procfun+lansadem+ldem+dem

wam	(web	enabled	RDMLX	partition,	only	supported	for	technology
service	LANSA:XHTML):
http://<web	server>/CGI-BIN/lansaweb?
webapp=LWAMDEM+webrtn=ldemhome+ml=LANSA:XHTML+part=DEX

its:lansa086.CHM::/LANSA/ED0400.htm
its:lansa086.CHM::/LANSA/WEB01_TUTORIAL.htm

2.4	Example	of	a	Procedural	Function
A	simple	header	/	detail	function	is	a	good	example	of	a	procedural	function
which	requires	the	transaction	server.	If	you	execute	the	FRENQ02	template,
you	can	create	a	procedural	function	which	requests	search	information	and	then
displays	the	detailed	results.
The	overall	structure	of	the	RDML	in	the	function	might	appears	as	follows:
FUNCTION								OPTIONS(*DIRECT)
GROUP_BY								NAME(#HEADER)...
DEF_LIST								LIST(#LIST)...
BEGIN_LOOP
REQUEST									FIELDS(#DEPTMENT)...
FETCH														FIELDS(#HEADER)...
SELECT													FIELDS(#LIST)...
ADD_ENTRY							TO_LIST(#LIST)	
ENDSELECT
DISPLAY												FIELDS(#HEADER)...	BROWSELIST(#LIST)
...
END_LOOP

When	the	function	encounters	the	REQUEST	statement,	a	page	is	sent	to	client
browser	and	the	function	must	wait	for	a	response	from	the	user.	The	function	is
still	active	and	the	transaction	server	maintains	the	state	of	the	function.	When
the	user	responds,	the	function	continues	until	the	DISPLAY	statement	when	a
page	of	search	results	is	sent	back	to	the	client	browser.	The	function	is	still
active	and	the	transaction	server	continues	to	maintain	the	state.
If	the	browser's	Back	button	is	used	to	return	to	the	REQUEST	page,	the
transaction	server	will	detect	the	sequence	error	when	the	REQUEST	page	is
submitted	to	the	Web	Server	again.	The	transaction	server	knows	that	the
LANSA	function	is	expecting	input	from	the	DISPLAY	statement	and	not	the
REQUEST	statement.	The	DISPLAY	page	will	be	sent	to	the	client	browser
again	with	an	error	message.
With	Web	applications,	you	may	wish	to	allow	the	user	to	go	back	and	change
the	requested	information	using	the	browser's	Back	button.	WEBEVENT
functions	are	designed	specifically	for	this	type	of	functionality.

WEB001	-	Types	of	LANSA	Web	Functions

its:lansa086.CHM::/LANSA/WEB01_TUTORIAL.htm

2.5	Example	of	a	WEBEVENT	Function
The	simple	header	/	detail	function	can	also	be	written	to	execute	as	a	Web
event	function.	If	you	execute	the	FRWEBENQ01	template,	you	can	create	a
WEBEVENT	function	which	request	search	information	and	then	display	the
detailed	results.	The	function	created	by	FRWEBENQ01	is	a	re-entrant
WEBEVENT	function.	For	more	details	about	re-entrant	functions,	refer	to
Handling	Re-entrant	Functions.
The	overall	structure	of	the	RDML	in	the	function	will	appear	very	different	to
the	procedural	example.	The	function	will	contain	a	REQUEST	for	the	search
data	and	a	DISPLAY	of	the	search	results.	However,	the	location	of	the
processing	logic	is	very	different	in	the	WEBEVENT	function.	WEBEVENT
functions	terminate	immediately	after	processing	a	REQUEST	or	DISPLAY
statement.
When	the	WEBEVENT	function	encounters	the	REQUEST	statement,	a	page	is
sent	to	the	client's	browser	and	the	function	terminates.	There	is	no	need	to
maintain	the	state,	as	the	LANSA	function	is	no	longer	active.
When	the	user	responds,	the	function	must	execute	again	because	it	has
terminated.	The	function	receives	the	information	from	the	REQUEST	and	will
select	the	required	data	to	execute	the	DISPLAY	statement.	Again,	once	the
DISPLAY	is	executed,	the	function	terminates.
If	the	browser's	Back	button	is	used	to	return	to	the	REQUEST	page,	there	is	no
problem.	When	the	user	submits	the	REQUEST	again,	the	function	simply
executes	again.	It	receives	the	information	from	the	REQUEST	and	will	select
the	required	data	to	execute	the	DISPLAY	statement	as	before.
LANSA	automatically	handles	the	exchange	of	the	data.	The	developer	must
properly	code	the	RDML	in	the	function	knowing	that	a	function	terminates
once	a	REQUEST	or	DISPLAY	statement	is	encountered.	The	function	is
written	with	the	processing	logic	always	preceding	the	screen	display.
For	more	detailed	examples,	refer	to	WEBEVENT	Functions.

WEB001	-	Types	of	LANSA	Web	Functions

its:lansa086.CHM::/LANSA/ED0440.htm
its:lansa086.CHM::/LANSA/ED0400.htm
its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

2.6	Shipped	LANSA	Web	Function	Templates
LANSA	for	the	Web	ships	sample	templates	for	generating	WEBEVENT
functions:
FRWEBADD01	Data	entry	for	*WEBEVENT.
FRWEBENQ01	Page	at	a	time	with	detail	display.

Template	FRWEBADD01	creates	a	simple	data	entry	WEBEVENT	function.
Template	FRWEBENQ01	creates	a	WEBEVENT	function	that	has	a	generic
search	which	displays	the	results	of	the	search	in	a	page	at	a	time	browse	list.
The	user	can	select	any	of	the	browse	list	entries	for	a	more	detailed	display	of
information.

2.7	Compiling	Functions
If	a	LANSA	process	has	the	appropriate	flags	set,	LANSA	will	generate	the
HTML	and/or	XML	pages	for	the	functions	when	the	functions	are	compiled.
(Refer	to	2.2	Web	Enabling	a	LANSA	Process.)	The	compile	will	also	create	the
RPG	or	C/C++	program	objects	which	provide	the	application	programming
logic	on	the	Application/Data	Server.

If	for	some	reason,	you	do	not	want	the	HTML	or	XML	pages	generated,	you
can	deselect	the	Generate	options	before	compiling	the	function.	Note	that	if
you	do	this,	when	a	LANSA	Process	is	compiled,	there	is	no	generation	of
HTML	or	XML.
The	LANSA	Web	function	pages	are	stored	in	LANSA	internal	files.	This
allows	for	easier	backup/restore	and	maintenance	procedures.	These	pages
cannot	be	accessed	without	going	through	LANSA,	thus	preventing
unauthorized	editing.	You	can	access	these	pages	by	using	the	Web	Function
Editor.
When	compiling	WEBEVENT	functions,	warning	messages	may	appear	as	the
function	logic	is	checked	to	ensure	that	it	will	execute	properly	as	a
WEBEVENT	function.	For	more	details,	refer	to	Considerations	for
WEBEVENT	Functions.

WEB001	-	Types	of	LANSA	Web	Functions

its:lansa086.CHM::/LANSA/ED0450.htm
its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

2.8	Using	the	e-Business	Framework	Wizard
Once	you	have	created	your	LANSA	Web	processes	and	functions,	you	can	use
the	e-Business	Framework	Wizard	to	customize	the	user	navigation,
presentation	and	layout	of	your	functions.	The	e-Business	Framework	Wizard
allows	you	to	use	browser-based	functions	to	customize	the	presentation	of	your
HTML	pages	used	in	your	LANSA	Web	function	applications.	The	e-Business
Framework	Wizard	is	primarily	used	with	WEBEVENT	applications.

The	e-Business	Framework	Wizard	allows	you	to:
Change	the	value	of	LANSA	graphic	variables.
Change	the	presentation	of	your	LANSA	browse	lists.
Change	the	layout	of	your	application.
Customize	Menu	components.
Adopt	layouts.

The	e-Business	Framework	Wizard	simplifies	the	development	of	your	Web
function	applications.	It	uses	sentence	like-descriptions	for	the	variables	and
hides	their	names	from	the	developers.	Components	are	built	using	questions
and	answers	instead	of	manually	coding	HTML	or	JavaScript.

For	more	details	about	the	e-Business	Framework	Wizard,	refer	to	the
Introduction	to	the	e-Business	Framework	Wizard	in	the	Web
Functions	Wizard	Guide.		

its:lansa089.chm::/lansa/ww2_001.htm

2.9	Calling	LANSA	Web	Processes	and	Functions

For	complete	details	about	calling	LANSA	processes	and	functions,
refer	to	Executing	LANSA	Web	Function	Applications

Once	you	have	compiled	the	functions	in	your	Web-enabled	process,	you	are
ready	to	call	or	execute	the	application	over	the	Web.	If	you	are	using	a
procedural	function,	you	can	call	the	LANSA	process	or	you	can	call	the
LANSA	function	directly.	If	you	are	using	a	WEBEVENT	function,	you	must
call	the	LANSA	function	directly.
LANSA	for	the	Web	uses	URLs	to	call	your	LANSA	Web	function	applications.
The	URL	to	call	your	LANSA	applications	involves	invoking	the	LANSAWEB
or	LANSAXML	program.	The	URL	syntax	to	call	your	Web-enabled	HTML
application	is:

http://<web	server>:port/CGI-BIN/LANSAWEB?<parameters>
and	for	XML	it	is:

http://<web	server>:port/CGI-BIN/LANSAXML?<parameters>
	

Calling	a	LANSA	Process
The	parameters	to	call	to	a	LANSA	process	are:

PROCESS+<process	name>+<partition>+<language>
where,	partition	and	language	are	optional.
For	example,	if	you	want	to	create	a	link	to	the	PSLSYS	process	in	the	DEM
partition,	your	URL	might	be	entered	as:

http://www.lansa.com/CGI-BIN/LANSAWEB?
PROCESS+PSLSYS+DEM+ENG

Calling	a	LANSA	Function	Directly
The	parameters	to	call	a	LANSA	function	are:

PROCFUN+<process	name>+<function	name>+[<partition>]+
[<language>]
For	example,	if	you	want	to	execute	the	ENROL	function	in	the	PSLSYS
process	in	the	DEM	partition,	your	URL	might	be	entered	as:

http://www.lansa.com/CGI-BIN/LANSAWEB?
PROCFUN+PSLSYS+ENROL+DEM+ENG

its:lansa086.CHM::/LANSA/GS0I000.HTM

WEBEVENT	functions	must	always	be	called	directly.

WEB001	-	Types	of	LANSA	Web	Functions

its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

2.10	Executing	Applications:	Process	Menu
When	executing	a	LANSA	process	using	LANSA	for	the	Web,	the	application
has	a	frameset	look	and	feel.	The	frameset	style	divides	the	working	area	of	the
browser	into	two	areas	-	the	Menu	area	and	the	Client	(body)	area.

You	can	choose	to	have	the	frameset	style	persistent	by	selecting	the	"Always
show	frames	for	CUA/SAA	style	processes"	option	in	the	LANSA	for	the	Web
Administrator.
Once	a	LANSA	process	has	been	called,	the	user	can	execute	any	of	the
functions	listed	in	the	menu.	These	functions	cannot	be	WEBEVENT	functions.
These	functions	should	only	be	procedural	functions.	Procedural	functions	have
their	state	managed	by	the	LANSA	Web	Transaction	Server	and	the	user	cannot
use	the	browser's	Back	button.
If	the	frameset	style	is	not	persistent	selecting	a	menu	item	which	calls	a
LANSA	function	will	refresh	the	display	of	your	browser.	The	menu	frameset
will	not	be	displayed	while	the	browser	is	displaying	a	LANSA	function.

If	you	were	to	call	the	procedural	function	directly,	it	would	appear	exactly	as
shown	when	called	from	a	process	menu.
LANSA	Web	functions	have	been	designed	to	allow	all	the	generated	HTML
pages	to	have	a	consistent	look	and	feel.	By	default,	all	HTML	pages	generated
will	have	the	same	Menu	Area	background	for	all	LANSA	processes	and	the
same	Client	Area	background	for	all	LANSA	functions.	Each	LANSA	function
will	have	the	same	set	of	images	displayed	in	the	same	positions	in	each	of	their
respective	HTML	pages.	The	same	set	of	images	is	displayed	at	the	top
(standard	header)	and	the	bottom	(standard	footer)	of	the	HTML	pages.
LANSA	Web	functions	have	a	default	set	of	image	settings	to	be	used	with	your
pages.	You	can	override	these	defaults	if	you	wish,	or	you	can	specify	additional
settings	which	will	be	used	by	your	LANSA	Web	functions.
For	details	about	how	to	call	a	LANSA	process,	refer	to	2.9	Calling	LANSA
Web	Processes	and	Functions.

WEB001	-	Types	of	LANSA	Web	Functions

its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

2.11	Executing	Applications:	WEBEVENT
WEBEVENT	functions	must	always	be	called	directly.	They	cannot	be	called
from	a	LANSA	process	menu.
When	executing	a	LANSA	function	directly	using	LANSA	for	the	Web,	the
application	does	not	use	a	frameset.

When	a	user	invokes	a	LANSA	function,	it	will	refresh	the	display	of	your
browser.	Its	presentation	is	based	on	the	layout	of	the	function.
LANSA	Web	functions	have	been	designed	to	allow	all	the	generated	HTML
pages	to	have	a	consistent	look	and	feel.	Each	LANSA	function	will	have	the
same	set	of	images	displayed	in	the	same	positions	in	each	of	their	respective
HTML	pages.	The	same	set	of	images	is	displayed	at	the	top	(standard	header)

and	the	bottom	(standard	footer)	of	the	HTML	pages.	However,	the	default	user
buttons	for	navigation	in	procedural	functions	will	not	be	displayed.	The	user
navigation	is	controlled	by	developer	defined	buttons	or	links	in	the	function.
For	details	about	how	to	call	a	LANSA	function	directly,	refer	to	2.9	Calling
LANSA	Web	Processes	and	Functions.

WEB001	-	Types	of	LANSA	Web	Functions

	
	

its:lansa086.CHM::/LANSA/web01_TUTORIAL.htm

3.	Executing	LANSA	Web	Function	Applications
LANSA	Web	Function	Applications	are	generally	hosted	from	your	corporate
Web	site.	In	order	to	set	up	your	Web	site	and	execute	your	LANSA	Web
Function	Applications,	you	should	review	the	following:
3.1	No	Existing	Web	Site
3.2	Integrating	with	an	Existing	Web	Site
3.3	Before	You	Deploy	Your	Applications
3.4	Uniform	Resource	Locator	(URL)	Syntax
3.5	Calling	a	LANSA	Process
3.6	Calling	a	LANSA	Function	Directly
3.7	Passing	Parameters	to	a	LANSA	Function
3.9	Debugging	using	iSeries	Batch	Debug
3.10	Debugging	using	Visual	LANSA
3.11	Invoking	the	iSeries	Spool	File	Facilities
3.12	Event	Logging
3.13	Enabling	Event	Logging
3.14	Logging	User	Defined	Fields

3.1	No	Existing	Web	Site
If	you	do	not	have	an	existing	Web	site,	you	will	need	to	obtain	a	registered
Internet	domain	name	and	an	Internet	Protocol	(IP)	address	for	your	site.	These
can	be	arranged	with	any	Internet	Service	Provider	(ISP).	Your	ISP	will	be	able
to	advise	you	on	the	best	way	of	attaching	your	Web	Server	on	the	Internet.
Once	you	have	attached	your	Web	Server	on	the	Internet	and	have	set	up	your
Web	site,	you	will	need	to	have	a	home	page	for	your	Web	site.
To	create	your	own	home	page,	you	can	use	a	number	of	Web	tools	such	as
Microsoft	Front	Page.	Your	home	page	can	be	created	using	a	simple	text	editor
to	enter	your	HTML.
Once	you	have	a	home	page	created,	save	the	file	as	INDEX.HTM.	(If	you	have
changed	the	name	of	the	index	page	in	the	Web	Server	configuration,	this	file
should	be	saved	to	the	new	name	instead.	By	default,	the	Web	Server	will	use
the	INDEX.HTM	page.)
Copy	the	INDEX.HTM	file	to	the	home	directory	of	your	Web	Server.
After	you	have	set	up	your	Web	site	and	the	home	page,	you	can	then	deploy
your	Web	enabled	LANSA	applications	on	the	Internet	by	following	the
instructions	in	3.2	Integrating	with	an	Existing	Web	Site.

3.2	Integrating	with	an	Existing	Web	Site
If	you	already	have	an	existing	Web	site,	you	can	quickly	integrate	your
LANSA	applications	into	your	Web	site	by	simply	including	a	link	to	the
LANSA	application	from	your	selected	HTML	page.
The	syntax	of	the	Uniform	Resource	Locator	(URL)	to	link	to	your	LANSA
applications	is	described	in	the	3.4	Uniform	Resource	Locator	(URL)	Syntax
section	of	this	guide.	There	is	no	limit	to	the	number	of	links	you	can	create.
You	can	link	to	a	LANSA	process	or	directly	to	a	LANSA	function.
To	use	Multi-Tier	deployment	with	a	Web	Server	other	than	an	iSeries,	you
must	use	LANSA	for	the	Web	Java	Servlet	Support	or	LANSA	for	the	Web	IIS-
Plug-In.
Your	existing	Web	site	does	not	have	to	be	running	on	an	iSeries.	Your	existing
Web	Server	can	be	running	on	any	platform.	The	important	thing	is	that	you
have	a	Data\Application	Server	that	caters	for	your	LANSA	application.	The
URL	is	used	to	link	your	Web-enabled	LANSA	applications	to	your	existing
Web	site.

3.3	Before	You	Deploy	Your	Applications
At	this	stage,	it	is	assumed	that	you	have	installed	and	have	correctly	configured
the	Web	Server.
Once	your	LANSA	processes	and	functions	have	been	compiled	successfully,
you	are	ready	to	test	them.	You	will	need	a	browser	capable	of	supporting
HTML	V3.2	or	later.	The	browser	must	be	capable	of	supporting	the	use	of
frames	as	well	as	JavaScript.
Before	you	test	your	applications,	you	may	want	to	review	the	Web	Server	and
Data/Application	Server	settings	using	the	LANSA	for	the	Web	Administrator.

3.4	Uniform	Resource	Locator	(URL)	Syntax
Uniform	Resource	Locators	provide	a	standard	method	of	identifying	resources
that	are	available	using	Internet	protocols.	LANSA	for	the	Web	uses	URLs	to
launch	your	LANSA	Web	Function	Applications.
It	is	recommended	that	you	create	an	HTML	page	that	contains	the	URLs	of	all
your	LANSA	applications.	This	page	can	also	be	used	as	the	Home	Page	of	your
Web	site.
The	URL	to	call	your	LANSA	applications	involve	invoking	the	LANSAWEB
or	LANSAXML	program,	with	appropriate	parameters.	By	default,	the
LANSAWEB/LANSAXML	program	resides	in	the	CGI-BIN	library	defined	in
your	Web	Server.
The	URL	syntax	to	call	your	Web-enabled		HTML	application	is:

http://<web_server>:<port>/CGI-BIN/LANSAWEB?<parameters>
and	for	XML	it	is:

http://<web_server>:<port>/CGI-BIN/LANSAXML?<parameters>
where:
<web_server>	is	the	name	of	your	Web	Server,	as	registered	to	a	Domain
Name	Server(DNS);
<port>	is	the	port	identifier	defined	for	your	LANSA	system.	This	parameter	is
optional	if	your	LANSA	system	is	assigned	the	default	port	80;
<parameters>	is	a	list	of	parameters	passed	to	the	LANSAWEB/LANSAXML
program.	(Refer	to	3.5	Calling	a	LANSA	Process,	3.6	Calling	a	LANSA
Function	Directly	and	3.7	Passing	Parameters	to	a	LANSA	Function.)
Note:	the	URL	sub-path	"/CGI-BIN/LANSAWEB?"	and	"/CGI-
BIN/LANSAXML?"	MUST	be	in	upper	case	if	you	are	using	Java	Servlet.

3.5	Calling	a	LANSA	Process
You	can	link	a	call	to	a	LANSA	process	using	the	following	parameters	in	your
call	to	the	LANSAWEB/LANSAXML	program.

PROCESS+<process_name>+<partition>+<language>
where:
PROCESS	(can	be	in	lower-case)	is	the	keyword	instruction	to	LANSA	for	the
Web	to	execute	a	LANSA	process;
<process_name>	is	the	name	of	the	LANSA	process	you	want	to	execute;
<partition>	is	the	LANSA	partition.	This	parameter	is	optional.	If	this
parameter	is	not	specified,	the	default	LANSA	partition	will	be	used;
<language>	is	the	partition	language	you	wish	to	use.	This	parameter	is	also
optional.	If	a	partition	language	is	not	specified,	the	default	partition	language
will	be	used.
If	you	use	the	<language>	parameter,	the	<partition>	parameter	must	also	be
specified,	otherwise,	the	<language>	parameter	is	assumed	to	be	the
<partition>	parameter.
Note	that	each	parameter	is	delimited	by	the	plus	(+)	character	as	in	this
example:

					http://<web_server>/cgi-bin/lansaweb?process+<process_name>+
<partition>

	
As	an	example,	to	create	a	link	to	a	web	system	showing	LANSA's	web-enabled
Personnel	Demonstration,	which	shows	a	5250	(green	screen)	application,	your
URL	might	appear	as	follows:

					http://<web_server>/cgi-bin/lansaweb?process+pslsys+<partition>
	

To	execute	an	alternative	link	to	the	Personnel	Demonstration,	using	the	process
specifically	designed	as	a	WEB	interface,	your	URL	might	appear	like	this:

					http://<web_server>/cgi-bin/lansaweb?process+lansadem+
<partition>

	
For	XML,	your	link	would	be	like	this:

					http://<web_server>/cgi-bin/lansaxml?process+pslsys+<partition>

To	call	a	LANSA	function	directly,	refer	to	3.6	Calling	a	LANSA	Function
Directly.

3.6	Calling	a	LANSA	Function	Directly
You	can	execute	a	LANSA	function	directly	using	the	following	parameters	in
your	call	to	the	LANSAWEB/LANSAXML	program.

			PROCFUN+<process_name>+<function_name>+<partition>+
<language>
where:
PROCFUN	(can	be	in	lower-case)	is	the	keyword	instruction	to	LANSA	for
the	Web	to	execute	a	LANSA	function	directly;
<process_name>	is	the	name	of	the	LANSA	process	containing	the	function;
<function_name>	is	the	name	of	the	LANSA	function	you	want	to	execute;
<partition>	is	the	LANSA	partition.	This	parameter	is	optional.	If	this
parameter	is	not	specified,	the	default	LANSA	partition	will	be	used;
<language>	is	the	partition	language	you	wish	to	use.	This	parameter	is	also
optional.	If	a	partition	language	is	not	specified,	the	default	partition	language
will	be	used.
If	you	use	the	language	parameter,	the	<partition>	parameter	must	also	be
specified,	otherwise,	the	<language>	parameter	will	be	interpreted	as	the
<partition>	parameter.
Note	that	each	parameter	is	delimited	by	the	plus	(+)	character	as	in	this
example:

			http://<web_server>/cgi-bin/lansaweb?procfun+<process_name>+
<function_name>+<partition>
	

As	an	example,	to	create	a	link	to	a	web	system	showing	LANSA's	web-enabled
Personnel	Demonstration,	which	shows	a	5250	(green	screen)	application,	your
URL	might	appear	as	follows:

			http://<web_server>/cgi-bin/lansaweb?procfun+pslsys+enrol+
<partition>

	
To	create	a	link	to	the	same	Personnel	Demonstration	using	the	process
specifically	designed	as	a	WEB	interface,	your	URL	might	appear	like	this:

			http://<web_server>/cgi-bin/lansaweb?procfun+lansadem+ldem+
<partition>

	
For	passing	parameters	when	calling	a	LANSA	function,	refer	to	3.7	Passing
Parameters	to	a	LANSA	Function.

3.7	Passing	Parameters	to	a	LANSA	Function
You	can	pass	parameters	to	a	LANSA	function	that	is	executed	directly.
If	you	want	to	pass	parameters	to	a	LANSA	function,	you	would	extend	the
URL	of	calling	a	LANSA	function	directly	to	include:

+FUNCPARMS+param1+...+param5
The	keyword,	FUNCPARMS	(can	be	in	lower-case),	is	used	to	indicate	that
the	rest	of	the	URL	are	the	parameters	to	the	function.	Each	parameter	must
follow	the	syntax:

<field_name>(tllld):value
where

	<field_name> is	the	name	of	the	field	to	receive	the	parameter
T is	the	field	type	(A	for	alphanumeric,	P	for	packed	and	S

for	signed,	L	for	lowercase	alpha	fields)
Lll is	the	length	of	the	field	value	with	leading	zeros
D is	the	number	of	decimal	positions
Value is	the	value	of	the	parameter.

For	example,	if	you	wanted	to	pass	a	value	of	'A0001'	to	the	EMPNO	field,	the
syntax	of	the	parameter	would	be:

EMPNO(A0050):A0001
Your	final	URL	might	appear	as	follows:

http://www.lansa.com/cgi-bin/lansaweb?
PROCFUN+PSLSYS+ENROL+WEB+FUNCPARMS+EMPNO(A0050):A0001
	

Note	that	the	length	of	the	field	includes	leading	zeros	and	the	delimiting
character	used	is	the	colon	(:)	character.
If	the	value	of	the	parameter	includes	embedded	blanks,	you	must	surround	the
value	with	double	quote	(")	characters.
You	are	allowed	to	specify	up	to	20	function	parameters	in	a	URL.

For	a	method	of	passing	parameters,	you	may	also	wish	to	refer	to
HTTP	Header	Variables	in	the	Installing	LANSA	on	Windows	Guide.

its:LANSA085.CHM::/LANSA/jmp_0464.htm

3.8	Specifying	a	Task	Identifier
If	your	LANSA	partition	is	enabled	for	Task	Tracking,	you	will	need	to	specify
a	task	to	run	your	LANSA	function.	To	use	task	tracking,	extend	the	URL
syntax	discussed	above	to	include:

+TASK_ID+<task_identifier>
where	<task_identifier>	is	a	valid	task	defined	for	the	LANSA	partition.
Note	that	if	your	LANSA	partition	is	enabled	for	Task	Tracking	and	you	want	to
run	the	Layout	Wizard	in	this	partition,	a	task	identifier	must	be	specified	in	the
URL.

3.9	Debugging	using	iSeries	Batch	Debug
LANSA	for	the	Web	allows	your	RDML	functions	to	be	debugged	in	batch	on
the	iSeries.	This	feature	requires	the	use	of	an	iSeries	display	device	that	is	not
currently	signed	on.
To	invoke	batch	debugging	of	your	RDML	functions,	you	would	extend	the
URL	syntax	discussed	above	to	include:

+BDEBUG+<device>+<message_queue>
where
<device>	is	the	name	of	the	iSeries	display	device;
<message_queue>	is	the	name	of	the	message	queue	you	wish	to	use.
The	<device>	and	<message_queue>	parameters	are	optional.	If	you	do	not
specify	a	display	device,	the	debugging	information	will	be	directed	to	any
active	display	device	on	your	network.
Your	LANSA	functions	must	be	compiled	for	debugging	purposes	to	use	this
option.
For	example,	if	you	want	to	debug	the	ENROL	function	in	the	PSLSYS	process
in	the	WEB	partition,	your	URL	might	appear	as	follows:

http://www.lansa.com/cgi-bin/lansaweb?
PROCFUN+PSLSYS+ENROL+WEB+BDEBUG+QPADEV0001

Note:	It	is	very	important	that	the	device	specified	is	not	allocated.
Make	sure	that	no	one	is	signed	on	to	the	device.

Also	see
3.10	Debugging	using	Visual	LANSA

3.10	Debugging	using	Visual	LANSA
For	set	up	and	a	detailed	description	of	debugging	using	the	Visual	LANSA
development	environment,	please	refer	to	the	Interactive	Debugging	in	the
LANSA	for	Web	Housekeeping	Guide.
In	addition,	when	you	compile	your	LANSA	functions,	you	must	select	the
Debug	enabled	option	as	described	in	Compile	and	run	the	Program	in	the
Developers	Guide	in	order	to	build	binaries	with	debugging	capability.
In	the	following	description,	Debug	Host	or	Debugger	computer	is	referring	to
the	computer	where	a	Visual	LANSA	development	environment	is	running	and
to	be	used	for	interactive	debugging.	That	is	not	the	Data/Application	Server
where	the	Web	Functions	run,	unless	of	course	you	have	both	the	Visual
LANSA	and	the	Data/Application	Server	running	on	the	same	machine.

Also	see
3.10.1	Start	Development	Environment	Debugging	Session
3.10.2	Start	Web	Browser	Debugging	Session
3.9	Debugging	using	iSeries	Batch	Debug

its:LANSA085.CHM::/LANSA/lwbengh4_0010.htm
its:Lansa013.chm::/lansa/l4wdev06_0290.htm

3.10.1	Start	Development	Environment	Debugging	Session
In	the	Repository	tab	of	the	LANSA	Editor,	locate	the	Web	function	to	be
debugged.	Right	click	on	it	to	open	the	context	menu.	Select	Execute	from	the
context	menu.

The	Execute	dialog	will	be	displayed:

Select	either	Function	in	Web	Browseror	Process	in	Web	Browser	to	execute	the
selected	Web	function.
Select	(check)	the	option	Prompt	for	additional	execution	parameters	to	open
the	following	dialog	where	you	can	specify	that	you	want	Debugging	to	be
activated.		If	the	Prompt	for	additional	execution	parameters	option	is	not
selected,	the	function	or	process	will	be	run	without	any	debugging	session.

Check	that	the	Web	Server	Name	and	Web	Server	Port	are	correct	for	your
installation.
Change	the	Debug	parameter	from	N	to	Y	to	start	the	Web	function	for
debugging.
For	IBM	i	batch	debug,	you	need	to	specify	the	Device	Id	and	Message	Queue.
(IBM	i	Batch	Debug	is	not	done	within	the	Visual	LANSA	Development
Environment.)
Debug	Host	is	set	by	default	according	to	LANSA	Debug	Settings	(see	Debug	
in	LANSA	Settings	in	the	User	Guide)	and	refers	to	the	Visual	LANSA
development	environment	that	you	want	to	use	for	interactive	debugging.

its:lansa012.chm::/lansa/l4wusr01_2030.htm

Normally,	it	refers	to	the	current	development	environment	you	are	using.	If	you
want	to	temporarily	use	a	different	development	environment	(which	can	be	on
a	different	computer)	for	the	debugging	session,	you	may	change	Debug	Host	to
a	value	such	as	mydevenv:51234.	This	is	name	of	the	computer	with	the
development	environment	that	you	want	to	use	and	the	network	port	number
used	by	the	Visual	LANSA	Debug	Service	of	that	development	environment.
You	will	find	this	information	in	the	Debug	dialog	of	the	LANSA	Settings	of	the
development	environment	you	want	to	use	for	debugging.

The	parameters	Device	Id	and	Message	Queue	are	not	used	for	Visual	LANSA
interactive	debugging.

3.10.2	Start	Web	Browser	Debugging	Session
To	start	interactive	debugging	for	your	RDML	(Windows	only)	or	RDMLX
functions	from	a	web	browser,	extend	the	URL	syntax	to	include:

+BDEBUG+REMOTE=<debug_host>
where	<debug_host>	consists	of	the	name	of	the	computer	where	the
development	environment	that	you	want	to	use	for	debugging	is	running	and	the
network	port	number	used	by	the	Visual	LANSA	Debug	Service	of	that
development	environment	and	the	2	pieces	of	information	are	separated	with	a
colon	':',	for	example,	mydevenv:51234.	You	can	find	both	information	from
the	LANSA	Settings	dialog	of	the	development	environment	you	want	to	use	for
debugging.	(See	LANSA	Settings	-	Debug	in	Getting	Started	with	Visual
LANSA)
For	example,	assuming	the	computer	name	of	the	Development	Environment
that	you	want	to	use	is	mydevenv	and	the	Visual	LANSA	Debug	Service	for	that
development	environment	is	using	network	port	number	51234,	to	debug	the
ENROL	function	in	the	PSLSYS	process	in	the	WEB	partition,	your	URL	might
appear	as	follows:

http://www.lansa.com/cgi-bin/lansaweb?
PROCFUN+PSLSYS+ENROL+WEB+BDEBUG+REMOTE=mydevenv:51234

3.11	Invoking	the	iSeries	Spool	File	Facilities

This	feature	is	only	available	for	the	iSeries	Data/Application	Server.
In	order	to	use	the	Spool	File	Facility,	it	must	be	enabled	using	the
LANSA	for	the	Web	Administrator	or	LANSA	for	the	Web	Servlet
Administrator.

You	can	launch	any	of	the	Spool	File	facilities	directly	by	entering	the
parameters	in	your	call	to	the	LANSAWEB	CGI	script	program.
To	retrieve	the	page	for	entry	of	spool	file	selection	criteria,	use	the	following
parameter:
PRINT
For	example:

http://www.lansa.com/cgi-bin/lansaweb?PRINT
To	retrieve	a	list	of	spool	files	a	PRINTLIST	request	is	entered	with	the
selection	criteria	as	follows:

PRINTLIST+<user_name>+<output_queue>+<outq_library>+
<form>+<userdata>+<status>
Note	that	each	parameter	is	delimited	by	the	plus	(+)	character.
<user_name>	is	the	name	of	the	owner	of	the	spool	files	which	are	to	be
shown	in	the	list.	This	may	be	a	specific	user	or	*ALL.
<output_queue>	is	the	name	of	the	output	queue	which	contains	the	spool
files	which	are	to	be	shown	in	the	list.	This	may	be	the	name	of	a	specific	output
queue	or	*ALL.
<outq_library>	is	the	library	which	contains	the	output	queue	previously
specified.	This	may	be	a	specific	library	name,	*LIBL	or	*CURLIB.
<form>	is	the	form	type	of	the	spool	files	which	are	to	be	shown	in	the	list.
This	may	be	a	specific	form	type,	*ALL	or	*STD.
<userdata>	is	the	user	data	of	the	spool	files	which	are	to	be	shown	in	the	list.
This	may	be	a	specific	user	data	information	or	*ALL.	User	data	can	contain
lower	case	values.	If	you	wish	to	enter	a	lower	case	value,	enclose	the	parameter
in	single	quotation	marks.
<status>	is	the	spool	file	status	which	is	to	be	used	for	selection	of	spool	files.
This	value	may	be	one	of	the	following:

*ALL *CLOSED *DEFERRED *FINISHED

*HELD *MESSAGE *OPEN *PENDING

*PRINTING *READY *SAVED *SENDING

*WRITING
	 	

	

For	example:
http://www.LANSA.com/CGI-BIN/LANSAWEB?
PRINTLIST+GROUPAUSR+qprint+*LIBL+*ALL+*ALL+*ALL
or

http://www.lansa.com/CGI-BIN/LANSAWEB?
PRINTLIST+GROUPAUSR+*ALL+*LIBL+*ALL+'ListH5'+*ALL

	
To	display	a	spool	file,	a	REPORT	request	plus	details	which	identify	the	spool
file	are	entered	as	follows:

REPORT+<job_name>+<user_name>+<job_number>+
<spool_filename>+<spool_file_number>+<from_page>+<to_page>
Note	that	each	parameter	is	delimited	by	the	plus	(+)	character.	The	details	that
identify	the	spool	file	are	similar	to	those	on	the	OS/400	command	DSPSPLF.
<job_name>	is	the	name	of	the	job	which	created	the	spool	file.
<user_name>		is	the	name	of	the	user	profile	under	which	the	job	which
created	the	spool	file	was	run.
<job_number>	is	the	system	assigned	job	number	of	the	job	which	created	the
spool	file.
<spool_filename>		is	the	name	of	the	spool	file	to	be	displayed.
<spool_file_number>	is	the	number	of	the	job's	spooled	file	that	is	to	be
displayed.
<from_page>		is	an	optional	parameter	and	may	contain	the	number	of	the
first	page	you	wish	to	display.	If	this	parameter	is	not	provided	it	is	assumed	to
be	1.
<to_page>		is	an	optional	parameter	and	may	contain	the	number	of	the	last
page	you	wish	to	display.	If	this	parameter	is	not	provided	it	is	assumed	to	be
the	final	page	of	the	spool	file.

For	example:
http://www.lansa.com/CGI-BIN/LANSAWEB?
REPORT+WEB0000001+WEBUSER+'092926'+QPJOBLOG+'0001'+'1'+'2'

3.12	Event	Logging
LANSA	for	the	Web	provides	support	for	event	logging.	Event	logging	is	also
commonly	known	as	'click	tracking'.	Event	logging	allows	you	to	track	the
navigation	of	the	users	of	your	Web	Function	Applications.	It	creates	a	log
record	for	every	page	served	up	by	LANSA	for	the	Web.	The	information	from
the	event	logger	can	help	you	answer	typical	questions	like:

How	long	did	the	user	stay	at	my	site?
How	many	pages	did	the	user	access	at	my	site?
How	is	the	customer	using	my	site?

LANSA	for	the	Web	also	allows	you	to	trace	user	defined	data	as	well	as	system
data.	The	data	traced	can	be	easily	queried	for	data	mining	purposes.
You	can	trace	two	levels	of	information	–	summary	information	and	detailed
information.	The	summary	information	provides	information	about:

Date	and	time	the	user	first	accessed	your	site.	The	page	accessed	is	also
logged.
Date	and	time	the	last	page	was	accessed.
Number	of	pages	accessed.
Web	user	profile,	if	any.
IP	Address,	if	available.
HTTP	Referrer,	if	available.

The	summary	information	is	stored	in	a	LANSA	table,	DC@W26.
The	detailed	information	provides	information	about	each	page	accessed,
including:

Date	and	time	the	page	was	accessed.
User	defined	trace	information.

The	detailed	information	is	stored	in	a	LANSA	table,	DC@W27.
To	remove	recorded	event	logging	entries	in	these	files	on	the	iSeries,	call	the
Cleanup	program	as	follows:

CALL	W3@P2210	PARM('<WEBPGMLIB>'	'<DATE>')
where
<WEBPGMLIB>	is	your	lansa	web	program	library
<DATE>	is	the	date	in	YYYYMMDD	format

3.13	Enabling	Event	Logging
If	you	want	to	enable	event	logging,	you	are	required	to	include	the	<RDML
TRACE>	tag	in	either	your	process	specific	layout	page
(<process_name>_LAYOUT)	or	the	default	layout	page
(DEFAULT_LAYOUT).	If	you	do	not	have	a	process	specific	layout	page,	it	is
suggested	that	you	create	your	process	specific	layout	page	with	a	copy	of	the
contents	of	the	default	layout	page.	
Enabling	event	logging	using	the	layout	pages	permits	you	to	have	tracing	over
the	entire	application.	By	doing	so,	it	is	possible	to	tell	how	long	a	user	has	been
using	your	application.	Alternatively,	you	may	enable	logging	over	specific
pages.	This	is	done	by	putting	<RDML	TRACE>	at	the	top	of	each	your
HTML	pages.
The	<RDML	TRACE>	tag	is	used	to	instruct	LANSA	for	the	Web	to	look	up
the	trace	page	and	determine	which	level	of	tracing	is	to	be	applied	to	your
application.	The	appropriate	tracing	information	will	be	written	to	the	relevant
files	depending	on	the	keywords	specified	in	the	trace	file.
When	determining	the	level	of	tracing,	LANSA	for	the	Web	looks	up	either	the
process	specific	trace	page	(<proces_	name>_TRACE)	or	the	default	trace	page,
DEFAULT_TRACE.	This	trace	file	must	only	contain	a	single	line	with	either
TRACE_SUMMARY	or	TRACE_DETAILED	as	the	keyword.	Note	that	the
keyword	is	in	upper	case.
The	TRACE_SUMMARY	keyword	indicates	that	you	only	want	to	log
summary	information	and	the	logging	information	is	stored	in	the	DC@W26
(summary)	file.	This	is	a	default	keyword	in	the	DEFAULT_TRACE	page.	A
new	trace	identifier	is	assigned	for	each	process	or	procfun	request	made.
The	TRACE_DETAILED	keyword	extends	on	the	summary	level	tracing
permitting	you	to	log	user	defined	fields.	The	detailed	information	is	kept	in	the
DC@W27	(detailed)	file.	This	file	contains	information	on	how	each	of	the
pages	was	accessed	for	each	trace	identifier.

3.14	Logging	User	Defined	Fields
LANSA	for	the	Web	allows	you	to	trace	fields	within	your	functions.	If	you
want	to	trace	information	in	your	function,	you	will	need	to	have	event	logging
enabled	at	the	detailed	level	and	you	must	include	a	LANSA	standard	field,
STDTRCFLD,	in	your	RDML	function.	This	is	defined	as	a	CHAR(100)	field
in	the	LANSA	Repository.
The	Event	Logging	facility	allows	you	to	trace	up	to	10	fields	in	your	RDML
function.	The	nominated	field	names	are	concatenated	together	into	the
STDTRCFLD	field.	The	first	trace	field	is	defined	in	position	1	to	10	of	the
STDTRCFLD,	the	second	trace	field	in	position	11	to	20,	and	so	on.	For
example,	if	you	want	to	trace	the	EMPNO,	SURNAME	and	GIVENAME
fields,	these	field	names	are	concatenated	together.	Each	of	the	field	names	that
are	less	than	10	characters	are	padded	with	blanks.	In	this	case,	the	value	of	the
STDTRCFLD	field	would	be:

EMPNO					SURNAME			GIVENAME
You	use	the	STDTRCFLD	field	as	a	*HIDDEN	attribute	as	part	of	your	display
or	request	commands	in	your	functions.
When	detailed	event	logging	is	enabled	in	LANSA	for	the	Web,	it	will	check	the
value	of	the	STDTRCFLD	field	to	determine	the	user	defined	fields	to	trace.
The	field	value	length	of	each	of	the	user	defined	trace	fields	is	limited	to	50
bytes.	LANSA	for	the	Web	will	truncate	the	data	if	the	length	is	greater	than	50.
The	trace	fields	and	their	contents	are	logged	to	the	respective	fields	in	the
detailed	file	(DC@W27).
	

4.	WEBEVENT	Functions
WEBEVENT	functions	are	designed	to	support	the	browser	paradigm	and	the
use	of	the	Back	button.	To	understand	how	to	create	WEBEVENT	functions,
refer	to	the	following:
4.1	What	is	a	WEBEVENT	Function?
4.2	How	Does	WEBEVENT	Work?
4.3	How	is	WEBEVENT	Different?
4.4	WEBEVENT	Templates
4.5	WEBEVENT	Example
4.6	Automatic	Data	Exchange
4.7	WEBEVENT	Routing
4.8	WEBEVENT	Keywords
4.9	Considerations	for	WEBEVENT	Functions
4.10	WEBEVENT	Data	and	Function	Timeout

WEB003	-	Coding	WEBEVENT	Functions

its:lansa086.CHM::/LANSA/web03_TUTORIAL.htm

4.1	What	is	a	WEBEVENT	Function?
LANSA	allows	you	to	create	a	special	type	of	RDML	Web	function	specifically
for	use	with	the	Internet.	This	Web	function	is	called	a	WEBEVENT	function.
The	WEBEVENT	function	is	designed	specifically	for	the	Internet	user	and	the
browser	paradigm.	In	the	browser	paradigm,	a	persistent	connection	is	not
required.	Each	page	is	independent.	You	cannot	dictate	the	navigation	path	of
your	application	to	the	user.	The	Internet	user	has	a	Back	button	in	the	browser,
which	allows	them	to	go	back	several	pages	and	resubmit	a	request.
A	function	is	defined	to	be	a	WEBEVENT	function	by	specifying	the	following
option	in	the	RDML	FUNCTION	command:

FUNCTION	OPTIONS(*WEBEVENT)
	

With	WEBEVENT	functions,	the	LANSA	function	will	terminate	after	a
DISPLAY	or	REQUEST	command	is	executed.	No	other	logic	will	be	executed
after	the	HTML	page	for	the	function	is	sent.	Using	this	technique,	you	must
code	your	functions	to	properly	process	the	information	when	the	user	decides
to	submit	a	screen	with	data.	The	logic	of	the	RDML	function	must	be	written
specifically	for	WEBEVENT.	You	cannot	simply	add	the	*WEBEVENT
keyword	to	your	functions.
WEBEVENT	functions	cannot	use	any	of	the	standard	function	keys,	i.e.	Exit,
Cancel,	Add,	Change,	Delete,	Prompt,	etc.	because	the	function	terminates	once
the	display	is	sent.	Instead,	navigation	can	be	controlled	by	keywords	in	the
USER_KEYS	parameter	of	the	DISPLAY	or	REQUEST	command	(or	by	using
links	from	one	page	to	another).	Each	description	of	the	user	key	is	a	keyword
that	is	used	to	link	one	LANSA	function	to	another.	Each	of	these	user	keys	will
be	displayed	as	a	button.	When	the	user	selects	a	button,	the	linked	function	will
be	called.
When	the	linked	function	is	called,	all	form	variables,	hidden	fields	and	any
browse	list	data	will	automatically	be	exchanged	with	the	called	function.	For
more	details,	refer	to	4.6	Automatic	Data	Exchange.
For	a	detailed	example	of	writing	WEBEVENT	functions,	refer	to	4.5
WEBEVENT	Example.

WEB003	-	Coding	WEBEVENT	Functions

its:lansa086.CHM::/LANSA/web03_TUTORIAL.htm

4.2	How	Does	WEBEVENT	Work?
If	you	execute	the	standard	FRENQ02	template	to	create	a	procedural
header/detail	style	function,	it	generates	a	function	with	REQUEST	and
DISPLAY	screens.	The	overall	structure	of	the	RDML	in	the	function	might
appear	as	follows:
FUNCTION								OPTIONS(*DIRECT)
GROUP_BY								NAME(#HEADER)...
DEF_LIST								LIST(#LIST)...
BEGIN_LOOP
REQUEST									FIELDS(#DEPTMENT)...
FETCH														FIELDS(#HEADER)...
SELECT													FIELDS(#LIST)...
ADD_ENTRY							TO_LIST(#LIST)	
ENDSELECT
DISPLAY												FIELDS(#HEADER)...	BROWSELIST(#LIST)
...
END_LOOP

To	convert	this	to	a	WEBEVENT	function,	you	might	divide	the	single	function
into	two	functions:	FUNC001	and	FUNC002.	FUNC001	will	REQUEST	the
information	to	be	located	and	FUNC002	will	DISPLAY	the	data.
The	function	structure	would	appear	something	like	the	following:
FUNC001:
					FUNCTION	OPTIONS(*DIRECT	*WEBEVENT)
					CHANGE	FIELD(#DEPTMENT)	TO(*DEFAULT)
					REQUEST	FIELDS(#DEPTMENT)...USER_KEYS((01	SEARCH))

FUNC002:
					FUNCTION	OPTIONS(*DIRECT	*WEBEVENT)
					GROUP_BYNAME(#HEADER)...
					DEFINELIST(#LIST)...
					FETCHFIELDS(#DEPTMENT)...	NOT_FOUND(R01)	
					SELECTFIELDS(#LIST)...
					ADD_ENTRYTO_LIST(#LIST)	
					ENDSELECT
R01:	DISPLAYFIELDS(#HEADER)...	BROWSELIST(#LIST)

When	the	user	executes	the	LANSA	WEBEVENT	function,	FUNC001	will
simply	send	the	REQUEST	for	the	search	data	and	then	terminate.	For	example,

it	might	ask	for	a	Department	Code.	Within	FUNC001,	a	user	key	is	nominated.
This	user	key	is	called	Search	and	is	linked	to	FUNC002.
After	the	user	enters	the	data,	the	Search	button	will	be	pressed.	This	button	is	a
link	to	the	FUNC002	function.	FUNC002	is	called	and	the	input	data	from
FUNC001	is	passed	from	the	browser	to	FUNC002.	Because	this	is	a
WEBEVENT	function,	the	variables	from	FUNC001	are	passed	to	FUNC002	as
if	FUNC002	were	being	called	from	within	FUNC001.	This	is	automatically
handled	by	LANSA.
FUNC002	will	take	the	search	parameters	from	FUNC001	and	select	the	data
from	the	files	to	build	a	browse	list	with	the	results.	FUNC002	will	display
these	results	and	then	it	will	terminate.	Like	FUNC001,	it	can	nominate	user
keys	and	linked	functions.	For	example,	it	might	link	back	to	FUNC001	or	it
might	link	to	a	FUNC003	which	provides	details	of	a	selected	transaction.
If	the	user	presses	the	Back	button	in	the	browser,	they	can	return	to	the
REQUEST	screen	in	FUNC001	and	enter	new	data.	When	the	user	presses	the
Search	button,	FUNC002	is	simply	called	once	again.	The	information	is
exchanged	so	that	FUNC002	can	execute	properly.
Note:	If	you	are	using	browse	lists,	the	lists	should	match	exactly	in	FUNC001
and	FUNC002	so	that	the	data	is	passed	properly.	For	more	details,	refer	to	4.6
Automatic	Data	Exchange.
For	a	detailed	example	of	writing	WEBEVENT	functions,	refer	to	4.5
WEBEVENT	Example.

WEB003	-	Coding	WEBEVENT	Functions

	

its:lansa086.CHM::/LANSA/web03_TUTORIAL.htm

4.3	How	is	WEBEVENT	Different?
The	WEBEVENT	function	is	not	coded	like	a	procedural	LANSA	function.	The
key	differences	include:

WEBEVENT	functions	automatically	terminate	immediately	after	sending
the	page	to	the	user,	that	is,	immediately	after	a	REQUEST	or	DISPLAY
statement.
WEBEVENT	functions	are	designed	with	their	processing	logic	first.	The
last	operation	must	be	the	REQUEST	or	DISPLAY.	The	logic	of	the	RDML
function	must	be	written	specifically	for	this	style	of	function.
WEBEVENT	functions	cannot	use	any	of	the	standard	function	keys,	i.e.
Exit,	Cancel,	Add,	Change,	Delete,	Prompt,	etc.	because	the	function
terminates	once	the	display	executes.
WEBEVENT	functions	control	user	navigation	using	the	USER_KEYS
parameter	of	the	DISPLAY	or	REQUEST	command	or	by	using	links	from
one	page	to	another.	For	details,	refer	to	4.7	WEBEVENT	Routing.
The	LANSA	function	terminates	after	the	REQUEST	or	DISPLAY	so	the
transaction	server	is	not	required	to	maintain	state.	(Note:	the	transaction
server	is	still	used	to	process	LANSA	Web	function	jobs).	The	user	is	able	to
use	the	browser's	Back	button	if	they	wish.
The	exchange	of	data	between	WEBEVENT	functions	is	automatically
handled	by	LANSA.
WEBEVENT	functions	are	not	procedural.	You	must	call	your	WEBEVENT
functions	directly	using	the	PROCFUN	keyword.	These	functions	cannot	be
executed	from	a	process	menu.

WEB003	-	Coding	WEBEVENT	Functions

	

its:lansa086.CHM::/LANSA/web03_TUTORIAL.htm

4.4	WEBEVENT	Templates
LANSA	includes	web	function	application	templates,	which	will	create
WEBEVENT	functions.	The	templates	include:

FRWEBADD01	Data	entry	for	*WEBEVENT.	FRWEBADD01	creates	a
simple	data	entry	WEBEVENT	function.
FRWEBENQ01	Page	at	a	time	with	detail	display.	FRWEBENQ01	creates	a
WEBEVENT	function	that	has	a	generic	search,	and	then	displays	the	results
of	the	search	in	a	page	at	a	time	browse	list.	You	can	select	entries	from	the
browse	list	for	a	more	detailed	display	of	information.

WEB01	-	Types	of	LANSA	Web	Functions

its:lansa086.CHM::/LANSA/WEB01_TUTORIAL.htm

4.5	WEBEVENT	Example
In	order	to	understand	how	to	design	and	program	WEBEVENT	functions,	the
following	step-by-step	example	has	been	included:
4.5.1	Procedural	Add	an	Employee	Function
4.5.2	Changes	Required	to	Restructure	for	WEBEVENT
4.5.3	Handling	Re-entrant	Functions
4.5.4	Final	WEBEVENT	Function
4.5.5	More	Complex	Example

WEB003	-	Coding	WEBEVENT	Functions

	

its:lansa086.CHM::/LANSA/web03_TUTORIAL.htm

4.5.1	Procedural	Add	an	Employee	Function
Consider	a	very	common	data	entry	function	such	as	the	type	of	function
created	by	the	FRADD01	template.

FUNCTION	 OPTIONS(*DIRECT)
GROUP_BY	 NAME(#PANEL)	FIELDS(#EMPNO	#SURNAME)
MESSAGE	 MSGID(DCU0010)	MSGF(DC@M01)	MSGDTA('employee')
BEGIN_LOOP 	
REQUEST FIELDS(#PANEL)	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*YES)
INSERT FIELDS(#PANEL)	TO_FILE(PSLMST)
MESSAGE MSGID(DCU0011)	MSGF(DC@M01)	MSGDTA('employee')
CHANGE FIELD(#PANEL)	TO(*NULL)
END_LOOP 	

In	this	example,	you	have	a	single	function,	which	must	be	converted	to	follow
the	rules	of	the	WEBEVENT	function.	The	behavior	of	the	function	should	be
as	follows:

When	the	function	is	first	called,	it	simply	displays	a	data	entry	panel	and
then	the	function	ends.
The	user	will	enter	data	into	the	function	and	call	the	function	again.
When	the	data	is	passed	to	the	function,	it	executes	and	attempts	to	insert	the
data	to	the	file.
If	there	are	errors,	then	the	error	messages	must	be	displayed.
If	there	are	no	errors,	a	completion	message	is	sent	and	the	fields	are	reset.
The	function	displays	the	data	entry	panel	and	the	function	ends.

Refer	to	4.5.2	Changes	Required	to	Restructure	for	WEBEVENT.

4.5.2	Changes	Required	to	Restructure	for	WEBEVENT
For	this	function	to	be	re-written	using	the	FUNCTION
OPTIONS(*WEBEVENT)	style,	the	following	changes	must	be	made:

REQUEST	must	be	the	last	statement	executed	in	the	function,	so	the
commands	must	be	reorganized.
The	MENU_KEY	is	not	allowed	in	the	REQUEST	statement.
BEGIN_LOOP	and	END_LOOP	must	be	removed	and	replaced	by
statements	to	determine	if	the	function	is	executing	for	the	first	time.

The	overall	changes	required	are	shown	below.
FUNCTION								OPTIONS(*DIRECT	*WEBEVENT)
GROUP_BY								NAME(#PANEL)	FIELDS(#EMPNO	#SURNAME...)

If	the	function	has	data	to	be	inserted...
INSERT										FIELDS(#PANEL)	TO_FILE(PSLMST)	VAL_ERROR(...)
MESSAGE									MSGID(DCU0011)	MSGF(DC@M01)	MSGDTA('employee')
CHANGE										FIELD(#PANEL)	TO(*NULL)

End	of	the	If	logic.
REQUEST									FIELDS(#PANEL)	DESIGN(*DOWN)	IDENTIFY(*DESC)

In	order	to	determine	if	the	function	is	executing	for	the	first	time	or	if	it	has
data	to	be	inserted,	you	need	to	use	a	variable	to	determine	the	state	of	the
function.	Refer	to	4.5.3	Handling	Re-entrant	Functions.

4.5.3	Handling	Re-entrant	Functions
In	this	example	of	a	WEBEVENT	function,	a	single	function	is	being	written	to
call	itself.	This	example	is	described	as	re-entrant.	The	same	function	is	re-
entered	in	order	to	process	the	Web	page.	This	is	a	common	approach	as	it
allows	the	RDML	logic	associated	with	a	page	to	be	contained	in	the	same
function	as	the	Web	page	itself.
In	this	function	example,	you	must	exchange	a	hidden	field	called	RENTRY.
This	field	tells	the	function	if	it	is	being	called	for	the	first	time	or	if	it	is	being
called	to	process	data.
For	example:
				FUNCTION			OPTIONS(*DIRECT	*WEBEVENT)
				GROUP_BY			NAME(#PANEL)	FIELDS(#EMPNO	#SURNAME...	(RENTRY	*HIDDEN))
				DEFINE					FIELD(#RENTRY)	TYPE(*CHAR)	LENGTH(1)
				IF									COND('#RENTRY	*EQ	Y')
				INSERT					FIELDS(#PANEL)	TO_FILE(PSLMST)VAL_ERROR(T01)
				MESSAGE				MSGID(DCU0011)	MSGF(DC@M01)	MSGDTA('employee')
				CHANGE					FIELD(#PANEL)	TO(*NULL)
				ENDIF
T01	CHANGE					FIELD(#RENTRY)	TO(Y)
				REQUEST				FIELDS(#PANEL)	DESIGN(*DOWN)	IDENTIFY(*DESC)...	USER_KEYS((01	SUBMIT))

When	the	function	is	called	for	the	first	time,	the	RENTRY	field	will	have	a
value	of	NULL.	The	function	simply	displays	the	REQUEST	asking	the	user	to
enter	data	for	the	file.	Notice	that	RENTRY	is	set	to	YES	before	the	function
terminates.
The	user	key	for	the	SUBMIT	button	will	indicate	that	the	next	function	to	be
called	is	itself.	(For	details,	refer	to	4.8	WEBEVENT	Keywords.)When	the
function	is	called	a	second	time,	the	variables	are	passed	to	the	function	and	the
RENTRY	field	is	YES.	The	function	knows	it	must	perform	the	insert	to	the
data	file.
Also	note	how	the	T01	label	is	used.	If	errors	occur	during	the	INSERT,	the
function	must	display	the	current	data.	The	reset	of	the	#PANEL	fields	to
*NULL	is	skipped.
Refer	to	4.5.4	Final	WEBEVENT	Function.

4.5.4	Final	WEBEVENT	Function
The	add	function	can	be	re-written	using	the	WEBEVENT	style	as	shown
below:

	 FUNCTION	 OPTIONS(*DIRECT	*WEBEVENT)
	 DEFINE FIELD(#RENTRY)	TYPE(*CHAR)	LENGTH(1)
	 GROUP_BY NAME(#PANEL)	FIELDS(#EMPNO	#SURNAME	#ADDRESS	...	(RENTRY	*HIDDEN))
	 IF COND('#RENTRY	*EQ	Y')
	 INSERT	 FIELDS(#PANEL)	TO_FILE(PSLMST)	VAL_ERROR(T01)
	 CHANGE FIELD(#PANEL)	TO(*NULL)
	 MESSAGE MSGID(DCU0011)	MSGF(DC@M01)	MSGDTA	('employee')
	 ENDIF 	
T01 CHANGE FIELD(#RENTRY)	TO(Y)
	 REQUEST FIELDS(#PANEL)	DESIGN(*DOWN)	IDENTIFY(*DESC)	EXIT_KEY(*NO)	MENU_KEY(*NO)	USER_KEYS((01	SUBMIT))

An	entry	must	be	added	to	the	WEBEVENT	Links	table	using	the	Web	Function
Editor	to	link	this	process/function	(via	the	user	key1)	to	itself.	The	function
would	present	an	HTML	page	of	input	fields,	as	well	as	a	button.	When	the
button	is	clicked,	the	function	would	call	itself	and	pass	the	data	to	be	inserted
into	the	PSLMST	file.

4.5.5	More	Complex	Example
Imagine	you	have	a	more	complex	RDML	function,	which	has	three	screens.	It
might	look	something	like	the	following	example.	Using	the	re-entrant
technique,	you	use	a	CASE	statement	and	direct	the	processing	to	the	correct
part	of	the	function	based	on	the	last	screen	processed.
FUNCTION			OPTIONS(*DIRECT	*WEBEVENT)
...
CASE						OF_FIELD(#RENTRY)
WHEN						VALUE_IS('=	1')
CHANGEFIELD(#RENTRY)	TO(2)
...
DISPLAY			FIELDS(...)	USER_KEYS((01	SUBMIT))
WHEN						VALUE_IS('=	2')
CHANGE				FIELD(#RENTRY)	TO(*NULL)
...
DISPLAY			FIELDS(...)	USER_KEYS((01	RETURN))
OTHERWISE	
CHANGE				FIELD(#RENTRY)	TO(1)
...
REQUEST			FIELDS(...)	USER_KEYS((01	SEARCH))
ENDCASE

In	this	example,	the	#RENTRY	field	is	set	in	each	branch	of	the	CASE
statement	in	order	to	control	how	the	function	will	execute	the	next	time	it	is
called.

4.6	Automatic	Data	Exchange
LANSA	automatically	handles	all	data	interchange	between	WEBEVENT
functions.
When	a	linked	function	is	called	from	your	WEBEVENT	function,	the
following	will	automatically	be	exchanged:

all	form	variables
hidden	fields
all	browse	list	data.

It	is	very	important	that	the	browse	list	definitions	must	be	identical	in	all
respects	in	all	called	functions	as	well	as	the	current	function	being	executed.	If
you	have	more	than	one	DEF_LIST	command	in	your	function,	all	the	browse
lists	will	be	exchanged	even	though	you	are	only	displaying	one	of	the	browse
lists	in	your	function.
If	you	exceed	the	LANSA	exchange	list	limit,	you	can	turn	on	the	Enable
Extended	Exchange	flag	in	the	Web	Administrator.	Once	you	have	enabled	this
option,	you	will	have	to	recompile	your	functions.	The	Enable	Extended
Exchange	flag	is	on	the	Miscellaneous	tab	of	the	Configure	Data/Application
Server	in	the	LANSA	for	the	Web	Administrator.	LANSA	for	the	Web
Administrator	will	have	been	installed	when	you	installed	LANSA	for	the	Web.
Refer	to	the	Exchange	List	item	in	the	Summary	of	Platform	Differences.
When	you	create	WEBEVENT	functions,	you	MUST	NOT	use	commitment
controls	as	each	function	is	effectively	a	new	job.	This	style	of	application	does
not	cater	for	database	cursors.
To	understand	how	and	when	this	data	is	purged,	refer	to	4.10	WEBEVENT
Data	and	Function	Timeout.

its:LANSA085.CHM::/LANSA/ede400.htm

4.7	WEBEVENT	Routing
There	are	several	techniques	which	can	be	used	to	link	your	WEBEVENT
functions:
1.		USER_KEYS	and	KEYWORDS
Navigation	from	one	WEBEVENT	function	to	another	can	be	controlled	by
keywords	in	the	USER_KEYS	parameter	of	the	DISPLAY/REQUEST
command.	Each	description	of	the	user	key	is	a	keyword	that	is	used	to	link	one
LANSA	function	to	another.	Each	of	these	user	keys	will	be	displayed	as	a
button.	When	the	user	selects	a	button,	the	linked	function	will	be	called.	The
keywords	and	their	linked	functions	are	set	up	using	the	Web	Function	Editor.
For	more	details,	refer	to	4.8	WEBEVENT	Keywords.
2.	Web	Link	Web	Components			
Web	link	components	are	only	used	with	WEBEVENT	functions.	You	can	use
Web	link	components	to	link	to	other	functions,	instead	of	using	Keywords.
Web	link	components	also	allow	you	to	display	the	links	as	images	instead	of
buttons.	These	components	allow	you	to	dynamically	change	the	links	as	well	as
the	presentation	of	the	links,	without	having	to	recompile	your	WEBEVENT
functions.	For	more	details,	refer	to	Web	Link.
3.		Standard	HTML	Links			
If	you	wish	to	link	to	another	function	but	do	not	want	to	pass	any	information
to	the	next	function,	you	may	use	a	standard	hypertext	link.
4.		JavaScript			
Using	the	HandleEvent	function	in	the	default	JavaScript	used	by	LANSA	Web
functions,	you	can	control	the	navigation	between	WEBEVENT	functions.

its:lansa086.CHM::/LANSA/ED0960.htm

4.8	WEBEVENT	Keywords
To	control	the	application	flow	in	WEBEVENT	functions,	you	can	use	the
USER_KEYS	parameter	in	your	RDML	function	along	with	Keywords	in	the
Web	Function	Editor.
For	example:

REQUEST FIELDS(#PANEL)	DESIGN(*DOWN)	IDENTIFY(*DESC)	EXIT_KEY(*NO)MENU_KEY(*NO)	USER_KEYS((01	SUBMIT))
The	USER_KEYS	parameter	will	cause	a	button	to	appear	on	the	function.
The	keywords	and	their	linked	functions	are	set	up	using	the	Web	Function
Editor.	Select	the	Tools	action	bar	category	and	the	Keywords	option.	You	can
add	new	links	or	maintain	existing	links.	For	more	details,	refer	to	Keywords.

The	Process,	Function	and	Keyword	parameters	are	used	to	identify	the	specific
process	and	function	and	user	key	being	pressed.	The	Linked	Process	and
Linked	Function	are	the	names	of	the	process	and	function	to	be	called	when	the
button	is	pressed.	In	the	case	of	a	re-entrant	function,	the	names	will	still	remain
the	same.	The	Description	is	used	to	define	the	words	which	will	appear	on	the
button.

Very	Important:	The	keyword	is	case	sensitive!	If	you	use
"SUBMIT"	in	uppercase	in	your	RDML	USER_KEY	statement,	then
you	must	use	"SUBMIT"	and	not	"submit"	when	defining	the
keywords.

WEB003	-	Coding	WEBEVENT	Functions

	

its:lansa086.CHM::/LANSA/JMP_0250.htm
its:LANSA086.CHM::/LANSA/web03_tutorial.htm

4.9	Considerations	for	WEBEVENT	Functions
Following	are	some	important	considerations	when	creating	WEBEVENT
functions:

You	cannot	call	WEBEVENT	functions	from	a	process	menu.	You	must	not
use	the	PROCESS	keyword	in	your	URL	syntax.	Since	WEBEVENT
functions	terminate	as	soon	as	a	DISPLAY	or	REQUEST	command	is
executed,	the	LANSA	job	is	terminated.
You	must	call	WEBEVENT	functions	directly.	You	must	use	the	PROCFUN
keyword	in	your	URL	syntax.
Navigation	between	WEBEVENT	functions	can	be	handled	by	User	Keys
and	Keywords.
If	you	are	creating	the	function	links	manually,	you	should	use	the
HandleEvent	JavaScript	function	to	process	the	call	instead	of	using	an
anchor	block	(<A	HREF>)	tag.	The	HandleEvent	function	redirects	the
request	to	the	same	Web	job	at	the	Data/Application	Server	whereas	the
anchor	block	request	starts	a	new	Web	job.
If	you	use	navigation	by	using	an	HTML		,	no	data	will	be
passed	to	the	called	WEBEVENT	function.
WEBEVENT	functions	must	not	use	commitment	control	as	each	function	is
effectively	a	new	job.	This	style	of	application	does	not	cater	for	database
cursors.
WEBEVENT	functions	cannot	use	function	keys	such	as	Exit,	Cancel,	Add,
Change,	Delete,	Prompt,	etc.	because	the	function	has	already	terminated.
You	must	check	the	STDHEADER	page	you	are	using	for	your
WEBEVENT	function.	All	function	keys	must	be	enclosed	within	an
<RDML	BUTTON>	LANSA	tag.	If	a	function	key	does	not	have	an	RDML
BUTTON	tag,	you	will	need	to	enclose	these	function	keys	with	a	pairing	of
<RDML	BUTTON="&WEBEVENT">	and	</RDML>	tags.	Your	header
should	have	no	function	keys,	i.e.	no	buttons.
WEBEVENT	functions	expect	to	have	only	one	REQUEST	or	DISPLAY
screen	used	per	function.	This	does	not	mean	that	you	cannot	have	more	than
one	REQUEST	statement,	but	simply	that	in	the	flow	of	logic	only	one
statement	should	be	encountered.	A	compiler	warning	message	may	be
displayed	if	more	than	one	REQUEST	or	DISPLAY	is	used	in	the	function.
There	will	be	RDML	executed	after	the	REQUEST	or	DISPLAY.	The

WEBEVENT	function	will	terminate	after	the	DISPLAY/REQUEST
command	is	executed.	No	other	logic	will	be	executed	after	the	HTML	page
for	the	function	is	sent.	A	compiler	warning	is	issued	if	statements	are
encountered	after	the	REQUEST	or	DISPLAY.
Do	not	use	DISPLAY	or	REQUEST	or	POP_UP	commands	in	a	subroutine.
These	commands	are	not	allowed	in	subroutines	for	*WEBEVENT
functions.
Output	fields	are	not	exchanged	between	WEBEVENT	functions.	When	the
linked	function	is	called,	all	form	variables,	hidden	fields	and	any	browse	list
data	will	be	exchanged	to	the	called	function.
If	you	are	using	browse	lists,	the	lists	should	match	exactly	in	the	calling	and
called	WEBEVENT	functions	so	that	the	data	is	passed	properly.
Check	that	your	INSERT	or	UPDATE	or	other	validations	commands	do	not
use	*LASTDIS.

WEB003	-	Coding	WEBEVENT	Functions

its:LANSA086.CHM::/LANSA/web03_tutorial.htm

4.10	WEBEVENT	Data	and	Function	Timeout
It	is	important	to	understand	how	WEBEVENT	function	data	is	handled	as	it
relates	to	the	jobs	being	maintained	by	the	transaction	server.
A	LANSA	WEBEVENT	function	terminates	as	soon	as	it	has	processed	a
DISPLAY	or	REQUEST	command.	However,	the	Web	job	is	reserved	for	the
user,	pending	further	interaction	unless	you	have	coded	the	function	to	terminate
the	job	immediately.
The	LANSA	for	the	Web	Transaction	Monitor	will	terminate	a	WEBEVENT
function	if	the	timeout	period	has	elapsed.	However,	if	you	continue	to	interact
with	this	WEBEVENT	function,	LANSA	will	automatically	allocate	a	new	job
for	the	request	and	handle	the	data	interchange.	Your	data	is	still	intact.	(You
must	not	use	the	Job	Identifier	as	the	unique	identifier,	as	any	restarted
WEBEVENT	functions	may	not	be	allocated	to	the	same	job	at	the
Data/Application	Server.)
When	WEBEVENT	functions	time	out,	LANSA	maintains	the	data	for	these
jobs	temporarily	at	the	Data/Application	Server.	When	the	user	interacts	with
these	functions	subsequently,	the	temporary	data	is	restored	and	the	user	is	not
impacted	–	a	new	LANSA	job	has	been	allocated	and	the	temporary	data
restored	for	the	function.
LANSA	for	the	Web	holds	the	temporary	data	for	a	specified	period	of	time.
This	temporary	data	is	cleared	when	the	inactive	time	of	the	job	exceeds	this
purge	time	period.	The	purge	period	time	is	set	in	the	Purge	WEBEVENT
function	data	option	on	the	Transaction	Monitor	tab	when	you	configure	the
Data/Application	Server	using	the	LANSA	for	the	Web	Administrator.	If	the
user	interacts	with	the	function	after	the	purge	time,	browse	list	data	will	not	be
exchanged	as	it	has	been	purged.	For	more	details,	refer	to	the	Installing	LANSA
on	Windows	Guide.

Terminating	WEBEVENT	Jobs	Immediately
LANSA	Web	functions	provide	you	with	a	LANSA	tag,	<RDML
MERGE="&END">,	to	indicate	that	the	Web	job	is	to	be	freed	immediately
(after	the	DISPLAY	or	REQUEST	command)	and	returned	to	the	pool	of	pre-
started	Web	jobs.
This	tag	should	only	be	used	for	functions,	which	have	no	user	interaction	once
the	function	terminates.	It	should	not	be	used	for	functions	that	have	a	browse
list,	which	must	be	exchanged	with	a	subsequent	function.

For	more	details,	refer	to	Using	<RDML	MERGE="&END">.

its:lansa086.CHM::/LANSA/ED1230.htm

5.	LANSA	Generated	HTML	Pages

LANSA	Web	Functions	generate	pages	meeting	both	the	HTML	4.0
standard	and	the	XHTML	1.0	standard.	In	this	guide,	the	term	HTML
will	be	used	to	describe	generated	HTML/XHTML	pages.	For	details
about	XHTML,	refer	to	LANSA	for	the	Web	XHTML.

LANSA	Web	Functions	will	generate	the	required	HTML	pages	when	you
compile	your	functions.	If	you	are	planning	on	modifying	these	pages,	you
should	review	the	following:
5.1	Page	Security
5.2	Identifying	Generated	Pages
5.3	Modifying	the	Process	Menu
5.4	Versioning	of	Pages
5.5	Comparing	Versions
5.6	HTML	Page	Structure
5.7	LANSA	Field	Names	in	HTML	Pages
5.8	HTML	Generation	Skeleton

WEB004	-	LANSA	Generated	HTML	Pages

its:LANSA086.CHM::/LANSA/EDI800.htm
its:lansa086.CHM::/LANSA/web04_TUTORIAL.htm

5.1	Page	Security
Under	a	traditional	HTML	development,	each	HTML	page	is	an	HTML
document	that	resides	in	a	directory.	Your	application	may	require	hundreds	of
HTML	documents	scattered	over	numerous	directories.	The	HTML	pages	are
exposed	to	anyone	who	can	gain	access	to	the	directories.	The	HTML	pages	can
also	be	altered	without	your	knowledge.
Using	LANSA	Web	functions,	the	HTML	pages	are	kept	as	LANSA	internal
files	for	easier	backup/restore	and	maintenance	procedures.	The	HTML	pages
cannot	be	accessed	without	using	the	Web	Function	Editor	which	prohibits
unauthorized	editing.
LANSA	Web	Functions	also	include	special	tags	which	are	stored	in	HTML
pages.	These	tags	are	processed	when	the	pages	are	read	from	the	LANSA
internal	files	and	then	served	to	the	client	browser	or	computing	device.

The	images	files,	static	pages	and	embedded	objects	(audio,	video,
etc.)	which	are	used	as	part	of	the	pages	must	be	stored	in	the	Web
Server	directories.

5.2	Identifying	Generated	Pages
In	order	to	modify	the	LANSA	generated	HTML	pages,	you	will	use	the	Web
Function	Editor.	You	must	also	know	how	to	identify	the	pages	associated	with
processes	and	functions.
When	LANSA	processes	are	compiled,	no	HTML	is	generated	for	the	process.
When	a	Web	enabled	LANSA	process	is	executed,	LANSA	automatically
generates	the	process	menu	page	based	on	the	DEFAULT_INDEX	and
DEFAULT_CONTENT	pages.	The	DEFAULT_INDEX	page	is	used	to
initialize	the	Menu	Area	of	the	browser.	The	DEFAULT_CONTENT	page	is
used	to	initialize	the	contents	area	of	the	process	menu.	For	more	details,	refer
to	5.3	Modifying	the	Process	Menu.
When	a	LANSA	Web	function	is	compiled,	LANSA	generates	an	HTML	page
for	each	REQUEST	or	DISPLAY	statement	within	the	function.	Each	HTML
page	adopts	the	following	naming	convention:
								<process	name>	<function	name><display	sequence>

The	<process	name>	is	the	name	of	the	LANSA	process.	If	the	length	of	the
process	name	is	less	than	10	characters,	it	is	padded	with	spaces.
The	<function	name>	is	the	name	of	the	LANSA	function.	If	the	length	of	the
function	name	is	less	than	7	characters,	it	is	padded	with	spaces.
The	<display	sequence>	is	the	logical	sequence	of	the	screen	in	the	function.
For	example,	the	first	screen	displayed,	a	REQUEST	statement,	in	the	FUNC01
function	of	PROC01	process	will	adopt	the	name:
								PROC01				FUNC01	001

and	the	second	screen	displayed,	a	DISPLAY	statement,	will	adopt	the	name:
								PROC01				FUNC01	002

Refer	to	Open	.	.	.(XML/HTML	mode).

WEB004	-	LANSA	Generated	HTML	Pages

its:lansa086.CHM::/LANSA/JMP_0610.htm
its:lansa086.CHM::/LANSA/web04_TUTORIAL.htm

5.3	Modifying	the	Process	Menu
LANSA	does	not	create	a	stored	HTML	page	for	a	process.	The	process	menu
HTML	page	is	automatically	generated	based	on	the	current	process	definition
and	the	default	HTML	process	page	definitions.	The	LANSA	Process	Menu	is
used	for	your	procedural	Web	applications.	(If	you	are	creating	WEBEVENT
functions,	you	should	call	them	directly	using	the	PROCFUN	keyword.)
The	process	menu	is	divided	into	two	areas:

process	index	(default_index)	and
process	content	(DEFAULT_CONTENT).

