
Visual	LANSA	Framework	Guide
Visual	LANSA	Framework	Guide
	
Introduction
What's	New
If	You	Want	Your	Project	to	Succeed
Getting	Started
Development	Architecture
Key	Concepts
Building	the	Application
Tutorials
Frequently	Asked	Questions
Framework	Programming
Advanced	Topics
Troubleshooting
Application	Performance
Definitions
Appendix
	
Please	send	your	comments	and	suggestions	to	LANSA	Support	at:
lansasupport@lansa.com.au.
Disclaimer:	While	every	effort	has	been	made	to	ensure	that	the	information	in
this	material	is	accurate,	in	no	event	shall	LANSA	be	liable	for	any	damages
arising	from	its	use.	LANSA	makes	no	warranties,	expressed	or	implied.
Edition	EPC132100
Edition	Date	November	6,	2014
©	LANSA
	
	

mailto:lansasupport@lansa.com.au

Introduction
What	is	the	Visual	LANSA	Framework?
What	Does	It	Look	Like?
Should	You	Use	the	Framework?
Who	Is	It	For?
What	Are	Its	Benefits?

What	is	the	Visual	LANSA	Framework?
The	Framework	is	an	optional	extension	to	LANSA		which	provides	an
application	Framework	for	designers	and	developers.	
You	should	have	a	look	at	the	Framework	if	you	are	new	to	LANSA,	have	just
completed	a	training	course	and	asking	yourself	this	question:
How	do	I	design	and	implement	my	first	Visual	LANSA	or	LANSA	for	the
Web	application?
The	Framework	helps	you	to:	
Prototype You	can	use	the	Framework	to	prototype	commercial	applications

very	rapidly	without	writing	a	single	line	of	code.	Your	executable
prototype	can	be	used	to	communicate	your	intentions	to	end-
users	and	to	other	developers.
	

Design The	Framework	has	an	MS-Outlook	style	user	interface	familiar
to	your	end-users.	Its	application	model	is	simple	and	easy	to
understand.
	

Modernize Optionally	you	can	use	the	RAMP	tools	in	the	Framework	to	help
you	rapidly	modernize	any	existing	System	i	applications	you
might	have.	No	changes	to	your	5250	applications	are	required	to
do	this.

Implement
and	deploy

The	Framework	minimizes	the	amount	of	coding	you	will	have	to
do.	As	each	part	of	your	prototype	application	is	approved	you
simply	snap	it	out	of	the	Framework	and	snap	in	a	real	component
that	you	have	coded.		The	Program	Coding	Assistant	can	be	used
to	automatically	generate	most	of	the	code.
	

Maintain
and
enhance

The	structured	environment	makes	maintaining	and	enhancing	the
application	efficient	and	controlled.
	

A	key	benefit	of	the	Framework	is	that	from	a	single	application	model	it
supports	deployment	to:

1.	 Windows	Rich	(or	Smart)	Client	–	which	is	referred	to	as	VLF.WIN	in
this	guide.		

2.	 Web	Browser	–	referred	to	as	VLF.WEB
3.	 Microsoft	.NET		-	referred	to	as	VLF.NET

A	Framework	can	be	deployed	to	any	or	all	of	these	environments,	in	any
combination.
	

What	Does	It	Look	Like?
This	is	what	Framework	in	Windows	looks	like:

	
The	Web	versions	of	the	Framework	look	almost	identical	to	the	Windows	one.

Should	You	Use	the	Framework?
Consider	using	the	Framework	to:
Develop	commercially	focused,	medium	to	large	integrated	applications
Minimize	learning	curve	and	maximize	early	productivity
Enable	significant	end-user	involvement	during	design
Rapidly	deliver	a	solution
Use	a	single	application	model	for	both	Windows	and	Web
The	Framework	is	an	optional	extension	to	the	Visual	LANSA	and	LANSA	for
the	Web	products.	It	is	not	the	optimal	solution	for	all	types	of	applications
because	it	is	focused	on	providing	rapid	application	development	for	common
commercial	applications.
It	hides	and	abstracts	some	of	Visual	LANSA	and	LANSA	for	the	Web's
flexibility	to	achieve	higher	levels	of	productivity	and	an	improved	learning
curve.
By	using	the	prototyping	facilities	in	the	Framework	you	should	be	able	to
quickly	assess	if	it	is	suitable	for	your	type	of	application.	If	it	is	not,	then
simply	use	Visual	LANSA	and/or	LANSA	for	the	Web	in	the	traditional	manner.
The	Framework	should	not	be	used:
For	specialized	system	tools	or	features.
For	small	or	stand	alone	non-integrated	applications.
For	sites	that	already	have	their	own	application	Framework	or	equivalent.
For	developers	already	very	experienced	in	using	Visual	LANSA	or	LANSA
for	the	Web.
When	building	brochure	style,	B2C	or	publicly	accessible	web	sites.			
See	also	Should	you	use	Windows	or	Web	Browser	Applications?

Who	Is	It	For?
Starting	the	Framework

Designer
You	can	use	the	Framework	to	quickly	prototype	an	application.	No
programming	knowledge	is	required.

Developer
The	developer	turns	the	prototype	into	a	real	application	by	creating
components	to	be	snapped	in	the	Framework.
Typically	you	would	use	the	Framework	if	you:
Possibly	have	some	experience	with	basic	event-driven	programming,	for
example	VB
Have	completed	Visual	LANSA	or	LANSA	for	the	Web	training	course
Are	thinking	"What	do	I	do	now?"
Several	developers	can	work	simultaneously	to	create	the	modular	snap-in
components.

Administrator
Some	of	the	users	of	the	deployed	Framework	can	be	given	authority	to
administer	user	access	and	the	servers	defined	for	the	applications.	Defining
servers	and	controlling	user	profiles	and	passwords	is	optional.

End-user
The	end-user	of	the	deployed	Framework	can	only	see	the	applications	you	have
created.		The	design	time	environment,	such	as	the	Framework	menu,	the
Assistant	and	the	Tutorials	are	hidden.

What	Are	Its	Benefits?
Web	and
Windows
applications
from	a	single
application
model

The	Framework	can	provide	you	with	a	single	and	consistent
application	model	for	both	Windows	and	Web.	The	advent	of
WAMs	makes	the	single	application	model	capabilities	even
stronger	than	before.
	

Standard
interface
	

A	design	loosely	based	on	Microsoft	Outlook.	Outlook	is
very	popular	around	the	world	and	almost	all	users	are
familiar	with	it,	whether	at	work	or	at	home.	
This	model	provides	a	cockpit	or	dashboard	style	design
where	everything	that	an	end-user	might	need	to	do	is	just	a
few	clicks	away.
	

XML-based
external	design
schema
	

The	Framework	is	instantly	executable.
Because	of	the	modular	design,	many	developers	can	work
on	different	parts	of	the	application	at	the	same	time.
The	versions	of	the	prototype	can	be	quickly	emailed	for
evaluation	and	feedback.

Rapid
prototyping
	

Applications,	business	objects	and	commands	can	be	defined
in	a	few	minutes	and	can	be	used	in	emulation	mode	before
any	code	to	support	them	actually	exists.
A	vision	of	how	the	completed	result	will	look,	act	and	feel
can	be	formed	and	executed	before	a	single	line	of	code	is
written.
This	process	also	acts	as	a	way	of	rapidly	uncovering	new	or
hidden	business	requirements.
	

Prototype
becomes	the
application
	

You	do	not	have	to	discard	any	part	of	your	prototype.	When
you	are	ready	to	turn	the	prototype	into	a	real	application,
you	simply	snap	your	custom-made	parts	in	the	Framework.
This	means	you	keep	the	basic	structure	of	the	application,
its	business	objects,	commands,	menus	and	images.

	

Rapid
modernization

You	can	use	the	Framework	RAMP	tools	to	quickly	enable
your	System	i	applications	for	Windows.
Absolutely	no	change	to	the	5250	application	is	required	and
yet	RAMP	offers		advanced	navigation,	search	and
organization	capabilities	that	go	well	beyond	other
modernization	tools.

Simple	to	code
	

The	Framework	gives	the	developer	much	easier	access	to
advanced	Visual	LANSA	and	LANSA	for	the	Web	features.
For	example,	it	implicitly	handles	multi-form	and	multi-
component	interactions	and	referencing.
	

Load-on-
demand
architecture
	

A	load-on-demand	architecture	that	dynamically	loads
application	components	as	they	are	used.	This	prevents
having	to	load	your	entire	application	during	start	up.	
	

Standards	for
development
and	user
interfaces
	
	

The	modular	structure	of	the	snap-in	filters	and	command
handlers	encourages	standardized	development	practices.
The	user	interface	is	to	a	large	extent	controlled	by	the
Framework	which	enforces	consistency.
	

Productivity
improvements
in	addition	to
Visual	LANSA
	
	

The	Framework	handles	all	the	basic	functions	of	the
application,	such	as	multi-form	interactions	and	referencing.

A	huge	"jump
start"	for	new
Visual	LANSA
or	LANSA	for
the	Web

The	environment	helps	the	developers	in	getting	started	with
the	application	development	and	guides	them	towards	a
standard	implementation.

developers
	
	

Gradual	and
benefits	driven
introduction	to
some	of	the
heavier	OO
concepts
	
	

The	Framework	is	based	on	OO	concepts	such	as	inheritance.
This	underlying	structure	and	its	benefits	become	gradually
more	obvious	to	the	Framework	developers	as	they	progress
in	implementing	the	application.

	

	

What's	New
This	section	outlines	new	features	in	the	EPC132100	version	of	the	Framework.
Also	see	Features	No	Longer	Supported.
	

Unicode	support
The	Framework	can		now
handle	Unicode	data	for	certain
parameters	in	certain	methods.
Unicode	data	can	also	be	used
in	code	tables,	the	Virtual
Clipboard	and	in	tracing.
See	Using	Unicode	Data	with
the	Framework.

	

Tailor	User/Authority	reports
It	is	now	possible	to	tailor	the	User/Authority
reports	produced	by	the	Framework.
The	output	can	be	a	.csv	file	or	it	can	be
written	out	to	a	database.	The	report	structure
and	content	is	fully	customizable.
See	Customized	User/Authority	Reporting.

IBM	i	password
management
New	options	allow	IBM	i
passwords	to	be	managed	from
the	Framework	logon	screen.
IBM	i	user	profile	error
checking	(eg:	wrong	password,
password	expired)	has	also
been	improved.
See	IBM	i	Password
Management.

Reusable	parts	as	code	table	data
handlers
Reusable	parts	can	now	be	used	as	code	table
handlers.	This	simplifies	coding	because
most	default	processing	is	done	by	the
ancestor	component.
See	Code	Table	Data	Handlers	Can	Now	Be
LANSA	Reusable	Parts.
	

Overriding	object
captions
You	can	provide	additional
information	to	the	end-user	by
Temporarily	Overriding	Object
Captions.

The	Programming	Code	Assistants
feature	has	been	updated
All	WEBEVENT	code	assistants	have	been
removed.
All	images	and	screen	shots	have	been
updated	to	match	the	latest	release	of
LANSA.

The	graphic	quality	of	all	images	and	screen
shots	has	been	improved.

Indicate	development
status	of	objects
Developers	can	now	attach
development	status	indicators
and	notes	to	Framework
objects.	The	indicators	and
notes	are	visible	when	the
Framework	is	run	in
development	mode.
See	Development	Status.

Updated	organizations	business
object	instance	list
The	shipped	Organizations	Business	Object
Instance	List	provides	improved	summary
and	preview	information	when	you	hover
over	an	item	in	the	tree.
See	Updated	Organizations	Business	Object
Instance	List

Improved	security
VLF-WEB/NET	temporary
state	files	are	now	encrypted.

uQueryCanDeactivate	reason	codes
You	can	now	find	out	what	the	user	is	trying
to	do	when	the	uQueryCanDeactivate	check
occurs		using	the	optional	Reason	Code
parameter.

New	theme
The	new	2014	clean	theme	is	a
low	key,	clean,	crisp	and	flat
theme	that	is	designed	to	reflect
the	style	used	in	later	Windows
products.	The	predominant
color	is	white.
See	New	Theme	2014	Clean.

Instance	list	with	Direct-X	features
The	shipped	Resources	business	object’s
snap	in	instance	list	browser	now	uses	(and
requires)	Direct-X	features.
See	Shipped	Resources	Instance	List	Browser
Updated.

Visual	Styles	can	be
changed	at	run	time
If	you	need	a	visual	style	to
change	at	run	time,	you	can
swap	in	a	new	style	or	styles
from	any	command	handler,
filter,	or	snap	in	instance	list.
See	Change	a	visual	style	at	run

Improved	demo	images
The	demo	images	have	been	improved.

time.

	

Option	to	enable
WEBEVENT	functions
The	ability	to	use	WEBEVENT
filters	or	command	handler	is	a	
now	a	deprecated	feature.
If	you	have	an	existing
Framework	that	already
contains	WEBEVENT	filters	or
command	handlers	and	you
wish	to	add	more,	you	can
Enable	Framework	for
WEBEVENT	Functions	on	the
on	the	Framework	Properties
tab.
	

Alternative	find	path	algorithm	in
RAMP-TS
Developers	of	large	RAMP-TS	systems	using
Axes	3.1	can	now	use	an	alternative	Find
Path	algorithm,	Find	Path	V2.
The	new	algorithm	is	much	faster,	but	may
occasionally	result	in	RAMP	finding	a
different	path	between	screens	than	it	did
with	the	old	algorithm.
So	thorough	re-testing	of	the	RAMP
application	is	required	if	changing	from	one
algorithm	to	the	other.
If	users	in	large	RAMP	systems	are
experiencing	delays	the	first	time	they	go
from	one	screen	to	another,	it	is	possible	that
the	number	of	RAMP	nodes	in	the	session	are
making	it	difficult	for	the	Find	Path
algorithm	to	find	a	path	between	the	screens.
Using	the	new	version	of	the	algorithm	may
solve	this	problem.
To	activate	Find	Path	V2	use	this	statement
in	your	login	script:
	
			GLOBAL_bUseFindPathV2	=	true;

	
In	the	application	trace,	the	line	"Using	Find
Path	V1"	or		"Using	Find	Path	V2"	will
indicate	which	algorithm	is	being	used.
	

Reusable	parts	as	instance
list	relationship	handlers

	

Instance	list	relationship
handlers	can	now	be	created	as
reusable	parts.
The	code	for	the	reusable	part
version	is	simpler,	and	similar
to	the	code	used	by	filters	to
write	to	the	instance	list.
See	Reusable	Parts	as	Instance
List	Relationship	Handlers.

	
	

Features	No	Longer	Supported
The	support	of	these	features	has	been	removed	in	EPC132100:

WEBEVENT
functions
deprecated
The	ability	to	use
WEBEVENT	filters	or
command	handler	is	a	
now	a	deprecated
feature.
If	you	have	an	existing
Framework	that	already
contains	WEBEVENT
filters	or	command
handlers	and	you	wish
to	add	more,	you	can
Enable	Framework	for
WEBEVENT
Functions	on	the
Framework	Properties
tab.

	

Auto	Session	Signoff
Over	time	the	auto	session	signoff	feature	has	been
rendered	ineffective	by	pop-up	blocking	and
browsers	that	do	not	allow	secondary	windows	to	be
opened.	
Now	when	a	VLF-WEB	session	is	closed,	an	attempt
is	made	to	delete	any	associated	temporary	files	it	has
in	the	temporary	folder.	If	the	close	is	initiated	from	a
‘signoff’	or	‘exit’	VLF	command,	the	temporary	files
should	be	removed	successfully.	If	the	session	close
is	initiated	by	closing	the	browser	window,	then
whether	the	temporary	files	are	deleted	depends	on
the	web	browser	being	used:	some	browsers	do	not
allow	further	requests	to	be	sent	from	a	closing
window.
To	counter	any	build-up	of	temporary	files,	use	the
shipped	VLF	or	OS	features	to	regularly	clear
unwanted	files	from	the	temporary	folder.	For
example	see		the	FAQ	Can	I	purge	old	information
from	my	temporary	directory	in	a	batch	job?

Web	Load	Image
The	web	load	image
feature	has	been
removed.

WAMTRANS=C
The	previously	deprecated	WAMTRANS=C	(Client
Side	XML	transformation)	option	has	been	removed
from	VLF-WEB	and	VLF.NET.
	

Form	Layout
Assistant
The	previously
deprecated	FLA	(Form
Layout	Assistant)
feature	has	been

Rich	Text	RAD-PADs
Rich	Text	RAD-PADs	are	no	longer	supported.

removed	from	VLF-
WEB	and	VLF.NET.
	

GZIP	File
Compression
GZIP	File	Compression
has	been	removed.
	

VLF-WEB	–	All	old	Windows	XP	style
themes	have	been	removed
The	old	XP	theme	set	which	was	restricted	to	using
Internet	Explorer	9	(or	earlier)	have	been	removed.
All	browsers	are	now	handled	the	same	way	with	the
same	options.
This	is	reflected	in	this	old	developer	VLF-WEB
launch	form:	

	
being	simplified	to	this	in	V132100:

All	associated	XXXXXXX_WEB.HTM		suffixed
start	up	and	launch	files	are	no	longer	generated	and
can	no	longer	be	used.		

	
	

IBM	i	Password	Management
The	Framework	has	now	the	ability	to	change	IBM	i	passwords	and	to	check
their	expiry	date.
The	User	Administration	Settings	tab	in	Framework	properties	has	these	new
settings:

Allow	IBM	
password	change

Check	this	box	to	allow	password	change.

Check	Password
Expiry

Check	this	box	to	compare	the	password’s	expiry	date
with	the	current	date.

Warn	before	(days) Specify	how	many	days	before	the	expiry	date	to	start
issuing	warnings.

	

New	IBM	i	Host	Server	Mapper	properties
In	the	Server	Details	tab	you	need	to	specify	the	IBM	i	server	to	connect	to	for
password	expiry	checks	and/or	password	change	requests:

Name	/	IP
address

Name	or	IP	address	of	the	IBM	i	Server	Mapper.	Supports	full
40	character	long	IPV6	type	addresses.

Port Port	of	the	IBM	i	Server	Mapper	to	connect	to.	Defaults	to	IBM

default.

	

See:
IBM	i	Password	Expiry	Checking
Changing	the	IBM	i	Password
	
	

IBM	i	Password	Expiry	Checking
To	enable	password	expiry	checking,	you	need	to:
Select	Check	Password	Expiry	in	the	User	Administration	Settings	tab	of	the
Framework	properties.
Specify	a	number	of	days	greater	than	zero	to	start	receiving	warnings.
Specify	an	IBM	i	Host	Server	Mapper	name	or	IP	address	and	the	correct	port.
	
IBM	i	Password	Expiry	Checking	in	Windows
IBM	i	Password	Expiry	Checking	in	Web
	

IBM	i	Password	Expiry	Checking	in	Windows
During	log	on,	when	IBM	i	password	checking	is	enabled,	the	Framework
checks	the	expiry	date	of	the	password	of	the	user	logging	on	and	compares	it
with	the	current	date.	If	the	difference	is	less	or	equal	than	the	specified	value	in
Warn	before	(days)	a	warning	is	issued.
For	example:

	

IBM	i	Password	Expiry	Checking	in	Web
In	the	web	platform	this	feature	has	been	added	to	the	web	IIP.	Refer	to	the
shipped	function	UFU0001	in	process	UF_SYSBR.
Note	that	fields	have	been	added	to	the	Exchange	command.
During	log	on,	the	password’s	expiry	date	is	compared	with	the	current	date.	If
the	difference	is	less	or	equal	than	the	specified	value	for	Warn	before	(days),	a
warning	is	issued.	For	example:

Changing	the	IBM	i	Password
To	enable	IBM	i	password	change	you	must	check	the	Allow	IBM	i	password
change	option	in	the	User	Administration	Settings	tab	of	Framework	Properties.

Changing	the	IBM	i	Password	in	Windows
Changing	the	IBM	i	Password	in	Web

Changing	the	IBM	i	Password	in	Windows
When	IBM	i	password	changing	is	allowed	and	the	IBM	i	Host	Server	Mapper
name	or	IP	address	has	been	specified,	the	Change	IBM	i	Password	button	is
displayed	on	the	log	on	screen:

Clicking	the	Change	IBM	i	Password	button	brings	up	the	Change	IBM	i
Password	dialog:

Type	in	the	old	and	the	new	password,	and	then	click	the	Change	Password
button.
A	message	indicates	if	the	change	was	successful:

	
Or	unsuccessful:

	

Changing	the	IBM	i	Password	in	Web
On	the	web,	if	the	server	to	connect	to	was	saved	as	the	Deployment	Server	and
the	IBM	i	Host	Server	Mapper	name	or	IP	address	has	been	specified,	the
Change	IBM	i	Password	button	is	displayed	in	the	log	on	panel:

Type	in	the	old	and	the	new	password	and	press	the	Change	button.
A	message	indicates	if	the	change	was	successful:

	
Or	unsuccessful:

	
To	change	the	IBM	i	password	on	the	web,	the	user	must	specify	the	IBM	i
server	and	port	in	the	start	up	URL:
	
+IBMISERVER=<ibmiServer>+IBMIPORT=<ibmiPort>
	

	Where:

<ibmiServer> is	the	ip	of	the	server	where	the	profile's	password	is	to	be
changed

<ibmiPort> is	the	port	for	changing	IBM	i	profile	passwords	(usually	449)

	

For	example:
	

+IBMISERVER=10.2.0.181+IBMIPORT=449
	

See	Web	Application	Start	Options	for	more	details.

	

Customized	User/Authority	Reporting
This	feature	is	designed	for	advanced	developers.
Developers	can	write	their	own	user/authority	report	programs	for
administrators.	See	Writing	your	own	version	of	the	User	Authority	report.
The	program	used	for	user/authority	reporting	is	specified	in	the	Framework
properties	-->	User	Administration	Settings	-->	Authority	Settings	-->	Report	on
Users	-	Imbedded	Interface	Point	(Id).
If	unspecified,	the	standard	user/authority	report	is	produced.		

Development	Status
Developers	can	attach	a	development	status	indicator	and	notes	to	Framework
objects.	These	are	visible	when	the	Framework	is	run	in	development	mode.	For
more	information	see	Development	Status	Feature.

Updated	Organizations	Business	Object	Instance	List
The	shipped	Organizations	Business	Object	Instance	List	provides	improved
summary	and	preview	information	when	you	hover	over	an	item	in	the	tree.

	

It	does	this	by	using	the	Pop	up	panel	name	option	on	the	Instance	List	/
Relations	tab:

	

Shipped	Resources	Instance	List	Browser	Updated
The	shipped	Resources	business	object’s	snap	in	instance	list	browser	now	uses
(and	requires)	Direct-X	features.

	

New	Theme	2014	Clean

The	2014	clean	theme	is	a	low	key,	clean,	crisp	and	flat	theme	that	is	designed
to	reflect	the	style	used	in	later	Windows	products.	The	predominant	color	is
white	and	the	predominant	style	is	low	key	and	flat.
Classical	Windows	features	like	bright	colors,	highlighting	and	3D	borders	and
color	gradients	that	are	used	for	screen	ornamentation	have	largely	been
removed.													

	

Code	Table	Data	Handlers	Can	Now	Be	LANSA	Reusable	Parts
Using	reusable	parts	as	code	handlers	simplifies	coding	because	most	default
processing	is	done	in	the	ancestor	component.

	
Reusable	part	data	handlers	can	also	deal	with	Unicode	data.
To	use	a	Reusable	part	as	a	Code	Table	Data	Handler	tick	the	Use	Reusable	Part
property	check	box	and	enter	the	identifier	of	the	data	handler	component	in	the
Reusable	Part	Data	Handler	(ID)	property	field.
UF_TDH01	is	the	default	Reusable	part	Code	Table	Data	handler	and	can	be
used	as	is,	or	as	a	starting	point	for	a	custom	data	handler.
See	Creating	Your	Own	Table	Data	Handler	Reusable	Part.
	

Reusable	Parts	as	Instance	List	Relationship	Handlers
Instance	list	relationship	handlers	can	now	be	created	as	reusable	parts.
The	code	for	the	reusable	part	version	is	simpler,	and	similar	to	the	code	used	by
filters	to	write	to	the	instance	list.
For	example,	this	is	the	code	used	to	write	the	sections	for	an	organization	into
the	instance	list,	in	the	shipped	demo:
WHEN	VALUE_IS('=	DEM_ORG')
*	Expand	Sections	in	a	Department/Organization
	
#DEPTMENT	:=	#AKEY1
SELECT	FIELDS(*ALL)	FROM_FILE(SECTAB)
WITH_KEY(#DEPTMENT)
	
Signal	uAddListItem	AKey1(#DEPTMENT)	AKey2(#SECTION)
VisualId1(#SECDESC)	VisualId2(#SECTION)	AColumn1(#SECADDR1)
AColumn2(#SECADDR2)	AColumn3(#SECADDR3)
AColumn4(#SECPHBUS)	NColumn1(#SECPCODE)
BusinessObjectType(#TargetType)
	
ENDSELECT

	
See	Sample	Relationship	Reusable	Part.
The	VLF	looks	for	a	component	for	the	relationship	handler	(rather	than	a
function)	if	the	following	property	is	checked:
Business	object	properties	-->	Instance	List	tab	-->	Relationship	properties	-->
Use	a	Reusable	part.
	
	

What	Was	New	in	Previous	Versions
These	sections	outline	new	features	in	earlier	versions	of	the	Framework:
New	Features	in	EPC	870	version	of	the	Framework
New	Features	in	EPC	868	version	of	the	Framework
New	features	in	EPC	839	version	of	the	Framework
New	features	in	EPC	831	version	of	the	Framework
New	features	in	EPC	826	version	of	the	Framework
New	features	in	EPC	804	version	of	the	Framework
New	features	in	EPC	793	version	of	the	Framework
New	features	in		EPC	785	version	of	the	Framework
	

New	Features	in	EPC	130100	version	of	the	Framework
This	section	outlines	new	features	in	the	EPC130100	version	of	the	Framework.
Version	13	Features
This	version	of	the	Framework	utilizes	and	showcases	the	new	features	in
LANSA	Version	13,	including	the	DirectX	user	interface.
Important!	See	Using	your	Visual	LANSA	Framework	in	Direct-X	mode
Customized	Quick	Finds
The	Quick	Find	box	is	a	dialog
that	appears	on	the	top	right	of	the
VLF	window.
The	current	behaviour	is	to	search
a	list	of	all	business	object
captions.	This	can	now	be
overridden	so	that	the	user
searches	a	list	of	values	that	you
control.
And	when	the	user	selects	one	of
your	values,	you	control	what
happens.	Typically	this	would	be	a
switch	to	a	business	object,	or	to
an	instance	list	entry	in	a	business
object,	or	a	command	handler	for
a	business	object.
If	necessary	you	can	also	signal
that	the	list	of	searched	values
should	be	rebuilt.
See	Quick	Find	Override	Feature.

Popup	Panel	Hints	for	Instance	Lists
If	the	framework	is	running	in	Direct-X
mode,	it	is	now	possible	to	show	a	popup
panel	when	the	user	hovers	over	an
instance	list	entry.	This	panel	can	be	used
to	give	the	user	a	quick	overview	of	the
item	without	opening	any	of	the	command
handlers	for	that	item.
The	end-user	can	disable	the	feature	by
right	mouse	clicking	on	the	instance	list,	if
popups	are	not	required.
See	Popup	Panel	Hints	in	the	Instance
List.
	

Launch	Applications	from	the
Status	Bar
Applications	can	now	be	launched
directly	from	the	Framework
status	bar	when	the	Framework	is
executed	using	RenderType	M.
See	Launching	Applications	from

Button	To	Switch	Between	Monitors
A	button	has	been	added	to	allow	users
with	multiple	monitors	to	switch	to	the
other	monitor.	The	button	is	located	on	the
bottom	left	of	the	Framework	window.
	

the	Status	Bar.
Small	VLF-WIN	Improvements
When	a	user	clicks	on	a	cluster
item	in	a	tree	view	instance	list,
the	Visual	ID1	and	Visual	ID2	are
available.	Previously,	only	the
items	identifying	keys	were
available.
When	blank	values	are	added	to
date	instance	list	columns,	the
blank	is	displayed	rather	than	the
value	of	the	previous	instance	list
entry.
Improved	sort	order	of	business
objects	when	a	user	selects	a
command	that	applies	to	multiple
business	objects.		

	

	
	

New	Features	in	EPC	870	version	of	the	Framework
This	section	outlines	new	features	in	the	EPC870	version	of	the	Framework.

Framework	on	iPads	and	Android	Touch
Devices
Framework	web	applications	can	be	run	on
iPads	and	Android	touch	devices.	To	enable
touch	friendly	functionality	required	in	touch
devices,	use	the	web	startup	URL	parameter
TOUCH=	to	start	your	Framework	application.
See	Touch	Device	Considerations.

Web	Configuration
Assistant
The	Web	Configuration
Assistant	helps	you	configure
the	Framework	for	your	web
servers	when	you	are	starting
VLF	web	development	for	the
first	time.
The	web	Configuration
Assistant	can	be	accessed
from	either	the	(Framework)
menu,	or	from	the
(Framework)	-->	(Framework
Properties)	-->	Framework
Details	tab.
It	can	be	used	instead	of	the
Framework	developer
preferences	and	VLF
Administrator	Console,	if
preferred.
	

VLF-WEB	Enhancements	-	Stronger	WAM
Support
You	can	now	create	mini	filters	using	WAMs.
See	RDMLX	for	a	WAM	Mini	Filter.
WAMs	can	handle	Web	Application	help.	See
Help	Text	for	Web	Applications	and	the
shipped	WAM	UF_SY0002	for	a	basic
example.
Weblets	that	use	the	jQuery	UI	visual	design
themes	can	now	be	used	in	VLF	WAM	Filters
and	Command	Handlers.	Simply	use
vlf_layout_v2	as	the	WAM's	layout	Weblet	and

User	Authorities	Report	File
VLF-WIN	administrators	can
now	produce	a	.csv	(comma
separated	variable)	file	which
contains	a	complete	list	of	all
the	users	on	the	system	and
their	authority	to	every	object
on	the	system.	This	file	can	be
viewed	in	MS	Excel.
To	produce	the	report,	use	the
User	Authorities	Report	File
button	on	the	VLF-WIN

apply	a	jQuery	Theme	to	the	WAM.	See
LANSA	for	the	Web	Guide	for	more	details
about	Theming	WAMs.	Other	style	changes
may	be	experienced	when	using	vlf_layout_v2.
	

(Administration)	-->	(Users)
screen.

	

New	Features	in	EPC	868	version	of	the	Framework
This	section	outlines	new	features	in	the	EPC868	version	of	the	Framework.
Note	that:
You	need	to	recompile/redeploy	all	relationship	handlers	after	you	install
this	EPC.
You	must	be	using	a	LANSA	V12	supported	platform,	see
http://www.lansa.com.au/downloads/support/version12_supportedplatforms.pdf
If	you	plan	to	run	VLF.Web	with	Chrome,	Firefox	or	Safari,	test	that	your
existing	hand-coded	JavaScript	or	HTML	in	WAMs	and	RAMP	scripts
work	in	these	browsers.
Cross-Browser	Support	for
VLF.Web
VLF.Web	Runs	in	Internet
Explorer,	Firefox,	Chrome	and
Safari.
Note	that	VLF.NET	only
supports	Internet	Explorer.
	

aXes-TS2	Can	Be	Used	as	the	RAMP-TS
Engine
aXes-TS2	Can	Now	Be	Used	in	RAMP-TS,
enabling	the	use	of	aXes-TS2	compatible
browsers	for	RAMP-TS	applications.
	

Instance	Lists
You	can	now	add	Date	and
Date/Time	Columns	to	the
standard	shipped	instance	list.
Edit	Codes	can	be	applied	to
numeric	columns.
You	can	Control	Row	Color	in
Instance	Lists.
Selection	of	Multiple	Items	Can
Now	Be	Controlled	in	Instance
Lists.
Instance	List	Toolbar	Buttons
Can	Have	Associated	Text
Descriptions	which	improves
appearance	and	usability.
VLF.WIN	End-users	Can	Choose

Web	Content	on	Signon	Screens
All	users	must	log	on,	so	signon	screens	are
an	ideal	place	to	advertise	company
business	or	application	changes	and	to
promote	communication.	You	can	do	this	by
adding	a	web	page	or	a	button	that	launches
a	URL	to	the	signon	screen.
A	Button	on	Framework	Signon	Screen	Can
Launch	A	Web	Page	in	its	own	window.
The	button	can	be	added	to	the	signon
screen	in	VLF.WIN,	VLF.Web	and
VLF.NET.
Web	Page	Can	Be	Shown	on	the	VLF.WIN
User	Logon	Screen	instead	of	an	image.
	
	

http://www.lansa.com.au/downloads/support/version12_supportedplatforms.pdf

Instance	List	Columns	to	Be
Displayed	allowing	them	even
more	control	over	how	their
applications	appear.
In	VLF.WIN	Code	Can	Directly
Access	Visual	Lansa	Trees	that
are	used	to	visualize	the	instance
list	content.
	
New	Value-Add	Features
Shown	in	Demonstration
Application
The	Framework	demonstration
system	shows	uses	for	IBM	i
Server	Message	Queues.
The	Demonstration	Application
now	includes	a	new
command,	Print	Screen,	which
prints	out	the	current	VLF
screen/window.
The	shipped	Framework	also
includes	a	new	command,	Open
in	New	Window,	which	opens
the	current	business	object	in	a
new	window.

Connecting	to	the	Server
You	can	use	Windows	user	profiles	and
passwords	when	connecting	to	the	server.
For	IBM	i	servers,	you	can	validate	the
password	entered	by	the	user	exactly	as
typed.
The	Framework	can	now	handle	long
passwords	also	for	Windows	applications.
You	can	control	which	servers	appear	in
the	Connect	dialog.
See	Connecting	to	Servers.
	

VLF.NET
The	generated	VLF.NET
applications	can	be	compiled	to
run	in	a	32-bit	platform.
Each	business	object	can	have	its
own	screen	layout.
Default	application	text	strings
(such	as	User	Name	and
Password	labels	in	the	Sign	In
dialog	box)	can	now	be
dynamically	overridden.

