RAMP-NL Guide

Rapid Application Modernization Process for
newlook Guide

e How to Get Started with RAMP
e Licensing Requirements

e Installation and Configuration

e Starting RAMP

e Concepts

® Modernization Issues

e Tutorials

e Scripting

. Screen Wrappers

¢ Programming Techniques

e Multilingual RAMP Applications
e Troubleshooting

e Frequently Asked Questions

° Movie Index

Please send your comments and suggestions to LANSA Support at:
lansasupport@lansa.com.au.

Disclaimer: While every effort has been made to ensure that the information in
this material is accurate, in no event shall LANSA be liable for any damages
arising from its use. LANSA MAKES NO WARRANTIES, EXPRESSED OR
IMPLIED.

Edition Number EPC132100

mailto:lansasupport@lansa.com.au

Edition Date September 15, 2014.
© 2014 LANSA

How to Get Started with RAMP

This is the recommended 6 step plan for getting started with RAMP:

1. Review the introductory movie What is RAMP? - 9 minutes

2. Comprehend how modernization will change the nature of a 5250
application by reviewing these movies:

5250 Application before using RAMP - 2 minutes

5250 Application after using RAMP - 4 minutes

3. Comprehend how the modernization process is performed by reviewing
these movies:

Stage 1: Creating a Modernization Framework - 8 minutes

Stage 2: Snapping the 5250 Application in the Framework - 11 minutes
Stage 3: Enrichment and Re-engineering - 5 minutes

4. Install and Configure RAMP and newlook software (see Installation and
Configuration).

5. Complete this essential RAMP Tutorial:

Modernizing a Complete Application

6. If you have time, complete this optional RAMP tutorial that deals with a
different way to use RAMP for application modernization:
Modernizing Application Navigation

Once you have completed these steps you should be well positioned to start to
plan and implement your own modernization project using RAMP.

Also see Prerequisite Skills.

Prerequisite Skills

To use RAMP you need to have some basic knowledge of how LANSA and the
Visual LANSA Framework are used for application development. You may
want to review some of these tutorials (these links are to other guides):

° Framework tutorials

e Visual LANSA tutorials - you will need to know how to create, compile

and check programs into your System i server using the Visual LANSA
editor.

Subject Matter Expertise

To modernize applications with RAMP you need to have access to someone
who has an in-depth knowledge of the business application being modernized
and the industry in which the application runs. This person should also know
what your business is wanting to achieve as a modernized output.

Without access to a subject matter expert you are unlikely to be able to
successfully modernize any application using any tool because:

e Nobody would know how the existing functionality is used (as opposed to
just understanding how it works, which is different)

e Nobody would be able to envision how the modernized version would be
used (as opposed to how it should work).

javascript:void(0);openCHM('lansa048.CHM::/tutorials.htm',’lansa’);
javascript:void(0);openCHM('Lansa095.chm::/lansa095_begin.htm',’lansa’);

What is RAMP? - 9 minutes

Play Movie| to see what RAMP is.

5250 Application before using RAMP - 2 minutes

Play Movie| to see the user view of a 5250 application before it is
modernized with RAMP.

5250 Application after using RAMP - 4 minutes

Play Movie| to see the same 5250 ERP application after it is modernized
with RAMP.

Stage 1: Creating a Modernization Framework - 8 minutes

Play Movie| to learn how to start modernizing your application by creating a

working prototype for it.

Stage 2: Snapping the 5250 Application in the Framework - 11
minutes

Play Movie| to learn how to integrate your 5250 application to the Windows

navigation framework.

Stage 3: Enrichment and Re-engineering - 5 minutes

Play Movie| to learn about the optional stage 3 of RAMP modernization

during which you enrich and re-engineer your application. (5 minutes)

What's New

This section outlines new features in EPC868 version of RAMP-NL:
More Information is Now Accessible in In RAMP-TS and RAMP-NL
Scripts

The objCommand object now contains details about the optional arguments
associated with the current command and the reason that the command is being
executed (ie: you can now distinguish between a command execution and a
command activation). Refer to the objCommand definition for more details.

To review new features in previous RAMP versions, see:
New features in EPC 831 Version of RAMP

New features in EPC 831 Version of RAMP

This section outlines features that were introduced in EPC 831 version RAMP:

Dynamic Naming of Newlook
screens and fields

It is no longer necessary to use
Newlook Designer to identify the
relevant screens and fields to
Newlook prior to using the RAMP
tools. Instead you can use Dynamic
Naming of Newlook Screens and
Fields from within the RAMP tools
environment.

Note that newlook licensing features
may limit the use of this option in
some RAMP environments. Please
contact your product vendor for
further information.

Developers’ Workbench

You can use the new Developers’
Workbench to create your RAMP
applications.

New Scripting Functions
SETKEYENABLED Function
enables or disables buttons and/or
function keys that were enabled or
disabled when defining the
destination.

SETFOCUS Function- Set the focus
to a field on the current screen
GETFOCUS Function - Get the
name of the field with focus on the
current screen

COPYTOCLIPBOARD Function-

Web applications can override
RAMP profile and password

In the Web signon IIP it is now
possible to override the user
profile and password used to
start a RAMP session specified.

The shipped version of this is
function
UF_SYSBR/UFUO0001. See the
source code of UFU0001 for
more details.

New newlook Server Property
Use INI file

Use the Use INI File property to
associate a Newlook server to a
Newlook ini file.

RAMP application running in
a browser now displays scroll
bars by default

Up until now, when the size of a
Destination screen exceeded the
size of its container no scroll
bars were shown and part of the
Destination screen was hidden.
The only option for users to see
the hidden part was to resize the
command and/or the entire
browser container.

Now scroll bars are

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_3975.htm',’lansa’);
javascript:void(0);openCHM('LANSA048.CHM::/lansa048_4255.htm',’lansa’);

Copy a string to the user's clipboard

MAKESUBFILEINTOSTRING
Function - Return a DataGrid as a
string

SET_UNKNOWN_LOCKING
Function - Override Session lock
property

FATAL_MESSAGE_TYPE Function
— Stop the Framework shutting down
when a fatal navigation error occurs

New deployment options

You can now specify the Update File
and Codebase values in the server
definition instead of modifying the
VF_SY120.js file.

Alternatively you can specify them
as as URL parameters when starting
your application:

+NLCODEBASE=
+NLUPDATEFILE=

Optional command arguments
accessible in RAMP scripts

It is now possible to reference the
two alphanumeric and two numeric
optional command arguments in
RAMP scripts. Use the context menu
(right click) Current Command to
paste the values into your script. For
example:

objCommand.uAlphaArg1
objCommand.uNumArg?2

automatically shown.

newlook version

This version of RAMP requires
newlook Version 8.0.5.14307
(or later)

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_4250.htm',’lansa’);
javascript:void(0);openCHM('LANSA048.CHM::/lansa048_4390.htm',’lansa’);

Dynamic Naming of Newlook Screens and Fields

Previously you were required to use newlook Designer to identify the screens
and the fields in your application before you could start modernizing it using
RAMP. Now the new Dynamic Naming feature allows you to set the name of
newlook screens and fields in the RAMP Tools window itself:

B Dynamic Naming

RAMP Screen [Hame) uPerzannelSyst ain

Input Controls | Output Cortrol:

At Bow ¢ Column Freceding Label / Content Current [Mame] Azsigned
542 Enter number of function required or place | utsttenuld ption
546 Full Employes Listing
G/B Enral a Mew Emploves
VIR Browsze/Maintain Employes and Skill Files
3/6 Emploves Buziness Phone Mumber List
9/6 Produce Salary Commitment Beparts
10/6 Perform General Emploves Search
11/6 Telephone Mumber Search
12/6 Dept/Section/E mployee *Window E nguiny
13/6 Perzonnel T able Maintenance Menu
14/5 Digplay process or function HELP text
15/5 Euit From system

YWhen showing a different screen the tracking area should add a new rectangle. If
not, it iz most kely the soreen hasz to be identified using Mewlook, Degigner.

This means that if you use dynamic naming, it is no longer necessary to start
newlook outside RAMP, provided that the default screen IDs created by
newlook uniquely identify the screens in your application.

Before you start naming the screens, you may want to use the Identify function
in newlook tools to ensure that your screens have unique Screen IDs. If they do
not, you will not be able to give them unique names.

Note that newlook licensing features may limit the use of this option in some
RAMP environments. Please contact your product vendor for further

information.

Using Dynamic Naming
Dynamic Naming Dialog Details
Frequently Asked Questions
Backing Up Screen Definitions
New IIPs for Windows

Using Dynamic Naming

Before choreographing the navigation in your application, you need to name all
the screens in your application.

Using RAMP tools, start newlook and connect to your newlook session. When a

screen is displayed in the newlook window, the Dynamic Naming button is
shown under the RAMP messages area:

Click on ary meszages below to zee available actions
E] Thiz form iz named gignon [2 - lanzal? - newlook)
It iz defined az a Junction
The narmed itemz an this form are;
PERR (input]

»
[D_I,Inamiu: Naming” Probe ” Snapzhot [BESRZ239] V” Restart ” Hefresh]

When you click the Dynamic Naming button, the Dynamic Naming dialog is

displayed. If the current screen has not been named previously, the dialog looks
like this:

B Dynamic Naming

RakP Screen [Mame]

Input Controls | Qutput Contrals

| &k Row # Column Freceding Label / Content Current [Mame] Azsigned
542 Enter number of function required or place o
|5/6 Full Employee Listing
B/B Enral a Mew Employes
|7¥/6 Browsze/Maintain Employes and Skill Files
3/6 Emploves Buziness Phone Mumber List
9/6 Produce Salary Commitment Beparts
10/6 Perform General Emploves Search
/6 Telephone Mumber Search
12/6 Dept/Section/E mployee *Window E nguiry
13/6 Perzonnel T able Maintenance Menu
14/5 Digplay process or function HELP text
15/5 Euit From system

Type in the RAMP Screen (Name). Define any Input or Output fields on the
screen.

Save the screen details by clicking on the Save button.

When you have saved a screen with a name, the Dynamic Naming dialog shows
when the screen was named and the user that named it:

M Dynamic Naming

RAMP Screen [Hame) .uF'erscunneIS_l,lsM ain

Input Controls | Qutput Contrals

| At Row # Column Freceding Label / Content Current [Mame] Azsigned
542 Enter number of function required or place | utsttenuld ption
546 Full Employes Listing
G/B Enral a Mew Emploves
VIR Browsze/Maintain Employes and Skill Files
3/6 Emploves Buziness Phone Mumber List
9/6 Produce Salary Commitment Beparts
10/6 Perform General Emploves Search
11/6 Telephone Mumber Search
12/6 Dept/Section/E mployee *Window E nguiny
13/6 Perzonnel T able Maintenance Menu
14/5 Digplay process or function HELP text
15/5 Euit From system

YWhen showing a different screen the tracking area should add a new rectangle. If
not, it iz most kely the soreen hasz to be identified using Mewlook, Degigner.

You should name all the screens in your application before you start tracking the
navigation.

Dynamic Naming Dialog Details

RAMP Screen
Name

Input Controls

Output Controls

This is the programmatic name that RAMP uses to
uniquely identify this screen as a destination, a
junction or a special screen. It is stored in the
(Name) property of the screen inside newlook. This
is why it is displayed in brackets. Usually every
newlook Host Screen Name has a unique RAMP
(Name) associated with it.

Sometimes, in situations where multiple newlook
Host Screens are very similar, they are all assigned
the same RAMP Screen (Name) to reduce the
amount of scripting required. Refer to the guide for
more details about this special programming
technique.

The input controls tab sheet shows the list with all
the input controls found in the Newlook screen
currently showing. Note that input controls are not
only input fields.

Use the Current (Name) Assigned column to
modify or set a name for a control. Notice two
things when you focus on a cell in this column:

e The background of the control in the Newlook
screen corresponding to the cell being focused
on becomes pink to provide visual feedback as to
which field will be named.

e The cell’s content is pre-filled with a default
prefix. It allows you to standardise the field
names should your application use a certain
naming convention. You can modify the default
behaviour in the Windows IIP (UF_SYSTM
unless you have created your own). See New
[IPs for Windows.

The output controls tab sheet shows the list of
output controls found in the current Newlook
screen. You normally do not need to name output

Last Saved

User Profile

fields.

Shows the date and time when this screen was last
saved using Dynamic Naming. If this was the first
time Dynamic Naming was used for this screen you
would see a message indicating so.

Shows the User profile that last saved this screen
using Dynamic Naming.

Frequently Asked Questions

When should I use newlook Designer to manually name screens instead of
using Dynamic Naming?

For troubleshooting purposeses it is important that you understand how the
screens are named in newlook. However, you would normally identify your
screens using RAMP dynamic naming because it is quicker and easier.

I navigate to a screen which I have not named yet, but RAMP shows it with
a name of another screen I have already named?

Newlook has assigned this screen the same Screen Id as another screen. You
need to start newlook and use the Identify function to change the Screen Ids so
that they are unique.

Backing Up Screen Definitions
You may want to keep backup copies of your screen definitions as a precaution
before you use Dynamic Naming.

To do this, select the option Keep newlook sid file versions (RAMP only) in the
Framework Details tab in Framework Properties:

Keep Mewlook SID file versions (RAMP only)

When this option is selected, you will be prompted to save the definitions when
you start newlook in RAMP tools:

B Keep Newlook SID file versions E|@|Fz|

The files in the list below were found in Mewlook's installation path C:\Program FilesJookzoftware 3.0

Select the files to be verzsioned and click OF.

M ame of file version to be saved From Mewlook SID file
DEF.-’-‘-.LI LT_20070925 145925 sid.zav Drefault. zid]
MEWLOOK_20070925_145925 id.zav newlook, zid
IJSER_20070925_145925 5id.zav Izer zid

(] l [Cancel

New IIPs for Windows

New IIPs have been made available to support Dynamic Naming:

AvMakeFormName This method is called when a form has yet
to be named using Dynamic Naming.

AvMakeControlName This method is called each time a cell in the
Input/Output control grid in Dynamic
Naming interface receives the focus. It
allows you to standardise the screen’s field
names should your application use a certain
naming convention.

AvValidateFormName | Validate the name given to a Newlook
screen.

AvValidateControlName| Validate the name given to a Newlook
screen’s control.

Example

You can modify the default behaviour of the Dynamic Naming dialog in the
Windows IIP (by default UF_SYSTM).

This example sets the prefix for all newlook controls XXX:

* This method is called by the dynamic naming tool to set a default value to
give to an unnamed Newlook form.

* Here you can specify a value based on some naming standard to give to all
Newlook forms. The default value returned by the ancestor

* is blank.

* To specify your own, comment out or delete the Invoke
Method(#COm_Ancestor.avMakeFormName) Formprefix(#FormPrefix)
command

* and insert your own logic. Return the value in the output parameter
#FormPrefix.

Mthroutine Name(avMakeFormName) Options(*REDEFINE)
* Define_Map For(*output) Class(#vf_eltxtm) Name(#FormPrefix) Desc('Prefix

to apply to unnamed forms ")
Invoke Method(#Com_Ancestor.avMakeFormName) Formprefix(#FormPrefix)
Endroutine

* This method is called by the dynamic naming tool when the focus is set into a
cell in the grid that shows

* all the *controls in the Newlook form that is showing. Here you can specify a
value perhaps based on some

* naming standard to give to all defined Newlook controls. The default value
returned by the ancestor blank.

* To specify your own, comment out or delete the Invoke
Method(#COm_Ancestor.avMakeControlName) Controlprefix(#ControlPrefix)
command

* and insert your own logic. Return the value in the output parameter
#ControlPrefix.

Mthroutine Name(avMakeControlName) Options(*REDEFINE)
* Define_Map For(*output) Class(#vf_elctln) Name(#ControlPrefix)
Desc('Prefix to apply to unnamed controls ")

* Invoke Method(#COm_Ancestor.avMakeControlName)
Controlprefix(#ControlPrefix)

set com(#Controlprefix) value(xxx)
Endroutine

* Use this method to validate the name given to a Form using the Dynamic
Naming tool. The default behaviour is to return OK

* except when the form name is equal to the value set in method
avMakeFormName:

* If Cond('‘#FormName = *blanks')

* Set Com(#ReturnCode) Value(ER)

* Set Com(#ErrorMessage) Value(*MTXTVF_UM701_014)

* Else

* Set Com(#ReturnCode) Value(OK)

* Endif

Mthroutine Name(avValidateFormName) Options(*REDEFINE)

* Define_Map For(*input) Class(#vf_eltxtm) Name(#FormName) Desc('"Form
name to be validated')

* Define_Map For(*output) Class(#vf_elretc) Name(#ReturnCode) Desc('OK or
ER')

* Define_Map For(*output) Class(#vf_elmsg) Name(#ErrorMessage)
Desc('Returned message in case of error")

Invoke Method(#COm_Ancestor.avValidateFormName)
Formname(#FormName) Returncode(#ReturnCode)
Errormessage(#ErrorMessage)

Endroutine

* Use this method to validate the name given to a Newlook control using the
Dynamic Naming tool. The default behaviour is

* to return OK except when the control name is equal to the value set in method
avMakeControlName:

* If Cond('#ControlName = *blanks")

* Set Com(#ReturnCode) Value(ER)

* Set Com(#ErrorMessage) Value(*MTXTVF_UM701_013)

* Else

* Set Com(#ReturnCode) Value(OK)

* Endif

Mthroutine Name(avValidateControlNam) Options(*REDEFINE)

* Define_Map For(*input) Class(#vf_elctln) Name(#ControlName)
Desc('Control name to be validated")

* Define_Map For(*output) Class(#vf_elretc) Name(#ReturnCode) Desc('OK or
ER')

* Define_Map For(*output) Class(#vf_elmsg) Name(#ErrorMessage)
Desc('Returned message in case of error")

Invoke Method(#COm_Ancestor.avValidateControlNam)
Controlname(#ControlName) Returncode(#ReturnCode)

Errormessage(#ErrorMessage)

Endroutine

New features in EPC 826 Version of RAMP

This section outlines new features in EPC 826 version RAMP:

New Subfile Accessor properties
for faster scripting

For subfiles that use markers such
as "+", "More..", "Bottom":

e The new EndofFileMarker
property indicates the subfile
end marker. The default is
"Bottom".

e Scrolling stops when either
no marker is found, or when the
marker exactly matches
EndofFileMarker.

For subfiles that issue a message
when attempting to scroll past the
end:

e [f the subfile has no marker
at all, set the new UseMarker
property to False and
EndofFileMarker to text that
can be found somewhere in the
message that appears when
attempting to scroll past end.
For example EndofFileMarker
= "made to scroll past end"

See the Properties table in
SUBFILE_ACCESSOR Object

newlook Version

This version of RAMP requires
newlook Version 8.0.2.11391
dated July 18 2007 (or later).

Add your own options to the
scripting pop-up menu by
creating an xml file

See Adding Your Own Options to
the Scripting Pop-Up Menu.

Set Command Handler Caption
from RAMP Scripts

The captions for command
handlers can now be changed from
RAMP scripts using the new
SET_HANDLER_CAPTION
Function.

Turn off recursion checking for
RAMP scripts

You can use the new global
property
GLOBAL_flagRecursionCheck to
turn off recursion checking. See
Switching Off Recursion
Checking.

Easier liteclient license
configuration

Newlook liteclient licenses can
now be used without having to
manually modify any HTML file.

New features in EPC 804 Version of RAMP

This section outlines new features in EPC 804 version RAMP:

Wrappers for 5250 screens

Using RAMP Screen Wrappers you can present a
good looking, easy to use, high GUI veneer over
5250 screens without having to analyze and rewrite
all the business logic imbedded inside them.

newlook function key bar

The newlook function key bar may now be
optionally displayed on RAMP screens using the
OVERRIDE_BUTTONS_UNDEFINED_SCREENS
Function.

This is most commonly done in pop-up windows.

Virtual Clipboard Access

Information placed onto the virtual clipboard by
VLF filters and command handlers can now be read
and updated from RAMP scripts using the
AVSAVEVALUE Function and the

AVRESTOREAVALUE and AVRESTORENVALUE
Function. This significantly improves the ability for
RAMP scripts and filters and command handlers to
exchange information.

Available in VLF web or windows based
applications.

User-defined lock message

The message that appears when a user attempts a
RAMP navigation from an unknown screen has been
improved.

The message presented is now different for
designers and end-users. Additionally the message
text may now be changed from a RAMP script to

newlook Version 8

This version of RAMP r¢
Version 8.0.1.10669 date
2007 (or later).

Set multilingual functic

The captions show on R;
now be changed to be mi
the
OVERRIDE_KEY_CAF
Function and
OVERRIDE_KEY_CAF
Function.

Scripts

Commonly used script Ic
placed into a common Ja
User-defined script funct
better reuse.

Script names may now b
Creating a Script Namin;
sometimes necessary wh
developers work on the ¢
Also see xXXxXXX is an c

should be deleted.

Handling undefined sc1

Often unknown screens ¢
display by users, causing
screen lock message to b
when they attempt to nay
somewhere else. Now yc
Windows RAMP applica

exactly what any site requires using the
SET _LOCK_MESSAGE Function.

Deployment

Visual LANSA Framework and RAMP check lists
for deployment are available. The detailed check
lists guide the user in planning the deployment,
packaging the material and installing the package.

Handling Pop-ups
A new section Handling Pop-Ups describes how to
handle pop-up windows in RAMP.

The new FORCE_POPUP_REFRESH Function
displays hidden pop-ups.

‘guess’ what it might do
make an unknown screer
the ADD_UNKNOWN _
Function, so that the use
request can be handled c

Change Date/Time/Use

The RAMP tool now dis
changed date-time-user {
and scripts to make scrip
management easier.

List of objects in the ses:
sorted by their date and t

Advanced Prompting

Information is provided
the additional informatio
passed to or retrieved frc
form using the HANDLI
Function.

javascript:void(0);openCHM('lansa047.chm',’lansa’);

New features in EPC 793 Version of RAMP

This section outlines new features in EPC 793 version RAMP:
Performance

The start-up times for Framework applications (including RAMP) have been
substantially improved in this version. For more information see What's New in
the Framework Guide.

Instance Lists

RAMP-specific instance list information is now provided. See Advanced
Instance List Processing.

To review new features in previous Framework versions, see:
New features in EPC 785 Version of RAMP

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_0015.htm',’lansa’);
javascript:void(0);openCHM('LANSA048.CHM::/lansa048_3120.htm',’lansa’);

New features in EPC 785 Version of RAMP

RAMP in the Browser

RAMP applications can now be
executed in the browser version of
the Visual LANSA Framework.

You can use both Webevent and
WAM filters in your application.

See Starting the Framework on the
Web

New Choreographing Features

You can use the Snapshot button
while choreographing to capture
the 5250 screens as a bitmaps.

You can use the screen images to
give your prototype a realistic look,
as a memory jogger or for
documentation purposes during
POC exercises.

Also, a new Refresh button is
available to force the RAMP
choreographer to re-examine the
current 5250 screen. This is useful
in situations involving 5250 flash
screens

Scripting
New functions:

GET _MENU_OPTION _NUMBER
Function

STRIP_ LEADING _NUMBERS
Function

ADD_STRING Function

Merge Tool

Framework and RAMP
applications can now be merged
together When Many Developers
Work on the Same Application.

Internet Explorer (IE) 7 is now
supported as a browser in VLF
end-user applications

Note that at this date IE7 is still a
Microsoft beta product and it is
not yet supported by the Visual
LANSA IDE for developers.

Subfile Handling
Enhancements

Subfile access from scripts has
been improved. A new
SUBFILE_ACCESSOR object is
provided and simpler scripting is
now possible.

See Subfiles/Browselists for

STRING Function

The automated generation of
scripts has been improved, with

better explanations in cases when a

script cannot be generated
automatically

Also see Javascript Essentials
documentation and the Movie
Index for new scripting movies.

Run-Time RAMP Performance
Improvements

Business Object instance list
processing is faster in all Visual
LANSA Framework Windows
applications.

RAMP application start-up
performance has been improved,

particularly when executing in end-

user mode.

The 5250 Home key is now
handled in RAMP applications

movies on subfile handling.

A new Probe button is available
to probe the current 5250 form
layout, especially subfile layouts.
It presents information about the
fields and subfile rows and
columns that makes scripting
easier and simpler.

Changes To Trace and
Messaging

Application Tracing and message
handling have been improved,
including the ability to save trace
details to a file.

Buttons to turn application level
tracing off or on are now
presented directly on RAMP
screens when working as a
developer as continual reminder
that this is the primary script
debugging aid.

User Interface Improvements

The newlook 5250 session height,
width, location and masking areas
can now be set for individual
5250 forms to override the
session level defaults in

Destination Screen Details.

Licensing Requirements

Developer Quick Check List
If you are RAMP developer then use this quick check list:

Checked Type of

License allow you to do

VL-IDE dongle To develop Can you create, compile

or Softkey Visual LANSA and execute Visual

license applications LANSA (VL)
applications and check
them into your System i
server?

RAMP To choreograph = Use LANSA

choreographer = RAMP screens REQUEST(LICENSE)

license on your System i server
and look for a valid
"AXX" or "Ann" license.

newlook To identify and Use WRKLICINF

Professional enhance screens = PRDID(ONWLOOK) on

Edition (PE) or = using the your System i server.

Centric license | newlook

Designer.

newlook To execute 5250 = WRKLICINF

smartclient or = applications PRDID(ONWLOOK) on

liteclient inside newlook. = your System i server.

license

LANSA Super @ To access remote Use LANSA

Server license = data and REQUEST(LICENSE)

What does it

programs on your

System i via non-
5250 interfaces.

How to check it

on your System i server
and look for a valid
"LXX" or "Xnn" license.

To obtain any type of license contact your LANSA product vendor.
If you need to understand the detailed licensing requirements for both

developers and end users, refer to Complete Licensing Details.
More About Newlook Licensing describes newlook licensing.

Complete Licensing Details

License RAMP Visual newlook Newlook LAMN
Type license LANSA Professional smartclient Sup
Development Edition or liteclient Serv
license (PE) or license licen
Centric
license
License To To develop To identify = To execute = To a
Purpose choreograph Visual and enhance . RAMP remc
RAMP LANSA screens in applications data
screens applications = newlook prog
on yi
Systi
vian
525(C
inter
Required | v V - See Note = V \% v-S
by RAMP 1 Note
application
developer
Required \Y Vv -§
by RAMP Note
application
end-user
Notes:

1: Visual LANSA Development licenses are dongles or soft keys that are bound
to a specific developer workstation. All other licenses are slot-based (licensed
per server by number of concurrent developers).

2: Visual LANSA Development licenses may include a Super-Server license.
Entitlements may vary.

3: RAMP applications may be designed and developed in a restricted manner so
that they do not require LANSA Super Server licenses.

Visual LANSA Version

Visual LANSA version 12.0 with EPC 859 and patch EPC859HF-101005
applied, or later.

newlook Version
You need to use newlook Version 8.0.5.14769 (or later).

About the RAMP License

The RAMP license is only required to use RAMP tools during application
development. It may be an AXX (unlimited) or an Ann (limited to nn
concurrent developers) license.

Install it on the System i server that you use for application development.
If you do not have a license to use the RAMP tools you need to:

° Obtain a RAMP license from LANSA.

e Input the license code on your System i server using the LANSA
REQUEST(LICENSE) command followed by the Insert a Permanent
License Code menu option. Key in the License Type (AXX or Ann) and the
License Code assigned to you by LANSA and press Enter. This method of
license installation is the same as for all other licensed LANSA products.

e When you start the Visual LANSA Framework and need to use the RAMP
tools, use should use super-server mode and connect to your System i server
so that your license can be checked, so a Super Server license is also
required.

About the newlook Licenses

e Developers designing and enhancing newlook screens also require use of a
newlook execution license (smartclient or liteclient).

e newlook liteclient licenses restrict the range of newlook execution time
facilities available.

More About Newlook Licensing

VLFE.RAMP starts newlook in two different ways:

e In RAMP tools to support developer choreographing

¢ On command handler tabs as part of executing an VLF application.

How a LiteClient License is Determined
When newlook is started, this VLF server definition setting is checked:

nietlook:

Use 'liteclient’ icense V|
Ise IMNI file *DEFALLT
Load Path *DEFALLT

In RAMP tools a If any server definition has ‘Use liteclient license’ ticked,
newlook is requested to start up using a liteclient license.

On command handler tabs a If the connected server has ‘Use liteclient license’
ticked, newlook is requested to start up using a liteclient license.

Other Types of Newlook Licenses

If a liteclient license is not to be used, then VLF_RAMP starts newlook without
specifying a license type. This means that newlook will use its own logic to
determine what type of license should be used. It will do this based on how your
newlook environment is configured, which is usually determined by you when
you installed or upgraded newlook.

Checking the Type of Newlook Licence(s) you have

To verify the type of license used by a client PC you have to check the value of
Edition in the following registry key:

HKEY_ CURRENT_USER\Software\looksoftware\newlook\8.0
If set to Host the client will request a license from the host.

If set to blank the client will has been set to use a Local license. A Local licence
will usually override all other settings and requests.

To check your Host licences use the WRKLICINF PRDID(ONWLOOK)
command.

All different license types are listed for the appropriate version but that doesn’t
mean you the host has a real license. For example, you might see something like
this:

Product Term Feature Description
ONWLOOK VB8RO 5001 smartclient
ONWLOOK V8RO 5002 newlook
ONWLOOK V8RO 5003 centric
ONWLOOK VB8RO 5004 soarchitect
ONWLOOK VB8RO 5005 liteclient
ONWLOOK V8RO 5010 lookdirect

To find out which of the license types the machine is licensed to, press F11. You
will then see something like this:

Product Term Feature Limit Count
ONWLOOK V8RO 5001 O .00
ONWLOOK V8RO 5002 3 1.00
ONWLOOK V8RO 5003 0 .00
ONWLOOK V8RO 5004 0 .00
ONWLOOK V8RO 5005 8 .00

The Limit column tells you total number of license seats and the Count column
how many seats are currently in use.

Forcing Newlook to start using a specific licence type

Provided that you are not using a local license, you can do this by modifying
VLF JavaScript files VF_UM703.JS (used by RAMP Tools) and/or
VF_SY120.JS (used to execute newlook on command handler tabs).

In both these files you will find a section of code like this:

if (flagLiteclient)
{

var strHTML = "<object id="__objNewLookAX'
onreadystatechange="VF_SY121_KICK_OFF()' style="height:100%;'
width="100%" classid="CLSID:CFFESE18-79B9-431C-8CE2-
AES55A16E7C09'><param name='options' value='"-vs -vr -q -i" + sUselni + ">
<param name="TimeOut' value='0"><param name="HideToolbars' value="-1">
<param name='HideConnectionDialog' value="1"><param name='license’
value='liteclient'><h1 id="NL_ Failed'>Newlook has failed to Initialize.</h1>
</object>";
}
else
{
var strHTML = "<object id='__objNewLookAX'
onreadystatechange="VF_SY121_KICK_OFF()' style="height:100%;'
width="100%" classid="CLSID:CFFE5E18-79B9-431C-8CE2-
AES5A16E7C09"><param name='options' value="-vs -vr -q -i" + sUselni + ">
<param name="TimeQOut' value='0"><param name='HideToolbars' value="-1">
<param name='HideConnectionDialog' value="1"><h1 id='NL_Failed>Newlook
has failed to Initialize.</h1></object>";

}

The first section is used to specify a newlook liteclient licence when starting.

You need to add a <param name="license’ value='smartclient> string into the
code section to indicate what type of license you want to force newlook to use.

The second section assembles the HTML tag used to start newlook with a
default license. This is the code section you need to modify

Installation and Configuration
Installation

Configuration

Starting the Framework on the Web

When Many Developers Work on the Same Application

Installation

Install RAMP
Install newlook

Install RAMP

See the Framework Guide for detailed instructions for installing the Framework.
You need to:

e Install the Framework software on the System i Server. Note that you only

need to perform this step and none of the other steps described in the
Framework Guide because you are not installing LANSA for the Web.

e Install and Configure the Framework on Visual LANSA Workstations.

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_2225.htm',’lansa’);
javascript:void(0);openCHM('LANSA048.CHM::/lansa048_0745.htm',’lansa’);

Install newlook

You need to use newlook Version 8.0.5.14769 (or later).
Locate it on www.looksoftware.com.

We recommend that if you have an earlier newlook 8 version installed on the
machine, you uninstall it and reboot before installing the new version.

During the installation choose the Typical setup.
Next, if you have a newlook license, select the request host license option.

Configuration

Verify newlook Installation

Verify Internet Explorer Security Settings
Configure newlook

Configure RAMP

Verify newlook Installation

Start newlook in the looksoftware suite program folder. Select option newlook
8.0.

Then select the Connect option in the Session menu.

Connect §|
Select the connection you want to use to access the host
computer,
! Description Type

[] Show this dialog at startup

In the Connect dialog click on the Wizard On toggle button to turn it off. Then

use the Add button to add the server that has the application you are going to
modernize to newlook.

Connection Wizard

This wizard will help you create a new connection definition.

A connection defines the information necessary for newlook
to connect to the host computer. A connection to the host
may be made using TCP/IP.

_‘ To start, dick Mext

< Back E_Mext:b J[Cancel]

Click Next. Then specify a name for the connection:

Connection Wizard

Each connection is identified by a short description and an
optional icon.

Enter a short description for the connection

| Connectionl |

Enter or locate the icon file for the connection

| C:\cons'all icons\082-server_1.ico | B

A

[< Back]L_Mext:b][Cancel

Click next. Then select the connection type:

Connection Wizard

you can define an standard connection to the host, or you
can treat a group of connections as if they were a single
connection.

Select the connection type

| Single A |

A

[< Back]L_Mext:b][Cancel]

Click Next. Then specify the internet address. Do not select Secure connection.

Connection Wizard

Specify the internet address to use for the connection.

Enter the internet address

| 51.88.200.002]

|:| Secure connection

The internet address can be found by entering WRKTCPSTS
OPTION(*IFC) on the O5/400 command line.

[< Back]L_Mext:b][Cancel

Click Next. Accept the default session type:

Connection Wizard

Select the type of session that vou would like to start when
you select this connection.

Select the session type

| Start an iSeries display session w |

A

[< Back]L_Mext:b][Cancel]

Click Next. You do not have to specify a device name. Do not select Connect
using lookdirect.

Connection Wizard

Specify the device name to use for this connection.

Enter the display device name

Enter the printer device name

Aurto increment display device name if unavailable

[] connect using lookdirect

The display device name is optional, and if not entered wil
be assigned by the host,

[< Back]L_Mext:b][Cancel

Click Next. Select the locale:

Connection Wizard

Specify the locale you want to use for this connection.

Select the locale

|Engiish {United States v

A

[< Back “ Mext =][Cancel]

Click Next. Select the sign-on options for obtaining the newlook license from
the System i:

e In most situations we recommend you select the Specify the username and
password option so that the information required for obtaining the license is
stored in the newlook.sid file. In this way later on you will be able to deploy
a generic profile with your application and the end-user will not be prompted
for the username and password. (If you choose the option Use the common
username and password, newlook uses the profile stored in the
HKEY_CURRENT_USER\Software\looksoftware\newlook\8.0\Sign On
registry key on the PC.)

e Make sure that the Automatically signon to display sessions option is NOT
selected in any RAMP applications:

Connection Wizard

¥ou can signon with the common username and password,
or using a specific username and password for this
connection.

Choose from the following options

(") Use the common username and password

{(*)5pecify the username and password:

[] automatically signon to display sessions

|:| Host uses case-sensitive passwords

A

[< Back]L_Mext:b][Cancel]

Click Next. Specify the username and password used to obtain a valid profile so
that newlook can retrieve a newlook license from the System i. It is
recommended you use a profile that never expires.

Connection Wizard

newlook requires a username and password in order to
automatically signon to the host and to obtain a newlook
license,

Enter your username

| Xuserl |

Enter your password

Confirm your password

A

< Back]L_Mext:b][Cancel

Then click Finish.

Connection Wizard

Congratulations! You have now fully defined the
connection, which will be added to the connection list.

Please ensure that your TCP/IP stack is correctly installed
before trying to use this connection.

[]open advanced properties when I dick Finishi

‘ Click Finish to close the Connection Wizard.

[< Back][Finish][Cancel]

When your connection is defined, click on the Connect button. Enter the
username and password to sign on to your server:

Signon X]

Eﬁ Please enter your username and password.,

Username | | |

Password | |

[]save password

[Ok,] [Cancel]

The newlook version of your server's 5250 sign-on screen is displayed:

= 1 - Connection1 - newlook |Z||E||E|

Fle S5ession Edit Wew Macrogs Tools Function HKeyboard Window Help -
FFE RS B RO EE @S &
TIO207 11:47:12

ADVANCED SOFTWARE MADE SIMPLE

Uzer |
Pazzword
Pregram/procedurs

Menu

Current library

Sy=tem LANZADZ
Subzyatem QINTER
Dizplay QPADEV 000D

+] ok

=] 2 (C) COPYRIGHT IEM CORP, 1950, 2002,

You have now verified newlook has been installed.

Verify Internet Explorer Security Settings

Verify that that the internet security setting Allow active content to run files on
my computer is selected:

e Open Internet Explorer

e Select the Internet Options option in the Tools menu
e Display the Advanced Tab

e Locate the Security group

e Ensure the Allow active content to run files on my computer option is
selected.

Internet Options |E| |Z|

__Geneml Securty || Privacy | Content | Connections || Programs | -";"Jj\"al'ICEd_

Settings:

q Search from the Address bar ”
q When searching T
Dligplay results, and go to the most likely site
Do not search from the Address bar
Just display the results in the main window
Just go to the most likely site
é Security
: Allow active content from CDs to un on My Computer
%
Allow software to run or install even if the signature is invalid
Check for publisher's cedificate revocation
Check for server certfficate revocation {requires restart)
Check for signatures on downloaded programs
Do not save encrypted pages to disk B
Empty Temporary Intemet Files folder when browser is closed
Enable Integrated Windows Authentication requires restart) M
4 I >

[<] T<]

<1

[Bestore Defaults]

[ok]| cancel || 2opy]

Depending on the version of Internet Explorer you have, this option may not be
present. If it is not present, just ignore this step.

Configure newlook

Merge Shipped Macros into newlook
Configure newlook for a Windows Look and Feel

Merge Shipped Macros into newlook

Merge VF_XP.nlg
Merge VF_MACRO.sid

VF_XP.nlg

Using Windows Explorer, copy the files of type VF_XP*.nlg (VF_XP.nlg,
VF_XP_2007BLUE.nlg, VF_XP_2003BLUE.nlg etc):

From the Execute directory of the LANSA partition you will be using (for
example C:\Program Files\LANSA\X_WIN95\X_LANSA\x_dem\execute)

e To the newlook directory (for example C:\Program Files\looksoftware 8.0)

VF_MACRO.sid
Merge the VF_MACRO.sid file into newlook:
° Start looksoftware suite 8.0 then newlook 8.0

e In the Tools menu select Merge Repository

—f 1 - Offline - newlook |Z| |E| E|
Fle S5ession Edt Wew Macros | Tools | Function HKeyboard Window Help -
- S e Ear el Rl Designer Cin+D el N

Macro Editor

Inspector

Menge Repositony

Deployment Wizard

File Transfer

& &l DEOUT

Fules
Settings

=] 2£ Merges data from another Dynamic Recognition Repository

The Browsing for Dynamic Recognition Repository dialog is displayed.

e Use this dialog to locate VF_MACRO.sid in your LANSA partition
execute directory (for example C:\Program
Files\LANSA\X_WIN95\X_LANSA\x_dem\execute):

Browsing for Dynamic Recognition Repository

Loak in: | £ execute v| Q2o
dvF_MACRO sid

Flename: |\VF_MACRO sid | Open

Files of type: |Hepu:us'rtu:ur§,' Files (" sid) v| [Cancel]

e Click Open.

e Display the Macros tab. Select VF_MACRO from the list of macros. Then
click on the Merge button:

Merge Repository
Forms | Macros |Cu:unneu:ﬁu:uns || Filters || Subfiles || Check Fields || Borders || Other |

Select the macros to merge. Enter text below to display only macros that contain that test in their
description.

List macro descriptions which contain: Taf 1
Mama Authar Revision Mi

IR ViMaco

| e

&

[Select Al] [Select Mone]

L_Merge][Close][Help]

The Framework macros should now have now been merged into newlook.

This is confirmed by a Merge Summary screen like this:

Merge Summary

Configure newlook for a Windows Look and Feel

To optimize the appearance of your RAMP screens, you need to make some
changes to newlook options. To do this Start newlook by clicking on the
newlook Designer button in the RAMP Tools window and then:

e Change the Scheme
e (Change the Background
° Ensure newlook uses the Windows Themes

e Suppress newlook Sounds

Change the Scheme

To change the newlook scheme to XP, select the Tools menu and then the
Settings option in the newlook window:

—£ 4 - Offline - newlook

Fle Session Edt iew Macros | Tools | Function Keyvboard Window

- F S Sl BBz B Designer CrisD iy
@ 4 -
EZ Macro Editor
Inspector

Cigtabase Description

Web Services Description

Merge Repositony

Deployment Wizard

File Transfer

R A il

Fules
Settings |

5

To change the scheme of your RAMP screens, select the Display tab and click
on the Settings button in the Appearance area:

newlook Settings - Newlook.ini

General | Display |Keyboard | Commands | Preferences

m |lze these settings to change the way that newlook displays
¥ forms,

Appearance

You can change the fonts and colors that
newlook uses to display araphical forms
and emulator screens,

| Settings... |

Background

p== You can change the default background

displayed in graphical forms. .
Settings...

Menus
lUse these setting to change the way that
newlook displays graphical application a
MERLSE. Settings...
o (o

In the Graphical tab of the Appearance dialog change the Scheme to VF_XP if
your framework application does not use Visual Themes.

If your framework application uses a Visual theme, select the
matching VF_XP_* value.

See the Framework property Overall Theme.

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_4265.htm',’lansa’);

Appearance

Graphical | Emulator |

¥ou can change the fonts and colors that newlook uses to
display graphical forms.

acheme Category

| VF_XP w | | Background

vl

Font Sample

% MHame | Tahoma L |

= [s NEDE

Colors

m

() (o=

. Host screen color Display as
Foreground T I:Il

Background | Black w |] |

[Ok,] [Cancel Apply

Click OK.

Change the Background

By default newlook uses a background image on the modernized screens which
you may prefer remove. To do this, click on the Settings button in the
Background area in the Display tab.

The Background dialog is displayed.
Blank out the Picture field to remove the background graphic:

You can change the default background displayved in graphical
S5l forms.

Picture | | E]
Alignment '.Tu:up Rigi‘ut w
Color .. Autumﬁ - vﬂ
Cuality [Automatic v
Size [clip v
Tile | Texturs vﬂ_
Dpacity .' 10 o .

IJse mask colar Mask color [

[K,] [Cancel] [Apply]
Click OK.

Close the newlook Settings dialog by clicking OK.

Ensure newlook uses the Windows Themes

You need to ensure that newlook is set up to use Windows themes and visual
styles in order to enable visual effects such as mouseovers. To do this select the
Rules option in the Tools menu.

The newlook Rules dialog is displayed:

newlook Rules - Newlook.sid

Check Fields _ _Bl_:gl.:!.jgi_l_'g Combo Fields
General | Polides | Categories | Filters | Subfiles

Ef youcan specify the categories vou want newlook to use to
FIE ceate graphical forms,

Recognition

Menus
Zombo Boxes MultiLing TextBoxes
Command Combos Option Buttons
Date Combos Prompt Buttons
Grids UpDowns
Hyperlinks URLs
Lines

Display
Field Choices Screen Info
|:| Field Markers Soreen Title
[cutput Borders Grid Options

Advanced
== =

Display the Categories tab and then click on the Advanced button:
The Advanced Categories dialog is displayed:

Advanced Categories

[Ef= Specify the advanced recognition and display categories you
[#l[= wantnewlook to use to create graphical forms,

Recognition

[]1gnore unwritten areas of the host screen
[] create read-only controls

Display
[¥iise Windows themes and visual styles:
[]1gnore underline on static figlds

[oK][Cancel]

Select the Use Windows themes and visual styles option. Then click OK to
close the dialog. Close the newlook rules dialog by clicking OK.

Suppress newlook Sounds

By default newlook automatically plays sounds in some situations, for example
when a host screen is received. To suppress these sounds:

e Start newlook
e Display the Tools menu and select the Settings option

e Display the Preferences tab in the newlook Settings window and uncheck
the Enable Sounds option:

newlook Settings - Newlook.ini

General | Display | Keyboard | Commands | Preferences

EE'_' You can customize the newlook user interface according to
P your individual preferences.

Startup Windows
Splash screen |:| Center main window
[] connection dialog [] center popup windows

Close popups
|F3 v|

Status bar help

Menu & toolbars
|:| Host menus

Confirmations

[Function keys

Delete

Cancel changes
Gk Disconnect
[JEnable sounds Exit

[K,] [Cancel] [Apply] [Help]

] Click OK

Configure RAMP

Perform these steps to define a newlook server in the Framework:
Specify Server Details

Set up Super-Server Session
Optionally Set up Framework Users and Security
Optionally Configure newlook User Profile and Password in the Framework

Specify Server Details

Start the Framework.
In the Administration menu of the Framework select the Servers option.

In the Server Details tab, select LANSA for System i + newlook as the
Server Type. (If your System i and newlook servers have different IP
addresses even though they might be the same physical server, choose the
newlook Only option.)

Enter the name of the newlook connection as defined in the newlook
Connection Properties panel in the Server Name property. You can leave the
name blank in which case the IP address and Port Number will be used.

If you are using a newlook liteclient license, select the Use 'liteclient'
license check box.

If you leave also the IP Address and Port Number blank, the newlook
connection panel will be displayed when the Framework is trying to establish
a connection.