The	process	index	lists	the	functions	which	can	be	executed	in	the	process.	The
list	of	functions	is	built	when	the	process	is	called.	The	rules	are	based	on	the
LANSA	process	definition.	For	example,	the	function	control	table	will
determine	the	order	in	which	the	functions	are	listed.
The	generic	HTML	for	the	process	index	is	stored	in	DEFAULT_INDEX.	
If	the	HTML	in	this	file	is	changed,	it	will	impact	all	of	the	LANSA	processes	in
the	partition.	You	should	create	a	process	specific	version	of	this	page.	Refer	to
Customizing	Process	Specific	Pages.
The	process	content	is	an	information	area	of	the	process	menu	and	the	HTML
for	the	process	content	is	stored	in	DEFAULT_CONTENT.	If	the	HTML	in	this

its:lansa086.CHM::/LANSA/ED0620.htm

file	is	changed,	it	will	impact	all	of	the	LANSA	processes	in	the	partition.	You
should	create	a	process	specific	version	of	this	page.	Refer	to	Customizing
Process	Specific	Pages.

its:lansa086.CHM::/LANSA/ED0620.htm

5.4	Versioning	of	Pages
When	a	Web	enabled	LANSA	function	is	compiled,	the	HTML	pages	for	the
function	are	stored	in	a	LANSA	internal	file.	The	pages	in	this	file	can	be	edited
using	the	Windows-based	Web	Function	Editor.	(Since	the	pages	are	stored	on
the	Data/Application	Server,	the	Editor	executes	as	a	client/server	application.)
When	you	manually	edit	the	HTML,	you	now	have	a	version	of	the	HTML
which	does	not	match	the	original	version	that	was	generated	by	LANSA.
LANSA	allows	you	to	save	the	previous	versions	of	your	pages.	The	LANSA
for	the	Web	Administrator	allows	you	to	define	whether	or	not	you	want	to	save
the	previous	versions	of	the	generated	page.	It	also	allows	you	to	specify	the
number	of	sets	you	want	to	save.	Up	to	10	versions	can	be	saved.	When	you
open	an	HTML	page,	the	Web	Function	Editor	allows	you	to	specify	the	version
of	page	to	be	accessed.
Each	time	a	Web	function	is	(re)compiled	and	HTML	generation	is	selected,
LANSA	generates	a	new	version	of	the	pages	for	each	screen.	Any	manual
changes	you	have	made	can	then	be	copied	from	the	previous	version	back	into
the	current	version.	For	example,	when	a	Web	function	is	first	compiled,	the
page	will	be	version	0.	Now	you	edit	this	page.	It	is	still	version	0.	When	the
Web	function	is	recompiled,	version	0	would	become	version	1	and	the	newly
compiled	version	becomes	version	0.	The	most	recent	or	current	version	is
always	version	0.	The	higher	the	number	the	older	the	version.	So	version	0	=
current	version,	version	1	=	previous	version,	version	2	=	(previous	-	1)	version,
etc.
When	LANSA	generates	the	HTML	for	a	particular	Web	function,	it	does	not
check	to	see	if	the	current	page	(if	any)	has	been	modified.	The	backup	feature
must	be	enabled	to	prevent	LANSA	from	overwriting	the	manually	edited
version	of	the	page	when	the	recompile	is	performed.	If	the	backup	feature	is
enabled,	LANSA	will	save	the	current	page	before	generating	a	new	page	for
the	Web	function	being	compiled.
Note:	You	can	only	save	changes	to	version	0.	You	may	open	any	version	of	a
page,	but	you	can	only	save	the	page	as	version	0.	For	example,	if	you	open
version	3	of	the	page	and	make	changes,	it	cannot	be	resaved	as	version	3.	It	can
only	be	saved	as	version	0.	This	rule	ensures	that	your	previous	versions	are	not
corrupted.
For	more	details,	refer	to	the	Web	Function	Editor	Open	(Basic)	mode	and	Save
As	features.

its:lansa086.CHM::/LANSA/JMP_0620.HTM
its:lansa086.CHM::/LANSA/ED1010.htm

WEB004	-	LANSA	Generated	HTML	Pages

	

its:lansa086.CHM::/LANSA/web04_TUTORIAL.htm

5.5	Comparing	Versions
The	Web	Function	Editor	provides	a	special	compare	and	contrast	feature	for
comparing	versions	of	your	pages.	You	can	open	an	HTML	page	and	then	select
another	version	of	the	page	to	compare	with	the	opened	page.	The	Editor	will
highlight	the	differences	in	the	pages	as	you	scroll	through	the	documents.
You	can	configure	the	colors	used	to	identify	the	inserted	and	deleted	records	in
the	documents.	The	HTML	which	was	inserted	is	shown	in	one	color,	followed
by	the	HTML,	(if	any),	which	was	deleted	shown	in	another	color.	For	example,
when	a	new	line	of	HTML	is	simply	inserted,	it	will	be	shown	as	an	inserted
line.	When	a	line	of	HTML	is	changed,	it	will	show	the	new	inserted	line	and
the	old	original	line	of	HTML	(deleted)	which	was	changed.
The	Editor	supports	both	horizontal	and	vertical	split	screens	when	comparing
pages	.You	can	specify	synchronized	scrolling	so	that	the	two	documents	scroll
at	the	same	time.
The	compare	and	contrast	features	are	useful	in	cases	where	you	have	modified
the	page	of	a	function	and	then	recompiled	the	function.	Using	compare	and
contrast,	you	can	quickly	identify	your	modifications	and	reapply	them	to	the
latest	version	of	the	function.	You	could	either	open	the	most	recent	version	and
compare	the	changes	from	the	earlier	version,	or	you	could	open	the	earlier
version	and	compare	the	changes	from	the	most	recent	generation.
For	more	details,	refer	to	Web	Function	Editor	Compare	feature.

its:lansa086.CHM::/LANSA/ED1020.htm

5.6	HTML	Page	Structure
When	you	compile	a	LANSA	Web	function,	an	HTML	page	is	created	for	each
display	(REQUEST	or	DISPLAY)	in	the	function.	Each	display	is	divided	into	a
number	of	page	components:

function	layout	(including	default	JavaScript	and	styles)
standard	header
function	HTML
standard	footer.

The	page	components	are	embedded	using	special	LANSA	tags	such	as
<RDML	LAYOUT>,	<RDML	MERGE>	and	<RDML	COMPONENT>.	For
more	details,	refer	to	RDML	Tags.
For	example,	a	typical	LANSA	Web	function	might	produce	the	following
generated	HTML	page:
	
<RDML	LAYOUT>
<!--	Process		:	xxxxxxxxxx	Test	Process																												-->
<!--	Function	:	xxxxxxx				Display	Sections																								-->
<!--	Page					:	001																																																-->
	
<!--	Generated	by				-	xxxxxxxxx																																			-->
<!--	Created	by	user	-	xxxxxxxxx																																			-->
<!--	Time	and	Date			-	xxxxxxxxxxxx																																-->
	
<form	action="/<RDML	MERGE="&CGI">/LANSAWEB?FUNCTION+
<RDML	MERGE="&SESSION">"
method="post"	name="LANSA">
	
<RDML	MERGE="&HIDDEN">
	
<RDML	COMPONENT="STDHEADER">
	
<center><h1><RDML	MERGE="@FUNCTION"></h1></center>
	
	
...main	body	of	function	will	appear	here...
	

its:lansa086.CHM::/LANSA/ED0700.htm

	
	
<RDML	COMPONENT="STDFOOTER">
	
</form>

When	the	page	is	presented	to	the	client	browser,	there	will	be	just	one	HTML
page.	For	the	developer,	each	of	the	page	components	can	be	separate
documents	which	can	be	shared	and	reused.	For	more	details	about	these
components,	refer	to	Standard	HTML	Page	Components.
Using	standard	page	components	for	items	like	layout	pages,	headers,	footers,
etc.	allows	the	developer	to	create	common	and	shared	definitions	for	the
HTML	pages.	This	approach	greatly	increases	productivity	because	the
developer	does	not	need	to	repeat	common	information.	Application
maintenance	is	also	significantly	reduced	as	the	developer	need	only	change	a
single	definition	instead	of	modifying	each	function.
LANSA	ships	a	set	of	standard	HTML	page	components.	These	standard	page
components	can	be	embedded	into	other	HTML	pages	or	they	can	be	used	as
default	pages.	Standard	page	components	are	used	to	minimize	the	maintenance
effort.	For	more	details	about	these	components,	refer	to	Shipped	Default	Pages.
For	example,	the	component	STDHEADER	displays	a	company	logo	and
includes	all	the	application	navigation	buttons.	The	STDHEADER	is	embedded
into	the	HTML	generated	for	every	LANSA	Web	function.	To	change	the
company	logo,	you	would	only	need	to	modify	one	file,	STDHEADER.	You	do
not	need	to	modify	the	HTML	in	every	function.
Each	LANSA	Web	function	will	include	a	standard	header	and	a	standard	footer
in	the	generated	HTML.	LANSA	Web	functions	allow	you	to	use	various	styles
for	your	standard	header.	You	can	choose	between	a	static
(STDHEADER_STYLE1)	or	a	dynamic	header.	If	you	choose	to	have	a
dynamic	header,	you	have	the	additional	choice	of	implementing	either	a
scrolling	(STDHEADER_STYLE2)	or	a	non-scrolling
(STDHEADER_STYLE3)	header.	LANSA	allows	you	to	configure	a	header
which	can	be	used	for	all	pages	for	a	particular	LANSA	process.	For	more
details,	refer	to	Header	Styles.

its:lansa086.CHM::/LANSA/ED0630.htm
its:lansa086.CHM::/LANSA/ED0610.htm
its:lansa086.CHM::/LANSA/EDG600.htm

5.7	LANSA	Field	Names	in	HTML	Pages
When	you	review	the	HTML	generated	for	your	LANSA	Web	functions,	you
may	notice	that	your	LANSA	field	names	have	a	one	character	prefix	added	to
each	field	name.	The	LANSA	generated	HTML	uses	the	following	specific	field
naming	conventions:
A<field	name>	=	Alphanumeric	fields
P<field	name>	=	Packed	numeric	fields
S<field	name>	=	Signed	numeric	fields
L<field	name>	=	Lowercase	alpha	fields.
For	example,	if	your	RDML	contains	a	field	#NAME,	where	#NAME	is	an
alphanumeric	field,	then	you	will	see	a	field	name	ANAME	used	in	your	HTML
page.	If	field	#COUNT	is	packed,	then	you	will	see	PCOUNT.
If	you	customize	your	HTML	page,	you	must	use	this	naming	convention.
This	field	naming	convention	allows	LANSA	to	overcome	some	of	the
limitations	of	HTML	and	the	browser	where	there	is	no	designation	of	field
types.	The	HTML	page	and	the	browser	do	not	know	the	difference	in	the	type
of	field.	This	naming	convention	is	only	used	by	LANSA.

5.8	HTML	Generation	Skeleton
LANSA	allows	you	to	control	the	generated	HTML	page	structure	or	skeleton.
If	you	are	planning	to	modify	the	HTML	generation	skeleton,	you	should
review	the	following:
5.8.1	What	is	the	HTML	Skeleton?
5.8.2	How	Do	I	Use	the	HTML	Skeleton?
5.8.3	Considerations	for	Using	the	HTML	Skeleton

5.8.1	What	is	the	HTML	Skeleton?
LANSA	provides	an	HTML	skeleton	or	template	to	generate	the	HTML	pages
for	your	LANSA	Web	functions.	
LANSA	allows	you	to	customize	the	HTML	skeleton.	The	default	HTML
skeleton	WEBSKEL	is	contained	in	the	LANSA	data	library.	(For	LANSA	for
iSeries,	file	DC@F28	is	used.	For	Visual	LANSA,	a	WEBSKEL.S	file	is	used.)
This	skeleton	must	not	be	modified.
If	you	wish	to	create	your	own	customized	HTML	skeleton,	you	should	create
the	skeleton	in	a	new	source	member.	(For	LANSA	for	iSeries,	create	a	member
in	the	DC@W22	file.	For	Visual	LANSA,	create	a	<filename>.S	file	in	the
partition	source	directory.)	You	can	create	a	default	skeleton	or	you	can	create	a
skeleton	which	is	specific	to	a	partition,	process	or	function.
When	the	HTML	for	a	Web	function	is	generated,	LANSA	will	search	for
source	members	to	be	used	as	the	HTML	skeleton.	The	following	search	order
is	used:

function	name	for	a	WEBEVENT	function	only
process	name
partition	name
special	value	'DEFAULT'.

If	none	of	these	source	members	are	found,	then	the	default	shipped	HTML
skeleton	WEBSKEL	will	be	used.
Sample	HTML	skeletons	are	shipped.	For	example,	file	member	named
SSISAMPLE	is	an	example	of	an	SSI	HTML	skeleton	and	looks	like	this:
<table	border="0"	cellpadding="0"	cellspacing="3">
<tbody>
	
%W3FLD
	
</tbody>
</table>

	
%W3BRW
	
<RDML	MERGE="&END">

5.8.2	How	Do	I	Use	the	HTML	Skeleton?
If	you	identify	a	standard	change	which	needs	to	be	made	to	the	structure	of	all
of	your	Web	functions	in	a	process	or	in	a	partition,	then	you	have	identified	an
opportunity	to	use	an	HTML	skeleton	to	make	this	structural	change.	Creating
your	own	HTML	skeleton	allows	you	to	control	some	parts	of	the	default
structure	of	the	HTML	generated	by	LANSA	Web	functions.	For	example,	if
you	do	not	want	to	use	a	STDFOOTER	in	your	Web	functions,	it	can	be
removed	from	the	skeleton.
For	example,	the	current	HTML	skeleton	uses	the	same	background	for	all	of
your	LANSA	Web	functions.	The	graphic	variable	*LW3CLNTBKGND	is	used
to	control	the	client	background.	If	you	want	to	create	a	specific	background	for
your	applications	in	a	partition	or	in	a	process	or	in	a	specific	function	without
manually	editing	the	HTML	each	time,	you	can	create	a	new	skeleton.
To	create	a	client	background	which	is	partition	specific,	you	need	to	do	the
following:
1.		Create	a	new	text	Web	component	called	MYBACKGND	which	will	be	used
to	store	the	specification	for	the	client	background	you	wish	to	use.
Remember	that	the	Web	component	is	stored	at	the	partition	level.

2.		Edit	the	HTML	skeleton	and	replace	the	line:
									<body	bgcolor="<RDML	MERGE="*LW3CLNTCOLOR">"
									background="
<RDML	MERGE="*LW3CLNTBKGND">"	<RDML	COMPONENT="FORMINIT">>

			with:
									<body	bgcolor="<RDML	MERGE="*LW3CLNTCOLOR">"
									background="
<RDML	COMPONENT="MYBACKGND">"	<RDML	COMPONENT="FORMINIT">>

3.		Save	the	customized	HTML	skeleton	using	the	Partition	Name.
When	your	Web	function	HTML	is	generated	in	the	specific	partition,	it	will
now	use	your	new	Web	component	to	define	the	client	background.

Once	changes	are	made	to	the	skeleton,	you	must	recompile	your	Web
functions	and	regenerate	the	HTML	for	the	changes	to	take	effect.

5.8.3	Considerations	for	Using	the	HTML	Skeleton
Following	are	some	important	considerations	when	customizing	the	Web
skeleton:

Never	modify	the	shipped	HTML	skeleton	WEBSKEL	(stored	in	DC@F28
for	the	iSeries,	or	WEBSKEL.S	for	Windows)	as	your	modifications	will	be
overwritten	when	a	new	version	is	shipped.
Save	your	customized	skeletons	in	DC@W22	for	the	iSeries	or	in	the	source
partition	directory.
As	new	features	are	added	to	LANSA	Web	functions,	the	default	Web
skeleton	may	change	from	one	version	to	the	next.
You	can	use	the	IBM	Source	Edit	Utility	(SEU	Editor)	or	the	command	Edit
File	(EDTF)	to	modify	the	HTML	skeletons	if	you	are	using	an	iSeries
Data/Application	Server.	For	a	Windows	Server,	you	can	use	a	general	text
editor.
Never	modify	any	of	the	special	tags	beginning	with	%,	for	example
%W3FRM	or	%W3BRW.
Be	very	careful	with	changes	to	the	table	format.
Be	sure	to	test	your	changes	to	the	skeleton	in	a	variety	of	situations.
Make	sure	that	all	developers	know	when	you	have	customized	the	skeleton
if	changes	are	made	at	the	partition	level.
You	can	use	Web	components	and	graphic	variables	in	your	skeleton.
Function	level	Web	skeletons	can	only	be	created	for	WEBEVENT
functions.
Once	changes	are	made	to	the	skeleton,	you	must	recompile	your	Web
functions	for	the	changes	to	take	effect.
If	you	are	exporting	your	application,	remember	to	export	your	Web	skeleton
if	you	are	planning	on	recompiling	your	application.

6.	Default	Process	Pages
LANSA	Web	functions	use	a	number	of	default	HTML	pages.	These	pages	can
be	used	to	enhance	your	Web	function	applications.	To	understand	how	to	use
these	pages,	review	the	following:
6.1	What	are	Default	Process	Pages?
6.2	Shipped	Default	Pages
6.3	Other	Default	Pages
6.4	Customizing	Process	Specific	Pages
6.5	User	Defined	Default	Pages
6.6	Standard	HTML	Page	Components
6.9	Process	Specific	Page	Components

WEB005	-	LANSA	Process	Pages

its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm

6.1	What	are	Default	Process	Pages?
LANSA	Web	functions	use	a	number	of	default	HTML	pages	to	define	the
default	structure	of	the	generated	HTML	pages.	The	default	pages	are	prefixed
with	"DEFAULT_".
For	example,	the	JavaScripts	used	in	LANSA	Web	functions	are	stored	in	a	page
named	DEFAULT_SCRIPT.	LANSA	processes	use	two	default	HTML	pages,
DEFAULT_INDEX	and	DEFAULT_CONTENT	to	create	the	process	menu	and
area	content.
Whenever	LANSA	encounters	a	request	to	use	a	default	page,	it	will	search	for
a	process	specific	version	of	the	page.	If	a	process	specific	page	is	not	found,
the	default	is	used.	This	feature	makes	LANSA	Web	functions	very	flexible.	For
example,	you	can	define	the	default	presentation	of	your	process	menus	by
editing	DEFAULT_INDEX	and	DEFAULT_CONTENT.	If	you	create	a	process
specific	version	of	the	INDEX	and/or	CONTENT	page,	LANSA	will	substitute
these	automatically	without	any	HTML	editing	or	RDML	recompiling	by	the
developer.	For	more	details,	refer	to	6.4	Customizing	Process	Specific	Pages.
The	default	pages	are	partition	specific.	You	can	create	your	own	user	defined
default	pages.	Refer	to	6.2	Shipped	Default	Pages	and	the	installation	guide	for
your	platform	for	more	details	about	the	shipped	default	pages.

6.2	Shipped	Default	Pages
Following	is	a	list	of	the	default	pages	shipped	with	LANSA	Web	functions.
You	should	avoid	changing	the	contents	of	these	pages	as	LANSA	may	update
them	in	future	releases.	For	details	of	how	to	create	a	process-specific	version	of
these	pages,	refer	to	6.4	Customizing	Process	Specific	Pages.

These	pages	are	partition-specific.	They	must	be	loaded	as	part	of	the
partition	set	up.	

If	you	modify	these	pages,	you	must	remember	to	export	them	if	you
move	your	application	to	another	partition	or	system.	In	order	to	select
these	pages	for	export,	you	must	register	them	as	Web	components.
Refer	to	for	information	about	Web	Application	Deployment.

	

Page	Name Description

DEFAULT_CONTENT The	Default	Content	page	is	displayed	in	the
Content	area	of	the	browser	when	a	process	is
called.
	

DEFAULT_FRAMESET Contains	the	default	non-scrolling	header	style
frameset.	One	frameset	holds	the	STDHEADER
page	while	the	other	frame	holds	the	body	of
your	function.
	

DEFAULT_HIDDEN Contains	the	hidden	fields	used	to	exchange
information.	If	you	want	to	include	other	hidden
fields	for	your	Web	function	application,	you
can	append	the	hidden	fields	to	this	page.
	

DEFAULT_INDEX Default	Process	Menu	page.
This	is	the	default	process	menu-handling	page.
	

its:LANSA022.CHM::/LANSA/LANSA022_begin.htm

DEFAULT_LAYOUT Contains	the	layout	used	for	any	LANSA
processes	that	do	not	have	a	customized	layout.
The	default	layout	assumes	a	character	mode
look-and-feel.
	

DEFAULT_SCRIPT Contains	all	the	JavaScript	functions	shipped
with	the	product.	The	page	shipped	with	the
product	has	certain	sections	conditionally
disabled.	These	sections	are	for:
static	header	support	(no	longer
recommended)
the	calendar	control	support
numeric	checking
DBCS	support.

If	you	need	to	enable	any	of	these	sections,	you
need	to	edit	this	page	and	remove	the
appropriate	<RDML	ONCONDITION>	tag.
Refer	to	tutorial	WEB005	-	LANSA	Process
Pages.

DEFAULT_STYLE Customize	this	page	to	embed	cascading	style
sheets	for	any	LANSA	process.
Refer	to	Cascading	Style	Sheets.
	

DEFAULT_TRACE When	using	event	logging,	this	page	is	used	to
decide	on	the	level	of	tracing	for	your	Web
function	application.
By	default,	the	summary	level	of	tracing	is	used
and	requires	this	page	to	contain	only	the
keyword	TRACE_SUMMARY.
A	more	detailed	level	of	tracing	requires	this
page	to	contain	the	keyword
TRACE_DETAILED.	This	level	of	tracing	is	an
extension	of	the	summary	tracing	by	providing
information	about	how	each	page	is	used.

its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm
its:LANSA086.CHM::/LANSA/ed1240.htm

Information	on	this	topic	is	also	contained	in
Enabling	Event	Logging.
	

	

For	more	default	pages,	refer	to	6.3	Other	Default	Pages.
From	the	LANSA	for	the	Web	Administrator,	Enable	Partition	copies	the
shipped	default	pages	according	to	your	partition's	default	language.	If	the
shipped	default	pages	do	not	exist	for	your	partition's	default	language,	then	the
English	pages	will	be	used.
For	translation	purposes,	it	is	possible	to	copy	default	pages	by	language	other
than	that	of	your	partition's	default	language	by	using	the	W3@P2500	program.
The	parameters	would	be:

Parameter Type Description
	

Partition CHAR(3) Partition	to	be	enabled.
	

Partition
Language

CHAR(4) One	of	the	partition's	defined	languages.	It	is	not
necessarily	the	default	language.
	

Shipped
Language

CHAR(4) The	shipped	language	default	pages	to	copy	from.
	

For	example:
					CALL	W3@P2500	PARM('DEM'	'FRA'	'ENG')

This	command	copies	the	shipped	ENG	pages	to	FRA	in	the	DEM	partition.

its:LANSA086.CHM::/LANSA/gs0i120.htm

6.3	Other	Default	Pages
LANSA	Web	functions	also	allow	you	to	create	other	default	pages.	These	are
the	pages	that	are	not	shipped	with	the	product.	You	can	create	these	pages
manually	(using	the	Web	Function	Editor)	to	define	the	default	attributes	of
your	Web	function	application.

Page	Name Description

DEFAULT_HEADER This	contains	header	information	that	is	typically	encapsulated
by	the	<head>	and	</head>	tags.
If	you	want	to	use	a	specific	header	for	a	particular	LANSA
Web	function,	refer	to	the	<RDML	LAYOUT>	LANSA	tag.
	

DEFAULT_HMENU This	contains	the	menu	items	for	the	Horizontal	Menu
component.	Typically,	you	should	use	the	e-Business
Framework	Wizard	to	create	this	page.
	

DEFAULT_LMENU This	contains	the	menu	items	for	the	Left	Menu	component.
Typically,	you	should	use	the	e-Business	Framework	Wizard	to
create	this	page.
	

DEFAULT_MSGPRES Default	presentation	of	LANSA	messages	in	your	Web
function	application.	By	default,	the	LANSA	messages	are
presented	in	a	list	box.
You	can	override	the	format	of	the	message	presentation	by
using	this	page	and	defining	your	own	message	presentation
layout.	If	this	page	exists,	it	is	used	to	present	the	LANSA
messages	in	your	Web	function	application.
An	example	of	a	DEFAULT_MSGPRES	is	shown	below.	It
replaces	the	list	box	format	with	a	list	of	messages.
<table	border="0"	width="100%">
<tr	bgcolor="lightcyan">
<td><img	src="
<RDML	MERGE="*LW3IMGMESSAGES">"	border="0">
</td>

its:LANSA086.CHM::/LANSA/ed0776.htm

<td>
				<RDML	MESSAGES>
				
</td>
</tr>
</table>

LANSA	Web	functions	use	a	LANSA	tag,	<RDML
MESSAGES>	to	determine	the	position	in	the	page	to	display
the	LANSA	messages.	The	line	in	the	page	containing	the	tag
will	be	repeated	for	each	LANSA	message	in	your		Web
function	application.
In	your	message	presentation	page,	you	can	embed	other
LANSA	tags.	The	only	restriction	is	that	the	line	containing
the	<RDML	MESSAGES>	tag	must	not	contain	any	other
LANSA	tags.
Refer	to	Message	Presentation	Layout.
Refer	to	tutorial	WEB005	-	LANSA	Process	Pages.
	

DEFAULT_RMENU This	contains	the	menu	items	for	the	Right	Menu	component.
Typically,	you	should	use	the	e-Business	Framework	Wizard	to
create	this	page.
	

DEFAULT_STYLE Default	customized	styles	for	your	Web	function	application.
This	page	contains	the	cascading	style	sheets	(CSS)	definitions
for	your	applications.
By	default,	your	application	adopts	the	presentation	styles
configured	for	the	browser.	If	you	want	to	override	any	of	the
styles,	you	can	achieve	this	by	creating	this	default	page.
An	example	of	DEFAULT_STYLE	is	shown	below.	It
overrides	the	styles	used	for	the	<table>	and	<h1>	tags.
<style>
		table				{font-
family:	<RDML	COMPONENT="FONTPREF">
												font-size:	10pt;
												font-weight:	normal}

its:lansa086.CHM::/LANSA/ED1220.htm
its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm

		h1							{font-
family:	<RDML	COMPONENT="HEADER1FONT">
												font-size:	12pt;
												font-weight:	bold}
</style>

For	more	details,	refer	to	Cascading	Style	Sheets.
	

	

For	more	default	pages,	refer	to	6.2	Shipped	Default	Pages.
If	you	modify	these	pages,	you	must	remember	to	export	them	if	you	move	your
application	to	another	partition	or	system.	In	order	to	select	these	pages	for
export,	you	must	register	these	pages	as	Web	components.	Refer	to	for
information	about	Web	Application	Deployment.

its:lansa086.CHM::/LANSA/ED1240.htm
its:LANSA022.CHM::/LANSA/LANSA022_begin.htm

6.4	Customizing	Process	Specific	Pages
LANSA	Web	functions	allow	you	to	customize	any	of	the	default	pages	to	be
process	specific.	Whenever	LANSA	encounters	a	request	to	use	a	default	page,
it	will	search	for	a	process	specific	version	of	the	page.	If	the	process	specific
page	is	found,	it	will	automatically	be	used.	If	it	cannot	find	a	process	specific
page,	it	will	then	use	the	default	page.
To	create	a	process	specific	page,	use	the	following	naming	convention:
						<process	name>_<page	identifier>
where	<process	name>	is	the	name	of	the	LANSA	process	and	<page	identifier>
is	the	name	of	the	'default'	page	you	want	to	customize	for	the	process.
For	example,	if	you	want	to	customize	a	process	specific	Script	page	for	the
PSLSYS	process,	you	would	create	a	page	named	PSLSYS_SCRIPT.

From	time	to	time,	LANSA	may	amend	the	default	pages,	either
during	an	upgrade	or	via	an	EPC	(Expedited	Program	Change).
If	such	a	change	occurs,	you	must	ensure	that	this	change	is	reflected
in	all	process	specific	pages	that	you	have	created.

Examples	of	shipped	DEFAULT	pages	which	can	be	customized:
DEFAULT_CONTENT							Default	Process	Content	
DEFAULT_FRAMESET						Default	Frameset	
DEFAULT_HIDDEN								Default	Hidden	fields	
DEFAULT_INDEX									Default	Process	Menu	page	
DEFAULT_LAYOUT								Default	Layout	
DEFAULT_SCRIPT								Default	Script	Page	

Example:
If	a	process	is	called	PAYROLL,	the	process	specific	default	pages	would	be
created	as:
PAYROLL_CONTENT							Default	Process	Content	
PAYROLL_FRAMESET						Default	Frameset	
PAYROLL_HIDDEN								Default	Hidden	fields	
PAYROLL_INDEX									Default	Process	Menu	page	
PAYROLL_LAYOUT								Default	Layout	
PAYROLL_SCRIPT								Default	Script	Page	
	

If	you	want	to	append	additional	lines	to	the	default	page	for	a	specific	process,

you	can	do	this	by	using	the	<RDML	PAGE>	tag.	For	more	details,	refer	to
<RDML	PAGE>.

Caution:	When	exporting	a	web	enabled	function,	process	pages	with
the	above	naming	convention	for	the	associated	process	are	also
exported.	For	example,	a	function	in	process	PAYROLL	when
exported	will	export	all	HTML	pages	for	the	function	and	all	HTML
pages	starting	with	the	characters	'PAYROLL_'.	Therefore,	ensure	that
you	do	not	create	HTML	pages	that	follow	this	naming	convention
that	conflict	with	the	name	of	a	process.

	

All	process	specific	pages	are	automatically	exported	with	the	LANSA
process	definition.	These	pages	do	not	have	to	be	registered	as	Web
components.

	

WEB005	-	LANSA	Process	Pages

	

its:lansa086.CHM::/LANSA/ED07A0.htm
its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm

6.5	User	Defined	Default	Pages
LANSA	Web	functions	provides	you	with	facilities	to	exploit	the	functionality
of	the	default	pages.	This	allows	you	to	create	your	own	user	defined	default
pages	that	may	have	process	specific	versions	for	certain	LANSA	processes.
To	use	this	facility,	the	syntax	of	the	default	page	is:
			DEFAULT_UD<page	name>
where	<page	name>	is	the	name	you	have	assigned	to	the	page.	The	process
specific	page	will	then	adopt	the	naming	convention	of:
			<process	name>_UD<page	name>
where	<process	name>	is	the	name	of	the	LANSA	process.
For	example,	if	you	are	using	cookies	in	your	LANSA	Web	function
applications,	you	might	create	a	page	named:
			DEFAULT_UDCOOKIES
To	define	cookies	for	the	PSLSYS	process,	you	would	create	a	page	named:
			PSLSYS_UDCOOKIES
You	can	access	this	user	defined	page	by	using	the	<RDML	MERGE>	tag	with
the	special	Reserved	Words	as	follows:
<RDML	COOKIES="&UDCOOKIES">

For	more	details	of	this	example,	refer	to	<RDML	COOKIES>.

its:lansa086.CHM::/LANSA/ED0780.htm
its:lansa086.CHM::/LANSA/ED07B0.htm
its:lansa086.CHM::/LANSA/ED0770.htm

6.6	Standard	HTML	Page	Components
These	standard	HTML	page	Web	components	are	used	by	the	shipped	LANSA
Web	templates.

Page Description

STDFOOTER Standard	Footer	contains	a	standard	set	of	buttons	for
LANSA.
By	default,	this	is	included	as	a	LANSA	Web
component	in	every	LANSA	Web	function	generated.

STDHEADER Standard	Header	contains	a	display	of	the	company	logo
and	a	standard	set	of	buttons	for	LANSA.
By	default,	this	is	included	as	a	LANSA	Web
component	in	every	LANSA	Web	function	generated.

STDMORE Web	component	used	by	the	shipped	Web	templates.

STDNEXT Web	component	used	by	the	shipped	Web	templates.

STDPREV Web	component	used	by	the	shipped	Web	templates.

STDPROCFOOTER Standard	Footer	used	for	LANSA	processes.

STDSEARCH Web	component	used	by	the	shipped	Web	templates.

STDSELECT Web	component	used	by	the	shipped	Web	templates.

	

6.7	Other	HTML	Page	Components
These	standard	HTML	page	Web	components	are	also	shipped	with	LANSA
Web	functions:

Page Description

STDHEADER_STYLE1 STDHEADER	page	for	Style	#1	header	style.	This
is	the	static	header	style.	If	you	want	to	use	this
header	style,	copy	this	page	to	be	the	STDHEADER
page	in	your	system.
For	a	description	of	the	various	header	styles
supported	by	LANSA	Web	functions,	refer	to
Header	Styles.

STDHEADER_STYLE2 STDHEADER	page	for	Style	#2	header	style.	This
is	the	dynamic	header	style.	If	you	want	to	use	this
header	style,	copy	this	page	to	be	the	STDHEADER
page	in	your	system.
For	a	description	of	the	various	header	styles
supported	by	LANSA	Web	functions,	refer	to
Header	Styles.

STDHEADER_STYLE3 STDHEADER	page	for	Style	#3	header	style.	This
is	the	non-scrolling	header	style.	If	you	want	to	use
this	header	style,	copy	this	page	to	be	the
STDHEADER	page	in	your	system.
For	a	description	of	the	various	header	styles
supported	by	LANSA	Web	functions,	refer	to
Header	Styles.

STDPRINT Default	page	for	entry	of	spooled	file	selection
criteria.
This	is	the	default	page	that	is	displayed	in	response
to	a	PRINT	request	to	the	CGI	script	program
LANSAWEB.	LANSA	will	use	a	MY_STDPRINT
page	if	available,	otherwise	it	will	use	the
STDPRINT	page.	These	pages	are	retrieved	from
partition	"WEB",	language	"ENG".

its:lansa086.CHM::/LANSA/EDG600.htm
its:lansa086.CHM::/LANSA/EDG600.htm
its:lansa086.CHM::/LANSA/EDG600.htm

If	you	do	not	have	a	partition	"WEB",	contact	your
local	LANSA	product	vendor	for	technical	support.

STDREPORTLIST Default	page	for	display	of	spooled	file	list
This	is	the	default	page	that	displays	the	list	of
spooled	files	that	match	the	selection	criteria
entered	in	the	STDPRINT	page.	LANSA	will	use	a
MY_STDREPORTLIST	page	if	available,
otherwise	it	will	use	the	STDREPORTLIST	page.
These	pages	are	retrieved	from	partition	"WEB",
language	"ENG".
If	you	do	not	have	a	partition	"WEB",	contact	your
local	LANSA	product	vendor	for	technical	support.

STDREPORT Default	page	for	display	of	a	spooled	file	details.
The	details	of	the	requested	spooled	file	are	merged
with	this	page	and	displayed	in	response	to	a
REPORT	request	to	the	CGI	script	program
LANSAWEB.	LANSA	Web	will	use
MY_STDREPORT	page	if	available,	otherwise	it
will	use	the	STDREPORT	page.	These	pages	are
retrieved	from	partition	"WEB",	language	"ENG".
If	you	do	not	have	a	partition	"WEB",	contact	your
local	LANSA	product	vendor	for	technical	support.

	

6.8	Special	XHTML	Pages
These	standard	XHTML	pages	are	shipped	with	LANSA	Web	functions.	They
are	used	to	embed	the	DOCTYPE	declaration	in	XHTML	documents:

Page Description

DTD_FRAMESET XHTML	1.0	Frameset	Document	Type	Definition.
The	XHTML	1.0	Frameset	DOCTYPE	declaration	is
merged	into	the	Web	page	when	the	tag	<RDML
MERGE="&DTD_FRAMESET">	is	found.
If	you	modify	this	page,	don't	include	RDML	tags.

DTD_STRICT XHTML	1.0	Strict	Document	Type	Definition.
The	XHTML	1.0	Strict	DOCTYPE	declaration	is
merged	into	the	Web	page	when	the	tag	<RDML
MERGE="&DTD_STRICT">	is	found.
If	you	modify	this	page,	don't	include	RDML	tags.

DTD_TRANSITIONAL XHTML	1.0	Transitional	Document	Type
Definition.
The	XHTML	1.0	Transitional	DOCTYPE
declaration	is	merged	into	the	Web	page	when	the
tag	<RDML
MERGE="&DTD_TRANSITIONAL">	is	found.
If	you	modify	this	page,	don't	include	RDML	tags.

	

For	more	details,	refer	to	LANSA	for	the	Web	XHTML.

its:LANSA086.CHM::/LANSA/EDI800.htm

6.9	Process	Specific	Page	Components
LANSA	Web	functions	allow	you	to	customize	some	of	the	shipped	page
components	to	be	process	specific.	The	following	components	can	be	defined	as
process	specific:

STDHEADER
STDFOOTER
STDBANNER

Whenever	LANSA	encounters	a	request	for	these	components,	it	will	search	for
a	process	specific	version	of	the	component.	If	the	process	specific	component
is	found,	it	will	automatically	be	used.	If	it	cannot	find	a	process	specific
component,	it	will	then	use	the	default	component.
To	create	a	process	specific	component,	you	must	create	a	page	Web	component
using	the	following	naming	convention:
			<process	name>_STDHEADER
			<process	name>_STDFOOTER
			<process	name>_STDBANNER
where	<process	name>	is	the	name	of	the	LANSA	process.	For	details	of
creating	page	Web	components,	refer	to	Page.
This	approach	in	customizing	the	header,	footer	and	banner	components	for
your	LANSA	processes	allow	you	to	tailor	individual	processes,	without	having
to	edit	any	of	the	generated	HTML.	The	customized	headers	and	footers	will	be
automatically	used	by	LANSA	Web	functions,	provided	the	components
conform	to	the	naming	convention.

WEB005	-	LANSA	Process	Pages

	

its:lansa086.CHM::/LANSA/ED0970.htm
its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm

7.	RDML	Tags
LANSA	automatically	embeds	special	tags	into	the	generated	HTML	pages	for
Web	functions.	These	tags	are	used	to	dynamically	build	a	required	page	when
served	to	the	client	device.	An	understanding	of	the	LANSA	tags	is	very
important	if	you	are	planning	to	modify	the	generated	HTML	pages.	Review	the
following:
7.1	What	are	LANSA	Tags?
7.2	How	Do	LANSA	Tags	Work?
7.3	LANSA	Tags	Example
7.4	Using	<RDML>	and	</RDML>	Tags
7.5	<RDML	BUTTON>
7.6	<RDML	CHECKVALUE>
7.7	<RDML	COMPONENT>
7.8	<RDML	COOKIES>
7.9	<RDML	FUNCTION>
7.10	<RDML	INCLUDE>
7.11	<RDML	LAYOUT>
7.12	<RDML	MERGE>
7.13	<RDML	MESSAGES>
7.14	<RDML	NOTCONDITION>
7.15	<RDML	ONCONDITION>
7.16	<RDML	ONMODE>
7.17	<RDML	PAGE>
7.18	<RDML	PARENT>
7.19	<RDML	SETTMPFLD>
7.20	<RDML	SSI>
7.21	<RDML	TRACE>
7.22	Reserved	Words

		WEB007	-	LANSA	Tags

its:lansa086.CHM::/LANSA/web07_TUTORIAL.htm

7.1	What	are	LANSA	Tags?
LANSA	Web	functions	have	special	tags	which	can	be	seen	when	editing	the
LANSA	generated	HTML.	These	tags	are	simply	instructions	to	LANSA	to
perform	certain	tasks	when	creating	the	final	version	of	the	HTML	page	which
will	be	transmitted	to	the	client	browser	or	other	computing	device.
LANSA	tags	are	identified	by	a	prefix	of	<RDML>.	For	example,
<RDML	COMPONENT="STDHEADER">

These	tags	are	automatically	embedded	as	part	of	the	generated	HTML
documents.	LANSA	tags	can	also	be	manually	added	by	the	developer.
These	tags	are	not	related	in	any	way	to	LANSA	RDML	commands	used	in
functions.	The	word	"RDML"	was	chosen	because	it	is	easily	identified	as	being
LANSA	related.
Once	the	generated	HTML	is	processed	by	LANSA	for	the	Web,	these	LANSA
tags	are	removed.	The	tags	do	not	appear	in	the	completed	HTML	page.
If	you	intend	to	create	LANSA	Web	components,	a	good	understanding	of	the
LANSA	tags	is	essential	as	they	will	allow	you	to	exploit	the	power	of	LANSA
for	the	Web	for	your	Web	Function	Applications.

		WEB007	-	LANSA	Tags

	

its:lansa086.CHM::/LANSA/web07_TUTORIAL.htm

7.2	How	Do	LANSA	Tags	Work?
Many	LANSA	tags	are	automatically	embedded	into	the	generated	HTML	for	a
Web	function.	For	example,	the	inclusion	of	the	standard	header	and	footer
components	are	achieved	using	LANSA	tags.	Input	fields	on	the	Web	page	and
Message	boxes	are	controlled	by	a	LANSA	tag.	These	tags	are	an	important	part
of	LANSA	generated	HTML.
A	Web	developer	may	choose	to	enhance	the	generated	HTML	using	the	Web
Function	Editor.	The	developer	can	modify	the	HTML	to	include	more	LANSA
tags.	For	example,	the	developer	might	add	a	Web	component	to	display	a	drop
down	box	for	an	input	field.
When	the	client	or	browser	requests	the	LANSA	Web	function,	the	LANSA	tags
are	decoded	as	the	HTML	is	dynamically	generated.	LANSA	will	follow	the
instructions	defined	by	the	LANSA	tags	when	creating	the	final	HTML	page.
For	example,	the	following	LANSA	tags:
Employee	Number	is	<RDML	MERGE="EMPNO">.

<RDML	ONCONDITON="EMPNO">
The	Employee	number	is	not	blank.
</RDML>
<RDML	NOTCONDITON="EMPNO">
The	Employee	number	is	blank.
</RDML>

will	tell	LANSA	to	insert	the	required	value	for	the	#EMPNO	field	and	will
determine	the	appropriate	text	to	display.	If	the	EMPNO	field	has	a	value	of
A0001,	then	the	final	HTML	sent	to	the	browser	will	appear	as	follows:
Employee	Number	is	A0001.
The	Employee	Number	is	not	blank.

If	the	EMPNO	field	is	blank,	then	the	final	HTML	sent	to	the	browser	will
appear	as	follows:
Employee	Number	is	.
The	Employee	Number	is	blank

Notice	that	when	the	document	is	served	to	the	browser	or	computing	device,	it
contains	no	LANSA	RDML	tags.	It	is	just	HTML.

WEB007	-	LANSA	Tags

its:lansa086.CHM::/LANSA/web07_TUTORIAL.htm

7.3	LANSA	Tags	Example
Consider	the	following	example	of	LANSA	generated	HTML	for	a	Web
function:
Line
1.			<html	xmlns="http://www.w3.org/1999/xhtml">
2.			<header><title>Enrol	Employee</title></header>
3.			<body	bgcolor="white"	background="
<RDML	MERGE="*LW3CLNTBKGND">">
4.			<form	action="/CGI-BIN/WEBPAGE?FUNCTION+
<RDML	MERGE="&SESSION">"	method="post">
5.			<RDML	COMPONENT="STDHEADER">
6.			<center><h1><RDML	MERGE="&FUNCTION"></h1></center>
7.			

8.			<RDML	MERGE="&MESSAGES">
9.			<td><h3><RDML	MERGE="EMPNO"></h3></td>

The	LANSA	tags	include	instructions	for	LANSA	to:
set	the	background	to	the	image	you	have	configured	(line	#3)
set	the	session	information	(line	#4)
include	the	Standard	Header	page	(line	#5)
display	the	Function	description	(line	#6)
display	LANSA	messages	if	there	are	any	(line	#8)
display	the	multilingual	description	of	the	field	(line	#9).

It	is	important	to	remember	that	the	tags	only	appear	in	the	internal	LANSA
HTML	documents.	The	following	line	of	HTML:
<center><h1><RDML	MERGE="&FUNCTION"></h1></center>

might	appear	as	follows	in	the	final	HTML	presented	to	the	browser:
<center><h1>Enrol	Employee<h1></center>

after	the	function	name	has	been	dynamically	inserted	into	the	HTML.

WEB007	-	LANSA	Tags

its:lansa086.CHM::/LANSA/WEB07_TUTORIAL.htm

7.4	Using	<RDML>	and	</RDML>	Tags
The	LANSA	<RDML>	tags	can	be	used	almost	anywhere	in	your	Web	function
HTML	pages.	For	example:
<body	background="<RDML	MERGE="*LW3CLNTBKGND">">

will	insert	the	background	color	(using	the	*LW3CNTBKGND	graphic
variable)	into	the	HTML	tag.
If	you	have	a	LANSA	<RDML>	tag	which	has	an	associated	</RDML>	end
tag,	then	the	</RDML>	tag	must	be	used	in	a	separate	line	and	it	must	not
contain	any	other	LANSA	tags.
The	following	is	an	example	of	the	proper	syntax	with	the	</RDML>	on	a
separate	line:
<RDML	BUTTON="&HELP">
<input	type="image"	name="&CANCEL"	src="
<RDML	MERGE="*LW3IMGHELP">"	/>
</RDML>

Do	NOT	use	the	following	types	of	statements:
<RDML	BUTTON="&HELP">
<input	type="image"	name="&CANCEL"	src="
<RDML	MERGE="*LW3IMGHELP">"	/></RDML>

As	shown	in	the	first	example,	you	can	include	additional	<RDML>	tags	within
an	<RDML>	</RDML>	pair,	but	you	cannot	embed	an	<RDML>	tag	within
another	tag.
Do	NOT	use	the	following	type	of	statements:
<RDML	COMPONENT="<RDML	MERGE="EMPNO">">

WEB007	-	LANSA	Tags

its:lansa086.CHM::/LANSA/WEB07_TUTORIAL.htm

7.5	<RDML	BUTTON>

Syntax: <RDML	BUTTON="<button>">
</RDML>

Description: These	tags	are	used	to	check	the	status	of	the	specified	button	in
the	LANSA	Web	function.	If	the	particular	button	is	not	enabled
in	the	function,	the	lines	encapsulated	by	these	tags	are	ignored
by	LANSA	for	the	Web.	Otherwise,	the	lines	are	processed
accordingly.
The	<button>	value	can	be	one	of	the	following	7.22	Reserved
Words:
&EXIT
&CANCEL
&ADD
&DELETE
&CHANGE
&PROMPT
&USER1
&USER2
&USER3
&USER4
&USER5
There	is	a	special	value,	&WEBEVENT,	which	is	used	in
conjunction	with	WEBEVENT	functions.	In	this	case,	if	the
function	is	a	WEBEVENT	function,	the	lines	encapsulated	by
these	tags	are	ignored.

Consider	the	following	example:
<RDML	BUTTON="&USER1">
			<input	type="image"	src="/IMAGES/USER1.GIF"	name="&USER1"	/>
			Click	this	button	to	search
</RDML>

If	the	Web	function	has	a	user	key1	specified	in	the	DISPLAY	or	REQUEST
command,	(e.g.	REQUEST	FIELDS(#GROUP1)	DESIGN(*DOWN)

USER_KEYS((01	'Search')),	then	the	statements	within	the	start	and	end	tags
are	executed.	In	this	case,	an	image	will	be	displayed	for	the	button	along	with
some	text.
The	<RDML	BUTTON>	tag	should	not	be	confused	with	the	<RDML
MERGE=&BUTTONS>	tag.	The	merge	tag	is	used	to	embed	the	active	buttons
into	the	HTML	page	whereas	the	<RDML	BUTTON>	tag	is	used	to	control
whether	or	not	a	block	of	HTML	lines	will	be	executed.

7.6	<RDML	CHECKVALUE>

Syntax: <RDML	CHECK	VALUE="YES">
</RDML>

Description: These	tags	instruct	LANSA	to	compare	the	current	field	value
with	the	value	of	each	option	in	the	Visual	Web	component.	If
the	values	match,	the	HTML	line	is	modified	to	make	that
particular	option	selected.
In	addition,	these	tags	also	instruct	LANSA	to	modify	the	name
of	the	component	accordingly	–	whether	it	is	in	a	WEBEVENT
function	or	used	in	a	browse	list.

For	example,	a	drop	down	Visual	Web	component	might	include	the	following:
<RDML	CHECKVALUE="YES">
<select	size="1"	name="GENDER">
<option	value="M">Male</option>
<option	value="F">Female</option>
</select>
</RDML>

<RDML	CHECKVALUE>	is	an	instruction	to	LANSA	to	compare	the	current
value	of	the	field	with	the	values	indicated	by	the	individual	parts	contained	in
the	Visual	Web	component.	If	a	matching	value	is	found,	LANSA	modifies	the
HTML	line	to	highlight	the	value	selected.
In	the	above	example,	if	the	current	value	is	"F",	LANSA	will	modify	the	line
containing	the	value	and	insert	the	HTML	attribute	selected="selected"	in	the
corresponding	<option>	element.	When	the	browser	displays	this	Web
component,	the	"Female"	entry	in	the	drop	down	is	selected	automatically.

7.7	<RDML	COMPONENT>

Syntax: <RDML	COMPONENT="<component>"	MODE="<mode>">
	

Description: This	tag	instructs	LANSA	to	include	components	into	the	HTML
page	being	processed.	It	allows	you	to	use	the	Web	component
technology	provided	by	LANSA	Web	functions.
The	MODE	keyword	allows	you	to	specify	the	correct
component	to	use	according	to	the	screen	mode.	The	mode	can
be	either	"I"	(input	mode)	or	"O"	(output	mode).	This	keyword	is
used	for	mode	dependent	Web	components	and	is	optional.
LANSA	Web	functions	allow	you	to	dynamically	define	the
component	you	want	to	use	in	conjunction	with	this	tag.	If	you
want	to	dynamically	set	the	component	name,	the	syntax	of	the
tag	is:
<RDML	COMPONENT="&FLD_<field	name>">
where	<field	name>	is	the	name	of	your	field	in	the	RDML
function.	This	is	the	field	that	contains	the	name	of	the	actual
component	to	use	with	the	tag.	The	value	of	the	field	should	be
set	in	the	RDML	function.
	

Once	the	<RDML	COMPONENT>	tag	is	embedded	into	the	HTML,	you	can
change	the	definition	of	the	Web	component	without	having	to	edit	the	function
or	to	recompile	the	function.	You	can	modify	the	contents	of	the	Web
component	independently.
For	example,	you	can	change	the	Visual	Web	component	type	from	a	drop	down
to	a	set	of	radio	buttons	by	just	changing	the	definition	of	the	Visual	Web
component.	Once	the	change	is	made,	it	will	be	reflected	dynamically	when	the
Web	component	is	next	used.	There	is	no	recompiling	or	editing	of	the	HTML
required.
The	following	example	instructs	LANSA	to	include	a	standard	HTML	header	in
the	page:
<RDML	COMPONENT="STDHEADER">	

The	MODE	keyword	allows	you	to	specify	whether	the	component	is	used	for
input	or	output,	i.e.	is	the	user	entering	data	or	is	data	simply	being	displayed	to

the	user.	For	example:
						<RDML	COMPONENT="DEPT"	MODE="I">	

indicates	that	a	component	called	DEPT	should	be	embedded	when	the	page	is
used	for	entering	data	or	input.	This	component	might	be	a	drop	down	list	or	a
set	of	radio	buttons	which	are	used	to	enter	a	department	code.

Dynamic	Embedding	of	Components
LANSA	Web	functions	allow	you	to	dynamically	define	the	component	you
want	to	use	in	conjunction	with	the	<RDML	COMPONENT>	tag.	This	is	done
by	using	the	special	"&FLD_"	designation	with	a	field	in	your	RDML	function.
For	example:
<RDML	COMPONENT="&FLD_DEPTMENT">	

In	your	RDML	function,	the	DEPTMENT	field	will	contain	the	name	of	the
component	which	you	want	to	embed	in	your	application.	For	instance,	if	you
were	to	CHANGE	FIELD(#DEPTMENT)	TO(ADM)	in	your	function,	then	a
component	named	ADM	would	be	used.	This	is	similar	to	using	the	following
statement:
<RDML	COMPONENT="ADM">	

By	using	the	&FLD_	feature,	you	are	able	to	set	the	component	name	in	your
function	rather	than	coding	the	value	into	your	HTML	page.

7.8	<RDML	COOKIES>

Syntax: <RDML	COOKIES="<page	name>">
	

Description: This	tag	allows	you	to	set	cookies	in	your	application	for	your
own	specific	purposes.
If	you	want	to	use	this	tag,	this	tag	must	precede	the	<RDML
LAYOUT>	tag	in	the	page.
	

A	cookie	is	a	small	piece	of	information	which	you	can	store	on	the	client	with	a
Web	browser.	At	a	later	time,	you	can	retrieve	the	information	back	from	the
browser.	For	example,	cookies	can	be	used	by	your	application	to	identify	the
user.	LANSA	allows	you	to	treat	cookies	as	fields	in	your	application.	You	can
regard	cookies	as	LANSA	fields	in	your	RDML	function.	Cookies	are	not	used
by	the	LANSA	web	function	transaction	server	to	maintain	a	persistent	state	in
your	application.
To	set	a	cookie	in	your	Web	function,	you	will	need	to	edit	the	HTML	generated
for	the	function	to	include	the	LANSA	cookie	tag:
<RDML	COOKIES="&UDCOOKIES">
<RDML	LAYOUT>
<!--	Process		:	PCTEST			PC	Test									-->
<!--	Function	:	TESTFUN		Test	Function			-->
<!--	Page					:	001																						-->

The	<RDML	COOKIES>	tag	should	be	one	of	the	first	lines	on	the	page	and	it
must	not	be	indented.	It	must	precede	the	<RDML	LAYOUT>	tag.
In	this	example,	a	page	called	DEFAULT_UDCOOKIES	is	used.	For	more
details	about	user	defined	pages,	refer	to	User	Defined	Default	Pages.	This	page
can	be	created	with	the	Web	Function	Editor	and	might	contain	the	following
statement:
								USRID=<RDML	MERGE="EMPNO">;	expires=Fri,	23
Jun	2000	07:00:00	GMT
								USRNM=<RDML	MERGE="SURNAME">;	expires=Fri,	23
Jun	2000	07:00:00	GMT

In	this	example,	two	cookies,	USRID	and	USRNM,	are	set	and	will	be	stored	on
the	client	by	the	browser.	The	cookie	USRID	contains	the	value	of	the	EMPNO

its:lansa086.CHM::/LANSA/ED0660.HTM

field	and	the	USRNM	cookie	contains	the	value	of	the	SURNAME	field.
Once	you	have	set	the	cookies	for	your	application,	the	cookies	will	be	returned
to	any	of	your	LANSA	applications	as	LANSA	fields.	In	the	example	above,	if
you	want	to	read	the	value	of	the	cookies,	you	will	need	to	define	fields	in	your
RDML	function	for	USRID	and	USRNM.
Cookies	are	created	and	stored	with	the	CGI-BIN	location	as	the	name.	When	a
process	is	setup	with	authentication	a	cookie	will	be	created	to	correspond	to	the
AUTHLIB	location.	For	any	subsequent	requests,	the	cookies	will	revert	to
using	the	CGI-BIN	location.

A	client	browser	can	be	defined	to	not	accept	cookies.	You	must	be
careful	about	how	you	plan	to	use	cookies	in	your	application.

7.9	<RDML	FUNCTION>

Syntax: <RDML	FUNCTION>
	

Description: This	tag	is	used	by	the	e-Business	Framework	Wizard	in	the
layout	pages	and	instructs	LANSA	to	embed	the	HTML	for	your
function	at	a	particular	point	in	the	layout.
Do	not	modify	this	tag.
	

For	example,	the	DEFAULT_LAYOUT	pages	might	appear	something	like	the
following:
<RDML	MERGE="&DTD_TRANSITIONAL">
<html	xmlns="http://www.w3.org/1999/xhtml">
<head>
<title><RDML	MERGE="&FUNCTION"></title>
<meta	http-equiv="content-type"	content="text/html;	charset=iso-8859-1">
<RDML	MERGE="&STYLE">
</head>
<RDML	MERGE="&STYLE">
<RDML	MERGE="&SCRIPT">
	
<body	bgcolor="<RDML	MERGE="*LW3CLNTCOLOR">"		background="
<RDML	MERGE="*LW3CLNTBKGND">">
<RDML	FUNCTION>
</body>
</html>
	

7.10	<RDML	INCLUDE>

Syntax: <RDML	INCLUDE="<field	name>">

Description: This	tag	can	be	used	to	include	the	contents	of	a	physical	file
into	the	HTML	output.	The	filename	of	the	file	to	be	included	is
given	by	the	value	of	the	field	specified.	This	can	be	used	as	an
alternative	to	the	SSI	#include	instruction.
The	filename	given	must	be	a	full	absolute	path	valid	for	the
underlying	operating	system.	On	iSeries,	the	filename	must	be
valid	for	the	IFS.
The	content	of	the	file	to	be	included	should	be	in	native
encoding	of	the	underlying	operating	system,	for	example,	on
iSeries,	the	file	is	normally	encoded	in	EBCDIC.
Note	that	the	user	profile	used	to	run	LANSA	for	the	Web	needs
to	have	sufficient	privileges	to	read	the	file	to	be	included.
If	the	file	to	be	included	does	not	exist	or	cannot	be	read,	the
message	"404	Object	Not	Found"	will	be	included	instead.

For	example,	on	iSeries,	if	a	field	named	INCFILE	contains	the	value
"/temp/inc.html"	and	for	the	following	HTML:
Some	text	before	include

<RDML	INCLUDE="INCFILE">
Other	text	after	include

	

The	content	of	the	file	"/temp/inc.html"	on	the	IFS	will	be	included	between	the
two	text	only	lines.
On	Windows,	the	field	should	contain	a	value	like	"C:\Temp\inc.html".

7.11	<RDML	LAYOUT>

Syntax: <RDML	LAYOUT	HEADER="<header	page>">
	

Description: This	tag	instructs	LANSA	to	use	a	layout	page.	It	looks	for	a
process	specific	layout	page,	<process	name>_LAYOUT.	If	it
does	not	exist,	the	default	layout	page,	DEFAULT_LAYOUT,	is
used.
This	tag	is	generated	by	LANSA.
If	you	want	to	use	a	specific	header	page	with	a	particular
function,	you	will	need	to	edit	the	HTML	page	for	the	Web
function	and	extend	this	tag	to	include	the	HEADER	attribute.	In
this	case,	<header	page>	is	the	name	of	the	page	containing	the
header	information	for	the	function.
	

In	your	LANSA	Web	functions,	this	tag	will	most	often	appear	as	follows:
<RDML	LAYOUT>
<!--	Process		:	IIPROC01			Test	Process											-->
<!--	Function	:	IIFN001				Display	Sections							-->
<!--	Page					:	001																															-->

Do	NOT	remove	this	tag	as	it	is	required	if	you	are	using	the	e-Business
Framework	Wizard.
If	you	wish	to	use	a	specific	header	page,	you	can	use	the	following	tag:
<RDML	LAYOUT	HEADER="header1">

where	"header1"	is	the	HTML	page	created	with	the	Web	Function	Editor.

7.12	<RDML	MERGE>

Syntax: <RDML	MERGE="<field>"	EDITCODEI="<value>"
EDITWORDI="<value>"	EDITCODEO="<value>"
EDITWORDO="<value>">
	

Description: This	tag	instructs	LANSA	to	merge	specific	fields	or	information
into	the	document.	The	<field>	can	be:
A	field	defined	in	your	Web	function.
A	system	variable.
A	LANSA	Web	function	reserved	keyword.	(For	a	list	of
reserved	keywords,	refer	to	7.22	Reserved	Words).	Field
names	prefixed	by	either	the	'@'	or	'&'	character	are	reserved.

The	EDITCODE	and	EDITWORD	attributes	are	automatically
inserted	by	LANSA	based	on	the	field	definitions	in	the	LANSA
repository.	If	input	mode,	EDITCODEI	and	EDITWORDI	will
be	used.	If	output	mode,	then	EDITCODEO	and	EDITWORDO
will	be	used.	Do	not	change	these	parameters.
	

For	example,	to	set	the	background	image	for	the	HTML	page	you	could	use	the
following:
<body	background="<RDML	MERGE="*LW3CLNTBKGND">">

To	include	the	company	LANSA	system	variable	into	an	HTML	heading,	you
would	use:
<h1><RDML	MERGE="*COMPANY"></h1>

To	merge	the	field	#EMPNO	from	your	RDML	function,	you	would	use:
<RDML	MERGE="EMPNO">

In	multilingual	applications,	this	token	represents	the	description	for	a	particular
field:
<RDML	MERGE="&T0001+0001+0034">

To	include	the	function	name	using	the	&FUNCTION	reserved	word,	you
would	use:
<RDML	MERGE="&FUNCTION">

To	include	the	workstation	messages,	you	would	use:
<RDML	MERGE="&MESSAGES">

If	there	are	any	function	keys	which	were	not	handled	in	the	STDHEADER,	this
tag	will	cause	them	to	be	displayed	as	buttons	on	the	Web	page:
<RDML	MERGE="&BUTTONS">

For	details	of	using	the	MERGE	tag	for	data	apportionment,	refer	to	Automatic
Data	Apportionment.

its:lansa086.CHM::/LANSA/ED1210.htm

7.13	<RDML	MESSAGES>

Syntax: <RDML	MESSAGES>
	

Description: This	tag	instructs	LANSA	to	use	the	line	containing	this	tag
repetitively,	once	for	each	message	in	the	application.	If	you	are
not	using	a	customized	message	presentation,	you	will	not	use
this	tag.
The	RDML	MESSAGES	tag	is	used	in	a	message	presentation
layout	standard	page	such	as	DEFAULT_MSGPRES	or
<processname>_MSGPRES.
The	line	containing	the	<RDML	MESSAGES>	tag	cannot
contain	any	other	LANSA	tags.
	

For	example,	the	following	is	a	sample	standard	message	layout	which	you
might	find	in	the	DEFAULT_MSGPRES	page:
<table	border="0"	cellpadding="3"	cellspacing="0"	width="100%">
<tr	bgcolor="cyan">
<td><img	src="
<RDML	MERGE="*LW3IMGMESSAGES">"	alt="Messages"	border="0"
/></td>
<td>
<RDML	MESSAGES>
</td>
</tr>
</table>

The	<RDML	MESSAGES>	tag	in	the	line	is	replaced	by	the	message	in	the
application.
The	RDML	MESSAGES	tag	should	not	be	confused	with	the	<RDML
MERGE="&MESSAGES">	tag.	This	tag	is	used	in	your	standard	HTML	pages.
It	indicates	where	LANSA	should	embed	the	message	window.

7.14	<RDML	NOTCONDITION>

Syntax: <RDML	NOTCONDITION="<field>"	VALUE="<value>">
</RDML>
	

Description: These	tags	are	used	by	LANSA	to	determine	if	the	lines
encapsulated	by	these	tags	should	be	sent	to	the	browser	or	not.
These	tags	allow	you	to	programmatically	set	the	contents	of	a
field	depending	on	certain	logical	conditions.
The	<field>	can	be:
A	field	in	your	LANSA	function.
A	system	variable.
A	reserved	keyword.

If	the	field,	<field>,	does	not	exist	or	the	contents	of	the	field	is
blank	or	zero,	then	the	lines	are	sent	to	the	browser,	provided	the
<value>	parameter	is	not	specified.
The		<value>	parameter	is	optional.	If	the	<value>	is	specified,
then	the	lines	are	only	sent	to	the	browser	if	the	current	field
value	does	not	match	the	value	parameter.
There	are	reserved	<field>	values.	These	are	special	instructions
for	LANSA	Web	functions.	These	are:
&DEBUG

Check	if	batch	debugging	is	enabled	in	the	initial	URL	request.
If	it	is,	the	subsequent	URL	is	modified	to	include	the	BDEBUG
keyword	before	the	request	is	submitted.
&TASK

Check	if	a	task	identifier	is	specified	in	the	initial	URL	request.
If	it	is,	the	subsequent	URL	is	modified	to	include	the	TASK_ID
keyword	and	the	task	identifier	before	the	request	is	submitted.
&USETMPFLD<index>

This	is	an	instruction	to	check	the	HTML	working	fields
identified	by	<index>.	The	<RDML	SETTMPFLD>	tag	is	used
to	set	the	values	of	these	working	fields.	This	specialized	field	is
used	to	retrieve	a	particular	working	field.	Do	not	use	this

keyword	if	you	do	not	understand	this	description!
	

If	the	field	is	numeric	and	fieldname	does	not	exist	or	the	value	is	"0",	then	the
lines	encapsulated	by	the	tags	ARE	sent	to	the	browser.
If	the	field	is	alpha	and	fieldname	does	not	exist	or	the	value	is	"0"	or	is	blank,
then	the	lines	encapsulated	by	the	tags	ARE	sent	to	the	browser.
Consider	the	following	example:
<RDML	NOTCONDITION="DISCOUNT">
			<h2>You	do	not	have	a	discount.</h2>
</RDML>	

If	the	field	DISCOUNT	does	not	exist,	then	the	user	will	see	the	message.
Let	the	DISCOUNT	field	be	numeric.	If	in	the	RDML	function	the	DISCOUNT
field	is	0,	then	the	HTML	will	be	used	and	the	message	will	be	displayed	to	the
user.	When	the	discount	is	not	zero,	the	user	will	not	see	the	message.
Let	the	DISCOUNT	field	be	alpha.	If	in	the	RDML	function	the	DISCOUNT
field	is	blank,	then	the	HTML	will	be	used	and	the	message	will	be	displayed	to
the	user.	If	the	discount	is	"50	percent",	then	the	user	will	not	see	the	discount
message	displayed.

7.15	<RDML	ONCONDITION>

Syntax: <RDML	ONCONDITION="<field>"	VALUE="<value>">
</RDML>
	

Description: These	tags	are	used	by	LANSA	to	determine	if	the	lines
encapsulated	by	these	tags	should	be	sent	to	the	browser	or	not.
These	tags	allow	you	to	programmatically	set	the	contents	of	a
field	depending	on	certain	logical	conditions.
The	<field>	can	be:
A	field	in	your	LANSA	Web	function.
A	system	variable.
A	reserved	keyword.

If	the	field,	<field>,	exists	or	the	contents	of	the	field	is	non-
blank	or	not	zero,	then	the	lines	are	sent	to	the	browser,	provided
the	<value>	parameter	is	not	specified.
The		<value>	parameter	is	optional.	If	the	<value>	is	specified,
then	the	lines	are	only	sent	to	the	browser	if	the	current	field
value	matches	the	value	parameter.
There	are	reserved	<field>	values.	These	are	special	instructions
for	LANSA	Web	functions.	These	are:
&DEBUG

Check	if	batch	debugging	is	enabled	in	the	initial	URL	request.
If	it	is,	the	subsequent	URL	is	modified	to	include	the	BDEBUG
keyword	before	the	request	is	submitted.
&TASK

Check	if	a	task	identifier	is	specified	in	the	initial	URL	request.
If	it	is,	the	subsequent	URL	is	modified	to	include	the	TASK_ID
keyword	and	the	task	identifier	before	the	request	is	submitted.
&USETMPFLD<index>

This	is	an	instruction	to	check	the	HTML	working	fields
identified	by	<index>.	The	<RDML	SETTMPFLD>	tag	is	used
to	set	the	values	of	these	working	fields.	This	specialized	field	is
used	to	retrieve	a	particular	working	field.	Do	not	use	this

keyword	if	you	do	not	understand	this	description.
	

If	the	field	is	numeric	and	fieldname	does	not	exist	or	the	value	is	"0",	then	the
lines	encapsulated	by	the	tags	ARE	NOT	sent	to	the	browser.
If	the	field	is	alpha	and	fieldname	does	not	exist	or	the	value	is	"0"	or	is	blank,
then	the	lines	encapsulated	by	the	tags	ARE	NOT	sent	to	the	browser.
Consider	the	following	example:
<RDML	ONCONDITION="DISCOUNT">
			<h2>Your	discount	amount	is:</h2>
			<RDML	MERGE="DISCOUNT">
</RDML>	

If	the	field	DISCOUNT	exists,	then	the	user	will	see	the	message.
Let	the	DISCOUNT	field	be	numeric.	If	in	the	RDML	function	the	DISCOUNT
field	is	"0",	then	the	HTML	will	not	be	used	and	information	about	the	discount
will	not	be	displayed	to	the	user.	When	the	discount	is	not	zero,	the	user	will	see
the	discount	amount	displayed.
Let	the	DISCOUNT	field	be	alpha.	If	in	the	RDML	function	the	DISCOUNT
field	is	blank,	then	the	HTML	will	not	be	used	and	information	about	the
discount	will	not	be	displayed	to	the	user.	If	the	discount	is	"50	percent",	then
the	user	will	see	the	discount	amount	displayed.
The	following	example	uses	a	value:
<RDML	ONCONDITION="DISCOUNT"	VALUE="50">
			<h2>Your	discount	amount	is	50.</h2>
			<RDML	MERGE="DISCOUNT">
</RDML>

7.16	<RDML	ONMODE>

Syntax: <RDML	ONMODE="<mode>">
</RDML>
	

Description: These	tags	are	generated	when	you	compile	your	functions	that
may	have	more	than	one	mode	of	operation	for	a	particular
screen	display.	These	tags	instruct	LANSA	to	carry	out	various
screen	instructions	(the	lines	encapsulated	by	these	tags)	based
on	the	current	mode	of	operation.
The	valid	values	for	<mode>	are:
ADD		-		Add
CHG		-		Change
DLT		-		Delete
DSP		-		Display

These	tags	are	used	internally	by	LANSA	Web	functions.	You
should	not	modify	these	tags.
	

The	ONMODE	tags	are	used	in	the	HTML	generated	for	a	LANSA	Web
function	when	there	is	more	than	one	mode	of	operation	for	a	particular	screen
display.	For	example,	an	RDML	DISPLAY	statement	may	have	ADD,
CHANGE,	DELETE	and	DISPLAY	modes.
Consider	the	following	example:
<h2>Employee	Number:	</h2>
<RDML	ONMODE="ADD">
<input	type="text"	name="EMPNO"	size="5"	value=""	/>
</RDML>
<RDML	ONMODE="DIS">
<RDML	MERGE="EMPNO">
</RDML>

If	the	DISPLAY	is	in	an	ADD	mode,	the	user	will	be	expected	to	enter	a	value
for	EMPNO	so	the	following	HTML	is	sent	to	the	user's	browser:
	<input	type="text"	name="EMPNO"	size="5"	value=""	/>

but	when	information	is	only	being	displayed	to	the	user,	the	following

instruction	is	used:
	<RDML	MERGE="EMPNO">

which	simply	displays	EMPNO	as	an	output	field	in	the	user's	browser.

7.17	<RDML	PAGE>

Syntax: <RDML	PAGE="<page>">
	

Description: This	tag	instructs	LANSA	to	include	another	page	(identified	by
<page>)	from	the	LANSA	Web	Repository.
	

This	tag	is	useful	when	you	need	to	create	a	process	specific	default	page,	but
you	still	want	to	include	the	original	default	page	itself.
For	example,	you	may	want	to	include	an	additional	JavaScript	function	for	the
PSLSYS	process,	but	still	use	all	the	other	JavaScript	functions	shipped	in
DEFAULT_SCRIPT.	When	you	create	the	PSLSYS_SCRIPT	page,	the
DEFAULT_SCRIPT	page	is	no	longer	used.	To	overcome	this	problem,	you	use
the	RDML	PAGE	tag.	Your	PSLSYS_SCRIPT	page	might	appear	as	follows:
<script	type="text/javascript"	language="javascript">
//<![CDATA[
function	handleTest()
{
		your	new	function
}
//]]>
</script>
<RDML	PAGE="DEFAULT_SCRIPT">

7.18	<RDML	PARENT>

Syntax: <RDML	PARENT="<parent>">
	

Description: This	tag	is	used	by	the	e-Business	Framework	Wizard	when	you
choose	to	adopt	the	layout	of	a	particular	LANSA	process	from
another	LANSA	process.	It	will	instruct	LANSA	to	use	the
layout	definition	from	the	named	process.
For	more	details,	refer	to	the	Adopt	Layout	-	Technically
Speaking	in	the	Web	Functions	Wizard	Guide.

When	specifying	the	name	of	the	parent	for	the	LANSA	process,	do	not	use	the
same	LANSA	process	name	itself.	If	you	do	this,	it	will	cause	unpredictable
results	on	your	system.
The	PARENT	tag	will	have	no	impact	if	a	process	specific	layout	exists.	The
process	specific	components	will	be	used	over	the	adopted	components	in	the
parent	specified.
This	tag	is	commonly	used	in	the	process	specific	layout	pages.	For	example,	if
PROC01	is	going	to	adopt	the	layout	of	PROC02,	then	the	following	statement
would	appear	in	the	PROC01_LAYOUT	page:
<RDML	PARENT="PROC02">

its:LANSA089.CHM::/LANSA/ww4_055.htm

7.19	<RDML	SETTMPFLD>

Syntax: <RDML	SETTMPFLD="<index>"	VALUE="<value>">
	

Description: These	tags	are	used	internally	by	the	e-Business	Framework
Wizard.	Do	not	alter	these	tags	unless	you	are	extremely	familiar
with	the	technical	workings	of	the	Wizard.
LANSA	provides	you	with	10	working	fields	at	the	HTML	level.
These	fields	are	used	to	store	temporary	information	that	is
evaluated	when	the	HTML	is	processed.
The	temporary	information	is	only	valid	within	a	single	HTML
page	request.
The	<index>	is	base	0.	To	access	the	first	working	field,	you
need	to	use	0	as	the	<index>	parameter.
These	tags	are	intended	for	use	by	advanced	Web	developers
only.
	

For	example,	you	might	see	the	following	statements	if	you	have	used	the	e-
Business	Framework	Wizard:
<RDML	SETTMPFLD="10"	VALUE="1">	
<RDML	SETTMPFLD="11"	VALUE="1">
<RDML	SETTMPFLD="12"	VALUE="1">	

These	tags	are	used	to	control	the	menu	components	which	appear	in	the	layout.
	

7.20	<RDML	SSI>

Syntax: <RDML	SSI="<state>">
	

Description: This	tag	is	used	to	override	the	default	setting	for	Server	Side
Includes	(SSI)	support	as	set	by	the	LANSA	for	the	Web
Administrator.
The	<state>	can	be	either	ON	or	OFF.
The	main	use	of	this	tag	is	to	enable	SSI	support	at	a	function
level.	This	is	especially	useful	if	you	only	require	SSI	support	in
a	number	of	your	functions.
	

If	you	want	to	use	this	tag,	it	must	precede	the	<RDML	LAYOUT>	tag	in	the
page.
<RDML	SSI="ON">
<RDML	COOKIES="&UDCOOKIES">
<RDML	LAYOUT>
<!--	Process		:	PCTEST			P.C.	Test							-->
<!--	Function	:	TESTFUN		Test	Function			-->
<!--	Page					:	001																					-->

An	example	of	a	SSI	instruction	to	launch	a	LANSA	application	is:
<!--#exec	cgi="CGI-BIN/LANSAWEB?procfun+products+prodcat+web"	-->

An	example	of	an	SSI	instruction	to	include	a	static	page	is:
<!--#include	virtual="/prdinfo.shtml"	-->

7.21	<RDML	TRACE>

Syntax: <RDML	TRACE>
	

Description: This	tag	is	used	to	enable	event	logging.	This	tag	is	not
generated	by	LANSA.	It	is	recommended	that	if	you	wish	to	use
event	logging,	then	you	should	include	this	tag	in	your	layout
page.
This	tag	is	used	to	instruct	LANSA	to	look	up	the	trace	page	and
determine	which	level	of	tracing	is	to	be	applied	to	your
application.	The	appropriate	tracing	information	will	be	written
to	the	relevant	files	depending	on	the	keywords	specified	in	the
trace	file.
Note:	Event	Logging	is	only	available	when	compiled	with
extended	exchange	enabled.
For	more	information	review	Event	Logging.
	

its:LANSA086.CHM::/LANSA/gs0i110.htm

7.22	Reserved	Words
LANSA	Web	functions	uses	special	keywords	as	part	of	the	LANSA	tag
definitions.	These	keywords	are	prefixed	by	either	the	'@'	character	or	the	'&'
character.	Names	prefixed	by	either	the	'@'	or	'&'	character	are	reserved	for
internal	use	by	LANSA.
The	table	below	lists	the	major	keywords	used	by	LANSA	Web	functions.
These	keywords	are	generally	used	in	conjunction	with	the	<RDML	MERGE>
tag.	(The	keywords	are	also	used	with	the	RDML	Button	tag.)	You	can	use	any
of	these	reserved	keywords	to	merge	any	of	these	fields	into	your	application.

