
LANSA	Open	System	Utilities	Guide

	

About	this	Guide
Before	you	start
Installing	the	Open	System	Utilities
Available	Open	System	Utilities
Direct	Calling	LANSA	Processes	and	Functions

	

	

	

Edition	Date	February	14,	2014
©	LANSA
	

its:lansa080.chm::/lansa/opnb_000.htm
its:lansa080.chm::/lansa/opn1_000.htm
its:lansa080.chm::/lansa/opn5_010.htm
its:lansa080.chm::/lansa/opn5_005.htm
its:lansa080.chm::/lansa/opn7_000.htm

About	this	Guide
This	guide	contains	technical	information	about	the	LANSA	Open	Systems
Utilities	which	allow	you	to	perform	powerful	global	manipulations	of	a
LANSA	system	outside	many	of	the	normal	internal	LANSA	checks.
You	should	only	use	these	utilities	if	you	have	a	sound	knowledge	of	LANSA
and	its	internal	database.
Note:	These	facilities	support	LANSA	for	iSeriesV11.00	or	higher	only.

Disclaimer
The	information	contained	in	this	guide	represents	the	current	view	of	LANSA
as	of	the	date	of	publication.	Because	LANSA	must	respond	to	changing	market
conditions,	it	should	not	be	interpreted	to	be	a	commitment	on	the	part	of
LANSA,	and	LANSA	cannot	guarantee	the	accuracy	of	any	information
presented	after	the	date	of	publication.
All	information	is	for	informational	purposes	only.	Every	effort	has	been	made
to	insure	that	the	information	in	this	material	is	accurate,	however,	in	no	event
shall	LANSA	be	liable	for	any	damages	arising	from	its	use.
LANSA	MAKES	NO	WARRANTIES,	EXPRESSED	OR	IMPLIED.

Abbreviations
Abbreviations	used	in	this	document:

Abbreviation Description

<<pgmlib>> Name	of	LANSA	program	library.	Often	DC@PGMLIB,	but
can	be	changed	during	installation.	Refer	to	the	Installing
LANSA	on	iSeries	Guide	for	details.

<<dtalib>> Name	of	LANSA	data	library.	Often	DC@DTALIB,	but	can	be
changed	during	installation.	Refer	to	the	Installing	LANSA	on
iSeries	Guide	for	details.

<<osulib>> Name	of	LANSA	open	systems	utility	library.	Often
DC@OPENLIB,	but	can	be	changed	during	installation.

IFS The	iSeries	Integrated	File	System.

jar Java	archive.	Java	programs	are	shipped	in	jar	files	which	are
installed	on	the	IFS.

OSU Open	System	Utilities

	

1.	Before	You	Start
The	Open	System	Utilities	facility	is	a	library	of	utilities	that	allow	experienced
developers	to	manipulate	their	LANSA	for	iSeries	environment	in	a	less
controlled,	but	more	powerful,	manner.	They	enable	global	or	system	level
manipulations	of	a	LANSA	for	iSeries	environment.
Before	you	attempt	to	install	and	use	the	Open	System	Utilities,	it	is	important
that	you	read	the	remainder	of	this	guide	to	find	out	about	actually	using	these
utilities	and	the	special	warnings	that	apply.
Before	you	start	using	the	Open	System	Utilities,	be	sure	to	review:
1.1	Conditions	of	Use
1.2	Integrity
1.3	The	Golden	Rule	-	Backups

1.1	Conditions	of	Use
The	Open	System	Utilities	library	is	provided	to	you	on	the	following	basis:

That	you	have	purchased	a	permanent	LANSA	Development	License	for	at
least	one	machine	in	your	organization.
Open	System	Utilities	material	may	be	copied	for	backup	and	recovery
purposes.	However,	material	must	not	be	copied	for	purposes	of	providing	to
any	other	organization.	This	prohibition	applies	to	documentation	and
computer	definition,	and/or	execution	objects.
That	you	understand	that	you	(the	user	of	any	Open	System	Utilities	feature)
are	solely	responsible	for	any/all	results	that	it	produces,	regardless	of
whether	or	not	the	LANSA	system	involved	belongs	to	the	organization	that
employs	you,	or	to	any	other	organization.
Open	System	Utilities	allow	you	to	perform	powerful	global	manipulations
of	a	LANSA	system	outside	many	of	the	normal	internal	LANSA	checks.	As
such,	you	are	solely	responsible	for	any/all	results	produced.	You	must
exercise	due	skill,	care	and	caution	when	using	Open	System	Utilities.
Open	System	Utilities	are	provided	on	an	"as	is"	basis.	No	warranty	is
expressed	or	implied	in	the	provision	of	these	Open	System	Utilities.
You	are	solely	responsible	for	the	installation,	maintenance,	backup	and
recovery	of	all	Open	System	Utilities	provided.
You	are	solely	responsible	for	ensuring	that	any	version	of	the	Open	System
Utilities	that	you	use	is	compatible	with	the	version	of	LANSA	that	you	are
using	them	against.	Software	is	provided	to	check	on	this,	but	you	are
ultimately	responsible	for	ensuring	the	versions	are	compatible.

1.2	Integrity
The	self-contained	LANSA	for	iSeries	development	environment	has	many
facilities	to	protect	its	integrity.	In	some	situations,	at	a	global	or	system	level,
these	integrity	checks	may	appear	to	make	the	job	of	manipulating	a	LANSA	for
iSeries	system	harder	or	more	complex	than	it	needs	to	be.	However,	they	are
necessary	in	order	to	maintain	the	stability	of	the	system.
Note	that:

Open	System	Utilities	are	provided	on	an	"as	is"	basis	with	complete	source
code	and	documentation.
They	provide	you	with	extensive	knowledge	of	the	internals	of	your	LANSA
for	iSeries	environment,	allowing	you	to	extend	the	shipped	utilities	or	to
develop	new	ones.
The	type	of	manipulations	the	Open	System	Utilities	perform	require	skill
and	care	to	be	exercised	whenever	they	are	used.
No	warranty	is	expressed	or	implied	in	the	provision	of	these	utilities.

Some	of	the	facilities	provided	by	these	utilities	include:
High	speed	movement	of	complete	partitions	between	environments	and
machines.
Stripping	down	of	non-development	systems	(i.e.	to	run-only)	to	minimal
size.
Change	LANSA	for	iSeries	program	and/or	data	library	names.

The	number	of	these	utilities	is	continually	growing.

1.3	The	Golden	Rule	-	Backups
	

When	using	the	Open	System	Utilities,	always	remember	to:

	

2.	Installing	the	Open	System	Utilities
You	will	find	the	instructions	for	installing	the	Open	System	Utilities	or
updating	the	Open	System	Utilities	in	Task:	Upgrade	an	Existing	LANSA
iSeries	System	in	the	Installing	LANSA	on	iSeries	Guide.
When	you	install	the	Open	System	Utilities	you	will	get:

Source	statements	for	all	objects	-	shipped	in	the	library	DC@OPENLIB.
Messages	used	by	OSU	-	shipped	in	the	library	DC@OPENLIB.
2.1	Directory	of	LANSA	Objects	Affected	by	OSU
2.2	Supported	LANSA	PC	Levels

Supplied	for	each	Utility	is:
A	Function	Description
Name,	Type	and	Source
Files	Used
Warnings	That	Apply
Parameters
Examples

Be	sure	to	review	these	details	carefully	before	using	the	Utility.

its:Lansa040.chm::/lansa/inse3_070.htm
its:lansa040.chm::/lansa/insed_000.htm

2.1	Directory	of	LANSA	Objects	Affected	by	OSU

File	Name:		 OS@F01

Description:		 Directory	of	LANSA	Objects	affected	by	OSU

Implemented	in:		 4.00	/	D3

Normal	Library:		 <<osulib>>

Logical	Views
Name Use Keys/Description/Comments

OS@F01V1 Read O01OBJ,	O01TYP.

OS@F01V2 Update Same	as	DC@F01V1.

	

Record	Layout
Field	Name Type Len Dec Description	/	Comments	/	Values

O01OBJ A 10 	 Object	name

O01TYP A 8 	 Object	type

O01NLB A 1 	 Normal	library	(P=Pgm,	D=Data)

O01RT1 A 1 	 Run	and	Compile	system

O01RT2 A 1 	 Run	only	system

O01DEV A 1 	 Development

	

2.2	Supported	LANSA	PC	Levels

Object	Name:		 OS@A01

Description:		 Supported	LANSA	PC	Levels

Implemented	in:		 4.00	/	D9

Normal	Library:		 <<osulib>>

Record	Layout
Data	Area Type Len Dec Description

OS@A01 A 20 	 Supported	PC	Levels

	

3.	Available	Open	System	Utilities

Library	(as	shipped) DC@OPENLIB

Available	machine	types iSeries

Owner	of	objects	(as	shipped) QOTHPRDOWN

Contents	(as	shipped) See	table	below

	

Object Type Description

QOPNSRC *SRCPF Source	statement	for	all	objects.

OS@M01 *MSGF Messages	used	by	OSU.