Commands
You	can	now	find	out	the	current	state	of	a
command	handler	panel	(Normal	or
Maximized)	in	relation	to	the	Framework.	
Commands	can	bypass	Framework	or
RAMP	locks	in	VLF.WIN	applications.
See	Commands	and	Command	Handlers.
	

See	VLF.NET	Enhancements.
	

User-Interface
The	Framework	tool	bar	style
can	be	set	to	show	large	buttons
with	text	descriptions	(for	new
users).
There	is	an	option	to	hide	the
Windows	Control	Bar	which	is
displayed	on	Framework	forms
when	more	than	one	Framework
window	is	open.
The	VLF.WIN	application	start
up	logic	now	positions	the	initial
main	window	so	that	is	clearly
visible	to	the	user	even	if	it	has
previously	been	moved	to	a	place
difficult	to	access.
See	User-Interface
Enhancements

Other
Visual	LANSA	Active-X	Controls
VF_AX003	and	DF_XMLAC	have	been
changed	to	use	MSXML6	interface.
The	Framework	design	XML	can	be	saved
in	an	encrypted	form.
You	can	now	set	a	confirmation	message
when	end-users	attempt	to	close	the
Framework.
See	Other	Enhancements.
	

Note	that	some	older	features	have	been	marked	as	deprecated.	This	means	they
are	supported	for	backward	compatibility,	but	you	should	not	use	them	for	new
development.
	

VLF.Web	Runs	in	Internet	Explorer,	Firefox,	Chrome	and	Safari
Framework	Web	applications	now	run	in	Internet	Explorer,	Firefox,	Chrome	and
Safari.
See	Execute	Framework	as	a	Web	Application.
Also	see	Using	VLF-WEB	Applications	with	Safari,	Firefox	or	Chrome.
If	you	are	planning	to	use	RAMP-TS	in	other	browsers	than	IE,	see	Configuring
Web	RAMP-TS	for	Chrome,	Safari	and	Firefox.

Using	VLF-WEB	Applications	with	Safari,	Firefox	or	Chrome
This	version	of	the	VLF-WEB	supports	IE,	Safari,	Firefox	and	Chrome	as	web
browsers.
There	are	some	things	you	need	to	understand	about	delivering	your	VLF-WEB
applications	for	use	in	multiple	browsers:

If	you	already	have	a	VLF-WEB	application	running	under	IE
You	will	have	created	LANSA	WAM	components	as	filters	and	command
handlers	and	may	have	used	RAMP	scripting.	It	is	likely	you	have	also
embedded	your	own	hand-coded	JavaScript	and/or	HTML	inside	this	VLF-
WEB	application.	You	need	to	test	that	your	hand-coding	is	multi-browser
capable	and	may	need	to	alter	it.						
Note	that:
The	skin	known	as	WIN	has	been	deprecated.	WEB	and	XP	(Blue,	Olive	and
Silver)	are	still	available.
At	the	time	of	the	release	of	EPC868,	IE	version	9	is	still	at	Candidate	Release
level.	Tests	of	EPC868	were	conducted	using	version	8.	It	is	strongly
recommended	that	you	choose	version	8	until	version	9	has	been	officially
released	and	tested.	Although	version	7	is	supported,	we	will	not	action	any
support	requests	for	version	7	unless	they	can	be	replicated	in	version	8.
When	you	save	the	framework	in	EPC868	there	are	only	two	.HTM	files
generated:

<framework	name>_<language>_BASE.htm	–	to	execute	with	IE	using	the
XP	skin,	Firefox,	Chrome	and	Safari.
<framework	name>_<language>_WEB.htm	–	to	execute	with	IE	using	the
WEB	only.
	

Safari	is	the	primary	browser	of	the	Apple	Mac,	iPad	and	iPhone
Safari	is	the	browser	used	by	Apple	Macs,	iPhones	and	iPads.	These	are	the
reference	platforms	for	Safari.
If	you	report	an	issue	with	Safari	you	can	only	reasonably	expect	us	to	action	it
if	is	reproducible	on	a	reference	platform.						

You	have	to	test	on	multiple	browsers
You	should	not	deploy	to	a	browser	without	having	tested	your	application	on	it.

Please	note	that	some	browser	features	used	by	the	VLF	may	have	problems.
When	such	issues	are	found	we	will	try	to	find	a	work-around	for	it,	but	we	may
decide	there	is	too	much	effort	for	little	reward.	For	example,	there	is	an
ongoing	problem	with	modal	windows	in	Chrome	which	would	require	too
much	effort	to	address.

You	have	to	test	on	the	real	platform
While	you	might	conduct	the	majority	of	testing	for	a	touch	device	(say)	using
an	emulator	you	should	not	deploy	an	application	without	testing	it	on	a	real
touch	device.			

You	have	to	learn	to	debug	multiple	browsers	and	multiple
platforms
Web	browsers	are	all	behaviourally	different.		A	probable	consequence	of
testing	your	application	on	multiple	browsers	is	that	you	will	need	to	learn	how
to	trace	and	debug	your	applications	on	each	browser.		

Supporting	multiple	browsers	comes	at	a	cost
All	of	the	preceding	points	indicate	that	supporting	multiple	browsers	comes	at
a	cost.
You	should	not	support	a	browser	unless	there	is	a	justifiable	business	case	and
you	have	tested	against	it.
	

	

Configuring	Web	RAMP-TS	for	Chrome,	Safari	and	Firefox
To	use	RAMP-TS	it	is	necessary	to	bypass	browser	cross-domain	security
(security	relating	to	documents	accessing	documents	from	a	different	domain).
Domain	refers	to	the	Host:Port	combination.	For	example	if	the	VLF	uses	a	host
MyHost	in	port	81,	the	VLF	domain	is	MyHost:81	and	if	RAMP-TS	(aXes)	also
uses	MyHost	but	in	port	8080,	the	RAMP-TS	domain	is	MyHost:8080.
Therefore	the	VLF	and	RAMP-TS	are	accessing	different	domains.
In	Internet	Explorer	cross-domain	security	is	bypassed	by	adding	the	host	to
Trusted	sites:

	
	
This	cannot	be	done	in	Chrome,	Firefox	or	Safari,	so	it	is	necessary	to	use	the
web	server	Reverse	Proxy	feature	to	bypass	cross-domain	security.	The	Reverse
Proxy	settings	for	the	sample	host	names	look	like	this	in	the	IBM	i	Admin
instance:

	
To	set	up	your	reverse	proxy,	replace	MyHost:8080	with	your	host	details.	Note
that	the	order	in	which	the	entries	are	specified	is	relevant,	and	if	you	specify
more	than	one	host,	RAMP-TS	will	attempt	just	the	first	one	it	matches.
Once	you've	set	up	the	Reverse	Proxy	you	should:
1			Restart	the	web	server
2.			Clear	the	browser's	cache
3.			Start	Fiddler!
4.			Try	first	serving	the	equivalent	of	MyHost:8080/ts/ts2/index.html	and	then
MyHost:81/ts/ts2/index.html.

MyHost:8080	is	the	RAMP-TS	(aXes)	domain	therefore
MyHost:8080/ts/ts2/index.html	should	work	straight	away
and	you	should	see	a	page	like	this:

http://support.lansa.com:2111/ts/ts2/index.html
http://support.lansa.com:2111/ts/ts2/index.html
http://support.lansa.com:2111/ts/ts2/index.html

If	you	cannot	see	this	screen,	you	may	not	have	aXes	installed	or	there	is	a
problem	with	your	configuration.
MyHost:81	is	the	VLF	domain.	If	you	can	serve	the	same	page	using	the	VLF
domain	it	means	the	change	to	the	web	server	configuration	is	working.
	

aXes-TS2	Can	Now	Be	Used	in	RAMP-TS
aXes-TS2	Can	Be	Used	as	the	RAMP-TS	Engine,	enabling	the	use	of	aXes_TS2
compatible	browsers	for	RAMP-TS	applications.

VLF.WEB	applications	may	use	aXes-TS2	(aka	RAMP-TS2)	with	the	IE,
Safari,	Chrome	or	Firefox	web	browsers.
VLF.WIN	and	VLF.NET	applications	using	aXes-TS2	(aka	RAMP-TS2)	use	IE
only	-	they	are	based	on	Microsoft	web	interface	technology.	
See	RAMP-TS	property	Engine.
	

Date	and	Date/Time	Columns
Note	that	all	existing	relationship	handlers	need	to	be	recompiled	and
redeployed	because	of	this	enhancement.
Designers	can	now	add	Date	and	Date/Time	values	to	the	standard
shipped	instance	list	as	additional	columns:

You	can	specify	the	display	format	and,	if	required,	a	UTC	time	conversion:

The	display	format	and	a	UTC	time	conversion	are	selected	from	drop-down
lists:

Output	formats	map	to	all	the	formats	available	for	the	AsDisplayString

intrinsic	function	for	both	RDMLX	Date	and	DateTime	fields.
The	Date	and	Date/Time	additional	columns	can	be	added	and	updated	from
RDML	and	RDMLX	filters	and	command	handlers.
There	is	a	required	input	format	for	Date	and	Date/Time	values.	See	Adding
Additional	Columns	to	Instance	Lists	and	Columns	for	Instance	Lists	for	full
details.
There	is	also	a	new	subroutine,	SETDCOL,	available	for	relationship	handler
functions.	See	Sample	Relationship	Handler	Function.	
Please	read	the	Required	User	Action	section	in	the	documentation	shipped	with
this	EPC.
	
	

Edit	Code
Edit	codes	can	be	applied	to	numeric	additional	columns:
	

	See	Columns	for	Instance	Lists.
	

End-users	Can	Choose	Instance	List	Columns	to	Be	Displayed
VLF.WIN	only.
End-users	can	now	choose	which	columns	are	to	be	displayed	in	instance	lists
allowing	them	even	more	control	over	how	their	applications	appear.	The	choice
is	initiated	by	the	right	mouse	menu	option	Choose	Fields	/	Columns.
To	choose	the	columns	in	an	over-under	or	side-by-side	child	list,	position	the
mouse	over	the	child	list	before	clicking	the	right	mouse	button.				
The	visual	identifier	1	column	must	always	be	displayed	-		this	stops	users	from
removing	all	columns	from	this	displayed	list.

	

Control	Row	Color	in	Instance	Lists
The	font	and	background	color	of	instance	list	rows	can	be	controlled:

Instance	List	row	colors	are	specified	when	adding	rows:
Windows	and	WAM	Filters	and	command	handlers	can	use	a	new	RowColor
parameter	on	the	avListManager.AddtoList	and
avListManager.UpdateListEntrydata	methods.
Web	event	filters	and	command	handlers	use	the	instruction	VF_SET
ROWCOLOR.
Relationship	handler	functions	call	the	SETROWCOL	subroutine	to	set	the
color	for	WEB	and	WIN	environments.
The	color	of	an	instance	list	entry	can	also	be	set	back	to	what	it	was,	by
specifying	the	value	"DEFAULT".	
For	windows	environments	the	color	is	the	name	of	a	visual	style	that	has	been
enrolled	in	the	VLF.	For	web	environments	the	color	is	a	CSS	string,	like:
	
"color:RED;background-color:BLUE;font-style:italic	"
	

Note	that	in	the	VLF.NET	only	certain	CSS	attributes	are	supported.
You	could	use	row	colors	to,	for	example,	create	heatmaps:

See	Changing	the	Color	of	List	Entries	(RowColor).
	
	

Selection	of	Multiple	Items	Can	Now	Be	Controlled	in	Instance
Lists
Refer	to	the	new	property	Allow	Multiple	Selections	on	the	Instance
List/Relations	tab	of	the	business	object	properties	window.

	

Instance	List	Toolbar	Buttons	Can	Have	Associated	Text
Descriptions
Instance	list	toolbars	may	now	optionally	show	the	text	associated	with	the	tool
bar	icon	–	improving	appearance	and	useability.			

	
See	Instance	List	Tool	Bar	Text	Location.
	

Code	Can	Directly	Access	Visual	Lansa	Trees
In	VLF.WIN	code	you	can	directly	access	the	VL	trees	which	are	used	to
visualize	the	instance	list	content.	Once	you	have	a	reference	to	the	tree	you	can
access	the	items	within	the	tree	and	the	columns	within	the	items.	
See	Low	Level	Direct	Access	to	the	Visualization	Trees.
	

Button	on	Framework	Signon	Screen	Can	Launch	A	Web	Page
Button	on	Framework	signon	screen	can	launch	a	web	page.	It	is	available	in	all
Framework	environments.
The	launched	page	could,	for	example,	show	a	website	with	the	latest	company
details,	or	link	to	an	application	which	is	external	to	the	Framework.

See		Launch	Button	Caption,	Launch	URL	(Windows)	and	Launch	URL	(Web	/
.Net):
	
	

Web	Page	Can	Be	Shown	on	the	VLF.WIN	User	Logon	Screen
On	the	VLF.WIN	User	logon	screen	a	web	page	can	be	shown	instead	of	an
image.

See	Image	/	Web	Page	to	Display	on	Form
Since	all	users	must	log	on,	using	a	web	document	at	this	point	is	an	ideal	place
to	advertise	company	business	or	application	changes	and	to	promote
communication.
It	also	has	the	benefit	of	being	external	to	the	Framework	application	-	so	it	is
easy	to	change,	even	on	a	daily	basis,	without	requiring	any	software
deployment	to	the	users’	PCs.
Using	a	small	web	document	containing	hyperlinks	that	open	secondary
browser	windows	is	a	good	approach.	For	example:
Click	here	for	the	inside	story	of	our	biggest	sale	this	year.		
Click	here	to	read	about	the	latest	changes	to	this	application.		
Click	here	to	review	out	latest	HR	policies.				
	

Demonstration	System
IBM	i	Server	Message	Queues
The	Framework	demonstration	system	shows	some	uses	for	IBM	I	Server
message	queues.
The	application,	which	is	invoked	by	the	new	Queues	button	on	the	tool	bar,
demonstrates	the	use	of	personal	user	queues,		group	chat	queues	and	event
notification	queues.	See	IBM	i	Server	Message	Queues.

	

Print	Screen
The	Demonstration	Application	now	includes	a	new	command,	Print	Screen,
which	prints	out	the	current	VLF	screen/window.	This	command	is	accessed	via
a	Toolbar	button	which	is	visible	when	the	Demonstration	Application	is
selected.

	

Open	in	New	Window
The	shipped	Framework	also	includes	a	new	command,	Open	in	New	Window,
which	opens	the	current	business	object	in	a	new	window.	If	no	business	object
is	selected	the	current	application	is	opened	in	the	new	window.	If	no
application	is	selected,	the	Framework	itself	is	opened	in	the	new	window.

	

Connecting	to	Servers
	
You	will	find	these	new	properties	on	the	Server	Details	tab:

Use	Windows	User	Profile	and	Password
You	can	use	the	Use	Windows	Credentials	option	to	use	a	Windows	user	profile
and	password	when	connecting	to	the	server	(Kerberos	/	Single	Signon	/	SSO).
The	server	must	have	been	configured	for	Single	Sign	On	and	the	user	enrolled
first.
	

Validate	Upper	and	Lower	Case	Passwords
For	IBM	i	servers,	you	can	use	the	option	Upper	and	Lower	Case	Password	to
validate	the	password	entered	by	the	user	exactly	as	typed.
	

Control	Which	Servers	Are	Shown	in	the	Connect	Dialog
In	VLF.WIN	the	server	property	Show	on	Connect	Dialog	controls	whether	a
server	appears	in	the	list	of	servers	that	the	end-users	see	in	their	Connect
dialog.
	

Long	Passwords	Are	Handled	in	VLF.WIN
The	Framework	can	now	handle	long	passwords	for	Framework	Windows
applications.	This	means	that	32-character	passwords	can	now	be	handled	in	all
contexts	(Windows,	RAMP,	Web).
	
	
	

VLF.NET	Enhancements
Compile	for	32-Bit	Platform
You	can	now	specify	target	platform	for	generated	VLF.NET	applications	and
force	the	generated	VLF.NET	application	to	run	in	a	32-bit	platform.	See	.NET
Target	Platform.
	

Business	Object	Can	Have	Its	Own	Screen	Layout
You	can	specify	that	each	business	object	has	its	own	screen	layout	using	the
VLF.NET	Screen	Layout	Persistence	Level	option.	By	default	a	single	screen
layout	applies	to	the	entire	Framework.
	

Default	Texts	Can	Be	Overriden
Default	application	text	strings	(such	as	User	Name	and	Password	labels	in	the
Sign	In	dialog	box)	can	now	be	overridden	dynamically	by	storing	the
replacement	texts	in	the	file	VF_MULTI_YYY.js	(where	YYY	is	the	language
code)	and	placing	it	on	the	webserver.	See	Allow	Dynamic	Overriding	of
Default	Application	Texts.

Commands	and	Command	Handlers
Bypass	Locks
Commands	can	bypass	Framework	or	RAMP	locks	in	VLF.WIN	applications.
The	Bypass	Locks	option	can	be	used	to	allow	certain	instances	of	commands	to
execute	even	though	the	Framework	or	RAMP	may	be	locked.

The	commands	Spool	Files,	New	Window,	Queues	and	Print	Window	on	the
shipped	Framework	tool	bar	are	all	set	to	bypass	locks	and	demonstrate	the
intended	use	of	the	property.
	

Find	out	if	Command	Handler	Is	Maximized
A	new	Framework	Services	property,	avCmdPanelState	Property,	will	return	the
current	state	of	a	command	handler	panel	in	relation	to	the	Framework.	When	a
panel	has	been	maximized,	this	property	will	return	MAX,	and	NORM	if	it	has
not	been	maximized.
	

User-Interface	Enhancements
Framework	Tool	Bar	Style
You	can	set	the	style	for	the	Framework	tool	bar	to	Simple	to	display	large
buttons	with	text:	

This	style	is	easy	for	new	users	to	use.	However,	the	buttons	do	not	wrap	on
secondary	lines	so	the	number	you	can	display	is	limited	by	the	width	of	the
device.
A	text	description	is	shown	for	all	the	buttons	(derived	from	the	command
caption).
If	you	set	the	tool	bar	style	to	Advanced	you	can	display	small	buttons	which
can	wrap	onto	secondary	lines:	

Text	descriptions	are	only	shown	for	buttons	that	have	a	Tool	Bar	Button
Caption	defined.
See	Tool	Bar	Style		in	the	Framework	Details	tab.

	
Hide	Windows	Control	Bar
There	is	now	an	option	to	hide	the	Windows	Control	Bar	which	is	displayed	on
Framework	forms	when	more	than	one	Framework	window	is	open.	See	the
options	for	the	Framework	property	Multiple	Window	Control	Bar	Location.

Window	Is	Positioned	at	Startup
The	VLF.WIN	application	start	up	logic	now	tries	to	position	the	initial	main
window	so	that	is	clearly	visible	to	the	user.
Previously,	a	restarted	VLF	main	window	may	have	been	positioned	so	that	it
was	hard	to	locate	and/or	use	if	a	user	had	closed	it	in	a	position	very	close	to,
or	off	the	edge	of	the	screen,	on	a	secondary	monitor	that	was	not	connected
later,	or	at	a	place	that	was	outside	the	screen	after	a	change	to	the	screen's
resolution.
	
	
	

Other	Enhancements
MSXML6
Visual	LANSA	Active-X	Controls	VF_AX003	and	DF_XMLAC	have	been
changed	to	use	MSXML6	interface.	Your	VL	application	code	probably	does
not	reference	these	components	directly,	but	if	it	does	it	will	need	to	be
recompiled	and	re-tested.
	

Encrypt	Framework	Design	XML
The	Framework	design	XML	can	be	saved	in	an	encrypted	form.	The	new
option	Encrypt	XML	Files		can	be	found	on	the	Framework	Details	tab	of
Framework	Properties:

Confirm	Close	Message
You	can	now	set	a	confirmation	message	when	end-users	attempt	to	close	the
Framework.	Use	the	Close	Confirmation	Message	option	on	the	Web/RAMP
Details	tab	to	enter	the	message	which	will	be	displayed	before	the	Framework
is	closed:	

	

New	features	in	EPC	839	version	of	the	Framework
This	section	outlines	features	that	were	new	in		EPC839	version	of	the
Framework:
	
VLF.NET	Snap-in	Components
You	can	now	create	Framework	filters	and
command	handlers	as	.NET	components
using	Visual	LANSA	Framework	.NET
SDK.
For	more	information	refer	to	the	Visual
LANSA	Framework	Snap-in	Components
Guide.	
	

RAMP-TS
A	new	RAMP	product	RAMP-TS
is	now	available	for	modernizing
5250	applications.
It	is	released	for	VLF.WIN,
VLF.WEB	and	VLF.NET.
For	more	information,	refer	to	the
RAMP	Guide.	
	

Generic	Notes	and	Spool	Files	Command
Handlers
The	Generic	Notes	Command	Handler	
allows	notes	to	be	associated	with	a
business	object	instance.	The	notes	can	be
classified,	and	may	have	multiple
attachments	associated	with	them	(eg:	MS-
Word	documents,	e-mails,	images/photos,
etc,	etc).	All	the	notes	and	attachments	are
permanently	stored	in	database	tables	on
the	database	server.
The	Generic	Spooled	Files	Command
Handler	allows	the	end-user
to	browse,	delete,	or	change	the	queue	of	a
spooled	file.	They	can	also	convert	the
spooled	file	to	a	text	file	or	PDF,	which	can
be	copied,	emailed,	viewed	etc.
	

Export	Instance	List	Contents
to	Document
End-user	can	now	Export
Instance	List	Contents	to	a
document.	There	is	no	additional
effort	required	from	the	part	of
Framework	developers.	The
supported	document	formats	in
VLF.NET	are:
Excel
PDF
HTML
CSV
In	the	Windows	environment,
templates	are	not	available	and
the	only	format	currently
supported	is	CSV.
	

Program	Coding	Assistant	for	Command
Handler	That	Sends	Data	to	a
Spreadsheet

Force	Command	Handlers	and
Filters	to	Terminate

mk:@MSITStore:lansa050.chm::/Lansa/LANSA050_1155.htm

There	is	a	new	Program	Coding	Assistant
for	Windows	command	handlers	which
generates	a	command	handler	that	allows
the	end-user	to	select	from	a	list	of	fields
and	then	send	the	data	for	the	selected
fields	to	a	MS-Excel	spreadsheet.	The	end-
user	can	choose	to	send	the	data	for	all
entries	in	the	instance	list,	or	only	the
selected	entries.
The	Code	Assistant	is	called	Send	data	to
MS-Excel	as	a	CSV	file.
See	the	RAMP	tutorial	Sending	Instance
List	Contents	to	Excel	for	step-by-step
instructions.
Alternatively,	you	can	use	the	option	Allow
Instance	List	to	be	sent	to	MS-Excel	to
automatically	send	instance	list	contents	to
a	spreadsheet.

The	Stay	Active	option	for	filters
and	command	handlers	has	been
expanded	to	include	new	settings,
NEVER	and	DEFAULT.
NEVER	indicates	that	when	you
move	between	business	objects,
any	inactive	(not	visible)
command	handlers	are
terminated.
DEFAULT	sets	the	Stay	Active
option	for	filters	and	command
handlers	to	the	value	set	on	the
new	Framework	level	option,
Stay	Active	Default	for
Command	Handlers	and	Filters.
Application	level	tracing	has
been	extended	so	that	you	can
easily	determine	the	status	of
filters	and	command	handlers.

Programmatically	Set	Focus	to	a	Pane
You	can	now	programmatically	cause	a
pane	to	be	expanded	and	then	become
focused	using	the	avPaneFocus	Method.
You	can	add	hidden	commands	to	the
Framework	to	allow	a	user	to	switch
between	the	main	panes	without	using	a
mouse.

Advanced	Tutorials
Advanced	Tutorials	are	now
available	for	Windows,	Web	and
WAM	Frameworks.

Set	Execution	Priority	on	Server
Definitions
The	execution	priority	for	super-server	jobs
can	now	be	set	in	the	server	definition.	The
default	priority	is	20	however	if	it	is	set	to	a
lower	figure	the	super-server	job	will	have
a	higher	priority	and	receive	better	service
from	the	CPU.	See	Execution	Priority.
	

Reduce	the	Amount	of	Memory
Your	Framework	Uses
The	new	Framework	level	option
Trim	Working	Set	can	be	used	to
reduce	the	amount	of	memory
your	framework	uses.
If	this	option	is	enabled	in	a	VLF-
WIN	application	the	working	set
of	the	Windows	process

mk:@MSITStore:lansa050.chm::/Lansa/lansa050_1095.htm

executing	the	Framework	is
trimmed:
When	the	start	up	of	the
Framework	is	complete
When	the	main	Framework
window	has	been	minimized	for
approximately	20	seconds.
	

New	Way	of	Saving	Unsaved	Changes
There	is	a	new	way	of	Saving	unsaved
changes	using	uQueryCanDeactivate	/
avNotifyDeactivation.

Get	Icon	References
You	can	use	the	avFindIcon
method	to	Get	Visual	LANSA
Framework	Icon	Reference.

Framework	Caption	is	Now	Used	as	the
Web	Page	Title
A	Framework's	caption	is	now	used	as	the
Web	page	title	when	running	as	a	VLF-
WEB	application	and	appears	on	the	IE	tab
in	the	web	page's	language.
	

Manual	Deployment	of
VLF.NET
In	some	circumstances	a	strict
security	policy	can	make
ClickOnce	deployment	unviable.
A	new	feature	addresses	this
problem	by	enabling	the	network
administrator	to	generate	a
version	of	VLF.NET	that	can	be
launched	locally	from,	for
example,	a	network	share.
VLF.NET	Manual	Deployment	–
An	Alternative	Way	of	Deploying
VLF.NET

Turn	Application	Tracing	on	in	User
Mode
The	shipped	Demonstration	Application
has	a	new	Framework	level	command	that
activates	Application	level	tracing	and		can
be	used	in	User	Mode.
See	the	source	code	of	reusable	part
DF_DET46	for	an	example	of	how	this	is
done.

Add	Text	to	the	Window	or	Title
Bar	Caption
A	suffix	of	any	text	can	now	be
added	to	the	current	window	or
title	bar	caption.	See	the	FAQ
Can	I	change	the	business	object
instance	caption	that	appears	in
the	area	above	my	command
handlers?

New	View	Menu	Options
New	options	in	the	View	menu	allow	the
user	to	move	focus	to	a	particular	part	of
the	Framework	window.
To	see	how	they	work,	execute	for	example
the	Essential	Business	Object	in	the
Programming	Techniques	application.

	

	
To	review	new	features	in	previous	Framework	versions,	see:
New	features	in	EPC	831	version	of	the	Framework
New	features	in	EPC	826	version	of	the	Framework
New	features	in	EPC	804	version	of	the	Framework
New	features	in	EPC	793	version	of	the	Framework
New	features	in		EPC	785	version	of	the	Framework
		
	
	
	

New	features	in	EPC	831	version	of	the	Framework
This	section	outlines	new	features	in		EPC831	version	of	the	Framework:
	
VLF.NET
Any	Framework	Web	Browser	application	can
be	compiled	as	a	.NET	executable	using	the	
VLF.NET	feature.	It	offers:
Enhanced	security	capabilities		
Faster	client	side	application	execution
Visually	enhanced	and	functionally	better	GUI
capabilities
Near	zero	deployment	by	using	.NET’s
integrated	web	browser	deployment	technology
	

	

User	Experience
Enhancements
Visual	Themes
Server	connection	recovery
Quick	Find	Box	on	the	tool
bar
	
	
	

	

Developer	Interface	Enhancements
Developer's	Workbench
Improved	filter	and	command	handler	snap-in
facility
Improved	Images	palette	
Execute	the	Framework	in	Prototype	Mode	Only
Easy	access	to	latest	Demonstration	System
Keep	old	XML	Framework	versions	organized
	

Instance	List
Improvements
Show	or	hide	Instance	list
tool	bar	buttons
Programmatic	instance	list
sorting
Filters	can	override	instance
list	column	headings
Enable/disable	peer	objects
in	instance	lists

	

New	Functionality
Programmatically	shrinking	and	expanding
panes	in	Windows
General	Purpose	Document	Manager
Control	when	an	object	can	be	opened	in	a	new

Web	Enhancements
Trace	can	be	disabled	for
Framework	Web
applications	
Visual	Ids	on	Web	can	be
hidden

window
Optionally	show	current	business	object	in
window	title
Set	session	values	before	connection
Test	the	Activated	state	of	filters	and	command
handlers
Specify	your	Framework	version	number
	
	

The	tabbing	order	of	buttons
can	be	controlled
Improved	Focused	Input
Style
VLF.WEB	logon
improvements
Improved	start	up	times	for
DBCS	Web	applications
Control	Web	Framework
start-up	dimensions
Improved	XP	and	Vista
fields	and	buttons	in	web
browser	applications

New	Limits
Maximum	Number	of	Application	Views
increased	to	100
Maximum	Web	Password	Length	is	now	32
Selection	Block	Size	set	to	500	by	default
	

	
	

	

VLF.NET
Any	Framework	Web	Browser	application	can	be	compiled	as	a	.NET
executable.

	
VLF.NET	supports	all	existing	and	new	WAM	filters	and	command	handlers
and	all	RAMP	screens	and	scripting.
See	VLF.NET	Applications.
	

Developer's	Workbench
Developers	can	now	directly	access	Framework	objects	and	their	properties
using	the	Developer’s	Workbench.
The	Workbench	has	been	designed	to	make	it	possible	to	quickly	perform
actions	such	as	snapping	in	filters	and	command	handlers	and	changing
properties,without	the	performance	overheads	caused	by	having	to	display	the
Framework	at	the	same	time.
	

	
To	start	the	Developer’s	Workbench	execute	form	UF_DEVEL.
	

Visual	Themes
Visual	Themes	are	an	easy-to-activate	alternative	to	visual	styles	which	produce
a	dramatic	improvement	in	appearance.
Visual	themes	are	available	in	the	Visual	LANSA	Frameworks	executing	in
Visual	LANSA	11.5	or	later	environments,	for	Frameworks	at	level	epc826	+
hotfixes	050	and	053	(or	later).
Just	select	a	theme	in	-->	Framework	-->	Properties	-->	Visual	Styles	tab	-->
Visual	Theme.	The	appearance	of	the	entire	Framework	will	change	to	the	new
theme	immediately,	including	your	own	command	handlers	and	filters.
You	can	optionally	allow	end-users	to	change	their	own	theme.

	

Note	that	it	may	be	necessary	on	some	PCs	for	the	user	to	shut	down	and	restart
the	Framework	before	the	theme	is	fully	implemented.
Also	see	Overall	Theme	and	End	User	can	change	theme.
	

Trace	can	be	disabled	for	Framework	Web	applications	
You	can	now	ensure	that	end-users	cannot	run	tracing	when	they	execute	their
Framework	web	applications,	even	if	they	add	TRACE=Y	or
TRACE=SYSTEM	to	their	URL.
By	setting	the	field	#CHK_TRACE	to	FALSE	in	the	web	sign-on	IIP,	all	tracing
after	sign-on	will	be	stopped.
The	shipped	version	of	this	is	function	UF_SYSBR/UFU0001.	See	the	source
code	of	UFU0001	for	more	details.

	

Execute	the	Framework	in	Prototype	Mode	Only
You	can	now	execute	the	Framework	in	its	original	prototype	mode	by	selecting
the	Prototype	Mode	Only	check	box	when	you	select	the	Framework	file.

This	option	is	only	available	when	you	execute	the	Framework	as	Designer.
See	Prototype	Only.
	

Improved	filter	and	command	handler	snap-in	facility
The	interface	for	snapping	in	filters	and	command	handlers	has	been	redesigned
for	better	usability	and	performance.

The	simplified	interface	allows	filters	and	command	handlers	to	be	selected	by
object	type.	The	search	facility	can	be	used	to	locate	the	objects	by	name	or
description.
RAD-PAD	mock-ups	can	be	identified	by	name	and	RAMP	destination	screens
are	shown.
	

Improved	Images	palette	
To	make	it	easier	to	prototype	applications,	enhancements	have	been	made	to
the	Images	Palette	including	the	selection	of	the	images	folder	and	the	zooming
of	image	sizes.

	
	

Specify	your	Framework	version	number
On	the	(Framework)	->	(Properties)	->	Identification	tab	you	can	now	specify
your	own	Framework	version	number.		It	consists	of	four	numbers,	each	of
which	must	be	in	the	range	1	to	9999999.

The	version	number	is	significant	when	using	VLF.NET	as	it	indicates	to
Internet	Explorer	that	the	version	of	your	Framework	has	been	updated	on	the
web	server.
See	Your	Framework	Version	Number.			

	

Keep	old	XML	Framework	versions	organized
You	can	now	store	your	old	XML	Framework	versions	in	a	subfolder	to	reduce
the	number	of	files	in	the	partitition	execute	directory.	See	the	new	property	in
Framework	Details	-->	Keep	Versions	in	Subfolders.
	
	

Set	session	values	before	connection
For	Framework	Windows	applications	that	connect	to	a	server,	there	is	a
new	IIP	that	allows	session	values	to	be	set	just	before	the	connection	to	the
server	occurs.	The	new	IIP	is	called	avSetBCSessionValues.	See	UF_SYSTM
for	details.
Most	session	values	are	set		by	IIP	avSetSessionValues,	but	since	this	occurs
after	connection	to	the	server,	it	is	not	appropriate	for	some	session	values	(for
example	session	value	PSRR).	The	new	IIP	avSetBCSessionValues	allows	the
designer	to	set	the	session	values	that	need	to	be	set	prior	to	connection.
	

Selection	Block	Size	set	to	500	by	default
The	Selection	Block	Size	parameter	defines	the	number	of	records	that	are
transferred,	in	one	hit,	from	the	server	by	SELECT	commands	executed	on	the
client	system.	Performance	is	improved	by	using	large	block	sizes	and	therefore
the	default	when	you	define	a	new	server	is	now	500.		
See	Selection	Block	Size.
	

Server	connection	recovery
On	Windows	the	Framework	can	be	configured	to	handle	a	temporary	loss	of
connection	to	a	server.	For	example,	this	might	happen	when	a	user's	laptop
moves	out	of	range	of	the	wireless	base	station.
The	Framework	can	be	configured	to	check	the	server	connection:
Before	the	user	moves	to	the	next	business	object	or	application
Before	executing	a	command
At	intervals	specified	by	the	designer
If	the	connection	check	fails,		by	default	the	Framework	stops,	advises	the	user
and	after	user	confirmation	attempts	to	reconnect.
Alternatively	the	application	designer	can	write	their	own	server	connection	test
function	or	perform	programmatic	connection	checking	in	Framework	filters
and	command	handlers.
See	Server	Connection	Recovery
	

Programmatic	instance	list	sorting
In	the	Windows	Framework	a	filter	or	command	handler	can	now
programmatically	sort	the	instance	list	by	a	column	at	run	time.
See	Programmatically	Sorting	the	Instance	List.
	