Server Details |Idenﬁﬁmﬁnn | Icons |

Server Type: |LANSA for System i + newlook V|

[] CBCS Capable

Server Mame:
||-'E"NS'E"':I2 | [] Commitment Control

Partition |DEM |

Divert Locks
Client-Server Translation Table: | =08 |

Partition i bled for RDMLX

Server-Client Translation Table: |‘JDB | R
Selection Block Size: | 50 |
Selection Limit: | 10,000 |

Windows or Unix Databases

Database Mame:

Database Password:

| |

Database Uszer: | |
| |
|

Database Type: ASA (for all Intel platforms) V|
Server Overrides: | |
newlook

IP Address 999.99.999.999 |

Port Mumber | 23 |

Lse 'liteclient’ license

Load Path | “DEFAULT |

[LAMSA Comms. Admin] [Close

Set up Super-Server Session

When using RAMP you need a super-server session to sign on to the System i
server. To specify the sign-on option:

Start the Framework.
Display the Framework menu and select the Properties option.
In the Framework Properties, select the User Administration Settings tab.

Select the Users Sign on to a Remote Server to Use the Framework option
in Sign on Settings.

Close the dialog and save the Framework.

Help About | Web Details || Developer Preferences - iSeries Server | Developer Preferences - Web Server 2 | User Administration Settings |

Autharity Settings
[] use Framewark Users and Authority

[] Store Usersin DBMS Tables YFPPFOG/7

Store Users in XML File Mamed v Sy001_Users,xml

Import Users Imbedded Interface Point

Sign on Settings

End Users must Signon to this Framework i both MS-Windows and Web Browser Applications [

() Users Sign on Locally to Use the Framework Maximum Signon Attempts Allowed

If Maximum Allowed Sign on Attempts Exceeded

(¥) Advise User with a Message
@ |Jsers Sign on to a Remote Server to Use the Framework

IUsers May Wark Offline if the Remote Server Is Mot Available © Framework Fatal Error

Optionally Set up Framework Users and Security
You can optionally use Framework users and security:

e Display Framework properties. In the User Administration Settings tab
select the Use Framework Users and Authority option. Also select the option
Store Users in DBMS tables VFPPF06/07. Save and restart the Framework.

Help About || Web Details | Developer Preferences - iSeries Server || Developer Preferences - Web Server 2 | User Administration Settings

Authority Settings
{ze Framework Users and Authority

Store Users in DBMS Tables WFPPFOE/7

Mame of User Set to be Used SYSTEM

Import Users Imbedded Interface Point

e Inthe Administration menu select the Users option.

e Specify the user profile details and their authorities. For more information
use the context-sensitive help by pressing F1.

Optionally Configure newlook User Profile and Password in the
Framework

Most commonly the newlook user profile and password are the same as the the
user profile and password used for the Framework superserver connection. In
this case do not specify the newlook user id and password because RAMP will
default to these values when starting a newlook session.

However, if you are using Framework Users and Security and if the newlook
user profile and password are different from the Framework user profile and
password, you can specify your newlook User Profile and newlook Password in
the Framework. Alternatively you can specify these details when connecting to
newlook.

If you want to specify these details in the Framework:
e Start the Framework.

e Inthe Administration menu select the Users option to display the User
Details tab.

e Select your user profile.

e In the newlook User and newlook Password fields, define the user profile
and password you use to connect from newlook to your System i server, or
use the special value *PROMPT in both fields.

e C(Close the dialog and save the Framework.

javascript:void(0);openCHM('LANSA048.CHM::/L4wVLF11_0080.htm',’lansa’);
javascript:void(0);openCHM('LANSA048.CHM::/L4wVLF11_0085.htm',’lansa’);

i, UserPr....| Caption
£ Dowser UserProfilel

| Tdentification | Tcons | User Details |Custom Properties | Authorities |

|Jser Profile

Mew Password

Caption

| DCXUSER |

[]

[ecmrofi |

MNewlook User

MNewlook Password

| DCXUSER |

S |

Mew User

Temporary Directory on PC:
Email Addresa:

Inactivity Log on timeout (minutes)

Inactivity Log off imeout {minutes)

[] Admiristrative User

[] - User is Disabled

CADOCUME ~ 1eevalLOCALS ~ 1 Temp!,

| |
[1]

L

Groups this user belongs to

[Export Users] [Imnu:urtl_lsers frc:m.‘:{J'ﬂL] [Close]I

Starting the Framework on the Web

There are RAMP-specific options when starting the Framework on the web. See
this section in the Framework guide: Web Application Start Options.

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_0900.htm',’lansa’);

When Many Developers Work on the Same Application

When modernizing large applications, it may be necessary that several
developers share the work.

Handle Multiple Framework Versions
Multiple Developers Using newlook
Script Naming Convention

Handle Multiple Framework Versions

See Framework Versions.

javascript:void(0);openCHM('LANSA048.CHM::/L4wVLF08_0040.htm',’lansa’);

Multiple Developers Using newlook

When multiple developers are identifying screens and fields in newlook, it is
recommended that the developers work from local copies of the SID file with
updates being merged into a central repository. The merge process should be
performed by a single developer who is responsible for managing potential
conflicts.

However, it is also possible to have multiple developers working on the same

SID file via the network. You should note that working on a SID via a network
is not as fast as working on a SID file locally and, as with all shared databases,
there is always the risk of data corruption due to PC lockups or power outages.

To work on a shared .sid file:

e Copy the newlook.sid (or whatever your shared dynamic repository is
named) to a shared folder.

e In newlook choose the Settings option from the Tools menu, then click the
Settings button in the Dynamic Recognition Repository section.

e In the Shared field specify the newlook.sid file on the shared folder.

Repeat the last two steps for all developers who want to work on the repository.

Many developers can simultaneously work on the same newlook.sid file. If
developer A makes some customizations to a screen and saves the changes,
developer B will see those customizations instantly. If two developers try to
change the same object (i.e. screen, macro, etc) at the same time, newlook tells
the second developer that the relevant object is currently locked by another
developer.

Script Naming Convention

RAMP scripts are assigned names like INVOKE_SCRIPT_2,
BUTTON_SCRIPT_7, etc.

The name reflects their purpose and the numerical suffix makes them unique
within the current Framework, but they have no real programmatic purpose.

Where multiple developers are working on independent Frameworks with an
intention to merge their work together at some later date, the possibility of
duplicated script names exists. While this situation does not present a technical
problem for RAMP, it can be confusing for developers trying to identify unique
scripts.

Developers can change the names of the scripts in the Script Details area. The
recommend way to do this is to append a short suffix to the generated script
name, possibly relating to the 5250 screen or application that the script is
associated with.

Also see xxxxxxx is an orphan script and should be deleted.

Starting RAMP

This section summarizes how you start LANSA and the features inside LANSA
you will need when modernizing an application.

Start LANSA

Start the Framework

Start RAMP

Start newlook

Start the Instant Prototyping Assistant
Start the Program Coding Assistant

Start LANSA

To start LANSA:

e Use the Start menu and display the Programs folder.
e Select LANSA.

e Select the Development Environment option

@ SetProgram Access and Defaults
%2 Windows Catalo -
» 2 @ Documentation 4
" Windows Update) o)
: @ settings and Administration r
B winzip = : -
: = Development Environment
@ Mew Office Document
= @ Exec Form
&y Open Office Document i .
Exec Form {to RDML iSeries)
lm Programs @ Arcessories v 5] Exec Form (to ROMLY iSeries)
Eb Documents L4 Jasc Software L4 @ Ewec Process
G- Settings r @ Microsoft Office » Ewec Process [to RDML iSeries)
;J Search r f@ SQL Anywhere 3 # |l Exec Process {to RDMLY, iSeries)
_@) Help and Support G LANSA @ LAMSA Configuration Tool
=7 Run... newlook 7.0 r
bt
W

B shutDown... BEE TR BT | R [Endlishitis] | B
iistart 1~ & B | '

The LANSA development environment is displayed

Start the Framework

You start the Framework from the LANSA development environment:

F* LANSA Editor

Display the Tools menu.

Select the VL Framework - as Designer option.

EIET Functions

EI @ Processes

E- @ Resources

© & Reusable Parts
. @ web
E]Ei Organizers
-9 system Information

File ‘Edit View Options Verfy " Debug BELEE Window | Help
e » |8 P & X 4 oo LlaApad 88 H
A . a|x LANSAImport... =
| Repository V' Deployment Tool. .,
[: | Logical Modeler. ..
k| B o 5 AR,
Item YL Framework - as Designer
= n Active Partition (RD1) YL Framework - as Administrator
- @ Fields | WL Framewaork - as User
5 B8
®- 7 Forms System Maintenance. ..

Dhiject Maintenance. ..
Task Maintenance. ..

Template Maintenance. ..

& [Tasks
A5/ »
| i Outine || Dietails I || reposit ! ’_I

(4 Assistant | T Help Text " #% Campile || 4 check in || K check out " WA Propagation |

Feady

| LANSASET ‘ RO1 | DCXLISER | SET E3 | ENG

Start RAMP
You start RAMP from the Framework window:
e Display the Framework menu.

e Select the RAMP Tools... option.

& Demo Applicatio o |

File Edit View Actions Tools Help a o { Administration)

% signOff 3 New v | 4 (Mew) 4 v 5 Tramsfer | @ Calculator ‘

Demo Application (Properties. ..)
OrTEEES:] (Applications) *

s %
EI Demo Application (Commands...)
! E-5 HR { Menus...)

- [#48] Web Sites { Design Code Tables...)
@} Programming Technigues

(Program Coding Assistant...)

(Instant Prototyping Assistant...)

{RAMF Tools ...)

(Save)
(Save As...) are Made F::nplo
(Save and Restart) | W

(Save and Exit)

(Execute as Web Application...) ¥ LEnER
(Web Consoles) r

or More Information
(Assiztance) r
(Tracing) ¥

[Messages | Local | EMG | Dcxuser | 3f22/o6 | 15:03 |

The RAMP and newlook Tools window is displayed.

Start newlook

¢ You start newlook in the RAMP Window There are two different ways you
use newlook:

Identifying Screens

To identify 5250 screens, click on the newlook Designer button on the bottom of
the RAMP and newlook tools window:

5250 Application Session | Personnel Application | Invoice Processing Application | Default 4 | #

"
M ame Grouping Caption
= Sezgion |Fvoice Processing Application
= E] Junctions [£]
£ USignon 1-DC_PGHMLIE - newlook,
£ 05/400 b ain benu 1-DC_PGHMLIE - newlook,
[E| Dreztinations [0]
+-{ | Specialz [1)
+ Scripts (1]

[Save V] [New 5250 Application Sessiu:un] Mewlook, Designer

The newlook window is displayed:

% 1 - Offline - newlook
Fle Session Edt Miew Macros Tools Function Keyboard » -

»

Use the Session menu to establish a connection to the newlook server.

Defining Screens

After you have identified the screens using newlook Tools, you need to define
the screens in the Framework and track the navigation between them.

To do this, start the newlook emulator session by clicking on the message
newlook has not been started in the message area:

;..Elick Eun any meszages below to zee available actions
| /8 Mewlook is nat started. Click on this line to start Mewlaok.

The newlook Emulator Session is started in the RAMP window. Use the Session
menu to connect to the server.

Start the Instant Prototyping Assistant

The tutorial movie Create a prototype of your application - 3 minutes shows
how to use the Instant Prototyping Assistant.

Use the Instant Prototyping Assistant to quickly prototype your application or to
modify an existing prototype

To start the Instant Prototyping Assistant, use the Instant Prototyping Assistant...
option in the Framework menu.

& Demo Applicatio

L]
File Edit View Actions Tools Help a o { Administration)
% signOff 3 New v | 4 (Mew) 4 v 5 Tramsfer | @ Calculator ‘
On Tool Bar tiNcainn] {

s %
EI Demo Application (Commands. ..)
. B8 HR

. @] webSites
-@- Programming Technigues

r |
{ Menus... }

(Design Code Tables. ..)

(Program Coding Assistant...)

{ Instant Prototyping Assistant...)

(RAMP Tools ...)
r a Y s ."»
{ Save) 1‘\‘

(Save As...) are Made a‘:;nplo
(Save and Restart) e

(Save and Exit)

(Execute as Web Application. ..

4

-

LEUEL

(Web Consoles) r

r More Information
(Assiztance) r

(Tracing) ¥

[Messages | Local | EMG | Dcxuser | 3f22/o6 | 15:06 |

Alternatively, select the New Application or New Business Object options from
the popup menu in the navigation pane:

“® Human Relations

File' Edit- -Niew: Actions Tools Help {Framework

S sionoft T e | o i e

| Human Relations

On Tool Bar]

--uj} Demo Application
1 [+ @- Programming Technigues |

{ Mew Business Object...)

{Properties...)
(Delete)

Position 4

And then respond Yes to the message that appears:

b Click Yes to tse the Instant Prototyping Wizard to create a new application.
B)
Click Mo to create this new application manually.

Click Cancel to cancel this action.

| fes 'J[Mo][Cancel J

The Instant Prototyping Assistant is displayed:

M [nstant Prototype Assistant E|
Fa

m
@Hﬂmaqﬁﬂssi—k-i—k ut business objects in groups || #—— |

What actions can users do with "business objects"” ?

Step 2. Enter the names of all the actions below: (separated by commas)

Windows designs use the Object-=Action approach.
- {i.e. select the object you want to work with, and then choose what vou want to do with it.)
The actions should be described in end user termes, not in IT terms.

Wery concise words are used to describe "actions”, because the ocbject being worked with is already knowr
If vou =elect an object in M5-Powerpoint and use the right mouse there is a concise menu option "Copy”.
- It does not say "Copy this text box to the Clipboard”.

Short verbs tend to be used to describe actions.

- (e.q. Copy, New, Edit, Print, Approve, Transfer, Reply, Renew)

Short nouns are also used to refer to things that directly relate to the business object.

- (e.qg. Details, History, Charges, Claims, Attachments, Schedule, Contacts, Documents, Expenses)

For example: If there iz a "business chject” called Custoemers, vou could do theze things with a Customer: e

EdAdit Drint Naolata Arcniintc Dorant Trancactinne Carracanndaoncs Vfarifur —

£ | »

Actions: Details |, Mew , Notes |

~
Step 3. Drag and drop the actions from the list befow, onto all the appropriate business i
objects in the list on the right
The =ame action can be used with many busineszsz objects. w
Details Ela employes (exists already)
B New i flle Video Action: Video emp...,
7 hotes fle Email Action: Email empl...
il Edit Artion: Edit emplo. ..

Cancel

Start the Program Coding Assistant

The tutorial movie Create a filter and snap it in - 4 minutes shows how to use
the Program Coding Assistant.

Use the Program Coding Assistant to quickly create the code for Framework
filters and RAMP screens.

To start it, use the Program Coding Assistant option in the Framework menu:

& Demo Applicatio o |
File Edit View Actions Tools Help a o { Administration)
% signOff 3 New v | 4 (Mew) 4 v 5 Tramsfer | @ Calculator ‘
Demo Application (Properties...)
On Tool Bar { Apications] L

(Commands. ..)

EI-- Demo Application
&5 HR (Menus...)

: [H-4@| Web Sites { Design Code Tables..,)
'@- Programming Technigues

{ Program Coding Assistant... }

(Instant Prototyping Assistant...)

(RAMP Tools ...)

(Save)
(Save As...) are Made F::nplo
(Save and Restart) Ll

(Save and Exit)

(Execute as Web Application...) ¥ LEnER
(Web Consoles) r

or More Information
(Assiztance) r
(Tracing) ¥

[Messages | Local | ENG | Dcxuser | 3f22/o6 | 15:13 |

Concepts

Steps Involved in Using RAMP
Framework Window

RAMP Window

Types of Screens
OBJECT-ACTION User Interfaces

Step

1. Create a
prototype of
your
application.

2. Identify
the 5250
screens in
the existing
application.

3. Record
the 5250
entry point
screens and
snap them
into the
Framework.

4. Create the

Comments

The
prototype
will evolve
into the
final
application.

You need
access to
the subject
matter
expert at
least during
this stage.

You use the
newlook
Designer
for this.

The
Framework
needs to
know how
to access
and display
the
screens.

Using

Steps Involved in Using RAMP

You need to complete these steps:

Navigation

Application

Modernization Modernization

Identify only
entry point
5250 screens

Not necessary.

Identify all
5250 screens
that need to be
modernized as
well as
significant
fields

required
Framework
filters

5.
Optionally
add new
features
making use
of Windows
functionality

6. Deploy

powerful
filters is the
basis of
reusing the
5250
screens in
new
modernized
ways.

For
example
you may
want to add
advanced
screens for
for instance
email,
video,
graphing.

Deploy
your
application

Framework Window

& Demo Application
File Edit View Actions Tools Help (Framework) (Administration)

S sign Off & New | @ Emal (= Print [7] Detzls v (@ Transfer ‘ @ Caloulator |

Employees

On Tool Bar] J_E]‘ by Skl | {l; Other Murnber Mame Phone
B DEMHR & by Name | @ by Location | 43554 FREDDY BROWN (02) 567-6753
& () Demo Appiication . : AD0S0 FRED JOHN ALAN,.. 344-2234454545
o8& Specify a full or partial employee name. 40070 VERONICABROWN (02) 9609 4627
..... Employees ke Sriane |:| 41031 JOHN BLAKE (02) 9665 9235
----- Skills
-----) Departments
- Sections Filters : Instance List
- Monthly Reports Use filters to specify This list shows the objects that meet the
----- I Online Reports selection criteria for the filtering criteria. Select from it the object
i Annual Reports objects to work with you want to work with.
-] newlook 5250 : :
w0 Ve Sites Clear the current list ¢ Searct (|
[]--@ Programming Techniques
& Emploves : Basic details [AD070-VERQMICA BROWH) 0O
I — . T ’ : :
| Basic details | s skills || & Transfer || @ Email || = Video || |41 4l Details || [Documen13|
Employee Mumber ADOTD Save
Navigation Pane
; Emplovee Surname |BRO'-‘-;'N |
Use this area to move | | Command Handlers
inat Employee Given Name(s) YERCNICA
be“"‘eer.‘ appllca_tlons The programs you use
and business objects Street No and Mame | 12 Railway Street | to work with objects.
: They can be RAMP
Suburb or Town |Baulkham Hills | e e
State and Country NSW Austraa | |LANSA components.
Post [Zip Code 2153
Home Phone Number |(02) 9602 4627 |

| Ready | Lol | ENG | DOXUSER |10/10/06 | 15:42 |

RAMP Window

M RAMP and Newlook Toals - Invoice Processing Application

1-DC_PGMLIB - newlook Tracing 1070 ik on any messages below to see available actions
Session Edi View Macros Tools Funclion Keyboard Help @ This farm is named uSignon [1 - DC_PGMLUE - newlook)
Enter Itis defined as a Junction
4 o Display System The named iterms on this form are;
lMessages uT stProfil
e + Enter uT stPassword
s (5/400 Main
Menu
v e |Newlook Emulator Screen Tracking Area Messages Area
Session .
" |vou run the application The squence of the IInfGrmatmndalﬁl?}?Licl.where
e ahi] being modernized here SE.I'EQHS YoL are VoL are an W Ell YLl
i tracking are shown should be doing is shown
' here here

DI(EExit E’}rompt E!Eetrieue @}mcel » . | :
= % {C)COPRIGHTIEMCOl ENU 07 @ 4 b [Frobe] [Snapshat [461x354] "l [Restart]
|-525EI Application Session | Personnel Application |_‘J_'_| @ 05400 Main Menu |

1-DC_PGMLIE - newlook,

| @ | Find
Caption |1 - DC_PGMLIB - newlaak,
Mame Screen and el | |
F E Mouping
S Script List
E'@ dunctions (2] (The 5250 Details Area
- & uSignon screens defined e of .
- o IO YETin RAMP and their Ec?Ea;rse%xErEiricra?t% t;rrztrlpt
~[&) Destinations 0] |3550ciated shown h g
- : scripts are shown here
Ell | Speciaks (1] h h
---DisplaySystem..S RAFImEE
(@] Seripts 1)

[Save "I [New 5250 Application Sessinnl

Message Area

Screen Tracking Area
newlook Emulator Session
Screen and Script List
Details Area

Message Area

RAMP Screen newlook Screen and| Details
Window Tracking | Emulator | Script List| Area
Area Session

The RAMP message area shows messages about where you are and what you
should be doing.

When newlook is running, messages are shown for the screen selected in the
Screen Tracking Area.

If messages have a message icon, click on it to see what actions are available.
The message area has buttons you can use when tracking screens:

| Chick onar meszages below to zee available actions
|:| Thiz form iz named wl'S 400k ainbd e
It iz defined az a Junction
The narmed itemz an this form are;
Crndline
Scripts forzignon --» udS400M aink enunavigation ..
MNAVIGATE_SCRIPT_2E - Mavigate from signon ==> u0540
MaVIGATE_SCRIPT_25 - Mavigate from ulS 4000 ainkd e

Scripts navigating away from this junction are:;
MaVIGATE_SCRIPT_25 - Mavigate from ulS 4000 ainkd e

Scripts navigating to this junction are;
MaVIGATE_SCRIPT_26 - Mavigate from zignon == w0540

& Wy 3|
[Probe] [Snapzhot [B36x33E6] V] [Restart] [Refresh]

Probe Use the Probe button to examine the layout of the current
5250 screen and produce an online report. It is used for
problem analysis and to determine the rows and columns
used in a subfile.

Snapshot Use the SnapShot button to take a snapshot of the current
5250 form in GUI or 5250 mode and save it as bitmap.
These images:

Restart

Refresh

e (Can be dragged and dropped onto RAD-PAD
prototype command tabs to enhance communications
during design sessions with other developers or end-
users.

e Are useful for producing system documentation

e Are an aid to remembering exactly what 5250 screen
is associated with a junction, destination or special
screen.

The (nnn x nnn) numbers on the button indicate the pixel
size of the snapshot that will be saved. These numbers will
change as you change the layout of the RAMP Tools
window.

Use the Restart button to erase the tracking information and
restart tracking.

Use the Refresh button to force the RAMP choreographer
to re-examine the current 5250 screen. This is useful in
situations involving 5250 flash screens.

Screen Tracking Area

RAMP Message | newlook Screen and Script | Details
Window Area Emulator List Area
Session

The Tracking area displays the screens you have displayed in the current
newlook 5250 emulator session. When you end the newlook session, the
tracking information is cleared.

Colors used in the Tracking area for screens indicate their status and type you
have assigned to the screen:

Unkrioven Form The screen has not been identified in
newlook.

Before using RAMP tools, you must
identify the screens of your application
using newlook.

wrkouta The screen has been identified in newlook,
but it has not been defined in RAMP.

You need to define the screens in your
application according to their purpose:

° Destination screens are screens where
the end-user works

° Junction screens are used for
navigation only

e Special screens are used for messages
etc.

To define a screen, click on the message
saying that the form has not been defined.

e The screen is a junction screen.

Display System Messages The screen is a special screen.

wrkjaba The screen is a destination screen.

newlook Emulator Session

RAMP Message | Screen Tracking Screen and Details

Window Area Area Script List Area

You use the newlook emulator session to run the application you are
modernizing.

When newlook has not been started, the message newlook has not been started
is shown in the message area:

Click on any meszages below to see available actions
| /8 Mewlook is nat started. Click on this line to start Mewlaok.

Click on the message to start newlook. Then use the newlook Session menu to
connect to the server:

B RAMP and Newlook Tools - Default Session

5 - DC_PGMLIB - newlook
Session Edit Miew Macros Tools Function Keyboard Help

=] 2 |{C) COPYRIGHT IEM CORP, 1980, 2002, |EMU |

e
s
~

Screen and Script List

RAMP Message Screen newlook Details
Window Area Tracking Emulator Area
Area Session

The screen and script list shows all the 5250 screens defined in the Framework
and the associated scripts:

5250 Application 5ession | Personnel &pplication || Invoice Processing Spplication | Default Session

"
M ame Grow... | Last Changed Caption
= Segzion Default Sezzion
+ E] Junctions [3]
= [Q Dezstinations [1]
= EnrolE mployes 20061025-145914-0... 1 -DC_PGMLIB - newlook
= Scripts
RETURM_... 20061025-150042-0... EnrclEmployes - Returm to near. .
BUTTOM_S... 20061025-150046-0... EnrclEmployee - Handle funchio...
INWOKE_S... 20061025-150048-0... EnrclEmployes - [rvoke thiz far...
+-| | Specialz [1)
+ Scripts (8]
[Save V] [New 5250 Application Sessiu:un] [Delete] [Mewlook, Designer]

Select the screens and scripts you want to work with.

You can use the Find field on the top of the list to locate screens and scripts. If
you want to search the contents of scripts, tick the In Scripts check box.

There are two ways you can save your changes to the Framework in the RAMP
window:

Full Save Performs a full Framework save including the generation
of all scripts for execution in end-user mode and the
uploading of web server details.

Partial Performs a partial Framework save so that your work is
Save fully recoverable, but does not generate run-time scripts or
upload server details.
You will need to do a full Framework save to deploy your
application or execute it in end-user mode.

You can use the New 5250 Application Session button to organize screens and
scripts into distinct 5250 Application Sessions (see Organizing Screens and
Scripts).

The newlook Designer button starts a newlook client session you need to use
when identifying screens.

Organizing Screens and Scripts

If your applications are large and complex, you may want to divide the screens
and the associated scripts into separate groups along application lines. You can
do this by creating separate 5250 application sessions for them in the RAMP
window.

Developing applications with hundreds of screens becomes increasingly
complex to manage because of the number of objects they contain. Also, the
initial start up time of an application increases in a linear manner according to
the number of objects it contains.

In this example three application sessions have been created in addition to the
Default Session (5250 Application Session, Personnel Application and Invoice
Processing Application):

| 5250 Application 5ession | Personnel &pplication | Invoice Processing Application | Default Session |

"
M ame Caption o
= Seszgion |Fvoice Processing Application
= E] Junctions [£]
= 1Signon 1-DC_PGHMLIE - newlook,
+ Scripts
= 05/400 b ain benu 1-DC_PGMLIE - newlook,
= Scripts
MavIGATE_SCRIPT_B Mavigate from uSignon ==> 05/400 Main M.
MavIGATE_SCRIPT_Y Mavigate from 057400 Main Menu == uSig...
[Q Dreztinations [0]
=1 | Specialz [1] L

[Save V] [New 5280 Application Sessiu:un] Mewlook, Designer
Note

that the 5250 application sessions are completely independent of each other and
have no knowledge of each other's existence. This means that a script in one
session cannot navigate to an object in another application session and that you
will most likely have to duplicate some common scripts such as logon and
logoff and messages.

A separate newlook session will be started for each 5250 Application Session.

To create a new grouping, click on the New 5250 Application Session button in
the RAMP window. You can edit its caption in the Session Details area.

Only one 5250 Application Session can be active at any time. To change the
application session, simply display the tab for that session. All screens that you
define and scripts you create are stored in the current 5250 Application Session.

Details Area

Session Details

Destination Screen Details
Script Details

Session Details

RAMP Message Screen newlook Screen and
Window Area Tracking | Emulator Script List
Area Session

Use the Session Details to specify various settings for your 5250 Application
Session:

Session - Default Session

Zaption Default Session
User Object Name | Type SASEC4SEEZ4F41CDEYEDETE7ORSE044 Verify Name
Default RAMP Layout Dimensions
Height 330 Width 700 Top Left
Top Mask Height Bottom Mask Height 27
FAMP Screen Layouk Style
| Fixed Layouk Flow Layouk
Scroll Bars
Display Horizontal Scroll Bars Display Yertical Scroll Bars

' Lock Framewark when unknown 5250 Form is displaved
Reuse existing connection's user profile andfor password

Always link this session to a server with User Object Mame | Tyvpe

special Field Handing

5250 Field Mame Function Key WL Handler {class YF_ACO17 object) o
F4
F4
F4
F4
F4 i

M e W=

Caption The caption of the RAMP 5250 Application Session.

Height The default height of 5250 screens when displayed in the
Framework.

Width The default width of 5250 screens when displayed in the
Framework.

Top The default distance between the top of the RAMP screen tab

and the 5250 screen.

Left

Top Mask
Height

Bottom
Mask
Height

RAMP
Screen
Layout
Style

Scroll Bars

You can use this option to Hide screen titles in RAMP Screens

The default left indentation of the 5250 screen when displayed in
the Framework.

The default height of a mask you can use to hide the top of the
5250 screen.

You can use this option to Hide screen titles in RAMP Screens
This option is not applicable to RAMP Web.

The default height of a mask you can use to hide the bottom of
the 5250 screen.

If RAMP Screen Layout Style is set to Flow, RAMP screens
will be automatically resized to fit into the space available to
display them.

If Flow is used:
e Specific positioning and sizing of screens is not supported,

e Top and bottom masking of screen areas cannot be used to
hide screen content.

®* You cannot use or show the function key blue bar.

e Display Horizontal Scroll Bars and Display Vertical Scroll
Bars options cannot be used for the obvious reasons.

Fixed means the RAMP screens are not resized to fit into the
space available to display them.

Note that you can override this setting for individual destination
screens.

If the Display Horizontal Scroll Bars option is checked,
VLF.WIN applications will display horizontal scroll bars when a
Fixed size 5250 screen will not fit in the display area. VLF-
WEB/NET applications always act as if the Display Horizontal
Scroll Bars option is checked.

If the Display Vertical Scroll Bars option is checked, VLF.WIN
applications will display vertical scroll bars when a Fixed sized
5250 screen will not fit in the display area. VLF-WEB/NET

Lock
Framework
when
unknown
5250 form
is displayed

Reuse
existing
connections
user profile
and/or
password

Always
link this
session to a
server with
User
Object
Name /

Type

applications always act as if the Display Vertical Scroll
Bars option is checked.

This option applies a lock to the Framework when an unknown
5250 screen is encountered.

When a lock is applied, the user cannot move around within the
Framework until they navigate to a defined 5250 screen.

They can exit from (for example, shut down) the Framework
when such a lock has been applied.

Typically this option is used to trap unknown and/or unexpected
5250 screens.

In highly defined and managed sessions, where every 5250
screen should have been defined to RAMP, set this option on. In
unmanaged sessions always set this option off.

Use this option to indicate that when this 5250 application
session needs to connect to a server it should reuse the same user
profile and/or password details as were used to establish the last
successful server connection.

This option may be used to prevent the user from being
prompted to input their user profile and/or password repeatedly
for each new 5250 application session that needs to be started.
Typically they are only prompted for the first application session
they establish.

This option may be automatically overridden by individual user
profile options or by super-server connection values.

The Framework remembers the last user profile and/or password
used to establish a server connection only until the user exits
from the Framework, at which point the details are lost.

Normally when a user needs to connect a 5250 application
session they will be asked to choose which server they want to
connect to.

Use this option to prevent the user from having to, or being
allowed to, making this server connection choice.

Using it unconditionally links a 5250 application session with a
server.

Special
Field
Handling

To use this option first assign an unique User Object Name /
Type to the server.

Use the Framework Administration menu Servers option to do
this.

For example, this server has been assigned the User Object
Name / Type SERVER_2.

Sy Datnly | I0enDAcaton |1
LaMSAND

; Captior LANSA02 (NG}
LA MY
Hn%: (Emag
Sequence
irternial [denirfier: VPR 2
Ursguse [dentfier: 480

issr Olject Mame [Type AR
] Reswricted Access

Last Changed

Next, set the 5150 application session to use the same name (eg:
SERVER_2).

Now the 5250 application session and the server with user object
name/type SERVER_2 are unconditionally linked.

The user can no longer choose which server to associate the
5250 application session with.

To remove this option from a session set it back to the default
value of blank.

Advanced prompting facility for fields.

You specify the name of the field to be prompted, the function
key to be used and the Visual LANSA form that is used as the
prompter.

For more information refer to Advanced Prompting

Hide screen titles in RAMP Screens

In most cases 5250 screen titles are redundant in RAMP screens because the
navigation elements in the Framework Window clearly indicate the object being
worked with and the command being executed:

* Human Relations

File Edit View Actions Tools Help (Framework) (Administration)

o

& signOff D0 New ~ ‘ () Emal (= Pt [] Detzils v 7 Transfer | G caloulator |

On Tool Bar Specify a full or partial employes name.
B--ﬁ Human Relations
; Employee Surname |:|

Employee | Description
A3564 FREDDY BROWM

"4l Document ADDSD FRED JOHN ALAN BLOGGS

il Eneie VERONICA BROWN

ol Tt JOHN BLAKE

""" Payment Clear the current lis [Clear List
i Report

Eﬂ--@ Demo Application

a Employee : Edit (A0070-VERONICA BROWM) |
[3--@} Programming Ted

.-./} Edit | @Email " El'-a'idenl

Brovese/Maintain Employee and Skill Files

Employee Mumber A0070
Employee Surname BROWN

Employee Given MName(s) I@
Street Mo and Mame I@
Suburb or Town @
State and Country I@

Home Phone Mumber I@
Department Code E]
Section Code E]
Start Date (DDMMYY) EGE
Termination Date (DDMMYY) [oopo

.ﬁiztjrseg gﬂle gg!cripﬁnn e 25

000,00

00000

< | & 0/00/00
[Messages] Ready | local | Emc | Doxuser | 31408 | 5:20 i@

Therefore RAMP screens look more natural without titles in the Framework:

* Human Relations
File Edit View

Actions Tools

Help (Framework) ({Administration)

E
i
¥ |_! I

(1)
[
o
=
[+7)
g

% signoff D) Mew ~ | @ Emal (= Print [Detis -

Employee

Employee Surname
Employee Given MName(s)
Street Mo and Mame

Suburb ar Town

State and Country

Home Phone Mumber
Department Code

Section Code

Start Date (DDMMYY)
Termination Date [DOMMYY)

e 0
510

Date 5k
Acquired

Skill
Code

Skill
Description

Comment

Grade

00000

00000

00000

00000

On Taol Bar Spedify a full or partial employee name, Employee | Description
=B Fumen Relztons A3564 FREDDY BROWN
f Document | CMPloyee Surame |:| ADD90 FRED JOHM ALAN BLOGGS
..dl Employee AQDTD VERONICA BROWN
.2 Invoices A1031 JOHN BLAKE
b Payment Clear the current lis Seard [Clear List
i Report
&-{8) Demo Application 44 Empioyee : Edit (A0070-YERONICA BROYI)
[3--@} Programming Ted
& Edt | (=) Emai | =2 video |
Employes Mumber AD0F0

| Ready

Local

| Enc | DCxusER

| 301406 | %:23 |@

There are Two Ways to Hide the Title.

Two Ways to Hide the Title
You can hide the screen title either by moving the RAMP screen up so that the
title is hidden or by applying a mask on the title to hide it.

You set the RAMP screen position and mask in the Session details of the
Default Session in the RAMP Tools window:

B RAMP and Newlook Tools - Default Session

| Click an any messages below to see avalable actions |
A0 Mewlook is not started. Click. on thiz line to start Newlcu:
< | ?|

Seszion - Default Session
Caption | D.;afau.ll Séssion
' Mame ' Default Mewlook Layout Dimenzions
' Heght (380 | widh [0 | Tep [5 | Let

Junctions [B]

& Top Mask Height :] Bottom Mazsk Height -
i Q Diestingtions (5] m m
1+ |: Specials (1] Lock framewark, when unknown 5250 form iz displayed
e (2] Seripts 27] Special Feld Handing
. 5250 FieldMame | Function Key WL Handler [class WF_ACOT object) A
1 F4 5
| 2 Fa
'3 F4
4 F4 2
£ B || @ i

Save Framework

You can override these settings for individual destination screens by changing
the Layout Dimensions in the Destination Screen Details.

Moving the Screen

To move the screen up so that the title is hidden, set the Top property to a
negative value:

Sezzion - Default Sezsion

Caption | Default Seszion

Drefault MewlLook Layout Dimenszions
Height | 380 Width | 700 Top 2h- Left

Top kazk Height Bottomn bMaszk Height

Lock framework when unknown 5250 form iz digplaged
Special Field Handing

5250 Field Mame Function Key W Handler [clazs WF_ACO17 object] 2
1 F4
2 F4
K] F4
4 F4 iy
< >
Masking the Title

To mask the title, set the Top Mask Height property to a height that covers the
title:

Seszion - Default Sezsion
Caption | Default Seszion
Default MewlLook Layout Dimenszions
Height |380 Width | 700 Top Left

Top Mazk Height 25 Bottom Mask Height |[[

Lock framework when unknown 5250 form iz digplaged
Special Field Handing

5250 Field Mame Function Key W Handler [clazs WF_ACOT7 object] s
1 Fa
2 Fa
K] Fa
4 F4 r

Destination Screen Details

RAMP Message Screen newlook Screen and
Window Area Tracking | Emulator Script List
Area Session

When a Destination Screen is selected in the Screen and Script List, the details
of the destination screen are shown:
EI ubisplavEmploves
1 - TestLANSADZ - newlook;

Zaption 1 - TestLANSADZ - newlook,

Grouping
Default RAMP Layout Dimensions
Height 330 Width 700 Top Left
Top Mask Height Bottom Mask Height 27

FAMP Screen Layouk Style

| SEssion Fixed Layout Flow Latouk
Function Key Enablement Associated Command Handleris)

ke Zapkion Enable KiEnable | Seq | # Link. ko Command (Tab) in O
Clear Clear]] 1 About Framework, M,
Enter Daccor |:| 2 Exit Mew,
Page Up Page Up 3 Assistant Example 1 e,
Page Dc Page Down 4 Assistant Example 2 Mew,
Prink Prink El d 3 Assistant Example 3 M,
Help Help il i & Spooled Files M
Fi Help il ; About, .. Prio
Fz Fz] il g :

Details The
F3 Exxit] 9 :

Details The
F4 Prampt] 10 .
F5 F5]] 11 < >
F& Fo & d 12 Refrash
F7 F7]] 13
Fa F& | | 14 Session Id AT -
Fo Fo || I 15 ¥

You can specify these details for the destination screen:

Grouping Optionally type a grouping name for this
screen.
You can use this option to enter the same
grouping name to related screens so that they
can be sorted together in the Screen and Script
List.

Default RAMP Layout
Dimensions

RAMP Screen Layout Style

Function Key Enablement

For more fundamental organization of screens
and scripts, see Organizing Screens and
Scripts.

Use these properties if you want to
permanently override the default layout
dimensions set in Session Details for this
screen.

If RAMP Screen Layout Style is set to Flow,
this screen will be automatically resized to fit
into the space available to display it.

If Flow is used:

e Specific positioning and sizing of the
screen is not supported,

e Top and bottom masking of the screen
area cannot be used to hide screen content.

® You cannot use or show the function key
blue bar.

e Display Horizontal Scroll Bars and
Display Vertical Scroll Bars options cannot
be used for the obvious reasons.

Fixed means the RAMP screen is not resized
to fit into the space available to display it.

Session means the value is inherited from the
Session's properties.

This is a list of all the available function keys
in 5250 screens.

You can use the list to enable or disable
function keys in the 5250 screen and also to
enable or disable the runtime appearance of
push buttons in the RAMP screen that have
the same functionality as the corresponding
function key.

By default, when a screen is defined as a
destination, all function keys are disabled and

Associated Command
Handlers

Session

the corresponding buttons are enabled. This
means that when the screen appears, pressing
the function key will have no effect, but a
corresponding button will appear on the
RAMP screen which is functionally
equivalent the function key in the original
5250 screen.

Note that function key enabling is only valid
for those function keys already present in the
5250 screen.

For example, if a 5250 screen is designed to
have function keys F1, F3, F6 and F12,
enabling the F10 key will have no effect in the
application since that key has no functionality
in the original screen. However, you can still
enable the F10 in the RAMP screen if you add
your own script for it in the button script of
the destination screen.

e To enable a function key, tick the check
box in the Enable 5250 column.

e To display the function key as a button,
tick the check box in the Enable VLF
column.

e The captions of the buttons can be
changed in the Caption column.

The command handler tab where the RAMP
screen will be attached.

The command handler tabs are created when
you prototype your application.

Specifies what System i 5250 session (ie: job)
should be started for the screen.

*AUTO : is the default value and indicates
that the Framework should manage the
required 5250 session(s) automatically. This
type of session is a managed session. It is

fully integrated with the Framework,
applications, business objects and instance
lists and all scripting facilities are available.

SESSION_A -> SESSION_Z: allow you to
specify that an unmanaged session is to be
started for the command handler or tab.
Unmanaged sessions are primarily used to log
the user on and then drive them to a specific
starting point. From that point forward the
user can move around inside the 5250
application in an unmanaged way. Since the
session is unmanaged only very limited
scripting capabilities exist. For example, a
script in an unmanaged session can not access
the business object instance list. Equally,
when a user returns to an active command
handler / tab that uses an unmanaged session
it is simply redisplayed as it was when they
last left it. No attempt to navigate them or
execute any scripts is attempted (because it is
unmanaged).

Unmanaged sessions are useful because they
allow large pieces of an existing application to
be reused in the Framework very rapidly.

For example, an unmanaged session might be
used as the only command associated with a
business object named "System Tables".
When the user clicks on "System Tables" in
the Framework menu, a full screen 5250
session appears that logs the user on and then
drives them to the 5250 menu that manages
the maintenance of 50 (say) system tables.
The entire "System Tables" facility composed
of hundreds of 5250 screens (say) are now
accessible in an unmanaged fashion, without
the need to identify and enroll them in the
Framework. If the users goes away from the
"System Tables" tab and then come back

again later the current 5250 session screen,
whatever it is, is just redisplayed. No attempt
is made to navigate the screen (ie: manage it)
because in all likelihood they will have left it
on an undefined or unknown 5250 screen.

In short, you should always use *AUTO
unless you have a specific need to log a user
on, drive them a defined starting point in the
application, and then allow them to move
around wherever they like within the 5250
application area.

NOTE: When changing the session option
ensure that you select associated command
handler by clicking on it.

This command handler is not correctly
selected:

Email Emplovess

and changes to the session will be ignored.

This command handler is correctly selected:

E mail Emplovees

and changes to the session will be recorded.

You need to do this because sometimes a
single destination screen is associated with
multiple command handlers which can have
different sessions, so you need to positively
indicate the one you wish to work with.

Script Details

RAMP Message Screen newlook Screen and
Window Area Tracking | Emulator Script List
Area Session

The Details area shows the details of the script selected in the Screen and Script
List.

The scripts are most often generated automatically as you trace your
application. Sometimes it is necessary to edit the scripts.

You can use the Using the Scripting Pop-up Menu to help you to format and edit
your Scripts.

RETURN_SCRIPT 4
Role : Return from 1 - DC_PGMLIE - newlook to nearest junction

Script RETURN_SCRIFT 4
Caption EnrolEmployee - Return to nearest junction form
Grouping | |

/% Mavigate back to the nearest junction (PersonnelsystenMainMenu) *;

Cut

Copy

SENDKEY (KeyF12); Paste

Undo

Redo

Upper Case

Lower Case

Larger font

Smaller font

Showe Line Mumbers

/% send the key reguired stemMainMenu #/

Current Framework

Current Application

Current Business Chiject

Current Command

Current Instance List Entry

5250 Subfile Handling

Session Control

Function Key overrides

SEMDKEY - Common Function Keys
Common RAMP Script Functions

T v v v v vy vy vy v wr

£ | ¥
Commit Changes [Check Script][lUse Tracking Info to prototype a script to Return fram 1 - DC_F‘G]

Types of Screens

Classifying the screens in your 5250 application is the starting point in
modernizing your application:

e A Destination Screen is the 5250 screen where the end-user performs

actual work. These screens are snapped into the Visual LANSA Framework
without any modification.

e A lJunction Screen is used for navigation only. They are hidden in your
modernized application.

e A Special Screen is a messages or other similar screen that does not fit the
above two categories.

Destination Screen

A destination screen is a screen in which the end-user works with an object.

—£ 1 - DC_PGMLIB - newlook

Fle Session Edt Miew Macros Tools Keyboard Window Help

5kill

Description

Fl=Help F3=Exit F4=Prompt Fl2={ancel

Destination screens can be reused without any modification in RAMP
applications:

Staff Management |:| |E| |Z|

File: 'Edit Miew ' Actions Tools Help (Framework?) {Administration)
S Sign Off T NEw . | |3 Emia = PrinE R4] Detafs ¥ ey |
Employee
]|F‘EFSDI‘|I‘|E| v| Employee Description | |8
Ermol N Al A1020 DOUGLAS ADAM PETER. -
| ik i b) |Ar234 JACKSON STEPHEN
- ~ o |Aat001 JOMES BEM s
[Cexr st
a Employes ; Edit {(A1234-JACKSOMN STEPHEM) O
Erowse/Maintain Employee and 5kill Files
Emploves Number a12z4 Help
Employee Surname |_IAIZK5I3N
bl
Employee Given Name{s) |NIEHAE_
Street Mo and Mame |G Melizza Flace Prompt
= =z s B - i11=
Suburb or Town [West Pennant H ”"
5tate and Country |N5w Australia
Home Phone Number |871-7773
Department Code IADH ;l
5ection Code I-E‘-Tﬂ
Start Date (DOMMYY: I 1701551 'Iﬂ
Termination Date {(DOMMYY) I O CHERS EHEH 'I;I
Date Sk1{5k3ill Skill ,
Acquired|Code Descripiion CooAnment)
ofoas o
24 S
Ready | loal | EmG | Doxuser. | 13106 1504 |

Junction Screen
The end-user uses a junction screen to move to destination screens.

—£ 1 - DC_PGMLIB - newlook

Fle Session Edt Miew Macros Tools Keyboard Window Help

057488 Main Menu

it F4=Prompt
et initial menu
{C) COPYRIGHT IBN CORP. 1936, 2882.

These navigation-only 5250 screens a become invisible to the end-user in a
RAMP application.

Typical junctions are:
. 5250 menus
e 5250 "work with" style screens, which are really just data driven menus.

. Most 5250 screens where keys such as order numbers, customer numbers,
product numbers etc. are entered to display or action detailed information.

Special Screen

Special screens are message and other screens that do not fit in the category of
either navigation or destination screens.

—£ 1 - DC_PGMLIB - newlook

Fle Session Edt Miew Macros Tools Keyboard Window Help

Display Program Messages

Job 411527/DCXUSER/QPADEVEGED started on B3/83/86 at 15:42:88 in subsystem
Message queue DCXUSER is allocated to another job.

o continue.

