
Visual	LANSA	Logical	Modeler
Visual	LANSA	Logical	Modeler

	

About	this	Guide
What's	New	in	this	version?
Introduction
Getting	Started
Models
Datatypes
Entities
Elements
Relationships
Abstractions
User	Views
Building	a	Model
Troubleshooting
Tutorials

	

Edition	Date	October	20,	2014
©		LANSA
	
	

its:LANSA076.CHM::/lansa/l4wmodb0_0001.htm
its:LANSA076.CHM::/lansa/l4wmodb0_0020.htm
its:LANSA076.CHM::/lansa/l4wmod_003.htm
its:LANSA076.CHM::/lansa/l4wmod_065.htm
its:LANSA076.CHM::/lansa/l4wmod_095.htm
its:LANSA076.CHM::/lansa/l4wmod_110.htm
its:LANSA076.CHM::/lansa/l4wmod_120.htm
its:lansa076.chm::/lansa/l4wmod_210.htm
its:lansa076.chm::/lansa/l4wmod_240.htm
its:lansa076.chm::/lansa/l4wmod_265.htm
its:lansa076.chm::/lansa/l4wmod_270.htm
its:lansa076.chm::/lansa/l4wmod_275.htm
its:LANSA076.CHM::/lansa/l4wmod_280.htm
its:LANSA076.CHM::/lansa/lgm_tutorials.htm


About	this	Guide
This	guide	provides	instructions	for	planning	and	creating	a	data	model
using	the	LANSA	Logical	Modeler.
The	contents	are	written	for	system	analysts	and	LANSA	developers	and
assumes	that	readers	have	a	solid	understanding	of	data	modeling	and	are
familiar	with	one	or	more	data	modeling	methodologies.
How	to	install	the	Visual	LANSA	and	Microsoft	Visio	software	(which	is
used	for	the	display	of	the	model)	is	beyond	the	scope	of	this	guide.	It	is
assumed	that	all	the	prerequisite	software	is	loaded	and	configured	as
described	in	the	Installing	LANSA	on	Windows	Guide.
Although	there	is	a	chapter	summarizing	data	modeling	principles,	this	guide
is	not	designed	to	teach	you	how	to	model	data.	If	you	are	unfamiliar	with
data	modeling,	you	should	attend	the	LANSA	Modeling	and	Design
Workshop.

You	can	access	the	Visual	LANSA	guides	from	the	Help	menu	on	the
Visual	LANSA	menu	bar.

Before	using	this	guide,	you	should	review	the	following:
About	this	Version
Who	Should	Use	This	Guide
How	To	Use	This	Guide
Additional	Information.
For	the	latest	product	information	and	updates,	please	refer	to	the	technical
information	section	of	the	LANSA	Web	site	at	www.LANSA.com/support	
Note:	The	information	in	this	guide	is	specific	to	the	current	LANSA	Logical
Modeler.

http://www.LANSA.com/support


About	this	Version
Logical	Modeler	requires	a	currently	supported	version	of	Visio.	Refer	to	the
Supported	Platforms	and	Versions	document	for	the	currently	supported	version
of	this	software.
Models	produced	by	previous	versions	of	the	Logical	Modeler	are	fully
supported	by	this	version.
A	summary	of	features	in	this	version:
Models
Entities
Elements
Relationships
Abstractions
Model	Navigation
Miscellaneous

http://www.lansa.com.au/support/supportedversions.htm


Models
In	addition	to	an	XML	file	being	generated,	a	Visio	document	is	created.	
This	enables	models	produced	by	this	version	to	be	loaded	more	quickly
than	in	previous	versions.
A	right-click	menu	is	available	on	a	blank	portion	of	the	model	diagram	for
performing	common	model	tasks.



Entities
Physical	file	names	for	data	and	variant	entities	may	be	up	to	eight	or	ten
characters	in	length,	depending	on	your	Visual	LANSA	system	settings.
If	an	entity's	physical	file	name	is	longer	than	two	characters	less	than	the
maximum	number	of	characters	allowed	by	the	system	settings,	the	entity's
relationships	and	user	views	must	have	logical	view	names	specified
manually.
If	an	entity's	physical	file	name	is	longer	than	two	characters	less	than	the
maximum	number	of	characters	allowed	by	the	system	settings,	logical	view
names	for	the	entity's	relationships	and	user	views	are	optional.		If	no	logical
view	name	is	specified,	the	modeler	will	automatically	generate	a	logical
view	name	consisting	of	the	entity's	physical	file	name	and	a	sequential	two
digit	number,	as	with	previous	versions.
You	can	perform	a	one-time	import	of	an	existing	physical	or	logical	file	(an
External	Entity)	definition.	External	entities	may	be	related	to	logical	entities
in	order	to	extend	existing	databases.
Entity	validation	is	performed	dynamically,	indicating	whether	or	not	the
entity	is	in	error	prior	to	build	processing.
The	way	in	which	an	entity	is	shown	as	having	a	validation	or	build	errors	is
shown	as	an	inverted	red	triangle	above	the	top,	right-hand	corner	of	the
entity	shape.



Elements
Field	names	for	elements	may	be	up	to	nine	characters	in	length.
Notes	may	be	maintained	for	any	element	inherited	by	an	entity	as	the	result
of	a	relationship.	As	a	result,	notes	may	be	contextualized	according	to	the
intended	use	of	the	inherited	element.



Relationships
Element	field	names	inherited	by	entities	via	relationships	are	edited	using
the	Maintain	Entity	Elements	form.
A	Logical	View	Name	may	be	specified	for	appropriate	relationships.		It	is
optional	if	the	entity's	physical	file	name	to	which	it	belongs	is	up	to	six
characters	in	length.	It	must	be	specified	if	the	entity's	physical	file	name	is
more	than	six	characters	in	length.	If	it	is	not	specified,	the	modeler	will
automatically	create	a	logical	view	name,	based	on	the	entity's	physical	file
name	and	a	sequential	two	digit	number.
Relationships	may	be	specified	by	using	the	"Specify	Relationship…"	option
on	the	Edit	pull-down	menu	or	main	toolbar.
Relationships	may	be	deleted	via	the	Maintain	Entity	Elements	dialog.
You	can	choose	whether	or	not	relationships	are	displayed	on	the	model
diagram.



Abstractions
The	position	of	entities	in	an	active	abstraction	may	be	changed
independently	of	the	main	model	diagram.
Objects	may	be	added	to	and	removed	from	an	active	Abstraction.



Model	Navigation
A	"Go	To"	facility	simplifies	the	search	for	an	entity	in	a	large	model.
A	grid	may	be	toggled	on	and	off	to	make	it	easier	to	align	model	shapes.
How	you	nominate	the	view	to	be	shown	for	the	model	and/or	individual
entities	is	simple.
Entities	and	relationships	can	be	created	by	means	other	than	dragging
shapes	from	the	document	stencil	onto	the	model	diagram.



Miscellaneous
Some	Builder	Queue	terminology	has	changed.
The	nine	most	recently	opened	models	may	be	opened	directly	from	the	File
pull-down	menu.
The	modeler	uses	standard	Windows	terminology,	and	dialogs	for	opening
and	saving	models.
Model	shapes	have	Windows-style	right-click	menus.
Context-sensitive	user	guide	help	is	provided	from	all	Logical	Modeler
dialogs.



Who	Should	Use	This	Guide
This	guide	has	been	written	for	system	analysts	and	developers	who	are
responsible	for	designing	or	redesigning	applications.
It	is	assumed	that	the	reader	has	some	knowledge	of	Visual	LANSA,	LANSA
development	and	the	LANSA	Repository.
Visual	LANSA	and	the	Logical	Modeler	can	be	used	to	model	and	build
databases	on	many	different	platforms	including	IBM	i,	Windows	and	Linux.
A	brief	summary	of	the	techniques	of	data	modeling	has	been	included,
however,	this	guide	is	not	intended	as	a	detailed	explanation	and	some
knowledge	of	data	modeling	or	data	analysis	is	assumed.
The	Logical	Modeler	uses	extended	Chen	E-R	modeling	principles.	It	is
important	that	you	are	familiar	with	data	modeling	terms	and	concepts	before
attempting	to	use	the	Logical	Modeler.
For	a	detailed	explanation	of	Data	Analysis	or	Modeling,	it	is	recommended	that
you	refer	to	one	of	the	many	books	on	the	subject,	or	attend	the	LANSA
Modeling	and	Design	Workshop.



How	To	Use	This	Guide
This	guide	contains	detailed	instructions	for	the	use	of	the	LANSA	Logical
Modeler.

For	a	general	overview	and	notes	to	review	before	you	start	using	the
modeler,	refer	to	the	Introduction	in	order	to	become	familiar	with	LANSA's
methodology	and	terminology.
A	tour	of	the	Logical	Modeler's	main	window	is	provided	in	Getting	Started.
The	various	facilities	you	will	use	when	creating	your	model	are	described
within	the	heading	to	which	they	relate.	For	example,	for	all	Element	details,
refer	to	Elements,	for	Relationship	information,	refer	to	Relationships	and	so
on.
A	complete	set	of	Tutorials	are	provided	with	the	Logical	Modeler.	These
tutorials	provide	an	excellent	overview	of	the	features	of	the	Logical
Modeler.
A	sample	model	is	shipped	with	the	modeler.	The	sample	model	is	named
LANSA	Logical	Modeler	-	Example	Model.ldm	and	is	stored	in	the
LANSA	directory	where	the	LANSA	software	is	installed.	In	order	to	load
the	sample	model	correctly,	Visual	LANSA	should	use	English	as	the
development	language.		In	addition,	no	computer	names	have	been	specified
for	any	of	the	elements	or	entities	in	the	model.	This	ensures	that	none	of
your	existing	repository	definitions	can	be	overwritten	by	the	building	of	the
model	as	shipped.
If	you	encounter	any	problems	when	using	the	Logical	Modeler,	refer	to
Troubleshooting.
To	access	online	help	for	the	Logical	Modeler,	use	the	Help	Menu	from	the
main	window	or	the	F1	key	to	display	the	context	sensitive	help.

its:LANSA076.CHM::/lansa/l4wmod_003.htm
its:LANSA076.CHM::/lansa/l4wmod_065.htm
its:LANSA076.CHM::/lansa/l4wmod_210.htm
its:LANSA076.CHM::/lansa/l4wmod_240.htm
its:LANSA076.CHM::/lansa/lgm_tutorials.htm
its:LANSA076.CHM::/lansa/l4wmod_280.htm


Additional	Information
For	more	details	about	the	Visual	LANSA	software,	you	may	need	to	refer	to:

Installing	LANSA	on	Windows	Guide	supplied	with	the	LANSA	online
guides	on	the	LANSA	Windows	CD	and	installed	with	the	Visual	LANSA
software.
Visual	LANSA	User	Guide	supplied	with	the	Visual	LANSA	software.

If	you	are	unfamiliar	with	data	modeling,	you	should	attend	the	LANSA
Modeling	and	Design	Workshop.	For	more	details,	contact	your	local	LANSA
distributor	or	check	the	LANSA	Web	site.
For	the	latest	product	information,	refer	to	the	LANSA	product	Web	site	at
www.LANSA.com/support

http://www.LANSA.com/support


1.	Introduction	to	Data	Modeling
The	LANSA	Logical	Modeler	allows	a	system	analyst	to	design	and	manipulate
a	complete	logical	data	model	using	elements,	entities	and	relationships	and
then	allows	a	physical	database	to	be	built	from	this	model.
This	section	defines	what	data	modeling	is,	in	relation	to	the	LANSA	Logical
Modeling	tool.	It	also	describes	how	to	normalize	data	prior	to	creating	your
model	and	your	physical	database	files.
Even	if	you	are	familiar	with	data	modeling,	please	review	this	chapter	briefly:

1.1	What	is	Data	Modeling?
1.2	Conceptual	versus	Implementation	Modeling
1.3	How	Does	LANSA	Help	with	Data	Modeling?
1.4	Conventions/Terminology
1.5	Overview	of	the	LANSA	Logical	Modeler

If	you	are	an	experienced	data	modeler,	it	is	strongly	recommended	that	you
review	the	1.4	Conventions/Terminology	to	help	you	understand	how	to	use	the
LANSA	Logical	Modeler.
	
	



1.1	What	is	Data	Modeling?
Data	Modeling	is	a	technique	used	in	the	Data	Analysis	phase	of	the	Software
Development	Life	Cycle.	It	is	used	by	system	analysts	or	designers	to	build	a
picture	(or	model)	of	the	data	used	within	an	existing	or	proposed	system,	based
on	information	gathered	from	users.	The	normal	data	modeling	process	involves
the	analyst	gathering	information	from	users	about	the	data	used	in	their	normal
business	activities	(i.e.	their	system).
This	information	is	presented	in	the	form	of	"structural	statements"	or	"business
rules".	It	enables	the	data	structure	to	be	described	in	concise	terms	which	the
users	can	easily	understand.	The	users	are	then	able	to	review	and	verify	the
data	model.	For	example,	consider	a	company	which	manufactures	a	variety	of
different	engineering	products	(screws,	bolts,	etc.).	Some	of	the	business	rules
which	apply	to	their	customer	order	processing	system	might	be	as	follows:

A	customer	may	place	many	orders	over	a	period	of	time.
Each	order	may	include	many	products.
For	each	product	on	the	order,	a	quantity	is	specified.
A	customer	has	a	name,	an	address	and	a	phone	number.
Each	product	is	stored	in	a	particular	location	within	the	warehouse.
Orders	are	numbered	sequentially	for	each	customer.
A	product	is	known	by	its	product	code.
A	customer	is	identified	by	a	unique	customer	number.

Each	of	these	statements	can	be	interpreted	as	describing	the	associations
between	two	or	more	items,	for	example,	Customer	and	Order.	Some	of	the
descriptions	in	the	business	rules	simply	state	that	elements	belong	to	entities
(as	attributes).	For	example,	a	customer	has	a	name,	an	address	and	a	telephone
number.	Other	statements	describe	how	entities	can	be	identified.	For	example,
a	product	is	known	by	its	product	code.	A	third	group	of	statements	describes
the	relationships	between	entities.	For	example,	a	customer	may	place	many
orders.
The	items	described	will	fall	into	two	categories.	Those	items	which	are	basic
data	items	and	cannot	be	subdivided	(for	example,	Telephone	Number)	are
known	as	elements.	The	other	type	of	item	is	actually	a	group	of	data	elements
and	is	known	as	an	entity	(for	example,	Customer	or	Product).
The	initial	stages	of	data	modeling	identify	the	data	elements,	to	group	them
into	entities,	and	to	show	how	each	occurrence	of	an	entity	can	be	uniquely



identified.	It	is	very	important	to	ensure	that	data	elements	are	correctly	grouped
into	entities	and	the	techniques	used	for	this	purpose	are	generally	known	as
Data	1.1.12	Normalization.
Once	entities	and	elements	have	been	defined	within	the	model,	relationships
between	entities	are	introduced.	A	relationship	shows	how	to	use	data,	given	an
occurrence	or	record	from	one	entity,	to	access	one	or	more	occurrences	in	a
second	entity.	For	example,	for	a	specific	order,	how	it	is	possible	to	identify	the
customer	who	placed	that	order.
Review	the	following:

1.1.1	Proper	Data	Modeling
1.1.2	Logical	Models	versus	Physical	Models
1.1.3	Understanding	Entities,	Attributes	and	Elements
1.1.4	Understanding	Attributes	and	Relationships	When	Modeling
1.1.5	Understanding	Relationships
1.1.6	Results	of	Relationships
1.1.7	Identifying	the	Type	of	Relationship
1.1.8	Understanding	Identifying	Attributes
1.1.9	Relationship	Guidelines
1.1.10	Understanding	Shared	Keys
1.1.11	Approaches	to	Data	Modeling
1.1.12	Normalization
1.1.13	Training	for	Data	Modeling



1.1.1	Proper	Data	Modeling
Most	developers	spend	their	time	maintaining	existing	applications	rather	than
building	new	applications.	Consequently,	they	are	accustomed	to	adding	to
existing	databases	rather	than	developing	new	ones.	When	an	opportunity	arises
to	develop	a	new	application,	the	approach	is	quite	often	implementation
oriented.
Many	developers	are	familiar	with	designing	and	building	physical	databases
rather	than	working	with	conceptual	models.	They	tend	to	create	a	storage
facility	to	support	their	programs.	It	is	a	direct	step	from	data	to	physical
database	model	or	database.
This	approach	may	appear	effective,	but	can	result	in	a	number	of	problems:

poor	application	performance
higher	application	maintenance	costs
database	is	not	easily	understood	by	the	users	or	developers
database	is	not	flexible
database	is	not	normalized
applications	cannot	be	easily	integrated.

A	database	must	be	properly	designed	before	it	is	implemented.	A	database	is
best	implemented	using	a	logical	or	conceptual	data	model	that	starts	with	the
application	business	requirements.
Note	the	following	definitions:

A	logical	data	model	is	a	representation	of	a	physical	database.
A	database	is	an	implementation	of	a	data	model.

A	logical	data	model	overcomed	some	of	the	problems	that	occur	when
developing	a	database	directly	from	the	data.
Some	developers	claim	to	use	data	models	and	modeling	tools	but	they	are
actually	just	implementing	a	physical	model	or	database	design.	Conceptual
modeling	involves	more	than	using	graphical	drawing	tools	to	create	a	picture
of	the	database.	Models	start	with	business	requirements	and	relationships
within	the	business.	Models	begin	with	the	abstract	and	then	build	toward	the
physical.



1.1.2	Logical	Models	versus	Physical	Models
A	model	is	a	representation	or	a	simplified	copy	of	something	more	complex.
Architects	use	models	to	examine	large	or	complicated	structures	which	are
difficult	to	work	with	directly.	For	example,	engineers	test	models	of	air	plane
wings	or	create	scale	models	of	buildings.
A	data	model	is	a	tool	which	allows	the	Architect	to	construct	a	picture	of	the
data	within	an	organization	or	a	part	of	an	organization.	It	is	not	a	picture	of
what	the	computer	sees,	but	of	what	the	user	and	business	sees.
Logical	Data	Models	are	high	level	or	conceptual	models	which	describe	data	in
terms	of	the	user	perspective	and	business	rules.

A	logical	data	model	represents	the	business.

A	logical	data	model	looks	at	the	basic	pieces	of	information	and	the	inter-
dependencies	between	the	information.	Logical	data	models	are	defined	in	terms
of	entities,	attributes,	and	relationships.	They	reflect	the	business,	its
information	and	rules.	It	is	not	designed	to	represent	the	Architect's	perception
of	the	physical	database	to	be	implemented.
A	logical	data	model	is	platform	independent.	It	is	not	based	on	hardware,
software,	or	tool.	Logical	data	models	are	a	description	of	the	business
information	and	not	a	physical	database	design.
Physical	data	models	or	database	designs	are	low	level	models	which	describe
data	in	terms	of	files	and	how	the	information	is	stored	in	the	computer.	When
physical	modeling,	you	think	of	header	and	detail	files,	logical	views	of	data,
joins	of	data,	etc..	Physical	models	reflect	the	technical	implementation	of	the
database.

A	physical	data	model	represents	the	computer	database.

Physical	models	look	at	data	files	and	database	design	in	terms	of	their
implementation.	Physical	models	are	defined	in	terms	of	fields,	record	formats,
and	files.	It	is	a	technical	representation	designed	to	support	the	programs	and
programmer	that	will	use	the	database.
A	physical	data	model	is	usually	platform	dependent.	It	is	designed	for	a
specific	computer	platform.	The	hardware,	database	management	system,
software	language	and	tool	used	are	all	factors	in	developing	a	physical	model.



As	a	result,	physical	models	tend	to	be	very	inflexible.	A	physical	model	cannot
be	easily	moved	from	one	environment	to	another,	or	implemented	on	another
hardware	platform.



1.1.3	Understanding	Entities,	Attributes	and	Elements
The	Entity-Relationship	(E-R)	Model	was	developed	by	Chen	in	1976.	It
attempts	to	structure	data	in	a	way	which	can	be	easily	understood	by	the	user.
Some	of	the	basic	terms	include:
Element:	An	element	is	the	smallest	piece	of	data	within	a	system.	An	element
cannot	be	divided	into	other	pieces	of	information.	Example:	Age	is	an	element.
Name	is	not	an	element,	as	it	can	be	broken	into	first	name	and	last	name.
Attribute:	An	element	which	is	associated	with	(attached	to)	an	entity	becomes
an	attribute	of	that	entity.	Example:	An	age	can	be	an	attribute	of	entity
Employee.	An	Employee	entity	has	an	attribute	of	last	name.	An	Employee
entity	has	an	attribute	of	first	name.
Entity:	An	entity	is	a	group	of	elements	which	logically	belongs	together.
Example:	An	Employee	is	an	entity.	An	Order	is	an	entity.
Value:	A	value	might	be	a	number	or	set	of	characters	an	attribute	or	element
may	be	assigned.	Example:	The	age	of	an	Employee	is	25	years.	The	Employees
surname	is	'Smith'.
Occurrence:	A	single	example	or	instance	of	an	entity	(i.e.	a	row	in	a	table)	is
called	an	occurrence.
Identifying	or	Key	Attribute:	A	key	attribute	is	one	whose	value	uniquely
identifies	an	occurrence	within	an	entity.	Example:	An	employee	number
identifies	an	Employee.	An	order	number	identifies	an	Order.
To	summarize:

Age	is	an	element.
Age	becomes	an	attribute	of	the	entity	Employee.
The	entity	Employee	is	made	up	of	attributes	such	as	employee	ID	number,
first	name,	last	name,	and	age.
A	specific	Employee	is	identified	by	the	employee	ID	number.
The	age	of	an	employee	may	have	a	value	of	25	years.

An	occurrence	within	the	Employee	entity	is:
Employee	number	has	value	123.
Employee	first	name	is	'John'.
Employee	last	name	is	'Smith'.
Employee	age	is	25	years.



1.1.4	Understanding	Attributes	and	Relationships	When
Modeling
The	following	is	the	most	important	rule	to	remember	when	creating	a	logical
data	model:

An	attribute	may	be	associated	with,	or	attached	to,	only	one	entity	in	your
data	model.

If	the	same	attribute	is	required	in	another	entity,	it	must	be	the	result	of	a
relationship.
An	attribute	such	as	customer	number	may	be	associated	with	the	Customer
entity.	Once	the	customer	number	attribute	is	attached	to	the	Customer	entity,	it
cannot	be	attached	to	any	other	entity	in	your	data	model.	The	customer	number
cannot	be	made	an	attribute	of	the	Order	or	Invoice	entities.	If	the	Order	entity
requires	a	customer	number	to	identify	the	customer	which	placed	the	order,
than	a	relationship	must	be	created	between	Order	and	Customer.
The	Attribute	Rule	is	very	important	for	two	reasons:

The	Attribute	Rule	will	ensure	that	your	data	model	is	properly	normalized.
The	Attribute	Rule	will	ensure	that	your	data	model	reflects	the	structure	of
your	data	and	the	business.

The	Attribute	Rule	helps	to	create	a	logical	data	model	instead	of	a	physical
model	of	files	in	the	database.	An	attribute	such	as	customer	number	cannot	be
added	to	more	than	one	entity	without	using	relationships	to	define	the	structure
of	the	data.
It	is	important	to	note	the	difference	between	assigning	the	same	attribute	to
more	than	one	entity	and	having	many	similar	attributes	as	part	of	many	entities.
You	must	decide	if	an	attribute	is	actually	related	data	from	another	entity	or	a
separate	piece	of	data.



1.1.5	Understanding	Relationships
The	relationship	is	an	important	concept	within	logical	models.	Relationships
are	used	to	define	the	structure	of	your	data.	Relationships	connect	one	entity	to
another.	They	show	how	information	from	one	entity	is	used	to	access
information	in	another	entity.
A	relationship	can	be	defined	as	follows:

A	relationship	exists	between	two	entities	if	it	is	possible	to	use	data	from	the
first	entity	to	access	data	from	the	second	entity.

For	example,	a	Customer	entity	contains	all	the	information	about	a	customer.
The	Order	entity	contains	all	the	information	about	an	order.	An	Order	is	placed
by	a	Customer.	There	must	be	a	link	between	the	information	in	the	Customer
entity	and	the	information	in	the	Order	entity.	A	relationship	is	used	to	establish
this	link.
In	basic	Chen	E-R	models,	there	are	two	types	of	relationships:	Parent/Child
Relationship	and	Join/From	Relationship.	Each	relationship	involves	a	different
set	of	business	rules	and	produces	a	different	structure	in	terms	of	the	final
database.
Parent/Child	Relationship
This	type	of	relationship	exists	if	the	data	in	one	entity	is	owned	by	another
entity	or	one	entity	is	contained	within	another	entity.	For	example:
Order	is	an	entity.	Order	Line	is	an	entity.
Relationship:	An	Order	may	have	one	or	more	Order	Lines.	The	Order	Lines
belong	to	a	specific	Order.
Join/From	Relationship
This	type	of	relationship	exists	if	the	data	in	one	entity	is	used	to	access	or	"look
up"	data	in	another	entity.	For	example:
Customer	is	an	entity.	Order	is	an	entity.
Relationship:	An	Order	refers	to	a	Customer.	The	Customer	places	an	Order.
The	relationships	not	only	define	the	structure	of	the	data	within	the	model,	they
actually	affect	the	data	or	attributes	within	the	model.	The	use	of	relationships,
in	combination	with	the	attribute	rule,	ensure	that	our	data	is	properly
structured.



1.1.6	Results	of	Relationships
Relationships	affect	the	attributes	of	the	entities	which	are	involved	in	the
relationship.	When	specifying	a	relationship	between	two	entities,	all	of	the	key
attributes	of	one	entity	may	be	transferred	to	the	other	entity.	The	transferred
key	attributes	are	referred	to	as	either	parent	keys	or	join	attributes.	The
following	definitions	apply:
Parent	Key
A	parent	key	is	an	attribute(s)	which	is	present	in	a	child	entity	as	a	result	of	a
parent/child	relationship.
Example:	An	Order	Line	entity	has	a	parent	key	of	order	number,	i.e.	order
number	is	an	attribute	of	Order	Line	because	of	a	parent/child	relationship	with
the	Order	entity.
Join	Attribute
A	join	attribute	is	an	attribute(s)	which	an	entity	contains	as	a	result	of	a	join
relationship.
Example:	An	Order	entity	has	a	join	attribute	of	customer	number	from	the
Customer	entity.
The	importance	of	the	parent	keys	and	join	attributes	is	made	clear	when	you
consider	the	attribute	rule.



1.1.7	Identifying	the	Type	of	Relationship
How	do	you	know	if	a	parent/child	or	join/from	relationship	should	be	used?
Parent/Child
One	entity	is	said	to	be	the	Parent	of	another	if	the	data	of	the	Child	entity
belongs	to	(is	contained	within)	the	parent.	Parent/child	relationships	can	be
identified	by	asking	"Is	the	entity	identifier	unique?"	or	"Can	the	entity	exist	on
its	own?"
If	the	relating	entity's	identifying	attribute	is	unique,	i.e.	you	can	identify	an
occurrence	in	the	entity	solely	by	its	identifying	attribute,	then	the	entity
probably	has	no	parents.	If	you	require	other	information	to	identify	an
occurrence,	i.e.	another	entity	must	exist	before	it	can	exist,	then	the	entity
probably	has	a	parent.
For	example,	an	Order	Line	entity	is	identified	by	its	Line	Number.	Line
Number	is	not	sufficient	to	uniquely	identify	an	occurrence	within	the	entity.
There	can	be	several	Order	Lines	with	a	Line	Number	of	001.	You	need	an
Order	Number	and	the	Line	Number	to	identify	a	specific	occurrence	in	Order
Line.	Order	Line	is	a	child	of	Order.
Also	note	that	the	parent	entity,	Order,	is	required	or	the	Order	Line	cannot
exist.	You	cannot	have	an	Order	Line	without	an	Order.
Join/From
One	entity	is	said	to	be	joined	(or	to	refer)	to	another	if	a	data	(i.e.	non	key)
attribute	or	group	of	attributes	from	the	first	entity	can	be	used	to	access	an
occurrence	of	the	second.	Again	ask,	"Is	the	entity	identifier	unique?"	or	"Can
the	entity	exist	on	its	own?"
The	join	relationship	differs	from	the	parent	relationship,	in	that	the	attribute(s)
used	to	"look	up"	the	referenced	entity	is	not	necessary	to	identify	the	primary
(or	referencing)	entity.
For	example,	in	the	order	processing	example,	an	Order	Line	refers	to	a
Product.	You	would	expect	the	Order	Line	to	contain	some	reference	to	Product
such	as	a	product	number.	However,	the	Order	Line	Number	and	the	Order
Number	are	sufficient	to	uniquely	identify	the	Order	Line.	The	reference	to
Product	is	not	required	to	identify	an	occurrence	in	Order	Line.	The	relationship
is	simply	a	join.
Also	note	that	a	Product	Code	does	not	have	to	exist	in	order	to	have	an	Order
Line.	A	valid	value	may	be	required	for	the	product	code	(i.e.	you	refer	to	the



other	file),	but	the	Order	Line	Entity	could	exist	without	having	a	Product	entity.
A	parent	'gives	birth'	or	contains	a	child.	The	Order	contains	the	Order	Lines.
The	Product	does	not	contain	the	Order	Lines.



1.1.8	Understanding	Identifying	Attributes
Here	are	some	other	important	points	to	remember	when	working	with
identifying	attributes	of	an	object.
Identifying	Attribute	Rules:

An	entity	does	not	have	to	have	an	identifying	attribute.		In	some	instances,
an	entity	may	be	identified	solely	by	its	parents	or	may	not	require	any
identification.
An	entity	may	have	only	one	identifying	or	key	attribute.		It	is	important	to
note	that	more	attributes	may	be	required	to	uniquely	identify	an	occurrence
within	the	entity,	i.e.	you	require	the	parent	keys	along	with	the	identifying
attribute.
If	an	entity	has	more	than	one	parent,	it	does	not	require	an	identifying
attribute.	The	two	parent	keys	will	identify	the	child	entity.		For	example,	a
Customer	is	the	parent	of	Customer	Products	and	Product	is	the	parent	of
Customer	Products.	Customer	Products	is	an	entity	listing	which	customers
have	which	products.
Parent	keys	are	compounded.	A	parent	key	may	be	made	up	of	more	than
one	attribute.		For	example,	a	Company	is	a	parent	of	a	Department	which	is
a	parent	of	Employee.	Employee	has	two	parent	keys:	Company	Code	and
Department	Code.



1.1.9	Relationship	Guidelines
Rules	for	relationships	are	often	imposed	by	modeling	tools.	Following	are
some	general	relationship	guidelines:

An	entity	cannot	have	a	parent	relationship	with	itself,	nor	can	it	have	as	a
parent,	any	entity	to	which	it	is	directly	or	indirectly	a	parent.
An	entity	cannot	have	an	entity	as	a	parent	if	it	already	has	one	of	that
entity's	children	as	a	parent.	Such	a	relationship	would	be	superfluous.	It
can,	however,	join	to	such	an	entity.
An	entity	may	have	more	than	one	parent	relationship	with	another	entity.
An	entity	may	have	a	join	relationship	with	any	other	entity,	including	itself.
An	entity	may	have	more	than	one	join	relationship	with	another	entity.
An	entity	may	have	both	a	parent	and	join	relationship	with	another	entity.

Note:	The	relationship	rules	or	guidelines	enforced	will	depend	upon	the	data
modeling	tool	used.



1.1.10	Understanding	Shared	Keys
Another	important	consideration	when	modeling	is	the	sharing	of	key	attributes.
When	entities	are	involved	in	multiple	relationships,	the	key	attribute	fields	may
be	repeated	in	an	entity.	It	is	important	to	know	whether	the	attribute	keys	are
repeated	or	shared.
Consider	the	following	Bank	example.

Bank	is	an	entity.

-			Bank	is	known	by	its	Bank	Code.
-			Bank	has	a	name.
-			Etc...

Bank	is	the	parent	of	Account.
Account	is	an	entity.

-			Account	is	known	by	its	parent's	Bank	Code.
-			Account	is	known	by	Account	Number.
-			Account	has	an	amount.
-			Account	has	a	name.
-			Etc...

Now	imagine	that	you	need	to	track	transactions	involving	a	specific	Bank	and
Account.	One	transaction	is	called	a	Transfer	which	involves	moving	money
from	one	Account	to	another.
So	if		keys	are	not	shared,	the	model	will	be:

Transfer	is	an	entity.
Transfer	refers	to	a	debit	Account.
Transfer	refers	to	a	credit	Account.
Transfer	is	an	entity.

-			Transfer	is	known	by	its	Transfer	ID	Number.
-			Transfer	has	a	join	attribute	Debit	Bank	Code.
-			Transfer	has	a	join	attribute	Debit	Account	Number.
-			Transfer	has	a	join	attribute	Credit	Bank	Code.
-			Transfer	has	a	join	attribute	Credit	Account	Number.



-			Transfer	has	an	amount.
-			Transfer	has	a	date.
-			etc.

In	this	situation,	transfers	can	be	made	between	two	different	Banks	(or	within
the	same	Bank).	The	Debit	Bank	Code	and	Credit	Bank	Code	can	be	different.
The	parent	key	of	Bank	Code	is	NOT	shared.	If	the	business	rules	specify	that
transfers	cannot	be	made	between	banks,	then	the	Bank	Code	must	be	the	same
for	each	account.	The	parent	key	of	Bank	Code	should	be	shared.	If	the	parent
key	is	shared,	then	the	model	will	be:

Transfer	is	an	entity.

-			Transfer	is	known	by	its	Transfer	ID	Number.
-			Transfer	has	a	join	attribute	Bank	Code.
-			Transfer	has	a	join	attribute	Debit	Account	Number.
-			Transfer	has	a	join	attribute	Credit	Account	Number.
-			Transfer	has	an	amount.
-			Transfer	has	a	date.
-			Etc.

Note	that	two	relationships	with	the	same	entity	can	never	share	all	their	keys.
In	our	example,	this	means	that	Transfer	could	not	share	both	Bank	Code	and
Account	Number	in	both	its	relationships.	This	would	have	no	meaning.



1.1.11	Approaches	to	Data	Modeling
Two	approaches	are	commonly	used	to	build	data	models:

top	down	and
bottom	up.

The	top	down	approach	begins	with	identifying	the	entities	within	the	business.
Entities	are	the	major	items	which	the	users	identify	or	work	with.	For	each
entity	identified,	create	a	list	of	attributes	which	make	up	that	entity.	Review	the
attributes	to	be	sure	that	they	cannot	be	broken	into	smaller	pieces	of	data,	i.e.
they	may	be	entities	themselves.	In	this	way,	start	at	the	highest	level	and	fill	in
the	details	below.
The	bottom	up	approach	begins	with	identifying	all	the	elements	in	the	system.	
This	is	a	very	long	and	difficult	process	of	attempting	to	identify	all	the	pieces
of	information	the	user	comes	in	contact	with.	Once	the	elements	are	identified,
they	are	grouped	together	to	create	entities.
The	top	down	approach	is	recommended	because	it	more	closely	relates	to	how
the	users	define	their	business.		Following	the	top	down	approach	may	also
prevent	you	from	falling	into	the	trap	of	physical	modeling	rather	than	logical
modeling.
For	example,	a	user	may	tell	you	that	an	order	lists	the	product	to	be	shipped	to
a	customer.		There	is	no	mention	of	an	order	line	number.		An	Architect	might
introduce	the	concept	of	an	order	line	number	simply	because	a	key	is	needed
for	a	database	file.		This	is	physical	modeling.



1.1.12	Normalization
In	1972,	Ted	Codd	from	IBM	developed	the	relational	model	and	identified
normal	forms	which	were	called	first,	second,	and	third.	When	normalizing	a
database,	you	are	ensuring	that	it	has	been	broken	into	its	normal	forms.
Normalization	is	a	common	technique	for	analyzing	relational	data	structures.	It
is	important	to	understand	the	basic	concept	of	normalization	when	data
modeling.	Normalization	applies	to	physical	database	models.
The	benefits	of	having	a	properly	normalized	data	model	and	database	design
are	that	it:

Reduces	data	redundancy.
Produces	a	database	structure	that	is	easily	understood	by	users	and	system
developers.
Produces	a	data	model	that	is	flexible	in	the	face	of	changing	business
requirements.
Produces	a	database	structure	that	encourages	structured,	and	therefore
simpler,	program	development.

The	process	of	normalization	involves	three	main	steps.	These	are:
First
Normal
Form

Remove	repeating	groups.	Remove	from	an	entity	those	elements
which	maintain	the	same	value	between	occurrences	(or	records)
while	the	rest	of	the	elements	change.

Second
Normal
Form

Remove	elements	which	are	only	partially	dependent	on	the	key	of
the	entity.

Third
Normal
Form

Remove	elements	which	are	dependent	on	(i.e.	are	identified	by)	a
key	other	than	that	of	the	entity.

The	result	of	the	normalization	process	should	be	that	each	entity	contains	only
those	elements	which	are	properly	identified	by	the	keys	of	that	entity.
For	example,	consider	the	information	which	might	appear	on	an	order	form.	It
could	start	with	an	entity	which	contains	all	the	data	items	such	as	in	this
example:

Un-normalized	Form



ORDER Order	Number,	Customer	Number,	Customer	Name,	Customer
Address,	Product	Number,	Product	Name,	Quantity	Ordered

	

First	Normal	Form
First	remove	Repeating	Groups.	The	customer	details	will	be	the	same	for	each
product	ordered	(i.e.	for	each	line	of	the	order).	They	are	separated	from	the
ORDER	information	which	will	be	different	on	each	line.