Filters	can	override	instance	list	column	headings
In	the	Windows	Framework,	filters	can	be	coded	to	override	the	instance	list
column	headings	at	run	time.	This	can	be	used	to	make	the	instance	list	suit	the
result	of	different	filter	searches.
See	Overriding	Instance	List	Column	Headings.
	

Maximum	Web	Password	Length	is	now	32
The	maximum	allowable	length	for	passwords	can	be	extended	to	32	characters
in	Web	applications.	Minimum	value	allowed	is	10,	maximum	value	allowed	is
32.
See	Maximum	Web	Password	Length.
	

Optionally	show	current	business	object	in	window	title
Use	the	option	Show	Current	Business	Object	in	Window	Title	to	force	the
Framework	to	always	show	the	current	business	in	the	window	title.			
If	this	option	is	unchecked,	the	Framework	caption	will	be	used	for	all	window
titles	unless	the	Show	the	‘Windows’	Menu	in	this	Framework	option	is	checked
in	which	case	all	windows	show	the	current	business	object	as	the	window	title,
regardless	of	this	option.
	

Improved	Focused	Input	Style
A	directive,	APPEND=	can	be	used	with	the	Focused	Input	Field	Style	property
of	a	Framework	to	cause	the	style	entered	in	the	Focused	Input	Field	Style
property	to	be	appended	to	the	existing	style	of	the	input	field	instead	of
replacing	it.
	

Improved	XP	and	Vista	fields	and	buttons	in	web	browser
applications
Framework	fields	and	buttons	in	XP	and	Vista	now	look	like	the	native	ones.

	

Show	or	hide	Instance	list	tool	bar	buttons
You	can	select	or	unselect	the	Show	on	Instance	List	Tool	Bar	option	to	control
whether	a	button	for	a	command	should	appear	on	the	instance	list	tool
bar	associated	with	the	instance	list.
Note	that	if	child	or	parent	business	objects	have	a	reference	to	the	same
command	definition,	a	button	for	these	references	may	still	appear.
	
	
	
	

General	Purpose	Document	Manager
Use	the	shipped	command	DX_DOCS	to	manage	a	set	of	user	defined
documents.	The	documents	are	stored	in	a	shipped	database	file	called
DXDOCS.	You	can	snap	this	command	to	any	Framework	object	and	it	will	be
instantly	functional.	Users	are	presented	with	a	standard	Windows	folder
browser	and	a	list	view	initially	showing	existing	documents	for	the	selected
object.	An	icon	next	to	the	list	view	entry	indicates	the	status	of	the	document.
The	end-user	can	add	documents	by	dragging	and	dropping	or	by	cutting	and
pasting	them	to	the	right-hand	side	of	the	Document	Manager.	Documents	can
be	managed	using	the	context	menu.
Entries	with	light	blue	icons	indicate	a	stored	document	pending	download.
Download	the	document	by	clicking	on	the	list	view	entry	and	then	edit	or
delete	it.
Entries	with	green	icons	indicate	documents	that	have	been	downloaded	into	a
local	temporary	folder.
Entries	with	yellow	icons	indicate	documents	that	do	not	exist	in	the	database.
For	example	documents	that	have	been	dragged	into	the	folder	browser.	Or	they
can	be	documents	the	contents	of	which	have	been	edited	since	the	time	they
were	downloaded.
Entries	with	a	red	cross	are	documents	marked	for	deletion.	For	example,
downloaded	documents	that	have	been	deleted	or	dragged	out	of	the	folder
browser.

See	the	shipped	Documents	command	handler	for	the	Resources	business
object.
	

Maximum	Number	of	Application	Views	increased	to	100
You	can	define	up	to	100	Views	for	an	application.	However,	more	than	10	is
considered	excessive	and	will	affect	the	amount	of	space	available	to	show	the
views	and	business	objects	belonging	to	them.	If	more	than	10	are	required	you
should	restrict	the	Navigation	View	Pane	to	Tree	View.
See	Optionally	Group	Business	Objects	into	Application	Views	.
	
	

Quick	Find	Box	on	the	tool	bar
When	the	Quick	Find	feature	is	enabled,	a	search	field	like	this	appears	on	the
right-hand	side	of	the	Framework	tool	bar	like	this:

When	a	user	clicks	in	this	field	a	list	of	the	business	objects	they	have	recently
been	using	is	displayed.	The	list	is	ordered	from	most	recent	to	least	recent:		

The	user	may	select	a	business	object	from	the	list	by	clicking	on	it.	This	will
immediately	switch	them	to	the	business	object.
They	may	also	type	in	a	search	value.	As	they	type	the	set	of	authorized
business	objects	captions	is	scanned	and	presented	to	them.	By	clicking	on	one
of	the	business	objects	presented	they	will	be	immediately	switched	to	it:					

See	Allow	Search/Recently	Used	Limit	and	Search	Field	Width.
	

Easy	access	to	latest	Demonstration	System
When	starting	up	the	Framework	as	a	Designer,	you	can	launch	the	latest
Demonstration	system	by	selecting	the	option	Open	Latest	Demonstration
Version	and	clicking	the	Open	button.

	
See	Open	Latest	Demonstration	System.
	

Enable/disable	peer	objects	in	instance	lists
The	Enable	Peers	when	Selected	option	indicates	whether	any	appropriate	peer
objects’	commands	should	be	enabled	when	this	business	object	is	selected.
This	option	is	selected	by	default.				

	

The	tabbing	order	of	buttons	can	be	controlled
The	tabbing	order	of	buttons	can	now	be	controlled	in	Web	Framework
applications.
In	WAMs	the	order	is	set	using	the	avSetButton	method	(see	UB_xxxxx	User
Buttons).
	
	

Control	when	an	object	can	be	opened	in	a	new	window
You	have	now	more	control	over	whether	an	object	can	be	opened	in	a	new
window.	The	options	for	Allow	this	Object	to	be	Opened	in	a	New	Window	are:

Never This	object	cannot	be	opened	in	another	window	by	an	end-
user.

Manually This	object	can	be	manually	opened	in	another	window	by	an
end-user.	They	do	this	by	using	the	Window	->	Open	in	a	New
Window	main	or	popup	menu	options.

Automatically This	object	should	be	opened	in	a	new	window	automatically
when	it	is	selected	in	the	navigation	pane.	In	effect	this	means
that	this	object	will	always	operate	in	a	separate	window	to	the
one	it	is	launched	from.		

Automatically
or	Manually

This	object	should	be	opened	in	a	new	window	automatically
when	it	is	selected	in	the	navigation	pane,	and,	it	can	be
manually	opened	by	an	end-user.

	

Note:	None	of	these	options	have	any	impact	on	the	ability	of	developers	to
programmatically	open	new	windows	by	using	the	avShowWindow	method	(see
Programmatically	Creating	and	Managing	Windows).
	

Improved	start	up	times	for	DBCS	Web	applications
The	way	the	start	up	DBCS	information	is	exchanged	with	the	server	when	a
VLF.WEB	application	executes	the	first	business	object	has	been	improved.	The
initial	information	exchange	should	now	complete	in	at	most	2	exchanges.
	
	

Control	Web	Framework	start-up	dimensions
For	the	web	Framework,	designers	now	have	some	control	over	the	relative
dimensions	of	the	main	Framework	panels	at	start	up.	(Navigation	Pane,	Filter
Panel,	Instance	List	Panel,	and	Command	Handler	panel)
	
See	Web	Initial	Filter	Pane	height	(%),	Web	Initial	Filter	Pane	width	(%	of	right
panel)	and	Web	Initial	Navigation	Pane	width	(%).

Visual	Ids	on	Web	can	be	hidden
In	Framework	web	applications,	if	a	business	object	has	Visual	ID	1	or	2	with	a
sequence	of	zero	or	blank,	the	visual	id	columns	are	now	hidden.
	

Programmatically	shrinking	and	expanding	panes	in	Windows
In	the	Windows	Framework	a	filter	or	command	handler	can	now
programmatically	shrink	the	filter	pane,	the	command	handler	pane,	the	instance
list,	or	the	navigate	pane,	and	can	also	re-expand	them.
Command	handlers	can	also	programmatically	expand	themselves	to	occupy	the
space	used	by	the	filters	and	instance	list	(Maximize),	and	restore	themselves
back	to	their	original	size.
See	Expanding,	Shrinking	and	Focusing	Panes.
	

Test	the	Activated	state	of	filters	and	command	handlers
Typically	you	use	the	Activated	state	of	filters	to	test	whether	signalled	events
should	be	ignored.
	
avFilterActivated	Property
This	property	contains	strings	TRUE	or	FALSE	and	it	allows	logic	in	a	filter	to
test	whether	it	is	currently	in	an	activated	state.
A	filter	is	activated	if	it	is	in	a	state	where	a	user	may	be	able	to	interact	with	it.
A	filter	in	a	minimized,	hidden	or	deactivated	window	may	still	be	considered	to
be	activated.		

	

avHandlerActivated	Property
This	property	contains	strings	TRUE	or	FALSE	and	it	allows	logic	in	a
command	handler	to	test	whether	it	is	currently	in	an	activated	state.
A	command	handler	is	activated	if	it	is	in	a	state	where	a	user	may	be	able	to
interact	with	it.
A	command	handler	in	a	minimized,	hidden	or	deactivated	window	may	still	be
considered	to	be	activated.		

	

VLF.WEB	logon	improvements
VLF.WEB	application	logon	credentials	are	verified	by	a	customer-specified
LANSA	function.	The	shipped	example	logon	verification	function	is	named
UFU0001.
The	shipped	UFU0001	now	contains	coding	and	comments	that	demonstrate
how	to:
Validate	logon	credentials	directly	against	an	System	i	user	profile’s	details.
Provide	specific	error	messages	indicating	exactly	why	logon	credentials	were
rejected.
To	accompany	these	changes	sample	3GL	programs	and	their	source	code	are
installed	by	EPC831.
The	source	code	file	is	named	UF_3GSRC.	It	contains	the	source	code	for	any
3GL	programs	that	UFU0001	may	need	to	call	if	you	decide	to	activate	this	new
feature.
Remember	that	the	shipped	UFU0001,	and	any	3GL	programs	or	source	code
provided,	are	samples	only.	You	should	create	your	own	versions	to	prevent	loss
or	behavioural	change	during	future	VLF	upgrades.	See	the	source	code	of
function	UFU0001	in	process	UF_SYSBR	for	more	details.

	

	
	

New	features	in	EPC	826	version	of	the	Framework
This	section	outlines	new	features	in		EPC	826	version	of	the	Framework:
Web
Open	and	save	your	Framework	web
applications	before	executing	them	to
create	new	.HTM	and	.JS	files!
You	can	now	create	Framework-AJAX
Applications	to	achieve	optimal	web
performance	with	functionality	close	to
that	of	a	Windows	rich	client
application.
See	also	Enable	Framework	for	AJAX
style	applications.
	

Usability
In	Windows	applications	the	main
Framework	panes	can	be	shrunk	and
expanded	to	allow	more	efficient	use
of	screen	real	estate.	Use	the	Allow
Panes	to	be	Shrunk	and	Expanded
option	to	enable	this	functionality.
You	can	use	the	new	Focused	Input
Field	Style	property	to	highlight	the
input	field	that	has	focus	with	a
different	style	in	Framework	web
applications.
	

Demonstration	Application
The	Demonstration	Application	has
been	significantly	revised	and	updated.
To	use	it	you	need	to	open	the	new
version	of	the	shipped	Framework
definition	in	file
VF_Sy001_System_LastShipped.XML.
You	need	to	remove	the	old
demonstration	application	from	any
existing	Framework	versions	as	it	may
no	longer	function	correctly.
	

Security
In	web	applications	it	is	now	possible
to	replace	the	Framework’s	security
model	by	specifying	your	own
avCheckAuth	method		(this	has
always	been	an	option	in	Windows
applications).
To	do	this	you	need	to	supply	a
LANSA	function	and	enroll	it	into	the
Framework.	Refer	to	shipped
example	function	UFU0016	in
process	UF_SYSBR	for	more	details.
Also	see	IIP	–	Function	to	return	web
user	authorities.
	
	

Mini-filters
You	can	now	specify	the	mini-filter	as	a
panel	to	control	all	its	display
attributes.	See	AvMiniFilterPanel.

Web	Deployment
It	is	now	possible	to	use	the
Administrator	interface	in	a	deployed
Framework	web	application	to	create

For	example	you	can	add	combo	boxes,
drop	downs,	check	boxes,	and	do
instant	editing	on	the	panel.
	

users	and	groups,	set	authorities	and
custom	property	values.
This	means	that	the	Windows
administrator	components	that	were
previously	required	in	web
deployment	packages	can	now	be
omitted.	See	Creating	Web	Interface
for	Maintaining	Users	and
Authorities.

Commands
Commands	(and	command	tabs)	can
now	be	conditionally	disabled	or
hidden	depending	on	business	object
SubTypes.		
Also,	you	can	use	the	Enable	Child
when	Parent	Selected	and	Enable
Parent	when	Child	Selected	properties
to	control	command	availability.
An	option	has	been	added	to	instance
commands	to	allow	a	command	never
to	be	the	default,	even	when	the	user
used	it	on	a	previous	instance	(see
Default	Command).
Commands	can	now	be	executed
without	any	user	interface	at	all,	that	is,
hidden	from	the	user.	See	Execute	as
Hidden	Command	and	Hidden
Command	Handler	Anatomy.
	
	

Instance	Lists
Instance	Lists	with	Different	Types	of
Objects	are	now	also	available	in
Framework	web	applications.
Peer	business	objects	are	now	shown
with	their	icon	to	make	it	easier	to
distinguish	different	types	of	objects.
You	can	Work	with	Hidden	Child
Objects	by	double-clicking	an
instance	list	entry.
Instance	lists	now	have	a	toolbar.	You
can	set	the	Instance	List	Tool	Bar
Location	and	the	Instance	List	Tool
Bar	Height	or	Width	in	the	Instance
List/Relations	tab	of	the	business
object.
ActiveX	instance	lists	are	no	longer
supported.
In	Windows	applications,	Instance
lists	that	are	saved	and	restored
between	VLF	sessions	now	include
the	user	object	name/type	of	any
current	super-server	connection	in	the
saved	file	names.	This	means	that
different	versions	of	a	saved	instance
list	can	co-exist	for	example		for
Server1,	Server2	and	a	Local	DBMS.
	

	
	

Command	Usage	Tab
More	details	about	the	usage	of
command	definitions	are	available	on
the	Command	Usage	Tab:
Default	Command
Hidden
RAMP	Destination

	

Improved	problem	analysis
The	Framework	web	application	trace
facility	(+Trace=Y	on	URL)	now
displays	the	details	of	HTML	pages
arriving	at	the	browser.
If	an	application	detects	a	bad
response	from	the	web	server,	the
user	is	given	an	option	to	analyze	the
nature	of	the	error	and	display	the
problem	HTML	page.	All	details	can
be	printed	or	copied	to	clipboard
making	it	easier	for	end-users	to
provide	helpful	error	information.
	

Performance
This	version	of	the	guide	includes
detailed	information	about	Assessing
Performance	in	Framework	Web
Applications.

Position	Menu	Option	can	be
Disabled
The	Position	menu	option	can	now	be
turned	off	by	designers	so	that	users
will	not	be	able	to	change	the	relative
position	of	any	of	the	Framework
display	panes.
	

HTML	Startup	Page
You	can	specify	an	HTML	page	as	the
startup	page	for	the	Framework	or	an
individual	application.	You	can	provide
links	to	other	resources	from	this	page.
See	The	Demonstration	Application	for
an	example.

	

	
	

New	features	in	EPC	804	version	of	the	Framework
This	section	outlines	new	features	in		EPC	804	version	of	the	Framework:
Performance
This	new	version	of	the	Framework	is
expected	to	perform	better	than	all
previous	versions.
To	accommodate	the	performance
improvements	the	internal	structure	of	the
Framework	has	been	heavily	modified.
If	you	have	created	Visual	LANSA	code
that	accesses	the	internals	of	the
Framework	(which	is	a	risk	that	some
users	have	assumed),	it	may	no	longer
function	correctly	and	will	need	to	be
modified	and/or	recompiled.
Examples	include	non-standard	code
inclusions	in	UF_EXEC,	UF_ADMIN	or
UF_DESGN	entry	points	or	equivalent,
non-standard	user-defined	Code
Assistants,	etc.
If	you	have	processes	that	read	the
Framework	XML	definition	files,	they
may	need	to	be	modified	to	accommodate
changes	made	to	the	XML	structure.		
WARNING:	The	internal	changes
required	to	accomplish	this	mean	that	for
this	version	(unlike	previous	versions)	you
cannot	execute	different	VLF	versions	in
different	LANSA	partitions	within	the
same	LANSA	system.
This	means	when	you	upgrade	a
Framework	version	in	one	partition	to
EPC804	level	you	must	also	upgrade	any
other	Framework	versions	in	any	other
partitions	within	the	same	LANSA	system.

Usability
Multiple	Framework	Windows	can
be	opened	at	the	same	time	to
enhance	end-user	productivity.
You	can	create	a	Favorites	Folder
using	the	Contains	Favorites
property	of	an	application.
Navigation	pane	view	buttons
have	changed	so	that	users	can
navigate	to	the	required	view	in	a
single	click.
The	Command	Usage	tab	shows
where	a	selected	command	is
used.

	

	
Instance	Lists
Improved	Application	Tracing	for
Relationship	Handlers	are	provided	to
make	finding	problems	in	your
relationship	handlers	easier.
	

	

Deployment
are	available.	The	detailed	check
lists	guide	the	user	in	planning	the
deployment,	packaging	the
material	and	installing	the
package.

	

Virtual	Clipboard
You	can	use	New	Virtual	Clipboard
Control	Options	to	set	clipboard	default
content	and	to	clear	the	clipboard.

Imbedded	Interface	Points
There	are	New	UF_SYSTM	IIP
(Imbedded	Interface	Point)
methods	that	you	can	override.
These	methods	are	invoked	when
Framework	windows	are	opened
and	ready	for	work,	or	when	they
are	closing.
	

Custom	Properties
Frameworks	that	share	a	User	set	no
longer	use	the	same	custom	property
values	for	their	users.	This	means	that
Frameworks	with	different	Framework	IDs
but	sharing	the	same	User	Set	can	store
separate	values	of	Custom	Properties	for
the	same	user.

	

Look	and	Feel
Applications	in	tree	navigation
pane	are	shown	in	bold
Instance	List	can	optionally	be
displayed	with	alternate	row	color

For	Non-English	Systems
New	default	translation	tables	for
Framework	server	definitions	using
RDMLX	partitions	and	connections	have
been	changed	to	*JOB/*JOB	for	better
default	translation	results.
There	are	new	text	strings	that	need	to	be

	

translated.	Translation	of	end-user	visible
text	is	carried	out	using	function
UFU0003.

	

	
	

Framework	Windows
Programs	and	end-users	can	now	open	and	control	many	Framework	windows.
Being	able	to	have	several	objects	open	for	editing	at	the	same	time	allows	the
end-users	to	work	efficiently	and	seamlessly	on	concurrent	tasks.
	

	
	

	
This	feature	is	available	in	Windows	only.
As	a	designer	you	can	set	a	limit	on	how	many	windows	that	an	end-user	can
have	concurrently	open.	You	may	control	whether	the	whole	Framework,
individual	applications,	application	views	or	business	objects	may,	or	may	not,
be	opened	in	independent	windows.
Full	programmatic	control	of	Framework	windows	is	provided.	Filters	or
command	handlers	may:

Open	or	close	windows

Select	what	content	is	accessible	in	the	window

Enumerate	all	open	windows

Control	the	signaling	of	events	to	windows	using	the	new	parameter

WindowScope	in	the	avSignalEvent	method.

Switch	to	a	new	window	to	display	a	business	object	using	the	new	optional
parameter	TargetWindow	in	the	avSwitch	method.

Pass	information	into	and	out	of	windows

For	more	information	see	Framework	Windows	Management.	
	

Favorites	Folder
Applications	with	the	Contains	Favorites	property	checked	can	store	shortcuts
to	an	end-user's	favorite	business	objects.	To	do	this	end-users	simply	drag
business	objects	they	commonly	use	into	the	application	where	this	property	is
checked.
The	actual	business	objects	remain	in	the	application	they	belong	to.
For	example	you	can	create	a	Favorites	folder:

By	creating	an	application	with	the	caption	Favorites	with	the	Contains
Favorites	property	selected:

	
The	favorites	information	is	stored	in	the	Framework	Virtual	Clipboard	in	the
user's	temporary	directory.
This	feature	is	available	in	Windows	only.
	

Command	Usage	tab
The	tab	lists	the	business	objects,	applications	and	Frameworks	in	which	a
selected	command	is	used:

Navigation	pane	view	buttons	have	changed
The	navigation	pane	buttons	that	could	be	used	to	cycle	through	the	list,	tree	and
toolbar	navigation	pane	views	have	been	removed	from	the	VLF.WIN	and
VLF.NET	frameworks.
(The	VLF.WEB	framework	remains	the	same):		

	
	
In	the	VLF.WIN	framework	the	buttons	have	been	replaced	by	three	small	icons
on	the	left	the	status	bar	like	this:

	
In	the	.Net	framework		the	buttons	have	been	replaced	by	two	small	icons	on	the
bottom	left	of	the	navigation	pane	like	this:

	
The	icons	represent	the	tree,	list	and	drop-down	button	options.	The	user	can
now	navigate	to	the	required	view	in	a	single	click.
	
Tree	view
List	view
Drop-down	button

Tree	view

	

List	view

	

Drop-down	button
The	drop-down	button	view	hides	the	navigation	pane	and	gives	access	to
applications	and	business	objects	from	a	drop-down	button:

Application	designers	can	still	prevent	this	option	from	being	used	from	the
Framework	properties	and	specify	that	a	specific	view	(list,	tree	or	toolbar)	is	to
be	used	for	all	end-users.
	

Applications	in	tree	navigation	pane	are	shown	in	bold

Instance	List	can	optionally	be	displayed	with	alternate	row	color
You	can	show	an	alternate	row	color	for	the	instance	list:

	
By	changing	the	base	style	of	the	business	object's	Visual	Style:

	

Translation	of	end-user	visible	text
Some	text	strings	used	by	the	Framework	are	end-user	visible	and	may	need	to
be	translated	into	your	language.
This	translation	is	carried	out	using	LANSA	function	UFU0003	(or	your
equivalent).	A	new	version	of	UFU0003	has	been	shipped.
Review	UFU0003	(in	process	UF_SYSBR)	to	see	what	new	end-user	strings	are
now	available.
The	new	strings	relate	to	areas	like	the	new	multi-window	facilities	and	hints	for
the	new	navigation	pane	selection	icons.			
	

New	default	translation	tables	for	Framework	server	definitions
The	default	translation	tables	used	for	Framework	server	definitions	using
RDMLX	partitions/connections	have	been	changed	from	QEBCDIC/QASCII	to
*JOB/*JOB.
Typically	these	values	give	better	default	translation	results.	If	you	have	an
existing	VLF	application	using	an	RDMLX	server	definition	and	are	using	the
default	translation	table	values,	then	they	will	automatically	change	to	use	these
new	values.
	

New	UF_SYSTM	IIP	(Imbedded	Interface	Point)	methods	that
you	can	override
New	IIP	methods	in	UF_SYSTM	(or	equivalent)	are	now	symmetrically
invoked	when	the	main	Framework	window	or	a	secondary	Framework	window
is	opened	and	ready	for	work,	or	when	they	are	closing.
The	new	methods	are	called	avMAINWindowReady,
avSECONDWindowReady,	avCloseMAINWindow,	avCloseSECONDWindow
The	new	avXXXXXWindowReady	methods	are	invoked	when	the	window	has
been	opened,	the	user	has	been	logged	on	and	connected	to	any	server,	and	all
Framework	setup	operations	are	completed.	Their	purpose	is	to	provide	a	single
point	at	which	you	might	perform	operations	such	as:
Ask	the	user	for	additional	logon	details	(eg:	select	a	company).
Map	setup	information	into	the	virtual	clipboard.
Switch	to	an	initial	application,	business	object	and/or	command.
In	all	cases	a	parameter	#Continue	is	provided	to	allow	you	to	control	whether
the	window	should	continue	to	be	opened	or	closed.
See	Windows	and	Imbedded	Interface	Points.

New	Virtual	Clipboard	Control	Options
As	a	designer	you	will	see	a	new	(Virtual	Clipboard)	control	options	on	the
(Framework)	menu:

	
The	new	Save	as	Default	option	allows	you	to	save	your	virtual	clipboard
settings	as	a	default	file.
Typically	default	file	clipboard	files	are	deployed	to	end-users	to	establish	basic
system	defaults.
	
The	new	Delete	clipboard	content	at	exit	option	causes	the	virtual	clipboard	to
be	deleted	at	Framework	shutdown.
This	saves	you	from	having	to	locate	the	files	the	clipboard	is	saved	in	and
manually	deleting	them.
For	more	information	see	Persistence,	Resetting	and	Deploying	in	Windows
Applications.

Improved	Application	Tracing	for	Relationship	Handlers
If	you	are	using	a	Relationship	Handler	to	dynamically	expand	nodes	in	an
instance	list	tree	and	turn	on	application	level	tracing	you	will	find	a	large
amount	of	trace	data	is	produced	regarding	the	call	to	the	relationship	handler
and	what	it	returns.	This	makes	finding	problems	in	your	relationship	handlers
easier.

New	features	in	EPC	793	version	of	the	Framework
This	section	outlines	new	features	in		EPC	793	version	of	the	Framework:
Performance
The	start-up	times	for
Framework	applications	have
been	substantially	improved	in
this	version:

Faster	Framework	web	start-up
times	including	RAMP

Faster	Framework	Windows
start-up	times	including	RAMP

Improved	Framework	web
application	instance	list
performance

The	Preload	Framework	Images
option	has	been	removed

	
However,	the	changes	made	to
accomplish	this	mean	that:

You	Need	to	Regenerate	Your
Web	Browser	and	Javascript
Files

The	Web	Browser	Application
Load	Window	has	Changed

	

Instance	Lists
Improved	Framework	Windows	instance	list
handling
Improved	documentation	for	instance	list
processing	and	options
If	you	are	using	the	shipped	instance	list
handler	DFRELB1	or	DFREL01	to	handle
hierarchical	instance	lists,	you	need	to
recompile	them.

More	Flexible	Framework
Locking
New	PROGRAM_EXIT	option
for	Framework	locking

Interface	Improvements
New	Show	in	Menu	when	Disabled	option
New	method	#Com_Owner.avShowMessages

	
	
To	review	new	features	in	previous	Framework	versions,	see:
New	features	in		EPC	785	version	of	the	Framework
	

You	Need	to	Regenerate	Your	Web	Browser	and	Javascript	Files
The	main	HTML	and	JavaScript	files	used	for	web	browser	based	applications
has	been	changed.
You	will	need	to	(re)generate	these	before	attempting	to	execute	any	existing
web	browser	based	Framework.	To	do	this	open	your	Framework	as	a	designer,
make	a	dummy	change	to	it,	then	save	it	again	and	upload	the	resulting	HTML
and	JavaScript	files	to	your	web	server.
Where	you	have	a	deployed	application	you	need	to	regenerate	your	deployed
Framework	HTML	and	JavaScript	files	and	deploy	them	ready	for	installation	at
the	same	time	as	you	upgrade	your	deployed	VLF	environment.

The	Web	Browser	Application	Load	Window	has	Changed
If	you	use	the	"Load	Window"	that	appears	when	a	web	browser	application	is
starting	over	the	internet	you	may	need	to	specify	a	height	and	width	for	the
updated	version	of	the	load	window.		
The	existing	property	"Web	Load	Style"	has	been	removed	and	replaced	by
individual	window	height	and	width	fields.
	

Faster	Framework	web	start-up	times	including	RAMP
The	HTML	and	JavaScript	files	that	are	generated	for	Framework	Web
applications	have	been	significantly	changed.
By	using	an	'unrolling'	technique	for	your	Framework	definition,	the	start	up
times	for	Framework	web	applications	have	been	further	significantly	reduced.
As	a	result	of	these	changes	the	XML	file	that	defines	a	Framework	no	longer
needs	to	be	deployed	to	end-user	environments.				
	

Faster	Framework	Windows	start-up	times	including	RAMP
Framework	Windows	applications	now	use	a	new	property	optimization
technique	that	has	reduced	the	start	up	times	for	applications	using	the	end-user
entry	points	UF_EXEC	and	UF_ADMIN	(or	equivalent).
Generally,	deployed	Framework	Windows	applications	should	start	up	faster
than	before.

Improved	Framework	web	application	instance	list	performance
Instance	list	handling	in	Framework	web	applications	has	been	revised,
resulting	in	significantly	better	instance	list	performance.

Improved	Framework	Windows	instance	list	handling
In	Framework	Windows	applications	instance	list	handling	has	been	improved.
It	is	now	possible	to	dynamically	update,	insert	and	delete	entries	in	instance	list
visualized	as	tree	views	without	refreshing	the	entire	tree.	Refer	to	the	updated
documentation	for	more	details	of	all	the	new	options.
	

Improved	documentation	for	instance	list	processing	and	options
New	sections	on	instance	list	processing	have	been	added:

Advanced	Instance	List	Processing	shows	possible	techniques	for	the	centralized
handling	of	instance	lists	operations	using	a	Scope(*Application)	reusable	VL
part	and	methods	for	delegating	common	tasks	to	a	shared	VL	reusable
component.

Updating	and	Deleting	Instance	List	Entries		and	Physical	Instance	Lists	sections
describe	how	to	dynamically	update,	insert	and	delete	entries	in	instance	list
visualized	as	tree	views	without	refreshing	the	entire	tree.

Instance	Lists	with	Different	Types	of	Objects	contains	more	detailed
information	about	creating	parent-child	instance	lists.

	

New	PROGRAM_EXIT	option	for	Framework	locking
The	Framework	locking	facility	has	a	new	option	PROGRAM_EXIT.	It	is
identical	to	the	existing	PROGRAM	option	except	that	it	allows	the	user	to
exit/close	down	the	Framework	without	releasing	the	lock.
See	Framework	Locking	Service	to	Handle	Unsaved	Changes

	

New	Show	in	Menu	when	Disabled	option
This	new	option	allows	you	to	indicate	whether	a	disabled	command	should
show	(or	not)	on	command	menus.
By	setting	this	option	off,	the	cluttering	of	menus	with	disabled	commands	can
be	reduced.
See	Show	When	Disabled.

	

New	method	#Com_Owner.avShowMessages
Filters	and	command	handlers	in	Framework	Windows	applications	can	now
programmatically	cause	the	current	set	of	messages	to	be	displayed	by	invoking
the	#Com_Owner.avShowMessages	method.
It	acts	exactly	as	if	the	user	had	clicked	the	Messages	button	on	the	status	bar.
Framework	web	applications	have	always	been	able	to	do	this.
See	Show	Messages	Service.
	

The	Preload	Framework	Images	option	has	been	removed
The	Framework	web	application	option	Preload	Framework	Images	has	been
removed.	While	using	this	option	visually	improved	a	first	time	Framework
users'	experience,	it	was	found	that	subsequent	Framework	usage	may	be
actually	slower	when	using	this	option	because	of	the	way	that	Internet	Explorer
manages	image	caching.
Now	first	time	users	(or	users	using	the	Framework	after	the	IE	file	cache	has
been	cleared)	may	experience	a	slight	delay	and	visual	disruptions	while	images
are	(re)loaded	from	the	server.	Subsequent	usage,	where	images	are	in	the	IE
file	cache,	will	benefit.	You	can	improve	this	situation	even	further	by
implementing	configuration	settings	on	your	HTTP	server	so	that	browser
checking	for	updated	images	is	not	performed	when	an	image	already	exists	in
your	browser	cache.
In	a	System	i	Apache	web	server	configuration,	this	is	done	in	the	Expires
Header	of	the	Http	Responses	section	as	shown	in	this	picture.	In	this	example
any	.gif	files	would	be	version	checked	every	6	months	of	the	file	being
accessed:

Note	that	there	is	a	difference	between	the	caching	of	the	image	and	the	version

checking.	Browsers	would	usually	reuse	the	cached	image.	However,	they
would	still	compare	the	date	time	stamp	of	the	cached	image	with	the	server's
one.	It	is	this	operation	that	is	suppressed	for	the	specified	period	of	time
according	to	this	setting.
	
	

New	features	in		EPC	785	version	of	the	Framework
Web
Internet	Explorer	(IE)	7	is
now	supported	as	a	browser
in	Framework	end-user
applications.
Note	that	at	this	date	IE7	is
still	a	Microsoft	beta
product	and	it	is	not	yet
supported	by	the	Visual
LANSA	Development
Environment.
Also	see	How	can	I	hide	the
address	and	status	bars	on
Framework	popup	windows
when	using	IE7?
	

Framework	Versioning
Merge	Items	from	One	Framework	to	Another
The	Way	the	Demonstration	System	is	Installed
has	Changed

Programming	Tips
Advanced	Enter	Key
Handling	in	VL	applications

Code	Assistant	Improvements
Code	Assistants	can	now	optionally	create
Visual	LANSA	objects	directly	into	the	Visual
LANSA	Development	Environment,	so	no	more
copy/paste	between	the	Code	Assistant	and	the
Development	Environment	is	required.
See	Create	Component

Performance
Business	Object	instance	list
processing	is	faster	in	all
Visual	LANSA	Framework
Windows	applications.
	

	

	

The	Way	the	Demonstration	System	is	Installed	has	Changed
Previously	a	new	version	of	the	demonstration	system	was	automatically
installed	every	time	you	upgraded	your	Framework.	This	no	longer	happens	in
order	to	make	sure	you	do	not	lose	any	changes	you	may	have	made	to	the
demonstration	system.
It	is,	however,	recommended	you	install	the	latest	version	of	the	demonstration
system	so	that	you	can	see	how	new	features	work	and	to	ensure	there	are	no
incompatibilities	between	the	shipped	components	and	older	versions	of	the
demonstration	system.
	