OS@F01 *PF Directory	of	LANSA	Objects	affected	by	OSU

OS@A01 *DTAARA Supported	LANSA	PC	Levels

OS@P0001 *CLLE 3.1	High	Speed	Partition	Export	to	Tape

OS@P0002 *CLLE 3.2	High	Speed	Partition	Import	from	Tape

OS@P0003 *CLLE 3.3	High	Speed	Partition	Deletion

OS@P0004 *CL 3.4	Remove	Observability	from	All	Objects	in	a
Library

OS@P0005 *CL 3.5	Strip	System	to	Import,	Compile	and	Run
Only

OS@P0006 *CL 3.6	Strip	System	to	Import	and	Run	Only

OS@P0007 *CL 3.7	Rename	LANSA	Libraries

OS@P0008 *CL 3.8	Rename	Partition	Libraries

OS@P0009 *CL 3.9	Restore	a	Process	from	Backup	Media

OS@P0010 *CL 3.10	Restore	a	Function's	Definition	from	Backup
Media

OSXP0012 *CLE 3.12	LANSA	IFS	Directory	Root	Rename

its:LANSA080.CHM::/lansa/opn5_025.htm
its:LANSA080.CHM::/lansa/opn5_030.htm

OSXP0013 *CLE 3.13	Create/Recreate	Java	Programs	in	LANSA
Classpath

OS@P8001 *CL 3.14	Lock	and/or	Unlock	a	Complete	LANSA
System

OS@P8002 *CL 3.15	Retrieve	System	Details	from	DC@A01
Data	Area

OS@P8003 *CL 3.16	Retrieve	Partition	Details	from	DC@F46

OS@P8004 *CL 3.17	Set	Library	List	for	Initial	System	Access

OS@P8005 *CL 3.18	Set	Library	List	for	Partition	Access

OS@P8006 *CL 3.19	Copy	Records	for	One	Partition	Only

OS@P8007 *CL 3.20	Copy	Records	for	All	Partitions

OS@P8008 *CL 3.21	Check	Release	and	PC	Level	Compatibility

OS@P8009 *CL 3.22	Copy	Records	for	a	Process

OS@P8010 *CL 3.23	Build	List	of	Help	Pointers	for	a	Process

OS@P8011 *CL 3.24	Build	List	of	Help	Pointers	for	a	Function

OS@P8012 *RPG 3.25	Update	a	Partition's	Libraries

OS@P8013 *CL 3.26	Copy	Selected	Records

OS@P8014 *RPG 3.27	Update	Security	File	Partition	Libraries

OS@P8015 *CL 3.28	Copy	All	Records

OS@P8016 *RPGIV 3.29	Re-assign	or	Zero	RDML	Audit	Tokens

OSXS802X *SRVPGM 3.30	Service	Program	for	OSXP802X	Series

	

3.1	High	Speed	Partition	Export	to	Tape
Functional	Description
Library	QTEMP	is	cleared.
This	program	receives	the	identifier	of	a	partition	and	copies	all	required	data
from	the	LANSA	data	library	to	temporary	files	in	library	QTEMP.
When	all	data	has	been	copied	to	QTEMP	a	merged	list	of	the	following	is
created.	Partition	module	library,	partition	default	file	library,	and	all	other
specified	libraries.	The	merged	list	is	then	stored	in	a	data	area	in	QTEMP	as	a
"directory"	of	what	should	be	found	on	the	export	tape.	This	data	area	is	called
OS@DIR.
If	the	partition	has	IFS	objects,	the	IFS	objects	are	first	saved	into	a	save	file
named	IFS_SAVF	in	QTEMP.	This	save	file	is	then	saved	together	with	all	the
other	objects	copied	to	QTEMP.
All	objects	from	QTEMP	are	saved	to	the	tape	device	specified,	followed	by	all
libraries	in	the	resulting	merged	list.	Once	this	operation	has	completed	a
message	is	sent	to	the	system	operator	asking	whether	a	repeat	of	all	save
operations	is	required	(i.e.,	Do	you	want	another	copy?).	This	allows	multiple
save	tapes	to	be	easily	prepared	from	one	export	run.

Name OS@P0001

Type ILE	Control	Language	Program

Source	provided Yes

	

		Files	Used
All	files	in	the	<<dtalib>>	are	used	by	this	job.

Warnings	That	Apply
Remember	The	Golden	Rule.
You	must	back	up	<<dtalib>>	before	using	this	utility.
<<osulib>>	must	be	in	the	library	list	when	running	this	job.
The	partition	specified	must	exist.
This	routine	does	not	do	any	security	checking.

its:LANSA080.CHM::/lansa/opn1_010.htm

No	one	should	be	using	the	partition	at	the	time	of	export.
Tapes	are	not	initialized	by	the	export	operation.
This	program	is	best	run	in	batch.
<<pgmlib>>	must	be	in	the	library	list	when	running	this	job.
If	the	target	release	is	anything	other	than	*CURRENT,	ensure	that	all
objects	being	saved	have	been	created	so	that	they	are	compatible	with	this
target	release.

Parameters
No Type Len Dec Description

1 Alpha 3 	 Identifier	of	partition	to	be	exported.

2 Alpha 10 	 Name	of	tape	device	to	be	used	for	export.

3 Alpha 8 	 Indicates	the	TGTRLS	that	the	save	will	use.
Valid	values	include:
"*CURRENT"
"*PRV"
"*VxRyMz"
where	"VxRyMz"	is	a	valid	OS/400	version.
If	left	blank,	the	target	release	used	is	*CURRENT,
not	the	default	for	the	command.

4 Packed 15 5 Number	of	extra	libraries	to	be	saved.

5 Alpha 200 	 List	of	20	x	alpha(10)	extra	libraries.	This	list	and
the	partition	module	library	and	default	file	library
are	merged	to	form	the	final	list	of	libraries	to	be
saved.

	

		Examples
Export	partition	DEM	to	TAP01	for	current	target	release	and	no	other	libraries.

CALL	OS@P0001	(DEM	TAP01	'*CURRENT'	0	'	')
Export	partition	DEM	to	TAP01	for	previous	target	release	and	also	library
<<comlib>>.

CALL	OS@P0001	(DEM	TAP01	'*PRV'	1	<<comlib>>)
Export	partition	DEM	to	TAP01	for	target		release	V3R7M0	and	also	libraries
<<comlib>>	and	TEST.

CALL	OS@P0001	(DEM	TAP01	'V3R7M0'	2	'<<comlib>>						TEST						')
where	six	spaces	follow	<<comlib>>	and	TEST.

3.2	High	Speed	Partition	Import	from	Tape
Functional	Description
An	attempt	to	exclusively	lock	the	LANSA	system	will	be	made	by	this	job.	If
unsuccessful,	the	job	will	terminate	at	this	point.
All	objects	saved	in	QTEMP	are	restored	from	the	specified	tape	device	to
library	QTEMP.
All	libraries	in	OS@DIR	are	restored.	(See	OS@P0001	Technical	Description
for	details	regarding	OS@DIR).
This	program	then	copies	the	data	in	QTEMP	to	the	LANSA	data	library,
effectively	recreating	the	previously	deleted	(and	saved)	partition.
If	IFS	objects	were	saved	during	the	3.1	High	Speed	Partition	Export	to	Tape,
the	IFS	objects	are	restored	into	the	IFS	as	well.

Name OS@P0002

Type ILE	Control	Language	Program

Source	provided Yes

	

		Files	Used
All	files	in	the	<<dtalib>>	are	used	by	this	job.

Warnings	That	Apply
Remember	The	Golden	Rule.
You	must	backup	<<dtalib>>	before	using	this	utility.
<<osulib>>	must	be	in	the	library	list	when	running	this	job.
The	partition	specified	must	not	already	exist	in	the	target	system.
Existing	partitions	must	have	different	identifiers	to	the	one	about	to	be
restored.
Partition	to	be	imported	must	not	have	the	same	unique	prefix	as	an	existing
partition	(even	if	the	partition	identifiers	are	different).
This	routine	does	not	do	any	security	checking.
No	one	should	be	using	the	system	at	the	time	of	import.

its:LANSA080.CHM::/lansa/opn1_010.htm

This	program	is	best	run	in	batch.

Parameters
No Type Len Dec Description

1 Alpha 10 	 Name	of	tape	device	to	be	used	for	import.

	

		Examples
Import	previously	saved	partition	from	TAP01.

CALL	OS@P0002	(TAP01)

3.3	High	Speed	Partition	Deletion
Functional	Description
An	attempt	to	exclusively	lock	the	LANSA	system	will	be	made	by	this	job.	If
unsuccessful	the	job	will	terminate	at	this	point.
Job	will	end	if	the	partition	to	be	deleted	is	the	SYS	partition.
All	data,	excluding	the	data	for	the	partition	specified,	from	the	LANSA	data
library	is	copied	to	temporary	files	in	library	QTEMP.
All	data	from	QTEMP	is	then	copied	back	to	the	<<dtalib>>,	effectively
removing	the	specified	partition	from	the	LANSA	system.
LANSA	system	will	be	released.

Name OS@P0003

Type ILE	Control	Language	Program

Source	provided Yes

	

		Files	Used
All	files	in	the	<<dtalib>>	are	used	by	this	job.

Warnings	That	Apply
Remember	The	Golden	Rule.
You	must	backup	<<dtalib>>	before	using	this	utility.
<<pgmlib>>	and	<<osulib>>	must	be	in	the	library	list	when	running	this
job.
Not	to	be	used	on	partition	SYS	(this	is	checked).
The	partition	specified	must	exist.
This	routine	does	not	do	any	security	checking.
No	one	should	be	using	the	system	at	the	time	of	deletion.
This	program	is	best	run	in	batch.
Program	failure	will	leave	system	in	a	corrupted	state.	To	recover	from
corrupted	state	restore	<<dtalib>>.
If	the	library	is	not	used	by	another	partition,	it	must	be	deleted	after	this

its:LANSA080.CHM::/lansa/opn1_010.htm

process	has	been	completed.

Parameters
No Type Len Dec Description

1 Alpha 3 	 Identifier	of	partition	to	be	deleted.

	

		Examples
Delete	partition	DEM.