F3=Exit Fl2=Cancel

These screens may appear unexpectedly at anytime in a 5250 screen flow. For
example:

e The 5250 display message screen that appears at sign-on time
e The 5250 break message screen that may appear at any time
e Fatal error message screen(s) in your own applications.

e The 5250 resume interactive session screen.

Special screens usually have a script associated with them. The script is called
an elimination script because this type of script usually sends a key or performs
an action so as to eliminate the screen from the 5250 screen flow.

See Types of Scripts in RAMP for more information about elimination scripts.

OBJECT-ACTION User Interfaces

System i and Windows applications, including the Framework, share the same
basic design for user interaction: Object-Action interfaces.

In these interfaces the user first selects and object and then the action to be
performed on the object, as opposed to Action-Object interfaces (such as
command line applications) where the command is specified first and its target
object second.

Because of this fundamental similarity, System i applications fit naturally in the
Framework model:

The navigation screens of a System i application are replaced by graphical
elements in the Framework, such filters and instance lists, which the user can
use to quickly locate the object they want to work with.

The options and associated screens in a typical Work with screen become a set
of command tabs.

In the Framework the Object-Action model is expressed as a powerful graphical
user interface (GUI).
System i and Framework Applications Share the Basic Model

The basic Framework concepts of business objects, filters and command
handlers (screens) can be visualized in a System i application like this:

=SS i Sl Business Object Commands
Business Object Instance List |[Shiiaku

“Display Attrbutes”
Command Handler B

Here you have a:

Filter Where the Work with... command provides you with
options to filter the list of objects that are displayed.
(Many "Work with xxxx" interfaces allow you to filter
inside the main display as well).

Business The list of links that match your filter's search criteria.

Object These links are your business objects.

Instance

List

Business The Options such as 2=Edit, 7=Rename, 8=Display that
Object you can execute against an individual business object.
Commands

Command = The programs that execute when you execute a command
Handlers (7=Rename or 8=Display attributes examples are shown).

In the Framework, the same concepts are visualized as a graphical user interface

(GUI) like this:

= Filter

Business Object Instance List

e Bt Veew . S maarh | [A
L) el
i [r—— = e
JAy— ﬁhlw‘whﬂ. L, v tt tane -
g (b St L]
17} St by il il Lt P MeRE PRI v ALK RLOGET
= ALiEl RED ST
i BT NN OIS SRR
T St et gicryer Sy @ Qreatet e Sebetae. vl :ﬁ" ::“m:.
T et by S et i L ey |
st i k.
Snor P g k
R o e W - 7
w & T~ Business Object Commands
aioe - Tela s
5] G o et ln o mgreret | e K e iolaw fer
AL g gty LR -
£ % G =
[———
e N 1 I T T) —
gyt Mo LT] E
trprrrr S v
Emglrpps o Binmls] | st
[Ty ra— Y ey =&l Dataiks™ Command Handler
P e o '
O "
four 0 nde = “Transfer ~ Command Handler
g B Lt 7
“Basic” Command Handler

@ Swady | (= | m [aeses [e i

Modernization Issues

The most important and complex 5250 program in an application can become a
modernization trap

How long will it take to RAMP my application?

The most important and complex 5250 program in an application
can become a modernization trap

The biggest and meanest modernization trap involves the most important and
usually most complex 5250 program in an application. In an ERP application
this program handles Order Entry, in an Insurance application it is the Policy
Master Update.

Every 5250 application has at least one of these big and mean 5250 programs.

It is attractive and logical to involve this type 5250 program in any
modernization proof-of-concept exercise on the simple basis that "if RAMP can
handle this program then it can handle anything".

As aresult a lot of time may be spent understanding the peculiarities of this
program and scripting for them. This okay ... unless handling it consumes
excessive amounts of time and diverts all attentions away from the hundreds (or
thousands) of other important 5250 programs that also need to be modernized.
In this case it can become a trap.

® An ISV site should consider: Which program would be the very first one
you would change to a new Visual LANSA component so as to best show off
your modernized product to potential customers?

® An in-house development site should consider: Which program would the
end-users gain the highest productivity and usability improvements from if it
was changed to a new Visual LANSA component? What program, if it was
replaced by something better, would garner the most management and end-
user support for the modernization project?

The answer in both cases is quite probably the biggest and meanest 5250
program.

Why not consider replacing it with something better?

If this is true, then the next question should be: "Why are we spending all this
time and effort trying to reuse it, instead of just starting to replace it with
something better?"

The reason is obviously to avoid the time and cost involved in replacing it.

However, if the commercial reality is that for various marketing, business and
political reasons it will need to be replaced sooner rather than later, you should
seriously consider doing it now, instead of spending an unreasonable amount of
time trying to reuse it and allowing it to become the complete center of attention

to the detriment of all the other 5250 programs that also need to be modernized.

How long will it take to RAMP my application?

Important Note: This answer refers to RAMP stage 2 only - reusing your

existing 5250 screens. It has nothing to do with RAMP stage 3 - replacing
your 5250 screens with Visual LANSA components.

It depends on the approach you use.

Imagine a simple 5250 application made up of four menus (or some other
common access points) and 36 other screens like this:

WAL

We recommend you use this approach:

1. Initially Perform a Rapid Navigation Modernization

In this example you would identify and define the four menus (or access points)
A, B, C and D only, and snap them into RAMP as full screen destinations.

The entire 5250 application, with its modernized navigation, could now be
deployed to your end users.

Normally you would also fully modernize at least some part of the application
itself, to add more value to it.

At this stage answering the question "How long will it take to RAMP my
application?" is easy: Allow 15 minutes per menu (or common access point).
So for this example, allow 4 x 15 minutes = 1 hour.

2. Now Perform Selective and Incremental Application
Modernization

Now assess application areas A, B, C and D:

How frequently are they used?

Will full modernization increase end user productivity? How? What needs
to be done?

Will full modernization improve the end user experience? How? What
needs to be done?

Will full modernization aid the demonstration and marketing of your
product? How? What needs to be done?

Based on these assessments you might decide to:

e Modernize application area A and deliver it to your users as an initial
release.

e Later modernize 60% of application area C and deliver it to your users as a
new version.

e Not fully modernize application area D at all, because it does not add
business value.

e Finally, modernize 25% of application area B and deliver a final version to
your users.

So answering the question "How long will it take to RAMP my application?"
depends upon how you approach this step.

The question cannot be answered until you decide what parts need to be fully
modernized, how much work needs to be done, and in what order.

Key Points
e Navigation modernization is very rapid.
e Application modernization takes longer, but adds significantly more value.

® You can deliver a modernized 5250 application incrementally. You don't
have to do it all in one go.

® You are not forced to fully modernize all of a 5250 application just to use
itin RAMP.

e Some parts of an application may never be fully modernized before they
are replaced with new Visual LANSA components instead.

Tutorials

There are two very different ways of modernizing an application with RAMP:

e The steps described in the tutorial Modernizing a Complete Application is

the most appropriate way of modernizing most applications.

The alternative way is Modernizing Application Navigation. This
approach is fast, but the resulting application does not make use of all the
powerful features provided by the Framework user interface.

Scripting Tutorials show you how to manage your 5250 screens in the
modernized application.

Modernizing a Complete Application
This tutorial introduces the key concepts required to modernize a complete
application.

Modernizing a complete application is more complex and takes longer than just
modernizing it's navigation.

The example chosen is taken from a simple personnel management system:
Application before Modernization - 2.5 minutes
Modernized Application - 2 minutes

This tutorial has these steps:

Identify your business objects - 1 minute

Create a prototype of your application - 3 minutes

Create a filter and snap it in - 4 minutes

Make a plan of the 5250 screens you will need to use - 2.5 minutes
Identify the relevant screens and fields to newlook - 4 minutes

Define the screens to the VLF and build a navigation script (New Employee) -
7.5 minutes

Define the screens to the VLF and build a navigation script (Employee Details)
- 5 minutes

Link the Selected Employee in the Instance List with the Display Employee
Screen - 4 minutes

Make Function Keys Go Somewhere Different - 4.5 minutes
Handle Unexpected Stops in Navigation and Messages - 3 minutes
Update the Instance List from 5250 Screens - 4 minutes

This tutorial is presented as a series of movies showing each step in the RAMP
process. It is recommended that at the end of each movie you complete the
outlined steps. This will reinforce the concepts and provide hands-on experience
with RAMP. Some individuals may find it convenient to use a second machine
or an extended desktop to view the movie while completing the tutorial.

Application before Modernization - 2.5 minutes

Play Movie| to review the application before it was modernized or read the

Movie Summary.

Movie Summary

For movie Application before Modernization - 2.5 minutes.

This movie shows a simple 5250 application for maintaining the details of
employees which we are going to modernize.

It also introduces the concepts of Junction Screen and Destination Screen.
= ¥ Session A - [24 x 80]

L] Browse/Maintain Employee and skill Files

Employee Hunhwr
Empl: ;
Emp1

Mo and Mame .

, 29 Arthur Road,
ik or - Towr: .

Hllrlu-' Phone HHruLn-'r
D ldrtmunt Ludu

iption Camment
1ICATIONS
6 MAMAGE 2 HHHHHEHEHT cal

Grade

FI

Fd=Prompt Fl2=Cancel Fld=Msgs FZl=Change F22=Del

7

Modernized Application - 2 minutes

Play Movie| to review the final output of this tutorial or read the Movie

Summary.

Movie Summary

For movie Modernized Application - 2 minutes.

This movie shows how the modernized application we will create in the tutorial
works:

Personnel

File Edit View Actions Tools Help (Framework) (Administration)

@ ven % snof ‘ [] Detals (@ Transfer ‘ (f Cauator ‘

_Employees |

On Tool Bar] |Personne| v| Employee Description s
Bii Persannel AD193 SMITHSON FRED
") Engopes [ALD01 SHITH ANDREW
£l AtOR2 SMIYTHE J0HN
Employee Given Name(s) A1003 SMITHE BOB
| ! SMITHSON PALL
AL005 SMITHS PETER 5 i
AlD6 SMITHERS JACK
Als19 SMITH JOHM BLAXLAND
ATET CMTTH TARL M
Clear List
& Employese : Detals (4 1004-SMITHSON PALL) o
] Detals | 1 Documents | Timesheets H (® Transfer |
Brovise/Maintain Employee and Skill Files
Employee Number A1004
Employee Surname SMITHSON
Employee Given Name(s) PALL
Sireet No and Name 41 William Road,
Suburb or Town GRANVILLE,
State and Country NS, BT
Home Phane Number 419 5656 |
Department Cade ADM]
Section Code 03]
Start Date (DOMMYY) nsE ¥
Termingtion Date (DOMMYY) .
Date 5K Skl Sl
Acquired Code Description Comment Grade
1/12/82 M [AC ACCOUNTANCY DEGREE
1/02/33 % |MANAGEL MANAGEMENT COURSE 1 ﬂ
1/02/34 % |MANAGE2 MANAGEMENT COURSE 2 M
2 2l

(Messanes| Ready | LANSADZ | ENG | DOWSER |28/03/05 | %5 |

Identify your business objects - 1 minute

Play Movie| to learn how to identify your business objects or read the Movie

Summary.

Movie Summary

For movie Identify your business objects - 1 minute
This movie shows how to work out what the business objects are for an
application:

e See what words the end users use to describe what the system works with.

These words are often reflected in the application menus and screen titles.

e In our sample application the users work with the details of Employees, so

we decide we will create an Employees business object.

Create a prototype of your application - 3 minutes

Play Movie| to learn how to create a prototype of your application or read the

Movie Summary.

Movie Summary

For movie Create a prototype of your application - 3 minutes.
This movie shows how to create a prototype of the modernized application:

e Start the Instant Prototyping Assistant

e C(Create business object _Employees

e (reate two actions New and Details

e Associated the actions with _Employees

e Create a subsystem called Personnel and put the _Employees business
object in it

See Also:
Start the Instant Prototyping Assistant

Create a filter and snap it in - 4 minutes

Play Movie| to learn how to create a filter and snap it in or read the Movie

Summary.

Movie Summary

For movie Create a filter and snap it in - 4 minutes
This movie shows how to create a filter that locates employees:

Create code for filter
e Start the Program Coding Assistant

Choose Filter that searches by all logical views

Enter the name of the physical file that most resembles the business object:
PSLMST

The code assistant generates the code for the filter program

Use the Copy to Clipboard button

Create filter reusable part
e Open the Visual LANSA development environment and:

e Create a new reusable part, call it by any unique name and give it a
description

e Paste the generated code from the clipboard into the Source tab for the
reusable part

e Compile it

Snap in the filter

e Return to the Visual LANSA Framework

e Close the Coding Assistant window

e Bring up the properties of the _Employees business object

e (o to the Filters tab and select the filter for this business object and snap
in a real filter choosing the reusable part we just created

e Close the properties window, and save the Framework

You now have a real working filter. If you enter a value, all the matching
employees will be loaded into the instance list.

See Also:
Start the Program Coding Assistant

Make a plan of the 5250 screens you will need to use - 2.5 minutes

Play Movie| to learn how to make a plan of the 5250 screens you will need to

use or read the Movie Summary.

Movie Summary

For movie Make a plan of the 5250 screens you will need to use - 2.5 minutes.
This movie shows how to make a plan of the screens that will be used:

e Draw a diagram of all the screens that you want to use

e (Create a naming standard for screens and keep the names less than 32
characters.

e Assign a unique name to all the screens to be used as the form name in
newlook (newlook must be able to differentiate all these screens, even though
some have the same title)

e Decide which fields have data added to them as part of the navigation
process and give these fields a name that is unique within the screen.

You now have a diagram that sets out what you have to define in newlook:

uSignon

uPersonnelMenu

2 H Sesston A - [24 x 80]
utxtMenuOption -

. 1 P B i

uttProfile

utxtPassword uNewEmplayee

=¥ Sasgion A - [24180]

-

UFindEmployee

=¥ Sasslon A - [24 2 80]

utxtEmployeeCode

u0S400MainMenu
o Sesn A (Ux80] PEX ubisplayEmplayee
o ki 2 Sessfon A« [24 1 80] EBx

utxtEelectionOrCommand

Identify the relevant screens and fields to newlook - 4 minutes

Play Movie| to learn how to identify the relevant screens and fields to

newlook, or read the Movie Summary.

Movie Summary

For movie Identify the relevant screens and fields to newlook - 4 minutes.
This movie shows how to identify the screens and fields in newlook. Use the
diagram created in the previous step for naming (see Movie Summary):
Start newlook Client

e And then do the following for every screen:
Identify the screen
e Choose the Identify option in the Tools menu

e Check that the newlook screen identification area adequately identifies the
screen (If the current recognition area is not sufficient to distinguish this
screen, select a larger area, and use the pop-up menu to mark it as Screen Id.

e Save using the form name
Name the screen
e Choose the Designer option in the Tools menu

e Name the screen (form). The easiest way to do this is to double-click on an
unused area of the screen, and edit the Name property of the form object.
Note that names are case-sensitive, can be maximum 256 characters and do
not allow trailing blank spaces.

e Right-click all fields on the form that are used for navigation (if any) to
display their properties.

e Use the name property of the fields to identify them. For example on the
Sign-on screen name the User field utxtProfile and the Password field
utxtPassword.

Use the diagram in this Movie Summary to see which screens and which fields
on the screens you need to identify.

Repeat these steps for each screen.

Define the screens to the VLF and build a navigation script (New
Employee) - 7.5 minutes

Play Movie‘ to learn how to define the screens to the VLF and build a

navigation script (New Employee) or read the Movie Summary.

Movie Summary

For movie Define the screens to the VLF and build a navigation script (New
Employee) - 7.5 minutes.

This movie shows you how to define screens and track navigation to the New
Employee screen.

Track navigation to New Employee screen
e Start RAMP Tools and start newlook.
e Connect to newlook server and sign on

e Display the Personnel Menu by typing this command on the command line
on the IBM i Main menu screen:

lansa run pslsys partition(dem)

e Select the New Employee option

® Once in the New Employee screen cancel back to Sign Off so that the
Framework can track the navigation

Remember to choose menu options by typing in the number and pressing Enter
(if you click on a menu option with the keystroke tracking can't follow this).

Define screens

e The sign-on screen and all menu screens as Junction Screens
e The uDisplayMessages as a Special Screen

e The uNewEmployee as a Destination Screen

Generate scripts

e For every screen, use the pop-up menu options to generate scripts based on
the tracking information

Specify the command tab where the screen is displayed

e Select the uNewEmployee destination screen and locate and check

Employees - New on the list of commands for all the business objects on the
right-hand panel

e Save the Framework using the Save Framework button

Close and restart the Framework

¢ You will see the New Employee screen snapped in the Framework

Also See
Screen Tracking Area
Destination Screen Details

Define the screens to the VLF and build a navigation script
(Employee Details) - 5 minutes

Play Movie‘ to learn how to define the screens to RAMP and build a

navigation script to the Display Employee screen, or read the Movie Summary.

Movie Summary

For movie Define the screens to the VLF and build a navigation script
(Employee Details) - 5 minutes.

This movie shows you to define screens and track navigation to the Display
Employee screen.

Track navigation to Employee Details screen

e Start the RAMP tools and connect to newlook

e On the Personnel Menu type 3 to select Display Employee option
e Enter the identifier of any employee on the Find Employee Screen
e The destination screen uDisplayEmployee is displayed

e Go back along the pathway of screens so the Framework can track the
navigation

Notice F12 has taken us back from UDisplayEmployee directly to
uPersonnelMenu, bypassing Find Employee. We need to go to Find
Employee and use F12 from there to show the Framework how to get back
from uFindEmployee

Define screens
e uFindEmployee as a Junction
e uDisplayEmployee as a Destination

Generate scripts

e Use the pop-up menu to automatically generate scripts based on the
tracking information
Specify the command tab where the screen is displayed

e Associate the Employee Details screen with the Details command for the
Employees business object.
Start the screen in edit mode

After closing and restarting, the Employee Details screen is working. However,
to change an employee's details you have to first click on the Change button.

In Windows screens are usually shown in edit mode. To do this:
e Start RAMP Tools

e Locate the Invoke script for uDisplayEmployee destination

e Find the last line in the script, and add an instruction to automatically press
F21. That will put it into edit mode:

/* Send the key required to navigate to uDisplayEmployee
SENDKEY (KeyEnter);
/* Send the key required to navigate to put the screen into edit mode

SENDKEY (KeyF21);

Now, when the user clicks on an employee, they can edit the details straight
away.

Also see:
Invoke Script

Link the Selected Employee in the Instance List with the Display
Employee Screen - 4 minutes

Play Movie| to learn how to link the selected employee in the instance list

with the Display Employee screen, or read the Movie Summary

Movie Summary

For movie Link the Selected Employee in the Instance List with the Display
Employee Screen - 4 minutes.

This movie shows how to display the details of the employee selected in the
instance list.

If we select an employee and the Details command, the invoke script of the
screen executes and RAMP navigates through a number of junction screens and
then shows us the uDisplayEmployee screen.

However, regardless of which employee we click on in the instance list, the
details one and the same employee are shown. This is because the invoke script
contains the hard coded number of the employee we chose when tracking
navigation.

Change the Invoke script to display details for current employee
To change the script so it shows the details of the currently selected employee:
e Start RAMP tools

e Locate the invoke script for the uDisplayEmployee destination screen

Here is the line where the hard coded value for the employee identifier is
entered into the Employee Code field:

SETVALUE("utxtEmployeeCode", "A1004");

To substitute the employee identifier with the currently selected entry:
e Select "A1004" including the quotes
e Right-click and choose Current Instance List entry

e Select Alpha Key 1 from the submenu

This replaces the hard coded value with a special value that will contain the
identifier of the employee that the user has selected:

SETVALUE("utxtEmployeeCode", objListManager.AKey1[0]);

Save the changes to the script. The Display Employee screen now shows the
details of the employee selected in the instance list.

Also See

Replacing Hardcoded Employee Number with Current Instance List Entry
Invoke Script

SETVALUE Function

Make Function Keys Go Somewhere Different - 4.5 minutes

Play Movie| to learn how to make function keys go somewhere different or

read the Movie Summary.

Movie Summary

For movie Make Function Keys Go Somewhere Different - 4.5 minutes.

This movie shows how to automatically redisplay the Display Employee screen
after the user has made a change and pressed Enter. It also shows how to hide
function keys and buttons which are not required.

Automatically redisplay the screen

When the user edits an employee and presses Enter, they return to the Find
Employee screen. We want to change this so that the Display Employee screen
is redisplayed (this is how Windows typically works).

To redisplay the edit screen we locate the Button Script for the Display
Employee destination and change it so that when the user presses Enter:

e First we tell RAMP to press Enter to go to the Find Employee screen

e Then we set the value of the employee code field on the Find Employee
screen in the same way as in the previous tutorial

e And then press Enter to go to the Display Employees screen

e Lastly to start edit mode we add a script instruction to press F21
This is the code:

Case KeyEnter:
SENDKEY (KeyEnter);

SETVALUE("utxtEmployeeCode", objListManager.AKey1[0]);
SENDKEY (KeyEnter);
SENDKEY (KeyF21);

Hide function keys and buttons

We also hide most of the buttons that are displayed on Display Employee
because they are not required:

e Display the Destination Screen Details for Display Employee
e Disable and hide all buttons except Enter

e (Change the caption of the Enter button to Save
Now save your changes and restart the Framework.

If you now change some employee details to valid values and press Save, the
Display Employee screen is redisplayed.

Handle Unexpected Stops in Navigation and Messages - 3 minutes

Play Movie| to learn how to handle unexpected stops in navigation and

messages or read the Movie Summary.

Movie Summary

For movie Handle Unexpected Stops in Navigation and Messages - 3 minutes.
This movie shows how to handle unexpected stops in the navigation and how to
issue messages.

Handle unexpected stops

If the employee details entered by the user are invalid, the user stays on the
Display Employee screen instead of going to the Find Employee screen, and
consequently our script instructions for handling the Enter key will be wrong.

We need to change the script so that if it detects that the user did not get to the
Find Employee screen, it stops and takes no further action. To do this:

Go to the Button Script for the uDisplayEmployee Destinations and locate the
SENDKEY (EnterKey) statement which takes us to the Find Employee screen.

Add this line under the SENDKEY statement to check if we actually got to the
Find Employee screen and to end the script with a return if we did not:

if (CURRENT_FORM() != "uFindEmployee") return;

Issue a message

If we get past this line, we can assume that the employee details were
successfully saved and issue a message. To do this add this line after the if
statement:

ALERT_MESSAGE("Employee ", objListManager.AKey1[0] , " has been
saved.");

Commit your script changes and then save and restart the Framework.

Now, if we attempt to save an employee with invalid data, the script stops and
the Display Employee screen is redisplayed.

If we abandon changes for that employee, click on another employee and
successfully save the details, we get the message we created and the script
continues on around to the Display Employee screen again.

Update the Instance List from 5250 Screens - 4 minutes

Play Movie| to learn how to update the instance list from 5250 screens or

read the Movie Summary.

Movie Summary

For movie Update the Instance List from 5250 Screens - 4 minutes.

See topic Updating the Instance List from RAMP screens which summarizes the
information in this movie.

Modernizing Application Navigation
This tutorial introduces the key concepts and steps required to modernize the
navigation of an existing 5250 application.

This is the simplest and most rapid way to modernize an application and must
be distinguished from modernizing a complete application, which is a more
complex task.

However, it should be noted that in many cases modernizing a complete
application yields better modernization results because it introduces more
powerful means of organizing and accessing information.

The examples used in this tutorial are from the I15/0S operating system. These
I5/0S objects are used:

. Job Queues

¢ OQOutput Queues
e [FS Folders

e System Jobs

These objects were chosen because all System i users are familiar with them.
Note however that the concepts in this tutorial apply equally to commercial
business objects like Products, Orders, Customers, Invoices, Policies, etc.

To review the final output of this tutorial see Modernized Navigation - 5
minutes.

This tutorial has these steps:

Create a Prototype of Your Application - 9.5 minutes

Identify Your 5250 Entry Point Screens Using newlook - 13 minutes
Script the Screens and Snap them in the Framework - 16 minutes

Modernized Navigation - 5 minutes

Play Movie| to review the final output of this tutorial or read the Movie

Summary.

Movie Summary

For movie Modernized Navigation - 5 minutes.
This movie shows the modernized application we will create in the tutorial:

¥ {Series Server ()) ()@ O
Fle Edt View Acions Toos Hep (Framework) (Administration)
NsnoF Dlerv| Qed memt ® Moo v & :.---_‘[;Calmlator‘
s
[On Tod b | 4 system b
@ ﬂ ISeries Server '
‘ IF Folders Work with Active Jobs LANSADZ
-l Job Queues 21/12/05 09:49:07
- gl Output Queves U % 0 Elapsed time 00:00:00 Active jabs 208
: a% Type options, press Ener,
EO Demp Appliczi 2=Change J=Hod 4=End S=Work with f=Release 7=Display message
@ Programming Techniques B=lWfork with spooled fles 13=Disconnect ...
Opt Subsystem/Job User Tye CPU% Function Status
’_ LAGIEM Q51% 585 0 DEQW
’_ JEMI0B LAUSER A8) 0 CMD-RUNISM TIMW
’_ QIVACMDSRY LAUSER B 0 PGM-QIVACMDSRY TIMW
’_ LA2IEM Q8r5 85 0 DEQW
|_ J5MI0B QOTHPRDOWN AS) 0 CMD-RUNISM TIMW
’_ QIVACMDSRY QOTHPRDOWN BCI 0 PCM-QIVACMDSRY TIMW
’_ LAZPGMLIB Q5Ys 565 0 DEQW
’_ LISTENER LAZPGMLIE A8) 0 CMD-LANSA TIMW
’_ TPO0000001 LAZPGNLI BCH 0 PGMACOTP DEQW
Mare
Parameters or command
===3 |
Messaoes] Ready | loal |86 | DOWSR [122105] %5t @

Create a Prototype of Your Application - 9.5 minutes

Play Movie| to learn how to prototype your application or read the Movie

Summary.

Movie Summary

For movie Create a Prototype of Your Application - 9.5 minutes.
This movie shows how to create a prototype of the modernized application.

Create a prototype application
. Start the Instant Prototyping Assistant

Create business objects Job Queues, Output Queues, IFS Folders and
System Jobs

° Create action Work With

e Associate Work With with all the four new business objects

Create application iSeries Server and add the four business objects to it

Remove Filters

The Program Coding Assistant automatically creates filters for new business
objects. In this tutorial we do not need them.

To remove the filters perform these steps for all the four business objects:
e Display the properties of the business object
e On the Filters tab select and delete the filter

e On the Commands Enabled tab change the Work with command to be a
Business Object Command

On the Command Display tab change the Object Command Presentation
option to Use All Of The Window

Save and restart the Framework

Execute your application prototype. Optionally type in text and insert images to
the prototype screens so you can explain your proposed design to others.

Identify Your 5250 Entry Point Screens Using newlook - 13
minutes

Play Movie| to learn how identify your 5250 entry point screens or read the

Movie Summary.

Movie Summary

For movie Identify Your 5250 Entry Point Screens Using newlook - 13
minutes.

This movie shows how to identify 5250 screens and fields on them so that we
can reference them in the Visual LANSA Framework.

In this tutorial you identify these screens and fields:
Screen Field
Sign On User profile and password
Attempt Recovery Menu option
Sign Off
Display Messages
I5/0S Main Menu Command to execute
WRKJOBQ
WRKOUTQ
WRKLNK
WRKACTJOB

Identify the screens

e Start newlook 8.0
Then for every 5250 screen:

e Navigate to the screen

Select the Designer option in the Tools menu

Double-click the screen and assign a name to it (using the Form Name
property) and when required, also for the fields on the screen

Close the Designer using the File menu

Specify a name for the screen and save

° Proceed to the next screen

You can do the naming at any time in any order and you don't have to name all
the forms and fields in a single session.

Also See
Start newlook

Script the Screens and Snap them in the Framework - 16 minutes

Play Movie| to learn how to script screen navigation and snap screens in the

Framework or read the Movie Summary.

Movie Summary

For movie Script the Screens and Snap them in the Framework - 16
minutes

This movie shows how to script the 5250 screens and snap them to the
Framework.

e (It first shows a quick tour of the RAMP Window)

Track Navigation
e Start newlook in the RAMP window
e Connect to the System i server

e Demonstrate to RAMP the navigation from the I5/0S main menu to
WRKLNK, WRKJOBQ, WRKOUTQ and WRKACTJOB and back

Sign off from the System i server

Define screens
e For every screen, click on the message that says the screen is unknown
e Define the Sign-on screen and the Main menu as Junction Screens

° Define WRKLNK, WRKJOBQ, WRKOUTQ and WRKACTJOB as
Destination Screens

e Define Display Messages as a Special Screen

Create scripts

e Use the pop-up menu to automatically create scripts for all the screens

Enable Function Keys
e Select the WRKLNK screen in the Screen and Script List

e In the Destination Screen Details check Page Up and Page Down in the
Enable for NL column in the Function Key Enablement Group so that the
user can use these keys from the keyboard.

e Repeat this step for the other three destination screens

Specify the command tab where the screen is displayed
° In the Associated Command Handlers list associate the screens with the
command tab:

WRKJOBQ Job Queues - Work With
WRKOUTQ Output Queues - Work With
WRKLINK IFS Folders - Work With
WRKACTJOB System Jobs - Work With

Specify a different Session Option for every screen

To execute the destination screens in separate sessions select the Session options
SESSION_A, SESSION_B, SESSION_C and SESSION_D for the four
destination screens respectively (normally the default value *AUTO is used
which means the Framework will automatically determine the correct session)

Note that in addition to selecting the checkbox in front of the associated
command handler you also need to click its name so that it is highlighted when

you specify the Session Option.

Save and Restart the Framework

Open the System i Server application and click on any of the four business
objects to start a new 5250 session to the System i server and display the

modernized 5250 screen.

Scripting Tutorials

General

Introduction to Scripts - 6.5 minutes

Reading, Writing and Storing Values in Scripts - 4 minutes
Debug and Diagnostics - 2.5 minutes

Subfile Handling

Not Using a Datagrid Control - 1 minute
Using Subfile Accessor - 5 minutes
Subfile Direct Access - 2 minutes

Scripting

RAMP manages the 5250 screens in the modernized application with scripts.
Learning

Using

Debugging

Learning

The movie Introduction to Scripts - 6.5 minutes shows you how to learn
scripting basics.

Types of Scripts in RAMP introduces you to RAMP scripts.

You also need to know how to Generate Scripts Automatically because this is
how most scripts are created

The movie Reading, Writing and Storing Values in Scripts - 4 minutes shows
how to pass values to and from your screens.

Javascript Essentials teaches you some basic techniques you will often use when
writing scripts.

Introduction to Scripts - 6.5 minutes

Play Movie| to learn scripting basics or read the Movie Summary.

Movie Summary

For movie Introduction to Scripts - 6.5 minutes

Scripts are usually created automatically in RAMP, but to deal with them
confidently you need to understand some scripting basics.

This movie introduces Javascript, the types of scripts in RAMP and tracing:
Basic Javascript syntax

e Comments are marked with /* */

e Lines are ended with a semicolon (;)

e Literals are enclosed in double-quotes (")

e There are Framework Objects that Scripts Can Refer To

° The structure of the conditional switch statement is:

switch(n)
{

case 1:
execute code block 1
break

case 2:
execute code block 2
break

default:
code to be executed if n is
different from case 1 and 2

Types of scripts in RAMP

The movies shows:

e The interaction between Invoke Scripts and Return Scripts
. Button Script

e Eliminate Script

Application level tracing

e Use the Tracing option in the Framework menu to start Application Level

Tracing

Types of Scripts in RAMP
There are different types of RAMP scripts for different types of screens:

Destination An Invoke Script indicates how the destination screen
Screens should be invoked (or accessed). This script is the key to
how the Framework manages screen navigation.

A Return Script indicates how to cancel the screen and
get back to the nearest junction screen.

A Button Script indicates how buttons clicked by the

user should be handled.
Junction A Navigate Script indicates how to navigate from one
Screens screen to another
Special An Eliminate Script indicates how to hide them.

Screens

For a basic scripting example, also see Scripts in a Classic Details Display.

Scripts in a Classic Details Display

This example shows how two very simple 5250 screens are modernized in
RAMP.

The first screen GETORDER asks for an order number to be input and the
second screen SHOWORDER displays the order details:

Enter 1 X F12

The user repeats order inquiries by using the F12 function key.

Modernized Version

To modernize the application we identify the 5250 screens and script their
interaction to RAMP:

e The GETORDER screen becomes a junction screen. It will not be
displayed.

° The SHOWORDER screen becomes a destination screen.

GETORDER
JUNCTION 5250 SCREEN

|

G Crder | Dty [TRIER00D ol b 1 -
S50 Maplay Crdes Sorssn

Thuy parsel will chplary tha 175
Tl i, Tl b o s

o G G

ORDERNUMBER field

SHOWORDER
DESTINATION 5250 SCREEN

In the modernized application the user selects orders from the instance list and
the SHOWORDER screen shows the details of the selected order.

SHOWORDER has three scripts:
e The Invoke Script which displays the SHOWORDER screen.

e A Return Script which contains a single executable line to cancel out of the
SHOWORDER screen.

e A Button Script which will not be executed for SHOWORDER because all
function keys are hidden and disabled in this screen (the user just clicks on

different orders up in the instance list to display the details of a different
order.)

Every time a user clicks on an order in the instance list, the SHOWORDER's
return script is executed to return to the navigation network. Once there, the

invoke script is executed to display the SHOWORDERS screen with the details
of the selected order.

Invoke Script

Every Destination Screen has an invoke script which controls how it is

displayed. Here is an example of a script that invokes a SHOWORDER screen
when an order is selected in the instance list:

INVOKE_SCRIPT 4
Rale : Invoke destination form 1 - Mew Connection - newlook
Caption |Invoke the SHOWORDER Form
Grouping
Mavigate to the nearest junction - GETORDER
MAVIGATE_TO_JUNCTION{"GETORDER");
Check for correct arrival at GETORDER.
if { ! {CHECK_CURRENT_FORM{"GETORDER", "Unable to navigate to form ¢
Set the order number field on GETORDER®,
SETVALUE("ORDERNUMEER", obijListManager.Akeyl[0] J;
send the key required to display screen SHOWORDER¥,

SENDKEY (KeyEnter);

Check for correct arrival at SHOWORDER®,

[if { !{CHECK_CURRENT_FORM{"SHOWORDER", "Unable to display order nun
< >
[Commit Changes] [LUse Tracking Info to prototype a script to Invoke destination ﬁ:u]

First the script navigates to the 5250 junction screen GETORDER which is used
to select which order is to be shown:

NAVIGATE_TO_JUNCTION("GETORDER");

It then makes sure that we get to the GETORDER screen. If this check fails an
error message is shown:

if (/(CHECK_CURRENT_FORM("GETORDER", "Unable to navigate to form
GETORDER"))) return;

Next the script retrieves the current order number from the instance list to the
GETORDER screen. Typically you need to edit this part of the script (see
Replacing Hardcoded Employee Number with Current Instance List Entry):

SETVALUE("ORDERNUMBER", objListManager.AKey1[0]);
And then presses the Enter key to process the GETORDER screen:
SENDKEY (KeyEnter);

Finally the script makes sure that screen SHOWORDER has arrived back from
the System i and is ready to be displayed. If this check fails, an error message is
shown:

if (/(CHECK_CURRENT_FORM("SHOWORDER", "Unable to display order
number " + objListManager.AKey1[0]))) return;

Also See:
NAVIGATE_TO_JUNCTION Function
CHECK_CURRENT_FORM Function
SETVALUE Function

SENDKEY Function

Return Script
Every Destination Screen has a return script which indicates how to exit the
destination screen:

RETURN_SCRIPT 4
Role : Return from 1 - Mew Connection - newlook to nearest junction
Caption |Leave SHOWORDER Form
Grouping

* Navigate back to the nearest junction GETORDER *,

SENDKEY{KeyF12) ;

[Commit Changes] [lUse Tracking Info to prototype a script to RetL]

The return script shows how to go back to the nearest junction and onto the
navigation system. It probably contains just a single executable line:

SENDKEY (KeyF12);

The return script does not necessarily have to go back via the junction where it
was originally invoked from, but typically it does.

Also See:
SENDKEY Function

Button Script

Every Destination Screen has a button script which indicates how the function
keys the user presses or the buttons the user clicks should be handled:

BUTTON_SCRIPT 4
Role : 1 - New Connection - newlook
Caption |wrkjobg - Handle function keys and button usage
Grouping | TUTORIAL 1

/% Handle function keys and buttons for wrkjobg #,
switch (objscriptInstance. FunctionkeyUsed)

case KeyEnter:
SENDKEY (KeyEnter);
break:

case KeyF3:
SENDKEY (KayF3);
break:

case KeyFd:
SENDKEY (KayF4);
break:

case KeyF5:
SENDKEY (KeyF5);
break:

case KeyFl2:
SENDKEY (KayF12);
break:

case KeyF24:
SENDKEY (KayF24);
break:

default:
SENDKEY (objScriptInstance. Functionkeylsed);
break:

[Check Script ” IUse Tracking Info to prototype a script to 1 - r-.]

When you generate a button script from tracking information, every key present
on the screen is handled in a series of SENDKEY functions in the script.

case KeyEnter:
SENDKEY (KeyEnter);

If you disable a key in the Destination Screen Details the script for it does not
get executed.

In most situations navigational 5250 function keys like F12=Cancel and
F3=Exit should be disabled and not shown because they are not required in

Windows navigation and tend to just confuse users.

You can also add buttons or function keys which are entirely processed on the
client system and never sent back to the server. To do this you enable them in
the Destination Screen Details and then add handling for them in the button
script.

Also See:

SENDKEY Function

Navigate Script

Junction Screens control application navigation but are never shown to the user.

These screens have navigate scripts associated with them which control the
navigation to and from the junction screen.

This example script selects menu option 3 on a menu, emulates the pressing of
the enter key and checks that the correct screen is displayed:
MAVIGATE SCRIPT 3
Role : Navigate from Personnel System Main Menu to 1 - DC_PGMLIE - newlook
Caption |Mavigate from PersonnelsystemMainiMenu === uSelectEmployes
Grouping
/% set up data fields on form PersonnelsystemmainMenu *,
SETVALUE("uTXTMenuoption”, "3");
/% send the key required to navigate to uselectEmployse *,
SENDKEY (KeyEnter);

/% Check for arrival at uselecteEmployse *,

if { ! {CHECK_CURRENT_FORM{"uselectEmployese”, "Unable to display form uselecte

< *

[Chedk Script ” |Use Tracking Info to prototype a script to Mavigate from Personnel System Main I]

Typically there are one or more scripts navigating away from a junction screen

towards other junctions and one or more scripts navigating towards it from other
junctions.

Collectively these scripts define a navigation network between junctions.
Also See:

SETVALUE Function

SENDKEY Function

CHECK_CURRENT_FORM Function

Eliminate Script

Special Screens have an eliminate script associated with them. These scripts
define what is to happen whenever a special screen appears so as to eliminate it
from the 5250 data stream and make it invisible to other scripts.

This script eliminates the display of the system messages screen:
ELIMINATE _SCRIPT_1
Rale ; Eliminate displays of 1 - Mew Connection - newlook

Caption | Display System Messages - Automatically eliminate this form
Grouping

SENDKEY(KeyEntar);

Also See:
SENDKEY Function

Generate Scripts Automatically
After you have tracked the navigation in your application using RAMP Tools,
you can automatically generate scripts using the tracking information

To generate scripts, click on the messages in the Message Area and use the pop-
up menu.

To see how it is done you can play the tutorial movie Define the screens to the
VLF and build a navigation script (New Employee) - 7.5 minutes.

The best sequence for choreographing 5250 screen interactions is to:
e Track all the appropriate 5250 screen interactions in the navigation path.

e Go down through the tracking area and classify every screen as a
destination, special, junction, etc.

e Go down through the tracking area again and for each screen ask for the
scripts to be automatically generated.

Reading, Writing and Storing Values in Scripts - 4 minutes

Play Movie| to learn how to read and write values in scripts and how to store

them as variables or as properties of objects or read the Movie Summary.

Movie Summary

For movie Reading, Writing and Storing Values in Scripts - 4 minutes
This movie shows how you can read, write and store values in scripts.

Reading values
Scripts can read values from the instance list like this:
my Variable = objListManager.Akey3[0];

See Visual and Programmatic Identifiers.

If the user has selected several entries in the instance list, you can read all the
values in a loop like this:

vari = 0;
var strMessage = "";
for (i = 1; i <= objListManager.TotalSelected; i++)

{
strMessage += "Selected Employee " + objListManager.AKey3[i] + " ";

}
alert(strMessage);

Or from a field defined on a 5250 screen like this:
My Variable = GETVALUE("utxtEmployeeCode");

Writing values

The script can put values on the screen like this:
SETVALUE("utxtEmployeeCode", "myText");

Storing values
You can store values in Javascript variables and then read and write from them:

Var MyString = "";
MyString = objListManager.Akey3[0];

These variables exist only while the script is running. To share information

between scripts, you need to create and set a property for objGlobal:
objGlobal.uLastValue = "anything";

Then another script can read this value:
my Variable = objGlobal.uLastValue;

Getting script pieces quickly
Using the Scripting Pop-up Menu

Javascript Essentials
RAMP manages the 5250 screens in the modernized application with JavaScript
scripts.

JavaScript is the most commonly used scripting language in the world. You can
also use Microsoft's JScript extension. Note that JavaScript skills can be used in
many other contexts such as LANSA for the Web and HTML manipulation.

This section describes some Javascript essentials:
External JavaScript Documentation

Alert()

Converting Numbers to Strings

Converting String to Numbers

String Manipulation Functions

Is This Variable Number or String?

Using the objGlobal Object

External JavaScript Documentation

Put this link behind an icon on you desktop for instant access to formal
JavaScript documentation:

http://www.w3schools.com/jsref/

There are also many good books available (such as JavaScript Bible by Danny
Goodman, ISBN 0-7645-3188-3).

http://www.w3schools.com/jsref/

Alert()

The Alert() function is your most useful tool for debugging errant scripts.
For example:

Alert("About to send the enter key");
Alert("The value of x is " + x.toString());
Alert("The customer number is " + objGlobal.CustomerNumber);

Also See
Strange behavior in scripts
Object expected

Converting Numbers to Strings

If you have a number in JavaScript variable and you want to convert it to a
string use the toString() function. For example:

var number = 5.65;
var stringnumber = number.toString();

alert(stringnumber);

SETVALUE("Amount",stringNumber);
SETVALUE("Amount",number.toString());

Converting String to Numbers

If you have a string and want to convert it to a number then use the parselnt()
method. For example this script returns integer values containing 1234 and 43
respectively into X:

X = parselnt("1234",10);
X = parselnt("34abc",10);

The second argument (10) specifies you want to use a base 10 numbering
system. It's unusual to use anything for this parameter except 10 and you should
always specify it as the default is a bit unpredictable. (See, for example,
http://www.w3schools.com/jsref/jsref_obj_global.asp if you are interested as to
why)

If you need to have decimals then use parseFloat(). For example this script
returns floating point values 1234.345 and 34.7 respectively into X:

X = parseFloat("1234.345");
X = parseFloat("34.7abc");

Remember that these are floating point values so they are not always as accurate
or as predictable as signed or packed decimals numbers.

http://www.w3schools.com/jsref/jsref_obj_global.asp

String Manipulation Functions

String variables in JavaScript have a number of very useful string functions.
Here's a sample of the most commonly used:

Operation / Function

Concatenation (+)

IndexOf — finds first
occurrence of a string in a
string

lastIndexOf - finds last
occurrence of a string in a
string

charAt — returns the
character at a specific
position in a string

length — returns the length
of a string

substring — returns the

Example

var S1 = "Customer";
var S2 = "123456";
var S3=S1+""+ S2 + "could not be found";

puts Customer 123456could not be found in
variable S3.

/* 012345678901 */
var S1 = "ABCDHELLOABC";
var pos = S1.indexOf("HELLQO");

will put the number 4 into variable pos.

/* 012345678901 */
var S1 ="ABCDHELLOABC";
var pos = S1.lastIndexOf("AB");

will put the number 9 into variable pos.

/* 012345678901 */

var S1 = "ABCDHELLOABC";
var S2 = S1.charAt(4);

var S3 = S1.charAt(9);

will put "H" into S2 and "A" into S3.

/* 012345678901 */
var S1 = "ABCDHELLOABC";
var I = Sl.length;

will put the number 11 into variable I.

/* 01234567789 */

substring of string using a @ var a = "Hello World";
starting and ending point. = var b = a.substring(4,8);

will put "o Wor" into b.

substr — returns the /* 01234567789 */
substring of a string using =~ Var a = "Hello World";
a starting position and a var b = a.substr(2,3);
length

will put "llo" into b.

toLowerCase — returns the Vvar a = "Hello World";
lowercase of string var b = a.toLowerCase();

will put "hello world" into b.

toUpperCase — returns the Var a = "Hello World";
uppercase of a string var b = a.toUpperCase();

will put "HELL WORLD" into b.

There are more string functions like these available. See:
http://www.w3schools.com/jsref/jsref_obj_string.asp for more details.

http://www.w3schools.com/jsref/jsref_obj_string.asp

Is This Variable Number or String?

Sometimes you have a variable in Javascript and do not know whether it is a
number or a string. You can test the type of a variable by using the typeof()
operator like this:

Varx =1.234;
Vary ="Hello";
Var Typel = typeof(x);
Var Type2 = typeof(y);

Alert(Typel + " and " + Type2);

This code displays the message "number and string".

mon 1

There are six possible values that typeof returns: "number," "string," "boolean,’
"object," "function," and "undefined." The most useful are "number", "string"

and "undefined".

"undefined" is useful because it tells you that something does not exist yet (ie:
it's undefined) so sometimes you see code like this:

if (typeof(objGlobal.CustomerNumber) = "undefined"))
objGlobal.CustomerNumber = "12345";

Using the objGlobal Object

objGlobal is one of the Framework objects that scripts can refer to. Its purpose
is to store your own properties.