Merge	Items	from	One	Framework	to	Another
You	can	merge	items	from	one	Framework	to	another	using	the	Merge	Tool.
See	How	to	Merge	Items	from	one	Framework	to	Another
	
	
	

If	You	Want	Your	Project	to	Succeed
You	must	perform	these	essential	activities	if	you	want	your	Framework	project
to	succeed:
	
1.		Build	a	prototype	and	get	it	reviewed	and	formally	agreed	and	signed	off	by
both	end-user	representatives	and	developers.	Users	will	know	what	they	are
getting	and	developers	will	know	what	they	need	to	deliver.

					This	is	a	basic	form	of	expectation	management	and	also	goes	some	way
towards	managing	classic	IT	project	problems	such	as	lack	of	user
engagement	and	scope	creep.							

2.		Publish	a	Minimum	Supported	Configuration	Document		–	where	you
formally	state	define	the	minimum	configuration	your	solution	will	viably
support,	including	what	servers,	client	platforms	and	web	browsers	your
application	will	support:
Minimum	hardware	requirements	(see	Computer	System	Requirements)
Minimum	software	requirements
Supported	screen	resolutions
Minimum	networking	capabilities
Maximum	data	volumes.

					A	formal	MSC	will:
Inform	decisions	about	the	overall	solution	cost
Establish	the	environment	required	to	test	the	deployment	of	the	solution
or	any	patch/hotfix	made	to	it.
Raise	management's	awareness	of	the	risk	in	implementing	a	"sub-MSC"
solution.

					For	more	information	refer	to	Application	Performance.
					Regularly	performance	test	to	the	minimum	platform	while	doing
development.	Maintain	and	republish	this	document	during	the	project.	

3.		Publish	a	Business	Value	Proposition	–	where	you	formally	define	the
business	value	of	your	application,	especially	where	an	existing	IBM	i	5250
application	is	being	modernized	or	replaced.

					Formally	state	how	and	why	your	application	will	make	doing	business
better	and/or	faster	and/or	smarter.	If	you	can’t	define	the	application’s	value
proposition	in	words	and	pictures	it	is	extremely	unlikely	you	will	be	able	to

implement	it	in	software.		
					The	introduction	of	visual	components	by	themselves	(ie:	things	like	radio
buttons,	drop	downs,	menu	bars	and	colour	gradients)	rarely	represent
significant	business	value.	Recidivist	end-user	behaviour	is	a	common	sign	of
low,	absent	or	poorly	explained	business	value	in	IT	projects.											

4.		Make	time	in	your	project	plan	to	for	deployment	and	testing.	You	would
be	amazed	how	often	this	area	is	discounted	by	developers	as	something	that
"will	only	take	a	few	days".	This	is	classic	area	where	IT	projects	experience
cost	overruns.

					You	need	to	factor	in	time	to	design	a	deployment	strategy,	implement	it	and
then	test	all	the	supported	platforms	–	in	addition	to	your	normal	application
level	unit	and	suite	testing.	Optimally	you	should	have	human	and	hardware
resources	solely	dedicated	to	application	testing.											

	

	

Getting	Started
Computer	System	Requirements
Other	Requirements
Starting	the	Framework
Should	you	use	Windows	or	Web	Browser	Applications?
Setting	Up	Your	Framework	Environment
The	Demonstration	Application
The	Programming	Techniques	Application
	

Computer	System	Requirements
Please	refer	to	the	hardware	requirements	for	Visual	LANSA	Version	13	SP2.
VLF	Developers	should	only	use	the	Windows	100%	(smaller)	font	size	for
development	activities.	Where	VLF	end	users	may	not	be	using	the	100%
(smaller)	font	size	the	VLF	application	should	be	designed,	sized	and	and	tested
at	the	required	larger	font	sizes.
For	deployed	applications	the	system	requirements	depend	on	the	size	and
complexity	of	your	application.	This	may	seem	to	be	a	less	than	useful
statement,	but	realistically	only	you	can	sensibly	size	your	own	resulting
application.			
	

mk:@MSITStore:lansa041.chm::/Lansa/IWINB3_0220.htm

Other	Requirements
Software
LANSA	Version	13	SP2	with	EPC	132300	or	later.
The	shipped	LANSA	Personnel	System	data	installed	(installed	by	Partition
Initialization).
aXes	Version	3.1	or	later	for	RAMP-TS	if	using	aXes	extensions.
Any	newlook	software	used	with	RAMP	applications	must	be	at	version
8.0.5.14769	(or	later).
If	you	upgrade	Newlook	software,	new	license	codes	may	be	required.
The	partition	to	be	used	must	be	RDMLX	enabled.
The	partition	to	be	used	must	be	enabled	for	multilingual	applications.

Skills
Completed	a	basic:
Visual	LANSA		training	course	or	the	equivalent.	No	advanced	Visual	LANSA
knowledge	is	required.
LANSA	for	the	Web	course	if	you	are	using	the	Framework	for	web
development.
WAM	tutorial	if	you	want	to	use	WAMs.

Browser	Requirements
This	version	of	the	Framework	software	was	tested	in	IE10	and	IE11	and	the
current	versions	of	Chrome,	Firefox	and	Safari.
Using	IE10	and	IE11	in	compatibility	view	mode	is	not	supported	in	VLF-
WEB.
Only	RAMP-TS	users	can	execute	IE10	and	IE11	in	compatibility	view	mode.

Before	Designing	and	Implementing	Any	Application!
Review	the	section	Should	You	Use	the	Framework?	and	the	Application
Performance	guidelines	before	designing	and	implementing	any	application.
Complete	the	appropriate	Tutorials	in	this	document	before	designing	and
implementing	any	application.	

Warning
Please	do	not	modify	the	JavaScript	routines	shipped	with	the	Framework.	If

you	do	change	them,	you	risk:
Introducing	incompatibilities	with	future	versions	of	the	Framework.
Voiding	or	limitation	of	any	maintenance	contract	you	have	in	place	for	the
Framework.
Being	charged	for	problem	resolutions	that	are	traced	back	to	such
modifications.

Starting	the	Framework
The	Framework	can	be	executed	in	different	modes	from	the	Tools	ribbon	of	the
LANSA	editor:

	

	

Designer
	

In	Design	mode	you	can	create	new	applications,	business
objects,	commands	etc.	and	set	their	properties.	You	can	also
work	with	user	and	server	definitions.
	
In	this	mode	all	filters	and	command	handlers	are	visible	and
security	settings	are	disabled.	In	this	mode	the	performance	of
the	Framework	can	be	slow.
	

Developer In	Developer	mode	you	gain	quick	access	to	the	Framework
and	its	objects	and	properties	without	having	to	execute	the
Framework	applications.
To	start	the	Developer’s	Workbench	execute	form

UF_DEVEL.
Administrator
	

In	Administrator	mode	you	can	work	with	user	and	server
definitions.
	

User
	

In	User	mode	you	can	work	with	the	defined	applications	and
business	objects	but	you	cannot	change	them.	
Test	all	your	applications	in	this	mode.
	

You	define	and	prototype	applications	in	the	Framework.	The	snap-in	filters,
command	handlers	and	other	objects	for	the	real	application	are	created	using
the	LANSA	editor.

Should	you	use	Windows	or	Web	Browser	Applications?
The	Visual	LANSA	Framework	can	be	used	to	design	and	implement
applications	that	use	native	Windows	(Visual	LANSA)	or	Web	Browser
(LANSA	for	the	Web)	user	interface	technology.
It	can	also	produce	applications	that	are	a	mixture	of	both	interface
technologies.		
In	deciding	whether	to	use	Windows	or	Web	browser	user	interfaces	you	need	to
identify	the	types	of	end-users	you	will	have	and	then	to	balance	their	different
needs	with	development	and	deployment	costs:
Core	Users	and	Occasional	Users
Using	a	Unified	Technology	Does	Not	Mean	You	Can	Have	a	Single	User
Interface
The	Zero	Deployment	Advantage

Core	Users	and	Occasional	Users
One	way	you	could	do	this	is	to	group	your	users	as	Core	Users	and
Occasional	Users.
Core	Users	have	one	or	more	of	these	characteristics:	
Require	access	to	the	greatest	range	of	functions	that	the	application	provides
and	use	many	of	them	most	of	the	time.
Use	the	application	as	a	key	component	of	their	jobs	(sometimes	all	day,
everyday).
Are	experts	at	using	the	application	and	require	interfaces	designed	for
experts.	
Are	heavily	affected	in	productivity	and	morale	terms	by	response	times.	
Require	a	high	degree	of	integration	with	other	applications	on	their	desktops.
Usually	have	high-speed	TCP/IP	connection	to	the	server	system	typically
from	inside	the	corporate	firewall.	
Usually	work	from	a	fixed	location	and/or	use	same	workstation	(fixed	or
mobile).
Are	often	directly	employed	or	sub-contracted	by	your	organization.
Occasional	Users	have	one	or	more	of	these	characteristics:
Require	access	to	a	limited	range	of	the	functions	that	the	application	provides.
Use	very	few	of	the	application	functions	and	only	use	them	occasionally.
Are	novices	at	using	the	application	and	require	interfaces	designed	for
novices.	
Are	not	really	affected	in	productivity	and	morale	terms	by	response	times.	
Often	only	have	Internet	HTTP	connection	to	the	server	from	outside	of	the
firewall.	
Are	often	mobile,	accessing	the	application	from	changing	locations	and	from
different	workstations.	
May	have	business	relationships	with	your	organization,	but	are	not	employed
by	it.	
In	user	interface	terms	what	this	means	is:
Core	users	usually	need	fully	functioned	Windows	interfaces	(e.g.	MS-Excel
or	MS-Word	level	interfaces).	The	interfaces	are	installed	on	their
workstations	or	are	accessible	from	high-speed	servers.	The	applications	are

designed	for	maximum	functionality,	performance	and	productivity.	The	high
cost	of	deploying	and	maintaining	core	users	is	counter-balanced	by	the
productivity	and	performance	that	they	gain	by	using	native	Windows
interfaces.
Occasional	users	usually	can	use	a	Browser	interface.	The	interfaces	are
deployed	dynamically	and	are	limited	to	the	range	of	interface	functionality
provided	by	technologies	such	as	DHTML.	The	loss	of	some	of	the
productivity	and	performance	benefits	that	a	native	Windows	interface	would
give	to	them	is	balanced	by	the	much	lower	cost	of	deploying	and	maintaining
them.	

Using	a	Unified	Technology	Does	Not	Mean	You	Can	Have	a
Single	User	Interface
Core	Users	and	Occasional	Users	require	fundamentally	different	user
interfaces,	regardless	of	the	technology	used	to	deploy	the	interface	to	them.
Therefore	using	a	single	user	interface	technology	does	not	necessarily	mean
you	have	a	single	user	requirement.
There	is	a	very	important	difference	between	the	interfaces	supplied	to	Core	and
Occasional	Users	which	is	inherent	in	the	way	that	they	use	applications:	core
users	require	expert	interfaces,	whereas	occasional	Users	expect	interfaces
designed	"for	the	less	skilled".
For	example,	imagine	that	in	an	accounting	application	there	is	a	function	called
"Create	Expense	Claim".
Expense	claims	are	created	by	experts	in	the	accounting	department	and	also	in
self-service	mode	by	general	company	employees	(e.g.	Sales	staff,	engineers,
cleaners,	etc).
Would	you	provide	the	same	functional	interface	to	both	the	user	groups?	The
likely	outcome	is	that	the	accounting	department	would	complain	about	poor
productivity	and	the	rest	of	the	company	would	complain	that	the	interface	was
too	hard	to	understand.

The	Zero	Deployment	Advantage
Web	browser	applications	offer	one	extremely	significant	advantage	over
Windows	applications.	It	is	called	zero	deployment.	They	can	be	used
anywhere,	by	anybody,	at	any	time	(subject	to	authority).
To	execute	a	native	Windows	application	you	need	to	deploy	it	to	the	users
desktop	or	to	a	server	that	the	user	has	LAN	speed	access	to.	This	process	is
complex,	time	consuming,	costly	and	error	prone.
However,	as	a	medium	for	deploying	advanced	Windows	desktop	functionality,
zero	deployment	is	the	traditional	Web	browser	application's	only	advantage.	In
all	other	functional	respects,	these	applications	are	inferior	to	native	Windows
applications.	You	can	make	browser	applications	look	and	feel	like	native
Windows	applications	to	an	extent,	but	ultimately,	and	for	fundamental
architectural,	security	and	bandwidth	reasons,	they	will	almost	always	produce
clumsier	and	slower	end-user	responses,	with	poorer	navigation	and	desktop
integration	capabilities.
It's	important	to	understand	that	attractiveness	of	doing	everything	via	a	browser
interface	is	largely	an	economic	one.
Zero	deployment	is	a	very	attractive	economic	proposition.
In	other	words,	end-users	tend	to	have	web	browser	interfaces	imposed	on	them
by	IT	for	cost	saving	economic	reasons	rather	than	for	productivity
improvement	reasons.	Often	they	would	much	prefer	to	have	the	power,	speed
and	flexibility	of	native	Windows	interfaces	(eg:	to	the	level	of	MS-Word	and
MS-Excel)	but	simple	economics	and	the	limits	of	technology	means	that	they
cannot.
You	should	never	think	that	you	are	going	to	actually	improve	your	end-users
work	life	by	giving	them	a	browser	interface	in	place	of	a	well	designed	native
Windows	one.	You	are	giving	them	a	browser	interface	to	save	money.
Getting	this	balance,	between	zero	deployment	economic	reality	and	end-user
expectations	and	requirements,	right	is	a	complex	equation.	If	you	look	on	the
Internet	you	can	now	find	reports	from	various	IT	industry	groups	that	describe
situations	where	designers	and	developers	have	gotten	this	balance	wrong.
The	impact	of	this	type	of	decision	can	range	from	end-user	complaints,
demoralization	and	loss	of	productivity	through	to	complete	project/product
failures.	This	is	especially	true	in	situations	where	the	end-users	hold	all	the
decision	power	(eg:	in	the	purchase	of	packaged	software	solutions).							

So,	should	you	develop	Windows	or	Web	browser	applications?
The	answer	is	that	in	any	medium	to	large-scale	commercial	application	you	are
most	probably	going	to	need	to	develop	both:
Use	Windows	interfaces	to	satisfy	the	high	performance,	high	functionality
and	desktop	integration	requirements	of	your	core	users.
Use	Web	browser	applications	to	minimize	the	cost	of	deployment	to	your
occasional	users.
There	is,	however,	one	exeception	to	the	above	rules:	VLF.NET	Applications.
They	provide	a	near-zero	deployment	capability	while	maintaining	many	of	the
performance,	appearance	and	functional	benefits	of	Windows	applications.		
	
	

Setting	Up	Your	Framework	Environment
The	Framework	can	be	used	to	design	and	implement	applications	that	use
native	Windows	(Visual	LANSA)	or	Web	Browser	(LANSA	for	the	Web)	user
interfaces.

		

You	have	to	Install	the	Framework	on	the	Server	if	you	want	to:
Develop	any	type	of	Web	Browser	Application.	In	this	case	you
need	to	install	the	Framework	server	software	and	also
complete	the	web	server	and	Framework	configuration	steps.
Use	RAMP	in	a	development	environment,	even	if	your	RAMP
application	is	going	to	be	native	Windows.	In	this	case	you
need	to	install	the	Framework	server	software,	but	you	can	omit
the	web	server	and	Framework	web	configuration	steps
	

You	also	need	to	Install	and	Configure	the	Framework	on	Visual
LANSA	Workstation(s).
	

Install	the	Framework	on	the	Server
Follow	these	installation	steps	for	the	type	of	server	you	are	using:

	
System	i	Apache	Web	Server

	
Windows	Web	Server

	

System	i	Apache	Web	Server
	
These	steps	apply	when	an	Apache	web	server	is	run	on	a	System	i

Steps Required
for
RAMP

Required
for	Web

Step	1.	Ensure	that	LANSA	for	the	Web	is	installed	and
operational	on	your	server

	 √

Step	2.	Make	sure	that	your	Apache	HTTP	server	is
configured	to	support	server	side	includes	and
optionally	VLF.NET	application	deployment

	 √

Step	3.	Ensure	that	Extended	Exchange	is	enabled 	 √

Step	4.	Install	the	Framework	software √ √

	

You	may	want	to	refer	to	How	to	start	the	HTTP	server	Administration
(ADMIN)	facility	and	Can	my	Web	browser	applications	be	used	with	System	i
multi-tier	web	server	configurations?

Step	1.	Ensure	that	LANSA	for	the	Web	is	installed	and
operational	on	your	server
Please	execute	a	LANSA	for	the	Web	process	or	function	to	confirm	the	validity
of	your	LANSA	for	the	Web	system.	Failure	to	do	this	may	cause	compounding
error	situations	that	are	difficult	to	resolve.
Basic	troubleshooting:

Ensure	the	Apache
http	server	instance	
is	started.
	

On	the	System	i,	ensure	that	the	Apache	http	server
instance	is	started.	To	start	it	type:
	
STRTCPSVR	SERVER(*HTTP)	HTTPSVR(<<name
of	the	Apache	server	instance>>)

	

Ensure	the	web	user
profile	has
appropriate	access	to
the	images	directory.

On	the	System	i,	ensure	that	the	profile	being	used	for
web	access	has	Read/Write	(*RWX)	authority	to	the
images	directory,	(Use	WRKLNK	to	find	the	directory
on	the	System	i,	and	then	option	9	to	work	with
authorities).

Ensure	the	link
between	images
alias	and	the	actual
IFS	directory	is
defined	correctly

Always	define	the	link	between	the	images	alias	and	the
actual	IFS	directory	using	the	HTTP	server
Administration	(ADMIN)	facility.

	

You	may	want	to	refer	to	How	to	start	the	HTTP	server	Administration
(ADMIN)	facility.

	

Step	2.	Make	sure	that	your	Apache	HTTP	server	is	configured	to
support	server	side	includes	and	optionally	VLF.NET	application
deployment
Start	the	HTTP	server	Administration	(ADMIN)	facility.	(See	How	to	start	the
HTTP	server	Administration	(ADMIN)	facility).
Expand	Server	Properties	and	click	Dynamic	Content	and	CGI.
Click	the	Server	Side	Includes	tab	in	the	form	and	select	the	option	Allow
Server	Side	Files	with	CGI	program	calls	inside.
Add	the	file	extension	.pgm	(i.e..	a	full	stop	followed	by	pgm)	into	the	file
extensions
Click	OK.

	
	
If	you	are	deploying	a	VLF.NET	application	see	Deployment.
	

Step	3.	Ensure	that	Extended	Exchange	is	enabled
The	Enable	Extended	Exchange	option	has	to	be	selected	if	the	Data
Application	Server	is	in	System	i.
Using	the	LANSA	for	the	Web	Administrator,	connect	to	your	server	system.
From	the	Tools	menu,	choose	Configure	System	,	then	choose	Data/Application
Server.	Select	Miscellaneous	tab	and	verify	that	Enable	Extended	Exchange	is
enabled	(that	is,	the	checkbox	is	checked).

Step	4.	Install	the	Framework	software
The	Framework	server	software	is	installed	(or	updated)	by	performing	a
Partition	Initialization.	You	can	choose	which	partition	to	initialize	with	the	VL
Framework	during	a	LANSA	install	or	upgrade	or	anytime	thereafter.
If	you	choose	not	to	initialize	a	partition	during	a	LANSA	install	or	upgrade,
you	can	do	it	using	the	Work	with	Administration	Tasks	option	in	the	LANSA
main	menu,	then	choose	the	VL	Framework.

How	to	start	the	HTTP	server	Administration	(ADMIN)	facility
Start	the	Admin	server:
-	On	the	System	i,	on	a	command	line,	type:
STRTCPSVR	SERVER(*HTTP)	HTTPSVR(*ADMIN)		
Now	use	the	admin	server	with	your	browser:
-	Enter	the	URL	of	your	host	IP	address	to	start	the	HTTP	server	ADMIN
facility	on	the	browser:
	
		http://<Your	Host	Address>:2001/HTTPAdmin	
	

-	Click	the	Manage	tab.
-	Select	your	HTTP	Server	(powered	by	Apache)	from	the	Server	list.

Windows	Web	Server
	
These	steps	apply	to	a	Windows	web	server

Step	1.	Ensure	that	LANSA	for	the	Web	is	installed	and	operational	on	your
server.
Step	2.	Make	sure	that	your	HTTP	server	is	configured	to	support	server	side
includes
Step	3.	Install	the	Framework	software
You	may	want	to	refer	to	Can	my	Web	browser	applications	be	used	with
Windows	multi-tier	web	server	configurations?

Step	1.	Ensure	that	LANSA	for	the	Web	is	installed	and
operational	on	your	server.
Please	execute	a	LANSA	for	the	Web	process	or	function	to	confirm	the	validity
of	your	LANSA	for	the	Web	system.	Failure	to	do	this	may	cause	compounding
error	situations	that	are	difficult	to	resolve.	

Step	2.	Make	sure	that	your	HTTP	server	is	configured	to	support
server	side	includes
Use	the	Web	Administrator	to	make	sure	your	LANSA	System	configuration
has	the	Server	Side	Include	(SSI)	support	enabled:

You	get	to	this	dialog	by	opening	your	local	LANSA	web	configuration	file	and
selecting	Tools/Maintain	Systems:

When	changing	Web	Administrator	settings	remember	to	save	the	Configuration
and	always	restart	Web	Server	in	IIS.

	

	

Step	3.	Install	the	Framework	software
Start	the	Visual	LANSA	IDE	and	log	on	to	your	chosen	partition.
Check	whether	Visual	LANSA	Framework	options	are	on	displayed	on	the
Tools	tab	on	the	ribbon.
If	the	Visual	LANSA	Framework	is	not	installed	log	off	and	log	on	again.
On	the	Visual	LANSA	IDE	logon	screen	click	on	the	Partition	Initialization
button	and	select	the	Visual	LANSA	Framework	option.
Wait	until	the	installation	completes	before	proceeding	to	the	next	step.
To	view	these	applications	you	must	use	the	WAMS=N	start	up	option.	For
more	details	please	see	Web	Application	Start	Options.

Install	and	Configure	the	Framework	on	Visual	LANSA
Workstation(s)

Every	Visual	LANSA	workstation	you	are	using	for
development	needs	to	have	the	Framework	software	installed	on
it.

Step	1.	Install	the	Base	Visual	LANSA	Framework	Software
Step	2.	Configure	the	Visual	LANSA	Workstation(s)

Step	1.	Install	the	Base	Visual	LANSA	Framework	Software
Warning:	If	you	already	have	the	Visual	LANSA	Framework	installed	these
steps	will	restore	your	Framework	back	to	its	“as	shipped”	state,	removing	any
hot	fixes	you	may	have	applied.
Start	the	Visual	LANSA	IDE	and	log	on	to	your	chosen	partition.
Check	whether	Visual	LANSA	Framework	options	are	displayed	on	the	Tools
tab	on	the	ribbon.
If	the	Visual	LANSA	Framework	is	not	installed	log	off	and	log	on	again.
On	the	Visual	LANSA	IDE	logon	screen	click	on	the	Partition	Initialization
button	and	select	the	Visual	LANSA	Framework	option.
Wait	until	the	installation	completes	before	proceeding	to	the	next	step.
Note:	Before	starting	ensure	the	partition	you	are	going	to	use	is	RDMLX	and
multilingual	enabled.

Step	2.	Configure	the	Visual	LANSA	Workstation(s)
Each	Visual	LANSA	workstation	you	are	using	needs	to	have	the	Framework
software	configured	to	link	to	your	LANSA	for	the	Web	development	system.		
Step	1.	Verify	use	of	Microsoft	Internet	Explorer
Step	2.	Enable	the	Framework	for	Web	Browser	applications
Step	3.	Set	up	your	Windows	webserver	or	your	iSeries	webserver
Step	4.	Save	your	Framework	details	to	your	web	server
Step	5.	Test	execution	of	your	Framework	in	a	Web	Browser
Note:	If	the	"Do	you	want	to	save	your	Framework"	message	box	pops	up	while
you	are	specifying	the	following	details,	reply	NO.	You	will	save	your
Framework	changes	towards	the	end	of	the	following	steps.			

Step	1.	Verify	use	of	Microsoft	Internet	Explorer
Start	Internet	Explorer	and	use	the	Help	then	About	Internet	Explorer	menu
options.
Check	that	the	version	shown	is	10.0	(or	later).
Otherwise	install	a	required	version	of	Internet	Explorer	before	proceeding.
	

Step	2.	Enable	the	Framework	for	Web	Browser	applications
Start	your	Visual	LANSA	development	environment	using	your	chosen
partition.	Then	use	the	Tools	->	VL	Framework	-	As	Designer	option	to	start	the
shipped	Framework	as	a	designer.

Use	the	(Framework)	and	then	(Properties…)	menu	items	to	display	the
Framework	properties	folder.	Switch	to	the	Framework	Details	tab.

	
Check:
Enable	Framework	for	Web	Browser	Applications.
Enable	Framework	for	WAMs	if	you	intend	to	create	LANSA	for	the	WEB
WAMs.
Enable	Framework	for	AJAX	style	applications
Compile	Framework	as	Microsoft	.NET	executable	if	you	intend	to	create
VLF.NET	applications.		
	
Switch	to	the	User	Administration	Settings	tab	and	uncheck	the	Use
Framework	Authority	and	Users	check	box.	(For	the	moment	we	are	disabling
the	user	and	authority	checking	to	simplify	the	installation	and	verification
process.	Later	on	these	options	can	be	enabled	again,	if	required.)		

	
	
Shut	down	the	Framework	and	save	the	changes	you	have	just	made.

Step	3.	Set	up	your	Windows	webserver	or	your	iSeries	webserver
Prerequisite	Steps
Before	you	start,	it	will	make	configuration	easier	if	you	ensure	that	the
following	has	been	done:

1. LANSA	for	the	Web	is	installed,	configured	and	started	on	the	web
server.

					

2. The	partition	you	are	working	with	on	the	web	server	is	enabled	for
LANSA	for	the	Web,	and	has	been	initialised.

	

3. The	partition	you	are	working	with	on	the	web	server	is	enabled	for
RDMLX.

	

4. The	VLF	(epc870	or	later)	has	been	imported	into	that	partition	on	the
web	server.

	

5. The	web	server	is	accessible	from	your	PC. 	

6. If	the	webserver	is	located	on	a	different	machine	to	your	development
machine,	a	network	drive	has	been	mapped	to	the	web	server	and	the
drive	letter	used	has	been	recorded.

	

	

Run	the	Web	Configuration	Assistant
Start	the	Web	Configuration	Assistant	from	the	VLF	(Framework)	-->	(Web
configuration	assistant...)	.	For	more	information	see	Web	Configuration
Assistant.
Two	tabs	are	displayed.	Each	tab	can	be	used	to	define	a	web	server	to	the
Framework:

	

Windows	Web	Server
In	one	of	the	tabs,	enter	the	ip	address	and	port	used	by	your	windows	web
server,	and	a	caption	describing	the	webserver.
For	example,	if	the	webserver	was	an	IIS	webserver	on	your	own	PC,	and	you
were	using	port	80,	you	could	enter:

Press	the	Next	button	and	follow	the	instructions.
The	Web	Configuration	Assistant	will	attempt	to	automatically	determine
everything	it	can	about	your	web	server,	but	sometimes	it	will	need	to	request
some	information	from	you:
It	may	need	to	know	the	location	that	http://localhost/Images	points	to	
It	will	always	need	to	know	what	Private	Working	Folder	you	want	to	use	(if
the	folder	does	not	exist,	the	assistant	will	create	it).	Enter	the	value	and	press
next,	then	Save,	then	move	on	to	the	next	tab:

	

iSeries	web	server
Configure	the	iSeries	web	server	in	the	same	way.
The	main	difference	is	that	it	will	be	necessary	to	specify	a	mapped	drive	if	you
want	the	VLF	to	upload	your	web	framework	to	the	web	server	automatically.
To	map	a	drive	to	an	iSeries	that	is	on	your	network,	go	to	windows	explorer,
and	choose	the	option	Tools	-->	Map	a	network	drive.
Choose	a	drive	letter	and	map	it	to	\\host_ip\IFS,	and	map	it	using	a	different
user	name	-	use	an	iSeries	user	profile	and	password	(where	host_ip	is	the	ip
address	of	the	iSeries,	or	a	name	that	resolves	to	that	ip	address).

When	you	have	finished,	save	and	then	close	the	Web	Configuration	Assistant.
	

Step	4.	Save	your	Framework	details	to	your	web	server
Save	the	Framework	to	save	your	changes.
Since	you	now	have	a	LANSA	for	the	Web	private	working	folder,	an	Update
Server	from	VL	Workstation	window	appears.
It	will	appear	every	time	you	save	your	Framework	from	now	on:

This	window	is	indicating	that	it	is	going	to	copy	your	Framework	design	(and
some	other	things)	to	your	images	and	private	working	folders	on	your	web
server(s).
Since	this	is	the	very	first	time	you	have	done	this	since	installing	or	updating
your	web	server	you	should:
Uncheck	the	RAD-PAD	Notes	option.
Check	the	Shipped	System	and	Demonstration	System	Objects	option.
Check	the	All	available	Images	(GIFs)	option.

Click	OK	and	wait	until	the	copy	operations	complete.
Note	1:	Since	you	are	copying	everything	to	the	server	this	operation	may	take
several	minutes	to	complete.	Subsequent	copies	to	your	server	will	have	much
less	data	and	thus	take	a	lot	less	time.	Normally	you	only	copy	everything	after
you	have	installed	the	Framework	or	performed	an	upgrade	to	it.
Note	2:	Generally	mapped	drives	are	faster	than	FTP,	so	if	you	have	a	mapped
drive	available	you	should	use	it.
When	the	copy	operation	completes,	the	update	form	will	reappear	stating
"Results	from	Executing	Scrip	-	xxxxx"	(where	xxxx	is	the	caption	you	assigned
to	your	web	server)	like	this	example:

Scroll	through	the	script	messages	looking	for	indications	of	failed	COPY	or
FTP	operations.
Click	the	OK	button	to	close	the	update	form.
If	an	FTP	or	COPY	operation	fails	it	is	most	probably	because	the	IP	and/or
directory	details	you	supplied	on	the	associated	Developer	Preferences	tab	are
incorrect.	Return	to	the	tab	for	the	web	server	and	carefully	check	all	supplied
details	(use	F2	to	get	additional	information	about	each	option).	Use	the	various
Verify	options	to	check	for	problems.	When	you	have	corrected	the	cause	of	the
problem	recommence	step	4.
	

Step	5.	Test	execution	of	your	Framework	in	a	Web	Browser
Use	the	(Framework)	->	(Execute	as	a	Web	Application…)	menu	options	to
execute	your	Framework	as	a	Web	browser	application:

Uncheck	the	Turn	Tracing	On	option	and	click	OK.	Your	Framework	should
start	inside	a	browser.
The	first	time	you	use	the	Framework	as	a	Web	browser	application	it	may	be
slow	to	start	up	as	the	various	files	it	uses	will	not	be	in	your	web	browser's	file
cache.	
Do	the	Tutorials	to	quickly	learn	how	to	design	or	implement	Web	browser
applications.
	
	

The	Demonstration	Application
Important:	The	shipped	demonstration	components	should	be	executed	using
Render	Type	M	(Mixed).
Here	is	a	quick	tour	of	the	shipped	demonstration		application.	It	shows	what	a
human	resources	application	could	look	like	when	implemented	in	the
Framework.
Its	aim	is	to	highlight	how	you	can	use	the	Framework	to:
Add	value	to	the	user	experience	–	via	navigational	structures,	ease	of
use/access,	etc.
Add	value	to	the	business	–	via	integration	(desktop	and	application),	charting,
reporting,	productivity	improvements,	etc.

The	various	business	objects	and	commands	it	contains	use	quite	different
styles.	They	are	designed	to	demonstrate	some	of	the	many	techniques	you	can
use	with	the	Visual	LANSA	Framework	product:
HTML	Startup	Page
Graphical	Content

Complex	Grids
Web	Content
Google	Maps	Gadget	Integration
Wizards
Data	Entry
Dynamic	Report	Generation
Integration	of	desktop	and	folders	into	a	VL	application
Integration	with	Microsoft	Excel
Video	Content
Mini-Filters
Generic	Notes	Command	Handler	
Generic	Spooled	Files	Command	Handler
IBM	i	Server	Message	Queues
Later	on	you	may	want	to	look	at	the	code	of	the	demonstration	application.	The
parts	of	the	demonstration	application	are	shipped	in	components	starting	with
the	prefix	DF_*.
The	demo	is	HR	system	for	a	mythical	software	engineering	company	ACME.	
It	uses	these	LANSA	demonstration	database	tables:	PSLMST,	PSLSKL,
PSLTIMES,	DEPTAB,	SECTAB	and	SKLTAB.	The	application	itself	presents
two	main	views	of	the	information	contained	in	these	tables.	One	view	is	by	the
structure	of	the	Organizations	that	define	the	ACME	company,	and	the	other	is
by	the	Resources	that	work	for	ACME.	
Initializing	the	Demo	Database	Tables	
If	required,	LANSA	contains	programs	to	initialize	the	shipped	tables	PSLMST,
PSLSKL,	PSLTIMES,	DEPTAB,	SECTAB	and	SKLTAB.	To	use	it	execute
shipped	process	PSLUTL.	Use	the	menu	option	Install	Demonstration	Data.
Showing	Graphs	using	the	Microsoft	Office	web	controls
To	see	the	graphs	on	the	organization	and	section	details	tabs	you	need	to	have
Microsoft	Office	2003	(or	later)	on	the	PC	and	also	the	Microsoft	Office	2003
(or	later)	web	controls.
	
	

HTML	Startup	Page

The	start	up	page	is	typically	used	to	bind	together	corporate	resources.

It	can	be	personalized	to	the	corporation’s	own	style	and	it	would	provide	links
to	other	resources.

	
Use	the	special	value	*AUTO*	in	the	URL	property	to	display	an	HTML	page
at	start	up.
	