ORDER Order	Number,	Customer
Number,	Customer	Name,
Customer	Address

	
The	fields	in	bold	are	the
unique	or	candidate	key
fields.
	

ORDERED
PRODUCT

Order	Number,	Product	Number,
Product	Name,	Quantity
Ordered

	

Second	Normal	Form
Next	remove	attributes	only	partially	dependent	on	primary	key	(or	part	of
compound	key).	The	product	name	depends	only	on	Product	Number	(not	on
Order	Number)	and	so	it	is	removed.

ORDER Order	Number,	Customer
Number,	Customer	Name,
Customer	Address

	
The	fields	in	bold	are	the
unique	or	candidate	key
fields.ORDERED

PRODUCT
Order	Number,	Product	Number,
Quantity	Ordered

PRODUCT Product	Number,	Product	Name

	

Third	Normal	Form
Finally,	remove	attributes	dependent	on	a	key	other	than	the	primary	(or



compound	key).	The	customer	details	depend	only	on	the	customer	number	and
so	are	removed.

ORDER Order	Number,	Customer
Number

	
The	fields	in	bold	are	the
unique	or	candidate	key
fields.

ORDERED
PRODUCT

Order	Number,	Product
Number,	Quantity	Ordered

PRODUCT Product	Number,	Product
Name

CUSTOMER Customer	Number,
Customer	Name,	Customer
Address

	



1.1.13	Training	for	Data	Modeling
This	guide	is	not	designed	to	teach	the	principles	of	data	modeling.
If	you	are	unfamiliar	with	data	modeling,	you	should	attend	the	LANSA
Modeling	and	Design	Workshop.
The	LANSA	Modeling	and	Design	Workshop	includes	the	following	topics:

Application	Development
Data	Analysis
Data	Models
More	Data	Modeling
Extended	Chen	E-R	Models
C-Think,	I-	Think
Implementing	the	Data	Model

The	LANSA	Modeling	and	Design	Workshop	provides	an	excellent	introduction
to	logical	modeling	concepts	and	will	help	you	to	properly	use	logical	models
when	building	databases	for	your	business.
Please	contact	your	LANSA	agent	for	more	details.



1.2	Conceptual	versus	Implementation	Modeling
In	the	following	section,	the	concepts	of	C-Think	(conceptual)	and	I-Think
(implementation)	are	explained.	These	concepts	describe	the	approach	which
System	Architects	may	use	when	modeling	application	systems.
Review	the	following:

1.2.1	Thinking	About	Modeling
1.2.2	Understanding	C-Thinkers
1.2.3	Understanding	I-Thinkers
1.2.4	Dual	C/I-Thinkers
1.2.5	Thinking	about	Dates
1.2.6	C-Think	Considerations
1.2.7	I-Think	Considerations
1.2.8	New	World	C-Thinkers



1.2.1	Thinking	About	Modeling
Knowing	the	benefits	of	using	logical	or	conceptual	data	models,	how	should
organizations	use	logical	models	to	achieve	optimal	results?	The	most
significant	influence	on	properly	using	logical	models	is	the	"approach"	and	
"attitude"	towards	modeling.
Approach	refers	to	how	you	work	with	and	create	your	model.		Do	you	model	a
business	or	do	you	simply	build	a	database?		Are	you	considering	the	users'
needs	or	the	programmers'	needs.	Attitude	is	reflected	by	your	objectives	and
how	you	use	the	model.		Do	you	want	to	understand	the	business	and	design	an
application	with	a	future,	or	do	you	want	a	database	that	you	can	justify	right
away?
For	one	organization,	an	optimal	result	is	an	implemented	database	that	can
most	easily	grow	and	adapt	to	meet	the	changing	business	needs.		For	another
organization,	an	optimal	result	is	an	implemented	database	that	delivers	the	best
possible	execution	speed,	no	matter	what	the	cost	is	in	the	future.		For	most
organizations,	the	optimal	result	lies	somewhere	between	these	extremes.
A		C-Thinker	will	use	a	model	to	document	the		business	and	its	rules.	C-
Thinkers	use	words	like	"ENTITY",	"ATTRIBUTE",	and	"RELATIONSHIP".	
Their	model	reflects	the	business	and	can	be	used	by	the	users	to	verify,	test,
and	alter	the	organization	of	data.		When	working,	they	are	said	to	be	using	C-
Think	techniques.
An	I-Thinker	will	use	a	model	to	document	a	database	design	that	they	have
already	planned.		I-Thinkers	use	words	like	"FILE",	"HEADER",	"DETAIL",
"FIELD",	and	"RECORD".		Their	model	is	implementation	oriented	and
designed	for	programmers.		When	working,	they	are	said	to	be	using	I-Think
techniques.
Most	developers	begin	as	I-Thinkers.		By	understanding	the	nature	and	role	of
the	C-Thinker,	and	by	using	C-Think	techniques,	they	begin	to	see	things
differently.	During	the	process	of	evolution,	an	I-Thinker	will	become	a	Dual
C/I-Thinker.	Eventually	the	C-Thinker	role	should	grow	and	develop	until	it
takes	over	and	the	Architect	becomes	a	New	World	C-Thinker.



1.2.2	Understanding	C-Thinkers
C-Think	refers	to	Conceptual	thinking.	C-Thinkers	do	not	focus	on	the	complex
uses	for	physical	files,	logical	files,	indexes,	join	files,	spanned	logical	files,
multi-member	files,	select/omit	criteria,	dynamic	selection	options,	open	query
files,	etc.	C-Thinkers	attempt	to	produce	a	model	that	truly	represents	the
information	that	is	used	by	the	business	not	the	computer.		It	is	to	be	a	"model"
of	what	happens	in	the	"real"	or	"fuzzy"	world,	not	a	platform	dependent
database	implementation.
The	C-Thinker	regards	the	modeler	as	a	note	pad,	or	drawing	board.	The	model
aids	in	the	recording,	analyzing	and	validating	their	ever	changing	ideas.
Sometimes	purist	C-Thinkers	produce	optimal	results.		This	most	likely	occurs
in	an	organization	with	a	very	high	"performance	budget",	that	values	accuracy,
quality,	design	portability	and	the	ability	to	evolve	with	rapid	business	changes
above	all	else.When	a	purist	C-Thinker	converts	their	model	to	an
implementable	database	it	will	usually	be:

Built	from	"end	user"	objects/approaches	concepts	(OOD)
Completely	normalized
Easy	to	understand	(for	other	developers)
Well	liked	and	understood	by	the	end	users
Able	to	adapt	to	change	very	easily
Easy	to	generate	applications	that	use	it
Easy	to	maintain	applications	that	use	it
Near	to	or	outside	of	the	organization's	"performance	budget".



1.2.3	Understanding	I-Thinkers
I-Think	refers	to	Implementation	thinking.	I-Thinkers	focus	on	how	to	make
their	previous	database	design	adapt	to	a	business	requirements	change	by	using
4	join	files	with	3	concatenated	and	5	sub-stringed	partial	join	keys.	I-Thinkers
often	create	complex	database	structures	that	are	difficult	to	maintain.	I-
Thinkers	generally	design	physical	databases.		They	work	from	their	own
experiences,	sometimes	extended	by	the	grandfather-father-son	learning
technique.
The	I-Thinker	treats	the	modeling	with	caution,	because	it	is	really	just	a	tool
for	entering	their	data	descriptions	to	build	a	file.	(This	is	a	design	approach
actively	encouraged	by	some	modeling	tools.)	Sometimes	purist	I-Thinkers
produce	optimal	results.		This	most	likely	occurs	in	an	organization	with	a	very
low	"performance	budget",	that	values	low	computer	resource	usage	above	all
else.
Most	purist	I-Thinkers	implement	a	database	that:

Is	built	from	DP	concepts/approaches
May	be	only	partially	normalized
May	be	hard	to	understand	(for	other	developers)
The	end	users	may		or	may	not	like	the	applications	that	use	it
May	not	adapt	to	change	very	easily
May	not	be	easy	to	generate	applications	that	use	it
May	not	be	easy	to	maintain	applications	that	use	it
Will	run	well	inside	an	organization's	"performance	budget"



1.2.4	Dual	C/I-Thinkers
Dual	C/I-Thinkers	combine	both	mind	sets	when	modeling.	They	have	not
learned	to	free	themselves	of	I-Think,	and	yet	they	understand	C-Think.		In	the
Dual	C/I-Think	stage,	the	most	important	things	to	understand	are:

When	to	work	as	a	C-Thinker
When	to	work	as	an	I-Thinker
How	to	put	aside	I-Think	considerations	and	reservations	in	the	search	for
the	"perfect"	conceptual	model
How	to	take	a	C-Think	database	design	and	alter	its	implementation	so	that	it
will	work	within	a	performance	budget	and	its	conceptual	integrity	remains
intact.

Once	the	Dual	C/I-Thinkers	understand	the	when	and	how,	they	will	quite
quickly	evolve	into	a	New	World	C-Thinker	when	modeling	and	designing
applications.



1.2.5	Thinking	about	Dates
In	C-Think	mode,	you	would	define	a	date	using	three	separate	entities:	Year,
Month	and	Day.	Year	in	the	parent	of	Month.	Month	is	the	parent	of	Day.	Hence
the	Day	is	identified	by	parent	keys	from	Year,	Month	and	its	own	identifying
attribute	for	Day	(YY	MM	DD).
Now	several	relationships	may	exist	between	an	entity	called	Order	and	the
entity	called	a	Day.	For	instance,	an	Order	has	a	"Date	Order	Placed"	and
"Delivery	Date".	However,	what	often	happens	is	that	the	I-Think	part	of	the
Architect's	brain	takes	over	and	consequently:

The	elements	"Date	Order	Placed"	and	"Delivery	Date"	are	placed	directly
into	the	entity	Order.
The	user	understands	what	a	date	is	in	elemental	form,	but	decides	that	they
do	not	want	to	have	three	database	files	defined	to	represent	the	entities	Year,
Month	and	Day.

The	idea	of	the	model	is	that	it	conceptually	represents	what	information	is
being	used	within	the	model.	If	a	user	chooses	not	to	have	database	files
representing	the	entities	Year,	Month	and	Day,	the	decision	should	be	made	at
the	time	the	logical	model	is	being	implemented	as	a	database	(I-Think	time).
Making	the	decision	in	advance	(during	the	modeling)	may	lead	to	problems.
Consider	the	3	entity	C-Think	form	of	the	model.	What	will	happen	once	a
Century	entity	is	defined?	Century	is	the	parent	of	Year.	Now	the	Day	entity	is
identified	by	CC	YY	MM	DD	attributes.	The	change	will	ripple	through	the
whole	model	and	Date	Order	Placed	and	Delivery	Date	will	use	the
CCYYMMDD	form,	but	not	if	they	were	added	directly	as	elements	to	the
Order	entity.
This	is	one	of	the	most	powerful	features	of	data	modeling	-	to	make	a	major
change	to	the	structure	of	the	model	and	have	the	effects	automatically
"cascaded"	or	"rippled"	through	all	other	affected	relationships.
So,	an	I-Thinker	will	critically	examine	the	entity	Order	and	find	that	it	includes
the	following	attributes:

Century	Order	Placed	Delivery	Century
Year	Order	Placed	Delivery	Year
Month	Order	PlacedDelivery	Month
Day	Order	PlacedDelivery	Day

This	may	horrify	the	I-Thinker,	who	will	think:



There's	going	to	be	8	separate	fields	here.		I	don't	want	all	those	extra	fields
in	the	database.
Those	8	fields	are	going	to	increase	the	effort	in	my	order	processing
programs.		I'll	be	forever	sub-stringing	them	together	and	apart	again	so	that
they	come	up	as	one	field	on	screen	panels	and	reports.

What	the	Architect	should	think	(using	C-Think)	is	that:
This	is	a	good	model.		It	represents	how	the	data	is	structured	and	the	rules
for	the	data.
As	an	I-Thinker,	I'm	not	too	crazy	about	all	these	data	fields,	but	I'll	cross
that	bridge	when	I	come	to	it.

When	they	come	to	the	implementation	phase,	they	will	probably	find	that	other
facilities	exist	to	very	easily	and	consistently	map	the	dates	into	one	virtual	field
for	processing	on	screens	and	reports.	In	the	long	term,	they	will	probably	find
that	the	choice	to	implement	the	8	separate	fields	in	the	resulting	database	pays
off.



1.2.6	C-Think	Considerations
The	Classic	Order	Model
By	using	C-Think,	you	can	often	look	at	the	way	things	are	done	(or	have
always	been	done)	in	a	completely	new	way.	Sometimes	this	method	confirms
the	correctness	of	your	existing	approach.
For	example,	consider	a	classical	order	entry	model.		An	Order	entity	is	the
parent	of	an	Order	Line	entity	where	the	Order	Line	entity	is	identified	by	a
parent	Order	Number	and	Order	Line	Number	attributes.	This	implementation
can	probably	be	made	to	work.	However,	ask	yourself:

Is	it	correct?
What	business	rules	does	it	represent?
What	business	rules	does	it	enforce?
Where	did	the	element	"Line	Number"	come	from?
Who	invented	it?
What	is	it	used	for?

Using	C-Think,	we	may	produce	a	different	model	for	the	order	model.	Perhaps
the	Order	and	Product	entities	are	the	parents	of	Ordered	Product.	An	Order
Line	is	not	really	required.	In	this	type	of	model,	the		Ordered	Product	entity
does	not	have	an	identifier	of	its	own	as	it	can	be	identified	by	its	two	parent
keys,	Order	Number	and	Product	Number.	There	is	no	need	for	an	Order	Line
Number.

Product	Code	Example
In	many	databases,	you	will	encounter	an	attribute	called	a	"Product	Number".
This	attribute	is	often	the	identifying	attribute	of	the	an	entity	called	Product.
However,	at	some	time	later,	you	hear	mention	of	Product	Groups	and	Product
Classes	that	are	part	of	this	Product	Number	identifying	attribute.	Ask	yourself:

Where	are	they?	
What	are	they?	
Where	do	they	come	from?

You	may	soon	discovered	that	these	groups	and	classes	are	actually	the
embedded	digits	within	the	Product	Number.	(Consider	how	telephone	numbers
are	really	combinations	of	different	groups	of	digits	that	have	different
meanings.)



A	C-Thinker	would	never	leave	Product	entity	identified	by	such	a	Product
Number.	The	Product	Group	and	Product	Class	become	entities	with
relationships	to	the	Product	entity	so	that	the	identifying	attribute	to	Product	has
the	proper	parent	keys.



1.2.7	I-Think	Considerations
Dates
When	you	consider	implementing	the	conceptual	model	for	a	date	as	four
different	entities	(Century,	Year,	Month,	Day),	your	implementation	thinking
will	likely	consider	concatenating	this	information	into	a	single	date	element.	In
many	circumstances,	a	single	date	field	is	sufficient	as	the	conceptual	structure
of	the	date	is	not	required.
In	I-Think	mode,	you	should	consider	the	"performance	budget"	of	your
organization.	You	must	also	consider	the	integrity	of	the	conceptual	model.		Try
to	ensure	that	physical	implementation	changes	do	not	affect	the	fundamental
integrity	of	the	conceptual	model.
You	may	find	that	as	you	make	I-Think	changes,	the	C-Think	part	of	your	brain
actually	starts	making	comments	such	as:

If	I	did	implement	this	entity	then	it	would	be	easier	to	...
I've	never	thought	of	it	like	that	before	...
If	we	implemented	...	we	could	easily	handle	...	as	well.

If	this	starts	to	happen,	you	have	become	a	real	dual	role	C-Thinker	and	are	on
the	way	to	evolving	into	a	New	World	C-Thinker.
Some	classical	I-Think	implementation	changes	include:

Omitting	conceptual	entities	from	the	implemented	database
Concatenation	of	elements	for	a	user	field.

These	types	of	changes	can	be	made	for	performance	reasons	or	implementation
reasons	based	on	the	software	language	used.

Tables
Some	additional	I-Think	implementation	changes	might	include:

implementing	array	structures
implementing	several	entities	into	one	physical	table.

Consider	the	sales	history	of	a	company.		Historical	information	is	based	on	the
product	sold	and	the	period	in	which	it	is	sold.		Rather	than	implement	the
database	with	12	records	for	each	month's	product	sales	in	one	year,	an	array
structure	can	be	substituted.		Now	a	product	has	one	record	for	each	year	with
12	sales	months	in	each	record.
In	a	model	you	may	also	have	a	very	large	number	of	entities	which	are



basically	used	as	"constants"	or	tables	for	validating	data.	Data	such	as	city,
state,	country,	company,	or	warehouse	might	be	grouped	together	as	a	single
table	when	implementing	the	database.	
These	types	of	changes	should	be	based	on	a	sound	understanding	of	the	current
and	future	needs	of	the	business	and	not	solely	on	technical	implementation.

I-Thinking	for	Existing	Models
When	working	with	an	existing	application	database	which	does	not	have	a
logical	model,	you	may	choose	to	use	an	I-Think	approach	to	create	a	model
which	represents	the	physical	database.	This	approach	is	used	assuming	that	you
are	not	going	to	change	the	database	structure	of	the	existing	application,	but
you	want	to	build	from	it.
Modeling	the	physical	database	will	quickly	provide	a	definition	of	the	entities
and	attributes	you	will	need	for	creating	your	new	model.		Because	you	will	not
be	altering	the	existing	database,	there	is	little	benefit	to	develop	a	conceptual
model	which	does	not	reflect	the	already	implemented	database.		Your	C-Think
focus	will	be	on	the	new	entities,	attributes,	and	relationships	for	the	new
applications	you	are	designing.



1.2.8	New	World	C-Thinkers
To	become	a	New	World	C-Thinker,	you	must:

Be	a	C-Thinker	whenever	you	are	modeling
Be	an	I-Thinker	when	implementing	a	model	as	a	database.

The	New	World	C-Thinker	uses	a	modeling	tool	to	build	a	purely	conceptual
model	which	reflects	the	business.		When	it	comes	time	to	implement	the
model,	the	New	World	C-Thinker	uses	I-Think	techniques	to	make	the
implementation	a	success.
Many	people	are,	by	background,	I-Thinkers.		It	takes	some	practice	to
understand	and	become	a	C-Thinker.	When	the	C-Think	part	of	your	brain	starts
to	argue	with	the	I-Think	part,	you	are	starting	to	make	the	best	use	of	a	data
modeling	tool.
By	working	with	two	modes,	starting	with	a	C-Think	mode	and	then	later	with
an	I-Think	mode,	you	should	be	able	to	produce	an	optimal	result	for	your
organization	at	all	times.	When	I-Thinker	mode	forces	you	to	make	an
implementation	change,	at	least	you	will	be	doing	it	from	an	informed	point	of
view.
Over	time,	as	your	skills	improve	and	computer	hardware	becomes	cheaper	and
faster,	you	should	expect	and	allow	for	the	C-Think	part	of	your	brain	to	evolve
and	grow	until	it	represents	the	only	thought	method	you	use.	Pure	I-Thinkers
and	pure	C-Thinkers	don't	really	exist,	but	there	is	some	of	them	in	all	of	us.
The	examples	and	scenarios	presented	here	have	been	simple,	and	serve	to
illustrate	several	points:

Real	conceptual	modeling	has	something	to	offer	us	all.
To	use	conceptual	modeling	most	effectively,	a	different	"mindset"	is
required.
The	only	real	way	to	achieve	the	required	mindset	is	by	a	process	of
evolution.		It	cannot	be	obtained	by	revolution.		The	user	must	believe	in	the
conceptual	approach.
A	person	working	with	the	required	mindset	can	make	informed	decisions
about	physical	implementation	concessions.

More	and	more,	you	should	be	acting	in	a	C-Thinker	role.	I-Think	should
evolve	to	a	dual	I-Thinker/C-Thinker,	and	should	finally	evolve	to	become	a
New	World	C-Thinker.



1.3	How	Does	LANSA	Help	with	Data	Modeling?
A	methodology	helps	you	formalize	your	actions,	whereas	an	application
development	tool	helps	you	automate	your	actions.	LANSA	is	methodology	or
approach	independent.	This	simply	means	that	regardless	of	the	approach	you
plan	to	use	to	design	your	application,	LANSA	will	assist	you	in	building	the
application.
If	you	use	the	software	engineering	approach,	you	can	use	the	Logical	Modeler
to	define	your	database	and	then	use	LANSA's	process,	function	and	component
structures	and	the	rich	development	facilities	to	build	your	application.	Using
the	various	Frameworks	provided	with	LANSA,	you	can	rapidly	build
prototypes	over	the	physical	database	created	by	the	Logical	Modeler.
If	you	use	the	information	engineering	methodology,	you	have	LANSA's
Logical	Modeler	to	design	and	implement	your	information	model	and
supporting	physical	database.
LANSA	allows	the	system's	analyst	to	build	up	and	manipulate	a	complete
logical	data	model	comprising	elements,	entities	and	relationships	and	applies
data	analysis	rules	to	ensure	that	the	model	is	properly	normalized.	It	then
allows	the	physical	database	to	be	generated	from	the	logical	model,	but
recognizes	the	fact	that	there	will	be	differences	between	the	two.	For	example,
for	performance	reasons,	you	may	not	wish	to	implement	a	fully	normalized
database.
LANSA	documents	the	logical	data	model	in	such	a	way	that	it	is	understood	by
users.	It	can	be	reviewed	and	verified	by	the	users	as	part	of	the	analysis/design
process	before	any	physical	database	is	built.
The	LANSA	Logical	Modeler	improves	the	developers	productivity	by
automating	the	build	of	the	physical	database.	The	modeler	helps	the	developer
to	create	quality	databases	with	a	consistent	standard.	It	supports	the	concept	of
a	corporate	data	types	and	allows	the	developer	to	define	standards	for	the
implemented	physical	database.



1.4	Conventions/Terminology
There	are	a	number	of	different	methodologies	for	structured	Analysis/Design
and	Data	Modeling.	Each	has	its	own	terminology.	Most	methodologies	use	the
same	underlying	constructs,	although	they	call	them	by	different	names.
LANSA	has	selected	the	most	useful	constructs	which	are	common	to	most
methodologies.
The	following	list	describes	how	some	of	the	terminology	is	used	in	the	LANSA
Logical	Modeler:

Abstraction A	container	object	used	to	group	entities.	It	is	not	an	entity.	It	is
not	used	in	relationships.
	

Attribute An	element	which	is	associated	with	(attached	to)	an	entity.	For
example,	the	Customer	Name	is	an	attribute	of	the	Customer
entity.
	

Cascade If	the	identifying	element	(key)	of	an	entity	changes,	then	the
keys	of	any	relationships	defined	from	that	entity	will	change.
For	example,	when	the	key	of	a	Parent	entity	changes,	the	keys
of	any	child	entities	will	also	change.
	

Element A	basic	data	item	(sometimes	referred	to	as	a	column	in	a	table).
If	an	element	is	not	part	of	an	entity,	it	is	called	an	unattached
element.
	

Entity A	group	of	elements	which	belong	logically	together	and	can	be
uniquely	identified	by	a	key	or	group	of	keys	(also	known	as	a
table).
	

Identifying
Element

The	element	of	an	entity	which	uniquely	identifies	each
occurrence	of	the	entity	(either	on	its	own	or	in	conjunction
with	one	or	more	parent	keys).	For	example,	Customer	Number
uniquely	identifies	each	occurrence	in	the	Customer	entity.	Also



called	an	Identifying	Attribute.
	

Join
Attribute

An	attribute	which	is	used	to	refer	to	a	joined	entity,	i.e.	as	a
key	in	a	join	relationship	(also	known	as	a	foreign	key).	For
example,	the	Customer	Number	can	be	a	join	attribute	in	the
Order	entity.
	

Join
Relationship

A	relationship	between	two	entities	such	that	one	or	more
attributes	or	keys	from	one	entity	can	be	used	to	access	the
second	entity.	For	example,	the	Order	entity	has	a	Join
relationship	to	lookup	data	in	the	Customer	entity.
	

Occurrence A	single	example	or	instance	of	an	entity	(i.e.	a	row	in	a	table	or
a	record	on	a	file).	For	example,	"Acme	Retail	Company	of
Australia"		might	be	an	occurrence	of	Customer.
	

Parent
Entity

An	entity	which	owns	another	entity	(the	child),	i.e.	to	which
the	child	entity	belongs.	For	example,	the	Order	and	Product
entities	are	parents	of	Ordered	Product	entity.
	

Parent	Key An	identifying	element	which	is	used	as	a	key	on	the	parent
entity	and	therefore	also	on	the	child	entity.	For	example,
Ordered	Product	entity	is	a	child	to	the	parent	Order	entity.	The
key	of	Order	(Order	Number)	is	also	a	key	of	Ordered	Product.
	

Parent
Relationship

A	relationship	between	two	entities	such	that	the	data	in	one
entity	is	owned	by	another	entity.	For	example,	the	Order	entity
has	a	parent	relationship	to	the	Ordered	Product	entity.
	

Relationship A	relationship	exists	between	two	entities	if,	given	an
occurrence	of	one	entity,	it	is	possible	to	use	data	from	that
entity	to	access	one	or	more	occurrences	of	the	second	entity.
For	example,	given	an	order,	it	is	possible	to	obtain	information



about	the	customer	who	placed	it.
	

User	View A	view	of	the	data	in	an	entity.	User	Views	are	used	to	define
the	keys	used	to	create	logical	views	over	the	implemented
database	file.



1.5	Overview	of	the	LANSA	Logical	Modeler
In	order	to	the	use	the	LANSA	Logical	Modeler,	you	should	be	familiar	with	the
following:

1.5.1	Models
1.5.2	Entities
1.5.3	Elements
1.5.4	Relationships
1.5.5	Abstractions
1.5.6	User	Views
1.5.7	Building	a	Physical	Database



1.5.1	Models
The	Logical	Modeler	enables	you	to	create	data	models	based	on	the	Chen	E-R
methodology.	As	such,	a	data	model	contains	entities,	elements	and
relationships.	These	three	types	of	information	combine	to	create	a	picture	of
the	data	that	your	business	uses.
Once	described,	a	data	model	can	be	built	into	a	physical	database.	The	physical
definitions	are	stored	in	the	LANSA	Repository.	The	data	model	can	be
redesigned	and	refined	over	many	build	cycles,	until	a	physical	database	is
generated	that	matches	the	complete	business	requirements.
Data	Models	are	stored	as	XML	files	and	Visio	documents,	independently	of	the
LANSA	Repository.	The	models	can	be	easily	copied,	moved	or	shared	with
other	users.
For	more	details,	refer	to	3.	Models.



1.5.2	Entities
Entities	can	be	anything	that	a	user	works	with	in	their	business.	For	example,
in	an	order	entry	application,	a	Product,	a	Customer	or	an	Order	may	be	entities.
Entities	contain	elements	that	describe	their	characteristics.	For	example,	a
Customer	entity	may	have	elements	such	as	Customer	Code	and	Customer
Name.
Each	entity	is	assigned	a	type.	This	is	very	important	in	determining	how
entities	interact	with	each	other	via	relationships,	and	how	they	are	implemented
in	the	repository	when	the	model	is	built.	The	four	types	of	entity	are:

Data	Entity
Conceptual	Entity
Variant	Entity
External	Entity

For	more	details,	refer	to	5.	Entities.

Data	Entity
A	Data	Entity	stores	information,	and	is	the	most	commonly	used	type	of	entity.
For	example,	a	Customer	is	a	data	entity.
Data	entities	are	implemented	as	database	tables	in	the	LANSA	Repository.

Conceptual	Entity
A	Conceptual	Entity	describes	information	but	does	not	store	information.	For
example,	Address	information	might	be	modeled	as	a	Conceptual	Entity.
Conceptual	entities	are	implemented	as	fields	in	the	LANSA	Repository.

Variant	Entity
A	Variant	Entity	is	similar	to	a	Data	Entity	in	that	it	stores	information.	It	is	used
in	situations	where	elements	are	dependant	on	the	value	of	another	element.	For
example,	there	may	be	a	type	of	Product	called	a	Manufactured	Product.
Associated	with	a	Manufactured	Product	may	be	information	such	as	Drawing
Number.	There	may	be	another	type	of	Product	called	Supplied	Product,	which
contains	the	Vendor	who	supplied	the	product.
Variant	Entities	are	implemented	as	database	tables	in	the	LANSA	Repository.

External	Entity
An	external	entity	is	used	to	define	a	physical	or	logical	file	which	already



exists	in	the	LANSA	repository.	The	key	structure	of	this	definition	can	be	used
in	relationships	with	logical	entities	in	order	to	extend	the	existing	database.
No	database	tables	are	implemented	from	External	Entity	definitions.



1.5.3	Elements
Elements	are	used	to	define	data.	Each	element	is	a	unique	piece	of	data	in	the
model.	This	data	may	become	an	attribute	of	any	type	of	entity.
For	example,	a	Customer	entity	might	have	attributes	of	Customer	Name,
Customer	Code,	Credit	Limit	etc.
Elements	can	be	inherited	by	entities	from	other	entities	via	relationships.	For
example,	the	Order	entity	is	related	to	the	Customer	entity.	Identifying	elements
from	the	Customer	entity	are	inherited	by	the	Order	entity	so	that	the	Customer
who	has	placed	a	particular	Order	can	be	identified.
Elements	are	implemented	as	fields	in	the	LANSA	Repository.



1.5.4	Relationships
Relationships	are	used	to	relate	two	entities	to	each	other.	One	entity	in	a
relationship	will	inherit	elements	from	the	other.	The	type	of	relationship	will
dictate	the	nature	of	this	inheritance	and	how	the	entities	are	implemented	in	the
LANSA	Repository.
Relationships	influence	the	file	fields,	file	keys,	logical	files,	referential
integrity	validation	rules	and	access	routes	that	are	generated	when	an	entity	is
built.
The	different	types	of	relationship	available	in	the	Logical	Modeler	are:

Parent/Child
Join
Include
Variation

For	more	details,	refer	to	7.	Relationships.

Parent/Child
One	entity	is	said	to	be	the	Parent	of	another	if	the	data	of	the	Child	entity
belongs	to	(is	contained	within)	the	Parent.
For	example,	an	Ordered	Product	cannot	exist	on	its	own.	The	Ordered	Product
must	have	a	parent,	Order,	before	it	can	exist.
The	identifying	elements	of	the	Parent	entity	are	inherited	by	the	Child	entity.
These	elements	are	often	called	Parent	Keys	or	Foreign	Keys.	They	become	the
file's	primary	key	when	the	entity	is	physically	implemented	in	the	LANSA
Repository.

Join
One	entity	is	said	to	be	joined	(or	to	refer)	to	another	if	a	data	(that	is,	non-key)
element	or	group	of	elements	from	the	first	entity	can	be	used	to	access	an
occurrence	in	the	second	entity.
The	Join	relationship	differs	from	the	Parent/Child	relationship	in	that	the
element(s)	used	to	access	the	referenced	entity	are	not	necessary	to	identify	the
primary	(or	referencing)	entity.	However,	they	are	still	inherited	to	become
Foreign	Keys.
For	example,	an	Order	is	placed	by	a	Customer.	The	Order	is	identified	by	its
Order	Number.	Order	will	look	up	a	Customer	Code	in	the	Customer	entity.



Hence,	the	Order	file	will	contain	the	Customer	Code	element	when	it	is
physically	implemented	in	the	LANSA	Repository.

Include
The	Include	relationship	allows	elements	from	one	entity	to	exist	in	many
different	entities.	However,	unlike	a	Parent/Child	and	Join	relationships,	no
foreign	keys	result.	The	elements	become	part	of	the	entity.
For	example,	a	conceptual	entity	called	Address	is	created	with	attributes	of
Street,	State,	City,	Country	and	Post	Code.	This	entity	has	no	identifying
element.	The	Address	entity	could	be	included	into	a	Customer	entity	or
Supplier	entity.	The	Address	elements	will	become	part	of	the	Customer	and
Supplier	files	when	they	are	physically	implemented	in	the	LANSA	Repository.

Variation
This	type	of	relationship	can	be	used	between	a	Data	or	External	entity	and	a
Variant	entity	where	the	Data	or	External	entity	is	the	source	or	the	relationship
and	the	Variant	entity	is	the	target.
As	such,	the	Target	entity	inherits	the	Source	entity's	identifying	elements.
These	elements	become	the	Target	entity's	primary	key	when	it	is	physically
implemented	in	the	LANSA	Repository.	The	Variant	entity	can	not	have	an
identify	element	of	its	own.



1.5.5	Abstractions
An	abstraction	is	like	a	container	object	and	is	used	to	a	group	entities.	It	is	very
useful	when	working	with	large	data	models.	For	example,	an	abstraction	called
Order	Processing	can	be	used	to	group	the	Customer,	Product,	Order	and
Ordered	Product	entities.	By	activating	an	abstraction,	you	can	now	work	with
just	the	Order	Processing	part	of	the	model	(four	entities)	rather	than	all	entities
in	the	model.	Entities	which	are	not	part	of	the	abstraction	are	not	displayed	in
the	diagram.
Once	defined,	an	abstraction	can	be	activated	in	order	to	simplify	the	model
diagram	view.	In	addition,	it	allows	you	to	build	only	the	objects	contained
within	the	abstraction,	rather	then	the	entire	model.
For	more	details,	refer	to	8.	Abstractions.



1.5.6	User	Views
User	Views	are	not	a	logical	modeling	concept.	They	are	included	to	allow
analysts	to	document	logical	views	of	the	data	which	can	be	used	by	the
physical	database.
The	aim	of	a	user	view	is	to	allow	you	to	define		access	to	a	file	in	a	sequence
other	than	the	primary	key	and	logical	views	created	as	a	result	of	relationships.
User	views	will	generate	logical	views	when	a	database	build	is	performed	on
an	entity.
For	example,	a	logical	view	sequenced	by	Customer	Name	will	not	ordinarily
be	created	for	the	Customer	entity,	as	there	are	no	relationships	involving
Customer	Name	and	it	is	not	part	of	the	key	of	Customer.	However,	an	end	user
may	wish	to	view	Customer	information	in	Customer	Name	sequence.	A	user
view	can	be	created	to	support	this	requirement.
For	more	details,	refer	to	9.	User	Views.



1.5.7	Building	a	Physical	Database
Once	created,	a	model	can	be	built	into	a	physical	database.	The	build	process
takes	all	of	the	element,	entity	and	relationship	information	and	creates	fields
and	tables	in	the	LANSA	Repository.	In	addition,	it	creates	logical	views,	access
routes	and	validation	rules	as	the	result	of	relationships	defined	within	the
model.
Building	a	model	consists	of	three	phases	for	each	entity.

Building	Elements
Entity	elements	are	implemented	as	fields	in	the	LANSA	Repository.	They	also
become	fields	in	the	files	that	are	generated	from	entity	definitions.

Building	Entities
Data	and	Variant	entities	are	implemented	as	database	tables	in	the	LANSA
Repository.	Conceptual	entities	are	implemented	as	fields	only.
Entities	that	are	implemented	as	tables	will	contain	fields	that	have	been	created
from	the	element	definitions.	In	addition,	fields	may	be	created	and	attached	to
the	file	for	elements	that	are	inherited	as	the	result	of	relationships	with	other
entities.
Note	that	External	entities	are	not	implemented	in	the	LANSA	Repository,	as
they	represent	files	that	already	exist.

Building	Relationships
As	well	as	relationships	influencing	the	fields	that	are	created	for	a	database
table,	they	are	also	implemented	as	referential	integrity	validation	rules,	logical
views	and	access	routes	in	the	LANSA	Repository.
For	more	details,	refer	to	10.	Building	a	Model.



2.	Getting	Started
This	section	defines	the	software	pre-requisites	to	use	the	Logical	Modeler	and
how	access	the	software.	It	also	describes	the	various	components	of	the	main
modeler	window	and	how	you	interact	with	them	when	maintaining	a	data
model.
Note:	To	access	online	help	for	the	Logical	Modeler,	use	the	Help	Menu	from
2.4	The	Main	Window	(the	F1	function	key	will	display	the	Visio	help	text).



2.1	Pre-Requisites
Visual	LANSA	Requirements
The	Logical	Modeler	is	integrated	into	the	Visual	LANSA	development
environment.	It	is	executed	at	the	partition	level	and	can	be	used	with	single
language	or	multilingual	partitions.
It	is	recommended	that	the	partition	in	which	you	execute	the	modeler	contains
the	STD_	system	fields.	These	are	used	by	the	modeler	4.	Data	Types	when
building	the	model.	If	the	partition	does	not	contain	the	fields	which	are	referred
to	by	the	Data	Types,	errors	will	be	generated	when	you	attempt	to	build	the
database.
In	order	to	use	the	Logical	Modeler	you	will	also	need	the	following	software:
Microsoft	Visio
The	Logical	Modeler	utilizes	the	Microsoft	Visio	software	for	its	diagramming
capabilities.	Before	you	can	use	the	Logical	Modeler,	Visio	2003	or	a	later
version	of	Visio	should	be	installed.
Microsoft's	XML	Parser	Software	for	XML	Compatibility
The	Logical	Modeler	uses	XML	to	store	models	and	requires	Microsoft's	XML
Parser	software.	The	XML	Parser	software	is	installed	with	Visual	LANSA	and
can	be	downloaded	from	the	Microsoft	Web	site.
Internet	Explorer
A	currently	supported	version	of	Internet	Explorer	is	required	to	use	the	Logical
Modeler.	Refer	to	the	Supported	Platforms	and	Versions	document	for	the
currently	supported	version	of	this	software.

http://www.lansa.com.au/support/supportedversions.htm


2.2	Models	and	LANSA	Partitions
Logical	Models	are	stored	as	XML	documents	in	the	LANSA	root	install
directory	(by	default).	These	XML	documents	are	not	partition	specific.	Logical
models	are	not	stored	in	the	LANSA	internal	database.	Models	can	be	shared
across	partitions	and	can	even	be	shared	across	LANSA	systems.
After	starting	Visual	LANSA	and	logging	into	a	LANSA	partition,	you	could
open	any	logical	model	saved	on	your	system	or	on	a	network.
If	you	have	started	to	build	a	logical	model	into	a	physical	database,	the	build
information	initially	displayed	in	the	model	is	specific	to	the	partition	in	which
the	model	was	last	built.
It	is	possible	to	build	the	same	logical	model	into	many	different	partitions	by
simply	opening	the	logical	model	and	rebuilding	it	in	the	active	partition.
Before	using	the	Logical	Modeler	in	a	partition,	be	sure	to	review	the	Visual
LANSA	partition	requirements	listed	in	the	2.1	Pre-Requisites.