CALL	OS@P0003	(DEM)

3.4	Remove	Observability	from	All	Objects	in	a	Library
Functional	Description
All	programs	in	the	specified	library	will	have	their	symbolic	debug	table
removed.	This	table	can	account	for	up	to	60%	of	a	program's	object	size.	For
more	information	on	this	topic	refer	to	the	appropriate	IBM	manual.

Name OS@P0004

Type Control	Language	Program

Source	provided Yes

	

		Warnings	That	Apply
Remember	The	Golden	Rule.
<<osulib>>	must	be	in	the	library	list	when	running	this	job.
The	library	specified	must	exist.
If	you	want	to	debug	any	programs	in	this	library	after	this	job	has
completed	they	will	need	to	be	recompiled.
This	utility	can	be	run	repeatedly	with	no	problems,	even	over	libraries
already	stripped.
This	job	can	be	run	on	any	library	in	the	system.

Parameters
No Type Len Dec Description

1 Alpha 10 	 Name	of	library	to	be	stripped.

	

		Examples
Remove	observability	from	objects	in	library	TEST.

CALL	OS@P0004	(TEST)

its:LANSA080.CHM::/lansa/opn1_010.htm

3.5	Strip	System	to	Import,	Compile	and	Run	Only
Functional	Description
This	program	reads	the	file	OS@F01	and	according	to	the	flags	set	in	this	file
for	each	object,	decides	whether	or	not	the	object	is	needed	for	a	run	and
compile	system.	If	not	the	object	is	removed	from	the	system,	unless	the	object
is	a	file	(unused	files	are	cleared).
As	a	last	step	in	reducing	disk	usage	OS@P0004	is	run	over	<<pgmlib>>	to
reduce	the	resulting	run	time	system	to	its	minimum	size.
The	resulting	system	can	only	do	the	following:

Import	files,	fields,	processes	and	functions
Compile	processes,	functions,	and	I/O	modules
Execute	processes	and	functions

Name OS@P0005

Type Control	Language	Program

Source	provided Yes

	

		Files	Used
OS@F01 Directory	of	LANSA	Objects	affected	by	OSU

		Warnings	That	Apply
Remember	The	Golden	Rule.
Backup	the	entire	LANSA	system	first.
<<osulib>>	must	be	in	the	library	list	when	running	this	job.
Run	a	LANSA	REORG	before	using	this	utility.
Once	completed	the	system	will	be	available	for	import,	run	and	compile
only.	No	other	functionality.
No	one	should	be	using	the	system	at	time	of	run.
This	routine	does	not	do	any	security	checking.

Parameters

its:LANSA080.CHM::/lansa/opn1_010.htm

No Type Len Dec Description

1 Alpha 1 	 Delete	multilingual	components	(Y/N)

	

Examples
Strip	system	to	run,	import	and	compile	only,	but	with	multilingual	components
still	available

CALL	OS@P0005	(N)

3.6	Strip	System	to	Import	and	Run	Only
Functional	Description
This	program	reads	the	file	OS@F01	and	according	to	the	flags	set	in	this	file
for	each	object,	decides	whether	or	not	the	object	is	needed	for	a	run	only
system.	If	not	then	object	is	removed	from	the	system,	unless	the	object	is	a	file
(unused	files	are	cleared).
As	a	last	step	in	reducing	disk	usage	OS@P0004	is	run	over	<<pgmlib>>	to
reduce	the	resulting	run	time	system	to	its	minimum	size.
The	resulting	system	can	only	do	the	following.	.	.

Import	files,	fields,	processes	and	functions
Execute	processes	and	functions

Name OS@P0006

Type Control	Language	Program

Source	provided Yes

	

Files	Used
OS@F01	-	Directory	of	LANSA	Objects	affected	by	OSU

Warnings	That	Apply
Remember	The	Golden	Rule.
Backup	the	entire	LANSA	system	first.
<<osulib>>	must	be	in	the	library	list	when	running	this	job.
Run	a	LANSA	REORG	before	using	this	utility.
Once	completed	the	system	will	be	available	for	import	and	run	only.	No
other	functionality.
No	one	should	be	using	the	system	at	time	of	run.

Parameters
No Type Len Dec Description

its:LANSA080.CHM::/lansa/opn1_010.htm

1 Alpha 1 	 Delete	multilingual	components	(Y/N)

	

Examples
Strip	system	to	run	only	with	no	multilingual	components

CALL	OS@P0006	(Y)

3.7	Rename	LANSA	Libraries
Functional	Description
The	LANSA	system	is	locked	exclusively.
The	<<pgmlib>>	and	<<dtalib>>	are	renamed	to	the	specified	names.
The	system	definition	data	area	(DC@A01)	is	updated	to	reflect	the	new	names
for	the	<<pgmlib>>	and	<<dtalib>>.
All	the	LANSA	commands	are	then	changed	to	point	to	the	correct
<<pgmlib>>.
The	LANSA	system	is	released.

Name OS@P0007

Type Control	Language	Program

Source	provided. Yes

	

Files	Used
DC@W12 LANSA	System	Tables

Warnings	That	Apply
Remember	The	Golden	Rule.
Backup	the	system	first
<<osulib>>	must	be	in	the	library	list	when	running	this	job.
The	LANSA	libraries	must	not	be	in	the	library	list	of	any	other	job	on	the
system.
No	one	should	be	using	the	system.
If	the	LANSA	IFS	root	directory	name	is	based	on	the	LANSA	program
library	name	(which	is	the	default)	then	you	need	to	run	OSU	program
OSXP0012	to	rename	the	LANSA	IFS	root	directory	and	update	references
to	the	LANSA	IFS	root	directory	within	LANSA.
Any	software	that	invokes	this	LANSA	system	may	need	to	be	changed.
Any	software	that	uses	the	old	library	names	may	need	to	be	changed.

its:LANSA080.CHM::/lansa/opn1_010.htm

Parameters
No Type Len Dec Description

1 Alpha 10 	 New	<<pgmlib>>

2 Alpha 10 	 New	<<dtalib>>

	

Examples
Rename	the	LANSA	libraries	to	LANPGMPROD	and	LANDTAPROD

CALL	OS@P0007	(LANPGMPROD	LANDTAPROD)

3.8	Rename	Partition	Libraries
Functional	Description
This	program	receives	two	library	names.	The	first	name	is	the	old	partition	data
or	module	library,	the	second	is	the	new	name	for	this	library.
Any	occurrence	of	the	old	library	specified	in	the	files	mentioned	above,	are
changed	to	the	new	library.

Name OS@P0008

Type Control	Language	Program

Source	provided Yes

	

Files	Used
DC@F02 System	Security

DC@F05 Validation	Check	Directory

DC@F12 File	Definition

DC@F14 File	Definition	List

DC@F15 Logical	File	Definition

DC@F17 Foreign	Key	Check	Definition

DC@F18 Access	Route	Definition

DC@F19 Batch	Control	Logic	Definition

DC@F21 Module	File	Usage

DC@F27 File	Version	Definition

DC@F45 Virtual	Field	RPGIII	Code	File

DC@F46 Partition	Identifier

DC@F64 Multilingual	Extension	of	DC@F27

DC@F65 Multilingual	Extension	of	DC@F15

DC@F74 TTS	Object	Register

DC@F75 TTS	Object	Event	Log

Warnings	That	Apply
Remember	The	Golden	Rule.
<<osulib>>	must	be	in	the	library	list	when	running	this	job.
No	one	should	be	using	the	system	at	time	of	run.
This	routine	does	not	do	any	security	checking.
This	routine	does	not	rename	the	actual	library,	only	the	references	to	it	in
LANSA	internal	database.
Renames	any	occurrences	of	this	library	name	in	the	LANSA	internal
database.

Parameters
No Type Len Dec Description

1 Alpha 10 	 Old	partition	library

2 Alpha 10 	 New	partition	library

	

Examples
Rename	partition	library	OLDPARTLIB	to	NEWPARTLIB

CALL	OS@P0008	(OLDPARTLIB	NEWPARTLIB)
Rename	partition	library	DEVLANSA	to	DEVLANDATA

CALL	OS@P0008	(DEVLANSA	DEVLANDATA)
Rename	partition	library	DEVLIB	to	PRODLIB

CALL	OS@P0008	(DEVLIB	PRODLIB)

its:LANSA080.CHM::/lansa/opn1_010.htm

3.9	Restore	a	Process	from	Backup	Media
Functional	Description
The	files	listed	below	are	restored	into	temporary	files	in	QTEMP	from	the
specified	backup	media.
The	records	relating	to	the	specified	process,	in	the	specified	partition,	are
copied	from	the	temporary	files	in	library	QTEMP	into	the	corresponding
LANSA	data	library	files.
This	effectively	redefines	the	process	to	LANSA.

Note:	Only	the	definition	is	restored.	The	process	(and	its	associated
functions)	will	need	to	be	recompiled	before	being	used.

Name OS@P0009

Type Control	Language	Program

Source	provided Yes

	

Files	Used
DC@F02 System	Security

DC@F04 Help	Text	Storage

DC@F20 Module	Definition

DC@F21 Module	File	Usage

DC@F23 Module	Format	Definition

DC@F25 Process	Field	Usage

DC@F29 Function	Control	Commands

DC@F30 Function	Control	Parameters

DC@F31 Process	Additional	Menu	Options

DC@F32 Process	Parameter	Definition

DC@F40 Process	/	Function	Field	Definition

DC@F44 Process	Attachments

DC@F63 Multilingual	Extension	of	DC@F04

DC@F66 Multilingual	Extension	of	DC@F20

DC@F67 Multilingual	Extension	of	DC@F23

DC@F68 Multilingual	Extension	of	DC@F31

DC@F69 Action	Bar	Definition

DC@F71 Action	Bar	Multilingual	Definition

DC@F85 Miscellaneous	Function	Details

Warnings	That	Apply
Remember	The	Golden	Rule.
<<osulib>>	must	be	in	the	library	list	when	running	this	job.
The	partition	specified	must	exist.
The	process	specified	must	not	exist.
This	routine	does	not	do	any	security	checking.
Job	best	run	interactively.
Definition	only	-	not	compiled	objects.