	

Graphical	Content
Organizations	is	a	classic	commercial	business	object	with	a	hierarchical
instance	list	of	departments,	sections	and	staff	resources	with	command
handlers	using	graphs:

	
	
The	instance	list	tool	bar	changes	according	to	the	type	of	business	object
selected.	The	individual	tabs	can	be	shrunk	and	expanded	as	required	(see
Allow	Panes	to	be	Shrunk	and	Expanded).
Chart	layouts	can	be	changed	and	details	appear	when	clicking	on	charts.
Visual	LANSA	has	its	own	easy	to	use	graphing	facility,	but	in	this	version	of
the	demo	application	we	have	chosen	to	show	graphs	using	an	embedded
Microsoft	Office	2003	web	control.
To	see	the	charts	you	need	to	have	Microsoft	Office	2003	on	the	PC	and	also	the
Microsoft	Office	2003	web	controls.:
http://www.microsoft.com/downloads/details.aspx?FamilyID=7287252C-402E-

4F72-97A5-E0FD290D4B76&displaylang=en		
The	advantage	of	this	method	is	that	almost	the	same	logic	can	be	used	to	set	up
the	chart	for	Windows	as	for	the	web.
	

Complex	Grids
The	grid	showing	events	uses	drop-downs	and	calendars	to	make	editing	easy:

	
	

Web	Content
Web	content	can	be	integrated	in	the	application:

	
	

Google	Maps	Gadget	Integration
The	Google	Maps	Gadget	is	used	to	display	department	and	section	locations:

	
	

Wizards
The	New	option	for	a	section	demonstrates	a	wizard	style	form	used	to	create	a
new	section.	The	user	is	progressed	through	multiple	panels	and	can	move
backwards	and	forwards	through	them	as	desired.

	
	

Data	Entry
The	employee	details	tab	is	an	example	of	dense	data	entry	screen.	The	LANSA
Repository	rules	cause	error	messages	if	an	entry	is	incorrect	and	unsaved
changes	are	trapped.		

	
	

Dynamic	Report	Generation
The	Reports	command	handler	demonstrates	dynamic	production	of	reports	at
user’s	desktop	using	integration	of	reports	with	MS-Word	and	MS-Excel	and
email.	

	
	

Integration	of	desktop	and	folders	into	a	VL	application
The	employee	documents	are	stored	in	a	database	when	saved.	You	can	store
any	type	of	pc	file	(for	example	.pdf,	.htm	or	.gif):

	

Integration	with	Microsoft	Excel
Excel	is	integrated	in	the	application:

	
	

Video	Content
Photos	and	videos	are	inserted	in	the	command	handler:

	

Mini-Filters
The	Resources	business	object	uses	a	mini-filter	which	you	can	use	to	locate
employees	in	various	ways

	
	
For	example:
Type	in	employee	number	A0090	and	press	Enter.
Type	in	name	“SM”	and	press	Enter	(the	search	is	by	scanning,	not	generic).
Select	a	skill	from	the	drop	down.
Uncheck	the	Clear	List	option	to	build	aggregate	lists.				
	

Generic	Notes	Command	Handler	
In	the	shipped	HR	Demo	Application	the	Employee	Notes	tab	allows	many
individual	notes	to	be	associated	with	an	Employee.

	
The	Notes	command	handler	DF_T3201	is	generically	designed	and	is
immediately	useable	with	any	business	object	defined	in	a	VLF	framework.	For
example	a	Product,	Customer	or	Order	business	object	in	a	RAMPed	5250
application	could	have	a	Notes/Documents/Attachments	capability	added	to	it
instantly.
Each	individual	note	can	be	classified,	and	may	have	multiple
documents/attachments	associated	with	it	(eg:	MS-Word	documents,	e-mails,
images/photos,	etc,	etc).	All	the	note	and	document/attachment	details	are
permanently	stored	in	database	tables	on	the	database	server,	making	them
instantly	available	everywhere	to	all	authorized	users,		without	needing
additional	Windows	servers,	mapped	drives,	shared	folders,	security	systems
etc.

Reusing	the	Notes	command	handler	this	way	may	add	significant	value	to	any
5250	application	that	is	being	RAMPed.
See	the	RAMP	tutorial	Snapping	in	Shipped	Events	Command	Handler	for	step-
by-step	instructions.
All	the	source	code	is	provided	and	customers	are	encouraged	to	copy	and
modify	logic	as	they	see	fit.

Generic	Spooled	Files	Command	Handler
In	the	shipped	Demonstration	System	the	Spool	Files	command	handler	allows
the	end-users	to	browse,	delete,	or	change	the	queue	of	a	spooled	file.	They	can
also	convert	the	spooled	file	to	a	text	file	or	PDF,	which	can	be	copied,	emailed,
viewed	etc..

	
The	spooled	files	browser	example	for	Windows	uses	the	generic	shipped
command	handler	DF_T3101	which	can	be	attached	to	any	framework	or
business	object.
If	using	the	spooled	file	convert	to	PDF	feature,	and	if	the	iSeries	does	not	use
CCSID	37,	it	may	be	necessary	to	edit	and	recompile	the	spooled	file	PDF
converter	program.
See	the	shipped	source	for	this	program	for	details	of	the	change	and	how	to
recompile	it.	The	source	is	on	the	iSeries,	in	file	UF_3GSRC,	and	the	source
member	is	UF_3GSPLRP.
Note	that	source	code	member(s)	involved	may	be	replaced	to	their	"as	shipped"
state	if	you	re-install	or	upgrade	the	VLF.	You	need	to	put	in	place	a	process	to

check	for	and	reapply	your	changes	are	reinstalling	or	upgrading	the	VLF.
	

IBM	i	Server	Message	Queues
The	IBM	i	Server	Message	Queues	demonstration	application	is	invoked	by	the
Queues	button	on	the	tool	bar.
It	shows	how	you	can	use	personal	user	queues,		group	chat	queues	and	event
notification	queues.	You	need	to	have	a	super-server	connection	to	an	IBM
server	active	to	use	it	effectively.

Personal	queues	are	just	classic	IBM	i	user	profile	queues	–	typically	used	to
notify	individuals	about	things	like	batch	job	completion,	system	status,	etc.

	
The	chat	queue	example	shows	how	IBM	i	message	queues	might	allow	a	group
on	individuals	involved	in	the	same	work	group	to	exchange	information:

Event	notification	queues	demonstrate	a	technique	for	programmatically
sending	“actionable”	messages	to	groups	or	individuals	via	IBM	i	message
queue(s).
When	a		user	decides	to	“action”	this	type	of	message,	the	VLF	responds
programmatically	by	doing	things	like	opening	a	URL,	switching	to	a	business
object	instance,	executing	a	command	handler,	etc.
This	technique	can	be	demonstrated	by	updating	the	address	or	phone	number
of	an	employee	in	the	shipped	demonstration	HR	application	–	which	will	cause
an	“actionable”	message	to	be	issued:

All	source	code	is	shipped	with	the	examples.
	

The	Programming	Techniques	Application
When	it	comes	to	producing	programs	to	execute	within	the	Framework	the
easiest	way	to	get	started	is	to	have	a	look	at	the	shipped	Programming
Techniques	application.
While	the	shipped	Demonstration	application	shows	you	what	a	real	application
might	look	like,	the	Programming	Techniques	application	shows	you	how	to
program	applications.	All	the	examples	provided	are	shipped	with	source	code,
so	not	only	can	you	can	execute	the	examples,	you	can	also	examine	the	source
code	that	drives	them.	The	Programming	Techniques	application	is	focused	on
Web	Browser	application.	

	

Development	Architecture
This	section	describes	how	Framework	development	can	be	structured	and
managed:
Usage	Scenario:	One	Designer	–	Multiple	Developers
Usage	Scenario:	Multiple	Designers	–	Multiple	Developers
How	to	Create	a	New	Framework	Version
How	to	Keep	Automatic	Backup	Copies	of	Your	Framework
How	to	Export	Framework	Definitions
How	to	Merge	Items	from	one	Framework	to	Another
	

Usage	Scenario:	One	Designer	–	Multiple	Developers
This	type	of	scenario	is	suitable	for	projects	that	have	a	single	designer	utilizing
multiple	developers	to	implement	the	application:

Step Description
1 The	designer	creates	a	prototype	Framework	defining	all	required

applications,	views,	business	objects,	filters	and	command	handlers	for
this	development	cycle.	A	copy	of	the	Framework	definition	XML	file	is
given	to	developers	1	->	3.				

2 Developers	1	through	3	now	code,	compile	and	test	the	various	filters	and
command	handlers	assigned	to	them	by	the	designer.	To	do	this	they	need
to	snap	them	into	the	Framework	definition.	Note	that	the	developers	are
not	creating	new	Framework	objects.	They	are	modifying	the	definitions
of	existing	objects	only.				

3 As	developers	1	->	3	complete	the	filter	and	command	handler	work
assigned	to	them	they	use	the	Merge	Tool	to	create	a	merge	list
containing	the	filters	and	command	handlers	they	have	altered.	The
merge	lists	are	e-mailed	back	to	the	designer.		

4 The	designer	receives	the	merge	lists	and	merges	the	changed	filter	and
command	handler	definitions	into	the	master	Framework	version.		

5 Each	developer	is	given	a	fresh	copy	of	the	master	Framework	definition
which	contains	their	completed	work	and	the	completed	work	of	the	other
developers.	This	new	copy	of	the	master	Framework	becomes	the	base	on

which	they	will	do	further	work.

	

This	type	of	development	cycle	is	repeated	until	all	filters	and	command
handlers	have	been	completed.	The	master	Framework	is	gradually	evolved
from	a	prototype	into	a	completed	application	ready	for	deployment.

Usage	Scenario:	Multiple	Designers	–	Multiple	Developers
Sometimes	large	projects	require	the	use	of	multiple	designers	and	teams.	These
can	be	accommodated	by	adding	another	layer	to	the	preceding	scenario	like
this:
	

	
Here	three	designers	and	their	assigned	development	teams	each	individually
prototype,	code,	test	and	implement	parts	of	the	final	application	using	a
development	cycle	like	the	one	defined	in	Usage	Scenario:	One	Designer	–
Multiple	Developers	.
	
As	application	components	are	completed	by	each	team	the	designer	uses	the
merge	tool	to	create	a	merge	list	of	the	new	and	updated	components.	This	is
sent	to	the	master	designer	who	merges	them	into	a	master	Framework.	The	new
master	Framework	is	then	sent	back	to	each	designer	to	form	the	basis	on	which
they	should	perform	their	ongoing	work.				
	

	

Development	Status	Feature
The	Development	Status	feature	allows	developers	to	attach	development	status
indicators	and	notes	to	various	parts	of	their	Framework.
Status	indicators	and	notes	can	be	attached	to	most	Framework	objects.	They
are	set	on	the	objects	Identification	tab:

	

There	are	ten	status	indicators	to	choose	from.	Simple	notes	about	the
development	status	can	also	be	added.

The	statuses	and	notes	are	stored	in	the	Framework	XML	schema,	so	when	a
Framework	definition	is	exported	and	shared,	other	developers	can	see	the
status	and	notes	for	an	object.
When	the	Framework	is	executed,	the	development	status	and	notes	are	visible
if	the	feature	is	enabled	(Enable	Development	Status	Feature)	and	the
Framework	is	run	in	Render	Style	M	in	Development	Mode.
When	the	feature	is	enabled,	the	developer	can	also	right-click	and	use	the
context	menu	to	see	the	status	of	objects	on	the	navigation	pane:

	

They	can	also	see	the	developer	notes	(along	with	the	object's	hint)	when	they
mouse	over	a	navigation	pane	item:

	

When	merging	frameworks,	the	merged	in	development	status	indicators	and
notes	will	overwrite	any	existing	notes	and	status	indicators	in	the	target
framework.
	

How	to	Create	a	New	Framework	Version
Use	Save	As	to	create	a	new	Framework	version.
Associated	XML	Definition	Files	(you	may	sometimes	want	to	change	them).
Start	a	Framework	Version
Notes	For	RAMP	Users

Use	Save	As
To	create	a	new	version	of	the	Framework:
Select	the	Save	As...	option	of	the	Framework	menu:

	
The	Save	Framework	As	dialog	is	displayed:

Framework	versions	are	saved	as	XML	files	in	the	Execute	directory	of	your
LANSA	program	folder.
The	default	name	for	a	Framework	definition	is	VF_SY001_System.XML.
Change	the	name	of	the	Framework	file.
Next	change	the	Caption	of	your	newly	created	Framework	version	so	that
later	on	it	will	be	easy	to	find	out	which	version	of	the	Framework	you	are
using.
Click	Save	to	create	a	new	version	of	the	Framework.
	Also	see	How	can	I	change	the	list	of	Framework	versions	shown?
	

Associated	XML	Definition	Files
A	Framework	version	has	associated	XML	definition	files	for	servers,	code
tables,	users	and	RAMP	screen	definitions	(nodes)).	Several	Framework
versions	can	either	share	these	definition	files	or	they	can	have	their	own
independent	definition	files.
Typically	Framework	versions	share	server,	user	and	code	table	definitions,	but
RAMP	screen	definitions	are	usually	not	shared.

The	definition	XML	files	are	stored	in	the	Execute	directory	of	the	partition	you
are	using.
Optionally	Change	Associated	XML	Definition	Files

Optionally	Change	Associated	XML	Definition	Files
When	you	have	created	a	new	version	of	the	Framework	using	Save	As	and	you
want	to	use	the	same	associated	XML	definition	files	as	the	original	Framework,
you	do	not	need	to	do	anything	because	these	details	are	automatically	copied.
If	you	want	to	use	an	independent	server,	code	table	or	RAMP	screen
definition,	select	the	Properties...	option	of	the	Framework	menu	and	display
the	Framework	Details	tab:

And	change	the	name	of	the	appropriate	XML	definition	files.
	
Two	Ways	of	Changing	User	Definitions
Note	that	user	definitions	are	a	special	case.	The	definitions	of	the	users	may	be
stored	in	an	xml	file,	but	are	more	commonly	stored	in	physical	files	VFPPF06
and	VFPPF07.
If	you	want	to	use	different	user	definitions	display	the	User	Administration
Settings	tab.

If	user	defintions	are	stored	in	VFPPF06/07	then	change	the	User	Set	property
to	a	unique	value:
	
	If	the	user	definitions	are	not	stored	in	VFPPF06/07,	then	change	the	users
XML	file	to	a	unique	value:

	
		
	

Start	a	Framework	Version
After	using	the	Save	As	option,	subsequent	start	ups	of	the	Framework	will
show	a	selection	dialog	of	the	available	Framework	versions:

	
The	list	of	XML	files	comes	from	the	previous	Save	As	copies	you	have
created.	The	last	XML	file	you	used	is	automatically	selected.
	
Question:		Where	does	this	list	of	XML	files	come	from?
Answer:		The	list	of	Save	As	files	is	kept	in	text	file	in	your	partition	execute
directory.
Typically	the	name	of	this	file	is	"vf_sy001_system_choice.txt".	You	can	edit	it
using	Notepad.
	
Question:		Where	is	the	name	of	the	last	XML	file	used	kept?
Answer:		The	name	of	the	XML	file	that	you	last	opened	is	kept	in	a	text	file	in
your	temporary	directory.
Typically	the	name	of	this	file	is	"vf_sy001_system_choice_Last_Used.txt".
You	can	edit	it	using	Notepad

Notes	For	RAMP	Users
Note	that	if	there	are	several	versions	of	a	RAMP	application,	at	the	end	of	the
design-development	cycle	also	the	RAMP	screen	definition	files	(nodes)	need	to
be	merged	together	manually.
	

How	to	Keep	Automatic	Backup	Copies	of	Your	Framework
If	you	want	a	back-up	copy	of	your	Framework	design	to	be	created	every	time
you	save	the	Framework,	select	the	option	the	Keep	XML	File	Versions	in	the
Framework	Details	tab.
The	back-up	copies	of	your	definition	files	are	kept	in	the	Execute	directory	of
your	partition.	They	have	names	like
vf_Sy001_System_YYYYMMDD_HHMMSS.xml.		The	last	portion	of	the
name	reflects	the	date	and	time	they	were	saved.
To	use	a	back-up	copy,	rename	or	delete	the	current	definition	XML	file	using
Windows	Explorer,	and	then	remove	the	date	and	time	portion	from	the	name	of
the	back-up	file.
Back-up	copies	are	kept	for	your	Associated	XML	Definition	Files	as	well	as
the	Framework	definition	files.
If	you	want	to	be	periodically	prompted	to	save	the	Framework,	specify	a	time
interval	in	the	Automatic	Save	Time	option.
	

How	to	Export	Framework	Definitions
	
You	can	exchange	Framework	designs	with	other	people.
You	might	send	them	to	other	developers	to	show	them	how	you	want	filters	or
command	handlers	coded.	You	might	also	send	them	to	end-users	so	that	they
can	execute	them	as	way	of	validating	your	design	proposal.
The	sender	should:
Use	the	export	facility	to	create	a	zip	file	in	the	Export	Design	tab	of
Framework	properties.
Send	the	zip	file	to	the	receiver(s).
The	receiver	should	:
Export	their	existing	Framework	design	before	installing	the	received
Framework	design.
Unzip	the	received	Framework	into	the	partition's	execute	directory.
Work	with	the	received	design.
To	restore	the	original	Framework	design,	unzip	the	saved	Framework.
Note	that	distributing	the	Framework	is	not	the	same	as	to	Deploy	the
Application.
	

How	to	Merge	Items	from	one	Framework	to	Another
The	VLF	merge	tool	works	with	merge	lists	which	are	lists	of	Framework
objects.	You	can:
Create	a	merge	list	of	items	from	your	Framework	and	send	it	to	someone.
Receive	a	merge	list	from	someone	and	merge	the	items	into	your	Framework.
Transfer	items	between	different	Frameworks	which	reside	on	your	PC.
The	merge	tool	has	been	primarily	designed	to	assist	multiple	designers	and
multiple	developers	to	concurrently	develop	a	single	master	Framework.	They
do	this	by	continually	merging	new	or	modified	Framework	objects	back	into	a
single	master	Framework.				
You	can	start	the	merge	tool	when	using	a	Framework	as	a	designer	like	this:

The	Merge	Tool	Window
Using	the	Merge	Tool
Example	of	Combining	Two	RAMP	Framework	Definitions

The	Merge	Tool	Window
The	Merge	Tool	window	looks	like	this:
	

Merge	Files	Tab
This	tab	displays	a	temporary	folder	on	you	hard	drive	containing	merge	files.
You	can:
Drag	and	drop	merge	lists	into	this	folder	(for	example	from	a	received	e-
mail).
Drag	and	drop	merge	lists	out	of	this	folder	(for	example	into	an	e-mail	you
are	about	to	send	or	onto	a	shared	network	drive).

Merge	Options	Tab
This	tab	is	used	when	you	have	received	a	merge	list	and	are	going	to	merge
some	of	the	things	that	it	contains	into	your	current	Framework.

Merge	List	–	Objects	Added	by	you	or	Other	Developers
This	displays	the	Framework	objects	that	you	(or	some	other	developer)	have
manually	added	to	the	merge	list.
Merge	List	–	Objects	Automatically	by	the	VLF		
This	displays	the	Framework	objects	that	the	VLF	has	automatically	included
into	the	merge	list	because	they	are	referenced	in	some	way	by	the	objects	that
your	or	some	other	developer	added	manually.	Essentially	this	part	of	the	merge
list	exists	to	help	you	avoid	sending	incomplete	merge	lists	to	someone	else.
Buttons
Save	to
File

Saves	the	current	merge	list	into	a	file	so	that	it	can	be	sent	to
someone	else.

Remove
Selected

Removes	the	selected	items	from	the	merge	list.	Used	to	remove
items	inadvertently	added	to	a	merge	list.

Remove
All

Used	to	clear	the	entire	merge	list.

Add
Framework

Adds	the	definition	of	the	current	Framework	to	the	merge	list.
This	option	is	a	button	because	you	cannot	drag	and	drop	the
Framework	itself	onto	the	merge	list	area.

Save	to
Clipboard	/
Paste	from
Clipboard

Saves	or	restores	the	current	merge	list	using	a	local	clipboard-
like	file.	Use	this	option	when	you	are	merging	items	between
different	Frameworks	that	reside	on	the	same	PC.	For	example,	to
transfer	Framework	items	between	Frameworks	A	and	B	resident
on	the	same	PC	you	would	do	this:
Open	Framework	A,	create	a	merge	list	of	the	required	items,	then
use	Save	to	Clipboard.	Then	open	Framework	B	and	click	Paste
from	Clipboard.	Select	the	required	items	and	merge	them	into
Framework	B.

Merge
Selected	

Starts	a	merge	operation	using	all	the	selected	items	from	the
merge	list.	When	clicked	the	Merge	Options	tab	will	be	displayed
and	request	further	options	and	choices	be	made	to	initiate	the
merge	operation.	

	

		

Using	the	Merge	Tool
How	to	Send	a	Merge	List	to	Someone	Else
Start	the	merge	tool
Drag	and	drop	the	objects	from	your	Framework	that	you	want	to	send	into	the
merge	list.	For	example,	you	might	drag	and	drop	the	3	new	business	object
filters	that	you	have	added	to	your	Framework.
Use	the	Save	to	File	button.
From	the	Merge	Files	Tab	select	the	file	that	was	saved	and	drag	and	drop	it
into	the	place	that	will	be	used	by	the	recipient	to	receive	it.	For	example,	to	a
shared	network	drive,	or	into	an	e-mail	message,	etc.								

	

How	to	Receive	a	Merge	List	from	Someone	Else
Start	the	merge	tool
Switch	to	the	Merge	Files	Tab.
Drag	and	drop	the	merge	list	file	you	received	into	the	Merge	folder	(for
example	from	an	e-mail	message,	from	a	shared	network	drive,	etc).
After	a	few	seconds	the	Merge	Tool	will	prompt	you	to	open	the	file	you	have
just	dropped.	Click	Yes.	The	contents	of	the	merge	file	will	then	be	displayed
in	the	Merge	List	–	Selected	Items	and	Merge	List	–	Associated	Reference
Items	areas.
Select	the	objects	to	be	merged	into	the	current	Framework	from	the	Merge
List	areas	by	clicking	on	them.	Then	click	on	the	Merge	Selected	button.	Use
the	Merge	Options	tab	to	control	how	they	are	merged	into	your	Framework.
Remember	that	you	can	and	should	be	selective	about	what	you	merge.	You	do
not	have	to	merge	in	everything	that	someone	has	sent	you.
	

Some	Useful	Details
All	Framework	items	(or	objects)	are	uniquely	identified	by	a	GUID	(Global
Unique	Identifier).	Theoretically	a	GUID	is	a	32	character	identifier	that	is
unique	in	space	and	time.	No	two	GUIDs	are	ever	the	same.	This	means	if	that
developer	A	creates	a	business	object	captioned	"Customer"	and	developer	B
creates	a	business	object	captioned	"Customer"	they	are	not	the	same
Framework	object.	They	are	two	completely	separate	business	objects	that	just

happen	to	have	the	same	caption.	In	the	Merge	List	display	area	is	a	column
titled	"Currently	Exists".	This	indicates	whether	an	object	of	this	type	with	this
GUID	currently	exists	in	your	Framework.
The	benefit	of	the	GUID	approach	is	that	objects	from	any	two	Frameworks	in
the	world	can	be	merged	without	risking	object	or	property	duplication.
The	downside	is	that	two	developers	at	the	same	site	cannot	create	a	single
object	if	they	both	create	an	object	of	the	same	type	with	the	same	caption
because	the	GUIDs	of	these	two	objects	will	be	different.
The	preceding	points	mean	that	the	optimal	project	work	flow	model	is
probably	one	where	the	main	designer	always	creates	new	high	level
"container"	objects	such	as	applications,	business	objects,	5250	RAMP
sessions,	etc.	These	are	then	sent	out	to	the	individual	project	developers,	who
then	extend	and	enhance	them	as	required,	sending	back	their	alterations
periodically.	This	way	all	the	high	level	container	objects	being	used	all	have
the	same	GUID	(ie:	they	are	actually	the	same	object)	which	makes	merging
them	simpler	and	easier	to	manage.										

Example	of	Combining	Two	RAMP	Framework	Definitions
In	this	example	we	will	merge	developer	B's	Framework	and	RAMP	definitions
into	Developer	A's	Framework	definition.
Collecting	the	Definitions
Merging	the	Definitions

Collecting	the	Definitions
On	Developer	B's	PC,	start	the	Merge	Tool:

	
Click	and	drag	the	business	objects	from	the	Framework	window	to	the	middle
panel,	the	Merge	List.		In	this	example,	we	are	dragging	Alexandria:

	
Note	that	the	bottom	panel	contains	all	of	the	objects	that	the	merge	tool
considers	required	as	well.
The	merge	tool	sometimes	will	bring	too	many	objects	over.		You	may	wish	to
delete	the	scripts	not	required	here	and	manually	copy	the	ones	you	will	need
manually.		Highlight	the	scripts	and	click	Remove	Selected.

	
Then	start	RAMP	Tools.

	
Then	choose	the	scripts	you	want	to	copy,	and	click	and	drag	them	to	the	middle
window	of	the	Merge	Tool.

	
When	all	of	the	objects	are	pasted,	click	Save	to	File	button.

	
This	will	create	a	file	containing	the	objects	into	the	temporary	directory.

	
Send	this	file	to	Developer	A.	

Merging	the	Definitions
The	file	is	saved	in	the	developer’s	temporary	directory.		You	can	also	use
Windows	to	drag	the	file	onto	an	email.
Developer	A	will	drag	this	file	into	the	top	panel	of	the	Merge	Tool.

	
A	message	will	pop	up	asking	you	to	confirm	the	file	selection.

	
Click	YES	to	confirm.

	
Highlight	the	components	you	want	to	merge	in	the	middle	panel,	then	click
Merge	Selected.

	
The	screen	will	change:

	
Specify	whether	to	merge	into	an	existing	object	or	create	a	new	one.

	
If	you	choose	Create	a	new	object,	you	will	be	asked	to	name	the	object:

	
Click	Perform	All	Selected	Merges	and	the	merge	is	performed.
Whenever	performing	a	merge	like	this,	it	is	recommended	that	the	new
combined	Framework	definition	be	distributed	to	all	developers.

Use	the	Framework	export	facility	(see	Export	Design)	to	distribute	the
Framework	definition	to	every	developer.
	

Key	Concepts
Menu	Options	in	Brackets Application Business	Object Instance	List Filter

Command Command	Handler Images	Palette Framework	Window 	

Menu	Options	in	Brackets
Key	Concepts

The	Framework's	Framework	and	Administration	menus	and	their	menu	options
are	in	brackets	because	these	menus	and	options	will	not	be	displayed	to	the
end-user	when	the	Framework	is	executed	in	User	Mode.	(Refer	to	Starting	the
Framework).

For	the	same	reason,	the	design-time	menu	options	in	the	popup	menus	are	in
brackets.

Application
Tutorial:	VLF001	-	Defining	Your	HR	Application Key	Concepts

An	application	provides	a	grouping	for	Business	Objects.	There	can	be	several
applications	in	the	Framework.
	

	
In	a	commercial	environment	applications	could	be,	for	example,	Human
Resources,	Manufacturing	and	Payroll.
Note:	Do	not	take	the	word	Application	too	literally.	Applications	mean
different	things	to	different	people.	In	Framework	terms	an	Application	just
means	a	logical	grouping	of	business	functions.	For	example,	you	may	have	a
single	"application"	called	ERP	that	actually	contains	seven	sub-applications
called	Stock,	Ordering,	Pricing,	Customers,	Suppliers,	Invoicing	and	System
Table	Maintenance.	If	you	define	a	single	Framework	application	called	ERP	it

may	become	crowded.	In	Framework	terms	these	seven	sub-applications	are
probably	best	defined	as	individual	Framework	Applications.	

Business	Object
VLF002	-	Defining	Your	Business	Object Key	Concepts

Business	objects	are	objects	with	which	the	end-user	works.	They	are	the	core
of	your	application.
	

	
A	business	object	is	anything	that	you	want	it	to	be,	but	preferably	it	is
something	that	an	end-user	of	your	application	will	inherently	conceive	to	be
part	of	your	application.	For	example,	an	application	called	Human	Resources
will	be	dealing	with	business	objects	such	as	an	Employee	and	Departments.
Do	not	directly	relate	a	business	object	to	a	database	table..
Equally,	to	an	end-user,	a	report	is	very	much	an	object	that	they	may	produce
every	day	in	the	course	of	their	business.	So	creating	a	business	object	called

Reports,	even	though	it	spans	many	programming	"objects"	is	a	perfectly
reasonable	thing	to	do.
Please	remember	Business	Objects	are	objects	that	end-users	recognize	and	use
in	the	course	of	their	business,	not	OO	programming	"objects"	as	understood	by
software	developers.					

Filter
Tutorial	VLF003	-	Prototyping
Your	Filters

Tutorials:
	

VLF006WIN	-	Snapping	in	A	Real
Windows	Filter
VLF006WAM	-	Snapping	in	A	Real	WAM
Web	Filter

Key
Concepts

Filters	are	used	to	select	business	objects	and	put	them	into	an	Instance	List.
For	example,	an	Employees	filter	might	respond	to	different	user	requests	by
producing	an	instance	lists	of:
all	Employees	whose	names	start	with	SMIT.
all	Employees	who	have	a	birthday	today.
all	employees	that	work	in	the	marketing	department.
all	employees	that	started	work	last	year.
The	ability	to	quickly	filter	information	and	produce	lists	is	at	the	heart	of	many
commercial	application	designs.				
	

Instance	List
Key	Concepts

By	using	a	filter	an	end-user	can	quickly	locate	the	business	objects	they	want
to	action	(eg:	All	employees	who	started	work	last	year).
The	Instance	List	simply	displays	the	list	produced	by	the	filter.
Each	business	object	in	the	instance	list	is	called	an	instance.

	
As	you	can	see	the	filter's	job	is	to	filter	out	employees	that	match	the	users
selection	criteria	(in	this	case	a	surname	that	starts	with	B)	and	then	to	feed
them	into	the	instance	list.
You	can	customize	the	settings	of	an	instance	list	using	the	properties	of	the
business	object.

Command
Key	Concepts

You	can	enable	a	command	for	the	Framework,	an	application	or	a	business
object	and	then	assign	a	command	handler	to	it.		The	command	handlers
perform	the	actual	processing	in	the	application.
So	far	we	have	seen	that	Filters	produce	Instance	Lists	of	Business	Objects	for
end-users	to	action.
For	example,	a	list	of	all	the	employees	who	started	work	last	year	might	be
produced	by	an	Employee	business	object	filter.	
To	"action"	a	business	object	instance	the	end-user	normally	executes	a
command	against	it.
For	example,	working	with	the	list	of	Employees	that	started	work	last	year	an
end-user	might	then	choose	to	execute	one	of	these	commands	against	one	or
more	of	the	employees	displayed:
Print
Send	Email
Display	History
Apply	a	Salary	Increase
An	application	designer	can	actually	enable	a	command	for	the	Framework,	an
application	or	a	business	object	and	then	assign	a	command	handler	to	it.
The	command	handlers	perform	the	actual	processing	in	the	application	(eg:
Prints	the	employee	details,	Sends	the	email,	Displays	the	History,	etc).

Framework
Commands

Global	commands,	such	as	Exit,	Backup	and	Help,	are
available	anywhere,	anytime.

Application
Commands

Application	commands	are	used	when	you	are	working	within
a	specific	application	and	they	apply	to	the	application	as	a
whole.	Backup,	Restore	and	Reports	might	be	valid	commands
when	working	with	the	Human	Resources	application.

Business
Object
Commands

Business	object	(Customers,	Products,	Orders)	commands	are
used	when	you	are	working	within	a	business	object	and	they
typically	apply	to	the	business	object	as	a	complete	group	or
collection.
If	you	are	working	with	a	business	object	named	Employee

then	for	example	New		would	be	a	valid	command.

Business
Object
Instance
Commands

Business	Object	Instance	commands	can	only	be	used	when
you	are	working	within	specific	instances	of	a	business	object.
If	you	were	working	with	a	business	object	named	Employee
then	Details,	Skills,	Timesheets,	Print	and	Delete	may	all	be
valid	commands	for	a	specific	employee.

	

Commands	can	be	visualized	by	the	Framework	in	several	different	ways.	In	a
menu	on	the	menu	bar	or	in	a	pop-up	menu:

On	the	toolbar:

When	a	user	has	selected	an	object	and	then	selects	(i.e.:	executes)	a	command
then	the	associated	Command	Handler	is	invoked.

Command	Handler
Tutorial	VLF004	-	Prototyping
Your	Commands

Tutorials:
	

VLF007WIN	-	Snapping	in	a	Real	Windows
Command	Handler
VLF007WAM		-	Snapping	in	a	Real	WAM
Web	Command	Handler

Key
Concepts

Command	handlers	are	responsible	for	executing	commands	and	presenting	the
results	to	the	user.	
	

In	the	above	picture	five	command	handlers	are	visible	(but	only	the	Details
command	handler	is	actually	active).	
Command	handlers	can	also	use	up	the	entire	right	hand	side	of	the	Framework
window	like	this:
	

Command	handlers	can	also	present	themselves	in	a	separate	window.
	
	
	

Navigation	Pane
In	the	VLF.WIN	framework	small	buttons	on	the	left	of	the	status	bar	are	used
to	change	the	view	in	the	navigation	pane:

Application	designers	can	still	prevent	these	button	from	being	shown	using	the
Framework	properties	and	specify	that	a	specific	view	is	to	be	used	for	all	end-
users.
Tree	view
List	view
Drop-down	button
Launching	Applications	from	the	Status	Bar
	

Tree	view

	

List	view

	

Drop-down	button
The	drop-down	button	view	hides	the	navigation	pane	and	gives	access	to
applications	and	business	objects	from	a	drop-down	button:

	

Launching	Applications	from	the	Status	Bar
When	the	Framework	is	executed	using	RenderType	M,	the	launch	button	 	is
displayed	in	the	status	bar	next	to	the	other	navigation	pane	view	buttons:

	
When	the	launch	button	is	clicked,	applications	in	the	Framework	are	arranged
in	the	status	bar:

If	an	application	has	views,	the	view	is	visualised.	If	an	application	has	no
business	objects	it	is	not	shown.
The	applications	or	views	respond	to	two	events:
Mouse	hover
Click
	

Mouse	hover
With	a	mouse	hover	a	larger	icon	with	the	application/view	caption	appears:

	
When	the	larger	image	is	clicked	on,	the	business	objects	in	the	application	pop
up:

	
If	the	popup	item	is	clicked,	it	triggers	the	default	business	object’s	behaviour,
as	if	you	clicked	on	the	business	object	in	the	navigation	pane.
You	can	also	make	the	business	object	a	favourite	by	checking	the	Favourite
checkbox.
Note:	the	Business	Object	will	be	added	to	the	first	application	that	allows
favourites	in	the	sequence	they	appear.	If	you	need	to	add	it	to	another
application	you	need	to	use	either	the	Tree	or	List	Navigation	View.
	