Keyword Description

&ADD Display	the	Add	key	as	a	button.

&BL<list	name> Display	the	browse	list	identified	by	<list	name>.

&BUTTONS Display	the	buttons	(function	keys)	of	the	function.

&BV_<button> Retrieve	the	description	of	the	button	specified	in	<button>.

&CANCEL Display	the	Cancel	key	as	a	button.

&CGI Merge	the	path	where	the	CGI	interface	program	is	installed.	This	is	based	on	your
LANSA	for	the	Web	configuration.

&CHANGE Display	the	Change	key	as	a	button.

&CHECKNUMERIC This	is	used	in	DEFAULT_SCRIPT	page	to	condition	some	javascript	functions	that	are
used	to	validate	numeric	data	in	the	browser

&DBCS This	is	used	in	DEFAULT_SCRIPT	page	to	condition	some	javascript	functions	that	are
used	to	validate	DBCS	and	SBCS	data.

&DD<drop	down	name> Processes	the	field	to	be	a	drop	down.	Data	for	the	drop	down	is	handled	by	your	LANSA
Web	function.
This	tag	can	be	extended	manually	by	using	the	SIZE,	SPLIT	and	OFFSET	attributes.
The	SIZE	attribute	allows	you	to	visualize	the	drop	down	as	a	list	box.	The	OFFSET	and
SPLIT	attributes	allow	you	to	manipulate	the	presentation	of	the	data.
The	example	below	is	a	list	box	for	the	DEPTMENT	field.	It	instructs	LANSA	for	the	Web
to	apportion	the	first	4	characters	as	the	VALUE	to	return	to	the	program.	Since	the	SPLIT
keyword	is	used,	the	description	displayed	in	the	list	box	is	the	text	offset	by	4.

<RDML	MERGE="&DDD01"	FIELD="DEPTMENT"	OFFSET="4"	SPLIT	SIZE="5">
&DEBUG Determine	if	batch	debugging	is	on.	If	batch	debugging	is	enabled,	the	URL	is	modified	to

append	the	appropriate	keywords.

&DELETE Display	the	Delete	key	as	a	button.

&DEVICE Merge	the	device	name	specified	for	batch	debugging.

&DTD_FRAMESET Merge	the	XHTML	1.0	Frameset	DOCTYPE	declaration.

&DTD_STRICT Merge	the	XHTML	1.0	Strict	DOCTYPE	declaration.

&DTD_TRANSITIONAL Merge	the	XHTML	1.0	Transitional	DOCTYPE	declaration.

&END The	<RDML	MERGE="&END">	tag	was	introduced	to	help	sites	with	high	hit	rates.	This
tag	allows	LWEB_JOB	jobs	to	return	to	the	pool	of	free	jobs	immediately.	For	more
details,	refer	Using	<RDML	MERGE="&END">.

&EXIT Display	the	Exit	key	as	a	button.

&FUNCHELP Display	the	help	text	associated	with	the	selected	field.

&FUNCNAME Embeds	the	current	function	name.

&FUNCTION Display	the	function	description.

&HEADER Merge	in	the	header	information	for	the	page.
If	the	HEADER	attribute	is	specified	in	the	<RDML	LAYOUT>	tag,	the	header	page
associated	with	the	attribute	is	used.	If	not,	LANSA	will	look	for	a	process	specific	header
page.	If	it	does	not	exist,	then	it	will	look	for	the	default	header	page,
DEFAULT_HEADER.

&HELP Display	the	Help	key	as	a	button.

&HIDDEN Embed	the	hidden	fields	used	by	LANSA	Web	functions.	These	hidden	fields	are	used
internally	and	are	defined	in	the	DEFAULT_HIDDEN	page.

&HMENU Merge	the	Horizontal	Menu	component.	This	tag	is	used	in	the	presentation	layout	by	the
e-Business	Framework	Wizard.

&IMAGE Merge	the	location	where	the	images	are	stored.	This	is	based	on	your	LANSA	for	the	Web
configuration.

&JOBID Merge	the	job	identifier	of	the	LANSA	job.
Note	that	this	attribute	must	not	be	used	as	a	unique	identifier	for	your	user	jobs,	especially

its:lansa086.CHM::/LANSA/ED1230.htm

if	your	applications	consist	of	WEBEVENT	functions.
WEBEVENT	functions	are	restarted	automatically	when	the	jobs	time	out.	These	restarted
jobs	may	be	assigned	to	a	different	job.

&LINKDESC Embeds	Description	of	User	Key	in	WEBEVENT	functions.

&LINKFUNC Embeds	Linked	Function	Name	of	User	Key	in	WEBEVENT	functions.

&LINKPROC Embeds	Linked	Process	Name	of	User	Key	in	WEBEVENT	functions.

&LMENU Merge	the	Left	Menu	component.	This	tag	is	used	in	the	presentation	layout	by	the	e-
Business	Framework	Wizard.

&MESSAGES Check	if	there	are	any	LANSA	messages.	If	there	are	messages,	display	the	messages.

&MSGQ Merge	the	message	queue	specified	for	batch	debugging.

&PAGE Embeds	the	current	page	identifier.

&PARTITION Embeds	the	current	LANSA	partition.

&PARTLANG Embeds	the	current	LANSA	partition	language.

&PROCNAME Embeds	the	current	process	name.

&PROMPT Display	the	Prompt	key	as	a	button.

&RMENU Merge	the	Right	Menu	component.	This	tag	is	used	in	the	presentation	layout	by	the	e-
Business	Framework	Wizard.

&ROWNUM This	keyword	must	only	be	used	in	browse	list	components.	It	merges	the	current	entry
number	of	the	browse	list	data.
An	optional	attribute	for	this	tag	is	the	FORMAT	keyword.	This	attribute	allows	you	to
format	the	row	number.	For	example,
<RDML	MERGE="&ROWNUM"	FORMAT="4">

instructs	LANSA	to	format	the	row	number	as	a	4-digit	string,	padded	with	leading	zeros,
if	necessary.
Typically,	this	tag	is	used	if	you	want	to	configure	your	own	browse	list	component	with	an
appropriate	name.	In	this	case,	the	NAME	attribute	of	your	component	would	be:
NAME="__<field	name>-<RDML	MERGE="&ROWNUM"	FORMAT="4">	D"

where	<field	name>	is	the	name	of	the	field	padded	with	trailing	blanks	up	to	10
characters.
For	an	example,	refer	to	the	SET	Collection.

&SCRIPT Embed	the	JavaScript	functions	into	the	function.	The	functions	are	defined	in	the
DEFAULT_SCRIPT	page.

&SESSION Include	the	encoded	session	identifier.

&SESSPL Include	the	encoded	session	identifier	and	the	partition	and	the	language.

&STYLE Embeds	the	CSS	page,	if	a	CSS	page	exists.

&TASK Merge	the	current	task	identifier.

&Tnnn+ssss+eeee Retrieve	the	multilingual	description	for	the	field.

&TRACEID This	is	used	for	event	logging.	When	event	logging	is	enabled,	a	trace	identifier	is
allocated	for	each	unique	user	to	your	site.	This	tag	instructs	LANSA	for	the	Web	to	merge
the	trace	identifier.

&UD<user	defined	page> Embeds	the	user	defined	page.	LANSA	will	initially	try	to	use	the	process	level	page,
identified	by	<process>_UD<user	defined	page>.	If	this	page	cannot	be	found,	it	will	use
the	DEFAULT_UD<user	defined	page>	page.

&USER1 Displays	the	user	defined	key	#1	as	a	button.

&USER2 Displays	the	user	defined	key	#2	as	a	button.

&USER3 Displays	the	user	defined	key	#3	as	a	button.

&USER4 Displays	the	user	defined	key	#4	as	a	button.

&USER5 Displays	the	user	defined	key	#5	as	a	button.

	

	

8.	Graphic	Variables

The	e-Business	Framework	Wizard	handles	the	common	set	of	graphic
variables.	This	means	that	you	do	not	need	to	know	the	graphic
variables	in	detail.	For	example,	if	you	use	the	e-Business	Framework
Wizard,	you	do	not	need	to	know	the	name	of	the	graphic	variables.
The	Wizard	displays	the	descriptive	name	of	the	variables.	For	more
details,	refer	to	8.7	Graphic	Variables	and	the	e-Business	Framework
Wizard	and	refer	to	the	Web	Functions	Wizard	Guide.	See	System
Wide	Graphic	Variables.

You	only	need	to	read	this	section	if	you	want	to	have	a	detailed	knowledge	of
LANSA	graphic	variables.
You	may	wish	to	review	the	following:
8.1	What	are	Graphic	Variables?
8.2	Why	Use	Graphic	Variables?
8.3	Types	of	Graphic	Variables
8.4	Default	Graphic	Variables
8.5	Process	Level	Graphic	Variables
8.6	Browse	List	Graphic	Variables
8.7	Graphic	Variables	and	the	e-Business	Framework	Wizard
8.8	Technically	Speaking

WEB006	-	Graphic	Variables

its:LANSA089.CHM::/LANSA/wizs02.htm
its:lansa086.CHM::/LANSA/web06_TUTORIAL.htm

8.1	What	are	Graphic	Variables?
LANSA	for	the	Web	uses	special	variables	to	store	HTML	settings	so	that	you
do	not	need	to	hard	code	information	into	your	generated	Web	Function	pages.
These	variables	hold	values	for	commonly	used	options	like	company	logo	or
background	images.
Graphic	variables	can	store	a	wide	range	of	settings	for	the	HTML	pages
generated.	By	storing	information	in	graphic	variables,	it	makes	HTML
dynamic	and	easy	to	maintain.	The	values	associated	with	graphic	variables	can
be	changed	dynamically	without	having	to	either	edit	the	HTML	or	recompile
the	function.
Developers	can	define	their	own	graphic	variables	and	use	them	in	their
LANSA	HTML	pages.	The	Web	Function	Editor	is	used	to	define	graphic
variables.
Graphic	variables	are	used	with	the	<RDML	MERGE>	tag.	Refer	to	<RDML
MERGE>	for	details	of	the	LANSA	tags.

LANSA	for	the	Web	uses	LANSA	system	variables	to	store	the
graphic	variables.	Consequently,	LANSA	for	the	Web	graphic
variables	exist	at	the	LANSA	system	level.	If	you	add	or	change	a
graphic	variable,	it	can	be	used	in	all	LANSA	partitions.

its:lansa086.CHM::/LANSA/ED1000.htm
its:lansa086.CHM::/LANSA/ED0780.htm

8.2	Why	Use	Graphic	Variables?
Imagine	defining	a	background	image	which	you	want	to	include	in	your	HTML
Web	Function	pages.	In	each	of	the	HTML	documents	you	could	code	the
following:
<body	background="lansa.gif">

Now	imagine	that	you	wish	to	change	the	background	to	a	new	image	file.	You
would	manually	have	to	edit	each	Web	Function	page	to	make	the	change.
However,	using	a	LANSA	for	the	Web	graphic	variable	and	the	LANSA	RDML
tags,	you	can	make	this	change	without	editing	any	HTML	documents.	The
LANSA	Web	Function	application	can	include	the	following	HTML	statement
in	each	of	the	LANSA	documents:
<body	background="<RDML	MERGE="*LW3CLNTBKGND">">

where	*LW3CLNTBKGND	is	set	to	"image.gif"	to	start.
To	change	to	a	new	background,	you	simply	change	the	value	of
*LW3CLNTBKGND	to	"newimage.gif".	Immediately,	all	pages	served	will
have	the	new	background.	No	other	changes	are	needed.	You	do	not	need	to
recompile	any	Web	functions.	You	do	not	need	to	edit	the	HTML.

WEB006	-	Graphic	Variables

its:lansa086.CHM::/LANSA/web06_TUTORIAL.htm

8.3	Types	of	Graphic	Variables
LANSA	for	the	Web	supports	the	following	types	of	graphic	variables:

8.3.1	Image	File	Graphic	Variables
8.3.2	Color	Graphic	Variables
8.3.3	Text	Graphic	Variables

Image	File	variables	allow	you	to	associate	the	name	of	an	image	file	with	the
variable.	The	variable	simply	stores	the	name	of	an	image	file	you	wish	to	use.
Color	variables	allow	you	to	customize	the	background	and	font	color	or	other
colors	set	in	your	HTML	attributes.	For	example,	you	would	associate	the
background	color	with	the	*LW3CLNTCOLOR	graphic	variable.
A	Text	variable	allows	you	to	associate	text	with	a	variable.	This	text	could	be
used	in	any	number	of	ways	depending	on	where	you	want	to	dynamically
define	HTML	and	its	attributes.	For	example,	it	could	be	used	to	set	font	sizes	or
types.
The	Web	Function	Editor	is	used	to	define	graphic	variables.

WEB006	-	Graphic	Variables

its:lansa086.CHM::/LANSA/ED1000.htm
its:lansa086.CHM::/LANSA/web06_TUTORIAL.htm

8.3.1	Image	File	Graphic	Variables
An	Image	File	variable	allows	you	to	associate	an	image	with	the	variable.	This
variable	is	useful	for	displaying	images	on	your	applications.	You	can
dynamically	change	the	image	associated	with	the	variable,	without	having	to
edit	the	HTML	or	recompile	the	LANSA	function.
If	the	graphic	variable	is	an	image	file	variable,	the	image	associated	with	the
variable	must	be	stored	in	the	Image	Location	as	configured	in	LANSA	for	the
Web	using	the	LANSA	for	the	Web	Administrator.
The	advantage	of	using	graphic	variables	is	that	you	can	dynamically	change
the	image	associated	with	the	variable,	without	having	to	edit	the	HTML	or
recompile	the	LANSA	Web	function.	For	example,	you	can	customize	settings
like	the	company	logo.	Instead	of	embedding	the	company	logo	into	every
HTML	page,	you	can	define	a	graphic	variable	for	the	company	logo.	If	the
company	logo	is	changed,	the	change	needs	only	be	done	once,	by	redefining
the	graphic	variable.
In	the	example	below,	the	<RDML	MERGE>	tag	is	used	to	embed	an	image
defined	by	the	*LW3IMGHOME	variable,	which	is	the	image	used	for	the
Home	button.
<td	width="5%"></td>
<td>
			<input	type="image"	name="&HOME"	src="
<RDML	MERGE="*LW3IMGHOME">"	/>
			<h5	align="center">Home</h5>
</td>

LANSA	for	the	Web	allows	you	to	customize	the	background	color	or	the
background	image.	You	would	associate	the	background	color	with	the
*LW3CLNTCOLOR	graphic	variable,	and	the	background	image	with	the
*LW3CLNTBKGND	graphic	variable.
Note:	If	both	graphic	variables	are	defined	in	your	system,	the	background
image	would	take	precedence.
The	Web	Function	Editor	is	used	to	define	graphic	variables.

WEB006	-	Graphic	Variables

its:lansa086.CHM::/LANSA/ED1000.htm
its:lansa086.CHM::/LANSA/web06_TUTORIAL.htm

8.3.2	Color	Graphic	Variables
You	can	define	a	graphic	variable	and	associate	a	color	setting	with	the	variable.
As	an	example,	you	can	change	the	color	of	the	Menu	frame	by	changing	the
color	setting	associated	with	the	*LW3MENUCOLOR	variable.
Graphic	variables	simply	store	the	values	as	text.	For	color	settings,	the	values
can	be	entered	as	hexadecimal	values	in	RRGGBB	(red	green	blue)	or	as	the
color	name.	For	example,	you	could	enter	the	value	"#FF0000"	or	the	value
"RED".
LANSA	for	the	Web	also	allows	you	to	define	the	color	settings	used	in	browse
lists.	For	more	details,	refer	to	8.6	Browse	List	Graphic	Variables.
The	Web	Function	Editor	is	used	to	define	graphic	variables.

WEB007	-	LANSA	Tags

its:lansa086.CHM::/LANSA/ED1000.htm
its:lansa086.CHM::/LANSA/WEB07_TUTORIAL.htm

8.3.3	Text	Graphic	Variables
This	type	of	variable	allows	you	to	associate	a	string	of	text	with	a	variable.	You
can	use	the	text	graphic	variables	anywhere	that	you	want	a	variable	in	your
HTML.	The	variable	can	hold	a	string	of	characters	up	to	255	characters	long.
The	text	variable	could	contain	a	word,	a	number,	a	phrase,	or	even	a	complete
HTML	string.	The	text	associated	with	such	a	variable	can	be	changed
dynamically	without	having	to	edit	the	HTML	or	recompiling	the	function.
For	example,	you	could	create	a	graphic	variable	called	*LW3FONTFACE
which	would	store	the	name	of	the	font	you	wish	to	use	in	your	HTML.	You
might	give	it	a	value	of	"COURIER".	A	graphic	variable	called
*LW3FONTSIZE	could	be	used	to	control	the	font	size.	You	might	give	it	a
value	of	"12".	These	variables	could	be	used	as	follows:
<font	face="<RDML	MERGE="*LW3FONTFACE">"	size="
<RDML	MERGE="*LW3FONTSIZE">">	

You	could	also	create	a	variable	called	*LW3COPYRIGHT.	This	variable	could
be	used	to	display	the	copyright	information	on	your	pages.	For	example,	the
variable	might	be	set	to	the	following	HTML	string:
"	All	images	and	text	are	copyrighted	by	XYZ	Inc.	2000"

The	power	of	graphic	variables	is	the	ability	to	change	these	values
dynamically.
Imagine	that	you	have	multiple	Web	sites	around	the	world.	These	sites	are
mirror	sites	so	your	applications	are	identical.	If	you	wanted	to	indicate	to	the
user	which	site	they	were	actually	using,	you	could	create	a	graphic	variable
called	*LW3WEBSITE.	The	variable	would	have	a	different	value	on	each
machine.	It	might	have	a	value	of	"CANADA"	or	"AUSTRALIA".	The	HTML
would	be	identical.	It	would	simply	read:
You	are	accessing	<RDML	MERGE="*LW3WEBSITE">	

On	the	Canadian	mirror	site,	it	would	appear	as:
You	are	accessing	CANADA	

The	Web	Function	Editor	is	used	to	define	graphic	variables.

WEB006	-	Graphic	Variables

its:lansa086.CHM::/LANSA/ED1000.htm
its:lansa086.CHM::/LANSA/web06_TUTORIAL.htm

8.4	Default	Graphic	Variables
LANSA	for	the	Web	provides	a	default	set	of	graphic	variables	for	use	with
your	Web	functions.	The	following	list	of	variables	does	not	include	the
process-specific	or	list-specific	variables.

Default	Graphic	Variable Description

*LW3CPYLOGO Company	logo.

*LW3IMGCANCEL Image	file	for	the	Cancel	button.

*LW3IMGFBORDER Image	file	for	the	Standard	Footer	border.

*LW3IMGHBORDER Image	file	for	the	Standard	Header	border.

*LW3IMGHELP Image	file	for	the	Help	button.

*LW3IMGHOME Image	file	for	the	Home	button.

*LW3IMGLANSA Image	file	for	the	LANSA	logo.

*LW3IMGMENUSELECT Selection	image	for	process	menu	items.

*LW3IMGMESSAGES Image	used	in	conjunction	with	LANSA
messages.

*LW3IMGMSGS Image	file	for	the	Messages	button.

*LW3IMGOK Image	file	for	the	OK	button.

*LW3MENUCOLOR Background	color	for	the	Menu	area.
If	no	value	is	specified,	the	background	defaults
to	gray	(#COCOCO).

*LW3SESSIONID Encoded	job	identifier.	This	is	used	in	LANSA
tags.

*WEBIPADDR Returns	the	IP	address	of	the	current	user.

*WEBMODE Returns	a	'Y'	if	the	LANSA	application	is	running
under	Web	enabled	mode.

*WEBPATHINFO Returns	the	value	attached	to	the	PATH_INFO
Web	server	environment	variable.

*WEBREFERRER Returns	the	value	attached	to	the
HTTP_REFERER	Web	server	environment
variable.

*WEBSCRIPTNAME Returns	the	value	attached	to	the
SCRIPT_NAME	Web	server	environment
variable.

*WEBUSER Web	Server/400	or	Internet	Connection	Server	for
OS/400	user	profile.

	

Reminder:	Graphic	Variables	are	defined	at	the	LANSA	system	level.	They	are
shared	by	all	partitions.

8.5	Process	Level	Graphic	Variables
LANSA	for	the	Web	allows	you	to	customize	the	graphic	variables	used	for	a
specific	process	and	its	functions.	For	example,	you	can	customize	the
background	image	used	by	the	PSLSYS	process	by	creating	a
*LW3PBGI_PSLSYS	graphic	variable.	This	variable	will	be	used	instead	of	the
*LW3CLNTBKGND	variable.
Process	Customization
Default	Graphic	Variable Specific	Graphic

Variable
Description

*LW3CLNTBKGND *LW3PBGI_<process
name>

Background	image	for
the	Client	(body)	area.
A	default	image	is
provided	by	LANSA	for
the	Web.
LANSA	for	the	Web
allows	you	to	either	set
the	background	image	or
the	background	color
(LW3CLNTCOLOR).	If
both	variables	are	set,
the	background	image
takes	precedence.

*LW3CLNTCOLOR *LW3PBGC_<process
name>

Default	background
color	for	the	Client	area.
If	no	value	is	associated
with	the	client
background
(*LW3CLNKBKGND),
the	value	associated	with
this	variable	will	be	used
to	set	the	background
color.
The	background	image
takes	precedence	over
the	background	color

setting.

*LW3IMGMENUSELECT *LW3PMSI_<process
name>

Image	used	for	the	menu
items	in	the	process
menu.

*LW3MENUSEP *LW3PMSP_<process
name>

Image	for	menu
separator.	This	image	is
used	when	the	e-
Business	Framework
Wizard	builds	the	Menu
components.

*LW3RMENUBKGND *LW3RMBG_<process
name>

Color	setting	for	the
Right	Menu	component.

	

Tip
To	have	a	Default	Background	image	(*LW3CLNTBKGND)	and	use	a	specific
background	color	for	a	process,	you	could	define	the	background	image	for	this
process	to	be	empty	(*LW3PBGL).

8.6	Browse	List	Graphic	Variables
LANSA	for	the	Web	allows	you	to	customize	browse	lists	in	your	Web	function
by	using	graphic	variables.	It	is	important	to	note	that	the	HTML	generated	for
browse	lists	is	controlled	by	LANSA	for	the	Web	and	cannot	be	manually
edited.	The	use	of	graphic	variables	is	an	important	method	for	customizing	the
presentation	of	the	browse	lists	in	Web	Functions.
If	a	specific	browse	list	graphic	variable	exists,	LANSA	for	the	Web	will	use	it.
Otherwise,	it	will	use	the	default	graphic	variable.	For	example,	you	may	wish
to	customize	the	background	colors	for	alternate	rows	used	for	a	browse	list
named	EMPLIST.	In	this	case,	you	will	need	to	create	a	specific	graphic
variable	*LW3BLACB_EMPLIST.	This	variable	is	used	instead	of	the
*LW3BLACELLBCOLOR	variable.
Reminder:	Graphic	Variables	are	defined	at	the	LANSA	system	level,	including
specific	graphic	variables.	When	you	create	a	graphic	variable	for	a	specific
browse	list	name,	it	will	impact	all	browse	lists	with	that	name	in	all	partitions.
HTML	Browse	List	Customization
Default	Graphic	Variable Specific	Graphic

Variable
Description

*LW3BLACELLBCOLOR *LW3BLACB_<list
name>

Background	color	for
alternate	rows	in	browse
lists.
If	you	want	to	have	a
transparent	background,
specify	*NONE	as	the
value	of	this	variable.

*LW3BLACELLFCOLOR *LW3BLACF_<list
name>

Foreground	color	for
alternate	rows	in	browse
lists.

*LW3BLCELLBCOLOR *LW3BLCCB_<list
name>

Background	color	for
entries	in	browse	lists.
If	you	want	to	have	a
transparent	background,
specify	*NONE	as	the
value	of	this	variable.

*LW3BLCELLFCOLOR *LW3BLCCF_<list
name>

Foreground	color	for
entries	in	browse	lists.

*LW3BRWLSTMISC *LW3BLMS_<list
name>

Miscellaneous	attributes	to
be	used	in	conjunction	with
the	<table>	tag	for	setting
up	a	browse	list.	The
attributes	defined	for	this
variable	will	be	appended
as	attributes	of	the	<table>
tag	for	browse	list.
You	can	override	the
default	setting	of	the
border,	cellpadding	and
cellspacing	attributes	by
using	this	variable.

*LW3BRWLSTSELECT *LW3BL_<list
name>

The	contents	of	this
variable	allows	you	to
disable:
Borders	around	the
browse	list.
Column	headings.
Selection	image.
Borders	around	empty
cells	in	the	browse	list.

To	turn	off	any	of	the
above	features,	you	will
need	to	define	the	variable
as	a	Text	variable.	The
content	of	the	variable	is
then	set	to	be:
*Noxxxxx
where	xxxxx	can	be	up	to
five	characters,	identifying
the	feature	to	disable.
If	you	want	to	disable	the
border	around	the	browse

list,	specify	a	'B'	character.
If	you	want	to	disable	the
column	heading	in	the
browse	list,	specify	a	'C'
character.
If	you	want	to	disable	the
selection	image,	specify	an
'I'	character.
If	you	do	not	want	a
<table>	HTML	tag	around
your	browse	list,	specify	a
'T'	character.
If	you	do	not	want	borders
displayed	around	empty
cells	in	your	browse	list,
specify	a	'P'	character.
Note	that	if	you	disable	the
selection	image,	none	of
the	columns	in	the	browse
list	will	be	hyperlinked,
even	though	you	have
enabled	LANSA	for	the
Web	to	allow	selection
from	any	column	in	a
browse	list.	For	example,
*NOB	would	switch
borders	off.

*LW3BRWLSTSELIMAGE *LW3BLI_<list
name>

Default	selection	image	for
browse	lists.

*LW3COLHDGBCOLOR *LW3BLBC_<list
name>

Background	color	for
column	headings	for
browse	lists.
If	you	want	to	have	a
transparent	background,
specify	*NONE	as	the

value	of	this	variable.

*LW3COLHDGFCOLOR *LW3BLFC_<list
name>

Foreground	color	for
column	headings	for
browse	lists.

	

Note:	LANSA	for	the	Web	disables	the	selection	image	column	in	browse	lists
for	WEBEVENT	functions.	This	is	because	WEBEVENT	functions	terminate
as	soon	as	the	display	command	is	processed.	This	means	that	the	function	is	no
longer	available	to	process	your	selection.
	

8.7	Graphic	Variables	and	the	e-Business	Framework	Wizard
Instead	of	using	the	PC-based	LANSA	Web	Utilities	to	modify	the	graphic
variables	and	components,	you	can	make	these	modifications	using	the	e-
Business	Framework	Wizard.
This	picture	shows	the	changes	you	can	make	to	graphic	variables	using	the	e-
business	frameworks.

	

The	e-Business	Framework	Wizard	simplifies	the	development	of	your	Web
applications.
Using	the	e-Business	Framework	Wizard,	you	do	not	need	to	know	the	exact
name	of	the	graphic	variable	of	the	associated	browse	list	attribute	you	want	to
change.	All	possible	attributes	of	a	browse	list	are	presented	to	you	in	a	single
screen	so	that	you	can	quickly	and	easily	identify	what	you	want	or	need	to
change.

For	more	details	about	the	e-Business	Framework	Wizard,	refer	to	the
Web	Functions	Wizard	Guide.	See	System	Wide	Graphic	Variables

its:LANSA089.CHM::/LANSA/wizs02.htm

8.8	Technically	Speaking
LANSA	for	the	Web	graphic	variables	are	based	upon	LANSA	system	variables.
When	you	create	a	graphic	variable	using	the	Web	Function	Editor,	a	LANSA
system	variable	is	automatically	defined.	Because	graphic	variables	are	defined
as	system	variables,	they	are	system	wide	in	LANSA.	All	partitions	in	the
LANSA	system	will	use	the	same	set	of	graphic	variables.
Note:	When	you	import	or	export	your	application,	you	are	moving	system
level	variables!	You	will	impact	all	partitions	in	your	LANSA	system.
A	LANSA	for	the	Web	graphic	variable	must	be	defined	as:

a	static	(STATIC)	alphanumeric	(ALPHA)	system	variable	in	LANSA
a	variable	with	a	length	of	255	characters	(decimals	=	0)
a	variable	which	is	evaluated	by	the	3GL	program,	W3@P2100.

	

9.	Web	Components
LANSA	Web	Functions	uses	Web	component	technology	to	build	more
powerful	applications.	It	is	very	important	that	you	have	a	good	understanding
of	the	Web	component	technology	if	you	are	building	LANSA	Web	Function
Applications.	Review	the	following:
9.1	Introduction	to	Web	Components
9.2	Manually	Defined	Web	Components
9.3	Generated	Web	Components

WEB008	-	Web	Components

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.1	Introduction	to	Web	Components
In	order	to	understand	what	Web	components	are	and	how	they	are	used,	review
the	following:
9.1.1	What	are	Web	Components?
9.1.2	Web	Component	Architecture
9.1.3	Web	Component	Example
9.1.4	Types	of	Web	Components
9.1.5	Web	Components	and	Modes
9.1.6	Automatic	Embedding	of	Web	Components
9.1.7	Dynamically	Embedding	Web	Components
9.1.8	Considerations	for	Using	Web	Components

9.1.1	What	are	Web	Components?
Web	component	technology	is	a	powerful	way	of	enhancing	your	LANSA	Web
Function	applications.	It	allows	you	to	create	individual	components	(small
portions	or	modules	of	an	application),	that	can	be	embedded	and	re-used	in
your	Web	Function	application.
For	example,	you	can	create	a	Web	component,	which	is:

A	drop	down	list	that	displays	State	or	Province	codes,
A	single	image	or	a	group	of	buttons,
A	static	HTML	page,
A	complete	menu	with	links	to	all	of	your	applications.

You	can	create	a	Web	component	for	almost	any	part	of	your	application.
The	Web	component	technology	greatly	simplifies	the	HTML	pages	and
significantly	reduces	the	maintenance	efforts	because	components	are	centrally
defined	once	and	are	automatically	reused.	Web	components	are	an	extension	to
the	basic	LANSA	architecture	and	can	be	thought	of	as	a	repository	for	building
Web	Function	applications.	Components	can	be	updated	and	generated
automatically.	Changes	can	be	made	to	components	without	having	to	recompile
RDML	functions	or	edit	HTML	pages.	The	Web	component	technology	in
LANSA	Web	Functions	allows	you	to	easily	customize	your	HTML	pages.
The	e-Business	Framework	Wizard	uses	Web	components	extensively.
LANSA	for	the	Web	supports	the	following	types	of	Web	components:

File
Banner
Page
Script
Text
Web	Link
Visual

The	type	of	LANSA	Web	component	determines	how	LANSA	handles	the
component.
LANSA	Web	components	are	used	in	conjunction	with	the	<RDML
COMPONENT>	tag.	This	tag	instructs	LANSA	to	process	the	Web	component
indicated	by	the	tag.	For	more	details,	refer	to	<RDML	COMPONENT>.

its:lansa086.CHM::/LANSA/ED0760.htm

9.1.2	Web	Component	Architecture

The	Web	component	technology	is	really	an	extension	of	the	LANSA
Repository	architecture.	The	Web	component	registry	acts	like	a	Web
repository.	It	centrally	defines	and	stores	components	which	are	used	in	the	Web
Function	HTML	pages.
The	LANSA	Repository	centrally	stores	much	of	the	information	about	the
business	application.	This	information	is	used	by	LANSA	RDML	functions.	For
example,	screen	layouts	for	RDML	functions	are	based	on	the	field	definitions
stored	in	the	repository.
In	much	the	same	way,	the	LANSA	Repository	is	used	by	the	LANSA	HTML
pages	which	are	generated	from	the	RDML	functions.	The	LANSA	RDML
function	is	used	as	the	base	for	the	pages	while	additional	information	for	the
HTML	definitions	are	read	from	the	LANSA	Repository.
The	LANSA	Repository	also	interacts	with	the	Web	repository	or	Web
component	registry.	For	example,	if	a	field	has	been	defined	with	a	drop	down
GUI	characteristic,	a	Web	component	is	automatically	generated	for	the	field
and	used	in	the	page.
When	the	HTML	is	generated	for	a	Web	function,	LANSA	tags	are	used	to
embed	the	Web	components	from	the	registry.	The	Web	components	can	be
automatically	added	to	the	pages	based	on	the	field	and	component	naming.	For
example,	if	a	field	DEPTMENT	has	a	corresponding	Web	component

DEPTMENT	defined,	this	component	will	automatically	be	included	into	the
HTML	pages.	With	the	Web	repository/registry,	the	field	will	automatically
have	the	same	representation	on	all	HTML	pages.	And	if	the	representation	is
changed	in	the	Web	component	registry,	it	will	immediately	be	changed	for	all
pages	since	the	LANSA	HTML	is	dynamically	generated.
A	key	advantage	of	the	Web	component	technology	is	that	once	the	Web
component	is	embedded	into	the	generated	page,	the	definition	of	the	Web
component	can	be	changed	without	having	to	recompile	the	function	or	to	edit
the	HTML	page.
Many	Web	components	will	be	manually	created	by	the	developer	and	then
added	to	the	HTML	pages.

9.1.3	Web	Component	Example
Typically,	an	HTML	page	generated	by	LANSA	consists	of	a	number	of	Web
components.	The	STDHEADER	and	STDFOOTER	pages	are	regarded	as
LANSA	Web	components.	These	Web	components	are	embedded	into	every
function	generated	by	LANSA.	The	STDHEADER	includes	a	company	logo
and	set	of	pushbuttons.
Web	component	technology	allows	you	to	modify	an	individual	Web	component
without	having	to	modify	every	application	which	requires	the	Web	component.
For	example,	you	can	modify	the	STDHEADER	page	and	the	changes	will	be
reflected	in	every	application	which	uses	the	STDHEADER	Web	component.
Once	the	change	is	made	to	the	STDHEADER,	it	is	immediately	available	to	be
used	in	all	your	HTML	pages.	RDML	functions	do	not	need	to	be	recompiled.
HTML	pages	do	not	need	to	be	edited.	It	is	a	very	fast	and	easy	way	of
maintaining	your	Web	Function	applications.
For	more	details,	refer	to	Standard	HTML	Page	Components.

WEB005	-	LANSA	Process	Pages	and	WEB008	-	Web	Components

its:lansa086.CHM::/LANSA/ED0630.htm
its:lansa086.CHM::/LANSA/WEB05_TUTORIAL.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.1.4	Types	of	Web	Components
LANSA	for	the	Web	supports	the	following	types	of	Web	components	for	use
with	Web	Functions:
Manually	Defined	Components:

9.2.1	Banner
9.2.2	Text
9.2.3	Web	Link
9.2.4	Page
9.2.5	Script

Generated	components:
9.3.1	Visual	Web	Component	(Check	Box	,	Drop	Down,	List	Box,	Radio
Buttons).
9.3.4	File	Web	Component

The	type	of	component	determines	how	LANSA	handles	the	Web	component.
Manually	defined	Web	components	required	the	component	definitions	to	be
entered	by	the	developer.	For	example,	the	developer	must	enter	the	JavaScript
used	in	the	Script	component.
Generated	Web	components	have	their	component	definitions	automatically
created	by	LANSA	for	the	Web.	For	example,	LANSA	for	the	Web	will
automatically	generate	the	HTML	for	a	Visual	drop	down	component.

9.1.5	Web	Components	and	Modes
LANSA	for	the	Web	allows	you	to	define	the	following	modes	for	Web
components	used	in	Web	functions:

Input
Output
Not	Applicable.

The	input	mode	components	are	used	when	a	REQUEST	or	DISPLAY	screen	is
input	capable.
The	output	mode	components	are	used	when	a	REQUEST	or	DISPLAY	screen
is	output	only.	The	output	mode	component	is	always	used	for	hidden	fields,
even	on	input	capable	screens.
The	not	applicable	mode	is	used	for	components	not	used	in	the	input	or	output
screen	area.	For	example	a	STDFOOTER	or	STDHEADER	page	is	defined	as
not	applicable	since	it	is	not	part	of	the	input	or	output	screen	area.	The
component	is	used	to	define	the	structure	of	the	page.
When	you	compile	your	LANSA	Web	function,	LANSA	checks	if	mode
dependent	components	exist	for	the	fields	defined	in	your	function.	If	the	mode
of	operation	is	input	capable,	it	will	use	the	input	mode	Web	component,	if	one
exists,	to	replace	the	field.	If	the	mode	of	operation	is	output,	it	will	use	the
output	mode	Web	component,	if	one	exists,	to	replace	the	field.
If	mode	dependent	Web	components	are	used	in	your	Web	function
applications,	these	can	be	identified	by	the	LANSA	tag,	<RDML
COMPONENT="<field	name>"	MODE="<mode>">.
For	example,	if	you	have	the	following	RDML	statement	in	your	Web	function:
REQUEST	FIELDS((#STDNEXT	*HIDDEN)(#DEPTMENT)
(DEPTDESC	*OUTPUT))

and	you	have	create	Web	components	STDNEXT,	DEPTMENT	and
DEPTDESC,	then	the	following	Web	components	will	appear	in	your	HTML
page:
<RDML	COMPONENT="STDNEXT			"	MODE="O">
<RDML	COMPONENT="DEPTMENT		"	MODE="I">
<RDML	COMPONENT="DEPTDESC		"	MODE="O">

The	mode	of	the	component	is	part	of	the	component	definition.	For	more
details,	refer	to	the	specific	type	of	Web	component	you	wish	to	create.

WEB008	-	Web	Components

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.1.6	Automatic	Embedding	of	Web	Components
LANSA	Web	components	are	used	in	conjunction	with	the	<RDML
COMPONENT>	tag.	This	tag	instructs	LANSA	to	process	the	Web	component
indicated	by	the	tag.
When	a	LANSA	Web	function	is	compiled,	LANSA	will	check	each	field	used
in	the	REQUEST	or	DISPLAY	and	it	will	automatically	substitute	a	Web
component	for	the	field,	if	a	component	exists.	The	Web	component	must	also
be	defined	with	the	correct	mode.
For	example,	the	Web	function	displaying	the	DEPTMENT	field	in	a
REQUEST	statement	would	normally	contain	the	following	LANSA	generated
HTML	tag:
<RDML	MERGE="DEPTMENT		">

The	MERGE	simply	inserts	the	field.	However,	once	an	input	mode	Web
component	named	DEPTMENT	is	created	for	the	DEPTMENT	field,	the
LANSA	generated	HTML	will	automatically	contain	the	following	tag	when	the
function	is	recompiled:
<RDML	COMPONENT="DEPTMENT	"	MODE="I">

LANSA	will	embed	the	proper	mode	for	the	Web	component.	If	there	were	no
input	mode	DEPTMENT	Web	component,	then	a	MERGE	tag	would	be	used.
You	must	recompile	your	Web	functions	if	you	want	LANSA	to	automatically
embed	the	Web	components	into	the	HTML	pages.	If	you	create	Web
components	after	you	have	compiled	your	functions,	you	must	recompile	the
functions	to	embed	the	Web	components,	or	you	may	manually	edit	the	HTML
to	include	the	<RDML	COMPONENT>	tags	if	you	do	not	wish	to	recompile
your	functions.
You	can	include	*HIDDEN	fields	in	your	displays	to	add	Web	components	to
your	Web	functions.	All	*HIDDEN	fields	are	considered	output	mode
components.
You	may	also	manually	embed	Web	components	by	adding	<RDML
COMPONENT>	tags	to	your	HTML	pages.
For	more	details,	refer	to	<RDML	COMPONENT>.

WEB008	-	Web	Components

its:lansa086.CHM::/LANSA/ED0760.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.1.7	Dynamically	Embedding	Web	Components
You	can	embed	Web	components	dynamically	in	your	Web	function	application
by	using	the	RDML	COMPONENT	tag	with	the	&FLD	option.	In	most
situations,	you	will	see	the	RDML	COMPONENT	tag	used	in	LANSA	HTML
with	the	component	name	explicitly	specified.	However,	if	you	want	to	set	the
name	of	the	component	when	the	function	is	executing,	you	can	dynamically	set
the	component	name.
For	example,	if	you	have	an	HTML	page	which	displays	product	information,
the	product	displayed	in	the	page	is	dependent	on	the	product	requested	by	the
user.	In	such	a	page,	the	information	is	dynamic.	It	depends	on	the	product
selected	when	the	function	is	executing.
In	your	Web	function,	you	would	need	a	field	for	the	product	component.	It
might	be	called	PRODUCT	and	would	be	defined	as	an	alpha	field.	In	the
HTML	page,	you	would	include	the	following	line	for	the	product	component:
<RDML	COMPONENT="&FLD_PRODUCT">

This	line	instructs	LANSA	to	use	the	contents	of	the	PRODUCT	field	as	the
name	of	the	Web	component	to	embed.
In	your	Web	function,	you	can	dynamically	set	the	value	of	the	PRODUCT	field
according	to	the	user	request.
CHANGE		FIELD(#PRODUCT)	TO("ABC123")

Using	the	Web	Function	Editor,	you	would	create	a	component	named	ABC123.
This	component	might	include	some	text	and	images	for	the	specific	product.

9.1.8	Considerations	for	Using	Web	Components
Following	are	some	important	considerations	when	using	Web	components	with
Web	functions:

LANSA	Web	components	are	used	in	conjunction	with	the	<RDML
COMPONENT>	tag.	This	tag	instructs	LANSA	to	process	the	Web
component	indicated	by	the	tag.
If	you	use	the	NAME	keyword	when	creating	your	HTML	Web	component,
do	not	use	names	longer	than	10	characters.	Some	Browsers	(e.g.	Netscape)
may	cause	the	LWEB_JOB	to	fail	by	sending	invalid	data	to	the	stack.
Web	components	can	be	automatically	embedded	into	an	HTML	page	when
the	RDML	function	is	compiled.	Components	are	embedded	based	on	the
field	name	and	the	mode	of	the	REQUEST	or	DISPLAY.	For	more	details,
refer	to	9.1.6	Automatic	Embedding	of	Web	Components.
Web	components	will	be	embedded	for	hidden	fields	in	a	display.	The	Web
component	will	be	defined	as	output	mode	for	hidden	fields.	Defining
hidden	fields	is	a	good	method	of	embedding	Web	components.
If	you	create	a	new	Web	component	after	your	RDML	functions	have	been
compiled,	you	can	manually	edit	the	HTML	page	to	use	the	<RDML
COMPONENT>	tag,	or	you	can	recompile	your	functions	to	automatically
embed	the	components.
You	can	change	the	definition	of	a	component	without	recompiling	your
Web	functions	or	editing	your	HTML	pages.
A	LANSA	Web	component	can	be	embedded	into	another	LANSA	Web
component,	provided	they	are	not	embedded	recursively.
You	can	embed	Web	components	dynamically	in	your	application	by	using
the	RDML	COMPONENT	tag	with	the	&FLD	option.	For	more	details,	refer
to	9.1.7	Dynamically	Embedding	Web	Components.
LANSA	Web	components	are	created	using	the	Web	Function	Editor.	For
more	details,	refer	to	Components	Menu.
Web	components	are	defined	at	the	partition	level.
Web	component	names	must	be	unique	in	a	partition.	You	may	only
duplicate	a	Web	component	name	when	there	is	a	mode	associated	with	the
component.	For	example,	you	can	create	three	components	named
DEPTMENT	–	one	for	Input	mode,	one	for	Output	mode	and	one	as	Not
Applicable.

its:lansa086.CHM::/LANSA/ED1030.htm

If	you	have	manually	created	HTML	pages	using	the	Web	Function	Editor,
these	pages	should	be	registered	as	Page	components,	especially	if	you	need
to	export	these	pages	with	your	system.	(You	should	register	the
DEFAULT_xxxxxx	pages	as	components	if	you	need	to	export	these	pages.
Refer	to	for	information	about	Web	Application	Deployment.

WEB008	-	Web	Components

its:LANSA022.CHM::/LANSA/LANSA022_begin.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2	Manually	Defined	Web	Components
LANSA	for	the	Web	supports	the	following	Manually	Defined	Components	for
use	with	Web	functions:
9.2.1	Banner
9.2.2	Text
9.2.3	Web	Link
9.2.4	Page
9.2.5	Script.
Manually	defined	Web	components	required	the	component	definitions	to	be
entered	by	the	developer.	For	example,	the	developer	must	manually	code	the
JavaScript	used	in	the	Script	component.	If	you	are	using	page	or	script
component,	you	should	refer	to	9.2.6	Naming	Page	and	Script	Web
Components.
You	use	the	Web	Function	Editor	to	create	Web	components.

WEB008	-	Web	Components

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2.1	Banner
A	banner	Web	component	allows	you	to	insert	advertisement	banners	into	your
Web	function	applications.	Banners	are	a	collection	of	images	that	are	displayed
one	at	a	time.	These	images	have	an	associated	URL,	usually	the	URL	of	the
supplier	of	the	advertisement.
A	banner	Web	component	allows	you	to	define	a	banner	once	and	to	embed	the
advertisement	into	any	of	your	applications.	A	number	of	the	layouts	in	the	e-
Business	Framework	use	a	standard	banner	component,	STDBANNER,	in	its
schema.
LANSA	for	the	Web	takes	care	of	the	cycling	of	the	images	associated	with	the
banner.	The	images	of	the	banner	have	an	associated	sequence	number.	LANSA
for	the	Web	will	cycle	through	the	images	in	the	banner	Web	component
sequentially.
The	banner	Web	component	can	be	composed	of	other	Web	components.	This
allows	you	to	dynamically	change	the	layout	of	your	pages,	if	you	require	such
functionality.
The	banner	Web	component	is	defined	completely	within	LANSA	for	the	Web,
that	is,	you	do	not	have	to	define	any	HTML	to	use	this	component.
When	defining	the	banner	Web	component	as	a	list	of	Web	components,	the
Web	components	can	consist	of	any	type	of	Web	components.	For	example,	you
could	create	a	banner	Web	component	that	consists	of	a	Visual	drop	down	Web
component,	check	box	Web	component,	and	radio	button	Web	component.	In
addition,	the	banner	Web	component	can	embed	another	banner	Web
component.	This	allows	you	to	customize	the	presentation	of	your	data.	A
banner	Web	component	can	be	embedded	into	any	HTML	page	in	your
application.
For	details	about	creating	banner	components,	refer	to	Banner	Component
(HTML	mode).

WEB008	-	Web	Components

	

its:lansa086.CHM::/LANSA/JMP_0050.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2.2	Text
A	text	Web	component	allows	you	to	embed	a	piece	of	text	into	your	Web
function	application.	The	text	could	be	an	HTML	string	or	any	other	text.	The
text	component	is	very	similar	to	the	text	graphic	variable,	but	the	text
component	has	the	advantage	of	being	defined	at	the	partition	level	instead	of
the	system	level.
Using	a	text	component	allows	you	to	define	a	string	that	can	be	manipulated
without	having	to	edit	HTML	pages	or	recompile	functions.	For	example,	you
could	create	a	text	component	called	NEXTUPDATE.	This	variable	could	be
used	to	display	the	date	that	you	plan	to	do	your	next	update	on	your	pages.	You
might	include	this	component	in	the	STDFOOTER.	The	text	component	might
have	the	following	value:
Next	update	of	these	pages	will	be	2001-12-31.

Using	the	NEXTUPDATE	component,	you	can	change	the	date	of	your	next
update	on	all	you	Web	pages	with	editing	any	HTML.
The	length	of	the	text	is	limited	to	255	characters	and	the	text	entered	may
include	HTML	tags.	
Note:	RDML	tags	as	part	of	the	text	are	not	resolved.
For	details	about	creating	text	components,	refer	to	Text	Component.

WEB008	-	Web	Components

	

its:lansa086.CHM::/LANSA/JMP_0100.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2.3	Web	Link
Web	link	components	are	only	used	with	WEBEVENT	functions.	Web	link
components	define	the	link	to	other	functions	for	your	WEBEVENT	functions.
You	can	use	Web	link	components	to	link	to	other	functions,	instead	of	using	the
Keywords	command	in	the	Web	Function	Editor.
Web	link	components	allow	you	to	display	the	links	as	images	instead	of
buttons.	These	components	allow	you	to	dynamically	change	the	links	as	well	as
the	presentation	of	the	links,	without	having	to	recompile	your	WEBEVENT
functions	since	you	do	not	have	to	specify	the	USER_KEYS	parameter	in	the
REQUEST	or	DISPLAY	commands.
For	details	about	creating	Web	link	components,	refer	to	Web	Link	Component.

WEB008	-	Web	Components

	

its:lansa086.CHM::/LANSA/JMP_0120.htm
its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2.4	Page
Page	Web	components	are	the	most	common	type	of	component	used	by	Web
Function	applications.	A	page	Web	component	can	be	any	block	of	HTML	that
you	wish	to	re-use	or	make	independent	of	the	RDML	function.	Once	the
HTML	is	contained	in	a	page	component,	it	can	be	altered	without	requiring	the
Web	function	to	be	recompiled.	Page	Web	components	are	useful	if	you	want	to
embed	some	standard	HTML	into	one	or	more	of	your	applications.
The	HTML	of	the	component,	is	created	by	editing	and	saving	a	file,	using	the
Web	Function	Editor.	The	saved	file	can	then	be	registered	as	a	Page	Web
component.
For	example,	the	STDHEADER	is	a	Page	Web	component.	Notice	that	your
page	can	use	LANSA	tags	and	can	even	include	LANSA	components.	(Be	sure
that	the	components	are	not	called	recursively!)
For	details	about	creating	page	Web	components,	refer	to	9.2.6	Naming	Page
and	Script	Web	Components.

WEB008	-	Web	Components

	

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.2.5	Script
A	Script	Web	component	allows	you	to	create	a	JavaScript	or	VBScript	function
(or	script	fragment)	and	embed	such	a	function	into	your	Web	function
application.
The	script	file	is	defined	using	the	Web	Function	Editor.	LANSA	for	the	Web
does	not	validate	the	script	functions	specified	in	the	script	Web	component.
Once	the	file	is	defined	in	the	Web	Function	Editor,	it	must	be	registered	as	a
Web	component.
LANSA	for	the	Web	does	not	restrict	you	to	a	particular	script	language.	In
other	words,	you	could	be	creating	a	JavaScript	or	VBScript	script	Web
Component.	Again,	LANSA	for	the	Web	does	not	validate	the	script	functions
specified	in	the	script	Web	component.	You	must	ensure	that	the	script	you	have
created	is	syntactically	correct.	You	must	verify	your	script	before	creating	it	as
a	script	Web	component.

One	difference	between	a	Script	Web	component	and	other	Web
components	is	that	the	last	line	of	a	Script	Web	component	doesn't
include	a	carriage	return	(or	carriage	return/line	feed	pair	on
Windows)	at	the	end	of	the	component.	This	prevents	an	unwanted
line	break	when	the	component	content	is	just	a	script	fragment,	rather
than	a	complete	script	function.	If	you	want	the	last	line	of	your	Script
web	component	to	end	with	a	carriage	return,	insert	a	blank	line	at	the
end	of	the	component.

If	you	are	defining	script	functions,	you	should	remember	that	these	functions
should	be	included	in	the	header	of	the	HTML	pages	so	that	the	functions	are
loaded	before	they	are	called.
The	JavaScript	functions	used	by	LANSA	for	the	Web	are	contained	in	the
DEFAULT_SCRIPT	component.	You	can	also	modify	this	component	to
include	your	own	JavaScript	functions,	and	then	save	the	file	as	a	process-
specific	page.	Using	this	technique,	you	do	not	need	to	register	the	process-
specific	page	as	a	Web	page	component.
For	details	about	creating	script	Web	components,	refer	to	9.2.6	Naming	Page
and	Script	Web	Components	and	Script	Component	(HTML	mode).

its:lansa086.CHM::/LANSA/JMP_0090.htm

9.2.6	Naming	Page	and	Script	Web	Components
When	you	create	a	Page	or	Script	Web	component,	you	must	complete	two
steps:
1.Create	the	file	with	the	HTML	or	JavaScript.
2.Register	the	file	as	a	Page	or	Script	component.
Using	the	Web	Function	Editor,	you	will	need	to	create	a	new	page	to	store	the
code	(HTML	or	JavaScript)	for	the	component.	Generally,	you	would	make	the
page	name	the	same	as	the	component	name;	however,	these	names	do	not	need
to	be	the	same.	If	you	have	more	than	one	component	with	the	same	name,
because	of	input	and	output	modes,	you	may	want	to	define	a	naming
convention	to	identify	the	appropriate	pages.
For	example,	an	HTML	page	called	SAMPLEOUT	can	be	created	and	saved
using	the	Web	Function	Editor.	This	document	might	contain	the	following
code:
<h1>Here	is	some	sample	HTML.</h1>

This	HTML	will	be	embedded	as	a	page	component.	

Using	the	Web	Function	Editor,	you	must	now	register	this	page	as	a	Page
component.	The	Page	component	could	be	named	SAMPLE	and	defined	for
output	mode.	The	SAMPLE	component	is	linked	to	the	SAMPLEOUT	page.

In	your	HTML	page,	you	would	now	use	the	following	statement	to	include	the
component:
<RDML	COMPONENT="SAMPLE"	MODE="O">

When	the	tag	is	processed,	the	SAMPLE	component	definition	will	be	read	and
the	content	of	the	SAMPLEOUT	page	will	be	embedded.
For	the	input	mode	component,	you	might	create	a	file	named	SAMPLEIN.	The
file	would	be	registered	to	a	Page	component	also	named	SAMPLE,	but	the
component	would	be	defined	for	input	mode.

9.3	Generated	Web	Components
Unlike	the	9.2	Manually	Defined	Web	Components,	generated	Web	components
have	their	definitions	automatically	created	by	LANSA	for	the	Web.	For
example,	LANSA	for	the	Web	can	automatically	generate	all	of	the	HTML	code
required	for	a	visual	drop	down	Web	component.
LANSA	for	the	Web	has	the	following	types	of	generated	Web	components	for
use	with	Web	functions:
9.3.1	Visual	Web	Component
9.3.4	File	Web	Component
The	main	difference	between	a	Visual	Web	component	and	a	File	Web
component	is	that	a	Visual	Web	component	is	created	as	an	HTML	page	in	the
LANSA	internal	database,	while	the	File	Web	component	is	created	in	a	library
or	directory	on	the	Application/Data	Server.
You	may	also	wish	to	review	the	following:
9.3.2	Creating	Visual	Web	Components
9.3.3	Using	Triggers	to	Generate	Visual	Web	Components.
It	is	important	to	note	that	the	Visual	and	File	Web	components	can	also	be
created	manually.

WEB008	-	Web	Components

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.3.1	Visual	Web	Component
LANSA	for	the	Web	can	automatically	generate	four	types	of	Visual	Web
components	for	use	with	Web	functions:

Check	Box
Drop	Down
List	Box
Radio	Buttons.

Drop	downs,	list	boxes	and	radio	buttons	can	be	associated	with	a	file	to	define
their	values,	whereas	a	check	box	requires	a	defined	value	and	description.	All
of	these	components	are	generated	as	Input	mode.
For	example,	the	Department	file	(DEPTAB)	contains	a	field	called	Department
Code.	You	can	use	a	Visual	Web	component	to	have	this	field	displayed	as	a
drop	down	list.	The	values	in	the	drop	down	list	can	be	based	on	the	contents	of
the	Department	file.	LANSA	for	the	Web	will	automatically	create	the	HTML
page.

The	HTML	page	generated	might	appear	like	this:
<RDML	CHECKVALUE="YES">

<select	size="1"	name="DEPTMENT">
<option	value="ADM">ADMINISTRATION	DPT</option>
<option	value="AUD">INTERNAL	AUDITING</option>
<option	value="FLT">FLEET	ADMINISTRATION</option>
<option	value="GAC">GROUP	ACCOUNTS	DEP</option>
<option	value="INF">INFORMATION	SERVICES</option>
<option	value="LEG">LEGAL	DEPARTMENT</option>
<option	value="MKT">MARKETING	DEPARTMENT</option>
<option	value="R&D">RESEARCH	&	DEVELOP</option>
<option	value="TRVL">TRAVEL	DEPARTMENT</option>
<option	value=""> </option>
</select>
</RDML>

Note:	Make	sure	that	the	values	entered	into	the	Repository	Data	section	are
correct.	That	is,	the	file	you	specify	exists	and	contains	the	fields	you	specify.
It	is	important	to	note	that	the	HTML	is	based	on	the	contents	of	the	file
(LANSA	table)	at	the	time	the	Visual	Web	component	is	built.	If	a	new
Department	was	added,	you	must	rebuild	the	Web	component.	Also,	refer	to
9.3.3	Using	Triggers	to	Generate	Visual	Web	Components.
Visual	Web	components	are	really	just	a	special	type	of	Page	Web	component.
If	you	manually	define	a	Visual	Web	component,	you	are	simply	defining	a	page
associated	with	the	component.	It	is	almost	identical	to	defining	a	Page	Web
component	with	the	exception	that	Page	Web	components	are	able	to	support
the	Not	Applicable	mode.	Visual	Web	components	can	only	be	defined	as	Input
Mode	or	Output	mode.
For	details	about	creating	a	Visual	Web	Component,	refer	to	9.3.2	Creating
Visual	Web	Components.

WEB008	-	Web	Components

its:lansa086.CHM::/LANSA/web08_TUTORIAL.htm

9.3.2	Creating	Visual	Web	Components
There	are	three	methods	for	creating/maintaining	Visual	Web	Components	for
use	with	Web	functions:

Automatically	(Input	mode	only)
Manually	(Input	&	Output	mode)
Using	LANSA	Triggers

Automatically	created	Visual	components	are	built	using	the	Components,
Generate	Component	-	Visual	option	from	the	Web	Function	Editor.	You	can
create	Check	Box,	Drop	Down,	List	Box	and	Radio	Buttons.	These	components
are	all	defined	as	Input	mode.	Refer	to	Generate	Visual	Component.
Visual	Web	components	can	be	manually	defined.	You	will	manually	create
Visual	Web	components	when	you	need	output	components.	Refer	to	Visual
Component.	Reminder:	You	can	use	a	Page	Web	component	instead	of
manually	defining	a	Visual	Web	component.
LANSA	Repository	triggers	can	also	be	used	with	your	application	database	so
that	the	contents	of	a	file	are	used	to	update	a	Visual	Web	component.	Refer	to
9.3.3	Using	Triggers	to	Generate	Visual	Web	Components.

its:lansa086.CHM::/LANSA/JMP_0140.htm
its:lansa086.CHM::/LANSA/JMP_0110.htm

9.3.3	Using	Triggers	to	Generate	Visual	Web	Components
LANSA	for	the	Web	provides	you	with	a	program,	W3@P2600,	which	can	be
used	to	build	input	Visual	Web	components	from	data	contained	in	a	physical
file	on	the	Data/Application	Server.	There	is	also	a	LANSA	built-in	function
(BIF)	called	WEB_BUILD_COMPONENT	which	can	be	used	to	call
W3@P2600.	The	W3@P2600	program	and	WEB_BUILD_COMPONENT	BIF
can	be	used	by	LANSA	functions	to	build	components.	By	writing	a	LANSA
function	to	build	or	rebuild	a	component,	you	can	automate	the	maintenance	of
Web	components.
It	is	recommended	that	you	use	the	BIF	rather	than	calling	W3@P2600.
As	an	example,	you	will	use	the	DEPTAB	table	from	the	Personnel
Demonstration	system	in	LANSA.	The	DEPTMENT	field	has	a	Visual	Web
component	which	is	a	drop	down.
The	parameters	of	the	W3@P2600	program	are:

Name	of	the	partition
Name	of	the	Web	component
Type	of	visualization
Name	of	the	physical	file	on	the	iSeries
Name	of	the	field	in	the	physical	file	whose	value	will	be	used	with	the
VALUE	keyword	in	the	generated	HTML
Name	of	the	field	in	the	physical	file	whose	value	will	be	displayed	as	the
description	in	the	Visual	Web	component

This	program	can	be	called	from	a	trigger	function	on	the	DEPTAB	file.	This
trigger	is	set	up	to	execute	when	the	contents	of	the	file	changes.	For	example,
when	the	contents	of	the	DEPTAB	table	changes,	the	trigger	will	execute	and
call	W3@P2600	to	rebuild	the	DEPTMENT	Visual	Web	component.	Using	this
approach,	the	Web	application	will	always	have	the	most	recent	information
without	waiting	for	developers	to	update	components.
Note:	The	W3@P2600	program	only	supports	physical	files.	This	means	that
you	cannot	create	a	Web	component	using	a	logical	file.

9.3.4	File	Web	Component
The	File	Web	component	allows	you	to	use	an	external	file	to	store	HTML.	The
file	will	be	treated	as	a	data	stream	file.	The	contents	of	the	file	will	be	sent	to
the	browser	by	LANSA,	without	interpreting	any	of	the	data	streams	contained
in	the	file.	This	component	allows	you	to	circumvent	the	256-character
limitation	in	LANSA.	This	component	is	mainly	used	with	output	fields.
On	the	iSeries,	the	file	is	a	standard	physical	file.	The	physical	file	will	be
created	when	the	file	component	is	created.	The	library	must	be	defined	as	part
of	the	file	name.
On	Windows,	the	file	is	a	standard	text	file.	The	text	file	will	be	created	when
the	file	component	is	created.	The	directory	must	be	defined	as	part	of	the	file
name.
A	LANSA	Object	Access	Module	is	not	required	to	use	the	file,	i.e.	the	file	is
not	identified	to	the	LANSA	Repository.
For	example,	you	might	have	a	large	text	document	which	needs	to	be	displayed
as	part	of	a	Web	page.	This	document	is	maintained	as	a	standard	PC	word
processing	file.	Using	tools	like	Word,	you	can	save	this	document	as	an	HTML
file.	When	the	File	Web	component	is	embedded	into	your	page,	this
information	will	be	sent	to	the	browser.
Using	the	File	Web	component	means	that	you	do	not	have	to	create	and	edit
large	documents	within	the	Web	Function	Editor.	(Remember,	all	files	created
using	the	Web	Function	Editor	are	stored	internally	in	the	LANSA	database.)
Also,	because	you	are	using	a	standard	file	object,	it	is	also	possible	to	execute
programs	which	read	and	write	from	this	file	before	it	is	used	in	your	Web	page.
File	Web	components	can	be	created	manually	and	they	can	be	automatically
generated	by	LANSA	for	the	Web.	If	the	File	Web	component	is	created
manually,	then	the	File	must	be	manually	defined.	LANSA	for	the	Web	will
create	the	file	if	it	is	automatically	generated.
For	details	about	manually	creating	a	File	Web	component,	refer	to	File
Component.
For	details	about	automatically	creating	a	File	Web	Component,	refer	to
Generate	File	Component	(HTML	mode).

iSeries	Files
On	the	iSeries,	your	File	Web	components	may	use	library	lists.	Library	lists
can	be	very	powerful.	For	example,	if	your	application	requires	you	to	display

its:lansa086.CHM::/LANSA/JMP_0040.htm
its:lansa086.CHM::/LANSA/JMP_0150.htm

different	data	for	the	same	field,	depending	on	the	user	profile	used	to	run	the
application,	then	a	library	list	can	be	used	with	the	user	profile	and	File	Web
component.
A	different	file	can	be	created	for	each	user	profile.	Each	file	contains	the
HTML	to	display	the	data.	These	files	would	be	installed	to	the	appropriate
library.	The	library	list	attached	to	the	user	profile	would	then	be	used	to	locate
the	correct	file.
When	the	application	is	executed,	LANSA	for	the	Web	will	use	the	File	Web
component.	However,	it	will	use	the	library	list	attached	to	the	user	profile	to
locate	the	correct	file,	since	no	library	is	attached	to	the	file	definition	in	the
Web	component	registry.

10.	Function	Editor
The	Web	Function	Editor	is	used	to	enhance	your	Web	Function	applications.	If
you	are	not	familiar	with	the	Web	Function	Editor,	you	should	review:
10.1	Introduction	to	Web	Function	Editor
The	Web	Function	Editor	includes	the	following	menu	categories:
10.2	File	Menu
10.3	Edit	Menu
10.4	View	Menu
10.5	Tags	Menu	(HTML	mode)
10.6	Components	Menu
10.7	Options	Menu
10.8	Tools	Menu

10.1	Introduction	to	Web	Function	Editor
In	order	to	execute	the	Web	Function	Editor,	you	should	review	the	following
topics:
10.1.1	What	is	the	Web	Function	Editor?
10.1.2	Connecting	to	the	Data/Application	Server
10.1.3	Starting	the	Web	Function	Editor
10.1.4	Web	Function	Editor's	Main	Window

10.1.1	What	is	the	Web	Function	Editor?
The	Web	Function	Editor	provides	you	with	full	text	editing	capabilities	to
create	and	modify,	the	HTML/XML	pages	generated	for	your	Web	function
application.	You	manage	your	application's	Components	and	Graphic	Variables
using	the	Web	Function	Editor.	The	Editor	also	allows	you	to	create	and
maintain	documents	supporting	XML	transformations	(for	example	XSL	style-
sheets).
To	accommodate	specific	HTML	or	XML	editing	tasks,	you	will	need	to	specify
whether	you	want	to	run	the	Web	Function	Editor	in	XML	or	HTML	mode.
If	you	have	more	generic	tasks,	you	can	use	the	BASIC	mode.	BASIC	mode
provides	the	functionality	valid	for	all	modes	and	is	a	sub-set	of	the	other	modes
(i.e.	XML	or	HTML).
Throughout	this	section	of	the	document,	mode-specific	tasks	are	labeled	as
such.	Where	there	is	no	label	(e.g.	XML	only)	the	task	is	valid	for	both	modes.
Features	not	available	with	the	current	mode	are	grayed	out	on	the	Editor's
dialog	boxes.
The	Web	Function	Editor	does	not	provide	a	facility	for	you	to	edit	the
generated	HTML/XML	graphically	as	the	LANSA	generated	pages	include
LANSA	Web	components	and	LANSA	tags.	The	effect	of	some	LANSA	tags
will	not	be	shown	until	the	LANSA	function	is	run.	In	addition,	if	your	partition
is	multilingual,	you	will	not	be	able	see	the	descriptions	of	the	fields,	since	these
are	inserted	when	the	function	is	executed.
	10.1	Introduction	to	Web	Function	Editor

10.1.2	Connecting	to	the	Data/Application	Server
To	use	the	Web	Function	Editor,	LANSA	Open	must	be	installed.	If,	during	the
installation,	LANSA	Open	is	not	detected,	the	LANSA	for	the	Web	Function
install	will	install,	by	default,	the	components	required	for	TCP/IP	connectivity
between	your	workstation	and	the	host.

User	Profiles
When	you	start	the	Web	Function	Editor	you	will	need	to	connect	to	the
Data/Application	Server	using	a	valid	user	profile.
For	the	AS/400,	the	user	profile	specified	must	be	properly	configured	to	use
the	LANSA	system.
	10.1	Introduction	to	Web	Function	Editor

10.1.3	Starting	the	Web	Function	Editor
When	you	install	the	Web	Function	Editor,	a	shortcut	icon	is	created	on	your
desktop.	When	you	double	click	on	the	shortcut	icon,	the	System	Defaults
dialog	is	displayed.

Enter	the	connection	parameters	for	the	required	system.
If	you	have	previously	saved	the	connection	details	as	a	Profile,	select	the
Profile	that	you	require.
For	more	details	about	the	parameters,	go	to	the	10.2.13	Connect	command	on
the	File	menu.
Mode
The	modes	will	be	either:

XML
HTML	or
BASIC.	Basic	is	used	for	more	generic	tasks.	This	mode	supports
functionality	valid	for	all	modes	and	is	a	sub-set	of	the	other	modes	(e.g.
XML	or	HTML).

Once	you	are	connected	successfully	to	the	host,	the	10.1.4	Web	Function
Editor's	Main	Window	is	displayed.

	10.1	Introduction	to	Web	Function	Editor

10.1.4	Web	Function	Editor's	Main	Window
You	use	this	main	window	to	gain	access	to	all	the	Editor's	functionality.

The	status	bar	at	the	bottom	of	the	window	displays	your	current	connection
status,	the	mode,	system,	partition,	language	and	User	Id.
To	change	any	of	the	connection	details,	or	to	reconnect	to	a	different	system,
choose	the	Connect	command	from	the	File	menu.	You	will	be	asked	to	confirm
disconnecting	from	the	current	system.	If	you	answer	Yes,	the	System	Defaults
dialog	box	will	be	opened	and	you	can	reconnect	to	the	system.
	10.1	Introduction	to	Web	Function	Editor

10.2	File	Menu
The	File	Menu	contains	the	following	options:
		10.2.1	New
		10.2.2	Open	.	.	.(XML/HTML	mode)
			10.2.3	Open	(BASIC	mode)
		10.2.4	Close
		10.2.5	Save
		10.2.6	Save	As
		10.2.7	Save	As	(mode	BASIC)
		10.2.8	Save	To	Local	(mode	BASIC	only)
		10.2.9	Load	From	Local	(mode	BASIC	only)10.2.10	Compare
		10.2.10	Compare
		10.2.11	Page	Setup
		10.2.12	Print
		10.2.13	Connect

10.2.1	New
Use	New	command	to	define	a	new	HTML/XML	page.
If	you	are	running	in	HTML	mode,	when	you	select	this	command,	the	Editor
pre-fills	the	client	area	with	a	default	set	of	HTML/XHTML	tags.

Once	you	have	defined	the	new	HTML/XML	page,	it	can	be	saved	using	either
the	Save	or	Save	As	command	from	the	File	menu.
If	you	intend	to	use	this	newly	created	page	as	a	LANSA	Web	component,	you
will	need	to	remove	the	first	two	lines	(RDML	MERGE…,	<html	xmlns….)	and
register	it	as	a	Web	component	as	described	in	Add	a	new	Component.	It	can
then	be	used	in	conjunction	with	the	<RDML	COMPONENT>	tag.
	10.2	File	Menu

10.2.2	Open	.	.	.(XML/HTML	mode)
If	you	are	using	the	Open	command	in	BASIC	mode,	then	go	to	10.2.3	Open
(BASIC	mode).
Use	the	Open	command	to	select	existing	HTML/XML	pages	stored	in	the
LANSA	Repository.	When	you	choose	this	command,	you	are	presented	with	a
dialog	box	listing	all	the	HTML	or	XML	pages	(depending	on	the	mode)
currently	stored	in	the	partition.

To	edit	the	HTML/XML	pages,	select	one	or	more	entries	from	the	list	of	pages
and	press	OK.	To	identify	the	HTML	page	for	a	specific	function,	refer	to
Identifying	Generated	Pages.
If	you	enter	the	first	character	of	the	Page's	name,	the	list	will	be	positioned	at
the	beginning	of	names	starting	with	that	character.
To	delete	HTML/XML	pages	from	the	LANSA	Repository,	select	one	or	more
entries	from	list	of	pages	and	press	the	Delete	button.	You	will	be	asked	to
confirm	your	deletion	instruction.
Version
The	version	number	of	the	current	HTML/XML	page	is	0.	The	previous	copy	of
the	page	will	be	version	number	1,	and	so	on.	For	more	details,	refer	to
Versioning	of	Pages.

its:lansa086.CHM::/LANSA/ED0520.htm
its:lansa086.CHM::/LANSA/ED0540.htm

Language
If	you	are	working	with	a	multilingual	partition,	you	can	choose	the	language	of
the	page	from	the	Language	drop	down	list.
Second.	Extension	(XML	Mode)
In	HTML	mode,	this	field	will	be	hidden.
Secondary	extension	specifies	the	sub-extension	(also	called	the	XML
Application)	to	be	used	to	identify	the	Component.	This	value	enables	you	to
simplify	the	search	for	XML	documents.

Opened	Documents
When	you	select	one	or	more	pages	to	edit	and	press	OK,	the	HTML/XML
pages	will	be	displayed	in	the	client	area	of	the	Editor.	The	pages	will	be
downloaded	from	the	Application/Data	Server.	The	download	time	will	depend
upon	the	size	of	the	documents	and	the	speed	of	your	connection.	Once	the
pages	have	been	downloaded,	you	can	then	begin	to	edit	the	page.

Each	page	opened	is	displayed	in	its	own	window.	You	can	toggle	between	the
pages	you	are	editing	by	selecting	the	Windows	command	from	the	menu	bar
and	choosing	Tile	Horizontally	or	Tile	Vertically.

The	HTML/XML	page	you	are	editing	is	shown	in	the	Title	Bar.
Once	you	have	finished	editing,	the	pages	are	kept	in	memory	of	the	local	PC
until	they	are	saved	to	the	Data/Application	Server.
	10.2	File	Menu

10.2.3	Open	(BASIC	mode)
If	you	are	using	the	Open	command	in	HTML	or	XML	mode,	then	go	to	Open	.
.	.(XML/HTML	mode).
The	Open	command	displays	the	Open	Page	dialog	box.	This	dialog	box	is
divided	into	Selection,	List	and	Details	areas.

Selection	Area
This	area,	in	the	upper	part	of	the	dialog	box	allows	you	to	enter	the	search
criteria	for	the	documents	to	be	displayed	in	the	List.	The	list	will	be	populated
once	you	press	the	List	button.
Extension
Select	the	file	extension	to	be	used	to	build	the	list	of	documents.	Your	selection
will	be:

HTM	-	for	HTML	documents
XML	-	for	LANSA	XML	documents

Second.	Extension

its:lansa086.CHM::/LANSA/JMP_0610.htm

Enter	the	Secondary	Extension	(called	the	XML	Application	in	the
Administrator)	to	be	used	when	retrieving	the	list	of	documents.	If	you	leave
this	field	blank,	all	the	documents	matching	the	Extension	will	be	listed.
List
Press	the	List	button	to	retrieve	the	documents	matching	the	settings	you	have
entered	in	Extension	and	Second.	Extension.	The	documents	retrieved	will	be
displayed	in	the	list.	Depending	on	your	selections,	it	may	take	some	time
before	the	list	is	downloaded	and	displayed.
Details	Area
This	area	displays	the	details	for	a	document(s)	that	is	highlighted	in	the	list.
Extension
Displays	the	file	extension	for	the	selected	document(s).
Second.	Extension
Displays	the	Secondary	Extensions	(or	XML	Applications)	for	the	selected
documents.
Version
The	version	number	of	the	current	page	is	0.	The	previous	copy	of	the	page	will
be	version	number	1,	and	so	on.
Language
If	you	are	working	with	a	multilingual	partition,	you	can	choose	the	language	of
the	page	from	the	Language	drop	down	list.
Description
The	description	of	the	document	that	is	selected.
	10.2	File	Menu

10.2.4	Close
The	Close	command	closes	the	current	page	in	the	Editor.
If	you	made	changes	to	a	page	and	you	have	not	saved	the	changes,	you	will	be
prompted	to	save	the	changes	before	the	Editor	closes	the	page.
	10.2	File	Menu

10.2.5	Save
The	Save	command	will	save	the	current	Page	to	the	Application/Data	Server.
The	time	to	save	the	file	will	depend	upon	the	size	of	the	document	and	the
connection	to	the	server.	The	cursor	will	change	to	an	hour	glass	and	the	save
status	is	displayed	on	the	status	bar.	Do	not	execute	the	application	until	the
document	save	has	completed.
If	the	current	page	is	untitled,	you	will	be	prompted	to	provide	a	name	and
description	for	the	page	(please	refer	to	the	following	sections:	10.2.6	Save	As
for	XML	or	HTML	pages,	or	10.2.7	Save	As	(mode	BASIC)	for	all	other	pages.
You	can	only	save	changes	if	you	are	editing	the	version	0	page.	You	must	use
the	Save	As	option	if	you	are	editing	an	archived	page	(version	1	through	10).
If	you	have	configured	the	Editor	options	to	Enable	archive	functionality	when
saving,	you	will	be	asked	if	you	wish	to	archive	previous	versions	of	the	file
before	it	is	saved.	For	more	details,	refer	to	the	Miscellaneous	option	of	the
10.7.1	Configure	command.
For	more	details	about	versions,	refer	to	Versioning	of	Pages	in	LANSA
Generated	HTML	Pages.
If	you	lose	your	connection	to	the	Application/Data	Server	while	saving	or
before	saving,	you	should	copy	the	document	contents	to	another	file	on	your
PC.	Simply	open	another	editor	(such	as	NOTEPAD.EXE)	and	cut	and	paste	the
text	to	this	editor.	Once	you	have	reconnected	to	the	server,	open	the	file	you
were	saving.	Cut	and	paste	the	text	back	into	the	Web	Function	Editor	and	try
saving	again.
	10.2	File	Menu

its:lansa086.CHM::/LANSA/ED0540.htm
its:LANSA086.CHM::/LANSA/ed0500.htm

10.2.6	Save	As
The	Save	As	command	allows	you	to	save	an	existing	HTML/XML	page	with	a
different	page	name.
If	you	have	opened	an	archived	page	(version	1	through	10),	the	changes	can
only	be	saved	as	version	0.	For	example,	if	you	open	version	3	of	a	page,	you
cannot	save	this	page	as	version	3.	It	must	be	saved	as	version	0.	This	rule
ensures	that	your	previous	versions	are	not	corrupted.	For	more	details	about
versions,	refer	to	Versioning	of	Pages.
Also	refer	to	the	10.2.5	Save	command	for	more	details	about	saving	files	back
to	the	Application/Data	Server.
	10.2	File	Menu

its:lansa086.CHM::/LANSA/ED0540.htm

10.2.7	Save	As	(mode	BASIC)
Selecting	the	Save	As	command	when	you	are	in	BASIC	mode	will	open	the
enhanced	Save	Page	dialog	box.	This	dialog	allows	you	to	list	the	known	pages
for	the	given	Extension	and	Second.	Extension	or	to	directly	specify	the
parameters	for	the	new	page	in	the	Details	area.