Parameters
No Type Len Dec Description

1 Alpha 4 	 Type	of	backup	media	(TAPE,	SAVF).

2 Alpha 10 	 Name	of	device	/	save	file	name.

3 Alpha 10 	 Save	file	library.

4 Alpha 3 	 Name	of	partition	where	process	resides.

5 Alpha 10 	 Name	of	process	to	be	restored.

	

its:LANSA080.CHM::/lansa/opn1_010.htm

Examples
Restore	process	TEST01	from	partition	DEM	from	tape	device	TAP01:

CALL	OS@P0009	(TAPE	TAP01	'	'	DEM	TEST01)
Restore	process	TEST01	from	partition	DEM	from	save	file	SAVEDATA	in
library	<<comlib>>:

CALL	OS@P0009	(SAVF	SAVEDATA	<<comlib>>	DEM	TEST01)

3.10	Restore	a	Function's	Definition	from	Backup	Media
Functional	Description
The	files	listed	below	are	restored	into	temporary	files	in	QTEMP	from	the
specified	backup	media.
The	records	relating	to	the	user	specified	function,	in	the	specified	process	and
partition,	are	copied	from	the	temporary	files	in	library	QTEMP	into	the
corresponding	LANSA	data	library	files.
This	effectively	redefines	the	function	to	LANSA.

Note:	Only	the	definition	is	restored.	The	function	will	need	to	be
recompiled	before	it	can	be	executed.

Name OS@P0010

Type Control	Language	Program

Source	provided Yes

	

Files	Used
DC@F02 System	Security

DC@F04 Help	Text	Storage

DC@F20 Module	Definition

DC@F21 Module	File	Usage

DC@F23 Module	Format	Definition

DC@F25 Process	Field	Usage

DC@F29 Function	Control	Commands

DC@F30 Function	Control	Parameters

DC@F40 Process	/	Function	Field	Definition

DC@F63 Multilingual	Extension	of	DC@F04

DC@F66 Multilingual	Extension	of	DC@F20

DC@F67 Multilingual	Extension	of	DC@F23

DC@F85 Miscellaneous	Function	Details

Warnings	That	Apply
Remember	The	Golden	Rule.
<<osulib>>	must	be	in	the	library	list	when	running	this	job.
The	partition	specified	must	exist.
The	process	specified	must	exist.
The	function	specified	must	not	exist.
This	routine	does	not	do	any	security	checking.
Job	best	run	interactively.
Definition	only	-	not	compiled	objects.

Parameters
No Type Len Dec Description

1 Alpha 4 	 Type	of	backup	media	(TAPE,	SAVF).

2 Alpha 10 	 Name	of	device	/	save	file	name.

3 Alpha 10 	 Save	file	library.

4 Alpha 3 	 Name	of	partition	where	process	resides.

5 Alpha 10 	 Name	of	process	to	be	restored.

6 Alpha 7 	 Name	of	function	to	be	restored.

	

Examples
Restore	function	FUNC001	from	process	TEST01	from	partition	DEM	from
tape	device	TAP01

CALL	OS@P0010	(TAPE	TAP01	'	'	DEM	TEST01	FUNC001)
Restore	function	FUNC002	from	process	TEST01	from	partition	DEM	from
save	file	SAVEDATA	in	library	<<comlib>>

its:LANSA080.CHM::/lansa/opn1_010.htm

CALL	OS@P0010	(SAVF	SAVEDATA	<<comlib>>	DEM	TEST01	FUNC002)

3.11	High	Speed	IFS	Partition	Directory	Deletion
Functional	Description
This	program	is	no	longer	used.
This	program	removes	the	LANSA	partition's	IFS	directory	after	removing	all
its	contents.
This	program	is	called	from	OSU	program	OS@P0003	3.3	High	Speed	Partition
Deletion	so	you	would	normally	not	call	this	program	directly	unless	you	want
to	only	delete	the	partition's	IFS	contents.

Name OSXP0011

Type ILE	C	Program

Source	provided Yes

	

Warnings	That	Apply
<<osulib>>	and	<<pgmlib>>	must	be	in	the	library	list	when	running	this
job.
The	partition	specified	must	exist.
No	one	should	be	using	the	system	at	the	time	of	deletion.
This	program	is	best	run	in	batch.
Program	failure	will	leave	system	(IFS	contents)	in	a	corrupted	state.
To	recover	from	corrupted	state	(abnormal	termination):
Review	diagnostic	messages	issued	by	this	program.
Correct	the	source	of	error.
Rerun	this	program.
Don't	bypass	the	PC	compatibility	test	when	calling	this	program	directly.

Parameters
No Type Len Dec Description

1 Alpha 3 	 Identifier	of	partition	to	be	deleted.

2 Alpha 8 	 Optional	"*NOCHECK"	to	bypass	PC	compatibility

test.	Should	not	be	used	if	called	directly.

	

Examples
Delete	the	IFS	partition	directory	for	partition	WRK

CALL	OSXP0011	('WRK')

3.12	LANSA	IFS	Directory	Root	Rename
Functional	Description
The	LANSA	system	is	locked	exclusively.
The	new	LANSA	root	directory	is	created.
The	new	directory	name	is	set	in	data	area	DC@IFS	in	<<pgmlib>>
The	OS/400	MOV	command	is	used	to	move	the	directory	tree	from	the	old
LANSA	root	directory	into	the	new	LANSA	root	directory.
The	old	LANSA	root	directory	is	removed.
The	Java	classpath	stored	in	data	area	LJAVACP	in	<<pgmlib>>	is	updated	to
reflect	the	changes	in	the	IFS	directory	name.
The	LANSA	system	is	then	released.

Note:	This	program	is	not	called	from	OS@P0007	3.7	Rename
LANSA	Libraries	because	the	IFS	root	directory	name	may	not	match
the	program	library	name.

Name OSXP0012

Type ILE	C	Program

Source	provided Yes

	

Warnings	That	Apply
<<osulib>>	and	<<pgmlib>>	must	be	in	the	library	list	when	running	this
job.
Backup	the	existing	LANSA	directory	tree	before	running	this	program	and
save	data	areas	DC@IFS	and	LJAVACP	from	<<pgmlib>>.
You	must	signon	with	a	user	profile	that	has	authority	to	remove	the	LANSA
IFS	directory	and	its	contents.
No	one	should	be	using	the	LANSA	system	at	the	time	of	rename.
This	program	is	best	run	in	batch.
Program	failure	will	leave	system	in	a	corrupted	state.

To	recover	from	corrupted	state	(abnormal	termination):
Restore	the	saved	IFS	directory.	
Restore	the	saved	data	areas	DC@IFS	and	LJAVACP.
Don't	bypass	the	PC	compatibility	test	when	calling	this	program	directly.

Parameters
No Type Len Dec Description

1 Alpha Vary 	 New	LANSA	IFS	root	directory

2 Alpha 8 	 Optional	"*NOCHECK"	to	bypass	PC
compatibility	test.	Should	not	be	used	if	called
directly.

	

Examples
Rename	the	LANSA	IFS	directory	to	'/newifsdir'

CALL	OSXP0012	('/newifsdir')

3.13	Create/Recreate	Java	Programs	in	LANSA	Classpath
Functional	Description
The	LANSA	system	is	locked	exclusively.
If	the	first	input	argument	to	this	program	is	'N',	it	creates	the	Java	programs	for
each	Java	jar	file	defined	in	the	LANSA	classpath	that	is	located	under	the
LANSA	IFS	root	directory.
Conversely,	if	the	first	input	argument	is	'Y'	then	it	creates	the	Java	programs	for
all	Java	jar	files	defined	in	the	LANSA	classpath,	regardless	of	its	location	on
the	IFS.
The	LANSA	system	is	then	released.

Name OSXP0013

Type ILE	C	Program

Source	provided Yes

	

Warnings	That	Apply
<<osulib>>	and	<<pgmlib>>	must	be	in	the	library	list	when	running	this
job.
The	command	to	create	Java	programs	(CRTJVAPGM)	is	resource	intensive
and	can	be	long	running	(depending	on	the	number	and	size	of	the	Java
classes	included	in	the	jar	file).	This	program	is	best	run	in	batch	and	outside
production	hours.
You	must	signon	with	the	user	profile	that	you	want	to	own	the	Java
programs.
Program	failure	will	leave	system	in	a	corrupted	state.
To	recover	from	corrupted	state	(abnormal	termination):
Review	diagnostic	messages	issued	by	this	program.
Correct	the	source	of	error.
Rerun	this	program.
Don't	bypass	the	PC	compatibility	test	when	calling	this	program	directly.

Parameters

No Type Len Dec Description

1 Alpha 1 	 'N'	-	Create/recreate	Java	programs	defined	in	the
LANSA	Java	classpath	that	are	located	under	the
LANSA	IFS	root	directory.
'Y'	-	Create/recreate	all	Java	programs	defined	in	the
LANSA	Java	classpath.

2 Alpha 8 	 Optional	"*NOCHECK"	to	bypass	PC	compatibility
test.	Should	not	be	used	if	called	directly.

	

Examples
Recreate	the	Java	programs	defined	in	the	LANSA	Java	classpath	that	are
located	under	the	LANSA	IFS	root	directory

CALL	OSXP0013	('N')

3.14	Lock	and/or	Unlock	a	Complete	LANSA	System
Functional	Description
This	program	receives	a	lock	or	unlock	request.	If	the	request	is	'LOCK',	an
exclusive	lock	is	placed	on	the	data	area	DC@A01	in	<<pgmlib>>.	If	the
request	is	'FREE',	then	the	data	area	DC@A01	is	de-allocated.