Click
If	you	click	on	the	application/view,	the	behaviour	is	exactly	the	same	as
clicking	on	the	larger	image.
	

Removing	a	favourite	business	object
An	application	which	has	business	objects	that	have	been	made	favourites	will
have	the	Favorite	checkbox	is	ticked	but	disabled:

This	is	because	one	business	object	can	be	a	favourite	in	more	than	one
application.
To	remove	a	business	object	from	a	favourite	application,	hover	or	click	on	the
favourite	application:

	
Click	the	Remove	button	to	remove	the	business	object	from	the	application's
Favorites.
Warning:	due	to	space	constraints,	this	navigation	option	may	not	be	suited	to
Frameworks	with	a	large	number	of	applications	and/or	applications	with	large
number	of	business	objects.	In	those	cases	use	any	of	the	other	three	navigation
pane	views.
	

Enabling	the	Launch	button
The	display	of	the	launch	button	is	controlled	in	the	Framework	properties:

See	the	description	of	Launch	from	Status	Bar.
	
	

OBJECT-ACTION	User	Interfaces
If	you	have	used	a	PC	then	OBJECT-ACTION	should	be	familiar
If	you	have	used	a	5250	then	OBJECT-ACTION	should	be	familiar

The	preceding	sections	dealt	with	the	concepts	of	Business	Objects,	Filters,
Instance	Lists,	Commands	and	Command	Handlers.
In	an	"Employees"	application,	for	example,	these	concepts	might	be	visualized
like	this:

Here	you	have	a

Filter Where	you	specify	what	employees	you	would	like	included	in
your	instance	list.

Business
Object

The	list	of	employees	that	match	your	filter's	search	criteria.

Instance
List

Business
Object
Commands

Shown	on	the	pop-up	menu	when	you	right	click	(eg:	Basic
Details,	Transfer,	All	Details,	etc).		Sometimes	you	may	execute	a
command	by	clicking	on	an	icon	on	the	tool	bar.

Command
Handlers

The	various	programs	invoked	when	select	a	command	from	the
pop-up	menu.

	

The	design	principal	for	these	concepts	uses	an	OBJECT-ACTION	user
interface.
This	means	that	you	select	an	OBJECT	then	you	indicate	the	ACTION	(i.e.
Command)	that	you	wish	to	perform	against	it.
The	OBJECT-ACTION	interface	is	not	a	Visual	LANSA	Framework
invention.

If	you	have	used	a	PC	then	OBJECT-ACTION	should	be	familiar
If	you	use	Start	->	Search	->	For	Files	and	Folders	on	your	Windows	desktop
then	you	end-up	with	a	MS-Windows	form	that	looks	like	something	like	this:

Here	you	also	have	a:
Filter Where	you	specify	what	documents	you	would	like	to	search	for.
Business
Object
Instance
List

The	list	of	documents	MS-Word	and	MS-PowerPoint	documents
(say)	that	match	your	filter's	search	criteria.	These	documents	are
your	business	objects.						

Business
Object
Commands

Shown	on	the	pop-up	menu	when	you	right	click	(eg:	Open,	Print,
Delete,	Properties,	etc).		Sometimes	you	may	execute	a	command
by	clicking	on	an	icon	on	the	tool	bar.			

Command
Handlers

The	programs	that	execute	when	you	execute	a	command.	In	this
example	MS-Word	handles	the	"Open"	command,	a	message	box
confirms	that	you	really	want	to	"Delete"	and	the	document's
"Properties"	are	shown	as	multiple	tabs	in	a	separate	form.		

	

In	this	example	the	OBJECT-ACTION	approach	is	being	used	at	a	high	level.
The	OBJECT-ACTION	design	works	right	down	to	a	very	low	level	as	well.
Think	about	how	you	change	the	head	of	an	arrow	in	MS-PowerPoint:	

You	select	the	OBJECT	(the	arrow)	then	choose	the	ACTION	(Format
AutoShape).

If	you	have	used	a	5250	then	OBJECT-ACTION	should	be
familiar
If	you	use	a	classic	"Work	With	XXXX"	command	on	a	System	i	5250
workstation,	such	as	the	WRKLNK	(Work	with	Object	Links)	command	then
you	should	be	familiar	with	5250	displays	like	this:

			
Here	you	also	have	a
Filter Where	the	WRKLNK	command	provides	you	with	options	to

filter	the	list	of	links	that	are	displayed.	(Many	"Work	with	xxxx"

interfaces	allow	you	to	filter	inside	the	main	display	as	well).
Business
Object
Instance
List

The	list	of	links	that	match	your	filter's	search	criteria.	These
links	are	your	business	objects.

Business
Object
Commands

The	Options	such	as	2=Edit,	7=Rename,	8=Display	that	you	can
execute	against	an	individual	business	object	(that	is,	a	link).

Command
Handlers

The	programs	that	execute	when	you	execute	a	command
(7=Rename	or	8=Display	attributes	examples	are	shown).

	

Again	it's	the	OBJECT-ACTION	model	underpinning	"Work	with	XXXXX"
designs.
You	select	an	OBJECT	then	you	indicate	the	ACTION	(that	is,	Command)	that
you	wish	to	perform	against	it	by	typing	a	number	beside	it	(because	you	can't
do	right	mouse	pop-up	menus	on	a	5250	workstation).
You	might	have	even	designed	commercial	"Work	with	Customers"	or	"Work
with	Orders"	style	applications	without	even	realizing	that	that	the	OBJECT-
ACTION	model	you	were	using	was	the	essentially	the	same	as	that	used	by	the
MS-Windows	desktop	and	by	the	Visual	LANSA	Framework.

Mock	Up	Filters	and	Command	Handlers
Tutorial	VLF003	-	Prototyping	Your
Filters

Tutorial	VLF004	-	Prototyping	Your
Commands

Key
Concepts

When	you	are	first	creating	a	prototype	of	your	application,	you	use	mock	up
filters	and	command	handlers	that	emulate	how	your	application	will	function.	
When	you	turn	your	prototype	into	a	real	application,		you	snap	in	your	custom
made	filters	and	command	handlers	which	provide	the	actual	functionality.
There	are	two	kinds	of	mock	up	filters:	predefined	Sample	Mock	Ups	and	Mock
Up	RAD-PAD	panels	in	which	you	can	type	and	paste	your	own	text	and
pictures.

Sample	Mock	Ups
The	sample	mock	up	filters	and	command	handlers	provide	you	with	a	quick
way	of	visualizing	what	your	application	will	look	like.	They	do	not	provide
any	functionality.		Their	purpose	is	just	to	enhance	your	sense	of	what	your	real
application	will	look	and	feel	like.
You	cannot	change	the	sample	mock	ups.		This	is	an	example	of	a	sample	filter:

Mock	Up	RAD-PAD
You	can	use	RAD-PAD	filters	and	command	handlers	to	quickly	create	your
own	prototype	filters	and	command	handlers.
The	RAD-PADs	are	a	notepad	that	allows	you	to	record	your	design	notes	and
ideas.		You	can	also	add	simple	pictures	to	your	notes	by	using	the	Images
Palette	to	enhance	their	visualization.
To	use	a	RAD-PAD,	select	and	delete	the	standard	text	on	the	RAD-PAD	filter
or	command	handler:

And	add	your	text	and	pictures:

When	creating	RAD-PAD	filters	and	command	handlers	remember:
They	are	meant	for	quick	notes	with	pictures,	not	for	formal	screen	designs.
The	pad	is	actually	a	document	containing	lines.	This	means	you	cannot
position	pictures	exactly.	Use	the	Enter	key	to	add	new	lines	and	add	blanks	or
tabs	to	position	items.	

Images	Palette

	

Use	the	Images	Palette	to
quickly	add	some	images
to	your	prototype	filters	or
command	handlers:
Click	on	the	Images
Palette	button	to	display
the	palette.
Select	the	picture	you	want
to	insert	on	your	filter	or
command	handler.
Drag	and	drop	or	copy	and
paste	the	image	to	your
filter	or	command	handler.
The	palette	pictures	will
paste	or	drop	where	the
screen	input	caret	(the	|)	is,
not	where	you	point	the
cursor.
To	add	your	own	images	to
the	palette,	copy	them	in
.gif	format	to	your
partition	execute	directory.
(This	is	only	possible	if
you	use	the	default	value
HTML	as	the	RAD-PAD
File	Format.)
	

The	RAD-PADs	are	not	meant	to	be	used	as	formal	screen	designs,	only	as	an
aid	for	quick	prototypes.	They	are	a	design-time	feature	not	used	in	the
deployed	Framework.

Tailoring	the	Window	Layout
The	simple	Framework	layout	can	be	changed	by	both	designers	and	end-users
in	Windows.
Use	the	right	button	pop-up	menu	and	choose	the	Position	option	to	rearrange
the	various	components	that	make	up	the	Framework	window	into	a	form	that	is
most	suitable	for	your	application:

Standard	Look
Wider	Instance	List
Filter	to	the	Right
Filter	in	the	Middle	with	Wider	Instance	List	Area
Filter	and	Instance	List	at	the	Bottom
Application	Choices	to	the	Right
Application	Choices	Moved	to	Tool	Bar
Standard	Layout		with	Command	Handler	on	Top
Standard	Layout		with	Command	Handler	on	Top,	Filter	And	Instance	List
Reversed
Application	Selection	on	Top
Application	Selection	at	the	Bottom
Floating	Filters
Floating	Instance	Lists

Standard	Look

	

Wider	Instance	List
	

	

Filter	to	the	Right

	

Filter	in	the	Middle	with	Wider	Instance	List	Area

	

Filter	and	Instance	List	at	the	Bottom
	

	

Application	Choices	to	the	Right
	

	

Application	Choices	Moved	to	Tool	Bar
	

	

Standard	Layout		with	Command	Handler	on	Top
	

	

Standard	Layout		with	Command	Handler	on	Top,	Filter	And
Instance	List	Reversed
	

	

Application	Selection	on	Top
	

	

Application	Selection	at	the	Bottom
	

	

Floating	Filters
	

	

Floating	Instance	Lists
	

	

	

Administration	Objects
Use	the	Administration	menu	to	work	with	Users	and	Servers	defined	in	the
Framework.

Users
This	dialog	box	shows	the	users	registered	to	use	the	Framework.	It	provides	an
optional	facility	to	help	you	define	and	manage	your	application's	user	profile
definitions.	

To	switch	on	Framework	authority	checking,	go	to	the	Framework	menu,
choose	the	Properties...	option	and	select	the	Framework	Details	tab.	On	this
tab,	the	"Users,	Authority	and	sign	on	settings"	panel	is	where	Framework
authority	is	configured.	For	details,	refer	to	Framework	Details.
For	more	information,	see	Users,	Groups	and	Security.

Servers
This	dialog	box	shows	the	servers	defined	in	the	Framework.	It	provides	an
optional	facility	to	help	you	define	and	manage	your	application's	server
definitions.

The	servers	defined	here	will	be	displayed	in	the	Connect	dialog	when	the	user
logs	on	to	the	Framework.
A	user	with	authority	to	use	the	Administration	menu	can	add	servers	and	work
with	their	details.
Server-related	options	are	also	defined	in	Framework	Details	dialog	box.
For	more	information	see	Server	Profile	Management	and	Issues.

Help	and	Tutorials
The	Visual	LANSA	Framework	has	a	help	assistant	and	tutorials.
The	Help	Assistant	provides	help	when	you	are	developing	applications	in	the
Framework.	Either	leave	the	Assistant	window	open	or	close	it	and	press	F2
when	you	want	help	for	an	object.

The	Tutorials	provide	you	with	simple	step	by	step	instructions	of	how	to	create
a	Framework	application.

	

Building	the	Application
These	are	the	steps	you	perform	to	create	your	application:
Before	building	your	application,	you	would	usually	Personalize	Your
Framework	to	make	it	reflect	the	company	you	are	building	the	application	for.
Prototype:
Define	Your	Application
Define	Your	Business	Objects
Optionally	Group	Business	Objects	into	Application	Views
Prototype	Your	Filters
Prototype	Your	Commands	and	Their	Handlers
Validate	Your	Design
Implement:
Create	Your	Own	Filters
Create	Your	Own	Command	Handlers
Optionally	Create	Your	Own	Instance	List
Deploy:
Deploy	the	Application

Personalize	Your	Framework
There	are	some	simple	things	you	should	do	to	make	your	Framework	reflect
the	company	you	are	building	the	application	for.	Even	if	you	are	just	doing	a
proof	of	concept,	it	is	important	to	make	the	Framework	appear	to	be	the
customers	software,	not	LANSA's.
Note	that	you	can	also	change	the	appearance	of	the	Framework	by	Tailoring
the	Window	Layout	.
As	shipped,	when	the	Framework	is	run,	it	looks	like	this:

	
The	shipped	splash	screen	and	the	link	to	the	web	page	are	only	intended	as

placeholders.	They	should	be	changed	to	reflect	the	company	the	Framework	is
being	built	for.	So	should	the	Framework	caption	and	icon.
When	the	user	chooses	the	Help	menu	option	About	Framework	in	the	shipped
version	of	the	Framework	they	see	this:

		
The	image,	the	text,	and	the	url	that	the	technical	support	button	links	to
(www.lansa.com)		should	all	be	changed.
An	image	can	also	be	added	to	the	top	of	the	sign-on	screen:

http://www.lansa.com

	
	

To	Change	these	Settings
Go	to	Framework	properties	to	change	most	of	these	settings:
Framework	Caption
Framework	Icon
Framework	splash	image
The	technical	support	URL
The	Sign	on	Screen	image
	
If	you	want	to	make	a	change	to	First	Splash	Screen,	you	need	to	make	a	change
to	your	entry	point	form.

Framework	Caption
Use	the	Caption	property	on	the	Identification	tab:

	

Framework	Icon
Use	the	Icons	tab	to	select	an	icon:

	
	

Framework	splash	image
Change	the	startup	appearance	of	the	application	on	the	Startup	tab:
The	splash	image	is	shown	after	Framework	has	loaded.	You	can	use	any
image	file	in	the	partition	execute	directory.
The	URL	to	link	to	(below	the	image)
The	caption	to	show	for	the	link
	

	
	

The	technical	support	URL
Use	the	Help	About	tab	to	change	the	help	about	details:
The	text	that	will	be	displayed	when	the	user	chooses	the	Framework	menu
option	About,	including	Technical	Support	address	and	copyright	notice
The	image	that	will	be	displayed
	

	
To	use	your	own	bitmap	as	the	about	Framework	image,	you	need	to	create	your
own	LANSA	bitmap	and	load	your	image	into	it.
You	then	need	to	create	your	own	version	of	component	UF_IB001	and	add	a
line	to	it	to	enrol	the	LANSA	bitmap	in	the	Framework.	(See	the	source	for
reusable	part	UF_IB001	for	instructions	on	how	to	do	this).
When	your	bitmap	is	enrolled	in	the	Framework,	you	can	select	it	from	the	list

of	bitmaps	in	the	Help	About	tab.

The	Sign	on	Screen	image
You	can	use	any	image	file	in	the	partition	execute	directory:
	

	

First	Splash	Screen
There	is	one	other	change	that	is	not	under	Framework	properties.
This	is	the	image	that	is	first	displayed	when	the	Framework	starts	up.	The	first
splash	screen.
To	change	this,	first	create	your	own	LANSA	bitmap	and	load	your	image	into
it.	Then	modify	the	entry	point	forms	(UF_DESGN,	UF_ADMIN,	and
UF_EXEC	(or	their	equivalents)),	so	that	the	line	shown	below	points	to	your
LANSA	bitmap.
	

	

Define	Your	Application
Tutorial:	VLF001	-	Defining	Your	HR	Application

You	start	by	creating	the	application	itself.

	
To	create	an	application,	use	the	New	option	in	the	Framework	menu:

	
And	define	its	properties:

	

You	can	change	the	application	properties	by	selecting	the	application,	right-
clicking	and	choosing	the	Properties…	option	from	the	popup	menu.
	

Define	Your	Business	Objects
Tutorial	VLF002	-	Defining	Your	Business	Object

Then	you	create	your	business	objects.

To	create	a	business	object,	use	the	New	option	in	the	Framework	menu:

	
And	define	its	properties:

You	can	change	the	business	object	properties	by	selecting	the	application,
right-clicking	and	choosing	the	Properties…	option	from	the	popup	menu.
	
	

Optionally	Group	Business	Objects	into	Application	Views
Now	that	your	Business	Objects	have	been	created	you	can	optionally	group
them	as	different	views	of	the	Application.	You	can	create	Application	Views	at
any	time	during	or	after	an	application	has	been	created.
To	create	an	Application	View	bring	up	the	properties	panel	for	the	application
and	click	on	the	Application	Views	tab.	To	create	a	View,	click	on	the	New
button:

Specify	the	view's	identification	properties.
Using	the	Bitmaps	and	Icons	tab	you	can	define	an	icon	and	a	bitmap	to	display
for	the	view.
Click	on	the	Create	Links	tab	to	link	Business	Objects	to	the	newly	created
application	view.	A	list	of	the	business	objects	currently	defined	for	the	selected
application	is	displayed:

Check	the	boxes	next	to	each	Business	Object	you	want	to	include	in	the
currently	selected	View.
Remarks
Application	views	have	their	own	security.

Security	in	views	is	independent	of	the	security	applied	to	the	business	objects
defined	in	them.	This	means	users	not	allowed	to	a	specific	view	will	not	be
able	to	execute	the	business	objects	grouped	inside	that	view	because	the	view
will	not	be	visible.	However,	users	allowed	to	a	business	objects	inside	a	view
to	which	they	are	not	allowed	will	be	able	to	switch	to	that	business	object.
You	can	define	up	to	100	Views	for	an	application.	However,	more	than	10	is
considered	excessive	and	will	affect	the	amount	of	space	available	to	show	the
views	and	business	objects	belonging	to	them.	If	more	than	10	are	required
you	should	restrict	the	Navigation	View	Pane	to	Tree	View.
Once	you	define	a	view	for	an	application,	all	business	objects	defined	for	the
application	must	be	defined	in	the	same	or	other	views.	In	this	scenario,	all
business	objects	not	defined	in	any	view	will	be	automatically	linked	to	a	new
view	created	when	the	Framework	is	saved.

You	can	define	one	business	object	in	more	than	one	view.
	

Prototype	Your	Filters
Tutorial	VLF003	-	Prototyping	Your	Filters Filter Mock	up	Filters	and	Command	Handlers

Next	you	create	prototype	filters	for	your	business	objects.	Use	the	prototype
filters	or	create	your	own	mock-up	filters	by	typing	in	text	or	using	the	Images
Palette.	You	don't	yet	write	any	code.

Prototype	Your	Commands	and	Their	Handlers
Tutorial	VLF004	-	Prototyping	Your
Commands

Command Command
Handler

Mock	Up	Filters	and	Command
Handlers

Then	create	command	handlers	for	your	application	and	business	objects.	Use
the	prototype	command	handlers	or	create	your	own	mock-up	command
handlers.	You	don't	yet	write	any	code.

Some	Guidelines	for	Defining	Commands
Many	commands	are	verbs	and	some	are	nouns.	Most	of	the	noun	commands
actually	have	an	implied	verb	associated	with	them	(e.g.:	the	command
"Picture"	is	actually	"Show	me	a	Picture").
	
If	commands	are	actually	verbs	(real	or	implied)	then	you	should	try	to	always
think	about	defining	commands	in	the	Object	–>	Action	context:			The	user
first	chooses	the	Object	(i.e.:	the	Framework,	an	application	or	a	business
object),	then	they	indicate	the	Action	they	would	like	to	take	on	the	object	by
selecting	a	command.

	
This	is	different	to	the	way	that	many	procedural	menu	based	systems	work.
Classically	they	are	Action	–>	Object	orientated.
	
You	should	try	to	use	simple,	reusable	and	generic	nouns	or	verbs	for
commands.	
	
For	example,	use	"Details"	rather	then	"Customer	Details"	as	this	will	allow
the	command	"Details"	to	be	reused	with	many	other	objects	such	as
Employees,	Products	and	Orders	…	saving	you	from	overcrowding	your
Framework	with	"Employee	Details",	"Product	Details"	and	"Order	Details".	
	
Users	will	understand	the	command	"Details"	applies	to	the	currently	selected
object	(e.g.:	Customer,	Order,	Employee	or	Product)	for	the	same	reason	that
they	understand	that	"Copy"	in	MS-PowerPoint	means	to	copy	the	currently
selected	object	..…	which	is	why	MS-PowerPoint	does	not	have	to	have	"Copy
Text",	"Copy	Picture",	"Copy	Clip-Art",	etc	and	can	have	a	single	"Copy"
reusable	command.				

Validate	Your	Design
Tutorial	VLF005	-	Validating	the	Prototype 	

Your	prototype	is	now	ready	to	be	tested	out	and	shown	to	others.	It	looks	and
acts	like	a	real	application,	except	that	the	filters	and	command	handlers	do	not
actually	perform	any	processing.
Visualize	and	validate	your	application	prototype	with	users	and	developers:

	
	
	

Create	Your	Own	Filters
Framework	Programming Tutorials:

VLF006WIN	-	Snapping	in	A	Real	Windows	Filter
VLF006WAM	-	Snapping	in	A	Real	WAM	Web	Filter

When	you	turn	your	prototype	to	a	real	application,	you	snap	in	your	custom
made	filters	which	provide	the	actual	filtering.
WINDOWS:	You	create	the	filter	as	a	reusable	part,	compile	it	and	then	snap	it
in	the	Framework.
WAM:	You	create	the	filter	as	a	Web	Application	Module,	compile	it	and	then
snap	it	in	the	Framework
Use	the	Program	Coding	Assistant	in	the	Framework	to	generate	the	filter	code
for	you	or	define	it	manually
Snap	it	in	the	Framework:
Start	the	Framework	executing	(as	a	designer).
Display	the	Filters	tab	for	the	business	object	you	are	working	with.
Select	the	mock	up	filter	that	you	wish	to	replace	with	your	real	filter.	Click	on
the	Filter	Snap-in	Settings	Tab.
Use	the	Windows	group	box	to	associate	a	Windows	real	filter	to	the	selected
Business	Object	filter.	Use	the	Web	Browser	group	box	to	associate	a	WAM
real	filter	to	the	currently	selected	Business	Object	filter.
Click	the	radio	button	of	one	of	the	real	handler	types.
Type	the	handler	name	into	the	property	field	if	it	is	known.
Alternatively,	click	on	the	Find	button	to	open	the	repository	search	dialogue.
Enter	a	partial	name	and/or	description	and	click	the	Find	button	to	restrict	the
of	return	repository	objects	matching	those	strings.
Locate	your	filter	handler	in	the	object	list	and	select	it	by	double	clicking	on	it
or	selecting	it	and	clicking	the	OK	button.
Check	the	WAM	Component	radio	button	to	associate	a	WAM	real	filter
handler	to	the	currently	selected	Business	Object	filter.
Save	the	Framework.
Your	filter	is	now	snapped	into	the	Framework	and	usable.	Test,	modify,	debug
and	recompile	your	filter	as	you	would	any	component.
	

Create	Your	Own	Command	Handlers
Framework	Programming Tutorials:

VLF007WIN		-	Snapping	in	A		Real	Windows	Command	Handler
VLF007WAM		-	Snapping	in	a	Real	WAM	Web	Command	Handler
	

When	you	turn	your	prototype	to	a	real	application,	you	snap	in	your	custom
made	command	handlers,	which	perform	the	processing	in	your	application.
WINDOWS:	You	create	the	command	handler	as	a	reusable	part,	compile	it	and
then	snap	it	in	the	Framework.
WAM:	You	create	the	command	handler	as	a	Web	Application	Module,	compile
it	and	then	snap	it	in	the	Framework
Use	the	Program	Coding	Assistant	in	the	Framework	to	generate	the	command
handler	code	for	you	or	define	it	manually
Snap	It	in	the	Framework:
Start	the	Framework	executing	(as	a	designer).
Display	the	property	dialog	of	the	object	with	which	the	command	is
associated:

For	the	Framework Select	menu	item	Framework	and	then	Properties

For	an	Application Double-click	on	the	application.

For	a	Business	Object Double-click	on	the	business	object.

	

On	the	resulting	properties	dialog	click	on	the	Commands	Enabled	tab.
Select	the	command	that	you	wish	to	replace	with	your	real	command	handler.
Make	sure	to	select	whether	the	command	is	a	Business	Object	or	Instance
command,	and	to	set	the	desired	Command	Options:
Use	the	Windows	group	box	to	associate	a	Windows	real	filter	to	the	selected
Business	Object	filter.	Use	the	Web	Browser	group	box	to	associate	a	WAM
real	filter	to	the	currently	selected	Business	Object	command.
Click	the	radio	button	of	one	of	the	real	handler	types.
Type	the	handler	name	into	the	property	field	if	it	is	known.

Alternatively,	click	on	the	Find	button	to	open	the	repository	search	dialogue.
Enter	a	partial	name	and/or	description	and	click	the	Find	button	to	restrict	the
of	return	repository	objects	matching	those	strings.
Locate	your	command	handler	in	the	object	list	and	select	it	by	double	clicking
on	it	or	selecting	it	and	clicking	the	OK	button.
Check	the	WAM	Component	radio	button	to	associate	a	WAM	real	command
handler	to	the	currently	selected	Business	Object	command.
Save	the	Framework.
Your	handler	is	now	snapped	into	the	Framework	and	usable.	Test,	modify,
debug	and	recompile	your	filter	as	you	would	any	component.
	

Optionally	Create	Your	Own	Instance	List
Adding	Additional	Columns	to
Instance	Lists
	

Tutorial:	VLF009WIN	-	Adding	Instance	List	Columns	in
Windows	Applications
Tutorial:	VLF009WEB	-	Adding	Instance	List	Columns	in	Web
Applications

The	Framework	provides	a	standard	Instance	List	that	displays	your	business
object	instances.	If	the	shipped	instance	list	browser	will	not	do	exactly	what
you	need,	you	can	write	your	own.	A	Code	Assistant	is	shipped	with	the
Framework	that	will	generate	a	basic	instance	list	browser	for	you.
The	Code	Assistant	creates	code	for	flat	visualization	controls	such	as	list	views
and	grids.	If	you	want	to	present	a	tree,	see	the	following	section	for	an	example
of	a	snap	in	instance	list	browser	displaying	a	tree.			
If	you	create	your	own	snap	in	instance	list	browser	reusable	part,	you	need	to
specify	its	name	to	the	Framework	on	the	Instance	List	/	Relations	tab	here:

	

Deploy	the	Application
Tutorial:	Tutorials	for	Deployment

Lastly	you	need	to	deploy	your	application	for	your	end-users.
How	you	go	about	this	varies	according	to	what	the	application	contains.
Your	application	may	contain	components	in	one	or	more	of	these	broad
categories:
Windows	client	components		
These	are	objects	that	need	to	be	installed	onto	your	user'	desktops	(or	on	a
server	to	which	they	have	high	speed	access)	for	your	application	to	execute.
For	example	all	your	Windows	filters	and	command	handlers	would	fall	into
this	category.	Refer	to	the		Tutorials	for	Deployment.
Windows	or	System	i	server	based	components	that	support	your
Windows	clients	
These	are	objects	that	need	to	be	installed	onto	your	server	system(s)	to	support
your	Windows	clients.	For	example	your	database	and	any	remote	procedures
you	have	created	would	fall	into	this	category.
System	i	based	Web	Browser	applications	
These	are	mainly	Process	and	Function	objects	in	executable	form	to	import
into	the	partition	the	Visual	LANSA	Framework	will	be	deployed	to.	They	are
also	image	files,	Java	Script	files,	and	other	types	of	files	that	are	typically
deployed	into	the	System	i	IFS	locations	that	you	specified	when	configuring
the	Developer	Preferences	for	the	associated	web	server.
Windows	Web	Browser	applications	
These	are	mainly	Process	and	Function	objects	in	executable	form	to	import
into	the	partition	the	Visual	LANSA	Framework	will	be	deployed	to.	They	are
also	image	files,	Java	Script	files,	and	other	type	of	files	that	are	typically
deployed	into	the	Windows	web	server	locations	that	you	specified	when
configuring	the	Developer	Preferences	for	the	associated	web	server.
Essentially	the	deployment	steps	you	need	to	perform	are	no	different	to
deploying	any	Visual	LANSA	or	LANSA	for	the	Web	application.	You	just	need
to	include	some	additional	Visual	LANSA	Framework	components	that	will
support	the	execution	of	your	application	in	the	deployed	environment.	Refer	to
What	is	Included	in	the	Framework?	for	details	of	the	Visual	LANSA
Framework	objects	that	you	may	need	to	include.
	

Tutorials
The	Visual	LANSA	Framework	Tutorials	are	a	set	of	exercises	designed	to
introduce	and	reinforce	the	fundamental	skills	required	to	build	applications
with	the	Framework.
The	tutorials	guide	you	in	creating	a	sample	Human	Resources	application.
Prototype
VLF000	-	Execute	Framework	Application
VLF001	-	Defining	Your	HR	Application
VLF002	-	Defining	Your	Business	Objects
VLF003	-	Prototyping	Your	Filters
VLF004	-	Prototyping	Your	Commands
VLF005	-	Validating	the	Prototype
	
Windows	Applications
VLF006WIN	-	Snapping	in	A	Real	Windows	Filter
VLF007WIN		-	Snapping	in	A		Real	Windows	Command	Handler
VLF009WIN	-	Adding	Instance	List	Columns	in	Windows	Applications
VLF010WIN	-	Creating	a	Mini	Filter
VLF011WIN	-	Creating	a	Parent	Child	Instance	List
VLF012WIN	-	Controlling	Navigation	Using	Switching	and	the	Virtual
Clipboard
VLF013WIN	-	Signaling	Events	
VLF014WIN	-	Debugging/Tracing
	
WAM	Web	Browser	Applications
VLF006WAM	-	Snapping	in	A	Real	WAM	Web	Filter
VLF007WAM		-	Snapping	in	a	Real	WAM	Web	Command	Handler
VLF009WAM	-	Adding	Instance	List	Columns	in	WAM	Applications
VLF011WAM	-	Creating	a	Parent	Child	Instance	List
VLF012WAM	-	Controlling	Navigation	Using	Switching	and	the	Virtual
Clipboard
VLF013WAM	-	Signaling	Events

VLF014WAM	-	Debugging/Tracing
	
Deployment
VLF008WIN	-	Deploying	the	Windows	Framework
	
	
See	Before	You	Use	the	Tutorials
Please	send	your	comments	and	suggestions	to	LANSA	Support	at:
lansasupport@lansa.com.au.
Disclaimer:	While	every	effort	has	been	made	to	ensure	that	the	information	in
this	material	is	accurate,	in	no	event	shall	LANSA	be	liable	for	any	damages
arising	from	its	use.	LANSA	makes	no	warranties,	expressed	or	implied.
	

mailto:lansasupport@lansa.com.au

Before	You	Use	the	Tutorials
Who	Should	Use	the	Tutorials?
Tutorials	can	be	used	by	novice	or	experienced	LANSA	developers	who	wish	to
learn	how	to	use	the	Visual	LANSA	Framework.	Developers	should	have
completed	the	Visual	LANSA	training	course	or	the	equivalent.	No	advanced
Visual	LANSA	knowledge	is	required.	LANSA	for	the	Web	training	is	required
if	you	are	using	the	Framework	for	Web	development.
How	Do	I	Use	the	Tutorials?
It	is	recommended	that	you	complete	the	Tutorials	in	sequence.	Complete	the
exercises	related	to	the	style	of	application	that	you	are	creating.	If	you	are	only
creating	Windows	applications,	you	may	wish	to	skip	the	WAM	related
exercises.
To	allow	for	more	than	one	developer	to	use	the	tutorials,	all	LANSA	object
names	will	be	prefixed	with	iii.	You	may	use	any	three	characters,	such	as	the
initials	of	your	name,	for	the	iii	characters.	For	example,	if	you	name	is	John
David	Smith	you	can	use	the	characters	JDS.	When	asked	to	create	a
component	named	iiiCOM01,	you	will	create	a	component	named	JDSCOM01.
Always	remember	to	replace	iii	with	your	unique	3	characters.
If	you	are	using	an	unlicensed	or	trial	version	of	Visual	LANSA,	you	must	use
DEM	to	replace	iii.	When	asked	to	create	a	component	named	iiiCOM01,	you
will	create	a	component	named	DEMCOM01.
What	Partition	Should	I	Use?
It	is	recommended	that	you	use	the	DEM	partition	for	the	tutorial.	The	DEM
system	contains	the	Personnel	System	demonstration	and	all	required	files	used
by	the	tutorial.
Tutorial	Installation
In	order	to	use	the	Tutorials,	you	must	have	the	Visual	LANSA	Framework
installed	in	the	partition	(installed	by	Partition	Initialization).
The	tutorials	require	the	Personnel	Demonstration	System	files	(installed	by
Partition	Initialization).
How	Many	Developers	Can	Use	the	Training?
There	is	no	limit	on	the	number	of	developers	who	may	use	the	training	at	the
same	time.	However,	it	is	important	that	each	developer	has	a	unique	iii
identifier	for	their	work.
	

Your	Feedback
Your	feedback	regarding	these	tutorials	will	help	us	improve	the	overall	quality
of	the	LANSA	documentation	and	training.	Please	e-mail	your	comments	to
lansatraining@LANSA.com.au
	

Tutorials	for	Prototyping
Applies	to	Windows	and	WAM	applications.
Includes:
VLF000	-	Execute	Framework	Application
VLF001	-	Defining	Your	HR	Application
VLF002	-	Defining	Your	Business	Objects
VLF003	-	Prototyping	Your	Filters
VLF004	-	Prototyping	Your	Commands
VLF005	-	Validating	the	Prototype
You	will	step	through	the	prototyping	of	a	small	HR	(Human	Resources)
application.	The	finished	application	prototype	will	appear	something	like	this:

This	prototype	will	contain:
An	application	called	HR	which	contains	two	Business	Objects:	Employees
and	Statistical	Reporting.
Employees	business	object	has	three		Filters	(By	Name,	By	Location	and	By
Date)	and	command	handlers	for	employee	Details,	Address	and	Skills.	It	also
has	a	New	command	which	allows	the	end-user	to	define	a	new	employee.
Statistical	Reporting	business	object	contains	two	reporting	commands:
Weekly	Reports	and	Monthly	Reports.