2.3	Start	the	Logical	Modeler
To	open	the	Logical	Modeler,	select	the	LANSA	editor	Tools	menu	and	choose
the	Logical	Modeler	option.

	



2.4	The	Main	Window
Once	opened,	the	main	Logical	Modeler	window	will	appear	something	like
this:

It	includes:
2.4.1	Menus
2.4.2	The	Toolbar
2.4.3	The	Model	Diagram
2.4.4	The	Document	Stencil
2.4.5	Pan	&	Zoom	Window.

You	should	also	be	familiar	with	2.4.6	Performing	Actions	on	Diagram	Objects.
Notice	that	the	name	of	the	model	and	any	abstraction	selected	is	displayed	in
the	main	window	title	bar.		(The	phrase	Entire	Model	Shown	indicates	that	no
abstractions	are	active).
To	access	the	user	guide	for	the	Logical	Modeler,	use	the	Help	menu	(pressing
the	F1	key	when	the	main	window	is	shown	will	display	the	Visio	help	text).	
Pressing	the	F1	key	when	a	logical	modeler	dialog	is	shown	(e.g.	Create	Data



Entity)	will	show	help	for	that	dialog.



2.4.1	Menus
All	actions	available	with	the	modeler	can	be	executed	from	the	menus	on	the
modeler's	main	window.	An	option	may	or	may	not	be	available	depending	on
the	state	of	the	model	diagram.
Note	that	an	icon	may	be	displayed	to	the	left	of	a	menu	item.	These	icons	are
also	available	from	the	toolbar.
The	menus	on	the	main	window	are:

File	Menu
Edit	Menu
View	Menu
Maintain	Menu
Abstraction	Menu
Build	Menu
Window	Menu
Help	Menu

File	Menu
The	File	menu	is	used	to	perform	administration-type	actions	on	the	model.
These	actions	include	creating	a	new	model,	opening	an	existing	model,	saving
a	model	and	printing	a	model.	It	appears	like	this:

Edit	Menu
The	Edit	menu	is	used	to	perform	actions	on	entities,	relationships	and
abstractions.



These	actions	include	the	Change	and	Delete	commands	(applicable	to	all	four
object	types),	Specify	Relationship	and	the	Entity	Elements	and	User	Views
options	(applicable	only	to	certain	types	of	entity).	It	appears	like	this:

View	Menu
The	View	menu	provides	options	which	affect	the	visual	presentation	of	the
diagram.
Options	such	as	Actual	Size	and	Whole	Page	can	be	used	to	enlarge	or	reduce
the	size	of	the	diagram	to	aid	readability.		The	Show	Relationships	options	can
be	used	to	control	whether	relationship	lines	are	shown	on	the	diagram.
In	addition,	the	Show	Elements,	Show	Build	Status	and	Show	Collapsed	options
control	the	type	of	view	of	the	model	shown	by	the	diagram.	These	views	can
be	set	for	the	entire	model	or	for	selected	entities	only.
The	View	menu	appears	like	this:

Maintain	Menu
The	Maintain	menu	is	used	to	access	the	Data	Types	used	by	element
definitions.	It	appears	like	this:



Abstraction	Menu
The	Abstraction	menu	is	used	solely	for	performing	actions	on	Abstractions.
When	an	abstraction	is	selected	in	the	model,	it	can	be	activated	or	deactivated
and	it	can	have	entities	added	or	removed.	It	appears	like	this:

Build	Menu
The	Build	menu	is	used	to	support	the	features	associated	with	building	your
model.	Build	error	messages	can	be	accessed,	an	individual	entity	or	the	entire
model	build	can	be	initiated,	and	the	Builder	Queue	can	be	accessed.	It	appears
like	this:

Window	Menu
The	Logical	Modeler	allows	for	many	data	models	to	be	open	simultaneously.
The	Window	menu	allows	you	to	switch	between	models	that	are	currently
open.	It	may	appear	something	like	this:

Help	Menu
The	Help	menu	provides	access	to	this	User	Guide.	It	appears	like	this:



2.4.2	The	Toolbar
The	Toolbar	provides	access	to	the	most	commonly	used	modeler	commands.
For	example,	you	could	Open	Model,	Save	Model,	Show	Diagram	Actual	Size,
Change,	Delete,	Build	Model,	etc.
A	toolbar	button	may	or	may	not	be	enabled	depending	on	the	state	of	the	model
diagram.	The	toolbar	appears	something	like	this:

Moving	the	mouse	pointer	over	a	toolbar	button	will	display	the	action
associated	with	the	button.



2.4.3	The	Model	Diagram
The	main	portion	of	the	Logical	Modeler	window	contains	the	diagram	of	your
model.	It	shows	either	the	entire	model	(as	shown	below),	or	a	portion	of	the
model	as	dictated	by	the	different	viewing	options	(as	described	in	the	2.4.5	Pan
&	Zoom	Window).

New	objects	are	created	by	dragging	shapes	onto	the	diagram	from	the
Document	Stencil	(as	described	in	2.4.4	The	Document	Stencil).
For	the	most	part,	maintenance	of	existing	model	objects	is	initiated	by	selecting
shapes	on	the	diagram	and	performing	actions	against	them.
Shapes	can	be	moved	around	the	diagram	to	give	a	desired	layout.	This	layout	is
preserved	when	the	model	is	saved	and	reloaded.



2.4.4	The	Document	Stencil
The	document	stencil	can	be	used	to	create	new	model	objects.	In	addition,	it
acts	as	a	legend	for	the	model	diagram.	The	types	of	objects	shown	in	the
diagram	can	be	referenced	to	the	types	shown	here.	It	appears	something	like
this:

New	objects	can	be	created	by	dragging	and	dropping	shapes	from	the	stencil
onto	the	model	diagram.	The	objects	available	are:

Data	entity
Conceptual	entity
Variant	entity
External	entity
Abstraction	and
Relationship	connector.

For	details	of	these	object	types,	refer	to	5.1	Entity	Types,	8.	Abstractions,	and
7.7.1	Create	a	Relationship.
The	document	stencil	can	be	anchored	in	the	main	window	or	it	can	be	a
floating	window.	When	displayed	as	a	floating	window,	it	can	be	resized	and
positioned	anywhere	on	the	desktop.
Note	that	all	objects	available	in	the	document	stencil	can	also	be	created	by
right-clicking	on	a	blank	portion	of	the	model	diagram	and	selecting	the
appropriate	option.



2.4.5	Pan	&	Zoom	Window
The	Pan	&	Zoom	window	is	used	to	navigate	within	your	model.	It	shows	an
image	of	the	entire	model	and	may	appear	something	like	this:

Using	the	left	mouse	button,	the	zoom	view	(indicated	by	a	red	border)	can	be
moved,	resized	or	redrawn.	The	main	diagram	reflects	the	portion	of	the	model
bound	by	the	red	border.
Note	that	the	current	size	and	position	of	the	Pan	&	Zoom	window	is	saved
when	the	model	is	saved	and	reinstated	when	the	model	is	reopened.
The	Pan	and	Zoom	window	can	be	anchored	in	the	main	window	or	it	can	be	a
floating	window.	When	displayed	as	a	floating	window,	it	can	be	resized	and
positioned	anywhere	on	the	desktop.



2.4.6	Performing	Actions	on	Diagram	Objects
To	perform	an	action	on	a	diagram	object	(an	entity,	relationship	or	abstraction),
it	must	first	be	selected.
To	select	an	object,	use	a	single	click	of	the	left	mouse	button	on	the	object's
shape.	Once	selected,	the	shape	will	have	selection	handles	in	the	form	of	gray
padlock	images	surrounding	its	border	as	shown	in	this	example	of	the
Customer	entity:

To	perform	an	action	against	the	object:
right-click	the	object	and	select	an	option	from	its	pop-up	menu,	or
select	an	option	from	one	of	the	main	window	menus,	or
click	a	toolbar	button	that	corresponds	to	the	action	you	wish	to	perform.

Note:	The	Change,	Delete	and	Diagram	View	options	can	be	performed	on
more	than	one	object	simultaneously.	To	select	multiple	objects,	hold	down	the
Shift	key	and	click	on	the	desired	shapes.	When	executed,	the	Change,	Delete
and	Diagram	View	functions	will	be	executed	for	all	selected	objects.



3.	Models
A	data	model	is	a	structured	representation	of	data	important	to	your	business.	It
uses	Elements,	Entities	and	Relationships	to	translate	business	requirements	into
a	graphical	and	textual	model	that	can	be	understood	regardless	of	the
underlying	database.
This	section	describes	how	to:

3.1	Creating	a	New	Model
3.2	Opening	a	Model
3.3	Saving	a	Model
3.4	How	Models	are	Stored
3.5	Switching	Between	Open	Models
3.6	Model	Views
3.7	Changing	the	Size	of	the	Model	Diagram
3.8	Navigating	the	Model	Diagram
3.9	Positioning	to	an	Entity	or	Abstraction	on	the	Model	Diagram
3.10	Printing	the	Model	Diagram
3.11	Maintaining	Unattached	Elements
3.12	Adding	Model	Notes
3.13	Building	the	Model



3.1	Creating	a	New	Model
Select	the	File	menu	and	choose	the	New	command	or	click	the	 	button	on	the
main	toolbar.
A	blank	model	diagram	will	be	displayed.	Note	that	already	opened	models	are
accessible	from	the	Window	menu.



3.2	Opening	a	Model
To	open	a	previously	saved	model,	select	the	File	menu	and	choose	the	Open…
command	or	click	the	 	button	on	the	main	toolbar.	The	Open	Model	dialog	is
displayed:

By	default,	LANSA	models	are	stored	in	the	LANSA	directory	of	your	LANSA
installation.	Any	models	which	exist	in	this	directory	will	be	displayed	in	the
Open	Model	list.
In	addition,	the	last	nine	models	that	have	been	opened	appear	in	the	File	menu.	
To	re-open	one	of	these	models,	simply	select	the	corresponding	menu	option.
Once	a	model	has	been	selected	to	be	opened,	a	progress	bar,	showing	the
different	phases	and	how	much	of	the	load	has	taken	place,	is	displayed	while
the	model	is	loading,	It	appears	like	this:

Once	the	model	has	loaded,	it	will	be	shown	in	the	main	diagram.	The	model



view	settings	are	remembered	from	when	the	model	was	saved.
Note	that	the	model	is	saved	as	an	XML	file	and	as	a	Visio	document.	If	any
errors	are	found	in	the	model's	XML,	it	will	not	load	and	a	message	explaining
the	error	will	be	displayed.	This	should	only	occur	if	you	have	manually	altered
the	XML	and	used	invalid	syntax	or	have	manually	removed	shapes	from	the
Model	Visio	document.	It	is	strongly	recommended	that	you	do	not	manually
alter	model	XML.



3.3	Saving	a	Model
To	save	a	model:

Use	the	 	button	on	the	main	toolbar.	If	the	model	has	not	previously	been
saved,	the	Save	Model	As	dialog	will	be	displayed.
Select	the	File	menu	and	choose	the	Save	command.	If	the	model	has	not
previously	been	saved,	the	Save	Model	As	dialog	will	be	displayed.
Select	the	File	menu	and	choose	the	Save	As…	command	if	you	wish	to	save
an	existing	model	with	a	different	name.

If	the	model	has	not	previously	been	saved,	or	if	you	have	selected	the	Save
As…	command,	the	Save	Model	As	dialog	is	displayed:

Once	the	model	has	been	saved,	the	model	diagram	will	be	redisplayed.	The
save	will	include	information	about	the	diagram	such	as	the	model	view	and	the
active	abstraction.



3.4	How	Models	are	Stored
When	a	model	is	saved,	it	is	stored	as	XML	and	as	a	Visio	document.	The	name
of	the	XML	file	to	which	it	is	saved	has	the	format:
								x.ldm

Where	x	is	a	name	supplied	by	you	and	.ldm	is	the	standard	suffix	for	LANSA
data	models.
The	name	of	the	Visio	document	to	which	the	model	is	saved	has	the	format:
								x.ldm.vsd
	

Where	x	is	a	name	supplied	by	you,	.ldm	is	the	standard	suffix	for	LANSA	data
models	and	.vsd	is	the	standard	suffix	for	Visio	documents.
By	default,	models	are	saved	in	the	LANSA	directory	of	your	LANSA
installation.	However,	you	may	choose	where	to	save	the	model	when	using	the
Save	Model	As	dialog.
Once	a	model	has	been	saved,	it	can	be	moved	around	or	shared	with	other
users	easily,	as	it	is	completely	independent	of	the	internal	database	of	your
LANSA	installation.
Note	that,	when	loading	a	model,	or	sharing	it	with	other	user,	only	the	model
XML	file	is	required.		However,	if	the	Visio	document	is	not	in	the	same
location	as	the	XML	file,	the	model	will	take	longer	to	load.



3.5	Switching	Between	Open	Models
The	Logical	Modeler	allows	more	than	one	model	to	be	open	at	a	time.
A	list	of	open	models	is	displayed	in	the	Window	menu	as	shown	in	this
example:

The	model	currently	displayed	has	a	tick	to	the	left	of	its	name.	To	switch	to
another	model,	simply	select	its	name	from	the	menu.	The	diagram	will	switch
to	the	selected	model.
The	name	of	the	active	model	is	displayed	in	the	title	bar	of	the	main	window.



3.6	Model	Views
There	are	three	views	available	for	entities	in	the	model	diagram:

Elements	view
Build	Status	view
Collapsed	view.

The	Elements	view	shows	element	names	in	the	entity	shape	as	shown	in	this
Customer	entity	example:

The	Build	Status	view	displays	the	status	of	the	three	build	phases	for	the	Entity
(Fields,	File	and	Relationships)	as	shown	in	this	Customer	entity	example:

Each	phase	of	the	build	may	display	four	different	statuses:
Not	yet	built
Required
Built
Failed

The	Required,	Built	and	Failed	statuses	are	followed	by	the	date	and	time	at



which	that	status	was	assigned	to	the	entity	(i.e.	either	as	the	result	of	a	build	of
the	entity	or	as	the	result	of	a	related	entity	having	been	changed	or	built).
The	Collapsed	view	simply	displays	the	names	of	all	entities	in	the	model.

There	are	three	options	available	from	the	View	menu	to	control	which	view	is
displayed:

Show	Elements
Show	Build	Status
Show	Collapsed

The	View	options	are	context-sensitive.	When	no	diagram	objects	are	selected,
each	of	the	options	will	change	the	view	for	the	entire	model.	To	denote	this,	the
text	'(All	Entities)'	is	displayed	next	to	each	option.
When	one	or	more	entities	are	selected,	each	of	the	options	will	change	the	view
for	those	entities	only.	To	denote	this,	the	text	'(Selected	Entities)'	is	displayed
next	to	each	option.
When	a	model	is	initially	created,	the	default	view	is	the	Elements	view	for	all
entities.	To	toggle	between	this	view	and	the	Build	Status	or	Collapsed	views
for	all	entities,	ensure	no	entities	are	selected	and	choose	the	Show	Build	Status
(All	Entities)	or	Show	Collapsed	(All	Entities)	options	from	the	View	menu.
To	specify	the	view	to	be	assigned	to	a	select	group	of	entities,	select	those
entities	and	choose	the	view.	For	example,	if	the	Elements	view	for	all	entities	is
shown,	but	you	wish	to	look	at	the	Build	Status	view	for	one	or	more	individual
entities,	you	select	the	required	entity	shapes	and	then	select	the	Show	Build
Status	(Selected	Entities)	option	from	the	View	menu.
Similarly,	if	the	Build	Status	view	for	all	entities	is	shown,	but	you	wish	to	look
at	the	Elements	view	for	one	or	more	individual	entities,	select	the	required
entity	shapes	and	then	select	the	Show	Elements	(Selected	Entities)	option	from
the	View	menu.
A	check	mark	is	shown	to	the	left	of	the	view	descriptions	to	indicate	which
view	is	active	for	the	current	selection.
When	you	save	the	model	and	reopen	it,	the	view	of	the	model	at	the	time	it	was
saved	will	be	restored.
In	addition,	you	can	elect	whether	to	show	the	lines	on	the	diagram	that
represent	relationships	by	checking	or	unchecking	the	Show	Relationships



option	on	the	View	menu.		This	option	can	be	useful	in	simplifying	the	model
view	if	many	relationships	are	specified.



3.7	Changing	the	Size	of	the	Model	Diagram
The	size	of	the	model	diagram	refers	to	the	size	of	the	paper	that	the	diagram
would	be	printed	on.	By	default,	it	is	the	size	of	a	sheet	of	A4	or	letter	paper
(depending	on	your	system	settings).
If	your	model	is	too	large	to	fit	all	of	its	objects	onto	a	sheet	of	A4,	you	can
change	the	paper	size	by	selecting	File	menu	and	choosing	the	Page	Setup…
option.	This	displays	the	standard	Visio	Page	Setup	dialog.	Select	the	Page	Size
tab.	The	dialog	will	appear	something	like	this:

To	change	the	size	of	the	diagram,	you	can	select	and	change	any	of	the	options
displayed	in	this	dialog.
Press	OK	if	you	wish	to	change	the	diagram	size.	The	diagram	will	be	redrawn
appropriately.	Note	that	object	shapes	may	be	repositioned	due	to	the	size
change.
Press	Cancel	if	you	do	not	wish	to	change	the	size	of	the	diagram.
Note	also	that	if	the	page	size	is	larger	than	the	printer	paper	size	(as	defined	on
the	Print	Setup	tab	of	this	dialog),	gray	lines	will	be	displayed	on	the	diagram	to
indicate	the	number	of	pages	the	model	will	be	printed	on.	For	example,	in	the
diagram	below,	the	Page	size	is	set	as	A2	and	the	printer	paper	size	is	set	to	A4.
When	the	model	is	printed,	four	pages	will	be	produced,	corresponding	to	the



pages	represented	by	the	gray	lines.



3.8	Navigating	the	Model	Diagram
A	representation	of	the	entire	model	diagram	is	shown	in	the	Pan	&	Zoom
window	while	either	the	entire	diagram	or	a	portion	of	it	is	shown	in	the	model
diagram	area.
To	change	what	is	shown	in	the	model	diagram:

Use	the	two	page	view	functions:	Whole	Page	and	Actual	Size	on	the	View
menu.
Change	the	zoom	view,	indicated	by	a	red	border,	in	the	Pan	&	Zoom
window.	This	view	can	be	moved,	re-sized	or	re-drawn	by	clicking	and
holding	down	the	left	mouse	button.	(Note	that	the	Pan	&	Zoom	window
does	not	change.	It	still	continues	to	show	the	entire	model.)
Use	the	vertical	and	horizontal	scroll	bars	that	border	the	model	diagram.



3.9	Positioning	to	an	Entity	or	Abstraction	on	the	Model	Diagram
To	go	straight	to	an	Entity	or	Abstraction	on	the	model	diagram,	select	Go	To…
from	the	View	menu.		A	dialog	containing	a	list	of	all	model	entities	and
abstractions	will	be	displayed:

To	go	to	the	required	shape	on	the	diagram,	double-click	a	list	item,	or	select	a
list	item	and	press	the	Go	To	button.
The	modeler	will	change	the	diagram	to	actual	size,	select	the	shape	and
position	it	in	the	centre	of	the	display,	as	shown	below:
	



	



3.10	Printing	the	Model	Diagram
To	print	the	model	diagram,	click	the	 	button	on	the	main	toolbar,	or	select
the	File	menu	and	choose	the	Print…	command.	The	Print	dialog	is	displayed:

This	is	the	default	Visio	print	dialog,	and	behaves	as	a	standard	Windows	print
dialog.
Note	that	each	open	model	corresponds	to	a	single	page.	Printing	all	pages	when
more	than	one	model	is	open	will	print	all	models.	To	be	sure	that	only	the
currently	displayed	model	is	printed,	select	the	Current	page	option	before
printing.



3.11	Maintaining	Unattached	Elements
When	modeling,	elements	may	be	known,	but	the	entities	to	which	those
elements	should	belong	is	not	known.	Also,	when	an	entity	is	deleted	from	the
model,	all	of	the	elements	which	were	defined	in	the	entity	still	exist	but	are	no
longer	grouped	into	a	specific	entity.	The	Logical	Modeler	offers	the	ability	to
maintain	these	elements	and	to	create	more	elements	without	immediately
attaching	them	to	entities.
To	maintain	Unattached	Elements	directly,	select	the	Edit	menu	and	choose	the
Unattached	Elements	…	option.	The	Maintain	Unattached	Elements	window	is
displayed:

A	list	of	currently	unattached	elements	is	displayed,	alphabetically,	below	the
toolbar.
The	following	information	is	shown	for	each	element	in	the	list:

its	build	status	(a	green	tick	if	the	element	has	been	built,	a	red	cross	if	the
element	is	required	to	be	built)
its	name
a	Notes	image,	if	the	element	has	notes	attached
its	data	type,	if	it	has	one,
its	field	type	and	length,	or	the	type	and	length	of	the	data	type,	if	used
its	field	name

From	this	window:

A	new	element	can	be	created	by	clicking	the	 	button	on	the	toolbar.



An	element	can	be	changed,	by	double-clicking	it	in	the	list,	or	by	selecting
it	and	clicking	the	 	toolbar	button.
An	element	can	be	deleted	by	selecting	it	and	clicking	the	 	toolbar	button.

An	element's	notes	can	be	maintained	by	selecting	it	and	clicking	the	
toolbar	button.

For	information	about	these	options,	refer	to	the	6.4	Working	with	Elements.
Unattached	elements	can	be	attached	to	entities	at	a	later	stage	by	dragging	and
dropping	them	from	this	window	into	an	Entity	Elements	window.	Similarly,
attached	elements	can	be	unattached	by	deleting	them	from	an	Entity	Elements
window	or	by	dragging	them	and	dropping	them	from	an	Entity	Elements
window	into	the	Unattached	Elements	window.	Refer	to	5.6.6	Transferring
Elements	for	further	information.



3.12	Adding	Model	Notes
The	notes	facility	for	models	is	merely	a	documentation	tool	for	use	when
constructing	a	data	model.	Unlike	element	notes,	which	are	transformed	into
field	help	text	when	the	element	is	built,	model	notes	are	not	carried	through
from	the	model	to	the	repository.
To	maintain	a	model's	notes:

right-click	on	an	empty	part	of	the	diagram	and	select	the	Notes…	option
from	the	menu,
ensure	that	no	diagram	objects	are	selected	and	choose	the	Notes…	option
from	the	Edit	menu,	or

ensure	that	no	diagram	objects	are	selected	and		click	the	 	button	on	the
toolbar.

The	Maintain	Model	Notes	dialog	is	displayed:

The	standard	LANSA	special	help	text	characters	may	be	used	in	the	notes.	For
example,	you	can	display	help	text	underlined,	highlighted	and	so	on.
Once	the	notes	have	been	maintained,	press	the	OK	button	to	update	them.	If
you	do	not	wish	the	notes	to	be	updated,	press	the	Cancel	button.



3.13	Building	the	Model
To	build	a	model,	use	the	 	button	on	the	main	toolbar	or	select	the	Build
menu	and	choose	the	Build	Model…	command.	Alternatively,	right-click	on	an
empty	part	of	the	diagram	and	choose	the	Build	Model…	option.		The	Build
Analysis	function	will	be	performed.
The	Build	Analysis	function	can	operate	in	two	ways.		If	there	is	no	abstraction
currently	active,	the	entire	model	is	analyzed	and	may	be	built.		If	an	abstraction
is	active,	only	the	entities	within	the	abstraction	will	be	analyzed.		Refer	to	8.
Abstractions	for	more	information.
If	none	of	the	entities	being	analyzed	have	previously	been	built,	the	analysis
function	will	submit	build	activities	to	the	Builder	Queue	for	all	entities	and	a
message	box	is	displayed:

Select	Yes	to	display	the	Builder	Queue	immediately,	otherwise	select	No	to
return	to	the	model	diagram.	For	more	information	about	managing	the	build
process	with	the	Builder	Queue,	refer	to	10.	Building	a	Model.
If	the	entities	being	analyzed	are	in	a	partially	or	fully	built	state,	a	window	is
displayed:

If	you	wish	to	build	only	the	entities	that	are	required	to	be	built,	select	the
Entities	requiring	build	radio	button	and	press	the	OK	button	or	the	Enter	key.
If	you	wish	to	build	all	entities,	regardless	of	their	current	build	status,	select	the
All	entities	radio	button	and	press	the	OK	button	or	the	Enter	key.
Press	the	Cancel	button	or	the	Escape	key	if	you	do	not	wish	to	build	any
entities.



If	you	have	selected	the	Entities	requiring	build	function	but	all	entities	are
already	built,	a	message	box	will	be	displayed:

If	the	analysis	function	does	find	entities	that	need	building,	or	you	selected	the
All	entities	option,	build	activities	are	submitted	to	the	Builder	Queue	and	a
message	box	is	displayed:

Select	Yes	to	display	the	Builder	Queue	immediately,	otherwise	select	No	to
return	to	the	model	diagram.	For	more	information	about	managing	the	build
process	with	the	Builder	Queue,	refer	to	10.	Building	a	Model.
Note:	It	is	possible	to	build	individual	entities	by	selecting	an	entity	and
clicking	the	 	button.	For	more	information	about	building	entities
individually,	refer	to	5.6.9	Building	an	Entity.



4.	Data	Types
A	data	type	is	basically	a	link	to	a	corporate	or	standard	field	definition	in	the
LANSA	Repository.	For	example,	the	modeler	has	a	data	type	called	"Name"
which	refers	to	the	field	STD_NAME	in	the	repository.	When	you	create	a
"Customer	Name"	element,	you	would	specify	that	it	has	a	data	type	of	"Name".
Likewise,	when	you	create	another	element	called	"Supplier	name",	it	will	also
access	the	data	type	"Name".	This	ensures	that	you	have	one	corporate	standard
for	all	"names"	in	your	model.
If	you	require	a	"Company	name"	which	has	completely	different	rules	and
properties,	then	you	have	identified	a	new	data	type.	A	standard	or	corporate
definition	should	be	defined	to	the	repository,	and	a	new	data	type	should	be
created.
The	modeler	supports	the	concept	of	a	corporate	repository.	As	you	create	new
corporate	data	types,	you	will	be	adding	them	to	the	list	of	element	data	types.
Data	types	should	not	form	a	complete	duplicate	of	your	repository.	You	should
not	create	a	new	data	type	for	each	element	in	your	model.	Data	types	represent
global	types	of	data	for	your	models,	applications	and	databases.
If	you	wish	to	use	the	data	typing	facility,	one	of	the	most	common	changes	you
will	make	to	the	LANSA	environment	is	the	maintenance	of	data	types	in	the
Logical	Modeler.
Elements	that	refer	to	data	types	for	their	definition	inherit	the	data	type	field's
physical	characteristics,	including	validation	rules	and	help	text,	when	the
repository	definition	for	an	element	is	built.
The	Logical	Modeler	is	shipped	with	some	default	data	types.	These	shipped
data	types	all	refer	to	the	standard	LANSA	fields	that	begin	with	the	characters
STD_.	(Refer	to	2.1	Pre-Requisites.)
When	you	work	with	Data	Types,	you	will	use	these	modeler	facilities:

4.1	Maintaining	Data	Types
4.1.1	Creating	a	Data	Type
4.1.2	Changing	a	Data	Type
4.1.3	Deleting	a	Data	Type



4.1	Maintaining	Data	Types
To	maintain	data	types,	select	the	Maintain	menu	and	choose	the	Data	Types…
option.	The	Maintain	Data	Types	window	is	displayed:

A	list	of	defined	data	types	is	displayed,	alphabetically,	below	the	toolbar.
The	following	information	is	shown	for	each	data	type	in	the	list:

its	name
the	LANSA	Repository	field	it	uses
the	field	type	and	length.

From	this	window,	you	can:
4.1.1	Creating	a	Data	Type
4.1.2	Changing	a	Data	Type
4.1.3	Deleting	a	Data	Type.



4.1.1	Creating	a	Data	Type
To	create	a	new	data	type,	click	the	 	toolbar	button.	The	Create	Data	Type
dialog	is	displayed:

The	Data	Type	must	be	given	a	name.	It	can	be	up	to	20	characters	in	length	of
mixed	case,	and	must	not	already	exist.
A	Repository	field	name	must	be	specified.	Enter	the	name	of	a	field	that	exists
in	the	repository,	or	click	the	 	button	to	select	a	field	from	a	list.
Be	very	careful	when	selecting	a	field	from	the	LANSA	Repository.	You	should
review	the	field	definition,	its	help	text	and	validation	rules	as	the	modeler	uses
this	information	when	creating	new	fields	based	on	this	data	type.	For	example,
the	selected	Repository	field	should	not	have	any	simple	logic	checks	using	the
name	of	the	field	as	these	type	of	rules	cannot	be	copied	to	another	field.
Click	the	Cancel	button	if	you	do	not	wish	to	create	a	data	type.
Click	OK	to	perform	validation	and	create	the	data	type.	The	dialog	will	be	re-
displayed	for	you	to	continue	create	data	types.	Press	Cancel	to	return	to	the
data	types	list.



4.1.2	Changing	a	Data	Type
To	change	an	existing	data	type,	double-click	its	entry	in	the	Maintain	Data
Type	list,	or	select	its	entry	and	click	the	 	toolbar	button.	The	Change	Data
Type	dialog	is	displayed:

The	name	of	the	Data	Type	cannot	be	changed.	(You	must	delete	the	existing
data	type	and	add	using	the	new	name.)
A	repository	field	name	must	be	specified.	It	must	be	the	name	of	a	field	that
exists	in	the	repository,	or	use	the	 	button	to	select	a	field	from	a	list.
Click	the	Cancel	button	if	you	do	not	wish	to	change	the	data	type.
Click	OK	to	perform	validation	and	update	the	data	type.
Note:	If	you	change	a	data	type,	you	should	manually	rebuild	all	elements
which	use	the	changed	data	type.



4.1.3	Deleting	a	Data	Type
To	delete	a	Data	Type,	select	its	entry	in	the	Maintain	Data	Type	list	and	click
the	 	toolbar	button.	The	data	type	will	be	removed	from	the	list.
Note:	The	data	type	will	not	be	deleted	if	it	is	used	with	an	element	in	a
currently	open	model.	An	error	message	will	be	displayed	if	to	indicate	why	the
data	type	cannot	be	deleted.



5.	Entities
Entities	are	the	main	focus	of	your	development	in	the	Logical	Modeler.	They
are	the	starting	point	for	most	model	development.
An	entity	can	be	anything	that	a	user	works	with	in	their	business.	For	example,
in	an	order	entry	application,	a	Product,	a	Customer	or	an	Order	may	be	an
entity.
For	each	entity,	you	can:

define	elements,
define	relationships	to	other	entities,
add	notes,
build	the	entity,	and
review	build	error	messages.

Each	entity	must	be	assigned	a	type.	This	is	very	important	in	determining	how
entities	interact	with	each	other	via	relationships,	and	how	they	are	implemented
in	the	repository	when	the	model	is	built.
This	information	is	described	in:

5.1	Entity	Types
5.2	Entities	and	Elements
5.3	Entities	and	Relationships
5.4	Entities	and	LANSA
5.5	Working	with	Entities
5.6	Maintain	Entity	Elements



5.1	Entity	Types
An	entity's	type	determines:

What	type	of	relationships	an	entity	may	have	with	other	entities	and
if	and	how	the	entity	will	be	implemented	in	the	repository.

For	example,	a	Conceptual	Entity	can	only	be	used	with	Include	relationships.
Also,	a	Conceptual	Entity	is	not	implemented	as	a	file	in	the	repository.
Determining	the	correct	entity	type	is	very	important	to	your	model.
The	Logical	Modeler	has	the	following	types	of	entities:

Data	Entity
Conceptual	Entity
Variant	Entity
External	Entity.

Note:	Abstractions	are	not	entities.	They	are	objects	used	to	group	entities.

Data	Entity
A	Data	Entity	stores	information.	It	is	the	most	commonly	used	type	of	entity.
For	example,	a	Customer	is	a	data	entity.
A	Data	Entity	has	very	few	relationship	restrictions.	It	can	have	an	identifying
element.	It	is	implemented	as	a	file	in	the	LANSA	Repository.

Conceptual	Entity
A	Conceptual	Entity	has	meaning	to	the	user	but	does	not	store	information.	For
example,	Address	or	Date	might	be	modeled	as	a	Conceptual	Entity.
A	Conceptual	Entity	is	restricted	to	being	the	target	of	an	Include	relationship.	It
cannot	have	an	identifying	element.	It	is	implemented	as	a	set	of	fields	in	the
repository.	It	cannot	have	user	views.

Variant	Entity
A	Variant	Entity	is	similar	to	a	Data	Entity	in	that	it	stores	information.	It	is	used
in	situations	where	elements	are	dependant	on	the	value	of	another	element.	For
example,	Manufactured	Product	and	Supplied	Product	are	variant	entities	used
with	the	Product	data	entity.
A	Variant	Entity	is	initially	restricted	to	be	the	target	of	a	Variation	relationship.
However,	once	defined,	it	can	be	the	subject	of	a	Join	relationship.	It	cannot	be
assigned	its	own	identifying	element	as	its	key	is	identified	by	the	variation



relationship.	It	is	implemented	as	a	file	in	the	LANSA	Repository.

External	Entity
An	External	Entity	is	a	representation	of	an	existing	physical	or	logical	file	in
the	LANSA	Repository.	It	can	be	used	in	relationships	with	Data	and	Variant
entities	in	order	to	extend	an	existing	database.
An	External	Entity	can	be	the	Parent	entity	in	a	Parent/Child	relationship,	the
target	entity	in	a	Join	relationship	and	the	source	entity	in	a	Variation
relationship.	Its	elements	cannot	be	maintained.
Note	that,	during	the	Build	process,	the	database	file	that	corresponds	to	the
External	Entity	is	not	modified	in	any	way.	However,	Data	and	Variant	entities
that	are	related	to	the	External	Entity	may	have	appropriate	Access	Routes,
Logical	Views	and	Referential	Integrity	Validation	Rules	created	for	them.



5.2	Entities	and	Elements
An	Entity's	type	directly	influences	its	elements.	The	entity	type	will	determine
the	other	entity	types	to	which	it	can	be	related	and	whether	an	identifying
element	can	be	specified.
Because	the	entity	type	determines	how	an	entity	is	implemented	in	the
repository,	rules	must	apply	to	what	an	entity	contains:

Conceptual	entities	cannot	be	assigned	identifying	elements	(remember,
conceptual	entities	are	not	implemented	as	files).
Variant	entities	cannot	be	assigned	an	identifying	element.	It	receives	an
identifying	element	as	the	result	of	a	Variation	relationship	from	a	Data	or
External	Entity.
External	entities	cannot	have	their	elements	maintained	(remember,	the
underlying	physical	or	logical	file	definition	is	not	modified	by	the	modeler).



5.3	Entities	and	Relationships
The	Logical	Modeler	only	allows	meaningful	relationships	to	be	defined	for	a
given	source	entity	type	and	target	entity	type.	For	example,	a	Parent/Child
relationship	can	only	be	used	by	Data	and	External	entities.	An	Includes
relationship	can	only	use	Conceptual	entities	as	the	target	entity.	The	Modeler
helps	to	validate	the	model	and	your	design	based	on	these	relationship	rules.
For	more	details	about	these	rules,	refer	to	7.4	Relationships	and	Entities.



5.4	Entities	and	LANSA
Entity	type	determines	what	object	is	implemented	in	the	LANSA	Repository
when	the	model	is	built.
An	entity	type	will	influence:

Whether	repository	object	are	built	for	the	entity,
the	physical	object	implemented	and,
the	type	of	validation	rules,	access	routes	and	logical	files	implemented,
based	on	its	relationships	with	other	entities.

Data	and	Variant	entities	are	implemented	as	physical	and	logical	files.
Conceptual	entities	are	implemented	as	fields.	Conceptual	entities	cannot	have
user	views.
External	Entities	already	exist	in	the	LANSA	repository	and	are	not
implemented	as	database	files.	However,	Data	and	Variant	entities	that	are
related	to	the	External	Entity	may	have	appropriate	Access	Routes,	Logical
Views	and	Referential	Integrity	Validation	Rules	created	for	them.