This section shows some techniques in using it:

Getting Organized

Using objGlobal to pass optional parameters

Using objGlobal to pass optional parameters to an INVOKE script

Using objGlobal to define commonly used functions

Getting Organized

If you make a lot of use of the objGlobal object then you should look to
organizing its use in some way. One way is to divide it up into multiple sub-
objects by application or usage.

For example, if you did this in you logon script:
objGlobal.AppA = new Object();

objGlobal.AppB = new Object();
objGlobal.AppC = new Object();

Then in your scripts you could make sure your references do not accidentally
interfere with each other.

For example objGlobal. AppA.CurrentCustomer is a different variable to
objGlobal.AppB.CurrentCustomer and objGlobal. AppC.CurrentCustomer.

Using objGlobal to pass optional parameters

Extending the idea in the previous section slightly, you can introduce the
concept of optional parameters being passed into scripts. In a script that needs to
pass some optional parameters into another script you might find code like this:

objGlobal.OptParms = new Object();
objGlobal.OptParms.CustNumber = "12345";
objGlobal.OptParms.CustName = "ACME ENGINEERING";
NAVIGATE_TO_DESTINATION("uShowCustomer");

and the script that receives the optional parameters you would find code
possibly structured something like this:

var CustNumber = "some default value";
var CustName = "some default value";

if (objGlobal.OptParms != null)

{

CustNumber = objGlobal.OptParms.CustNumber;
CustName = objGlobal.OptParms.CustName;
objGlobal.OptParms = null;

}

/* Now we proceed to use the values in CustNumber and CustName */

The line objGlobal.OptParms = null; line is very important to this style of
processing because it destroys the temporary OptParms object.

Using objGlobal to pass optional parameters to an INVOKE
script

Sometime an INVOKE script is executed in different ways. For example:

e When the user clicks on a line in instance list, the script is invoked to
display the customer details.

e This script may also be invoked from another script to display the details
of a specific customer.

Since this script can be used in two different ways, it needs to be aware of what
it is being asked to do. The easiest way to do this is to use the "ObjGlobal"
object to pass optional parameters to it.

In an INVOKE script you can define and check for the existence of optional
parameters like this:

/* Conceptually this script's behavior is controlled by 2 parameters
which may or may not be passed to it */

var Parameterl = "parameter default value";
var Parameter2 = "parameter default value";

/* If either parameter has been passed in the objGlobal object then
override the default behavior. */

/* Note the destruction of the optional parameters. This is so they do not
hang around to interfere */

/* with later executions of this script. They are created, passed into the
script and then destroyed. */

if (objGlobal.optParameter1 != null) { Parameter1 =
objGlobal.optParameter1; objGlobal.optParameter1 = null; }

if (objGlobal.optParameter2 != null) { Parameter2 =
objGlobal.optParameter?; objGlobal.optParameter2 = null; }

/* Now use the values in Parameter]l and Parameter 2 to control how this
script behaves */

<etc >
<etc >

As a specific example, imagine an INVOKE script that by default displayed the
current customer from the instance list. However, some other scripts reuse it to
display a specific customer, which may or may not be in the instance list.

You could handle this situation like this:

/* By default this script displays the current customer from the
instance list, so get the customer number */

var RequestedCustomer = objListManager.AKey1[0];

/* If the caller has supplied a specific customer number use it instead
(making sure to destroy the optional parameter) */

if (objGlobal.optRequestedCustomer != null)

{
RequestedCustomer = objGlobal.optRequestedCustomer;
objGlobal.optRequestedCustomer = null;

}

/* Now display the details of the customer identified in
RequestedCustomer */

<etc >
<etc >

In a script that wants to display a specific customer number you could do
something like this:

/* Save the changes and (re)display this customer */

case KeyEnter:

{
var CustomerNumber = GETVALUE("CustNo"); /* Get the

updated customer number from the current screen */

SENDKEY (KeyEnter); /* Update the current screen
details */

objGlobal.optRequestedCustomer = CustomerNumber; /* Set up the
specific customer number you want (re)displayed */

NAVIGATE_TO_DESTINATION("uShowCustomerDetails"); /*
Redisplay the customer by executing the destination script again */

}
break;

Using objGlobal to define commonly used functions

If you want to create a JavaScript function that is reused in many places you
could do something like this in your sign-on script:

objGlobal.Mult = function (x,y) {
varz = x *y;
return(z); }

objGlobal.Add = function (x,y) {
varz=x+yj;
return(z); }

These operations define 2 functions in objGlobal named Mult and Add and the
code that they contain.

Once this has been done the functions objGlobal. Add and objGlobal.Mult can
be executed in other scripts like this:

var q = objGlobal.Add(222,3);
alert(g.toString());

q = objGlobal.Mult(22,33);
alert(g.toString());

which would display the results 225 and 726 respectively.

Using

Interacting with Instance Lists in Scripts

Using the Scripting Pop-up Menu

Updating the Instance List from RAMP screens
Subfiles/Browselists

Handling Pop-Ups

Script Functions

Framework Objects that Scripts Can Refer To
User-defined script functions

Switching Off Recursion Checking

Interacting with Instance Lists in Scripts

For an introduction to this topic, play the tutorial movie Link the Selected
Employee in the Instance List with the Display Employee Screen - 4 minutes.

The instance list is the list of business object instances typically displayed in the

upper right corner of the Framework window. For example, the shipped

demonstration system uses an Employee business object that has an instance list

that looks like this (outlined in red):

A = =
&) byMName | @ by Location | [by skil | C Other

Specify a full or partial employes name.

Employee Surname

Clear the current list of employees

Mumber
41001
A1012
A1013
A1015
41020
41021
41025

Name

BEN JOMES

PATRICK PALL
GECRGE PATTISON
BRADLEY WOODS
ADAM PETER DOUGLAS
DAVID MCCULLY

MARY ROBINSOM

Phone

799 5268
687 1717
750 2562
450 1236
65745310
762 1321
126 3598

Address
144 Frog
& Camillc
12 Augu
58 Darle
& Readir
15 Baker
14 Whith
»

Many scripts need to interact with the instance list. These topics explain how to

do it:
The List Manager

Visual and Programmatic Identifiers

Working with All Selected Entries

The List Manager
Script interactions with an instance list are done by accessing properties of the
Framework JavaScript object named objListManager (the list manager).

For example an invoke script that displays a screen showing the details of an
employee uses the objListManager in the SETVALUE command to set the
employee to the selected entry in the instance list:

/* Navigate to the nearest access junction */
NAVIGATE_TO_JUNCTION("uFindEmployee");

/* Check for arrival at uFindEmployee */
if (/(CHECK_CURRENT_FORM("uFindEmployee","Unable to navigate to
form uFindEmployee"))) return;

/* Set the employee to be displayed to the employee selected in the */
/* instance list (which is identified by the programmatic identifier AKey3) */
SETVALUE("utxtEmployeeCode" ,objListManager.AKey3[0]);

/* Send the key required to navigate to uDisplayEmployee */
SENDKEY (KeyEnter);
SENDKEY (KeyF21);

Also See
objListManager
Replacing Hardcoded Employee Number with Current Instance List Entry

Visual and Programmatic Identifiers

Instance list entries always have an identification protocol that defines their
visual and programmatic identification. You set these identifiers when you
create the filter that controls the instance list.

(Refer to the section List Manager in the Framework guide if you want detailed
information about the identification protocol.)

For example this LANSA command in a filter for employees adds entries to the

instance list and sets programmatic and visual identifiers and additional
columns for them:

Invoke Method(#avListManager.AddtoList) Visualid1(#Empno)
Visualid2(#FullName) Akey1(#Deptment) Akey2(#Section) Akey3(#Empno)
AColumn1(#PhoneHme) AColumn2(#Address1) nColumn1(#PostCode)

In this identification protocol:

e The third programmatic identifier (called AKey3) contains the employee
number.

e The second visual identifier (called Visualld2) contains the employee's
name.

When you know the identification protocol, you can create a JavaScript that
displays the number and name of the currently selected employee in the instance
list:

/* Get the current instance list details */

{

var strEMPNO = objListManager.AKey3[0]; /* 3rd Akey is the number */

var strNAME = objListManager.Visualld2[0]; /* 2nd Visualld is the name */
alert("Current employee number is " + sttEMPNO);

alert("Current employee name is " + strNAME);

}

Like this:

javascript:void(0);openCHM('LANSA048.CHM::/listmanager.htm',’lansa’);

Microsoft Internet Explorer |Z|

L] E Current employee number is A1020
.)

Working with All Selected Entries

More than one entry can be selected in the instance list. This script displays the
number and name of all selected employees in a message:

/* Get all the selected employees */
{

vari = 0;

var strMessage = "";

b

for (i = 1; i <= objListManager.TotalSelected; i++)

{

strMessage += "Employee " + objListManager.AKey3[i];

strMessage +=" - " + objListManager.Visualld2[i] + "\x0D";

}

alert(strMessage);

}

So if this script was used with three selected instance list entries like this:
Mumber Mame Phone Address #

Al001 BEM JOMES 799 5268 144 Froc

Al012 PATRICE PALL 637 1717 & Camillz

GEQRGE PATTISOMN

750 2562

DAVID MCCULLY 752 1321
Al1025 MARY ROBINSOM 126 3598 14 Whitt %
< | b

It would display this alert message:

Microsoft Internet Explorer

:

Employee A1015 - BRADLEY WOODS
Employee A1020 - ADAM PETER DOUGLAS
Employee A1021 - DAVID MCCULLY

Using the Scripting Pop-up Menu

You can use the scripting pop-up menu to format and edit your scripts. To
display the menu, right-click the Script Details area.

cut The first set of options Cut, Copy,

Copy Paste, Undo and Redo are commonly
iy used options in many editors and are
Redo self-explanatory.

Upper Case

Lower ijse The Upper Case and Lower Case

;::E, fc',:t options will change the case of any text
Show Line Numbers currently selected in the script editor.

e bt Note that Javascript is case-sensitive.
Current Application

Current Business Object .
Slaiy iy The Lower font and Larger font options
allow you to change the size of the font

being used by the text editor.

Current Command

Current Instance List Entry
5250 Subfile Handling
Session Control

o v v v vy v v

The Show Line Numbers option
displays (or hides) line numbers in the
text editor.

Use The Current... options to insert
properties for various Framework
objects into your script. Use:

e Current Framework to enter
properties of objFramework

Current Application to enter
properties of objApplication

Current Business Object to enter
properties of objBusinessObject

Current Command to enter
properties of objCommand

Current Instance List Entry to
enter properties of objListManager

Use the 5250 Subfile Handling options
to insert code for Subfiles/Browselists.

Use the Session Control options to enter
commonly used functions and objUser
parameters to your script.

Examples:
e Replacing Hardcoded User Name with Current Framework User

e Replacing Hardcoded Employee Number with Current Instance List Entry
e Adding Your Own Options to the Scripting Pop-Up Menu

Replacing Hardcoded User Name with Current Framework User

To replace the hardcoded user name "QPGMR" in this line of script with the
name of the current framework user:

SETVALUE("utxtUserName", "QPGMR");

Select "QPGMR" (including the quotes), right-click and select the Session
Control and then User Name option:

Cut
Copy
Paszie
Undo
Redo
Upper Case
Lower Case
Larger font
Smaller font
Showe Line Mumbers
Current Framework
Current Application
Current Business Object
Current Command
Current Instance List Entry
5250 Subfile Handling
Mavigate to a Junction
Mavigate to a Destination
Mavigate to a Previous Destination
|lz=r Passvord
Send a function key
Set a form field value
Handle Prompt

4
4
4
4
4
4

The constant "QPGMR" is now replaced with the substitution value for the
current Framework user:

SETVALUE("utxtUserName", objUser.Name);

Replacing Hardcoded Employee Number with Current Instance
List Entry

When you automatically generate scripts using tracking information, the scripts
will contain the hardcoded field values you typed. To make the script to work
with any selected object, you need to replace the hardcoded value with the
appropriate identifier.

To replace the hardcoded employee number "A1234" in this line of script with
the name of the employee currently selected in the instance list:

SETVALUE("uEmpNo","A1234");

First find out the Visual and Programmatic Identifiers used to identify the
employee. Then highlight the hardcoded number "A1234" (including the
quotes) in the script, right-click to bring up the pop-up menu, select the Current
Instance List Entry option and select the appropriate identifier:

Alpha Key 1

Alpha Key 2

Alpha Key 4

Alpha Key &

Mumeric Key 1

Mumeric Key 2

Mumeric Key 3

MNumeric Key 4

Mumeric Key 5

Visual Identifier 1

Visual Identifier 2
Additional Alpha Column 1
Additional Alpha Column 2
Additional Alpha Column 3
Additional Alpha Column 4

Cut Additional Alpha Column 5
Copy Additional Alpha Column &
Paste Additional Alpha Colurmn 7
Undo Additional Alpha Column 5
Redo Additional Alpha Column &
|pper Case Additional Mumeric Column 1
Lower Casze Additional Mumeric Column 2
Larger font Additional Mumeric Column 3
Smaller font Additional Mumeric Column 4
Show Line Mumbers Additional Murneric Colurnn 5

Current Framework Additional Mumeric Column &
Current Application
Current Business Chject

3

» Additional Mumeric Column 7

3
Current Command » Additional Murneric Colurmn 9

3

3

3

Additional Mumeric Column 3

Current Instance List Entry Additional Mumeric Column 10
5250 Subfile Handling

Session Control

The constant "A1234" is now replaced with the programmatic identifier of the
employee number:

SETVALUE("uEmpNo", objListManager.AKey3[0]);

Adding Your Own Options to the Scripting Pop-Up Menu

You can add your own options to the scripting pop up menu by creating an xml
file called uf_um835.xml, and putting it in the partition execute directory. You
can do this using notepad.

This is an example of uf_um835.xml that you could create:

<?xml version="1.0"?>

<EXTRACT>

<MENUITEM>

<PROPERTY NAME="CAPTION" VALUE="My user defined options" />
<SUBMENUS>

<SUBMENUITEM>

<PROPERTY NAME="CAPTION" VALUE="My caption for option 1" />
<PROPERTY NAME="STRING" VALUE="My returned text for option 1" />
</SUBMENUITEM>

<SUBMENUITEM>

<PROPERTY NAME="CAPTION" VALUE="My caption for option 2
(multiple lines returned)" />

<PROPERTY NAME="STRING" VALUE="My returned line 1 for option 2" />
<PROPERTY NAME="STRING" VALUE="My returned line 2 for option 2" />
<PROPERTY NAME="STRING" VALUE="My returned line 3 for option 2" />
</SUBMENUITEM>

<SUBMENUITEM>

<PROPERTY NAME="CAPTION" VALUE="My caption for option 3
(handling quotes in the text)" />

<PROPERTY NAME="STRING" VALUE="Quotes and greater than and less
than need special handling" />

<PROPERTY NAME="STRING" VALUE="Quote - "" />

<PROPERTY NAME="STRING" VALUE="Less than - &It;" />

<PROPERTY NAME="STRING" VALUE="Greater than - >" />
</SUBMENUITEM>

</SUBMENUS>

</MENUITEM>

</EXTRACT>

If you create a file called uf_um835.xml and paste this text into it and then put
uf_um835.xml into your partition execute directory, you will be able to see
these new options when you are editing RAMP scripts:

Cut

Copy

Paste

Undo

Redo

Upper Case

Lower Case

Larger font

Rol Smaller font

g Show Line Mumbers

Ca Current Framewark

Current Application

Current Business Chject

Current Command

/1 Current Instance List Entry

5250 Subfile Handling

Session Control

/| Function Key overrides
SEMDEEY - Common Function Keys
Common RAMP Script Functions

My iiser defined options My caption for option 1
My caption for option 2 (multiple lines returned)
My caption for option 3 (handling quotes in the text)

————

|

nu ==: uSi_gnOn
Gre

mmand™, "signoft); =]

Ln

navigate to usignon */

gnon */

"usignon”, "unable to display

L v " W W W ¥ ¥ vy v w

o : : e
[Commit Changes] [IUse Tracking Info to prototype a script to to 1]

If you choose option 1, this will be added to your script:
My returned text for option 1

If you choose option 2, this will be added to your script:

My returned line 1 for option 2
My returned line 2 for option 2
My returned line 3 for option 2

If you choose option 3, this will be added to your script:

Quotes and greater than and less than need special handling
Quote - "

Less than - <

Greater than - >

In the xml above, you can see that the caption displayed for the first submenu

comes from the caption property, and the value returned to the script when the
user clicks on this submenu comes from the String property:

<SUBMENUITEM>

<PROPERTY NAME="CAPTION" VALUE="My caption for option 1" />
<PROPERTY NAME="STRING" VALUE="My returned text for option 1" />
</SUBMENUITEM>

From option 2, you can see how to return multiple lines when the user clicks on
a submenu:

<SUBMENUITEM>

<PROPERTY NAME="CAPTION" VALUE="My caption for option 2
(multiple lines returned)" />

<PROPERTY NAME="STRING" VALUE="My returned line 1 for option 2" />
<PROPERTY NAME="STRING" VALUE="My returned line 2 for option 2" />
<PROPERTY NAME="STRING" VALUE="My returned line 3 for option 2" />
</SUBMENUITEM>

And from option 3, you can see the special handling if you want quotes (or
greater than or less than) in the value returned to the script:

<SUBMENUITEM>

<PROPERTY NAME="CAPTION" VALUE="My caption for option 3
(handling quotes in the text)" />

<PROPERTY NAME="STRING" VALUE="Quotes and greater than and less
than need special handling" />

<PROPERTY NAME="STRING" VALUE="Quote - "" />
<PROPERTY NAME="STRING" VALUE="Less than - &It;" />
<PROPERTY NAME="STRING" VALUE="Greater than - >" />
</SUBMENUITEM>

As long as your xml is valid xml, and keeps to the structure of the example
above (EXTRACT, MENUITEM, SUBMENUS and SUBMENUITEM) it
should work.

Note: Ensure that your version of UF_UMS835.xml is backed up.

Updating the Instance List from RAMP screens

The tutorial movie Update the Instance List from 5250 Screens - 4 minutes
covers this topic in detail.

A filter manages its associated instance list. When a RAMP screen deletes, adds
or changes business object instances, it needs to notify the filter that a change
has occurred.

Create the Filter with Program Coding Assistant

To create a filter that listens for changes from RAMP screens use the Program
Coding Assistant and select the option Routine to listen for changes and update
the instance list:

Gelect the object you want to generate code for Filter that searches using a file or view
= Framework-=Your Framework ~
= Tg::_ Application->Demo Application Choose any other options you may want.
= k- Business Object-=Employves
Filter-=by Mame

IZ Command Handler-=Mew
IZ Command Handler-=Video
= Command Handler-=Transfer Indude uTerminate routine
IZ Command Handler-=5kilz
IZF Command Handler-=Emai
Filter-=by Location

Routine to listen for signals to update the instance list

This option creates Filter Code which Automatically Handles Changes to
Instance List.

Add AVSIGNALEVENT Function to the Button Script

Add an AVSIGNALEVENT Function in the button script of your RAMP
destination screen for the button that handles the change (typically Save or
Delete) to signal to the filter that the instance list needs to change.

For example, in a RAMP screen that updates an object, add this statement to its
SAVE button script:

AVSIGNALEVENT("Update_List_Entry", "BUSINESSOBJECT",
objListManager.AKey1[0]);

The event being signaled is named Update_List_Entry, and the value being
passed is the identifier of the instance that has been updated.

To handle the saving of a newly created object, you must pass to the filter the
identifier of the object. For example, to add a new employee with employee
number, you would first capture the employee number on the screen using the
GETVALUE Function and store it as a property of the objGlobal object, and
then pass it to the filter:

objGlobal.utxtEmployeeCode = GETVALUE("utxtEmployeeCode");
SENDKEY (KeyEnter);

AVSIGNALEVENT("Add_List_Entry", "BUSINESSOBJECT",
objGlobal.utxtEmployeeCode);

(The utxtEmployeeCode field is the employee number field that has been
defined as a text field on the destination screen.)

The standard event names you can use to update the instance list are:
° Refresh_Instance List

° Update_List_Entry

° Add_List_Entry

° Delete_List_Entry.

Filter Code which Automatically Handles Changes to Instance
List
This RDMLX code which is created by the Program Coding Assistant

automatically handles events signaled by the RAMP screen (it is shown here
just for your reference, you do not need to modify it):

WithAlnfo2(#AlInfo2) WithAInfo3(#AlInfo3) WithAlnfo4(#AlInfo4)
WithAlnfo5(#AlInfo5) WithNInfol(#NInfol) WithNInfo2(#NInfo2)
WithNInfo3(#NInfo3) WithNInfo4(#NInfo4) WithNInfo5(#NInfo5)

* put the received values into fields

Change #vf_elldn #Eventld.Value

* Map the Alnfo and NInfo values passed, into the key fields - #EMPNO
Change #DEPTMENT #AlInfol

Change #SECTION #AlInfo2

Change #EMPNO #AlInfo3

Case #vf _elIDN

when '= Refresh_Instance List'
* Reload the Instance List
Invoke #Com_Owner.uSelectData

when '= Add_List_Entry'

* Add an entry to the list view

fetch FIELDS(#XG_Ident) FROM_FILE(PSLMST) WITH_KEY (#EMPNO)
if status *OKAY

* Start an instance list update

Invoke Method(#avListManager.BeginListUpdate)

* Set up the visual Identifier(s)

Change #UF_VisID1 #EMPNO

Change #UF_VisID2 #GIVENAME

Use BConcat (#UF_VisID2 #SURNAME) (#UF_VisID2)
* Add instance details to the instance list

Invoke #avListManager.AddtoList Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2) AKeyl(#DEPTMENT) AKey2(#SECTION)
AKey3(#EMPNO) ACOLUMN1(#PHONEHME) ACOLUMN2(#ADDRESS1)
NCOLUMNI1(#POSTCODE)

* Instance list updating has been completed

Invoke Method(#avListManager.EndListUpdate)

endif

when '= Update_List_Entry'

* Update an entry that already exists in the instance list

fetch FIELDS(#XG_Ident) FROM_FILE(PSLMST) WITH_KEY (#EMPNO)
if status *OKAY

* Start an instance list update

Invoke Method(#avListManager.BeginListUpdate)

* Set up the visual Identifier(s)

Change #UF_VisID1 #EMPNO

Change #UF_VisID2 #GIVENAME

Use BConcat (#UF_VisID2 #SURNAME) (#UF_VisID2)

* Add instance details to the instance list

Invoke #avListManager.UpdateListEntryData Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2) AKeyl(#DEPTMENT) AKey2(#SECTION)
AKey3(#EMPNO) ACOLUMN1(#PHONEHME) ACOLUMN2(#ADDRESS1)
NCOLUMNI1(#POSTCODE)

* Instance list updating has been completed

Invoke Method(#avListManager.EndListUpdate)

endif

when '= Delete_List_Entry'

Invoke Method(#avListManager.BeginListUpdate)

* Remove instance details from the instance list

Invoke #avListManager.RemoveFromList AKeyl(#DEPTMENT)
AKey2(#SECTION) AKey3(#EMPNO)

Invoke Method(#avListManager.EndListUpdate)

endcase

Endroutine
End_Com

Subfiles/Browselists

From time to time you will need to create scripts that access 5250 subfiles.
There are three common approaches used to do this:

Movie Not Using a Datagrid Control - 1 minute

Movie Using Subfile Accessor - 5 minutes

Movie Subfile Direct Access - 2 minutes (If you need to use subfile direct
access then please review this movie first.)

After this following additional script samples may be useful to you in different
situations:

Script for Locating an Entry in a Subfile/Browselist

Script for Locating and Selecting an Entry in a Browselist or Subfile by
Positioning the Cursor

Script for Locating an Entry when no Positioning is Available

Script for Locating an Entry when no Positioning is Available and the List has
more than One Page

Also See
SUBFILE_ACCESSOR Object

Not Using a Datagrid Control - 1 minute

Play Movie| to learn how to manage subfiles/browselists without datagrid

control or read the Movie Summary.

Movie Summary

For movie Not Using a Datagrid Control - 1 minute.

When a 5250 subfile is presented as a data grid on a junction screen the first
question you should always ask: "Can my script always ensure that the data I
am interested in occurs in the first entry in the subfile?"

If the answer is yes, then the easiest way to access the content of the 5250
subfile data grid is to disable the grid and treat the entry (browselist cell) as a
field:

Disable the grid

In newlook Designer, open the properties of the Form object by double-clicking
on the form. Locate the Recognition UseGrids property and set it to False.

Close the designer and save your changes.
Now newlook recognizes the browselist cells as normal fields.

Name the first cell as a field

Open the Designer again. The subfile area is now presented as a series of simple
text boxes and labels, rather than as a data grid.

Right-click the first text box to bring up its properties and give it a name using
the Name property, for example uSelectEmployee.
The script can now put a value to the field just as if it was a normal field:

SETVALUE("uSelectEmployee", "8");
SENDKEY (KeyEnter);

Using Subfile Accessor - 5 minutes

Play Movie| to learn how to use the subfile accessor or read the Movie

Summary.

Movie Summary

For movie Using Subfile Accessor - 5 minutes.

A typical Work With screen has a subfile/browselist of objects (in this example
Employees), each with an option field.

In RAMP a subfile is displayed as a data grid.

In this tutorial we want to enter option "8" in front of a specific entry in the data
grid:

Name the data grid

Open the screen in newlook Designer, click on the grid and specify
EMPLOYEE_LIST as the Name property in the Misc section.

Note that the data grid and the subfile have different numbers of
columns and rows

e A data grid starts column and row numbering from 0 and includes the
header rows

e Column numbers are not necessarily sequential in a data grid
e Columns have names based on the text in the column headings
To select an employee in the grid using SUBFILE_ACCESSOR

Create the SUBFILE_ACCESSOR object:
var SFL. = new SUBFILE_ACCESSOR ("EMPLOYEE_LIST");

Put an "8" somewhere in column "Opt":
SFL.SetSelectionColumnName("Opt","8");

Then locate the employee that has "A0090" in column "EmployNumber":
SFL.SetSearchColumnName("EmployNumber","A0090");

Put the value into the subfile:
SFL.SelectSubfileEntry();

Lastly, destroy the subfile object:
SFL.Dispose();

Do not write subfile code manually

Instead see how to create a subfile script Using the Scripting Pop-up Menu and
then modify it as required.

Find out row and column names
Use the Probe button which appears on RAMP screens.

Also see SUBFILE_ACCESSOR Object.

Subfile Direct Access - 2 minutes

Play Movie| to learn how to directly access subfiles or read the Movie

Summary.

Movie Summary

For movie Subfile Direct Access - 2 minutes.
This tutorial describes the subfile direct access foundation script.

Create the script Using the Scripting Pop-up Menu. The script reads all subfile
pages, and for each page it reads all columns and for each column it reads all the
cells.

By modifying this script you should be able to perform any required subfile
operation.

Foundation Script

{

var strDataGridName = "xxxxxxxxx"; /* Specify the data grid name here */
var flagAnotherPageExists = true; /* Another subfile page exists */

/* Loop through all subfile pages */

do

{

var intColumnCount = TONUMBER(GETVALUE(strDataGridName +
".Columns.Count"));

var intRowCount = TONUMBER(GETVALUE(strDataGridName +
".RowCount"));

var intColumn, intRow = 0;

/* Iterate over the current subfile page */

for (intColumn = 0; intColumn < intColumnCount; intColumn++) /* Iterate
through the columns */

{

var strColumn = intColumn.toString();

var strColumnName = GETVALUE(strDataGridName + ".Columns(" +
strColumn + ").Name");

TRACE("Column number " + strColumn + " is named \"" + strColumnName +
")

/* Iterate through the cells in the column */

for (intRow = 0; intRow < intRowCount; intRow++) /* Iterate through the rows
for a column */

{

var strRow = intRow.toString();

var strRowCellValue = GETVALUE(strDataGridName + ".Columns(" +
strColumn + ").Cells(" + strRow + ").Text");

TRACE(" in row " + strRow + " it contains the value \"" + strRowCell Value +

")

} /* end iterating the rows for a column */

} /* end iterating the columns */

/* Proceed (or not) to the next subfile page based on the marker */
flagAnotherPageExists = (GETVALUE(strDataGridName + ".Marker") I="");
if (flagAnotherPageExists) { TRACE("Scrolling to next page.");

SENDKEY (KeyPageDown); }

else { TRACE("End of subfile encountered"); }

} while(flagAnotherPageExists); /* Loop around and process the next subfile
page */

} /* NOTE: This script is dependent on the use of newlook for 5250 access */

To test you have the row you want

To work with subfile entries you need to compare your search value with the
text in the cell. To read the text in a cell:

strCell = StrGridName+".Columns("+strColumn+").Cells("+strRow+").Text;

And put the value into a GETVALUE function:
StrRowCellValue = GETVALUE(strCell);

To set the value of a cell:
SETVALUE(strCell, "some valid value");

Locating and Selecting an Entry in a System i Subfile/LANSA
Browselist

Many 5250 applications use System i Subfiles or LANSA Browselists to allow
the end-user to select the object they want to work with.

In a modernized RAMP application that uses filters and the instance list the
subfiles/browselists typically become superfluous so you will probably want to
hide them. You do this by using a script that automatically locates the entry in
the subfile/browselist without the user having to interact with the screen.

Script for Locating an Entry in a Subfile/Browselist

Script for Locating and Selecting an Entry in a Browselist or Subfile by
Positioning the Cursor

Script for Locating an Entry when no Positioning is Available

Script for Locating an Entry when no Positioning is Available and the List has
more than One Page

Script for Locating an Entry in a Subfile/Browselist

This script locates an entry in a browse list.

The position of the entry in the list is determined by the value entered in an
input field. Then, perform an action on the selected the entry.

In this script:

utxtEmpno is the name given to the field to position to in the form using
newlook Designer

uDataGrid Is the name given to the browselist/subfile in the form using
newlook Designer

The first column in the data grid contains the Option field.
The second column in the data grid contains the value to position to.
The VisuallD1 of the Instance List has the employee number

Use option 2 to change the details of an employee selected in the
Instance List.

/* Set the value of a variable to that of the selected Employee */

var strCompare = objListManager.Visualld1[0];

/* Set the value of the field in the form to that of the selected Employee */
SETVALUE("utxtEmpno", strCompare);

/* Send an Enter key to cause the list positioning */

SENDKEY (KeyEnter);

/* Get the number of rows in the data grid */

var intRowCount = GETVALUE("uDataGrid.RowCount");

/* Traverse the rows and compare the value of the second column with the one
to position to. */

for (var intRowNo = 0; intRowNo < intRowCount; intRowNo++)

{

if (GETVALUE("uDataGrid.Rows(" + intRowNo + ").Cells(1).Text") ==
strCompare)

{

/* Type a 2 next to the first entry and press enter */
SETVALUE("uDataGrid.Rows(" + intRowNo + ").Cells(0).Text", 2);
SENDKEY (KeyEnter);
break;

}
}

Script for Locating and Selecting an Entry in a Browselist or
Subfile by Positioning the Cursor

Sometimes entries in browselists/subfiles are selected by positioning the cursor
on the desired row and pressing Enter.

To position the cursor in a desired row/column you can use the provided
SETCURSOR() interface. Please refer to <setcursor> to find out details of the
uses of SETCURSOR().

SETCURSOR receives a row, column and row offset position. The latter is the
row number of the first entry in the browselist/subfile. Note that newlook's Data
Grids counts the column headings as rows. To find out the row position of a
browselist or subfile, run the application in green screen mode until you reach
the desired list. You should be able to see the row/column positions on the
bottom right of the screen. Move the cursor until the column heading's top most
piece of text. That will be the row offset value to pass.

var strCompare = objListManager.Visualld1[0];
/* This is the row number where the first row entry in the list. Column headings
are counted as rows */
var intListOffset = 3;
var flagPageDown = true;
while (flagPageDown)

{

intRowCount = GETVALUE("uuDataGrid.RowCount");

for (var intRowNo = 0; intRowNo < intRowCount; intRowNo++)

{

/* The value we want to compare with is in the first cell */

if (GETVALUE("uDataGrid.Rows(" + intRowNo + ").Cells(0).Text") ==

strCompare)
{
SETCURSOR(intRowNo, 10, intListOffset);
SENDKEY (KeyEnter);
flagPageDown = false;
break;
}
}
if (flagPageDown)
{

if (GETVALUE("uDataGrid.Marker") !="") SENDKEY (KeyPageDown);

else { flagPageDown = false; alert("page down is false"); }

}
}

Script for Locating an Entry when no Positioning is Available

A variation on the previous script is to find an entry in a list where there is no
positioning available and we do not know which column holds the sought after
value. In such scenario, for each row we'd have to traverse each cell. Note that
for big lists this can be a time consuming task:

for (var intRowNo = 0; intRowNo < intRowCount; intRowNo++)
{
/* Get the number of cells in this row. */
var intColCount = GETVALUE("uDataGrid.ColCount");
for (var intColNo = 0; intColNo < intColCount; intColNo++)
{
if (GETVALUE("uDataGrid.Rows(" + intRowNo + ").Cells(" + intColNo +
"). Text") == strCompare)
{
/* Type a 2 next to the first entry and press enter */
SETVALUE("uDataGrid.Rows(" + intRowNo + ").Cells(0).Text", 2);
SENDKEY (KeyEnter);
break;
}
}
}

Note that the above script will only handle the first page in the list.

Script for Locating an Entry when no Positioning is Available and
the List has more than One Page

The previous example showed how to handle a list with only one page. If a list
has more than one page, we have to page down until the end of the list.

Therefore, the for loop should be enclosed within another loop to be executed
while we haven't reached the end of the list. Note that in this case, the row count
must be retrieved for each page.

var flagPageDown = true;
while (flagPageDown)
{
intRowCount = GETVALUE("uDataGrid.RowCount");
for (var intRowNo = 0; intRowNo < intRowCount; intRowNo++)
{
/* Get the number of cells in this row. */
intColCount = GETVALUE("uDataGrid.ColCount");
for (var intColNo = 0; intColNo < intColCount; intColNo++)
{
if (GETVALUE("uDataGrid.Rows(" + intRowNo + ").Cells(" + intColNo +
"). Text") == strCompare)
{
/* Type a 2 next to the first entry and press enter */
SETVALUE("uDataGrid.Rows(" + intRowNo + ").Cells(0).Text", 2);
SENDKEY (KeyEnter);
/* Reset the flag to cause the while loop to end */
flagPageDown = false;
break;
}
}
}
if (flagPageDown)
{
/* Get the value of the newlook indicator that tells us whether there is
another page in the list. If not, reset the flag to cause the while loop to end */
if (GETVALUE("uDataGrid.Marker") !="") SENDKEY (KeyPageDown);
else flagPageDown = false;

}
}

Handling Pop-Ups

When newlook recognizes a border pattern on a 5250 screen, it creates a pop-up
window. You are not compelled to present these pseudo pop-ups as a real
windows, and we strongly recommend you do not define them as destination
screens.

During Navigation

Pop-up as Destination

When Triggered by Button Click or Function Key Press
Forcing a Pop-Up to Front

How to Turn Pop-Ups into Full Screens

Also see FORCE_POPUP_REFRESH Function.

During Navigation

Situation
RAMP navigates through a pop-up on its way to a destination screen.

Expected Behavior
Windows: the pop-up is not visible during navigation.

Browser: the pop-up is visible during navigation.

Remarks
You cannot interact with newlook when it is hidden in the browser.

Pop-up as Destination

We recommend you absolutely avoid using 5250 pop-up screens as RAMP
destination screens.

Having a pop-up jump out of command tab would be very unusual. We

recommend you instruct newlook to present the 5250 pop-up as a full screen.
See How to Turn Pop-Ups into Full Screens.

When Triggered by Button Click or Function Key Press

Situation
Ramp navigates to a destination. The user clicks on a VLF push button or

presses a function key to display a pop-up.

Expected Behavior
Windows and Browser: the pop-up will not be visible and the main screen
becomes grayed out and input incapable.

Remarks
In this case the pop-up is hidden behind the main screen. See Forcing a Pop-Up

to Front.

Forcing a Pop-Up to Front

If you need to force a pop-up window to front (for example if you absolutely
have to present a 5250 pop-up window as a destination screen), using
FORCE_POPUP_REFRESH Function will not help you because it only turns
the automatic force-to-front logic off or on. It does not change when the logic is
used.

In these special cases you will have to invoke the force logic yourself, probably
at the end of your destination pop-up screens INVOKE script.

The easiest way to do this is by executing the JavaScript function
VF_SY120_FORCE_POPUP_REFRESH(). This will cause the current 5250
pop-up to come to the front.

If you want to force a pop-up which is triggered by a button click or function
key press to front, do it like this:

SENDKEY (KeyF10);
VF_SY120_FORCE_POPUP_REFRESH();

How to Turn Pop-Ups into Full Screens

This example turns a pop-up into a full screen. It uses the Department pop-up
called using option 8 (Dept/Section/Employee Window Enquiry) from the
Personnel System’s main menu.

1. Start newlook, connect to your System i and sign on. On the command
line, invoke the Personnel System’s main menu. For example,

lansa run pslsys partition(dem)

“ 1 - QLANSAO2 - newlook =3
File Session Edit View Macros Tools Function Keyboard Window Help

Personnel System Main Menu

Enter number of function required or place cursor on same line.

[+ Ennal a New Employe=

[BrowssjMaintain Empioyes and Sl Fles
[+ Employes Busine== Phane Mumber Lt

[Produce Salary Commitment Reparts

[+ Parform Ganeral Empioyes Search

i Tmbmciions Number Search

[DegltfSection/Emplayes Windaw Enquiry

| Pmrzonnal Table Mant=nance Many

[Display HELP Tt

[Bt from Apglcation

EEE e

m&EE X ENACUR @b

2. Use option 8 to display the Departments prompter:

File Session Edt View Macros Tools Function

=

Enter number of function required g

Full Employee Listing

Enrol 3 New Employee
Browse/Maintain Employe
Employee Business Phone
Produce Salary Commitmg
Perform General Employes
Telephone Mumber Searc
Dept/Section/Employee
Personnel Table Maintena
10. Display HELP Text

o T o e

Departments

Department
Description

ADMINISTRATOR DEPT

INTERMAL AUDITING

FLEET ADMINISTRATIC

GROUP AC

INFORMATION SERVIC

|

11. Exit from Application Imc mmp @m @cnd

m&EE X

T I T

W& E X

3. Press Ctrl+D to start newlook Designer. The screen should look something

like this:

- Fle Edt View Iset Fomat Took Window Help

1= ﬁ .- |Deparh1'|ents V|

Departments

Dept | Department
Code | Description

[

ADM [ADMIMISTRATOR DEFT
AUD INTERMAL AUDITING
FLT |FLEET ADMIMNISTRATIOM
GAC |GROUP AC

INF - INFORMATION SERVICES “

I":”’g o Wg L m:cg it Mfé gt
m & E # —

4.

Click on Identify to work in newlook Identify mode:

4

& E X ENA VR i i ? o
e ————————————————

. Hle Session Edit View Macos Tools Function Keyboard Window Help

44 1 - QLANSAOZ - newlook [Designer] [|[2|[X]
. Hie Edt View Inset Fomat Tools Window Help

{7 @ [l Departments whl”
G| Und Cif+Z
Departments M e et
N cu Ctri+X
Dept | Department Copy Cirl+C
Code | Description o
% Paste Ctrl+
ADM |ADMINISTRATOR DEPT | 2 o De
ALD [INTERMAL ALUDITING Propeties Window F4
FLT |FLEET ADMINISTRATION R 1dentty Gl
GAC |GROUP AC Macro Editor ~ Ctrl+M
INF [INFORMATION SERVICES m Inspector
@ Designer Help F1
Io i B e S I
& B % UK :
EIN= Y= ENA O¥R T3 i ? 4

_ QLANSAQZ - newlook [Identify] M=

Edt View Tools Window Help
& B @ oepsrmens Voo kB S BADE @

S -t s [
. K

D@ E X

5. Use the mouse to select the entire grey area:

~# 1 - QLANSAO2 - newlook [Identify] M=
- He Edt View Tools Window Help

- (7@ [E @ Departments vio o W B 2 FEOR &

Departments [

D@ E X

6. Right click anywhere on the selected area and select the Set Window Area
option in the Screen submenu:

- 1 - QLANSAOZ - newlook [Identify]
. e Edt View Tooks Window Help
- {596 B i Departments oo g B DS PP EE @

Yhepartments [

v Screen ID
Unknown
Ignore

Function Key
Field Message
Menu Message Marker
Subfile Screen Info
Command Screen Tite

Miscellaneous —
Set Window Area

Group Fields

EEE B SR

—H 1 - QLANSAQZ - newlook [Identify]
File Edt View Tools Window Help
= {f= Departments % &P i &

[Ef = NEE

7. Now select everything surrounding the pop-up area, right click on the
selected area and select Ignore. Note that you may have to do more than one
selection to cover the whole of the surroundings. Make sure to have
something selected as the pop-up screen id. In the example below, the id is
the attribute bytes enclosing the Department and Description subfile headers:

_kﬁ. 1 - QLANSAOZ - newlook [Identify]
File Edt View Tools Window Help
= H "- Departments * I @ @

Screen ID
v Unknown

Screen

Field

Menu

Subfile
Command
Miscellaneous

Group Fields

QLANSAOZ - newlook [Identify] M=
Edt View Tools Window Hebp

1@ B @ Deperimens Voo bBh g FREE @

H1-
- Fe

rem Main Menu
.
n:rlace cursor on same line.
o
I "
e "
r:eill Filese
:rList L
L]

tE
oo n
kI RQUiTy
L

r11.sExit from Application

F
rFl=Help F3=Exit FlZ=Cancel Fl4=Msgs

.

D@ E X

8. Close Identify. The screen should now look something like this:

- 1 - QLANSAOZ - newlook
File Session Edt View Macros Tools Function Keyboard Window Help

- B)X]

Departments
Dept Department
Code Description
ADM ADMINISTRATOR DEPT
AUD INTERMAL AUDITING
FLT FLEET ADMINISTRATION
GAC GROUP AC
INF INFORMATION SERVICES +
st i e (o
m & E X ERA R e g

The pop-up has now been converted into a full screen.

Script Functions
This section describes the shipped RAMP JavaScript functions you can use in
your Scripts.

Note that these functions are case sensitive, so be careful to use exactly the
same case as shown when writing scripts.

Get and Set Values of fields on RAMP Screens

Set a field on a RAMP SETVALUE Function
screen to a value

Get the value from a GETVALUE Function
field on a RAMP
screen

Screen Functions

Emulate pressing a SENDKEY Function
key.

Check that RAMP is CHECK_CURRENT_FORM Function
showing a screen

Signal to the AVCLOSEFORM Function
Framework to close the
current screen

Hide the current screen HIDE _ CURRENT FORM Function
with an optional
message

Get the Form Name of n CURRENT_ FORM Function
the current RAMP
screen

Position the cursorina SETCURSOR Function
given row and column
of the screen

Searches the label GET_MENU_OPTION_NUMBER Function
fields on the form for a

menu option by name

Function keys to send
when an unknown
form appears during
RAMP navigation

Overcome problem of
a pop-up which is
invoked from a button
click or function key
press in a destination
screen being hidden
behind the main screen

Set the current
command handler
caption to a new value

Dynamically enable or
disable a Destination’s
button or 5250
function key

Message Functions

Issue a message as an
alert

Clear all messages
currently in the stack

Issue a fatal message
Issue a message

Stop the Framework
from shutting down
when a fatal navigation
error occurs

ADD_UNKNOWN_FORM_GUESS Function

FORCE_POPUP_REFRESH Function

SET_HANDLER_CAPTION Function

SETKEYENABLED Function

ALERT MESSAGE Function

CLEAR_MESSAGES Function

FATAL_MESSAGE Function
MESSAGE Function
FATAL MESSAGE_TYPE Function

Other Functions

Signal an event to
filters and RAMP
screens

Add run time
information to the trace
panel

Run a newlook Macro

Navigate to a
Junction screen

Show a user defined
prompter form for a
field

Navigate to a
Destination screen

Navigate to a
previously shown
Destination screen

Returns the leading
numbers from a string

Defines a string by a
unique number for use
by other scripts

Sets the message to
show when the
Framework locks up

Returns the string for a
given string
identification number

Call this function to

AVSIGNALEVENT Function

TRACE Function

RUNMACRO Function
NAVIGATE_TO JUNCTION Function

HANDLE_PROMPT Function

NAVIGATE_TO_DESTINATION Function

NAVIGATE_TO_PREV_DESTINATION Function

STRIP_LEADING_NUMBERS Function

ADD_STRING Function

SET_LOCK_MESSAGE Function

STRING Function

SET_UNKNOWN_LOCKING Function

override the Lock
Framework when
unknown 5250 form is
displayed session

property

Set the focus to a field
on the current screen

Get the name of the
field with focus on the
current screen

Return a DataGrid as a

string

SETFOCUS Function

GETFOCUS Function

MAKESUBFILEINTOSTRING Function

newlook Function Key Bar Functions

Causes all screens not
defined to RAMP to
show the newlook
toolbar buttons

OVERRIDE BUTTONS UNDEFINED SCREENS
Function

Multilingual Caption Functions

Assigns a new caption
for a function key on a
particular screen

Assigns a new caption
for a function key on
any screen

OVERRIDE_KEY_CAPTION_SCREEN Function

OVERRIDE_KEY_CAPTION_ALL Function

Virtual Clipboard Access Functions

Save an alphanumeric

or numeric value in the

Framework virtual
clipboard.

Restores an

AVSAVEVALUE Function

AVRESTOREAVALUE and AVRESTORENVALUE

alphanumeric or Function
numeric value from the
Framework virtual

clipboard

Real Clipboard Access Functions

Copy a string to the COPYTOCLIPBOARD Function
user's clipboard

SETFOCUS Function

Set the focus to a field on the current screen.
Syntax

SETFOCUS(sControlName);

Parameters

sControlName Required. String that contains the name of the field
that focus is to be set to.

Return Value
None

Example

SETFOCUS("utxtSurname");

Notes
The field (or other control) name is the name assigned to the field in Newlook
Identify.