The	file	extension	and	secondary	extension	in	the	Selection	area	are
those	that	are	current	for	the	document.	If	you	want	a	different	file
Extension	and	Second	Extension	(i.e.	secondary	extension)	saved	with
the	document,	you	must	enter	them	in	the	Details	area.

	10.2	File	Menu

10.2.8	Save	To	Local	(mode	BASIC	only)
This	command	allows	you	to	save	the	current	page	to	a	file	on	a	local	drive.
Using	a	standard	File	Save	As	dialog,	you	specify	the	name	of	the	file	you	want
to	save	the	current	page	to.	Any	existing	files	of	the	same	name	will	be
overwritten.
	10.2	File	Menu

10.2.9	Load	From	Local	(mode	BASIC	only)
This	command	displays	a	standard	windows	File	Open	file	dialog	allowing	you
to	select	a	file.	After	pressing	Open	on	the	standard	File	Open	dialog	you	will
be	asked	to	confirm	that	you	want	to	overwrite	the	contents	of	the	current	page
with	the	contents	of	the	selected	file.	After	confirming	this,	the	content	of	the
current	page	will	be	replaced	by	the	content	of	the	file	selected	and	the	current
page	will	be	marked	as	modified.
To	replace	the	page	on	the	host	with	the	page	loaded	from	Local,	you	can	either
Save	it	with	the	same	name	or	select	the	Save	As	command	to	save	it	with	a
different	name.
	10.2	File	Menu

10.2.10	Compare
To	compare	HTML,	XML	or	Basic	pages,	select	Compare	from	the	File	menu
and	choose	one	of	these	commands,	as	appropriate:

New	Comparison	-	use	when	you	do	not	have	any	pages	open.
Compare	With	-	when	you	want	to	compare	with	a	page	that	is	already	open.
Compare	With	Version	-	when	you	want	to	compare	with	another	version	of
a	page	you	already	have	open.
When	you	have	finished	with	the	Compare	select	Close.

Version	saved
Before	you	can	compare	different	versions	of	your	pages,	you	must	first	specify
how	many	versions	of	the	pages	that	you	want	to	save.	To	specify	the	number	of
versions	you	want	to	save,	set	the	number	of	copies	on	the	Backup	page	of	the
Data/Application	Server	Configuration	in	the	LANSA	for	the	Web
Administrator.
Save	old	before	over-writing
If	the	backup	feature	is	enabled	in	the	Data/Application	Server	Configuration	in
the	LANSA	for	the	Web	Administrator,	then,	when	LANSA	generates	the
HTML/XML	for	a	particular	Web	function,	it	will	save	the	current	page	before
generating	a	new	page	for	the	function	being	compiled.
Save	with	versioning
If	previous	versions	are	being	saved	(specified	in	the	Backup	page	of	the
Data/Application	Server	Configuration	in	the	LANSA	for	the	Web
Administrator)	any	changes	made	to	an	HTML/XML/BASIC	page	will	be	saved
to	the	version	number	opened.
	10.2	File	Menu

New	Comparison
You	use	the	New	Comparison	command	when	you	do	not	have	any	HTML,
XML	or	BASIC	pages	open.

Select	the	first	page	that	you	want	to	compare	in	the	Compare	dialog	box.	When
you	press	OK,	the	Compare	dialog	box	will	open	again	for	you	to	select	the
second	document	to	compare	with	the	one	you	have	just	selected.
When	the	pages	are	displayed,	the	differences	between	the	two	pages	you	have
selected	are	highlighted,	using	the	colors	you	have	chosen	in	the	View	page	of
the	Editor's	Configuration	options.

	10.2.10	Compare

Compare	With
Select	Compare	With	if	you	already	have	a	page	open	and	you	would	like	to
compare	that	page	with	an	archived	page.	When	you	select	the	Compare	With
command,	the	Open	HTML/XML/Basic	Page	dialog	box	(depending	on	the
current	mode)	is	opened	so	that	you	can	choose	the	page	you	want	to	compare
with	your	current	page.

The	pages	are	displayed	in	the	orientation	that	you	have	specified	in	the	View
page	of	the	Editor's	Configuration	Options.

The	vertical	display	feature	allows	you	to	locate	the	differences	between	the	two
pages	quickly	as	well	as	allowing	you	to	incorporate	any	changes	into	the	page
you	are	editing.
To	close	the	comparison	window,	select	Close	from	this	window's	File	menu.
	10.2.10	Compare

Compare	With	Version
Choose	the	Compare	With	Version	when	you	are	editing	an	HTML/XML	or
BASIC	page	and	you	would	like	to	compare	the	page	with	an	archived	version
of	the	same	page.	The	HTML	Page	Version	dialog	box	is	displayed.

Enter	the	Page	Version	that	you	wish	to	open	and	press	OK.	The	page	you	have
selected	will	be	displayed	side	by	side	(or	whatever	orientation	you	have	chosen
for	comparisons	when	selecting	your	required	options	in	the	View	configuring
the	Editor)	with	the	differences	highlighted.

	10.2.10	Compare

Close
To	close	the	comparison	window,	choose	Close	from	this	window's	File	menu.
If	you	were	editing	an	HTML/XML	or	BASIC	page,	you	will	be	returned	to	that
window.
	10.2.10	Compare

10.2.11	Page	Setup
When	you	choose	the	Page	Setup	command	from	the	File	menu,	the	standard
Windows	Page	Layout	dialog	box	is	displayed	so	that	you	can	customize	the
page	layout.
	10.2	File	Menu

10.2.12	Print
This	command	opens	a	standard	Windows	Print	dialog	box	and	prints	the
HTML/XML	or	BASIC	page	currently	open.	You	can	choose	to	print	the	entire
page	or	a	highlighted	selection.
	10.2	File	Menu

10.2.13	Connect
Use	the	Connect	command	on	the	File	menu	to	connect	to	a	different	host	or	to
change	from	the	current	Mode	(HTML,	XML	or	BASIC)	to	a	different	Mode.
When	you	have	specified	the	details	of	the	system	to	which	you	want	to	connect
in	the	Profile	Details	area,	you	can	save	the	details	as	a	Profile.	Once	you	have
assigned	a	Profile	name,	you	simply	select	a	profile	rather	than	enter	the	profile
details	each	time	you	wish	to	reconnect.

Although	this	dialog	is	similar	to	the	System	Defaults	used	by	the	LANSA	for
the	Web	Administrator,	there	is	no	relationship	with	between	the	Profiles
recorded	using	Administrator's	System	Defaults	and	the	Profiles	recorded	using
the	Editor's	System	Defaults.
Mode
Enter	the	execution	mode	for	the	Editor.	Possible	modes	are	HTML,	XML	or
BASIC.	Depending	on	the	mode	you	choose,	the	mode-specific	options	will	be
enabled/disabled	once	you	are	connected	to	a	host	system.	The	BASIC	mode	is
a	more	generic	mode,	allowing	you	to	perform	tasks	common	to	all	type	of
pages	(HTML,	XML,	XSL	etc.).
If	you	select	a	Host	Type	of	Other,	then	only	Mode	HTML	and	XML	will	be
available	for	selection.

Save	Password
You	can	save	the	password	for	future	use	by	selecting	this	option.
Auto	connect	on	startup
If	you	select	this	option,	and	save	the	settings	as	a	Profile,	you	will	be	connected
automatically	to	this	system	when	you	next	start	the	editor.
Save	As
Advanced
	10.2	File	Menu

Save	As
If	you	want	to	reuse	the	connection	parameters,	then	you	can	save	them	as	a
Profile.	Select	the	Save	As...	option	and	enter	the	Profile	Name	in	the	Save	As
dialog	box.	Press	OK	to	return	to	the	System	Defaults	dialog.

Save
Press	Save	to	save	the	current	entries	with	the	Profile	Name	you	have	specified.
If	you	have	changed	setting,	remember	to	Save	the	changes	before	you	press	the
OK	button	to	start	the	connection	process.
Delete
To	delete	a	Profile,	select	the	profile	to	be	deleted	from	the	Profile	drop	down
list	then	press	the	Delete	button.	You	will	be	asked	to	confirm	the	delete	request.
You	are	not	able	to	delete	the	<Default>	profile.
Reset
Press	Reset	to	return	all	the	parameters	for	the	Profile	Details	and	the	related
Advanced	settings	to	their	default	values.
	10.2.13	Connect

Advanced
When	you	press	the	Advanced	button,	the	Advanced	System	Options	dialog	box
is	displayed.	This	allows	you	to	customize	replacement	characters	for	the	'@'
and	'#'	symbols.	You	will	only	need	to	customize	these	characters	if	you	are
running	a	non-English	system.

	10.2.13	Connect

Test	Case:

Test	Plan	Writer:		Torkel	CronholmDate	Written:

LANSA	Version:	11.4Date	Last	Tested:

Purpose:		Long	userid/password:	Use	existing	profiles,	create	new	profiles,
modify	profiles,	delete	profiles.	Need	to	test	with	an	earlier	release	of	Web
Function	Editor	as	well	to	ensure	backwards	compatibility	within	the	constraints
defined	in	the	test	case.	Need	to	trick	the	Web	Function	Editor	into	believing	it	is
using	data	from	a	never	version	of	the	Web	Function	Editor.

Comments:	

Tester:	______________________Date	Commenced:	________________Date
Completed:________________

	
Test Expected

Results

	

1 Use	the	11.3	version	of	the	program	and	fill	in	Profile
Details.

Use	a	combination	of	entries	for	LANSA	System,	Host	Type,
Partition,	Language,	Userid,	Password,	Mode,	Save
Password	and	Auto-connect	on	startup	as	well	as	settings
under	the	Advanced	area.

Save	each	entry	with	a	new	name	using	"Save	As…"

The	entries
are	saved.

Open	the	11.3
version	of	the
program	and
ensure	that	the
profiles	are
present	and
that	the	data	is
correct.

Open	the	11.4
version	of	the
program	and
ensure	that	the
profiles	are
present	and
that	the	data	is
correct.

2 Use	the	11.4	version	of	the	program	and	fill	in	Profile
Details.

Use	a	combination	of	entries	for	LANSA	System,	Host	Type,
Partition,	Language,	Userid,	Password,	Mode,	Save
Password	and	Auto-connect	on	startup	as	well	as	settings
under	the	Advanced	area.

Save	each	entry	with	a	new	name	using	"Save	As…"

Only	use	Userids	and	Passwords	that	are	NOT	longer	than
10	characters.

The	entries
are	saved.

Open	the	11.3
version	of	the
program	and
ensure	that	the
profiles	are
present	and
that	the	data	is
correct.

Open	the	11.4
version	of	the
program	and
ensure	that	the
profiles	are

present	and
that	the	data	is
correct.

3 Use	the	11.4	version	of	the	program	and	fill	in	Profile
Details.

Change	an	entry	to	have	Userid	to	be	longer	than	10
characters.	Save	the	profile	using	"Save"

Change	an	entry	to	have	Password	to	be	longer	than	10
characters.	Save	the	profile	using	"Save"

Change	an	entry	to	have	Userid	and	Password	to	be	longer
than	10	characters.	Save	the	profile	using	"Save"

The	entries
are	saved.

Open	the	11.3
version	of	the
program	and
ensure	that	the
profiles	are
present	and
that	the	Userid
and/or
Password	are
blank.

Open	the	11.4
version	of	the
program	and
ensure	that	the
profiles	are
present	and
that	the	data	is
correct.

4 Use	the	11.3	version	of	the	program	and	fill	in	Profile
Details.

Fill	in	Userid	and	Password	for	those	entries	done	above	and
save	each	entry	using	"Save"

The	entries
are	saved.

Open	the	11.3
version	of	the
program	and
ensure	that	the
profiles	are
present	and
that	the	data	is

correct.

Open	the	11.4
version	of	the
program	and
ensure	that	the
profiles	are
present	and
that	the	data	is
correct.

5 Use	the	11.4	version	of	the	program	and	press	reset	for	a
Profile.

The	entries
should	be
blank	except
for	Host	Type
which	should
be	"IBM	i",
Mode	which
should	be
"HTML".	In
"Advanced…"
the	@	should
be	"@"	and
the	#	should
be	"#"

6 Use	the	11.4	version	of	the	program.	Connect	to	IBM	i	with
a	combination	of	correct	short	and	long	Userids	and
Passwords.	Correct	here	means	that	the	Userid	need	to	exist
exist	on	IBM	i	and	passwords	need	to	be	correct.	Use	all
uppercase,	all	lowercase	and	a	combination	of
uppercase/lowercase	for	Password.

Connection	to
IBM	i	should
succeed

7 Use	the	11.4	version	of	the	program.	Connect	to	IBM	i	with
a	combination	of	incorrect	short	and	long	Userids	and
Passwords.	Incorrect	here	means	that	the	Userid	must	not

Connection	to
IBM	i	should
not	succeed.

exist	on	IBM	i	and/or	passwords	are	incorrect. Error	message
with	return
code	0x6	is
displayed.

8 Use	the	11.4	version	of	the	program.	Connect	to	Windows
(Other)	with	a	combination	of	correct	short	and	long	Userids
and	Passwords.	Correct	here	means	that	the	Userid	need	to
exist	exist	on	Windows	and	passwords	need	to	be	correct.
Use	all	uppercase,	all	lowercase	and	a	combination	of
uppercase/lowercase	for	Password.

.	Connection
to	Windows
should
succeed.

9 Use	the	11.4	version	of	the	program.	Connect	to	Windows
(Other)	with	a	combination	of	incorrect	short	and	long
Userids	and	Passwords.	Incorrect	here	means	that	the	Userid
must	not	exist	on	Windows	and/or	passwords	are	incorrect.

Connection	to
Windows
should	not
succeed.	Error
message	with
return	code
0x6	is
displayed.

10 Use	the	11.3	version	of	the	program	and	delete	a	few	of	the
created	profiles.

The	entries
are	deleted.

Open	the	11.3
version	of	the
program	and
ensure	that	the
profiles	are
not	present.

Open	the	11.4
version	of	the
program	and
ensure	that	the
profiles	are

not	present.

11 Use	the	11.4	version	of	the	program	and	delete	a	few	of	the
created	profiles.

The	entries
are	deleted.

Open	the	11.3
version	of	the
program	and
ensure	that	the
profiles	are
not	present.

Open	the	11.4
version	of	the
program	and
ensure	that	the
profiles	are
not	present.

12 We	need	to	ensure	that	future	backwards	compatibility	is
working,	ie,	that	the	program	works	with	the	next	generation
Userid	/Passwords.

11.3	level	data	has	no	version	number,	hence	the	lack	of	a
version	number	is	interpreted	as	version	0.	11.4	level	data	is
version	1.	The	next	generation	data	(for	the	future)	will	be
any	number	larger	then	1.	If	11.3	finds	data	with
userid/password	longer	then	10	characters	it	will	leave
userid/password	fields	empty	(as	it	does	for	version	1).	If
11.4	finds	data	of	a	later	version,	ie,	profiles	data's	version
number	is	>	1,	it	will	disable	the	entire	connection	screen
(except	for	where	to	chose	the	profile	of	course).

To	test	this,	you	need	to	manually	edit	the	profiles	data
version.

This	is	how	to	do	it:	Open	registry	(using	regedit).	Go	to
HKEY_CURRENT_USER\Software\LANSA\LANSAWEB.

Open	the	11.4
version	of	the
program.	Any
profile	data
you	made	to
version
number	2	will
show	its
details
disabled.

Open	the	11.3
version	of	the
program.	Any
profile	you
made	to
version
number	1	or	2

Under	this	key	look	for	a	PROF#	key	(#	being	a	number)
and	add	and	set	or	change	LW3_Version	to	2	(for	testing
11.3	and	11.4)	or	1	(for	testing	11.3).

IMPORTANT:	REMEMBER	TO	SET	THE	LW3_Version
VERSION	BACK	AFTER	YOU	FINISHED	WITH	THIS
TEST

will	show	the
details
enabled	BUT
the	UserId
and/or
Password	will
be	displayed
as	blank	if
they	are
longer	than	10
characters.

13 	 	

	

Test	Case:

Test	Plan	Writer:		Torkel	CronholmDate	Written:

LANSA	Version:	11.4Date	Last	Tested:

Purpose:		Connecting	to	backend	where	the	nominated	OS	type	is	not	the	one
we	actually	are	connecting	to

Comments:		In	all	tests	ensure	that	all	connection	details	expect	for	Host	Type
are	correct.	The	ONLY	thing	wrong	should	be	the	Host	Type.

Tester:	______________________Date	Commenced:	________________Date
Completed:________________

	
Test Expected	Results

	

Pass/
Fail

1 In	Profiles	Details	specify	a Fails	with	message:	"Connection 	

LANSA	System	for
Windows,	but	select	IBM	i
as	Host	Type.	Connect.

failed.	Connection	defined	as
IBM	i	but	attempt	was	made	to
connect	to	Windows"

2 In	Profiles	Details	specify	a
LANSA	System	for	IBM	i,
but	select	Other	as	Host
Type.	Connect.

Fails	with	message:	"Connection
failed.	Connection	defined	as
Other	but	attempt	was	made	to
connect	to	IBM	i"

	

3 	 	 	

4 	 	 	

5 	 	 	

6 	 	 	

7 	 	 	

8 	 	 	

9 	 	 	

10 	 	 	

11 	 	 	

12 	 	 	

13 	 	 	

14 	 	 	

15 	 	 	

16 	 	 	

17 	 	 	

18 	 	 	

19 	 	 	

20 	 	 	

21 	 	 	

22 	 	 	

23 	 	 	

24 	 	 	

25 	 	 	

26 	 	 	

27 	 	 	

28 	 	 	

29 	 	 	

30 	 	 	

	

	

10.3	Edit	Menu
The	Edit	menu	commands	are	provided	for	you	to	edit	your	HTML/XML.	The
Edit	menu's	commands	allow	you	to:
	Undo
	Cut
	Copy
	Paste
	10.3.1	Paste	HTML	(HTML	only)
	Select	All
	10.3.2	Clear	All
	Find
	Replace
	
Except	for	the	two	LANSA	for	Web	specific	commands,	these	editing
commands	work	in	the	same	way	as	the	standard	Microsoft	Windows
commands.

10.3.1	Paste	HTML	(HTML	only)
Paste	HTML	pastes	text	from	the	Clipboard	into	the	active	window	in	HTML
Format.	This	means	that	the	text	to	be	pasted	includes	the	formatting	HTML
tags	(unlike	the	Paste	command	that	only	copies	the	text	-	not	the	HTML	tags).
	10.3	Edit	Menu

10.3.2	Clear	All
This	command	deletes	all	the	HTML/XML	lines	from	the	document	that	is
currently	displayed.	You	are	asked	to	confirm	your	deletion	before	the	lines	are
actually	deleted.
	10.3	Edit	Menu

10.4	View	Menu
The	View	menu	allows	you	to	control	the	display	of	the	Toolbar	at	the	top	of	the
main	window	and	the	Status	Bar	at	the	bottom	of	the	main	window.
The	display	options	are	a	toggle.	If	you	select	the	Toolbar,	it	will	be	displayed.
If	you	select	it	again,	it	will	not	be	displayed.

10.5	Tags	Menu	(HTML	mode)
Use	the	Tags	menu	to	insert	HTML	tags	into	your	HTML	page.	The	tags	will	be
inserted	at	the	current	cursor	position.

You	will	find	the	most	commonly	used	HTML	and	LANSA	tags	in	the	Tags	sub
menus.
10.5.1	Insert	RDML	Component

10.5.1	Insert	RDML	Component
When	you	choose	the	Component	tags	from	the	RDML	sub-menu,	the	RDML
Component	dialog	box	is	opened	to	display	the	list	of	Web	components
currently	registered	in	the	partition's	Web	Component	Registry.

If	you	enter	the	first	character	of	the	Component's	name,	the	list	will	be
positioned	at	the	beginning	of	the	names	starting	with	that	character.
Select	a	Component	from	the	list	and	press	OK.	The	component	will	be
automatically	inserted	into	your	HTML	page.
	10.5	Tags	Menu	(HTML	mode)

10.6	Components	Menu
The	Components	Menu	contains	the	following	options:
	10.6.1	Maintain	Component
	10.6.2	Generate	Component
	10.6.3	Graphic	Variables

10.6.1	Maintain	Component
You	use	the	Maintain	command	on	the	Components	menu	to	maintain	your
existing	Web	components	or	to	add	new	Web	components.
If	you	are	running	Task	Tracking	in	LANSA,	then	when	you	add,	change,	or
delete	Components,	the	Administrator	will	prompt	you	for	the	Task	Id	required
by	the	Task	Tracking	level.
When	you	select	Maintain	from	the	Components	menu,	the	Components	dialog
box	is	displayed	with	a	list	of	the	Web	components	in	the	Web	Components
Registry	of	the	current	partition.	From	this	dialog	box	you	can	Change	or	Delete
the	components	that	are	listed	or	you	can	Add	new	Web	components.	The	dialog
boxes	used	to	change	or	add	Web	components	will	vary	depending	on	the	type
of	component	you	are	working	with.

Add
Press	the	Add	button	to	Add	a	new	Component.
Duplicate
If	you	select	a	component	and	press	the	right	mouse	button,	a	floating	menu	is
displayed.	On	this	menu	are	these	menu	items:	Change,	Delete	and	Duplicate.	If

you	select	Duplicate,	the	selected	component	will	be	used	as	a	template	for	a
new	component	and	its	details	will	be	displayed	in	the	Add	dialog	box	for	the
type	of	component	you	have	selected.
With	this	feature	you	can	easily	create	components	without	having	to	enter
similar	values	over	and	over	again.
Change
Select	the	component	in	the	list	and	press	the	Change	button.	The	dialog	box
that	is	displayed	will	depend	on	the	type	of	component	you	are	changing.
Delete
To	delete	a	component	from	the	Web	Component	Registry,	select	the	component
to	be	deleted	in	the	list	and	press	the	Delete	button.	You	will	be	asked	to
confirm	the	deletion.
Add	a	new	Component
Duplicate
Banner	Component	(HTML	mode)
File	Component
Page	Component
Script	Component	(HTML	mode)
Text	Component
Visual	Component
Web	Link	Component	(HTML	mode)
	10.6	Components	Menu

Add	a	new	Component
After	you	press	the	Add	button	on	the	Maintain	Components	dialog	box,	the
Add	Component	dialog	box	is	opened.	This	is	always	the	first	step	in	defining	a
new	Web	component	unless	you	use	the	Duplicate	feature.

Component
The	new	Web	component's	name.	This	is	the	name	you	will	use	in	conjunction
with	the	<RDML	COMPONENT>	LANSA	tag.
Extension
The	file	extension.	This	indicates	the	mode	in	which	you	are	processing.	If	you
are	in	BASIC	mode,	you	will	need	to	select	the	file	extension	you	require.
Sec.	Ext.	(XML	mode)
Secondary	extension	specifies	the	sub-extension	(also	called	the	XML
Application)	to	be	used	to	identify	the	Component.	This	value	enables	you	to
simplify	the	search	for	XML	documents.
Type
Select	the	Type	of	component	from	the	drop	down	list	of	possible	Web
component	types.
Continue
To	enter	the	component's	details,	press	the	Continue	button.	The	details	required
depends	on	the	Type	of	component	that	you	are	creating.	It	could	be	a:

Banner	Component	(HTML	mode)
File	Component
Page	Component
Script	Component	(HTML	mode)

Text	Component
Visual	Component
Web	Link	Component	(HTML	mode)

	10.6.1	Maintain	Component

Duplicate
If	you	are	adding	many	new	components,	you	can	use	the	Duplicate	feature	to
easily	create	components	without	having	to	enter	similar	values	over	and	over
again.
To	use	the	Duplicate	feature,	simply	select	the	component	on	which	to	base	your
new	component	and	right	click	with	the	mouse	to	display	the	pop-up	menu.
Select	Duplicate	from	the	pop-up	menu.	The	appropriate	Add	component	dialog
box	is	opened	with	the	entry	fields	pre-filled	with	the	values	of	the	selected
component.
	10.6.1	Maintain	Component

Banner	Component	(HTML	mode)
Banner	Web	components	allow	you	to	create	a	banner	as	a	list	of	images	or	as	a
list	of	Web	components.	Banner	Web	components	are	used	when	you	wish	to
change	the	presentation	or	layout	of	your	page	periodically.
When	defining	the	banner	Web	component	as	a	list	of	Web	components,	the
Web	components	can	consist	of	any	type	of	Web	components.	For	example,	you
could	create	a	Banner	Web	component	that	consists	of	a	Visual	drop	down	Web
component,	check	box	Web	component,	radio	button	Web	component.	In
addition,	the	Banner	Web	component	can	embed	another	Banner	Web
component.
This	allows	you	to	customize	the	presentation	of	your	data.	A	Banner	Web
component	can	be	embedded	into	any	HTML	page	in	your	application.
When	you	have	chosen	to	create	a	Banner	Web	component,	the	Banner	Type
dialog	box	is	displayed.

Banner	Type
Select	the	type	of	banner	you	wish	to	create.	A	banner	will	consist	of	either
images	or	Web	components.	Your	selection	will	be	shown	in	the	following
dialog	box	where	you	specify	further	details	of	the	banner	you	have	selected.
Mode
You	can	choose	to	define	the	Web	component	as	a	mode	dependent	Web
component	by	selecting	the	appropriate	mode.	For	more	details,	refer	to	Web
Components	and	Modes.
	10.6.1	Maintain	Component

its:lansa086.CHM::/LANSA/ED0920.htm

Add/Change	Banner	Component
When	you	select	the	OK	button,	the	Add	or	Change	Banner	Component	dialog
box,	as	appropriate,	is	displayed.	If	you	are	creating	a	number	of	Banner
Components,	you	can	use	the	Duplicate	feature.

The	Banner	type	you	have	chosen	is	displayed	in	the	top	right	corner	of	the	box.
You	can	work	with	either	a	set	of	images	or	a	set	of	components.	You	use	the
Add,	Change	or	Delete	to	modify	the	definition	of	the	banner	Web	component.
Description
The	description	of	the	Web	component	in	the	Web	Component	Registry.
Display	link	in	new	window
If	this	option	is	selected,	it	will	open	the	URL	/	Link	on	a	particular	banner
image	in	a	new	browser	window.	By	Default,	the	URL	/	Link	on	a	banner	image
will	open	in	the	current	browser	window.
Update	frequency
Select	the	appropriate	frequency	in	the	list.	Additional	options	will	be	requested,

depending	on	the	frequency	selected.
Update	every	visit	-	Cycle	through	each	image	or	component	on	a	per	visit
basis	(i.e.	each	time	the	banner	component	is	used	–	it	will	be	updated	to	the
next	item).
Update	every	week	-	Cycle	through	each	image	or	component	on	a
particular	day	of	the	week.	For	example,	you	could	create	a	Banner
component	that	changes	every	Monday.
Update	every	n	days	-	Cycle	through	each	image	or	component	based	on
number	of	days.	For	example,	you	could	create	a	Banner	component	that
changes	every	50	days.
Update	every	n	months	-	Cycle	through	each	image	or	component	on	a
monthly	basis.	For	example,	you	could	create	a	banner	Component	that
changes	every	3	months	on	the	10th	day	of	that	month.

Banner	Items
If	you	are	using	multiple	banner	images	in	a	cycle,	the	images	in	the	cycle	are
shown	in	the	Banner	Items	list	in	the	dialog	box.
Make	Current
In	the	list	of	images,	the	image	that	is	current	is	indicated	by	a	tick	in	the	Set
column.
To	make	a	different	image	the	current	image,	select	the	image	you	wish	to	make
current,	right	mouse	click	to	bring	up	the	popup	window	and	choose	the	Make
Current	command.	This	image	will	be	the	current	image	the	next	time	the
Banner	Web	component	is	called.
Press	the	Add...	or	Change	button	to	provide	further	details.
	Banner	Component	(HTML	mode)

Add/Change	Banner	Detail
You	reach	the	Add	or	Change	Banner	Detail	dialog	box	by	selecting	the	Add...
or	Change	button	on	the	Add/Change	Banner	Component	dialog	box.

Set
The	number	specified	in	Set	controls	the	sequence	in	which	images	are	cycled.
You	should	start	at	0	and	increment	by	1	for	each	image.	LANSA	for	the	Web
assumes	that	the	images	assigned	to	the	Banner	Web	component	are	assigned	a
sequential	number.
Image/Component
If	you	are	displaying	a	list	of	images,	enter	the	name	of	the	Image	file.	The
Image	file	must	reside	in	the	Images	location	as	defined	for	the
Data/Application	Server	in	File	Location	in	the	Web	Administrator.
If	you	are	displaying	Web	components,	this	field	will	be	entitled	'Component'.
In	this	case,	enter	the	name	of	the	Web	component	to	be	displayed.
Description
This	description	is	displayed	when	a	mouse	is	positioned	over	the	banner	when
it	is	viewed	in	the	browser.
URL
The	URL	of	the	supplier	of	the	image.	When	you	click	on	the	image	in	the
Banner	Web	component,	the	URL	will	be	used	to	locate	the	Web	site	attached	to
the	image.	You	will	require	the	URL	only	if	you	are	creating	a	list	of	Images.

its:lansa085.chm::/lansa/jmp_0340.htm

Click	Count
LANSA	for	the	Web	provides	you	with	a	facility	to	keep	count	of	the	number	of
times	the	image	is	selected	when	the	banner	is	displayed.	This	feature	allows
you	to	provide	advertising	space	in	your	application.
Click-tracking	only	applies	to	Banner	Web	components	that	consist	of	images.
You	can	view	the	current	click-tracking	status	of	each	individual	item	in	a
Banner	Component	by	looking	at	its	details	in	this	Banner	Detail	dialog	box.
This	number	is	automatically	updated	for	each	item	each	time	the	user	clicks	on
a	banner	to	visit	that	particular	Web	site	/	URL.
The	click-tracking	counter	is	held	field	W11CLK	in	LANSA	table	DC@W11.
	Banner	Component	(HTML	mode)

File	Component
If	you	are	adding	or	changing	a	File	Web	component,	the	Add/Change	File
Component	dialog	box,	as	appropriate,	will	be	displayed.	If	you	are	creating	a
number	of	File	Components,	you	can	use	the	Duplicate	feature.

Description
Describes	the	component	in	the	Web	Component	Registry.
File	and	Library
The	file	definitions	are	specified	in	these	entry	fields.	LANSA	does	not	validate
the	existence	of	the	file	on	the	host.	The	file	will	not	be	created	by	LANSA.	You
must	create	the	file.
The	file	is	treated	by	LANSA	as	a	data	stream	file.	LANSA	does	not	validate
the	content	of	the	file.	However,	LANSA	tags	can	be	embedded	in	the	file.
If	you	are	connected	to	a	host	type	Other	then	the	Library	entry	field	will	be
disabled	and	the	File	entry	field	will	allow	for	a	full	path	filename.
For	the	AS/400	files,	if	a	library	is	not	specified,	the	library	list	of	the	user
profile	at	execution	time	will	be	used	by	LANSA	to	locate	the	file.
Mode
You	can	choose	to	define	the	Web	component	as	a	mode	dependent	Web
component	by	selecting	the	appropriate	mode.	For	more	details,	refer	to	Web
Components	and	Modes	in	the	Web	Function	Guide.
	10.6.1	Maintain	Component.

its:lansa086.CHM::/LANSA/ED0920.htm

Page	Component
If	you	have	selected	a	Page	as	your	Component	Type,	the	Add	or	Change	Page
Component	dialog	box,	as	appropriate,	is	displayed.	If	you	are	creating	a
number	of	Page	Components,	you	can	use	the	Duplicate	feature.

Description
Describes	the	component	in	the	Web	Component	Registry.
Page
Specify	the	name	of	the	HTML/XML	page.	A	Page	Web	component	allows	you
to	use	an	HTML/XML	page	as	a	Web	component.	The	HTML/XML	page	must
be	created	using	this	Web	Function	Editor.	In	other	words,	the	HTML/XML
page	must	be	known	to	LANSA	for	the	Web.
An	example	of	a	Page	Web	component	is	STDHEADER.
Mode
You	can	choose	to	define	the	Web	component	as	a	mode	dependent	Web
component	by	selecting	the	appropriate	mode.	For	more	details,	refer	to	Web
Components	and	Modes	in	the	Web	Function	Guide.
	10.6.1	Maintain	Component

its:lansa086.CHM::/LANSA/ED0920.htm

Script	Component	(HTML	mode)
If	you	are	working	with	a	Script	Web	component	as	your	Component	Type,	the
Add	or	Change	Script	Component	dialog	box,	as	appropriate,	will	be	displayed.
If	you	are	creating	a	number	of	Script	Components,	you	can	use	the	Duplicate
feature.

Description
Describes	the	component	in	the	Web	Component	Registry.
Script
Specify	the	name	of	the	HTML	page	containing	the	script	functions.	Script	Web
components	are	treated	by	LANSA	for	the	Web	as	HTML	pages	stored	in	the
LANSA	internal	tables.	This	Script	Web	component	page	must	be	created	using
this	Web	Function	Editor.
LANSA	for	the	Web	does	not	restrict	you	to	a	particular	script	language.	In
other	words,	you	could	be	creating	a	JavaScript	or	VBScript	Script	Web
Component.
LANSA	for	the	Web	does	not	validate	the	functions	specified	in	the	Script	Web
component.	You	must	ensure	that	the	script	you	have	created	is	syntactically
correct.	You	must	verify	your	script	before	creating	it	as	a	Script	Web
component.
Mode
You	can	choose	to	define	the	Web	component	as	a	mode	dependent	Web
component	by	selecting	the	appropriate	mode.	For	more	details,	refer	to	Web
Components	and	Modes	in	the	Web	Function	Guide.
	10.6.1	Maintain	Component.

its:lansa086.CHM::/LANSA/ED0920.htm

Text	Component
If	you	are	working	with	a	Text	Web	component	as	your	Component	Type,	the
Add	or	Change	Text	Component	dialog	box,	as	appropriate,	is	displayed.	If	you
are	creating	a	number	of	Text	Components,	you	can	use	the	Duplicate	feature.

Description
Describes	the	component	in	the	Web	Component	Registry.
Text
Enter	the	text	associated	with	the	component.	The	length	of	the	text	is	limited	to
255	characters.	The	text	may	include	HTML/XML	tags.	RDML	tags	as	part	of
the	text	are	not	resolved.
Mode
You	can	choose	to	define	the	Web	component	as	a	mode	dependent	Web
component	by	selecting	the	appropriate	mode.	For	more	details,	refer	to	Web
Components	and	Modes	in	the	Web	Function	Guide.
	10.6.1	Maintain	Component.

its:lansa086.CHM::/LANSA/ED0920.htm

Visual	Component
If	you	have	selected	a	Visual	Web	component,	the	Add	or	Change	Visual
Component	dialog	box,	as	appropriate,	is	displayed.	If	you	are	creating	a
number	of	Visual	Components,	you	can	use	the	Duplicate	feature.

Description
Describes	the	component	in	the	Web	Component	Registry.
Page
Specify	the	name	of	the	HTML/XML	page.	Typically,	the	name	of	the	page	will
be	the	same	name	as	the	Web	component.
The	named	HTML/XML	document	must	be	created	by	the	Web	Function
Editor.
Mode
This	indicates	the	mode	of	operation	for	the	Visual	Web	component.	If	the
Visual	Web	component	is	to	be	used	to	replace	an	entry	field,	the	mode	should
be	set	to	Input.	If	you	want	the	Visual	Web	component	to	replace	an	output
field,	select	the	Output	option.	For	more	details,	refer	to	Web	Components	and
Modes.
	10.6.1	Maintain	Component

its:lansa086.CHM::/LANSA/ED0920.htm

Web	Link	Component	(HTML	mode)
If	you	are	working	with	a	Web	Link	component	as	your	Component	Type,	the
Add/Change	Web	Link	Component	dialog	box,	as	appropriate,	is	displayed.	If
you	are	creating	a	number	of	Web	Link	Components,	you	can	use	the	Duplicate
feature.

Description
Describes	the	Web	component	in	the	Web	Component	Registry.
Linked	Process	and	Linked	Function
The	function	to	invoke	when	the	link	is	selected	is	described	by	the	Linked
Process	and	Linked	Function	fields.	These	fields	are	not	enabled	if	the	OnClick
check	box	is	checked.
Linked	Description
This	is	the	text	displayed	if	the	component	is	a	button.	If	the	component	is	an
image,	it	is	the	text	displayed	when	you	position	your	mouse	over	the
image/button	when	it	is	displayed	in	the	browser.
OnClick
If	you	check	this	box,	you	will	be	able	to	enter	the	commands	to	be	executed	in
case	of	an	OnClick	event.	You	may	have	to	edit	DEFAULT_SCRIPT	or
<process	name>_SCRIPT	to	add	the	Java	Script	Function.	If	OnClick	is

checked,	the	fields	Linked	Function	and	Linked	Process	will	be	disabled.
Type
The	Type	determines	if	the	link	is	displayed	as	a	button	or	an	image.	If	it	is	to	be
displayed	as	an	image,	the	image	file	name	must	also	be	supplied.

If	an	image	is	specified,	the	image	file	must	be	stored	in	the	Images
directory	defined	in	the	File	Location	page	of	the	Configure	...	options
in	the	LANSA	for	the	Web	Administrator.

	10.6.1	Maintain	Component

10.6.2	Generate	Component
The	Generate	Component	command	allows	you	to	either	generate	an	input
mode	File	Web	component	(File	-	HTML	mode	only)	or	an	input	mode	Visual
Web	component	(Visual).
LANSA	for	the	Web	supports	the	automatic	creation	of	mode	dependent	Web
components	for:

Drop	downs
List	boxes
Radio	buttons
Check	boxes.
Generate	Visual	Component
Generate	File	Component	(HTML	mode)
Considerations	for	using	File	Web	Components

	10.6	Components	Menu

Generate	Visual	Component
Visual	Web	components	can	be	used	to	enhance	the	presentation	of	your
functions.
When	you	select	Visual	...	from	the	Generate	Component	option,	the	Generate
Visual	Component	dialog	box	is	displayed.

Component
Specify	the	name	of	the	Web	component.
Sec.	Ext.	(XML	mode)
Secondary	extension	specifies	the	sub-extension	(also	called	the	XML
Application)	to	be	used	to	identify	the	Component.	This	value	enables	you	to
simplify	the	search	for	XML	documents.
Visual	Type
Select	the	required	Type	from	the	drop	down	list.
Repository	Data
If	you	have	selected	a	Visual	Type	of	Drop	Down,	List	Box	or	Radio	Button,

you	will	need	to	provide	Repository-based	information.	LANSA	for	the	Web
will	build	the	visual	Web	component	from	the	data	contained	in	the	file	you
specify.
File
The	name	of	the	file.	This	file	must	be	known	to	LANSA	Repository	on	the
host.	The	HTML/XML	generated	is	based	on	the	data	in	this	file.
Field	for	Value
The	name	of	the	field	you	want	to	use	for	the	VALUE	keyword	in	the	resulting
HTML/XML.	This	is	the	field	containing	the	data	that	will	be	returned	to	your
application	at	the	Server.
Field	for	Description
The	description	of	the	entry	displayed	to	the	user.
Use	Library	List
Select	this	option	if	you	want	to	use	the	user	profile's	library	list	to	locate	the
source	file	instead	of	the	library	associated	with	the	file	in	the	LANSA
Repository.
Include	blank	entry
By	default,	a	blank	entry	is	generated	which	is	used	when	evaluating	the
<RDML	CHECKVALUE>	tag.	This	sets	the	default	field	value	to	*BLANK.	If
you	do	not	want	to	generate	a	blank	entry	for	the	component,	deselect	this
option.
Static	Data
If	you	are	building	a	check	box,	you	must	enter	the	two	values	in	this	area.
Value
The	value	for	the	checked	state	of	the	check	box.
Description
The	description	of	the	check	box.
Form	Element	Name	Override
This	is	used	for	HTML	only.	If	a	name	is	provided	it	will	be	used	as	the	name	of
the	HTML	form	elements.
If	not	provided,	the	component	name	is	used	to	name	the	form	elements.
OK
When	you	select	the	OK	button,	the	Visual	Web	component	will	be	generated

automatically	and	the	Web	Component	Registry	updated	to	reflect	the	Web
component.	The	component	will	be	created	as	an	input	Visual	Web	component.
If	a	Web	component	of	the	same	name	already	exists,	the	new	Visual	Web
component	will	replace	the	existing	Web	component.	The	HTML/XML
associated	with	the	existing	Web	component	will	be	backed	up	before	the	new
Web	component	is	created.
Note:	Make	sure	that	you	enter	correct	values	for	the	fields	in	the	Repository
Data	area,	otherwise	the	component	will	not	be	generated.	
	10.6.2	Generate	Component

Test	Case:

Test	Plan	Writer:		Torkel	CronholmDate	Written:

LANSA	Version:	11.4Date	Last	Tested:

Purpose:		Generate	Visual	Component	from	Web	Function	Editor	dialog.

Comments:		For	all	test	cases	it	is	assumed	that	the	tester	knows	how	to
generate	a	visual	component,	and	how	to	ensure	that	it	is	created.	The	test	has	to
be	performed	on	both	a	RDML	and	a	RDMLX	partition	on	both	a	Windows	and
an	IBM	i	backend,	ie,	on	four	combinations	(RDML	Windows,	RDML	IBM	i,
RDMLX	Windows,	RDMLX	IBM	i).	Some	tests	will	not	be	applicable	for
RDML	partitions,	such	as	tests	on	LL2	files.

Use	the	option	to	provide	a	Form	Element	Name	Override	for	some	of	the	tests.
Please	indicate	with	an	O)	which	test	items	this	option	was	used	on.

Use	the	option	to	provide	a	Use	Library	List	for	some	of	the	tests.	Please
indicate	with	an	L)	which	test	items	this	option	was	used	on.

Use	the	option	to	provide	a	Include	blank	entry	for	some	of	the	tests.	Please
indicate	with	a	B)	which	test	items	this	option	was	used	on.

Some	of	the	tests	should	generate	a	web	component	where	there	already	exists	a
web	component.	Please	indicate	with	an	R)	which	test	items	this	test	was	done
for.

For	this	test,	suggested	naming	convention	for	components	is	iiiEVXY#LD,

where

Iii	stands	for	the	initials	of	the	tester

E	stands	for	Editor	(the	components	can	be	generated	by	a	BIF	as	well	as	from
command	line)

V	is	for	a	Visual	component

X	is	the	type	of	component.	Use	C	for	Check	box,	D	for	Drop	down,	L	for
ListBox	and	R	for	Radio	button.

Y	is	for	form	element	name	override.	Use	Y	for	Yes	and	N	for	No.

#	is	denoting	LL1	or	LL2	file	where	applicable.	Use	1	for	LL1,	2	for	LL2	and	0
if	not	applicable).

L	is	for	data	type	for	Value	when	creating	a	Drop	down,	ListBox	or	Radio
button.	Use	A	for	Alpha,	P	for	Packed,	S	for	Signed,	C	for	Char,	D	for	Date,	T
for	Time,	Z	for	DateTime,	I	for	Integer,	F	for	Float,	S	for	String	and	omit	if	not
applicable.

D	is	for	data	type	for	Description	when	creating	a	Drop	down,	ListBox	or	Radio
button.	Use	A	for	Alpha,	P	for	Packed,	S	for	Signed,	C	for	Char,	D	for	Date,	T
for	Time,	Z	for	DateTime,	I	for	Integer,	F	for	Float,	S	for	String	and	omit	if	not
applicable.

Example:	A	tester	named	Douglas	Noel	Adams	creating	a	Visual	component
using	a	Drop	down	with	element	override	for	an	LL2	file	(using	Alpha	for	Value
and	Signed	for	Description)	should	name	the	component:	DNAEVDY2AS.
Always	name	the	form	element	name	override	in	a	consistent	manner,	ie,	add	_O
to	the	name	to	create	the	override.	Form	Element	Name	Override	would	be
DNAEVDY2AS_O	for	this	example.

For	Check	Box,	use	any	test	for	Value	and	Description	fields.

In	test	items	1	-	27	the	tester	will	attempt	create	a	visual	component	according	to
above.

The	expected	result	in	test	items	1	-	27	is	that	the	component	is	created	as	per	the

test.

Tester:	______________________Date	Commenced:	________________Date
Completed:________________

	
Test Expected	Results

	

Pass/
Fail

1 Checkbox: 	 	

2 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Alpha

	 	

3 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Packed,	Description:	Alpha

	 	

4 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Signed,	Description:	Alpha

	 	

5 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Char,	Description:	Alpha

	 	

6 Drop	down,	ListBox	and	Radio	button
using	LL2	file

	 	

Value:	Date,	Description:	Alpha

7 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Time,	Description:	Alpha

	 	

8 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	DateTime,	Description:	Alpha

	 	

9 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Integer,	Description:	Alpha

	 	

10 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Float,	Description:	Alpha

	 	

11 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	String,	Description:	Alpha

	 	

12 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Alpha

	 	

13 Drop	down,	ListBox	and	Radio	button 	 	

using	LL2	file

Value:	Alpha,	Description:	Packed

14 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Signed

	 	

15 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Char

	 	

16 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Date

	 	

17 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Time

	 	

18 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	DateTime

	 	

19 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Integer

	 	

20 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Float

	 	

21 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	String

	 	

22 Drop	down,	ListBox	and	Radio	button
using	LL1	file

Value:	Alpha,	Description:	Alpha

	 	

23 Drop	down,	ListBox	and	Radio	button
using	LL1	file

Value:	Packed,	Description:	Alpha

	 	

24 Drop	down,	ListBox	and	Radio	button
using	LL1	file

Value:	Signed,	Description:	Alpha

	 	

25 Drop	down,	ListBox	and	Radio	button
using	LL1	file

Value:	Alpha,	Description:	Alpha

	 	

26 Drop	down,	ListBox	and	Radio	button
using	LL1	file

	 	

Value:	Alpha,	Description:	Packed

27 Drop	down,	ListBox	and	Radio	button
using	LL1	file

Value:	Alpha,	Description:	Signed

	 	

28 Drop	down,	ListBox	and	Radio	button
using	incorrect	LL1	file

Error	message	in	Web
Function	Editor

	

29 Drop	down,	ListBox	and	Radio	button
using	incorrect	LL2	file

Error	message	in	Web
Function	Editor

	

30 Drop	down,	ListBox	and	Radio	button
using	correct	LL1	file,	but	incorrect
fieldnames

No	message	in	Web
Function	Editor,	but	the
components	will	not	be
created

	

31 Drop	down,	ListBox	and	Radio	button
using	correct	LL2	file,	but	incorrect
fieldnames

No	message	in	Web
Function	Editor,	but	the
components	will	not	be
created

	

32 Leave	some	of	the	required	text	fields
empty	when	generating	a	visual
component

Error	message	in	Web
Function	Editor

	

33 Check	the	tab	order	in	the	dialog	(Either
when	in	"Check	Box"	mode	or	in	"Drop
down,	ListBox	and	Radio"	mode)

Tab	order	is	from	top	to
bottom,	left	to	right

	

	

Generate	File	Component	(HTML	mode)
When	you	select	File...	from	the	Generate	Component	option,	the	Generate	File
Component	dialog	box	is	displayed.	Refer	to	Considerations	for	using	File	Web
Components.

Most	of	the	fields	in	this	dialog	box	are	identical	to	the	Generate	Visual
Component	dialog	box.
Component
Specify	the	name	of	the	Web	component.
Sec.	Ext.	(XML	mode)
Secondary	extension	specifies	the	sub-extension	(also	called	the	XML
Application)	to	be	used	to	identify	the	Component.	This	value	enables	you	to
simplify	the	search	for	XML	documents.
Visual	Type
Select	the	required	Type	from	the	drop	down	list.

Repository	Data
If	you	have	selected	a	Visual	Type	of	Drop	Down,	List	Box	or	Radio	Button,
you	will	need	to	provide	Repository-based	information.	LANSA	for	the	Web
will	build	the	visual	Web	component	from	the	data	contained	in	the	file	you
specify.
File
The	name	of	the	file.	This	file	must	be	known	to	LANSA	Repository	on	the
host.	The	HTML/XML	generated	is	based	on	the	data	in	this	file.
Field	for	Value
The	name	of	the	field	you	want	to	use	for	the	VALUE	keyword	in	the	resulting
HTML/XML.	This	is	the	field	containing	the	data	that	will	be	returned	to	your
application	at	the	Server.
Field	for	Description
The	description	of	the	entry	displayed	to	the	user.
Use	Library	List
Select	this	option	if	you	want	to	use	the	user	profile's	library	list	to	locate	the
source	file	instead	of	the	library	associated	with	the	file	in	the	LANSA
Repository.
Include	blank	entry
By	default,	a	blank	entry	is	generated	which	is	used	when	evaluating	the
<RDML	CHECKVALUE>	tag.	This	sets	the	default	field	value	to	*BLANK.	If
you	do	not	want	to	generate	a	blank	entry	for	the	component,	deselect	this
option.
Static	Data
If	you	are	building	a	check	box,	you	must	complete	these	two	entries:
Value
The	value	for	the	checked	state	of	the	check	box.
Description
The	description	of	the	check	box.
File	(out	file)
Enter	the	target	file	specification.	This	file	is	created	as	a	source	physical	file
and	holds	the	generated	HTML	for	the	Web	component.
Use	library	in	component	definition

Select	this	option	if	you	want	to	use	the	user	profile's	library	list	to	locate	the
source	file	instead	of	the	library	associated	with	the	file	in	the	LANSA
Repository.	This	option	is	disabled	if	you	are	connected	to	a	host	type	Other.
If	this	option	is	selected	the	library	and	file	combination	is	used	each	time	the
component	is	required	in	your	application.
OK
When	you	select	the	OK	button,	the	File	component	will	be	generated
automatically	and	the	Web	Component	Registry	will	be	updated	to	reflect	the
new/modified	component.	The	component	will	be	created	as	an	input	File
component.
Note:	Make	sure	that	you	enter	correct	values	for	the	fields	in	the	Repository
Data	area,	otherwise	the	component	will	not	be	generated.
If	a	Web	component	of	the	same	name	already	exists,	the	new	Visual	Web
component	will	replace	the	existing	Web	component.	The	HTML/XML
associated	with	the	existing	Web	component	will	be	backed	up	before	the	new
Web	component	is	created.
	10.6.2	Generate	Component

Considerations	for	using	File	Web	Components
LANSA	will	automatically	generate	an	empty	AS/400	source	physical	file	for
your	AS/400	file	Web	components.
Using	the	Web	Function	Editor,	select	the	Components	menu	and	choose	the
Generate	Component	-	File.
You	will	need	to	enter	the	target	AS/400	file	specification	(library	name/file
name)	in	the	AS/400	file	(out	file)	field.	This	file	will	be	created	as	a	source
physical	file	and	will	be	used	to	hold	the	"data",	i.e.	the	HTML	for	the	Web
component.
If	the	Use	library	in	component	definition	option	is	selected,	each	time	the
component	is	required	in	your	application,	the	library	and	file	combination	is
used.	Do	not	select	the	option	if	you	want	to	use	the	user	profile	used	by
LANSA	for	the	Web	to	locate	the	file	when	you	run	your	application.	In	this
case,	the	library	specification	of	the	file	is	not	stored	in	the	LANSA	for	the	Web
component	registry.	This	option	is	very	useful	if	your	application	requires	you
to	display	different	data	for	the	same	field,	depending	on	the	user	profile	used	to
run	the	application.	You	can	use	a	different	AS/400	file	Web	component	for
each	user.	In	this	case,	a	different	AS/400	file	would	be	created,	each	containing
the	HTML	to	display	the	data,	for	each	user	profile.	These	AS/400	files	would
be	installed	in	the	appropriate	AS/400	library.	The	library	list	attached	to	the
user	profile	would	then	be	used	to	locate	the	correct	file.
If	the	Use	library	in	component	definition	option	is	not	selected,	the	library	for
this	component	will	not	be	stored	as	part	of	the	file	definition	in	the	Web
component	registry.	When	the	application	is	executed,	LANSA	for	the	Web	will
still	use	the	Web	component,	but,	it	will	use	the	library	list	attached	to	the	user
profile	in	order	to	locate	the	AS/400	physical	file	(since	no	library	is	attached	to
the	file	definition	in	the	Web	component	registry).
	10.6.2	Generate	Component

Test	Case:

Test	Plan	Writer:		Torkel	CronholmDate	Written:

LANSA	Version:	11.4Date	Last	Tested:

Purpose:		Generate	File	Component	from	Web	Function	Editor	dialog.

Comments:		For	all	test	cases	it	is	assumed	that	the	tester	knows	how	to
generate	a	file	component,	and	how	to	ensure	that	it	is	created.	The	test	has	to	be
performed	on	both	a	RDML	and	a	RDMLX	partition	on	both	a	Windows	and	an
IBM	i	backend,	ie,	on	four	combinations	(RDML	Windows,	RDML	IBM	i,
RDMLX	Windows,	RDMLX	IBM	i).	Some	tests	will	not	be	applicable	for
RDML	partitions,	such	as	tests	on	LL2	files.

Use	the	option	to	provide	a	Use	Library	List	for	some	of	the	tests.	Please
indicate	with	an	L)	which	test	items	this	option	was	used	on.

Use	the	option	to	provide	a	blank	entry	for	some	of	the	tests.	Please	indicate	with
a	B)	which	test	items	this	option	was	used	on.

Some	of	the	tests	should	generate	a	web	component	where	there	already	exists	a
web	component.	Please	indicate	with	an	R)	which	test	items	this	test	was	done
for.

On	IBM	i	ONLY,	some	of	the	tests	should	generate	a	web	component	where	Use
library	in	component	definition	is	selected.	Please	indicate	with	a	U)	which	test
items	this	test	was	done	for.

1)	if	you	specify	the	name	of	the	output	file,	eg,	FILE123,	it	will	be	created	in
the	current	library

2)	if	you	specify	the	name	of	the	output	file,	eg,	P01DTALIB\FILE123,	it	will	be
created	in	P01DTALIB.	If	you	ticked	the	check	box	the	component	definition
will	also	include	the	library	so	the	web	runtime	knows	where	to	get	the	file

3)	if	you	specify	the	name	of	the	output	file,	eg,	P01DTALIB\FILE123,	it	will	be
created	in	P01DTALIB.	If	you	DID	NOT	tick	the	check	box	the	component
definition	will	NOT	include	the	library	so	the	web	runtime	will	use	the	library
list	to	get	the	file

For	this	test,	suggested	naming	convention	for	components	is	iiiEFX#LD,	where

iii	stands	for	the	initials	of	the	tester

E	stands	for	Editor	(the	components	can	be	generated	by	a	BIF	as	well	as	from
command	line)

F	is	for	a	Visual	component

X	is	the	type	of	component.	Use	C	for	Check	box,	D	for	Drop	down,	L	for
ListBox	and	R	for	Radio	button.

#	is	denoting	LL1	or	LL2	file	where	applicable.	Use	1	for	LL1,	2	for	LL2	and	0
if	not	applicable).

L	is	for	data	type	for	Value	when	creating	a	Drop	down,	ListBox	or	Radio
button.	Use	A	for	Alpha,	P	for	Packed,	S	for	Signed,	C	for	Char,	D	for	Date,	T
for	Time,	Z	for	DateTime,	I	for	Integer,	F	for	Float,	S	for	String	and	omit	if	not
applicable.

D	is	for	data	type	for	Description	when	creating	a	Drop	down,	ListBox	or	Radio
button.	Use	A	for	Alpha,	P	for	Packed,	S	for	Signed,	C	for	Char,	D	for	Date,	T
for	Time,	Z	for	DateTime,	I	for	Integer,	F	for	Float,	S	for	String	and	omit	if	not
applicable.

Example:	A	tester	named	Douglas	Noel	Adams	creating	a	File	component	using
a	Drop	down	with	element	override	for	an	LL2	file	(using	Alpha	for	Value	and
Signed	for	Description)	should	name	the	component:	DNAEFD2AS.

For	Check	Box,	use	any	test	for	Value	and	Description	fields.

Ensure	that	the	nominated	file	is	physically	created	in	the	File	System	for	both
Windows	and	IBM	i.	Also	ensure	that	the	nominated	file	overwrites	the	file	if	it
already	exists.	An	easy	way	to	do	the	overwrite	test	is	to	generate	a	different
type	of	component	and	check	its	contents	afterwards.

In	test	items	1	-	27	the	tester	will	attempt	create	a	file	component	according	to
above.

The	expected	result	in	test	items	1	-	27	is	that	the	component	is	created	as	per	the
test.

Tester:	______________________Date	Commenced:	________________Date
Completed:________________

	
Test Expected	Results Pass/

Fail

	

1 Checkbox: 	 	

2 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Alpha

	 	

3 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Packed,	Description:	Alpha

	 	

4 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Signed,	Description:	Alpha

	 	

5 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Char,	Description:	Alpha

	 	

6 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Date,	Description:	Alpha

	 	

7 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Time,	Description:	Alpha

	 	

8 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	DateTime,	Description:	Alpha

	 	

9 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Integer,	Description:	Alpha

	 	

10 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Float,	Description:	Alpha

	 	

11 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	String,	Description:	Alpha

	 	

12 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Alpha

	 	

13 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Packed

	 	

14 Drop	down,	ListBox	and	Radio	button
using	LL2	file

	 	

Value:	Alpha,	Description:	Signed

15 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Char

	 	

16 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Date

	 	

17 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Time

	 	

18 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	DateTime

	 	

19 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Integer

	 	

20 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	Float

	 	

21 Drop	down,	ListBox	and	Radio	button
using	LL2	file

Value:	Alpha,	Description:	String

	 	

22 Drop	down,	ListBox	and	Radio	button
using	LL1	file

Value:	Alpha,	Description:	Alpha

	 	

23 Drop	down,	ListBox	and	Radio	button
using	LL1	file

Value:	Packed,	Description:	Alpha

	 	

24 Drop	down,	ListBox	and	Radio	button
using	LL1	file

Value:	Signed,	Description:	Alpha

	 	

25 Drop	down,	ListBox	and	Radio	button
using	LL1	file

Value:	Alpha,	Description:	Alpha

	 	

26 Drop	down,	ListBox	and	Radio	button
using	LL1	file

Value:	Alpha,	Description:	Packed

	 	

27 Drop	down,	ListBox	and	Radio	button
using	LL1	file

Value:	Alpha,	Description:	Signed

	 	

28 Drop	down,	ListBox	and	Radio	button
using	incorrect	LL1	file

Error	message	in	Web
Function	Editor

	

29 Drop	down,	ListBox	and	Radio	button
using	incorrect	LL2	file

Error	message	in	Web
Function	Editor

	

30 Drop	down,	ListBox	and	Radio	button
using	correct	LL1	file,	but	incorrect
fieldnames

No	message	in	Web
Function	Editor,	but	the
components	will	not	be
created

	

31 Drop	down,	ListBox	and	Radio	button
using	correct	LL2	file,	but	incorrect
fieldnames

No	message	in	Web
Function	Editor,	but	the
components	will	not	be
created

	

32 Leave	some	of	the	required	text	fields
empty	when	generating	a	visual
component

Error	message	in	Web
Function	Editor

	

33 Check	the	tab	order	in	the	dialog	(Either
when	in	"Check	Box"	mode	or	in	"Drop
down,	ListBox	and	Radio"	mode)

Tab	order	is	from	top	to
bottom,	left	to	right

	

	

	

10.6.3	Graphic	Variables
For	more	details	about	graphic	variables,	refer	to	Graphic	Variables	in	the	Web
Function	Guide.
The	Graphic	Variables	command	allows	you	to	Add,	Change	or	Delete	graphic
variables.

Select	a	Graphic	Variable	in	the	list	and	press	the	Delete	button	to	delete	a
Graphic	Variable.	You	will	be	asked	to	confirm	your	deletion.
Select	a	Graphic	Variable	in	the	list	and	press	the	Change...	button	to	open	the
Change	Graphic	Variable	dialog	box.
Press	the	Add...	button	to	Add	Graphic	Variable,	or	use	the	Duplicate	feature.
Duplicate
If	you	select	a	graphic	variable	and	click	the	right	mouse	button,	a	floating
menu	is	displayed.	On	this	menu	are	menu	items:	Change,	Delete,	Duplicate.	If
you	select	Duplicate,	the	selected	graphic	variable	will	be	used	as	a	template	for
a	new	component	and	its	details	will	be	displayed	in	the	Add	Graphic	Variable
dialog	box.
With	this	feature	you	can	easily	create	multiple	graphic	variables	without	having
to	re-enter	the	values.
Task	Tracking
If	you	are	using	LANSA's	Task	Tracking,	then	you	will	be	asked	for	the	Task	Id
when	you	add,	change,	or	delete	a	Graphic	Variable.
	10.6	Components	Menu

its:lansa086.CHM::/LANSA/ED0800.htm

Add	Graphic	Variable
For	more	details	about	graphic	variables,	refer	to	Graphic	Variables.

Name
Enter	the	name	of	this	Graphic	Variable.	Note	that	the	name	must	start	with	an
asterisk	(*).	If	you	have	used	the	Duplicate	feature,	the	name	displayed	will	be
the	name	of	the	graphic	variable	you	selected	as	a	template	for	this	new	graphic
variable.	In	this	case,	you	must	change	this	name.
If	the	Graphic	Variable	displayed	is	not	the	one	on	which	you	wanted	to	base	the
new	graphic	variable,	press	Cancel	to	return	to	the	Graphic	Variables	list	and
select	the	correct	one.
Type
Select	the	Type	from	the	drop	down	menu.	Valid	types	include	Color,	File	or
Text.	For	more	details,	refer	to	Types	of	Graphic	Variables.
Value
Enter	the	value	that	you	require	for	the	Type	selected.	A	maximum	of	255
characters	can	be	entered
If	you	are	specifying	an	image	file	name,	be	sure	that	the	specified	image	is
stored	in	the	image	location	as	defined	using	the	LANSA	for	the	Web
Administrator.
If	you	are	specifying	a	color,	you	can	use	the	name	(such	as	limegreen)	or	the
hexadecimal	value	(such	as	#32CD32).
If	you	are	specifying	text,	you	can	use	HTML/XML	tags	in	the	text.	Do	not	use
RDML	tags	in	the	text.
OK
Press	the	OK	button	when	done.
	10.6.3	Graphic	Variables

its:lansa086.CHM::/LANSA/ED0800.htm
its:lansa086.CHM::/LANSA/ED0810.htm

Change	Graphic	Variable
For	details	refer	to	Graphic	Variables.

Name
You	cannot	change	the	name.	If	the	Graphic	Variable	displayed	is	not	the	one
you	want	to	change,	press	Cancel	to	return	to	the	Graphic	Variables	list	and
select	the	correct	one.
Type
Select	the	Type	from	the	drop	down	menu.	Valid	types	include	Color,	File	or
Text.	For	more	details,	refer	to	Types	of	Graphic	Variables.
Value
Enter	the	value	that	you	require	for	the	Type	selected.	A	maximum	of	255
characters	can	be	entered
If	you	are	specifying	an	image	file	name,	be	sure	that	the	specified	image	is
stored	in	the	image	location	as	defined	using	the	LANSA	for	the	Web
Administrator.
If	you	are	specifying	a	color,	you	can	use	the	name	(such	as	limegreen)	or	the
hexadecimal	value	(such	as	#32CD32).	
If	you	are	specifying	text,	you	can	use	HTML/XML	tags	in	the	text.	Do	not	use
RDML	tags	in	the	text.
OK
Press	the	OK	button	when	done.
	10.6.3	Graphic	Variables

its:lansa086.CHM::/LANSA/ED0800.htm
its:lansa086.CHM::/LANSA/ED0810.htm

10.7	Options	Menu
The	Options	Menu	contains	the	following	options:
		10.7.1	Configure	-	to	set	the	options	that	control	your	use	of	the	Web	Function
Editor.

		10.7.2	Font	-	a	standard	windows	Font	dialog	box.
		10.7.3	Invoke	Third	Party	Editor	-	use	this	command	to	start	the	third	party
editor,	if	you	using	one.

10.7.1	Configure
The	Configure	command	allows	you	to	set	the	options	you	require	when	you	are
using	the	Web	Function	Editor.	These	are:
		Third	Party	Editor
		View
		Miscellaneous
The	pages	you	use	to	specify	your	preferences	will	vary	slightly	depending	on
whether	you	are	working	in	HTML	or	XML	mode.	If	you	have	been	accustomed
to	working	with	HTML	pages	and	now	you	want	to	modify	XML	documents,
you	should	review	your	configuration	options	to	see	check	if	they	are	still
suitable	while	working	in	XML	mode.
	10.7	Options	Menu

Third	Party	Editor
This	page	allows	you	to	specify	the	HTML	or	XML	Editor	of	your	choice.	You
do	not	have	to	use	a	third	party	editor.

Editor
The	name	(including	the	path)	of	the	editor	you	want	to	use.	Press	the	Browse
button	to	locate	the	Editor	on	your	PC.
You	must	not	edit	the	LANSA	generated	HTML/XML	using	a	graphical	editor
even	though	the	editing	tool	you	use	may	allow	you	to.	This	is	because	the
generated	HTML/XML	contains	LANSA	Web	components	(some	of	them	are
also	HTML/XML	pages).	In	addition,	there	are	LANSA	tags	embedded.	For
example,	you	cannot	edit	the	<RDML	MERGE="&BUTTONS">	tag
graphically	since	this	is	an	instruction	to	LANSA	when	the	Web	function	is
executed.
Start	Editor	every	time
Select	this	option	if	you	want	to	start	the	editor	(that	you	have	specified	here)
every	time	you	use	the	Open	command	to	retrieve	an	HTML/XML	page	from
the	LANSA	Repository.
If	this	option	is	not	selected,	you	can	start	your	chosen	editor	by	selecting
Invoke	Editor	from	the	Options	menu.
Automatically	save	changes	after	returning	from	Editor
When	you	have	finished	editing	the	HTML/XML	with	your	chosen	editor,	the

LANSA	Web	Function	Editor	will	check	if	any	changes	have	been	made	to	the
HTML/XML.	If	there	have	been	changes	and	if	you	have	selected	this	option,
the	HTML/XML	is	saved	into	the	LANSA	Repository.
If	this	option	is	not	selected,	you	will	have	to	save	the	changes	manually	by
selecting	the	Save	command	in	the	File	menu.
	10.7.1	Configure

View
This	page	allows	you	to	choose	the	features	to	be	used	when	you	compare	text.

Compare	Background	Colors
Define	the	colors	to	be	used	for	the	Inserted	Text	and	Deleted	Text.
Edit	and	Compare	Windows
Select	the	Synchronize	Scrolling	option	to	synchronize	the	scrolling	between
the	two	windows	when	comparing	two	HTML/XML	pages.
The	comparison	windows	can	be	split	Horizontally	or	Vertically.
	10.7.1	Configure

Miscellaneous
This	page	allows	you	to	control	the	Most	Recently	Used	list	in	the	File	menu.

Items	in	MRU	list
Enter	the	number	of	items,	in	the	range	0	to	10,	that	you	would	like	retained	for
listing	in	the	File	menu.
Clear	MRU	List
Press	this	button	to	clear	the	current	Most	Recently	Used	list.
Max.	Undo	Actions
Specify	the	number	of	actions	you	wish	to	retain	so	that	you	can	undo	them	if
necessary.	To	undo	actions,	select	Undo	from	the	Edit	menu.
Note	that	the	higher	the	number	you	enter	here,	the	more	system	resources	that
will	be	used.
Enable	archive	functionality	when	saving
This	option	will	only	be	enabled	if	the	Administrator	options	have	been	set:
Enable	automatic	backup	of	generated	HTML	and	XML
and
the	Save	previous	copies	is	greater	than	zero.
If	the	box	is	checked,	you	will	be	asked	if	you	wish	to	archive	the	previous
version	of	the	file	whenever	a	document	is	saved.	If	you	answer	Yes	when
prompted,	LANSA	will	save	the	original	version	of	the	document	as	Version	1.

For	more	details,	refer	to	Versioning	of	Pages.
	10.7.1	Configure

its:lansa086.CHM::/LANSA/ED0520.htm

10.7.2	Font
The	Font	command	allows	you	to	change	the	font	settings	in	the	Editor.	It	does
not	change	the	font	settings	of	the	HTML/XML	lines	in	the	HTML/XML	page.
If	you	need	to	change	the	font	setting	of	a	particular	HTML/XML	line,	use	the
	tag.
	10.7	Options	Menu

10.7.3	Invoke	Third	Party	Editor
This	command	invokes	the	HTML/XML	editor	you	have	chosen	to	edit	your
HTML/XML	pages.	This	command	is	disabled	if	you	have	not	chosen	an	editor.
	10.7	Options	Menu

10.8	Tools	Menu
The	Tools	Menu	contains	the	following	options:

10.8.1	Keywords
Add	Keyword
Maintain	Keyword

10.8.1	Keywords
Keywords	allow	you	to	specify	the	links	to	other	functions	for	WEBEVENT
functions.	The	links	are	identified	by	keywords,	which	are	the	values	assigned
to	the	user	defined	keys	(i.e.	enter,	continue,	and	so	on)	in	your	LANSA
functions.
The	Keyword	submenu	from	the	Tools	menu	allows	you	to	choose	either	Add	or
Maintain.	You	can	create	a	new	keyword	from	either	command,	however,	the
Add	option	is	quicker	if	you	simply	want	to	create	a	new	keyword	-	it	saves	you
waiting	for	the	list	of	existing	keywords	to	be	displayed.
You	cannot	change	a	keyword.	First	you	must	delete	the	link,	then	add	a	new
keyword.
Alternatively,	you	can	use	Web	link	components	to	define	the	links	instead	of
using	this	command.
Add	Keyword
Maintain	Keyword
	10.8	Tools	Menu

Add	Keyword
If	you	are	creating	a	new	keyword,	select	Add	from	the	Keyword	sub	menu.	The
Add	Keyword	dialog	box	is	displayed.
This	dialog	box	allows	you	to	define	the	links	to	other	LANSA	functions	for
your	user	defined	keys.

Process,	Function	and	Keyword
Specify	the	LANSA	process,	function	and	keyword	respectively.
The	keyword	is	case	sensitive.	If	you	use	'SUBMIT'	in	uppercase	in	your
RDML	USER_KEY	statement,	then	you	must	use	'SUBMIT'	and	not	'submit'
when	defining	the	keywords.
Language
Select	the	language	for	the	button's	description	(this	option	is	only	enabled	if
you	are	connected	to	a	multilingual	partition).
Description
Specify	the	description	for	the	button	on	the	browser	window.
Linked	Process	and	Linked	Function
Specify	the	linked	function	and	Function.
	10.8.1	Keywords

Maintain	Keyword
To	change	some	keyword	details,	or	to	delete	a	keyword,	you	need	to	select	it
from	a	list	of	Processes.	To	limit	the	list	you	need	to	select	from,	when	you
select	the	Maintain	command,	a	Process	dialog	box	is	displayed	for	you	to	enter
a	full	or	partial	Process	name.

Process
To	limit	the	number	of	LANSA	processes	listed,	enter	a	partial	string	sequence,
for	example,	"DEJ"	to	display	all	LANSA	processes	starting	with	"DEJ".
To	display	all	the	keywords	in	your	system,	leave	this	field	blank.
When	you	select	the	OK	button,	the	Maintain	Keywords	dialog	box	is	displayed
listing	all	the	processes	matching	the	criteria	that	you	have	requested.

The	list	shows	you	the	processes	and	functions	to	which	the	keywords	belong.
The	Keyword	parameter	is	the	value	used	to	define	the	USER_KEYS	parameter
in	the	DISPLAY	or	REQUEST	command	in	your	RDML	function.
To	change	a	keyword,	select	a	Process	in	the	list	and	press	the	Change...	button.
The	Change	Keyword	dialog	box	is	displayed.

To	delete	a	keyword,	select	a	Process	in	the	list	and	press	the	Delete	button.	You
will	be	asked	to	confirm	your	deletion.
To	add	a	new	keyword,	press	the	Add	button.	The	Add	Keyword	dialog	box	is
displayed.	Alternatively,	to	add	a	new	keyword,	you	can	select	New	from	the
Keyword	command.
	10.8.1	Keywords

Change	Keyword
If	you	are	changing	a	keyword,	select	a	process	in	the	list	in	the	Maintain
Keywords	dialog	box	and	press	the	Change	button.	The	Change	Keyword
dialog	box	is	displayed.
This	dialog	box	allows	you	to	define	the	links	to	other	LANSA	functions	for
your	user	defined	keys.

Process,	Function	and	Keyword
These	are	as	specified	for	the	Process	you	have	chosen.
The	keyword	is	case	sensitive.	If	you	use	"SUBMIT"	in	uppercase	in	your
RDML	USER_KEY	statement,	then	you	must	use	"SUBMIT"	and	not	"submit"
when	defining	the	keywords.
Language
The	language	for	the	button's	description	(this	option	is	only	enabled	if	you	are
connected	to	a	multilingual	partition).
Description
The	description	for	the	button	displayed	in	the	browser	window.
Linked	Process	and	Linked	Function
The	linked	function	and	Function.
Press	OK	to	accept	your	changes	or	Cancel	to	dismiss	this	dialog	box.
	Maintain	Keyword

	

Test	Case:

Test	Plan	Writer:		Torkel	CronholmDate	Written:

LANSA	Version:	11.4Date	Last	Tested:

Purpose:	Test	that	the	help	file	is	loaded	correctly.	The	help	file	is	loaded	with
the	same	language	as	the	program	is	running	in.	The	name	of	the	help	file	is
LWEdt<LANG>.chm	where	<LANG>	is	either	Eng,	Fra	of	Jpn.	Note	that	at	the
time	of	writing,	no	LWEdtFra.chm	or	LWEdtJpn.chm	file	exists.	Test	for	those
has	to	be	simulated	by	using	copies	of	other	files.	The	help	file(s)	are	located	in
the	WebUtilities	folder	of	the	configuration.

You	can	choose	which	language	to	run	the	program	in	by	editing	the	registry
setting	responsible	for	the	language,	ie,
HKEY_LOCAL_MACHINE\SOFTWARE\LANSA\<encoded	name	of
path>\LWEBGEN.	Item	Language	is	either	ENG,	FRA	or	JPN

The	French	language	DLL	is	named	lwebefra.dll	and	is	located	in	the
WebUtilities	folder	of	the	configuration.

The	Japanese	language	DLL	is	named	lwebejpn.dll	and	is	located	in	the
WebUtilities	folder	of	the	configuration.