5.5	Working	with	Entities
You	will	work	with	entities	using	2.4.4	The	Document	Stencil	and	by	2.4.6
Performing	Actions	on	Diagram	Objects.
The	following	dialogs	allow	you	to:

5.5.1	Create	a	Data,	Conceptual	or	Variant	Entity
5.5.3	Create	an	External	Entity
5.5.4	Change	a	Data,	Conceptual	or	Variant	Entity
5.5.5	Delete	an	Entity



5.5.1	Create	a	Data,	Conceptual	or	Variant	Entity
Creating	a	Data,	Conceptual	or	Variant	entity	is	as	simple	as	dragging	one	of
these	entity	shapes	from	the	Document	Stencil	onto	the	model	diagram:

Data	Entity Conceptual	Entity Variant	Entity

Alternatively,	right-click	on	an	empty	part	of	the	diagram	and	choose	the
appropriate	Create	option	from	the	menu.
An	appropriate	dialog	will	be	displayed,	allowing	you	to	specify	entity	details.
For	example,	the	following	dialog	would	be	displayed	for	creating	a	data	entity:

Regardless	of	the	type	of	entity,	it	must	be	given	a	name.	This	can	be	up	to	20
characters	in	length,	of	mixed	case,	and	should	be	a	unique	name	within	the
model.
For	Data	and	Variant	entities,	which	are	implemented	in	the	repository	as	files,	a
physical	file	name	may	be	optionally	specified.	This	will	be	the	name	of	the
physical	file	in	the	repository	when	the	entity	is	built.	The	file	name	can	be	up
to	10	characters	in	length	if	your	Visual	LANSA	installation	has	the	*RPGIV
generation	option	turned	on	(refer	to	the	Visual	LANSA	User	Guide	for	more
information).		If	it	is	turned	off,	the	file	name	can	be	up	to	8	characters	in
length.
Note	that	if	a	physical	file	name	of	more	than	the	maximum	length	allowed	is
specified,	relationship	and	user	view	logical	view	names	must	be	specified
manually.		For	more	information	about	specifying	physical	file	names,	refer	to
5.5.2	About	Entity	Physical	and	Logical	File	Names,	below.
A	physical	file	name	cannot	be	specified	for	a	Conceptual	entity.
Note	that,	at	this	point,	the	entry	of	a	physical	file	name	is	optional	–	it	is	not
required	for	the	purposes	of	constructing	the	data	model.	However,	it	must	be



specified	when	building	the	entity.	A	physical	file	name	can	be	entered	using	the
Change	facility.	If	no	physical	file	name	is	specified	when	building	the	entity,	a
build	error	will	be	generated.
Press	the	OK	button	or	Enter	key	to	create	the	entity.	The	entity	shape	will	be
updated	with	the	entity	name.	Note	that	the	shape	can	now	be	moved	anywhere
on	the	diagram.
Press	the	Cancel	button	or	Escape	key	if	you	do	not	wish	to	create	the	entity.
The	entity	shape	will	be	deleted	from	the	diagram.



5.5.2	About	Entity	Physical	and	Logical	File	Names
As	discussed	previously,	a	physical	file	name	may	be	up	to	10	characters	in
length	if	the	*RPGIV	setting	is	enabled	for	your	installation	(refer	to	the	Visual
LANSA	User	Guide	for	more	information).		If	it	is	not	enabled,	a	file	name	can
only	be	up	to	8	characters	in	length.
Logical	views	are	created	by	the	modeler	as	a	result	of	relationships	between
entities	and	of	the	User	Views	defined	for	entities.
The	Logical	Modeler	provides	a	facility	to	automatically	generate	logical	view
names	based	on	the	physical	file	name	of	the	entity	to	which	they	belong.	
These	names	are	in	the	format	xxxxxxxxnn,	where	xxxxxxxx	is	the	physical	file
name	of	the	entity	and	nn	is	a	unique,	sequential	number	starting	at	1.
Therefore,	in	order	for	the	modeler	to	be	able	to	automatically	generate	logical
view	names,	a	physical	file	name	of	up	to	the	maximum	length	allowed	only
may	be	specified.
If	the	physical	file	name	is	more	then	the	maximum	number	of	characters
allowed,	logical	view	names	must	be	specified	manually.		This	is	done	via	the
Create-	&	Change	Relationship	and	Specify	User	View	dialogs.
For	more	information	on	specifying	logical	view	names,	refer	to	the	following:

7.7	Work	with	Relationships
9.	User	Views
10.	Building	a	Model



5.5.3	Create	an	External	Entity
To	create	an	External	Entity,	drag	the	following	shape	from	the	Document
Stencil	onto	the	model	diagram:

Alternatively,	right-click	on	an	empty	part	of	the	diagram	and	choose	the
appropriate	Create	External	Entity…	option	from	the	menu.
The	Import	File	Definition	dialog	will	be	displayed:

A	File	and	its	Library	name	must	be	specified.	The	file	must	exist	in	the
LANSA	Repository.	Press	the	prompt	button	to	the	right	of	the	Library	name	in
order	to	select	a	file	from	a	list	of	files	in	the	repository.	The	file	may	be	a
Physical	or	Logical	file.	If	the	file	is	a	Physical	file,	it	must	have	at	least	one
primary	key	field	defined.
Press	the	OK	button	or	Enter	key	to	create	the	entity.	The	entity	shape	will	be
updated	with	the	file	name	and	the	fields	of	the	file.
Press	the	Cancel	button	or	Escape	key	if	you	do	not	wish	to	create	the	entity.
The	entity	shape	will	be	deleted	from	the	diagram.



5.5.4	Change	a	Data,	Conceptual	or	Variant	Entity
To	change	an	entity's	details,	select	its	shape	on	the	diagram	and:

select	the	Change…	command	from	the	entity's	right-click	menu,	or
select	the	Change…	command	from	the	Edit	menu,	or
click	the	 	button	on	the	toolbar.

Note	that	External	entities	cannot	be	changed.
An	appropriate	dialog	will	be	displayed	according	to	the	type	entity	you	are
changing.	For	example,	the	following	dialog	would	be	displayed	for	a	data
entity:

The	entity	name	may	be	changed	if	required.	It	can	be	up	to	20	characters	in
length,	of	mixed	case,	and	should	be	a	unique	name	within	the	model.
If	a	physical	file	name	has	not	yet	been	specified,	it	may	be	specified	here.	It
will	become	the	name	of	the	file	in	the	repository	when	the	entity	is	built.	It	can
be	up	to	8	or	10	characters	in	length,	depending	on	the	*RPGIV	setting	of	your
Visual	LANSA	installation,	should	follow	normal	file	naming	standards	and
must	be	unique	within	the	model.
Note	that	if	a	physical	file	name	of	more	than	the	maximum	number	of
characters	allowed	is	specified,	relationship	and	user	view	logical	view	names
must	be	specified	manually.		For	more	information	about	specifying	physical
file	names,	refer	to	5.5.2	About	Entity	Physical	and	Logical	File	Names.
If	a	physical	file	name	has	been	specified	and	the	entity	has	been	previously
built	it	cannot	be	changed.	This	ensures	integrity	between	entities	when	building
the	data	model.
Press	the	OK	button	or	Enter	key	to	change	the	entity.	The	entity	shape	will	be
updated	with	the	new	entity	name	if	it	was	changed.
Press	the	Cancel	button	or	Escape	key	if	you	do	not	wish	to	change	the	entity.



5.5.5	Delete	an	Entity
Deleting	an	entity	deletes	the	selected	entity	and	any	relationships	between	it
and	other	entities.
To	delete	an	entity,	select	its	shape	on	the	diagram	and:

select	the	Delete…	command	from	the	entity's	right-click	menu,	or
select	the	Delete…	command	from	the	Edit	menu,	or
click	the	 	button	on	the	toolbar.

You	will	be	asked	to	confirm	the	entity's	deletion.
If	the	selected	entity	includes	elements	as	the	result	of	a	relationship	with
another	entity,	those	elements	are	detached	from	the	selected	entity.	Similarly,	if
another	entity	contains	elements	from	the	selected	entity	as	the	result	of	a
relationship,	those	elements	are	detached	from	the	entity.
Any	elements	in	a	deleted	Data,	Conceptual	or	Variant	entity	become	available
as	Unattached	Elements	for	later	use	if	required	(refer	to	3.11	Maintaining
Unattached	Elements).
In	addition,	the	build	statuses	of	the	selected	Data,	Conceptual	or	Variant	entity
and	any	related	entities	are	reset	appropriately	if	they	have	been	previously
built.



5.6	Maintain	Entity	Elements
To	maintain	an	entity's	elements,	select	the	entity's	shape	on	the	diagram	and:

select	the	Elements…	option	from	the	entity's	right-click	menu,	or
select	the	Entity	Elements…	option	from	the	Edit	menu,	or

click	the	 	button	on	the	toolbar.
The	Maintain	Entity	Elements	dialog,	which	consists	of	a	toolbar	and	a	list	of
elements	that	belong	to	the	entity,	is	displayed:

Elements	shown	here	have	either	been	explicitly	defined	as	belonging	to	this
entity	or	are	shown	as	the	result	of	the	entity's	relationships	with	other	entities.
Note	that	an	External	Entity's	elements	cannot	be	maintained	in	any	way.
The	following	information	is	shown	for	each	element	in	the	dialog:

Its	build	status	(a	green	tick	if	the	element	has	been	built,	a	red	cross	if	the
element	is	required	to	be	built)
A	symbol	indicating	whether	the	element	is	an	identifier	or	is	shown	as	the
result	of	a	relationship	with	another	entity.	The	symbols	in	use	are:

(>)	for	includes
(<)	for	joins
a	gray	key	for	parent	identifiers
a	gold	key	for	identifiers.	



Its	Name,
A	notepad	icon,	if	the	element	has	notes
Its	data	type,	if	it	has	one
Its	field	type	and	length,	or	the	type	and	length	of	the	data	type	if	it	has	one
Its	field	name
Its	originating	(or	from)	entity,	if	it	is	shown	as	the	result	of	a	relationship
with	another	entity.

This	dialog	allows	you	to:
Create	elements	for	the	entity.
Change	elements	in	the	entity.
Delete	elements	from	the	entity.
Set	an	identifying	element,	as	described	in	5.6.4	Setting	an	Identifying
Element.
5.6.5	Re-sequencing	Elements.
Maintain	element	notes.
View	element	5.6.8	Validation	and	Build	Error	Messages.

Changes	to	the	entity's	elements	and	its	relationships	with	other	entities	will	be
reflected	in	the	model	diagram	once	this	dialog	is	closed.
You	should	also	be	familiar	with	how	to	5.6.6	Transferring	Elements	and	5.6.9
Building	an	Entity.



5.6.1	Creating	Elements
Refer	to	6.4.1	Create	an	Element.



5.6.2	Changing	Elements
Refer	to	6.4.2	Change	an	Element.



5.6.3	Deleting	Elements
Refer	to	6.4.3	Delete	an	Element.

Note:	Deleting	an	element	that	has	been	inherited	via	a	relationship	will
delete	the	entire	relationship	with	the	opposing	entity.



5.6.4	Setting	an	Identifying	Element
An	identifying	element	is	used	to	identify	a	specific	occurrence	in	the	entity.	For
example,	a	Customer	entity	may	have	an	identifying	attribute	of	Customer
Code.	The	Customer	Code	is	used	to	uniquely	identify	a	Customer.
The	identifying	element	is	set	by	selecting	the	element	to	be	used	as	the
identifying	element	and	clicking	the	 	toolbar	button.	You	can	change	the
identifying	element	by	selecting	another	element	and	pressing	the	 	button.	If
you	use	the	 	button	with	the	current	identifying	element	selected,	it	will	be
changed	back	to	a	standard	element	for	the	entity.
Note	that	more	than	one	element	may	be	necessary	to	identify	an	occurrence
within	an	entity.	In	these	cases,	Parent/Child	relationships	supply	inherited
elements	to	make	up	the	complete	set	of	identifying	elements.	Inherited
identifiers	are	denoted	by	a	gray	key	symbol	immediately	to	their	left.
It	is	very	important	to	remember	to	add	identifying	elements	if	you	have
relationships	between	entities.	If	entities	are	used	in	relationships	and	do	not
have	identifying	elements,	the	model	build	will	fail	with	validation	error
messages.
If	the	entity	is	built	into	a	database	file,	the	identifying	element	will	be	used	as
part	of	the	key	to	the	file.	The	complete	file	key	may	be	based	on	inherited
elements	as	well	as	the	identifying	element.
Almost	all	entities	will	have	an	identifying	element.	If	an	entity	has	two	or	more
parents,	it	does	not	require	an	identifying	element.
Note	that	identifying	elements	are	not	permitted	in	Conceptual	or	Variant
entities.



5.6.5	Re-sequencing	Elements
Selecting	an	element	and	using	the	 	and	 	toolbar	buttons	allows	you	to	re-
sequence	the	order	of	elements	as	they	are	listed	in	the	dialog.	The	element
sequence	affects	the	sequence	in	which	fields	are	built	in	the	file.
If	the	element	selected	and	moved	is	inherited	from	another	entity	as	the	result
of	a	relationship,	all	inherited	elements	via	that	relationship	will	be	moved.
If	the	entity	is	a	Data	or	Variant	entity,	the	sequence	of	the	elements	will
determine	the	sequence	of	the	fields	in	the	physical	file	when	the	entity	is	built.
For	a	Conceptual	entity,	the	sequence	of	the	elements	is	reflected	in	any	entity
which	inherits	the	elements	via	an	Includes	relationship.	The	sequence	of
inherited	fields	cannot	be	changed	in	the	source	entity.	It	can	only	be	changed	in
the	target	Conceptual	entity.



5.6.6	Transferring	Elements
The	Logical	Modeler	allows	you	to	attach	and	detach	elements	to	and	from
entities,	and	to	transfer	elements	from	one	entity	to	another.	Note	that	elements
cannot	be	transferred	to	or	from	an	External	Entity.
If	you	have	unattached	elements	that	you	wish	to	transfer	to	an	entity,	simply
drag-and-drop	the	required	elements	from	the	Unattached	Elements	window
(described	in	3.11	Maintaining	Unattached	Elements)	to	the	appropriate	Entity
Elements	window.	The	following	screen	capture	shows	the	Credit	Limit	element
being	dragged	from	the	Unattached	Elements	window	to	the	Customer	Entity
Elements	window:

Similarly,	elements	can	be	transferred	from	one	entity	to	another	by	dragging-
and-dropping	them	between	the	appropriate	Entity	Elements	windows.	The
following	diagram	shows	several	elements	being	dragged	from	the	Product
entity	to	the	Product	Stock	entity:



When	dragging	elements	into	an	entity,	they	are	removed	from	the	source
location	and	added	to	the	end	of	the	entity's	existing	elements.	When	detaching
elements	by	dragging	them	to	the	Unattached	Elements	window,	they	are
removed	from	the	source	location	and	added	to	the	Unattached	Elements	list	in
alphabetical	order.
Note	that	identifying	elements	and	elements	inherited	from	other	entities	cannot
be	transferred	in	this	manner.



5.6.7	Entity	Notes
The	notes	facility	for	entities	exists	as	a	documentation	tool	for	use	when
constructing	a	data	model.	Unlike	element	notes,	which	are	transformed	into
field	help	text	when	the	element	is	built,	entity	notes	are	not	carried	through
from	the	model	to	the	repository.
To	maintain	an	entity's	notes,	select	the	entity's	shape	on	the	diagram	and:

select	the	Notes…	option	from	the	entity's	right-click	menu,	or
select	the	Notes…	option	from	the	Edit	menu,	or

click	the	 	button	on	the	toolbar.
The	Maintain	Entity	Notes	dialog	is	displayed:

The	standard	LANSA	special	help	text	characters	may	be	used	in	the	notes.	For
example,	you	can	display	help	text	underlined,	highlighted,	etc.
Once	the	notes	have	been	maintained,	press	the	OK	button	to	update	them.	If
you	do	not	wish	the	notes	to	be	updated,	press	the	Cancel	button.
On	the	model	diagram,	an	asterisk	(*)	will	appear	after	the	entity	name	if	it	has
notes	attached.



5.6.8	Validation	and	Build	Error	Messages
Error	messages	are	generated	if	validation	errors	are	detected	when	a	change	is
made	to	the	entity	or	when	part	of	the	entity's	build	fails.	If	it	has	errors,	an
inverted	red	triangle	will	be	shown	above	and	to	the	right	of	the	entity's	shape,
as	shown	below:

To	display	an	entity's	error	messages,	select	the	entity's	shape	on	the	diagram
and:

select	the	Error	Messages…	option	from	the	entity's	right-click	menu,	or
select	the	Error	Messages…	option	from	the	Build	menu,	or

click	the	 	button	on	the	toolbar.
By	default,	all	error	messages	relating	to	the	build	of	the	entity	will	be
displayed,	along	with	the	date	and	time	at	which	they	were	generated	as	in	this
example:



Use	the	check	boxes	at	the	bottom	of	the	dialog	to	limit	the	messages	displayed
to	only	the	Fields,	File	or	Relationships	phases	of	the	entity	build.
Press	the	OK	button	to	close	the	dialog.



5.6.9	Building	an	Entity
To	build	an	entity,	select	the	entity's	shape	on	the	diagram	and:

select	the	Build…	command	from	the	entity's	right-click	menu,	or
select	the	Build	Entity…	command	from	the	Build	menu,	or
click	the	 	button	on	the	toolbar.

The	Submit	Entity	Build	dialog	is	displayed.

You	are	given	some	flexibility	over	what	phases	of	the	entity	build	are
performed.	Depending	on	the	current	build	status	of	the	entity,	the	check	boxes
for	the	Fields,	File	and	Relationships	build	may	or	may	not	be	checked	or
protected,	allowing	you	to	select	or	de-select	build	phases	or	parts	therein.
Building	fields:

Those	fields	which	have	never	been	built	are	automatically	selected	and
cannot	be	de-selected	–	they	are	required	to	be	built	when	you	build	the
entity's	fields.	If	the	entity	has	not	previously	been	built,	all	fields	are
selected	and	cannot	be	de-selected	–	they	must	all	be	built	the	first	time	the
entity	is	built.	These	fields	are	indicated	by	a	gray	checkbox.
If	a	field	has	been	changed	since	the	last	build,	it	is	automatically	selected
but	can	be	de-selected	if	you	do	not	wish	to	build	it	at	this	time.	These	fields
are	indicated	by	a	ticked	black	checkbox.
If	a	field	has	not	been	changed	since	the	last	build,	it	is	not	selected	but	can



be	selected	for	rebuild	if	you	wish.
Building	the	file:

If	the	file	has	never	been	built,	or	has	changed	since	it	was	last	built,	the	file
is	automatically	selected.	It	can	be	de-selected	if	you	do	not	wish	to	build	it
at	this	time.

Building	relationships:
If	the	file	has	never	been	built,	or	if	relationships	affecting	the	entity	have
been	added	or	changed,	all	relationships	are	automatically	selected.	They	can
be	de-selected	if	you	do	not	wish	to	build	relationships	at	this	time.

If	you	do	not	wish	to	perform	any	build	activity	for	the	entity,	press	the	Cancel
button.
Press	the	OK	button	to	submit	the	selected	build	activities	to	the	Builder	Queue.
The	Submit	Entity	Build	dialog	is	displayed:

Select	Yes	to	display	the	Builder	Queue,	from	where	builds	can	be	executed	or
No	to	return	to	the	model	diagram.
For	more	information	regarding	building	entities,	refer	to	3.13	Building	the
Model.



6.	Elements
Elements	are	used	to	define	the	characteristics	or	attributes	of	an	entity.
For	example,	a	Customer	entity	might	have	elements	of	Customer	Name,
Customer	Code,	Credit	Limit	etc.
Elements	can	be	created:

within	an	entity,	or
as	unattached	elements	that	can	be	attached	to	an	entity	at	a	later	stage.

Elements	in	the	Logical	Modeler	follow	the	rules	of	Chen	E-R	Data	Models.
For	instance,	the	following	rules	apply:

An	entity	may	have	only	one	identifying	element.
An	entity	can	inherit	elements	as	the	result	of	relationships	with	other
entities.
An	element	may	be	defined	only	once	to	a	model.
If	an	element	exists	in	more	than	one	entity,	it	must	do	so	by	means	of	a
relationship.

This	information	is	described	in:
6.1	Elements	and	Entities
6.2	Elements	and	Relationships
6.3	Elements	and	LANSA
6.4	Working	with	Elements.



6.1	Elements	and	Entities
Data,	Conceptual	and	Variant	entities	may	have	elements.
Conceptual	entities	do	not	get	transformed	into	database	files	in	the	repository,
and	so	cannot	have	identifying	elements.
Variant	entities	can	only	inherit	their	identifying	element(s)	from	another	entity
as	the	result	of	a	Variation	relationship.
External	entities	are	defined	in	the	repository	and	cannot	have	their	elements
maintained	in	any	way.
If	an	element	is	not	part	of	an	entity,	it	is	an	unattached	element.
Abstractions	are	not	entities	and	may	not	contain	elements.



6.2	Elements	and	Relationships
Relationships	have	a	direct	impact	on	the	elements	within	an	entity.	The	Logical
Modeler	follows	the	rules	of	Chen	E-R	Data	Models.	Of	particular	importance
are	the	following	rules:

An	entity	will	obtain	elements	as	the	result	of	relationships	with	other
entities.
An	element	may	be	defined	only	once	to	a	model.
If	an	element	exists	in	more	than	one	entity,	it	must	do	so	by	means	of	a
relationship.

For	example,	the	Customer	Code	is	an	element	of	the	Customer	entity.	The
Order	entity	might	also	have	a	Customer	Code	element.	Since	Customer	Code
can	be	defined	only	once,	the	Customer	Code	in	the	Order	entity	must	be	the
result	of	a	join	relationship	with	the	Customer	entity.
In	the	LANSA	database	files	that	are	created,	the	names	of	the	Customer	Code
fields	will	be	based	on	the	definition	of	the	relationship	between	the	two
entities.	For	details	about	the	field	naming	conventions	for	inherited	elements,
refer	to	7.5	Relationships	and	Elements.
If	you	are	not	familiar	with	the	rules	of	data	modeling	and	how	elements	and
relationships	work	together,	you	should	attend	the	LANSA	Modeling	and
Design	Workshop.	This	guide	does	not	teach	the	principles	of	data	modeling.



6.3	Elements	and	LANSA
Elements	are	converted	to	fields	in	the	LANSA	Repository.
When	defining	an	element,	its	physical	details	are	either	derived	from	its	data
type,	or	from	type	and	length	details	provided	by	the	user.
In	the	case	of	an	element	belonging	to	an	External	Entity,	its	physical	details	are
derived	from	its	existing	repository	definition	and	cannot	be	changed.
If	a	data	type	has	been	specified	for	the	element,	it	will	have	a	reference	field
based	on	its	data	type.	For	example,	the	Customer	Name	field	will	have	a
reference	field	of	STD_NAME	if	based	on	the	Name	data	type.
For	more	information	about	data	types,	refer	to	4.	Data	Types.



6.4	Working	with	Elements
Elements	can	be	created	as	unattached	elements	or	as	part	of	a	specific	entity.
Unattached	elements	can	be	attached	to	entities	at	a	later	stage	and	vice	versa.
Refer	to	5.6.6	Transferring	Elements	for	information	about	attaching	and
detaching	elements.
The	Element	dialogs	allow	you	to:

6.4.1	Create	an	Element
6.4.2	Change	an	Element
6.4.3	Delete	an	Element
6.4.4	Maintain	Element	Notes.



6.4.1	Create	an	Element
To	create	an	element,	click	the	 	button	on	the	toolbar	in	the	Unattached
Elements	or	Entity	Elements	window.	The	Create	Element	dialog	is	displayed:

An	element	name	is	mandatory.	It	can	be	up	to	20	characters	in	length,	of	mixed
case	and	must	be	unique	within	the	model.
Either	a	data	type	or	a	field	type	and	length	is	required.	To	specify	a	data	type,
select	the	Data	type	option	and	select	an	appropriate	type	from	the	drop-down
list.	For	more	information	about	data	types,	refer	to	4.	Data	Types.
To	specify	a	field	type	and	length,	check	the	corresponding	radio	button,	select	a
type	from	the	drop-down	list	and	enter	a	length	and	number	of	decimal	places	if
appropriate.
A	field	name	is	optional.	It	will	be	the	name	of	the	field	in	the	LANSA
Repository	when	the	element	is	built.	It	can	be	up	to	9	characters	in	length,
should	follow	normal	field	naming	standards	and	must	be	unique	within	the
model.
Note	that,	at	this	point,	the	entry	of	a	field	name	is	optional	–	it	is	not	required
for	the	purposes	of	building	the	data	model.	However,	it	must	be	specified	when
building	the	entity	to	which	it	is	attached.	You	can	specify	the	field	name	using
the	6.4.2	Change	an	Element	dialog.	If	a	field	name	is	not	specified	when
building	the	element,	a	build	error	for	the	element	will	be	generated.
Press	the	Cancel	button	if	you	do	not	wish	to	create	the	element.
Press	the	OK	button	to	create	the	element.	Once	it	has	been	validated,	the	new
element	will	be	added	to	the	Unattached	Elements	or	Entity	Elements	list	as
applicable.	The	Create	Element	dialog	will	be	reset	to	allow	you	to	enter	more
element	details.	Press	Cancel	when	you	have	finished	creating	elements.



6.4.2	Change	an	Element
To	change	an	element's	definition,	open	the	Unattached	Elements	list	or	Entity
Elements	list	and:

double-click	the	entry	in	the	list	that	you	wish	to	change,	or

select	the	element	in	the	list	and	click	the	 	button	on	the	toolbar.
If	the	element	to	be	changed	is	not	inherited	by	the	entity	by	means	of	a
relationship,	the	following	dialog	is	displayed:

Any	part	of	the	element's	definition	may	be	changed.
The	element	name	is	mandatory.	It	can	be	up	to	20	characters	in	length	of	mixed
case	and	must	be	unique	within	the	model.
A	data	type	or	a	physical	field	type	and	length	is	required.
To	specify	a	Data	type,	select	the	Data	type	option	and	select	an	appropriate
type	from	the	drop-down	list.		Note	that	the	data	type's	type	and	length	is
displayed	in	the	Type	and	Length	controls	below	the	data	type	dropdown	list.	
For	more	information	about	data	types,	refer	to	4.	Data	Types.
To	specify	a	Field	Type	and	Length,	select	the	Field	radio	button,	select	a	type
from	the	drop-down	list	and	enter	a	length	and	number	of	decimal	places	as
appropriate.
A	field	name	of	up	to	nine	characters	is	optional.	The	field	name	will	be	the
name	of	the	field	in	the	LANSA	Repository	when	the	element	is	built.	It	can	be
up	to	nine	characters	in	length,	should	follow	normal	field	naming	standards	and
must	be	unique	within	the	model.
Note	that,	at	this	point,	the	entry	of	a	field	name	is	optional	–	it	is	not	required
for	the	purposes	of	building	the	data	model.	However,	it	must	be	specified	when
building	the	entity	to	which	the	element	is	attached.	If	a	field	name	is	not



specified	when	building	the	element,	a	build	error	for	the	element	will	be
generated.
Press	the	Cancel	button	if	you	do	not	wish	to	change	the	element.
Press	the	OK	button	to	change	the	element.	Once	it	has	been	validated,	the
Unattached	Elements	or	Entity	Elements	list	will	be	updated	with	the	element's
new	details.



Inherited	Elements
If	the	element	to	be	changed	has	been	inherited	by	the	entity	by	means	of	a
relationship,	the	following	dialog	will	be	displayed:

Only	the	field	name	of	the	inherited	element	can	be	changed.	The	field	name
will	be	the	name	of	the	field	in	the	LANSA	Repository	when	the	element	is
built.	It	can	be	up	to	nine	characters	in	length,	should	follow	normal	field
naming	standards	and	must	be	unique	within	the	model.
By	default,	the	field	name	of	the	element	will	be	the	same	as	that	of	the	element
in	the	entity	from	which	it	has	been	inherited.	Note	that,	if	the	same	element	has
been	inherited	more	than	once	by	means	of	multiple	relationships,	the	inherited
elements	must	have	unique	names	within	the	inheriting	entity.	Refer	to	7.7.4
Creating	Multiple	Relationships.
Press	the	Cancel	button	if	you	do	not	wish	to	change	the	element.
Press	the	Reset	button	to	reset	the	inherited	element's	field	name	back	to	its
original	field	name.
Press	the	OK	button	to	change	the	element.	Once	it	has	been	validated,	the
Entity	Elements	list	will	be	updated	with	the	element's	new	details.



6.4.3	Delete	an	Element
To	delete	an	element	from	the	Unattached	Elements	or	Entity	Elements	list,
select	it	and	click	the	 	button	on	the	toolbar.
Note	that	elements	cannot	be	deleted	form	an	External	Entity.
You	will	be	asked	to	confirm	the	element's	deletion.	Select	Yes	to	delete	the
element,	or	the	No	to	Cancel	the	deletion.
Note	that	he	deletion	behavior	depends	on	the	element	list	from	which	you	are
deleting:

If	you	are	deleting	the	element	from	the	Entity	Elements	list,	it	is	detached
and	becomes	available	in	the	Unattached	Elements	window	for	later	use	if
required.
If	deleted	from	the	Unattached	Elements	window,	the	element	is	completely
deleted	from	the	model.
If	an	element	that	has	been	inherited	via	a	relationship	is	deleted	from	the
Entity	Elements	list,	the	entire	corresponding	relationship	with	the	opposing
entity	is	also	deleted.

Note	that	deleting	an	element	will	not	delete	the	corresponding	field	from	the
LANSA	Repository.



6.4.4	Maintain	Element	Notes
Element	notes	are	transformed	into	field	help	text	when	the	element	is	built	in
the	LANSA	Repository.
Note	that	notes	cannot	be	maintained	for	elements	belonging	to	an	External
Entity.
To	maintain	an	element's	notes,	select	the	element	in	the	Unattached	Elements

or	Entity	Elements	list	and	click	the	 	button	on	the	toolbar.	The	Maintain
Element	Notes	dialog	is	displayed:

The	standard	LANSA	special	help	text	characters	may	be	used	in	the	notes.	For
example,	you	can	display	help	text	underlined,	highlighted,	etc.
If	the	notes	being	maintained	are	that	of	an	inherited	element,	the	original	notes
may	be	overwritten	for	the	inherited	element,	thus	providing	contextualized
notes	according	to	the	use	of	the	inherited	element.	In	addition,	a	Reset	button	is
available	to	set	the	element's	notes	back	to	that	of	the	original	notes.
Once	the	notes	have	been	maintained,	press	the	OK	button	to	update	them.	If
you	do	not	wish	the	notes	to	be	updated,	press	the	Cancel	button.
A	notepad	icon	appears	to	the	right	of	the	element	name	in	the	Unattached
Elements	and	Entity	Elements	lists	if	the	element	has	notes.
Note	that	contextualized	notes	for	an	element	inherited	by	means	of	a
relationship	may	only	be	maintained	if	a	unique	field	name	for	the	inherited
element	has	been	specified.		If	a	unique	field	name	has	not	been	specified,	the



original	element	notes	will	appear	in	the	dialog	to	be	maintained.



7.	Relationships
If	you	have	data	modeling	experience,	the	concept	of	relationships	will	be	very
familiar	to	you.	If	you	are	unfamiliar	with	data	modeling,	you	should	attend	the
LANSA	Modeling	and	Design	Workshop	as	this	guide	is	not	designed	to	teach
you	the	principles	of	data	modeling.
Once	you	have	created	your	entities,	you	can	define	relationships	between	them.
The	Logical	Modeler	supports	extended	Chen	E-R	relationships.	These	include
the	basic	Parent/Child	and	Join	relationships	along	with	extensions	to	Chen	E-R
relationships	such	as	Optional	Join,	Variation	and	Include.
Relationships	are	very	important.	At	a	data	level,	a	Parent/Child	relationship
will	cause	the	keys	of	a	parent	entity	to	cascade	to	the	child	entity.
Relationships	influence	the	file	keys,	logical	files,	referential	integrity	validation
rules	and	access	routes	which	are	generated	when	the	model	is	built	in	the
LANSA	Repository.
This	information	is	described	in:

7.1	Relationship	Types
7.2	Relationship	Rules
7.3	Source	and	Target	Entities
7.4	Relationships	and	Entities
7.5	Relationships	and	Elements
7.6	Relationships	and	LANSA
7.7	Work	with	Relationships



7.1	Relationship	Types
Following	is	a	brief	summary	of	the	extended	Chen	E-R	Relationships.

Parent/Child
Join
Include
Variation

Note	that	the	Abstraction	relationship	is	not	implemented	in	the	Logical
Modeler.	However,	Abstractions	can	be	created	to	group	objects	together.	Refer
to	8.	Abstractions.

Parent/Child
One	entity	is	said	to	be	the	Parent	of	another	if	the	data	of	the	Child	entity
belongs	to	(is	contained	within)	the	Parent.	Parent/Child	relationships	can	be
identified	by	asking:

Is	the	entity's	identifier	unique?
Can	the	entity	exist	on	its	own?

If	the	related	entity's	identifying	element	is	unique,	that	is,	you	can	identify	an
occurrence	in	the	entity	solely	by	its	identifying	element,	then	the	entity
probably	has	no	parents.	If	you	require	other	information	to	identify	an
occurrence,	that	is,	another	entity	must	exist	before	it	can	exist,	then	the	entity
probably	has	a	parent.
For	example,	an	Ordered	Product	cannot	exist	on	its	own.	The	Ordered	Product
must	have	a	parent,	Order,	before	it	can	exist.
The	identifying	elements	of	the	Parent	entity	are	inherited	by	the	Child	entity.
These	elements	are	often	called	Parent	Keys	or	Foreign	Keys.
Also	see	Parent/Child	Rules.

Join
One	entity	is	said	to	be	joined	(or	to	refer)	to	another	if	a	data	(that	is,	non-key)
element	or	group	of	elements	from	the	first	entity	can	be	used	to	access	an
occurrence	of	the	second.
The	Join	relationship	differs	from	the	Parent/Child	relationship	in	that	the
element(s)	used	to	access	the	referenced	entity	are	not	necessary	to	identify	the
primary	(or	referencing)	entity.	However,	they	are	still	inherited	to	become
Foreign	Keys.



For	example,	an	Order	is	placed	by	a	Customer.	The	Order	is	identified	by	its
Order	Number.	It	will	look	up	a	Customer	Code	in	the	Customer	entity.
The	Join	relationship	is	further	classified	as	a	Mandatory	Join	or	an	Optional
Join.	The	Mandatory	Join	is	described	as	a	must	refer	to	relationship.	The
Optional	Join	is	described	as	a	may	refer	to	relationship.
Also	see	Join	Rules.

Include
The	Include	relationship	allows	elements	from	one	entity	to	exist	in	many
different	entities.	However,	unlike	a	Parent/Child	and	Join	relationships,	no
foreign	keys	result.	The	elements	become	part	of	the	entity.
For	example,	a	conceptual	entity	called	Address	is	created	with	attributes	of
Street,	State,	City,	Country	and	Post	Code.	This	entity	has	no	identifying
element.	The	Address	entity	could	be	included	into	a	Customer	entity	or
Supplier	entity.	The	Address	elements	will	become	part	of	the	Customer	file	and
Supplier	file	instead	of	being	in	a	separate	Address	file.
Also	see	Include	Rules.

Variation
This	type	of	relationship	is	used	in	situations	where	elements	within	an	entity
are	dependent	on	the	value	of	another	element.	For	example,	a	Product	can
either	be	manufactured	or	sourced	from	a	third	party	supplier.	If	the	product	is
manufactured,	a	drawing	number	may	be	required.	If	the	product	is	sourced
from	a	supplier,	a	supplier	code	is	required.	Rather	than	create	a	single	Product
entity	with	all	elements	for	manufactured	and	supplied	products,	three	entities
are	created.	Product	will	have	variations	called	Manufactured	Product	and
Supplied	Product.	Storing	all	the	elements	in	a	single	Product	entity	would
result	in	a	sparsely	populated	database,	i.e.	many	fields	will	be	unused.
Once	a	Product	has	been	created	and	designated	as	Manufactured,	the	same
product	cannot	be	designated	as	Supplied.
Note	that	the	database,	once	built,	will	have	no	awareness	of	how	variations	of
the	original	entity	are	accessed.	An	element	should	be	created	in	the	original
entity	to	hold	a	value	which	can	be	used	in	determining	which	database	file
variant	information	should	be	retrieved	from	in	your	application.
Also	see	Variation	Rules.



7.2	Relationship	Rules
Allowable	relationships	are	defined	based	on	entity	type	as	follows:

Relationship	Type Source	Entity	Type Target	Entity	Type

Parent/Child Data,	Variant	or	External Data

Join Data	or	Variant Data,	Variant	or	External

Variation Data,	Variant	or	External Variant

Include Data	or	Variant Conceptual

	

For	more	information	about	how	to	define	Source	and	Target	entities,	refer	to
7.3	Source	and	Target	Entities	and	7.7.1	Create	a	Relationship.
Following	is	a	summary	of	the	Logical	Modeler	Relationships	Rules	for:

Parent/Child	Rules
Join	Rules
Include	Rules
Variation	Rules

Note	that	Abstractions	are	not	entities.	They	are	objects	used	to	group	entities.
Abstractions	cannot	be	used	in	relationships.

Parent/Child	Rules
Parent	child	relationships	may	be	created	between	data,	variant	and	external
entities.
The	identifying	elements	of	the	Parent	entity	are	inherited	by	the	Child	entity.
These	elements	are	often	called	Parent	Keys	or	Foreign	Keys.
Any	of	the	inherited	identifying	elements	that	would	be	duplicated	as	a	result	of
multiple	Parent/Child	relationships	will	be	shared	automatically	by	the	entity.
You	are	not	allowed	to	create	a	loop	structure	using	parent/child	relationships.
For	example,	if	entity	A	is	the	parent	of	entity	B,	then	entity	B	cannot	be	the
parent	of	entity	A.	Or,	if	entity	A	is	the	parent	of	entity	B	and	entity	B	is	the
parent	of	entity	C,	then	entity	C	cannot	be	the	parent	of	entity	A	or	B.
In	addition,	an	External	Entity	can	only	be	the	Parent	entity	in	a	Parent/Child



relationship.