Prerequisites
Make	sure	the	RAD-PAD	file	format	is	set	to	HTML.	To	check:

Choose	the	Properties…	option	of	the	Framework	menu.	The	Framework
properties	dialog	is	displayed.
Bring	up	the	Framework	Details	tab.
	

VLF000	-	Execute	Framework	Application
Objectives
To	execute	a	finished	application	in	the	Framework.
To	become	familiar	with	the	look	and	feel	of	Framework-based	applications.
To	introduce	some	key	concepts	used	by	the	Visual	LANSA	Framework	when
building	applications.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Execute	the	Visual	LANSA	Framework
Step	2.	Execute	an	Application
Step	3.	Using	Filters	to	Find	an	Employee

Step	4.	Using	Commands	and	Command	Handlers
	
Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
Check	that	you	have	met	the	prerequisites	for	the	Visual	LANSA	Framework.

Step	1.	Execute	the	Visual	LANSA	Framework
1.		Start	Visual	LANSA.
					Log	on	to	the	DEM	partition	as	follows:

User	ID: PCXUSER

Password: PCXUSER

Task	ID: PCXTASK

Partition: DEM

2.		Using	the	Tools	tab	in	the	ribbon,	select	the	VL	Framework	as	User	option.

3.			In	the	Select	Framework	File	dialog	select	the	option	Open	Latest
Demonstration	Version.

The	Framework	uses	XML	files	to	store	the	definition	of	your	systems.	The	file
vf_sy001_system_lastshipped.xml	always	contains	the	latest	demonstration
system.

Note	that	if	you	only	have	one	Framework	file,	this	dialog	is	not	displayed.					
The	Framework	window	will	appear.

Step	2.	Execute	an	Application
In	this	step,	you	will	execute	a	shipped	sample	application.	You	will	be
introduced	to	Business	Objects,	Filters,	Instance	Lists,	Commands	and
Command	Handlers.
1.		The	applications	in	the	Framework	are	shown	on	the	left.
					As	you	expand	the	different	applications,	you	can	see	the	business	objects
associated	with	them.

2.		Select	the	Programming	Techniques	application.
3.		Select	The	Essential	business	object.
					Two	new	panels	will	appear.
					Use	the	buttons	on	the	bottom	left	to	show	the	navigation	tree	as	a	button.
					The	left	panel	is		the	filter	which	is	used	to	search	through	the	employee
data.

					The	right	panel	will	show	an	instance	list	with	the	results	of	an	employee
search.

					

Step	3.	Using	Filters	to	Find	an	Employee
In	this	step,	you	will	use	a	Filter	to	find	employees.	Filters	allow	you	to	search
and	sort	the	items	in	a	business	object.	After	an	end-user	has	selected	the
employee	business	object,	they	typically	want	to	locate	a	specific	employee	or
list	of	employees.
1.		Enter	the	letter	B	in	the	Employee	Surname	field	and	click	the	Search	button.
The	instance	list	displays	all	employees	whose	surname	starts	with	B.

	

Step	4.	Using	Commands	and	Command	Handlers
In	this	step,	you	will	select	an	employee	and	review	the	Commands	or	actions
which	can	be	performed	for	the	employee.
1.		In	the	instance	list,	select	the	employee	Veronica	Brown.
					When	an	employee	has	been	selected,	the	Basic	details	of	the	employee	will
appear	in	the	bottom	panel.

					By	default,	the	Details	command	has	been	executed.	The	Details	command
handler	displays	the	employee	details.

2.		Select	the	File	menu	and	choose	the	Exit	option	to	close	the	Visual	LANSA
Framework	application.

Summary
Important	Observations
The	Visual	LANSA	Framework	can	be	executed	as	a	Visual	LANSA	form.
Refer	to	VLF005	-	Validating	the	Prototype.
The	Visual	LANSA	Framework	provides	a	consistent	application	interface.	It
is	very	easy	to	use,	flexible	and	can	be	customized	by	the	end-user.

Tips	&	Techniques
The	end-user	has	the	ability	to	fully	customize	the	appearance	of	the
application	within	the	Framework.	For	example,	the	end-user	can	position	the
panels	in	the	Framework	or	can	float	the	panels	as	separate	windows.	These
capabilities	are	part	of	the	Framework	and	are	not	coded	by	the	developer.
The	Visual	LANSA	Framework	allows	the	end-user	to	perform	actions	in
many	different	ways.	Commands	can	be	executed	using	menus,	toolbar	icons
and	pop-up	menus.

What	I	Should	Know
How	to	execute	the	Visual	LANSA	Framework	as	an	end-user.
How	to	execute	an	application	created	in	the	Visual	LANSA	Framework.
What	are	some	of	the	features	supported	by	the	Framework.
What	are	applications,	business	objects,	filters,	instance	lists,	commands	and
command	handlers.

VLF001	-	Defining	Your	HR	Application
Objective
To	learn	how	to	define	an	application	in	the	Framework.
To	identify	some	of	the	properties	of	an	application.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Create	a	New	Application
Step	2.	Specify	Identification	Options
Step	3.	Specify	Startup	Options
Step	4.	View	Commands	Enabled
Step	5.	Execute	the	About	Command
Step	6.	View	Overall	Themes

Summary
Before	You	Begin
You	may	wish	to	review:
Application		in		Key	Concepts.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
Check	that	you	have	met	the	prerequisites	for	the	Tutorials.

Step	1.	Create	a	New	Application
In	this	step,	you	will	start	the	Visual	LANSA	Framework	as	a	designer	and
create	a	new	application	in	the	Visual	LANSA	Framework.
1.		If	you	have	not	already	done	so,	start	Visual	LANSA	and	log	on	to	the	DEM
partition.

2.		Using	the	Tools	tab	in	the	ribbon,	select	the	VL	Framework	and	then
Designer	option.

The	Help	Assistant	and	Tutorial	Dialog	may	appear	depending	on	your	settings.
(Notice:	When	the	Framework	is	executed	as	an	end-user,	this	dialog	is	not
displayed.)
3.		If	it	does,	do	not	tick	Start	the	Help	Assistant	or	the	Start	the	Tutorial	check
boxes	(when	you	want	context-sensitive	help	use	F1).	Click	OK.	The
Framework	window	appears.

4.		Maximize	the	Framework	window.
5.		Select	the	(Framework)	menu	and	choose	New,	Application.	You	may	want
to	have	a	look	at	Menu	Options	in	Brackets	.

				
		The	Application	Properties	dialog	box	of	the	new	application	is	displayed.

Step	2.	Specify	Identification	Options
In	this	step,	you	will	identify	the	application	in	the	Framework	by	assigning
properties	such	as	captions	and	bitmaps.
1.		Select	the	Identification	tab.
2.		Set	the	Caption	to	iii	HR	(where	iii=your	course	assigned	ID)	and	press	F1
to	see	the	context-sensitive	help	for	the	Caption	property.

3.		Set	the	Hint			to	Human	Resources	Tutorial.
4.		Ignore	the	other	fields	on	the	tab	sheet.

	
5.		Display	the	Bitmaps	and	Icons	tab.
6.		Select	the		icon		 	for	the	application.

	

Note	that	the	icons	and	bitmaps	you	see	here	are	shipped	with	the	Framework,
but	that	you	can	also	enrol	your	own.		To	see	how	to	do	this	open	the	component
UF_IB001	in	the	Visual	LANSA	Editor	and	follow	the	instructions.
	

Step	3.	Specify	Startup	Options
In	this	step	you	will	specify	an	image	that	will	be	displayed	when	the
application	is	first	started	up.
The	start	up	screen	allows	you	to	define	what	the	user	will	see	each	time	they
click	on	your	application.		It	can	appear	every	time	they	click	on	it	or	just	the
first	time	they	click	on	it	during	a	single	session	of	using	the	framework.		You
can	use	images	or	web	pages	as	your	splash	screen.		For	example,	you	might
want	to	direct	users	to	a	page	on	your	Intranet	depending	on	which	application
they	access.
1.		To	change	the	Framework	introduction	image,	choose	the	Framework	menu,
and	then	the	Properties…		option.	Go	to	the	Startup	tab	sheet.

2.		Set	the	Start-up	Options			to	Real	Image.
3.		Set	the	Image	File	to	UF_IM002.GIF	to	display	the	HR	splash	screen	when
the	end-user	starts	up	the	application.

					Click	on	the	Verify	button	to	make	sure	the	image	exists.	UF_IM002.GIF
should	appear	like	this:

	
4.		Select	the		First	Time	Only	option	so	that	the	image	is	only	shown	once
during	a	session.

	
	

Step	4.	View	Commands	Enabled
In	this	step,	you	will	review	the	About	command.	The	About	command	is
enabled	by	default	for	all	new	applications.	This	command	brings	up	the	Help
About	dialog	which	provides	information	about	the	application.
1.		Right-click	your	HR	application	and	choose	(Properties…)	from	the	context
menu,	then	display	the	Commands	Enabled	tab.

					The	command	list	on	the	left	shows	all	the	commands	that	exist	in	the
Framework.	The	Enabled	column	indicates	whether	the	command	is	enabled
for	your	III	HR	application.

					The	About…	command	is	enabled	by	default	for	all	new	applications	(it	will
be	added	to	the	pop-up	menu	of	the	application).

2.		Display	the	Help	About	tab.
3.		Enter	http://www.lansa.com	for	Technical	Support		(or	some	other	valid
Web	site).

4.		Select	the	Human	Resources	bitmap	(it	is	the	last	one	in	the	bitmap	list).
5.		Add	some	text	for	the	copyright	in	the	edit	box	next	to	the	bitmap.

	
6.		Close	the	Application	Properties.

Step	5.	Execute	the	About	Command
You	have	now	finished	defining	your	application.	In	this	step,	you	will	try
executing	the	application	and	the	only	command	(About…)	that	is	currently
enabled	for	it.		When	commands	are	enabled	they	can	often	be	executed	from
different	places.
1.		Select	your	iii	HR	application	and	right-click.
2.		Select	the	About…	command	from	the	pop-up	menu.	This	displays	your	Iii
HR	application's	help	about	information:		

				
3.			Click	OK.
4.		Now	Select	Help	and	then	About....	from	the	main	menu	bar.	Again,	your	III

HR	application's	help	about	information	is	presented.
5.		Click	on	the	Technical	Support…	button	to	display	the	web	page	you
specified.

6.		Click	OK	to	close	the	dialog	box.
	

Step	6.	View	Overall	Themes
This	step	is	only	applicable	to	EPC831	version	of	the	Framework	with	Visual
LANSA	SP5	or	later.
In	this	step	you	find	out	how	to	change	the	visual	theme	of	your	application.
1.			Display	the	Framework	properties.
2.			Display	the	Visual	Styles	tab.
3.			Make	sure	the	option	End	user	can	change	theme	is	not	selected.
3.			Change	the	Overall	Theme	to	2007	Graphite:

	
When	a	theme	is	selected	the	appearance	of	the	entire	framework	changes	to	the
new	theme	immediately,	including	your	own	command	handlers	and	filters.
4.			Close	the	Framework	properties	window	and	click	on	the	iii	HR	application
to	see	how	it	has	changed.

	
5.			Change	the	theme	back	to	2007	Blue	in	the	Framework	properties.
	

Summary
Important	Observations
To	create	new	applications	with	the	Visual	LANSA	Framework,	you	simply	set
the	application	properties.	You	do	not	have	to	write	any	code.
The	About…	command	has	a	Built-In	command	handler.	For	many	other
command	handlers	you	will	need	to	specify	the	name	of	a	command	handler
and	other	options.
In	the	preceding	steps	you	created	the	application	manually.	You	could	also
have	used	the	Instant	Prototyping	Assistant	(IPA)	to	create	the	application	for
you.	The	next	tutorial	shows	how	to	use	the	IPA.

	

What	I	Should	Know
How	to	create	an	application.
How	to	set	application	properties.
What	commands	are	and	how	to	enable	them	(more	will	come	later).
What	the	purpose	of	an	application	is.	You	may	want	to	review	Application.
What	an	application	bar	is.	You	may	want	to	review		Framework	Window.

VLF002	-	Defining	Your	Business	Objects
Objective
Learn	how	to	use	the	Instant	Prototyping	Assistant.
Learn	how	to	define	business	objects	in	your	application.
To	add	the	Employees	and	Statistical	Reporting	business	objects	to	your
application.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Decide	on	the	Business	Objects
Step	2.	Create	the	Business	Objects
Step	3.	Specify	Business	Object	Commands
Step	4.	Add	the	Business	Objects	to	the	Application

Step	5.	Specify	Business	Object	Icons
Summary

Before	You	Begin
You	may	wish	to	review:
Business	Objects		in		Key	Concepts.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
VLF001	-	Defining	Your	HR	Application

Step	1.	Decide	on	the	Business	Objects
You	need	to	consider	carefully	what	business	objects	your	application	will
contain.	Your	decision	should	be	based	on	an	analysis	of	the	tasks	of	the	users
of	your	application.	The	way	the	data	is	stored	(i.e.	the	database	structure)	is	not
important.
Your	application	may	have	different	kinds	of	users	with	different	needs.
Usually	there	are	various	ways	of	structuring	the	application.	A	good	solution	is
logical,	intuitive	and	avoids	duplication.
In	this	tutorial	you	will	create	these	two	business	objects	for	the	III	HR
application:
Employees
Statistical	Reporting
For	a	different,	more	complex	solution	have	a	look	at		Demonstration
Application.

Step	2.	Create	the	Business	Objects
In	this	step,	you	will	define	the	business	objects.
1.		Select	the	III	HR	application.
2.		Right-click	the	application	to	bring	up	the	pop-up	menu	and	choose	the	New
Business	Object…	option.

A	dialog	asking	if	you	want	to	use	the	Instant	Prototyping	Assistant	is
displayed:

	
The	Instant	Prototyping	Assistant	allows	you	to	define	the	entire	structure	of
your	application	including	all	the	applications,	business	objects	within	those
applications	and	the	commands	that	are	used	by	each	business	object.		You	can
always	manually	add	everything,	but	when	you	are	starting	your	prototype	this

method	provides	results	much	more	quickly.
3.				Click	on	the	Yes	button.	The	Instant	Prototyping	Assistant	window	is
displayed.

4.			Type	in	Employees	and	Statistical	Reporting	as	the	Main	Business	Objects
that	will	be	part	of	your	iii	HR	application.		Notice	that	each	business	object
is	separated	by	a	comma.

	

5.			Click	on	the	Next	button.
	

Step	3.	Specify	Business	Object	Commands
In	this	step	you	will	add	commands	for	the	business	objects.
1.			In	the	list	of	Actions	type	in	Skills,	Address,	Weekly	Reports,	Monthly
Reports	after	the	existing	actions.	The	commands	need	to	be	separated	with	a
comma.

	

	
Next	associate	the	commands	with	the	business	objects:
2.			Drag	and	drop	the	Details,	New,	Skills	and	Address	commands	to	the
Employees	business	object:

	

3.				Drag	and	drop	the	Weekly	Reports	and	Monthly	Reports	commands	to	the
Statistical	Reporting	business	object.

4.			Click	on	the	Next	button.
	

Step	4.	Add	the	Business	Objects	to	the	Application
In	this	step	you	associate	the	business	objects	with	the	application.
1.			Select	the	Employees	and	the	Statistical	Reporting	business	objects.

2.			Drag	them	to	the	iii	HR	application:

Note	that	instead	of	manually	defining	your	application	as	you	did	in	VLF001	-
Defining	Your	HR	Application,	you	could	have	added	it	on	this	screen	to	the	list
of	existing	applications.		It	is	important	to	realize	that	you	can	prototype	an
entire	system	of	many	applications	using	the	Instant	Prototyping	Assistant.
3.			Click	Next.	A	summary	of	your	application	prototype	is	shown.
4.			Click	Finish	to	create	the	prototype.
You	will	now	see	your	application	and	business	objects:

	

Step	5.	Specify	Business	Object	Icons
1.			Double-click	the	Employees	business	object	to	display	its	properties.	Note
that	the	Allow	on	Web	and	Allow	in	Windows	options	are	selected	by	default.
These	options	control	in	which	environment	the	business	object	can	be	used.

Whenever	you	create	an	application,	business	object,	filter	or	command
handler,		you	can	specify	in	which	environment	it	is	to	be	used	for	simply	by
checking	these	options.	

2.		Display	the	Icons	tab.
3.		Select	an		icon		for	the	Employees	business	object.

	
4.			Without	closing	the	properties	tab	folder,	click	on	the	Statistical	Reporting
business	object	in	the	iii	HR	application	to	set	its	icon.

	
	

Step	6.	View	the	Business	Objects
In	this	step,	you	will	have	a	look	at	what	your	business	objects	look	like	now.
1.		Close	the	Business	Object	Properties	tab	folder.
2.			Click	on	the	Employees	business	object.
					The	Employees	business	object	is	displayed	in	your	application:

					In	the	window	you	can	also	now	see	a	mock	up		Filter		and	next	to	it	an		
Instance	List	.	However,	your	definitions	of	the	Employees	is	not	yet
complete.	You	will	learn	more	about	filters	and	instance	list	in	VLF003	-
Prototyping	Your	Filters.

Summary
Important	Observations
Applications	may	contain	many	different	business	objects.	Business	objects
are	the	objects	that	an	end-user	works	with	in	the	application.

What	I	Should	Know
How	to	create	business	objects.
How	to	define	business	object	properties.
What	a	business	object	is.	You	may	want	to	review		Business	Object.

VLF003	-	Prototyping	Your	Filters
Objective
Learn	how	to	create	filters	which	populate	the		Instance	List	with	selected
items.
To	add		filters	to	search	for	employees	by	name,	by	location	and	by	date.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Define	By	Name	Filter	for	Employees
Step	2.	Prototype	the	Instance	List
Step	3.	Prototype	the	Filter	Designs	for	Employees
Step	4.	Filters	for	Statistical	Reporting	Business	Object
Step	5.	View	the	Filters

Summary
Before	You	Begin
You	may	wish	to	review:
Filters		in		Key	Concepts.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
VLF001	-	Defining	Your	HR	Application
VLF002	-	Defining	Your	Business	Objects

Step	1.	Define	By	Name	Filter	for	Employees
1.		Select	your	Employees	business	object.
2.		Right-click	to	display	the	pop-up	menu	and	select	(Properties…).
3.		Select	the	Filters	tab.	A	new	filter	is	already	defined	for	Employees	by
default.

					(Note	that	the	sequence	number	of	new	filters	depends	on	what	other	objects
are	defined	in	your	system.		The	numbering	does	not	matter.)

4.		Set	the	Caption	of	the	filter	to		by	Name.

5.		Display	the	Filter	Snap-in	Settings	tab.
6.		Make	sure		Mock	Up	RAD-PAD		filter	type	is	selected.	You	want	to	use	the
RAD-PAD	filters	so	that	you	can	enter	text	and	pictures	in	the	prototype.

	
7.		Create	a	new	filter	by	clicking	on	the	New	button	and	set	the	Caption		of
your	second	filter	to		by	Location.

8.		Create	another	new	filter	by	clicking	the	New	button	in	and	set	the	Caption	
of	your	third	filter	to	by	Date.

10.	Do	not	change	any	of	other	default	values	for	the	filters.

Step	2.	Prototype	the	Instance	List
An	instance	list	is	a	list	of	results	returned	from	your	filter.		You	can	define	one
or	more	columns	that	are	visible	in	your	instance	list.	There	are	four	visible
types	of	columns:	
The	VISUALID1	and	VISUALID	2	columns	are	alphanumeric.	
The	ACOLUMN	fields	are	the	additional	alphanumeric	data	that	you	can	add
to	the	list.	
The	NCOLUMN	fields	are	the	additional	numeric	data	that	can	be	added	to	the
list
The	DCOLUMN	fields	are	the	additional	date	or	datetime	data	that	can	be
added	to	the	list
	
In	this	step,	you	will	change	the	column	headings	in	the	instance	list	to	make	the
prototype	more	realistic.
1.		In	the	Employee	business	object	properties	select	the	Instance	List	/
Relations	tab.

2.		Set	the	first	Column	Caption	to	be	Number.
					Set	the	column	width	to	be	25%.
3.		Set	the	second	column	heading	to	be	Name.

	
.	
	

Step	3.	Prototype	the	Filter	Designs	for	Employees
In	this	step,	you	will	prototype	the	contents	of	the	filters.
1.		Close	the	Business	Object	Properties	dialog	box.	You	can	now	see	your	three
filters	(By	Location,	By	Name	and	By	Date)	for	the	Employees	business
object:

	
					If	you	have	a	close	look	you	can	see	that	the	Mock	Up	RAD-PAD		filter	has
the	standard	text	which	you	can	select	and	delete	and	then	type	your	own	text
and	paste	in	pictures.

					Before	you	start	using	the	RAD-PADs	it	is	important	you	understand:
They	are	meant	for	quick	notes	with	pictures,	not	for	formal	screen	designs

The	pad	is	actually	a	document	containing	lines.	This	means	you	cannot
position	pictures	exactly.	Use	the	Enter	key	to	add	new	lines	and	add
blanks	or	tabs	to	position	items.

	
2.		In	the	By	Name	filter	delete	the	standard	text	and	type	in	text	indicating	this
filter	lets	the	user	select	the	employees	by	surname,	first	name	or	by
employee	number.

3.		To	make	your	filter	look	more	realistic,	click	on	the	Images	Palette	button	to
drag	and	drop	or	copy	and	paste	some	suitable	pictures.	Your	finished
prototype	filter	might	appear	something	like	this:

	
4.		In	the	By	Location	filter,	delete	the	standard	text	and	type	in	text	indicating

that	this	filter	lets	the	user	select	the	employees	by	department	or	section.
5.		Again,	to	make	your	filter	look	more	realistic,	you	can	click	on	the		Images
Palette	button	to	drag	and	drop	or	copy	and	paste	some	suitable	pictures.	Your
finished	prototype	filter	might	appear	something	like	this:

	
6.		In	the	By	Date	filter,	delete	the	standard	text	and	type	in	text	indicating	that
this	filter	lets	the	user	select	the	employees	by	for	example	this	criteria:	Those
who	have	their	birthday	today;	Those	that	joined	in	the	last	3	months;	Those
that	have	been	with	the	company	for	more	than	5	years.

7.		To	make	your	filter	look	more	realistic,	you	can	click	on	the	Images	Palette
button	to	drag	and	drop	or	copy	and	paste	some	suitable	pictures.

	

Step	4.	Filters	for	Statistical	Reporting	Business	Object
The	Statistical	Reporting	business	object	does	not	need	any	filters.	In	VLF004	-
Prototyping	Your	Commands	you	will	see	how	this	business	object	is
implemented.	It	is	important	to	understand	that,	even	though	filters	and	instance
lists	are	very	often	the	appropriate	structure	for	working	with	end-user	objects,
they	are	not	mandatory.	For	instance	in	the	shipped	demonstration	application
the	Organizations	business	object	does	not	use	filters.
	
1.		Delete	the	new	filter	which	has	been	created	for	the	Statistical	Reporting
business	object	by	default.	(Display	the	Properties	for	Statistical	Reporting,
bring	up	the	Filters	tab	and	delete	the	filter).

Step	5.	View	the	Filters
You	have	now	completed	prototyping	your	filters.	In	a	later	tutorial,		you	will
replace	one	of	them	with	a	real	filter.
1.		Now	click	the	Emulate	Search	button	on	one	of	the	filters.	The	items	in	the	
Instance	List		are	updated	(this	is	just	a	simulation,	no	filtering	actually
happens).

	
2.			Click	on	an	employee	in	the	instance	list	to	display	the	command	handlers
defined	for	it.

These	are	the	commands	you	associated	for	the	Employees	business	object
when	you	created	the	prototype	using	the	Instant	Prototyping	Assistant	(see	Step
3.	Specify	Business	Object	Commands).
	

Summary
What	I	Should	Know
What	filters	do.
How	to	define	filters	for	a	business	object.
How	to	prototype	the	filters	by	entering	descriptive	text	and	pictures	using	the
Images	Palette.
What	the	purpose	of	a		filter	is.	You	may	want	to	review		Filters.
What	a	mock	up	filter	is.	You	may	want	to	review		Mock	Up	Filters	and
Command	Handlers.

VLF004	-	Prototyping	Your	Commands
Objective
To	learn	how	to	enable	commands	for	a	business	object	and	business	object
instances.
To	learn	how	to	prototype	command	handlers	for	the	enabled	commands.
To	add	commands	and	command	handlers	for	both	the	Employees	and
Statistical	Reporting	business	objects.

To	achieve	these	objectives,	you	will	complete	the	following	steps:
Step	1.	View	Command	Definitions
Step	2.	Set	Command	Display	for	New

Step	3.	Prototype	the	New	Command	Handler
Step	4.	Prototype	the	Other	Command	Handlers
Step	5.	Define	Commands	for	Statistical	Reporting
Step	6.	Specify	Command	Display
Step	7.	Prototype	Command	Handlers	for	Statistical	Reporting
Summary

Before	You	Begin
You	may	wish	to	review:
Command		in		Key	Concepts.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
VLF001	-	Defining	Your	HR	Application
VLF002	-	Defining	Your	Business	Objects
VLF003	-	Prototyping	Your	Filters
	

Step	1.	View	Command	Definitions
In	this	step,	you	will	view	the	definitions	of	the	commands	specified	for	the
business	objects.
1.		Right-click	the	Employees	business	object	and	select	Properties…	option.
2.		Display	the	Commands	Enabled	tab.
3.		Examine	the	Commands	Enabled	tab.	The	command	list	on	the	right	is	the
"Enabled"	commands	list.	This	is	all	the	commands	currently	enabled	for	the
Employees	business	object.		The	command	list	on	the	left	shows	the	"Not
Enabled"	command	list.	This	is	all	the	commands	within	the	Framework	that
are	not	currently	enabled	for	the	Employees	business	object.

To	Enable	a	command	drag	it	from	the	Not	Enabled	list	into	the	Enabled	list.	To
disable	a	command,	drag	it	from	the	Enabled	list	into	the	Not	Enabled	list.
4.		Select	Details.	Note	that	it	is	an	Instance	Command	and	a		Default
Command.

5.		Select	Address	and	Skills.	Note	that	they	are	also	instance	commands.
6.		Select	New.	Note	that	it	is	a		Business	Object	Command.
Make	sure	you	understand	the	difference	between	these	two	types	of	commands.
If	you	cannot	find	a	command	that	you	need,	you	can	click	on	the	Command
Definitions	button	to	add	more	commands.		Note	that	when	you	click	this	button
you	are	adding	commands	that	can	be	used	by	any	business	object	in	the
system.		It	is	only	when	you	assign	a	command	to	a	specific	business	object	that
you	define	what	the	command	does.
	

Step	2.	Set	Command	Display	for	New
In	this	step,	you	will	set	the	command	handler	for	New	to	be	displayed	in	a
separate	window	when	the	user	selects	it.
1.		Bring	up	the	Command	Display	tab.
2.		In	the	Object	Command	Presentation	option,	select	Separate	stay	on	top
window.

					Remember,	New	is	the	only	command	that	is	enabled	for	the	business	object
Employees	itself,	the	other	commands	are	instance	commands	for	Employees
and	will	be	displayed	the	command	handler	tab	sheet.

	
					When	you	change	this	option,	the	Framework	prompts	you	to	save	your
changes.

	
3.		Click	on	the	Save	and	Restart	button.

4.		Log	on	to	the	Framework.
5.		To	review	your	commands,	select	the	Employees	business	object	and	right-
click.	The	New	command	is	visible	in	the	pop-up	menu.

					If	it	is	not	visible,	see	the	answer	to	the	question		I	have	just	changed	my
Framework	design	but	the	change	has	not	taken	effect?.

6.			Select	the	New	option	from	the	menu.	The	command	handler	for	New	is
shown	in	a	separate	window.

	
7.		Close	the	New	command	handler	window.
8.		Click	on	the	Emulate	Search	button	in	a	filter	and	select	an	employee	in	the
instance	list.	The	tab	sheets	for	Details,	Skills	and	Address	commands	are
shown.

Step	3.	Prototype	the	New	Command	Handler
To	finalize	your	prototype,	you	need	to	model	the	handlers	for	these	commands.
1.		Select	the	Employees	business	object	and	then	the	New	option	from	the	File
menu	or	the	toolbar,	or	right-click	Employees	and	choose	New	from	the	pop-
up	menu.

					The	Mock	Up	RAD-PAD	command	handler	is	displayed.
2.		Select	and	delete	the	text	from	the	prototype	command	handler.
3.		Type	in	a	note	indicating	that	this	command	handler	will	request	the	user	to
enter	mandatory	details	of	a	new	employee.

4.		If	you	want	to,	use	the		Images	Palette	to	add	pictures	to	the	prototype
command	handler	(do	not	attempt	formal	screen	designs,	just	do	a	quick
prototype):

	
5.		Close	the	command	handler	for	New	by	clicking	on	the	Close	button	in	the
top	right-hand	corner	of	the	dialog	box.

Step	4.	Prototype	the	Other	Command	Handlers
In	this	step,	you	will	prototype	the	handler	for	the	Details,	Skills	and	Address
commands.
1.		Select	one	item	in	the	Instance	List.
2.		A	command	tab	folder	showing	the	commands	for	the	instances	of
Employees	(Details,	Address,	Skills)	is	displayed.

					Note	that	the	tab	for	Details	which	is	the		Default	Command			for	Employees
is	displayed	topmost.

3.		Design	the	prototype	command	handler	for	the	Details	command	by	typing
in	text	and	using	the		Images	Palette.	Your	prototype	command	handler	for
Details	could	look	something	like	this:

	
4.	The	Skills	and	Address	command	handlers	also	have	Mock	Up	-	RAD-PAD
command	handlers.	Design	them	using	the	Images	Palette	and	by	typing	in
text.

5.		You	have	now	finished	prototyping	the	command	handlers	for	the	Employees
business	object.	Later	on	you	will	replace	the	prototype	for	Details	with	a	real
command	handler.

Step	5.	Define	Commands	for	Statistical	Reporting
The	Statistical	Reporting	business	object	will	not	have	any	filters	or	instance
lists.	Instead	it	will	have	two	full-screen	command	handlers,	Weekly	Reports
and	Monthly	Reports.
1.			Double-click	the	Statistical	Reporting	business	object	to	display	its
properties.

2.			Click	on	the	Commands	Enabled	tab.	Notice	that	the	two	commands	which
you	defined	in	Step	3.	Specify	Business	Object	Commands,	Weekly	Reports
and	Monthly	Reports,	are	enabled.

3.			Make	both	commands	Business	Object	commands.	When	a	message	appears
prompting	you	to	restart	the	Framework,	just	click	Close.

4.			Click	on	the	Command	Definitions	button	on	the	bottom	right.

The	Commands	dialog	box	is	displayed.	This	dialog	box	is	used	to	set	the	high
level	definitions	for	each	command	defined	in	the	Framework.	These	definitions
are	shared	by	all	business	objects	that	use	the	command.

5.			Select	the	Weekly	Reports	command	from	the	list	on	the	left.
6.		Bring	up	the	Toolbar	and	Menus	tab.
7.		Add	the	Weekly	Reports	command	to	the	Tools	menu	by	selecting	the
command	and	then	Tools	in	the	Show	in	Menu	list:

	
8.		Repeat	the	above	steps	to	add	the	Monthly	Reports	command	to	the	Tools
menu.

9.			Click	on	the	Usage	tab	to	see	which	business	objects	use	this	command.
10.			Select	the	Details	command	from	the	list	on	the	left.	Notice	that	it	is	used
by	many	business	objects,	including	the	Employees	business	object.

11.		Close	the	Commands	dialog	box.

	

Step	6.	Specify	Command	Display
In	this	step,	you	will	change	the	way	the	command	handlers	are	displayed.
1.		Bring	up	the	Command	Display	tab.
2.		Change	the	Command	Tab	Show	All	option	to	True	so	that	the	report
handlers	will	be	shown	simultaneously.

3.			Click	the	Close	button	when	the	Framework	prompts	you	to	save	and	restart.
4.		Change	Object	Command	Presentation		to	Use	all	of	the	window.

		
				Note	that	the	command	display	options	apply	to	all	commands	associated
with	the	Statistical	Reporting	business	object.

5.		Close	the	dialog	box.
6.		Close	and	restart	the	Framework.
	

Step	7.	Prototype	Command	Handlers	for	Statistical	Reporting
The	following	steps	are	optional,	but	if	you	prototype	the	command	handlers,
your	application	will	look	more	complete.	If	you	are	comfortable	with	creating
mock	up	command	handlers,	you	can	skip	this	step.
1.		Select	Statistical	Reporting	and	then	the	Weekly	Reports	tab.
2.		Select	and	delete	the	standard	RAD-PAD	text	from	the	command	handler
prototype	and	type	in	text	and	paste	in	commands	using	the	images	palette.
(You	can	also	use	other	pictures,	for	example	clip-art).	Prototype	the	handler
as	you	wish.	The	end	result	could	look	something	like	this:

					

					You	can	prototype	the	other	command	handler	in	a	similar	way.
	
	

Summary
What	I	Should	Know
How	commands	are	associated	with	business	objects	and	business	object
instances.
What	a	command	handler	is.	You	may	want	to	review	Command	Handler.
How	to	prototype	the	command	handlers	by	entering	descriptive	text	and
pictures	using	the	Images	Palette.
What	the	difference	between	a	business	object	command	and	a	business	object
instance	command	is.	You	may	want	to	review	Command		in		Key	Concepts.
What	you	need	to	do	after	you	have	created	new	commands.