Comments:	

Tester:	______________________Date	Commenced:	________________Date
Completed:________________

	
Test Expected

Results

	

Pass/
Fail

1 Ensure	you	have	a	copy	of	the	Eng	help	file
in	the	same	folder	as	the	program.

File	present	there
after	11.4	install.

	

2 Start	the	program	in	English.	Use	menu	to
go	to	Help	-	Contents

The	Eng	help	file
is	loaded

	

3 Start	the	program	in	French.	Ensure	there	is
no	LWEdtFra.chm	file	present.	Use	menu	to
go	to	Help	-	Contents

The	Eng	help	file
is	loaded

	

4 Start	the	program	in	French.	Ensure	there	is
no	LWEdtJpn.chm	file	present.	Use	menu	to
go	to	Help	-	Contents

The	Eng	help	file
is	loaded

	

5 To	test	language	version	of	the	help	file,	you
can	copy	CHM	files	from	elsewhere	and
name	them	LWEdtFra.chm	resp.
LWEdtJpn.chm

N/A 	

6 Start	the	program	in	English.	Use	menu	to
go	to	Help	-	Contents

The	Eng	help	file
is	loaded

	

7 Start	the	program	in	French.	Ensure	there	is
a	LWEdtFra.chm	file	present.	Use	menu	to
go	to	Help	-	Contents

The	"Fra	help
file"	is	loaded

	

8 Start	the	program	in	Japanese.	Ensure	there
is	a	LWEdtJpn.chm	file	present.	Use	menu
to	go	to	Help	-	Contents

The	"Jpn	help
file"	is	loaded

	

9 To	test	that	the	language	DLL	and	the	help
file	go	hand	in	hand,	we	need	to	simulate
that	the	chosen	language	DLL	is	missing.

N/A 	

10 Rename	the	FRA	language	DLL. N/A 	

11 Start	the	program	in	French.	Ensure	there	is
no	LWEdtFra.chm	file	present.	Use	menu	to

Program	will	start
in	English	and

	

go	to	Help	-	Contents Eng	help	file	is
loaded

12 Start	the	program	in	French.	Ensure	there	is
a	LWEdtFra.chm	file	present.	Use	menu	to
go	to	Help	-	Contents

Program	will	start
in	English	and
Eng	help	file	is
loaded

	

13 Rename	the	FRA	language	DLL	back	to
what	is	what	before	step	10

N/A 	

14 Rename	the	JPN	language	DLL. N/A 	

15 Start	the	program	in	Japanese.	Ensure	there
is	no	LWEdtJpn.chm	file	present.	Use	menu
to	go	to	Help	-	Contents

Program	will	start
in	English	and
Eng	help	file	is
loaded

	

16 Start	the	program	in	Japanese.	Ensure	there
is	a	LWEdtJpn.chm	file	present.	Use	menu
to	go	to	Help	-	Contents

Program	will	start
in	English	and
Eng	help	file	is
loaded

	

17 Rename	the	JPN	language	DLL	back	to
what	is	what	before	step	14

N/A 	

18 	 	 	

	

	

Test	Case:

Test	Plan	Writer:		Torkel	CronholmDate	Written:

LANSA	Version:	11.4Date	Last	Tested:

Purpose:		Test	that	the	About	Box	has	the	correct	information

Comments:	

Tester:	______________________Date	Commenced:	________________Date
Completed:________________

	
Test Expected	Results

	

Pass/
Fail

1 Start	the	program.	Cancel	from	the	connect
screen.	Do	Help	About.

"LANSA	Editor
Mode

Version	11.4.0
(11404)

©	2007	LANSA"

	

2 Exit	the	program Program	exits 	

3 Start	the	program	and	connect	in	HTML
mode.

"LANSA	Editor
HTML	Mode

Version	11.4.0
(11404)

©	2007	LANSA"

	

4 Exit	the	program Program	exits 	

5 Start	the	program	and	connect	in	XML
mode.

"LANSA	Editor
XML	Mode

Version	11.4.0
(11404)

©	2007	LANSA"

	

6 Exit	the	program Program	exits 	

7 Start	the	program	and	connect	in	BASIC
mode.

"LANSA	Editor
BASIC	Mode

Version	11.4.0
(11404)

©	2007	LANSA"

	

8 Exit	the	program Program	exits 	

9 	 	 	

	

	

	
	

12.	Web	Development	Tips	&	Techniques
Following	are	some	general	Web	development	tips	and	techniques	for	building
your	Web	Function	Applications:
12.1	HTML	as	Field	Contents
12.2	Automatic	Data	Apportionment
12.3	Considerations	for	Browse	Lists
12.4	Message	Presentation	Layout
12.5	Using	<RDML	MERGE="&END">
12.6	Cascading	Style	Sheets
12.7	Retrieve	Additional	Information	from	Browse	List
12.8	Handle	the	ENTER	key	in	Browsers
12.9	Embed	a	Calendar	Control
12.10	Modify	LANSA	for	the	Web	Messages
12.11	Set	the	Initial	Focus	in	an	HTML	Page
12.12	Tailoring	the	DEFAULT_SCRIPT
12.13	Generate	Static	Page	Output	to	the	IFS	(Integrated	File	System)
12.14	Integrate	LANSA	Applications	with	Static	HTML	Pages
12.15	CheckBox	Visual	Web	Components
12.16	Extend	LANSA	Drop	Downs
12.17	Modifying	charset	for	non-English	Systems
It	is	strongly	recommended	that	you	review	the	Web	and	Internet	examples	in
the	LANSA	SET	(Samples	Examples	Templates)	materials.	These	materials	are
available	on	the	LANSA	Encyclopedia	CD-ROM	and	the	www.lansa.com	Web
site.	You	might	find	the	following	types	of	samples	and	examples:

Select	Multiple	Entries	in	List
Checkbox	Initial	State
Data	Apportionment
Buttons	Linking	to	Same	Function
Determining	Selected	Row	Number
Expandable	Menus
Select	a	Date	from	a	Calendar

http://www.lansa.com

Select	a	Start	and	End	Date	from	a	Calendar
Select	a	Date	in	Browse	list
Input/Output	Fields	in	Browse	list	Column
Input/Output	Fields	in	Browse	list	Row
Downloading	a	File	from	IFS
Uploading	a	File	to	IFS
Everything	about	Browse	lists
Handling	Enter	Key	Problems

	

12.1	HTML	as	Field	Contents
A	technique	that	can	be	used	to	enhance	your	application	is	to	embed	the	HTML
as	the	contents	of	one	or	more	fields	in	your	application.	The	HTML	will	be
accepted	as	browser	instructions.
For	example,	if	you	wanted	to	embed	hyperlinks	into	your	application,	the
HTML	for	the	hyperlink	could	be	the	value	of	a	particular	field.	The	field	could
be	a	working	field	in	your	RDML	function.	The	value	of	the	field	can	be
assigned	programmatically.
For	example,	the	DEPTAB	file	contains	a	Department	Code	and	Department
Description.	If	you	were	to	use	a	Department	Description	as	follows:
<center>Adminstration	Department</center>

then	the	HTML	tags	would	be	processed	by	the	browser	and	only	the	data
would	be	displayed	as	follows:
Administration	Department

The	Department	Description	would	appear	centered	in	the	display.

12.2	Automatic	Data	Apportionment
LANSA	for	the	Web	supports	the	automatic	apportionment	of	data.	This	feature
is	particularly	useful	for	fields	in	your	HTML	form	where	the	data	can	exceed
the	256-character	limitation.	For	example,	if	you	have	a	field	in	your	HTML
form	that	accepts	user	feedback	or	comments,	you	would	require	this	field	to
accept	more	than	256	characters.	However,	LANSA	fields	are	limited	to	256
characters.
LANSA	for	the	Web	allows	you	to	use	a	single	field	in	your	HTML	form,	but
yet	if	the	data	exceeds	the	field's	length,	the	data	will	not	be	lost.
The	technique	used	by	LANSA	for	the	Web	is	to	use	sibling	fields,	following
the	naming	convention:
<field	name><sequence	number>
The	name	of	the	sibling	fields	consists	of	two	parts,	the	field	name	and	a
sequence	number.	The	length	of	the	sibling	field	name	must	be	9	characters,
with	the	sequence	number	part	padded	with	leading	zeros.
For	example,	if	your	field	name	is	COMMENT.	The	sibling	fields	would	be
COMMENT01,	COMMENT02,	up	to	COMMENT99.	However,	if	the	field
name	were	COMMT,	the	sibling	fields	would	be	COMMT0001,	COMMT0002,
up	to	COMMT9999.
In	other	words,	if	the	data	length	you	intend	to	support	is	large,	then	the	field
name	should	be	short,	to	allow	for	more	sibling	fields.
If	the	sibling	fields	are	used	in	your	application,	LANSA	for	the	Web	will
apportion	the	data	and	store	each	part	of	the	divided	data	in	the	sibling	fields.	If
the	number	of	fields	is	too	small	to	hold	all	of	the	data,	the	rest	of	the	data	will
be	lost.
As	an	example,	if	you	wanted	to	create	a	component	for	the	COMMENT	field
that	allows	the	user	to	type	in	as	much	comments/feedback	as	he	wishes,	you
can	create	a	textarea	component.	This	component	can	be	created	as	an	input
mode	Visual	Web	component.
<RDML	CHECKVALUE="YES">
<textarea	name="COMMENT"	rows="6"	cols="75">
<RDML	MERGE="COMMENT">
<RDML	MERGE="COMMENT01">
<RDML	MERGE="COMMENT02">
<RDML	MERGE="COMMENT03">

<RDML	MERGE="COMMENT04">
<RDML	MERGE="COMMENT05">
</textarea>
</RDML>

You	will	notice	that	the	field	is	only	identified	by	a	single	name,	COMMENT.
However,	the	data	is	populated	using	6	fields,	COMMENT,	COMMENT01,
COMMENT02,	COMMENT03,	COMMENT04	and	COMMENT05,	using	the
<RDML	MERGE>	LANSA	tag.
When	the	form	is	submitted	to	the	Web	server,	LANSA	for	the	Web	will	handle
the	apportionment	of	the	data	automatically.	It	determines	if	the	length	of	the
returned	data	is	greater	than	256	characters.	If	the	length	exceeds	256
characters,	it	will	apportion	the	data	into	portions,	with	each	portion	split	at	256
characters.	The	first	256	characters	is	stored	in	the	COMMENT	field.	The
second	portion	is	stored	in	COMMENT01,	the	third	in	COMMENT02,	and	so
on.
If	the	data	length	exceeds	1536	characters	(256x6),	then	any	data	greater	than
1536	characters	will	be	lost,	unless	you	have	defined	other	sibling	fields	in	your
application,	i.e.	COMMENT06,	etc.
Refer	to	12.2.1	Specifying	Apportionment	Position.

12.2.1	Specifying	Apportionment	Position
By	default,	LANSA	for	the	Web	uses	256	as	the	apportionment	length.	This	is
useful	if	your	fields	are	defined	to	be	256	characters.	This	default	value	is	not
useful	if	your	field	length	is	less	than	256	characters.
For	such	fields,	LANSA	for	the	Web	allows	you	to	specify	the	apportionment
position.	If	a	apportionment	position	is	specified,	LANSA	for	the	Web	will
automatically	apportion	the	data	using	the	length	specified.
To	specify	a	apportionment	position,	the	name	attached	to	the	field	is	modified,
using	the	following	naming	convention:
<field	name>-Lnnn
where	<field	name>	is	the	name	of	the	field,	padding	with	trailing	blanks	to	10
characters.	This	means	that	the	eleventh	(11th)	position	of	the	field	name	must
be	the	'-'	character.	The	next	character	must	be	'L',	denoting	apportionment
length.
nnn	is	the	desired	apportionment	length.
Taking	the	example	above,	if	the	field	lengths	of	COMMENT,	COMMENT01,
etc.	was	75	characters,	then	the	HTML	line	defining	the	text	area	would	be
modified	to	be:
<textarea	name="COMMENT				-L075"	rows="6"	cols="75">If	an
apportionment	length	is	specified	as	part	of	the	name	of	the	text	area,	this
apportionment	length	will	be	used	by	LANSA	for	the	Web	to	automatically
apportion	the	data.
If	you	are	using	large	text	areas	in	WEBEVENT	functions,	you	may	need	to
enable	Extended	Exchange.

12.3	Considerations	for	Browse	Lists
When	working	with	a	browse	list	for	a	LANSA	Web	function	application,	you
must	adapt	your	thinking	to	the	browser	paradigm.	Consider	some	of	the
following	points.

What	works	in	the	5250	environment	may	not	work	on	the	Web.
Extending	the	browse	list	makes	it	longer	and	longer	in	LANSA	for	the	Web.
The	concept	of	"page	at	a	time"	in	the	5250	environment	is	not	the	same	for
the	browser.
You	should	consider	building	browse	lists	to	contain	just	ONE	page	and
work	with	the	contents	of	that	single	page	as	it	is	displayed	to	the	user.
Consider	using	"position	to"	logic	so	that	only	the	relevant	records	are
retrieved	and	displayed.	Using	"position	to"	logic	is	a	much	better	solution
than	having	the	user	either	scroll	through	huge	lists	or	page	forward	through
screen	after	screen.
Also,	WEBEVENT	functions	do	not	support	the	use	of	a	list	with	*SELECT
field.

12.4	Message	Presentation	Layout
LANSA	for	the	Web	allows	you	to	customize	the	presentation	of	LANSA
messages	in	your	application.	By	default,	the	LANSA	messages	are	presented	in
a	list	box	style.

The	Message	Presentation	layout	standard	page	is	only	supported	at	the	process
level.	It	is	not	supported	at	the	function	level.
You	can	override	the	format	of	the	message	presentation	by	using	the	standard
page	feature.	This	is	achieved	by	creating	a	standard	page	named	as
DEFAULT_MSGPRES.	In	this	standard	page,	you	can	define	your	own
message	presentation	layout.	If	this	page	is	defined,	LANSA	for	the	Web	will
use	layout	defined	in	this	page	to	present	the	LANSA	messages	instead	of	the
default	format	(using	a	list	box).
The	DEFAULT_MSGPRES	standard	page	is	not	shipped	with	the	product.	This
standard	page	is	a	facility	that	allows	you	to	override	the	default	message

presentation	format.
An	example	of	a	DEFAULT_MSGPRES	is	shown	below.	This	replaces	the	list
box	format	with	a	list	of	messages:
<table	border="0"	cellpadding="3"	cellspacing="0"	width="100%">
<tr	bgcolor="cyan">
<td><img	src="
<RDML	MERGE="*LW3IMGMESSAGES">"	alt="Messages"	border="0"	/>
</td>
<td>
<RDML	MESSAGES>
</td>
</tr>
</table>

LANSA	Web	functions	use	a	LANSA	tag,	<RDML	MESSAGES>	to	determine
the	position	in	the	message	presentation	standard	page	to	display	the	LANSA
messages.	The	line	containing	this	tag	will	be	repeated	for	each	LANSA

message	in	your	application.
In	your	message	presentation	standard	page,	you	can	embed	LANSA	tags.	The
only	restriction	is	that	the	line	containing	the	<RDML	MESSAGES>	tag	must
not	contain	any	other	LANSA	tags.
When	you	run	your	LANSA	Web	enabled	application,	LANSA	for	the	Web	will
determine	if	there	are	any	messages	to	display	in	your	application.	If	there	are
messages,	it	will	check	if	there	is	a	message	presentation	standard	page.	If	such
a	page	exists,	this	page	will	be	used	to	define	the	format	of	the	message
presentation.	If	it	does	not	exist,	the	default	message	presentation	format	will	be
used.

12.5	Using	<RDML	MERGE="&END">
This	tag	allows	the	LWEB_JOB	jobs	to	return	to	the	pool	of	free	jobs
immediately.
Under	normal	behavior,	all	LANSA	jobs	time	out,	whether	they	are	the
traditional	procedural	style	or	WEBEVENT	functions.	When	the	jobs	time	out,
the	user	gets	a	'Job	Timed	Out'	message	for	the	traditional	procedural	RDML
functions.
For	WEBEVENT	functions,	LANSA	for	the	Web	manages	the	data	exchange
(especially	browse	list	data)	and	restarting	of	a	new	job	automatically	on
subsequent	interactions.	The	user	does	not	see	a	'Job	Timed	Out'	message.
For	WEBEVENT	functions,	LANSA	terminates	as	soon	as	a	DISPLAY	or
REQUEST	command	is	processed.	However,	the	LWEB_JOB	is	still	reserved
for	the	user	in	case	the	user	wants	to	interact	further.	The	WEBEVENT	job	is
not	returned	to	the	pool	of	free	jobs	immediately,	not	until	the	job	is	timed	out
(using	the	time	out	setting	on	your	site).
The	<RDML	MERGE="&END">	tag	is	used	with	applications	with	high
transaction	rates.	Typically,	these	are	functions	that	display	search	results.	Once
the	results	are	displayed,	no	further	interaction	with	the	function	is	expected
from	the	user.
LANSA	for	the	Web	does	not	save	any	data	for	these	jobs.	This	means	that	no
browse	list	data	is	saved.	If	you	include	this	tag	in	your	HTML,	DO	NOT
expect	browse	list	data	or	any	of	the	HTTP	environment	variables	(e.g.
*WEBUSER)	to	be	exchanged	between	this	function	and	any	subsequent
function	calls.
In	summary,	this	tag	should	only	be	used	for	functions	where	you're	absolutely
sure	that	there	is	no	further	interaction	with	the	function	or	you're	not	relying	on
the	HTTP	environment	variables	or	the	browse	list	does	not	need	to	be
exchanged.

12.6	Cascading	Style	Sheets
LANSA	for	the	Web	allows	you	to	use	cascading	style	sheets	(CSS)	with	your
Web	function	applications.	Cascading	style	sheets	allow	you	to	describe	a	style
that	applies	across	one	or	more	of	your	HTML	pages.	You	can	use	CSS	to
define	the	presentation	of	an	HTML	page,	including	the	font	(face,	size	and
color),	background	color,	the	positioning	of	elements	within	your	HTML	page
as	well	as	text	decoration	such	as	italics	or	underline.

For	more	details	on	cascading	style	sheets,	refer	elsewhere	for
information	on	Dynamic	HTML	(DHTML).

LANSA	for	the	Web	does	not	provide	you	with	a	CSS.	You	can	create	a	CSS	for
your	applications	by	creating	a	standard	page	named	as	DEFAULT_STYLE.	In
this	page,	you	can	define	the	presentation	attributes	of	the	elements	in	your
applications.
The	DEFAULT_STYLE	page	allows	you	to	embed	the	style	information
directly	into	the	HTML	pages	generated	for	your	application.	The	CSS
definitions	are	encapsulated	by	the	<style>	and	</style>	HTML	tags.
If	you	have	Web	enabled	your	LANSA	applications	prior	to	Release	7.5	H5,	you
will	need	to	recompile	and	regenerate	the	HTML	for	your	functions.
Alternatively,	you	can	modify	the	HTML	pages	manually	and	insert	the
<RDML	MERGE="&STYLE">	statement	just	after	the	line	containing	the
<title>	element	in	the	<head>	section.
<RDML	MERGE="&DTD_TRANSITIONAL">
<html	xmlns="http://www.w3.org/1999/xhtml">
<head>
<title><RDML	MERGE="&FUNCTION"></title>
<RDML	MERGE="&STYLE">
</head>

Example	of	Using	a	Cascading	Style	Sheet
FONTPREF1,	FONTPREF2	and	FONTPREF3	are	created	as	Text	Web
components.	These	Web	components	contain	the	font	families	designated	for
the	elements	in	your	HTML	page.	The	browser	will	attempt	to	locate	and	use
the	fonts	in	the	order	they	are	specified	in	the	Web	component.
For	example,	FONTPREF1	can	be:
"Lucida	Handwriting","Arial","Times	New	Roman"

To	enable	the	CSS	support,	you	will	need	to	create	the	DEFAULT_STYLE
page.	An	example	of	this	page	is	provided	below:
<style	type="text/css">
body									{	font-family:	<RDML	COMPONENT="FONTPREF1">;
															font-size:	smallest;
															color:	gray;
															margin-left:	5%	}
table								{	font-family:	<RDML	COMPONENT="FONTPREF2">;
															font-size:	smallest;
															color:	gray	}
h1,	h2,	h3			{	font-family:	<RDML	COMPONENT="FONTPREF1">;
															font-size:	large;
															color:	darkblue	}
strong							{	font-family:	<RDML	COMPONENT="FONTPREF1">;
															color:	gray;
															font-size:	small	}
input								{	font-family:	<RDML	COMPONENT="FONTPREF3">;
															color:	gray;
															font-size:	smaller	}
select							{	font-family:	<RDML	COMPONENT="FONTPREF2">;
															font-size:	smallest	}
</style>

The	CCS1	specifications	require	the	font	names	to	be	included	in	quotes.	Some
browsers	may	work	without	the	quotes,	but	regardless,	font	names	should	be
included	in	quotes.

12.7	Retrieve	Additional	Information	from	Browse	List
LANSA	for	the	Web	allows	you	to	retrieve	additional	information	from	a	record
in	a	browse	list.	Typically,	the	information	is	stored	in	fields	which	have	been
set	up	to	be	hidden	in	the	browse	list.	In	addition,	these	fields	contain
information	which	are	normally	not	required	in	the	display.
By	having	these	fields	hidden,	you	can	maximize	the	usage	of	the	browser's
display	area	to	display	the	browse	list.	You	can	then	set	up	a	field	in	the	browse
list	as	a	hot	spot,	i.e.	a	field	which	has	a	hyperlink	to	retrieve	the	additional
information.
When	you	select	any	of	the	hyperlinked	fields,	a	separate	browser	window	(like
the	Help	window)	is	used	to	display	the	additional	information.
This	feature	will	involve	RDML	programming.	You	will	have	to	set	the	value	of
a	field	programmatically,	following	the	convention:
	
<a	href="javascript:GetExtraInfo('<list	name>',	
'<entry	number>',
'<field	#1>',
'<field	#2>',
'<field	#3>',
'<field	#4>',
'<field	#5>')"><text>

where
<list	name>	is	the	name	of	your	browse	list	(DEF_LIST	name),
<entry	number>	is	the	record	number	in	the	browse	list,
<field	#1>	to	<field	#5>	are	the	names	of	the	fields	you	want	to	retrieve
information	from,
<text>	could	be	some	text	you	set	or	the	contents	of	another	field	concatenated
to	this	working	field.
An	example	of	the	call	would	be:
	
Click	here	for	more	information

The	JavaScript	function,	GetExtraInfo,	is	provided	for	you	by	LANSA	for	the
Web.	It	is	defined	in	the	DEFAULT_SCRIPT	page.
If	you	want	to	use	this	feature,	you	must	observe	the	following:

Your	browser	must	be	enabled	for	JavaScript	support.
Note	the	double	quote	(")	characters	used	for	the	JavaScript	function	call.
Note	the	single	quote	(')	used	to	delimit	each	parameter	passed	to	the
JavaScript	function,	GetExtraInfo.
You	can	specify	up	to	a	maximum	of	5	fields	to	retrieve	the	information.
Field	parameters	that	are	not	used	must	be	initialized	to	'&NULL'.	(See
the	sample	HTML	above).
You	must	not	enable	the	Allow	selection	from	any	column	in	table	option	in
the	LANSA	for	the	Web	Administrator.

12.8	Handle	the	ENTER	key	in	Browsers
LANSA	for	the	Web	uses	the	onsubmit	JavaScript	method	to	detect	when	the
user	has	submitted	the	Form.	The	onsubmit	JavaScript	method	calls	a	JavaScript
Function	HandleENTERKey	to	check	if	the	PROCESS	and	FUNCTION
Hidden	Fields	are	Blank.	If	the	fields	are	blank	-	an	alert	message	is	issued	and
the	form	is	NOT	submitted	as	the	HandleENTERKey	Function	returns	False.	In
WEBEVENT	Functions,	you	can	set	the	PROCESS	and	FUNCTION	Hidden
fields	to	merge	in	the	current	process	using	the	<RDML
MERGE="*PROCESS">	and	the	current	Function	using	the	<RDML
MERGE="*FUNCTION">	tags	if	the	WEBEVENT	Function	is	calling	the
same	Function	to	continue	processing.	The	HandleENTERKey	JavaScript	as
well	as	the	FORM	Tag	with	the	onsubmit	method	is	shown	below:
<form	name="LANSA"	method="post"	action="CGI-BIN/LANSAWEB?
WEBEVENT+L0192D93983F9389E0293+WEB"	onsubmit="return	HandleENTERKey()">
	
function	HandleENTERKey()
{
			if	(document.LANSA._PROCESS.value	==	"									"	||	
							document.LANSA._FUNCTION.value	==	"									")
			{
						alert("Form	cannot	be	submitted	using	the	ENTER	button.	Click	on	a	BUTTON	to	submit.");
						return	true;
			}
			else
			{
						return	false;
			}
}

12.9	Embed	a	Calendar	Control
LANSA	for	the	Web	provides	you	with	a	calendar	control	that	can	be	embedded
into	your	application.

This	calendar	control	can	enhance	the	presentation	of	your	application	if	it
requires	a	calendar.	If	you	need	this	calendar	control,	you	will	need	to	modify
the	STDHEADER	page,	either	the	default	or	a	process	specific	page.
You	will	want	to	include	an	extra	image	into	the	toolbar.	When	the	image	is
selected,	it	shows	the	calendar	control.	When	you	select	a	date	from	the
calendar	control,	it	populates	the	field	with	the	selected	date.
You	will	need	to	include	the	following	line	into	your	STDHEADER	page:
	

The	calendar	shipped	with	LANSA	for	the	Web	is	configured	to	return	the	date
in	a	DD/MM/YY	format.
In	order	to	the	use	this	JavaScript	function	(CallCalendar()),	you	must

remove	the	conditional	RDML	tags	(ONCONDITION)	from	the	calendar
JavaScript	in	the	DEFAULT_SCRIPT.

12.10	Modify	LANSA	for	the	Web	Messages
LANSA	for	the	Web	displays	messages	to	the	user	under	various	circumstances.
For	example,	data	validation	message	are	displayed	when	records	are	inserted
into	a	file.
If	you	need	to	modify	any	of	these	messages,	edit	the	LWEB.DAT	file	in	the
LANSA	shared	library.

Do	not	modify	the	sequencing	of	the	lines	within	the	file.
Do	not	modify	the	JavaScript	functions.
Do	not	add	or	delete	any	lines	in	the	file.
Do	not	modify	any	of	the	words	prefixed	with	the	'%'	character.

Multilingual	Modifications
If	you	are	using	a	non-English	system	and	if	you	are	encountering	errors	when
you	select	the	'Home'	key	or	messages	are	not	displayed	correctly,	you	may
need	to	modify	the	syntax	of	the	JavaScript	functions.
You	need	to	ensure	that	the	following	lines	in	the	LWEB.DAT	file	look	like	this:
Note,	in	the	following	lines:
(1)	represents	the	Primary	Extension	Name
(2)	represents	the	Secondary	Extension	Name
(3)	represents	the	Line	Id.
(1)	(2)	Template	(3)	Text	Data
								Group
								Name
HTM				ERRORPAGE		0		<head><title>Error</title>
HTM				ERRORPAGE		1		<script	type="text/javascript"
																					language="javascript">	//<![CDATA[
HTM				ERRORPAGE		2		function	HomePage(){	parent.location="%s";	}
																					//]]>
HTM				ERRORPAGE		3		</script></head><body><hr	/>

																					<h1>%s</h1>
<hr	/>

HTM				ERRORPAGE		4		Return	to	Home
																					Page</body></html>
HTM				HOMEPAGE			0		<head><title>Display	Home	Page</title>
HTM				HOMEPAGE			1		<script	type="text/javascript"
																					language="javascript">	//<![CDATA[

HTM				HOMEPAGE			2		function	HomePage(){	parent.location="%s";	}
																					//]]>
HTM				HOMEPAGE			3		</script></head><body	onload="HomePage()">
																					</body></html>
HTM				PREAMBLE			0		<!--	<?xml	version="1.0"?>	-->
HTM				PREAMBLE			1		<!DOCTYPE	html	PUBLIC	"-
//W3C//DTD	XHTML	1.0
																					Transitional//EN"
HTM				PREAMBLE			2		"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
																					transitional.dtd">
HTM				PREAMBLE			3		<html	xmlns="http://www.w3.org/1999/xhtml">
HTM				RESETPAREN	0		<head><title>Reset	Parent</title>
HTM				RESETPAREN	1		<script	type="text/javascript"
																					language="javascript">	//<![CDATA[
HTM				RESETPAREN	2		function	Reset(){	parent.location=
																					"%s://%s:%d/%s/%s?RESET+%s";	}	//]]>
HTM				RESETPAREN	3		</script></head><body	onload="Reset()">
																					</body></html>

In	particular,	you	need	to	ensure	that	the	'!'	(Exclamation	mark)	character	is
correct,	as	well	as	the	'{'	and	'}'	(braces)	characters.

12.11	Set	the	Initial	Focus	in	an	HTML	Page
LANSA	for	the	Web	provides	you	with	a	facility	to	run	a	JavaScript	function
once	the	HTML	page	has	been	loaded	by	your	browser.
By	default,	LANSA	for	the	Web	generates	a	LANSA	tag	that	embeds	a	Web
component	as	part	of	the	<body>	tag.
<body	bgcolor="<RDML	MERGE="*LW3CLNTCOLOR">"
	background="
<RDML	MERGE="*LW3CLNTBKGND">"	<RDML	COMPONENT="FORMINIT">>

This	component	is	known	as	FORMINIT.	This	component	does	not	exist	in	the
LANSA	for	the	Web	component	registry,	by	default.	However,	this	is	a	facility
which	can	be	used	to	execute	a	JavaScript	function	as	part	of	the	form	loading
function	by	the	browser.
To	activate	this	facility,	create	the	FORMINIT	Web	component	as	a	Text	Web
component.	Define	the	text	to	be:
					onload="SetFocus()"

Once	this	FORMINIT	Web	component	is	defined,	it	means	that	for	every
HTML	page,	it	will	attempt	to	execute	the	SetFocus	function	as	part	of	the	form
loading	routine	by	the	browser.
	
<body	bgcolor="white"
	background="/IMAGES/BACKGRD.GIF"	onload="SetFocus()">

The	JavaScript	function,	SetFocus,	can	be	incorporated	into	your
DEFAULT_SCRIPT	page.	It	traverses	through	all	the	elements	defined	in	your
HTML	form,	looking	for	the	first	instance	of	an	input	field	or	a	text	area.	Once
it	has	found	any	of	these	objects,	it	sets	the	initial	focus	to	that	form	element.
	
function	SetFocus()
{
			var	NumElements=document.LANSA.elements.length;
	
			for	(i=0;	i<NumElements;i++)
			{
						if	(document.LANSA.elements[i].type=="select-one"	||
										document.LANSA.elements[i].type=="checkbox"	||
										document.LANSA.elements[i].type=="textarea"	||

										document.LANSA.elements[i].type=='text')
						{
										if	(document.LANSA.elements[i].value!="")
												document.LANSA.elements[i].select();
										document.LANSA.elements[i].focus();
										break;
						}
			}
}

12.12	Tailoring	the	DEFAULT_SCRIPT
The	standard	DEFAULT_SCRIPT	shipped	with	LANSA	for	the	Web	is
extensive	and	contains	some	functions	which	are	not	essential	for	all
applications.	Consequently	it	is	possible	to	tailor	the	script	to	contain	only	the
functions	required	by	your	application.	This	will	result	in	improved	execution
performance	because	the	volume	of	data	being	transferred	to	the	browser	is
reduced.
A	tailored	script	can	be	created	for	a	specific	process	and	named

<process	name>_SCRIPT
This	script	will	be	used	when	the	specific	process	is	executed.

If	you	wish	to	save	your	tailored	script	as	DEFAULT_SCRIPT,	it	is
strongly	recommended	that	you	first	save	a	back	up	version	of	the	full
script.

Script	function Required/
Optional

When	required

SetButton Optional This	function	must	be	included	if	you	are	using
non-scrolling	headers.	Refer	to	Non	Scrolling
Header.

HandleSubmit Optional This	function	must	be	included	if	you	are	using
non-scrolling	headers.	Refer	to	Non	Scrolling
Header.

PathOnly Required 	

GetHelp Optional This	function	handles	a	request	for	Help,	so	it
must	be	included	if	your	functions	have	Help
enabled.

GetExtraInfo Optional This	function	is	required	if	you	are	retrieving
additional	information	from	a	Browse	List.
Refer	to	12.7	Retrieve	Additional	Information
from	Browse	List.

SetSelect Required 	

its:lansa086.CHM::/LANSA/EDG610.htm
its:lansa086.CHM::/LANSA/EDG610.htm

SetNameLocation Required 	

CallCalendar Optional This	function	handles	the	Calendar	control	and
must	be	included	if	you	have	used	this	feature.
Refer	to	12.9	Embed	a	Calendar	Control.

SetDate Optional This	function	handles	the	Calendar	control	and
must	be	included	if	you	have	used	this	feature.
Refer	to	12.9	Embed	a	Calendar	Control

HandleEvent Optional This	function	is	required	for	WEBEVENT
functions.

IsValidNumeric Optional This	function	is	required	if	the	Validate
numerics	option	on	the	Process/Function
compile	was	set	to	YES.

IsDigit Optional This	function	is	required	if	the	Validate
numerics	option	on	the	Process/Function
compile	was	set	to	YES.

IsValidDBCS Optional This	is	required	if	the	LANSA	development
language	is	DBCS.

IsDBCSChar Optional This	is	required	if	the	LANSA	development
language	is	DBCS.

	

12.13	Generate	Static	Page	Output	to	the	IFS	(Integrated	File
System)
The	WEB_STATIC_PAGE	Built-in	Function	allows	you	to	output	Static	HTML
Pages	directly	to	the	IFS	(Integrated	File	System).	When	you	use	this	Built-in
Function,	all	DISPLAY	/	REQUEST	statements	in	the	RDML	will	be	sent	to	the
IFS.	Using	this	BIF	to	produce	static	HTML	Pages	allows	users	to	access	the
Static	HTML,	rather	than	dynamically	generating	the	page	each	time	a	function
is	run	from	the	Browser.	Static	Pages	can	also	be	served	up	quicker	than	running
a	LANSA	function	each	time	a	user	request	is	made	from	the	Browser.
This	Built-in	Function	can	only	be	used	in	a	Web-enabled	process.
When	using	this	BIF,	the	LANSA	System	owner	or	object	owner	must	have
sufficient	authority	to	create,	delete	and	write	to	a	file	in	the	specified	directory
or	Default	Path	on	the	IFS	-	they	will	not	be	created.	It	is	recommended	that
DEFAULT_SCRIPT,	STDHEADER,	STDFOOTER,	MESSAGES	and
STYLESHEETS	for	the	Process	containing	the	Function	be	customized	to	be
suitable	for	a	static	page,	thus	reducing	the	size	of	the	generated	HTML	Page.	A
status	message	indicating	the	success	or	failure	will	be	issued.	Error	Codes	and
Descriptions	in	the	status	message	can	be	found	in	IBM's	standard	file	SYS	in
library	QSYSINC	member	ERRNO.

This	Built-in	Function	can	only	be	used	in	a	Web-enabled	process	and
can	only	be	run	in	BATCH	mode.	This	is	possible	because	there	is	no
screen	interaction	when	using	this	BIF.

LANSA	Functions	that	make	use	of	the	WEB_STATIC_PAGE	BIF	can	be
executed	via	the	Web	Browser	or	a	non-programmable	terminal	(NPT	or	green
screen).	When	the	BIF	is	used	and	the	function	is	run	from	the	Browser,	all
HTML	will	be	sent	to	the	IFS	based	on	the	parameters	(e.g.	Filename,	Suffix,
Full	Output	Path	on	the	IFS	and	Code	page	used	to	generate	the	IFS	File)	that
have	been	passed	into	the	BIF.	If	no	parameters	are	passed,	default	parameters
will	be	used.	Refer	to	WEB_STATIC_PAGE	in	the	LANSA	Technical	Reference
Guide	for	more	information.
In	a	multi-tier	deployment,	IFS	output	will	be	sent	to	the	Web	server	(front-end)
only	when	the	function	is	executed	from	the	Browser.	If	the	Function	is
executed	from	a	non-programmable	terminal	in	a	multi-tier
scenario,	IFS	output	will	be	sent	to	the	Data	Server	(the	back-end).	Functions
using	this	BIF	can	also	be	submitted	to	run	in	Batch	to	generate	or	update	static

its:LANSA999.CHM::/web_static_page.htm

HTML	Pages.
This	example	of	the	WEB_STATIC_PAGE	BIF	will	output	Employee	Details	to
a	static	page	on	the	IFS.	Default	Parameters	will	create	the	IFS	File	with	the
Process/Function	Name	as	the	Default	Filename	and	Panel	Id	as	the	Default
Suffix	in	the	root	directory	of	the	IFS.(/).
FUNCTION				OPTIONS(*DIRECT)

GROUP_BY			NAME(#FLDLST)	FIELDS((#EMPNO)	(#SURNAME)								(#GIVENAME)
											(#ADDRESS1)	(#ADDRESS2)	(#POSTCODE)	(#PHONE)							(#FAX))
**********	The	WEB_STATIC_PAGE	BIF	used	here	will	send	all	
**********	DISPLAY/REQUEST	statements	to	the	IFS.
**********	It	will	be	setup	with	Default	Parameters.
USE								BUILTIN(WEB_STATIC_PAGE)
**********	Fetch	Employee	Details	from	Employee	File	for	
**********	the	Employee	No	exchanged	to	his	function.
FETCH					FIELDS((*ALL))	FROM_FILE(PSLMST)	WITH_KEY(A1234)
**********	If	Employee	exists,	output	to	IFS	else	send	MESSAGE
IF_STATUS		IS_NOT(*OKAY)
MESSAGE				MSGTXT('Employee	not	Found	in	PSLMST	File')
ENDIF
**********	Output	Display	to	IFS
DISPLAY				FIELDS((#FLDLST))

When	the	WEB_STATIC_PAGE	BIF	is	used,	various	parameters	can	be	used	to
setup	the	output	path,	filename	and	suffix	parameters.
If	the	BIF	is	used	as	follows,	the	IFS	File	will	be	created	in
/DIRECTORY1/REPORT1/	with	filename	IFSFILE.htm.
USE								BUILTIN	WEB_STATIC_PAGE	WITH_ARGS('''IFSFILE'''			'''*NO'''
											'''/DIRECTORY1/REPORT1/''')

If	the	BIF	was	setup	as	follows,	the	IFS	File	will	be	created	in	the	root	directory
(/)	with	filename	IFSFILE001.htm	–	the	Default	Suffix	is	the	PanelID.
USE										BUILTIN	WEB_STATIC_PAGE	WITH_ARGS('''IFSFILE'''
												'''*DFT'''	'''/''')

12.14	Integrate	LANSA	Applications	with	Static	HTML	Pages
You	can	embed	a	LANSA	application	as	part	of	your	static	pages	or	you	can
embed	a	static	page	into	your	LANSA	application.	This	technique	uses	the
Server	Side	Include	(SSI)	facilities	provided	by	your	Web	serving	product.

For	more	details	on	SSI	support,	refer	to	the	Web	serving	product
manuals.

If	you	want	to	embed	a	LANSA	application	as	part	of	your	static	page,	you	will
need	to	enable	SSI	support	for	that	static	page.	In	your	static	page,	you	will
include	a	SSI	instruction	to	execute	the	LANSA	application.	In	this	scenario,	the
HTML	generated	by	the	LANSA	application	will	be	part	of	the	final	HTML	sent
to	the	browser,	incorporating	the	static	information	from	the	static	page.
If	you	are	only	using	SSI	in	a	number	of	your	HTML	pages,	it	is	more	expedient
to	disable	SSI	Support	at	the	system	level	(i.e.	SSI	Support	is	disabled	in	your
system	definition)	and	enable	the	SSI	support	at	the	HTML	page	level	by	using
the	<RDML	SSI>	tag.
If	you	want	to	enable	an	HTML	page	for	SSI,	make	sure	that	the	<RDML	SSI>
tag	is	at	the	beginning	of	the	page.
<RDML	SSI="ON">
<RDML	COOKIES="&UDCOOKIES">
<!--	Process		:	PSLSYS		Personnel	System	Main	Menu				-->
<!--	Function	:	ENROL							Enrol	a	New	Employee						-->
<!--	Page					:	001																																			-->

An	example	of	a	SSI	instruction	to	launch	a	LANSA	application	is:
<!--#exec	cgi="CGI-BIN/LANSAWEB?procfun+products+prodcat+web"-->

Your	Web	Server	product	may	not	support	parameter	passing	in	the
URL	syntax.	In	this	case,	you	will	need	to	create	a	CL	program	which
calls	the	LANSAWEB	program.
For	example,	your	CL	program	may	be:

								CALL	PGM(WWWCGI/LANSAWEB)	PARM(PROCFUN
PRODUCTS	PRODCAT	WEB)

If	you	want	to	embed	a	static	page	as	part	of	your	LANSA	application,	you	can
also	use	the	SSI	feature.	In	this	case,	you	will	modify	the	HTML	generated	for

your	application	to	include	the	SSI	instruction	to	include	the	static	page.	You
must	also	enable	the	SSI	support	for	your	LANSA	system.
An	example	of	a	SSI	instruction	to	embed	a	static	page	is:
<!--#include	virtual="prodinfo.htm"-->
	

12.15	CheckBox	Visual	Web	Components
You	can	use	checkboxes	to	enhance	the	presentation	of	your	applications.
However,	there	is	a	limitation	in	using	checkboxes	in	the	interaction	between
the	browser	and	the	Web	server.	This	is	a	limitation	in	the	interaction	between
the	browser	and	the	Web	Server.	It	is	not	a	limitation	imposed	by	LANSA	for
the	Web.
In	HTML	syntax,	you	can	only	define	a	value	for	the	ON	(selected)	state	for	the
checkbox	element.	The	browser	only	sends	back	a	value	for	the	checkbox	if	it	is
selected.	This	means	that	if	the	checkbox	is	not	selected,	no	value	is	sent	back
by	the	browser.
You	can	visualize	a	field	as	a	checkbox,	by	using	the	following	HTML:
<input	type="checkbox"	name="RFLD"	value="Y"	/>

This	technique	must	only	be	deployed	if	the	initial	value	of	the
checkbox	is	unchecked.

Setting	Initial	State	to	Checked
If	you	visualize	a	field	as	a	checkbox	by	just	using	the	above	technique,	you
will	have	problems	if	the	initial	value	of	the	field	is	to	set	the	checkbox	ON
(selected).	If	the	user	unchecks	the	checkbox,	no	value	is	sent	back	by	the
browser.	This	means	that	your	application	will	not	know	that	the	field	has	been
unchecked.
You	can	overcome	this	problem	with	a	combination	of	a	'dummy'	field	and	a
JavaScript	function.

This	example	should	not	be	used	to	visualize	fields	in	browse	lists.
This	technique	will	not	work	in	browse	lists.

Your	checkbox	Visual	Web	component	would	contain	the	following:
<input	type="hidden"	name="RFLD"	value="<RDML	MERGE="RFLD">"	
size="1"	/>
<input	type="checkbox"	name="DUMMY"	onclick="SetState(this,	'RFLD',	'Y',	'N')"	/>
<script	type="text/javascript"	language="javascript">
//<![CDATA[
if	(document.LANSA.RFLD.value=="Y")
			document.LANSA.DUMMY.checked=true;
//]]>

</script>
In	the	above	example,	RFLD	is	the	actual	name	of	the	field	you	want	to
visualize	as	a	checkbox.	Instead	of	visualizing	this	field	as	a	checkbox,	it	is
hidden	in	the	HTML.	A	'dummy'	field	is	used	to	visualize	the	checkbox.	When
the	user	clicks	on	the	checkbox,	a	JavaScript	function,	SetState,	is	called	to	set
the	value	of	the	actual	field,	RFLD.
The	initial	value	of	RFLD	is	read	as	a	result	of	the	<RDML	MERGE="RFLD">
LANSA	tag.	The	JavaScript	function	will	set	the	state	of	the	checkbox	(the
DUMMY	field),	dependent	on	the	initial	value	of	RFLD.
In	this	example,	you	assume	that	a	value	of	'Y'	is	the	checked	state.	When	the
checkbox	is	unchecked	the	value	is	'N'.
Note	that	the	HTML	for	the	Web	component	is	not	encapsulated	by	the	<RDML
CHECKVALUE>	and	</RDML>	LANSA	tags.	You	rely	on	the	JavaScript
function	attached	to	the	Web	component	to	set	the	initial	state	of	the	checkbox.
The	SetState	JavaScript	function	is	used	by	the	DUMMY	field	to	set	the	value
of	the	actual	field,	RFLD.	The	third	parameter	of	this	function	is	the	value	for
the	checked	state	whilst	the	fourth	parameter	is	for	the	unchecked	state.
The	SetState	JavaScript	function	can	be	embedded	into	your
DEFAULT_SCRIPT	page:
function	SetState(obj,	RFld,	chkValue,	unchkValue)
{
			if	(obj.checked)
						RFld.value=chkValue;
			else
						RFld.value=unchkValue;
}

When	the	HTML	form	is	submitted,	the	value	attached	to	the	RFLD	field	is
returned	to	your	application.	The	value	attached	to	the	DUMMY	field	is
irrelevant	since	it	is	not	used	in	your	RDML	function.

You	will	need	to	modify	the	check	and	unchecked	values	in	the
function	according	to	your	application.

Using	Checkboxes	in	Browse	list
The	above	technique	cannot	be	used	for	fields	in	browse	lists	because	the	names
of	the	fields	in	browse	lists	are	changed	by	LANSA	for	the	Web	dynamically.
If	you	want	to	use	checkboxes	in	browse	lists	with	their	initial	set	checked,	you

will	need	to	deploy	the	following	technique.	This	technique	is	based	on	the
preceding	example.
<input	type="hidden"	name="__{field	name}-
<RDML	MERGE="&ROWNUM"	FORMAT=4>	D"	
value="<RDML	MERGE="{field	name}"	size="{size}">"	/>
<input	type="checkbox"	name="DUMMY"	value="<RDML	MERGE="{field
name}">"
onclick="SetCBState(this,	'__{field	name}-
<RDML	MERGE="&ROWNUM"	
FORMAT=4>	D',	'Y',	'N')"
<RDML	ONCONDITION="{field	name}">
checked="checked"
</RDML>
	/>

{field	name}	is	the	name	of	the	field	you	have	defined	in	your	DEF_LIST
command.	This	{field	name}	is	padded	with	trailing	blanks	to	10	characters.

Note	that	this	technique	uses	the	<RDML	ONCONDITION>	tag	to
determine	the	initial	state	of	the	checkbox.

This	technique	calls	a	different	JavaScript	function,	SetCBState:
function	SetCBState(obj,	RFld,	CY,	CN)
{
var	NumElements=document.LANSA.elements.length;
	
for	(i=0;	i<NumElements;i++)
{
if	(document.LANSA.elements[i].name==RFld)
{
if	(obj.checked)	document.LANSA.elements[i].value=CY
else	document.LANSA.elements[i].value=CN;
break;
}
}
}
	

12.16	Extend	LANSA	Drop	Downs
LANSA	for	the	Web	provides	you	with	two	choices	with	visualizing	your	fields
as	drop	downs.	You	can	either	visualize	the	field	as	a	Visual	Web	component	or
the	field	can	be	defined	to	be	a	LANSA	drop	down	in	your	LANSA	Repository.
If	your	field	is	defined	to	be	a	LANSA	drop	down	in	your	repository,	LANSA
for	the	Web	will	automatically	visualize	the	field	as	a	drop	down.	LANSA	drop
downs	are	useful	when	the	data	to	populate	the	drop	down	is	dynamic.	Visual
Web	components	are	useful	when	the	data	is	fairly	static	in	nature.
When	you	compile	your	function,	the	LANSA	drop	down	fields	are	identified	as
<RDML	MERGE="&DD<name>"	FIELD="<field>">	in	the	generated	HTML.
LANSA	for	the	Web	allows	you	to	extend	the	drop	down	in	a	number	of	ways.
You	can	choose	to:

Specify	an	offset	position	for	the	display	of	the	drop	down	data.
Specify	that	you	wish	to	apportion	the	drop	down	data	into	VALUE	and
DESCRIPTION	parts.	The	VALUE	part	is	returned	to	your	program	while
the	DESCRIPTION	part	is	displayed	to	the	user.
Visualize	the	drop	down	as	a	list	box.

The	syntax	to	extend	the	LANSA	drop	down	is:
<RDML	MERGE="&DD<name>"	FIELD="<field>"	OFFSET=
<position>"	SPLIT
SIZE=<size>>

By	default,	you	are	unable	to	apportion	the	drop	down	data	into	its	VALUE	and
description	parts.	For	example,	the	drop	down	data	was	"ADMAdministration",
this	will	be	displayed	in	the	drop	down.	The	same	value	is	also	returned	to	your
program.
LANSA	for	the	Web	allows	you	to	apportion	the	value	of	your	drop	down	data.
In	the	example	above,	you	may	want	"ADM"	to	be	returned	as	the	VALUE	to
your	program,	but	only	display	"Administration"	in	the	drop	down.	You	can
achieve	this	by	editing	the	RDML	tag	and	extending	the	tag.
The	OFFSET	keyword	instructs	LANSA	for	the	Web	to	start	from	the	offset
position	when	displaying	the	drop	down	data.	In	the	example	above,	you	may
only	want	to	show	"Administration"	in	the	drop	down,	without	the	department
code,	"ADM".	In	this	case,	the	offset	position	would	be	4.
If	you	only	extend	the	RDML	tag	by	specifying	the	OFFSET	keyword,	the
value	returned	to	your	application	would	be	the	drop	down	data.	In	the	example,

this	would	be	"ADMAdministration".
You	can	only	use	the	SPLIT	keyword	if	you	specify	an	offset.	If	the	SPLIT
keyword	is	specified,	the	value	returned	to	your	application	will	be	the	VALUE
portion	of	the	apportioned	data.	In	the	example	above,	if	the	SPLIT	keyword
were	specified,	"ADM"	is	the	value	returned	to	your	application.
"Administration"	will	be	the	portion	displayed	to	the	user.
If	you	specify	the	SIZE	keyword,	you	can	convert	the	drop	down	into	a	list	box.
The	size	attribute	determines	the	size	of	your	list	box.	For	example,	if	you
specify	SIZE=4,	the	LANSA	drop	down	field	will	be	visualized	as	a	list	box,
with	the	size	of	the	list	box	set	to	be	4	entries	deep.

12.17	Modifying	charset	for	non-English	Systems
Some	HTML	components	shipped	with	LANSA	include	a	meta	tag	reference	to
charset	8859_1.	Depending	on	your	system	this	may	need	to	be	modified	to	a
charset	appropriate	for	you	installation.
For	example:
<meta	http-equiv="content-type"	content="text/html;	charset=iso-8859-1"	/>
These	are	the	web	components	requiring	modification	in	each	partition	in	which
they	are	installed:
DEFAULT_LAYOUT
WIZLAYO01
WIZLAYO02
WIZLAYO03
WIZLAYO04
WIZLAYO05
Note:	You	will	only	have	components	WIZLAYO01-WIZLAYO05	if	you	have
installed	the	e-Business	Framework	Wizard.
WARNING:	Re-installing	LANSA	for	the	Web	and	e-Business	Framework
Wizard	will	re-set	the	charset	to	8859_1.
Refer	to	IANA	Encoding	in	the	LANSA	Integrator	Guide	for	a	list	of	codes.
	
	

its:lansa093.chm::/lansa/intb7_0510.htm

Tutorials	for	Web	Functions	&	WEBEVENTs
What	are	the	Web	Function	Tutorials?
The	LANSA	Web	Function	Tutorials	are	a	set	of	exercises	designed	to	introduce
and	reinforce	the	fundamental	skills	required	to	build	Web	Function
Applications	with	LANSA.	The	tutorials	are	integrated	into	the	online
documentation.
To	install	the	tutorials,	refer	to	Tutorial	Installation.
The	following	tutorials	are	included:
WEB001	-	Types	of	LANSA	Web	Functions
Web	Functions	Wizard	Tutorials
WEB002	-	Coding	a	WEBEVENT	Functions
WEB003	-	iSeries	Batch	Debug
WEB004	-	LANSA	Generated	HTML	Pages
WEB005	-	LANSA	Process	Pages
WEB006	-	Graphic	Variables
WEB007	-	LANSA	Tags
WEB008	-	Web	Components
WEB009	-	Web	Page	Substitution	(Optional	-	Advanced)
WEB010	-	Web	Skeletons	(iSeries)
WEB011	-	Using	DEFAULT_HIDDEN
WEB012	-	Dynamic	Components
WEB013	-	JavaScript	and	Browse	Lists
WEB014	-	Browse	Lists
WEB015	-	Data	Apportionment
WEB016	-	Customizing	Personnel	Application	(Optional)

Who	Should	Use	the	Tutorials?
The	Tutorials	can	be	used	by	novice	and	experienced	LANSA	developers	who
wish	to	learn	how	to	build	Web	function	applications	with	LANSA	for	the	Web.
In	order	to	use	the	tutorials,	you	must	be	able	to	create	LANSA	processes	and
functions	using	templates.	You	should	know	how	to	edit	RDML	and	how	to
create	fields	in	the	LANSA	Repository.

Your	Feedback
Your	feedback	regarding	these	tutorials	will	help	us	improve	the	overall	quality
of	the	LANSA	documentation	and	training.	Please	email	your	comments	to
lansatraining@LANSA.com.au.

How	Do	I	Use	the	Tutorials?
It	is	recommended	that	you	complete	the	tutorials	in	sequence.	The	processes
and	functions	created	in	the	first	tutorials	are	reused	in	later	tutorials.
The	first	steps	in	an	exercise	provide	very	precise	descriptions	of	the	tasks	to	be
performed.	As	the	steps	and	tutorials	progress,	the	instructions	become	much
more	general.
All	the	tutorials	use	HTML.	Be	sure	to	use	HTML	mode	when	you	use	the	Web
Function	Editor.
The	tutorials	use	the	files	from	the	Personnel	Demonstration	System.

What	Partition	Should	I	Use?		
It	is	recommended	that	you	use	the	DEM	partition	for	the	tutorial.	The	DEM	is
automatically	installed	with	a	LANSA	for	iSeries	system	and	is	quickly	set	up
using	Partition	Initialization	on	a	Visual	LANSA	system.	The	DEM	system
contains	the	Personnel	System	demonstration	system	which	contains	the	files
used	by	the	tutorial.
If	you	do	not	use	the	DEM	partition,	you	can	set	up	another	partition	with	the
Personnel	System	files.	Remember,	the	partition	must	be	properly	Web-enabled.
If	you	do	not	use	DEM,	you	can	select	any	of	your	partitions	when	using	the
tutorials.	Testing	or	training	partitions	are	ideal.	You	will	need	to	import	the
Personnel	System	demonstration	files	into	the	partition.
If	you	intend	to	set	up	another	partition,	it	is	recommended	that	you	do	NOT	use
WEB	as	the	partition	identifier	as	this	a	reserved	space	and	any	changes	to	this
partition	may	affect	other	Web-enabled	partitions	in	your	system.

How	Many	Developers	Can	Use	the	Training?		
There	is	no	limit	on	the	number	of	developers	who	may	use	the	training	at	the
same	time.	However,	it	is	important	that	developers	have	a	unique	identifier	for
their	work.
In	the	tutorial,	each	developer	will	use	an	object	prefix	iii	which	can	be	based
on	his	or	her	initials	or	could	be	assigned	by	a	system	coordinator.	For	example,
you	will	be	asked	to	create	a	process	named	iiiPROC01.	If	your	initials	are	JDS,
you	would	create	a	process	named	JDSPROC01.

mailto:lansatraining@LANSA.com.au

This	iii	prefix	must	be	unique	in	the	LANSA	system	(not	just	the	partition)	as
the	iii	prefix	is	used	to	create	system	variables.	System	variables	are	shared	by
all	partitions.

Setup	Checklist
Check	that	these	tasks	have	been	completed	before	using	the	tutorials.	If	not,	go
to	the	instructions	following	and	complete	them	as	applicable:

Have	you	Web	enabled	the	partition?
Do	you	have	the	Personnel	System	demonstration	files	(DEPTAB,	SECTAB,
PSLMST,	etc.)	installed	into	the	partition?
Have	you	loaded	the	graphic	files	used	in	tutorial	WEB013?	(See	item	5	in
the	iSeries	Installation	Steps	below.)
Have	you	installed	the	Web	Functions	Wizard	into	the	partition?

You	will	require	this	information	about	your	specific	installation:
The	site	address	for	your	Web	Server
The	partition	being	used
A	user	profile	and	password	with	authority	to	the	LANSA	partition
A	user	profile	and	password	if	process	authentication	has	been	set	up.

Tutorial	Installation
If	you	have	not	been	able	to	answer	"yes"	the	Setup	Checklists	question,	you
will	need	to	carry	out	some	or	all	of	the	following	steps.

iSeries	Installation	Steps
1.Select	the	partition	to	be	used	for	training.	(You	may	wish	to	create	a	new
partition.)

2.Use	the	PERSYS	import	on	the	LANSA	iSeries	Software	CD-ROM	to	import
the	Personnel	System	application	into	the	partition.

3.	Web	enable	the	partition.	For	details,	refer	to	the	Task:	Set	up	IBM	i	Partition
for	Web	Development	in	the	Installing	LANSA	on	IBM	i	Guide.

4.	Use	the	LWEBWIZ2	import	in	the	LANSA	program	library	to	import	the
Web	Functions	Wizard	into	the	partition.

5.This	step	is	optional.
					For	the	results	as	shown	for	Tutorial	WEB013,	ten	graphic	files	are	required.
(These	files	will	be	supplied	if	you	do	the	LANSA	Web	training	in	a

its:Lansa040.chm::/lansa/inseh_000.htm

classroom.)
					You	can	create	your	own	files,	preferably	images	sized	144	x	155	pixels
(2.000	x	2.083	inches).	Name	the	images	emp1.jpg	through	to	emp10.jpg
and	load	them	to	the	LANSA	default	directory	/images	on	your	Web	Server.
You	should	also	specify	the	file	names	in	the	Business	Phone	field	of
accessible	records	in	the	PSLMST	file.

					If	these	files	are	not	in	the	/images	directory,	or	not	specified	in	the
PSLMST	file,	it	will	not	affect	the	objective	of	the	exercise.	Instead	of	an
employee	picture,	you	will	simply	see	a	box	with	an	X,	as	no	image	is	found.

Windows	Installation	Steps
If	you	have	a	DEM	partition	with	the	Personnel	System	files	already	installed	in
your	Visual	LANSA	system,	then	you	should	be	albe	to	skip	this	step.

Create	New	Partition
If	you	wish	to	create	a	brand	new	partition:
1.Follow	the	instructions	to	create	a	new	Partition	in	Create	New	Partition	in	the
Visual	LANSA	User	Guide.

2.Initialize	the	new	partition	as	described	below.

Initialize	a	Partition
To	prepare	your	new	or	existing	partition	for	use	with	these	Tutorials,	you	will
need	to	web	enable	the	partition	and	install	the	Personnel	System	files.	To	do
this,	complete	the	following	steps:
1.Log	off	Visual	LANSA	if	you	are	logged	on.
2.Log	on	to	Visual	LANSA.

																																													

its:lansa012.chm::/lansa/l4wusr01_1625.htm

3.Highlight	the	partition	to	be	used	for	training.	If	you	don't	have	a	partition	to
use,	then	create	it	as	described	above.

4.Enter	your	password,	but	do	not	press	OK.
5.Press	the	Partition	Init...	button	to	open	the	Partition	Initialization	dialog	box.

																																												
5.In	the	Partition	Initialization	dialog,	select	(that	is,	tick)	the	appropriate
options.	These	are:
Enable	LANSA	for	the	Web,	if	the	partition	is	not	yet	web	enabled.
Web	Functions	Wizard.
Personnel	System	Demonstration	material,	to	obtain	the	data	needed	for	the
tutorials.

WEB001	-	Types	of	LANSA	Web	Functions
Objective:

To	create	a	procedural	function	using	a	template	and	execute	the	process
menu	and	function	over	the	Web.
To	highlight	how	the	transaction	monitor	supports	procedural	functions.
To	create	a	WEBEVENT	function	using	a	template	and	execute	this	function
over	the	Web.
To	highlight	the	differences	between	procedural	and	WEBEVENT	functions.

To	achieve	these	objectives,	you	will	complete	the	following	steps:
Step	1.	Create	a	Procedural	Function
Step	2.	Create	a	WEBEVENT	Function
Step	3.	Execute	your	Procedural	Function
Step	4.	Execute	Your	WEBEVENT	Function
Summary

Before	You	Begin
You	may	wish	to	review	these	topics	and	all	of	their	related	sections:

Introduction	to	LANSA	Web	Functions
Developing	Applications	with	LANSA	Web	Functions

In	order	to	complete	the	tutorials,	you	must	have	completed	the	installation	as
described	in	the	installation	guide	for	the	platform	on	which	you	are	working.
Refer	to	Personnel	Demonstration	System	for	more	details	about	the	sample
files	used	in	the	tutorials.	You	will	require	the	following	information	about	your
specific	installation:

the	site	address	for	your	Web	server
partition	being	used
a	user	profile	and	password	with	authority	to	the	LANSA	partition
if	process	authentication	has	been	set	up,	you	will	require	a	user	profile	and
password.

its:LANSA086.CHM::/LANSA/ed0200.htm
its:LANSA086.CHM::/LANSA/ed0300.htm

Step	1.	Create	a	Procedural	Function
In	this	step,	you	will	create	a	test	process	and	a	procedural	test	function.	The	test
function	will	use	the	FRENQ02	template	to	create	a	header/details	style	inquiry
function	using	the	Department	(DEPTAB)	and	Section	(SECTAB)	files.
1.				Using	the	LANSA	development	environment,	signon	to	the	partition
nominated	for	the	tutorials	(usually	DEM).

2.				Create	a	new	LANSA	process	named	iiiPROC00	Test	Process	(Procedural),
where	iii	are	your	initials.	(If	the	process	already	exists,	select	a	different	set
of	characters	for	iii.)

3.				Enable	your	iiiPROC00	process	for	web.	If	you	need	to	know	how,	refer	to
Web	Enabling	a	LANSA	Process.

4.				Working	with	your	iiiPROC00	process,	create	a	new	function	named	iiiFN0
Display	Sections	Procedural.	Be	sure	to	specify	that	the	function	is	generated
from	an	Application	Template.

5.				Select	the	FRENQ02Header/Detail	Inquiry	template	and	answer	the
questions	as	shown	below:

TEMPLATE	QUESTION ANSWER

Enter	the	name	of	the	base	file	to	be	used
by	this	template

DEPTAB

Select	related	files	to	be	used Select	 Section	code	table
SECTAB

Do	you	want	this	function	to	be	part	of	an
action-bar	style	process?

N

Fields	in	Header	Area Select	all	fields

Fields	in	Detail/List	Area Select	DEPTMENT,
SECTION,	SECDESC,
SECPHBUS

Design	the	fields	in	the	header	are	DOWN
the	screen	or	ACROSS	the	screen?

DOWN

	

its:lansa086.CHM::/LANSA/ED0310.htm

6.		You	do	not	need	to	edit	any	of	the	RDML	in	this	function.
7.		Compile	your	iiiFN0	function.	For	more	details,	refer	to	Compiling
Functions.

its:lansa086.CHM::/LANSA/ED0340.htm

Step	2.	Create	a	WEBEVENT	Function
In	this	step,	you	will	create	a	test	process	and	a	test	WEBEVENT	function.	The
test	function	will	use	the	FRWEBENQ01	template	to	create	a	WEBEVENT
function	which	can	be	used	to	display	information	in	the	Department
(DEPTAB)	and	Section	(SECTAB)	files.
1.		Create	a	new	LANSA	process	named	iiiPROC01	Test	Process
(WEBEVENT),	where	iii	are	your	initials.	(If	the	process	already	exists,
select	a	different	set	of	characters	for	iii.)

2.			Enable	your	iiiProc01	process	for	web.	If	you	need	to	know	how,	refer	to
Web	Enabling	a	LANSA	Process.

3.		Working	with	your	iiiPROC01	process,	create	a	new	function	named	iiiFN1
Display	Sections	WEBEVENT.	Be	sure	to	specify	that	the	function	is
generated	from	an	Application	Template.

4.		Select	the	FRWEBENQ01	template	and	answer	the	questions	as	shown
below:

TEMPLATE	QUESTION ANSWER

Enter	the	name	of	the	file	to	be
used

SECTAB

Select	keys	to	use	for	search Select	DEPTMENT

Fields	to	appear	in	browse	list Select	DEPTMENT,	SECTION,
SECDESC

How	many	entries	per	page 5

Fields	to	appear	in	detail Select	all	fields

What	is	the	unique	2	character
prefix

iii	(where	iii	are	your	initials)

	

5.		You	do	not	need	to	edit	any	of	the	RDML	in	this	function.
6.		Compile	your	iiiFN1	function.

its:lansa086.CHM::/LANSA/ED0310.htm

Step	3.	Execute	your	Procedural	Function
In	this	step,	you	will	execute	your	LANSA	process	menu	and	then	execute	your
procedural	function.	You	will	see	the	frames	used	with	the	process	menu.	As
you	execute	the	procedural	function,	it	will	help	you	understand	how	the
LANSA	for	the	Web	transaction	server	operates.
1.		Check	that	your	iiiFN0	function	compiled	successfully.
2.		Open	a	browser	window	(Internet	Explorer	5.0	or	greater	is	recommended).
To	execute	your	process	menu,	enter	this	URL:
							http://<server	domain	name>/cgi-bin/lansaweb?process+iiiPROC00+
<ppp>
	

					where:
					<server	domain	name>	is	the	domain	name	or	IP	address	of	your	Web
server

					<ppp>	is	the	LANSA	partition
					iii	are	your	initials.

3.		The	process	menu	will	appear	something	like	this:

4.		Using	the	process	menu	in	the	left	frame,	click	on	the	Display	Sections
(Procedural)	function	to	execute	it.

5.		Enter	a	Department	code	of	ADM	and	press	Next	to	see	all	Sections	in	the
Administration	department.	Your	function	might	appear	something	like	the
following:

6.		Press	the	Next	button	to	return	to	the	REQUEST	for	a	Department	Code.
This	time	enter	a	Department	code	of	FLT	and	press	Next	to	see	all	Sections
in	the	Fleet	department

7.		In	order	to	demonstrate	how	the	transaction	server	works,	press	the	browser's
Back	button	to	return	to	the	REQUEST	for	a	Department	Code.

8.		Enter	a	Department	code	of	AUD	and	press	the	Next	button.	You	should
receive	the	following	type	of	error	message:

					The	LANSA	for	the	Web	Transaction	Server	knows	that	the	RDML	function
is	waiting	for	an	input	from	the	DISPLAY	statement.	To	navigate	in
procedural	functions,	you	must	use	the	buttons	in	the	Web	function
application.	For	more	details,	refer	to	Example	of	a	Procedural	Function.

9.		Use	the	Menu	button	to	return	to	the	process	menu.

its:lansa086.CHM::/LANSA/Ed0210.htm
its:lansa086.CHM::/LANSA/ED0320.htm

Step	4.	Execute	Your	WEBEVENT	Function
In	this	step,	you	will	execute	your	WEBEVENT	function	to	help	you
understand	how	it	differs	from	the	procedural	function.
1.		WEBEVENT	functions	are	always	called	directly.	To	execute	your
WEBEVENT	function,	enter	this	URL:

	where:
					<server	domain	name>	is	the	domain	name	or	IP	address	of	your	Web
server

					<ppp>	is	the	LANSA	partition
					iii	are	your	initials.
					Your	function	might	appear	like	this:

2.		Enter	a	Department	code	of	ADM	and	press	Next	to	see	all	Sections	in	the
Administration	department.	Your	function	might	appear	like	this:

3.		Use	the	browser's	Back	button	to	return	to	the	previous	screen.
4.		Enter	a	Department	code	of	FLT	and	press	Next	to	see	all	Sections	in	the
Fleet	department.

					Notice	that	no	error	message	is	displayed.	The	WEBEVENT	function	fully
supports	the	browser's	Back	button.	For	more	details,	refer	to	Example	of	a
WEBEVENT	Function.

its:lansa086.CHM::/LANSA/ED0330.htm

Summary
Important	Observations

Procedural	functions	do	not	support	the	use	of	the	browser's	Back	button.	In
order	to	go	back	in	the	procedural	paradigm,	the	user	must	use	an	equivalent
to	the	F12=Cancel	key	or	button.
You	must	always	call	your	WEBEVENT	functions	directly.	You	can	not	call
them	from	a	process	menu.
When	testing	your	Web	function	applications,	remember	to	use	one	of	the
buttons	(Next,	Search,	Menu,	Ok,	etc.)	on	the	page	to	submit	the	data	back	to
the	server.	Do	not	press	the	Enter	key	unless	specifically	instructed.	If	you
wish	to	have	the	Enter	key	submit	your	page,	you	must	add	a	JavaScript
function	to	handle	this	event.	Refer	to	Handle	the	ENTER	key	in	Browsers.

Tips	&	Techniques
The	majority	of	your	Web	function	applications	will	be	built	using
WEBEVENT	functions.
If	you	are	building	applications	for	an	Intranet,	you	may	wish	to	Web	enable
your	existing	LANSA	applications	instead	of	rebuilding	WEBEVENT
applications.

What	I	Should	Know
How	to	Web	enable	a	LANSA	process	and	its	functions.
How	to	execute	a	LANSA	process	using	a	standard	browser.
How	to	directly	execute	a	LANSA	function	using	a	standard	browser.
How	procedural	functions	are	different	from	WEBEVENT	functions	when
they	execute	over	the	Web.

Other	Tutorials
You	may	wish	to	proceed	to	WEB002	-	Coding	a	WEBEVENT	Functions.

its:lansa086.CHM::/LANSA/ED1250.htm

Web	Functions	Wizard	Tutorials
Depending	on	your	final	Web	requirements,	you	could	do	the	Web	Functions
Wizard	Tutorials	now	or	you	could	do	them	all	at	the	end	of	this	workshop.	The
Web	Functions	Wizard	Tutorials	are	in	the	Web	Functions	Wizard	Guide.

Objective:
To	learn	how	to	use	the	Web	Functions	Wizard	to	customize	your	LANSA	Web
function	applications.	When	you	do	the	Wizard	tutorials	you	will	learn	how	to:

Customize	browse	lists	and	process	specific	layouts.
Use	the	Wizard	to	define	menu	components.
Adopt	presentation	layouts.
Customize	a	Presentation	Layout
Customize	a	Menu	Component
Customize	System	Wide	Attributes
Import/Export	an	Application

its:LANSA089.CHM::/LANSA/tutorial_begin.htm

WEB002	-	Coding	a	WEBEVENT	Functions
Objectives:

To	understand	how	to	create	your	own	WEBEVENT	functions	by	rewriting
a	procedural	Header/Detail	style	function	as	a	WEBEVENT	function.
To	understand	how	WEBEVENT	RDML	logic	differs	from	procedural	logic.
To	learn	how	to	link	WEBEVENT	functions.
To	learn	how	to	create	re-entrant	WEBEVENT	functions.

To	achieve	these	objectives,	you	will	complete	the	following	steps:
Step	1.	Review	Procedural	Logic
Step	2.	Create	New	Functions		
Step	3.	Define	Keywords	for	Function	Routing
Step	4.	Test	Your	WEBEVENT	Functions
Step	5.	Re-entrant	WEBEVENT	Function
Summary

Before	You	Begin
You	may	wish	to	review	these	topics	and	all	of	their	related	sections:

WEBEVENT	Functions
In	particular,	you	should	review	the	following:

WEBEVENT	Example
In	order	to	complete	the	tutorials,	you	should	have	completed	the	following:

WEB001	-	Types	of	LANSA	Web	Functions

its:lansa086.CHM::/LANSA/ED0400.htm
its:lansa086.CHM::/LANSA/ED0430.htm

Step	1.	Review	Procedural	Logic
In	this	step,	you	will	review	the	RDML	logic	of	procedural	functions	and	you
will	redesign	the	function	as	two	WEBEVENT	functions.	Each	WEBEVENT
function	will	have	just	one	display	statement.	For	more	details,	refer	to	How	Is
WEBEVENT	Different?
1.		Following	is	a	sample	of	the	code	which	is	produced	by	the	FRENQ02
template	using	the	DEPTAB	and	SECTAB	files:
FUNCTION			OPTIONS(*NOMESSAGES	*DEFERWRITE	*DIRECT)
GROUP_BY			NAME(#HEADER)	FIELDS(#DEPTMENT	#DEPTDESC)
DEF_LIST		
NAME(#iiiLIST)	FIELDS((#LISTDUMMY	*HIDDEN)	#SECTION	#SECDESC	#SECPHBUS)
**********	COMMENT(Loop	until	user	EXITs	or	CANCELs)
BEGIN_LOOP	
R10:	REQUEST			
FIELDS(#DEPTMENT)	DESIGN(*DOWN)	IDENTIFY(*DESC)
**********	COMMENT(Fetch	file	DEPTAB	details)
FETCH					
FIELDS(#HEADER)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	NOT_FOUND(R10)	ISSUE_MSG(*YES)
**********	COMMENT(Select	all	file	SECTAB	details)
SELECT				
FIELDS(#iiiLIST)	FROM_FILE(SECTAB)	WITH_KEY(#DEPTMENT)
ADD_ENTRY		TO_LIST(#iiiLIST)
ENDSELECT		
**********	COMMENT(Display	results	to	the	user)
DISPLAY			
FIELDS(#HEADER)	DESIGN(*DOWN)	IDENTIFY(*DESC)	BROWSELIST(#iiiLIST)
**********	COMMENT(Clear	header	and	list	and	loop	around)
CHANGE					FIELD(#HEADER)	TO(*DEFAULT)
CLR_LIST			NAMED(#iiiLIST)
END_LOOP

					Notes:	You	will	use	a	list	name	of	#iiiLIST,	where	iii=your	initials.
2.		Redesign	this	function	using	two	WEBEVNT	functions.	For	an	example,
refer	to	How	Does	WEBEVENT	Work?	(Solutions	are	provided	in	Step	2.)

its:lansa086.CHM::/LANSA/ED0420.htm
its:lansa086.CHM::/LANSA/ED0410.htm

Step	2.	Create	New	Functions		
In	this	step,	you	will	create	two	new	functions	with	the	code	you	have	designed
from	the	previous	step.
1.		Create	a	new	LANSA	process	named	iiiPROC03	WEBEVENT	Functions,
where	iii	are	your	initials.	(If	the	process	already	exists,	select	a	different	set
of	characters	for	iii.)

2.			Enable	your	iiiPROC03	process	for	web.	If	you	need	to	know	how,	refer	to
Web	Enabling	a	LANSA	Process.

3.		Working	with	your	iiiPROC03	process,	create	a	new	function	named	iiiFN5
Request	Department	for	Search.	You	will	manually	enter	the	code	for	the
function.

							The	RDML	code	in	the	function	might	appear	something	like	this:
FUNCTION		OPTIONS(*DIRECT	*WEBEVENT)
CHANGE				FIELD(#DEPTMENT)	TO(*DEFAULT)
REQUEST		
FIELDS(#DEPTMENT)	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01	SEARCH))

4.		Working	with	your	iiiPROC03	process,	create	a	new	function	named	iiiFN6
Display	Department/Section.	You	will	manually	enter	the	code	for	the
function.	(TIP:	You	could	start	this	new	function	by	copying	code	from	your
iiiFN0	function.)