Name OS@P8001

Type Control	Language	Program

Source	provided Yes

	

	Warnings	That	Apply
The	<<pgmlib>>	must	be	in	the	library	list
No	one	should	be	using	the	system	at	time	of	'LOCK'	request.
Once	the	system	is	locked,	no	LANSA	jobs	will	execute	successfully.
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 4 	 'LOCK'	or	'FREE'	the	LANSA	system

	

3.15	Retrieve	System	Details	from	DC@A01	Data	Area
Functional	Description
Retrieves	the	following	information	from	the	system	definition	data	area.

<<pgmlib>>
<<dtalib>>
Current	Release
Current	PC	Level

	These	values	are	returned	to	the	calling	program.

Name OS@P8002

Type Control	Language	Program

Source	provided Yes

	

	Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 <<pgmlib>>

2 Alpha 10 	 <<dtalib>>

3 Alpha 3 	 Current	Release

4 Alpha 2 	 PC	Level

	

3.16	Retrieve	Partition	Details	from	DC@F46
Functional	Description
Retrieves	the	passed	partition's	record	from	DC@F46	to	return	the	partition	data
library	and	module	library.

Name OS@P8003

Type Control	Language	Program

Source	provided Yes

	

	Files	Used
DC@F46 Partition	Identifier

	Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 3 	 Partition	Identifier

2 Alpha 10 	 Partition	data	library

3 Alpha 10 	 Partition	module	library

	

3.17	Set	Library	List	for	Initial	System	Access
Functional	Description
Sets	the	<<pgmlib>>	and	the	<<dtalib>>	to	be	highest	libraries	in	the	library
list.

Name OS@P8004

Type Control	Language	Program

Source	provided Yes

	

	Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 <<pgmlib>>

2 Alpha 10 	 <<dtalib>>

	

3.18	Set	Library	List	for	Partition	Access
Functional	Description
Includes	the	partition	data	and	module	libraries	into	the	library	list.

Name OS@P8005

Type Control	Language	Program

Source	provided Yes

	

	Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 Partition	data	library

2 Alpha 10 	 Partition	module	library

	

3.19	Copy	Records	for	One	Partition	Only
Functional	Description
Copies	<<dtalib>>	records	to	temporary	files	in	QTEMP.

Name OS@P8006

Type Control	Language	Program

Source	provided Yes

	

	Files	Used
All	files	in	the	<<dtalib>>	are	used	by	this	job.

Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 3 	 Partition	Identifier

2 Alpha 10 	 File	name

3 Alpha 10 	 Field	name

4 Alpha 10 	 Source	library

5 Alpha 10 	 Target	library

6 Alpha 3 	 Equal	or	not	equal

7 Alpha 8 	 Member	option

8 Alpha 4 	 Create	file

	

3.20	Copy	Records	for	All	Partitions
Functional	Description
Copies	the	records	for	all	partitions	to	temporary	files	in	QTEMP.

Name OS@P8007

Type Control	Language	Program

Source	provided Yes

	

	Files	Used
All	files	in	the	<<dtalib>>	are	used	by	this	job.

Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 File	name

2 Alpha 10 	 Source	library

3 Alpha 10 	 Target	library

4 Alpha 8 	 Member	option

5 Alpha 4 	 Create	file

	

3.21	Check	Release	and	PC	Level	Compatibility
Functional	Description
Compares	the	LANSA	system	release	and	PC	level	to	the	levels	supported	by
the	Open	Systems	Utilities.	These	levels	are	stored	in	data	area	OS@A01	in
<<osulib>>.
If	the	levels	do	not	correspond,	OSU	will	send	a	message	to	the	system	operator
stating	that	OSU	and	LANSA	are	incompatible.
The	user	then	has	the	option	to	continue	or	end	the	job.	Unless	you	are
absolutely	sure	that	it	is	safe	to	continue	with	the	job	even	though	the	levels	are
incompatible,	end	the	job	at	this	point.

Name OS@P8008

Type Control	Language	Program

Source	provided Yes

	

	Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 3 	 Release	Level

2 Alpha 2 	 PC	Level

	

3.22	Copy	Records	for	a	Process
Functional	Description
This	routine	is	passed	all	Parameters	specifying	the	copy	criteria.	That	is,	file
name,	source	library,	target	library,	where	parameter	(INCREL)	details.
These	parameters	are	used	to	build	a	specific	copy	command	that	is	used	for
copying	process	details.

Name OS@P8009

Type Control	Language	Program

Source	provided Yes

	

Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 File	name

2 Alpha 10 	 Source	Library

3 Alpha 10 	 Target	Library

4 Alpha 256 	 Where	parameter	of	copy	(INCREL)

	

3.23	Build	List	of	Help	Pointers	for	a	Process
Functional	Description
This	routine	builds	a	list	of	up	to	50	help	pointers	for	a	process.	This	is	done	by
processing	the	file	DC@F20.

Name OS@P8010

Type Control	Language	Program

Source	provided Yes

	

Files	Used
DC@F20 Module	definition

Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 Process

2 Alpha 3 	 Partition	ID

3 Alpha 500 	 List	of	help	pointers

	

3.24	Build	List	of	Help	Pointers	for	a	Function
Functional	Description
This	routine	builds	a	list	of	up	to	50	help	pointers	for	a	function.	This	is	done	by
processing	the	file	DC@F23.

Name OS@P8011

Type Control	Language	Program

Source	provided Yes

	

Files	Used
DC@F23 Module	format	Definition

Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 Process

2 Alpha 7 	 Function

3 Alpha 3 	 Partition	ID

4 Alpha 500 	 List	of	help	pointers

	

3.25	Update	a	Partition's	Libraries
Functional	Description
This	routine	reads	a	file	sequentially.	During	the	read	it	looks	for	a	certain
library	name	and	replaces	it	with	the	new	library	name.	The	changed	record	is
then	updated.

Name OS@P8012

Type RPG	Program

Source	provided Yes

	

Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 Old	library	name

2 Alpha 10 	 New	library	name

3 Numeric 15 5 Position	of	library	in	file

	

3.26	Copy	Selected	Records
Functional	Description
This	routine	is	passed	all	Parameters	specifying	the	copy	criteria.	That	is,	source
file	name,	source	library,	target	file	name,	target	library,	where	parameter
(INCREL)	details.
These	parameters	are	used	to	build	a	specific	copy	command	that	is	used	for
copying	details.

Name OS@P8013
Type Control	Language	Program
Source	Provided Yes

	

Files	Used
All	files	in	the	<<dtalib>>	are	used	by	this	job.

Warnings	that	apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 Source	File	name

2 Alpha 10 	 Source	Library

3 Alpha 10 	 Target	File	name

4 Alpha 10 	 Target	Library

5 Alpha 256 	 Where	parameter	of	copy	(INCREL)

	

3.27	Update	Security	File	Partition	Libraries
Functional	Description
This	routine	reads	file	DC@F02	sequentially.	During	the	read	it	looks	for	a
certain	library	name	and	replaces	it	with	a	new	library	name.	The	changed
record	is	then	updated.

Name OS@P8014
Type RPG	Program
Source	provided Yes

	

Files	Used
DC@F02 System	security

Warnings	That	Apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 Old	library	name

2 Alpha 10 	 New	library	name

	

3.28	Copy	All	Records
Functional	Description
This	routine	is	passed	the	Parameters	specifying	the	copy	criteria.	That	is,
source	file	name,	source	library,	target	file	name	and	target	library.
These	parameters	are	used	to	build	a	specific	copy	command	that	is	used	for
copying	a	file.

Name OS@P8015
Type Control	Language	Program
Source	Provided Yes

	

Files	Used
All	files	in	the	<<dtalib>>	are	used	by	this	job.

Warnings	that	apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 Source	File	name

2 Alpha 10 	 Source	Library

3 Alpha 10 	 Target	File	name

4 Alpha 10 	 Target	Library

	

3.29	Re-assign	or	Zero	RDML	Audit	Tokens
Functional	Description
This	routine	re-assigns	or	zeroes	RDML	audit	tokens.	It	is	used	in	High	Speed
Partition	Import,	Restore	a	Process	from	Backup	Media	&	Restore	a	Function's
Definition	from	Backup	Media.	It	is	passed	the	Parameters	specifying	the
temporary	Function	Control	Command	file	and	temporary	Miscellaneous
Function	Details	file,	and	uses	program	DC@P8197	to	retrieve	/	store	RDML
Audit	information	in	the	Miscellaneous	Function	Details	File	in	the	LANSA
Data	library.

Name OS@P8016
Type RPGIV	Program

Source	 Provided Yes

	

Files	Used
DC@F29 Function	Control	Commands

DC@F85 Miscellaneous	Function	Details

Warnings	that	apply
Do	not	call	directly.	This	is	a	utility	program	for	the	OS@P00nn	series
programs	in	this	OSU	package.

Parameters
No Type Len Dec Description

1 Alpha 10 	 Temporary	Function	Control	Command	File	name

2 Alpha 10 	 Temporary	Function	Control	Command	Library

3 Alpha 10 	 Temporary	Miscellaneous	Function	Details	File
name

4 Alpha 10 	 Temporary	Miscellaneous	Function	Details	Library

	

3.30	Service	Program	for	OSXP802X	Series
Functional	Description
This	service	program	groups	common	functions	and	IFS	access	application
programming	interfaces	used	by	other	programs	in	this	OSU	package.