This function uses a new macro in VF_MACRO.sid, called
VF_Macro.VF_Set_Active_Control. So before this function can be used, the
latest shipped VF_MACRO.sid must be merged into your Newlook.sid file.

GETFOCUS Function
Get the name of the field with focus on the current screen.

Syntax
GETFOCUS();

Parameters
None
Return Value

sControlName String that contains the name of the field that has
focus. It is "" if no control is found, or if the
Control with focus does not have a name.

Example

var strValue = GETFOCUS();

Notes
The field (or other control) name is the name assigned to the field in Newlook

Identify.

MAKESUBFILEINTOSTRING Function
Return a DataGrid as a string.

Syntax

MAKESUBFILEINTOSTRING(sDataGridName, All_Pages, Include_Heading,
sHeader_Column_ Numbers, sDetail_Column_Numbers)

Parameters

sDataGridName Required. String that contains the name
of the data grid that is to be returned as
a string.

All_Pages Optional. Boolean that tells the
function to page down through all
pages in the subfile. Defaults to false.

Include_Heading Optional. Boolean that tells the

function to include the subfile header
rows in the returned string. Defaults to
true

sHeader_Column_Numbers Optional. String that contains the
column numbers of the header rows to
show, delimited by commas. Default is
all non-blank columns

sDetail_Column_Numbers Optional. String that contains the
column numbers of the detail rows to
show, delimited by commas. Default is
the columns used for the header
columns

Return Value

sSubfileAsString Required. String that contains the subfile as a tab
delimited string.

Examples

/* Get just the currently visible page of the subfile named uDataGrid */

/* Get the header rows, */

/* and paste them all onto the clipboard. */

/* Only show the header cells in columns 0,2,3,4 and 5 */
/* Only show the detail cells in columns 1,2,3,4 and 6 */

COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid", false ,
true ,"0,2,3,4,5" , "1,2,3,4,6"));

/* Get all the pages of the subfile named uDataGrid */

/* Get the header rows, */

/* and paste them all onto the clipboard. */

/* Only show the header cells in columns 0,2,3,4 and 5 */
/* Only show the detail cells in columns 1,2,3,4 and 6 */

COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid", true,
true , "0,2,3,4,5" , "1,2,3,4,6"));

/* Get all the pages of the subfile named uDataGrid */

/* Get the header rows, */

/* and paste them all onto the clipboard. */

/* Only show the header cells in columns 0,2,3,4 and 5 */
/* Only show the detail cells in columns 0,2,3,4 and 5 */

COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid", true,
true , "0,2,3,4,5"));

/* Get all the pages of the subfile named uDataGrid */
/* Get the header rows, */

/* and paste them all onto the clipboard. */

/* Show the non-blank header cells */

/* Only show the detail cells in columns 1,2,3,4 and 6 */

COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid", true,
true , null ,"1,2,3,4,6"));

/* Get all the pages of the subfile named uDataGrid */
/* Get the header rows, */

/* and paste them all onto the clipboard. */

/* Show the non-blank header cells */

/* Only show the detail cells in columns with non-blank headers */

COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid", true,
true));

/* Get all the pages of the subfile named uDataGrid */

/* Get all the detail rows, but don't get the header rows, */
/* paste them onto the clipboard. */

/* Only show the detail cells in columns 1,2,3,4 and 6 */

COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid", true ,
false , null, "1,2,3,4,6"));

Notes

Use the probe screen report to ensure that Newlook is displaying the subfile as a
datagrid, and to determine the column numbers of the header and detail cells
that you want to show.

Can be used in combination with function COPYTOCLIPBOARD to allow the
user to paste a subfile into their own excel spreadsheet.

COPYTOCLIPBOARD Function
Copy a string to the user's clipboard.

Syntax
COPYTOCLIPBOARD(sString);
Parameters
sString Required. String that contains the data to be

copied to the user's clipboard.

Return Value
None

Examples

COPYTOCLIPBOARD("ABC");

COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid", true,
true , "0,2,3,4,5" , "1,2,3,4,6"));

/* Copy to a spreadsheet */

var MyString = "";

var TAB_Char = "\x09" ;

var End_Of Line Char = "\xOD\x0A" ;

MyString = "Line 1 Cell 1" + TAB_Char + "Line 1 Cell 2" +
End_Of _Line Char;

MyString += "Line 2 Cell 1" + TAB_Char + "Line 2 Cell 2" +
End_Of _Line Char;

COPYTOCLIPBOARD(MyString);

Notes

This function can be used to allow the user to copy data to their real clipboard,
for pasting into Word documents or spreadsheets

FATAL_MESSAGE_TYPE Function

Use this function when you don’t want the Framework to shut down when a
fatal navigation error occurs.

Syntax

FATAL_MESSAGE_TYPE(sType)

Parameters

sType Optional. String that contains the message type:

FATAL (default) — in end user mode, the framework will
shut down.

HIDE — the RAMP command tab will hide Newlook
5250 and show the error.

INFO - the error message will be routed to the
Framework message area.

Return Value
None

Example

FATAL_MESSAGE_TYPE("HIDE");

SET_UNKNOWN_LOCKING Function

We strongly recommend you do not to use this function because the

default locking behaviour is correct in most situations. If you think you
need to use this function please contact your support representative.

Call this function to override the Lock Framework when unknown 5250 form is
displayed session property. See Session Details for more information.

Syntax
SET_UNKNOWN_LOCKING(boolean)

Parameters
Boolean. One of the following possible values:

true Apply a lock to the framework when an
unknown 5250 form is encountered.

false Don’t lock the framework when an unkown
5250 form is encountered.

Return Value
None.

Remarks

Invoke only once per session from the sign on script. Dynamically changing this
value may cause undesirable results.

SETKEYENABLED Function

Dynamically enable or disable a destination’s button or 5250 function key.
This function overrides the destination’s function key enablement, for the
duration of the logged on 5250 session. The override will impact all future
displays of the destination screen.

Syntax

SETKEYENABLED (sDestinationName,sKeyName,bEnableVLF,bEnableNL)
Parameters

sDestinationName Required. A string that contains the
name of a Destination.

sKeyName Required. String that contains the
name of the key. See Function Key
Names for SENDKEY Function.

bEnableVLF Optional. Boolean. Set to true to
show the button, false to hide it, null
to ignore.

bEnableNL Optional. Boolean. Set to true to

enable the 5250 function key, false to
disable it, null to ignore.

Return Value
None

Example

The Destination named uDisplayEmployee was set up to Show the prompt
button but disable the F4 5250 function key.

To override those settings to the reverse:

SETKEYENABLED("uDisplayEmployee", KeyF4, false,true);

To leave the original setting for the button but enable the F4 function key as
well:

SETKEYENABLED("uDisplayEmployee", KeyF4, null,true);

SETVALUE Function

Set the content of a field on a 5250 screen to a value. The field may be
identified by name or by its order on the screen.

Syntax

Setting by Name - SETVALUE(sVariable , sValue)

Setting by Order - SETVALUE(__Field , sOrder, sValue)

Parameters
Setting by Name:

sVariable Required. String that contains the RAMP field
name.

sValue Required. String that contains the value to set
the field to.

Setting by Order:

_ Field @ Special value __Field (with two underscores) indicates
that a field (ie: a simple text area) on the form is to be
set.

sOrder = The order of the field on the form starting from 1.
Special values __Last and __First (again with two
underscores) may be used. Note the order is that of the
fields on the form, not of all the controls on the form
(eg: labels, combo boxes, etc).

sValue Required. String that contains the value to set the field
to.

Return Value
None

Remarks

To set a value of a field on a screen by name, the field must be given a name in
the newlook Designer.

The use of field identification by order is more likely to be impacted by form
layout changes than by using a name.

The initial setting of a field by order is more expensive to execute than by name,
however screen field order details are cached so that the subsequent access is
faster. The caching logic assumes that the relative order of a field on any
particular screen will not change within a signed on 5250 session.

Examples

SETVALUE("utxtSignOn", objUser.Name);
SETVALUE("utxtPassword",objUser.Password);
SETVALUE("utxtSelectionOrCommand","90");
SETVALUE("utxtTransaction","MOV");
SETVALUE(__Field,__ First,"xxx"); /* Set first field */
SETVALUE(__Field,_ Last,"7.45"); /* Set last field */
SETVALUE(__Field,1,"Hello World"); /* Set field number 1 */

SETVALUE(__Field,6,"ADM"); /* Set field number 6 */

GETVALUE Function
Get the value from a field on a RAMP screen.

Syntax
GETVALUE(sVariable)
Parameters

sVariable Required.String that contains the newlook field name.

Return Value
String. Returns the value of the field, as a string:

Example

MyString = GETVALUE("utxtSignOn") ;

SENDKEY Function

Emulates the pressing of a key.

Syntax
SENDKEY (sKeyName)
Parameters
SKeyName Required.String that contains the name of the key. See

Function Key Names for SENDKEY Function.

Return Value
None

Example

SENDKEY (KeyEnter);

CHECK_CURRENT_FORM Function
Check that RAMP is showing a screen.

Syntax

CHECK_CURRENT_FORM(sFormName [, sMessageText1] [,
sMessageText?] ...)

Parameters
sFormName Required. String that specifies the Name of the Form
sMessageText1 Optional. String that contains the first message to be
issued.
sMessageText2 Optional. Other strings that are to be concatenated with

the first message string (a separator space is
automatically added between each string).

Return Value
Boolean. Returns one of the following possible values:

true The form currently shown has the form name specified.
false The form currently shown does not have the form name
specified.
Remarks

Used for checking whether the script or user has progressed to a particular
screen, or has stopped at an earlier screen.

The Form name for a RAMP screen is found by working with the screen in
newlook in Designer mode and setting the Name property of the Form object.

If the CHECK_CURRENT_ FORM returns false, the function will also
automatically hide the Current RAMP screen and display the message provided.

If the script wants to test that the expected screen has arrived, and yet still
display the current screen if it hasn't, it should not use function
CHECK_CURRENT FORM, but instead use

if (CURRENT_FORM() == "My_Form");

When you are writing scripts that handle validation errors on a screen, you
usually want the current screen to be displayed even if a validation error
occurred and the user has not progressed to the expected next screen. So in this
situation you should not use CHECK_CURRENT_FORM.

Example

if (/(CHECK_CURRENT_FORM("ultemMasterBrowse","Unable to navigate
to form ultemMasterBrowse"))) return;

AVCLOSEFORM Function

Signals to the Framework to close the current form.

Syntax
AVCLOSEFORM)()

Parameters
None

Return Value
None

Remarks

If a RAMP screen is running as a separate form, and needs to be closed
automatically after completing, use AVCLOSEFORM.

Ensure that the current form is a form known to the Visual LANSA Framework,
at the point the AVCLOSEFORM is issued, and that there is a valid Return
Script for this Junction or Destination. This will allow the Framework to
navigate back to sign off and end the session cleanly.

Example

/* Close this command handler, since the Delete is now done */

/* We should ensure we are on a Junction or Destination at this point */

/* so that the Framework can cleanly navigate the newlook session to sign off */

AVCLOSEFORM();

HIDE_CURRENT_FORM Function

Hides the current form and displays an optional message.

This function is used to hide the current 5250 screen from the users and to
prevent them from manually interacting with it.

For example, a script that performed a 5250 sub-file search and failed to find an
expected product number might do this:

HIDE_CURRENT_FORM("Product number", strProductNumber, "could not be
found. You may not be authorized to view it.");

This presents an error message to the user and hides the current 5250 form,
which can then only be interacted with by other script controlled actions.

Syntax

HIDE_CURRENT_FORM([sMessageText1] [, sMessageText2] ... [,
sMessageTextN])

Parameters

sMessageTextl Optional. String that contains the first message to
be issued.

sMessageText2 Optional. Strings that are to be concatenated with

-> N the previous message text (a separator space is
added).
Return Value
None
Example

HIDE_CURRENT_FORM("Inventory item ", objListManager.AKey1[0] , "was
deleted.");

CURRENT_ FORM Function

Gets the Form Name of the current RAMP screen.

Syntax
CURRENT_FORM()

Parameters
None

Return Value
String. Returns the Form name of the current screen, as a string;:

Example

MyString = CURRENT_FORM() ;

SETCURSOR Function

Positions the cursor in a given row and column of the screen

Syntax

SETCURSOR([iRowNumber][,iColumnNumber][,iRowOffset])

Parameters

IRowNumber
IColumnNumber

IRowOffset

Return Value
None.

Example

Required. Integer that specifies the row number
where to position the cursor.

Optional. Integer that specifies the column number
where to position the cursor. Defaults to 1.

Optional. Integer that specifies the row number of
the first row in a browse list or subfile. This
parameter only makes sense in situations where the
cursor is to be positioned in a browse list or subfile
row and the entry is selected pressing the Enter key.

Note that in newlook, browse lists and subfiles are
recognized as grids. In these grids, column
headings are counted as rows. Hence the value of
this parameter should equal to the row position of
the topmost column heading literal.

To find out the row position of the browselist or
subfile, run the application in 5250 session until
you reach the desired list. You should be able to see
the row/column positions on the bottom right of the
screen. Move the cursor until the column heading's
top most piece of text.

SETCURSOR(7, 10, 3);

ALERT_ MESSAGE Function

Issue a message as an alert.

Syntax
ALERT_MESSAGE(sMessageText1 [, sMessageText2] ...)
Parameters
sMessageText1 Required. String that contains the first message to be
issued.
sMessageText2 Optional. Other strings that are to be concatenated with

the first message string (a separator space is
automatically added between each string).

Return Value
None

Example

ALERT_MESSAGE("Inventory item ", objListManager.AKey1[0] , "was
deleted.");

CLEAR_MESSAGES Function

Clears all messages currently in the stack.

Syntax
CLEAR_MESSAGES()

Parameters
None
Return Value

None

Example

CLEAR_MESSAGES() ;

FATAL_MESSAGE Function

Issues a fatal message and causes the entire VLF application to terminate
(unless it is being executed in design mode).

In design mode the message details are presented in the center of the RAMP
panel area and the application continues to execute. In execution mode the
entire VLF application terminates.

Syntax
FATAL_MESSAGE(sMessageTextl [, sMessageText2] [, sMessageText3]...)
Parameters

sMessageTextl = Optional. String that contains the first message to be
issued.

sMessageText2 = Optional. Other strings that are to be concatenated with

the first message string (a separator space is automatically
added between each string).

Return Value
None

Example

FATAL_MESSAGE("Inventory item ", objListManager.AKey1[0] , "was
deleted.");

MESSAGE Function

Issue a message.

Syntax
MESSAGE(sMessageText1 [, sMessageText2] ...)
Parameters
sMessageText1 Required. String that contains the first message to be
issued.
sMessageText2 Optional. Other strings that are to be concatenated with

the first message string (a separator space is
automatically added between each string).

Return Value
None

Example

MESSAGE("Inventory item ", objListManager.AKey1[0] , "was deleted.");

AVSIGNALEVENT Function
Signal an event to the Framework filters and RAMP screens.

Syntax

AVSIGNALEVENT([sId] [,sTo] [,sAlnfol] [,sAInfo2] [,sAlnfo3] [,sAlnfo4]
[,sAInfo5] [,nNInfo1] [,nNInfo2] [,nAlnfo3] [,nNInfo4] [,nNInfo5])

Parameters

SId Required.String containing an identifier of the
Event.

STo Valid values are:
FRAMEWORK = The signal is broadcast to the
whole framework
BUSINESSOBJECT = The signal is only broadcast
to filters and RAMP screens in the current business
object

sAlnfol Optional. String containing additional information
that the object listening for the signal can use.

sAlnfo2 Optional. String containing additional information
that the object listening for the signal can use.

sAlnfo3 Optional. String containing additional information
that the object listening for the signal can use.

sAlnfo4 Optional. String containing additional information
that the object listening for the signal can use.

sAInfo5 Optional. String containing additional information
that the object listening for the signal can use.

nNInfol Optional. Number containing additional information
that listening object may use.

nNInfo2 Optional. Number containing additional information

that listening object may use.

nNInfo3 Optional. Number containing additional information

that listening object may use.

nNInfo4 Optional. Number containing additional information
that listening object may use.

nNInfo5 Optional. Number containing additional information
that listening object may use.

Return Value
None

Example
This example signals that an entry has been deleted in the instance list:

AVSIGNALEVENT("Delete_List_Entry", "BUSINESSOBJECT",
objListManager.AKey1[0]);

Also see Updating the Instance List from RAMP screens.

TRACE Function

Allows the user to add run time information from the script to the application
trace panel.

Syntax
TRACE(sTraceTextl [, sTraceText2] ...)
Parameters
sTraceTextl Required.String that contains the trace information
to be shown.
sTraceText2 Optional. String that is concatenated with the

previous trace text (a separator space is added).

Return Value
None

Example

TRACE("Inventory item ", objListManager.AKey1[0] , "was deleted.");

RUNMACRO Function

Runs a newlook Macro.

Syntax
RUNMACRO(sMacroName)
Parameters
sMacroName Required.String that contains the name of the newlook

Macro.

Return Value
None

Example

RUNMACRO("MyMacro") ;

NAVIGATE_TO_JUNCTION Function
Navigates RAMP to a Junction.

Syntax
NAVIGATE_TO_JUNCTION(sJunctionName)
Parameters

SjunctionName Required.String that contains the form name of

the Junction.

Return Value
None

Example

/* Navigate to the nearest access junction */
NAVIGATE_TO_JUNCTION("ultemMasterBrowse");

Note that this function should only be invoked from an invoke script.

HANDLE_PROMPT Function

Causes an associated prompter form (VL Handler) to appear next to a field. The
fields and the prompter forms are specified in the Special Field Handling area as
described in Advanced Prompting.

Optionally additional information can be passed to or retrieved from the
prompter form.

Syntax

HANDLE_PROMPT(sArgument1 [, sArgument?] [, sArgument3]...)

Parameters

SArgumentn Optional. String that contains any value the user defined
prompter may require. Note that by default the user
defined prompter has bi-directional access to all named
fields in the 5250 screen.

Return Value
None

Example

if (HANDLE_PROMPT()) return;

Accessing the values passed as sArgumentl1, sArgument2, etc., in
the prompter form

A function like this in a RAMP script:
HANDLE_PROMPT("HELLO","THERE",123);

Is accessed like this in the prompter form:

Invoke Method(#Com_Owner.uGet5250Field) Name(UARG1)
Value(#Arg1Value) ... returns "HELLO" in #Arg1 Value.
Invoke Method(#Com_Owner.uGet5250Field) Name(UARG2)
Value(#Arg2Value) ... returna "THERE" in #Arg2Value.
Invoke Method(#Com_Owner.uGet5250Field) Name(UARG3)
Value(#Arg3Value) ... returns "123" as a string in #Arg3Value.

There is no limit on how many arguments you can pass.

Numeric values can be passed, but they will turn up as strings in the VL
component, so they need to be converted back to a number again.

Referencing an un-passed argument does not cause a problem. This code:

#Argl5Value := "TEST"
Invoke Method(#Com_Owner.uGet5250Field) Name(UARG15)
Value(#Arg15Value)

Would execute and leave #ARG15Value unchanged as "TEST", but you can
actually tell whether the value was passed by doing this:

Invoke Method(#Com_Owner.uGet5250Field) Name(UARG15)
Value(#Arg15Value) Found(#Found)

If (#Found = TRUE) /* 15th argument was passed to HANDLE_PROMPT */

Else /* 15th argument was not passed)

As an example, you can use the additional arguments in a HANDLE_PROMPT
function if you need access to values which are not on the screen from which
the prompter form is invoked.

For instance, this could be used in a situation where customer information is
entered on the first screen and an invoice number is prompted for on the second
screen. If this invoice number is dependent on the customer information
initially entered on the first screen and the information is not available to you on
the second screen, you could store the required customer information in an
objGlobal variable and pass it as HANDLE_PROMPT() parameters for proper
select criteria in the prompter form code.

NAVIGATE_TO_DESTINATION Function

Navigates to a nominated 5250 Destination screen.

Note that if you specify the name of the current destination the request will be
ignored. If you want to re run the script for a current destination use
NAVIGATE_TO_PREV_DESTINATION(1).

Syntax
NAVIGATE_TO_DESTINATION(sDestinationName)
Parameters
SDestinationName Required. A string that contains the name of a

Destination.

Return Value
None

Example

NAVIGATE_TO_DESTINATION("Enrol Employee");

Note that this function should only be invoked from a button script.

NAVIGATE_TO_PREV_DESTINATION Function

Navigates the 5250 to a previously shown destination in this execution.

Syntax
NAVIGATE_TO_PREV_DESTINATION(iPreviousDestination)

Parameters

iPreviousDestination Required. Integer that contains a number that
indicates how many destinations backwards to
navigate. The maximum allowed is 20.

Note that previous destinations include every single
destination that has been navigated through
irrespective of whether it was shown or not. For
example, you might execute a screen wrapper that
passes through 2 destinations.

Return Value

None

Example

/* Re run INVOKE script to get the current 5250 destination screen*/
NAVIGATE_TO_PREV_DESTINATION(1);

/* Navigates to the previous 5250 destination screen*/
NAVIGATE_TO_PREV_DESTINATION(2);

Note that this function should only be invoked from a button script.

GET_MENU_OPTION_NUMBER Function

Searches the label fields on the current form looking for a menu option by
name. If the menu option can be found an attempt is made to deduce an
associated menu option number.

This function is useful in applications where the menu option number associated
with an activity varies because it allows a text string that identifies the menu
option in words to be dynamically converted to the associated menu option
number.

This function uses a cache keyed by screen name/search text to optimize
repeatedly performing the same operation.

The cache logic assumes that a menu option number on any given 5250 screen
will not change within a signed-on session.

Syntax

GET_MENU_OPTION_NUMBER(sSearchText, bCaselnsensitive,
bTryPrecdeingField)

Parameters

sSearchText String. Required. The menu option search string.

bCaselnsensitive Boolean (true/false). Optional. Default is true.
Indicates that the search should be case
insensitive.

vIryPreceding = Boolean (true/false). Optional. Default is true.
Indicates that when a label contains the search
text, but a menu number cannot be deduced from
it, that the preceding label field should be used as
an alternate source for the menu number. This
option accommodates menus where the menu
option number and the menu text are in separate
but adjacent label fields.

Return Value

String. The associated menu option number or an empty string if no menu
option could be deduced.

Example

This code causes the message "Menu option number returned was 2" to be
displayed:

/* Locate the menu option number of Office Tasks on the I5/OS Main menu */
var strMenuNumber = GET_MENU_OPTION_NUMBER("office tasks");
alert("Menu option number returned was " + strMenuNumber);

This code causes the message "Menu option number returned was 11" to be
displayed:

/* Locate the menu option number of Client Access/400 tasks on the I5/0S
Main menu */

var strMenuNumber = GET_MENU_OPTION_NUMBER("client acc");
alert("Menu option number returned was " + strMenuNumber);

STRIP_LEADING_NUMBERS Function
Returns the leading numbers from a string to the caller.

Syntax
STRIP_LEADING_NUMBERS(sSourceString)

Parameters

sSourceString =~ String. Required. The string from which
the numbers are to be stripped.

Return Value
String. The stripped numbers.

Example
This code causes the message "String returned was 15" to be displayed:

var strResult = STRIP_LEADING_NUMBERS("015. Office Tasks");
alert("String returned was " + strResult);

ADD_STRING Function

Defines a string by a unique number for use by other scripts. This function is
especially useful in multilingual applications.

Syntax
ADD_STRING(iStringNumber , sText)

Parameters

iStringNumber The number to be assigned to the string

sText The string text

Return Value
None

Examples
See the STRING Function definition.

STRING Function

Returns the string for a given string identification number. This function is
especially useful in multilingual applications.

Syntax
STRING(iStringNumber)

Parameters

iStringNumber The identification number of the string

Return Value

The string previously defined by ADD_STRING with the specified
identification number or a string containing the text "String number n not
found.".

Examples

If your sign-on function used the ADD_STRING() function to define
multilingual strings like this based on different language codes:

ADD_STRING(1,"OK");
ADD_STRING(2,"Cancel");
ADD_STRING(3,"Customer not found");

Then all other scripts that needed to access a multi-lingual string would
reference the function STRING(n) in their code in a language independent way.
For example this code:

for(i=0;i<=4;it++)

{

alert(STRING());

}

Would display the strings:

String number 0 not found.
OK

Cancel

Customer not found

String number 4 not found

Similarly, if your sign-on script had defined two strings like this:

ADD_STRING(1,"Customer number ");
ADD_STRING(2," could not be found or you are not authorized to view
them.");

Then you could dynamically build a multi-lingual message in another script like
this:

var strMessage = STRING(1) + CustomerNumber.toString() + STRING(2);
alert(strMessage);

OVERRIDE_BUTTONS_UNDEFINED_SCREENS Function

Applicable to Windows only.
Causes all undefined screens to show the 5250 function key bar.

Syntax
OVERRIDE_BUTTONS_UNDEFINED_SCREENS ()

Parameters
None.

Return Value
None

Remarks

This function turns on the function key bar for all screens in a session, but

because function key bars should not appear in defined screens it must be
hidden.

To use this special function you must do this:

e Set the Bottom Mask Height property for the session to 28. All destinations
will inherit this mask setting by default.

e Use the OVERRIDE_BUTTONS_UNDEFINED_SCREENS() function in
your sign-on script.
Once the option is turned on it will remain so for the duration of the session.

To show the function key bar for a destination screen, reset the Bottom Mask
Height of the destination screen to zero. However, we do not recommend
showing the function key bar for destination screens.

Note: when the undefined screen is a pop-up, the screen in the background
(even though defined) might also show the function key bar although it will not
be usable.

Examples
OVERRIDE_BUTTONS_UNDEFINED_SCREENS()

OVERRIDE_KEY_CAPTION_SCREEN Function
Assigns a new caption for a function key on a particular screen.

Syntax

OVERRIDE_KEY_CAPTION_SCREEN
(sDestinationName,sKeyName,sOverrideCaption)

Parameters
sDestinationName Reqqlreq. A string that contains the name of a
Destination.
Required. String that contains the name of the
sKeyName key. See Function Key Names for SENDKEY
Function.
sOverrideCaption Required. The new caption that will be used for

the button

Return Value
None
Example

OVERRIDE_KEY_CAPTION_SCREEN("uDisplayEmployee", KeyF1,
"Aide");

Notes

This function is very sensitive to where in a RAMP script it is used. If it is used
in an INVOKE script for a destination, it should be placed just before the
destination screen appears.

This function can also be used in a sign-on script.

OVERRIDE_KEY_CAPTION_ALL Function

Assigns a new caption for a function key on any screen.

Syntax

OVERRIDE_KEY_CAPTION_ALL (sKeyName,sOverrideCaption)
Parameters

Required. String that contains the name of the
sKeyName key. See Function Key Names for SENDKEY
Function.

Required. The new caption that will be used for

sOverrideCaption
p the button

Return Value
None

Example
OVERRIDE_KEY_CAPTION_ALL(KeyF1, "Aide");

Notes

This function is usually used in a sign-on script. It can be used for multilingual
applications to set all function key captions to another language.

AVSAVEVALUE Function

Saves an alphanumeric or numeric value onto the VLF virtual clipboard.

Syntax
AVSAVEVALUE(vValue, sID1, sID2, sID3, ilnstance, sLanguage, bPersist)

Parameters

vValue Required. Alphanumeric or numeric value to
save to the virtual clipboard.

If this parameter is a JavaScript variable of
type string, then the value is posed to the
clipboard as an alphanumeric value and can
therefore can only be sensibly be retrieved
using the AVRESTOREAVALUE function (or
equivalent).

If it is of type number it is posted as type
numeric to the clipboard and can only be
sensibly retrieved using the
AVRESTORENVALUE function (or
equivalent).

sID1 Required. String that contains the Virtual
Clipboard identifier 1.

sID2 Optional. String that contains the Virtual
Clipboard identifier 2.

sID3 Optional. String that contains the Virtual
Clipboard identifier 3.

ilnstance = Optional. Integer that contains the instance
number. Defaults to 1 when not specified.
Instances are typically used to create lists of
clipboard values and usually accompanied by
another clipboard value that indicates how
many entries currently exist in the list.

sLanguage Optional. String that contains the language

code. Defaults to ALL languages when not
specified.

bPersist Optional. Boolean value that indicates whether
or not a saved value should persist beyond the
current execution of the RAMP application.
Defaults to true. This parameter has no
meaning for VLF-WEB RAMP applications
because VLF virtual clipboard values never
persist in WEB applications.

Return Value
None

Remarks

Use AVSAVEVALUE in your RAMP scripts to save value in the VLF
virtual clipboard. More information about the Virtual Clipboard can be found
in The Virtual Clipboard in the Framework guide.

For information about the parameter lengths, please refer to
VF_SAVEAVALUE and VF_SAVENVALUE.

The posting of clipboard values from RAMP scripts is asynchronous.
When you post values they are not physically processed onto the clipboard
until your RAMP script completes execution and yields control back to the
framework.

The virtual clipboard is primarily designed to pass information between
RAMP scripts and RDML(X) code executing in filters, command handlers,
etc.

The virtual clipboard is not primarily designed to pass information
between RAMP scripts. The JavaScript objGlobal object is a more efficient
way to pass information exclusively between RAMP scripts.

When a RAMP script executing in a web browser application posts values
onto the virtual clipboard, they need to be sent to the server for subsequent
access by RDML(X) code executing in filters or command handlers (because
they are executing on the server). This means that the volume of information
you place onto the clipboard will impact the amount of information that
needs to be transmitted between the client and the server.

javascript:void(0);openCHM('lansa048.CHM::/lansa048_0840.htm',’lansa’);
javascript:void(0);openCHM('lansa048.CHM::/lansa048_1780.htm',’lansa’);

Examples
RDMLX code in a filter or command handler to save/restore clipboard values:
* Save values onto the clipboard

Invoke #avFrameworkManager.avSave Value WithID1(Test) WithID2(EMPNO)
FromAValue(("A0090")

Invoke #avFrameworkManager.avSaveValue WithID1(Test)
WithID2(SURNAME) FromAValue("FRED")

Invoke #avFrameworkManager.avSaveValue WithID1(Test)
WithID2(GIVENAME) FromAValue("BLOGGS")

Invoke #avFrameworkManager.avSave Value WithID1(Test)
WithID2(POSTCODE) FromN Value(2150)

Invoke #avFrameworkManager.avSave Value WithID1(Test)
WithID2(SALARY) FromN Value(123456.78)

* Restore values from the clipboard

Invoke #avFrameworkManager.avRestoreValue WithID1(Test)
WithID2(EMPNO) ToAValue(#EMPNO) UseAValueDefault("INA")

Invoke #avFrameworkManager.avRestoreValue WithID1(Test)
WithID2(SURNAME) ToAValue(#SURNAME) UseAValueDefault("NA")
Invoke #avFrameworkManager.avRestoreValue WithID1(Test)
WithID2(GIVENAME) ToAValue(#GIVENAME) UseAValueDefault("NA")
Invoke #avFrameworkManager.avRestoreValue WithID1(Test)
WithID2(POSTCODE) ToN Value(#PostCode) UseN ValueDefault(0)

Invoke #avFrameworkManager.avRestoreValue WithID1(Test)
WithID2(SALARY) ToNValue(#Salary) UseN ValueDefault(0)

RAMP JavaScript code to perform the equivalent operations:

/* Save values onto the clipboard — note POSTCODE and SALARY are
numeric */

AVSAVEVALUE("A0090","TEST","EMPNQ");
AVSAVEVALUE("FRED","TEST","SURNAME");
AVSAVEVALUE("BLOGGS","TEST","GIVENAME");

AVSAVEVALUE((2150,"TEST","POSTCODE");
AVSAVEVALUE(123456.78,"TEST","SALARY");

/* Restore values from the clipboard */

var VEMPNO = AVRESTOREAVALUE("NA","TEST","EMPNQO");

var VSURNAME = AVRESTOREAVALUE("NA","TEST","SURNAME");
var VGIVENAME = AVRESTOREAVALUE("NA","TEST","GIVENAME");
var VPOSTCODE = AVRESTORENVALUE(O,"TEST","POSTCODE");

var VSALARY = AVRESTORENVALUE(O,"TEST","SALARY");

AVRESTOREAVALUE and AVRESTORENVALUE Function

Restore an alphanumeric or numeric value from the VLF virtual clipboard.

Syntax

AVRESTOREAVALUE/AVRESTORENVALUE(Default, sID1, sID2, sID3,
ilnstance, sLLanguage)

Parameters
Default

sID1

sID2

sID3

ilnstance

sLanguage

Required. String/Number that contains the
default value to return if the value is not found

Required. String that contains the Virtual
Clipboard identifier 1.

Optional. String that contains the Virtual
Clipboard identifier 2.

Optional. String that contains the Virtual
Clipboard identifier 3.

Optional. Integer that contains the instance
number. Defaults to 1 when not specified

Optional. String that contains the language
code. Defaults to ALL languages when not
specified.

Return Value

None

Remarks

Use AVRESTOREAVALUE/AVRESTORENVALUE in your RAMP scripts to
restore a value from the VLF virtual clipboard. More information about the
Virtual Clipboard can be found in The Virtual Clipboard in the Framework

guide

For information about the parameter lengths, please refer to
VF_RESTOREAVALUE and VF_RESTORENVALUE in the Framework guide.

javascript:void(0);openCHM('lansa048.CHM::/lansa048_0840.htm',’lansa’);
javascript:void(0);openCHM('lansa048.CHM::/lansa048_1785.htm',’lansa’);

Examples

var sSavedSurname = AVRESTOREAVALUE("Not Found", "NewEmployee",
"Surname”, HH’ 1’ FRA);

var sSavedPostcode = AVRESTOREAVALUE(9999, "NewEmployee",
"Postcode™);

SET_L.OCK_MESSAGE Function

Set the message to show when the Framework locks up.

Syntax
SET_LOCK_MESSAGE(sText)

Parameters
Setting by Name:

sText Required. String that contains the text of the
message.

Return Value
None

Remarks

Using SET_LOCK_MESSAGE overrides the default message shown by the
Framework. This function can be invoked at anytime in any script. It's
recommended that, when used, the user message is set at the very beginning of
the sign-on script.

This will have no effect when executing RAMP in a browser because locking is
disabled in such an environment.

Examples

SET_LOCK_MESSAGE("This is my own message text for when the
framework locks up")

ADD_UNKNOWN_FORM_GUESS Function

Function keys to send when an unknown form appears during RAMP
navigation. Only available in Windows.

Syntax
ADD_UNKNOWN_FORM_GUESS(sKeyName)
Parameters
SKeyName Required.String that contains the name of the key. See

Function Key Names for SENDKEY Function.

Return Value
None

Remarks
Use this function call in the session's sign-on script.

When an unknown 5250 screen is encountered, the Framework goes into a
locked state if the Lock Framework when an unknown 5250 form is displayed
property is turned on. The user will not be able to move around within the
Framework until they navigate to a defined 5250 screen.

The ADD_UNKNOWN_FORM_GUESS function can help to work around
such situation by specifying function keys to send as the user tries to execute a
different Framework action (for example click on a different Application or
Business Object, Command, etc.) without having to navigate to a defined 5250
screen. Before getting into a locked state, the Framework will send the added
keys in the sequence they were added.

For example, your RAMP application may have many undefined F4=Prompt
pop-up windows that are all closed by using F12=Cancel. You can instruct
RAMP that when an unknown screen is on display (for example an F4=Prompt
window) it should first try F12 (to see if it can close the window) before
displaying the lock message.

It's up to the unknown 5250 screen to support the usage of the sent function
keys and to the screen arriving after sending the keys to be defined for this
functionality to work. This responsibility is up to the designer.

Care should be taken when using this function as it applies generically to all
undefined screens.

Examples

ADD_UNKNOWN_FORM_GUESS(KeyF3);
ADD_UNKNOWN_FORM_GUESS(KeyF12);

FORCE_POPUP_REFRESH Function

We strongly recommend you do not to use this function because the
default behavior of pop-up windows is correct in most situations. If you

think you need to use this function please contact your support
representative.

RAMP contains force-to-front logic. This logic is invoked automatically
whenever a 5250 pop-up is encountered as an undefined screen or when a
function key or button is used from a destination form.

This logic can be turned off using FORCE_POP_UP_REFRESH(False).
Syntax

FORCE_POPUP_REFRESH(boolean)

Parameters

boolean. One of the following possible values:

true Default. RAMP will attempt to bring the hidden pop up
to the foreground.

false Do nothing.

Return Value
None

Remarks

Using FORCE_POPUP_REFRESH only impacts the enablement of the force-
to-front logic, not when it is used.

Please refer to Handling Pop-Ups for more information about this option.

SET_HANDLER_CAPTION Function

Set the current command handler caption to a new value.

Syntax
SET_HANDLER_CAPTION(sCaption)

Parameters
Setting by Name:

sCaption = Required. String that contains the new caption for the
current command handler.

Return Value
None.

Remarks

Using SET_HANDLER_CAPTION overrides the default command handler
caption shown by the Framework. This function can be invoked at anytime in

any script.
This function is available to be used in Windows and Web RAMP applications.

Examples

SET_HANDLER_CAPTION("New Command Handler Caption")

Framework Objects that Scripts Can Refer To

A number of RAMP provided JavaScript objects make standard information
accessible to all scripts. For example the JavaScript object objUser publishes
properties Name and Password.

This means that you can access and pass around the name and password of the
current user in your scripts like this:

if (objUser.Name == "QSECOFR") alert("Your are signed on as the security
officer!");

Note that these names are CASE SENSITIVE. Be careful to use exactly the
same case as shown when writing scripts.

e 0bjGlobal

e objFramework

e objApplication

e objBusinessObject

e objCommand

e objListManager

e objUser

e SUBFILE_ACCESSOR Object

To find out how you can quickly enter these objects and their properties in your
scripts, see Using the Scripting Pop-up Menu.

objGlobal

objGlobal can be used to store your own properties.

This can be useful if you need to store information from one script and use it
later in another script.

The information could be field values from a screen that need to be referred to
by a later script.

Or it could identify which path a script is on, so that when the same screen is
used by two paths, the script can determine which path it is on.

Property Type Description

<<any property | string Any property you want to assign to
name>>

Example

Save the path the user is on, and the item the user is working with (On Screen
1).
/* Store the Item number that the user entered - this field has to be defined on
this form in newlook*/
objGlobal.utxtitemNumber = GETVALUE("utxtltemNumber");
/* Store the action that is being performed (so that shared screens can know
whether its an add or a copy) */
objGlobal.uLastAction = "COPY";
Remember the path the user is on, and the item the user is working with (On
Screen 4).
/* Get the action that is being performed */
if (objGlobal.uLastAction == "COPY")
{

ALERT_MESSAGE("Inventory item ", objGlobal.utxtltemNumber, "was
copied from " , objListManager.AKey1[0]);
}
else
{

ALERT_MESSAGE("Inventory item was added. ",
objGlobal.utxtltemNumber , "has been saved.");

Note that objGlobal is global within a 5250 session. Each 5250 session has its

own unique instance of objGlobal.
For more information refer to Using the objGlobal Object.

objFramework

objFramework contains read only properties that provide information about the
current framework to your scripts:

Property Type Description
uCaption string = The caption of the current
framework

ExecutionEnvironment string = Identifies the execution
environment as "WIN" or "WEB"

flagDesignMode boolean Identifies whether the Framework
is executing in design mode.
Boolean value containing true or

false.

Language string | Identifies the current LANSA
language code (eg: "ENG", "FRA",
etc)

Partition string = Identifies the current LANSA

partition (eg: "DEM", "SYS")

TraceMode string = Identifies whether the Framework
is executing in Trace mode as
"TRUE" or "FALSE"

objApplication

objApplication contains read only properties that provide information about the
current application to your scripts:

Property Type Description
uCaption string The caption of the current application.

uUserObjectType string The User Object Name / Type of the
current application.

objBusinessObject

objFramework contains read only properties that provide information about the
current business object to your scripts:

Property Type Description
uCaption string The caption of the current business object.

uUserObjectType string The User Object Name / Type of the
current business object.

objCommand

objFramework contains read only properties that provide information about the
current command to your Scripts:

Property
uCaption

uUserObjectType

uAlphaArgl

uAlphaArg?2

uNumArgl

uNumArg2

uExecReason

Type

string

string

String

String

Integer

Integer

String

Description
The caption of the current command.

The User Object Name / Type of the
current command.

The optional alpha argument 1 of the
current VLF command handler

The optional alpha argument 2 of the
current VLF command handler

The optional numeric argument 1 of the
current VLF command handler

The optional numeric argument 2 of the
current VLF command handler

The reason that the current command
handler was executed. This string contains
"EXECUTE" or "ACTIVATE" indicating
why the current RAMP command was
executed. The value "ACTIVATE" is only
applicable to visible VLF-WIN
application scripts. In all other contexts,
including screen wrappers, the value
"EXECUTE" is always used.

objListManager

objListManager contains read only properties that provide information about the
instance list to your scripts.
Array properties

Array entry [0] is the value for the current entry in the instance list. (the entry
that has focus)

Array entries [1], [2], [3] ... are the values for the selected entries in the instance
list

Property Type Description

AKey1[0] - string The 5 Alpha identifying key values of the

AKey5[0] current instance of the instance list

NKey1[0] - String The 5 Numeric identifying key values of

NKey5[0] the current instance of the instance list

Visualld1[0] String Visual Identifier 1 of the current Instance
List entry

Visualld2[0] String Visual Identifier 2 of the current Instance
List entry

AColumn1[0] — String The 10 Alpha Additional Column values

AColumn10[0] of the current instance list entry

NColumn1[0] — String The 10 Numeric Additional Column

NColumn10[0] values of the current instance list entry

Subtype[0] String The Subtype of the current instance list
entry.

Note that access to the instance list
Subtype is restricted to RAMP-Newlook
and RAMP-TS2 in the Windows platform.

Single value properties

Property Type Description

TotalSelected integer The number of selected entries in the

instance list.

For information about how to use the list manager object, see how to Interacting
with Instance Lists in Scripts.

objUser

objUser contains read only properties that provide information about the current
user to your Scripts:

Property Type Description
Name string The profile of the current User.

Password string The password of the current User.

SUBFILE_ACCESSOR Object

The SUBFILE_ACCESSOR object may be used to access a 5250 subfile from a
script.

See the movie Using Subfile Accessor - 5 minutes.

Properties

The offset of the selection column when
it is in a different row to the matched
column. Default is 0 (zero), indicating it
is on the same subfile row.

SelectionColumnOffset

The key to be sent to select an entry in
the subfile. The default is KeyEnter.

If you don't want any key to be pressed,
set this value to null (no quotes).

SelectionKey

The key to be used to page the subfile

KeyPageDown down. The default is KeyPageDown.

Indicates whether the subfile may be

Scrollable scrolled down. The default is true.

Indicates whether detailed trace
information should be produced from the
subfile when trace mode is on. The
default is true.

Trace

Used when selection is to be done by
cursor location. Default is false.
Typically SelectionByCursorOffset is
also set when using this value.

SelectionByCursor

When using SelectionByCursor this
value indicates the offset between the
matching row in the datagrid control and
the actual 5250 screen line number the
cursor should be positioned to.

SelectionByCursorOffset For example, if the first data line in 5250

EndofFileMarker

UseMarker

Methods

subfile (visualized as a datagrid) was on
line 12 of the 5250 display, you would
set this property to 11. This indicates that
a match on datagrid row 3 (say) would
map to real 5250 screen line 3 + 11 = 14.

Set the EndofFileMarker property to the
value used in the subfile/browselist
marker when the end of file has been
reached. It will be then used to determine
the end of the subfile when trying to
select an entry. Default is "Bottom".

This property can be set in RAMP scripts
like this;

objAccessor.EndofFileMarker = "End";

This will be used to determine when
scrolling is no longer required.

Set the UseMarker property to false
when the subfile/browse list does not use
markers.

Note that you must set the
EndofFileMarker property to all or part
of the message that appears when
scrolling past the end of

the subfile/browselist so the Subfile
Accessor can determine when the end of
the subfile/browselist is reached. The
default is true.

Used to dispose of a
SUBFILE_ACCESSOR object

Dispose()

SetSearchColumnNumber(1,2,3,4);

SetSearchColumnName(1,2,3,4)

SelectSubFileEntry()

TracePage()

when you have completed
using in a script

Defines a search column, by
column number, to be used
when looking for an entry in
the subfile. Arguments are:

1 — Column Number
2 — Value to Search for

3 — Search without regard to
case. Optional. Default false.

4 — Search using "contains"
matching rather than exact
equality. Optional. Default
false.

Defines a search column, by
column name, to be used when
looking for an entry in the
subfile. Arguments are:

1 — Column Name
2 — Value to Search for

3 — Search without regard to
case. Optional. Default false.

4 — Search using "contains"
matching rather than exact
equality. Optional. Default
false.

Searches the subfile using the
column search and selection
details provided and selects the
required subfile entry.

Dumps the current subfile
details to the trace (if trace is
active). No arguments.

Defines the selection column,
by column name, to be used
when selecting an entry in the
subfile. Arguments are:

1 — Column number
SetSelectionColumnName(1,2,3) 2 _ Selection value to be used

3 — Unselection value.
Optional. Default is that
automatic unselection of
columns is not performed.

Defines the selection column,
by column number, to be used
when selecting an entry in the
subfile. Arguments are:

1-Col b
SetSelectionColumnNumber(1,2,3) 0 un?n number
2 — Selection value to be used

3 — Unselection value.
Optional. Default is that
automatic unselection of
columns is not performed.

Use the right mouse when coding scripts to generate base
SUBFILE_ACCESSOR code. See Using the Scripting Pop-up Menu.

Function Key Names for SENDKEY Function
This table shows the function key names you need to use in the SENDKEY
function and the corresponding 5250 and Windows key names.

Note that the key names are case sensitive and you must enter them exactly as
shown here in the SENDKEY function.