					The	RDML	code	in	the	function	might	appear	something	like	this:
FUNCTION			OPTIONS(*DIRECT	*WEBEVENT)
GROUP_BY			NAME(#HEADER)	FIELDS(#DEPTMENT	#DEPTDESC)
DEF_LIST		
NAME(#iiiLIST)	FIELDS((#LISTDUMMY	*HIDDEN)	#SECTION	#SECDESC	#SECPHBUS)
CLR_LIST			NAMED(#iiiLIST)
**********		COMMENT(Fetch	file	DEPTAB	details)
FETCH					
FIELDS(#HEADER)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	NOT_FOUND(R10)	ISSUE_MSG(*YES)
**********		COMMENT(Select	the	SECTAB	file	details)
SELECT				
FIELDS(#iiiLIST)	FROM_FILE(SECTAB)	WITH_KEY(#DEPTMENT)
ADD_ENTRY		TO_LIST(#iiiLIST)
ENDSELECT		
**********		COMMENT(Display	results	to	the	user)

its:lansa086.CHM::/LANSA/ED0310.htm

R10:	DISPLAY	
FIELDS(#HEADER)	DESIGN(*DOWN)	IDENTIFY(*DESC)	BROWSELIST(#iiiLIST)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01	RETURN))

5.		Compile	the	new	functions.

Step	3.	Define	Keywords	for	Function	Routing
In	this	step,	you	will	use	the	Web	Function	Editor	to	define	your	WEBEVENT
function	routing.
1.		Start	the	Web	Function	Editor.	You	will	be	asked	to	enter	these	details:

System 	

Host	Type 	

Partition 	

Language 	

User	Profile 	

Password 	

Mode HTML

	

					Be	sure	to	specify	HTML	mode.
2.		Use	the	Tools	menu	category	and	select	the	Keywords	-	Maintain	option.	Do
not	enter	a	Process.	Press	the	OK	button	to	continue.

3.		Press	the	Add	button	to	create	a	link	from	the	request	function	to	the	display
function	when	the	user	performs	a	search.	Enter	the	following	information:

Process iiiPROC03

Function iiiFN5

Keyword SEARCH

Description Search

Linked	Process iiiPROC03

Linked	Function iiiFN6

	

4.		Create	another	link	from	the	display	back	to	the	request	so	another	search
can	be	performed.	Enter	the	following	information:

Process iiiPROC03

Function iiiFN6

Keyword RETURN

Description New	Search

Linked	Process iiiPROC03

Linked	Function iiiFN5

	

					Reminder:	Keyword	is	case	sensitive!	It	must	match	the	keyword	used	in
your	RDML.

					For	more	information,	you	can	use	the	online	help	in	the	Web	Function
Editor.

5.		Close	the	Maintain	Keywords	window.

Step	4.	Test	Your	WEBEVENT	Functions
1.		Check	that	your	functions	compiled	successfully.
2.		Open	a	browser	window	(Internet	Explorer	5.0	or	greater	is	recommended)
and	execute	your	iiiFN5	function	as	follows:
					http://<server	domain	name>/cgi-bin/lansaweb?

procfun+iiiPROC03+iiiFN5+<ppp>
	

					where:
					<server	domain	name>	is	the	domain	name	or	IP	address	of	your	Web
server

					<ppp>	is	the	LANSA	partition
					iii	are	your	initials

3.		Test	your	new	WEBEVENT	function	as	follows:
Enter	a	Department	of	ADM.
Use	the	Search	button	to	display	a	list	of	Sections	in	the	ADM
department.
Use	the	browser's	Back	button.	Notice	that	the	Department	Code	is	ADM.
Enter	a	Department	of	FLT	and	repeat	the	search.
Try	using	the	New	Search	button	to	perform	another	search.	Notice	that
the	Department	Code	is	now	blank	when	the	REQUEST	panel	is
displayed.

4.		Try	executing	your	iiiFN6	WEBEVENT	Display	Department/Section
function	directly	from	the	browser.

					Notice	what	happens.	Why	do	you	receive	the	error	message	that	no	record
could	be	found?	For	the	answer,	refer	to	the	Important	Observations	in	the
Summary.

Step	5.	Re-entrant	WEBEVENT	Function
In	this	step,	you	will	create	a	single	re-entrant	WEBEVENT	function	to	perform
the	same	operations	as	the	iiiFN5	and	iiiFN6	functions.
1.		Working	with	your	iiiPROC03	process,	create	a	new	function	named	iiiFN7
Display	Sections	in	Department.	You	will	manually	enter	the	code	for	the
function.

2.		Write	the	RDML	code	as	a	re-entrant	WEBEVENT	function	so	that	it
requests	a	Department	Code	and	then	displays	the	Sections	in	the
Department.	For	more	details,	refer	to	Handling	Re-entrant	Functions.

3.		Compile	your	function.
4.		Remember	to	register	the	keywords	for	the	function.	In	this	case,	the
function	links	back	to	itself.

5.		Test	your	function.

Solution
This	is	one	possible	solution	to	this	exercise:
FUNCTION			OPTIONS(*DIRECT	*WEBEVENT)
DEFINE				
FIELD(#RENTRY)	TYPE(*CHAR)	LENGTH(1)	DEFAULT(*BLANK)
GROUP_BY		
NAME(#HEADER)	FIELDS((#DEPTMENT)	(#DEPTDESC)	(#RENTRY	*HIDDEN))
DEF_LIST		
NAME(#iiiLIST)	FIELDS((#LISTDUMMY	*HIDDEN)	#SECTION	#SECDESC	#SECPHBUS)
IF									COND('#RENTRY	*NE	Y')
CHANGE					FIELD(#HEADER)	TO(*DEFAULT)
CHANGE					FIELD(#RENTRY)	TO(Y)
REQUEST			
FIELDS((#DEPTMENT)	(#RENTRY	*HIDDEN))	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01	SEARCH))
ELSE							
CLR_LIST			NAMED(#iiiLIST)
**********		COMMENT(Fetch	file	DEPTAB	details)
FETCH					
FIELDS(#HEADER)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	NOT_FOUND(R10)	ISSUE_MSG(*YES)
**********		COMMENT(Select	the	SECTAB	file	details)
SELECT				
FIELDS(#iiiLIST)	FROM_FILE(SECTAB)	WITH_KEY(#DEPTMENT)

its:lansa086.CHM::/LANSA/ED0440.htm

ADD_ENTRY		TO_LIST(#iiiLIST)
ENDSELECT		
**********		COMMENT(Display	results	to	the	user)
R10:	CHANGE					FIELD(#RENTRY)	TO(*BLANK)
DISPLAY			
FIELDS(#HEADER)	DESIGN(*DOWN)	IDENTIFY(*DESC)	BROWSELIST(#iiiLIST)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01
RETURN))
ENDIF

The	keyword	entries	are:

Process iiiPROC03

Function iiiFN7

Keyword SEARCH

Description Search

Linked	Process iiiPROC03

Linked	Function iiiFN7

	

Process iiiPROC03

Function iiiFN7

Keyword RETURN

Description New	Search

Linked	Process iiiPROC03

Linked	Function iiiFN7

	

Summary
Important	Observations

The	Data	Exchange	is	automatically	handled	by	LANSA	for	the	Web.	You
did	not	have	to	code	exchange	of	data	between	iiiFN5	and	iiiFN6.	When	you
execute	iiiFN6	directly,	you	receive	an	error	message	because	no	data	was
passed	to	the	function.	iiiFN6	usually	receives	its	data	(i.e.	the	Department
Code)	from	iiiFN05.
The	#RENTRY	field	must	be	included	as	a	*HIDDEN	variable	in	the
REQUEST	statement	so	that	it	is	passed	along	with	the	#DEPTMENT	when
the	iiiFN7	function	is	called	to	DISPLAY	the	search	results.
When	you	compile	your	re-entrant	WEBEVENT	function,	you	may	have
received	compile	warnings	about	the	structure	of	your	function.	For	more
details,	refer	to	Considerations	for	WEBEVENT	Functions.
If	you	have	completed	the	Web	Functions	Wizard	tutorials,	you	will	notice
that	the	browse	list	presentation	for	your	iiiLIST	defaults	to	the	layout	you
defined	with	Wizard.

Tips	&	Techniques
You	can	use	Web	Link	components	instead	of	keywords.	For	an	example,
refer	to	WEB008	-	Web	Components.
You	can	use	the	Web	Functions	Wizard	to	enhance	the	layout	of	your
function.

What	I	Should	Know
How	to	convert	a	procedural	function	into	WEBEVENT	function(s).
How	to	write	a	re-entrant	WEBEVENT	function.
How	to	use	the	Web	Function	Editor	Keywords	to	link	WEBEVENT
functions.

Other	Tutorials
You	are	now	ready	to	complete	WEB004	-	LANSA	Generated	HTML	Pages.

its:lansa086.CHM::/LANSA/ED0450.htm

WEB003	-	iSeries	Batch	Debug
Objective:

To		learn	how	to	use	batch	debug	with	WEBEVENT	functions	on	the	iSeries.
To	achieve	this	objective,	you	must	complete	the	following:

Step	1.	Identify	Your	Terminal	ID
Step	2.	Call	Your	Function	in	Debug	Mode
Step	3.	Enter	valid	data	into	your	browser.
Summary

Step	1.	Identify	Your	Terminal	ID
1.		If	you	are	using	5250	terminals	or	emulation	sessions,	signoff	the	session	and
look	at	the	display	name	in	the	top	right	corner	of	the	signon	screen.

2.		Record	the	name	of	the	device.	Do	not	sign	on	to	this	device!

Step	2.	Call	Your	Function	in	Debug	Mode
Before	you	start	this	step,	make	sure	that	the	5250	device	is	displaying	a	user
login	screen.
1.		Using	the	browser,	execute	your	process	iiiPRO03	and	function	iiiFN07	by
entering	the	URL	for	the	LANSA	function,	and	include	the	following:
+BDEBUG+devicewhere	device	is	the	name	you	recorded	in	Step	1
	

					For	example:	the	URL	might	look	something	like	this:
http://siteaddress/cgi-bin/LANSAWEB?
PROCFUN+iiiPROC03+iiiFN07+DEM+BDEBUG+QPADEV0001
	

2.		Switch	to	the	5250	display	you	have	nominated.	You	will	see	the	standard
LANSA	debug	interface.

3.		Specify	the	iiiPROC03	process	and	iiiFN07	function	for	debug.
					Press	Enter	to	continue.
4.		Your	display	screen	shows	three	options.		1.DEBUG	Interactively,	2.TRACE
All/Selective	statements,	and	3.COUNT	statements.	

					Select	option	1.DEBUG	Interactively:

5.		A	listing	of	your	RDML	source	code	for	function	iiiFN07	will	appear.	
Beside	each	statement	you	will	notice	there	is	a	selection	box.		You	can	select
break	points	for	individual	lines	of	code	or	all	lines	of	code.	

					For	this	exercise,	use	F20-Select	all:

6.		A	listing	of	all	fields	referenced	by	your	function	should	now	appear.		Please
select	the	fields,	IO$STS	and	RENTRY.	

					Press	Enter	to	allow	your	function	to	begin	execution.

7.		The	first	executed	line	of	source	code	will	appear	with	the	variables	IO$STS
and	RENTRY	shown	below	it.	

					Press	Enter	to	advance	the	debugger	through	each	line	of	code.		Remember,
for	WEBEVENT	functions,	a	screen	is	not	sent	to	the	browser	until	the
function	terminates.

					Take	notice	of	the	value	of	RENTRY	and	when	it	changes	from	blank	to	Y.	
8.		Press	Enter	until	the	DEBUG	screen	resets	to	a	signon	display.
					Now	that	your	function	has	terminated,	a	screen	should	be	displayed	in	the
browser.

Step	3.	Enter	valid	data	into	your	browser.
1.		Switch	to	your	browser.
Enter	a	value	of	ADM	in	the	search	field	and	press	the	Next	key	to	submit	the
function.

Your	iiiFN07	will	be	executed	once	again.
2.		Switch	to	the	5250	display	screen	you	have	nominated.	
					You	should	see	the	standard	LANSA	debug	interface.	
					Simply	press	Enter.		(The	*FIRST	options	will	automatically	take	the	first
function	in	the	debug	process.)

3.		Select	Debug	Interactively	and	press	Enter.
4.		Your	previous	break	points	should	be	selected.	If	not,	press	F20	again.	
					Your	variables	IO$STS	and	RENTRY	should	already	be	selected.	If	they	are
not,	then	select	them	again.

5.		Notice	the	value	of		RENTRY	is	still	a	Y.		This	value	was	set	when	the
function	executed	the	first	time.	The	value	was	stored	in	the	hidden	values.	

					Press	Enter	to	move	to	next	break	point	in	the	function.
					You	will	be	able	to	watch	the	function	as	it	selects	the	data	from	the	file	and
prepares	the	output	screen.

6.		Press	Enter	until	the	function	terminates	and	an	iSeries	signon	is	displayed.
7.		Switch	to	your	browser.	You	should	see	the	list	of	sections	displayed.

Summary
Important	Observations

The	device	used	for	batch	debug	must	be	active	(i.e.	the	5250	workstation
must	be	powered	on	or	the	5250	emulation	session	started).	A	user	should
not	be	signed	on	to	the	terminal.	You	cannot	use	batch	debug	if	the	display
station	is	already	allocated.
The	interactive	and	batch	debug	have	identical	features.
The	batch	debug	can	be	nominated	either	in	the	URL	directly,	or	it	can	be
called	from	your	generated	HTML	pages.

Tips	&	Techniques
Remember,	you	must	not	be	signed	on	to	the	device	nominated	for	batch
debug.
WEBEVENT	functions	terminate	immediately	after	the	REQUEST	or
DISPLAY	statement.
You	cannot	debug	a	function	that	is	locked	by	a	developer.		A	common
mistake	is	to	have	the	function	editor	open	while	attempting	to	debug	the
function.

What	I	Should	Know
How	to	use	the	batch	debug	with	WEBEVENT	functions.

How	to	set	break	points	and	how	to	display	variables	in	your	functions.

WEB004	-	LANSA	Generated	HTML	Pages
Objective:

To	execute	the	Web	Function	Editor	and	review	some	of	the	basic	Editor
features.
To	learn	how	to	identify	the	LANSA	generated	HTML	pages.
To	review	the	HTML	pages	created	for	the	iiiFN05	Request	Department
function.	The	HTML	will	be	manually	edited	and	the	function	will	be
recompiled	to	show	how	versions	and	the	Web	Function	Editor's	Compare
and	Contrast	features	work.
To	become	familiar	with	the	default	(page	components)	and	HTML
documents	generated	by	LANSA.

The	focus	of	this	tutorial	is	NOT	the	HTML	code	generated	or	the	RDML	tags
used	by	LANSA.	You	will	review	the	use	of	LANSA	tags	in	an	upcoming
exercise.
To	achieve	these	objectives,	you	complete	the	following	steps:

Step	1.	Open	and	Configure	the	Web	Function	Editor
Step	2.	Identify	Generated	HTML	Pages
Step	3.	Edit	the	HTML	Page	for	iiiFN05
Step	4.	Modify	and	Recompile	Function	iiiFN05
Step	5.	Use	Compare	and	Contrast	to	Review	your	HTML
Summary

Before	You	Begin
You	may	wish	to	review	these	topics	and	all	their	related	sections:

LANSA	Generated	HTML/XML	Pages
In	order	to	complete	the	tutorials,	you	should	have	completed	the	following:

WEB002	-	Coding	a	WEBEVENT	Functions

It	is	very	important	that	you	have	configured	LANSA	for	the	Web	to
allow	for	automatic	backup	of	the	generated	HTML	pages.	Use	the
LANSA	for	the	Web	Administrator	to	check	these	Data/Application
Server	settings.

its:lansa086.CHM::/LANSA/ED0500.htm

Step	1.	Open	and	Configure	the	Web	Function	Editor
In	this	step,	you	will	start	the	Web	Function	Editor	and	configure	the	Editor
options.
1.		Start	the	Web	Function	Editor.	You	will	be	asked	to	enter	the	following:

System 	

Host	Type 	

Partition 	

Language 	

User	Profile 	

Password 	

Mode HTML

	

					Be	sure	to	specify	HTML	mode.
2.		Use	the	Options	menu	category	and	select	the	Configure	option.
3.		Select	the	View	tab.	Check	the	box	for	Synchronized	Scrolling.	Make	sure
the	Vertical	Split	radio	button	is	selected.	These	options	are	used	when
comparing	versions	of	HTML	pages.

4.		Select	the	Miscellaneous	tab.	The	option	to	Enable	archive	functionality
when	saving	allows	you	to	archive	manual	changes	to	the	HTML	function.
Refer	to	Configure,	Miscellaneous	tab	for	further	informtion.

5.		Press	the	OK	button	to	save	the	settings.

its:LANSA086.CHM::/LANSA/jmp_0690.htm

Step	2.	Identify	Generated	HTML	Pages
In	this	step,	you	will	simply	identify	the	HTML	pages	created	for	function
iiiFN07	which	was	compiled	in	WEB002	-	Coding	a	WEBEVENT	Functions.
(Remember	to	substitute	iii	with	your	initials.)
1.		Review	the	RDML	code	used	in	your	iiiFN07	function.	(Refer	to	Step	5.	Re-
entrant	WEBEVENT	Function.)	Count	the	number	of	REQUEST	and
DISPLAY	statements	in	the	function.

2.		Use	the	File	menu	category	and	select	the	Open	option.	A	list	of	HTML
pages	stored	in	the	LANSA	internal	database	will	be	displayed.						Not	all	of
these	pages	are	generated	from	LANSA	functions.	Some	pages	are	defaults
shipped	with	LANSA.	Some	pages	are	Page	Web	components	defined	by
developers.

3.		Look	for	(but	do	not	open)	the	iiiPROC03	iiiFN07	pages	from	your	re-
entrant	WEBEVENT	function.

					Because	iiiFN07	has	two	panels	(REQUEST	and	DISPLAY),	you	should	see
two	files	listed:
					iiiPROC03		iiiFN07001
					iiiPROC03		iiiFN07002
					The	first	page	will	be	for	the	REQUEST	panel	and	the	second	will	be	for
the	DISPLAY	panel.	A	single	page	is	created	for	each	display.	For	more
details,	refer	to	Identifying	Generated	Pages.

its:lansa086.CHM::/LANSA/ED0510.htm

Step	3.	Edit	the	HTML	Page	for	iiiFN05
In	this	step,	you	will	locate	and	open	the	HTML	page	of	function	iiiFN05	which
was	created	in	WEB002	-	Coding	a	WEBEVENT	Functions.
1.		Locate	and	open	the	iiiPR0C03	iiiFN05001	page	which	will	have	the	HTML
for	the	REQUEST	panel	from	your	WEBEVENT	function.

					Reminder:	The	RDML	code	in	your	iiiFN05	function	might	appear
something	like	this:
FUNCTION		OPTIONS(*DIRECT	*WEBEVENT)
CHANGE				FIELD(#DEPTMENT)	TO(*DEFAULT)
REQUEST		
FIELDS(#DEPTMENT)	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01	SEARCH))

	An	HTML	page	will	be	downloaded	from	the	LANSA	Application/Data	Server
to	your	Web	Function	Editor.	This	is	the	LANSA	internal	HTML	which
includes	LANSA	tags,	components,	graphic	variables,	etc.

2.		You	will	make	two	simple	changes	to	this	file.	(These	changes	are	being
made	to	show	how	a	new	version	of	HTML	will	be	created	when	you	save
the	document,	and	when	you	recompile	the	function.	The	image	file	used	in
this	step	is	shipped	with	LANSA.)

					Insert	the	bolded	lines	which	will	simply	add	an	image	and	some	text	to	the
page:
		
<RDML	LAYOUT>
<!--	Process		:	IIIPROC03			WEBEVENT	Functions																						-->
<!--	Function	:	IIIFN005				Request	Department	for	Search											-->
<!--	Page					:	001																																																-->
	
<!--	Generated	by				-	LANSA																																							-->
<!--	Created	by	user	-	xxxxxxxxxx																																		-->
<!--	Time	and	Date			-	000000000000																																-->
	
<!--	RDML	function	sequence	number	-	0003																										-->
	
<!--	This	is	a	*WEBEVENT	function																																		-->
	
<form	method="post"	name="LANSA"

action="/<RDML	MERGE="&CGI">/LANSAWEB?WEBEVENT+
<RDML	MERGE="&SESSPL">">
	
<RDML	MERGE="&HIDDEN">
	
<RDML	COMPONENT="STDHEADER">
	
<center><h1><RDML	MERGE="&FUNCTION"></h1></center>
	

	
<RDML	MERGE="&MESSAGES">

	
<basefont	size=""	/>
<table	border="0"	cellpadding="0"	cellspacing="3">
<tbody>
	
<tr>
</tr>
<tr>
<td><RDML	MERGE="@T0001+0001+0020"></td>
<td><input	name="ADEPTMENT	"	type="text"	size="004"	maxlength="004"
value="<RDML	MERGE="DEPTMENT		">"
onfocus="SetNameLocation('ADEPTMENT	',03,29)"	/></td>
</tr>
	
</tbody>
</table>
	

Enter	a	Department	Code	to	see	a	listing	of	all	Sections.

	

	
	

<RDML	MERGE="&BUTTONS">
	
<RDML	COMPONENT="STDFOOTER">
	
</form>
	

3.		Save	the	file.
					A	message	box	will	appear	to	ask	you	if	you	wish	to	archive	the	previous
version	of	the	HTML	page.	Press	the	Yes	button	so	that	the	original	version	of
the	HTML	page	will	be	saved	as	Version	1.	The	current	version	is	always
Version	0.

4.		Use	your	browser	to	execute	function	iiiFN05	to	view	your	changes.
					Notice	that	you	have	not	recompiled	your	function.

Step	4.	Modify	and	Recompile	Function	iiiFN05
In	this	step,	you	will	modify	the	RDML	in	function	iiiFN05	and	recompile	the
function	so	that	a	new	version	of	the	HTML	page	is	created.	The	changes	made
in	Step	3	will	allow	you	to	use	the	Compare	and	Contrast	features	in	the	Editor.
1.		Working	with	the	iiiFN05	function	in	process	iiiPRCO03,	use	the	LANSA
RDML	Editor	to	view	the	RDML	code	in	the	function.

2.		Manually	edit	the	RDML	code	to	add	the	#STD_DATE	field	to	the
REQUEST	statement.	(You	will	not	use	the	#STD_DATE	field	in	this
exercise.	This	step	will	simply	highlight	how	your	RDML	changes	are
identified	in	the	new	HTML	page.)	Your	RDML	statement	should	appear	as
follows:
REQUEST		
FIELDS(#DEPTMENT	#STD_DATE)	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01	SEARCH))

3.		Save	the	changes	to	the	function	and	exit	the	RDML	Editor.
4.		Submit	your	iiiFN05	function	for	recompile.	This	step	will	cause	the	HTML
page	to	be	recreated.

					Reminder:	The	current	page	is	always	Version	0.	The	previous	HTML	page,
which	includes	the	manual	changes	you	have	just	made,	will	be	saved	as
Version	1.	The	very	first	page	created	will	now	be	Version	2.	For	more
details,	refer	to	Versioning	of	Pages.

its:lansa086.CHM::/LANSA/ED0520.htm

Step	5.	Use	Compare	and	Contrast	to	Review	your	HTML
In	this	step,	you	will	compare	the	HTML	created	when	the	function	was
recompiled,	to	the	manually	edited	HTML.
1.		Check	that	the	function	iiiFN05	has	compiled	successfully.
2.		Using	the	Web	Function	Editor,	open	the	iiiPR0C03	iiiFN05001	page.
3.		Review	the	HTML.	You	will	not	see	the	manual	HTML	changes	you	made	in
Step	3	since	the	recompile	creates	a	new	version	of	the	HTML.	(Your
changes	have	been	saved	as	Version	1.)

4.		Use	the	File	action	bar	category	and	select	the	Compare	With	Version	option.
Select	Page	Version	1	and	press	OK.	The	version	of	the	HTML	with	your
changes	will	be	displayed.

5.		Scroll	up	and	down	through	the	HTML	listing.	The	differences	between	the
two	files	will	be	highlighted	in	red	and	yellow.	(These	colors	can	be
configured	in	the	editor.)	For	more	details,	refer	to	Comparing	Versions.

6.		Cut	and	paste	the	changes	you	made	to	your	HTML	in	Step	3	to	the	current
version	of	the	file.

7.		Save	the	document.
8.		Finally,	open	Version	1	of	the	iiiPR0C03	iiiFN05001	page.	Try	to	save	the

its:lansa086.CHM::/LANSA/ED0530.htm

document.	Notice	the	error	message	displayed.	Close	the	document	without
saving	it.

Summary
Important	Observations

An	HTML	page	is	created	for	every	REQUEST	and	DISPLAY	statement	in
a	function.
The	order	of	the	REQUEST	and	DISPLAY	statements	determines	the
document	number.
Versions	of	HTML	pages	can	be	created	when	a	document	is	saved.	This
feature	is	controlled	by	the	Web	Function	Editor	options.
New	versions	of	the	HTML	pages	are	created	when	a	function	is	compiled.
This	feature	is	enabled	with	the	LANSA	for	the	Web	Administrator.
The	current	version	of	an	HTML	document	is	always	Version	0.
You	can	only	save	your	changes	to	an	HTML	document	as	Version	0.

Tips	&	Techniques
If	you	do	not	wish	to	use	the	automated	archive	and	backup	features,	you	can
backup	your	HTML	by	using	the	Save	As	option.	You	can	manually	save
your	documents	using	different	document	names.
You	can	control	the	archiving	and	backup	of	the	HTML	pages	from	the	Web
Function	Editor	options	and	from	the	LANSA	for	the	Web	Administrator	set
up.
For	an	example	of	how	to	protect	custom	changes	to	your	HTML,	refer	to
WEB009	-	Web	Page	Substitution	(Optional	-	Advanced).

What	I	Should	Know
How	to	use	the	basic	features	of	the	Web	Function	Editor	to	view	HTML
pages.
How	to	identify	the	LANSA	generated	HTML	pages.
How	the	Web	Function	Editor	uses	versions.
When	versions	of	HTML	pages	are	created.

Other	Tutorials
You	are	now	ready	to	complete	WEB005	-	LANSA	Process	Pages.

WEB005	-	LANSA	Process	Pages
Objective:

To	highlight	how	process	specific	Web	pages	can	be	created.
To	edit	the	message	presentation	used	in	your	LANSA	functions.
To	create	new	standard	headers	and	footers	for	your	functions.
To	edit	the	JavaScript	to	add	a	calendar	control	to	the	function.
To	introduce	the	component	registry.

To	achieve	these	objectives,	you	will	complete	the	following	steps:
Step	1.	Create	a	Message	Presentation	Page	for	iiiPROC03
Step	2.	Create	a	Standard	Header	for	Functions	in	Process	iiiPROC03
Step	3.	Create	a	Standard	Footer	for	Functions	in	Process	iiiPROC03
Step	4.	Component	Registry
Step	5.	Add	the	Calendar	Control	and	Edit	the	Default	JavaScript
Step	6.	Test	the	Calendar	Control
Summary

Before	You	Begin
You	may	wish	to	review	these	topics	and	all	of	their	related	sections:

Default	Process	Pages
In	order	to	complete	the	tutorials,	you	must	have	completed	the	following:

WEB002	-	Coding	a	WEBEVENT	Functions
WEB004	-	LANSA	Generated	HTML	Pages

its:lansa086.CHM::/LANSA/ED0600.htm

Step	1.	Create	a	Message	Presentation	Page	for	iiiPROC03
In	this	step,	you	will	customize	the	presentation	of	the	messages	in	a	specific
process	to	replace	the	default	list	box	style	messages.	You	will	create	a	very
simple	list	to	display	messages.	(Remember	to	substitute	iii	with	your	initials.)
1.		Using	the	Web	Function	Editor	in	HTML	mode,	create	a	new	page.	Use	the
File	menu	category	and	select	the	New	option.

2.		Delete	the	default	HTML	which	appears	in	the	new	document.
					Enter	the	following	HTML:

LANSA	Error	Messages

<RDML	MESSAGES>

	

3.		Save	the	HTML	document	as	iiiPROC03_MSGPRES.
4.		Test	your	changes	using	your	iiiFN07	function.	Try	searching	for	a
Department	which	does	not	exist.	Notice	that	you	did	not	have	to	recompile
any	functions	or	edit	the	function	HTML.	Your	message	should	appear
something	like	the	following:

Step	2.	Create	a	Standard	Header	for	Functions	in	Process
iiiPROC03
In	this	step,	you	will	create	a	new	standard	header	page	to	be	used	specifically
with	the	functions	in	process	iiiPROC03.	The	new	header	will	simply	have
some	additional	heading	text.
1.		Make	note	of	the	current	appearance	of	the	function	header	and	footer	in	any
of	the	functions	in	your	iiiPROC03	process.

2.		Using	the	Web	Function	Editor,	open	the	STDHEADER.
3.		Insert	the	bolded	lines	which	will	simply	add	a	heading	to	the	page:
		
<!--																																									-->
<!--					LANSA	for	the	Web																			-->
<!--					Standard	Header																					-->
<!--					Last	Modified:		11.3		2006-05-21				-->
	
<img	src="<RDML	MERGE="*LW3CPYLOGO">"	alt="Logo"	/>

<h4>	iii	LANSA	Web	Applications</h4>

<RDML	BUTTON="&WEBEVENT">
<script	type="text/javascript"	language="javascript">
//<![CDATA[
function	ButtonClick(button)
{
			document.LANSA._BUTTON.value=button;	document.LANSA.submit();
}
//]]>
</script>
</RDML>
<table	cellpadding="0"	cellspacing="0"	border="0"	width="100%"	align="left">
<tbody>
...
	

4.		Use	the	Save	As	option	to	save	the	document	as:
iiiPROC03_STDHEADER.

Step	3.	Create	a	Standard	Footer	for	Functions	in	Process
iiiPROC03
In	this	step,	you	will	create	a	new	standard	footer	page	to	be	used	specifically
with	the	functions	in	process	iiiPROC03.	The	new	footer	will	simply	have	an
additional	copyright	statement.
1.		Open	the	STDFOOTER	document.
2.		Insert	the	highlighted	lines	which	will	add	some	text	to	the	page:
		
<!--																																									-->
<!--					LANSA	for	the	Web																			-->
<!--					Standard	Footer																					-->
<!--					Last	Modified:		11.3		2006-05-21				-->

<p	align="center"><img	src="
<RDML	MERGE="*LW3IMGFBORDER">"	alt=""	/>
</p>

<h4	align="center">Powered	by	<img	src="
<RDML	MERGE="*LW3IMGLANSA">"	align="middle"	border="0"	alt="LANSA"	/>
</h4>
	

<h4	align="center">Copyright	LANSA	2007.</h4>
	

3.		Use	the	Save	As	option	to	save	the	document	as:
					iiiPROC03_STDFOOTER

4.		Execute	your	iiiFN05	function.						Notice	that	your	changes	to	the	header
and	footer	do	not	appear.	At	this	point,	you	have	only	created	the	HTML
pages.	The	process	specific	component	pages	are	not	known	to	LANSA.	You
must	register	the	new	pages	in	the	component	registry	before	they	can	be
used.

Step	4.	Component	Registry
1.		Using	the	Web	Function	Editor,	use	the	Component	menu	category	and
select	the	Maintain	option.

2.		Press	the	Add	button	to	define	a	new	component.
3.		Enter	a	component	name	of	iiiPROC03_STDHEADER	and	use	the
dropdown	to	select	a	Type	of	Page.	Press	Continue.

4.		When	the	New	Page	Component	dialog	appears,	enter	the	following:

Description Standard	Header

Page iiiPROC03_STDHEADER

Mode Not	Applicable

	

5.		Press	OK	to	add	the	new	component	to	the	registry.
6.		Repeat	these	steps	to	create	a	component	named	iiiPROC03_STDFOOTER
with	the	following	information:

Description Standard	Footer

Page iiiPROC03_STDFOOTER

Mode Not	Applicable

	

7.		Execute	your	iiiFN05	or	iiiFN07	function	(or	any	function	in	process
iiiPROC03)	and	you	will	see	the	new	header	and	footer.	Notice	that	you	did
not	have	to	recompile	any	functions	or	edit	the	function	HTML.

Step	5.	Add	the	Calendar	Control	and	Edit	the	Default
JavaScript
In	this	step,	you	will	enable	and	test	the	calendar	control	JavaScript	function.
You	will	also	change	the	date	format	used	in	the	JavaScript	from	MM/DD/YY
to	DD/MM/YY.
1.		Open	the	iiiPR0C03	iiiFN05001	page	and	insert	the	bolded	lines	which	will
include	a	Calendar	button	beside	the	#STD_DATE	field.
		
<tr>
<td><RDML	MERGE="@T0002+0021+0040"></td>
<td>
<input	name="SSTD_DATE	"	type="text"	maxlength="008"	align="right"
<RDML	MERGE="STD_DATE		"	EDITCODEI="Y">
onfocus="SetNameLocation('SSTD_DATE	',04,29)"></td>

<td>

<img	src="/IMAGES/TB_CAL.GIF"	alt="Calendar"	border="0"	width=

</td>
</tr>
</tbody>
</table>
	

2.		Save	the	document.
3.		Open	the	default	JavaScript	page	called	DEFAULT_SCRIPT.
4.		Remove	the	conditions	on	the	JavaScript	for	the	Calendar	functions	by
deleting	the	two	bolded	lines	in	the	following	code:
		
<RDML	ONCONDITION="USECALENDAR">
function	CallCalendar()
{
			if	(document.LANSA._CALFLD.value	!=	"&NULL")
			{
						var	opt	=	"width=340,height=385,directories=no,toolbar=no,"
						opt	+=	"menubar=no,scrollbars=no,resizable=yes"

						win	=	window.open("/images/lcalen.htm",	"calendar",	opt)
						win.opener=window
			}
}
function	SetDate(day,	month,	year)
{
			var	Field=document.LANSA._CALFLD.value;
	
	
			if	(day	<	10)
								day="0"+day;
			if	(month	<	10)
								month="0"+month;
			if	(year	<	2000)
								YearRet=year-1900;
			else
								YearRet=year-2000;
	
			if	(YearRet	<	10)
								YearRet="0"+YearRet;
	
			var	RDate=day+"/"+month+"/"+YearRet;
	
			var	NumElements=document.LANSA.elements.length;
	
	
			for	(i=0;	i<NumElements;i++)
			{
						if	(document.LANSA.elements[i].name==Field)
						{
									document.LANSA.elements[i].value=Rdate;
									break;
						}
			}
}
</RDML>
	

5.		Next,	modify	the	script	so	that	the	calendar	control	returns	the	date	in	format

MM/DD/YY	by	changing	the	statement:

var	RDate=day+"/"+month+"/"+YearRet;

to

var	RDate=month+"/"+day+"/"+YearRet;

6.		Use	the	Save	As	option	to	save	the	document	as:					iiiPROC03_SCRIPT

Step	6.	Test	the	Calendar	Control
1.		Execute	your	iiiFN05	function.
2.		Position	the	cursor	in	the	date	field.
3.		Press	the	Calendar	button.

4.		Select	a	date	from	the	calendar.	The	date	should	be	returned	in	MM/DD/YY
format.

Summary
Important	Observations

There	is	no	DEFAULT_MSGPRES	page	shipped	with	LANSA.
The	STDHEADER	and	STDFOOTER	are	Web	Page	components.	These
must	be	registered	as	components	before	they	can	be	used.
The	DEFAULT_SCRIPT	is	a	process	specific	page.	It	does	not	have	to	be
registered,	as	it	is	not	a	component.

Tips	&	Techniques
Creating	process	specific	pages	allows	you	to	customize	your	functions	in	a
specific	process.	You	should	not	modify	the	DEFAULT	pages	unless	the
change	applies	to	all	functions	in	the	partition.
All	process	specific	pages	will	be	automatically	exported	with	the	process
definition.	These	pages	do	not	need	to	be	registered	as	Web	Page
components.
Conditional	LANSA	RDML	tags	can	be	used	to	control	the	amount	of	text
being	sent	to	the	browser.	The	DEFAULT_SCRIPT	uses	these	tags	only	to
send	the	required	script	functions.

What	I	Should	Know
How	to	use	process	specific	pages	and	page	components.
How	to	customize	the	message	presentation	for	functions.
How	to	use	the	default	JavaScript	and	calendar	control	function.

Other	Tutorials
You	are	now	ready	to	complete	WEB006	-	Graphic	Variables.

WEB006	-	Graphic	Variables
Objective:

To	highlight	how	to	create	your	own	graphic	variables	in	LANSA	for	the
Web.
Optional:	To	review	the	graphic	variables	created	by	the	Web	Functions
Wizard.

If	you	are	using	the	process	specific	or	the	browse	list	specific	graphic
variables,	you	can	use	the	Web	Functions	Wizard	to	create	and	change
these	variables.	You	do	not	have	to	create	these	variables	manually.

To	achieve	these	objectives,	you	will	complete	the	following	steps:
Step	1.	Create	New	Graphic	Variables
Step	2.	Add	Graphic	Variables	to	the	Process	Pages
Step	3.	Test	Your	Graphic	Variable.
Optional	Step	4.	Web	Functions	Wizard	Graphic	Variables
Summary

Before	You	Begin
You	may	wish	to	review	these	topics	and	all	their	related	sections:

Graphic	Variables
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:

WEB002	-	Coding	a	WEBEVENT	Functions
WEB005	-	LANSA	Process	Pages

its:lansa086.CHM::/LANSA/ED0800.htm

Step	1.	Create	New	Graphic	Variables
1.		Using	the	Web	Function	Editor,	use	the	Component	action	bar	category	and
choose	the	Graphic	Variables	option.

2.		Press	the	Add	button	to	define	a	new	graphic	variable	called
*WEBiiiIMAGE	(where	iii	is	your	initials).	It	should	be	of	the	type	FILE.
The	image	file	name	should	be:				LANSAANI.GIF

					(The	LANSAANI.GIF	file	is	shipped	with	the	LANSA	software.)
3.		Define	a	new	graphic	variable	called	*WEBiiiCOLOR	(where	iii	is	your
initials).	It	should	be	type	COLOR.	The	text	should	be:						RED

4.		Define	a	new	graphic	variable	called	*WEBiiiCOPYRIGHT	(where	iii	is
your	initials).	It	should	be	type	TEXT.	The	text	should	be:				Copyright
LANSA	2006.

Step	2.	Add	Graphic	Variables	to	the	Process	Pages
In	this	step,	you	will	add	the	graphic	variables	to	the	process	specific
STDFOOTER	page	created	in	WEB005	-	LANSA	Process	Pages.
1.		Use	the	Web	Function	Editor	to	update	the	iiiPROC03_STDFOOTER	page.
Make	the	following	changes	(in	bold):
<!--																																									-->
<!--					LANSA	for	the	Web																			-->
<!--					Standard	Footer																					-->
<!--					Last	Modified:		9.1		2001-09-10					-->

<p	align="center"><img	src="
<RDML	MERGE="*WEBiiiIMAGE">"	alt=""	/>
</p>

<h4	align="center">Powered	by	<img	src="
<RDML	MERGE="*LW3IMGLANSA">"	align="middle"	border="0"	alt="LANSA"	/>
</h4>

<h4	align="center"><font	size="5"	color="
<RDML	MERGE="*WEBiiiCOLOR">">
<RDML	MERGE="*WEBiiiCOPYRIGHT"></h4>
	

2.		Save	the	document.

Step	3.	Test	Your	Graphic	Variable.
You	will	now	test	your	graphic	variables	and	demonstrate	how	they	can	be	used
to	minimize	application	maintenance.
1.		Execute	function	iiiFN05.	Notice	the	new	footer	used	in	the	function.
2.		Use	the	Web	Function	Editor	to	change	the	name	of	the	image	file	associated
with	the	graphic	variable	*WEBiiiIMAGE	to:					GRADIENT.GIF

3.		Change	the	name	of	the	color	associated	with	the	graphic	variable
*WEBiiiCOLOR	to	#32CD32,which	is	limegreen.

4.		Change	the	text	associated	with	the	graphic	variable	*WEBiiiCOPYRIGHT
to	Copyright	LANSA	2001.

5.		Without	recompiling	or	editing	your	HTML,	execute	function	iiiFN05	again.
Notice	the	changes	to	the	image	and	text.

Optional	Step	4.	Web	Functions	Wizard	Graphic	Variables
If	you	have	completed	the	Web	Functions	Wizard	Tutorials,	you	will	have
created	a	number	of	different	graphic	variables.
1.		Using	the	Web	Function	Editor,	use	the	Component	action	bar	category	and
choose	the	Graphic	Variables	option.

2.		Review	the	list	of	graphic	variables	and	locate	the	following:
					*LW3BLACB_iiiLIST2
					*LW3BLACF_iiiLIST2
					These	are	graphic	variables	created	by	the	Web	Functions	Wizard	for	your
browse	list,	iiiLIST2.

Summary
Important	Observations

The	RDML	MERGE	tag	is	used	to	embed	graphic	variables.
The	color	for	a	graphic	variable	can	be	specified	using	hexadecimal	values
(e.g.	#32CD32)	or	using	color	names	(e.g.	limegreen).

Tips	&	Techniques
The	text	in	a	graphic	variable	can	include	HTML	tags.
Graphic	variables	should	be	used	instead	of	hard	coding	values	into	your
HTML	pages.
You	should	use	the	Web	Functions	Wizard	for	your	process	or	browse	list
specific	variables.
If	you	wish	to	delete	graphic	variables,	you	must	use	the	Web	Function
Editor.	Graphic	variables	cannot	be	deleted	from	the	Web	Functions	Wizard.
Remember	that	graphic	variables	are	defined	at	the	system	level.	They	are
shared	by	all	partitions.

What	I	Should	Know
How	to	create	file,	image	and	text	graphic	variables.

Other	Tutorials
You	are	now	ready	to	complete	WEB007	-	LANSA	Tags.

WEB007	-	LANSA	Tags
Objective:

To	highlight	how	LANSA	tags	are	used	in	the	HTML	pages.
To	manually	add	some	LANSA	tags	to	the	HTML.
To	show	how	HTML	can	be	controlled	using	LANSA	tags.

To	achieve	these	objectives,	you	will	complete	the	following	steps:
Step	1.	Review	the	LANSA	Tags	in	iiiFN05
Step	2.	Add	LANSA	Tags	to	iiiFN05001	HTML	Page
Step	3.	Modify	Standard	Process	Footer
Step	4.	Test	the	function
Summary

Before	You	Begin
You	may	wish	to	review	these	topics	and	all	of	their	related	sections:

What	are	LANSA	Tags?
How	Do	LANSA	Tags	Work?
LANSA	Tags	Example
Using	<RDML>	and	</RDML>	Tags
<RDML	BUTTON>
<RDML	MERGE>
<RDML	NOTCONDITION>

In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
WEB002	-	Coding	a	WEBEVENT	Functions
WEB004	-	LANSA	Generated	HTML	Pages
WEB005	-	LANSA	Process	Pages

its:lansa086.CHM::/LANSA/ED0710.htm
its:lansa086.CHM::/LANSA/ED0720.htm
its:lansa086.CHM::/LANSA/ED0730.htm
its:lansa086.CHM::/LANSA/ED0740.htm
its:lansa086.CHM::/LANSA/ED0750.htm
its:lansa086.CHM::/LANSA/ED0780.htm
its:lansa086.CHM::/LANSA/ED0790.htm

Step	1.	Review	the	LANSA	Tags	in	iiiFN05
1.		Use	the	Web	Function	Editor	to	open	the	iiiPROC03iiiFN05001	page.
2.		Notice	how	the	RDML	MERGE	statement	is	used	in	the	following	examples:
					<RDML	MERGE="&HIDDEN">
					<RDML	COMPONENT="STDHEADER">
					<center><h1><RDML	MERGE="&FUNCTION"></h1></center>
					

					<RDML	MERGE="&MESSAGES">
	

					The	MERGE	can	be	used	with	special	reserve	words	such	as	&HIDDEN	for
embedding	hidden	variables	or	&MESSAGES	for	embedding	the	LANSA
messages.	The	MERGE	of	&FUNCTION	is	used	for	the	function	description.

3.		Notice	how	the	RDML	MERGE	statement	is	used	in	the	following	field
example:
					<td><RDML	MERGE="&T0001+0001+0020"></td>
					<td>
<input	name="ADEPTMENT	"	type="text"	size="004"	maxlength="004"
					value="<RDML	MERGE="DEPTMENT		">"
					onfocus="SetNameLocation('ADEPTMENT	',03,29)"	/></td>
	

					The	MERGE	is	used	to	embed	the	field	multilingual	label	<RDML
MERGE="&T0001+0001+0020">.	It	is	also	used	to	embed	the	field	value
<RDML	MERGE="DEPTMENT		">.

4.		The	<RDML	COMPONENT="STDHEADER">	and<RDML
COMPONENT="STDFOOTER">	are	used	to	embed	the	Web	page
components.	Notice	that	these	statements	do	not	have	to	be	modified	to	use
the	process	specific	pages,	which	were	created	in	WEB005	-	LANSA	Process
Pages.

Step	2.	Add	LANSA	Tags	to	iiiFN05001	HTML	Page
In	this	step,	you	will	use	the	RDML	BUTTON	and	RDML	ONCONDITION
tags	to	show	you	how	they	control	the	presentation	of	the	HTML.
1.		Using	the	Web	Function	Editor	to	edit	the	iiiPROC03	iiiFN05001	page,	add
the	following	NOTCONDITION	tag	around	the	text	shown.	(This	text	was
added	in	Tutorial	4.	If	it	is	not	present,	simply	add	all	3	lines	to	your	page.)
Your	text	should	appear	as	follows:
					<RDML	NOTCONDITION="DEPTMENT">
					Enter	a	Department	Code	to	see	a	listing	of	all	Sections.
					</RDML>
	

					The	NOTCONDITION	tag	will	check	if	the	DEPTMENT	is	blank.	When	it
is	blank,	it	will	use	the	HTML	text	within	the	NOTCONDITION	tag.

2.		Directly	following	this	text,	add	an	RDML	BUTTON	tag	to	display	some
text	depending	upon	the	buttons	which	are	enabled.	Your	text	should	appear
as	follows:
					<RDML	BUTTON="&ADD">
					This	text	will	not	be	displayed	since	Add	button	is	not	enabled.
					</RDML>
	

3.		Save	the	document.

Step	3.	Modify	Standard	Process	Footer
In	this	step,	you	will	add	the	date	to	the	bottom	of	the	standard	footer	by	using	a
LANSA	system	variable	with	the	MERGE	tag.
1.		Open	the	iiiPROC03_STDFOOTER	document.
2.		Use	a	MERGE	tag	to	include	the	LANSA	system	variables	*DAYC,
*MONTHC	and	*YEARC.	Add	the	following	text	to	the	end	of	the
STDFOOTER	document:
					<p	align="center">
					Date	in	DD/MM/YY	format	is:	<RDML	MERGE="*DAYC">	/	<RDML	MERGE="*MONTHC">	/	<RDML	MERGE="*YEARC">
					</p>
	

3.		Save	the	document.

Step	4.	Test	the	function
1.		Execute	your	iiiFN05	function.	You	should	see	the	following	text	on	the
screen:
					Enter	a	Department	Code	to	see	a	listing	of	all	Sections.
	

					The	following	text	should	not	appear.
					This	text	will	not	be	displayed	since	Add	button	is	not	enabled.
	

					At	the	bottom	of	the	screen,	you	should	see	today's	date:
					Date	in	DD/MM/YY	format	is:	99/99/99
	

					You	function	might	appear	something	like	the	following:

Summary
Important	Observations

The	RDML	tags	can	be	used	almost	anywhere	in	your	LANSA	generated
pages.
The	</RDML>	tags	must	always	be	on	a	separate	line	with	no	other
commands.
The	RDML	MERGE	command	can	be	used	with	fields,	graphic	variables,
and	any	LANSA	system	variable.

Tips	&	Techniques
You	can	use	LANSA	tags	within	your	LANSA	Web	components.
The	NOTCONDITION	and	ONCONDITION	tags	are	a	very	powerful
method	of	controlling	your	HTML.	For	example,	you	can	use	these	tags	to
limit	the	amount	of	text	being	sent	to	the	browser.	The	DEFAULT_SCRIPT
uses	these	tags	to	only	send	the	required	script	functions.

What	I	Should	Know
How	to	use	LANSA	tags	in	your	generated	pages.

Other	Tutorials
You	are	now	ready	to	complete	WEB008	-	Web	Components

WEB008	-	Web	Components
Objective:

To	create	some	reusable	Web	components	for	your	Web	functions
application.
To	show	how	components	can	be	added	manually	and	automatically	in
LANSA.
To	demonstrate	how	components	can	be	used	in	other	components.
To	introduce	the	concept	of	modes	and	Web	components.

You	have	already	used	page	components	when	creating	the	process	specific
STDHEADER	and	STDFOOTER	in	WEB005	-	LANSA	Process	Pages.
To	achieve	these	objectives	you	will	complete	the	following	steps:

Step	1.	Create	a	New	Field	in	the	Repository
Step	2.	Create	Visual	Web	Component
Step	3.	Create	a	Text	Web	Component
Step	4.	Banner	Web	Component
Step	5.	Use	Hidden	Fields	in	Function
Step	6.	Create	a	Web	Link	Component	
Summary

Before	You	Begin
You	may	wish	to	review	these	topics	and	all	of	their	related	sections:

Introduction	to	Web	Components
Banner
Text
Web	Link
Page
Naming	Page	and	Script	Web	Components
Visual	Web	Component
Creating	Visual	Web	Components

In	order	to	complete	this	tutorial,	you	must	complete	the	following:
WEB002	-	Coding	a	WEBEVENT	Functions
WEB004	-	LANSA	Generated	HTML	Pages

its:lansa086.CHM::/LANSA/ED0910.htm
its:lansa086.CHM::/LANSA/ED0940.htm
its:lansa086.CHM::/LANSA/ED0950.htm
its:lansa086.CHM::/LANSA/ED0960.htm
its:lansa086.CHM::/LANSA/ED0970.htm
its:lansa086.CHM::/LANSA/ED0980.htm
its:lansa086.CHM::/LANSA/ED0990.htm
its:lansa086.CHM::/LANSA/ED09A0.htm

WEB005	-	LANSA	Process	Pages

Step	1.	Create	a	New	Field	in	the	Repository
To	demonstrate	how	components	are	automatically	embedded	for	a	field,	you
must	create	a	new	field	iiiDEPT	(where	iii	are	your	initials)	in	the	LANSA.	The
iiiDEPT	field	will	be	copied	from	the	DEPTMENT	field.
1.		From	the	LANSA	development	environment,	work	with	the	fields	in	the
LANSA	Repository.	Create	a	new	field	called	iiiDEPT	(where	iii=your	ID)	by
copying	the	DEPTMENT	field	which	already	exists	in	the	LANSA
Repository.

2.		When	you	save	the	field,	you	may	copy	the	help	text,	validation	rules	and
multilingual	definitions	for	the	field.

3.		Edit	the	RDML	in	your	iiiFN07	function.	Use	the	find	and	change	utility	in
the	Web	Function	Editor	to	change	all	occurrences	of	DEPTMENT	to
iiiDEPT.	(There	should	be	four	changes.)	Your	RDML	might	appear	as
follows:
FUNCTION			OPTIONS(*DIRECT	*WEBEVENT)
DEFINE				
FIELD(#RENTRY)	TYPE(*CHAR)	LENGTH(1)	DEFAULT(*BLANK)
GROUP_BY		
NAME(#HEADER)	FIELDS((#iiiDEPT)	(#DEPTDESC)	(#RENTRY	*HIDDEN))
DEF_LIST		
NAME(#iiiLIST)	FIELDS((#LISTDUMMY	*HIDDEN)	#SECTION	#SECDESC	#SECPHBUS)
IF									COND('#RENTRY	*NE	Y')
CHANGE					FIELD(#HEADER)	TO(*DEFAULT)
CHANGE					FIELD(#RENTRY)	TO(Y)
REQUEST			
FIELDS((#iiiDEPT)	(#RENTRY	*HIDDEN))	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01	SEARCH))
ELSE							
CLR_LIST			NAMED(#iiiLIST)
**********		COMMENT(Fetch	file	DEPTAB	details)
FETCH					
FIELDS(#HEADER)	FROM_FILE(DEPTAB)	WITH_KEY(#iiiDEPT)	NOT_FOUND(R10)	ISSUE_MSG(*YES)
**********		COMMENT(Select	the	SECTAB	file	details)
SELECT				
FIELDS(#iiiLIST)	FROM_FILE(SECTAB)	WITH_KEY(#iiiDEPT)
ADD_ENTRY		TO_LIST(#iiiLIST)
ENDSELECT		

**********		COMMENT(Display	results	to	the	user)
R10:	CHANGE					FIELD(#RENTRY)	TO(*BLANK)
DISPLAY			
FIELDS(#HEADER)	DESIGN(*DOWN)	IDENTIFY(*DESC)	BROWSELIST(#iiiLIST)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01
RETURN))
ENDIF

4.		Save	the	changes	to	the	function	and	exit	the	editor.
5.		Do	NOT	recompile	your	function.	The	function	will	be	compiled	once	the
new	component	has	been	created	for	iiiDEPT.

Step	2.	Create	Visual	Web	Component
In	this	step,	you	will	use	the	automated	creation	of	Visual	Web	components	to
build	a	drop	down	list	showing	all	departments	in	the	DEPTAB	file.	The	Visual
Web	component	will	be	named	iiiDEPT	so	that	it	will	be	automatically
embedded	into	the	HTML	for	the	iiiFN07	function.
1.		Start	the	Web	Function	Editor.	Use	the	File	menu	category	and	select	the
Open	option	to	view	a	list	of	HTML	pages	in	the	partition.	Notice	that	there	is
no	page	with	the	name	iiiDEPT.

2.		Use	the	Components	menu	category	and	select	the	Generate	Component	-
Visual	option.

3.		Enter	only	the	following	information:

Component iiiDEPT

Visual	Type Drop	down

File DEPTAB

Field	for	Value DEPTMENT

Field	for	description DEPTDESC

	

4.		Press	OK.	LANSA	for	the	Web	will	use	the	information	in	the	DEPTAB	file
to	build	the	HTML	code	for	the	drop	down.

5.		Recompile	your	iiiFN07	function.
6.		Use	the	File	menu	category	and	select	the	Open	option	to	view	a	list	of
HTML	pages	in	the	partition.	Open	the	iiiDEPT	page.	You	will	see	a
complete	list	of	departments	based	on	the	DEPTAB	file.	(If	the	contents	of
the	DEPTAB	file	are	changed,	you	will	need	to	rebuild	the	iiiDEPT
component	or	you	can	manually	edit	the	HTML.)

7.		Use	the	Component	menu	category	and	select	the	Maintain	option	to	review
the	Web	components	in	the	registry.

8.		You	should	see	that	your	iiiDEPT	component	is	defined	as	INPUT	mode.	If
you	attempt	to	change	this	component,	you	can	only	modify	the	description
and	linked	page.

9.		Check	that	the	iiiFN07	function	has	compiled	successfully,	and	then	execute
your	iiiFN07.	You	will	see	a	drop	down	for	selecting	the	department	code
field.

					Using	the	drop	down,	select	the	Department	Code	of	ADM	and	press	the
Search	button.

					When	the	Sections	in	the	Department	are	displayed,	the	iiiDEPT	field	is	not
displayed	using	the	iiiDEPT	component	(i.e.	it	is	not	displayed	as	a	drop
down)	as	the	mode	of	the	display	is	output.	For	more	details,	refer	to
Automatic	Embedding	of	Web	Components.

its:LANSA086.CHM::/LANSA/ed0930.htm

Step	3.	Create	a	Text	Web	Component
In	this	step,	you	will	create	a	simple	Text	Web	component	which	will	indicate
when	the	Web	pages	will	be	updated	next.	By	using	a	Web	component,	you	can
centralize	the	definition	so	that	only	a	single	change	needs	to	be	made	to	your
application.
1.		Use	the	Components	menu	category	and	select	the	Maintain	option.	A	list	of
all	components	in	the	partition	will	be	displayed.

2.		Press	the	Add	button	to	define	a	new	component	as	follows:

Name: iiiUPDATE

Type: Text

	

3.		Press	the	Continue	button	and	then	enter	the	following	details:

Description: Next	Update

Text:
<center>Pages	will	be	updated	on	January	1,
2002.</center>

Mode: Not	Applicable

	

					This	component	is	created	with	a	Not	Applicable	mode	because	it	will	be
used	in	the	footer.	It	is	not	used	in	a	REQUEST	or	DISPLAY.

4.		Close	the	Component	window.
5.		Open	the	iiiPROC03_STDFOOTER	page.	At	the	bottom	of	the	document,
add	a	LANSA	tag	to	embed	the	component	as	follows:
					<RDML	COMPONENT="iiiUPDATE">
	

					Note:	The	component	names	are	case	sensitive	so	be	careful	to	use	the
correct	spelling	of	the	component	.

					Tip:	You	can	use	the	Tags	menu	category	and	select	the	RDML	-

Component...	option	if	you	wish	to	see	a	list	of	components.
6.		Execute	your	iiiFN05	or	iiiFN07	function	to	see	the	new	information	in	the
footer	of	the	function.

7.		Change	the	iiiUPDATE	component	so	that	the	text	reads	as	follows:

<center>Pages	will	be	updated	on	December	31,	2002.
</center>
	

8.		Test	your	function	again.	The	change	is	made	immediately.	No	HTML
editing	or	function	recompiling	was	required.

Step	4.	Banner	Web	Component
In	this	step,	you	will	add	an	advertising	banner	to	the	standard	header	used	in
your	functions.	This	banner	will	link	to	the	Visa,	MasterCard	and	LANSA	Web
Site.	(Note:	You	may	not	be	able	to	test	the	links	if	your	Web	Server	does	not
have	access	to	the	Internet.)
1.	Create	a	new	component	as	follows:

Name: iiiBANNER

Type: BANNER

	

2.		Press	the	Continue	button	and	enter	the	following:

Type: Image

Mode: Not	Applicable

	

3.		Press	the	OK	button	and	enter	the	following:

Description: Function	Banner

Update	frequency: Update	every	visit

Display	link	in	new	window: Check	the	box

	

4.		Using	the	Add	button,	enter	the	following	data	for	the	banner	items:

Set Image Description URL

0 LANSA.GIF LANSA http://www.lansa.com

1 VISA.GIF Visa http://www.visa.com

2 MCARD.GIF MasterCard http://www.mastercard.com

	

5.		Press	OK	to	save	the	component.
6.		Open	the	iiiPROC03_STDHEADER	page.
7.		Include	the	banner	component	at	the	bottom	of	the	function	header	by
inserting	the	following	LANSA	tag:
<RDML	COMPONENT="iiiBANNER">	
	

					Note:	The	component	names	are	case	sensitive	so	be	careful	to	use	the
correct	spelling	of	the	component	.

8.		Test	your	changes	by	executing	your	iiiFN05	or	iiiFN07	function.	You
should	see	a	new	banner	each	time	you	perform	a	new	search.	(Note:	You
may	not	be	able	to	test	the	links	to	other	Web	sites	if	your	Web	Server	does
not	have	access	to	the	Internet.)

Step	5.	Use	Hidden	Fields	in	Function
In	this	step,	you	will	add	a	hidden	field	to	the	REQUEST	panel	in	iiiFN05	and
assign	a	Web	Page	component	to	the	field.	This	component	will	contain	the
HTML	for	displaying	the	CALENDAR	button	which	you	manually	added	to	the
HTML.	Using	this	technique,	the	calendar	button	will	automatically	be	included
in	the	page	without	manually	editing	the	HTML.
1.		In	the	LANSA	Editor,	edit	the	RDML	for	your	iiiFN05	function.	Add	the
following	RDML	line	to	define	a	field	in	the	function:
DEFINE	FIELD(#iiiCOMP)	TYPE(*CHAR)	LENGTH(1)
	

					The	characteristics	of	this	field	are	not	important.	The	field	is	simply	a
dummy	hidden	field	which	can	be	used	for	component	substitution.

2.		Modify	the	REQUEST	statement	so	that	it	appears	as	follows:
REQUEST			FIELDS((#DEPTMENT)(#STD_DATE)
(#iiiCOMP	*HIDDEN))	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01	SEARCH))

3.		Save	and	exit	the	RDML	function	but	do	NOT	compile	the	function	yet.
4.		Create	a	new	HTML	page	by	using	the	File	menu	category	and	selecting	the
New	option.

5.			Delete	the	default	HTML	which	appears	and	enter	the	following	HTML	into
the	page:
		

	

6.		Save	the	file	as	iiiCOMP	with	description	Hidden	Field	Component	for
Calendar.

7.		Use	the	Components	menu	category	and	select	the	Maintain	option.	A	list	of
all	components	in	the	partition	will	be	displayed.	Press	the	Add	button	to
define	a	new	component	as	follows:

Name: iiiCOMP

Type: PAGE

	

					Press	the	Continue	button	and	then	enter	the	following	details:

Description: Calendar	Button

Page: iiiCOMP

Mode: OUTPUT

	

					The	mode	of	this	component	is	very	important.	Because	the	field	is	hidden	in
the	REQUEST	statement,	this	component	must	be	an	OUTPUT	component.

8.		Now	that	the	component	has	been	created,	you	can	submit	the	iiiFN05
function	for	recompile.	Remember,	compiling	the	function	will	replace	your
modified	HTML	with	a	new	version.

9.			Check	that	the	compile	was	successful	and	then	test	your	function.	You
should	see	the	Calendar	button	at	the	top	of	your	function.	Notice	that	you	did
not	have	to	edit	the	HTML.	The	iiiCOMP	was	automatically	embedded	by
LANSA.	You	may	wish	to	review	the	HTML	page	for	function	iiiFN05	to
review	how	the	hidden	field	was	used	in	the	HTML	page.

Step	6.	Create	a	Web	Link	Component	
In	this	step,	you	will	use	a	Web	link	component	to	control	the	flow	between
WEBEVENT	functions.	You	will	add	an	image	to	act	as	a	link	between	iiiFN05
and	iiiFN06.	This	step	will	also	demonstrate	how	you	can	embed	components
within	components.
1.		Create	a	new	component	as	follows:

Name: iiiWEBLINK

Type: Web	Link

	

					Press	the	Continue	button	and	enter:

Description: Link	to	iiiFN06

Linked	Process: iiiPROC03

Linked	Function: iiiFN06

Linked	Description: Next	Function

Type: IMAGE

Image: TB_NEXT.GIF

	

					In	order	to	add	this	component	to	your	function,	you	will	need	to	use	an
RDML	COMPONENT	tag.	If	you	manually	edit	the	HTML,	your	changes
will	be	overwritten	when	you	recompile	the	function.	Instead,	you	will	add
the	iiiWEBLINK	component	to	an	existing	component.

2.		Using	the	Web	Function	Editor,	open	the	iiiCOMP	page	you	created	for	the
Calendar	button.

					Add	the	bolded	line	to	your	HTML	so	that	it	appears	as	follows:

<RDML	COMPONENT="iiiWEBLINK">
	

3.		Save	the	document.
					You	have	now	embedded	the	iiiWEBLINK	component	into	the	iiiCOMP.
When	iiiCOMP	is	embedded	into	the	HTML	page,	it	will	also	embed	the
iiiWEBLINK	component.

4.		Test	your	iiiFN05	function.	(You	do	not	need	to	recompile	the	function.)	You
should	see	a	Next	button	beside	your	Calendar	button.	Try	using	this	button
instead	of	the	Search	button.

Summary
Important	Observations

The	contents	or	data	used	for	a	Visual	Web	component	will	be	determined
when	the	component	is	created.	The	Department	Code	drop	down	lists	all
departments	in	the	DEPTAB	file	when	the	component	was	created.
The	text	in	components	may	contain	HTML	tags.
Component	can	be	embedded	into	components	provided	that	there	is	no
recursive	embedding.
Modes	are	very	important	to	Web	components	especially	when	a	component
is	embedded	automatically	by	LANSA	for	the	Web.
In	this	tutorial,	two	fields	were	used	for	Web	component	substitution:
iiiDEPT	and	iiiCOMP.	iiiDEPT	was	created	in	the	LANSA	Repository	but
iiiCOMP	was	defined	in	the	RDML	function.	It	is	strongly	recommended
that	all	field	used	in	REQUEST	or	DISPLAY	statements	be	created	in	the
LANSA	Repository	so	that	a	common	field	definition	is	used	when	data	is
automatically	exchanged	by	LANSA	for	the	Web.	The	iiiCOMP	field	was
created	to	demonstrate	the	use	of	hidden	fields	for	Web	component
substitution.	These	fields	will	never	contain	data.	iiiCOMP	is	only	used	for
embedding	a	Web	component.

Tips	&	Techniques
Text	Web	components	are	very	similar	to	text	graphic	variables.	The	main
difference	is	that	the	graphic	variables	are	defined	at	the	system	level.	Web
components	are	defined	at	the	partition	level.
Remember,	component	names	are	case	sensitive.
Using	a	hidden	field	to	automatically	embed	a	component	eliminates	the
need	to	manually	add	components	to	your	HTML	pages.
Embedding	Web	components	into	other	Web	components	is	a	very	powerful
development	technique,	but	be	very	careful	that	you	do	not	recursively
embed	components.
For	more	examples	of	Web	components,	refer	to	the	SET	Collection.

What	I	Should	Know
How	to	create	Visual	Web	components.
How	to	create	Text,	Banner,	Web	Link	and	Page	Web	components.

How	are	modes	used	by	Web	components.
How	LANSA	for	the	Web	embeds	components	into	HTML	pages.
How	to	embed	Web	components	into	other	Web	components.

Other	Tutorials
You	are	now	ready	to	complete	WEB009	-	Web	Page	Substitution	(Optional	-
Advanced).	This	tutorial	is	optional.

WEB009	-	Web	Page	Substitution	(Optional	-	Advanced)

Note:	If	you	copy	and	paste	these	HTML	examples	into	the	Web
Function	Editor,	use	HTML	Paste	rather	than	Paste,	so	that	the	HTML
tags	are	copied	with	the	text.

Objective:
To	demonstrate	a	technique	which	can	be	used	so	that	custom	changes	to
your	HTML	will	not	be	replaced	when	a	function	is	recompiled.
To	show	how	to	use	a	single	field	and	a	Web	page	component	to	substitute
for	the	display	in	a	function	so	that	changes	to	the	HTML	page	are	not	lost
when	a	function	is	recompiled	and	the	HTML	is	regenerated.

This	tutorial	is	optional.	It	introduces	some	more	advanced	level
concepts,	which	are	very	important	to	developing	WEBEVENT
function	applications	with	LANSA	for	the	Web.	This	tutorial	provides
a	very	simple	example	to	demonstrate	the	concept	of	Web	page
substitution.

To	achieve	these	objectives,	you	will	complete	the	following	steps:
Step	1.	Create	a	New	Function
Step	2.	Create	a	New	Web	Component
Step	3.	Copy	the	HTML	Code	For	Page	Component	iiiFN08C
Step	4.	Test	the	Function
Step	5.	Add	Fields	to	the	iiiFN08	Function
Optional	Step	6.	Modifying	iiiFN06
Summary

Before	You	Begin
You	may	wish	to	review	these	topics	and	all	of	their	related	sections:

WEBEVENT	Functions
Web	Components

In	order	to	complete	the	tutorials,	you	must	have	completed	the	following:
WEB002	-	Coding	a	WEBEVENT	Functions
WEB004	-	LANSA	Generated	HTML	Pages

its:lansa086.CHM::/LANSA/ED0400.htm
its:lansa086.CHM::/LANSA/ED0900.htm

WEB006	-	Graphic	Variables
WEB008	-	Web	Components

Step	1.	Create	a	New	Function
In	this	step	you	will	create	a	new	function	which	is	a	duplicate	of	your	iiiFN05
function.	The	iiiFN08	function,	like	iiiFN05,	will	be	used	with	the	iiiFN06
function	to	display	a	listing	of	sections.	(Remember	to	substitute	iii	with	your
initials.)
1.		Working	with	your	iiiPROC03	process,	create	a	new	function	named	iiiFN08
Request	Department.	(Tip:	You	may	to	copy	your	existing	iiiFN05	function	to
start	the	iiiFN08	function.)

2.		The	RDML	code	in	your	iiiFN08	function	should	appear	as	follows:
FUNCTION		OPTIONS(*DIRECT	*WEBEVENT)
DEFINE				FIELD(#iiiFN08C)	TYPE(*CHAR)	LENGTH(1)
CHANGE				FIELD(#DEPTMENT)	TO(*DEFAULT)
REQUEST		
FIELDS((#iiiFN08C	*NOID))	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01	SEARCH))
REQUEST			FIELDS((#DEPTMENT)
(#STD_DATE))	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01	SEARCH))

							Following	are	some	important	notes	about	this	function:
					The	field	iiiFN08C	is	simply	created	for	Web	component	substitution.	The
field	uses	*NOID	as	no	description	is	required.	In	Step	2,	you	will	create	the
HTML	for	this	page	component.

					This	function	has	two	REQUEST	commands.	Only	the	first	REQUEST	will
be	processed	in	the	WEBEVENT	function	but	HTML	pages	will	be	created
for	both	commands.	You	will	use	the	generated	HTML	from	the	second
REQUEST	to	create	the	iiiFN08C	Page	component.

3.		Do	not	compile	your	function	until	after	you	define	your	Web	component.
4.		Use	the	Tools	menu	category	and	select	the	Keywords	-	Maintain	option.	Do
not	enter	a	Process.	Press	the	OK	button	to	continue.	Press	the	Add	button	to
create	a	link	to	by	entering	the	following	information:

Process iiiPROC03

Function iiiFN08

Keyword SEARCH

Description Search

Linked	Process iiiPROC03

Linked	Function iiiFN06

	

Step	2.	Create	a	New	Web	Component
You	will	now	create	a	Web	Page	component	named	iiiFN08C	which	will	be
used	for	displaying	the	fields	in	the	REQUEST	panel.	Once	this	component	is
created,	the	first	REQUEST	statement	(which	is	used	to	create	the	display
which	is	sent	to	the	browser)	will	produce	the	following	generated	HTML:
<tr>
<td></td>
<td><RDML	COMPONENT="iiiFN08C		"	MODE="I"></td>
</RDML>
</tr>
	

The	iiiFN08C	Web	component	will	be	created	as	a	page	Web	component.	The
page	will	contain	the	HTML	code	for	the	fields	in	the	second	REQUEST
statement,	i.e.	the	screen	with	the	fields	you	really	want	to	send	to	the	browser.
1.		Create	a	new	component	as	follows:

Name: iiiFN08C

Type: PAGE

	

							Press	the	Continue	button	and	enter	the	following:

Description: HTML	Page	Layout	for	iiiFN8

Page: iiiFN08C

Mode: INPUT

	

							Press	the	OK	button	to	create	the	component.
2.		Submit	the	function	for	compile.
					When	the	function	is	compiled,	it	will	include	the	Web	component	you	have
just	defined.

					The	function	compile	will	also	create	the	HTML	which	will	be	used	in	the

iiiFN08C	page	component.

Step	3.	Copy	the	HTML	Code	For	Page	Component	iiiFN08C
In	this	step,	you	will	cut	and	paste	the	HTML	code	required	for	the	iiiFN08C
page	component.	The	HTML	is	actually	created	for	you	by	LANSA.	The	second
REQUEST	statement	contains	the	HTML	code	required	for	the	display.
1.		Using	the	Web	Function	Editor,	open	a	new	document.
2.		Delete	the	default	HTML	which	appears	in	the	new	page.
3.		Open	the	iiiPROC03	iiiFN080002	HTML	page.	(This	is	the	second
REQUEST	statement.)

					Copy	all	the	HTML	statements	in	the	table	definition,	i.e.	copy	all	code
between	the	following	tags
		
<table	border="0"	cellpadding="0"	cellspacing="3">
<tbody>
	
copy	all	HTML	code	here	but	do	not	include	the	table	tags	shown	above	and	below
	
</tbody>
</table>
	

4.		Paste	the	HTML	code	into	your	new	page.	Your	code	should	appear
something	like	this:
			
<tr>
</tr>
<tr>
<td><RDML	MERGE="&T0001+0001+0020"></td>
<td><input	name="ADEPTMENT	"	type="text"	size="004"	maxlength="004"
value="<RDML	MERGE="DEPTMENT		">"
onfocus="SetNameLocation('ADEPTMENT	',03,29)"	/></td>
</tr>
<tr>
<td><RDML	MERGE="&T0002+0021+0040"></td>
<td><input	name="SSTD_DATE	"	type="text"	maxlength="008"	
align="right"	<RDML	MERGE="STD_DATE		"	EDITCODEI="Y">
onfocus="SetNameLocation('SSTD_DATE	',04,29)"	/></td>

</tr>
	

5.		Make	the	following	changes	to	the	HTML:
a.				Add	some	text	instructing	the	user	to	enter	a	Department	Code
b.				Manually	type	the	names	of	the	DEPTMENT	and	STD_DATE	fields
instead	of	using	RDML	MERGE

c.		Include	the	Calendar	button	using	HTML
d.		Manually	type	the	names	of	thinclude	the	next	button	using	your
iiiWEBLINK	component.

							The	final	pages	should	appear	as	follows	(changes	are	in	bold):
		
<tr>

<td>Enter	a	Department	Code:</td>
</tr>
<tr>
<td>Department	Code</td>
<td>
<input	name="ADEPTMENT		"	type="text"	size="004"	maxlength="004"
value="<RDML	MERGE="DEPTMENT		">"
onfocus="SetNameLocation('ADEPTMENT		',03,29)"	/></td>
<td><RDML	COMPONENT="iiiWEBLINK"></td>
</tr>
<tr>
<td>Standard	Date</td>
<td><input	name="SSTD_DATE		"	type="text"	maxlength="008"	
align="right"	<RDML	MERGE="STD_DATE		"	EDITCODEI="Y">
onfocus="SetNameLocation('SSTD_DATE		',04,29)"	/></td>
<td>
<img	src="/IMAGES/TB_CAL.GIF"	alt="Calendar"	border="0"	width=
	vspace="0"	align="left"	/></td>
</tr>
	

6.		Save	the	document	as	iiiFN08C	with	description	iiiFN08	Page	Component.

Step	4.	Test	the	Function
In	this	step,	you	will	execute	your	iiiFN08	function.	The	iiiFN08	can	be
recompiled	and	the	layout	in	your	screen	HTML	will	not	be	impacted
1.		Execute	your	iiiFN08	function.	The	page	should	appear	something	like	the
following:

2.		Edit	the	iiiFN08C	page	and	add	the	bold	code:
		
<tr>
<td>Enter	a	Department	Code:</td>
</tr>
<tr>
<td>Department	Code</td>
<td>
<input	name="ADEPTMENT		"	type="text"	size="004"	maxlength="004"
value="<RDML	MERGE="DEPTMENT		">"
onfocus="SetNameLocation('ADEPTMENT		',03,29)"	/></td>
<td><RDML	COMPONENT="iiiWEBLINK"></td>
</tr>
<tr>
<td>Standard	Date</td>
<td>

<input	name="ASSTD_DATE		"	type="text"	maxlength="008"	align="right"
<RDML	MERGE="STD_DATE		"	EDITCODEI="Y">
onfocus="SetNameLocation('SSTD_DATE		',04,29)"	/></td>
<td>

</td>
</tr>

<tr><td>Press	NEXT	to	search.</td></tr>
	

3.		Save	your	changes.
4.		Test	your	iiiFN08	function	to	see	your	changes.	(Reminder:	The	iiiFN06
function	is	linked	to	the	iiiFN05	function	when	you	use	the	New	Search
button.	You	must	use	the	browser	Back	button	or	change	the	keyword	links	to
return	to	the	iiiFN08	function.)

5.		Edit	the	RDML	code	in	your	iiiFN08	function	to	remove	the
USER_KEYS((01	SEARCH)).	The	Web	Link	component	will	be	used
instead.	The	REQUEST	should	now	appear	as	follows:
REQUEST		
FIELDS((#iiiFN08C	*NOID))	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*NO)	EXIT_KEY(*NO)	

6.		Recompile	the	iiiFN08	function.
7.		Test	your	iiiFN08	function	to	see	your	changes.
					The	Search	button	should	not	appear.
					Your	text	added	in	Step	2	is	not	impacted	by	the	recompile	because	it	is
stored	in	the	Web	Page	component!