Name OSXS802X
Type ILE	C	Service	Program
Source	ProvidedYes

	

Warnings	that	apply
Do	not	call	directly.	This	service	program	is	used	by	other	programs	in	this
OSU	package.

	

4.	Direct	Calling	LANSA	Processes	and	Functions
What	Is	Direct	Calling?
Direct	calling	is	the	method	used	to	execute	LANSA	processes	and	functions
without	using	the	LANSA	command	or	program.
This	means	that	a	user	defined	3GL	program	written	in	RPG,	CL,	COBOL,
PL/1	etc.	can	be	used	to	directly	invoke	a	LANSA	process	or	function.

Prerequisites
If	you	use	Direct	Calling	using	these	guidelines	you	must	have	a	sound	working
knowledge	of	the	LANSA	product.
If	you	use	this	method	to	run	LANSA	applications,	be	very	careful.	Be
absolutely	sure	of	what	you	are	doing.	Do	not	bypass	any	part	of	these
guidelines	because	they	don't	look	important	or	seem	pointless.

Disclaimer
All	the	information	about	directly	invoking	LANSA	processes	and	functions	has
been	tested	and	verified	to	the	best	of	our	ability.	However,	no	guarantee	or
warranty	is	expressed	or	implied	due	to	the	many	site	defined	variances	that
occur	between	LANSA	installations.
The	testing	of	applications	invoked	in	this	way	is	the	responsibility	of	the	user
site.
	

4.1	Technical	Considerations	and	Warnings
Processes	must	be	compiled.	It	is	impossible	to	invoke	a	LANSA	process
using	this	method	if	the	OS/400	object	for	the	process	does	not	exist.
No	library	list	manipulation	is	performed.	The	library	list	must	be	correct.
That	is,	these	libraries	must	be	included	in	the	library	list:
LANSA	Program	Library
LANSA	Data	Library
Partition	module	library
Partition	data	library	(optionally)
Any	LANSA	functions	that	are	executed	using	this	method	must	be	created
with	FUNCTION	OPTIONS(*DIRECT).
These	procedures	are	not	available	for	processes	and/or	functions	that
require	parameters,	other	than	working	lists	or	data	structures.
In	the	case	of	multilingual	partitions,	the	user	defined	setup	program	will
also	need	to	perform	any	overrides	for	message	files.

That	is,	LANSA	Message	file	DC@M01	may	need	to	be	overridden	to	the
appropriate	version.	(e.g.	French	may	use	DC@M01FRA).	Refer	to	the
LANSA	Multilingual	Application	Design	Guide	for	further	information	about
the	type	of	processing	that	is	necessary.
It	is	not	recommended	that	Function	Routing	be	used	with	this	method	of
running	LANSA	applications.	When	LANSA	is	invoked	normally	by	use	of
the	LANSA	command,	the	Function	Routing	Table	is	loaded	during	the
LANSA	initiation	and	is	available	until	LANSA	is	terminated.	If	you	use	this
method	of	calling	LANSA	applications,	the	Function	Routing	Table	will	not
have	been	loaded	for	you.
All	steps	and	guidelines	must	be	considered	when	using	this	method	to
execute	LANSA	processes	or	functions.
All	examples	provided	are	in	RPG/400	or	Control	Language.	This	is	not	a
restriction.	User	defined	programs	that	use	this	method	to	execute	LANSA
applications	can	be	written	in	any	language	available	in	OS/400.
These	procedures	are	not	available	for	RDMLX	functions.	To	achieve	the
equivalent	functionality,	code	a	"wrapper"	RDML	function	that	uses	the
same	FUNCTION	statement	and	simply	calls	the	RDMLX	function.	If	the

original	RDMLX	function	is	using	the	RCV_DS	to	receive	a	data	structure,
refer	to	Note	3	in	4.6.1	Data	Structures.

Warnings:

No	security	checking	is	performed.
The	environment	for	the	application	is	your	responsibility.	LANSA	no	longer
has	any	control,	your	user	defined	3GL	program	is	in	control.

	

4.2	Determining	the	i5/OS	Object	Name	of	a	Process	&	Function
Process	i5/OS	Object	Names
The	OS/400	object	name	of	a	process	can	be	determined	by	displaying	the
contents	of	a	data	area	with	the	same	name	as	the	process	that	is	to	be	directly
invoked,	in	the	partition	module	library.
For	example,	the	process	to	be	invoked	is	PSLSYS.	It	resides	in	partition	DEM
and	the	partition	module	library	is	DC@DEMOLIB.

DSPDTAARA	DC@DEMOLIB/PSLSYS
This	will	return	a	screen	similar	to	this:

	

	

																					Display	Data	Area																														

																																																		System	:	SYDASD25	

			Data	area	:			PSLSYS																															

					Library	:					DC@DEMOLIB																									

			Type		:			*CHAR																																

			Length		:			100																																		

			Text		:																																								

																																																																				

													Value																																																		

			Offset					*...+....1....+....2....+....3....+....4....+....5				

							0					'CP@D00001YYNNNNNNN																																'			

						50					'																																																		'			

																																																																				

																																																																				

	

	

	

The	process	object	name	is	positioned	in	bytes	2	thru	9.	LANSA	allows
recursive	calling	of	processes	therefore	a	two	digit	suffix	(01	thru	09)	is	added
to	this	process	name	when	it	is	created.
In	this	case	the	object	name	is	"P@D00001"	and	the	process's	OS/400	object
name	is:

P@D0000101
If	the	application	demanded	that	this	particular	process	be	called	recursively,
then	subsequent	calls	would	be	to	programs:

P@D0000102	->	P@D0000109
Note:	This	name	only	applies	to	this	process	in	this	partition	on	this	machine.	It
will	vary	between	CPUs	and	partitions	-	such	as	when	it	is	exported/imported
between	partitions,	LANSA	systems,	or	sites.

Function	OS/400	Object	Names
The	object	names	of	LANSA	functions	are	much	easier	to	determine	than
process	object	names.
LANSA	functions	created	with	the	FUNCTION	OPTIONS(*DIRECT)	option
have	the	following	naming	convention:
@FFFFFFF
where:
			@	is	the	prefix			FFFFFFF	is	the	function	name
That	is,	the	object	name	is	the	function	name	with	an	"@"	symbol	as	its	prefix.
For	example,	if	a	function	EMPLIST	is	defined	and	created	with	FUNCTION
OPTIONS(*DIRECT)	specified,	its	OS/400	object	will	be	@EMPLIST.

4.3	Calling	Processes
A	LANSA	process	is	called	with	five	parameters	similar	to	this:

In	RPG/400
						CALL				'PRONAME'
						PARM														DC@IDS
						PARM														DC@EDS
						PARM														PRNMIN
						PARM														PR@IDS
						PARM														DUMMY1

In	Control	Language
CALL	PGM(PRONAME)	+
PARM(&DC@1DS	&DC@EDS	&PRNMIN	&PR@IDS	@DUMMY1)

where:

PRONAME Is	the	process	object	name

DC@IDS System	information		A(1024)

DC@EDS Extra	System	information		A(2500)

PRNMIN Process	name	information		A(14)

PR@IDS Process	Information		A(5000)

DUMMY1 Dummy	parameter		A(1)

For	information	about	these	parameters,	refer	to	4.5	Access	to	LANSA	Data
Structures.

4.4	Calling	Functions
A	LANSA	function	has	three	standard	parameters	similar	to	this:

In	RPG/400
						CALL				'FUNNAME'
						PARM														DC@IDS
						PARM														DC@EDS
						PARM														PR@IDS

In	Control	Language
CALL	PGM(FUNNAME)	+
PARM(&DC@IDS	&DC@EDS	&PR@IDS)

where:

FUNNAME Is	the	function	object	name

DC@IDS System	information		A(1024)

DC@EDS Extra	System	information		A(2500)

PR@IDS Process	Information		A(5000)

For	information	about	these	parameters,	refer	to	4.5	Access	to	LANSA	Data
Structures.

4.5	Access	to	LANSA	Data	Structures
When	LANSA	invokes	a	process	or	a	function,	it	passes	some	data	structures
that	contain	information	that	is	vital	for	the	function	to	execute	as	expected.
Information	such	as	this:

Partition	information	(command	key	descriptions,	data	and	module	library
names,	SAA/CUA	information	etc)
Multilingual	information
Environment	information	(OS/400	Version/Release)
LANSA	system	information

In	order	for	a	user	defined	3GL	program	to	successfully	invoke	a	LANSA
process	or	function	directly	this	information	needs	to	be	available.	Refer	to	4.5.1
Setting	up	the	Required	System	Information.

Note:	Some	sample	program	code	is	shipped	with	the	LANSA
software	and	this	can	be	used	to	set	up	this	required	system
information.	For	the	location	of	this	sample	code	refer	to	4.6.3	Data
Structures	and	Working	Lists.

4.5.1	Setting	up	the	Required	System	Information
Shipped	with	the	LANSA	product	are	two	source	members,	UD@CALL1	and
UD@CALL2.	These	are	available	in	file	DC@F28	in	the	LANSA	Data	Library.
The	objects	are	not	shipped.
The	shipped	programs	can	be	used	to	set	up	the	DC@IDS	and	DC@EDS
information.	However,	the	user	defined	3GL	program	that	calls	the	LANSA
process	or	function	will	have	to	supply	the	PR@IDS	-	Process	Information.	(A
sample	set	up	for	PR@IDS	is	supplied	at	the	end	of	this	chapter.)
To	automatically	load	the	DC@IDS	and	DC@EDS	system	information	in	the
user	defined	3GL	program	that	will	invoke	the	LANSA	process	or	function,
include	a	call	to	programs	UD@CALL1	and	UD@CALL2	respectively	.
Tip
The	user	defined	3GL	program	should	only	load	the	required	information	for
this	type	of	processing	once	within	a	job.	Once	the	system	information	is	loaded
it	can	be	passed	between	all	programs	within	the	job.
The	following	diagram	shows	a	possible	logic	flow	of	an	application	that	uses
user	defined	3GL	programs	to	execute	a	LANSA	application.