Join	Rules
Two	entities	are	allowed	to	have	multiple	join	relationships.	It	is	recommended
that	you	use	the	descriptive	prefix	to	identify	the	relationships.
Any	of	the	inherited	identifying	elements	that	would	be	duplicated	as	a	result	of
multiple	relationships	can	be	shared	by	using	the	Share	inherited	identifiers
option.
A	Variation	relationship	must	exist	for	a	Variant	entity	before	you	can	create
Join	relationships	using	that	Variant	entity.	Once	the	Variation	relationship	is
created,	the	identifying	elements	are	known	in	the	Variant	entity.
Note	that	an	External	Entity	can	only	be	the	Target	entity	in	a	Join	relationship.

Include	Rules
Two	entities	are	allowed	to	have	multiple	include	relationships.	It	is
recommended	that	you	use	the	descriptive	prefix	to	identify	the	relationships.
The	target	entity	for	an	include	relationship	must	be	a	conceptual	entity.
You	cannot	create	include	relationships	between	conceptual	entities.
An	Includes	relationship	cannot	be	associated	with	an	External	Entity.

Variation	Rules
The	source	entity	for	a	variation	relationship	can	be	a	data,	variant	or	external
entity.
The	target	entity	for	a	variation	relationship	must	be	a	variant	entity.
You	may	create	only	one	variation	relationship	to	a	variation	entity.
A	Variation	relationship	must	exist	for	a	Variant	entity	before	you	can	create
Join	relationships	using	that	Variant	entity.	Once	the	Variation	relationship	is
created,	the	identifying	elements	are	known	in	the	Variant	entity.



7.3	Source	and	Target	Entities
Relationships	are	established	between	two	entities.	The	types	of	entities
determine	the	type	of	relationships	supported.	In	addition,	the	entities	must	be
identified	as	source	and	target:

The	source	entity	is	the	entity	which	is	initiating	the	relationship.
The	target	entity	is	the	object	which	receives	the	relationship.

The	concept	of	source	and	target	are	determined	when	the	relate	connector	is
linked	to	the	entity.	Refer	to	7.7.1	Create	a	Relationship.
For	example,	Product	has	a	Variation	relationship	to	Manufactured	Product.
Product	is	a	Data	entity	and	must	be	the	source.	Manufactured	Product	must	be
a	Variant	entity	and	must	be	the	target.	The	source	end	of	the	Relate	connector
must	attached	to	the	Product	entity	and	the	target	end	of	the	Relate	connector
must	be	attached	to	the	Manufactured	Product.



7.4	Relationships	and	Entities
Relationship	rules	are	defined	based	on	entity	type.	Remember,	entities	are
defined	before	relationships.	The	Logical	Modeler	only	allows	meaningful
relationships	to	be	defined	for	a	given	entity	type	as	the	logical	model	can	be
built	into	a	physical	database.	For	example,	a	Parent/Child	relationship	can	be
defined	only	between	Data,	Variant	and	External	entities.
These	are	the	default	relationship	rules:

Relationship	Type Source	Entity	Type Target	Entity	Type

Parent/Child Data,	Variant	or	External Data

Join Data	or	Variant Data,	Variant	or	External

Variation Data Variant

Include Data Conceptual

	

For	more	information	about	how	to	define	Source	and	Target	entities,	refer	to
7.3	Source	and	Target	Entities	and	7.7.1	Create	a	Relationship.
Also	see	7.2	Relationship	Rules.
Note:	Abstractions	are	not	entities.	They	are	objects	used	to	group	entities.
Abstraction	cannot	be	used	in	relationships.



7.5	Relationships	and	Elements
In	order	for	Parent/Child	or	Join	relationships	to	be	properly	built,	both	source
and	target	entities	should	have	an	identifying	element.	Identifying	elements	are
not	required	when	the	relationship	is	first	defined.	However,	an	error	will	result
when	the	entity	is	built	if	no	identifying	element	has	been	defined.
For	variation	relationships,	the	source	entity	must	be	a	data	or	external	entity
and	must	have	an	identifying	element.	The	target	entity	must	be	a	variant	entity
and	must	not	have	an	identifying	element.
For	include	relationships,	the	source	entity	must	be	a	data	entity.	The	target
entity	must	be	a	conceptual	entity	and	no	identifying	element	is	allowed	for	the
conceptual	entity.
For	a	variant	entity,	a	Variation	relationship	must	exist	before	you	can	create
Join	relationships	using	that	variant	entity	as	the	target	entity.	Once	the
Variation	relationship	is	created,	the	identifying	elements	are	known	in	the
variant	entity.
The	elements	of	an	entity	are	directly	impacted	by	the	relationships	defined.	For
more	details,	refer	to	6.2	Elements	and	Relationships.



7.6	Relationships	and	LANSA
Relationships	play	an	important	role	in	defining	the	database	built	in	the
LANSA	Repository.	Relationships	are	responsible	for	creating	the	following
physical	aspect	of	a	database	file:

access	routes
logical	views
referential	integrity	validation	rules.

LANSA	access	routes	are	used	by	templates	and	provide	important	navigation
information	about	the	database.	The	access	routes	created	in	LANSA	are	the
direct	result	of	relationships.
Logical	views	are	based	on	the	second	&	subsequent	Parent/Child	relationships
and	the	Join	relationships	between	entities.	When	an	Order	refers	to	a	Customer,
the	Order	entity	will	have	an	additional	logical	view	based	on	the	Customer
Code	to	provide	access	from	Customer	to	Order.
File	validation	rules	for	referential	integrity	are	the	direct	result	of	relationships.
A	validation	check	that	prevents	an	Order	from	being	deleted	when	Ordered
Products	still	exist	is	the	result	of	the	Parent/Child	relationship	between	Order
and	Ordered	Product.



7.7	Work	with	Relationships
You	will	work	with	relationships	using	2.4.4	The	Document	Stencil	and	by	2.4.6
Performing	Actions	on	Diagram	Objects.
The	following	dialogs	allow	you	to:

7.7.1	Create	a	Relationship
7.7.2	Change	a	Relationship
7.7.3	Delete	a	Relationship

If	you	are	creating	more	than	one	relationship	between	two	entities,	you	should
be	familiar	with	7.7.4	Creating	Multiple	Relationships.



7.7.1	Create	a	Relationship
To	create	a	relationship	between	any	two	entities,	drag-and-drop	the	Relate
connector	shape	from	the	Document	Stencil	onto	a	blank	portion	of	the	model
diagram.
Each	end	of	the	Relate	connector	must	be	attached	to	an	entity.		To	attach	the
connector	to	an	entity,	drag	one	end	of	the	connector	to	the	center	of	the	entity
that	is	the	source	entity	in	the	relationship.	Drop	the	end	of	the	connector	when
the	border	of	the	source	entity	turns	red.	If	the	border	of	the	entity	is	not	red,	it
will	not	be	attached	correctly	to	the	connector.	Once	you	have	connected	the
source	entity,	drag-and-drop	the	other	end	of	the	connector	to	the	target	entity	in
the	same	manner.
The	source	end	of	the	connector	is	the	left-hand	end	of	the	connector.	The	target
end	of	the	connector	is	the	right-hand	end	of	the	connector.
If	you	attempt	to	create	an	invalid	relationship,	an	error	message	will	be
displayed	and	the	connector	will	be	deleted.	For	example,	if	you	attempt	to	use
an	Abstraction	in	a	relationship,	an	error	will	occur.
If	both	ends	of	the	connector	have	been	correctly	attached	to	the	entities,	the
Create	Relationship	dialog	is	displayed:



Alternatively,	clicking	the	 	button	on	the	main	toolbar	or	selecting	the
Specify	Relationship…	option	from	the	Edit	pull-down	menu	will	enable	you	to
create	a	relationship	using	the	following	dialog,	which	is	similar	to	that	above:



This	dialog	differs	from	the	one	displayed	when	using	the	drag-and-drop
method	in	that	it	lists	all	available	entities	in	two	drop-down	lists	either	side	of
the	relationship	type	drop-down	list.		Select	the	two	entities	to	be	related	from
the	drop-down	lists.
For	either	method,	the	type	of	relationship	being	defined	between	the	two
entities	must	be	selected.	The	Type	drop-down	list	will	only	contain	the
relationship	types	that	are	valid	between	the	two	entities.	The	following	table
shows	which	relationships	are	valid	between	which	entity	types:

Source	Entity
Type

Target	Entity	Type Valid
Relationships

Data Data Parent/Child
Mandatory	Join
Optional	Join

Data Conceptual Includes

Data Variant	(with	no	existing	Variation Variation



relationship)

Data Variant	(with	existing	Variation
relationship)

Mandatory	Join
Optional	Join

Data External Mandatory	Join
Optional	Join

Variant Data Parent/Child
Mandatory	Join
Optional	Join

Variant Conceptual Includes

Variant Variant Variation

Variant External Mandatory	Join
Optional	Join

External Data Parent/Child

External Variant Variation

	

The	Share	inherited	identifiers	is	used	to	prevent	duplication	of	the	inherited
identifying	elements.	When	a	relationship	is	being	defined	and	more	than	one
relationship	already	exists,	then	the	identifying	elements	of	the	source	entity	can
be	shared	with	the	target	entity.	Refer	to	1.1.10	Understanding	Shared	Keys.
Source	and	Target	Descriptors	are	optionally	used	to	describe	the	relationship
between	the	two	entities	from	both	directions.	They	are	defaulted	according	to
the	type	of	relationship	being	created,	but	can	be	blanked	out	or	overridden	with
more	meaningful	descriptions.	They	serve	two	functions:

On	the	model	diagram,	the	resultant	relationship	connector,	once	created,
will	contain	the	Source-to-Target	description	entered	here,	followed	by	the
Computer	Prefix	in	brackets	if	it	has	been	specified.
Descriptions	of	logical	views,	access	routes	and	referential	integrity
validation	rules	created	in	the	repository	will	use	the	text	specified	here.

A	Descriptive	prefix	is	optional.	If	specified,	it	is	appended	to	the	start	of	the
element	names	which	are	inherited	as	a	result	of	the	relationship.	Using	a



Descriptive	prefix	helps	make	the	element	and	resultant	field	visually	unique,	as
its	description	is	a	combination	of	the	computer	prefix	and	the	name	of	the
inherited	element(s).
Consider	this	example	of	Descriptive	prefix	use:

The	Customer	entity	has	two	include	relationships	with	the	Address	entity:
one	for	delivery	address,	and	one	for	billing	address.
The	descriptive	prefix	for	the	first	relationship	is	specified	as	Delivery.	If	the
Address	entity	has	an	element	called	Zip	Code,	the	field	generated	in	the
repository	will	have	a	description	of	Delivery	Zip	Code.
The	descriptive	prefix	for	the	second	relationship	is	specified	as	Billing.	If
the	Address	entity	has	an	element	called	Zip	Code,	the	field	generated	in	the
repository	will	have	a	description	of	Billing	Zip	Code.

A	Logical	View	Name	may	be	specified	if	the	relationship	being	created	is	a
join	relationship.		Note	that,	if	a	physical	file	name	of	greater	than	the	maximum
number	of	characters	allowed	(10	if	the	*RPGIV	setting	is	enabled	in	your
system,	8	if	it	is	not)	has	been	specified	for	the	source	entity,	a	logical	view
name	must	be	specified	before	the	source	entity	will	successfully	build.		If,
however,	a	physical	file	name	has	been	specified	that	is	less	than	the	maximum
allowed	by	two	or	more	characters	has	been	specified,	the	logical	view	name	is
optional.		In	this	instance,	the	modeler	will	automatically	create	a	logical	view
name	when	the	entity	is	built.		This	view	name	will	be	based	on	the	source
entity's	physical	file	and	a	sequential	two	digit	number.
Note	that	if	an	entity	inherits	the	same	element	multiple	times	(as	with	the
example	above),	the	field	names	for	the	inherited	elements	must	be	unique
within	the	inheriting	entity.	Refer	to	6.4.2	Change	an	Element.
Press	the	OK	button	to	create	the	relationship.	Once	validation	has	been	passed,
the	elements	inherited	by	the	source	or	target	entity	will	be	shown	in	the
Elements	view	of	the	model	diagram.		In	addition,	the	build	status	of	the	entities
affected	by	the	relationship	will	be	updated.
Press	the	Cancel	button	if	you	do	not	wish	to	create	the	relationship.	The	Relate
connector	shape	you	placed	on	the	diagram	will	be	deleted.
If	you	are	creating	more	than	one	relationship	between	two	entities,	you	should
be	familiar	with	7.7.4	Creating	Multiple	Relationships.
Reminder:	You	are	not	allowed	to	create	a	loop	structure	using	parent/child
relationships.	For	example,	if	entity	A	is	the	parent	of	entity	B,	then	entity	B
cannot	be	the	parent	of	entity	A.	Or,	if	entity	A	is	the	parent	of	entity	B	and



entity	B	is	the	parent	of	entity	C,	then	entity	C	cannot	be	the	parent	of	entity	A
or	B.



7.7.2	Change	a	Relationship
To	change	a	relationship's	details,	select	its	shape	on	the	diagram	and:

select	the	Change…	command	from	its	right-click	menu,	or
select	the	Change…	command	from	the	Edit	menu,	or
click	the	 	button	on	the	toolbar.

The	Change	Relationship	dialog	is	displayed:

The	type	of	the	relationship	may	not	be	changed.	If	the	type	of	relationship	is
incorrect	between	the	two	entities,	it	should	be	deleted	and	an	appropriate
relationship	created.
If	applicable,	the	sharing	of	identifying	elements	with	the	target	entity	can	be
enabled	or	disabled	by	checking	or	unchecking	Share	inherited	identifiers.	Refer
to	1.1.10	Understanding	Shared	Keys.
Source	and	Target	Descriptors	are	optionally	used	to	describe	the	relationship
between	the	two	entities	from	both	directions.	They	are	defaulted	according	to
the	type	of	relationship	being	created,	but	can	be	blanked	out	or	overridden	with



more	meaningful	descriptions.	They	serve	two	functions:
On	the	model	diagram,	the	relationship	connector,	once	created,	will	contain
the	Source	to	Target	description	entered	here,	followed	by	the	Computer
Prefix	in	brackets	if	one	has	been	specified.
Descriptions	of	logical	views,	access	routes	and	referential	integrity
validation	rules	created	in	the	repository	will	use	the	text	specified	here.

A	computer	prefix	is	optional	at	all	times.	If	specified,	it	is	appended	to	the	start
of	the	element	names	which	are	inherited	as	a	result	of	the	relationship.	Using	a
Descriptive	prefix	helps	in	making	the	element	and	resultant	field	visually
unique,	as	its	description	is	a	combination	of	the	computer	prefix	and	the	name
of	the	inherited	element(s).
Consider	this	example	of	descriptive	prefix	use:

The	Customer	entity	has	two	include	relationships	with	the	Address	entity:
one	for	delivery	address,	and	one	for	billing	address.
The	descriptive	prefix	for	the	first	relationship	is	specified	as	Delivery.	If	the
Address	entity	has	an	element	called	Zip	Code,	the	field	generated	in	the
repository	will	have	a	description	of	Delivery	Zip	Code.
The	descriptive	prefix	for	the	second	relationship	is	specified	as	Billing.	If
the	Address	entity	has	an	element	called	Zip	Code,	the	field	generated	in	the
repository	will	have	a	description	of	Billing	Zip	Code.

A	Logical	View	Name	may	be	specified	if	the	relationship	being	changed	is	a
join	relationship,	or	if	the	relationship	is	a	second	or	subsequent	parent/child
relationship.		Note	that	only	parent/child	relationships	subsequent	to	the	first
will	generate	logical	views.		If	the	sequence	of	multiple	parent/child
relationships	is	changed	within	the	affected	entity,	logical	view	names	that	have
been	previously	specified	may	be	reset,	because	the	first	parent/child
relationship	will	not	generate	a	logical	view.		If	this	reset	occurs,	the	logical
view	name(s)	of	parent/child	relationships	subsequent	to	the	first	must	be	re-
specified.
Note	that,	if	a	physical	file	name	of	greater	than	the	maximum	number	of
characters	allowed	(10	if	the	*RPGIV	setting	is	enabled	in	your	system,	8	if	it	is
not)	has	been	specified	for	the	source	entity,	a	logical	view	name	must	be
specified	before	the	source	entity	will	successfully	build.		If,	however,	a
physical	file	name	has	been	specified	that	is	less	than	the	maximum	allowed	by
two	or	more	characters	has	been	specified,	the	logical	view	name	is	optional.		In
this	instance,	the	modeler	will	automatically	create	a	logical	view	name	when
the	entity	is	built.		This	view	name	will	be	based	on	the	source	entity's	physical



file	and	a	sequential	two	digit	number.
Note	also	that	if	an	entity	inherits	the	same	element	multiple	times	(as	with	the
example	above),	the	field	names	for	the	inherited	elements	must	be	unique
within	the	inheriting	entity.	Refer	to	6.4.2	Change	an	Element.
Press	the	OK	button	to	change	the	relationship.	Once	validation	has	been
completed,	the	build	status	of	the	entities	affected	by	the	relationship	will	be
updated	and	the	relationship	shape	will	be	updated	appropriately	on	the
diagram.
Press	the	Cancel	button	if	you	do	not	wish	to	change	the	relationship.



7.7.3	Delete	a	Relationship
To	delete	a	relationship,	select	its	shape	on	the	diagram	and:

select	the	Delete…	command	from	its	right-click	menu,	or
select	the	Delete…	command	from	the	Edit	menu,	or
click	the	 	button	on	the	toolbar.

You	will	be	asked	to	confirm	the	deletion.
Upon	deletion,	the	build	status	of	any	affected	entities	will	be	reset
appropriately	and	any	inherited	elements	will	be	removed	from	the	Elements
view	of	the	diagram.
Note	that	a	relationship	may	also	be	deleted	by	deleting	an	element	(via	the
Entity	Elements	dialog)	which	has	been	inherited	by	an	entity	as	a	result	of	the
relationship.



7.7.4	Creating	Multiple	Relationships
When	a	relationship	is	created	between	two	entities,	inherited	element(s)	will	be
added	to	one	of	the	entities.	For	example,	if	the	Order	entity	has	a	refers	to
relationship	with	the	Customer	Entity,	then	the	identify	attribute	of	Customer
Number	becomes	an	inherited	element	in	the	Order	entity.	In	this	example,	the
Order	entity	has	only	one	element	named	Customer	Number	and	you	may
successfully	build	this	model.
When	more	than	one	relationship	is	created	between	to	entities,	then	the
inherited	element	will	appear	more	than	once.	For	example,	the	Customer	entity
might	include	the	Address	conceptual	entity	twice	as	follows:
			Customer	includes	a	billing	Address.
			Customer	includes	a	shipping	Address.
A	descriptive	prefix	such	as	"billing"	and	"shipping"	can	be	used	to	name	the
inherited	elements	from	the	two	different	relationships,	but	the	underlying	field
names	will	be	the	same.	To	successfully	build	this	model,	you	must	have	unique
field	names	for	all	elements	in	the	entity.	Hence,	you	must	change	the	field
names	of	inherited	elements	in	the	file	to	ensure	that	they	are	unique.	For
example,	you	might	add	a	suffix	such	as	SHP	to	the	field	names	of	the	inherited
elements	used	for	the	shipping	address.	An	element	with	a	field	name	of
POSTCD	could	be	renamed	POSTCDSHP.
Refer	to	Inherited	Elements	in	the	6.4.2	Change	an	Element.



8.	Abstractions
An	abstraction	is	like	a	container	object	and	is	used	to	a	group	entities.	It	is	very
useful	when	working	with	large	data	models.	For	example,	an	abstraction	called
Order	Processing	can	be	used	to	group	the	Customer,	Product,	Order	and
Ordered	Product	entities.	By	activating	an	abstraction,	you	can	now	work	with
just	the	Order	Processing	part	of	the	model	(four	entities)	rather	than	all	entities
in	the	model.	Entities	which	are	not	part	of	the	abstraction	are	not	displayed	in
the	diagram.
Abstractions	are	not	entities	and	cannot	be	used	in	relationships.
Refer	to	8.3	Work	with	Abstractions.



8.1	Abstractions	and	the	Model
A	model	can	contain	any	number	of	abstractions.	As	well	as	an	aid	to	simplify
the	diagram	view	of	the	model,	they	can	be	used	to	restrict	the	model's	build
activity	to	those	entities	contained	within	the	abstraction.
Abstractions	are	not	transformed	into	repository	objects	when	the	model	is	built
.	They	exist	only	to	assist	you	when	constructing	the	model.



8.2	Abstractions	and	Other	Objects
Abstractions	can	contain	entities	and	other	abstractions.	When	an	abstraction	is
activated,	only	those	entities	and	abstractions	contained	within	the	abstraction
will	be	shown	on	the	model	diagram.	Only	those	relationships	that	link	the
entities	within	the	abstraction	are	shown.	Refer	to	8.3.11	Hiding	Complexity.
In	addition,	the	Build	Model	function	is	restricted	to	those	entities	within	the
abstraction,	enabling	you	to	build	discreet	parts	of	the	model.	Changes	to
entities	and	relationships	within	the	abstraction	are	still	propagated	to	the	entire
model,	however,	and	can	affect	entities	that	are	not	included	in	the	abstraction.



8.3	Work	with	Abstractions
You	will	work	with	abstractions	using	2.4.4	The	Document	Stencil	and	by	2.4.6
Performing	Actions	on	Diagram	Objects.
When	working	with	abstractions,	you	should	be	familiar	with	the	following:

8.3.1	Create	an	Abstraction
8.3.2	Change	an	Abstraction
8.3.3	Delete	an	Abstraction
8.3.4	Specify	Abstraction	Objects
8.3.5	Another	Way	to	Add	Objects	to	an	Abstraction
8.3.6	Another	Way	to	Remove	Entities	from	an	Abstraction
8.3.7	Activate	an	Abstraction
8.3.8	Deactivate	an	Abstraction
8.3.9	Abstraction	Notes
8.3.10	Building	the	Model	while	an	Abstraction	is	Active
8.3.11	Hiding	Complexity.



8.3.1	Create	an	Abstraction
To	create	an	abstraction,	drag-and-drop	the	Abstraction	shape	from	the
document	stencil	onto	the	model	diagram.	The	Create	Abstraction	dialog	is
displayed:

A	name	for	the	abstraction	must	be	specified.	It	can	be	up	to	20	characters	in
length	of	mixed	case,	and	must	be	unique	within	the	model.
Click	the	OK	button	to	create	the	abstraction.	Its	shape	will	be	updated	with	its
name	on	the	model	diagram.
Note:	If	creating	an	abstraction	when	another	abstraction	is	active,	the	new
abstraction	will	be	automatically	added	to	the	active	abstraction.
If	you	do	not	wish	to	create	an	abstraction,	click	the	Cancel	button.



8.3.2	Change	an	Abstraction
To	change	an	abstraction's	name,	select	the	abstraction	shape	in	the	diagram
and:

select	the	Change…	command	from	its	right-click	menu,	or
select	the	Change…	command	from	the	Edit	menu,	or
click	the	 	button	on	the	toolbar.

The	Change	Abstraction	dialog	will	be	opened.
Change	the	Abstraction's	name	as	required.	It	can	be	up	to	20	characters	in
length	of	mixed	case,	and	must	be	unique	within	the	model.
Click	the	OK	button	to	change	the	abstraction.	Its	shape	will	be	updated	with	its
new	name	on	the	model	diagram.
If	you	do	not	wish	to	change	the	abstraction,	press	the	Cancel	button.



8.3.3	Delete	an	Abstraction
To	delete	an	abstraction,	select	the	abstraction	shape	to	be	deleted	in	the
diagram	and:

select	the	Delete…	command	from	its	right-click	menu,	or
select	the	Delete…	command	from	the	Edit	menu,	or
click	the	 	button	on	the	toolbar.

You	will	be	asked	to	confirm	the	deletion.	Select	No	if	you	do	not	wish	to	delete
the	abstraction,	otherwise	select	Yes	to	delete	the	abstraction	and	remove	it	from
the	model	diagram.	Any	abstractions	to	which	it	belongs	will	be	updated
accordingly.
Note	that	an	abstraction	cannot	be	deleted	if	it	is	currently	active.	In	order	to
delete	it,	it	must	first	be	deactivated.



8.3.4	Specify	Abstraction	Objects
To	specify	the	objects	that	are	to	be	contained	within	an	abstraction,	select	its
shape	and:

select	the	Specify	Objects…	option	from	its	right-click	menu,	or
select	the	Specify	Objects…	option	from	the	Abstraction	menu.

The	Specify	Abstraction	Objects	window	is	displayed:

To	add	objects	to	the	abstraction,	double-click	their	entries	in	the	left-hand
Object	list	or	drag-and-drop	them	into	the	right-hand	Abstraction	list.	As	objects
are	added	to	the	Abstraction	list,	they	are	removed	from	the	Object	list.
Alternatively,	you	can	use	8.3.5	Another	Way	to	Add	Objects	to	an	Abstraction.
To	remove	objects	from	an	abstraction,	double-click	their	entries	in	the
Abstraction	list	or	drag-and-drop	them	into	the	Object	list.	As	objects	are
removed	from	the	Abstraction	list,	they	are	added	to	the	Object	list.
Alternatively,	you	can	use	8.3.6	Another	Way	to	Remove	Entities	from	an
Abstraction.
Click	OK	to	update	the	abstraction.	The	Abstraction's	diagram	shape	will	be
updated	appropriately.
Click	the	Cancel	button	if	you	do	not	wish	to	specify	objects	for	the	abstraction.



8.3.5	Another	Way	to	Add	Objects	to	an	Abstraction
As	well	as	being	able	to	specify	objects	for	an	abstraction	as	described	in	8.3.4
Specify	Abstraction	Objects,	you	can	do	so	by	interacting	with	the	diagram
alone.
In	the	following	example,	the	Customer,	Order	and	Ordered	Product	entities	are
about	to	be	added	to	the	Order	Processing	abstraction.

To	add	objects	to	an	abstraction:
1.		Select	its	shape	on	the	model	diagram.
2.		Hold	down	the	shift	key	and	select	all	entities	and	abstractions	that	you	wish
to	add	to	the	abstraction.

3.		Once	you	have	selected	all	objects	to	be	added:
Select	the	Add	Objects…	command	from	the	abstraction's	right-click	menu,
or
select	the	Add	Objects…	command	from	the	Abstraction	menu.

The	abstraction	shape	will	be	updated	with	the	name	of	the	entities	and
abstractions	you	have	added	to	it.



Note	that	any	entities	or	abstractions	created	are	automatically	added	to	the
active	abstraction.	Refer	to	8.3.7	Activate	an	Abstraction	for	how	to	activate	an
abstraction.
Note	also	that	this	method	of	adding	objects	to	an	abstraction	cannot	be	used	if
the	abstraction	is	currently	active.	Instead,	use	the	Specify	Objects…	command
from	the	abstraction's	context	menu	(i.e.	right-click	with	the	mouse).



8.3.6	Another	Way	to	Remove	Entities	from	an	Abstraction
To	remove	entities	or	other	abstractions	from	an	abstraction,	its	shape	should
first	be	selected	on	the	model	diagram.
Holding	down	the	shift	key,	select	all	entities	and	abstractions	that	you	wish	to
remove	from	the	abstraction.
Once	you	have	selected	all	objects	to	be	removed:

select	the	Remove	Objects…	command	from	the	abstraction's	right-click
menu,	or
select	the	Remove	Objects…	command	from	the	Abstraction	menu.

The	abstraction	shape	will	be	updated	accordingly.



8.3.7	Activate	an	Abstraction
To	activate	an	abstraction:

select	the	Activate…	command	from	its	right-click	menu,	or
select	the	Abstraction	shape	in	the	diagram	and	select	the	Activate…
command	from	the	Abstraction	menu.

The	model	diagram	will	be	re-drawn	to	show	only	the	abstraction	and	the
objects	within	it.	The	title	bar	of	the	modeler	will	be	changed	to	indicate	that	the
abstraction	is	active	and	being	viewed.
Important	Notes:

Only	relationships	between	entities	within	the	abstraction	are	shown,	but
entities	outside	the	abstraction	can	be	affected	by	changes	to	those	within	it.
It	is	possible	to	drill	down	into	abstractions	if	the	abstraction	themselves
contain	other	abstractions.
The	relative	positions	of	the	entities	in	the	abstraction	may	be	changed	once
the	abstraction	is	activated.		Entities	will	assume	these	positions	whenever
the	abstraction	is	activated.
The	scope	of	the	Build	Model	function	is	limited	to	those	entities	within	the
active	abstraction.



8.3.8	Deactivate	an	Abstraction
To	deactivate	an	abstraction:

select	the	Deactivate…	command	from	its	right-click	menu,	or
select	the	Abstraction	shape	in	the	diagram	and	select	the	Deactivate…
command	from	the	Abstraction	menu.

The	model	diagram	will	be	re-drawn	appropriately,	with	entities	returning	to
their	original	positions	if	they	were	moved	whilst	the	abstraction	was	active.
The	title	bar	of	the	modeler	will	be	changed	to	indicate	whether	an	abstraction
or	the	entire	model	is	being	viewed.
If	the	abstraction	is	part	of	a	drill-down	from	another	abstraction,	the	previous
abstraction	will	become	active.



8.3.9	Abstraction	Notes
The	notes	facility	for	abstraction	exists	merely	as	a	documentation	tool	for	use
when	constructing	a	data	model.	Unlike	element	notes,	which	are	transformed
into	field	help	text	when	the	element	is	built,	abstraction	notes	are	not	carried
through	from	the	model	to	the	repository.
To	maintain	an	abstraction's	notes,	select	the	abstraction's	shape	on	the	diagram
and:

select	the	Notes…	option	from	the	abstraction's	right-click	menu,	or
select	the	Notes…	option	from	the	Edit	menu,	or

click	the	 	button	on	the	toolbar.
The	Maintain	Entity	Notes	dialog	is	displayed:

The	standard	LANSA	special	help	text	characters	may	be	used	in	the	notes.	For
example,	you	can	display	help	text	underlined,	highlighted,	etc.
Once	the	notes	have	been	maintained,	press	the	OK	button	to	update	them.	If
you	do	not	wish	the	notes	to	be	updated,	press	the	Cancel	button.
On	the	model	diagram,	an	asterisk	(*)	will	appear	after	the	abstraction	name	if	it
has	notes	attached.



8.3.10	Building	the	Model	while	an	Abstraction	is	Active
It	should	be	noted	that	using	the	Build	Model	function	whilst	an	abstraction	is
active	will	cause	the	modeler	to	only	analyze	those	objects	contained	within	the
abstraction	and	not	the	entire	model.



8.3.11	Hiding	Complexity
Abstractions	can	contain	entities	and	other	abstractions.	When	you	include	an
abstraction	object	within	another	abstraction,	you	create	a	drill-down	effect.
When	an	abstraction	is	activated,	only	those	entities	and	abstractions	contained
within	the	active	abstraction	will	be	shown	on	the	model	diagram.	Only	those
relationships	that	link	the	entities	within	the	abstraction	are	shown.	You	can
create	a	new	abstraction	with	the	active	abstraction	or	you	may	activate	another
abstraction	if	it	is	listed	as	part	of	the	active	abstraction.
If	you	activate	another	abstraction	within	the	active	abstraction,	only	the	objects
in	the	newly	activated	abstraction	will	be	shown.	You	are	able	to	drill-down	to
the	next	level	of	the	abstraction.
Using	the	drill-down	structure,	abstractions	can	be	used	to	hide	the	complexity
of	the	model.	For	example,	you	may	hundreds	of	entities	in	a	model	diagram.
You	can	create	a	new	abstraction	named	"My	Model"	with	nothing	in	it.	When
the	My	Model	abstraction	is	activated,	all	objects	in	the	model	will	disappear.
The	diagram	will	only	show	the	My	Model	Abstraction.	In	effective,	you	have
hidden	the	complexity	of	the	diagram.	You	now	have	your	own	abstraction	in
which	you	can	create	your	own	small	model.
If	you	wish	to	organize	your	entities	into	smaller	models,	you	can	also	use	the
drill-down	structure	to	create	an	abstraction	menu	to	access	these	smaller
models.	For	example,	you	may	have	an	abstraction	named	Order	Processing
with	all	entities	used	for	your	Order	Processing	database.	You	may	have	an
abstraction	named	Inventory	Management	with	all	entities	used	for	your
Inventory	Management	database.	Simply	create	a	new	abstraction	named	"My
Models"	that	contains	the	Order	Processing	and	Inventory	Management
abstraction.	When	you	activate	"My	Models",	you	will	only	see	the	Order
Processing	and	Inventory	Management	abstractions.	In	effect,	this	is	a	menu	to
your	other	models.	You	can	now	activate	the	model	you	wish	to	develop.
It	is	very	important	that	you	do	not	create	a	loop	in	your	abstractions	when
drilling	down.	For	example,	if	Abstraction	A	contains	Abstraction	B,	and
Abstraction	B	contains	Abstraction	C,	then	do	not	include	Abstractions	A	or	B
into	C.



9.	User	Views
User	Views	are	not	a	logical	modeling	concept.	They	are	included	to	allow
analysts	to	document	logical	views	of	the	data	which	can	be	used	by	the
physical	database.
The	aim	of	a	user	view	is	to	provide	access	to	a	file	in	a	sequence	other	than	the
primary	key	and	logical	views	created	as	a	result	of	relationships.	User	views
will	generate	logical	views	when	a	database	build	is	performed	on	an	entity.
For	example,	a	logical	view	sequenced	by	Customer	Name	will	not	ordinarily
be	created	for	the	Customer	entity,	as	there	are	no	relationships	involving
Customer	Name	and	it	is	not	part	of	the	key	of	Customer.	However,	an	end	user
may	wish	to	view	Customer	information	in	Customer	Name	sequence.	A	user
view	can	be	created	to	support	this	requirement.
User	views	can	only	be	specified	for	entities	which	become	physical	files	when
they	are	built.	For	example,	Data	and	Variant	objects	may	have	user	views.	User
views	become	logical	files	in	the	repository	when	the	entity	is	built.	You	may
add	user	views	as	a	means	of	creating	logical	files	which	may	be	needed	for
reporting	or	other	operations.
This	is	described	in:

9.1	User	Views	and	Entities
9.2	User	Views	and	Elements
9.3	User	Views	and	LANSA
9.4	Maintain	User	Views.



9.1	User	Views	and	Entities
A	user	view	can	only	be	defined	for	an	entity	that	is	built	into	a	physical	file.
User	views	can	be	specified	for	data	and	variant	entities.
User	views	cannot	be	specified	for	conceptual	or	external	entities.
For	example,	the	Customer	data	entity	can	have	user	view	defined	but	the
Address	conceptual	entity	cannot.



9.2	User	Views	and	Elements
A	user	view	can	use	any	element	in	an	entity,	including	those	that	are	inherited
as	the	result	of	relationships	with	other	entities.
For	example,	join	or	parent	keys	can	be	used	in	a	user	view.



9.3	User	Views	and	LANSA
A	user	view	becomes	a	logical	file	in	LANSA	when	the	entity	is	built.
Again,	only	entities	which	become	physical	files	may	have	user	views.



9.4	Maintain	User	Views
To	maintain	user	views	for	an	entity,	select	its	shape	and:

select	the	User	Views...	option	from	the	entity's	right-click	menu,	or
select	the	User	Views...	option	from	the	Edit	menu,	or

click	the	 	button	on	the	toolbar.
The	Maintain	User	Views	<name	of	entity>	window	is	displayed:

This	example	shows	the	user	views	for	the	Customer	entity.
Using	the	toolbar	buttons,	from	this	window,	you	can:

9.4.1	Create	a	User	View
9.4.2	Change	a	User	View
9.4.3	Delete	a	User	View.

Once	you	have	finished	maintaining	user	views,	close	the	Maintain	User	Views
window	by	clicking	the	 	button.	The	build	status	of	the	selected	entity	will	be
updated	appropriately.



9.4.1	Create	a	User	View
To	create	a	user	view,	click	the	 	button	on	the	Specify	User	Views	toolbar.
The	Specify	User	View	dialog	is	displayed:

You	must	specify	a	Name	for	the	view.	It	can	be	up	to	40	characters	of	mixed
case.
A	Logical	View	Name	should	be	specified	if	the	physical	file	name	of	the
affected	entity	is	longer	than	the	maximum	number	of	characters	allowed	(10	if
the	*RPGIV	setting	is	enabled	in	your	system,	8	if	it	is	not).		If	the	physical	file
name	of	the	affected	entity	is	up	to	the	maximum	length	allowed,	no	logical
view	name	is	required:	the	modeler	will	automatically	generate	a	logical	view
name	when	the	entity	is	built.
The	left-hand	side	of	the	window	shows	a	list	of	all	the	elements	within	the
entity,	including	those	that	have	been	inherited	as	the	result	of	relationship	with
other	entities.
The	right-hand	side	of	the	window	will	contain	the	key	you	select	to	control	the
sequence	of	the	data	displayed	in	the	user	view.
To	specify	the	key	for	the	view,	double-click	elements	in	the	left-hand	Elements
list	or	drag-and-drop	them	from	the	left-hand	Elements	list	onto	the	right-hand



Key	list.	As	elements	are	added	to	the	right-hand	Key	list,	they	are	removed
from	the	Elements	list.	Similarly,	elements	can	be	double-clicked	or	dragged
and	dropped	from	the	Key	list	to	the	Elements	list	to	remove	them	from	the	key.
If	the	view	has	more	than	one	element	as	the	key,	the	key	sequence	can	be
changed	by	using	the	 	and	 	buttons	to	the	right	of	the	Key	list.
Press	OK	to	create	the	view.	After	validation,	the	Maintain	User	Views	window
is	redisplayed	with	the	new	user	view	shown	in	the	list	of	views.
Press	Cancel	if	you	do	not	wish	to	create	the	user	view.	The	Maintain	User
Views	window	will	be	redisplayed.