SENDKEY Windows 5250 Key action Button
Name Keyboard description Text
KeyAttn Esc Sys attn "Attn";
KeyClear Shift Enter Field Exit "Clear";
KeyEnter Enter Enter "Enter";
KeyHelp alt F1 help "Help";
KeyPageDown Page Down Page Down "Page
Up™;
KeyPageUp Page Up Page Up "Page
Down";
KeyPrint ctrl Pause host print "Print";
KeyReset ctrl reset "Reset";
KeySysReq shift Esc Sys req "Sys
Req";
KeyTestReq alt Pause test req "Test
Req";
KeyF1 F1 F1 "F1";
KeyF2 F2 F2 "F2";
KeyF3 F3 F3 "F3";
KeyF4 F4 F4 "F4";
KeyF5 F5 F5 "F5";

KeyF6 F6 F6 "F6";

KeyF7 E7 E7 "F7";

KeyF8 F8 F8 "F8",

KeyF9 F9 F9 "F9",

KeyF10 F10 F10 "F10";
KeyF11 F11 F11 "F11";
KeyF12 F12 F12 "F12";
KeyF13 shift F1 F13 "F13";
KeyF14 shift F2 F14 "F14";
KeyF15 shift F3 F15 "F15";
KeyF16 shift F4 F16 "F16";
KeyF17 shift F5 F17 "F17";
KeyF18 shift F6 F18 "F18";
KeyF19 shift F7 F19 "F19";
KeyF20 shift F8 E20 "F20";
KeyF21 shift F9 F21 "F21";
KeyF22 shift F10 F22 "E22";
KeyF23 shift F11 F23 "F23";
KeyF24 shift F12 F24 "EF24";
KeyPA1l Esc1 program attention 1 "PA1";
KeyPA2 Esc 2 program attention 2 "PA2";
KeyPA3 Esc 3 program attention 3 "PA3";

Example

SENDKEY (KeyEnter);

User-defined script functions

You can define your own JavaScript functions to be used in different RAMP
scripts by editing a special JavaScript file UF_SY120.JS in the partition execute
directory and creating your own functions based on function
UF_MY_FUNCTION.

Note that the file names start with "U", not with "V".

You can edit this file with any editor or use the button at the top of the RAMP
tools window to edit via NOTEPAD.

Your RAMP scripts will then be able to use the JavaScript functions you define.

If you are using RAMP in a web browser application, you will need to save
uf_sy120.js to your web server.

To do this, select Current RAMP Design Details or Shipped system and
demonstration objects options when you are saving the Framework on the web
server.

Switching Off Recursion Checking

Each time a RAMP script is executed, the Framework checks if the script has
been called recursively and flags an error if it has.

However, situations may arise where a script may appear to be called
recursively, for example if a special screen appears two or more times in
succession. In these cases the GLOBAL_flagRecursionCheck property can be
used to switch off the recursion checking and avoid applications ending in error.

The property can be used in scripts in this way:

var flagSaveCheckState = GLOBAL_flagRecursionCheck;
GLOBAL._flagRecursionCheck = false;
SENDKEY (KeyEnter);

GLOBAL._flagRecursionCheck = flagSaveCheckState;

Saving and restoring the state like this, rather than simply setting the global
property to TRUE or FALSE is the best solution because this is a recursive
situation. The Framework will handle three or four levels of recursion
(depending on script size and system resources available) if a special screen
appears this many times. Only the top recursion level will finally set the
GLOBAL._flagRecursionCheck property back to TRUE again.

Debugging

Debug and Diagnostics - 2.5 minutes
Common Scripting Errors
Tracing

Using ALERT_MESSAGE in Your Scripts

Debug and Diagnostics - 2.5 minutes

Play Movie| to learn how to debug your application or read the Movie

Summary.

Movie Summary

For movie Debug and Diagnostics - 2.5 minutes.

Switch on Tracing

Tracing is the first thing you need to do when debugging. Inspect the trace and
look for screens that have not been recognized or that have a blank name.

Add Alert statements

An easy way to debug scripts is to add Alert() statements to display values in a
pop-up window at run-time.

Add Alert_Message functions

Similarly, you can use the ALERT _MESSAGE Function to display values in
pop-up windows.

Add Trace functions

If you do not want to interrupt application execution, but instead record values
in the trace, use the TRACE Function in your script.

Debug your filters

If you want to debug your filters, you can use the avRecordTrace method in
your filter program:

Invoke avFrameworkManager.avRecordTrace Component(#Com_Owner)
Event('Search Button click handler started’)

For more information see Basic Tracing Service.

Click on the Show Current newlook Form button

If the Framework ends on a screen it does not expect to be on, and you get a
blank screen with an error message Unable to display form.

Use the Probe Screen button in Design mode

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_0845.htm',’lansa’);

To find out what is know about the current screen.

Common Scripting Errors

NAVIGATE_TO_JUNCTION request failed

Unable to display form

Script with identifier XYZ not found

Could not complete the operation due to error 80020101
Object expected

Strange behavior in scripts

Your script does not execute at all

NAVIGATE_TO_JUNCTION request failed

The execution of a RAMP screen results in a screen like this:

MNAYIGATE _TO_JUMNCTION reguest Faded. Mo vabkd navigation path from EnreEmployves o pelsys _menu could be Found,
Linable to nandgate to Form pelsys_menu
Error MAVIGATE_TO_JUNCTION request Failed, No valid navigation path from EnrolEmployes bto pslsys_menu could be Found, detected in
seript INVOHE_SCRIFT _1

(Show Current Newlook Form = this button orly avalable in Design Mode) |

What does this error mean?

This error happens when the Framework has failed to build a navigation path
because there is insufficient or no information for the navigation to complete
successfully.

You can train the Framework to navigate from one RAMP screen to another
until reaching the Destination screen. All Destinations screens need to have an
INVOKE_SCRIPT n associated with them. The first line in an
INVOKE_SCRIPT n looks like this:

/* Navigate to the nearest access junction */
NAVIGATE_TO_JUNCTION("<junction name>");

where <junction name> is the name given to a screen using newlook Designer
and tagged as a Junction using the RAMP tools in the Framework.

Before starting the navigation, the Framework tries to create a navigation path
to go from the screen currently showing to reach the <junction name> specified

in the NAVIGATE_TO_JUNCTION() function call.

The error means there is no valid path from the current screen to the <junction
name>. The error shown In the example screen means there is no path to get
from EnrolEmployee to a Junction named pslsys_menu (see the first message).

Solution

You need to manually execute the application starting at the screen that was
showing in your runtime session, stop at every screen and verify that is has been
defined, that the required scripts are there and that they are correct until you find
the mistake. Somewhere along the navigation path you should find an undefined
screen.

Do this:

Press the Show Current newlook Form button on the bottom of the error
message screen to see the currently active screen. In the example the screen
should be EnrolEmployee which is the name given to it using newlook
Designer.

Choose the RAMP Tools option from the Framework menu and start a newlook
session.

In newlook, display the screen that was showing in your runtime session. In our
example, EnrolEmployee.

Once you have reached the screen causing the error (EnrolEmployee,), have a
close look at the list of messages on the top right and answer the following
questions:

Has the screen been defined in | If not, then it would not have any

the Framework as a Junction, scripts and hence it would be unable
Destination or Special? to navigate anywhere.

If the screen has been defined, = If all scripts have been defined, you
have all the scripts been need to review them.

defined?

Unable to display form

The execution of a RAMP screen results in a screen that looks like this:

[petails Skills

Unable to display form O5/400 Main Menu
IUnable to display form Personnel System Main Menu
Unable to display form Inguire
Unable to navigate to form Inguire

[(Show Current newlook Form - this button only available in Design Mode)

What does this error mean?
The Framework has created a valid navigation path.

Most scripts check that the screen being shown is the one expected. That's why
at the end of most scripts there is a line like this one:

/* Check for arrival at <form name> */
if (/(CHECK_CURRENT_FORM("<form name>","Unable to display form
<form name>"))) return;

The message Unable to display form suggests that at one stage during the
navigation, a the identified screen was expected but another screen was
received.

The message Unable to navigate is sent by the Destination's INVOKE_SCRIPT.
It is a check to ensure that before running the Destination's script, the
application is showing the proper screen. This avoids typing or sending key
strokes in unwanted screens.

Sometimes you may not able to reach the undefined screen. This can happen
when the screen which showed up unexpectedly was one that needs to be
eliminated to allow the navigation to continue, typically a break message.

Solution

Press the Show Current newlook Form button to see the currently active screen.
The screen shown is the unexpected one.

Select the RAMP Tools option in the Framework menu and manually perform
the navigation that the RAMP screen was supposed to perform.

As you navigate through each one of the screens, answer the following
questions:

Has the screen been defined?

Looking carefully at the scripts for the screen, does the script match what you
do on the screen?

You should be able to manually reach the unexpected screen because you know
what to do, what to type and what keys to press in each screen.

Script with identifier XYZ not found

The execution of a RAMP screen results in a screen like this:

4 employee : Edit (A1008-5HEDDON ALLAN) =}
Soript with identifier 345 37898458848 7094153892 TACASDHEE not - found

|

| (Show Current Newlook Form = this button oniv available in Desion Mode)

What does this error mean?

This error happens when you delete a script and then execute the RAMP screen
without saving and restarting the Framework.

Solution
Save and restart the Framework.

Could not complete the operation due to error 80020101

You execute one of your scripts and see an error message like this:

Could not complete the operation due to error 80020101,
Error Could not complete the operation due to error 80020101, detected in script INVOKE_SCRIFT _1

What does this error mean?

Your script has a structural defect that prevents any attempt to execute it. For
example, put this code:

if (1==2)

{

into a script and fail to add the required closing }. The RAMP editor will warn
you about the missing }, but ignore the warning and go ahead and execute the
script anyway. This will cause a 80020101 error because the script has a missing

1.

The missing } means the whole script does not make any sense at all.

Similarly, this code causes an error because of the double closing square
brackets:

SETVALUE("utxtBankAccountID",objListManager.AKey3[0]])

Solution
Look for "unbalanced" things in your script such as:

An (without a closing/matching)
An { without a closing/matching }
An [without a closing/matching]
A " or ' without a closing/match " or ' (an un-terminated string constant).

An /* without a closing/matching */ (an un-terminated comment)

Other JavaScript constructs that are structurally incorrect.

Object expected

You execute one of your scripts an get an "Object Expected" error
like this:

Object expected
Error Object expected detected in script INVOKE_SCRIPT _1

What does this error mean?

You have probably referred to something in your script that does not exist. The
most common cause of this error is simple typographic errors or even case
errors.

These script lines:

NaVIGATE_TO_JUNCTION("uOS400MainMenu");
NAVIGATE_TO_JUNCTIN("uOS400MainMenu");

will both produce an "object expected" error. The reason is that no object named
NaVIGATE_TO_JUNCTION or NAVIGATE_TO_JUNCTIN actually exists.
The correct JavaScript function name is NAVIGATE_TO_JUNCTION
(remembering that JavaScript is case sensitive).

Solution

When you get an "Object expected Error" try:

e Checking the spelling of the name of object you are referencing.

e Checking the case of the name of the object you are referencing (eg:

Userprofile or UserProfile).

Sometimes it is hard to tell exactly which line in your script is producing an
error.

The easiest way to resolve this is to make liberal use of the JavaScript alert
function. For example:

alert("About to navigate");
NaVIGATE_TO_JUNCTION("uOS400MainMenu");
alert("Navigation finished");

Would fairly quickly isolate that the NaVIGATE_TO_JUNCTIONY() line was
the one causing the script failure.

Strange behavior in scripts

A very common cause of strange behavior in scripts comes from not using the
"==" comparison correctly. This simple script demonstrates a very common and
time wasting scripting problem:

var X = 1;

alert ("X is " + X);
if (X=2)

{

alert("X is 2");

}

If you execute this script this first alert message will show X is 1 and the second
will show shows X is 2 ... which is not possible.

The cause of this problem is of course that the if statement should have been

if X ==2)

{

alert("X is 2");
}

Your script does not execute at all

Sometimes your script does not seem to execute at all.

Typically this is because it is because it is not being invoked in a 5250 screen
navigation in the way that you thought it would be.

Use the Framework) -> (Tracing) -> Application Level menu options and trace
the flow of control in your application to understand the navigation in detail.
Generally this will reveal why your script is not being invoked.

Tracing

You can start tracing at any point in time during the execution of the Framework
in design mode.

Use the Application Level trace facility to trace RAMP execution. To start
tracing, click on the (Framework) menu, select (Tracing) -> Application Level.

Trace statements will appear in the Trace Window.

RAMP execution might produce a large number of statements. It will also
produce long statements that will make it difficult to view in its entirety unless
the window is enlarged.

= FEX
Component | Event b
WF_CHOO& Script manager handling request 5T...
WF_CHODE Executing script INVOKE_SCRIPT...
WF_CHOD&E Executing script MAVIGAT...
WF_CHO0G SETWALLE of userid ko ..,
WF_CHOOG SETYALUE of userid co...
WF_CHODE SETYALUE of psw bova..,
WF_CHOD&E SETYALUE of psw comp. ..
WF_CHODE SENDEEY Enter request, ..
WF_CHODGE screen named ulogin M.,
WF_CHOOG Signal ML_Sigrion is bei. ..
WF_CHOO& Signal ML_Signon has b...
WF_CHOOG Session has now been ...
WF_CHODGE screen named ulogin M.,
WF_CHODE Executing scripk ELI...
WF_CHOOG SEMDEEY Enter r...
WF_CHOO& Screen named u...
WF_CHOOG Screen named ...
WF_CHOOG Screen named u..,
WF_CHOOG SEMDEEY Enter c...
WF_CHODE Excecution of script E...
WF_CHODGE Screen named udS400. .,
WF_CHOD&E SEMDEEY Enter complet. ..
WF_CHOD&E Execution of script MAYIG, .,
WF_CHODE Executing script MAVIGAT...
WF_CHOOG SETWALLE of Crndline £, ..
WF_CHOOG SETWALLE of Crndline c...
WF_CHOD&E SENDKEY Enter requesk,.. s

Clear Trace

For RAMP execution tracing, we recommend to use the Save Trace to File
button to save the trace into a text file in your temp directory. The exact location
and file name of the trace file produced will appear in a message.

Press the Messages button to find out about the location of the trace file.

B hessages

see first level
ket For
details

Adding Your Own Tracing Statements

The shipped Java Script function TRACE() allows you to add your own trace
statements to the Application Level trace and the output of the trace statements
is directed to the Application Level trace window.

For example, this trace statement:
TRACE(");

TRACE("Value of AKEY1 is =>" + objListManager.AKey1[0] + "<=");
TRACE(");

Generates this tracing:

Component Event i
WF_CHOD&E Execution of script MAVIGATE_SCRIPT_7 - Ma...
WF_CHODE Executing script MAVIGATE_SCRIPT_3 - Mawvi...
WF_CHOO& SETYALUE of CrdlInE ko walue lansa runp...
WF_CHOOG SETYALUE of CrdlInE completed

WF_CHODGE SEMDEEY Enter requested,

WF_CHOOG screen named pslsys_menu has arrived an..,
WF_CHOO& screen named pslsys_menu has identified ...
WF_CHOO& Screen named pslsys_menu is not a destin, .,
WF_CHOOG SEMDEEY Enter completed,

WF_CHODE

WF_CHOD&E [Yalue of AKEY1 is ==AllD <=]
WF_CHODGE

WF_CHODGE Execution of script MAVIGATE_SCRIPT_3 - Ma...
WF_CHOOG SETYALUE of Pslsws_Opt bo walue 3 { tvpe = stri.,,
WF_CHOO& SETYALUE of Pslsys_Cpt completed

WF_CHODE SEMDEEY Enter requested,

WF_CHOOG acreen named Type Empno has arrived and is be. ..
WF_CHOOG Screen named Type Empnio in a form nok defined. .,
WF_CHOO& Signal LockFramewark, is being queued.

WF_CHOOG Signal LockFramewark has been queued.
WF_CHOOG acreen named Type Empno is not a destination d... 2
WE HANEA SFAIMNKFY Frkar maraclakad

Save Trace to File

The blank lines before and after the actual trace statement are generated by
TRACE(""); simply to make it easier to read.

For more information about the trace statement refer to Script Functions.

Using ALERT_MESSAGE in Your Scripts
You might sometimes find that the easiest and quickest way to debug a problem
is to put up a message box.

Using ALERT_MESSAGE() in your scripts causes a dialog box with a
predefined message to appear.

ALERT_MESSAGE() can also display a mixture of text and variable values.

For example, if in one of your scripts you wanted to display the value of an
Akey that is passed into the script, ALERT_MESSAGE() would look something
like this:

ALERT_MESSAGE("The value of AKEY1 is =>" + objListManager.AKey1[0]
+ H<:|l);

and during the execution a message box like this would be displayed:

" Empno : Example 1 (A1008-ALLAN SNEDDON)

The value of AKEY] is === AlD ===

Screen Wrappers

RAMP screen wrappers are Visual LANSA components that access 5250
screens behind the scenes. The screens and fields accessed are defined in the
usual manner by choreographing them.

A screen wrapper can pick values out of 5250 screens and present them to the
user in completely different ways. Equally, a screen wrapper can accept input
from the user and map it back into the 5250 screens to cause 5250 transactions
to take place.

When to Use 5250 Screen Wrappers?
Screen Wrapper Fundamentals
Events

Methods

Examples

When to Use 5250 Screen Wrappers?

The main advantage of a screen wrapper is obvious. You can put a good
looking, easy to use, high GUI veneer over 5250 screens, without having to
spend the time and money required to analyze, rewrite and then retest all the
business logic imbedded inside them as you would if you replaced them with
VL components.

This is especially important for users to whom platform portability is of no real
interest because they are content with a System i only solution.

Usage Examples
Some usage examples might include:

e A screen wrapper can pick values out of hidden 5250 screens and present it
in completely different ways. For example, statistical information can be
extracted and presented as a series of bar graphs (see Example 3: Show the
System i Disk Usage).

e A screen wrapper can accept user input and then map it back into the 5250
screens so as to cause 5250 transactions to take place. For example, a VL
component could allow high function, high volume order entry. When the
user clicks Save, the order details are mapped into a series of 5250 screens
and input.

e A screen wrapper might execute many 5250 screens from one click. For
example a screen wrapper might display a list of 20 order numbers. When the
user clicks OK all 20 orders are deleted by repeatedly executing a 5250
screen that only allows one order at a time to be deleted.

Role in Modernization Projects

For a customer happy with a System i dependent solution, a screen wrapper
might be as far as they ever take application modernization.

Realistically, screen wrappers take time and money to develop, but probably
significantly less than the equivalent VL. component would, especially in the
application testing phase of the modernization project.

Screen wrappers are not thrown away. When time and money permit, they may
still be changed into proper VL. components by removing their 5250
dependency.

You would expect modernization projects to go to market using a mix of 5250
screens, screen wrappers and VL components. For example, this might be the
mix appropriate to an ISV:

e 85% - 5250 screens — to get to market ASAP.

e 10% - screen wrappers - to rapidly replace some heavily used and critical
areas (eg: Order Entry) with something much better to use that adds a lot of
business value.

e 5% - VL components — add high end value to the application (eg: E-Mail,
PDF documents, MS-Excel spreadsheets, Web integration, etc).

Screen Wrapper Fundamentals

Define your screen wrapper

A screen wrapper is a VL reusable part of class VF_SY122. You must define it
globally scoped as opposed to inside any type of routine.

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper) Parent(#PANL_1)
Visible(False)

Key Points:
e Set the initial visibility to False. This will ensure it will never show up
unless you want to. For example you might want to make it visible in design

mode when a fatal error occurs to give you the option of seeing what the
current 5250 screen is.

¢ You might want to make it a child of a panel attached to the center of the
main panel. This will make it easier to see when you want to make it visible
to track down fatal errors.

Set the uCommand property

In the command's ulnitialize method routine, set the screen wrapper's
uCommand property:

Mthroutine Name(ulnitialize) Options(*REDEFINE)

* Do any initialization defined in the ancestor

Invoke Method(#Com_Ancestor.ulnitialize)

Set Com(#myscreen_wrapper) Ucommand(#com_owner)
Endroutine

Key Points:

e Always set uCommand to #com_owner.

e Failure to set uCommand will result in an error message of type
VF_INIT_ERROR.

Kick off execution by making RAMP available for a specific

action

Usually you will invoke MakeRampAvailable Method inside the uExecute
method of your command for the first time:

#myscreen_wrapper.MakeRampAvailable Foraction(Display)
Key Points:
e The first time you make RAMP available during the first execution of a

command it will take slightly longer for the event to be fired because RAMP
is not connected to the host.

e The command regains control in the event routing handling RampAvailable
Event.
Listen to the RampAvailable event

Once RAMP has connected and it's ready to be interacted with it will signal
back to the command. It will pass the value of the action you requested.
Typically this routine will consist of a CASE statement handling all the possible
actions.

Listen to the RampMessage event

You write error handling logic and handle messages originating in your 5250
application in the RampMessage Event.

Events

RampMessage Event
RampAvailable Event

RampMessage Event
A message is issued by RAMP or the underlying 5250 application.

Parameters
uMessageType Char 256 String that specifies a type of
message as per table below.
uMessageText Char 132 String that contains the text of the

message.

This table illustrates the available message types and their causes:

Type Cause Comments

VF_ERROR Fatal errors. For whatever reason,
RAMP has failed in the
process of executing a
request.

For example, a failed
navigation request.

VF_INFO A message from the = Any message sent by the
5250 application. actual 5250 program
running under the covers.

For example, failed
validation rules.

VF_INIT_ERROR The Screen wrapper = This usually happens
failed to initialize. when the session user
object type supplied
doesn't yield a defined
session.

Alternatively, if you
haven't set the uCommanc
property (see Screen
Wrapper Fundamentals).

VF_WAITCONNECTION Issued every 2 Connections usually

second while complete very quickly.

newlook is This type is provided only

attempting a when for whatever

connection with the = reasons the connection is

host. expected to take a little
while.

VF_UNKNOWN_FORM | During navigation,
an undefined form
was detected.

Remarks
It is entirely up to the developer how to handle different types of errors.

To cause a message to pop up automatically, use the
#com_owner.avshowmessages method. During development it might be useful
to show the underlying newlook screen when a fatal error occurs. You can do so
by changing the Screen wrapper's visibility and/or display position.

Example

Evtroutine Handling(#screen wrapper.uRampMessage)
Umessagetype(#MsgType) Umessagetext(#MsgText)

Case (#msgtype.value)

When Value_Is('= VF_ERROR")

* Optional. In design mode, making the screen wrapper visible allows you to
show the 5250 screen.Set Com(#myscreen_wrapper) Visible(True)
When Value_Is('= VF_INFQ")

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
When Value_Is('= VF_UNKNOWN_FORM")

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
When Value_Is('= VF_INIT_ERROR')

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
Endcase

Endroutine

RampAvailable Event
RAMP has signaled it is interactive.

Parameters

ForAction @ Char 256 String that specifies a user defined
action identifier.

NextAction Char 256 When a second action is attempted
during the handling of an action,
specify it here.

Remarks

Sometimes you might need to perform a second action within the same event
handler.

For example, you make RAMP available for action A. For this action you
navigate to a screen, then you get some values and depending on a condition
you want to do action B or C, that is, navigate to a different screen.

Invoking the MakeRampAvailable method for action B or C while handling
action A will cause a signal to the same event routine with undesirable
consequences. It's only in these situations where you must set NextAction.

Example

Evtroutine Handling(#myscreen_wrapper.RampAvailable)
Foraction(#ForAction) Nextaction(#NextAction)

Case (#ForAction)

When Value_Is('= Display’)
navigate to a screen

get value

If value is A

#NextAction := X

Else

Navigate to Y

endif

When Value_Is('= X")
When Value_Is('=Y")
Otherwise

Use Builtin(message_box_show) With_Args(ok ok info *component ('Unknown

ForAction>>' + #ForAction. Value + '<<"))
Endcase

Endroutine
Also see MakeRampAvailable Method.

Methods

Screen wrappers drive the 5250 screens using using normal VL code methods
supplied by component VF_SY 122 (this is very similar to how the
corresponding RAMP javascript functions work):

MakeRampAuvailable Method
NavigateToScreen Method
SetValue Method

GetValue Method

SendKey Method
Current_Form Method
SetCursor Method

MakeRampAuvailable Method

Make RAMP interactive for a specified action.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.MakeRampAuvailable Foraction(sAction)
Parameters

ForAction Char 256 — Required = String that specifies an
action. Actions are
listened to in the
RampAvailable event
listener.

uUserObjectType Char 32 - Optional String that contains the
user object type of the
RAMP session specified
when defining the session
using the RAMP tools.
When there is one session
this parameter is not
required.

uSession_Id Char 40 - Optional The session assigned to a
destination. Defaults to
*AUTO.

Return Value
None

Remarks

This method triggers the execution of a specific user-defined action. When you
invoke this method the VLF will perform the connection if required. Once
RAMP is available it will signal a RampAvailable event. The event routine
listening to RampAvailable is where the main program logic is performed
according to the specified action.

Examples

Invoke Method(#myscreen_wrapper.MakeRampAuvailable) Foraction(Display)
uSession_Id(SESSION_A)

Invoke Method(#myscreen_wrapper.MakeRampAuvailable) Foraction(Update)
uSession_Id(SESSION_A)

Invoke Method(#myscreen_wrapper.MakeRampAuvailable) Foraction(Display)
uUserObjectType(HumanResources)

Related Topic MakeRampAvailable Method.

NavigateToScreen Method
Navigate newlook to a screen.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.NavigateToScreen Name(‘EmpDetails’) ReturnScreen

Parameters
Name = Char 256 — String that contains the name of the
Required screen to navigate to.

Return Value

ReturnScreen Char 256 — String that contains the name of the
Optional screen wrapper 5250 screen when
the navigation has completed.

Remarks

The screen to navigate can be a Junction or a Destination as defined in the
choreographer.

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.Unavigatetoscreen) Name('EmpSkills')
Returnscreen(#vf_eltxtl)

SetValue Method

Set the content of a field on a 5250 screen to a value. The field may be
identified by name or by its order on the screen.
Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

Setting by Name - #myscreen_wrapper.setvalue Infield(sField) Value(vValue)

Parameters
Setting by Name:
InField Char 256 — Required String that contains the RAMP
field name.
Value = Variant — Required String or number that contains
the value to set the field to.
Setting by Order:
InField Property - <#myscreen_wrapper>.ByOrder_Field

Required

Value Variant — String or number that contains the

Required value to set the field to.

SpecialValue Property — One of these two values:

Optional <#myscreen_wrapper>.First_Field —
to set the value of the first field on the
screen
<#myscreen_wrapper>.Last_Field — to
set the value of the last field on the
screen

Order Integer — The order of the field on the form

Optional starting from 1.

Return Value

None

Remarks

To set a value of a field on a screen by name, the field must be given a name in
newlook Designer.

The use of field identification by order is more likely to be impacted by form
layout changes than when using a name.

The initial setting of a field by order is more expensive to execute than by name,
however screen field order details are cached so that the subsequent access is
faster. The caching logic assumes that the relative order of a field on any
particular screen will not change within a signed on 5250 session.

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

Setting by Name - #myscreen_wrapper.setvalue Infield("'uEmpno")
Value(#EMPNO)

Setting by Order - #myscreen_wrapper.setvalue
Infield(#myscreen_wrapper.ByOrder_Field) Value(#Empno) Order(2)

GetValue Method

Get the value from a field on a RAMP screen.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.getvalue From(sField) Value(sValue)

Parameters
From = Char 256 — Required String that contains the RAMP
field name to get the value
from.
Return Value
Value Variant — Returns the value of the field as a
Required string or number.

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.getvalue From('uSurname') Value(#surname.value)

SendKey Method
Emulates the pressing of a function key.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.SendKey Key(#myscreen_wrapper.<key property>)
Parameters

Key Property — Required The property of
#myscreen_wrapper that
resolves to the desired key.

For a list of these properties
See the SENDKEY Names in
Function Key Names for
SENDKEY Function in
lansa049.chm.

Return Value

ReturnScreen Char 256 — String that contains the name of the
Optional screen wrapper 5250 screen after the
key was sent.

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.Sendkey Key(#myscreen_wrapper.KeyEnter)

Current_Form Method
Gets the Form name of the current screen wrapper screen.
Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.current_form Name(sName)

Parameters
None
Return Value
Name Char 256 — String that contains the name of the
Required current 5250 screen wrapper screen
Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)

Parent(#COM_OWNER)
#myscreen_wrapper.current_form Name(#vf_eltxtl)

SetCursor Method

Positions the cursor in a given row and column of the screen. Optionally sends a
key once the cursor has been positioned.
Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.SetCursor RowNum(iRowNum) ColNum(iColNum)
SendKey(#myscreen_wrapper.<key property>)

Parameters

RowNum Integer — Required Integer that specifies the row
number where to position the
cursor.

ColNum Integer — Optional Optional. Integer that
specifies the column number
where to position the cursor.
Defaults to 1.

SendKey Property - Optional The property of

#myscreen_wrapper that
resolves to the desired key.

For a list of these properties
See the SENDKEY Names in
Function Key Names for
SENDKEY Function in
lansa049.chm.

Return Value
None

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.setcursor Rownum(10)
Sendkey(#myscreen_wrapper.keyenter)

Examples

Example 1: Show Employee Details.

Example 2: Show Employee Details and Skills
Example 3: Show the System i Disk Usage

Example 1: Show Employee Details.

This example will navigate to the Browse and Maintain Employees screen
which is part of the Personnel System.

______________ Basic details || o approve | [Details | @ Example & Skills | €= Transfer | [Email | = videa L Al Details
Employes Mumber A0090
Employvee Surname BLOGG
Emploves Given Mamels) FRED JOHM HEMRY
Street Mo and Marme 72 MAIN STREET
Suburb or Town METOWE HEIGHTS
State and Counkry ALUSTRALLA
Post | Zip Code 2202
Home Phone Number 344-2345

To reach this screen, RAMP scripts will execute the following steps:

e Signon

e Type lansa run pslsys partition(dem) in the command line and press Enter.
e Type 3 in the option field and press Enter.

e Type the employee number of the currently selected employee and press
Enter.

° Press F21.

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #VF_AC010) Height(569)
Layoutmanager(#MAIN_LAYOUT) Width(776)

sk

* Simple Field and Group Definitions

Group_By Name(#XG_HEAD) Fields(#EMPNO #SURNAME #GIVENAME
#ADDRESS1 #ADDRESS2 #ADDRESS3 #POSTCODE #PHONEHME
#DEPTMENT #SECTION)

* Body and Button arrangement panels

Define_Com Class(#PRIM_PANL) Name(#BUTTON_PANEL)
Displayposition(3) Height(569) Hint(*MTXTDF_DET1)
Layoutmanager(#BUTTON_FLOW) Left(688) Parent(#COM_OWNER)
Tabposition(3) Tabstop(False) Top(0) Width(88)

Define_Com Class(#PRIM_PANL) Name(#BODY_HEAD) Displayposition(2)
Height(569) Hint(*MTXTDF_DET1)
Layoutmanager(#BODY_HEAD_FLOW) Left(0) Parent(#COM_OWNER)
Tabposition(2) Tabstop(False) Top(0) Verticalscroll(True) Width(688)

* Attachment and flow layout managers

Define_Com Class(#PRIM_ATLM) Name(#MAIN_LAYOUT)
Define_Com Class(#PRIM_FWLM) Name(#BUTTON_FLOW)
Direction(TopToBottom) Flowoperation(Center) Marginbottom(4)
Marginleft(4) Marginright(4) Margintop(4) Spacing(4) Spacingitems(4)
Define_Com Class(#PRIM_FWLM) Name(#BODY_HEAD_FLOW)
Direction(TopToBottom) Marginbottom(4) Marginleft(4) Marginright(4)
Margintop(4) Spacing(4) Spacingitems(4)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_EMPNO)
Manage(#EMPNO) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#f WLI_SURNAME)
Manage(#SURNAME) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_GIVENAME)
Manage(#GIVENAME) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS1)
Manage(# ADDRESS1) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS?2)
Manage(# ADDRESS?2) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS3)
Manage(# ADDRESS3) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_POSTCODE)
Manage(#POSTCODE) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#f WLI_PHONEHME)
Manage(#PHONEHME) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_SAVE_BUTTON)
Manage(#SAVE_BUTTON) Parent(#BUTTON_FLOW)

* The save button

Define_Com Class(#PRIM_PHBN) Name(#SAVE_BUTTON)
Caption(*MTXTDF_SAVE) Displayposition(1) Left(4)
Parent(#BUTTON_PANEL) Tabposition(1) Top(4)

* Collection for detail fields

Define_Com Class(#Prim_ACol<#prim_evef>) Name(#PanelFields)

* Fields in the head area

Define_Com Class(#EMPNO.Visual) Displayposition(1) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(1) Top(4)
Usepicklist(False) Width(209)

Define_Com Class(#SURNAME.Visual) Displayposition(2) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(2)
Top(27) Usepicklist(False) Width(324)

Define_Com Class(#GIVENAME.Visual) Displayposition(3) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(3)
Top(50) Usepicklist(False) Width(324)

Define_Com Class(#ADDRESS1.Visual) Displayposition(4) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(4)
Top(73) Usepicklist(False) Width(363)

Define_Com Class(#ADDRESS2.Visual) Displayposition(5) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(5)
Top(96) Usepicklist(False) Width(363)

Define_Com Class(#ADDRESS3.Visual) Displayposition(6) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(6)
Top(119) Usepicklist(False) Width(363)

Define_Com Class(#POSTCODE.Visual) Displayposition(7) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(7)
Top(142) Usepicklist(False) Width(216)

Define_Com Class(#PHONEHME. Visual) Displayposition(8) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(8)
Top(165) Usepicklist(False) Width(286)

Define_Com Class(#PRIM_ATLM) Name(#ATLM_1)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_1) Attachment(Center)
Parent(#ATLM_1)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_2) Attachment(Center)
Manage(#BODY_HEAD) Parent(#MAIN_LAYOUT)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_3) Attachment(Right)

Manage(#BUTTON_PANEL) Parent(#MAIN_LAYOUT)

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper) Height(569)
Parent(#COM_OWNER) Visible(False) Width(688)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_4) Attachment(Center)
Parent(#MAIN_LAYOUT)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_6) Attachment(Center)
Manage(#myscreen_wrapper) Parent(#MAIN_LAYOUT)

sk

Mthroutine Name(ulnitialize) Options(*REDEFINE)
Define_Com Class(#Prim_evef) Name(#FormField) Reference(*dynamic)
Invoke Method(#Com_Ancestor.ulnitialize)

For Each(#Control) In(#Body_Head.ComponentControls)
If_Ref Com(#Control) Is(*INSTANCE_OF #prim_evef)
Set_Ref Com(#FormField) To(*dynamic #Control)
Invoke Method(#PanelFields.Insert) Item(#FormField)
Endif

Endfor

* Set the uCommand wrapper property.

Set Com(#myscreen_wrapper) Ucommand(#com_owner)
Endroutine

Mthroutine Name(uExecute) Options(*REDEFINE)

Invoke Method(#Com_Ancestor.uExecute)

* The user has selected an Employee from the instance list.
MakeRampAuvailable will make sure the connection is in order and then signal
back with the appropiate action

Invoke Method(#myscreen_wrapper.MakeRampAuvailable)
Foraction(ShowDetails)

Set Com(#Save_Button) Enabled(False)

Endroutine

* RAMP has signalled it's available. What we do will depend on the #ForAction
specified in the MakeRampAvailable method invocation.

Evtroutine Handling(#myscreen_wrapper.RampAuvailable)
Foraction(#ForAction) Nextaction(#NextAction)

Case (#ForAction)

When Value_Is('= ShowDetails")

* Navigate to a Destination that was previously named
EmployeeDetailsAndSkills using newlook Designer. Use the ReturnScreen
parameter to verify we are in the expected screen

* once the navigation has completed

Invoke Method(#myscreen_wrapper.navigatetoscreen)
Name('EmployeeDetailsAndSkills') Returnscreen(#vf_eltxtl)

* If the current screen is the expected one, get the values of the 5250 screen
fields into the fields in this component

If (#vf_eltxtl = 'EmployeeDetailsAndSkills")

Invoke Method(#avListManager.GetCurrentInstance) Akey3(#EMPNO)
#myscreen_wrapper.getvalue From('uSurname') Value(#surname.value)
#myscreen_wrapper.getvalue From('uGivename') Value(#givename.value)
#myscreen_wrapper.getvalue From('uAddress1') Value(#address1.value)
#myscreen_wrapper.getvalue From('uAddress2') Value(#address2.value)
#myscreen_wrapper.getvalue From('uAddress3') Value(#address3.value)
#myscreen_wrapper.getvalue From('uHomePhone') Value(#phonehme.value)
#myscreen_wrapper.getvalue From('uPostcode') Value(#POSTCODE.value)
Endif

When Value_Is('= UpdateDetails")

* Set the values of the fields in the newlook form with the ones from this
component

#myscreen_wrapper.setvalue Infield('uSurname') Value(#surname.value)
#myscreen_wrapper.setvalue Infield('uGivename') Value(#givename.value)
#myscreen_wrapper.setvalue Infield('uAddress1') Value(#address1.value)
#myscreen_wrapper.setvalue Infield('uAddress2') Value(#address2.value)
#myscreen_wrapper.setvalue Infield('uAddress3') Value(#address3.value)
#myscreen_wrapper.setvalue Infield('uHomePhone') Value(#phonehme.value)
#myscreen_wrapper.setvalue Infield('uPostcode') Value(#POSTCODE.value)
* Send the enter key to update the details in the 5250
#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyEnter)
Returnscreen(#vf_eltxtl)

Otherwise

Use Builtin(message_box_show) With_Args(ok ok info *component ('Unknown

ForAction>>' + #ForAction. Value + '<<"))

Endcase

Set Com(#myscreen_wrapper) Visible(False)

Endroutine

* Listen to messages from RAMP and the 5250 application

Evtroutine Handling(#myscreen_wrapper.RampMessage)
Umessagetype(#MsgType) Umessagetext(#MsgText)

Case (#msgtype.value)

When Value_Is('= VF_ERROR")

* Fatal messages reported by Ramp (e.g. Navigation request failed, etc). If in
design mode, show the underlying newlook screen. Otherwise, make the error
message

* appear in a message box on top of the command

If (#usystem.iDesignMode = true)

Set Com(#myscreen_wrapper) Visible(True)

Else

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
#com_owner.avshowmessages

Endif

* Messages sent by the System i application or unknown form was encountered
When Value_Is('= VF_INFO' '= VF_UNKNOWN_FORM)

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)

* Failure to initialize RAMP. Could occur for mainly one of two reasons
When Value_Is('= VF_INIT_ERROR')

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
#com_owner.avshowmessages

When Value_Is('= VF_WAITCONNECTION")

Otherwise

Use Builtin(message_box_show) With_Args(ok ok info *Component
('Unknown message type ' + #MsgType + 'encountered'))

Endcase

Endroutine

Evtroutine Handling(#PanelFields<>.Changed)

* Enable the save button

Set Com(#SAVE_BUTTON) Enabled(True)

* Lock the framework and set a message for the user

Use Builtin(bconcat) With_Args('Changes made to employee' #GiveName
#Surname 'have not been saved yet.' 'Do you want to save them before
continuing?') To_Get(#sysvar$av)

Set Com(#avFrameworkManager) Ulocked(USER)
Ulockedmessage(#sysvar$av)

Endroutine

Evtroutine Handling(#PanelFields<>.KeyPress)
Options(*NOCLEARMESSAGES *NOCLEARERRORS)
Keycode(#KeyCode)

If Cond('#KeyCode.Value = Enter")

* If there no changes have been made issue message and ignore enter
If Cond('#SAVE_BUTTON.Enabled *EQ True")

Invoke Method(#Com_Owner.Save)

Else

* Issue 'There are no changes to save' message

Use Builtin(Message_box_show) With_Args(ok ok Info *Component
*MTXTDF_NO_SAVE)

Endif

Endif

Endroutine

Evtroutine Handling(#SAVE_BUTTON.Click)
* Call the Save method

Invoke Method(#Com_Owner.Save)
Endroutine

Mthroutine Name(Save)

* Update data base

Invoke Method(#myscreen_wrapper.MakeRampAuvailable)
Foraction(UpdateDetails)

Endroutine

* Handle Termination

Mthroutine Name(uTerminate) Options(*REDEFINE)
* Clean up the colelction of fields on the panel
Invoke Method(#PanelFields.RemoveAll)

* Do any termination defined in the ancestor

Invoke Method(#Com_Ancestor.uTerminate)
Endroutine

End_Com

Example 2: Show Employee Details and Skills

This example is an extension of the previous one. It shows the same details but
it also shows the skills in a Visual LANSA list view.

Basic details | o approve | [Details | 2 Example & Skills 3_‘_"“ Transfer @ Email || &3 Yideo L Al Details

Employes Mumber A0090

Employes Surname BLOGG

Employee Given Name(s) FRED JOHM HEMRY

Street Mo and Name 72 MAIM STREET

Suburb ar Town MEWTCOWN HEIGHTS

State and Country ALSTRALLA

Post | Zip Code 2202

Home Phone Number 344-2345
Acquired Skill Code Skill Comment Gra.
Z1/01/587 L CL PROGRAMMIMNGZ 1 D
0foofo1 COBOL COBOL PROGRAMMIMG MARKED IMPROYE,.. P
7lo7las ECD ECONOMICS DEGREE 2 P
0foofo1 INTRO COMPAMNY INTRODIICTION 3 M
1fo1/g9 MAaMAGE 1 MAMAGEMENT COLURSE 1 4 P
25/09/58 MARKETZ MARKETIMG COURSE 2 F
100659 MARKETS MARKETIMG COURSE 3 P
Zlogfa9 ME& MASTER. BUSINESS P
1fo1/az RPG RPG PROGRAMMIMG & P

In this example you can see how to access a subfile/browselist:

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #VF_AC010) Height(569)
Layoutmanager(#MAIN_LAYOUT) Width(776)

sk

Group_By Name(#XG_HEAD) Fields(#EMPNO #SURNAME #GIVENAME
#ADDRESS1 #ADDRESS2 #ADDRESS3 #POSTCODE #PHONEHME
#DEPTMENT #SECTION)

* Body and Button arrangement panels

Define_Com Class(#PRIM_PANL) Name(#BUTTON_PANEL)
Displayposition(2) Height(569) Hint(*MTXTDF_DET1)
Layoutmanager(#BUTTON_FLOW) Left(688) Parent(#COM_OWNER)
Tabposition(3) Tabstop(False) Top(0) Width(88)

Define_Com Class(#PRIM_PANL) Name(#BODY_HEAD) Displayposition(1)
Height(569) Hint(*MTXTDF_DET1)
Layoutmanager(#BODY_HEAD_FLOW) Left(0) Parent(#COM_OWNER)
Tabposition(2) Tabstop(False) Top(0) Verticalscroll(True) Width(688)

* Attachment and flow layout managers

Define_Com Class(#PRIM_ATLM) Name(#MAIN_LAYOUT)
Define_Com Class(#PRIM_FWLM) Name(#BUTTON_FLOW)
Direction(TopToBottom) Flowoperation(Center) Marginbottom(4)
Marginleft(4) Marginright(4) Margintop(4) Spacing(4) Spacingitems(4)
Define_Com Class(#PRIM_FWLM) Name(#BODY_HEAD_FLOW)
Direction(TopToBottom) Marginbottom(4) Marginleft(4) Marginright(4)
Margintop(4) Spacing(4) Spacingitems(4)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_EMPNO)
Manage(#EMPNO) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#f WLI_SURNAME)
Manage(#SURNAME) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_GIVENAME)
Manage(#GIVENAME) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS1)
Manage(# ADDRESS1) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS?2)
Manage(# ADDRESS?2) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS3)
Manage(# ADDRESS3) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_POSTCODE)
Manage(#POSTCODE) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#f WLI_PHONEHME)
Manage(#PHONEHME) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#f WLI_SAVE_BUTTON)
Manage(#SAVE_BUTTON) Parent(#BUTTON_FLOW)

* The save button

Define_Com Class(#PRIM_PHBN) Name(#SAVE_BUTTON)
Caption(*MTXTDF_SAVE) Displayposition(1) Left(4)
Parent(#BUTTON_PANEL) Tabposition(1) Top(4)

* Collection for detail fields

Define_Com Class(#Prim_A Col<#prim_evef>) Name(#PanelFields)

* Fields in the head area

Define_Com Class(#EMPNO.Visual) Displayposition(1) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(1) Top(4)
Usepicklist(False) Width(209)

Define_Com Class(#SURNAME.Visual) Displayposition(2) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(2)
Top(27) Usepicklist(False) Width(324)

Define_Com Class(#GIVENAME.Visual) Displayposition(3) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(3)
Top(50) Usepicklist(False) Width(324)

Define_Com Class(#ADDRESS1.Visual) Displayposition(4) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(4)
Top(73) Usepicklist(False) Width(363)

Define_Com Class(#ADDRESS2.Visual) Displayposition(5) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(5)
Top(96) Usepicklist(False) Width(363)

Define_Com Class(#ADDRESS3.Visual) Displayposition(6) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(6)
Top(119) Usepicklist(False) Width(363)

Define_Com Class(#POSTCODE.Visual) Displayposition(7) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(7)
Top(142) Usepicklist(False) Width(216)

Define_Com Class(#PHONEHME. Visual) Displayposition(8) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(8)
Top(165) Usepicklist(False) Width(286)

Define_Com Class(#PRIM_ATLM) Name(#ATLM_1)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_1) Attachment(Center)
Parent(#ATLM_1)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_2) Attachment(Center)
Manage(#BODY_HEAD) Parent(#MAIN_LAYOUT)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_3) Attachment(Right)
Manage(#BUTTON_PANEL) Parent(#MAIN_LAYOUT)

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper) Displayposition(3)
Height(569) Parent(#COM_OWNER) Visible(False) Width(688)
Define_Com Class(#PRIM_ATLI) Name(#ATLI_4) Attachment(Center)
Parent(#MAIN_LAYOUT)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_6) Attachment(Center)
Manage(#myscreen_wrapper) Parent(#MAIN_LAYOUT)

Define_Com Class(#PRIM_LTVW) Name(#skills) Componentversion(2)
Displayposition(9) Fullrowselect(True) Height(229) Left(4)
Parent(#BODY_HEAD) Showsortarrow(True) Tabposition(9) Top(188)
Width(485)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_1) Manage(#skills)
Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_LVCL) Name(#LVCL_2) Displayposition(2)
Parent(#skills) Source(#SKILCODE) Width(17)

Define_Com Class(#PRIM_LVCL) Name(#LVCL_3)
Captiontype(ColumnHeadings) Displayposition(3) Parent(#skills)
Source(#SKILDESC) Width(32)

Define_Com Class(#PRIM_LVCL) Name(#LVCL_4)
Captiontype(ColumnHeadings) Displayposition(4) Parent(#skills)
Source(#*COMMENT) Width(24)

Define_Com Class(#PRIM_LVCL) Name(#LVCL_5) Displayposition(5)
Parent(#skills) Source(#GRADE) Width(8) Widthtype(Characters)
Define_Com Class(#PRIM_LVCL) Name(#LVCL_1) Caption('Acquired’)
Captiontype(Caption) Displayposition(1) Parent(#skills) Source(#VF_ELTXTYS)
Width(18) Widthtype(Fixed)

sk

Mthroutine Name(ulnitialize) Options(*REDEFINE)
Define_Com Class(#Prim_evef) Name(#FormField) Reference(*dynamic)
Invoke Method(#Com_Ancestor.ulnitialize)

For Each(#Control) In(#Body_Head.ComponentControls)
If_Ref Com(#Control) Is(*INSTANCE_OF #prim_evef)
Set_Ref Com(#FormField) To(*dynamic #Control)
Invoke Method(#PanelFields.Insert) Item(#FormField)
Endif

Endfor

* Set the uCommand wrapper property.