4.5.2	Source	Members	Shipped	with	LANSA
Data	Structures	(DC@IDS,	DC@EDS	&	PR@IDS)

DC@IDS	&	DC@EDS	-	System	Information
The	/COPY	source	member	DC@ISPEC	and	DC@ESPEC	are	supplied	in
file	DC@F28	in	the	LANSA	Data	Library	for	RPG/400,	and	DC@DSPEC
for	RPGIV.
PR@IDS	-	Process	Information
The	/COPY	source	members	PR@ISPEC	and	PR@ESPEC	are	supplied	in
file	DC@F28	in	the	LANSA	Data	Library	for	RPG/400	and	PR@DSPEC	for
RPGIV.

Programs
Program	UD@CALL1
The	source	member	for	UD@CALL1	is	supplied	in	file	DC@F28	in	the
LANSA	Data	Library.
Program	UD@CALL2
The	source	member	for	UD@CALL2	is	supplied	in	file	DC@F28	in	the
LANSA	Data	Library.

Note:	Only	the	program	source	of	UD@CALL1	and	UD@CALL2	is
supplied.	The	program	objects	will	need	to	be	created	before	they	can	be
executed.

4.6	Calling	Functions	and	Passing	Data	Structures,	Working	and
Exchange	Lists
Other	parameters	are	included	when	using	advanced	programming	techniques
that	include	passing	data	structures	and/or	working	lists.
4.6.1	Data	Structures
4.6.2	Working	Lists
4.6.3	Data	Structures	and	Working	Lists
4.6.4	Exchange	Lists

4.6.1	Data	Structures
For	example,	a	function	that	receives	a	data	structure	would	be	called	with	a
parameter	list	similar	to	this:

Data	structure	received: PSLMST 	

Data	structure	elements: EMPNO A(5)

SURNAME A(20)

GIVENAME A(20)

BIRTHDT A(6)

SALARY S(9,2)

	

In	RPG/400
						CALL			'FUNNAME'
						PARM														DC@IDS
						PARM														DC@EDS
						PARM														PR@IDS
						PARM														PSLMST

In	Control	Language
CALL	PGM(FUNNAME)	+
PARM(&DC@IDS	&DC@EDS	&PR@IDS	&PSLMST)

where:

FUNNAME Is	the	function	object	name

DC@IDS System	information		A(1024)

DC@EDS Extra	System	information		A(2500)

PR@IDS Process	Information		A(5000)

PSLMST Passed	data	structure	(Note	1)		A(Note	2)

	

Note	1:	The	'Passed	data	structure'	parameter	is	repeated	for	each	of	the	Passed
data	structures.
Note	2:	The	size	of	the	'Passed	data	structure'	parameter	in	this	scenario	could
be	60	or	64	bytes.	That	is,	60	bytes	if	the	PSLMST	data	structure	is	a	file
defined	externally	to	LANSA	(OTHER)	or	64	bytes	if	it	is	a	LANSA	defined
file.	The	extra	4	bytes	in	the	LANSA	file	is	the	@@UPID	field	used	by	all	files
created	using	LANSA.	Each	of	the	fields	in	the	data	structure	(file)	contribute	to
the	aggregate	length	of	the	'Passed	data	structure'.
Note	3:	If	this	is	a	"wrapper"	RDML	function	that	is	itself	calling	another
function	using	PASS_DS,	then	it	is	necessary	to	refer	to	all	of	the	fields	in	the
data	structure,	otherwise	their	values	will	not	be	passed	on.	A	way	of	doing	this
would	be	via	the	GROUP_BY	RDML	command.

its:lansa015.CHM::/lansa/GROUP_BY.HTM

4.6.2	Working	Lists
A	function	that	receives	a	working	list	would	be	called	with	a	parameter	list
similar	to	this:

Working	list	received: PSLSKL 	

Working	list	elements: SKILCODE A(4)

SKILDESC A(20)

COMMENT A(40)

	

In	RPG/400
						CALL			FUNNAME
						PARM														DC@IDS
						PARM														DC@EDS
						PARM														PR@IDS
						PARM														PSLSKL
						PARM														PSLNUM
						PARM														PSLPOS

In	Control	Language
CALL	PGM(FUNNAME)	+
PARM(&DC@IDS	&DC@EDS	&PR@IDS	&PSLSKL	+
&PSLNUM	&PSLPOS)

where:

FUNNAME Is	the	function	object	name

DC@IDS System	information	A(1024)

DC@EDS Extra	System	information	A(2500)

PR@IDS Process	Information	A(5000)

PSLSKL Passed	working	list	(Note	1)
n	*	A(64)	Note	2

PSLNUM Number	of	entries	in	list	(Note	1)

P(7,0)

PSLPOS Position	in	list	(Note	1)
P(7,0)

	

Note	1:	The	'Passed	working	list'	parameters	are	repeated	for	each	passed
working	list.
Note	2:	The	PSLSKL	parameter	is	defined	as	the	aggregate	length	of	all	fields
in	the	working	list.	The	size	of	the	PSLSKL	parameter	of	this	field	will	be	64
bytes.	In	RPG	terms	this	field	is	a	multiple	occurrence	data	structure	where	each
of	the	fields	are	sub-fields	of	PSLSKL.
The	'n'	occurrences	is	the	number	of	entries	in	the	working	list	that	have	been
passed.

4.6.3	Data	Structures	and	Working	Lists
A	function	that	receives	both	working	lists	and	data	structures	would	be	called
with	a	parameter	list	similar	to	this:

Working	list	received: PSLSKL 	

Working	list	elements: SKILCODE A(4)

SKILDESC A(20)

COMMENT A(40)

Data	structure	received: PSLMST 	

Data	structure	elements: EMPNO A(5)

SURNAME A(20)

GIVENAME A(20)

BIRTHDT A(6)

SALARY S(9,2)

	

In	RPG/400
						CALL			FUNNAME
						PARM														DC@IDS
						PARM														DC@EDS
						PARM														PR@IDS
						PARM														PSLSKL
						PARM														PSLNUM
						PARM														PSLPOS
						PARM														PSLMST

In	Control	Language
CALL	PGM(PRONAME)	+
PARM(&DC@IDS	&DC@EDS	&PR@IDS	&PSLSKL	+
&PSLNUM	&PSLPOS	&PSLMST)

where:

FUNNAME Is	the	function	object	name

DC@IDS System	information		A(1024)

DC@EDS Extra	System	information		A(2500)

PR@IDS Process	Information		A(5000)

PSLSKL Passed	working	list	(Note	1)		n	*	A(64)

PSLNUM Number	of	entries	in	list	(Note	1)		P(7,0)

PSLPOS Position	in	list	(Note	1)		P(7,0)

PSLMST Passed	data	structure	(Note	2)		A(Note	3)

	

	
Note	1:	The	'Passed	working	list'	parameters	are	repeated	for	each	passed
working	list.
The	'n'	occurrences	is	the	number	of	entries	in	the	working	list	that	have	been
passed.
Note	2:	The	'Passed	data	structure'	parameter	is	repeated	for	each	of	the	Passed
data	structures.
Note	3:	The	size	of	the	'Passed	data	structure'	parameter	in	this	scenario	could
be	60	or	64	bytes.	That	is,	60	bytes	if	the	PSLMST	data	structure	is	a	file
defined	externally	to	LANSA	(OTHER)	or	64	bytes	if	it	is	a	LANSA	defined
file.	The	extra	4	bytes	in	the	LANSA	file	is	the	@@UPID	field	used	by	all	files
created	using	LANSA.	Each	of	the	fields	in	the	data	structure	(file)	contribute	to
the	aggregate	length	of	the	'Passed	data	structure'.
Refer	to	4.5.2	Source	Members	Shipped	with	LANSA	for	further	information
about	the	standard	parameters.

4.6.4	Exchange	Lists
You	will	find	a		thorough	explanation	of	exchange	lists	with	the	EXCHANGE	in
the	LANSA	Technical	Reference	Guide.
When	using	exchange	lists	it	is	important	to	remember	that	extra	calls	to
M@EXCHL	are	needed	when	directly	calling	a	function.
The	difference	between	using	LANSA	to	RUN	a	function	and	directly	calling
the	function,	is	that	LANSA	controls	the	transfer	of	the	external	(3GL)
exchange	list	to	the	LANSA	exchange	list	and	vice	versa.	When	a	function	is
called	directly	these	transfers	must	be	done	through	additional	calls	to	the
M@EXCHL	program.
One	call	to	M@EXCHL	is	done	just	before	the	call	to	the	3GL	program	to	map
the	external	exchange	list	into	the	LANSA	exchange	list.	Another	is	done	right
after	the	call	to	the	3GL	program	to	map	the	LANSA	exchange	list	back	into	the
external	exchange	list.
The	parameters	required	for	these	M@EXCHL	calls	are:

Parm	No Type Min	LenMax	Len Comments

1 Alpha 3 3 '$AC'	:	Transfer	onto	exchange	list
'$RC'	:	Receive	from	exchange	list

2 Alpha 1 1024 DC@IDS	-	System	Information

3 Alpha 1 2500 DC@EDS	-	Extra	System	Information

4 Alpha 1 5000 PR@IDS	-	Process	Information

	