9.4.2	Change	a	User	View
To	change	a	user	view,	double-click	its	entry	in	the	Maintain	User	Views	list	or
select	it	and	click	the	 	button	on	the	toolbar.
The	Specify	User	View	window	is	displayed:

You	can	change	the	Name	of	the	view.	It	can	be	up	to	40	characters	of	mixed
case.
You	can	change	the	Logical	View	Name	of	the	view.		A	Logical	View	Name
should	be	specified	if	the	physical	file	name	of	the	affected	entity	is	longer	than
the	maximum	number	of	characters	allowed	(10	if	the	*RPGIV	setting	is
enabled	in	your	system,	8	if	it	is	not).		If	the	physical	file	name	of	the	affected
entity	is	up	to	the	maximum	length	allowed,	no	logical	view	name	is	required:
the	modeler	will	automatically	generate	a	logical	view	name	when	the	entity	is
built.
The	left-hand	side	of	the	dialog	shows	a	list	of	elements	within	the	entity,
including	those	that	have	been	inherited	as	the	result	of	relationship	with	other
entities.
The	right-hand	side	of	the	dialog	contains	the	key	of	the	user	view.
Elements	can	be	double-clicked	or	dragged	and	dropped	between	the	two	lists	to



build	the	desired	key.
As	elements	are	added	to	the	right-hand	Key	list,	they	are	removed	from	the
left-hand	Elements	list.
If	the	view	has	more	than	one	element	as	the	key,	the	key	sequence	can	be
changed	by	using	the	 	and	 	buttons	to	the	right	of	the	Key	list.
Press	OK	to	change	the	view.	After	validation	has	been	passed,	the	Maintain
User	Views	window	is	redisplayed	with	the	updated	user	view	shown	in	the	list
of	views.
Press	Cancel	if	you	do	not	wish	to	change	the	user	view.	The	Maintain	User
Views	window	will	be	redisplayed.



9.4.3	Delete	a	User	View
To	delete	a	user	view,	select	it	in	the	Maintain	User	Views	list	and	click	the	
toolbar	button.
You	will	be	asked	to	confirm	the	deletion.	Select	No	if	you	do	not	wish	to	delete
the	view	otherwise	Yes	to	delete	the	view	and	remove	it	from	the	list.
Upon	closing	the	Maintain	User	Views	window,	the	entity's	build	status	will	be
updated	appropriately.



10.	Building	a	Model
A	build	is	the	generation	of	a	physical	database	in	the	LANSA	Repository,	based
on	your	logical	modeler	data	model.	For	example,	a	build	of	an	entity	will
create	repository	fields,	a	physical	file,	logical	files	and	an	object	access
module.
The	build	is	almost	completely	automated.	Your	database	is	built	at	the	push	of
a	button.
The	following	topics	cover:

How	the	logical	modeler	builds	the	database,	with	an	illustration	of	the
interdependencies	between	the	different	builds,	the	impact	of	changes	and
the	need	to	rebuild	a	model.	It	explains	what	a	build	does	and	what	you	can
expect	as	the	result	of	the	build.
The	fundamental	steps	and	the	rules	for	submitting	and	synchronizing	the
build	of	the	prototype.
What	is	involved	and	what	is	produced	by	each	build.	The	LANSA	items
created	by	each	build	are	explained.
How	to	use	the	Builder	Queue	to	manage	your	builds.

In	the	logical	modeler,	there	are	three	steps	in	the	building	of	a	database	and	the
steps	in	which	they	are	run	is	described	in	10.1	Sequencing	the	Builds.	The
order	of	the	builds	and	the	entities	you	select	for	building	are	very	important
because	of	entity	dependencies.	If	you	request	a	build	which	cannot	be
performed,	the	modeler	will	provide	the	appropriate	error	and	warning
messages.	For	example,	a	Relationship	build	expects	both	entities	in	a
relationship	to	have	a	database	build	completed.
This	information	is	described	in:

10.1	Sequencing	the	Builds
10.2	Build	Methods
10.3	Understanding	Builds
10.4	Rebuilding	Your	Model
10.5	The	Builder	Queue
10.6	Build	Tips	and	Techniques



10.1	Sequencing	the	Builds
The	sequence	of	the	builds	and	the	entities	you	select	for	building	are	very
important	because	of	entity	dependencies.	In	general,	the	sequence	of	the	builds
is	as	follows:

Build	Repository	Fields
Build	Database	File
Build	Relationships

Repository	fields	are	the	starting	point	for	all	work	in	LANSA.	Fields	must	be
defined	before	a	file	can	be	created.	Files	must	be	defined	before	relationships
can	be	added.
It	is	important	that	you	synchronize	your	building	due	to	file	relationships.	An
entity	with	no	relationships	to	other	entities	could	be	built	on	its	own.	The
Relationships	build	which	needs	to	create	a	file	look-up	validation	rule	is
expecting	the	other	database	file	to	exist.
For	example,	if	you	have	three	entities	in	your	model,	you	should	perform	a
Repository	fields	build	for	each	of	the	three	entities	first.	Once	completed
successfully,	you	would	perform	the	database	build	for	each	entity.	If	all	entity
builds	are	successful,	you	would	build	the	relationships.
The	Logical	Modeler	provides	a	builder	queue	facility	which	simplifies	the
build	process	by	synchronizing	the	entity	builds	for	you.

Build	Repository	Fields
The	repository	fields	build	converts	your	entity's	elements	into	LANSA
Repository	field	definitions	based	on	the	element's	data	type	or	physical
definition.	The	field	definition	is	created	and,	if	a	data	type	has	been	specified,
validations	and	help	text	from	the	data	type	are	copied.	If	element	notes	were
created,	they	are	transferred	as	field-level	help	text.
Validation	rules	in	the	repository	are	flagged	as	either	"coming	from	the	Logical
Modeler"	or	being	"added	afterwards".	Validation	rules	added	afterwards	(i.e.
manually	in	LANSA)	are	not	lost	when	the	elements	are	rebuilt	in	the
repository.

Build	Database	File
The	database	build	creates	a	database	file	for	the	entity.	The	fields	within	the
file	will	be	based	on	the	elements	within	the	entity.	Logical	views	for	the	file
will	be	based	on	relationships	and	user	views.



The	database	build	will	also	create	new	elements	in	the	repository	based	on	the
physical	file	layout.	For	example,	any	inherited	elements	must	be	defined	to	the
repository	before	the	physical	file	can	be	defined.
Depending	on	entity	type,	a	database	build	may	not	be	allowed	–	Conceptual
entities	cannot	be	database	built.
All	repository	field	builds	should	have	been	completed	before	the	database
builds	are	submitted.

Build	Relationships
The	relationships	build	is	responsible	for	creating	the	Access	Routes	and
Referential	Integrity	validations	which	result	from	relationships.	For	example,	a
join	relationship	will	result	in	the	creation	of	an	Access	Route	and	a	file	look-up
validation	rule.
Relationship	builds	apply	to	entities	which	are	related	to	other	entities.
Relationship	builds	cannot	be	performed	if	the	related	entities	have	not	been
database	built.
Depending	on	entity	type,	a	relationship	build	may	not	be	allowed	–	Conceptual
entities	cannot	be	relationship	built.	All	database	builds	should	have	been
completed	before	the	relationship	builds	are	submitted.



10.2	Build	Methods
Logical	Modeler	builds	can	be	performed	using	one	of	three	methods:

selecting	individual	entities,
building	multiple	entities	by	analyzing	their	build	status	or
building	all	entities,	regardless	of	their	build	status.

Each	method	serves	a	particular	need	in	the	modeler.
If	you	require	that	only	a	very	small	part	of	the	model	be	built,	individual
entities	can	be	selected	for	build.	If	you	wish	to	build	the	entire	model	after	a
large	number	of	changes,	either	the	entire	model	or	only	those	entities	that	are
required	to	be	built	can	be	analyzed	and	the	appropriate	build	acitivities
sequenced	automatically	on	the	builder	queue.
Abstractions	can	be	used	to	control	the	entities	selected	for	the	build.	For	more
details,	refer	to	8.	Abstractions	and	8.3	Work	with	Abstractions.



10.3	Understanding	Builds
Following	is	a	summary	of	what	is	built	in	LANSA	for	each	part	of	your	model:

Builds	and	Entities
Builds	and	Elements
Builds	and	Relationships
Builds	and	User	Views

Builds	and	Entities
Data	and	Variant	entities	are	implemented	in	the	repository	as	database	tables.
The	table	name	is	taken	from	the	entity	physical	file	name.

Builds	and	Elements
Each	element	is	implemented	as	a	repository	field.	It	also	becomes	a	field	in	a
file	during	the	database	build.
The	identifying	element	will	become	part	of	the	key	to	the	file.	The	complete
file	key	may	be	determined	by	relationships.
If	a	data	type	was	specified	for	the	element,	the	field	will	reference	the
corresponding	data	type	field's	characteristics.	In	addition,	validation	rules	and
help	text	will	be	copied	from	the	reference	field.
If	a	data	type	was	not	specified,	the	field	is	created	from	the	type	and	length
details	in	the	model.
Element	notes	become	field-level	help	text.
Element	field	names	in	the	repository	will	have	the	format:
						xxxxxxxxx

where:
						xxxxxxxxx	is	the	element	field	name.
Builds	and	Relationships
A	relationship	will	create:

access	routes	between	the	two	files	which	it	relates
validation	rules	for	referential	integrity	between	the	two	files	which	it	relates
a	logical	file	for	the	file	which	includes	the	inherited,	foreign	key	element(s).

If	a	logical	view	name	has	been	specified	on	the	relationship,	it	will	be	used.	
Note	that	a	logical	view	name	should	have	been	specified	if	the	physical	file



name	of	the	affected	entity	is	greater	than	the	maximum	length	allowed	(10	if
the	*RPGIV	setting	in	your	IBM	i	enabled,	8	if	it	is	not).		A	build	error	will	be
generated	if	the	entity	physical	file	name	is	longer	than	the	maximum	allowed
and	a	logical	view	name	has	not	been	specified.
If	the	physical	file	name	is	up	to	two	characters	shorter	than	the	maximum
number	of	characters	allowed,	the	modeler	will	create	one	automatically,	with	a
name	in	the	format:
						oooooooonn

where:
						oooooooo	is	the	entity	physical	file	name	and
						nn	is	a	unique,	two-digit	number.
Builds	and	User	Views
A	user	view	will	create	a	logical	file	in	LANSA.
If	a	logical	view	name	has	been	specified,	it	will	be	used.		Note	that	a	logical
view	name	should	have	been	specified	if	the	physical	file	name	of	the	affected
entity	is	greater	than	the	maximum	number	of	characters	allowed.		A	build	error
will	be	generated	if	the	entity	physical	file	name	is	more	than	the	maximum
number	of	characters	allowed	and	a	logical	view	name	has	not	been	specified.
If	the	physical	file	name	of	the	affected	entity	is	up	to	two	characters	less	than
the	maximum	length	allowed	and	a	logical	view	name	has	not	been	specified,
the	modeler	will	create	one	automatically,	with	a	name	in	the	format:
						oooooooonn

where:
						oooooooo	is	the	entity	physical	file	name	and
						nn	is	a	unique,	two	digit	number.	Note	that	these	numbers	will	follow	on
sequentially	from	those	in	logical	files	which	have	been	automatically	created
by	the	modeler	as	the	result	of	relationships	with	other	files.



10.4	Rebuilding	Your	Model
When	you	rebuild	parts	of	your	model,	it	is	important	to	understand	the	impact
on	the	LANSA	Repository.	For	example,	what	happens	when	you	delete	an
entity?	Or	what	happens	if	you	change	an	element	definition?
When	you	remove	entities	from	your	model,	the	corresponding	file	in	the
LANSA	Repository	is	NOT	removed.	For	example,	if	you	delete	a	Customer
entity,	the	related	fields	and	file	will	not	be	removed	from	the	repository.
When	an	element	is	rebuilt,	it	will	replace	the	existing	definition.	For	example,
any	manual	changes	to	help	text	would	be	lost	when	an	element	is	rebuilt.	It	is
important	that	you	implement	proper	procedures	during	the	modeling	stage	of
the	project	to	provide	the	maximum	benefit	from	the	model	builds.
Therefore,	it	is	recommended	that	you	do	not	perform	any	manual	modification
of	your	database	until	you	have	completed	all	possible	work	with	the	Logical
Modeler.
Once	you	reach	a	point	where	you	are	completely	satisfied	with	the	modeler
implemented	physical	database,		you	can	start	to	prototype	your	applications
and	enhance	the	database	with	LANSA	features	such	as	virtual	fields,
predetermined	joined	fields,	etc.
Once	you	start	to	develop	your	database	and	applications	using	the	LANSA
development	environment,	you	should	effectively	discard	your	model.	Any
changes	to	the	model	and	its	subsequent	rebuilding	will	overwrite	any	changes
you	have	made	manually.
The	Logical	Modeler	supports	a	one-way	build	process.	Model	changes	can	be
made	and	the	database	can	be	rebuilt.	The	modeler	is	not	designed	for	a	two-
way	build	process	where	changes	to	the	physical	model	are	read	back	into	the
logical	model.	Because	the	build	is	a	one-way	process,	you	must	carefully
consider	when	to	end	your	logical	modeling	in	order	to	start	your	physical
development.
Remember,	minor	database	changes	can	be	made	directly	to	the	physical	model.
You	do	not	have	to	make	all	changes	in	the	logical	model	and	then	rebuild.
Determining	the	point	at	which	you	should	start	full	development	of	the
database	and	application	should	be	based	on	your	project	plan.	Take	advantage
of	the	productivity	of	model	process	but	do	not	overall	analyze	or	over	model
your	database.



10.5	The	Builder	Queue
The	Builder	Queue	provides	a	working	list	to	control	the	sequencing	and
execution	of	the	build	jobs.	It	is	similar	to	an	iSeries	job	queue	in	its
functionality:	jobs	can	be	deleted,	held	and	released.

To	access	the	Builder	Queue,	click	the	 	button	on	the	main	toolbar.	The
Builder	Queue	window	is	displayed:

The	top	portion	of	the	window	shows	a	sequenced	list	of	jobs	that	have	been
queued	by	either	the	Build	Entity	or	the	Build	Model	functions.	Jobs	can	have	a
status	of	Ready,	Ended,	Held	or	Failed.	They	are	initially	submitted	to	the	queue
in	a	Ready	status.
When	an	entry	is	selected	in	the	job	list,	any	error	messages	that	have	been
generated	by	that	job	are	shown	in	the	bottom	portion	of	the	window.
The	Builder	Queue	window	can	be	resized	to	increase	the	number	of	build	jobs
and	error	messages	displayed.	The	split	between	the	top	and	bottom	panes	of	the
builder	queue	window	can	also	be	adjusted.



10.5.1	Delete,	Hold	and	Release	Jobs
To	delete	jobs	from	the	queue,	select	one	or	more	entries	and	click	the	
button.	All	selected	jobs	will	be	deleted	from	the	list.
To	hold	jobs	that	are	currently	in	a	Ready	status,	select	them	in	the	list	and	click
the	 	button.	Each	job's	status	will	be	set	to	Held.
To	release	jobs	that	are	currently	in	a	Held	status,	select	them	in	the	list	and
click	the	 	button.	Each	job's	status	will	be	set	to	Ready.



10.5.2	Execute	Build	Jobs
Jobs	that	are	in	a	Ready	status	can	be	executed	by	clicking	the	 	button.
The	following	dialog	will	appear,	providing	you	with	options	for	the	build:

This	dialog	can	be	used	to	control	whether	the	build	will	generate	referential
integrity	validation	rules	and	whether	a	database	diagram	will	be	generated	so
that	the	resultant	database	can	be	viewed	using	the	Database	Diagram	Viewer.
Press	Cancel	to	cancel	the	build	and	return	to	the	Builder	Queue.
Press	OK	to	continue	with	the	build	process.
While	build	jobs	are	executing,	you	are	unable	to	perform	other	tasks	in	the
modeler.
An	executing	job	has	a	status	of	Active.	Once	it	has	completed,	its	status	will	be
set	to	Ended	or	Failed,	according	to	the	result	of	the	job.	The	build	status	of	the
corresponding	entity	is	also	updated.	If	the	job	has	failed,	selecting	it	in	the	list
will	show	error	messages	at	the	bottom	of	the	window.



10.5.3	Purge	the	Builder	Queue
During	the	course	of	a	modeling	session,	the	number	of	entries	on	the	Builder
Queue	can	grow	very	large.	You	can	purge	entries	from	the	queue	by	clicking
the	 	button.	The	Purge	Build	Queue	dialog	is	displayed:

If	you	do	not	wish	to	purge	the	queue,	select	Cancel	otherwise	select	the
statuses	you	wish	to	purge	and	select	Purge.	Queue	entries	with	matching
statuses	will	be	deleted	from	the	queue.



10.6	Build	Tips	and	Techniques
Following	are	some	tips	and	techniques	when	building	your	logical	model:
Task	Tracking	and	Builds
When	you	logon	to	Visual	LANSA,	you	specify	a	task	tracking	ID.	You	must	be
sure	that	you	are	using	the	same	task	ID	when	you	use	the	model	build
functionality	otherwise	the	builds	may	fail.	For	example,	if	you	create	objects
using	one	task	ID	and	try	to	rebuild	using	a	different	ID,	an	error	will	result	as
you	may	not	be	authorized	to	replace	the	existing	objects.Site	Standards
Before	you	begin	to	enter	any	of	the	field	names,	physical	file	names,	logical
view	names	or	details	for	fields,	entities,	relationships,	etc.	you	should	define	a
set	of	site	or	corporate	naming	standards	to	be	used	for	your	model	and	the
physical	database.	For	example,	define	the	standards	to	be	used	for	relationship
suffixes	and	prefixes.
Adding	Help	Text	in	LANSA
Help	text	is	regenerated	whenever	the	model	is	rebuilt.	If	you	plan	to	regenerate
your	prototype	and	need	to	add	or	change	help	text,	always	make	changes	in
Logical	Modeler	rather	than	in	LANSA,	to	ensure	that	the	new	build	includes
the	changes.
Adding	Virtual	Fields	in	LANSA
Virtual	fields	can	be	defined	in	files	after	the	database	has	been	built.	It	is
recommended	that	you	do	not	add	virtual	fields	until	you	have	completed
finished	with	your	logical	model.	Refer	to	10.4	Rebuilding	Your	Model.
Building	with	Abstraction
Remember	that	active	abstraction	will	impact	the	builder	queue.	Only	objects
within	the	active	abstraction	are	processed.
Deleting	Objects
When	a	built	entity	is	deleted,	the	related	fields,	files	and	so	on,	are	not	deleted
from	the	LANSA	Repository.	You	must	manually	delete	these	objects.



11.	Troubleshooting
This	section	aims	to	answer	problems	that	may	be	experienced	with	the	Logical
Modeler.

My	model	will	not	load	due	to	an	XML	error
XML	errors	should	only	be	encountered	if	the	XML	of	your	model	has	been
manually	altered	and	invalid	syntax	has	been	used.	You	may	need	to	contact
your	local	Product	Support	team	to	resolve	this	issue.
It	is	strongly	recommended	that	you	do	not	manually	alter	the	XML	of	a	model.

I	cannot	create	a	Join	relationship	to	a	Variant	entity
A	Variation	relationship	must	exist	for	a	Variant	entity	before	you	can	create
Join	relationships	using	that	Variant	entity.	Once	the	Variation	relationship	is
created,	the	identifying	elements	are	known	in	the	Variant	entity	and	a	Join
relationship	can	now	be	created.



Tutorials
What	are	the	Logical	Modeler	Tutorials?
The	Logical	Modeler	Tutorials	are	a	set	of	exercises	designed	to	introduce	and
reinforce	the	fundamental	logical	data	modeling	skills	required	to	implement	a
database	in	LANSA.	The	tutorials	are	integrated	into	the	online	documentation.
The	following	tutorials	are	included:
LGM001	-	View	a	Model
LGM002	-	Create	an	Entity
LGM003	–	The	Join	Relationship
LGM004	–	Conceptual	Entities	and	the	Includes	Relationship
LGM005	–	The	Parent/Child	Relationship
LGM006	–	The	Variant	Entity	and	the	Variation	Relationship
LGM007	–	User	Views
LGM008	–	Abstractions
LGM009	–	Build	the	Model

Who	Should	Use	the	Tutorials?
Tutorials	can	be	used	by	novice	or	experienced	LANSA	developers	who	wish	to
learn	how	to	logically	model	databases.	No	LANSA	Repository	or	LANSA
RDML	skills	are	required	to	use	the	Logical	Modeler.	You	should	be	familiar
with	basic	modeling	concepts	such	as	entities,	elements	and	relationships.
Familiarity	with	the	LANSA	development	environment	is	an	asset.

How	Do	I	Use	the	Tutorials?
It	is	recommended	that	you	complete	the	Tutorials	in	sequence.
To	allow	for	more	than	one	developer	to	use	the	tutorials,	all	LANSA	object
names	will	be	prefixed	with	iii.	You	may	use	any	three	characters,	such	as	the
initials	of	your	name,	for	the	iii	characters.	For	example,	if	you	name	is	John
David	Smith	you	can	use	the	characters	JDS.	Always	remember	to	replace	iii
with	your	unique	3	characters.

How	Many	Developers	Can	Use	the	Training?
There	is	no	limit	on	the	number	of	developers	who	may	use	the	training	at	the
same	time.	However,	it	is	important	that	each	developer	has	a	unique	identifier
for	their	work.



Your	Feedback
Your	feedback	regarding	these	tutorials	will	help	us	improve	the	overall	quality
of	the	LANSA	documentation	and	training.	Please	email	your	comments	to
lansatraining@LANSA.com.au

mailto:lansatraining@LANSA.com.au


LGM001	-	View	a	Model
Objective:

To	execute	the	Logical	Modeler	and	view	an	existing	model.
To	learn	how	to	use	the	Logical	Modeler	interface.
To	highlight	the	different	views	of	a	model.

To	achieve	the	tutorial	objectives,	you	will	complete	the	following	steps:
Step	1.	Start	the	Logical	Modeler
Step	2.	Open	an	Existing	Model
Step	3.	Use	Pan	and	Zoom
Step	4.	Change	Views
Step	5.	Activate	and	Deactivate	Abstractions
Step	6.	View	Entity	Elements
Step	7.	Print	a	Model
Summary

Before	You	Begin:
You	may	wish	to	review	the	following	topics	in	the	Logical	Modeler	Guide:

Getting	Started
Models.

its:LANSA076.CHM::/lansa/l4wmod_065.htm
its:LANSA076.CHM::/lansa/l4wmod_095.htm


Step	1.	Start	the	Logical	Modeler
In	this	step,	you	will	logon	to	Visual	LANSA	and	start	the	Logical	Modeler.
1.		Start	Visual	LANSA	and	logon	to	the	DEM	partition	(recommended).
2.		Select	the	Tools	menu	and	choose	the	Logical	Modeler	option.
3.		The	Logical	Modeler	Main	Window	should	appear,	as	below.

4.If	the	Document	Stencil	(Shapes)	showing	the	different	entities	does	not
appear,	simply	use	the	View	menu	and	select	the	Show	Document	Stencil
option.

5.If	the	Pan	&	Zoom	window	does	not	appear,	simply	use	the	View	menu	and
select	the	Pan	and	Zoom	Window	option.



Step	2.	Open	an	Existing	Model
In	this	step,	you	will	open	the	example	model	that	was	shipped	with	the	Logical
Modeler.

1.		Click	the	 	Open	button	on	the	toolbar	or	select	the	File	menu	and	choose
the	Open…	option.

					The	Open	Model	dialog	will	be	displayed:

					Note	that	only	files	with	the	'.ldm'	suffix	are	displayed.	These	are	LANSA
Data	Model	files.

2.		Open	the	file	named	'LANSA	Logical	Modeler	-	Example	Model.ldm'	by
double-clicking	its	entry	in	the	list	or	by	selecting	it	and	clicking	the	Open
button.

3.		The	model	will	begin	to	load.	The	following	progress	bar	will	be	displayed
while	the	model	is	loading:



				The	example	model	is	of	a	simple	Sales	Order	Processing	database.	It	should
appear	something	like	this	(using	the	Show	Elements	view):



Step	3.	Use	Pan	and	Zoom
In	this	step,	you	will	learn	how	to	use	the	Pan	and	Zoom	facility.	The	Pan	and
Zoom	facility	is	used	to	control	what	part	of	the	model	is	displayed.
At	this	point,	a	diagram	of	the	entire	model	should	be	displayed.	Although
objects	within	the	model	have	text	associated	with	them,	the	text	can	be	hard	to
read,	due	to	its	small	size.	Using	the	Pan	and	Zoom	facility	can	greatly	increase
the	model's	readability.
1.		Click	the	 	Whole	Page	button	on	the	toolbar	or	select	the	View	menu	and
choose	the	Whole	Page	option.	This	will	ensure	that	the	whole	model	is
displayed,	enabling	you	to	work	easily	with	the	Pan	and	Zoom	facility.	Note
that	the	Pan	and	Zoom	window	displays	a	diagram	of	the	entire	model	at	all
times.

2.		Position	the	cursor	slightly	above	and	to	the	left	of	the	entity	in	the	top-left
corner	of	the	Pan	and	Zoom	diagram.	Click	and	hold	down	the	left	mouse
button.

3.		While	holding	down	the	mouse	button,	drag	the	mouse	down	and	to	the
right.	You	will	see	a	red	border	being	stretched	by	the	mouse	movement.	Stop
when	the	red	border	is	approximately	half	the	width	of	the	Pan	and	Zoom
diagram.

					Release	the	mouse	button.	The	diagram	will	be	updated	appropriately.	The
diagram	will	show	the	objects	surrounded	by	the	red	border,	similar	to	the
following	example:



4.		Once	a	zoom	has	been	activated	in	this	way,	the	red	border	can	be	moved
around	the	diagram	in	the	pan	and	zoom	window,	preserving	the	zoom
magnification	level.

5.		To	try	this,	position	the	cursor	in	the	middle	of	the	red	border.	A	cross-hair
cursor	is	displayed.	Hold	down	the	left	mouse	button	and	move	the	mouse	to
drag	the	red	border	to	another	part	of	the	Pan	and	Zoom	diagram.	Release	the
mouse	button	to	update	the	model	diagram.

Tip:The	Pan	&	Zoom	Window	can	be	undocked



Step	4.	Change	Views
In	this	step,	you	will	learn	how	to	toggle	the	view	of	the	model	to	show	Entity
Elements	or	Build	Status.	These	views	are	important	at	different	times	in	the
modeling	process.
1.		Use	the	Pan	and	Zoom	function	to	display	as	much	of	the	model	as	possible
while	maintaining	its	readability.

2.		Click	on	a	blank	portion	of	the	diagram.	This	ensures	that	no	diagram	objects
are	selected.		Select	the	View	menu	and	choose	the	Show	Build	Status	(All
Entities)	option.		All	entities	in	the	diagram	will	be	updated	to	show	their
Build	Status.

					Note	that	for	Data	and	Variant	entities,	a	status	is	shown	for	each	of	the	build
phases:	Fields,	File	and	Relationships.	For	Conceptual	entities,	which	are	not
built	into	database	tables,	only	the	status	of	the	Fields	build	phase	is	shown.

3.		To	switch	back	to	the	Elements	view	for	all	entities,	select	the	View	menu
and	choose	the	Show	Elements	(All	Entities)	option.		As	well	as	being	able	to
change	the	view	for	the	entire	model,	individual	entities	can	have	their	view
changed.	Ensure	the	Elements	view	for	all	entities	is	active.

4.		Select	the	Customer	and	Order	entities	by	holding	down	the	shift	key	and
clicking	on	them.	Note	that	when	a	shape	is	selected,	it	is	bordered	by	gray
padlock	images.	Select	the	View	menu	and	choose	the	Show	Build	Status
(Selected	Entities)	option.		The	Customer	and	Order	entities	will	have	their
Build	Status	view	displayed,	while	all	other	entities	retain	their	Elements
view.

5.		Switch	back	to	the	Elements	view	for	the	Customer	and	Order	entities	by
selecting	the	View	menu	and	choosing	the	Show	Elements	(Selected	Entities)
option.		In	some	instances,	you	may	wish	to	show	neither	the	Elements	or
Build	Status	views.	The	modeler	enables	you	to	collapse	entities,	so	that	only
their	names	are	shown.		Ensure	the	Elements	view	for	all	entities	is	active.

6.		Select	the	View	menu	and	choose	the	Show	Collapsed	(All	Entities)	option.	
All	entities	in	the	diagram	should	have	their	shapes	collapsed,	such	that	only
their	names	are	shown.		It	is	also	possible	to	collapse	an	individual	entity.	
Ensure	the	Elements	view	for	all	entities	is	active.

7.		Select	the	Customer	entity	by	clicking	on	it.
8.		Select	the	View	menu	and	choose	the	Show	Collapsed	(Selected	Entities)



option.		The	Customer	entity	should	be	collapsed,	showing	only	its	name.
By	using	combinations	of	the	View	options	described	above,	the	view	of	the
diagram	can	be	tailored	to	your	specific	needs,	depending	on	the	phase	of	your
modeling.



Step	5.	Activate	and	Deactivate	Abstractions
In	this	step,	you	will	learn	how	activating	and	deactivating	abstractions	can	be
used	to	change	the	view	of	the	model.
1.		Activate	the	Order	Processing	abstraction.	This	can	be	done	by	double-
clicking	it	or	by	selecting	it	and	taking	the	Activate	option	from	the	right-
click	or	Abstraction	menus.

2.		The	diagram	will	be	updated	to	show	only	the	Customer,	Order,	Ordered
Product	and	Product	entities.	Note	that	the	Order	Processing	abstraction	is
still	shown	on	the	diagram.
Note	that	the	navigation	facilities	you	have	learned	to	use	in	the	previous
steps	of	this	exercise	can	be	used	when	an	abstraction	is	active.

3.		Move	the	entities	around	the	diagram.
4.		Deactivate	the	abstraction.	This	can	be	done	by	double-clicking	it	or	by
selecting	it	and	taking	the	Deactivate	option	from	the	right-click	or
Abstraction	menus.		Note	that	the	entities	return	to	their	original	positions.

5.		Reactivate	the	abstraction.		Note	that	the	abstracted	entities	return	to	the



positions	you	moved	them	to	when	the	abstraction	was	last	active.
6.		Deactivate	the	abstraction.
7.		The	diagram	will	be	updated	to	show	the	entire	model.



Step	6.	View	Entity	Elements
In	this	step,	you	will	learn	how	to	view	an	entity's	elements	in	order	to	work
with	them.
1.		Select	the	Customer	entity	by	clicking	on	it.
2.		To	view	its	elements,	select	the	Elements…	option	from	its	right-click	pop-up
menu	or	select	the	View	menu	and	choose	Elements…	option.

					The	Customer	entity	elements	will	be	displayed:

					You	will	learn	how	to	maintain	an	entity's	elements	in	later	exercises.

3.		Click	the	 	Close	button	to	close	the	elements	window.



Step	7.	Print	a	Model
In	this	step,	you	will	learn	how	to	print	a	model	diagram.

1.		Click	the	 	Print	button	on	the	toolbar,	or	select	the	File	menu	and	choose
the	Print…	option.

					The	Visio	Print	dialog	will	be	displayed:

					This	dialog	behaves	like	a	standard	Windows	Print	dialog.
2.		Select	the	printer	to	which	you	wish	to	print	by	using	the	drop-down	box	at
the	top	of	the	form.

3.		Press	OK	to	print	the	model.
4.		Close	the	model.	Do	not	save	your	changes.



Summary
Important	Observations

The	Logical	Modeler	is	a	very	mouse-driven	application,	due	to	its	graphical
nature.	Right	mouse	button	clicks	and	drag-and-drop	facilities	are	used	to	a
great	extent.
The	Logical	Modeler	provides	many	different	ways	of	accomplishing	a
given	task.	Actions	can	be	performed	by	right-clicking	on	a	diagram	shape,
by	selecting	an	option	from	the	menus,	or	by	clicking	a	button	on	the	toolbar.
Note	that	different	options	are	enabled	in	the	menus	and	the	toolbar
depending	on	the	type	of	object	selected	in	the	diagram.

Tips	&	Techniques
Remember	that	you	can	show	a	particular	view	for	all	entities	or	selected
entities.	In	addition,	you	can	choose	to	not	display	a	view	at	all,	and	show
entities	in	their	collapsed	state.
Abstractions	are	a	good	way	of	grouping	entities	in	a	large	model.	The
model	diagram	can	be	simplified	by	activating	an	abstraction	and	moving	the
abstracted	entities.		Remember	that	build	activities	will	be	restricted	to	the
objects	within	the	active	abstraction.
A	new	page	is	created	within	the	diagram	every	time	a	new	model	is	opened.
When	printing	a	model,	ensure	the	Current	Page	option	is	selected	to	avoid
printing	all	open	models.

What	I	Should	Know
How	to	start	the	Logical	Modeler.
How	to	open	an	existing	model.
How	to	zoom	in	to	view	different	parts	of	a	model	diagram.
How	to	use	the	different	views	to	change	how	the	model	is	displayed.
How	to	work	with	an	entity's	elements.
How	to	Activate	and	Deactivate	Abstractions.
How	to	print	a	model	diagram.



LGM002	-	Create	an	Entity
Objective:

To	create	a	new	model	which	will	match	part	of	the	sample	model	viewed	in
the	first	tutorial.	You	will	begin	by	creating	the	Customer	entity.
To	learn	how	to	create	an	entity.
To	learn	how	to	define	and	manipulate	elements	within	an	entity.
To	learn	how	to	create	user	notes.
To	learn	how	to	save	a	model.

To	achieve	the	tutorial	objectives,	you	will	complete	the	following	steps:
Step	0.	Start	the	Logical	Modeler
Step	1.	Create	a	Data	Entity
Step	2.	Define	Elements	for	the	Entity
Step	3.	Work	with	Elements	in	Entities
Step	4.	Assign	an	Identifying	Element
Step	5.	Save	the	Model
Summary

Before	You	Begin:
You	may	wish	to	review:

Introduction	to	Data	Modeling
Entities	
Elements	
Data	Types	
Saving	a	Model.

In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
LGM001	-	View	a	Model

its:LANSA076.CHM::/lansa/l4wmod_003.htm
its:LANSA076.CHM::/lansa/l4wmod_120.htm
its:LANSA076.CHM::/lansa/l4wmod_210.htm
its:LANSA076.CHM::/lansa/l4wmod_110.htm
its:LANSA076.CHM::/lansa/l4wmod_100b.htm


Step	0.	Start	the	Logical	Modeler
In	this	step,	you	will	start	the	logical	modeler	(if	has	not	already	been	started)
and	create	a	new	model.
1.		Start	the	Logical	Modeler.

					If	the	modeler	is	already	started,	click	the	 	New	button	on	the	main
toolbar,	or	select	the	File	menu	and	choose	the	New…	option.

2.		A	blank	model	diagram	will	be	displayed.	You	are	now	ready	to	begin
creating	your	new	model.



Step	1.	Create	a	Data	Entity
1.		Drag	the	Data	Entity	shape	from	the	Document	Stencil	onto	the	model
diagram.

					The	Create	Data	Entity	dialog	will	be	displayed:

2.		Enter	an	Entity	name	of	Customer.
					Do	not	specify	a	physical	file	name	for	the	entity	at	this	stage.
3.		Click	the	OK	button.
					The	shape	you	dropped	onto	the	diagram	will	be	updated	and	will	appear
something	like	this:

4.		Note	the	inverted	red	triangle	to	the	top-right	of	the	shape.		Whenever	you
see	this	triangle,	it	means	that	the	entity	has	error	messages.

5.		Right-click	the	Customer	entity	and	choose	the	Error	messages…	option
from	the	pop-up	menu.		The	following	dialog	will	be	displayed:



						Note	that	dynamic	validation	of	the	entity	has	taken	place;	you	do	not	have
to	wait	until	you	build	your	model	in	order	to	see	errors	that	will	prevent	it
from	being	built.

						From	time	to	time	in	the	remaining	tutorials,	when	you	see	the	red	triangle,
use	the	Error	messages…	option	to	see	some	of	the	different	errors	that	are
generated	for	an	entity.



Step	2.	Define	Elements	for	the	Entity
In	this	step,	you	will	add	the	elements	for	the	Customer	entity.	Some	elements
will	be	defined	using	Data	Types	and	some	elements	will	be	defined	manually.
The	Customer	entity	will	have	the	following	elements:	Customer	Number,
Customer	Name,	Address	Line	1,	Address	Line	2,	Address	Line	3,	Address	Line
4,	Postal	Code	and	Country.
Note:	If	you	compare	the	Customer	Entity	to	the	one	in	the	sample,	you	will	see
that	it	has	a	different	structure.	In	tutorial	LMG004,	you	will	transfer	some	of
these	elements	to	a	Conceptual	Entity	and	use	relationships	to	include	them	into
the	Customer	Entity	so	that	it	matches	the	sample	model.
1.		Right-click	the	Customer	entity	and	select	the	Elements…	option.
					The	Maintain	Entity	Elements	window	will	be	displayed:

					Note	that	this	window	can	also	be	displayed	by	selecting	the	entity	and	then
selecting	the	Edit	menu	and	choosing	the	Entity	Elements…	option.