Step	5.	Add	Fields	to	the	iiiFN08	Function
In	this	step,	you	will	add	another	field	to	the	REQUEST	used	in	iiiFN08	to	see
how	this	will	impact	the	iiiFN08C	Web	page	component	being	used	for	the
display.
1.		Edit	the	RDML	code	in	your	iiiFN08	function.	Add	the	STD_NAME	field	to
the	CHANGE	and	REQUEST	statements.	Your	RDML	should	appear	as
follows:
FUNCTION		OPTIONS(*DIRECT	*WEBEVENT)
DEFINE				FIELD(#iiiFN08C)	TYPE(*CHAR)	LENGTH(1)
CHANGE				FIELD(#DEPTMENT	#STD_NAME)	TO(*DEFAULT)
REQUEST		
FIELDS((#iiiFN08C	*NOID))	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*NO)	EXIT_KEY(*NO)	
REQUEST			FIELDS((#DEPTMENT)
(#STD_DATE)	(#STD_NAME))	DESIGN(*DOWN)	IDENTIFY(*DESC)	MENU_KEY(*NO)	EXIT_KEY(*NO)	USER_KEYS((01	SEARCH))

2.		Compile	the	iiiFN08	function.
3.		Open	the	iiiPROC03	iiiFN080002	HTML	page.	In	this	page,	you	will	see	the
STD_NAME	field	added	to	the	list	of	input	fields.	You	could	copy	this	new
code	to	your	iiiFN08C	component.

4.		Edit	the	iiiFN08C	page	and	add	the	bolded	code	(notice	that	the	label	for
STD_NAME	has	been	replaced	by	the	words	Requested	By):
<tr>
<td>Enter	a	Department	Code:</td>
</tr>
<tr>
<td>Department	Code</td>
<td>
<input	name="ADEPTMENT		"	type="text"	size="004"	maxlength="004"
value="<RDML	MERGE="DEPTMENT		">"
onfocus="SetNameLocation('ADEPTMENT		',03,29)"	/></td>
<td><RDML	COMPONENT="iiiWEBLINK"></td>
</tr>
<tr>
<td>Standard	Date</td>
<td>
<input	name="SSTD_DATE		"	type="text"	maxlength="008"	align="right"

<RDML	MERGE="STD_DATE		"	EDITCODEI="Y">
onfocus="SetNameLocation('SSTD_DATE		',04,29)"	/></td>
<td>
<img	src="/IMAGES/TB_CAL.GIF"	
alt="Calendar"	border="0"	width="70"	height="21"	hspace="0"	vspace="0"	align="left"	/>
</td>
</tr>

<tr><td>Requested	By</td>
<td>
<input	name="LSTD_NAME	"	type="text"	size="025"	maxlength="025"
value="<RDML	MERGE="STD_NAME		">"
onfocus="SetNameLocation('LSTD_NAME	',05,29)"	/></td>

</tr>
<tr>
<td>Press	NEXT	to	search.</td>
</tr>
	

5.		Save	your	changes.
6.		Test	your	iiiFN08	function.

Optional	Step	6.	Modifying	iiiFN06
In	this	step,	you	will	modify	the	iiiFN06	function	so	that	it	displays	the
STD_NAME	field	which	was	added	to	the	REQUEST	in	iiiFN08.
1.		Edit	the	RDML	code	in	your	iiiFN06	function	to	display	the	STD_NAME
field	by	changing	the	GROUP_BY	as	follows:
GROUP_BY	
NAME(#HEADER)	FIELDS(#DEPTMENT	#DEPTDESC	#STD_NAME)

2.		Recompile	your	iiiFN06	function.
3.		Execute	your	iiiFN08	function.	Enter	a	Requested	By	name	when	you
perform	your	search	using	the	NEXT	button.	The	name	should	appear	in	the
list	of	sections	displayed	by	iiiFN06.

Summary
Important	Observations

A	WEBEVENT	function	may	contain	more	than	one	REQUEST	and/or
DISPLAY	statement.	The	HTML	pages	are	created	for	each	REQUEST	and
DISPLAY,	but	only	the	first	statement	will	be	processed.	By	definition,
WEBEVENT	functions	terminate	after	a	display	is	processed.
Two	REQUEST	statements	were	used	as	a	means	of	having	LANSA
generate	the	HTML	for	the	fields.	Once	you	are	an	experienced	LANSA
Web	function	developer,	you	may	not	require	the	second	display	statement.
For	documentation	purposes,	the	second	display	statement	is	very	helpful	to
other	developers.
In	this	example,	a	multilingual	partition	was	used.	The	RDML	MERGE	tags
(for	example	<RDML	MERGE="&T0001+0001+0020">)	for	the	field	labels
were	removed	and	labels	were	manually	entered.	If	you	do	not	manually
replace	the	field	labels	with	text,	you	must	update	the	MERGE	tags	after	a
function	is	recompiled.

Tips	&	Techniques
You	can	use	this	technique	with	almost	any	display.	The	screen	can	include
input	field,	output	fields,	browse	lists,	etc.
When	using	this	technique,	you	should	always	use	a	REQUEST	statement
for	the	Web	Page	component.	Your	second	statement	(i.e.	the	actual	screen
layout)	can	be	a	REQUEST	or	DISPLAY.	Using	a	REQUEST	will	simplify
the	HTML	generated	as	modes	are	not	used.
You	can	link	WEBEVENT	functions	using	keywords	or	by	using	Web	Link
components.	You	may	also	use	JavaScript	and	the	HandleEvent	function	to
control	navigation	in	WEBEVENT	functions.

What	I	Should	Know
How	to	use	a	Web	page	component	to	replace	the	display	so	that	recompiling
the	function	does	not	impact	the	customized	HTML.

WEB010	-	Web	Skeletons	(iSeries)
Objective:

In	this	exercise,	you	will	modify	LANSA's	Web	Skeletons	in	order	to	make	a
change	to	the	default	layout	of	the	Web	functions	used	in	your	Personnel
System	Web	application.	This	exercise	provides	a	simple	example	of	how
the	Web	Skeleton	can	be	used	to	control	the	structure	of	the	HTML
generated	by	LANSA.
To	introduce	LANSA's	Web	Skeletons.		It	is	important	to	remember	that
there	are	many	different	uses	for	Web	Skeletons.	Web	Skeletons	simplify	the
design	process.	They	do	not	eliminate	it.	
To	create	a	process	level	Web	Skeleton.	You	will	copy	and	then	modify	the
default	Web	Skeleton	in	order	to	create	a	process	level	Web	Skeleton	for
iiiPROC03.
To	recompile	the	functions	in	iiiPROC03	to	use	the	new	Web	Skeleton.

To	achieve	these	objectives,	you	must	complete	the	following:
Step	1.	Copy	Default	Web	Skeleton
Step	2.	Edit	the	Web	Skeleton
Step	3.	Execute	Your	Function
Step	4.	Recompile	Your	Function
Step	5.	Execute	Your	Functions
Summary

Step	1.	Copy	Default	Web	Skeleton
In	this	step,	you	will	copy	the	default	Web	Skeleton	from	DC@F28	and	create	a
process-specific	Web	Skeleton	in	DC@W22.
1.		Locate	the	Default	Web	Skeleton.
					From	an	OS400	command	entry,	type	in	STRPDM	and	press	Enter.
					Select	option	to	Work	with	members.
					From	the	Work	with	Members	screen,	enter	the	following:

File DC@F28

Library <LANSA	data	library>		(default	is	DC@DTALIB)

Member	Name WEBSKEL

Type TXT

	

2.		Copy	the	Web	Skeleton	to	DC@W22.
					Beside	member	WEBSKEL,	select	option	3	to	copy	and	press	Enter.
					On	the	Copy	Members	screen,	enter	the	following:

To	File DC@W22

New	Name iiiPROC03

	

3.		Locate	the	copied	Web	Skeleton	in	DC@W22.
4.		At	the	top	of	the	Work	with	Members	Screen,	change	the	File	to	read
DC@W22	instead	of	DC@F28	and	press	Enter.

5.		Press	F17	to	Change	using	SDA
6.		Change	Member	to	iiiPROC03	and	press	Enter.

Step	2.	Edit	the	Web	Skeleton
In	this	step,	you	will	simply	change	the	copied	Web	skeleton,	by	removing	the
standard	footer.
1.		Edit	your	iiiPROC03	Web	skeleton	(using	option	2)	and	press	Enter.
2.		Review	the	Web	skeleton.	It	should	appear	as	follows:
<RDML	LAYOUT>																																																						
<!--	Process		:	%PR								%PRDS																																			
<!--	Function	:	%FU								%FUDS																																			
<!--	Page					:	%PG																																																
<!--	Generated	by				-	%PROD																																							
<!--	Created	by	user	-	%USERI																																						
<!--	Time	and	Date			-	%STAMP																																						
<!--	RDML	function	sequence	number	-	%SEQ																										
<!--	This	is	a	*WEBEVENT	function			%IFWEV																									
																																				%IFWEV																									
%W3FRM																																																													
<RDML	MERGE="&HIDDEN">																																													
<RDML	COMPONENT="STDHEADER">																																								
%W3TTL																																																														

																																																																
<RDML	MERGE="&MESSAGES">																																												
																																														
<TABLE	BORDER=0	CELLPADDING=0	CELLSPACING=3>													%IFNRLTB			
<TABLE	BORDER=0	CELLPADDING=0	CELLSPACING=3	ALIGN=RIGHT>	%IFRLTB				
<TBODY>																																																													
%W3FLD																																																														
</TBODY>																																																												
</TABLE>																																																																
<BR	CLEAR="right">	%IFRLTB																																														
																																																																	

																																																																				
%W3BRW																																																																		
<RDML	MERGE="&BUTTONS">																																																	
<RDML	COMPONENT="STDFOOTER">																																												
</FORM>
																																																												

3.		Remove	the	Standard	Footer	by	deleting	the	line	<RDML
COMPONENT="STDFOOTER">.

4.		Insert	the	following,	where	the	STDFOOTER	used	to	be:
<CENTER><H3>Personnel	System</H3>
</CENTER>
	

					The	bottom	half	of	the	Web	Skeleton	should	now	appear	as	follows:
…
%W3FLD																																																														
</TBODY>																																																												
</TABLE>																																																																
<BR	CLEAR="right">	%IFRLTB																																														
																																																																	

																																																																				
%W3BRW																																																																		
<RDML	MERGE="&BUTTONS">																																																	
	
<CENTER><H3>Personnel	System</H3>
</CENTER>
	
</FORM>
	

5.		Press	the	F3	Exit	key,	to	the	exit	the	screen.	The	Change/Create	member
option	should	be	defaulted	to	Y.	Press	Enter	to	save	the	changes.

Step	3.	Execute	Your	Function
You	will	now	execute	the	function	before	recompiling	the	function	to	use	the
new	Web	Skeleton.	Your	existing	function's	HTML	was	created	using	the
default	Web	Skeleton.
1.		Execute	function	iiiPROC03/iiiFN07	from	your	browser	using	the	following
URL:
http://<host	address>/cgi-bin/lansaweb?
procfun+iiiPROC03+iiiFN07+partition+language
	

2.		Notice	that	the	Standard	footer	is	used,	because	the	function	has	not	been
recompiled.

Step	4.	Recompile	Your	Function
You	will	now	recompile	the	function	to	use	the	new	process-specific	Web
Skeleton.
1.		Recompile	the	function	iiiPROC03/iiiFN07.
2.		Also,	recompile	the	function	iiiPROC00/iiiFN00.	This	function	should	not
be	impacted	as	the	Web	Skeleton	is	process-specific.

3.		Ensure	that	the	compiles	completed	successfully.

Step	5.	Execute	Your	Functions
1.		Execute	your	iiiFN07	function,	or	if	the	browser	is	still	open	to	the	function,
press	the	Refresh/Reload	button	in	the	browser.

					Notice	that	the	footer	has	been	replaced,	as	the	new	Web	skeleton	is	used.
					Your	function	might	appear	something	like	the	following:

2.		Execute	your	iiiFN00	function.	Notice	that	this	function	is	not	changed	as
the	Web	Skeleton	is	process-specific.

Summary
Important	Observations

The	Web	Skeleton	can	be	used	to	modify	the	appearance	of	all	function
pages	under	a	specific	process.
A	function	must	be	recompiled	so	that	the	HTML	is	regenerated	in	order	for
the	Web	Skeleton	changes	to	take	effect.
The	new	Web	Skeleton	simply	omitted	the	STD_FOOTER	from	all	Web
functions	in	iiiPROC03.	This	change	cannot	be	made	using	the	Wizard.	It
cannot	be	done	manually,	but	it	would	require	editing	the	HTML	for	each
function.	When	a	change	is	required	to	all	functions,	the	Web	Skeleton	is	a
good	solution.

Tips	&	Techniques
The	Web	Skeleton	is	usually	modified	at	the	partition	level	to	give	all	pages
in	the	partition	the	same	look	and	feel.
NEVER	modify	the	default	Web	Skeleton.	When	a	new	version	of	LANSA
for	the	Web	is	installed,	the	default	Web	Skeleton	could	be	changed.

What	I	Should	Know
What	the	Web	Skeleton	is.
How	the	Web	Skeleton	is	used	by	LANSA	when	generating	the	HTML	for	a
function.
How	to	create	and	edit	a	process	level	Web	Skeleton.
How	to	change	the	appearance	of	your	Web	pages	using	the	Web	Skeleton.

WEB011	-	Using	DEFAULT_HIDDEN
Objective:

To	create	a	simple	Web	site	login	screen.	The	login	will	simply	be	used	to
identify	the	user	so	that	you	can		customize	or	personalize	the	Web	site	to
their	ID.	(This	login	example	has	not	been	created	to	emphasize	Web	site
security.)
To	store	the	value	of	the	login	field	using	a	process	level	_HIDDEN	so	that	it
can	be	shared	or	passed	from	function	to	function.
To	demonstrate	how	to	use	<RDML	PAGE="">	tag	to	simplify	and
modularize	your	page	structure.

To	achieve	these	objectives,	you	must	complete	the	following:
Step	1.	Create	Login	Function
Step	2.	Edit	Standard	Header	for	iiiPROC03
Step	3.	Test	your	Functions
Step	4.	Create	a	Process	Level	_HIDDEN	Page
Step	5.	Test	your	Functions
Summary

Step	1.	Create	Login	Function
In	this	step,	you	will	create	a	new	process	iiiPROC04	which	contains	a	login
function	iiiFN10.	The	login	function	simply	requests	a	user	ID.	(You	will	create
a	new	field	in	the	Repository	for	the	login	ID.)	The	login	ID	will	be	added	to	the
STDHEADER	so	that	it	is	displayed	in	each	function.	The	login	function	will
have	a	link	to	the	iiiFN07	Display	Sections	function.	The	iiiFN07	function	will
be	modified	to	check	that	a	login	has	been	entered.	If	no	value	has	been	entered,
the	iiiFN10	login	will	be	called	so	that	the	user	must	be	logged	in	to	use
iiiFN07.
1.		From	the	LANSA	development	environment,	work	with	the	fields	in	the
LANSA	Repository.	Create	a	new	field	as	follows:

Field	Name iiiLOGIN	
(where	iii	is	your	course	assigned	ID)

Type A

Length 10

Description Login:

	

2.		Create	a	new	LANSA	process	named	iiiPROC04	Login	Process,	where	iii	is
your	course	assigned	ID.	(If	the	process	already	exists,	select	a	different	set	of
characters	for	iii.)

3.			Enable	your	iiiPROC04	process	for	web.	If	you	need	to	know	how,	refer	to
Web	Enabling	a	LANSA	Process.

4.		Working	with	your	iiiPROC04	process,	create	a	new	function	named	iiiFN10
Request	Login.	You	will	manually	enter	the	code	for	the	function.

5.		Write	the	RDML	Code	to	request	the	field	iiiLOGIN.		(This	example	does
not	include	any	field/file	level	validation.		You	could	include	validation
routines	inside	the	RDML	to	validate	the	login.)

					One	possible	solution	to	this	exercise	is	shown	below	(where	iii	is	your
course	assigned	ID):	
FUNCTION		(*DIRECT	*WEBEVENT)
REQUEST		

its:lansa086.CHM::/LANSA/ED0310.htm

FIELDS((#iiiLOGIN))	EXIT_KEY(*NO)	MENU_KEY(*NO)	USER_KEYS((01	SUBMIT))
6.		Exit	and	save	your	RDML	function.
7.		Compile	your	functions.
8.		Using	the	LANSA	HTML	editor,	register	the	keywords	to	link	your	iiiFN10
Request	Login	function	to	your	iiiFN007	Display	Sections	in	Department
function

					The	keyword	entries	are	specified	as	follows	(where	iii	is	your	course
assigned	ID):

Process iiiPROC04

Function iiiFN10

Keyword SUBMIT

Description Login

Linked	Process iiiPROC03

Linked	Function iiiFN07

	

9.		Working	with	your	iiiPROC03	process,	manually	edit	your	function	iiiFN07
so	that	it	checks	the	value	of	iiiLOGIN.	If	the	value	is	blank,	then	the	iiiFN10
login	function	should	be	called.	Your	modified	function	might	appear	as
follows	(where	iii	is	your	course	assigned	ID):
FUNCTION		OPTIONS(*DIRECT	*WEBEVENT)
GROUP_BY	
NAME(#HEADER)	FIELDS((#iiiDEPT)	(#DEPTDESC)	(#RENTRY	*HIDDEN))	
DEF_LIST	
NAME(#iiiLIST)	FIELDS((#LISTDUMMY	*HIDDEN)	#SECTION	#SECDESC	#SECPHBUS)		
IF								COND('#iiiLOGIN	*EQ	*BLANKS')
CALL						PROCESS(*DIRECT)	FUNCTION(iiiFN10)
ENDIF					
IF								COND('#RENTRY	*NE	Y')
...						

10.			Exit	and	save	your	RDML	function.
11.		Compile	your	function.

Step	2.	Edit	Standard	Header	for	iiiPROC03
In	this	step,	you	will	edit	the	standard	header	page	to	be	used	specifically	with
iiiPRO0C03	to	include	the	iiiLOGIN	field.
1.		Using	the	LANSA	HTML	editor,	open	the	iiiPROC03_STDHEADER.
2.		Insert	the	bolded	lines	which	will	simply	add	a	heading	to	the	page	(where	iii
is	your	course	assigned	ID):
<!--																																																			-->
<!--															LANSA	for	the	WEB																			-->
<!--															Standard	Header																					-->
<!--																																																			-->
<IMG	SRC="
<RDML	MERGE="*LW3CPYLOGO">"	WIDTH=221	HEIGHT=62>
<P>
<H4>	iii	LANSA	Web	Applications</H4>
<P>
Your	login	entered	was:	<RDML	MERGE="iiiLOGIN">
<P>
<TABLE	CELLPADDING=0	CELLSPACING=0	BORDER=0	WIDTH=100%	ALIGN=TOP	VALIGN=BOTTOM>
<TBODY>
...
	

4.		Save	the	document.

Step	3.	Test	your	Functions
1.		Check	that	your	functions	compiled	successfully.
2.		Execute	your	function	iiiPROC04/iiiFN10.	
					Enter	iiiMYLOG	as	your	login	ID	(where	iii	is	your	course	assigned	ID).

3.		Press	the	Login	Now	button.
					Remember:	Your	login	ID	is	automatically	transferred	to	iiiFN07	because	it
is	an	input	field.

4.		The	iiiFN07	Display	Sections	function	will	be	displayed.

5.		Select	a	department	and	press	the	Search	button.
					Notice	that	you	are	returned	to	function	iiiFN10	Request	Login	because	the
iiiLOGIN	field	contained	in	the	standard	process	header	is	an	output	only
field.	The	value	is	not	passed	back	to	function	iiiFN07	when	the	function
attempts	to	display	the	sections	in	the	selected	department.

Step	4.	Create	a	Process	Level	_HIDDEN	Page
In	this	step,	you	will	create	a	new	HTML	page	called	iiiPROC03_HIDDEN.
You	will	include	iiiLOGIN	field	in	this	page	so	that	the	value	will	then	be
passed	to	all	functions	contained	in	your	iiiPROC03	process.	You	will	use	the
<RDML	PAGE="">	command	to	include	standard	DEFAULT_HIDDEN	as	part
of	this	page.	
1.		Using	the	LANSA	for	the	Web	editor,	create	a	new	HTML	page.	
2.		When	the	new	page	appears,	delete	all	of	the	default	HTML	code.
3.		Add	the	following	lines	to	the	page:
<RDML	PAGE="DEFAULT_HIDDEN">
<INPUT	NAME="AiiiLOGIN"	TYPE="HIDDEN"	SIZE="10"	VALUE="
<RDML	MERGE="iiiLOGIN">">
	

					Note	that	'A'	must	precede	AiiiLOGIN,	to	indicate	that	the	field	is
alphanumeric.

4.		Save	your	document	as	iiiPROC03_HIDDEN.

Step	5.	Test	your	Functions

In	this	step,	you	will	retest	your	functions	after	creating	the
iiiPROC03_HIDDEN	page.	Notice	that	you	do	not	need	to	recompile	your
functions	or	edit	any	of	the	function	HTML.

1.		Execute	your	function	iiiPROC04/iiiFN10.	
					Enter	iiiMYLOG	as	your	login	ID	(where	iii	is	your	course	assigned	ID)	and
press	the	Login	button.

2.		Select	a	department	and	press	the	Search	button.

					Notice	that	the	value	of	iiiLOGIN	is	now	returned	to	the	iiiFN07	function.

3.		View	the	HTML	source	for	the	iiiFN07	function.
					Notice	that	iiiLOGIN	field	has	been	passed	as	a	hidden	field.
4.		Re-execute	your	iiiFN10	Request	login	function.	
					Enter	a	different	value	for	the	login	and	press	Login.
					Notice	that	the	new	value	is	passed.

Summary
Important	Observations

Only	input	capable	fields,	hidden	fields	or	browse	lists	are	passed	from
function	to	function.	The	iiiLOGIN	field	was	passed	from
iiiPROC04/iiiFN10	to	iiiPROC03/iiiFN07	as	an	input	capable	field.
The	iiiLOGIN	field	was	not	passed	from	iiiFN07	back	to	iiiFN07	(reentrant
function)	because	it	was	not	an	input	capable	or	hidden	field.	By	creating
iiiPROC03_HIDDEN,	the	field	could	be	exchanged	to	any	functions	in
iiiPROC03.
Notice	that	the	iiiFN07	function	does	not	include	the	iiiLOGIN	field	in	the
REQUEST	or	DISPLAY	statements,	but	the	field	can	still	be	used	by	the
function	and	in	the	HTML	STDHEADER.
The	iiiLOGIN	field	must	be	used	somewhere	in	iiiFN07	(for	example,	the	IF
statement	or	in	a	GROUP_BY)	for	the	value	of	iiiLOGIN	to	be	stored	in	the
function.	Once	it	is	stored	in	the	function,	it	can	be	exchanged	with	the	next
function	using	the	iiiPROC03_HIDDEN	fields.
The	Login	function	iiiFN10	is	part	of	iiiPROC04.	If	you	were	to	link
iiiFN07	back	to	iiiFN10,	the	iiiLOGIN	would	not	be	passed	because
iiiPROC03_HIDDEN	is	process-specific.	iiiPROC04	still	uses
DEFAULT_HIDDEN.	Also,	iiiFN10	has	iiiLOGIN	defined	as	an	input	field
so	it	cannot	use	an	exchanged	value	in	_HIDDEN.	The	iiiLOGIN	field
would	have	to	be	passed	as	a	function	parameter,	browse	list	value	or	an
input	capable	field	on	a	display.
Using	the	RDML	PAGE	tag	allows	you	to	include	the	standard
DEFAULT_HIDDEN	page	in	your	iiiPROC03	_HIDDEN	page.	You	could
have	copied	the	DEFAULT_HIDDEN	page	to	iiiPROC03_HIDDEN	and
added	the	iiiLOGIN	field,	however	any	future	changes	made	to
DEFAULT_HIDDEN	would	also	have	to	be	made	to	iiiPROC03_HIDDEN.
Using	the	RDML	PAGE	tag	simplifies	the	maintenance	of	your	code.
Changes	to	the	DEFAULT_<pages>	do	not	require	the	functions	to	be
recompiled.	These	pages	are	automatically	embedded	when	the	function
executes.

Tips	&	Techniques
Instead	of	adding	iiiLOGIN	to	the	iiiPROC03_HIDDEN,	it	could	have	been
added	as	a	*HIDDEN	field	in	each	REQUEST	or	DISPLAY.

Creating	process-specific	pages	allows	you	to	customize	your	functions	in	a
specific	process.	You	should	not	modify	the	DEFAULT	pages	unless	the
change	applies	to	all	functions	in	the	partition.
All	process-specific	pages	will	automatically	be	exported	with	the	process
definition.	These	pages	do	not	need	to	be	registered	as	Web	Page
components.
The	DEFAULT_HIDDEN	page	can	be	used	to	pass	many	values.	The	hidden
field	must	be	used	in	the	RDML	function	in	order	for	the	value	to	be	stored
and	passed	to	the	next	function.	The	field	does	not	have	to	appear	in	a
REQUEST	or	DISPLAY	statement.
The	<RDML	PAGE="">	tag	can	be	used	to	modularize	your	code	and
simplify	maintenance.

What	I	Should	Know
How	to	use	DEFAULT_HIDDEN	to	store	values	to	be	passed	from	function
to	function	within	a	process.
How	to	use	the	<RDML	PAGE="">	tag	to	create	modular	code.

WEB012	-	Dynamic	Components
Objective:

In	this	exercise,	you	will	use	the	login	field	to	add	a	dynamic	component	to
your	function.	The	dynamic	component	is	determined	by	the	value	of	a	field
instead	of	being	coded	into	the	HTML	page.	In	this	example,	the	data
entered	in	the	login	field	will	be	used	to	determine	the	component.	This
technique	allows	you	to	personalize	the	site	based	on	the	user	login.
To	demonstrate	how	to	include	a	page	component	using	&FLD_<field
name>,	which	uses	the	value	of	the	field	as	your	component	name	instead	of
the	field	name.
To	demonstrate	how	to	use	components	so	that	HTML	changes	are	not	lost
when	a	function	is	re-compiled.

To	achieve	these	objectives,	you	must	complete	the	following:
Step	1.	Create	a	New	Page	Component
Step	2.	Modify	iiiPROC03_STDHEADER
Step	3.	Test	Your	Function
Summary

Step	1.	Create	a	New	Page	Component
In	this	step,	you	will	create	a	new	page	component	that	will	be	used	as	the
welcome.	A	very	simple	HTML	page	containing	your	name	will	be	created.
(Using	a	Web	publishing	tool,	this	HTML	page	could	be	made	very	graphical.)
1.		Using	the	LANSA	for	the	Web	editor,	create	a	new	HTML	page.	
2.When	the	new	page	appears,	delete	all	of	the	default	HTML	code.
3.		Add	the	following	line	to	the	page:
<CENTER>Hello	(your	name	goes	here)
</CENTER>	
	

4.		Save	your	document	as	iiiMYLOG	with	description	Login	Component.
(Remember:	iiiMYLOG	is	the	data	entered	by	the	user	when	they	login.)

5.		Using	the	LANSA	for	the	Web	editor,	open	the	maintain	components
window.

6.		Select	Add,	to	add	a	new	component	as	follows		(where	iii	is	your	course
assigned	ID):

Component iiiMYLOG

Type PAGE

	

Description Login	Welcome

Page iiiMYLOG

Mode Not	Applicable

	

7.		Close	the	Maintain	Components	window.

Step	2.	Modify	iiiPROC03_STDHEADER
In	this	step,	you	will	modify	the	HTML	for	iiiPROC03_STDHEADER	to	use	a
dynamic	component	based	on	the	contents	of	the	iiiLOGIN	field.	When
iiiLOGIN	has	a	value	of	iiiMYLOG,	it	will	include	the	component	you	created
in	Step	1.	Create	a	New	Page	Component.
1.		Using	the	LANSA	for	the	Web	editor,	open	the	iiiPROC03_STDHEADER
(where	iii	is	your	course	assigned	ID).

2.		Insert	the	bolded	lines	which	will	simply	add	a	heading	to	the	page:
<!--																																																			-->
<!--															LANSA	for	the	WEB																			-->
<!--															Standard	Header																					-->
<!--																																																			-->
<IMG	SRC="
<RDML	MERGE="*LW3CPYLOGO">"	WIDTH=221	HEIGHT=62>
<P>
<H4>	iii	LANSA	Web	Applications</H4>
<P>
Your	login	entered	was:		<RDML	MERGE="iiiLOGIN">

<P>
<RDML	COMPONENT="&FLD_iiiLOGIN">
<P>
<TABLE	CELLPADDING=0	CELLSPACING=0	BORDER=0	WIDTH=100%	ALIGN=TOP	VALIGN=BOTTOM>
<TBODY>
...
	

3.		Save	the	document.

Step	3.	Test	Your	Function
1.		Execute	your	function	iiiPROC04/iiiFN10.	
					Enter	iiiMYLOG	as	your	login	ID	(where	iii	is	your	course	assigned	ID)	and
press	the	Login	button.

2.		Notice	how	the	value	of	the	iiiLOGIN	field	is	used	to	display	the	new
component	iiiMYLOG.

3.		Using	iiiFN10,	try	entering	any	other	registered	component	in	the	login	field.
For	example,	try	your		iiiBANNER	component.

Summary
Important	Observations

&FLD_<field	name>	components	allow	you	to	determine	the	component
name	based	on	the	value	of	a	field.	In	this	example,	the	field	value	was	based
on	user	input.	The	value	could	also	be	set	based	on	information	in	a	database
file.
The	importance	of	&FLD_<field	name>	is	that	you	can	use	RDML	to
control	the	value	of	the	field	during	execution	of	the	function.

Tips	&	Techniques
In	some	cases,	you	can	use	&FLD_<field	name>	as	an	alternative	to
<RDML	CONDITION>	or	<RDML	NOTCONDITION>	tags.	Instead	of
using	conditional	tags,	you	can	control	HTML	components	by	setting	the
field	values	(in	the	RDML)	used	in	the	&FLD_<field	name>.	For	example,
IF	a	certain	condition	is	met,	then	set	the	field	value	to	COMP1,	where
COMP1	is	a	component	with	the	desired	HTML.
You	can	embed	components	within	components,	provided	that	they	are	not
called	recursively.
In	this	example,	you	created	a	very	simple	personalization	based	on	the	user
login.	You	could	create	a	highly	personalized	Welcome	screen	if	you
maintain	additional	data	in	a	database	for	the	login	user	ID.	For	example,
you	could	display	the	last	time	a	user	visited	the	site	or	you	could	show	a	list
of	user	preferences,	etc.
Create	page	components	to	protect	your	HTML	changes	from	being	lost
when	a	function	is	recompiled.
Using	&FLD_<field	name>	allows	you	to	customize	what	a	user/users	might
see	for	the	same	page,	depending	on	their	login	authority.
Remember	to	use	the	proper	mode	when	defining	your	Web	components.
The	iiiMYLOG	component	uses	mode	Not	Applicable	because	it	appears	in
the	function	header.

What	I	Should	Know
How	to	use	&FLD_<field	name>	to	dynamically	set	a	Web	component	based
on	the	value	of	a	field.
How	to	embed	a	component	within	a	component.

How	to	create	page	components	to	protect	HTML	from	being	replaced	when
a	function	is	recompiled.

WEB013	-	JavaScript	and	Browse	Lists
To	achieve	the	results	shown	in	this	tutorial,	you	will	need	ten	graphic	files	as
described	in	step	5	of	the	iSeries	Installation	Steps	in	Tutorials	for	Web
Functions	&	WEBEVENTs.
If	you	do	not	have	these	files	or	if	they	are	not	specified	in	the	PSLMST	file,
you	will	simply	see	a	box	with	an	X,	instead	of	a	picture.

Objective:
In	this	exercise,	you	will	modify	the	Display	Sections	inquiry	function	to
allow	the	user	to	display	a	list	of	all	employees	in	a	selected	Department	and
Section.	You	will	allow	the	user	to	select	a	specific	Department	and	Section
(a	row	in	the	browse	list)	to	call	a	Employee	List	function.	The	Employee
List	function	will	include	an	employee	picture	(in	place	of	the	PHONEBUS
field).		This	image	will	also	be	turned	into	a	link,	that	will	open	a	new
browser	window	containing	the	details	for	the	selected	employee.
To	create	a	new	JavaScript	function	which	will	pass	parameters	from	the
browse	list	to	the	HandleEvent	function.
To	demonstrate	the	use	of	JavaScript	to	pass	function	parameters.
To	demonstrate	the	ability	to	select	a	row	in	a	browse	list.
To	demonstrate	how	to	call	a	LANSA	function	and	pass	parameters	or
funcparms.
To	create	an	Employee	Details	function	using	the	Web	page	substitution
techniques	used	in	exercise	WEB09.

To	achieve	these	objectives,	you	must	complete	the	following:
Step	1.	Create	Fields	to	be	used	as	Function	Parameters
Step	2.	Create	iiiFN11	Employee	List
Step	3.	Edit	Process	Level	_SCRIPT
Step	4.	Create	a	Link	Component
Step	5.	Modify	Function	iiiFN07
Step	6.	Test	Changes
Step	7.	Include	New	Component	Link	into	Employee	Browse	List
Step	8.	Build	Function	iiiFN12	Employee	Details
Step	9.	Test	Your	New	Functions
Step	10.	Execute	function	iiiFN12	from	a	Command	Line	(Optional)

Step	11.	Create	Page	Component	for	Function	iiiFN12	(Optional)
Step	12.	Test	Changes	(Optional)
Summary

Step	1.	Create	Fields	to	be	used	as	Function	Parameters
In	this	step,	you	will	create	two	fields	in	the	LANSA	Repository.	The
iiiDEPTWK	and	iiiSECTWK	will	be	used	to	store	the	selected	Department	and
Section.	These	fields	will	also	be	added	to	the	<process_hidden>	HTML	you
created	in	an	earlier	exercise.	These	fields	will	be	required	by	the	JavaScript
written	later	in	the	exercise.	
1.		From	the	LANSA	Development	Environment,	work	with	the	fields	in	the
LANSA	Repository.	Create	two	new	fields	as	follows		(where	iii	is	your
course	assigned	ID):

Field	Name iiiSECTWK

Reference	Field SECTION

	

Field	Name iiiDEPTWK

Reference	Field DEPTMENT

	

2.		Using	your	LANSA	for	the	Web	HTML	editor,	open	iiiPROC03_HIDDEN.
3.		Add	the	following	lines	(where	iii	is	your	course	assigned	ID):
					<INPUT	NAME="AiiiSECTWK"	TYPE="HIDDEN"	SIZE="2"	VALUE="
<RDML	MERGE="iiiSECTWK">">
					<INPUT	NAME="AiiiDEPTWK"	TYPE="HIDDEN"	SIZE="4"	VALUE="
<RDML	MERGE="iiiDEPTWK">">
	

4.		Save	your	document.

Step	2.	Create	iiiFN11	Employee	List
In	this	step,	you	will	create	a	function	to	display	information	(EMPNO,
GIVENAME,	SURNAME)	about	the	employees	in	a	given	department	and
section.	The	values	for	department	and	section	are	passed	in	the	iiiDEPTWK
and	iiiSECTWK	fields	in	the	iiiPROC03_HIDDEN.
1.		Working	with	your	iiiPROC03	process,	create	a	new	function	named	iiiFN11
Employee	List.	You	will	manually	enter	the	code	for	the	function.

2.		Write	the	RDML	Code	to	build	a	browse	list	from	the	two	parameters
passed,	iiiDEPTWK	and	iiiSECTWK.		(This	example	does	not	include	any
field/file	level	validation.		You	could	include	validation	routines	inside	the
RDML	to	validate	that	records	were	found	for	the	browse	list.)

Solution:
					One	possible	solution	to	this	exercise	is	shown	below		(where	iii	is	your
course	assigned	ID):					
FUNCTION		(*DIRECT	*WEBEVENT)
DEF_LIST		
NAME(#iiiEMPLST)	FIELDS((#EMPNO)	(#GIVENAME)	(#SURNAME))				ENTRYS(9999)
IF								COND('#iiiLOGIN	*EQ	*BLANKS')
CALL						PROCESS(*DIRECT)	FUNCTION(iiiFN10)
ENDIF					
CLR_LIST		NAMED(#iiiEMPLST)
SELECT			
FIELDS((#iiiEMPLST))	FROM_FILE(PSLMST1)	WITH_KEY(#iiiDEPTWK	#iiiSECTWK)	IO_STATUS(*STATUS)	IO_ERROR(*NEXT)	VAL_ERROR(*NEXT)																																											
ADD_ENTRY	TO_LIST(#iiiEMPLST)
ENDSELECT	
DISPLAY		
FIELDS((#iiiDEPTWK)	(#iiiSECTWK))	BROWSELIST(#iiiEMPLST)	EXIT_KEY(*NO)	MENU_KEY(*NO)

3.		Exit	and	save	your	RDML	function.
4.		Compile	your	RDML	function	iiiPROC03/iiiFN11.

Step	3.	Edit	Process	Level	_SCRIPT
In	this	step,	you	will	edit	your	iiiPROC03_SCRIPT.	You	will	add	a	new
JavaScript	function	which	will	be	used	to	store	the	Department	and	Section
values	(using	iiiPROC03_HIDDEN)	before	the	next	function	is	called	using	the
HandleEvent	script	shipped	with	LANSA.
1.		Using	the	LANSA	for	the	Web	editor,	open	iiiPROC03_SCRIPT.	
2.		Add	the	following	lines	to	an	appropriate	part	of	the	page	(where	iii	is	your
course	assigned	ID):
function	HandleEventDeptSect(Proc,Func,Dept,Sect)
{
				document.LANSA.AiiiDEPTWK.value=Dept;
				document.LANSA.AiiiSECTWK.value=Sect;
				HandleEvent(Proc,Func);
}
	

4.		Save	your	document.

Step	4.	Create	a	Link	Component
In	this	step,	you	will	create	a	page	component	that	will	appear	as	a	button	to	link
to	another	function.		The	button	will	use	the	HandleEventDeptSect		JavaScript
function	created	in	Step	3	to	set	the	value	of	the	work	fields	and	then	call	the
next	function.	
1.		Using	the	LANSA	for	the	Web	editor,	create	a	new	HTML	page.	
2.		When	the	new	page	appears,	delete	all	of	the	default	HTML	code.
3.		Add	the	following	lines	to	the	page	(where	iii	is	your	course	assigned	ID):
<INPUT	TYPE="button"		VALUE="Click	Here"		NAME="button1"
onClick="HandleEventDeptSect('iiiPROC03','iiiFN11',
'<RDML	MERGE="DEPTMENT">','<RDML	MERGE="SECTION">');">
	

					NOTE:	there	is	no	space	following	any	of	the	commas.	Remember	to	use
uppercase	characters	for	your	iii	identifier.

4.		Save	your	document	as	iiiLNK	with	description	Link	Component.
5.		Using	the	LANSA	for	the	Web	Editor,	open	the	Maintain	Components
window.

6.		Press	Add,	to	add	a	new	component	as	follows	(where	iii	is	your	course
assigned	ID):

	Component iiiLNK

Type Page

	

Description Link	Component

Page iiiLNK

Mode OUTPUT

	

Step	5.	Modify	Function	iiiFN07
In	this	step,	you	will	make	changes	to	function	iiiFN07.	First,	you	will	change
the	browse	list	name	from	iiiLIST	to	iiiLIST1	so	that	you	can	customize	the
appearance	of	this	specific	browse	list	using	the	Web	Functions	Wizard	.	Next,
you	will	define	an	iiiLNK	field	which	will	be	added	to	the	list	of	Sections
browse	list.	This	field	will	be	used	for	the	link	component	iiiLNK	to	call	the
Employee	list	function.	Finally,	you	will	add	the	DEPTMENT	and	iiiLNK	fields
to	the	browse	list.
1.		Working	with	your	iiiPROC03	process,	edit	the	function	named	iiiFN07
Display	Sections	in	Department.	

2.		Using	the	find	and	change	facilities	in	the	RDML	editor,	change	all
occurrences	of	iiiLIST	to	iiiLIST1.

3.		Add	a	DEFINE	statement	for	the	iiiLNK	field	as	follows:
DEFINE			
FIELD(#iiiLNK)	TYPE(*CHAR)	LENGTH(1)	COLHDG(Find	Employee)

4.		Add	the	field	DEPTMENT	with	an	attribute	of	*HIDDEN	to	your	browse
list	(now	called	iiiLIST1).		Also	add	your	new	field	iiiLNK	with	an	attribute
of	*NOID	to	your	browse	list.	Also,	change	the	number	of	entries	allowed	for
the	list	to	9999.		The	RDML	code	should	appear	as	follows:
DEF_LIST	
NAME(#iiiLIST1)	FIELDS((#LISTDUMMY	*HIDDEN)	(#SECTION)	(#SECDESC)	(#SECPHBUS)	(#DEPTMENT	*HIDDEN)	(#iiiLNK	*NOID))	ENTRYS(9999)

5.		Exit	and	save	your	RDML	function.
6.		Compile	your	function.

Step	6.	Test	Changes
In	this	step,	you	will	test	your	function	and	HTML	documents	that	you	created
in	the	previous	steps.
1.		Execute	your	function	iiiPROC04/iiiFN10.	
					Login	using	iiiMYLOG.
					Select	the	Administration	department	and	press	the	SEARCH	button.
2.		Notice	the	new	button	on	the	right	column	of	your	browse	list.		It	has	the
heading	Find	Employee,	and	says	Click	Here.

					If	these	buttons	are	not	properly	aligned,	check	the	code	in	the	button
component	found	in	Step	3.

3.		Clicking	on	any	of	the	buttons	in	the	browse	list	will	call	the	iiiFN11
Employee	List	function.	

					Tip:	If	the	link	does	not	work,	check	the	bottom	left	corner	of	your	browser
(Internet	Explorer)	for	a	tiny	triangle	with	an	apostrophe	in	it.		This	symbol
indicates	that	there	is	an	error	in	your	JavaScript.		Double	click	this	icon,	to
view	the	error	message.

						Note:	Most	JavaScript	errors	occur	due	to	typing	errors.	Check	this	first	by
comparing	the	Java	Script	code	to	the	code	in	Step	3.	Edit	Process	Level

_SCRIPT.
4.		When	function	iiiFN11	is	called,	a	list	of	all	employees	in	the	selected
Department	and	Section	will	be	displayed:

					If	there	are	no	employees,	repeat	the	above	procedure	selecting	a	different
Department	and	Section.

Step	7.	Include	New	Component	Link	into	Employee	Browse	List
In	this	step,	you	will	create	a	component	that	will	contain	a	link	using	an	<A
HREF>	and	an	image	(based	on	the	value	of	the	PHONEBUS	field).	This
component	will	be	included	in	the	browse	list	used	in	function	iiiFN11	and	it
will	be	used	to	call	an	Employee	Details	function	(iiiFN12).
1.		Using	the	LANSA	for	the	Web	editor,	create	a	new	HTML	page.	
2.		When	the	new	page	appears,	delete	all	of	the	default	HTML	code.
3.		Add	the	following	lines	to	the	page	(where	iii	is	your	course	assigned	ID	and
ppp=partition):
<a	href="/cgi-bin/lansaweb?procfun+iiiproc03+iiifn012+ppp+funcparms+
EMPNO(A0050):<RDML	MERGE="EMPNO">"		target="New	Employee">
<img	src="/IMAGES/<RDML	MERGE="PHONEBUS">"	border="0">

					Reminder:	The	<A	HREF>	link	will	not	automatically	exchange	the
WEBEEVENT	data	as	it	uses	a	new	Web	job.	The	Employee	Number
parameter	is	passed	as	part	of	the	function	call	so	that	the	iiiFN12	Employee
Details	function	can	retrieve	the	required	data	from	the	PSLMST	file.	The
iiiFN12	Employee	Details	function	is	also	opened	in	a	new	browser	window.

4.		Save	your	document	as	iiiIMAGE	with	description	Employee	Image.
5.		Using	the	LANSA	for	the	Web	editor,	open	the	Maintain	Components
window.

6.		Select	Add,	to	add	a	new	component	as	follows	(where	iii	is	your	course
assigned	ID):

Component iiiIMAGE

Type Visual

	

Description Employee	Image	Component

Page iiiIMAGE

Mode OUTPUT

	

7.		Working	with	your	iiiPROC03	process,	edit	the	function	named	iiiFN11
Employee	List.

8.		Define	a	new	field	iiiIMAGE	based	on	the	#PHONEBUS	field	and	add	the
iiiIMAGE	field	to	the	browse	list	iiiEMPLST.	Also	add	the	PHONEBUS
(which	contains	the	name	of	the	employee	image	graphic	file	name)	as	a
*HIDDEN	field.

					Your	function	should	appear	as	follows		(where	iii	is	your	course	assigned
ID):					
FUNCTION		(*DIRECT	*WEBEVENT)
DEFINE				FIELD(#iiiIMAGE)	REFFLD(#PHONEBUS)
DEF_LIST		
NAME(#iiiEMPLST)	FIELDS((#iiiIMAGE	*NOID)	(#EMPNO)	(#GIVENAME)	(#SURNAME)	(#PHONEBUS	*HIDDEN))	ENTRYS(9999)
CLR_LIST		NAMED(#iiiEMPLST)
SELECT			
FIELDS((#iiiEMPLST))	FROM_FILE(PSLMST1)	WITH_KEY(#iiiDEPTWK	#iiiSECTWK)	IO_STATUS(*STATUS)	IO_ERROR(*NEXT)	VAL_ERROR(*NEXT)																																											
ADD_ENTRY	TO_LIST(#iiiEMPLST)
ENDSELECT	
DISPLAY		
FIELDS((#iiiDEPTWK)	(#iiiSECTWK))	BROWSELIST(#iiiEMPLST)	EXIT_KEY(*NO)	MENU_KEY(*NO)

9.		Exit	and	save	your	RDML	function.
10.			Compile	your	function.

Step	8.	Build	Function	iiiFN12	Employee	Details
In	this	step,	you	will	build	the	Employee	Details	function,	iiiFN12.		This
function	will	receive	the	employee	number	(EMPNO)	from	the	calling	function
by	using	the	funcparms	passed	in	the	URL.		It	will	then	display	the	Employee
details.
1.		Working	with	your	iiiPROC03	process,	create	a	new	function	named	iiiFN12
Employee	Details.	You	will	manually	enter	the	code	for	the	function.

2.		Write	the	RDML	code	to	fetch	the	employee's	data	from	the	PSLMST	file
based	on	the	value	of	EMPNO,	which	is	a	parameter	passed	to	the	function.

					Include	a	GROUP_BY	statement	so	that	the	iiiLOGIN	field	is	defined	in	the
function.

					(This	example	does	not	include	any	field/file	level	validation.		You	could
include	validation	routines	inside	the	RDML	to	validate	that	records	were
found	for	the	browse	list.)

Solution:
					One	possible	solution	to	this	exercise	is	shown	below		(where	iii	is	your
course	assigned	ID):
FUNCTION		(*DIRECT	*WEBEVENT)
***********	This	Group	by	can	be	left	out	however	your	login
***********		component	will	not	appear	without	it.
GROUP_BY		NAME(#LOGGROUP)	FIELDS((#iiiLOGIN))
GROUP_BY	
NAME(#EMPLOYEE)	FIELDS((#EMPNO	*OUTPUT)	(#GIVENAME	*OUTPUT)	(#SURNAME	*OUTPUT)	(#ADDRESS1	*OUTPUT)	(#ADDRESS2	*OUTPUT)	(#ADDRESS3	*OUTPUT)	(#POSTCODE	*OUTPUT)	(#PHONEHME	*OUTPUT)	(#SALARY	*OUTPUT)	(#DEPTMENT	*OUTPUT)	(#SECTION	*OUTPUT)	(#PHONEBUS	*OUTPUT))
FETCH				
FIELDS((#EMPLOYEE))	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)	IO_STATUS(*STATUS)	IO_ERROR(*NEXT)	VAL_ERROR(*NEXT)
REQUEST			FIELDS(#EMPLOYEE)	EXIT_KEY(*NO)	MENU_KEY(*NO)

					Notice	that	this	RDML	solution	uses	a	REQUEST	statement	instead	of	a
DISPLAY	statement.	This	technique	is	used	to	reduce	the	amount	of	HTML
generated	by	LANSA	for	the	Web.

3.		Exit	and	save	your	RDML	function.
4.		Compile	your	RDML	function	iiiPROC03/iiiFN12.

Step	9.	Test	Your	New	Functions
In	this	step,	you	will	test	your	new	functions.		You	will	execute	function	iiiFN07
as	before.		When	the	Employee	List	function	iiiFN11	executes,	you	should	see
an	employee	image.		When	you	click	on	an	image,	a	new	browser	window
should	appear	containing	the	Employee	Details	function	iiiFN12.
1.		Execute	your	function	iiiPROC04/iiiFN10.
2.		Login	using	IIIMYLOG.
3.			Select	the	Administration	department	and	press	the	SEARCH	button.
					Notice	that	the	Click	Here	button	appears	exactly	as	it	did	in	the	previous
exercise.

4.		Select	Section	02.
5.		Press	the	Click	Here	button	for	the	Section.
					An	employee	list	should	appear.	If	the	images	have	been	placed	correctly	on
the	Web	Server,	an	employee	image	should	appear	to	the	left	of	each	name,
otherwise	you	should	see	a	small	box	with	an	X	in	it.	(This	small	box	is	the
standard	browser	default	when	an	image	cannot	be	found.)

5.		Click	on	the	employee	image.		(If	no	image	exists,		click	on	the	box	with	the
X.)

6.		A	new	browser	window	should	appear	as	function	iiiFN12	executes.
					The	window	will	contain	the	employee	details:

7.		Notice	that	the	function	header	is	not	displayed	as	your	iiiLOGIN	field	has
no	value.		The	hidden	fields	(including	all	of	_hidden)	are	not	passed	when
using	an	<A	HREF>	link.		You	must	include	the	fields	as	function	parameters
when	using	this	type	of	link.

Step	10.	Execute	function	iiiFN12	from	a	Command	Line
(Optional)
In	this	step,	you	will	call	function	iiiFN12	directly	using	a	URL	from	the
browser.	This	step	is	similar	to	using	the	<A	HREF>	link.	It	will	allow	you	to
call	a	function	directly	and	practice	parameter	passing.	You	will	add	the
iiiLOGIN	parameter	to	the	funcparms	being	passed.
1.		Open	a	new	browser	window.	To	execute	iiiFN12	directly,	enter	the
following	URL:
http://<server	address>/cgi-bin/lansaweb?
procfun+iiiproc03+iiifn012+ppp+funcparms	+EMPNO(A0050):
<employee	number>
	

					where:
						<server	address>=supplied	IP	address
						ppp=partition
						iii=your	course	assigned	ID
						<employee	number>=valid	employee	number	such	as	A1002
	

Notice	that	your	browser	window	displays	the	employee	information
exactly	as	it	did	in	the	previous	exercise.

You	will	now	add	the	iiiLOGIN	parameter	to	the	command	line	entered
in	Step	1.		You	will	add	the	following	to	the	URL:

+iiiLOGIN(A0100):iiiMYLOG
	

					so	that	the	URL	might	now	appear	as:
http://<server	address>/cgi-bin/lansaweb?
procfun+iiiproc03+iiifn012+DEM+funcparms	+EMPNO(A0050):A1002+iiiLOGIN(A0100):iiiMYLOG
	

4.		Notice	you	should	now	see	your	iiiMYLOG	header	component	displayed:

Step	11.	Create	Page	Component	for	Function	iiiFN12	(Optional)
In	this	step,	you	will	create	a	page	component	for	the	HTML	of	function
iiiFN12.		The	page	component	will	allow	you	to	easily	manipulate	the
appearance	of	iiiFN12	and	it	will	prevent	changes	to	the	HTML	from	being
replaced	when	the	function	is	recompiled.	You	will	also	change	the	HTML	to
display	the	Employee	photo.
1.		Using	the	LANSA	for	the	Web	Editor,	open	a	new	document.
2.		Delete	the	default	HTML	which	appears	in	the	new	page.
3.		Open	the	iiiPROC03	iiiFN120001	HTML	page.
4.		Copy	all	the	HTML	statements	in	the	table	definition,	i.e.	copy	all	code
between	the	following	tags
<TABLE	BORDER=0	CELLPADDING=0	CELLSPACING=3>
<TBODY>
	
copy	all	HTML	code	here	but	do	not	include	the	table	tags	shown	above	and	below
	
</TBODY>
</TABLE>
	

5.		Paste	the	HTML	code	into	your	new	page.	Your	code	should	appear	as
follows:
<TR>
</TR>
<TR>
<TD><RDML	MERGE="@T0001+0001+0015">
</TD>
<TD><RDML	MERGE="EMPNO					"></TD>
</TR>
<TR>
<TD><RDML	MERGE="@T0002+0016+0030">
</TD>
<TD><RDML	MERGE="GIVENAME		"></TD>
</TR>
<TR>
<TD><RDML	MERGE="@T0003+0031+0045">

</TD>
<TD><RDML	MERGE="SURNAME			"></TD>
</TR>
<TR>
<TD><RDML	MERGE="@T0004+0046+0060">
</TD>
<TD><RDML	MERGE="ADDRESS1		"></TD>
</TR>
<TR>
<TD><RDML	MERGE="@T0005+0061+0075">
</TD>
<TD><RDML	MERGE="ADDRESS2		"></TD>
</TR>
<TR>
<TD><RDML	MERGE="@T0006+0076+0090">
</TD>
<TD><RDML	MERGE="ADDRESS3		"></TD>
</TR>
<TR>
<TD><RDML	MERGE="@T0007+0091+0105">
</TD>
<TD><RDML	MERGE="POSTCODE		"	EDITCODEO="3"></TD>
</TR>
<TR>
<TD><RDML	MERGE="@T0008+0106+0120">
</TD>
<TD><RDML	MERGE="PHONEHME		"></TD>
</TR>
<TR>
<TD><RDML	MERGE="@T0009+0121+0135">
</TD>
<TD><RDML	MERGE="SALARY				"	EDITCODEO="1"></TD>
</TR>
<TR>
<TD><RDML	MERGE="@T0010+0136+0150">
</TD>
<TD><RDML	MERGE="DEPTMENT		"></TD>
</TR>
<TR>

<TD><RDML	MERGE="@T0011+0151+0165">
</TD>
<TD><RDML	MERGE="SECTION			"></TD>
</TR>
<TR>
<TD><RDML	MERGE="@T0012+0166+0180">
</TD>
<TD><RDML	MERGE="PHONEBUS		"></TD>
</TR>
	

6.		Delete	all	of	the	field	labels	whose	format	is:
<<RDML	MERGE="@T...">
	

						and	replace	the	labels	with	field	descriptions.
					Also	add	an		tag	to	display	the	PHONEBUS	as	an	image.
					The	final	pages	might	appear	as	follows(changes	are	in	bold):
<TR>
</TR>
<TR>
<TD>Employee	Number</TD>
<TD><RDML	MERGE="EMPNO					"></TD>
</TR>
<TR>
<TD>First	Name</TD>
<TD><RDML	MERGE="GIVENAME		"></TD>
</TR>
<TR>
<TD>Last	Name</TD>
<TD><RDML	MERGE="SURNAME			"></TD>
</TR>
<TR>
<TD>Address	Line	1</TD>
<TD><RDML	MERGE="ADDRESS1		"></TD>
</TR>
<TR>
<TD>City</TD>
<TD><RDML	MERGE="ADDRESS2		"></TD>

</TR>
<TR>
<TD>State</TD>
<TD><RDML	MERGE="ADDRESS3		"></TD>
</TR>
<TR>
<TD>Postal	Code</TD>
<TD><RDML	MERGE="POSTCODE		"	EDITCODEO="3"></TD>
</TR>
<TR>
<TD>Home	Phone</TD>
<TD><RDML	MERGE="PHONEHME		"></TD>
</TR>
<TR>
<TD>Salary</TD>
<TD><RDML	MERGE="SALARY				"	EDITCODEO="1"></TD>
</TR>
<TR>
<TD>Department</TD>
<TD><RDML	MERGE="DEPTMENT		"></TD>
</TR>
<TR>
<TD>Section</TD>
<TD><RDML	MERGE="SECTION			"></TD>
</TR>
<TR>
<TD>Employee	Image</TD>
<TD><IMG	SRC="/images/<RDML	MERGE="PHONEBUS		">"></TD>
</TR>
	

					REMINDER:	Add	the		tag	to	display	the	image	in	the
PHONEBUS	field.

7.		Save	the	document	as	iiiFN12P	with	description	iiiFN12	Page	Component.
8.		Using	the	LANSA	for	the	Web	editor,	open	the	Maintain	Components
window.

9.		Select	Add,	to	add	a	new	component	as	follows	(where	iii	is	your	course
assigned	ID):

Component iiiFN12P

Type Page

	

Description iiiFN12	Page	Component

Page iiiFN12P

Mode OUTPUT

	

10.			Close	the	Maintain	Components	window.
11.		Working	with	your	iiiPROC03	process,	edit	the	function	named	iiiFN12
Employee	Details.

12.		Define	a	working	field	named	iiiFN12P	to	be	used	with	the	output	Web
page	component	and	insert	a	REQUEST	command	prior	to	the	existing
REQUEST	command	in	the	function.		The	new	REQUEST	will	display	only
one	field	iiiFN12P	with	attributes	of	*OUTPUT	and	*NOID.

					Your	finished	code	might	appear	as	follows		(where	iii	is	your	course
assigned	ID):
FUNCTION		(*DIRECT	*WEBEVENT)
DEFINE				FIELD(#iiiFN12P)	TYPE(*CHAR)	LENGTH(1)
GROUP_BY		
NAME(#EMPLOYEE)	FIELDS((#EMPNO	*OUTPUT)	(#GIVENAME	*OUTPUT)	(#SURNAME	*OUTPUT)	(#ADDRESS1	*OUTPUT)	(#ADDRESS2	*OUTPUT)	(#ADDRESS3	*OUTPUT)	(#POSTCODE	*OUTPUT)	(#PHONEHME	*OUTPUT)	(#SALARY	*OUTPUT)	(#DEPTMENT	*OUTPUT)	(#SECTION	*OUTPUT)	(#PHONEBUS	*OUTPUT))
FETCH				
FIELDS(#EMPLOYEE))	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)	IO_STATUS(*STATUS)	IO_ERROR(*NEXT)	VAL_ERROR(*NEXT)																																											
REQUEST		
FIELDS((#iiiFN12P	*OUTPUT	*NOID))	EXIT_KEY(*NO)	MENU_KEY(*NO)
REQUEST			FIELDS(#EMPLOYEE)	EXIT_KEY(*NO)	MENU_KEY(*NO)

13.		Exit	and	save	your	RDML	function.
14.		Compile	your	RDML	function	iiiPROC03/iiiFN12.

Step	12.	Test	Changes	(Optional)
1.		Execute	your	function	iiiPROC04/iiiFN10.
					Login	using	IIIMYLOG	
2.		Select	the	Administration	department	and	press	the	SEARCH	button.
					Notice	that	the	Click	Here	button	appears	exactly	as	it	did	in	the	previous
exercise.

3.		Press	the	Click	Here	button	for	the	appropriate	Section	which	contains	the
employee	images.

4.		Click	on	the	employee	image.
5.		A	new	window	should	appear	showing	the	employee	details:

Summary
Important	Observations

There	are	many	techniques	for	linking	or	calling	functions.	This	exercise
showed	two	different	examples.	The	first	example	used	the	existing
HandleEvent	JavaScript	function	used	in	LANSA	for	the	Web.	In	order	to
pass	parameters	to	the	called	function,	the	<process>_HIDDEN	fields	were
used.
JavaScript	requires	that	a	field	be	on	the	page	in	order	to	change	its	value.	
The	fields	iiiDEPTWK	and	iiiSECTWK	were	added	to	our	_HIDDEN	for
this	purpose.
When	you	use	an	<A	HREF>	to	execute	a	function,		no	data	is	exchanged	to
the	called	WEBEVENT	function.	(The	<A	HREF>	starts	a	new	Web	job,	as
it	is	calling	a	new	function.)	It	is	exactly	the	same	as	calling	a	function	for
the	first	time	from	a	new	browser	window.	The	function	parameters
(funcparms)	had	to	be	used	to	overcome	this	limitation.	In	this	example,	the
Employee	Number	was	passed	and	the	called	function	used	this	value	to
fetch	the	required	data.
In	the	image	example,	the	image	uses	the	default	image	directory	of	your
Data/Application	Server.		You	could	place	these	images	in	any	directory	and
simply	add	the	directory	to	either	the	component	or	the	field	where	the
image	value	is	stored	in	the	file.
When	you	execute	a	function	from	the	browser	command	line,	you	must
pass	the	parameters	you	wish	the	function	to	use.		Parameters	are	not	passed
automatically.	You	added	the	iiiLOGIN	parameter	as	a	funcparm	so	that	the
STDHEADER	displayed	the	proper	component.
If	you	wish	to	use	the	iiiLOGIN	component,	you	must	use	the	iiiLOGIN
field	somewhere	in	the	function	as	well	as	passing	the	parameter	to	the
function.		In	Step	8,	you	included	a	GROUP_BY	statement	including
iiiLOGIN.		You	could	also	put	the	field	in	a	second	request	or	an	IF
statement	that	does	nothing.	If	iiiLOGIN	is	not	defined	somewhere	in	the
function,	the	value	cannot	be	used	in	the	STDHEADER.

Tips	&	Techniques
Always	create	a	working	field	if	there	is	a	possibility	of	more	than	one
function	using	the	field.		We	could	have	used	the	DEPTMENT	and
SECTION	fields,	however	they	will	likely	be	required	by	other	functions,

and	if	the	values	are	hidden	this	could	cause	some	problems.		These
problems	are	avoided	by	creating	the	temporary	holding	fields.		A	good	Web
site	layout	will	ensure	that	you	know	where	this	needs	to	be	done.
JavaScript	can	be	difficult	to	debug.		There	are	free	or	shared	software
programs	available	that	can	make	this	job	easier.
Creating	a	component	style	button	is	one	way	of	including	a	link	in	a	browse
list.		You	can	also	use	images	or	text	as	links.
Using	HandleEvent	is	one	way	of	creating	a	link	inside	an	LANSA	function.	
Another	technique	is	to	use	the	<A	HREF>	and	to	add	your	funcparms	to
this	line,	using	<RDML	MERGE="<fieldname>">	.
In	this	example,	the	employee	image	file	names	were	placed	in	the
PHONEBUS	field.	If	you	have	an	existing	database,	you	can	attempt	to	use
an	existing	field,	however,	a	better	technique	is	to	create	a	parallel	file	for
storing	the	Web	related	data.	For	example,	you	could	create	a	PLSMT2	file
with	the	same	key	(EMPNO)	but	with	fields	for	the	images,	email	addresses,
etc.
If	possible,	avoid	using	<A	HREF>	tags	to	call	separate	WEBEVENT
functions,	as	it	does	not	pass	any	hidden	values	with	it.		Instead,	modify	the
HandleEvent	JavaScript	or	review	the	example	given	in	the	online
documentation	about	passing	parameters	in	LANSA	for	the	Web.
In	this	example,	a	new	window	was	opened	when	using	the	<A	HREF>	to
call	the	next	function.	This	is	a	good	technique	as	it	emphasizes	the	fact	that
there	is	no	data	being	passed.

What	I	Should	Know
How	to	add	a	link	to	a	browse	list.
How	to	create	process-specific	JavaScript	to	be	used	with	the
DEFAULT_SCRIPT.
How	to	pass	function	parameters	within	a	LANSA	function.
How	to	build	a	browse	list	using	the	parameters	passed	from	another
function.
How	to	add	an	image	to	a	browse	list	using	a	page	component.
How	to	pass	function	parameters	to	a	LANSA	function	using	funcparms.

WEB014	-	Browse	Lists
Objective:

In	this	exercise,	you	will	learn	how	to	customize	the	browse	list	used	in	the
Employee	List	function.	In	the	Web	page	substitution	exercises,	you	learned
how	to	protect	your	HTML	by	using	Web	page	components.	Using	similar
techniques,	you	can	learn	how	to	customize	the	presentation	of	browse	lists.
To	demonstrate	how	to	customize	a	browse	list's	appearance.
To	demonstrate	the	various	manipulation	techniques	associated	with	browse
lists.

To	achieve	these	objectives,	you	must	complete	the	following:
Step	1.	Create	Page	Component	for	Function	iiiFN11
Step	2.	Test	Changes
Step	3.	Create	Graphic	Variable	for	Browse	List
Step	4.	Test	Changes
Step	5.	Customize	Browse	List
Step	6.	Test	Changes
Step	7.	Add	Table	Tags	Around	Browse	List
Step	8.	Test	Changes
Step	9.	Add	Column	Headings	To	Browse	List
Step	10.	Test	Your	Functions
Summary

Step	1.	Create	Page	Component	for	Function	iiiFN11
In	this	step,	you	will	create	a	page	component	for	the	iiiFN11	Employee	List
function	which	contains	a	browse	list.	The	page	component	will	allow	you	to
easily	manipulate	the	appearance	of	the	browse	list	and	it	will	prevent	changes
to	the	HTML	from	being	replaced	when	the	function	is	recompiled.
1.		Using	the	LANSA	for	the	Web	Editor,	open	a	new	document.
2.		Delete	the	default	HTML	which	appears	in	the	new	page.
3.		Open	the	iiiPROC03	iiiFN11001	HTML	page.
					Copy	all	the	HTML	statements	in	the	table	definition,	i.e.	copy	all	code
between	the	following	tags:
<TABLE	BORDER=0	CELLPADDING=0	CELLSPACING=3>
<TBODY>
	
copy	all	HTML	code	here	including	the	tag	below,	but	do	not	include	the	table	tags	shown	above.
	

	
<RDML	MERGE="@BLiiiEMPLST		">
	

4.Paste	the	HTML	code	into	your	new	page.
					Your	code	should	appear	as	follows:
<TR>
</TR>
<TR>
<TD><RDML	MERGE="@T0021+0323+0337">
</TD>
<RDML	ONMODE="DIS">
<TD><RDML	MERGE="iiiDEPTWK	"></TD>
</RDML>
<RDML	ONMODE="DLT">
<TD><RDML	MERGE="iiiDEPTWK	"></TD>
</RDML>
<RDML	ONMODE="ADD">
<TD>
<INPUT	NAME="AiiiDEPTWK"	TYPE="TEXT"	SIZE="004"	MAXLENGTH="004"

VALUE="<RDML	MERGE="iiiDEPTWK	">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>
</RDML>
<RDML	ONMODE="CHG">
<TD>
<INPUT	NAME="AiiiDEPTWK"	TYPE="TEXT"	SIZE="004"	MAXLENGTH="004"
VALUE="<RDML	MERGE="iiiDEPTWK	">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>
</RDML>
</TR>
<TR>
<TD><RDML	MERGE="@T0022+0338+0352">
</TD>
<RDML	ONMODE="DIS">
<TD><RDML	MERGE="iiiSECTWK	"></TD>
</RDML>
<RDML	ONMODE="DLT">
<TD><RDML	MERGE="iiiSECTWK	"></TD>
</RDML>
<RDML	ONMODE="ADD">
<TD>
<INPUT	NAME="AiiiSECTWK"	TYPE="TEXT"	SIZE="002"	MAXLENGTH="002"
VALUE="<RDML	MERGE="iiiSECTWK	">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>
</RDML>
<RDML	ONMODE="CHG">
<TD>
<INPUT	NAME="AiiiSECTWK"	TYPE="TEXT"	SIZE="002"	MAXLENGTH="002"
VALUE="<RDML	MERGE="iiiSECTWK	">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>
</RDML>
</TR>
	
</TBODY>
</TABLE>

	

	

<RDML	MERGE="@BLiiiEMPLST		">
	

5.		Manually	type	the	names	of	the	iiiDEPTWK	and	iiiSECTWK	fields	instead
of	using	the		<RDML	MERGE="@T……."	tags.

					The	final	pages	should	appear	as	follows(changes	are	bold):
<TR>
</TR>
<TR>
<TD>Department</TD>
<RDML	ONMODE="DIS">
<TD><RDML	MERGE="iiiDEPTWK	"></TD>
</RDML>
<RDML	ONMODE="DLT">
<TD><RDML	MERGE="iiiDEPTWK	"></TD>
</RDML>
<RDML	ONMODE="ADD">
<TD>
<INPUT	NAME="AiiiDEPTWK"	TYPE="TEXT"	SIZE="004"	MAXLENGTH="004"
VALUE="<RDML	MERGE="iiiDEPTWK	">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>
</RDML>
<RDML	ONMODE="CHG">
<TD>
<INPUT	NAME="AiiiDEPTWK"	TYPE="TEXT"	SIZE="004"	MAXLENGTH="004"
VALUE="<RDML	MERGE="iiiDEPTWK	">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>
</RDML>
</TR>
<TR>
<TD>Section</TD>
<RDML	ONMODE="DIS">
<TD><RDML	MERGE="iiiSECTWK	"></TD>
</RDML>
<RDML	ONMODE="DLT">
<TD><RDML	MERGE="iiiSECTWK	"></TD>
</RDML>
<RDML	ONMODE="ADD">
<TD>

<INPUT	NAME="AiiiSECTWK"	TYPE="TEXT"	SIZE="002"	MAXLENGTH="002"
VALUE="<RDML	MERGE="iiiSECTWK	">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>
</RDML>
<RDML	ONMODE="CHG">
<TD>
<INPUT	NAME="AiiiSECTWK"	TYPE="TEXT"	SIZE="002"	MAXLENGTH="002"
VALUE="<RDML	MERGE="iiiSECTWK	">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>
</RDML>
</TR>
	
</TBODY>
</TABLE>

	

	
<RDML	MERGE="@BLiiiEMPLST		">
	

6.		Save	the	document	as	iiiFN11P	with	description	iiiFN11	Page	Component.
7.		Using	the	LANSA	for	the	Web	editor,	open	the	Maintain	Components
window.

8.		Select	Add,	to	add	a	new	component	as	follows	(where	iii	is	your	course
assigned	ID):

Component iiiFN11P

Type Page

	

Description iiiFN11	Page	Component

Page iiiFN11P

Mode OUTPUT

	

9.		Close	the	Maintain	Components	window.
10.			Working	with	your	iiiPROC03	process,	edit	the	function	named	iiiFN11
Employee	List.

					Define	a	new	field	iiiFN11P	which	will	be	used	for	the	Web	page	component
iiiFN11P.

					You	will	manually	insert	a	Display	command	prior	to	the	display	command
that	is	already	in	this	function.		It	will	display	only	one	field	iiiFN11P	with	an
attribute	of	*NOID.

					The	finished	code	might	appear	as	follows:
FUNCTION		(*DIRECT	*WEBEVENT)
DEFINE				FIELD(#iiiIMAGE)	REFFLD(#PHONEBUS)
DEFINE				FIELD(#iiiFN11P)	TYPE(*CHAR)	LENGTH(1)
DEF_LIST		NAME(#iiiEMPLST)	FIELDS((#iiiIMAGE	*NOID)(#EMPNO)
(#GIVENAME)	(#SURNAME)(#PHONEBUS	*HIDDEN))																
CLR_LIST		NAMED(#iiiEMPLST)
SELECT			
FIELDS((#iiiEMPLST))	FROM_FILE(PSLMST1)	WITH_KEY(#iiiDEPTWK	#iiiSECTWK)	IO_STATUS(*STATUS)	IO_ERROR(*NEXT)	VAL_ERROR(*NEXT)																																											
ADD_ENTRY	TO_LIST(#iiiEMPLST)
ENDSELECT	
DISPLAY		
FIELDS((#iiiFN11P	*NOID))	EXIT_KEY(*NO)	MENU_KEY(*NO)
DISPLAY		
FIELDS((#iiiDEPTWK)	(#iiiSECTWK))	BROWSELIST(#iiiEMPLST)	EXIT_KEY(*NO)	MENU_KEY(*NO)

11.		Exit	and	save	your	RDML	function.
12.		Compile	your	RDML	function	iiiPROC03/iiiFN11.

Step	2.	Test	Changes
You	may	wish	to	test	your	changes	before	continuing.		It	is	always	a	good	idea
to	ensure	that	the	function	displays	properly	after	creating	a	component	page.
1.		Execute	your	function	iiiPROC04/iiiFN10.
2.		Login	using	iiiMYLOG.	
3.			Select	the	Administration	department	and	press	the	SEARCH	button.
					Notice	that	the	Click	Here	button	appears	exactly	as	it	did	in	the	previous
exercise.

4.		Press	the	Click	Here	button	for	the	appropriate	Section	containing	the
employee	images.

					The	iiiFN11	should	appear	as	before,	except	that	it	is	now	using	the	iiiFN11P
Web	page	component.

Step	3.	Create	Graphic	Variable	for	Browse	List
In	this	step,	you	will	create	a	graphic	variable	for	your	browse	list	in	iiiFN11.
The	LANSA	for	the	Web	Editor	will	be	used	to	manually	create	the	graphic
variable.	The	Web	Functions	Wizard	could	also	be	used	to	configure	the	browse
list.
1.		Using	the	LANSA	for	the	Web	editor,	open	the	Graphic	Variables	window.
2.		Click	the	Add	button.
3.		Create	a	new	Graphic	Variable	as	follows	(where	iii	is	your	course	assigned
ID):

Name: *LW3BL_iiiEMPLST

Type: TEXT

Value: *NOBPCIT

	

4.		Click	OK.	Close	the	Graphic	Variables	window.

Step	4.	Test	Changes
In	this	step,	you	will	test	the	changes	made	to	the	browse	list	by	the	graphical
variable.
1.		Execute	your	function	iiiPROC04/iiiFN10.
2.		Login	using	iiiMYLOG.	
3.		Select	the	Administration	department	and	press	the	SEARCH	button.
					Notice	that	the	Click	Here	button	appears	exactly	as	it	did	in	the	previous
exercise.

4.		Press	the	Click	Here	button	for	the	appropriate	Section	which	contains	the
employee	images.

					You	will	notice	that	the	layout	of	the	information	is	not	well	organized,	as
your	graphic	variable	specified	no	table	tags.	(The	browse	list	appearance
will	be	improved	in	the	upcoming	steps.)

Step	5.	Customize	Browse	List
In	this	step,	you	will	create	a	page	component	for	the	browse	list	used	in
function	iiiFN11.	This	component	will	allow	you	to	customize	the	browse	list
appearance.		After	adding	the	component	to	the	browse	list,	all	other	fields	will
be	hidden	so	that	only	the	component	appears	on	your	Web	page.		This
technique	is	the	best	way	to	manipulate	the	layout	of	a	browse	list	without
having	recompiles	affect	the	changes.	
1.		Using	the	LANSA	for	the	Web	editor,	create	a	new	HTML	page.	
2.		When	the	new	page	appears,	delete	all	of	the	default	HTML	code.
3.		Add	the	following	lines	to	the	page:
<TR>
<TD	VALIGN="MIDDLE"><RDML	COMPONENT="iiiIMAGE"></TD>
<TD	VALIGN="MIDDLE"><RDML	MERGE="GIVENAME"></TD>
<TD	VALIGN="MIDDLE"><RDML	MERGE="SURNAME"></TD>
<TD	VALIGN="MIDDLE"><RDML	MERGE="EMPNO"></TD>
</TR>
	

					Notice	that	you	have	changed	the	order	of	the	fields	from	the	order	used	in
the	browse	list.

4.		Save	the	document	as	iiiBL11	with	description	iiiFN11	Browse	List
Component.

5.		Using	the	LANSA	for	the	Web	editor,	open	the	Maintain	Components
window.

6.		Select	Add,	to	add	a	new	component	as	follows	(where	iii	is	your	course
assigned	ID):

Component iiiBL11	

Type Page

Description iiiFN11	Browse	List	Component

Page iiiBL11

Mode OUTPUT

	

7.		Close	the	Maintain	Components	window.
8.		Working	with	your	iiiPROC03	process,	edit	the	function	named	iiiFN11
Employee	List.

					Define	a	new	field	iiiBL11	which	will	be	used	for	the	Web	page	component
iiiBL11.
DEFINE				FIELD(#iiiBL11)	TYPE(*CHAR)	LENGTH(1)

					Change	the	browse	list	by	removing	the	iiiIMAGE	field	as	this	component	is
now	embedded	using	the	iiiBL11	Web	component.	Change	the	remaining
fields	to	use	an	attribute	of	*HIDDEN.	Finally,	add	the	field	iiiBL11	with	an
attribute	of	*NOID	to	the	beginning	of	the	list.	