Set Com(#myscreen_wrapper) Ucommand(#com_owner)
Endroutine

Mthroutine Name(uExecute) Options(*REDEFINE)
Invoke Method(#Com_Ancestor.uExecute)

* The user has selected an Employee from the instance list.
MakeRampAuvailable will make sure the connection is in order and then signal
back with the appropiate action

Invoke Method(#myscreen_wrapper.MakeRampAuvailable)
Foraction(ShowDetails)

Set Com(#Save_Button) Enabled(False)

Endroutine

* RAMP has signalled it's available. What we do will depend on the #ForAction
specified in the MakeRampAvailable method invocation.

Evtroutine Handling(#myscreen_wrapper.RampAvailable)
Foraction(#ForAction) Nextaction(#NextAction)

Case (#ForAction)

When Value_Is('= ShowDetails")

* Navigate to a Destination that was previously named
EmployeeDetailsAndSkills using newlook Designer. Use the ReturnScreen
parameter to verify we are in the expected screen

* once the navigation has completed

Invoke Method(#myscreen_wrapper.navigatetoscreen)
Name('EmployeeDetailsAndSkills') Returnscreen(#vf_eltxtl)

* If the current screen is the expected one, get the values of the 5250 screen
fields into the fields in this component and the skills into the skills list view
If (#vf_eltxtl = 'EmployeeDetailsAndSkills")

#myscreen_wrapper.sendkey(#myscreen_wrapper.KeyF21)

Invoke Method(#avListManager.GetCurrentInstance) Akey3(#EMPNO)
#myscreen_wrapper.getvalue From('uSurname') Value(#surname.value)
#myscreen_wrapper.getvalue From('uGivename') Value(#givename.value)
#myscreen_wrapper.getvalue From('uAddress1') Value(#address1.value)
#myscreen_wrapper.getvalue From('uAddress2') Value(#address2.value)
#myscreen_wrapper.getvalue From('uAddress3') Value(#address3.value)
#myscreen_wrapper.getvalue From('uHomePhone') Value(#phonehme.value)
#myscreen_wrapper.getvalue From('uPostcode') Value(#POSTCODE.value)
#com_owner.uGetSkills Gridname('uSkillsGrid")

Endif

When Value_Is('= UpdateDetails'")

#myscreen_wrapper.setvalue Infield('uSurname') Value(#surname.value)
#myscreen_wrapper.setvalue Infield('uGivename') Value(#givename.value)
#myscreen_wrapper.setvalue Infield('uAddress1') Value(#address1.value)
#myscreen_wrapper.setvalue Infield('uAddress2') Value(#address2.value)
#myscreen_wrapper.setvalue Infield('uAddress3') Value(#address3.value)
#myscreen_wrapper.setvalue Infield('uHomePhone") Value(#phonehme.value)
#myscreen_wrapper.setvalue Infield('uPostcode') Value(#POSTCODE.value)
#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyEnter)
Returnscreen(#vf_eltxtl)

* Update the instance list using the "quick update" method

Use Builtin(BConcat) With_Args(#GiveName #SurName) To_Get(#FullName)
Invoke Method(#avListManager.UpdateListEntryData) Akey1(#Deptment)
Akey2(#Section) Akey3(#Empno) Visualid2(#FullName)
Acolumn1(#Phonehme) Acolumn2(#Address1) Ncolumn1(#PostCode)
Businessobjecttype(EMPLOYEES)

* Disable the save button again

Set Com(#SAVE_BUTTON) Enabled(False)

* Drop the framework lock as no updates are outstanding now

Set Com(#avFrameworkManager) Ulocked(FALSE)

Otherwise

Use Builtin(message_box_show) With_Args(ok ok info *component ('Unknown
ForAction>>' + #ForAction. Value + '<<"))

Endcase

Set Com(#myscreen_wrapper) Visible(False)

Endroutine

* Traverse the skills subfile/browselist by column name

Mthroutine Name(uGetSkills)

Define_Map For(*input) Class(#vf_eltxtl) Name(#GridName)

Define_Map For(*input) Class(#vf_eltxtl) Name(#nxtpage) Mandatory('+")
Define Field(#colcount) Type(*dec) Length(2) Decimals(0)

Define Field(#rowcount) Type(*dec) Length(4) Decimals(0)

Define Field(#column) Type(*dec) Length(2) Decimals(0) Default(0)

Define Field(#row) Type(*dec) Length(2) Decimals(0) Default(0)

Define Field(#colname) Type(*char) Length(50)

Define Field(#headrows) Type(*dec) Length(2) Decimals(0) Default(0)
Clr_List Named(#skills)

Dowhile (#nxtpage *NE ")

* Get the total number of subfile rows

#myscreen_wrapper.getvalue From(#GridName.value + ".RowCount")

Value(#rowcount)

* Get the total number of subfile heading rows
#myscreen_wrapper.getvalue From(#GridName.value + ".HeadRows")
Value(#headrows)

* Subtract one because the row collection is zero based.

#rowcount -= 1

Begin_Loop Using(#row) From(#headrows) To(#rowcount)

* get the number of subfile colums

#myscreen_wrapper.getvalue From(#GridName.value + ".Columns.Count")
Value(#colcount)

Begin_Loop Using(#column) To(#colcount)

* get the column name. Use a method to make the code easier to read
#com_owner.uGetColName Ugridname(#GridName.value)
Ucolnumber(#column) Ucolname(#colname)

* for the appropiate column, get the cell value

Case (#colname)

When Value_Is(= 'DateSklAcquired")

#com_owner.uGetCell Value Ugridname(#GridName.value)
Ucolnumber(#column) Urownumber(#row) Ucellvalue(#vf_eltxts)
When Value_Is(= 'SkillCode")

#com_owner.uGetCell Value Ugridname(#GridName.value)
Ucolnumber(#column) Urownumber(#row) Ucellvalue(#skilcode)
When Value_Is(= 'SkillDescription')

#com_owner.uGetCell Value Ugridname(#GridName.value)
Ucolnumber(#column) Urownumber(#row) Ucellvalue(#skildesc)
When Value_Is(= 'Comment")

#com_owner.uGetCellValue Ugridname(#GridName.value)
Ucolnumber(#column) Urownumber(#row) Ucellvalue(#comment)
When Value_Is(= 'Grade")

#com_owner.uGetCell Value Ugridname(#GridName.value)
Ucolnumber(#column) Urownumber(#row) Ucellvalue(#grade)
Endcase

End_Loop

* Sometimes newlook treats rows without data as valid rows so add only the
ones where at least one field has data

If_Null (#skilcode #skildesc #comment #grade)

Else

Add_Entry To_List(#skills)

Endif

End_Loop

* If there is another page, page down

#myscreen_wrapper.getvalue From(#GridName.value + ".Marker")
Value(#nxtpage.value)

If (#nxtpage.value *NE ")

#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyPageDown)
Endif

Endwhile

Endroutine

Mthroutine Name(uGetColName)

Define_Map For(*input) Class(#vf_eltxtl) Name(#uGridName)

Define_Map For(*input) Class(#vf_elnum) Name(#uColNumber)
Define_Map For(*output) Class(#vf_eltxtl) Name(#uColName)

* The column collection is zero based but Begin Loop must start at minimum of
1.

#ucolnumber -= 1

#myscreen_wrapper.getvalue From(#uGridName.value + ".Columns(" +
#uColNumber.asstring + ").Name") Value(#ucolname.value)

Endroutine

Mthroutine Name(uGetCell Value)

Define_Map For(*input) Class(#vf_eltxtl) Name(#uGridName)

Define_Map For(*input) Class(#vf_elnum) Name(#uColNumber)
Define_Map For(*input) Class(#vf_elnum) Name(#uRowNumber)
Define_Map For(*output) Class(#vf_eltxtl) Name(#uCellvalue)

* The column collection is zero based but Begin Loop must start at minimum of
1.

#ucolnumber -= 1

#myscreen_wrapper.getvalue From(#uGridName.value + ".Columns(" +
#uColNumber.asstring + ").Cells(" + #uRowNumber.asstring + ").Text")
Value(#ucellvalue.value)

Endroutine

* Listen to messages from RAMP and the 5250 application

Evtroutine Handling(#myscreen_wrapper.RampMessage)
Umessagetype(#MsgType) Umessagetext(#MsgText)

Case (#msgtype.value)

When Value_Is('= VF_ERROR)

* Fatal messages reported by Ramp (e.g. Navigation request failed, etc). If in
design mode, show the underlying newlook screen. Otherwise, make the error
message

* appear in a message box on top of the command

If (#usystem.iDesignMode = true)

Set Com(#myscreen_wrapper) Visible(True)

Else

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
#com_owner.avshowmessages

Endif

* Messages sent by the System i application or unknown form was encountered
When Value_Is('= VF_INFO' '= VF_UNKNOWN_FORM)

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)

* Failure to initialize RAMP. Could occur for mainly one of two reasons
When Value_Is('= VF_INIT_ERROR')

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
#com_owner.avshowmessages

When Value_Is('= VF_WAITCONNECTION")

Otherwise

Use Builtin(message_box_show) With_Args(ok ok info *Component
('Unknown message type ' + #MsgType + 'encountered'))

Endcase

Endroutine

Evtroutine Handling(#PanelFields<>.Changed)

* Enable the save button

Set Com(#SAVE_BUTTON) Enabled(True)

* Lock the framework and set a message for the user

Use Builtin(bconcat) With_Args('Changes made to employee' #GiveName
#Surname 'have not been saved yet.' 'Do you want to save them before
continuing?') To_Get(#sysvar$av)

Set Com(#avFrameworkManager) Ulocked(USER)
Ulockedmessage(#sysvar$av)

Endroutine

Evtroutine Handling(#PanelFields<>.KeyPress)
Options(*NOCLEARMESSAGES *NOCLEARERRORS)
Keycode(#KeyCode)

If Cond('#KeyCode.Value = Enter")

* If there no changes have been made issue message and ignore enter
If Cond('#SAVE_BUTTON.Enabled *EQ True")

Invoke Method(#Com_Owner.Save)

Else

* Issue 'There are no changes to save' message

Use Builtin(Message_box_show) With_Args(ok ok Info *Component
*MTXTDF_NO_SAVE)

Endif

Endif

Endroutine

Evtroutine Handling(#SAVE_BUTTON.Click)
* Call the Save method

Invoke Method(#Com_Owner.Save)
Endroutine

Mthroutine Name(Save)

* Update data base

Invoke Method(#myscreen_wrapper.MakeRampAuvailable)
Foraction(UpdateDetails)

* If update completed okay

Endroutine

Mthroutine Name(uTerminate) Options(*REDEFINE)
* Clean up the colelction of fields on the panel
Invoke Method(#PanelFields.RemoveAll)

* Do any termination defined in the ancestor

Invoke Method(#Com_Ancestor.uTerminate)
Endroutine

End_Com

Example 3: Show the System i Disk Usage

A screen wrapper can pick values out of hidden 5250 screen(s) and present it in
completely different ways. This example shows the disk usage of a System i
graphically:

i Miscellaneaus _ __'_rgp_q_c.alu__-_ule_.tq_r_

Disk: ik %o Use Refresh Statistics
70.4

0.4
0.4
0.4
0.4
0.4

o[e [w|r]—~

20

20
Use

Disgk Units

To access the work with disk status screen type wrkdsksts in the command line.
The name given to the Work with Disk Status screen in this example is
"DiskStatus".

When in the disk status screen, read the %Use column of the subfile and feed
the data to the graph.

sk

sk

* COMPONENT: STD_PANL

*

%

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #VF_AC010) Height(559)
Hint(*MTXTDF_DET1) Layoutmanager(#ATLM_1) Width(557)
Define_Com Class(#PRIM_GRID) Name(#DiskSts) Displayposition(1)
Height(150) Left(109) Parent(#PANL_2) Rowheight(19) Tabposition(1)
Top(15) Width(212)

Define_Com Class(#PRIM_GDCL) Name(#GDCL_1) Caption('Disk Unit')
Captiontype(Caption) Displayposition(1) Parent(#DiskSts)
Source(#VF_ELTYPE) Width(29)

Define_Com Class(#PRIM_GDCL) Name(#GDCL_2) Caption('% Use")
Captiontype(Caption) Displayposition(2) Parent(#DiskSts) Readonly(False)
Source(#VF_ELTXTS) Width(30) Widthtype(Remainder)

Define_Com Class(#PRIM_GRPH) Name(#GRPH_1) Displayposition(1)
Height(370) Left(0) Parent(#PANL_3) Scatterstyle(SymbolAtPoints+Solid)
Surfacestyle(ConnectLinesInBlack) Tabposition(1) Top(0) Width(557)
Xcaption('Disk Units') Ycaption('% Use")

Define_Com Class(#PRIM_GRCL) Name(#GRCL_1) Columnrole(Label)
Displayposition(1) Parent(#GRPH_1) Source(#VF_ELTYPE)

Define_Com Class(#PRIM_GRCL) Name(#GRCL_2)
Columnsymbol(HollowUpTriangle) Displayposition(2) Parent(#GRPH_1)
Source(#VF_ELWIDP)

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper) Displayposition(3)
Height(513) Left(144) Parent(#PANL_1) Top(24) Visible(False) Width(593)
Define_Com Class(#PRIM_PANL) Name(#PANL_1) Displayposition(1)
Height(559) Layoutmanager(#SPLM_1) Left(0) Parent(#COM_OWNER)
Tabposition(1) Tabstop(False) Top(0) Width(557)

Define_Com Class(#PRIM_ATLM) Name(#ATLM_1)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_1) Attachment(Center)
Manage(#PANL_1) Parent(#ATLM_1)

Define_Com Class(#PRIM_SPLM) Name(#SPLM_1)

Define_Com Class(#PRIM_PANL) Name(#PANL_2) Displayposition(1)
Height(185) Layoutmanager(#FWLM_1) Left(0) Parent(#PANL_1)
Tabposition(2) Tabstop(False) Top(0) Width(557)

Define_Com Class(#PRIM_PANL) Name(#PANL_3) Displayposition(2)
Height(370) Layoutmanager(#ATLM_2) Left(0) Parent(#PANL_1)
Tabposition(3) Tabstop(False) Top(189) Width(557)

Define_Com Class(#PRIM_SPLI) Name(#SPLI_1) Manage(#PANL_2)
Parent(#SPLM_1) Weight(1)

Define_Com Class(#PRIM_SPLI) Name(#SPLI_2) Manage(#PANL_3)
Parent(#SPLM_1)

Define_Com Class(#PRIM_ATLM) Name(#ATLM_2)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_2) Attachment(Center)
Manage(#GRPH_1) Parent(#ATLM_2)

Define_Com Class(#PRIM_FWLM) Name(#FWLM_1)
Direction(TopToBottom) Flowoperation(Center) Margintop(15)
Spacingitems(2)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_3) Manage(#DiskSts)
Parent(#FWLM_1)

Define_Com Class(#PRIM_PHBN) Name(#PHBN_1) Caption('Refresh
Statistics') Displayposition(2) Left(331) Parent(#PANL_2) Tabposition(2)
Top(15) Width(117)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_6) Manage(#PHBN_1)
Parent(#FWLM_1)

Mthroutine Name(ulnitialize) Options(*REDEFINE)

* Do any initialization defined in the ancestor

Invoke Method(#Com_Ancestor.ulnitialize)

Set Com(#grph_1) Graphtype(Bar)

Set Com(#myscreen_wrapper) Ucommand(#com_owner)

Endroutine

Mthroutine Name(uExecute) Options(*REDEFINE)

* Do any execution logic defined in the ancestor

Invoke Method(#Com_Ancestor.uExecute)

Invoke Method(#myscreen_wrapper.MakeRampAuvailable)
Foraction(ShowDiskStatus)

Endroutine

Evtroutine Handling(#myscreen_wrapper.RampAvailable)
Foraction(#ForAction)

* Get the employee number of the employee whose details are to be displayed.
Case (#ForAction)

When Value_Is('= ShowDiskStatus")

#myscreen_wrapper.current_form Name(#vf_eltxtl)

If (#vf_eltxtl *NE 'DiskStatus’)

Invoke Method(#myscreen_wrapper.navigatetoscreen) Name('DiskStatus')
Returnscreen(#vf_eltxtl)

Endif

If (#vf_eltxtl = 'DiskStatus')

#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyF10)

#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyF5)
#com_owner.uGetDiskStatus Gridname('uDiskStatus')

Endif

Otherwise

Use Builtin(message_box_show) With_Args(ok ok info *component ('Incorrect
ForAction>>' + #ForAction. Value + '<<"))

Endcase

Endroutine

Mthroutine Name(uGetDiskStatus)

Define_Map For(*input) Class(#vf_eltxtl) Name(#GridName)
Define_Map For(*input) Class(#vf_eltxtl) Name(#nxtpage) Mandatory('+")
Define Field(#colcount) Type(*dec) Length(2) Decimals(0)

Define Field(#rowcount) Type(*dec) Length(4) Decimals(0)

Define Field(#column) Type(*dec) Length(2) Decimals(0) Default(0)
Define Field(#row) Type(*dec) Length(2) Decimals(0) Default(0)
Define Field(#colname) Type(*char) Length(50)

Define Field(#headrows) Type(*dec) Length(2) Decimals(0) Default(0)
Clr_List Named(#DiskSts)

Clr_List Named(#grph_1)

Dowhile ((#nxtpage *NE ") And (#nxtpage *NE 'Bottom'))
#myscreen_wrapper.getvalue From(#GridName.value + ".RowCount")
Value(#rowcount)

#myscreen_wrapper.getvalue From(#GridName.value + ".HeadRows")
Value(#headrows)

* Subtract one because the row collection is zero based.

#rowcount -= 1

Begin_Loop Using(#row) From(#headrows) To(#rowcount)
#myscreen_wrapper.getvalue From(#GridName.value + ".Columns.Count")
Value(#colcount)

Begin_lLoop Using(#column) To(#colcount)
#com_owner.uGetColName Ugridname(#GridName.value)
Ucolnumber(#column) Ucolname(#colname)

Case (#colname)

When Value_Is(= "Unit")

#com_owner.uGetCell Value Ugridname(#GridName.value)
Ucolnumber(#column) Urownumber(#row) Ucellvalue(#vf_eltype)
When Value_Is(= 'Used")

#com_owner.uGetCell Value Ugridname(#GridName.value)
Ucolnumber(#column) Urownumber(#row) Ucellvalue(#vf_eltxts)

#VF_ELWIDP := #vf eltxts.trim.asnumber

Endcase

End_Loop

Add_Entry To_List(#DiskSts)

Add_Entry To_List(#grph_1)

End_Loop

#myscreen_wrapper.getvalue From(#GridName.value + ".Marker")
Value(#nxtpage.value)

If ((#nxtpage.value *NE ") And (#nxtpage.value *NE 'Bottom'))
#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyPageDown)
Endif

Endwhile

Endroutine

Mthroutine Name(uGetColName)

Define_Map For(*input) Class(#vf_eltxtl) Name(#uGridName)
Define_Map For(*input) Class(#vf_elnum) Name(#uColNumber)
Define_Map For(*output) Class(#vf_eltxtl) Name(#uColName)
#ucolnumber -= 1

#myscreen_wrapper.getvalue From(#uGridName.value + ".Columns(" +
#uColNumber.asstring + ").Name") Value(#ucolname.value)
Endroutine

Mthroutine Name(uGetCell Value)

Define_Map For(*input) Class(#vf_eltxtl) Name(#uGridName)
Define_Map For(*input) Class(#vf_elnum) Name(#uColNumber)
Define_Map For(*input) Class(#vf_elnum) Name(#uRowNumber)
Define_Map For(*output) Class(#vf_eltxtl) Name(#uCellvalue)
#ucolnumber -= 1

#myscreen_wrapper.getvalue From(#uGridName.value + ".Columns(" +
#uColNumber.asstring + ").Cells(" + #fuRowNumber.asstring + ").Text")
Value(#ucellvalue.value)

Endroutine

Mthroutine Name(uTerminate) Options(*REDEFINE)

* Clean up the colelction of fields on the panel

* Do any termination defined in the ancestor

Invoke Method(#Com_Ancestor.uTerminate)

Endroutine

Evtroutine Handling(#PHBN_1.Click)

Invoke Method(#myscreen_wrapper.MakeRampAuvailable)
Foraction(ShowDiskStatus)

Endroutine
End_Com

Programming Techniques

This section shows programming techniques to help you overcome common
application design issues and to easily integrate advanced functionality in your
RAMP applications.

Defining Screens

e Handling a Single Screen which Shows Multiple Modes

e Handling Multi-5250 Screen Data Entry

Programming

e Short-circuiting Navigation

e A Command Handler Tab with Many 5250 Destinations

e Advanced Prompting

e A RAMP Design Approach Using a Single Junction Point (SJP)

° Using HIDE_CURRENT_FORM to manage access to command handler
tabs

Handling a Single Screen which Shows Multiple Modes

In System i applications it is possible that a single screen handles multiple
modes.

For example, an application can have a single screen which allows ADD,
CHANGE, DISPLAY and DELETE.

To be able to handle such screens in RAMP, the screens must have a unique
screen ID in all the modes they can appear in and they must be uniquely defined
as separate destination screens using newlook Designer.

If the mode is displayed on the screen, you can include it in the screen ID in
newlook Identify so that the screen ID automatically changes according to the
mode.

Also, the attribute bytes (the grey squares) surrounding a field in newlook
Identify distinguish whether a field is input capable or not. Newlook is able to
recognise the state of the attribute bytes and they can be used as part of the
screen ID.

For example if you have two identical screens where the only difference is that
one screen is input capable and the other one only displays information, you can
use a single field with the surrounding attribute bytes as the screen ID.

Handling Multi-5250 Screen Data Entry

In this scenario three 5250 screens are used to input new orders like this:

B

Screen A

Screen B

Screen C

Start another new Order

We need to do is to make them all work on a single command handler tab like
this, handling the "New" command for business object "Order":

&l Order

Screen A

Start ancther new Order

Here's an outline of the steps required to do this and some ideas about how this
common type of 5250 interaction might be modernized:

. First, enroll Screen A, Screen B and Screen C in RAMP as destinations.

. Now, link Screen A to the "New" command in the "Orders" business
object.

e Do not link destination screens B or C to anything. They are defined as
destinations only so that RAMP can control their function keys and execute
scripts associated with them. They are never directly accessed by any
command, so their INVOKE scripts will never be used.

. Now examine and think about the INVOKE, BUTTON and RETURN
scripts associated with each of screen A, B and C as follows:

Screen A Screen B Screen C

INVOKE Should be Should Should never be used, so delete any s«
script okay as never be | lines or add an error message.
generated. used, so

delete any

script

lines or

add an

error

message.

BUTTON Successful Successful After successful Enter/OK button you

script Enter/OK = Enter/OK | would probably script for, or, try usin
button button NAVIGATE_TO_DESTINATION("S
usage usage A") to start another new order being i
should should
cause cause

Screen B Screen C
to appear. = to appear

RETURN Should be Make sure Make sure it navigates back to the cor
script okay as it junction and not back to screen B.
generated navigates

back to

the correct

junction

and not

back to

screen A.

The preceding table mentions "Successful Enter/OK button usage". This means
that your script does a SENDKEY (KeyEnter) and then possibly checks that
everything went as expected.

As generated, default scripts probably would handle the Screen A -> B -> C
flow automatically, but it might be useful to understand how this happens so
that you can modify the behavior. Consider this modified partial BUTTON
script:

/* The user has clicked the OK button or pressed the enter key on screen A */
case KeyEnter:
/* Send the enter key on Screen A to the System i 5250 server */
SENDKEY (KeyEnter);
/* Now handle the screen that results (ie: after sending the Enter key) */

switch (CURRENT_FORM())
{

. . : nd
/* If screen B is now being displayed we have advanced to the 2
screen. */
/* There is nothing more to do as screen B's scripts will now take over. */

case "Screen B":
break;

/* If Screen A is still being displayed the user has probably made a data
entry error */

case "Screen A":
ALERT_MESSAGE("Please correct the data entry errors and click OK
again.");
break;

/* If we reach here, then some unexpected screen is being displayed */

default:
HIDE_MESSAGE("Unexpected screen " + CURRENT_FORM() + "
encountered.");
break;
}

break;

e Finally, think about adding, re-labeling or changing buttons and function
keys so as to get a more Windows like "Previous" -> "Next" -> "Save" flow
going on between screens A, B and C. Possibly something like this:

Has a "Next" Has a "Previous"
Button Button
Screen A Yes - probably re- No.
labels existing
Enter/OK button.

Script sends
KeyEnter to advance

to screen B

Screen B Yes - probably re- Yes - probably re-
labels existing labels something like
Enter/OK button. F12 to cause Screen A
Script sends to be redisplayed (the
KeyEnter to advance 5250 application
to screen C would need to support

this of course)
Screen C No - Existing Yes - probably re-

Enter/OK button is
probably re-labeled
as ""Save" instead.
Script probably
sends KeyEnter to
advance to screen A

labels something like
F12 to cause Screen B
to be redisplayed (the
5250 application
would need to support
this of course)

to start a brand new
order (after saving
the current one).

If a pop-up message is displayed when leaving Screen A B or C

Sometimes a 5250 pop-up message is displayed when leaving Screen A, B or C
(either by pressing F12 on System i or by selecting another object in the
Framework) asking to confirm the changes, and the response to the message
takes the user to different screens. For example if the answer is Yes the user
might be taken to the nearest junction, but if the answer is No the user might be
taken back to the entry screen (A B or C).

The easiest solution to this is to ignore the popup by defining it in newlook as a
full display (see How to Turn Pop-Ups into Full Screens) and defining it to
RAMP as a special screen. The script for the special screen can set the value of
the Response field to Yes and send the Enter key. In this way, the assumption is
that the user is cancelling the entry when they select something else in the
Framework.

In addition a Cancel button on each of the entry screens can be set to send an
F12 key to get to the special screen and back to the junction, and the pop-up can
be hidden. Alternatively the Cancel button script for the F12 key could contain a

javascript confirm() function, which will display a confirmation box to the user:

var answer = confirm("Confirm cancellation of changes?")
if (answer == true)
{
/* user pressed the ok button on the confirmation box to cancel, so send
the F12 key */
SENDKEY (KeyF12);
/* if popup is defined as a special, let the special eliminate the screen */
HIDE_CURRENT_FORM("Entry successfully cancelled.");
}

else

{

/* user pressed the cancel button on the confirmation box, so don’t do
anything */
}

Short-circuiting Navigation

Sometimes 5250 enquiry style transactions use a 5250 screen that loop on
<enter key values> -> <display data> -> <enter key values> -> <display data>
interactions.

Typically these screens have an INVOKE script that is structured along these
lines:

var strAccessMenu = "SomeMenuScreenName",;
var strThisEnquiry = "SomeCherryEnquiryScreenName";

/* Navigate to the menu that will provide access to the enquiry function */

NAVIGATE_TO_JUNCTION(strAccessMenu);
if (!(CHECK_CURRENT_FORM(strAccessMenu, "Could not display
menu", strAccessMenu)) return;

/* Invoke the screen from the access menu */

SETVALUE("uMenuOptionField","7"); /* Say */

SENDKEY (KeyEnter);

if (!(CHECK_CURRENT_FORM(strThisEnquiry,"Could not display
enquiry screen", strThisEnquiry)) return;

/* Enter the appropriate key value and display the enquiry details */

SETVALUE("uKeyValueField",objInstanceList.Akey1[0]); /* Say */

SENDKEY (KeyEnter);

if (!(CHECK_CURRENT_FORM(strThisEnquiry,"Could not display",
strThisEnquiry)) return;

/* Finished */

When this transaction is used repeatedly (for example by clicking down through
an instance list or orders, products, policies, etc) you can sometimes short-
circuit the navigation logic by a simple script change along the following lines.
This change produces less 5250 screen interactions giving a faster response for
your end-users:

var strAccessMenu = "SomeMenuScreenName";
var strThisEnquiry = "SomeCherryEnquiryScreenName";

/* We only need to navigate if we are not already at the screen */

if (CURRENT_FORM() != strThisEnquiry)
{

/* Navigate to the menu that will provide access to the enquiry
function */

NAVIGATE_TO_JUNCTION(strAccessMenu);
if (!(CHECK_CURRENT_FORM(strAccessMenu, "Could not
display menu", strAccessMenu)) return;

/* Invoke the screen from the access menu */

SETVALUE("uMenuOptionField","7"); /* Say */

SENDKEY (KeyEnter);

if ({(CHECK_CURRENT_FORM(strThisEnquiry," Could not
display enquiry screen",strThisEnquiry)) return;

}

/* Enter the appropriate key value and display the enquiry details */

SETVALUE("uKeyValueField",objInstanceList.Akey1[0]); /* Say */
SENDKEY (KeyEnter);

if (!(CHECK_CURRENT_FORM(strThisEnquiry,"Could not display",
strThisEnquiry)) return;

/* Finished */

A Command Handler Tab with Many 5250 Destinations

You can associate many 5250 destination screens with a single command
handler tab. There are many uses for this capability and it may be used to
overcome some common application design issues.

For example, imagine that you have five different 5250 destination forms that
each request report production criteria and then submit the report to batch. Let's
call these five different 5250 screens uReport1, uReport? uReport5.

In prototyping this application you might approach handling these five different
reports in a number of ways:

Too Many Business Objects

Each report is defined as a unique business object named "Report 1" through
"Report 5". In this case the application navigation tree might be structured like
this ...

[On Tocl B | 8 Report 1
%) Demo Apphcation
= :Z-.'R
4l Report 1
4 Report 2
& Report 3
o Report 4
4l Report 5

When the user clicks on one of the reports the entire right hand side of the form
would display the reports associated 5250 form.

Too Many Command Tabs
You define a single business object called "Reports" which has five associated
commands or actions called Report 1 Report 5. In this case the application
navigation and command handler tabs might be structured like this ...
| On Tool B | &8 Report : Report 1
S A Bl Torepeett | B opeport2] [Reoort3] Toreportd| BoReports
= g =
4 =

When the user clicks on a report tab the associated 5250 form would appear on
the tab. One of the tabs would probably be a default.

There are a number of issues with these approaches:

e The first approach consumes too many business objects

e The second approach consumes too many commands (or actions)
What do you do if there are 50 or 500 different types of reports?

Solution: Dynamic Command Tab

The answer may be to use a single business object named, for example Reports
with a single dynamic command handler tab named Submit Report Request.

For example, here is the Reports business object set up to show two tabs. The
first is "Submit Report Request” and the second is "View Spool Files" which
might be used to display the output of report batch jobs in a variety of different
ways.

i O Tool Bar |88 Repaoct : Submit Report Request
- Ef'r;ﬁm{;cannn — | Subeit Report Request | [view Spool Fles
=

4

) Departments .

£ Emolo) The 5250 destination screen shown on this form can be made to vary
Employess
Sectons . -
Manthiy Reparts at execution time according to user or a prograrmmatic choice

In this example we are only interested in the "Submit Report Request"
command handler tab because we need, at execution time, to dynamically vary
which 5250 destination screen actually appears on it.

So how can you vary which 5250 screen appears on this single tab? There are
two main ways this is done:

e A User Controlled Command Tab with Many Destinations

e A Program Controlled Command Tab with Many Destinations

Limitations

e Using the Framework SWITCH facility to switch to a command handler
with many 5250 destinations is not supported.

e Any command handler using this option must be in the main Framework
window, not in a separate pop-up window.

A User Controlled Command Tab with Many Destinations

You can associate several destination screens with a command handler, in which
case the Framework automatically shows a window to allow the end-user decide
which screen to use:

Create the Reports business object

Make sure the Reports business object does not have any filters and is set
up so that it uses up the entire viewing area on the right hand side of the main
form.

Give Reports a single business object level command handler named
"Submit Report Request”. Make it the default command.

Define the five 5250 destination forms in the normal manner.

Associate all five 5250 destination forms with the Submit Report Request
command handler tab. As you do this the RAMP tool will notify that you are
associating multiple destinations with a single command handler tab.

Execute the application.

Whenever the Submit Report Request command tab needs to be displayed it
detects that it has multiple 5250 destinations and asks the user to choose which
one they would like to use:

|

On Tool Bar]

= _ Cemo Application

4 [

b8 Dy Report 1

'“ Emj FReportl

o geg Report 3
' Mol Report 4

g:: Onl Report 5

£ AnnUErREpErETT

A Program Controlled Command Tab with Many Destinations

You can create a program that controls which screen is displayed on the
command tab. This is slightly harder to set up but is more easily expanded.

Create the Reports business object

Give Reports a single instance level command handler named "Submit Report
Request". Make this the default command.

In the business object Reports create an invisible filter that fills the instance list
with the five report names. Make sure to include AKeyN and/or NKeyN values
that identify the associated report. For example:

BEGIN_COM ROLE(*EXTENDS #VF_AC007) HEIGHT(182) WIDTH(326)
Mthroutine ulnitialize Options(*Redefine)

#Com_Owner.avHiddenFilter := TRUE

#avListManager.ClearList

Invoke #avListManager.AddtoList Visualid1('Report 1') Visualid2('Daily
production report') AKey1('uReport1') NKey1(1)

Invoke #avListManager.AddtoList Visualid1('Report 2') Visualid2('Monthly
production report') AKey1('uReport2') NKey1(2)

Invoke #avListManager.AddtoList Visualid1('Report 3") Visualid2('Overloaded
production report’) AKey1('uReport3") NKey1(3)

Invoke #avListManager.AddtoList Visualid1('Report 4') Visualid2('Monday
Morning Management Report') AKey1('uReport4') NKey1(4)

Invoke #avListManager.AddtoList Visualid1('Report 5') Visualid2('Daily
production report’) AKey1('uReport5") NKey1(5)

* Instance list updating has been completed

INVOKE METHOD(#avListManager.EndListUpdate)

Endroutine
End_Com
The instance list and command handler tabs are presented to the user like this:
I On Tool Bar | | Report Desaription
= ’ Dema Apploation Feport 1 Diady production repart
=R
& Reports Report 3 Overioaded production report
% Departments Report 4 Monday Morning Management Report
£ Employess Report 5 Dty production repart
Sections 4 Report ; Submit Report Request (Report 2-Monthly production report)
Monthly Reparts

[Online Reports — | Submit Report Request | |) View Spool Fies

A ind B amnebe

When the user clicks on a report in the instance list the associated 5250
destination screen is displayed on the tab

Define the five 5250 destination forms in the normal manner.

Associate just the first 5250 destination forms (eg: uReport1) with the "Submit
Report Request” command handler tab.

Say the numeric instance list key value NKey1 contained the requested report
number then you could change the uReportl INVOKE_SCRIPT to be like
this:
/* See is the report number in the instance list is for some other report */
/* If it is then "reroute" this request to correct 5250 destination form */
switch (objListManager.NKey1[0])
{

case 2: NAVIGATE_TO_DESTINATION("uReport2"); return;

case 3: NAVIGATE_TO_DESTINATION("uReport3"); return;

case 4: NAVIGATE_TO_DESTINATION("uReport4"); return;

case 5: NAVIGATE_TO_DESTINATION("uReport5"); return;
}
/* Normal navigation logic to handle report number 1 */
NAVIGATE_TO_JUNCTION("whatever");
Etc,etCc .ovvvvvvviiinninnn...

If the alphanumeric instance list key value AKey1 contained the requested 5250
destination screen's name then you could change the uReport1
INVOKE_SCRIPT like this:

/* See is the 5250 screen name is this screen's name */
/* If it is then "reroute" this request to correct 5250 destination form */
if (objListManager.AKey1[0] != "uReport1")
{
NAVIGATE_TO_DESTINATION(objListManager.AKey1[0]);
return;
}
/* Normal navigation logic to handle this screen */
NAVIGATE_TO_JUNCTION("whatever");
Etc,etc .ovvvvvvviniinninnn...

Using this Approach in other Situations

This is example shows how to dynamically choose to present five different 5250
reporting screens onto a single command handler tab.

The choice may be made by the user or logic you write into a script.
You should now understand:

e That if there were three different types of "Orders" in an "ERP" application
(International, National and Local, say) that you cold use this approach to
cause three different 5250 destination screens to be displayed on a single
command handler tab named "Details".

e That the instance list can be used to dynamically create a "menu" of 5250
destination forms.

e That not all 5250 destination screens need to be formally attached to a
command handler tab. They can be dynamically attached (ie: displayed) on
tabs by logic imbedded in a navigation script by using the
NAVIGATE_TO_DESTINATION() function.

Advanced Prompting

You can easily provide advanced prompting in your 5250 RAMP screens by
associating simple Visual LANSA forms with fields.

For example you could create a Visual LANSA form to show different item
sizes as a set of radio buttons and then associate this form with an Item Size
field in the RAMP screen to return its value:

Ikem Sizes
) 5mall - 5ML =

1 Medium - MED =

) Extra Large - XL
(") Extra Extra Large - ¥xL

The prompter forms give you access to all the advanced Visual LANSA features
such as radio buttons, sortable tree and list views, etc.

Unlike System i prompting, Visual LANSA prompter forms do not necessarily
cause any interaction with the System i server which makes them fast.

Moreover, advanced prompting can be used to provide functionality that is not
possible on a 5250 device. For example, a phone number prompter could
display a phone number search web site and when the user chooses a phone
number, place it's value back into the 5250 screen.

Other Uses for Prompter Forms

Prompter forms can also be used in various ways for sophisticated Windows
desktop integration. For example they might:

e Prepare and send an overdue payment e-mail.
° Submit a credit reference check via an internet site or a web service.

e Extract information from the System i server, create a MS-Excel spread
sheet, then start MS-Excel to display the spreadsheet information.

Display a linked or associated web page.

Display a linked or associated PDF document.
e Do any other form of advanced Windows desktop integration that you can
dream up.

The advanced prompter forms are designed as an easy way integrate
sophisticated functionality to subsets of information on the 5250 screen. Of

course entire new RAMP screens can be added to a RAMP application any time
to handle all desktop integration requirements.

Using Prompter Forms

Creating Prompter Forms
Create prompter forms as normal VL forms.

Their Ancestor property must be se to VF_ACO017 so as to inherit standard
behavior.

Associating Prompter Forms with Fields

To associate prompter forms with fields, open the RAMP window and click on
the session object in the navigation tree. The Session properties are displayed:
Seszion - Default Sezsion

Caption | Default Seszion

Default MewlLook Layout Dimenszions
Height | 380 Width | 700 Top Left

Top kazk Height Bottom bMask Height

Lock framework when unknown 5250 form iz digplaged
Special Field Handing

5250 Field Mame | Function Key W Handler [clazs WF_ACO17 object] o
1 | EtSTATE Fa F_STATE
2 | tPHOME Fa F_PHOME
3 F4
4 F4 =
£ >

The Special Field Handling area is used to define the forms to be associated
with fields.

The two entries in the example indicate that:

If an input field named txtSTATE is on any 5250 destination form, and it is
where the cursor/focus is, and the user presses function key F4 (or the
equivalent button) then the VL form named P_STATE is to be invoked to handle
the request.

If an input field named txtPHONE is on any 5250 destination form, and it is
where the cursor/focus is, and the user presses function key F5 (or the
equivalent button) then the VL form named P_PHONE is to be invoked to
handle the request.

How do Advanced Prompter Forms Work?
Whenever the user performs the actions required to invoke one of the VL forms

the following happens:

The HANDLE_PROMPT Function in the script is invoked to show the
prompter form associated with the field. Optionally additional information
can be passed to the form using this function.

If the form has not been used already in the session it's ulnitialize method
is invoked. This allows it to do first time processing.

The values of all the named fields on the current 5250 destination form are
extracted and made available to the VL form.

The VL form's uShow method is then invoked so that it can prepare and
position anything that it wants to show to the user.

When the user makes a selection, the VL form can alter the value of any
named field on the current 5250 destination form.

Are any Examples Provided to Learn More about this Topic?

Yes, you should be able to find the following Visual LANSA forms in your
repository:

Combo Box

DF_PRMO1 prompts using a combo box of US states like this:

| aRKANSAS - AR

ALABAMA - AL

ALASKA - Ak
AMERICAMN SAMOA - AS
ARIZOMNA - AZ
ARKANSAS - AR,
CALIFORNIA - Ch i

Radio Buttons

DF_PRMO02 prompts using a set of product size radio buttons:

Ikem Sizes
) 5mall - 5ML

1 Medium - ME

(") Extra Extra Large - ¥xL

List with Columns

DF_PRMO03 generically prompts for employees by name:

LiGE
GARY
14 Hutchins Crescent,
PADSTOMY HEIGHTS,
MSWY,

2016
456 1524
151 4583
303101
0/00/00

INF -
02
25,600.04
2.133.33
Tree

DF_PRMO04 prompts department and section information using a tree:

Post [Zip Code

Home Phone Mumber
Business Phone Mumber
Start date (YMMDD)
Termination Date (YMMDD)
Department Code

Section Code

Emploves Salary

Manthly Salary

Start Date (DOMMYY)
Termination Date (DOMMYY)

———

Prompk |

-

—IDF_P52503 - Prompting Example 3

Employes Surname | B

Employes Mumber | Emploves Surname

Emploves Given ... | Post [Zip Code |

#1031
A0030
#3564
A0070

BLAKE J3HM
BLOGGES FRED J0HMN
BR.CAWT FREDC
BR.CAWT WERCIMIC &

2016
456 1524
151 4583
83103101 hd
0/00/00 i
InF #- ADMINISTRATOR DEPT
02 #- INTERMAL AUDITING
#- FLEET ADMINISTRATION
- GROUP ACCOUNTS
= INFORMATION SERVICES
L3/E3 | ADMINISTRATION
0/00/00 FURCHASING
ACCOUMTING
DEWELOPMEMT
#-LEGAL DEPARTMENT
- MANAGEMNT INFORMATIO

A RAMP Design Approach Using a Single Junction Point (SJP)

A complex 5250 application that RAMP is being applied to may be visualized
like this:

J | = Junction/Menu Screen

C | = Cherry Screen

Signon

A 5250 user signs on and navigates around a cloud of menus/junctions to reach
the "cherries" (5250 destination screens) where they do useful work.

The RAMP choreographer is able to follow these navigations and working with
it you can define the various navigations required to move around in the cloud.

To a RAMP developer the identification of the junctions and the generation of
their navigation scripts may be a time consuming and rather mundane job.

From the RAMP developers point of view the whole process would be easier to
handle if the 5250 application was actually structured like this:

Signon | — - | J

C

Here a single junction point (or program) controls access to every 5250
destination screen.

If the 5250 application was structured this way then designing a RAMP
application would be simpler and faster because:

® Only a single junction needs to be defined and scripted.
e The invocation scripts for the destination screens are simpler and
standardized.

This rest of this section describes ways that you might set up this type of view
of a 5250 application.

This approach is called the Single Junction Point (SJP) model.

The SJP model cannot be applied to every type of application, but where it can
be applied it may represent a saving in the time taken to develop a RAMP
application.

Essentially a SJP approach means that two different views of an application
exist:

User's View
when using a
5250 natively

Signon ——

Developer's View
when designing a
RAMP application

To make this programmatic view of the world the System i 5250 program [
needs to already exist or to be created.

Let's call this special program the SJP (Single Junction Point) program

A kind of already exists on all System i system.

It is a program called QCMD (or Command Entry Display) and from it almost
any 5250 application can be invoked in some direct or indirect way. However
using QCMD is not acceptable to many sites for security reasons, so the rest of
this material discusses various ways you might create your own specialized

and some of issues and additional benefits that might arise.
How does an SJP work?

Is an SJP really that simple in a real application?

Can SJP do the other useful things?

Does SJP have to be CL (Control Language) program?

What other issues might impact the use on an SJP approach?

How does an SJP work?

An SJP program provides generic access to the destinations that are available to
a RAMP application. An SJP is not designed to talk to a user, it is designed to
talk to a RAMP script.

A simple SJP and RAMP script might work together like this:

RAMP Destination Invoke Script executing on Client

SJP Program (CL) executing on iSeries
* Call program CUSTING *

NAVIGATE_TO_JUNCTION("SIP™);

SETVALUE (“"PGINWE”, "CUSTING™) ; " Wait for instructions from client *
SENDKEY (KeyEnter); L10: SNDRVF RCDFMTicontains the field &PGMNAME)
* Call the specified program *
* Now get CUSTING to display the customer */ CALL PGM{&PGMHNAME)
SETVALUE {“Cusomerbumber”, "123456™) ;

* Go back and wait for another request from client *

el GOTOL10

The RAMP script example used here is associated with a command handler that
wants to display the details of a customer using a 5250 program named
CUSTINQ.