The	correct	sequence	of	calls	when	using	exchange	lists	within	a	3GL	program
to	pass	field	values	to	a	LANSA	function	is:
1.		CALL	M@EXCHL	'CLR'
2.		CALL	M@EXCHL	'PUT'
3.		CALL	M@EXCHL	'$AC'
4.		CALL	Function	(or	Process)
5.		CALL	M@EXCHL	'$RC'

its:lansa015.chm::/lansa/exchange.htm

6.		CALL	M@EXCHL	'GET'	...

4.7	Examples	of	Using	Direct	Calling
The	functions	and	processes	used	by	these	examples	are	a	part	of	the	shipped
Demonstration	Personnel	System.	All	examples	execute	on	an	IBM	i	with	a
version	of	OS/400	at	V1R3M0	or	higher.
The	examples	are	provided	with	the	LANSA	Product.	The	source	is	stored	in
file	DC@F28	in	the	LANSA	Data	Library	with	the	following	member	names:

UD@FUNC1 Call	a	LANSA	Function	using	RPG/400

UD@FUNC2 Call	a	LANSA	Function	using	Control	Language	(CLP)

UD@FUNC3 Call	a	LANSA	Function	using	ILE	RPG

UD@FUNC4 Call	a	LANSA	Function	using	Control	Language	(CLLE)

UD@PROC1 Call	a	LANSA	Process	using	RPG/400

UD@PROC2 Call	a	LANSA	Process	using	Control	Language	(CLP)

UD@PROC3 Call	a	LANSA	Process	using	ILE	RPG

UD@PROC4 Call	a	LANSA	Process	using	Control	Language	(CLLE)

	

The	source	members	for	these	programs	for	RPG/400(UD@FUNC1)	&	ILE
RPG	(UD@FUNC3)	can	be	found	in	file	DC@F28	in	the	LANSA	Data	Library.

4.7.1	Executing	the	LANSA	INQUIRE	Function	with	RPG
The	sample	RPG	members	are	an	examples	of	directly	calling	a	LANSA
function.	They	show	the	basics	necessary	to	set	up	all	relevant	information	for	a
function.	The	function	is	executed	in	English.
The	programs	UD@FUNC1	&	UD@FUNC3	call	the	LANSA	function
INQUIRE	-	'Browse/Maintain	Employee	and	Skill	Files'	and	pass	to	the
function,	via	the	exchange	list,	a	value	for	the	field	EMPNO	-	'Employee
number'.
Note:	The	employee	number	will	only	be	exchanged	if	the	INQUIRE	function
has	been	created	with	access	to	3GL	exchange	list	flag	set	on.	

4.7.2	Executing	the	LANSA	INQUIRE	Function	with	CL
The	source	members	for	these	programs	for	CLP	(UD@FUNC2)	&	CLLE
(UD@FUNC4)	are	supplied	in	file	DC@F28	in	the	LANSA	Data	Library.
These	examples	perform	exactly	the	same	processing	as	the	Executing	the
LANSA	INQUIRE	Function	with	RPG	sample	code,	except	these	programs
have	been	written	using	Control	Language	(CLP	&	CLLE).	The	function	is
executed	in	English.

4.7.3	Executing	the	LANSA	PSLSYS	Process	with	RPG
The	source	members	for	these	programs	for	RPG/400	(UD@PROC1)	&	ILE
RPG	(UD@PROC3)	are	supplied	in	file	DC@F28	in	the	LANSA	Data	Library.
The	sample	RPG	members	are	an	examples	of	directly	calling	a	LANSA
Process.	They	show	the	basics	necessary	to	set	up	all	relevant	information	to	run
a	LANSA	Process.
The	programs	UD@PROC1	&	UD@PROC3	call	the	LANSA	Process	PSLSYS
-	'Personnel	System'.	The	process	is	executed	in	English.

4.7.4	Executing	the	LANSA	PSLSYS	Process	with	CL
The	source	members	for	these	programs	for	CLP	(UD@PROC2)	&	CLLE
(UD@PROC4)	is	supplied	in	file	DC@F28	in	the	LANSA	Data	Library.
These	examples	perform	exactly	the	same	processing	as	the	Executing	the
LANSA	PSLSYS	Process	with	RPG	sample	code,	except	these	programs	have
been	written	using	Control	Language	(CLP	&	CLLE).	The	process	is	executed
in	French.

4.7.5	Sample	Set	up	of	Process	Information	-	PR@IDS
The	following	RPG/400	code	shows	the	necessary	field	settings	for	the	Process
Information	data	structure	-	PR@IDS.
					I*	Program	Information	Data	Structure
					I*
					I$PID							SDS																												200
					I																																					*PROGRAM	$PGMNM
					I*
					C*	Clear	the	exchange	list
					C*
					C																					Z-ADD0									PR@NXL
					C																					Z-ADD1									PR@NXP
					C*
					C																					MOVEL<function>PR@FUN											Function	name
					C																					MOVEL<fdesc>			PR@FUD											Function
					C*																																																				description
					C																					MOVEL*BLANKS			PR@NXT
					C																					MOVEL*BLANKS			PR@NXD
					C																					MOVEL<ptype>			PR@TYP											Process	type
					C*																																																				MNU,FUN,CMD,
					C*																																																				HLP,	or	EXT
					C																					MOVEL<process>	PR@PRO											Process	name
					C																					MOVEL<pdesc>			PR@PRD											Process
					C*																																																				description
					C																					MOVEL'L'							PR@RCL											Heavy	=	N,
					C*																																																				LIGHT	=	L
					C																					MOVEL'DIS'					PR@MDE
					C																					MOVEL*BLANKS			PR@VER
					C																					MOVELSA@KEH				PR@CEX
					C																					MOVELSA@KCN				PR@CMN
					C																					MOVELSA@KMS				PR@CDM
					C																					MOVELSA@KAD				PR@CAD
					C																					MOVELSA@KCH				PR@CCH
					C																					MOVELSA@KDL				PR@CDL
					C																					MOVEL'00'						PR@CU1
					C																					MOVEL'00'						PR@CU2
					C																					MOVEL'00'						PR@CU3

					C																					MOVEL'00'						PR@CU4
					C																					MOVEL'00'						PR@CU5
					C																					MOVE	*BLANKS			PR@CD1
					C																					MOVE	*BLANKS			PR@CD2
					C																					MOVE	*BLANKS			PR@CD3
					C																					MOVE	*BLANKS			PR@CD4
					C																					MOVE	*BLANKS			PR@CD5
					C																					MOVEL*BLANKS			PR@KEY
					C																					MOVEL*BLANKS			PR@ELK
					C*
					C*
					C*	$PGMNM	is	the	name	of	this	program
					C*	from	the	Program	Information	Data	Structure	(PIDS)
					C*
					C																					MOVEL$PGMNM				PR@RMQ
					C																					MOVE	'01'						PR@NIC
					C																					MOVEL'Y'							PR@RQR
					C																					MOVEL'Y'							PR@SAA
					C																					MOVE	'N'							PR@EPR

	LANSA Open System Utilities Guide
	About this Guide
	Disclaimer
	Abbreviations

	1. Before You Start
	1.1 Conditions of Use
	1.2 Integrity
	1.3 The Golden Rule - Backups

	2. Installing the Open System Utilities
	2.1 Directory of LANSA Objects Affected by OSU
	2.2 Supported LANSA PC Levels

	3. Available Open System Utilities
	3.1 High Speed Partition Export to Tape
	3.2 High Speed Partition Import from Tape
	3.3 High Speed Partition Deletion
	3.4 Remove Observability from All Objects in a Library
	3.5 Strip System to Import, Compile and Run Only
	3.6 Strip System to Import and Run Only
	3.7 Rename LANSA Libraries
	3.8 Rename Partition Libraries
	3.9 Restore a Process from Backup Media
	3.10 Restore a Function's Definition from Backup Media
	3.11 High Speed IFS Partition Directory Deletion
	3.12 LANSA IFS Directory Root Rename
	3.13 Create/Recreate Java Programs in LANSA Classpath
	3.14 Lock and/or Unlock a Complete LANSA System
	3.15 Retrieve System Details from DC@A01 Data Area
	3.16 Retrieve Partition Details from DC@F46
	3.17 Set Library List for Initial System Access
	3.18 Set Library List for Partition Access
	3.19 Copy Records for One Partition Only
	3.20 Copy Records for All Partitions
	3.21 Check Release and PC Level Compatibility
	3.22 Copy Records for a Process
	3.23 Build List of Help Pointers for a Process
	3.24 Build List of Help Pointers for a Function
	3.25 Update a Partition's Libraries
	3.26 Copy Selected Records
	3.27 Update Security File Partition Libraries
	3.28 Copy All Records
	3.29 Re-assign or Zero RDML Audit Tokens
	3.30 Service Program for OSXP802X Series

	4. Direct Calling LANSA Processes and Functions
	4.1 Technical Considerations and Warnings
	4.2 Determining the i5/OS Object Name of a Process & Function
	4.3 Calling Processes
	4.4 Calling Functions
	4.5 Access to LANSA Data Structures
	4.5.1 Setting up the Required System Information
	4.5.2 Source Members Shipped with LANSA

	4.6 Calling Functions and Passing Data Structures, Working and Exchange Lists
	4.6.1 Data Structures
	4.6.2 Working Lists
	4.6.3 Data Structures and Working Lists
	4.6.4 Exchange Lists

	4.7 Examples of Using Direct Calling
	4.7.1 Executing the LANSA INQUIRE Function with RPG
	4.7.2 Executing the LANSA INQUIRE Function with CL
	4.7.3 Executing the LANSA PSLSYS Process with RPG
	4.7.4 Executing the LANSA PSLSYS Process with CL
	4.7.5 Sample Set up of Process Information - PR@IDS