2.		Click	the	 	New	button	to	create	a	new	element.
					The	Create	Element	dialog	will	be	displayed:



3.		Enter	a	Name	of	Customer	number.
4.		Using	the	Data	type	drop-down	list,	select	the	ID	Number	(Long)	data	type.
					Note	that	the	type	and	length	of	the	data	type	is	displayed	to	the	right	of	its
description.	This	can	aid	you	in	selecting	an	appropriate	data	type.

5.		Give	the	element	a	field	name	of	iiiCUSNUM,	where	iii	are	your	initials.
6.		Click	the	OK	button.
7.		The	Customer	Number	element	will	be	added	to	the	list	of	elements	and	the
Create	Element	window	will	be	redisplayed.

8.		Create	an	element	called	Customer	name.	This	field	will	be	manually	defined
as	follows:
a.	Select	the	Type/length	option.
b.	Using	the		drop-down	list,	select	Alphanumeric	and	specify	a	length	of	50.
c.	Enter	a	field	name	should	be	iiiCUSNAM.
d.	Click	the	OK	button.

9.		Create	the	remaining	element	for	the	Customer	entity	as	follows:

Element	Name Data	Type Field	Name

Address	line	1 Text iiiADDL1

Address	line	2 Text iiiADDL2

Address	line	3 Text iiiADDL3

Address	line	4 Text iiiADDL4

Post	code Zip/Post	Code iiiPSTCD



Country Description	(Short) iiiCNTRY

	

					Note	that,	although	you	have	specified	field	names	for	all	the	elements	you
have	created,	it	is	not	necessary.	The	field	name	is	only	required	when	the
entity	is	built.

10.	Click	the	Cancel	button	to	return	to	the	entity	elements	window.



Step	3.	Work	with	Elements	in	Entities
In	this	step,	you	will	change	the	Customer	Name	element	to	user	a	data	type.
You	will	also	learn	how	to	change	the	sequence	of	the	elements	in	an	entity.	The
sequence	of	elements	is	important	as	it	determines	the	sequence	of	the	fields	in
the	file	when	an	entity	is	built.	Finally,	you	will	remove	an	element	from	the
entity.
1.		Double-click	the	Customer	Name	element	and	change	it	to	use	the	Name
data	type.

					Click	the	OK	button.
					Its	entry	will	be	updated	in	the	elements	list	to	show	its	new	definition.
2.		Select	the	Country	element.

					Click	the	 	Move	Up	button	on	the	toolbar.	The	element	moves	above	Post
Code	in	the	list.

					Click	the	 	Move	Down	button	to	move	it	below	Post	Code	again.
					Note	that	the	sequence	in	which	the	elements	appear	here	will	be	the
sequence	of	the	fields	in	the	file	when	the	entity	is	built.	Try	re-sequencing
other	elements.

3.		In	your	model,	you	may	decide	that	Address	Line	4	is	no	longer	needed.	To
remove	it,	select	Address	Line	4	and	click	the	 	Delete	toolbar	button.

					You	will	be	asked	whether	you	wish	to	perform	the	deletion.
					Click	the	Yes	button.	The	element	will	be	removed	from	the	list.
Note	that	the	element	is	not	actually	deleted	at	this	stage.	It	is	merely	detached
from	the	element.	Should	it	be	required	at	a	later	stage,	it	can	be	accessed	from
the	Unattached	Elements	window.



Step	4.	Assign	an	Identifying	Element
In	this	step,	you	will	create	the	Identifying	Element	for	the	entity.	Only	one
element	may	be	selected	as	the	identifying	element.	For	the	Customer	entity,	the
Customer	Number	is	the	identifying	element.

1		Select	the	Customer	Number	element	and	click	the	 	Set	Identifier	button
on	the	toolbar.	
Note	that	a	key	image	appears	next	to	the	element.	This	denotes	that
Customer	Number	is	the	identifying	element	of	Customer.

2.		Select	the	Customer	Name	element	and	click	the	 	Set	Identifier	button.
					Note	that	the	key	image	is	removed	from	Customer	Number	and	assigned	to
Customer	Name.

3.		Click	the	 	Set	Identifier	button	again	-	the	key	image	is	removed	from
Customer	Name.

4.		Select	Customer	Number	again	and	click	the	 	Set	Identifier	button	to
make	it	the	identifying	element	of	Customer.

					At	this	stage,	the	Maintain	Entity	Elements	window	should	appear	something
like	this:

5.		Select	the	Customer	Number	element	and	click	on	the	 	Notes	toolbar	icon.
The	Maintain	Elements	Notes	dialog	will	be	displayed.



a.		Add	some	help	text	to	the	Customer	Number.

b.		Press	OK	to	close	the	dialog.

6.		Click	the	 	Close	toolbar	button	to	close	the	Customer	Entity	Elements
window.

					The	Customer	diagram	shape	will	be	updated	and	should	look	something	like
this:

					Note	that	Customer	Number	is	suffixed	with	an	asterisk.	The	*	denotes	that
Customer	Number	is	Customer's	identifying	element.

7.		Try	moving	the	Customer	shape	around	the	diagram.
8.		Use	the	Pan	and	Zoom	facility	to	enlarge	the	view	of	the	diagram.
9.		Switch	between	the	Elements,	Build	Status	and	Collapsed	views	for
Customer.

Note	that	there	is	an	inverted	red	triangle	above	the	top-right	of	the	entity.		This



indicates	that	the	entity	has	validation	errors.	



Step	5.	Save	the	Model
In	this	step,	you	will	save	the	model.

1.		To	save	the	model,	click	the	 	Save	button	on	the	main	toolbar,	or	select	the
File	menu	and	choose	the	Save	option.

					The	Save	Model	As	dialog	will	be	displayed:

2.		Enter	a	name	that	is	meaningful	to	you	and	click	the	Save	button.
					The	model	diagram	will	be	redisplayed	and	a	Model	Saved	message	will	be
displayed	at	the	bottom	of	the	main	window.



Summary
Important	Observations

Creating	an	entity	is	as	simple	as	dragging	and	dropping	the	appropriate
entity	shape	from	the	Document	Stencil	onto	the	model	diagram.	You	will
learn	more	about	the	different	entity	shapes	in	a	later	tutorial.
Although	field	and	file	names	are	required	when	elements	and	entities	are
built,	they	do	not	need	to	be	specified	when	the	element	or	entity	is	first
created.
	
Note	that	a	Save	As…	option	is	available	on	the	File	menu	for	saving	a	copy
of	your	model	under	a	different	name.

Tips	and	Techniques
Create	elements	within	an	entity	as	you	think	of	them.	You	can	re-sequence
them	at	a	later	stage.
It	is	recommended	that	you	use	data	types	when	defining	a	logical	model.
Data	types	provide	a	level	of	abstraction	to	your	design.	They	ensure	that
standards	are	enforced.	For	example,	all	Date	fields	will	have	the	same
formatting.
The	modeler	will	warn	you	if	you	have	made	changes	to	a	model	and	are
exiting	without	having	saved	your	work.

What	I	Should	Know
How	to	create	an	entity.
How	to	create,	change,	delete	and	re-sequence	elements	for	an	entity.
How	to	set	an	identifying	element	for	an	entity.
How	to	create	user	notes.
How	to	save	a	model.



LGM003	–	The	Join	Relationship
Objective:

To	learn	how	to	create	a	Join	relationship	between	two	entities.
To	understand	how	Join	relationships	impact	entities.

To	achieve	the	tutorial	objectives,	you	will	complete	the	following	steps:
Step	1.	Create	an	Order	Entity.
Step	2.	Relate	the	Order	and	Customer	Entities.
Step	3.	Sequence	Elements	in	Order	Entity
Summary

Before	You	Begin:
You	may	wish	to	review	the	following	topics	in	the	Logical	Modeler	Guide:

Relationships
Work	with	Relationships.

In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
LGM001	-	View	a	Model
LGM002	-	Create	an	Entity

its:LANSA076.CHM::/lansa/l4wmod_240.htm
its:LANSA076.CHM::/lansa/l4wmod_260.htm


Step	1.	Create	an	Order	Entity
In	this	step,	you	will	create	a	data	entity	called	Order.	The	Order	entity	will	be
related	to	the	Customer	entity	in	Step	2	of	the	tutorial.
1.		If	the	model	you	saved	in	tutorial	LGM002	-	Create	an	Entity		is	not
currently	displayed,	open	it	by	selecting	the	File	menu	and	choosing	the
Open…	option.

2.		Create	a	data	entity	named	Order.
					Set	its	physical	file	name	to	iiiORDER,	where	iii	are	your	initials.
3.		Create	the	following	elements	for	the	Order	entity:

Element	Name Data	Type Field	Name

Order	number ID	Number	(Long) iiiORDNUM

Order	date Date iiiORDDAT

Order	status Code iiiORDSTS

	

4.		Make	Order	Number	the	identifying	element	of	Order.
5.		Close	the	elements	window.



Step	2.	Relate	the	Order	and	Customer	Entities
In	this	step,	you	will	create	a	relationship	between	the	Order	and	Customer
entities	and	see	the	impact	it	has	on	the	Order	entity's	elements.	Our	model	is
based	on	a	classical	order	processing	system	where	customers	place	orders	for
products.
1.		Drag	the	Relate	connector	from	the	Document	Stencil	onto	a	blank	portion	of
the	model	diagram.

					Note	that	once	dropped,	the	connector	remains	as	the	selected	shape,	with
green	handles	at	each	end.

2.		Drag-and-drop	the	Source	end	handle	of	the	Relate	shape	(denoted	by	<-
Source)	to	the	centre	of	the	Order	entity.

					Note	that	the	shape	will	only	be	properly	connected	to	the	entity	when	the
entity's	border	turns	red.

3.		Drag-and-drop	the	Target	end	handle	of	the	Relate	shape	to	the	centre	of	the
Customer	entity.	Ensure	that	the	border	of	Customer	turns	red	before
dropping	the	end	of	the	connector.

					If	both	ends	of	the	connector	have	been	correctly	attached,	the	Create
Relationship	dialog	will	be	displayed:



					The	relationship	you	are	going	to	create	states	that	an	Order	must	refer	to
Customer,	i.e.	an	Order	cannot	exist	without	referring	to	an	existing
Customer.

4.		Select	'must	refer	to'	from	the	Relationship	Type	drop-down	box	at	the	top	of
the	window.

					Depending	on	the	types	of	entity	being	related,	the	Relationship	Type	drop-
down	list	at	the	top	of	the	window	will	contain	different	types	of	allowable
relationships.	In	this	instance,	because	we	are	relating	two	data	entities,	the
allowable	relationships	are	Parent/Child	(is	a	parent	of),	Mandatory	Join
(must	refer	to)	and	Optional	Join	(may	refer	to).

5.		The	descriptor	of	a	relationship	allow	the	user	to	specify,	in	easily
understandable	terms,	the	nature	of	the	relationship	between	the	two	entities.
In	this	instance,	they	will	be	defaulted	to	'must	refer	to'	and	'must	be	referred
to	by'.	Change	these	to	'is	placed	by'	for	the	Order/Customer	descriptor	and
'places	an'	for	the	Customer/Order	descriptor.

6.		Note	that	the	Logical	View	Name	entry	field,	toward	the	bottom	of	the
dialog,	has	been	enabled.		This	is	because	that,	as	a	result	of	this	join



relationship,	a	logical	view	for	the	Order	file	will	be	created	by	the	modeler
when	the	model	is	built.		Note	that	the	caption	of	the	box	surrounding	the
entry	field	has	also	changed	to	show	to	which	entity	(Order)	the	logical	view
name	will	belong	when	created.		Also	shown	is	the	entity's	physical	file
name,	to	aid	you	in	determining	what	the	logical	view	name	should	be	called.

					Leave	the	logical	view	name	blank.		The	impact	of	this	will	be	shown	later.
7.		The	field	names	of	the	inherited	elements	are	important	when	the	entities	are
built	–they	must	be	unique.	This	will	be	explained	more	fully	in	the	following
tutorial:	LGM004	–	Conceptual	Entities	and	the	Includes	Relationship.

8.		Click	the	OK	button.	The	model	diagram	will	be	updated	and	the	Customer
and	Order	entities	will	appear	something	like	this:

					Note	the	following	about	the	updated	diagram:
The	Order	entity	has	inherited	the	identifying	element	of	Customer
Number.
Order's	Customer	Number	is	denoted	as	being	inherited	via	a	join
relationship	with	a	lesser	than	sign	in	brackets	(<).
The	connector	between	the	two	entities	has	had	its	text	set	to	the	Source	to
Target	description	that	you	entered.



The	full	impact	of	the	relationship	on	the	two	entities	will	be	shown	and
discussed	further	in	a	later	tutorial,	where	these	entities	will	be	built.



Step	3.	Sequence	Elements	in	Order	Entity
In	this	step,	you	will	see	how	the	relationship	has	impacted	the	Order	Entity.
You	will	sequence	the	elements	so	that	the	Customer	Number	is	the	second
element	listed	in	the	entity.
1.		Display	the	Maintain	Entity	Elements	window	for	the	Order	entity.

a.		Select	the	Customer	Number	element.
b.		The	Maintain	Entity	Elements	window	should	appear	something	like	this:

					Note	the	following	about	the	inherited	Customer	Number	element:
It	cannot	be	specified	as	the	identifying	element	of	the	entity.
Its	notes	can	be	maintained.
It	can	be	re-sequenced	in	the	list.
It	can	be	deleted	(note	that	deleting	the	element	will	delete	the	relationship
with	the	Customer	entity).

2.		Move	the	Customer	Number	element	to	immediately	below	the	Order
Number.

					Note	that	elements	can	be	positioned	anywhere	within	the	entity,	depending
on	your	preference	of	what	their	sequence	should	be.		The	sequence	of
identifying	elements	will	determine	the	primary	key	of	the	physical	file	once
the	entity	is	built.



3.		Click	the	 	Close	button	to	close	the	Entity	Elements	list.
					The	Order	entity	should	now	appear	something	like	this:

4.		Save	your	model.



Summary
Important	Observations

When	creating	a	relationship,	it	will	only	be	recognized	if	the	borders	turn
red	when	connecting	the	Relate	connector	to	the	two	entities.
The	allowable	relationships	between	two	entities	depends	on	the	types	of
entity	being	related.
Deleting	an	inherited	element	from	an	entity	will	delete	the	entire
relationship	via	which	that	element	has	been	inherited.
The	model	diagram	shows	inherited	elements	with	a	symbol	to	their	right	to
denote	the	type	of	relationship	by	which	they	were	inherited.

Tips	and	Techniques
Change	the	default	descriptors	for	a	relationship	to	something	more
meaningful	to	the	nature	of	the	relationship	between	the	two	entities.

What	I	Should	Know
How	to	create	a	relationship	between	two	entities.
How	inherited	elements	are	shown	on	the	model	diagram	and	in	the	Entity
Elements	window.



LGM004	–	Conceptual	Entities	and	the	Includes	Relationship
Objective:

To	learn	how	to	create	a	conceptual	entity.
To	learn	how	to	transfer	elements	between	two	entities.
To	learn	how	to	create	multiple	relationships	between	a	data	entity	and	a
conceptual	entity.

To	achieve	the	tutorial	objectives,	you	will	complete	the	following	steps:
Step	1.	Create	a	Conceptual	Entity
Step	2.	Transfer	Elements	from	Customer	to	Address
Step	3.	Relate	the	Customer	and	Address	Entities
Summary
Before	You	Begin:

You	may	wish	to	review	the	following	topics	in	the	Logical	Modeler	Guide:
Entities
Transferring	Elements
Relationships.

In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
LGM001	-	View	a	Model
LGM002	-	Create	an	Entity
LGM003	–	The	Join	Relationship.

its:LANSA076.CHM::/lansa/l4wmod_120.htm
its:LANSA076.CHM::/lansa/l4wmod_190.htm
its:LANSA076.CHM::/lansa/l4wmod_240.htm


Step	1.	Create	a	Conceptual	Entity
Although	the	Customer	entity	contains	address	information,	it	is	now	required
to	hold	two	addresses:	Delivery	Address	and	Billing	Address.	Instead	of
specifying	more	address	elements	in	the	Customer	entity,	you	will	create	an
Address	conceptual	entity	which	will	be	related	to	the	Customer	entity	multiple
times.
1.		Ensure	the	model	you	created	in	the	previous	tutorial	is	open.
2.		Drag	the	Conceptual	Entity	shape	from	the	Document	Stencil	onto	the	model
diagram.

					The	Create	Conceptual	Entity	dialog	will	be	displayed:

					Note	that	a	physical	file	name	is	not	specified	for	a	Conceptual	entity	–	when
it	is	built,	a	database	file	is	not	generated.

3.		Name	the	entity	Address	and	click	the	OK	button.
					The	entity's	shape	will	be	updated	with	its	name	on	the	diagram.



Step	2.	Transfer	Elements	from	Customer	to	Address
Because	you	have	already	defined	some	address	elements	in	the	Customer
entity,	you	do	not	need	to	re-define	them.	In	this	step,	you	will	transfer	them
from	the	Customer	entity	to	the	Address	entity.
1.		Open	the	Entity	Elements	window	for	both	the	Customer	and	Address
entities.

					Position	the	Address	elements	window	beneath	the	Customer	elements
window.

2.		Using	the	Shift	or	Control	key,	select	all	of	the	address	elements	in	the
Customer	entity.

3.		Drag	the	selected	elements	from	the	Customer	elements	list	to	the	Address
element	list	and	drop	them.

					The	elements	will	be	removed	from	the	Customer	elements	list	and	will	be
added	to	the	Address	elements	list.

4.		Close	both	Entity	Elements	windows.	Your	model	diagram	should	now
appear	something	like	this:



Step	3.	Relate	the	Customer	and	Address	Entities
In	this	step,	you	will	create	multiple	relationships	between	the	Customer	and
Address	entities	in	order	to	support	Customer	Delivery	and	Billing	Addresses.
1.		Define	an	Includes	relationship	between	Customer	and	Address.
					Customer	will	be	the	source	entity	and	Address	will	be	the	target	entity.
					Specify	Billing	as	the	Descriptive	Prefix.	Note	that	the	only	allowable
relationship	between	a	Data	entity	and	a	Conceptual	entity	is	the	Includes
relationship.

					Once	the	relationship	has	been	defined,	the	model	diagram	will	appear
something	like	this:

					Note	the	following	about	the	diagram:
The	elements	from	the	Address	entity	have	been	inherited	by	the
Customer	entity.
The	inherited	elements	are	denoted	by	a	greater	than	sign	in	brackets	(>)
to	the	right	of	their	names.
The	inherited	elements	have	been	prefixed	with	the	Descriptive	Prefix	of
the	relationship.



The	Descriptive	Prefix	has	been	added	to	the	text	of	the	connector.
2.		Define	another	Includes	relationship	between	Customer	and	Address.
					Specify	Delivery	as	the	Descriptive	Prefix.
					The	model	diagram	should	now	appear	something	like	this:

					Note	that	the	Descriptive	Prefix	of	a	relationship	is	not	mandatory	–	the
relationship	between	the	Order	and	Customer	entities	does	not	have	one
specified.	In	the	case	of	the	relationships	between	Customer	and	Address,
however,	it	is	advantageous	to	specify	Descriptive	Prefixes,	so	that	the
inherited	elements	can	be	differentiated.

3.		Display	the	Customer	Entity	Elements	window.
					Note	that	the	two	sets	of	elements	that	have	been	inherited	from	the	Address
entity	have	the	same	field	names.		One	of	the	rules	for	an	entity	build	is	that
all	field	names	must	be	unique	within	the	entity.

4.		For	each	of	the	'Delivery'	address	elements,	append	a	'D'	to	the	end	of	their
field	names.	

					For	each	of	the	'Billing'	address	elements,	append	a	'B'	to	the	end	of	their



field	names.
					Note	that	all	field	names	are	now	unique	within	the	Customer	entity.
5.		Move	the	Delivery	Address	above	the	Billing	Address.	Notice	that	all	of	the
included	elements	move	together.

6.		Close	the	Customer	Entity	Elements	window.
					The	model	diagram	should	now	appear	something	like	this:

7.		Save	the	model.



Summary
Important	Observations

The	Descriptive	Prefix	can	be	important	in	differentiating	between	inherited
elements	if	there	is	more	than	one	relationship	between	the	two	entities.
If	an	element	is	inherited	more	than	once	by	an	entity,	its	field	name	must	be
unique	within	the	entity.
When	you	move	the	included	attributes	in	the	Customer	entity,	they	are
moved	as	a	group	of	attributes.

Tips	and	Techniques
If	you	think	you	may	have	created	an	element	in	the	wrong	entity,	do	not
worry	as	you	can	transfer	it	to	another	entity	at	a	later	stage.
Change	the	default	descriptors	for	a	relationship	to	something	more
meaningful	to	the	nature	of	the	relationship	between	the	two	entities.
To	resequence	the	order	of	the	address	elements,	you	must	work	with	the
Address	entity.	If	the	element	order	is	changed	in	the	Address	entity,	the
order	will	also	be	updated	in	the	Customer	entity.
The	Address	conceptual	entity	will	ensure	that	all	addresses	have	the	same
format.	If	you	change	the	format	of	the	postal	code,	it	needs	to	be	done	in
only	one	place	in	the	complete	model	and	all	entities	will	be	updated.

What	I	Should	Know
How	to	create	a	conceptual	entity.
How	to	transfer	elements	between	entities.
How	to	create	an	Includes	relationship	between	two	entities.
The	importance	of	the	Descriptive	Prefix	when	creating	multiple
relationships	between	the	same	entities.
When	to	change	the	field	name	of	inherited	elements.



LGM005	–	The	Parent/Child	Relationship
Objective:

To	learn	how	to	create	a	Parent/Child	relationship	between	two	entities.
To	understand	how	Parent/Child	relationships	impact	entities.
To	create	relationships	between	Product	and	Ordered	Product,	and
relationships	between	Order	and	Ordered	Product.

To	achieve	the	tutorial	objectives,	you	will	complete	the	following	steps:
Step	1.	Create	an	Ordered	Product	Entity
Step	2.	Relate	the	Order	and	Ordered	Product	Entities
Step	3.	Create	a	Product	Entity
Step	4.	Relate	Product	and	Ordered	Product
Summary

Before	You	Begin:
You	may	wish	to	review	the	following	topics	in	the	Logical	Modeler	Guide:

Relationships.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:

LGM001	-	View	a	Model
LGM002	-	Create	an	Entity
LGM003	–	The	Join	Relationship
LGM004	–	Conceptual	Entities	and	the	Includes	Relationship

its:LANSA076.CHM::/lansa/l4wmod_240.htm


Step	1.	Create	an	Ordered	Product	Entity
In	this	step,	you	will	create	a	data	entity	called	Ordered	Product.	The	Ordered
Product	entity	will	be	related	to	the	Order	entity	in	Step	2	of	this	tutorial.
1.		Ensure	the	model	you	created	in	the	previous	tutorial	is	open.
2.		Create	a	data	entity	called	Ordered	Product.
					Set	its	physical	file	name	to	iiiOPR,	where	iii	are	your	initials.
3.		Create	the	following	elements	for	the	Ordered	Product	entity:

Element	Name Data	Type Field	Name

Delivery	date Date iiiDLVDAT

Order	quantity Quantity iiiORDQTY

Delivered	quantity Quantity iiiDLVQTY

Backordered	quantity Quantity iiiBOQTY

	

4.		Make	Delivery	Date	the	identifying	element	of	Ordered	Product.
5.		Close	the	elements	window.



Step	2.	Relate	the	Order	and	Ordered	Product	Entities
In	this	step,	you	will	create	a	relationship	between	the	Order	and	Ordered
Product	entities	and	see	the	impact	it	has	on	the	Ordered	Product	entity's
elements.	Remember,	the	model	is	based	on	a	classical	order	processing	system,
where	customers	place	orders	for	products.	The	relationship	you	are	going	to
create	states	that	an	Order	is	the	parent	of	Ordered	Product,	i.e.	an	Ordered
Product	cannot	exist	without	its	parent	entity,	Order.
1.		Drag	the	Relate	connector	from	the	Document	Stencil	onto	a	blank	portion	of
the	model	diagram.

2.		Connect	the	relate	shape	source	to	the	Order	entity	and	connect	the	target	to
the	Ordered	Product	entity.

3.		In	the	Create	Relationship	dialog,	select	'is	a	parent	of'	from	the	Relationship
Type	drop-down	box.

					Leave	Descriptive	Prefix	blank.
					Note	that	Logical	View	Name	is	disabled.		The	impact	of	this	will	be	shown
later.

					Click	the	OK	button.
4.		The	model	diagram	will	be	updated	and	the	Order	and	Ordered	Product
entities	will	appear	something	like	this:

					Note	the	following	about	the	updated	diagram:
The	Ordered	Product	entity	has	inherited	the	identifying	element	of	Order
Number,	which	is	now	an	identifier	of	Ordered	Product.
The	Ordered	Product's	Order	Number	is	denoted	as	being	an	inherited
identifier	by	an	asterisk	in	brackets	to	its	right.
The	full	impact	of	the	relationship	on	the	two	entities	will	be	shown	and
discussed	further	in	a	later	tutorial,	where	these	entities	will	be	built.



Step	3.	Create	a	Product	Entity
In	this	step,	you	will	create	another	data	entity,	Product.	Some	notes	will	be
assigned	to	the	Product	Number	element	and	the	Product	entity	will	be	related
to	the	Order	Product	entity.
1.		Create	a	Data	Entity	called	Product.
					Set	its	physical	file	name	to	iiiPRD,	where	iii	are	your	initials.
2.		Create	the	following	elements	for	the	Product	entity:

Element	Name Data	Type Field	Name

Product	number ID	Number	(long) iiiPRDNUM

Product	name Name iiiPRDNAM

Quantity	on	hand Quantity iiiQTYOH

Quantity	committed Quantity iiiQTYCOM

	

3.		Make	Product	Number	the	Identifying	Element	of	Product.

4.		Select	the	Product	Number	element	and	click	the	 	Notes	toolbar	button.
					The	Maintain	Element	Notes	dialog	will	be	displayed:



5.		Enter	some	notes	for	the	element:	The	Product	Number	uniquely	identifies	a
product	within	the	system.	Note	that	the	text	entered	here	is	completely	free-
format.

					Click	the	OK	button.
5.		Note	that	a	notepad	image	is	displayed	to	the	right	of	the	Product	Number.
This	denotes	that	the	element	has	notes	associated	with	it.

6.		Close	the	elements	window.



Step	4.	Relate	Product	and	Ordered	Product
In	this	step,	you	will	make	Product	a	parent	of	Ordered	Product	and	manipulate
the	sequence	of	Ordered	Product's	identifying	elements.
1.		Make	Product	a	parent	of	Ordered	Product.	(Be	sure	to	connect	the	source	to
the	Product	entity.)

					The	Order,	Ordered	Product	and	Product	entities	should	appear	something
like	this:

					Note	that	Ordered	Product	has	inherited	Product's	identifying	element,
Product	Number,	as	one	of	its	identifiers	(denoted	by	an	asterisk	in	brackets).

					Note	also	that	Product	Number	has	become	the	first	identifying	element	of
Ordered	Product.	However,	it	is	usual	in	an	order	processing	system	for	an
entity	like	Ordered	Product	to	have	Order	Number	as	its	first	identifying
element,	such	that	data	can	be	easily	read	from	the	file	in	Order	Number
sequence.

2.		Open	the	Maintain	Entity	Elements	window	for	Ordered	Product.
3.		Move	Order	Number	above	Product	Number.
					Note	that,	because	Order	Number	and	Product	Number	originate	from	two
different	entities,	the	sequence	of	the	inherited	identifying	elements	can	be
changed.

					The	Ordered	Product	entity	should	now	appear	something	like	this:



4.		Display	the	Change	Relationship	dialog	for	the	relationship	between	Order
and	Ordered	Product.		Note	that	the	Logical	View	Name	for	the	relationship
is	disabled.		No	logical	view	will	be	created	to	support	this	relationship;	it
will	be	supported	by	the	natural	order	of	the	entity's	identifying	elements.

					Display	the	Change	Relationship	dialog	for	the	relationship	between	Product
and	Ordered	Product.		Note	that	the	Logical	View	Name	is	enabled.		This	is
because	the	relationship	is	the	second	parent/child	relationship	to	affect
Ordered	Product's	identifying	elements,	so	a	logical	view	will	be	created	to
support	the	relationship.

5.		Save	your	model.



Summary
Important	Observations

The	identifying	elements	of	the	source	entity	in	a	parent/child	are	inherited
and	become	identifying	elements	of	the	target	entity.
The	inherited	identifying	elements	are	denoted	by	the	symbol	(*)	on	the
diagram.
The	source	and	target	end	of	the	connector	is	important	in	determining
which	entity	will	be	the	parent	(source)	and	which	object	will	be	the	child
(target).
Subsequent	parent/child	relationships	to	the	first	parent/child	relationship	in
a	target	entity	will	generate	logical	views	in	the	target	entity.

Tips	and	Techniques
If	an	entity	has	more	than	one	parent,	define	them	in	any	order	you	wish.
The	inherited	identifying	elements	can	be	re-sequenced	at	a	later	stage.
Enter	notes	against	elements.	Notes	will	be	transformed	into	field-level	help
text	when	the	entity	is	built.

What	I	Should	Know
How	to	create	a	parent/child	relationship	between	two	entities.
How	to	re-sequence	identifying	elements.
How	inherited	identifying	elements	are	shown	on	the	model	diagram	and	in
the	Entity	Elements	window.



LGM006	–	The	Variant	Entity	and	the	Variation	Relationship
Objective:

To	learn	how	to	create	a	Variant	entity.
To	learn	how	to	create	a	Variation	relationship	between	two	entities.
To	learn	how	to	differentiate	between	variants	in	the	source	entity	of	the
Variation	relationship.
To	understand	how	Variation	relationships	impact	entities.
To	create	the	Supplied	Product	and	Manufactured	Product	variant	entities	in
the	model	and	to	create	variation	relationships	to	the	Product	entity.

To	achieve	the	tutorial	objectives,	you	will	complete	the	following	steps:
Step	1.	Create	a	Manufactured	Product	Entity
Step	2.	Relate	the	Product	and	Manufactured	Product	Entities
Step	3.	Create	a	Supplied	Product	Entity	and	Relate	it	to	the	Product	Entity
Step	4.	Create	a	Product	Type	Element	for	the	Product	Entity
Summary

Before	You	Begin:
You	may	wish	to	review	the	following	topics	in	the	Logical	Modeler	Guide:

Entities		
Relationships.

In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
LGM001	-	View	a	Model
LGM002	-	Create	an	Entity
LGM003	–	The	Join	Relationship
LGM004	–	Conceptual	Entities	and	the	Includes	Relationship
LGM005	–	The	Parent/Child	Relationship

its:LANSA076.CHM::/lansa/l4wmod_120.htm
its:LANSA076.CHM::/lansa/l4wmod_240.htm


Step	1.	Create	a	Manufactured	Product	Entity
In	this	step,	you	will	create	a	Variant	entity	called	Manufactured	Product.	A
Variant	entity	is	used	to	group	elements	which	are	part	of	the	Product	entity	but
specific	to	products	which	are	manufactured.	The	Manufactured	Product	entity
will	be	related	to	the	Product	entity	in	Step	2	of	the	tutorial.
1.		Ensure	the	model	you	created	in	the	previous	tutorial	open.
2.		Drag	the	Variant	Entity	shape	from	the	Document	Stencil	onto	the	model
diagram.

					The	Create	Variant	Entity	dialog	will	be	displayed.
3.		Give	the	entity	a	name	of	Manufactured	Product.
					Set	its	physical	file	name	to	iiiPRM,	where	iii	are	your	initials.
4.		Create	an	element	for	the	entity	called	Drawing	number.
					Select	the	Number	data	type.
					Set	its	field	name	to	iiiDRWNUM,	where	iii	are	your	initials.
					Note	that	an	identifying	element	for	the	entity	cannot	be	set	–	Variant	entities
can	only	inherit	their	identifying	elements	from	another	entity	via	a	Variation
relationship.

5.		Close	the	elements	window.



Step	2.	Relate	the	Product	and	Manufactured	Product	Entities
In	this	step,	you	will	create	a	relationship	between	the	Product	and
Manufactured	Product	entities	and	see	the	impact	it	has	on	the	Manufactured
Product	entity's	elements.
1.		Drag	the	Relate	connector	from	the	Document	Stencil	onto	a	blank	portion	of
the	model	diagram.

					Connect	the	source	end	of	the	relate	shape	to	the	Product	entity	and	connect
the	target	end	to	the	Manufactured	Product	entity.	The	relationship	you	are
going	to	create	states	that	Product	has	a	variant	called	Manufactured	Product,
i.e.	a	Manufactured	Product	is	a	type	of	Product.

2.		In	the	Create	Relationship	dialog,	select	'has	a	variation	named'	from	the
Relationship	Type	drop-down	box.

					Enter	a	Descriptive	Prefix	of	Manufactured.
					Click	the	OK	button.
3.		The	model	diagram	will	be	updated	and	the	Product	and	Manufactured
Product	entities	will	appear	something	like	this:

					Note	the	following	about	the	updated	diagram:
The	Manufactured	Product	entity	has	inherited	the	identifying	element	of
Product,	Product	Number,	which	is	now	the	identifying	element	of
Manufactured	Product.
The	identifying	element	of	Manufactured	Product	has	a	descriptive	prefix
of	Manufactured.
The	descriptive	prefix	has	been	placed	in	the	text	of	the	relationship
shape.
Manufactured	Product	Number	is	denoted	as	being	an	inherited	identifier
by	an	asterisk	in	brackets	(*)	to	its	right.



The	full	impact	of	the	relationship	on	the	two	entities	will	be	shown	and
discussed	further	in	a	later	tutorial,	where	these	entities	will	be	built.



Step	3.	Create	a	Supplied	Product	Entity	and	Relate	it	to	the
Product	Entity
In	this	step,	you	will	create	another	Variant	entity,	Supplied	Product.	A	Variant
entity	is	used	to	group	elements	which	are	part	of	the	Product	entity	but	specific
to	products	which	are	provided	from	a	supplier.	The	Supplied	Product	entity
will	be	related	to	the	Product	entity.
1.		Create	a	Variant	entity	called	Supplied	Product.
					Set	its	physical	file	name	to	iiiPRS,	where	iii	are	your	initials.
2.		Create	an	element	for	the	entity	called	Supplier	product.
					Select	the	Text	data	type.
					Set	its	field	name	to	iiiPRDSUP,	where	iii	are	your	initials.
3.		Add	a	relationship	to	make	Supplied	Product	a	variant	of	Product.
					Set	the	Descriptive	Prefix	to	Supplied.



Step	4.	Create	a	Product	Type	Element	for	the	Product	Entity
In	this	step,	you	will	create	a	Product	Type	element	for	the	Product	entity.	In	the
resultant	database,	this	element	will	be	used	to	denote	whether	a	Product	is
Manufactured	or	Supplied.
1.		Open	the	Entity	Elements	window	for	the	Product	Entity.
2.		Create	an	element	called	Product	type.
					Set	its	field	type	to	Alphanumeric	and	its	length	to	10.
					Set	its	field	name	to	iiiPRDTYP,	where	iii	are	your	initials.
3.		Move	the	Product	Type	element	immediately	below	the	Product	Name
element.

4.		Close	the	Entity	Elements	window.
					The	model	diagram	should	now	look	something	like	this:

5.		Save	your	model.



Summary
Important	Observations

A	Variant	entity	can	only	inherit	its	identifying	element(s)	from	another
entity	by	means	of	a	Variation	relationship.
You	cannot	assign	an	identifying	element	when	working	with	elements	of	a
Variant	entity.

Tips	and	Techniques
Ensure	you	create	an	element	in	the	source	entity	of	the	Variation
relationship	that	will	hold	the	entity's	type	of	variation	in	the	resultant
database.
Variant	entities	and	variation	relationships	are	used	when	you	want	to	avoid
sparsely	populated	databases.	For	example,	you	could	include	all	elements
from	the	Supplied	Product	and	Manufactured	Product	entities	into	the
Product	Entity.	If	you	combine	these	entities	into	one	file,	you	will	notice
that	all	fields	relating	to	a	Manufactured	Product	will	be	blank	whenever	a
Product	is	a	Supplied	Product,	and	vice	versa.	Hence,	you	will	have	a
database	with	many	unused	fields.	Using	variations	allows	information	to	be
grouped	or	categorized.	The	Supplied	Product	file	will	only	contains	records
for	Supplied	Products	and	not	for	every	record	in	the	Product	File.

What	I	Should	Know
How	to	create	a	Variant	entity.
How	to	create	a	Variation	relationship	between	a	Data	entity	and	a	Variant
entity.



LGM007	–	User	Views
Objective:

To	learn	how	to	create	a	User	View	for	an	entity.
Understand	the	impact	of	User	Views	when	the	database	is	built.