					The	DEF_LIST	should	appear	as	follows:
DEF_LIST			NAME(#iiiEMPLST)	FIELDS((#iiiBL11	*NOID)
(#EMPNO	*HIDDEN)	(#GIVENAME	*HIDDEN)	(#SURNAME	*HIDDEN)
(#PHONEBUS	*HIDDEN))	ENTRYS(9999)																																																

9.		Exit	and	save	your	RDML	function.
10.			Compile	your	RDML	function	iiiPROC03/iiiFN11.

Step	6.	Test	Changes

Execute	your	function	iiiPROC04/iiiFN10.

2.			Login	using	iiiMYLOG.	
3.		Select	the	Administration	department	and	press	the	SEARCH	button.
					Notice	that	the	Click	Here	button	appears	exactly	as	it	did	in	the	previous
exercise.

3.		Press	the	Click	Here	button	for	the	appropriate	Section	which	contains	the
employee	images:

					Your	iiiFN01	browse	list	should	be	displayed	as	before,	except	that	the	fields
being	displayed	are	controlled	by	the	iiiBL11	Web	page	component	which	is
substituted	for	the	<RDML	MERGE="@BLiiiEMPLST		">	in	the	iiiFN11P.
If	you	view	the	source	for	the	page,	you	will	notice	that	the	<TR>	and	<TD>
tags	are	being	sent	to	the	browser	(as	part	of	the	iiiBL	component);	however,
the	<TABLE>	tags	have	not	be	added	so	the	data	is	not	formatted.	The
<TABLE>	tags	will	be	added	in	the	next	step.

					Notice	that	the	EMPNO	field	is	now	displayed	as	the	last	field	based	on	the
order	of	the	table	data	you	specified	in	the	iiiBL11	Web	page	component.

Step	7.	Add	Table	Tags	Around	Browse	List
In	this	step,	you	will	correct	the	appearance	of	the	browse	list	on	the	employee
list	screen.		You	will	do	this	by	adding	table	tags	around	the	browse	list	tag
inside	of	the	HTML	component	iiiFN11P.
1.		Using	the	LANSA	for	the	Web	Editor,	open	the	HTML	page	iiiFN11P.
2.		Edit	the	page	by	placing	the	following	open	and	close	table	tag	around	the
browse	list	tag.	*Hint:	This	tag	can	be	recognized	by	searching	for	<RDML
MERGE="@.	
<TABLE	BORDER="1"	cellpadding="10"	cellspacing="1">
</TABLE>
	

3.		Your	page	should	contain	the	following	code:
...
	
</TBODY>
</TABLE>

	

	
<TABLE	BORDER="1"	cellpadding="10"	cellspacing="1">
<RDML	MERGE="@BLiiiEMPLST">
</TABLE>
	

4.		Save	the	document.

Step	8.	Test	Changes

Execute	your	function	iiiPROC04/iiiFN10.

a.		Login	using	iiiMYLOG.	
b.		Select	the	Administration	department	and	press	the	SEARCH	button.

						Notice	that	the	Click	Here	button	appears	exactly	as	it	did	in	the	previous
exercise.

3.		Press	the	Click	Here	button	for	the	appropriate	Section	which	contains	the
employee	images.

Step	9.	Add	Column	Headings	To	Browse	List
In	this	step,	you	will	add	column	headings	to	your	table	to	give	the	data	in	your
browse	list	meaning.		This	will	also	be	done	in	the	page	component	iiiFN11P.	
1.		Using	the	LANSA	for	the	Web	editor,	open	the	HTML	page	iiiFN11P.
2.		Edit	the	page	by	placing	the	following	code	between	the	<TABLE>	tag	you
just	added	in	the	step	above	and	the	<RDML	MERGE="@BLiiiEMPLST">
line.
<TR>
<TD	ALIGN="LEFT">Employee	
Photo</TD>
<TD	COLSPAN="2"	ALIGN="LEFT">Employee	
Name</TD>
<TD	ALIGN="LEFT">Employee
	Number</TD>
</TR>
	

3.		The	final	HTML	code	for	iiiFN11P	should	appear	as	follows:
<TR>
</TR>
<TR>
<TD>DEPARTMENT:</TD>
<RDML	ONMODE="DIS">
<TD><RDML	MERGE="DEPTMENT	"></TD>
</RDML>
<RDML	ONMODE="DLT">
<TD><RDML	MERGE="iiiDEPTWK	"></TD>
</RDML>
<RDML	ONMODE="ADD">
<TD>
<INPUT	NAME="AiiiDEPTWK"	TYPE="TEXT"	SIZE="004"	MAXLENGTH="004"
VALUE="<RDML	MERGE="iiiDEPTWK	">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>
</RDML>
<RDML	ONMODE="CHG">
<TD>
<INPUT	NAME="AiiiDEPTWK"	TYPE="TEXT"	SIZE="004"	MAXLENGTH="004"
VALUE="<RDML	MERGE="iiiDEPTWK	">"
onFocus="SetNameLocation('AiiiDEPTWK',03,18)"></TD>
</RDML>

</TR>
<TR>
<TD>SECTION:</TD>
<RDML	ONMODE="DIS">
<TD><RDML	MERGE="SECTION"></TD>
</RDML>
<RDML	ONMODE="DLT">
<TD><RDML	MERGE="iiiSECTWK	"></TD>
</RDML>
<RDML	ONMODE="ADD">
<TD>
<INPUT	NAME="AiiiSECTWK"	TYPE="TEXT"	SIZE="002"	MAXLENGTH="002"
VALUE="<RDML	MERGE="iiiSECTWK	">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>
</RDML>
<RDML	ONMODE="CHG">
<TD>
<INPUT	NAME="AiiiSECTWK"	TYPE="TEXT"	SIZE="002"	MAXLENGTH="002"
VALUE="<RDML	MERGE="iiiSECTWK	">"
onFocus="SetNameLocation('AiiiSECTWK',04,18)"></TD>
</RDML>
</TR>
	
</TBODY>
</TABLE>

	

<TABLE	BORDER="1"	cellpadding="10"	cellspacing="1">
<TR>
<TD	ALIGN="LEFT">Employee	
Photo</TD>
	
<TD	COLSPAN="2"	ALIGN="LEFT">Employee	
Name</TD>
<TD	ALIGN="LEFT">Employee
	Number</TD>
</TR>
<RDML	MERGE="@BLiiiEMPLST		">
</TABLE>
	

4.		Save	the	document.

Step	10.	Test	Your	Functions
In	this	step,	you	will	test	the	changes	made	above,	as	this	will	ensure	that	the
changes	to	your	function	iiiFN12	have	occurred.		It	is	also	a	good	idea	to	ensure
that	the	function	displays	after	creating	a	component	page.
1.		Execute	your	function	iiiPROC04/iiiFN10.
2.		Login	using	iiiMYLOG.	
3.		Select	the	Administration	department	and	press	the	SEARCH	button.
					Notice	that	the	Click	Here	button	appears	exactly	as	it	did	in	the	previous
exercise.

3.		Press	the	Click	Here	button	for	the	appropriate	Section	containing	the
employee	images.

Summary
Important	Observations

Creating	a	page	component	is	one	way	of	enhancing	the	appearance	of	any
page.		You	can	use	them	stand	alone	or	inside	other	components.
The	<RDML	MERGE="@BLiiiEMPLST		">	tag	is	very	important	when
customizing	a	browse	list.	LANSA	dynamically	generates	the	browse	list
HTML	so	you	cannot	edit	it	directly.	By	using	Web	page	components,	and
by	knowing	the	list	content,	you	can	control	the	browse	list	presentation.
The	graphical	variable*LW3BL_iiiEMPLST	is	very	important.	The
*NOBPCIT	settings	allow	you	to	customize	the	browse	list	presentation	as
described	in	Step	7	and	9.
The	iiiBL11	Web	page	component	allows	you	to	control	the	browse	list
presentation.	You	can	add	images	(as	in	the	case	of	the	iiiIMAGE
component)	or	you	can	change	the	order	that	the	information	is	presented.	It
is	very	important	to	note	that	the	iiiIMAGE	component	works	because
PHONEBUS	is	a	hidden	field	in	the	browse	list.	PHONEBUS	contains	the
data	required	by	the	iiiIMAGE	component.
The	use	of	the	two	DISPLAY	statements	is	very	important	to	this	technique.
Only	the	first	DISPLAY	is	executed	when	the	function	is	called.	However,
the	data	defined	in	the	browse	list	of	the	second	DISPLAY	will	be
exchanged	with	the	function.

DISPLAY		
FIELDS((#iiiFN11P	*NOID))	EXIT_KEY(*NO)	MENU_KEY(*NO)
DISPLAY		
FIELDS((#iiiDEPTWK)	(#iiiSECTWK))	BROWSELIST(#iiiEMPLST)	EXIT_KEY(*NO)	MENU_KEY(*NO)
Once	the	iiiBL11	Web	page	component	was	inserted	into	the	browse	list,	the
browse	list	definition	was	altered	so	that	all	fields	were	made	to	be	hidden
and	the	iiiIMAGE	component	was	removed.	The	iiiIMAGE	field	was
included	directly	in	the	iiiBL11	component.

DEF_LIST		NAME(#iiiEMPLST)	FIELDS((#iiiBL11	*NOID)
(#EMPNO	*HIDDEN)	(#GIVENAME	*HIDDEN)	(#SURNAME	*HIDDEN)
(#PHONEBUS	*HIDDEN))	ENTRYS(9999)																																																

Tips	&	Techniques
The	browse	list	customization	technique	described	in	this	exercise	is	a	very

common	method	of	enhancing	the	presentation	of	your	Web	functions.

What	I	Should	Know
How	to	build	a	browse	list	inside	a	Web	page	component.
How	to	customize	a	browse	list.

WEB015	-	Data	Apportionment
Objective:

In	this	exercise,	you	will	learn	how	data	apportionment	is	performed	with
LANSA	for	the	Web.	You	will	create	a	single	screen	which	allows	the	user	to
enter	some	comments	into	an	input	text	area	in	the	browser.	When	the	screen
is	submitted,	the	entered	text	will	be	divided	into	a	group	of	working	fields.
The	working	fields	will	be	redisplayed	on	the	screen,	just	below	the	input
text	area.
To	learn	how	to	overcome	the	256	character	field	limitation	for	input	fields
used	with	text	areas	in	the	browser.
To	learn	how	to	create	a	page	component	containing	both	input	and	output
components	using	only	one	REQUEST.

To	achieve	these	objectives,	you	must	complete	the	following:
Step	1.	Create	iiiFN13	–	Contact	Us
Step	2.	Create	a	New	Page	Component
Step	3.	Compile	and	Test	Your	Function	iiiFN13
Step	4.	Using	JavaScript	Alerts	(Optional)
Summary

Step	1.	Create	iiiFN13	–	Contact	Us
In	this	step,	you	will	create	function	iiiFN13	Contact	Us	in	process	iiiPROC03.	
This	function	will	simply	request	data	using	an	input	text	area	and	then	it	will
display	the	contents	of	the	fields	after	the	data	apportionment	has	taken	place.
1.		Working	with	your	iiiPROC03	process,	create	a	new	function	named	iiiFN13
Contact	Us.	You	will	manually	enter	the	code	for	the	function.

2.		Write	the	RDML	Code	to	perform	the	following	tasks:
Define	a	field	called	iiiCOMENT	to	be	used	for	Web	page	component
substitution.
Define	three	fields	named	COMMNT,	COMMNT001,	and	COMMNT002.
These	fields	will	be	used	as	the	input	fields	from	the	text	area.	Fields	are
alpha,	length	20.
Define	three	fields	named	COMOUT,	COMOUT001,	COMOUT002.	These
fields	will	be	used	to	display	the	values	of	the	COMMNT	fields.
Change	the	values	of	COMOUT,	COMOUT001,	AND	COMOUT003	to	the
values	of	COMMNT,	COMMNT001	AND	COMMNT002.
Change	COMMNT,	COMMNT001,	COMMNT002	fields	to	*BLANKS.
Request	the	page	component	iiiCOMENT.	Include	a	SUBMIT	user	key
which	will	call	iiiFN13	(re-entrant	WEBEVENT	function).

Solution:
One	possible	solution	to	this	exercise	is	shown	below	(where	iii	is	your	course
assigned	ID):
FUNCTION		(*DIRECT	*WEBEVENT)
DEFINE				FIELD(#iiiCOMENT)	TYPE(*CHAR)	LENGTH(1)
DEFINE				FIELD(#COMMNT)	TYPE(*CHAR)	LENGTH(20)
DEFINE				FIELD(#COMMNT001)	TYPE(*CHAR)	LENGTH(20)
DEFINE				FIELD(#COMMNT002)	TYPE(*CHAR)	LENGTH(20)
DEFINE				FIELD(#COMOUT)	TYPE(*CHAR)	LENGTH(20)
DEFINE				FIELD(#COMOUT001)	TYPE(*CHAR)	LENGTH(20)
DEFINE				FIELD(#COMOUT002)	TYPE(*CHAR)	LENGTH(20)
CHANGE				FIELD(#COMOUT)	TO(#COMMNT)
CHANGE				FIELD(#COMOUT001)	TO(#COMMNT001)
CHANGE				FIELD(#COMOUT002)	TO(#COMMNT002)
CHANGE			

FIELD(#COMMNT	#COMMNT001	#COMMNT002)	TO(*BLANKS)
REQUEST		
FIELDS((#iiiCOMENT	*NOID))	EXIT_KEY(*NO)	MENU_KEY(*NO)	USER_KEYS((01	SUBMIT))																			

3.		Exit	and	save	your	RDML	function.
4.		Do	not	compile	the	function	at	this	time.

Step	2.	Create	a	New	Page	Component
In	this	step,	you	will	create	the	new	page	component	iiiCOMENT	that	will	be
used	with	the	function	you	created	in	Step	1.		It	will	be	a	very	simple	page
containing	one	input	text	area	(3	rows	by	20	characters	wide)	and	three	output
fields	to	display	the	contents	of	the	text	box.	You	will	also	register	your	key
word	SUBMIT	to	create	a	WEBEVENT	link	so	that	iiiFN13	calls	itself.
1.		Using	the	LANSA	for	the	Web	editor,	create	a	new	HTML	page.
2.		When	the	new	page	appears,	delete	all	the	default	HTML	code.
3.		Add	the	following	lines	to	the	page:
					Please	enter	your	question	below:

<RDML	CHECKVALUE="YES">
<TEXTAREA	NAME="COMMNT				-
L020"	WRAP="PHYSICAL"	ROWS=3	COLS=20>
<RDML	MERGE="COMMNT">
<RDML	MERGE="COMMNT001">
<RDML	MERGE="COMMNT002">
</TEXTAREA>
</RDML>
	
<P>
					Your	text	is	stored	as:

COMMNT	field: <RDML	MERGE="COMOUT			">

COMMNT001	field: <RDML	MERGE="COMOUT001">

COMMNT002	field: <RDML	MERGE="COMOUT002">
	

					Important	Note:	Be	sure	to	enter	the	text	area	command	exactly	as	show.
There	should	be	4	blank	spaces	between	COMMNT	and	-L020.
<TEXTAREA	NAME="COMMNT				-L020"	WRAP="PHYSICAL"
ROWS=3	COLS=20>

	
4.		Save	your	document	as	iiiCOMENT	with	description	Data	Apportionment

Component.
5.		Using	the	LANSA	for	the	Web	editor,	open	the	Maintain	Components
window.

6.		Select	Add,	to	add	a	new	component	as	follows.	(where	iii	is	your	course
assigned	ID):

Component iiiCOMENT

Type PAGE

	

Description Data	Apportionment	Component

Page iiiCOMENT

Mode Input

	

7.		Close	the	Maintain	Components	window.
8.		Use	the	Tools	menu	category	and	select	the	Keywords	–	Maintain	option.	
Do	not	enter	a	process.	Press	the	OK	button	to	continue.		Press	the	add	button
to	create	a	link	to	by	entering	the	following	information:

Process iiiPROC03

Function iiiFN13

Keyword SUBMIT

Description Submit	Request

Linked	Process iiiPROC03

Linked	Function iiiFN13

	

Step	3.	Compile	and	Test	Your	Function	iiiFN13
In	this	step,	you	will	compile	your	function	iiiFN13	so	that	the	new	component
is	recognized.		Remember	that	without	the	recompile	you	will	not	see	the
component	you	just	created.
1.		Compile	your	function	iiiPROC03/iiiFN13.
2.		Check	that	your	compile	completed	successfully.
3.		Execute	your	function	iiiPROC03/iiiFN13.
4.		Enter	any	information	you	like	into	the	text	box	in	less	than	60	characters.	
5.		Press	the	Submit	Request	button	to	view	the	output.

6.		Enter	more	than	60	characters.
Notice	what	happens	to	the	data	when	you	click	the	Submit	Request	button.

					The	error	message	is	displayed:

Step	4.	Using	JavaScript	Alerts	(Optional)
In	this	step,	you	will	add	JavaScript	to	your	component	iiiCOMENT	to	ensure
that	the	user	cannot	add	anymore	text	than	is	available.

		Using	the	LANSA	HTML	Editor,	open	your	iiiCOMENT	page.
		Add	the	following	code	to	the	HTML	for	the	text	area:

onkeyup="ChkLngTBox(this,60);"
	

					The	code	should	now	appear	something	like	below.
<RDML	CHECKVALUE="YES">
<TEXTAREA	NAME="COMMNT				-
L020"	WRAP="PHYSICAL"	ROWS="3"	COLS="20"	onkeyup="ChkLngTBox(this,60);">
<RDML	MERGE="COMMNT">
<RDML	MERGE="COMMNT001">
<RDML	MERGE="COMMNT002">
</TEXTAREA>
</RDML>
	

3.		Add	the	following	code	to	the	very	bottom	of	the	HTML	for	iiiCOMENT:
<SCRIPT	LANGUAGE="JavaScript">
function	ChkLngTBox(object,mylength)
{
var	x=object.value
var	mylength
if	(x.length	>=	++mylength){
alert('You	have	exceeded	the	maximum	size	for	this	comment	field.');
x=x.substr(0,mylength);
object.value=x;
}
}
</SCRIPT>
	

4.		Save	your	page	iiiCOMENT.
5.		Execute	your	function	iiiPROC03/iiiFN013	and	attempt	to	key	in	more	than

60	characters.
					Notice	that	no	compile	is	necessary	for	this	change	to	occur.
					A	message	should	appear,	telling	you	that	you	have	exceeded	the	maximum
size	for	this	field.		If	it	does	not,	check	that	there	is	not	a	script	error	or	that
you	have	mistyped	a	variable	name.		(Remember:	JavaScript	is	a	case
sensitive	language.

	

Summary
Important	Observations

In	this	example,	the	data	apportionment	fields	were	only	defined	as	20
characters.	In	your	applications,	your	fields	could	be	much	larger	(up	to	256
characters).
Data	apportionment	provides	a	solution	to	the	256	character	field	limitation
by	parsing	the	data	into	a	grouping	of	related	fields.	A	user	could	enter	500
characters	of	text	which	cannot	be	stored	in	a	single	LANSA	field.	Using
data	apportionment,	the	text	can	be	stored	in	two	fields.
In	this	example,	the	fields	were	simply	written	back	out	to	the	screen	to
show	you	how	the	data	apportionment	is	performed.	In	your	application,
these	fields	might	be	written	to	a	database	file.

Tips	&	Techniques
The	fields	used	for	the	data	apportionment	must	be	exactly	9	characters	in
length.		If	the	primary	field	name	is	EXAMPLE,	then	the	related	field	names
would	be	EXAMPLE01	and	EXAMPLE02,	etc.
When	specifying	the	length	of	the	data	apportionment	(default	length	is	256
characters),	the	"–Lnnn"	text	specification	must	start	in	the	eleventh
position,	i.e.	the	field	name	must	allow	for	10	characters	(9	character	field
name	plus	a	blank).	For	example:
<TEXTAREA	NAME="COMMNT				-L020"	WRAP="PHYSICAL"
ROWS=3	COLS=20>
The	column	width	of	the	text	area	does	not	have	to	equal	the	length	of	the
apportionment	fields,	however	it	does	help	to	determine	if	the	text	area
apportionment	is	working	correctly.	In	this	example,	the	text	area	could	have
been	ROWS=6	COLS=10,	or	ROWS=2	COLS=30.
JavaScript	can	be	very	helpful	in	ensuring	that	the	correct	data	enters	your
system.		Along	with	the	line	added	to	the	text	area	in	the	above	example	you
could	also	add	onChange="ChkLngTBox(this,60);"	after	the	last	quote	of	the
onkeyup.		This	will	also	catch	an	overflow	if	the	user	pastes	data	to	the	field.

What	I	Should	Know
How	to	add	a	text	area	to	a	LANSA	Web	page.
How	to	use	data	apportionment	to	solve	the	256	character	field	limitation.

How	to	use	data	apportionment	to	enhance	Web	pages.

WEB016	-	Customizing	Personnel	Application	(Optional)
Objective:

In	this	optional	exercise,	you	may	use	the	Web	Functions	Wizard	(described
in	the	Web	Functions	Wizard	Guide	to	customize	your	Personnel	System
application.	You	could	complete	this	exercise	before	you	begin	exercise
WEB010	(i.e.	before	you	have	started	building	your	application)	or	after	you
have	completed	exercise	WEB015	(i.e.	after	all	the	functions	have	been
created).
To	customize	the	color	schemas	or	presentation	layout	of	your	Personnel
System	application.
To	define	the	menu	components	for	your	application.
To	define	the	user	navigation	within	the	application.

To	achieve	these	objectives,	you	must	complete	the	following:
Step	1.	Design	Your	Layout
Step	2.	Test
Summary

javascript:void(0);openCHM('lansa089.chm','lansa');

Step	1.	Design	Your	Layout
In	this	step,	you	will	design	the	general	navigation	and	layout	of	the	application.
1.		Decide	on	the	general	layout	you	would	like	to	use	for	your	application.
2.		Determine	the	menu	components	that	you	will	require	to	create	the	desired
user	navigation.

					You	might	want	to	create	links	to	the	Login	and	Contact	Us	functions	using	a
vertical	menu.

					Or,	you	might	want	to	create	DHTML	menus	for	the	various	department	and
section	functions.

3.		Execute	the	Web	Functions	Wizard	to	build	your	application	interface.
4.		Tip:	Remember	that	you	can	adopt	layouts	between	your	processes	in	order
to	quickly	create	a	common	look-and-feel	to	your	application.

Step	2.	Test
1.		Execute	your	test	application	and	verify	that	the	user	navigation	works	as
designed.

Summary
Important	Observations

You	can	create	your	layouts	before	you	create	your	processes	and	functions.
The	Web	Functions	Wizard	creates	a	layout	definition	which	will	be	used	by
the	processes	and	functions	once	they	are	created.	Obviously,	if	a	function
has	not	been	created,	you	cannot	test	the	link	to	the	function.
Remember,	the	STDTABFLR	field	must	be	included	in	your	functions	as	a
hidden	field	or	it	can	be	added	to	DEFAULT_HIDDEN,	if	you	wish	the
selected	function	to	be	highlighted.

Tips	&	Techniques
Using	the	Web	Functions	Wizard	,	you	can	quickly	and	easily	define	the
layout	and	user	navigation	for	your	application.	Try	different	layouts	and
schemas.
Remember	to	make	note	of	the	visualization	and	color	selected,	as	the
Wizard	does	not	show	your	existing	settings.
Think	carefully	when	specifying	the	Reuse	Job	and	Start	in	New	Window
options.	You	must	understand	the	type	of	function	executing	and	the
navigation	required	to	and	from	the	function.
Reminder:	If	you	are	using	a	tool	bar,	you	will	not	usually	select	the	Start	in
New	Window	option.
Do	not	use	the	user	defined	visual	style	for	the	Horizontal	Menu
components.

What	I	Should	Know
How	to	use	the	Web	Functions	Wizard	to	customize	your	application.

Personnel	Demonstration	System
For	details	about	the	Personnel	Demonstration	System	shipped	with	the	LANSA
software,	review	the	following:
Personnel	System	Demonstration	Files
Physical	Database	Map	of	Personnel	System
Sample	Data	in	the	Personnel	Files
For	details	about	installing	the	Personnel	Demonstration	System,	refer	to	the
Tutorials	for	Web	Functions	&	WEBEVENTs.

Personnel	System	Demonstration	Files
The	company	has	a	simple	organizational	structure.	It	is	divided	into
departments	such	as	Administration,	Audit,	Information	Services,	Legal,	Travel,
etc.	Each	of	these	departments	may	have	one	or	more	sections	such	as
Accounting,	Purchasing,	Sales,	etc.	The	Department	table	(DEPTAB)	stores	the
list	of	departments.	The	Section	table	(SECTAB)	is	used	to	store	the	sections
within	each	department.
The	Personnel	Master	file	(PSLMST)	stores	details	about	each	employee.	For
example,	the	employee's	name,	address,	and	telephone	number	are	stored	in	this
master	file.	As	each	employee	works	in	a	section	of	a	department,	this
information	is	also	stored	in	the	Personnel	Master	file.
Each	employee	also	has	a	list	of	skills.	For	example,	an	employee	might	have
Cobol,	C	and	C++	programming	skills	or	management	and	administration	skills.
A	Skills	table	(SKLTAB)	is	used	to	store	the	skill	codes.	A	Personnel	Skills	file
(PSLSKL)	stores	the	specific	skills	of	each	employee.
The	Personal	Event	Log	file	(PSLEVENT)	allows	significant	events	and	notes
to	be	recorded	against	an	employee.	It	logically	extends	the	PSLMST	file.	It	is
an	RDMLX	file	and	therefore	will	only	be	available	in	an	RDMLX	partition.
The	Personnel	Time	Sheet	file	(PSLTIMES)	records	employee	time	sheet
details.	Details	are	recorded	by	week	number	(1	to	52)	within	a	year	for	each
employee.	It	is	designed	mostly	for	use	with	L/Client	and	to	show	extensive
trigger	power	by	performing	relatively	complex	calculations	and	storing	them	in
the	DBMS	without	the	application	needing	to	know	what	is	happening.		Note
that	all	the	data	is	created	and	stored	in	the	DBMS	when	information	is	created
or	updated,	which	means	that	L/Client	applications	have	read	access	to	it
without	needing	to	use	the	triggers.	It	is	an	RDMLX	file	and	therefore	will	only
be	available	in	an	RDMLX	partition.	It	contains	examples	of	a	number	of
RDMLX	field	types	including	BLOB.
The	physical	database	layout	follows.

Physical	Database	Map	of	Personnel	System
(Including	Virtual	and	Predetermined	Join	Fields)

Historical	note:	The	LANSA	Personnel	Demonstration	System	was
originally	created	in	1987	to	execute	on	a	System	38.	This	same
application	can	still	be	executed	on	IBM	i	as	well	as	Windows,	WEB
and	Linux	platforms.	The	original	database	and	application	are
virtually	unchanged	but	there	have	been	some	extensions	to	the
database	to	demonstrate	RDMLX	concepts.	
This	shows	how	LANSA	can	protect	your	investment	in	your
applications.
There	are	two	web	versions	of	the	Personnel	System,	one	uses
WEBEVENT	technology	and	the	other	uses	WAMs.		These	are
included	with	the	IBM	i	demonstration	material	and	can	be	checked
out	to	a	Visual	LANSA	environment	as	required.	These	applications
can	be	used	to	give	you	ideas	of	how	to	create	and	include	the
elements	required	for	both	WEBEVENT	and	WAM	processing.

webevent	(web	enabled	RDML	or	RDMLX	partition):
http://<web	server>/cgi-bin/lansaweb?
procfun+lansadem+ldem+dem

wam	(web	enabled	RDMLX	partition,	only	supported	for	technology
service	LANSA:XHTML):
http://<web	server>/CGI-BIN/lansaweb?
webapp=LWAMDEM+webrtn=ldemhome+ml=LANSA:XHTML+part=DEX

Sample	Data	in	the	Personnel	Files
Following	is	a	list	of	some	of	the	sample	data	in	the	Personnel	File	which	may
be	contained	in	the	files.	As	developers	may	edit	these	files,	the	data	you	see
may	have	been	different	to	the	following:

DEPTAB:
DEPTMENT

SECTAB:
DEPTMENT/SECTION

PSLMST:
EMPNO

ADM ADM	01 17	employees

	 ADM	02 A1002

	 	 A1005

	 	 A1014

	 	 A8888

	 ADM	03 	

	 ADM	04 	

	 ADM	05 	

AUD AUD	01 	

	 AUD	02 	

	 AUD	03 	

FLT FLT	01 	

	 FLT	02 	

	 FLT	03 	

INF INF	01 	

	 INF	02 	

	 INF	03 	

	

	

Appendix	A.	Header	Styles
LANSA	for	the	Web	provides	support	for	different	styles	of	headers	for	Web
function	applications.	Generally	speaking,	the	header	styles	can	be	either	static
or	dynamic.	In	addition,	the	headers	can	either	have	a	scrolling	or	non-scrolling
attribute.
					Static	Header
					Dynamic	Header
					Scrolling	Header
					Non-Scrolling	Header
					Frameset	Definition
					Limitations	of	non-scrolling	headers
					Combination	Of	Scrolling	And	Non	Scrolling	Header	Styles
					Override	Header	Style
					Adopted	Header	Style

Static	Header
Static	headers	are	used	where	the	buttons	for	your	LANSA	functions	do	not
change	from	one	function	to	another.	All	the	buttons	defined	in	the
STDHEADER	page	are	displayed	for	every	function.
To	use	this	header	style	in	your	application,	copy	the	STDHEADER_STYLE1
page	to	the	STDHEADER	page	in	your	system.

The	standard	header	consists	of:
a	company	logo	displayed	at	the	top	left	hand	corner.
a	set	of	buttons	(with	configurable	images)	consisting	of:

Button Description
Home A	button,	which	emulates	an	Exit	key	and	will	take	you	back	to	a

nominated	home	page.

Menu This	will	take	you	back	to	the	Process	Menu	level.	This	button
emulates	a	Cancel	key,	until	you	are	returned	to	the	Process	Menu
level.

OK Equivalent	to	the	<Enter>	key.

Cancel Equivalent	to	Cancel	(F12).

Messages Equivalent	to	Messages	(F14).

Help Equivalent	to	Help	(F1).	Help	is	displayed	in	a	new	browser
window,	with	the	toolbar	and	menu	bar	disabled.

The	static	header	style	provided	by	LANSA	for	the	Web	incorporates	images	for
the	standard	buttons.
Static	headers	are	used	where	you	want	to	provide	a	consistent	headers
throughout	your	application.	However,	you	will	need	to	be	careful	with	your

functions	to	ensure	that	the	buttons	used	in	the	static	header	are	always	enabled.
Static	headers	do	not	have	the	capability	to	check	the	state	of	a	particular	button.
Static	headers	assume	that	the	buttons	displayed	are	always	enabled.
If	your	functions	do	not	have	the	same	set	of	buttons	enabled	all	the	time,	you
must	use	the	dynamic	header	style.
To	comply	with	the	XHTML	1.0	transitional	document	type	definition,	LANSA
uses	JavaScript	functions.	JavaScript	support	must	be	enabled	in	your	browser.

Dynamic	Header
LANSA	for	the	Web	provides	support	for	dynamic	display	of	buttons	in	the
Standard	Header.

This	means	that	you	can	define	all	the	buttons	used	in	your	applications	in	the
Standard	Header	component.	By	encapsulating	each	of	these	buttons	with	the
<RDML	BUTTON>	tag,	LANSA	for	the	Web	will	dynamically	enable	or
disable	the	particular	button,	according	to	its	status	in	your	application.
<img	src="<RDML	MERGE="*LW3CPYLOGO">"	alt="Logo"	/>

<RDML	BUTTON="&WEBEVENT">
<script	type="text/javascript"	language="javascript">
//<![CDATA[
function	ButtonClick(button)
{
			document.LANSA._BUTTON.value=button;	document.LANSA.submit();
}
//]]>
</script>
</RDML>
<table	cellpadding="0"	cellspacing="0"	border="0"	width="100%"	align="left">
<tbody>
<tr	valign="bottom">
			<td	width="470"	height="21"	nowrap="nowrap">
<RDML	BUTTON="&EXIT">
			

</RDML>
<RDML	BUTTON="&CANCEL">
			

</RDML>
<RDML	BUTTON="&WEBEVENT">

			

</RDML>
<RDML	BUTTON="&CANCEL">
			

</RDML>
<RDML	BUTTON="&ADD">
			

</RDML>
<RDML	BUTTON="&CHANGE">
			

</RDML>
<RDML	BUTTON="&DELETE">
			

</RDML>
<RDML	BUTTON="&PROMPT">
			

</RDML>
<RDML	BUTTON="&WEBEVENT">
			

</RDML>
			</td>
</tr>
</tbody></table><br	clear="all"	/>

	

Dynamic	headers	are	very	powerful	as	the	buttons	shown	in	the	header,	when
the	function	is	executed,	are	the	buttons	that	are	enabled	for	the	function.	This	is
unlike	static	headers,	where	the	displayed	buttons	may	not	be	valid	for	the
function.
For	example,	in	one	of	your	functions,	you	have	disabled	the	Exit	key.	This	will
be	detected	in	dynamic	headers	and	the	Exit	key	(and	hence	the	Home	button)
will	not	be	displayed.	However,	in	static	headers,	the	Exit	key	(and	hence	the
Home	button)	will	still	be	displayed	if	the	Exit	key	was	defined	in	your	static
header.
Dynamic	headers	allow	you	to	define	all	the	buttons	used	in	your	application	in
a	single	Web	component,	the	STDHEADER	component.	LANSA	for	the	Web
will	then	determine	the	status	of	each	button	in	the	component	dynamically.

It	is	recommended	that	you	incorporate	the	dynamic	buttons	support
provided	as	the	default	header	style	in	LANSA	Web	function
applications.

The	dynamic	header	style	page	shipped	with	LANSA	for	the	Web	uses	a	Tool
Bar	to	display	the	buttons.	The	trend	in	Web	applications	is	to	use	Tool	Bars
instead	of	images	to	represent	actions.
LANSA	for	the	Web	provides	you	with	a	collection	of	images	in	GIF	format.
These	images	are	used	to	build	the	Tool	Bar	in	the	STDHEADER	component.
These	images	are	prefixed	with	'TB_'.	LANSA	for	the	Web	also	provides	you
with	templates	of	images	that	can	be	used	to	create	your	own	set	of	images	for
the	Tool	Bar.	The	images	were	created	using	Paint	Shop	Pro.

This	is	the	default	header	style	in	LANSA	for	the	Web.	This	style	page
is	also	contained	in	the	STDHEADER_STYLE2	page	in	your	system.

If	you	have	changed	the	header	style	and	you	want	to	restore	the
default	header	style,	then	copy	the	STDHEADER_STYLE2	page	to
be	the	STDHEADER	page	in	your	system.

Scrolling	Header
The	scrolling	header	style	embeds	the	STDHEADER	component	into	the
HTML	generated	for	the	function.	The	buttons	in	the	component	are	part	of	the
HTML	displayed	in	your	browser.	This	means	that	as	you	use	the	scroll	bars	in
your	browser,	you	are	scrolling	through	the	body	of	the	function,	which	includes
the	buttons	in	your	STDHEADER	component.
In	HTML	terminology,	your	buttons	and	the	body	of	the	function	are	displayed
within	the	single	frame.
This	style	is	not	user	friendly	as	your	STDHEADER	component	is	usually	at	the
top	of	the	page.	If	your	HTML	page	displays	many	fields,	the	buttons	of	your
function	may	not	be	visible	if	you	have	scrolled	down	through	the	body	of	your
function.
For	functions	with	large	display,	it	would	be	ideal	if	you	could	have	the	buttons
displayed	in	a	static	frame	and	the	body	of	the	function	in	a	separate	frame.
These	are	the	features	provided	by	the	non-scrolling	style.
To	comply	with	the	XHTML	1.0	transitional	document	type	definition,	LANSA
uses	JavaScript	functions.	JavaScript	support	must	be	enabled	in	your	browser.

Non-Scrolling	Header
LANSA	for	the	Web	also	provides	you	with	a	non-scrolling	header	style	for
Web	function	applications.	With	this	style,	the	STDHEADER	page	is	loaded
into	a	separate	frame	and	your	LANSA	function	is	loaded	into	another	frame.
This	feature	allows	you	to	scroll	through	the	body	of	your	function,	while	the
buttons	remain	static.	This	means	that	the	buttons	are	available	to	you	all	the
time.

Before	deploying	this	header	style	in	your	application,	read	the
Limitations	of	non-scrolling	headers	list	to	understand	the	limitations
of	this	header	style.

To	enable	this	feature,	you	must	install	the	STDHEADER_STYLE3
page	as	the	default	STDHEADER	page.	You	can	use	the	Web
Function	Editor	to	open	the	STDHEADER_STYLE3	page	and	then
save	the	page	as	STDHEADER.

Next,	you	will	need	to	set	the	Use	Non-Scrolling	Header	option	in	the
Presentation	tab	of	the	LANSA	Administrator	described	in	the	Installing	LANSA
on	Windows	Guide.	This	means	that	you	want	all	your	functions	to	adopt	the
non-scrolling	header	style.
<RDML	BUTTON="&EXIT">
			<td	width="55"	height="21"	nowrap="nowrap">
			

			</td>
</RDML>
<RDML	BUTTON="&CANCEL">
			<td	width="55"	height="21"	nowrap="nowrap">
						

			</td>
</RDML>
<RDML	BUTTON="&WEBEVENT">
			<td	width="55"	height="21"	nowrap="nowrap">
			

			</td>
</RDML>
	

The	non-scrolling	header	style	uses	JavaScript	functions.	JavaScript
support	must	be	enabled	in	your	browser.

its:lansa085.chm::/Lansa/JMP_0320.htm

Frameset	Definition
The	non-scrolling	style	uses	the	frameset	feature	in	HTML.	Basically,	it	divides
your	browser	into	two	frames.	One	frame	holds	the	STDHEADER	page	while
the	other	frame	holds	the	body	of	your	function.
The	HTML	used	to	define	the	frameset	is	stored	in	DEFAULT_FRAMESET.
This	is	the	default	frameset	definition.
	
<RDML	MERGE="&DTD_FRAMESET">
<!--																																									-->
<!--					Default	Frameset	definition									-->
<!--					Last	Modified:		9.1		2001-10-03					-->
	
<html	xmlns="http://www.w3.org/1999/xhtml">
<head>
			<title><RDML	MERGE="&FUNCTION"></title>
			<meta	http-equiv="pragma"	content="no-cache"	/>
</head>
<frameset	rows="125,	*"	border="0"	frameborder="no"	framespacing="0"	scrolling="no">
			<frame	name="LHEADER"	src="/<RDML	MERGE="&CGI">/LANSAWEB?
PAGE+<RDML	MERGE="&SESSION">+STDHEADER"	/>
			<frame	name="LBODY"	src="/<RDML	MERGE="&CGI">/LANSAWEB?
PAGE+<RDML	MERGE="&SESSION">+
<RDML	MERGE="&PAGE">"	/>
			<noframes>
<body>You	cannot	view	the	documents	with	your	current	browser</body>
</noframes>
</frameset>
</html>
	

The	<frameset>	border,	frameborder,	framespacing	and	scrolling
attributes	are	not	part	of	the	XHTML	1.0	frameset	document	type
definition.	They	have	not	been	removed	to	keep	the	appearance	of
existing	applications.

You	can	modify	this	file	or	you	can	create	a	frameset	definition	for	a	particular
LANSA	process,	by	following	the	naming	convention:

			<process>_FRAMESET
where	<process>	is	the	name	of	your	LANSA	process.
If	a	frameset	page	exists	for	the	process,	this	page	will	be	used	instead	of
DEFAULT_FRAMESET.
You	can	customize	the	height	of	each	frame	in	this	page.	You	can	also	choose	to
orientate	the	frames	vertically,	instead	of	horizontally.	If	you	modify	the
DEFAULT_FRAMESET	or	create	a	process	specific	page,	do	not	modify	the
names	assigned	to	the	frames.

You	will	want	to	customize	the	height	of	the	frames	to	optimize	the
usage	of	the	browser's	display	area.	The	height	of	the	header	frame
should	be	big	enough	to	display	the	page.	This	will	then	provide
maximum	area	to	display	the	body	of	the	function.

Limitations	of	non-scrolling	headers
If	you	intend	to	use	non-scrolling	header	style	in	your	Web	function
applications,	you	should	be	aware	of	some	of	the	limitations	of	this	style.

If	you	use	the	Back	button	of	your	browser	to	display	previous	pages,	this
causes	problems.	The	non-scrolling	header	style	uses	framesets	and	each
frame	is	a	self-contained	page.	The	browser	remembers	the	sequencing	of
the	pages	in	its	memory	cache.	It	does	not	know	the	relationship	of	the
frames.
On	a	page	request,	LANSA	for	the	Web	will	display	the	body	of	the	function
initially.	It	will	then	determine	if	the	header	needs	to	be	refreshed.	If	it	does,
it	sends	a	new	header	page	to	the	header	frame.	This	means	that	the	last
frame	to	be	refreshed	is	the	header	frame.	When	you	select	the	Back	button
of	your	browser,	it	will	load	the	previous	page	of	the	header	frame,	without
refreshing	the	body	of	the	function.	This	may	cause	the	header	and	the
function	to	be	out	of	synchronization.
If	you	select	the	'Refresh'	or	'Reload'	command	in	your	browser,	only	the
body	of	the	function	is	loaded.	The	request	to	refresh	does	not	reload	the
frameset	definition.
It	is	recommended	that	this	header	style	is	not	used	for	WEBEVENT
functions.

It	is	recommended	that	the	non-scrolling	header	style	be	used	only
with	Intranet	or	Extranet	applications,	where	you	can	provide
instructions	to	your	users,	and	can	control	the	type	of	browsers	they
use.

Combination	Of	Scrolling	And	Non	Scrolling	Header	Styles
LANSA	for	the	Web	allows	you	to	have	both	scrolling	and	non-scrolling	header
styles	in	your	Web	function	applications.	You	can	customize	your	functions	to
have	the	different	header	styles.
However,	if	you	want	to	have	both	scrolling	and	non-scrolling	header	styles,
you	will	need	to	be	very	careful	as	a	single	STDHEADER	component	cannot	be
used	for	both	scrolling	and	non	scrolling	header	styles.
In	the	scrolling	header	style,	the	header	component	is	embedded	into	the	HTML
page	of	the	function.
In	the	non-scrolling	header	style,	the	header	and	the	body	of	the	functions	are
regarded	as	separate	HTML	pages.
Both	header	styles	use	JavaScript	functions	to	emulate	the	selection	of	an	action
in	the	function.	If	JavaScript	support	is	disabled	in	your	browser,	you	will	not	be
able	to	use	the	buttons	from	the	standard	headers.

If	you	intend	to	use	a	combination	of	scrolling	and	non-scrolling
header	styles	in	your	application,	you	should	spend	time	familiarizing
yourself	with	the	differences	in	the	HTML	used	in	the	different	header
styles.

Override	Header	Style
The	setting	Use	Non	Scrolling	Header	in	the	Presentation	tab	of	the	LANSA
Administrator	applies	to	all	your	functions.	However,	you	can	override	this
setting	for	specific	LANSA	processes.	This	allows	you	to	have	a	combination	of
scrolling	and	non-scrolling	header	styles	in	your	applications.
If	you	want	to	override	the	system	setting	for	a	particular	LANSA	process,	you
create	an	HTML	page	following	the	naming	convention:

									<process>_FRAME
where	<process>	is	the	name	of	your	LANSA	process.
This	style-override	page	only	contains	a	single	character,	either	a	'Y'	or	'N'.	A	'Y'
character	indicates	that	you	want	the	non-scrolling	header	style	enabled	for	the
<process>	process.	A	'N'	character	indicates	that	you	do	no	want	the	non-
scrolling	style	enabled	for	the	process.

Do	not	embed	any	comments	at	the	start	of	this	page.	The	first
character	in	the	page	is	used	to	determine	the	override.

LANSA	for	the	Web	will	check	if	a	style	override	page	exists	for	the	process.	If
it	exists,	it	will	be	used	to	determine	which	header	style	to	use	in	the	function.	It
the	page	does	not	exist,	LANSA	for	the	Web	will	check	the	option	set	in	the
LANSA	Administrator.
If	the	setting	in	your	style	override	page	is	different	from	the	global	setting	in
the	LANSA	Administrator,	you	must	ensure	that	there	is	a	corresponding
<process>_STDHEADER	component	that	is	compatible	with	the	style.
Otherwise,	your	application	may	not	work	properly.

its:lansa085.chm::/LANSA/jmp_0320.htm

Adopted	Header	Style
If	your	application	contains	functions	that	call	other	functions	attached	to
different	processes,	the	header	style	adopted	for	the	application	will	be
dependent	on	the	first	function	called.	This	means	that	if	the	first	function	called
is	set	up	to	have	a	non-scrolling	header,	then	all	the	subsequent	functions	called
from	within	the	same	LANSA	job	will	adopt	the	non-scrolling	header.
This	means	that	the	other	functions	called	must	also	have	the	same	header	style.
If	the	other	functions	have	been	set	up	to	have	different	header	styles,	it	would
appear	as	though	they	have	adopted	the	style	of	the	first	function.	However,
because	of	the	conflicting	HTML/JavaScript	techniques	used	in	the	two
different	styles,	your	functions	will	not	operate	properly.

Appendix	B.	LANSA	for	the	Web	XHTML
LANSA	for	the	Web	generates	Web	pages	compatible	with	the	XHTML	1.0
specification.	The	XHTML	1.0	standard	and	HTML	4.0	standards	are	almost
identical.	In	this	guide,	the	term	HTML	is	used	to	describe	LANSA	for	the	Web
generated	HTML/XHTML	pages.	This	section	of	the	guide	provides	specific
details	about	the	XHTML	generated	by	LANSA	for	the	Web.
For	details	about	XHTML,	review	the	following	topics:
Introduction	to	XHTML	1.0
Converting	HTML	to	XHTML	1.0
XHTML	Document	Type	Definition	(DTD)
Serving	XHTML	Pages	as	Pure	XML	Pages

Introduction	to	XHTML	1.0
If	you	are	new	to	XHTML,	you	should	review:
What	is	XHTML	1.0?
Why	use	XHTML	1.0?
Compatibility	with	HTML

What	is	XHTML	1.0?
Following	are	some	important	facts	about	XHTML:

XHTML	is	also	referred	to	as	Extensible-HTML.
XHTML	1.0	is	a	reformulation	of	HTML	4.01	as	an	XML	1.0	application.
The	three	XHTML	1.0	document	type	definitions	(DTD)	correspond	to
the	ones	defined	by	HTML	4.
XHTML	is	designed	to	provide	a	path	to	extend	HTML	in	the	future	in	a
way	that	is	compatible	with	XML.
XHTML	is	intended	as	a	replacement	for	HTML.
XHTML	1.0	is	almost	identical	to	HTML	4.01.
XHTML	1.0	can	be	viewed	with	current	generation	user	agents,	including
the	major	browsers	if	certain	guidelines	are	followed.	(Refer	to
Converting	HTML	to	XHTML	1.0.)

Why	use	XHTML	1.0?
There	might	not	be	an	immediate	business	need	forcing	you	to	move	to
XHTML.	However,	it	is	recommended	that	you	start	using	XHTML	for	new
developments	or	modifications.	This	approach	will	make	it	easier	to	migrate	to
XHTML	1.0	or	future	versions	of	XHTML	so	that	you	can	quickly	take
advantage	of	new	business	opportunities.
New	user	agents,	like	portable	devices,	will	probably	use	newer	versions	of
XHTML.	Because	XHTML	conforms	to	XML	syntax	rules,	the	XHTML
generated	by	LANSA	for	the	Web	can	be	processed	by	XML	parsers.
The	compatibility	between	XHTML	1.0	and	HTML	4.0	allows	you	to	continue
to	support	all	of	your	existing	browser	interfaces	while	allowing	for	future
computing	devices.

Compatibility	with	HTML
Your	existing	HTML	applications	are	compatible	with	the	XHTML	pages	and
markup	language	generated	by	the	LANSA	for	the	Web	runtime.
Web	pages	can	use	a	mix	of	both	HTML	and	XHTML	elements.
For	details	about	the	differences	between	HTML	and	XHTML,	refer	to
Converting	HTML	to	XHTML	1.0.

Converting	HTML	to	XHTML	1.0
XHTML	1.0	is	a	reformulation	of	HTML	4.01	as	an	XML	1.0	application.
Hence,	XHTML	1.0	is	almost	identical	to	HTML	4.01.	In	order	to	make	your
HTML	compatible	with	XHTML,	some	very	simple	rules	need	to	be	followed.
Review	the	following:
XHTML	Syntax	Rules
XML	Declaration
You	may	also	need	to	refer	to	XHTML	Document	Type	Definition	(DTD)	.

XHTML	Syntax	Rules
These	guidelines	will	help	you	write	Web	pages	that	conform	to	the	XHTML
1.0	transitional	document	type	definition	and	that	are	compatible	with	current
browsers.

Documents	must	be	well	formed
All	elements	must	be	nested	within	the	<html>	root	element.	Sub	elements	must
be	in	pairs	and	correctly	nested	within	their	parent	element.

Root	element	namespace
The	root	element	of	the	document	must	designate	the	XHTML	namespace	using
the	xmlns	attribute.	The	namespace	for	XHTML	is	defined	to	be
http://www.w3.org/1999/xhtml.
For	example:
<html	xmlns="http://www.w3.org/1999/xhtml">
	

Mandatory	tags	in	all	XHTML	pages
These	tags	must	be	defined	in	all	pages:
<html><head><title></title></head><body></body></html>
	

Title	element	must	be	first	element	in	header
This	is	wrong:
<html	xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta	http-equiv="pragma"	content="no-cache"	/>
<title>Handle	Banner	Request</title>
</head>
	

This	is	correct:
<html	xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Handle	Banner	Request</title>
<meta	http-equiv="pragma"	content="no-cache"	/>
</head>
	

All	XHTML	elements	should	be	in	lower	case
For	example:
<table>	not	<TABLE>.

All	attributes	should	also	be	in	lower	case
For	example:
<table	width="544"	border="0"	cellpadding="0"	cellspacing="0">
	

All	attributes	must	have	values	contained	by	single	or	double
quotation	marks
This	is	wrong:
<table	width=544	border=0	cellpadding=0	cellspacing=0>
	

This	is	correct:
<table	width="544"	border="0"	cellpadding="0"	cellspacing="0">
	

When	possible,	avoid	multiple	spaces	or	line	breaks	within	an
element's	tags
Subject	to	line	length	constraints	the	W3C	makes	this	recommendation	because
different	user	agents	may	treat	white	space	and	line	breaks	differently.
For	example:
Do	not	write	this:
<tablewidth="544"
	border="0"
cellpadding="0"
cellspacing="0">
	

Write	it	like	this:
<table	width="544"	border="0"	cellpadding="0"	cellspacing="0">
	

All	nonempty	elements	must	have	a	closing	tag
For	example:
<p>	...	</p>
	

Empty	elements	must	also	be	closed	(with	syntax	for	HTML
compatibility)
Leave	a	blank	space	before	the	self-closing	'/'	in	empty	element	tags.
For	example:

	

Elements	must	be	nested	correctly
For	example:
<p>This	is	correct</p>
<p>This	is	not	correct</p>
	

Attribute	minimization	is	forbidden
This	is	wrong:
<dl	compact>
<input	checked	/>
<input	readonly	/>
<input	disabled	/>
<option	selected	/>
<frame	noresize	/>
	

This	is	correct:
<dl	compact="compact">
<input	checked="checked"	/>
<input	readonly="readonly"	/>
<input	disabled="disabled"	/>
<option	selected="selected"	/>
<frame	noresize="noresize"	/>
	

The	id	Attribute	replaces	the	Name	Attribute
HTML	4.01	defines	a	name	attribute	for	the	elements	a,	applet,	frame,	iframe,
img,	and	map.	In	XHTML	the	name	attribute	is	no	longer	used	and	the	attribute
id	is	used	instead.
To	preserve	compatibility	with	HTML	browsers,	use	both	attributes	as	in	the

following	example:

	

Replace	ampersands	in	attribute	values	with	character	entity
This	is	wrong:
<input	type="button"	value="Bob	&	Alice"	/>
This	is	correct:
<input	type="button"	value="Bob	&	Alice"	/>

	tag	must	have	the	alt=""	attribute
This	is	really	an	HTML	4.0	requirement.	Because	XHTML	1.0	is	based	on
HTML	4.0,	this	is	required.
This	is	wrong:

	

This	is	correct:

	

Handle	special	characters	in	JavaScript
Special	characters	like	<	and	&	in	scripts	may	be	treated	as	start	of	markup	by
XML	parsers.	Also	entities	such	as	&	and	<	will	be	recognized	as	entity
references.	To	avoid	this,	the	W3C	specification	suggests	that	you	wrap	the
content	of	the	script	within	a	CDATA	marked	section	so	that	it	can	be	ignored
by	the	XML	parser.
Example	according	to	the	W3C:
<head>
<title>Script	Test</title>
<script	type="text/javascript"	language="javascript">
<![CDATA[
function	HomePage(){parent.location="/home/index.html";}
]]>
</script>
</head>
<body	onload="HomePage()"></body>
	

However,	when	sent	as	HTML,	the	Java	Script	parsers	in	current	browsers	do
not	understand	the	CDATA	keyword	and	may	cause	a	syntax	error.	The	solution
is	to	comment	out	the	CDATA	keywords	as	a	Java	Script	comment:
<head>
<title>Script	Test</title>
<script	type="text/javascript"	language="javascript">
//<![CDATA[
function	HomePage(){parent.location="/home/index.html";}
//]]>
</script>
</head>
<body	onload="HomePage()"></body>
	

This	should	be	used	instead	of	the	technique	to	comment	out	the	scripts	for
browsers	that	do	not	support	JavaScript	using	<!--	and	//-->.
Summary:	To	comment	out	lines	to	the	HTML	parser	<!--	-->	is	used.	To	write
comments	inside	<script></script>,	the	//	is	used	so	it	will	be	ignored	by	the
JavaScript	parser.	To	make	the	CDATA	section	invisible	to	the	JavaScript
parser,	but	visible	to	the	XML	parser,	you	use	//	<![CDATA[and	//]]>.

Location	of	scripts
Scripts	must	be	located	either	between	the	<header></header>	or	between	the
<body></body>	tags.

XML	Declaration
XML	documents	normally	include	an	XML	declaration	in	its	first	line.
Example:
<?xml	version="1.0"	encoding="ISO-8859-1"?>
	

	
According	to	the	W3C	recommendation,	an	XML	declaration	is	not	required	in
all	XML	documents.	Unless	you	need	your	web	pages	to	be	handled	as	XML
documents,	do	not	include	the	XML	declaration.
By	default,	LANSA	for	the	Web	does	not	include	this	declaration.

Warning:	Some	user	agents	will	render	the	Web	page	as	an	XML	tree
instead	of	rendering	the	page	as	HTML	content	if	they	see	the	XML
declaration.		For	more	information,	refer	to	Serving	XHTML	Pages	as
Pure	XML	Pages.

XHTML	Document	Type	Definition	(DTD)
The	W3C	standards	for	XHTML	recommend	that	a	DOCTYPE	declaration	be
included	in	your	documents.	For	more	details,	refer	to	Document	Type
Definition	(DTD).
If	your	applications	don't	conform	to	the	XHTML	1.0	specification	and	you
want	to	avoid	the	insertion	of	the	DOCTYPE	declaration	in	your	pages	refer	to
How	to	Avoid	the	Insertion	of	the	DOCTYPE	Declaration.

Document	Type	Definition	(DTD)
According	to	the	XHTML	1.0	W3C	recommendation
(http://www.w3.org/TR/xhtml1/)	section	3.1.1,	there	must	be	a	DOCTYPE
declaration	in	the	document	prior	to	the	root	element.
The	public	identifier	included	in	the	DOCTYPE	declaration	must	reference	one
of	the	three	Document	Type	Definitions	found	in
http://www.w3.org/TR/xhtml1/#dtds	using	the	respective	Formal	Public
Identifier.	The	system	identifier	may	be	changed	to	reflect	local	system
conventions.
<!DOCTYPE	html	
					PUBLIC	"-//W3C//DTD	XHTML	1.0	Strict//EN"
					"http://www.w3.org/TR/DTD/xhtml1-strict.dtd">
	
<!DOCTYPE	html
					PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"
					"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
	
<!DOCTYPE	html	
					PUBLIC	"-//W3C//DTD	XHTML	1.0	Frameset//EN"
					"http://www.w3.org/TR/DTD/xhtml1-frameset.dtd">
	

LANSA	for	the	Web	ships	with	default	pages	for	each	of	these	Document	Type
Definitions.
If	you	download	the	Document	Type	Definitions	and	install	them	on	your	web
server,	then	you	can	change	the	DOCTYPE	declarations	so	you	don't	need	to
refer	to	the	w3.org	web	site.

Note:	LANSA	for	the	Web	uses	either	the	Transitional	DTD	or	the
Frameset	DTD	(for	pages	that	contain	frames).	It	does	not	use	the
Strict	DTD,	as	strict	XHTML	requires	that	all	style	information	be
provided	via	style	sheets	and	not	embedded	in	the	XHTML	page.

Some	old	browsers	may	have	problems	avoiding	the	display	of	the	DOCTYPE
declaration.	Current	generation	browsers	correctly	hide	them	from	being
displayed.

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/#dtds

How	to	Avoid	the	Insertion	of	the	DOCTYPE	Declaration
If	your	applications	do	not	conform	to	the	XHTML	1.0	specification	and	you
want	to	avoid	the	insertion	of	the	DOCTYPE	declaration	in	your	pages,	follow
these	steps:
Step	1.	Replace	the	Transitional	DOCTYPE	declaration	with	a	blank	line
Using	the	LANSA	for	the	Web	Function	Editor,	modify	the	special	page
DTD_TRANSITIONAL	in	your	partition	and	replace	it	with	a	blank	space	(You
cannot	save	an	empty	page).
Step	2.	Replace	the	Frameset	DOCTYPE	declaration	with	a	blank	line
Using	the	LANSA	for	the	Web	Function	Editor	Editor,	modify	the	special	page
DTD_FRAMESET	in	your	partition	and	replace	it	with	a	blank	space	(You
cannot	save	an	empty	page).
Step	3.	Do	not	include	the	RDML	DTD	merge	tag	in	custom	Spooled	File
Utility	Pages
If	you	have	created	your	own	custom	versions	of	STDPRINT,
STDREPORTLIST	or	STDREPORT	pages,	do	not	include	the	<RDML
MERGE="&DTD_TRANSITIONAL">	tag	in	those	pages.	The	Spooled	File
Utility	retrieves	the	special	DOCTYPE	pages	from	partition	'WEB'	and
language	'ENG'	and	not	from	your	current	partition.

Serving	XHTML	Pages	as	Pure	XML	Pages

The	following	information	is	provided	if	you	are	intending	to	serve
your	LANSA	for	the	Web	XHTML	pages	as	pure	XML	pages	instead
of	HTML/XHTML	pages.

Internet	media	type	(MIME	type)	for	XHTML
As	of	the	publication	of	the	XHTML	1.0	W3C	recommendation,	the	general
recommended	MIME	labeling	for	XML-based	applications	was	not	resolved.	It
makes	no	recommendation	about	MIME	labeling	for	XHTML	documents	that
do	not	need	backward	compatibility	with	HTML	user	agents.
Because	you	want	to	preserve	compatibility	with	HTML	user	agents,	continue
using	MIME	type	text/html.

Note:	There	are	issues	relating	to	the	inclusion	of	the	XML	declaration
in	XHTML	documents.	In	principle,	user	agents	should	rely	on	the
MIME	type	to	determine	if	a	document	should	be	handled	as	an
HTML	or	XML	document.	However,	some	versions	of	current
browsers	"sniff"	an	incoming	Web	page	and	if	they	see	the	XML
declaration,	they	handle	the	document	as	an	XML	document
regardless	of	the	HTTP	MIME	type	sent	by	the	Web	server.	To	avoid
this	problem	the	shipped	DTDs	do	not	include	the	XML	declaration.

If	you	want	to	serve	your	Web	pages	as	pure	XML	documents,	then	you	follow
these	steps:
Step	1.	Add	the	XML	declaration	to	the	DOCTYPE	pages
Using	the	LANSA	for	the	Web	Function	Editor,	add	the	XML	declaration	in	the
DOCTYPE	pages	DTD_FRAMESET,	DTD_STRICT	and
DTD_TRANSITIONAL.	Use	an	encoding	appropriate	to	your	language's
character	set.
For	example:

Step	2.	Change	the	LANSA	for	the	Web	server	configuration

If	you	are	using	CGI-BIN:

1.		Add	the	following	row	to	table	LWEB.DAT	located	in	the	LANSA	shared
library:

Column Value

XLWPEN 'HTM'

XLWSEN Blanks

XLWGRP 'MIMETYPE		'

XLWLID 0

XLWMDF Y

XLWDTA text/xml

XLWSP1 Blanks

	

	
2.		Uncomment	the	XML	declaration	in	the	PREAMBLE	group.	Add	the
encoding	appropriate	to	your	language's	character	set.

Column Value

XLWPEN 'HTM'

XLWSEN Blanks

XLWGRP 'PREAMBLE		'

XLWLID 0

XLWMDF Y

XLWDTA <?xml	version="1.0"	encoding="ISO-8859-1"?>

XLWSP1 Blanks

	

If	you	are	using	Java	Servlet:

1.		Add	line	MIMETYPE=text/xml	to	configuration	file
L4W3SERV.CFG.

2.		Set	the	current	directory	to	the	home	of	the	Java	Servlet	L4W3Servlet.jar.
3.		Extract	L4W3Resource.properties	from	jar	file	L4W3Servlet.jar
(Select	the	properties	file	relevant	to	your	locale).	Use	the	Java	command:
jar	-xf	L4W3Servlet.jar

com/lansa/web/servlet/L4W3Resource.properties
	

4.		Locate	the	properties	file	in	the	subdirectory	tree	com/lansa./web/servlet

under	your	current	directory.
5.		Change	the	value	of	property	PR00	in	the	properties	file,	to	uncomment	the
XML	declaration.

6.		Update	the	jar	file.	Use	the	Java	command:
jar	uf	L4W3Servlet.jar

com/lansa/web/servlet/L4W3Resource.properties
	

7.		If	your	jar	file	is	on	an	iSeries,	you	will	need	to	recompile	the	jar	file.	Use
the	OS/400	command	(replace	path	with	the	actual	IFS	path	to	the	jar	file):
CRTJVAPGM	CLSF('/path/L4W3Servlet.jar')	OPTIMIZE(40)
	

	Web Functions
	1. Introduction to LANSA Web Functions
	1.1 What are LANSA Web Functions?
	1.2 Major Features of LANSA Web Functions
	1.3 LANSA Web Function Architecture
	1.4 What is the Web Functions Wizard?
	1.5 Programming Language Skills
	1.6 How Do You Develop Applications with LANSA Web Functions?
	1.7 LANSA Web Function Transaction Server
	1.8 WEBEVENTs or WAMs?

	2. Developing Applications with LANSA Web Functions
	2.1 Before You Begin Checklist
	2.2 Web Enabling a LANSA Process
	2.3 Types of Web Functions
	2.4 Example of a Procedural Function
	2.5 Example of a WEBEVENT Function
	2.6 Shipped LANSA Web Function Templates
	2.7 Compiling Functions
	2.8 Using the e-Business Framework Wizard
	2.9 Calling LANSA Web Processes and Functions
	2.10 Executing Applications: Process Menu
	2.11 Executing Applications: WEBEVENT

	3. Executing LANSA Web Function Applications
	3.1 No Existing Web Site
	3.2 Integrating with an Existing Web Site
	3.3 Before You Deploy Your Applications
	3.4 Uniform Resource Locator (URL) Syntax
	3.5 Calling a LANSA Process
	3.6 Calling a LANSA Function Directly
	3.7 Passing Parameters to a LANSA Function
	3.8 Specifying a Task Identifier
	3.9 Debugging using iSeries Batch Debug
	3.10 Debugging using Visual LANSA
	3.10.1 Start Development Environment Debugging Session
	3.10.2 Start Web Browser Debugging Session

	3.11 Invoking the iSeries Spool File Facilities
	3.12 Event Logging
	3.13 Enabling Event Logging
	3.14 Logging User Defined Fields

	4. WEBEVENT Functions
	4.1 What is a WEBEVENT Function?
	4.2 How Does WEBEVENT Work?
	4.3 How is WEBEVENT Different?
	4.4 WEBEVENT Templates
	4.5 WEBEVENT Example
	4.5.1 Procedural Add an Employee Function
	4.5.2 Changes Required to Restructure for WEBEVENT
	4.5.3 Handling Re-entrant Functions
	4.5.4 Final WEBEVENT Function
	4.5.5 More Complex Example

	4.6 Automatic Data Exchange
	4.7 WEBEVENT Routing
	4.8 WEBEVENT Keywords
	4.9 Considerations for WEBEVENT Functions
	4.10 WEBEVENT Data and Function Timeout

	5. LANSA Generated HTML Pages
	5.1 Page Security
	5.2 Identifying Generated Pages
	5.3 Modifying the Process Menu
	5.4 Versioning of Pages
	5.5 Comparing Versions
	5.6 HTML Page Structure
	5.7 LANSA Field Names in HTML Pages
	5.8 HTML Generation Skeleton
	5.8.1 What is the HTML Skeleton?
	5.8.2 How Do I Use the HTML Skeleton?
	5.8.3 Considerations for Using the HTML Skeleton

	6. Default Process Pages
	6.1 What are Default Process Pages?
	6.2 Shipped Default Pages
	6.3 Other Default Pages
	6.4 Customizing Process Specific Pages
	6.5 User Defined Default Pages
	6.6 Standard HTML Page Components
	6.7 Other HTML Page Components
	6.8 Special XHTML Pages
	6.9 Process Specific Page Components

	7. RDML Tags
	7.1 What are LANSA Tags?
	7.2 How Do LANSA Tags Work?
	7.3 LANSA Tags Example
	7.4 Using <RDML> and </RDML> Tags
	7.5 <RDML BUTTON>
	7.6 <RDML CHECKVALUE>
	7.7 <RDML COMPONENT>
	7.8 <RDML COOKIES>
	7.9 <RDML FUNCTION>
	7.10 <RDML INCLUDE>
	7.11 <RDML LAYOUT>
	7.12 <RDML MERGE>
	7.13 <RDML MESSAGES>
	7.14 <RDML NOTCONDITION>
	7.15 <RDML ONCONDITION>
	7.16 <RDML ONMODE>
	7.17 <RDML PAGE>
	7.18 <RDML PARENT>
	7.19 <RDML SETTMPFLD>
	7.20 <RDML SSI>
	7.21 <RDML TRACE>
	7.22 Reserved Words

	8. Graphic Variables
	8.1 What are Graphic Variables?
	8.2 Why Use Graphic Variables?
	8.3 Types of Graphic Variables
	8.3.1 Image File Graphic Variables
	8.3.2 Color Graphic Variables
	8.3.3 Text Graphic Variables

	8.4 Default Graphic Variables
	8.5 Process Level Graphic Variables
	8.6 Browse List Graphic Variables
	8.7 Graphic Variables and the e-Business Framework Wizard
	8.8 Technically Speaking

	9. Web Components
	9.1 Introduction to Web Components
	9.1.1 What are Web Components?
	9.1.2 Web Component Architecture
	9.1.3 Web Component Example
	9.1.4 Types of Web Components
	9.1.5 Web Components and Modes
	9.1.6 Automatic Embedding of Web Components
	9.1.7 Dynamically Embedding Web Components
	9.1.8 Considerations for Using Web Components

	9.2 Manually Defined Web Components
	9.2.1 Banner
	9.2.2 Text
	9.2.3 Web Link
	9.2.4 Page
	9.2.5 Script
	9.2.6 Naming Page and Script Web Components

	9.3 Generated Web Components
	9.3.1 Visual Web Component
	9.3.2 Creating Visual Web Components
	9.3.3 Using Triggers to Generate Visual Web Components
	9.3.4 File Web Component

	10. Function Editor
	10.1 Introduction to Web Function Editor
	10.1.1 What is the Web Function Editor?
	10.1.2 Connecting to the Data/Application Server
	10.1.3 Starting the Web Function Editor
	10.1.4 Web Function Editor's Main Window

	10.2 File Menu
	10.2.1 New
	10.2.2 Open . . .(XML/HTML mode)
	10.2.3 Open (BASIC mode)
	10.2.4 Close
	10.2.5 Save
	10.2.6 Save As
	10.2.7 Save As (mode BASIC)
	10.2.8 Save To Local (mode BASIC only)
	10.2.9 Load From Local (mode BASIC only)
	10.2.10 Compare
	New Comparison
	Compare With
	Compare With Version
	Close

	10.2.11 Page Setup
	10.2.12 Print
	10.2.13 Connect
	Save As
	Advanced

	10.3 Edit Menu
	10.3.1 Paste HTML (HTML only)
	10.3.2 Clear All

	10.4 View Menu
	10.5 Tags Menu (HTML mode)
	10.5.1 Insert RDML Component

	10.6 Components Menu
	10.6.1 Maintain Component
	Add a new Component
	Duplicate
	Banner Component (HTML mode)
	Add/Change Banner Component
	Add/Change Banner Detail

	File Component
	Page Component
	Script Component (HTML mode)
	Text Component
	Visual Component
	Web Link Component (HTML mode)

	10.6.2 Generate Component
	Generate Visual Component
	Generate File Component (HTML mode)
	Considerations for using File Web Components

	10.6.3 Graphic Variables
	Add Graphic Variable
	Change Graphic Variable

	10.7 Options Menu
	10.7.1 Configure
	Third Party Editor
	View
	Miscellaneous

	10.7.2 Font
	10.7.3 Invoke Third Party Editor

	10.8 Tools Menu
	10.8.1 Keywords
	Add Keyword
	Maintain Keyword
	Change Keyword

	12. Web Development Tips & Techniques
	12.1 HTML as Field Contents
	12.2 Automatic Data Apportionment
	12.2.1 Specifying Apportionment Position

	12.3 Considerations for Browse Lists
	12.4 Message Presentation Layout
	12.5 Using <RDML MERGE="&END">
	12.6 Cascading Style Sheets
	12.7 Retrieve Additional Information from Browse List
	12.8 Handle the ENTER key in Browsers
	12.9 Embed a Calendar Control
	12.10 Modify LANSA for the Web Messages
	12.11 Set the Initial Focus in an HTML Page
	12.12 Tailoring the DEFAULT_SCRIPT
	12.13 Generate Static Page Output to the IFS (Integrated File System)
	12.14 Integrate LANSA Applications with Static HTML Pages
	12.15 CheckBox Visual Web Components
	12.16 Extend LANSA Drop Downs
	12.17 Modifying charset for non-English Systems

	Tutorials for Web Functions & WEBEVENTs
	WEB001 - Types of LANSA Web Functions
	Step 1. Create a Procedural Function
	Step 2. Create a WEBEVENT Function
	Step 3. Execute your Procedural Function
	Step 4. Execute Your WEBEVENT Function
	Summary

	Web Functions Wizard Tutorials
	WEB002 - Coding a WEBEVENT Functions
	Step 1. Review Procedural Logic
	Step 2. Create New Functions
	Step 3. Define Keywords for Function Routing
	Step 4. Test Your WEBEVENT Functions
	Step 5. Re-entrant WEBEVENT Function
	Summary

	WEB003 - iSeries Batch Debug
	Step 1. Identify Your Terminal ID
	Step 2. Call Your Function in Debug Mode
	Step 3. Enter valid data into your browser.
	Summary

	WEB004 - LANSA Generated HTML Pages
	Step 1. Open and Configure the Web Function Editor
	Step 2. Identify Generated HTML Pages
	Step 3. Edit the HTML Page for iiiFN05
	Step 4. Modify and Recompile Function iiiFN05
	Step 5. Use Compare and Contrast to Review your HTML
	Summary

	WEB005 - LANSA Process Pages
	Step 1. Create a Message Presentation Page for iiiPROC03
	Step 2. Create a Standard Header for Functions in Process iiiPROC03
	Step 3. Create a Standard Footer for Functions in Process iiiPROC03
	Step 4. Component Registry
	Step 5. Add the Calendar Control and Edit the Default JavaScript
	Step 6. Test the Calendar Control
	Summary

	WEB006 - Graphic Variables
	Step 1. Create New Graphic Variables
	Step 2. Add Graphic Variables to the Process Pages
	Step 3. Test Your Graphic Variable.
	Optional Step 4. Web Functions Wizard Graphic Variables
	Summary

	WEB007 - LANSA Tags
	Step 1. Review the LANSA Tags in iiiFN05
	Step 2. Add LANSA Tags to iiiFN05001 HTML Page
	Step 3. Modify Standard Process Footer
	Step 4. Test the function
	Summary

	WEB008 - Web Components
	Step 1. Create a New Field in the Repository
	Step 2. Create Visual Web Component
	Step 3. Create a Text Web Component
	Step 4. Banner Web Component
	Step 5. Use Hidden Fields in Function
	Step 6. Create a Web Link Component
	Summary

	WEB009 - Web Page Substitution (Optional - Advanced)
	Step 1. Create a New Function
	Step 2. Create a New Web Component
	Step 3. Copy the HTML Code For Page Component iiiFN08C
	Step 4. Test the Function
	Step 5. Add Fields to the iiiFN08 Function
	Optional Step 6. Modifying iiiFN06
	Summary

	WEB010 - Web Skeletons (iSeries)
	Step 1. Copy Default Web Skeleton
	Step 2. Edit the Web Skeleton
	Step 3. Execute Your Function
	Step 4. Recompile Your Function
	Step 5. Execute Your Functions
	Summary

	WEB011 - Using DEFAULT_HIDDEN
	Step 1. Create Login Function
	Step 2. Edit Standard Header for iiiPROC03
	Step 3. Test your Functions
	Step 4. Create a Process Level _HIDDEN Page
	Step 5. Test your Functions
	Summary

	WEB012 - Dynamic Components
	Step 1. Create a New Page Component
	Step 2. Modify iiiPROC03_STDHEADER
	Step 3. Test Your Function
	Summary

	WEB013 - JavaScript and Browse Lists
	Step 1. Create Fields to be used as Function Parameters
	Step 2. Create iiiFN11 Employee List
	Step 3. Edit Process Level _SCRIPT
	Step 4. Create a Link Component
	Step 5. Modify Function iiiFN07
	Step 6. Test Changes
	Step 7. Include New Component Link into Employee Browse List
	Step 8. Build Function iiiFN12 Employee Details
	Step 9. Test Your New Functions
	Step 10. Execute function iiiFN12 from a Command Line (Optional)
	Step 11. Create Page Component for Function iiiFN12 (Optional)
	Step 12. Test Changes (Optional)
	Summary

	WEB014 - Browse Lists
	Step 1. Create Page Component for Function iiiFN11
	Step 2. Test Changes
	Step 3. Create Graphic Variable for Browse List
	Step 4. Test Changes
	Step 5. Customize Browse List
	Step 6. Test Changes
	Step 7. Add Table Tags Around Browse List
	Step 8. Test Changes
	Step 9. Add Column Headings To Browse List
	Step 10. Test Your Functions
	Summary

	WEB015 - Data Apportionment
	Step 1. Create iiiFN13 � Contact Us
	Step 2. Create a New Page Component
	Step 3. Compile and Test Your Function iiiFN13
	Step 4. Using JavaScript Alerts (Optional)
	Summary

	WEB016 - Customizing Personnel Application (Optional)
	Step 1. Design Your Layout
	Step 2. Test
	Summary

	Personnel Demonstration System
	Personnel System Demonstration Files
	Sample Data in the Personnel Files

	Appendix A. Header Styles
	Static Header
	Dynamic Header
	Scrolling Header
	Non-Scrolling Header
	Frameset Definition
	Limitations of non-scrolling headers
	Combination Of Scrolling And Non Scrolling Header Styles
	Override Header Style
	Adopted Header Style

	Appendix B. LANSA for the Web XHTML
	Introduction to XHTML 1.0
	What is XHTML 1.0?
	Why use XHTML 1.0?
	Compatibility with HTML

	Converting HTML to XHTML 1.0
	XHTML Syntax Rules
	XML Declaration

	XHTML Document Type Definition (DTD)
	Document Type Definition (DTD)
	How to Avoid the Insertion of the DOCTYPE Declaration

	Serving XHTML Pages as Pure XML Pages