When it starts to execute it first navigates to the junction screen named JSP.
This causes the SJP program to displays its 5250 screen.

It then sets the field PGMNAME to value "CUSTINQ" and sends the enter key.
This causes the SJP program to receive the screen back.

The CL field &PGMNAME in the SJP program now contains the name
"CUSTINQ".

Program CUSTINQ is then called using a generic call.

The RAMP script then gets the program CUSTINQ to display customer number
123456.

Using this simple SJP hundreds of destination screen scripts could be created to
access all sorts of System i 5250 programs, providing that they all have a simple
CALL interface.

Is an SJP really that simple in a real application?

Probably not. Often the programs being called required simple (and sometimes
complex) parameters to be passed to them and amongst them.

However, in this style of application design, groups of programs usually fall into
large application groups that share a common parameter protocol.

By adding an REQUEST_TYPE (say) field to the information exchanged
between RAMP scripts you can easily accommodate different program
parameter protocols along these lines (logic is in pseudo code):

WRITE and READ the 5250 screen containing PGMNAME and
REQUEST_TYPE

DOWHILE (REQUEST_TYPE not equal to "SIGNOFF")

CASE of REQUEST_TYPE

WHEN = "CALLP1" CALL PGM_NAME using calling protocol 1 for
parameters

WHEN = "CALLP2" CALL PGM_NAME using calling protocol 2 for
parameters

WHEN = "CALLP3" CALL PGM_NAME using calling protocol 3 for
parameters

<etc>

ENDCASE

WRITE and READ the 5250 screen containing PGMNAME and
REQUEST_TYPE
ENDWHILE

If you are used to RPG and CL programs you might not be aware just how
flexible the IBM i program call interface is. Program parameters are just areas
of memory and passed between programs as pointers. You might not know:

e Parameters do not have to be the exact length the called program defined.
They just need to be as long or longer, which makes sharing and reusing a
small set of parameter variables in a SJP quite simple.

® You can pass a program more parameters than it actually requires. The
extra ones are generally ignored, which means you can have very few actual

CALL commands in your program.

You could directly pass parameter values from you RAMP scripts to the
SJP and pass them into the called programs. You could also get retuned
parameter values back into the script again using this approach. This means
your RAMP scripts can call batch style programs as well.

Can SJP do the other useful things?

It could be designed to do almost anything. For example it can provide a very
flexible and generic interface to IBM i command like this:

WRITE and READ the 5250 screen containing PGMNAME, REQUEST_TYPE
and COMMAND

DOWHILE (REQUEST_TYPE not equal "SIGNOFF")

CASE of REQUEST_TYPE

WHEN = "CMD" CALL QCMDEXEC (COMMAND 256)

WHEN = "CALLP3" CALL PGM_NAME using calling protocol 3 for
parameters

<etc>

Would allow your RAMP scripts to execute a CL. command like this:

NAVIGATE_TO_JUNCTION("SJP");
SETVALUE("REQUEST_TYPE","CMD");
SETVALUE("COMMAND","WRKSBMJOB *JOB")
SENDKEY (KeyEnter);

Or
NAVIGATE_TO_JUNCTION("SJP");

SETVALUE("REQUEST_TYPE","CMD");
SETVALUE("COMMAND","SBMJOB(BATCH) CMD("CALL
PRINTORDER")")

SENDKEY (KeyEnter);

The 5250 screen used to communicate between a RAMP script and a SJP is
really more of program data structure that a real 5250 screen that a user would
ever see.

Does SJP have to be CL (Control Language) program?

No, it could be written in any program language that supports the reading and
writing of 5250 screens such RPG, COBOL, C or RDML (which is really RPG
anyway).

If you have LANSA programs RDML is a good choice because it makes it very
easy to call LANSA processes and functions and allows access to common
inter-program communications mechanism such as the exchange list and data
structures.

What other issues might impact the use on an SJP approach?

One of the main ones relates to user profile and site security requirements.

You would probably not want the SJP program accessible to USERA (say) when
he or she is using a normal 5250 screen.

Additionally most sites insist that USERA executes his/her IBM i job under the
profile USERA so that audit, log and security information shows the "real" user
(although this is disappearing as more and more "threaded" processes serving
many concurrent users, such as HTTP web servers, are used on the System i
server).

So how can a single user profile USERA support these different views of the
world?

e When they sign on to a real 5250 session they get their normal sign-on
menu.

e When they sign on via a RAMP script they get the SJP program as their
main "menu"?

There are several solutions to this problem:

e Use the Program/Procedure option on the IBM i sign-on screen to specify
the SJP program when logging in via a RAMP script. You would probably
add some security logic to the JSP to prevent users doing this through a real
5250 interface (see point 2).

e If you use a common menu program you could alter it to detect that it is
being called from a RAMP script and then call the SJP program. Equally you
could display the common menu initially and use a special "hidden" menu
option to call the JSP program. The JSP program could confirm that it is
being accessed by a RAMP script by conducting, for example, an encrypted
exchange with the RAMP script that is impossible for a real human user to
perform.

e RAMP scripts could sign on initially as a generic "USERX" whose initial
program is the SJP program. The SJP program then presents a screen asking
for the real user profile and password, which the RAMP logon script fills in
and sends back. An IBM API is then called to change the current job's user
profile from generic USERX to the real user. Again an encrypted exchange
that is impossible for a real user could be used to confirm access is from a
RAMP script.

Using HIDE_ CURRENT_FORM to manage access to command
handler tabs

In this scenario a RAMP application has been created over an order processing
system.

Imagine that some of the command handler tabs (and their underlying 5250
destination scripts) need to prevent users from performing actions on cancelled
or completed orders.

Step 1 - Put some sort of "Code" or "Status" column into every
instance list entry

Here field #ORDSTATUS is mapped into instance list column Acolumn9().

Imagine it contains values "CAN" (cancelled), "OPN" (Open), "WIP" (Being
worked on) or "COM" (completed)

Invoke Method(#avListManager.AddtoList) Visualid1(#OrdNo)
Visualid2(#CustlName) Akey1(#OrderNumber) AColumn9(#ORDSTATUS)

Note: AColumn9() may or may not be shown to the user as desired.

Step 2 - Put checking code into the appropriate INVOKE scripts

Here the INVOKE script for a 5250 screen that allows an order to be modified
has had a check added to stop people from trying to display cancelled or
completed orders

/* Get the order status from additional column 9 in the current order instance list
entry */

var ORDSTATUS = objListManager.AColumn9[0];

/* If the order is cancelled or closed, prevent the 5250 screen from being
displayed, and show a message as to why */

if (ORDSTATUS == "CAN") || (ORDSTATUS == "COM"))

{
HIDE_CURRENT_FORM("Sorry, but you are not allowed to display this

order because it is cancelled or completed.");
return;

}

/* If we reach here then it's okay to proceed to the order display screen */
NAVIGATE_TO_JUNCTION("OrderMainMenu");

<etc>
<etc>

The HIDE_ CURRENT_FORM("message") function causes the current 5250
screen being displayed on the command tab to be hidden and the message
"Sorry, but you are not allowed to display this order because it is cancelled or
completed." to appear in the center of the tab instead.

The content of AColumn9 (ie: "CAN", "OPN", "WIP", "COM") could be used
anywhere in INVOKE or BUTTON scripts to limit or control user activities.

Multilingual RAMP Applications

Strings
Refer to the ADD_STRING Function and the STRING Function.

The captions show on RAMP buttons can be changed to be multilingual using
the OVERRIDE_KEY_CAPTION_SCREEN Function and
OVERRIDE_KEY_CAPTION_ALL Function.

Troubleshooting

Error Messages

An unexpected database error has occurred
TCP/IP timeout has occurred
TCP/IP host was not found

The connection to <newlook server name> has not been
defined

Script cannot be generated at this time
xXxxxxX is an orphan script and should be deleted

Error running RAMP in end-user mode (UF_EXEC) but
not in design mode (UF_DESGN)

Problems

When recording;:
newlook cannot be started in the RAMP Window
Keystroke is ignored

RAMP does not recognise the name of forms that I have
defined recently or any other newlook definition changes

RAMP Choreographer does not recognize a screen that has
a name in newlook Designer

When executing RAMP applications:

Navigation is Incorrect, but there is no error message
Strange behavior in scripts

Screen does not react when selection is changed in instance
list

A Screen is not recognized

When scripting:
Subfile accessor only reads the first page

An unexpected database error has occurred

An newlook database error is displayed:

newlook g|
'E an unexpected database error has occured,
Zause: Unable to add screen P3 record,
Diatabase error: Unable ko write ko database.

Function cungadd returned rc=-3 (Mo more disk space)

Ensure the repository is walid by running Chksid, exe.

After the error you cannot run the Framework.

What does this error mean?
Some part of your system is corrupted.

Solution

First run the newlook SID file cleanup program CHKSID.exe with the -r
parameter.

Then Merge Shipped Macros into newlook again.

xxxxxxXx is an orphan script and should be deleted

A RAMP warning message is displayed saying that a script is an orphan script
and should be deleted.

What does the message mean?

e [t means the script is not used by any destination, junction or special
screen.

Since the script is not used, it should be deleted.

This message does not impact the operation of RAMP, it's just a warning.

If you get a lot of these warnings, it is likely to be a misunderstanding
about use of the merge tool in a multi-developer environment.

How do you delete a script if you get this message?
e Start the RAMP tools

e Expand the script tree node and locate the script.

e Select the script and press the Delete button.

e Watch out for duplicated script names (this happens in multi-developer
environment). Make sure you have the right script.

How can you get an orphan script?

e The most likely way is by using the merge tool to merge in a brand new
script all by itself without merging in the parent destination, junction or
special screen as well.

When would you use the merge tool to just merge in a single

script without also merging in its parent destination, junction or

special screens as well?

e Normally you would only do this when you have previously merged in the
parent object and its associated scripts and are just wanting to merge in a

single updated script. You should never do this on an initial merge or you risk
creating orphan script(s).

How should you approach merging RAMP screens and their
associated scripts produced by multiple developers?

Assuming that the high level Framework design objects, that is applications,
business objects, commands and command handlers (tabs) have been set up by
the master designer and all developers are working from the same model (that is
the developers just define the RAMP screens and scripts and then link them up
to the pre-defined command handler tabs):

e The sender should add the screens that they have produced to a merge list.
This should automatically include the associated scripts.

e The sender should also add to the same merge list all the command
handler(s) that have been modified by being linked up with RAMP
destination screens.

e The receiver should merge everything into the master Framework. The
command handlers should be handled as updates/replacements and the
RAMP objects should be new objects. In no case should new GUIDs be
assigned.

How can you get scripts with the same name?

In a multi-developer environment if two developers create scripts, you may end
up with two scripts named for example INVOKE_SCRIPT_16.

If the work of these developers is merged together, this situation may be
confusing to the developers, but it is not confusing to RAMP because to RAMP
the script name is just a caption. Internally RAMP recognizes and executes
scripts by their unique GUID.

Developers can change the default script names to avoid this confusion.

Navigation is Incorrect, but there is no error message

Navigation produces no error but it doesn't do what it should.

When does this problem happen?

This can happen when a field in a RAMP screen which is required for
navigation has not been given a name using newlook Designer and a script is
generated using RAMP's tracking facility.

This is because scripts produced by RAMP tracking ignore actions taken in
unnamed fields.

Solution

Use newlook Designer to give fields you intend to use in the navigation a name.

When the field has a name, make sure to run the navigation again so that the
tracking facility can detect it and use it in the script.

Keystroke is ignored
The keystroke is ignored when recording screens.

When does this problem happen?

This happens when one and the same screen is used for both display and edit.
The screen has the same name in newlook.

When the key is pressed, RAMP detects that the screen arriving is the one
currently showing because it has the same name and ignores it so the keystroke
is lost.

Solution

The solution is to make display and edit two different screens, in other words
identify them and name them as two different screens using the newlook
Designer. One with the fields as output (display) and another one with the fields
input capable.

RAMP does not recognise the name of forms that I have defined
recently or any other newlook definition changes

When does this problem happen?

This happens when newlook is not aware of the changes.

Solution
e Check that the form object is named when in newlook designer mode.

e Check that the name of the form object (when in newlook designer mode)
does not have any trailing spaces

e [f this happens on a RAMP web development PC that has downloaded a
newlook deployment package from a RAMP website recently, it could be that
the RAMP choreographer (the newlook activeX) looking at the .sid file from
the downloaded package. This will be different than the local sid file that
holds the newlook screen definitions that you have made since the package
was created. RAMP should not be tested on development PCs.

The connection to <newlook server name> has not been defined

Connection fails with following error:

newlook

'E The connection MiServer has not been defined.

Cause

In the Framework server definitions there is a server of type newlook with name
<server name> without IP address or Port fields defined, but there is no session
with the name is defined to newlook.

If you specify a newlook server in the Framework, but leave the IP address and
port fields blank, the Framework assumes that there is a permanent connection
with the corresponding name defined in newlook.

Solution

Option 1:

If you want to define a permanent connection in newlook:

° Start newlook 8.0.

e Click on the Session menu and select Connect. The connect dialog shows
all the defined connections.

e Use the newlook connection wizard to define a new connection using the
name you have used in the Framework server definitions.

For more information see Verify newlook Installation.

Option 2:
If you want to change the Server Name of the server definition to an existing
newlook connection in the Framework:

e Display the Servers tab in the Framework

e Locate the server with name <server name> and change the name.

Server Tvpe: |Newlu:u:uk :j

Server Mame: |N|Server

Option 3:

If you do not want to define a permanent connection in newlook, fill in the IP
address and Port Number in the Framework server details for the newlook
server:

e Display the Servers tab in the Framework
° Locate the server with name <server name>

e Fill in the IP Address and Port Number fields.
For more information refer to Configure RAMP.

Script cannot be generated at this time

Script generation fails with an error saying the script cannot be generated at this
time:

Solution

Check when the screen was defined in Newlook that:

e The Name doesn't exceed 265 characters.

e There are no trailing spaces in the name.

Is recommended that only characters A - Z are used and blanks or spaces are not
used anywhere in the name.

Also note that screen names are case sensitive.

TCP/IP timeout has occurred
Connection fails with following error:

Run-Time Error

Z

The falloswing run-time error has occured;

b acro; WF_bacro
Action: Connect [Line 3]
Error R100E:

10060 - & TCRAR timeout haz occuned.

Chooze one of the following;
" Continue running the macro

Cause

For the Server Type newlook in the Framework server definition, the IP address

or the port number or both are incorrect.

Solution

In the Framework Server Details tab, locate the definition of the newlook server
you are trying to connect to. Make sure the IP address and the port number are

correct.

Note that if you specify a Server which has a connection defined in newlook,
you can leave the IP address and port number fields blank in the Framework

Server Details tab.

For more information refer to Configure RAMP.

TCP/IP host was not found

Connection fails with following error:

Run-Time Error @

@ The falloswing run-time error has occured;
b acro; WF_bacro
Action: Connect [Line 3]
Error R100E:
11007 - The TCRAR host was not found,

Chooze one of the following;
" Continue running the macro

Cause

An invalid host name has been specified in the IP address for the newlook
server in the Framework Server Details tab.

The IP address can be specified in the form nnn.nnn.nnn.nnn or as a host name.
This error points to an incorrect host name.

Solution

In the Framework Server Details tab, locate the server of type newlook that you
are trying to connect to. Make sure the IP address contains a valid host name.

Note that if you specify a Server which has a connection defined in newlook,
you can leave the IP address and port number fields blank in the Framework
Server Details tab.

For more information refer to Configure RAMP.

Screen does not react when selection is changed in instance list

When an entry is selected in the instance list, the RAMP screen does not reflect
this change and instead shows the data for the entry that was first selected.

When does this problem happen?

You recorded the invoke script of the destination screen, but you have not
changed the value parameter of the SETVALUE Function from the recorded
hardcoded value to a substitution value.

Another possible cause is that the value in the SETVALUE function has been
enclosed in quotes in which case it is interpreted as a literal, not as a substitution
value.

For example this example is wrong:

SETVALUE("UtxtMachine","objListManager.AKey1[0]");

Solution

Make the value parameter of the SETVALUE function a substitution value and
make sure it is not surrounded by quotes:

SETVALUE("UtxtMachine", objListManager.AKey1[0]);

For more information:

e Watch the tutorial movie Link the Selected Employee in the Instance List
with the Display Employee Screen - 4 minutes

e See the topic Interacting with Instance Lists in Scripts

e See the topic Replacing Hardcoded Employee Number with Current
Instance List Entry.

A Screen is not recognized

The Framework fails to recognise a screen, this may happen always or
occasionally.

The Trace for the screen looks like this:

VF_CHO006 Screen named has arrived and is being processed

VF_CHO006 Screen named in a form not defined to the framework.
VF_CHO006 Signal LockFramework is being queued.

VF_CHO06 Signal LockFramework has been queued.

VF_CHO006 Screen named is not a destination do function keys will be left
unchanged.

Solution
Check that:

e The form object is named in newlook design mode.

e The screen ID area covers only static elements in newlook Identify mode.
In other words, the ID area must not cover field data, browselist data, system
date/time, System i machine name, User profile or other data that can change.

newlook cannot be started in the RAMP Window

newlook client (designer) works in its own window, but not inside the RAMP
window.

When does this problem happen?

The most likely cause is that you do not have a Standard Edition or liteclient
newlook licence on the server.

Solution
Check Licensing Requirements to make sure you have the correct licences.

Subfile accessor only reads the first page

If you are using the RAMP subfile accessor, and you believe it should scroll
through all the pages in the subfile looking for a row, but it never seems to read
beyond the first page,

Solution
Check that:
e PageUp and PageDown function keys are working

e newlook recognises the subfile marker. Check this by going into newlook
Identify, and then select the area containing the plus (+) sign that indicates

there are more subfile entries, and ensure that this is ticked as SubFile
Marker.

Error running RAMP in end-user mode (UF_EXEC) but not in
design mode (UF_DESGN)

You can run your RAMP application in Design mode but you get an error like

2

i ! E Anveror has occured in the script on thiz page.

Lire: 1
Char 1
Eror: Object expected
Code: {

UBLE files /4T N Program Filesh LA 5454 WiIkGS
e LAMSEaA radhesecutelyr sl 20 hHim

[ro wou want bo continue rnning scrpts on this page’s

Why does this problem happen?

The main difference between running RAMP in design mode and running it
end-user mode is the way javascript is executed.

In design mode, javascript is reloaded each time the Framework is saved if there
has been a change affecting RAMP. Each time the javascript is reloaded, the
object properties are re-set. And each time the Framework is saved, if RAMP is
enabled and has changed, a set of javascript files called <system
prefix>Nodes_nnnnnnnnnnnnnnnnnn.js are generated, one for each session
where the nnnnnnnnnnnnnnnn part is the session identifier.

These files are the ones used in end user mode. They represent the screens and
scripts written out as javascript at the time the Framework was saved.

In end-user mode, these files are loaded once for each session. Each one of the
javascript functions in the file is called only once during session start up. This
method speeds up the start up time of RAMP in end-user mode considerably as
opposed to design time.

When RAMP is executed without errors in design mode but with errors like the
above in end-user mode, the prime suspect is a syntax error in the user-defined
scripts (be it navigation scripts, invoke, etc).

Solution

To find out what line of javascript has the error, you can simply load the file into
a basic .HTM file.

For example create a file called test.htm with content like this:

<html>

<head>

<title>Untitled Page</title>

<script language="javascript" type="text/javascript" src="<your nodes.js file
here>"></script>

</head>

<body>

Hello World

</body>

</html>

Specify the name of your nodes.js file in the src= attribuite of the <script> tag
and put Test.htm in the same folder as the javascript.

Using Internet Explorer, check your Advanced settings tab under Tools/Internet
options to verify you have the "Display notification about about every script
error” checked. You can then run Test.htm and you should get a script error
showing the line number where the error has occured. Tip: the error is most
likely to be inside a javascript function called something like this:

function __UF__nnnnnnnnnnnnnnnnnnnnnnnn(objScriptInstance)

which makes it a bit hard to correlate it with the actual script name. To find out
exactly what this script is, do a Find in the same file of the nnnnnnnnnnnnnnnn
part of the function name. You should then locate the lines of javascript that
define that script as an object and that will have the user name (for example
0S.uScriptUserName="NAVIGATE_SCRIPT_13";)

Edit the script using the RAMP tools, correct the error and save.

RAMP Choreographer does not recognize a screen that has a
name in newlook Designer
Using the choreographer in the RAMP tools, I navigate to a screen that I had

previously named using Newlook Designer. The choreographer doesn't
recognise it and shows a message saying Unknown Form.

If I start the Newlook windows client and navigate to that screen, I can verify
that the screen has indeed been given a name.

Why does this problem happen?

Most likely you have executed a RAMP application that was deployed using a
cab file. In such cases, the downloaded Newlook ActiveX control is registered
in your machine as the cab file is automatically downloaded. Thereafter, you
would be running a different newlook with a different SID file than the one you
were working with before.

When the downloaded newlook version is different than the Newlook version
that was installed, you can easily verify this anomaly:

° Locate a file called nl_load_test.htm in the partition execute folder.
Double click on it and show the Help/About.

° Start the Newlook windows client from the Newlook folder and show the
Help/About.

Solution
If the versions are different;

e Uninstall Newlook (a shortcut to this step is to run nlclean.exe and answer
Y to all questions).

° Reboot

° Reinstall Newlook

Remember no tot test VLF.RAMP-WEB deployments onto your development
PC!

Frequently Asked Questions

How is my newlook license type determined when starting newlook?
How can I use web browser windows from RAMP scripts?

How can I get the message from the bottom of the current 5250 screen into my
RAMP script?

How do I handle RA (Auto Record Advance) fields?

Why does my newlook session have a message "Press SPACEBAR or ENTER
to activate and use this control"?

What is the difference between newlook Designer and newlook Emulator
Session?

Why should the F12=Cancel and F3=EXxit buttons and function keys be disabled
on every 5250 screen?

I have defined a screen as a junction, but it should be destination. How do I
change it?

Do I have to identify and script every 5250 screen in my application to
modernize it?

How can I get the RAMP tool to assign a fixed session?

How do I make my scripts work in multiple partitions?

How can I change the background color of RAMP screens?

How can I ~suppress the action of Alt + F4 inside Newlook?

How is my newlook license type determined when starting
newlook?

In RAMP Tools

If any of the newlook server definitions in your Framework has the Use
liteclient license option checked, RAMP tools start newlook requesting that a
liteclient license type is used. Otherwise newlook will use a default license

type.

When executing Windows Applications

When newlook is started it is associated with a server defined in your
Framework.

If the server has the Use liteclient license option checked, a liteclient license
type will be used. Otherwise newlook will use a default license type.

When executing Web Browser Applications

When the HTML and JavaScript flies associated with your Framework are
saved a default license type is determined.

If any of the newlook server definitions in your Framework has the Use
liteclient license option checked, the default will be to use a liteclient type of
newlook license. Otherwise a default newlook license will be used.

You can override this default by adding +NLLiteClient=TRUE or
+NLLiteClient=FALSE to the URL you use to start your web browser
application. For more information see Web Application Start Options in the
Framework guide.

There may be exceptions

If a developer modifies the VF_UM703.HTM (RAMP tools) or
VF_SY120.HTM (RAMP Execution) start up pages they may unconditionally
force a newlook license type to be used in all situations.

javascript:void(0);openCHM('Lansa048.chm::/lansa048_3965.htm',’lansa’);
javascript:void(0);openCHM('Lansa048.chm::/lansa048_0900.htm',’lansa’);

How can I use web browser windows from RAMP scripts?

Here's a really simple web browser form that accepts three input fields as
arguments, displays them, allows them to be altered, then returns the altered
values back to the calling RAMP script:

<HTML>
<HEAD>
</HEAD>
<BODY onload="BODY_Load();" onunload="BODY_UnLoad();" >
<script>
function BODY_Load() /* Map arguments passed in to web form fields */
{
FieldA.value = window.dialogArguments[0];
FieldB.value = window.dialogArguments[1];
FieldC.value = window.dialogArguments[2];

}
function BODY_UnLoad() /* Map web form fields into return values */

{
var arrayRets = new Array();
arrayRets[0] = FieldA.value;
arrayRets[1] = FieldB.value;
arrayRets[2] = FieldC.value;
window.returnValue = arrayRets;
}
function OK_Click() /* Handle OK button by closing the web form */
{
window.close();
}
</script>
<P>Input details and click OK"

<input id="FieldA" type="text">

<input id="FieldB" type="text">

<input id="FieldC" type="text">

<input id="Button1" type="button" value=" OK " onclick="OK_Click();">
</BODY>
</HTML>

It looks like this when displayed:

A - Web Page Dialog [X]
Input details and click OK"
SMITHS]|

PETER S

|?2 Mullane Avenue,

ok |

This is the RAMP BUTTON script that is used to display the web browser form.
It displays the form when the user hits F5, taking the fields SURNAME,
GIVENAME and ADDRESS1 from the 5250 form and then mapping them
back:

switch (objScriptInstance.FunctionKeyUsed)
{
case KeyEnter:
SENDKEY (KeyEnter);
break;
case KeyF5:
{
var arrayArgs = new Array();
arrayArgs[0] = GETVALUE("SURNAME");
arrayArgs[1] = GETVALUE("GIVENAME");
arrayArgs[2] = GETVALUE("ADDRESS1");
arrayRets =
window.showModalDialog("Example.htm",arrayArgs," dialogHeight:155px
SETVALUE("SURNAME",arrayRets[0]);
SETVALUE("GIVENAME",arrayRets[1]);
SETVALUE("ADDRESS1",arrayRets|2]);
delete(arrayArgs);
delete(arrayRets);
}
break;
default:
SENDKEY (objScriptInstance.FunctionKeyUsed);
break;

This is just a simple example of some of the things you can do (please note that
no warranty about any of this is expressed or implied).

How can I get the message from the bottom of the current 5250
screen into my RAMP script?

Use a script like this:

{
var strMessage = GETVALUE("ActiveForm.Message"); /* Get the

message into JavaScript variable strMessage */
if (strMessage !="") ALERT_MESSAGE(strMessage); /* If a message
was retrieved, display it in a message box */

}

How do I handle RA (Auto Record Advance) fields?

Some 5250 applications may use fields with an RA input attribute (Auto
Record Advance). Programs that display these fields automatically press Enter
when the last digit or character is entered by the user.

The RAMP choreographer cannot automatically generate a script for this
situation based on your keystrokes. Instead, it will generate lines like:

/* Set up data fields on form xxx */

SETVALUE("utxtMenuOption","");

/* Send the key required to navigate to xxx */

You will need to edit the generated script, and specify both the value and the
Enter key press, like this:

/* Set up data fields on form xxx */
SETVALUE("utxtMenuOption","2");
/* Send the key required to navigate to xxx */

SENDKEY (KeyEnter);

Why does my newlook session have a message "Press
SPACEBAR or ENTER to activate and use this control"?

|Press SPACEBAR or ENTER toactivate and use this control |

This message is presented by a change to the handling of Active-X controls that
Microsoft introduced with Service Pack 2. They have since rescinded this patch
because of the disruption it caused to existing applications. Please refer to
http://support.microsoft.com/?kbid=917425 for more details.

http://support.microsoft.com/?kbid=917425

What is the difference between newlook Designer and newlook
Emulator Session?

You use the newlook Designer to identify all the screens in the application being
modernized by giving them a unique name. You start the Designer by clicking
the newlook Designer button in the RAMP window.

You use the newlook emulator session(which is located in the top left corner of
the RAMP window) to define your screens to the Framework and to trace
navigation between the screens. To start the emulator click on the message
newlook has not been started in the message area.

Why should the F12=Cancel and F3=Exit buttons and function
keys be disabled on every 5250 screen?

Have a think about how you navigate a Windows application.

I have defined a screen as a junction, but it should be destination.
How do I change it?
Delete the screen definition in the 5250 screen list on the bottom left of the

RAMP window. The screen will appear as undefined in the Tracking
Information area.

Do I have to identify and script every 5250 screen in my
application to modernize it?

No.

Typically some areas of a 5250 application are rarely used or used by very few
users.

The degree of modernization you apply to an application area should be related
to the area's degree of exposure to end users and to the amount of benefit that
they would gain if it were completely modernized.

Modernizing a Single Screen to Provide Access to a Subsystem

In this example a 5250 menu or work with screen named uCodeTableMaint
manages access to 47 different 5250 screens that handle System Code Table
Maintenance (for example classic code and parameter tables such as states,
companies, currencies, interest rates, etc that are used to define and control an
application).

uCodeTableMaint could be visualized as an "application subsystem" like this:

uCodeTableMaint

Code Table Sub-System

Because this application area does not need to be completely modernized, the
most rapid way to modernize it is to create a single RAMP screen that provides
access to the other screens.

To do this:

e (reate a business object called Code Tables and associate with an

application.
Give it a single RAMP screen (or tab) called Maintain (say). Make sure

this is an object level command and that it is the default command so that it is

executed automatically every time you click on it.
Identify and define the 5250 work with screen uCodeTableMaint to the

Framework as a destination screen and associate it with the Maintain screen.

When the user clicks on Code Tables in the Framework application they are
immediately navigated to the uCodeTableMaint 5250 screen.

It occupies the entire right hand side of the windows form like this:

System

Bl Edt Wew Actors Took Meb (Fromework) [Administrabon)
9 sen o [Caledator
Code Tables I
[On Tool Bar | e Tabhes
W Sysiem
% Code Tables

i 1) Demgy Apphostion
¥ -\-._ft Programming Techniques

The 5250 uCodeTableMaint soreen appears here when you chek on the Code Tables business abject

[maces)__esir |

[ormwrpetsts | [Program Codng assstant | [images paeste |

locel | BMG | DOWSER | 3713006 | 15:00 igh

Once the user has displayed the uCodeTableMaint screen they can then navigate
around in the other 47 associated screens in the normal manner:

Ble Edt Yew Actors Tooks Help (Fromework) (| Administrabion)

K Snof [Cokculstor
Code Tables
| O Tosd B | "4 Cocde Tables
= g System
% Code Tables vCodeTableMaint

- oy

T

-

Code Table Sub-System

| Sowbetsls | Program Coding Assistant | | Images Palette |

[Messages | Ready lecsl | B9G | poOusER | 3fi3s [1500 i)

This is a minimal modernization of the whole uCodeTableMaint managed
subsystem.

Only the 5250 screen uCodeTableMaint needed to be defined and scripted into
the framework. The other 47 screens did not have to be identified nor scripted in
any way.

How can I get the RAMP tool to assign a fixed session?

I want to assign a fixed session, such as Session A, for my destination screen in
the Destination Screen Details. How can I do this?

You have to select the command handler so that the line it is on goes blue, not
just tick the checkbox. Then you associate a session with it.

This may seem unusual, but sometimes multiple command handlers are
associated with a single destination form and therefore you have to actually
indicate which one you want to change the session for.

How do I make my scripts work in multiple partitions?

Replace any hard-coded references to a partition in your scripts with this piece
of code:

objFramework.Partition

You can enter the code Using the Scripting Pop-up Menu: choose Current
Framework and then partition.

How can I change the background color of RAMP screens?

To change the RAMP background color, edit the visual style called UF_VS006
and change the NormBackColor of the Caption and Value to Buttonface.
Recompile your equivalent of UF_SYSTM, to pick up the change. The visual
lansa component that displays RAMP screens will then pick up the current
theme.

To change the theme within the newlook area of a RAMP screen, ensure that the
shipped VF_XP_2003*.nlg and VF_XP_2007*.nlg files are present in the
looksoftware directory and from within newlook, choose the matching scheme
in --> Tools --> Settings --> Display --> Appearance, Settings --> Scheme and

apply.

How can I suppress the action of Alt + F4 inside Newlook?

Pressing Alt + F4 when focused in the RAMP-NL command handler causes the
Newlook session to terminate (the user is prompted with the "do you wish to
exit" pop-up). The Framework however remains active.

You can disable the Alt+F4 key by doing the following:
1. Create a macro named Disable Alt+F4 Key (or name it whatever you want).

2. Set the Action on row 1 to be CancelEvent.
3. Then choose File|Properties|Menu from the Macro Editor.

4. Then assign the Alt+F4 key as the shortcut key for this macro and your
problem will be solved.

@& [H & (b Disable Alt+F4 Key

File Edit Debug Bun Tool: *Window Help

U

I|*|

» I m FE[E

v & B <2 @b A &S

Label | Condition ™

My % Erg Context: |
I

1
2

ZancelEvent

Save As

| zeneral | Summary | Menu

IUse these options to specify how the macro appears in the

niewlook menu.
Menu
B Group | | = |
Icon | | E]

[] show this macra in the menu For smartclient users
[] shows this macra in the menu For newlook users

[] shows this macro in the menu For centric users

Kevboard
Assign a shortouk key For this macro

key | Al+Fs

[Ok,] [Cancel

Help

| e T I 1 L 6 I L 5 [

JE1]

Movie Index

Conceptual
What is RAMP? - 9 minutes

5250 Application before using RAMP -
2 minutes

5250 Application after using RAMP - 4
minutes

Stage 1: Creating a Modernization
Framework - 8 minutes

Stage 2: Snapping the 5250
Application in the Framework - 11
minutes

Stage 3: Enrichment and Re-
engineering - 5 minutes

Tutorial: Modernizing Complete Application

Application before Modernization - 2.5, Movie Summary
minutes

Modernized Application - 2 minutes Movie Summary
Identify your business objects - 1 Movie Summary
minute

Create a prototype of your application - Movie Summary
3 minutes

Create a filter and snap it in - 4 minutes Movie Summary

Make a plan of the 5250 screens you Movie Summary
will need to use - 2.5 minutes

Identify the relevant screens and fields | Movie Summary

to newlook - 4 minutes

Define the screens to the VLF and
build a navigation script (New
Employee) - 7.5 minutes

Define the screens to the VLF and
build a navigation script (Employee
Details) - 5 minutes

Link the Selected Employee in the
Instance List with the Display
Employee Screen - 4 minutes

Make Function Keys Go Somewhere
Different - 4.5 minutes

Handle Unexpected Stops in
Navigation and Messages - 3 minutes

Update the Instance List from 5250
Screens - 4 minutes

Movie Summary

Movie Summary

Movie Summary

Movie Summary

Movie Summary

Movie Summary

Tutorial: Modernizing Application Navigation

Modernized Navigation - 5 minutes

Create a Prototype of Your Application
- 9.5 minutes

Identify Your 5250 Entry Point Screens
Using newlook - 13 minutes

Script the Screens and Snap them in
the Framework - 16 minutes

Scripting: General

Introduction to Scripts - 6.5 minutes

Movie Summary

Movie Summary

Movie Summary

Movie Summary

Movie Summary

Reading, Writing and Storing Values in
Scripts - 4 minutes

Debug and Diagnostics - 2.5 minutes

Scripting: Subfiles/Browselists

Not Using a Datagrid Control - 1
minute

Using Subfile Accessor - 5 minutes

Subfile Direct Access - 2 minutes

Movie Summary

Movie Summary

Movie Summary

Movie Summary

Movie Summary

	RAMP-NL Guide
	How to Get Started with RAMP
	Prerequisite Skills
	What is RAMP? - 9 minutes
	5250 Application before using RAMP - 2 minutes
	5250 Application after using RAMP - 4 minutes
	Stage 1: Creating a Modernization Framework - 8 minutes
	Stage 2: Snapping the 5250 Application in the Framework - 11 minutes
	Stage 3: Enrichment and Re-engineering - 5 minutes
	What's New
	New features in EPC 831 Version of RAMP
	Dynamic Naming of Newlook Screens and Fields
	Using Dynamic Naming
	Dynamic Naming Dialog Details
	Frequently Asked Questions
	Backing Up Screen Definitions
	New IIPs for Windows
	New features in EPC 826 Version of RAMP
	New features in EPC 804 Version of RAMP
	New features in EPC 793 Version of RAMP
	New features in EPC 785 Version of RAMP
	Licensing Requirements
	Complete Licensing Details
	More About Newlook Licensing
	Installation and Configuration
	Installation
	Install RAMP
	Install newlook
	Configuration
	Verify newlook Installation
	Verify Internet Explorer Security Settings
	Configure newlook
	Merge Shipped Macros into newlook
	VF_XP.nlg
	VF_MACRO.sid
	Configure newlook for a Windows Look and Feel
	Change the Scheme
	Change the Background
	Ensure newlook uses the Windows Themes
	Suppress newlook Sounds
	Configure RAMP
	Specify Server Details
	Set up Super-Server Session
	Optionally Set up Framework Users and Security
	Optionally Configure newlook User Profile and Password in the Framework
	Starting the Framework on the Web
	When Many Developers Work on the Same Application
	Handle Multiple Framework Versions
	Multiple Developers Using newlook
	Script Naming Convention
	Starting RAMP
	Start LANSA
	Start the Framework
	Start RAMP
	Start newlook
	Start the Instant Prototyping Assistant
	Start the Program Coding Assistant
	Concepts
	Steps Involved in Using RAMP
	Framework Window
	RAMP Window
	Message Area
	Screen Tracking Area
	newlook Emulator Session
	Screen and Script List
	Organizing Screens and Scripts
	Details Area
	Session Details
	Hide screen titles in RAMP Screens
	Two Ways to Hide the Title
	Destination Screen Details
	Script Details
	Types of Screens
	Destination Screen
	Junction Screen
	Special Screen
	OBJECT-ACTION User Interfaces
	Modernization Issues
	The most important and complex 5250 program in an application can become a modernization trap
	How long will it take to RAMP my application?
	Tutorials
	Modernizing a Complete Application
	Application before Modernization - 2.5 minutes
	Movie Summary
	Modernized Application - 2 minutes
	Movie Summary
	Identify your business objects - 1 minute
	Movie Summary
	Create a prototype of your application - 3 minutes
	Movie Summary
	Create a filter and snap it in - 4 minutes
	Movie Summary
	Make a plan of the 5250 screens you will need to use - 2.5 minutes
	Movie Summary
	Identify the relevant screens and fields to newlook - 4 minutes
	Movie Summary
	Define the screens to the VLF and build a navigation script (New Employee) - 7.5 minutes
	Movie Summary
	Define the screens to the VLF and build a navigation script (Employee Details) - 5 minutes
	Movie Summary
	Link the Selected Employee in the Instance List with the Display Employee Screen - 4 minutes
	Movie Summary
	Make Function Keys Go Somewhere Different - 4.5 minutes
	Movie Summary
	Handle Unexpected Stops in Navigation and Messages - 3 minutes
	Movie Summary
	Update the Instance List from 5250 Screens - 4 minutes
	Movie Summary
	Modernizing Application Navigation
	Modernized Navigation - 5 minutes
	Movie Summary
	Create a Prototype of Your Application - 9.5 minutes
	Movie Summary
	Identify Your 5250 Entry Point Screens Using newlook - 13 minutes
	Movie Summary
	Script the Screens and Snap them in the Framework - 16 minutes
	Movie Summary
	Scripting Tutorials
	Scripting
	Learning
	Introduction to Scripts - 6.5 minutes
	Movie Summary
	Types of Scripts in RAMP
	Scripts in a Classic Details Display
	Invoke Script
	Return Script
	Button Script
	Navigate Script
	Eliminate Script
	Generate Scripts Automatically
	Reading, Writing and Storing Values in Scripts - 4 minutes
	Movie Summary
	Javascript Essentials
	External JavaScript Documentation
	Alert()
	Converting Numbers to Strings
	Converting String to Numbers
	String Manipulation Functions
	Is This Variable Number or String?
	Using the objGlobal Object
	Getting Organized
	Using objGlobal to pass optional parameters
	Using objGlobal to pass optional parameters to an INVOKE script
	Using objGlobal to define commonly used functions
	Using
	Interacting with Instance Lists in Scripts
	The List Manager
	Visual and Programmatic Identifiers
	Working with All Selected Entries
	Using the Scripting Pop-up Menu
	Replacing Hardcoded User Name with Current Framework User
	Replacing Hardcoded Employee Number with Current Instance List Entry
	Adding Your Own Options to the Scripting Pop-Up Menu
	Updating the Instance List from RAMP screens
	Filter Code which Automatically Handles Changes to Instance List
	Subfiles/Browselists
	Not Using a Datagrid Control - 1 minute
	Movie Summary
	Using Subfile Accessor - 5 minutes
	Movie Summary
	Subfile Direct Access - 2 minutes
	Movie Summary
	Locating and Selecting an Entry in a System i Subfile/LANSA Browselist
	Script for Locating an Entry in a Subfile/Browselist
	Script for Locating and Selecting an Entry in a Browselist or Subfile by Positioning the Cursor
	Script for Locating an Entry when no Positioning is Available
	Script for Locating an Entry when no Positioning is Available and the List has more than One Page
	Handling Pop-Ups
	During Navigation
	Pop-up as Destination
	When Triggered by Button Click or Function Key Press
	Forcing a Pop-Up to Front
	How to Turn Pop-Ups into Full Screens
	Script Functions
	SETFOCUS Function
	GETFOCUS Function
	MAKESUBFILEINTOSTRING Function
	COPYTOCLIPBOARD Function
	FATAL_MESSAGE_TYPE Function
	SET_UNKNOWN_LOCKING Function
	SETKEYENABLED Function
	SETVALUE Function
	GETVALUE Function
	SENDKEY Function
	CHECK_CURRENT_FORM Function
	AVCLOSEFORM Function
	HIDE_CURRENT_FORM Function
	CURRENT_FORM Function
	SETCURSOR Function
	ALERT_MESSAGE Function
	CLEAR_MESSAGES Function
	FATAL_MESSAGE Function
	MESSAGE Function
	AVSIGNALEVENT Function
	TRACE Function
	RUNMACRO Function
	NAVIGATE_TO_JUNCTION Function
	HANDLE_PROMPT Function
	NAVIGATE_TO_DESTINATION Function
	NAVIGATE_TO_PREV_DESTINATION Function
	GET_MENU_OPTION_NUMBER Function
	STRIP_LEADING_NUMBERS Function
	ADD_STRING Function
	STRING Function
	OVERRIDE_BUTTONS_UNDEFINED_SCREENS Function
	OVERRIDE_KEY_CAPTION_SCREEN Function
	OVERRIDE_KEY_CAPTION_ALL Function
	AVSAVEVALUE Function
	AVRESTOREAVALUE and AVRESTORENVALUE Function
	SET_LOCK_MESSAGE Function
	ADD_UNKNOWN_FORM_GUESS Function
	FORCE_POPUP_REFRESH Function
	SET_HANDLER_CAPTION Function
	Framework Objects that Scripts Can Refer To
	objGlobal
	objFramework
	objApplication
	objBusinessObject
	objCommand
	objListManager
	objUser
	SUBFILE_ACCESSOR Object
	Function Key Names for SENDKEY Function
	User-defined script functions
	Switching Off Recursion Checking
	Debugging
	Debug and Diagnostics - 2.5 minutes
	Movie Summary
	Common Scripting Errors
	NAVIGATE_TO_JUNCTION request failed
	Unable to display form
	Script with identifier XYZ not found
	Could not complete the operation due to error 80020101
	Object expected
	Strange behavior in scripts
	Your script does not execute at all
	Tracing
	Using ALERT_MESSAGE in Your Scripts
	Screen Wrappers
	When to Use 5250 Screen Wrappers?
	Screen Wrapper Fundamentals
	Events
	RampMessage Event
	RampAvailable Event
	Methods
	MakeRampAvailable Method
	NavigateToScreen Method
	SetValue Method
	GetValue Method
	SendKey Method
	Current_Form Method
	SetCursor Method
	Examples
	Example 1: Show Employee Details.
	Example 2: Show Employee Details and Skills
	Example 3: Show the System i Disk Usage
	Programming Techniques
	Handling a Single Screen which Shows Multiple Modes
	Handling Multi-5250 Screen Data Entry
	Short-circuiting Navigation
	A Command Handler Tab with Many 5250 Destinations
	A User Controlled Command Tab with Many Destinations
	A Program Controlled Command Tab with Many Destinations
	Using this Approach in other Situations
	Advanced Prompting
	Using Prompter Forms
	Are any Examples Provided to Learn More about this Topic?
	A RAMP Design Approach Using a Single Junction Point (SJP)
	How does an SJP work?
	Is an SJP really that simple in a real application?
	Can SJP do the other useful things?
	Does SJP have to be CL (Control Language) program?
	What other issues might impact the use on an SJP approach?
	Using HIDE_CURRENT_FORM to manage access to command handler tabs
	Multilingual RAMP Applications
	Troubleshooting
	An unexpected database error has occurred
	xxxxxxx is an orphan script and should be deleted
	Navigation is Incorrect, but there is no error message
	Keystroke is ignored
	RAMP does not recognise the name of forms that I have defined recently or any other newlook definition changes
	The connection to <newlook server name> has not been defined
	Script cannot be generated at this time
	TCP/IP timeout has occurred
	TCP/IP host was not found
	Screen does not react when selection is changed in instance list
	A Screen is not recognized
	newlook cannot be started in the RAMP Window
	Subfile accessor only reads the first page
	Error running RAMP in end-user mode (UF_EXEC) but not in design mode (UF_DESGN)
	RAMP Choreographer does not recognize a screen that has a name in newlook Designer
	Frequently Asked Questions
	How is my newlook license type determined when starting newlook?
	How can I use web browser windows from RAMP scripts?
	How can I get the message from the bottom of the current 5250 screen into my RAMP script?
	How do I handle RA (Auto Record Advance) fields?
	Why does my newlook session have a message "Press SPACEBAR or ENTER to activate and use this control"?
	What is the difference between newlook Designer and newlook Emulator Session?
	Why should the F12=Cancel and F3=Exit buttons and function keys be disabled on every 5250 screen?
	I have defined a screen as a junction, but it should be destination. How do I change it?
	Do I have to identify and script every 5250 screen in my application to modernize it?
	How can I get the RAMP tool to assign a fixed session?
	How do I make my scripts work in multiple partitions?
	How can I change the background color of RAMP screens?
	How can I suppress the action of Alt + F4 inside Newlook?
	Movie Index