To	achieve	the	tutorial	objectives,	you	will	complete	the	following	steps:
Step	1.	Create	a	User	View	for	the	Product	Entity
Step	2.	Create	a	User	View	for	the	Order	Entity
Summary

Before	You	Begin:
You	may	wish	to	review	the	following	topics	in	the	Logical	Modeler	Guide:

User	Views	.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:

LGM001	-	View	a	Model
LGM002	-	Create	an	Entity
LGM003	–	The	Join	Relationship
LGM004	–	Conceptual	Entities	and	the	Includes	Relationship
LGM005	–	The	Parent/Child	Relationship
LGM006	–	The	Variant	Entity	and	the	Variation	Relationship

its:LANSA076.CHM::/lansa/l4wmod_270.htm


Step	1.	Create	a	User	View	for	the	Product	Entity
In	this	step,	you	will	create	a	user	view	for	the	Product	Entity,	sequenced	by
Product	Name.
1.		Ensure	the	model	you	created	in	the	previous	tutorial	is	open.
2.		Select	the	Product	Entity	by	clicking	on	its	diagram	shape.
3.		Display	the	Maintain	User	Views	window	by	selecting	the	Edit	menu	and
choosing	the	User	Views…	option,	or	right-click	the	entity	and	select	the	User
Views…	option	from	the	pop-up	menu.

					The	Maintain	User	Views	window	is	displayed:

					A	new	user	view	can	be	created	and	existing	user	views	can	be	changed	and
deleted.

4.		To	create	a	new	user	view,	click	the	 	New	toolbar	button.
					The	Specify	User	View	window	will	be	displayed:



5.		At	the	top	of	the	window,	a	view	name	must	be	specified.
					On	the	left	pane	of	the	window	is	a	list	of	all	elements	within	the	entity.	This
includes	elements	that	have	been	inherited	by	the	entity	as	the	result	of
relationships	with	other	entities.

					On	the	right	pane	of	the	window	is	a	list	that	contains	the	elements	that	make
up	the	view.	These	are	known	as	the	view's	key.

6.		Enter	a	View	Name	of		By	Product	Name.
7.		Enter	a	Logical	View	Name	of	iiiPRDNM,	where	iii	are	your	initials.
8.		Add	the	Product	Name	element	to	the	view's	key	by	double-clicking	it	in	the
Element	list	,or	by	dragging	it	from	the	Element	list	to	the	Key	list.

					Note	that	when	an	element	is	added	to	the	Key	list,	it	is	removed	from	the
Element	list.	Double-clicking	an	element	in	the	Key	list	or	dragging	it	to	the
Element	list	will	remove	it	from	the	Key	list	and	add	it	back	into	the	Element
list.

					Note	that	when	the	entity	is	built,	the	user	view	will	be	transformed	into	a
logical	file	that	implements	the	key	that	you	have	specified	here.

9.		Click	the	OK	button.
					The	view	name	will	be	displayed	in	the	list	of	user	views.



A	user	view	can	be	changed	by	selecting	it	in	the	list	and	clicking	the	
Change	toolbar	button.

A	user	view	can	be	deleted	by	selecting	it	in	the	list	and	clicking	the	
Delete	toolbar	button.

10.Close	the	Maintain	User	Views	window	by	clicking	the	 	Close	toolbar
button.



Step	2.	Create	a	User	View	for	the	Order	Entity
In	this	step,	you	will	create	a	user	view	for	the	Order	Entity,	sequenced	by	Order
Status	and	Order	Date.
1.		Display	the	Maintain	User	Views	window	for	the	Order	entity.
2.		Create	a	User	view	called	By	Order	Status,	Order	Date.
4.		Enter	a	Logical	View	Name	of	iiiORDST.
5.		Add	Order	Date	to	the	key	of	the	view.
6.		Add	Order	Status	to	the	key	of	the	view.
					Note	that	you	have	added	the	elements	in	the	wrong	order.	You	need	Order
Status	to	be	the	first	element	in	the	view's	key.

7.		Move	Order	Status	above	Order	Date	list	by	selecting	either	element	and
clicking	the	up	or	down	arrow	buttons	to	the	right	of	Key	list.

8.		Click	the	OK	button.

9.		Close	the	Maintain	User	Views	window	by	clicking	the	 	Close	toolbar
button.

					The	full	impact	of	the	user	views	created	in	this	tutorial	will	be	shown	and
discussed	further	in	a	later	tutorial,	where	the	model	will	be	built.

10.	Save	the	model.



Summary
Important	Observations

Any	element	in	an	entity	can	be	part	of	a	user	view,	including	those	that	are
inherited	as	the	result	of	relationships	with	other	entities.
Elements	in	the	key	of	a	user	view	can	be	re-sequenced.

Tips	and	Techniques
Create	user	views	for	entities	which	have	names	or	descriptions.	Sequencing
by	name	or	description	is	a	common	requirement	in	many	databases.

What	I	Should	Know
How	to	create	a	User	View.



LGM008	–	Abstractions
Objective:

To	learn	how	to	create	and	use	Abstractions.
To	understand	how	abstraction	effect	objects	within	a	model.
To	create	an	abstraction	which	will	contain	all	product	related	entities.

To	achieve	the	tutorial	objectives,	you	will	complete	the	following	steps:
Step	1.	Create	an	Abstraction	to	Contain	Product-Related	Entities
Step	2.	Activate	the	Abstraction
Step	3.	Create	a	Supplier	Entity	and	Relate	it	to	the	Supplied	Product	Entity
Step	4.	Deactivate	the	Abstraction
Step	5.	Drill	down	in	Abstractions
Summary

Before	You	Begin:
You	may	wish	to	review	the	following	topics	in	the	Logical	Modeler	Guide:

Abstractions.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:

LGM001	-	View	a	Model
LGM002	-	Create	an	Entity
LGM003	–	The	Join	Relationship
LGM004	–	Conceptual	Entities	and	the	Includes	Relationship
LGM005	–	The	Parent/Child	Relationship
LGM006	–	The	Variant	Entity	and	the	Variation	Relationship
LGM007	–	User	Views

its:LANSA076.CHM::/lansa/l4wmod_265.htm


Step	1.	Create	an	Abstraction	to	Contain	Product-Related
Entities
In	this	step,	you	will	create	an	abstraction	to	hold	the	Product,	Manufactured
Product	and	Supplied	Product	entities.
1.		Ensure	the	model	you	created	in	the	previous	tutorial	is	open.
2.		Drag	the	Abstraction	shape	from	the	Document	Stencil	onto	the	model
diagram.

					The	Create	Abstraction	dialog	will	be	displayed:

3.		Give	the	Abstraction	a	name	of	Product	Entities.
					Click	the	OK	button.
4.		You	now	want	to	add	objects	to	the	Abstraction.
					Select	the	Abstraction	menu	and	choose	the	Specify	Objects…	option	or
right-click	the	Abstraction	shape	and	select	the	Specify	Objects…	option.

					The	Specify	Abstraction	Objects	window	will	be	displayed:

					A	list	of	all	objects	is	shown	in	the	left	pane.	A	list	of	entities	within	the
abstraction	is	shown	in	the	right	pane.



5.		Add	the	Product,	Manufactured	Product	and	Supplied	Product	entities	to	the
Abstraction	by	double-clicking	them	or	by	dragging	them	to	the	Abstraction
list.

					As	you	add	objects	to	the	Abstraction,	they	are	removed	from	the	Object	list.
					To	remove	objects	from	an	Abstraction,	double-click	them	in	the	Abstraction
list,	or	drag	them	from	the	Abstraction	list	to	the	Object	list.

					Note	that	you	are	referring	to	objects,	as	well	as	entities.	Other	Abstractions
can	be	added	to	an	abstraction.

					Click	the	OK	button.
6.		The	Abstraction	shape	on	the	diagram	should	appear	as	follows:

					In	addition	to	using	the	Specify	Objects…	option,	you	can	add	objects	to	an
Abstraction	using	the	following	method:

7.		Select	the	Abstraction	by	clicking	on	it.
8.		Hold	down	the	Shift	key	and	select	the	objects	you	wish	to	add	by	clicking
on	them.

9.		Release	the	Shift	key.
10.Add	the	objects	by	selecting	the	Abstraction	menu	and	choosing	the	Add
Objects	option,	or	by	right-clicking	the	Abstraction	and	choosing	the	Add
Objects.

					Objects	can	be	removed	from	an	Abstraction	by	using	the	same	selection
method	and	the	selecting	the	Remove	Objects	option.



Step	2.	Activate	the	Abstraction
In	this	step,	you	will	learn	how	to	activate	an	Abstraction.
1.		Activate	the	Abstraction	by	selecting	it	and	then	selecting	the	Abstraction
menu	and	choosing	the	Activate	option,	or	by	right-clicking	the	Abstraction
and	choosing	the	Activate	option.

					The	diagram	will	be	updated	to	show	only	the	Product,	Manufactured
Product	and	Supplied	Product	entities.

					Note	that	the	Product	Entities	Abstraction	is	still	shown.
					Note	also	that	the	title	bar	of	the	modeler	has	been	updated	to	indicate	that
the	abstraction	is	active.

2.		Move	the	Product	entity	to	a	different	place	on	the	diagram.	When	the
abstraction	is	activated/deactivated,	you	will	see	how	the	layout	is	saved.



Step	3.	Create	a	Supplier	Entity	and	Relate	it	to	the	Supplied
Product	Entity
In	this	step,	you	will	create	a	Data	entity	called	Supplier	and	relate	it	to	the
Supplied	Product	entity.
1.		Create	a	Data	entity	called	Supplier.
					Set	its	physical	file	name	to	iiiSUP,	where	iii	are	your	initials.
2.		Create	the	following	elements	for	the	Supplier	entity:

Element	Name Data	Type Field	Name

Supplier	number ID	Number iiiSUPNUM

Supplier	name Name iiiSUPNAM

	

3.		Set	Supplier	Number	to	be	the	identifying	element.
4.		Close	the	Entity	Elements	window.
					Note	that,	because	the	Product	Entities	Abstraction	is	active,	the	Supplier
Entity	has	been	added	to	the	Product	Entities	Abstraction	automatically.

5.		Create	a	Mandatory	Join	(must	refer	to)	relationship	between	Supplied
Product	and	Supplier	by	connecting	a	relate	shape	source	to	the	Supplied
Product	entity	and	then	target	to	the	Supplier	entity.

					Leave	its	Descriptive	Prefix	blank.
6.		The	model	diagram	should	now	appear	something	like	this:





Step	4.	Deactivate	the	Abstraction
In	this	step,	you	will	learn	how	to	deactivate	an	active	Abstraction.	You	will
also	add	an	Include	relationship	between	Supplier	and	Address.
1.		Deactivate	the	Abstraction	by	selecting	it	and	then	selecting	the	Abstraction
menu	and	choosing	the	Deactivate	option,	or	by	right-clicking	the
Abstraction	and	choosing	the	Deactivate	option.

					The	diagram	will	be	updated	to	show	all	model	objects.		Note	that	the
Product	entity,	which	you	moved	in	a	previous	step,	moves	back	to	its
original	position	on	the	diagram.		If	you	re-activate	the	abstraction,	the
Product	entity	will	again	move,	to	the	position	you	specified	when	the
abstraction	was	previously	active.

					Note	also	that	the	title	bar	of	the	modeler	has	been	updated	to	indicate	that
the	entire	model	is	being	shown.

					You	may	need	to	reposition	the	newly	added	Supplier	entity.
2.		Create	an	Include	relationship	between	Address	and	Supplier	by	connecting
a	relate	shape	source	to	the	Supplier	entity	and	then	target	to	the	Address
entity.

					The	address	elements	are	now	included	in	Supplier.
3.		Activate	the	Product	abstraction	again.
					Notice	that	the	Address	entity	is	not	shown	in	the	abstraction	even	tough
there	is	a	relationship	to	this	entity.

4.		Deactivate	the	Product	abstraction.



Step	5.	Drill	down	in	Abstractions
In	this	step,	you	will	learn	how	you	can	use	abstractions	to	drill	down	through	a
model	and	hide	the	complexity	of	a	model.
1.		Drag	the	Abstraction	shape	from	the	Document	Stencil	onto	the	model
diagram.

					The	Create	Abstraction	dialog	will	be	displayed:

					Give	the	Abstraction	a	name	of	My	Model.
					Click	the	OK	button.
2.		Activate	the	My	Model	Abstraction.
					All	entities	in	the	diagram	will	disappear	as	no	entities	have	been	added	to
the	abstraction.	You	have	effectively	hidden	the	complete	model.

					To	drill	down	to	show	specific	parts	of	the	model,	you	can	use	your	existing
Abstraction.

3.		Deactivate	the	My	Model	Abstraction.
					The	complete	diagram	is	shown	as	no	Abstractions	are	active.
4.		Add	Product	Entities	Abstraction	to	the	My	Model	Abstraction.
5.		Activate	the	My	Model	Abstraction.
					The	Product	Entities	Abstraction	will	be	displayed.
6.		Activate	the	Product	Entities	Abstraction.
					The	Product,	Manufactured	Product	and	Supplied	Product	Entities	will	now
be	displayed.

7.		Deactivate	the	Product	Entities	Abstraction.
8.		Deactivate	the	My	Model	Abstraction.
9.		Save	the	model.



Summary
Important	Observations

Abstractions	can	be	used	to	simplify	your	model	by	grouping	related	entities
together	under	a	common	name.
The	positions	of	entities	can	be	changed	when	the	abstraction	is	active	and
will	be	remembered	by	the	modeler	whenever	the	abstraction	is	subsequently
activated.		Similarly,	when	the	abstraction	is	deactivated,	the	entities	move
back	to	their	original	positions.
The	title	bar	of	the	Logical	Modeler	window	tells	you	if	an	Abstraction	is
active	or	if	the	entire	model	is	being	shown.
Creating	objects	while	an	abstraction	is	active	will	add	those	objects	to	the
Abstraction	automatically.
All	entities	with	relationships	to	objects	in	the	abstraction	are	not	shown.
Changes	to	entities	and	relationships	within	the	abstraction	are	still
propagated	to	the	entire	model,	however,	and	can	affect	entities	that	are	not
included	in	the	abstraction.
An	Abstraction	can	be	part	of	another	abstraction	in	order	to	create	a	drill-
down	effect.

Tips	and	Techniques
Use	Abstractions	if	you	have	a	large,	complex	model.	When	working	only
on	a	small	part	of	the	model,	the	appropriate	abstraction	can	be	activated	to
give	an	uncluttered	view	of	the	objects	with	which	you	wish	to	work.
An	abstraction	is	not	the	same	as	using	the	Pan	and	Zoom	features	when
viewing	a	model.	The	Abstraction	forms	a	group	of	entities	as	part	of	the
model's	definition.
When	working	with	entities	in	an	active	abstraction,	you	may	change	their
positions.	They	will	move	back	to	their	original	positions	when	the
abstraction	is	deactivated..
An	Abstraction	cannot	be	deleted	when	it	is	active.
Reminder:	Do	not	create	a	loop	in	your	abstractions	when	drilling	down.	For
example,	if	Abstraction	A	contains	Abstraction	B,	and	Abstraction	B
contains	Abstraction	C,	then	do	not	include	Abstractions	A	or	B	into	C.

What	I	Should	Know



How	to	create	an	Abstraction.
How	to	activate	and	deactivate	an	abstraction.



LGM009	–	Build	the	Model
Objective:

To	learn	how	to	built	individual	entities
To	learn	how	to	build	a	model.
To	learn	how	to	manipulate	the	Builder	Queue.
Understand	what	is	built	in	the	repository.

To	achieve	the	tutorial	objectives,	you	will	complete	the	following	steps:
Step	1.	Build	the	Address	Entity
Step	2.	Build	the	Remainder	of	the	Model
Step	3.	Correct	Build	Errors	and	Rebuild	the	Model
Step	4.	Review	What	Has	Been	Built	in	the	Repository
Summary

Before	You	Begin:
You	may	wish	to	review	the	following	topics	in	the	Logical	Modeler	Guide:

Building	a	Model.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:

LGM001	-	View	a	Model
LGM002	-	Create	an	Entity
LGM003	–	The	Join	Relationship
LGM004	–	Conceptual	Entities	and	the	Includes	Relationship
LGM005	–	The	Parent/Child	Relationship
LGM006	–	The	Variant	Entity	and	the	Variation	Relationship
LGM007	–	User	Views
LGM008	–	Abstractions

its:LANSA076.CHM::/lansa/l4wmod_275.htm


Step	1.	Build	the	Address	Entity
In	this	step,	you	will	build	the	Address	entity.	The	Address	is	a	conceptual	entity
so	it	will	have	no	file	definition.
1.		Ensure	the	model	you	created	in	the	previous	tutorial	is	open.
2.		Begin	the	build	process	for	the	Address	entity	by	selecting	Address	and	then
selecting	the	Build	menu	and	choosing	the	Build	Entity…	option,	or	by
selecting	Address	and	clicking	the	toolbar	button,	or	by	right-clicking
Address	and	choosing	the	Build…	option	from	the	pop-up	menu.

					The	Submit	Entity	Build	dialog	will	be	displayed:

					The	dialog	displays	a	list	of	build	activities	which	will	be	performed	for	the
entity.

					Note	that	because	the	Address	entity	is	a	Conceptual	entity,	only	its	fields
can	be	built.

					Note	also	that,	because	neither	the	entity	nor	any	of	its	elements	have	been
previously	built,	all	elements	have	been	selected	and	cannot	be	deselected.

3.		Click	the	OK	button.
					A	message	box	will	be	displayed	informing	you	that	build	activities	have
been	queued	and	asking	whether	you	wish	to	view	the	Builder	Queue	at	this
point.



4.		Click	the	Yes	button.
					The	following	window	will	be	displayed:

					This	is	the	Builder	Queue	where	repository	builds	are	executed	from.
					The	top	pane	of	the	window	contains	a	list	of	build	activities	to	be
performed.	Note	that	entities	can	have	up	to	three	build	activities:

Build	repository	fields,
Build	database	file	and
Build	relationships.

					Each	build	activity	has	a	status.	By	default,	activities	are	submitted	to	the



queue	in	a	Ready	status.	Individual	entries	can	be	deleted,	held	and	released,
in	a	similar	fashion	to	an	iSeries	job	queue.

5.		Select	the	only	entry	in	the	list	and	click	the		 	Hold	toolbar	button.
					Note	that	the	build	activity	status	is	set	to	Held.	This	means	that	the	build
activity	will	not	be	performed	if	you	perform	a	build	at	this	point	–	it	must
first	be	released.

6.		Click	the	 	Release	toolbar	button	to	release	the	build	activity.
					Note	that	its	status	is	reset	to	Ready.

7.		Click	the	 	Build	toolbar	button	to	start	the	build.
					A	progress	bar	will	be	shown	while	the	build	is	being	performed.	Note	that
the	status	of	the	build	activity	changes	to	Active	and	then	to	Built.	A	status	of
Built	denotes	that	the	build	completed	with	no	errors.

8.		Click	the	 	Close	toolbar	button	to	close	the	Builder	Queue.
9.		Display	the	Build	Status	view	of	the	Address	entity.
					It	should	appear	something	like	this:

					Note	that	the	build	status	of	the	Address	fields	has	been	set	to	built	and	that
the	date	and	time	of	the	status	change	is	shown.

10.	Redisplay	the	Elements	view	of	the	Address	entity.
11.	Display	the	Builder	Queue	by	selecting	the	Build	menu	and	choosing	the
Builder	Queue…	option	or	by	clicking	on	the	 	Build	toolbar	button.

			The	Build	Repository	Fields	activity	for	Address	is	still	in	the	queue	with	a
status	of	Built.

12.	Click	the	 	Purge	toolbar	button.
					The	following	window	will	be	displayed:



					This	window	allows	you	to	purge	the	Builder	Queue	of	unwanted	entries.	By
default,	entries	with	a	status	of	Built	or	Failed	can	be	purged.	However,	either
All	or	any	combination	of	the	Ready,	Built,	Failed	or	Held	statuses	can	be
purged.

13.	Click	the	Purge	button.
					Note	that,	because	the	entry	in	the	list	had	a	status	of	Built,	it	has	been
removed	from	the	list.

14.	Close	the	Builder	Queue.



Step	2.	Build	the	Remainder	of	the	Model
In	this	step,	you	will	learn	how	to	build	multiple	model	objects.	All	objects
which	have	not	yet	been	built	will	be	queued	in	the	order	in	which	they	need	to
be	built,	based	on	interdependencies	with	other	entities.
1.		Click	the	 	Build	Model	button	on	the	main	toolbar.
					A	window	will	be	displayed	asking	what	type	of	build	you	wish	to	perform.	
Select	Entities	requiring	build	and	click	the	OK	button.

					Again,	a	message	box	will	be	displayed	informing	you	that	build	activities
have	been	queued	and	asking	whether	you	wish	to	view	the	Builder	Queue	at
this	point.

2.		Click	the	Yes	button.
					The	following	window	will	be	displayed:



					Note	that	all	three	types	of	build	activity	have	been	queued	for	all	entities
which	have	not	yet	been	built.	Note	also	that	the	activities	are	always	queued
in	the	same	sequence:

Build	repository	fields
Build	database	file
Build	relationships

3.		Click	the	 	Build	toolbar	button	to	start	the	build.
4.		A	Build	Options	dialog	will	be	shown,	as	follows:



					This	dialog	allows	you	to	specify	whether	you	want	the	modeler	to	generate
referential	integrity	rules	between	related	files	when	the	Build	Relationships
activity	is	performed.

5.		Leave	the	check	box	checked	and	press	the	OK	button.
					A	progress	bar	will	be	shown	while	the	build	is	being	performed.
					Note	that	the	status	of	the	build	activity	changes	to	Active	and	then	to	Built
or	Failed.	The	build	will	take	approximately	1	minute.

					Note	that	some	of	the	build	activities	related	to	the	Customer,	Order	and
Ordered	Product	entities	have	failed.

6.		Select	the	Build	Database	File	activity	for	the	Customer	entity.
					An	error	message	explaining	why	this	build	activity	failed	is	displayed	in	the
Error	Messages	list	at	the	bottom	of	the	window.

					The	Physical	File	Name	for	the	Customer	entity	was	not	specified,	and	so	the
database	file	cannot	be	created.	(Remember,	this	is	why	the	red	triangle	was
displayed	for	the	Customer	entity.)

7.		Now	select	the	Build	Relationships	activity	for	the	Customer	entity.
					An	error	message	says	that	this	activity	has	failed	because	the	Database	File
has	not	been	built	for		the	Customer	entity.

					Similarly,	the	Build	Relationships	activity	for	the	Order	entity	has	failed	for
the	same	reason.	The	Customer	entity	has	not	been	database	built,	and	so	a
referential	integrity	rule	cannot	be	created	between	Order	and	Customer.

8.		Close	the	Builder	Queue.



Step	3.	Correct	Build	Errors	and	Rebuild	the	Model
In	this	step,	you	will	correct	the	errors	generated	by	the	build	and	perform
another	build.
1.		Display	the	Customer	entity's	Change	window	by	selecting	Customer	and
then	selecting	the	Edit	menu	and	choosing	the	Change…	option,	or	by
selecting	Customer	and	clicking	the	 	Change	button	on	the	main	toolbar.

2.		Enter	a	physical	file	name	of	iiiCUS	for	the	entity,	where	iii	are	your	initials.
3.		Click	the	OK	button.

4.		Submit	the	model	build	by	clicking	the	Build	Model	 	Build	Model	button
on	the	main	toolbar.

5.		Select	the	Entities	requiring	build	option	and	click	the	OK	button.
6.		Click	Yes	to	display	the	Builder	Queue.
7.		Purge	the	Builder	Queue	of	all	non-Ready	entries.		Note	that	the	only	entries
left	are	related	to	the	Customer	and	Order	entities.

8.		Click	the	 	Build	toolbar	button	to	perform	the	build.		Click	the	OK	button
on	the	Build	Options	dialog.		All	builds	should	be	set	to	a	status	of	Built	once
the	build	has	finished.

9.		Close	the	Builder	Queue.
10.Use	the	Build	Status	view	to	review	your	model	build	status.
11.Save	your	model.
12.Exit	the	Logical	Modeler.



Step	4.	Review	What	Has	Been	Built	in	the	Repository
In	this	step,	you	will	review	the	repository	objects	that	were	built	earlier	in	the
tutorial.
1.		Go	to	the	Repository	browser	of	the	main	window.
					Find	all	files	whose	name	start	with	your	iii	initials.	Remember,	the	file	name
is	based	on	the	physical	file	names	you	entered	for	each	entity.

					There	should	be	7	files	displayed:	Customer,	Ordered	Product,	Order,
Product,	Manufactured	Product,	Supplied	Product	and	Supplier.

2.		Select	the	Customer	file	and	review	the	list	of	fields	shown	in	the	right-hand
list.

					Note	the	following	about	the	list	of	fields:
Customer	Number	is	the	primary	key	of	the	file.
Two	sets	of	address	fields	have	been	created	as	the	result	of	the	Includes
relationships	you	defined	for	Delivery	and	Billing	addresses.
The	field	names	for	the	address	fields	have	the	computer	names	you
specified	in	the	Entity	Elements	window.	This	ensured	that	the	field
names	are	unique	within	the	file.	Note	that	without	specifying	unique	field
names,	it	would	be	impossible	to	create	two	sets	of	addresses	by	using	the
Includes	relationship.

3.		Review	the	Access	Routes	for	the	Customer	file.
					Note	the	following:

An	Access	Route	has	been	created	linking	the	Customer	file	with	the
Order	file,	as	a	result	of	the	Join	relationship	you	defined	between	the	two
entities.
The	File	Accessed	parameter	of	the	Access	Route	is	a	logical	view	of	the
Order	file,	which	was	also	created	as	a	result	of	the	Join	relationship	you
defined.

4.		Display	the	Rules	and	Triggers	window	for	the	Customer	file.
5.		Review	the	rules	for	the	Customer	Number	field.
					Note	the	following:

A	referential	integrity	rule	has	been	created	between	the	Customer	and
Order	files	that	says	that	a	Customer	cannot	be	deleted	if	Orders	exists	for



it.
Again,	the	actual	file	used	by	the	rule	is	the	logical	file	that	was	created	as
a	result	of	the	Join	relationship	between	the	two	entities.

6.		Review	the	rules	for	one	of	the	Post	Code	fields.
					Note	that,	because	the	Post	Code	field	was	defined	by	using	a	data	type,	the
validation	rules	defined	against	that	data	type's	field	(STD_ZIP)	have	been
inherited	by	Post	Code.	In	this	instance,	the	validation	rule	states	that	a	value
must	be	not	be	blank.

7.		Find	the	iiiCUSNUM	field	in	the	Repository	browser,	where	iii	are	your
initials.

					Review	its	help	text.
					Note	that	the	notes	you	entered	for	the	Customer	Number	element	have
become	help	text	for	the	resultant	field.

8.		Select	the	Order	file,	iiiORDER.
					Note	that	a	Customer	Number	field	has	been	created	and	assigned	to	the
Order	file	as	a	result	of	the	Join	relationship	with	the	Customer	entity	you
created.

9.		Review	the	Access	Routes	for	the	Order	file.
					Note	that	Access	Routes	have	been	created	as	a	result	of	the	Join	with
Customer	and	as	a	result	of	the	Parent/Child	relationship	with	Ordered
Product.

10.	Review	the	logical	views	for	the	Order	file.
					Note	the	following:

A	logical	view	has	been	created	as	the	result	of	the	Join	relationship	with
Customer.		It	has	the	name	iiiORDER01.
A	logical	view	has	also	been	created	from	the	User	View	you	specified,
sequenced	by	Order	Status	and	Order	Date.		It	has	the	name	iiiORDST.

11.	Select	the	Ordered	Product	file,	iiiOPR.
					Note	that	a	logical	view	called	iiiOPR01	has	been	created	automatically	by
the	modeler,	and	that	it	has	Product	Number	as	its	sole	key	field.		Remember,
you	did	not	specify	this	logical	view	name,	but	because	Ordered	Product's
physical	file	name	was	only	6	characters	in	length,	the	modeler	was	able	to
use	it,	along	with	a	sequential	number,	to	create	one	for	you.



12.Review	other	objects	that	have	been	created.
					Pay	close	attention	to:

The	help	text	of	fields	that	has	been	created	from	the	notes	entered	in	the
model.
The	primary	keys	of	files,	particularly	those	that	have	been	influenced	by
Parent/Child	relationships.
Fields	that	have	been	inherited	as	the	result	of	relationships	with	other
entities.	Note	how	the	Prefix	information	of	the	relationship	has	been
used.
Access	routes	that	have	been	created	as	the	result	of	relationships.
Logical	files	that	have	been	created	as	the	result	of	relationships	and	user
views.



Summary
Important	Observations

Entities	may	be	queued	for	build	individually	or	the	entire	model	can	be
queued	for	build.	When	building	an	entire	model,	the	Logical	Modeler
analyses	the	build	requirements	and	places	build	activities	in	the	correct
order,	based	on	interdependencies	with	other	entities.
Build	activities	can	be	deleted,	held	and	released	once	they	are	placed	on	the
Builder	Queue,	in	a	similar	fashion	to	an	iSeries	job	queue.
There	are	three	phases	of	building:	Repository	Fields,	Database	File	and
Relationships.	The	Database	File	and	Relationships	phases	are	dependant	on
the	successful	completion	of	the	build	phases	that	precede	them.
Entity	Build	Statuses	are	updated	with	the	date	and	time	at	which	the	three
build	phases	were	executed.
Model	objects	are	transformed	into	repository	objects:
Elements	are	transformed	into	field	definitions.
Element	notes	are	transformed	into	field	help	text.
Conceptual	entities	are	transformed	into	fields.
Data	and	Variant	entities	are	transformed	into	database	files.
Relationships	between	entities	are	transformed	into	inherited	fields,	access
routes,	logical	files	and	referential	integrity	rules.
User	views	are	transformed	into	logical	files.

Tips	and	Techniques
Use	the	Build	Model	function	to	perform	builds.	All	entities	which	require
building	will	be	queued	in	the	correct	sequence	based	on	interdependencies
with	other	entities.	This	cannot	be	assured	when	building	entities
individually.
Execute	as	many	build	cycles	as	you	like	and	correct	errors	as	you	go.	You
do	not	need	to	concentrate	on	field	and	file	names	while	constructing	your
model.

What	I	Should	Know
How	to	build	an	individual	entity.
How	to	build	the	entire	model.



How	to	use	the	Builder	Queue.
What	is	implemented	in	the	repository	when	a	build	is	performed.


	Visual LANSA Logical Modeler
	About this Guide
	About this Version
	Models
	Entities
	Elements
	Relationships
	Abstractions
	Model Navigation
	Miscellaneous

	Who Should Use This Guide
	How To Use This Guide
	Additional Information

	1. Introduction to Data Modeling
	1.1 What is Data Modeling?
	1.1.1 Proper Data Modeling
	1.1.2 Logical Models versus Physical Models
	1.1.3 Understanding Entities, Attributes and Elements
	1.1.4 Understanding Attributes and Relationships When Modeling
	1.1.5 Understanding Relationships
	1.1.6 Results of Relationships
	1.1.7 Identifying the Type of Relationship
	1.1.8 Understanding Identifying Attributes
	1.1.9 Relationship Guidelines
	1.1.10 Understanding Shared Keys
	1.1.11 Approaches to Data Modeling
	1.1.12 Normalization
	1.1.13 Training for Data Modeling

	1.2 Conceptual versus Implementation Modeling
	1.2.1 Thinking About Modeling
	1.2.2 Understanding C-Thinkers
	1.2.3 Understanding I-Thinkers
	1.2.4 Dual C/I-Thinkers
	1.2.5 Thinking about Dates
	1.2.6 C-Think Considerations
	1.2.7 I-Think Considerations
	1.2.8 New World C-Thinkers

	1.3 How Does LANSA Help with Data Modeling?
	1.4 Conventions/Terminology
	1.5 Overview of the LANSA Logical Modeler
	1.5.1 Models
	1.5.2 Entities
	1.5.3 Elements
	1.5.4 Relationships
	1.5.5 Abstractions
	1.5.6 User Views
	1.5.7 Building a Physical Database


	2. Getting Started
	2.1 Pre-Requisites
	2.2 Models and LANSA Partitions
	2.3 Start the Logical Modeler
	2.4 The Main Window
	2.4.1 Menus
	2.4.2 The Toolbar
	2.4.3 The Model Diagram
	2.4.4 The Document Stencil
	2.4.5 Pan & Zoom Window
	2.4.6 Performing Actions on Diagram Objects


	3. Models
	3.1 Creating a New Model
	3.2 Opening a Model
	3.3 Saving a Model
	3.4 How Models are Stored
	3.5 Switching Between Open Models
	3.6 Model Views
	3.7 Changing the Size of the Model Diagram
	3.8 Navigating the Model Diagram
	3.9 Positioning to an Entity or Abstraction on the Model Diagram
	3.10 Printing the Model Diagram
	3.11 Maintaining Unattached Elements
	3.12 Adding Model Notes
	3.13 Building the Model

	4. Data Types
	4.1 Maintaining Data Types
	4.1.1 Creating a Data Type
	4.1.2 Changing a Data Type
	4.1.3 Deleting a Data Type


	5. Entities
	5.1 Entity Types
	5.2 Entities and Elements
	5.3 Entities and Relationships
	5.4 Entities and LANSA
	5.5 Working with Entities
	5.5.1 Create a Data, Conceptual or Variant Entity
	5.5.2 About Entity Physical and Logical File Names
	5.5.3 Create an External Entity
	5.5.4 Change a Data, Conceptual or Variant Entity
	5.5.5 Delete an Entity

	5.6 Maintain Entity Elements
	5.6.1 Creating Elements
	5.6.2 Changing Elements
	5.6.3 Deleting Elements
	5.6.4 Setting an Identifying Element
	5.6.5 Re-sequencing Elements
	5.6.6 Transferring Elements
	5.6.7 Entity Notes
	5.6.8 Validation and Build Error Messages
	5.6.9 Building an Entity


	6. Elements
	6.1 Elements and Entities
	6.2 Elements and Relationships
	6.3 Elements and LANSA
	6.4 Working with Elements
	6.4.1 Create an Element
	6.4.2 Change an Element
	Inherited Elements

	6.4.3 Delete an Element
	6.4.4 Maintain Element Notes


	7. Relationships
	7.1 Relationship Types
	7.2 Relationship Rules
	7.3 Source and Target Entities
	7.4 Relationships and Entities
	7.5 Relationships and Elements
	7.6 Relationships and LANSA
	7.7 Work with Relationships
	7.7.1 Create a Relationship
	7.7.2 Change a Relationship
	7.7.3 Delete a Relationship
	7.7.4 Creating Multiple Relationships


	8. Abstractions
	8.1 Abstractions and the Model
	8.2 Abstractions and Other Objects
	8.3 Work with Abstractions
	8.3.1 Create an Abstraction
	8.3.2 Change an Abstraction
	8.3.3 Delete an Abstraction
	8.3.4 Specify Abstraction Objects
	8.3.5 Another Way to Add Objects to an Abstraction
	8.3.6 Another Way to Remove Entities from an Abstraction
	8.3.7 Activate an Abstraction
	8.3.8 Deactivate an Abstraction
	8.3.9 Abstraction Notes
	8.3.10 Building the Model while an Abstraction is Active
	8.3.11 Hiding Complexity


	9. User Views
	9.1 User Views and Entities
	9.2 User Views and Elements
	9.3 User Views and LANSA
	9.4 Maintain User Views
	9.4.1 Create a User View
	9.4.2 Change a User View
	9.4.3 Delete a User View


	10. Building a Model
	10.1 Sequencing the Builds
	10.2 Build Methods
	10.3 Understanding Builds
	10.4 Rebuilding Your Model
	10.5 The Builder Queue
	10.5.1 Delete, Hold and Release Jobs
	10.5.2 Execute Build Jobs
	10.5.3 Purge the Builder Queue

	10.6 Build Tips and Techniques

	11. Troubleshooting
	Tutorials
	LGM001 - View a Model
	Step 1. Start the Logical Modeler
	Step 2. Open an Existing Model
	Step 3. Use Pan and Zoom
	Step 4. Change Views
	Step 5. Activate and Deactivate Abstractions
	Step 6. View Entity Elements
	Step 7. Print a Model
	Summary

	LGM002 - Create an Entity
	Step 0. Start the Logical Modeler
	Step 1. Create a Data Entity
	Step 2. Define Elements for the Entity
	Step 3. Work with Elements in Entities
	Step 4. Assign an Identifying Element
	Step 5. Save the Model
	Summary

	LGM003 � The Join Relationship
	Step 1. Create an Order Entity
	Step 2. Relate the Order and Customer Entities
	Step 3. Sequence Elements in Order Entity
	Summary

	LGM004 � Conceptual Entities and the Includes Relationship
	Step 1. Create a Conceptual Entity
	Step 2. Transfer Elements from Customer to Address
	Step 3. Relate the Customer and Address Entities
	Summary

	LGM005 � The Parent/Child Relationship
	Step 1. Create an Ordered Product Entity
	Step 2. Relate the Order and Ordered Product Entities
	Step 3. Create a Product Entity
	Step 4. Relate Product and Ordered Product
	Summary

	LGM006 � The Variant Entity and the Variation Relationship
	Step 1. Create a Manufactured Product Entity
	Step 2. Relate the Product and Manufactured Product Entities
	Step 3. Create a Supplied Product Entity and Relate it to the Product Entity
	Step 4. Create a Product Type Element for the Product Entity
	Summary

	LGM007 � User Views
	Step 1. Create a User View for the Product Entity
	Step 2. Create a User View for the Order Entity
	Summary

	LGM008 � Abstractions
	Step 1. Create an Abstraction to Contain Product-Related Entities
	Step 2. Activate the Abstraction
	Step 3. Create a Supplier Entity and Relate it to the Supplied Product Entity
	Step 4. Deactivate the Abstraction
	Step 5. Drill down in Abstractions
	Summary

	LGM009 � Build the Model
	Step 1. Build the Address Entity
	Step 2. Build the Remainder of the Model
	Step 3. Correct Build Errors and Rebuild the Model
	Step 4. Review What Has Been Built in the Repository
	Summary