VLF005	-	Validating	the	Prototype
Objective
To	remind	you	that,	at	this	point,	you	should	validate	your	prototype.	Do	not
start	writing	any	code	before	the	basic	structure	of	your	application	has	been
validated.
To	execute	your	application	as	a	Visual	LANSA	application.	
Optional:	To	execute	the	prototype	in	Web	mode.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Validate	Your	Prototype	in	Windows	mode	in	Windows	mode

Step	2.	(Optional)	Setting	up	your	Environment	for	Web	Browser	applications
Step	3.	(Optional)	Validate	Your	Prototype	in	Web	mode
Summary

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
VLF001	-	Defining	Your	HR	Application
VLF002	-	Defining	Your	Business	Objects
VLF003	-	Prototyping	Your	Filters
VLF004	-	Prototyping	Your	Commands

Step	1.	Validate	Your	Prototype	in	Windows	mode
Your	prototype	is	now	finished.	You	will	now	want	to	see	the	prototype	as	the
end-user	will	see	it.
1.		If	you	have	not	already	done	so,	shut	down	the	Framework.	Be	sure	to	save
your	changes.

2.		Start	the	Framework	as	an	end-user.
					When	you	execute	the	Framework	in	end-user	mode,	the	Framework	and
Administration	menus	are	not	displayed,	nor	are	any	design-time	menu
options	in	the	popup	menus	(see		Menu	Options	in	Brackets).

3.		Review	your	prototype.	Notice	that	you	do	not	need	to	compile	anything	to
use	your	prototype.
a.		Select	the	III	HR	Application	and	view	its	business	objects	and
commands.

	
b.		Select	the	Statistical	Reporting	business	object	and	review	its	command
handlers.

c.		Select	the	Employees	business	object	and	review	its	command,	filters,
instance	list	and	command	handlers

	
4.		If	you	had	a	list	of	end-user	tasks	available,	you	should	now	make	sure	that
you	have	adequately	addressed	all	the	requirements.

5.		If	you	were	prototyping	a	real	application,	now	would	be	the	time	to	let	the
end-users	try	out	the	prototype.	Users	typically	find	it	easy	to	give	their	input

when	they	have	a	concrete	sample	of	the	system	available.

Step	2.	(Optional)	Setting	up	your	Environment	for	Web	Browser
applications
If	you	want	to	see	how	your	prototype	would	look	when	running	on	the	web	you
need	to	configure	your	system.
1.		Read		Setting	Up	Your	Framework	Environment		and	follow	the	steps	to	set
up	your	PC	for	web	development.

Step	3.	(Optional)	Validate	Your	Prototype	in	Web	mode
1.		Start	by	uploading	your	prototype	to	the	web	server:

a.		Start	the	Framework	as	a	designer.
b.		Make	a	small	change	to	the	design	(for	example	add	or	modify	the	hint	of
a	business	object)

c.		In	the	(Framework)	menu,	select	the	(Save)	option.
d.		When	the	upload	screen	appears,	ensure	that	it	is	set	as	shown	below

	
2.		Wait	for	the	upload	to	finish	(It	may	take	some	time).
					Check	that	all	the	upload	messages	are	successful.
3.		When	it	has	finished,	start	the	Framework	in	web	mode	as	follows:

a.		In	the	(Framework)	menu	select	the	option	to	(Execute	as	Web
Application)

b.		Accept	the	defaults	and	press	OK.

	
c.		The	prototype	will	appear	in	a	browser	window.

	
4.		Review	your	prototype:

a.		Select	the	III	HR	Application	and	view	its	business	objects	and	command.
b.		Select	the	Statistical	Reporting	business	object	and	review	its	command
handlers.

c.		Select	the	Employees	business	object	and	review	its	command,	filters,
instance	list	and	command	handlers

	
5.		If	you	had	a	list	of	user	tasks	available,	you	should	now	make	sure	that	you

have	adequately	addressed	all	the	requirements.
					If	you	were	prototyping	a	real	application,	now	would	be	the	time	to	let	the
end-users	try	out	the	prototype.	All	you	have	to	do	is	send	them	the	url	from
your	browser,	for	example:
						http://nnn.nnn.nnn.nnn/vlFramework/vf_sy001_system_BASE.HTM

	
					and	they	can	run	your	prototype	from	their	desks.
					Users	typically	find	it	easy	to	give	their	input	when	they	have	a	concrete
sample	of	the	system	available.

Summary
Important	Observations
You	have	now	completed	prototyping	your	application.	Using	the	prototype	you
can:
Validate	your	design.
Show	it	to	end-users	and	others	to	obtain	feedback.
Quickly	rework	your	design	until	it	matches	all	the	requirements.
Create	alternative	solutions.
Optionally	run	the	prototype	from	the	web	server.
Note	that	at	this	stage	the	application	is	still	a	prototype.	Actual	functionality
will	be	introduced	with	real	filters	and	command	handlers.
	

Tutorials	for	Windows	Applications
Applies	to	Windows	only.
Includes:
VLF006WIN	-	Snapping	in	A	Real	Windows	Filter
VLF007WIN		-	Snapping	in	A		Real	Windows	Command	Handler
VLF009WIN	-	Adding	Instance	List	Columns	in	Windows	Applications
VLF010WIN	-	Creating	a	Mini	Filter
VLF011WIN	-	Creating	a	Parent	Child	Instance	List
VLF012WIN	-	Controlling	Navigation	Using	Switching	and	the	Virtual
Clipboard
VLF013WIN	-	Signaling	Events
VLF014WIN	-	Debugging/Tracing
After	you	have	created	and	validated	your	prototype,	you	can	develop	it	into	a
functional	application.	The	basic	structure	and	presentation	of	the	application
will	remain	unchanged	as	you	continue	to	use	the	Framework.	To	complete	the
application,	you	simply	replace	the	prototype	filters	and	command	handlers	with
real	Windows	ones.
In	these	tutorials,	you	will	replace	the	employee	filters	with	real	filters	and	the
Details	prototype	command	handler	with	a	real	command	handler:

The	Personnel	File
When	prototyping	your	application,	you	decide	your	business	objects	based	on
an	analysis	of	the	tasks	of	the	users	of	your	application.	At	that	point	the
database	structure	is	not	important.
Now	that	you	are	about	to	start	implementing	real	filters	and	command
handlers,	you	need	to	know	how	the	data	you	will	be	using	is	stored.
The	following	tutorials	are	based	on	the	PSLMST	Personnel	demonstration	file.
Locate	this	file	in	the	repository	and	view	its	contents:

	

VLF006WIN	-	Snapping	in	A	Real	Windows	Filter
Objective
Learn	how	to	replace	prototype	filters	with	real	filters	which	will	perform	the
actual	selection	of	the	items	for	the	Instance	List.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Creating	Your	Real	By	Name	Filter
Step	2.	Snapping	In	the	By	Name	Filter
Step	3.	Filter	Code
Step	4.	Creating	a	Real	By	Location	Filter

Step	5.	Snapping	in	the	By	Location	Filter
Summary

Before	You	Begin
You	may	wish	to	review:
Filters		in		Key	Concepts
Framework	Programming
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
VLF001	-	Defining	Your	HR	Application
VLF002	-	Defining	Your	Business	Objects
VLF003	-	Prototyping	Your	Filters
VLF004	-	Prototyping	Your	Commands
VLF005	-	Validating	the	Prototype

Step	1.	Creating	Your	Real	By	Name	Filter
In	this	step,	you	will	create	a	real	filter	which	searches	the	PSLMST	file	by
employee	surname.	You	will	also	learn	how	to	use	the	Program	Coding
Assistant.
	
1.			Click	on	the	Program	Coding	Assistant	button	in	the	By	Name	filter.

	
					The	Program	Coding	Assistant	window	is	displayed.	It	allows	you	to	create
different	types	of	components	that	can	be	plugged	into	your	filters,	instance
lists	and	command	handlers.		It	is	highly	recommended	to	use	the	program

coding	assistant	when	you	first	start	using	the	Framework.	
					Initially	you	will	most	likely	use	filters	that	generate	a	component	that	can	be
executed	(e.g.	CRUD	Filter	(Create/Read/Update/Delete),	Filter	that	searches
a	file	or	view).		As	you	progress	you	might	only	use	a	skeleton	filter	or
simply	copy	from	one	that	is	similar	to	one	that	you	want	to	create.

2.			If	you	are	using	a	non-English	system,	click	on	Framework	->	Your
Framework	in	the	top-left	tree	view.	The	Set	LANSA	code	generation
preferences	option	appears	at	the	bottom.	Select	this	option	and	set	your
preferences.

3.			In	the	list	on	the	top	left,	select	the	iii	HR	application	and	then	the	By	Name
filter.

4.			Underneath	it,	select	Windows	as	the	platform.
5.			As	the	type	of	code	you	want	to	generate,	select	Filter	that	searches	using	a
file	or	a	view.

	
6.			Click	the	Next	button.
7.			On	the	next	page	specify	PSLMST	as	The	physical	file	that	most	closely
resembles	this	business	object.

	
The	Program	Coding	Assistant	detects	the	Visual	and	Programmatic	Identifiers
required:
A	Visual	Identifier	is	the	field	or	fields	that	a	user	would	use	to	identify	a
unique	instance	of	the	business	object.
A	Programmatic	Identifier	is	the	field(s)	that	the	program	would	use	to	identify
a	unique	instance	of	the	business	object.		Typically	these	would	be	the	primary
keys	of	the	file	or	files	that	make	up	the	data	in	the	instance	list.
The	additional	columns	represent	the	additional	columns	in	your	instance	list

that	you	may	have	added	during	the	prototyping	phase.
		
8.			Click	the	Next	button.
9.			On	the	next	page	specify	PSLMST2	as	the	view	to	be	used	for
filtering/searching	operations.	It	is	logical	view	of	the	PSLMST	file	keyed	by
the	SURNAME	and	GIVENAME	fields.

					Note	that	you	need	an	appropriate	logical	file	for	each	filter	that	you	want	to
create.		Before	implementing	all	your	filters,	review	your	data	model	to
confirm	that	all	the	logical	files	exist.		Doing	so	will	speed	up	the	process	of
implementing	your	prototype.

	
10.			Select	the	SURNAME	field	as	the	key	of	the	view	to	be	used	for	search
operations.

	
11.			Click	the	Next	button.	Ignore	the	options	on	this	page.
12.			Click	the	Next	button.
13.			On	the	next	page	click	the	Generate	Code	button.
	
The	next	page,	Generated	Code,	displays	the	source	code	for	your	filter.	You
now	need	to	create	the	component	that	will	contain	this	code:
14.			Specify	iiiCOM01	as	the	name	of	your	real	filter	and	By	Name	Filter	as	the
description.	(iii	are	your	initials	If	you	are	using	an	unlicensed	or	trial	version
of	Visual	LANSA,	you	must	always	use	the	3	characters	DEM	to	replace	iii).

15.			Click	on	the	Create	button	to	create	the	component.

	
After	a	brief	delay	the	Filter	component	is	displayed	in	the	Visual	LANSA

editor.
16.			Compile	the	component.
	

Step	2.	Snapping	In	the	By	Name	Filter
Now	that	you	have	compiled	your	new	reusable	component	(filter)	and	are
ready	to	test	it,	you	need	to	snap	it	into	the	Framework.
	
1.			In	the	Framework,	close	the	Program	Coding	Assistant.
2.			Double-click	on	the	Employees	business	object	to	display	its	properties.
3.			Display	the	Filter	Snap-in	Settings	tab.
4.			Specify	iiiCOM01	as	the	Windows	filter	handler	component.

	

5.			Close	the	Employees	business	object	properties	and	display	the	By	Name
filter.	You	can	now	see	your	real	filter.

6.			Type	in	a	letter	in	the	Surname	field	and	click	on	the	Search	button	to	verify
that	your	real	filter	has	been	snapped	in	the	Framework	and	is	usable.

	

Step	3.	Filter	Code
Even	though	you	can	create	most	filters	simply	by	using	the	Program	Coding
Assistant,	you	should	understand	how	they	are	coded.
1.			Switch	to	the	Visual	LANSA	editor	where	the	iiiCOM01	component	is
open.

2.			Review	the	generated	source	code	in	the	Source	tab	to	see	how	the	filter	is
coded	to	add	data	to	the	instance	list:	

The	Framework	is	notified	that	an	update	is	about	to	occur.

Invoke	#avListManager.BeginListUpdate

	
Next,	the	list	is	cleared	of	any	existing	items.

Invoke	#avListManager.ClearList

	
Next,	data	is	selected.	You	can	use	one	the	techniques	you	learnt	in	the	Visual
LANSA	Fundamentals	tutorials	to	do	this.	For	example:

Select	Fields(#XG_Ident)	From_File(PSLMST2)	With_key(#XG_Keys)
Generic(*yes)	Nbr_Keys(*Compute)

		
Next,	the	visual	identifiers	are	set	up:

Change	#UF_VisID1	#EMPNO

Change	#UF_VisID2	#SURNAME

	
Then	the	data	is	added	to	the	list.

Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#EMPNO)

	

VisualId1	will	be	shown	in	column	one	of	the	instance	list	and	VisualId2	will	be
shown	in	column	two	of	the	instance	list.		Akey1	is	the	key	that	uniquely
identifies	an	employee	(in	this	case	the	field	is	alphanumeric,	so	its	Akey1,	not
Nkey1).
	
Finally,	the	Framework	is	notified	that	the	instance	list	update	is	complete.
Invoke	#avListManager.EndListUpdate)

	
3.		Next	click	on	Details	tab	in	the	editor	to	display	the	properties	of	your
component.

	
	
You	need	to		ensure	that	all	properties	are	displayed:
4.			Select	the	Settings	option	in	the	Options	menu.
5.			Click	on	Details	and	make	sure	the	Show	Advanced	Features	option	is
selected.

	
6.			Notice	that	the	Ancestor	property	of	the	component	is	#VF_AC007.	All
filters	inherit	from	this	base	class	which	provides	a	set	of	predefined
behavior.

		
7.			Click	on	the	Outline	tab	in	the	editor	to	see	what	components	you	inherit
from	the	VF_AC007	ancestor	component.

	
8.			Right-click	the	avLISTMANAGER	component	and	select	the	Features
option.

	
9.			Expand	the	methods	of	the	component	and	examine	them.

	
10.			Close	the	iiiCOM01	component.
You	may	want	to	read	Windows	Filter	and	Command	Handler	Anatomy	to	see
how	these	components	are	structured.
	
	

Step	4.	Creating	a	Real	By	Location	Filter
In	this	step	you	create	a	real	By	Location	filter.
1.			In	the	Framework	start	the	Program	Coding	Assistant.
2.			Drill	down	through	the	tree	to	find	your	by	Location	filter	and	select	it.
3.			Select	Native	MS	Windows	and	the	type	"Filter	that	searches	using	a	file	or
view".

4.			Specify	PSLMST	as	the	physical	file.
5.			Press	the	Next	button.

For	your	VISUAL	IDENTIFIERS	specify	fields	EMPNO,	GIVENAME
and	SURNAME
For	your	PROGRAMATIC	IDENTIFIERS	specify	field	EMPNO	only.
No	ADDITIONAL	COLUMNS	should	be	specified.

	
6.			Click	the	Next	button	to	move	the	Program	Coding	Assistant	forward	to	the
next		prompt.	This	prompt	is	asking	you	to	select	the	file	or	view	that	the
filter	should	use	for	searching.	
Specify	PSLMST	as	the	underlying	physical	file.
Select	the	file	view	named	PSLMST1	(Personnel	by	Department,	Section,
Employee	Number).
Select	the	search	keys	DEPTMENT	and	SECTION.
Uncheck	"User	must	specify	all	Chosen	Keys".
Uncheck	"Allow	Generic	Searching".
Check	"Remember	key	values	between	filter	executions".
Check	"Allow	user	to	clear	instance	list".

	
7.			A	screen	with	additional	options	is	displayed.	Do	not	select	any.	Click	the
"Generate	Code"	button.	The	right	hand	side	of	the	Program	Coding	Assistant
now	shows	the	code	that	it	has	generated	for	your	filter.

8.		In	the	Generated	Code	window	specify	iiiCOM02	as	the	name	of	your	new
filter	and	give	it	a	description.	Then	click	the	Create	button	to	create	your
filter.

					(Alternatively	you	can	copy	the	generated	code	to	the	clipboard	by	clicking
the	"Copy	Code	to	Clipboard"	button	and	paste	the	code	into	an	existing

reusable	part).
9.		Your	filter	is	displayed	in	the	Visual	LANSA	editor.	Compile	it.
	

Step	5.	Snapping	in	the	By	Location	Filter
In	this	step,	you	will	snap	in	your	By	Location	filter.
1.		In	the	Framework	close	the	Program	Coding	Assistant.
2.		Select	the	iii	HR	application	and	double	click	on	the	Employee	business
object.

3.		On	the	resulting	Business	Object	Properties	dialog,	click	on	the	Filters	tab.
4.		Select	the	By	Location	filter.
5.		Click	on	the	Filter	Snap-in	Settings	Tab.
6.		Specify	iiiCOM02	as	the	Windows	filter	handler	component.
7.		Your	filter	is	now	snapped	into	the	Framework	and	usable.

Summary
Important	Observations
With	snap-in	real	filters	you	have	now	created	real	functionality	in	your
application.

Tips	&	Techniques
The	source	code	for	the	filters	used	in	the	demonstration	application	can	be
found	in	the	repository	in	components	named	DF_*.

What	I	Should	Know
What	you	need	to	do	to	create	your	own	filters.
How	you	snap	them	in	the	Framework.
How	to	use	the	Program	Coding	Assistant.
	

VLF007WIN		-	Snapping	in	A		Real	Windows	Command	Handler
Objective
Learn	how	to	replace	prototype	command	handlers	with	real	handlers	which
will	perform	actual	processing.
To	replace	the	Details	prototype	command	handler	with	a	real	command
handler.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Creating	Your	Real	Command	Handler
Step	2.	Snapping	in	Your	Command	Handler
	

Before	You	Begin
You	may	wish	to	review:
Command		in		Key	Concepts
Command	Handler
Framework	Programming.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
VLF001	-	Defining	Your	HR	Application
VLF002	-	Defining	Your	Business	Objects
VLF003	-	Prototyping	Your	Filters
VLF004	-	Prototyping	Your	Commands
VLF005	-	Validating	the	Prototype
VLF006WIN	-	Snapping	in	A	Real	Windows	Filter

Step	1.	Creating	Your	Real	Command	Handler
In	this	step,	you	will	create	a	real	command	handler	for	the	Details	command.
1.			Start	the	Program	Coding	Assistant.
2.			In	the	list	on	the	top	left	of	the	Program	Coding	Assistant	window,	select	the
iii	HR	application	and	then	the	Details	command	handler.

3.			Select	Native	MS	Windows	as	the	platform	and	Basic	Command	Handler	as
the	type	of	code.

	
	
					The	Basic	Command	Handler	is	the	most	commonly	used	assistant	as	you

typically	want	to	create	a	command	handler	that	displays	your	data.		You	then
customize	the	page	to	meet	your	specifications.

					The	CRUD	Command	Handler	is	used	in	conjunction	with	the	CRUD	filter
and	only	if	the	commands	defined	for	the	business	object	are	New,	Details,
Copy,	Delete.	

					The	Command	Handler	that	maintains	a	list	allows	you	to	generate	code	so
that	you	can	use	just	one	command	handler	to	view	the	details	of	the	instance
and	a	list	of	information	about	related	data.	

4.			Click	the	Next	button.
5.			On	the	next	page	specify	PSLMST	as	The	physical	file	that	most	closely
resembles	this	business	object.

	
The	Program	Coding	Assistant	detects	the	Visual	and	Programmatic	Identifiers
required.
	
6.			Click	the	Next	button.			
7.			On	the	next	page	specify	PSLMST	in	the	field	Add	fields	from	this	physical
file	in	the	section	Fields	that	you	want	to	appear	at	the	top	of	your	command
handler.

8.			Click	on	the	Add	All	button.

	

9.			Click	Next.
10.			On	the	next	page	click	the	Generate	Code	button.
	
The	next	page,	Generated	Code,	displays	the	source	code	for	your	command
handler.	You	now	need	to	create	the	component	that	will	contain	the	code:
11.			Specify	iiiCOM03	as	the	name	of	your	component	(where	iii	are	your
initials)	and	Details	Command	Handler	as	the	description.

12.			Click	the	Create	button	to	create	the	component.

	
After	a	brief	delay	the	command	handler	component	is	displayed	in	the	Visual

LANSA	editor.
13.			Display	the	Source	code	of	your	component.
14.			Locate	the	SAVE_BUTTON.Click	event	and	add	a	statement	to	save	any
changes	you	make	to	the	fields	on	the	Details	command	handler.

	
15.			Locate	the	uExecute	method.	Notice	that	it	calls	the
#avListManager.GetCurrentInstance	method	to	get	the	key	value	of	the
currently	selected	item	in	the	instance	list	and	then	uses	this	key	value	to
fetch	the	details.

	
16.			Compile	your	component.
	
	

Step	2.	Snapping	in	Your	Command	Handler
Now	that	you	have	compiled	your	new	reusable	component	(i.e.:	your
Command	Handler)	and	are	ready	to	test	it	you	need	to	snap	it	into	the
Framework.
1.		Display	the	Framework.
2.		Select	the	iii	HR	application	and	display	the	properties	of	the	Employees
object	by	double-clicking	it.

3.		On	the	resulting	properties	dialog,	click	on	the	Commands	Enabled	tab.
4.		Select	the	Details	command.
5.		Click	on	the	Component	property	radio	button	in	the	Windows	group	box.
						Type	the	name	of	your	command	handler	into	the	entry	field.

	
6.		Close	Employee	properties.	Select	the	iii	HR	application	and	the	Employees
business	object.	Click	on	the	Search	button	to	populate	the	instance	list.	Then
select	one	item	in	the	instance	list	to	bring	up	the	instance	commands.

7.		Your	command	handler	for	Details	is	now	snapped	into	the	Framework	and
usable.

8.			Try	making	a	change	to	the	details	of	an	employee	and	saving	it.
	
	

Summary
Tips	&	Techniques
To	understand	how	the	command	handler	interacts	with	the	instance	list,	read
Filter	and	Command	Handler	Programming.
The	source	code	for	the	command	handlers	used	in	the	demonstration
application	can	be	found	in	the	repository	in	components	named	DF_*.

What	I	Should	Know
What	you	need	to	do	to	create	your	own	command	handlers.
How	you	snap	them	in	the	Framework.
Filters	and	Command	Handlers	are	just	Reusable	Parts	which	you	can
customize.		However,	you	can	see	that	up	to	this	point	you	can	get	a	functional
application	simply	using	the	Program	Coding	Assistant	without	very	much
coding
To	use	the	Framework	you	need	to	understand	VL.		However,	the	level	of
detail	that	you	must	understand	is	greatly	reduced.		Creating	your	own
framework	to	deliver	this	style	of	application	requires	detailed	OO		knowledge
and	can	take	a	long	time	to	produce.		The	VLF	allows	you	to	rapidly	prototype
and	deploy	an	application	with	no	OO	knowledge	required.

VLF009WIN	-	Adding	Instance	List	Columns	in	Windows
Applications
Objective
Learn	how	to	add	columns	to	an			Instance	List	in	a	Windows	application.

Note:	in	this	tutorial,	you	will	modify	the	By	location	filter.	Normally,	you
should	do	the	same	modifications	to	the	By	name	filter.
To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1:	Add	Columns	to	the	Instance	List
Step	2:	Change	your	filter
Step	3:	Remove	the	Additional	Columns.

Before	You	Begin
You	may	wish	to	review:
List	Manager

Adding	Additional	Columns	to	Instance	Lists	.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
VLF001	-	Defining	Your	HR	Application
VLF002	-	Defining	Your	Business	Objects
VLF003	-	Prototyping	Your	Filters
VLF004	-	Prototyping	Your	Commands
VLF005	-	Validating	the	Prototype
VLF006WIN	-	Snapping	in	A	Real	Windows	Filter
VLF007WIN		-	Snapping	in	A		Real	Windows	Command	Handler.

Step	1:	Add	Columns	to	the	Instance	List
In	this	step,	you	will	configure	your	Employee	business	object	to	make	the	extra
columns	visible	in	the	instance	list.
1.		Start	the	Framework	as	a	designer.
2.		Open	the	properties	of	the	Employees	business	object.
3.		Display	the	Instance	List/Relations			tab	sheet.
4.		Two	visual	identifiers	are	already	defined.	Add	two	additional	columns:

Column	Sequence Column	Type Column	Caption
30 ACOLUMN1 Givename

40 NCOLUMN1 Salary

	

The	column	definitions	now	look	like	this:

					

Step	2:	Change	your	filter
Finally,	you	need	to	make	some	changes	to	your	filter	to	fill	the	new	instance
list	columns	with	data.
1.		Close	the	Framework
2.		Open	the	source	of	the	By	Location	filter	(reusable	part	iiiCOM02)	which
you	created	in	VLF006WIN	-	Snapping	in	A	Real	Windows	Filter.

3.		Make	these	changes	to	the	code:
Change	the	GROUP_BY	command	to	include	the	#SALARY	field:
Group_By	Name(#XG_Ident)			Fields(#EMPNO	#GIVENAME	#SURNAME	#SALARY)
	
Locate	the	following	statement	Select	Fields(#XG_Ident)	command	and
change	the	AddtoList	statement	to:

*	Add	instance	details	to	the	instance	list
Invoke	#avListManager.AddtoList	Visualid1(#EMPNO)	AKey1(#EMPNO)
Visualid2(#Surname)	AColumn1(#Givename)	NColumn1(#Salary)
	

4.		Compile	the	reusable	part.
5.		Start	the	Framework	and	test	the	result.
	

	
6.			Close	the	Framework.
	

Step	3:	Remove	the	Additional	Columns
In	this	step	you	will	remove	the	additional	columns.
1.			Display	the	properties	of	the	Employees	business	object.
2.			Display	the	Instance	List	/	Relations	tab.
3.			Remove	the	column	sequence	numbers	for	Givename	and	Salary	fields.
4.			Close	the	properties	and	save	the	Framework.
You	do	not	need	to	change	the	filter	because	you	will	replace	it	with	a	mini	filter
in	the	following	tutorial.
	

Summary
What	You	Should	Know
How	to	add	columns	to	a	instance	list.
	

VLF010WIN	-	Creating	a	Mini	Filter
Objectives
To	learn	how	to	create	Mini	Filters.
To	understand	how	you	can	use	The	Virtual	Clipboard	to	remember	values
between	Framework	executions.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Create	the	Mini	Filter	Interface
Step	2.	Write	the	Mini	Filter	Code
Step	3.	Snap	in	the	Mini	filter	and	Test	It
	Step	4.	Use	the	Virtual	Clipboard	to	Save	and	Restore	the	Search	Value
Summary

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
Tutorials	VLF000	–	VLF007WIN	and	VLF009WIN

Step	1.	Create	the	Mini	Filter	Interface
In	this	step	you	will	create	a	reusable	part	that	will	become	a	mini	filter	for	the
Employees	business	object.
1.			Start	the	Visual	LANSA	editor.
2.			Create	a	reusable	part.		Specify	iiiCOM07	as	the	name	of	your	filter	and
Employee	Mini	Filter	as	the	description.	(iii	are	your	initials.	If	you	are	using
an	unlicensed	or	trial	version	of	Visual	LANSA,	you	must	always	use	the
three	characters	DEM	to	replace	iii).

You	need	to		ensure	that	all	properties	are	displayed:
3.			Select	the	Settings	option	in	the	Options	menu.
4.			Click	on	Details	and	make	sure	the	Show	Advanced	Features	option	is
selected.

	
5.			Click	on	the	Details	tab	of	the	component.
6.			Click	on	the	Ancestor	property	and	click	the	prompt	button:

7.			Select	the	component	#VF_AC007.	It	is	the	ancestor	component	for	filters
from	which	your	mini	filter	will	inherit	properties,	events	and	methods.

	
8.			Click	on	the	OK	button.
9.			Click	on	the	Favorites	tab	and	select	the	Common	Controls	tab.	(If	you	are
using	an	earlier	version	of	Visual	LANSA	than	11	SP	5,	locate	the	controls	in
the	Primitives	group	under	System	Information	in	the	Repository	tab.)

10.			Drag	the	Panel	control	to	the	Design	view	and	drop	it	into	the	upper	left
part	of	the	reusable	part.

	
The	panel	will	contain	the	contents	of	your	mini	filter.		At	run	time	you	will	tell
the	filter	which	panel	contains	the	contents	to	be	displayed	in	the	mini	filter
area.		Therefore,	you	could	have	multiple	mini	filter	panels	and	display	the
appropriate	one	at	run	time.
11.			Click	on	the	Details	tab	with	the	panel	selected.
12.			Set	the	panel	properties:

Left 2

Top 2

Width 400

Height 25

	

13.			Display	the	Favorites	tab	and	the	Common	Controls	tab	on	it.
14.			Drag	a	check	box	control	to	the	upper	left	corner	of	the	panel.

	
You	must	place	all	your	objects	in	the	upper	left	portion	of	the	panel.		The
maximum	height	of	your	objects	on	the	panel	is	restricted	to	the	height	of	the
tool	bar	in	the	Visual	LANSA	Framework	Application	which	is	25	pixels.	
Therefore,	if	you	add	the	value	in	the	Top	property	of	your	component	to	the
value	in	the	Height	property	of	your	component,	the	sum	should	not	exceed	25.
The	check	box	will	be	used	by	the	end-user	to	optionally	clear	the	instance	list
when	using	the	filter.
	
15.			In	the	Details	tab,	set	the	default	properties	for	the	check	box:

ButtonState Checked

Caption Clear	List

Height 21

Left 0

Name CLEAR_LIST

Top 0

Width 75

	

16.			Click	on	the	Repository	tab.

17.			Locate	the	PSLMST	file	and	expand	it.
18.			Drag	the	SURNAME	field	to	the	right	of	the	check	box	on	the	panel.

	
19.			Click	on	the	Details	tab	and	set	the	properties	of	the	SURNAME	field:

Left 75

MarginLeft 120

Top 1

Width 250

	

20.			Save	your	mini	filter.
	
	

Step	2.	Write	the	Mini	Filter	Code
In	this	step	you	will	write	the	code	for	your	mini	filter.	You	will	need	to
manually	code	the	filter	because	there	is	no	Program	Coding	Assistant	for	mini
filters.
1.			Display	the	Source	tab	of	your	filter.
2.			Add	this	statement	after	the	component	definitions:
Def_List	Name(#Save_Keys)			Fields(#SURNAME)	Type(*Working)
Entrys(1)

		
The	Save_Keys	working	list	will	be	used	to	save	the	key	values	from	overwrites
done	by	the	select	loop.
	
3.			Next	add	a	uInitialize	method	routine.
Mthroutine	Name(uInitialize)	Options(*Redefine)
	
#COM_OWNER.avMiniFilter	:=	true
#COM_OWNER.avMiniFilterpanel	<=	#PANL_1
	
Endroutine

	
The	uInitialize	method	routine	is	executed	just	once	when	the	filter	or
command	handler	is	being	created.
The	avMiniFilter	property	indicates	that	the	filter	should	be	a	mini	filter.
The	avMinifilterpanel	sets	a	reference	to	the	panel	within	the	filter.	The
characters	“<=”	between	two	components	assign	a	reference.	You	can	have
multiple	panels	in	your	filter	and	use	one	of	many	mini	filter	panels	based	on	a
condition	rather	than	always	using	the	same	one.
		
Your	code	will	now	look	like	this:

	
	
4.			Next	add	an	event	routine	to	handle	the	KeyPress	event	of	the	SURNAME
field.	This	event	will	execute	when	the	Enter	key	is	pressed.	
EVTROUTINE	HANDLING(#SURNAME.KeyPress)
OPTIONS(*NOCLEARERRORS	*NOCLEARMESSAGES)
KeyCode(#keycode)
if	('#keycode.value	=	Enter')
	
endif
ENDROUTINE
	

	
5.			If	the	Enter	key	is	pressed,	save	the	current	key	values	from	overwrites	done
by	the	select	loop:
	
Inz_List	#Save_Keys	1
	

	
6.			Indicate	that	the	instance	list	updating	is	about	to	start	and	then	clear	the
instance	list	if	the	checkbox	has	been	selected:
Invoke	#avListManager.BeginListUpdate
	
If	'#Clear_List.ButtonState	=	Checked'
Invoke	#avListManager.ClearList
Endif

		

7.			Then	select	employees	that	match	the	search	criteria	and	set	up	the	visual
identifiers,	then	add	the	entries	to	the	instance	list:
Select	Fields(#EMPNO	#SURNAME	#GIVENAME	#SALARY)
From_File(PSLMST2)	With_key(#SURNAME)	Generic(*yes)
Nbr_Keys(*Compute)
	
Use	Builtin(BCONCAT)	With_Args(#GIVENAME	#SURNAME)
To_Get(#FULLNAME)
Invoke	#avListManager.AddtoList	Visualid1(#EMPNO)
Visualid2(#FULLNAME)	NColumn1(#SALARY)	AKey1(#EMPNO)
	
EndSelect

	
8.	Lastly	indicate	that	the	instance	list	update	is	complete	and	restore	the	saved
key	values:
Invoke	#avListManager.EndListUpdate
Get_Entry	1	#Save_Keys

	
Your	finished	event	routine	will	look	like	this:

	
	
	
	
5.			Compile	the	filter.
	

Step	3.	Snap	in	the	Mini	filter	and	Test	It
In	this	step	you	will	snap	the	mini	filter	in	the	Employees	business	object	and
test	it.
1.			Start	the	Visual	LANSA	Framework.
2.			Select	the	Employees	business	object	and	display	its	properties.
3.			Delete	the	three	existing	filters.	When	a	mini	filter	is	being	used,	there	can
only	be	one	filter	for	the	business	object	because	the	reason	for	having	a	mini
filter	is	to	save	space	to	allow	the	instance	list	to	be	wider.

4.			Save	and	restart	the	Framework	so	that	the	filter	deletion	is	complete.
5.			Create	a	new	filter.
6.			Specify	iiiCOM07	as	the	snap-in	filter.

	
7.			Close	the	Employee	properties.
8.			Click	on	the	Statistical	Reporting	business	object.
9.			Then	click	on	the	Employee	business	object.	Your	can	now	see	the	mini
filter.

10.			Test	the	filter	by	typing	in	a	letter	in	the	SURNAME	field	and	pressing
Enter.

	
Notice	how	much	more	screen	real	estate	the	instance	list	now	has	because	the
mini	filter	takes	up	very	little	space.
Also	note	that	you	can	show	any	control	that	fits	within	the	mini	filter.	For
example	you	can	add	combo	boxes,	drop	downs,	check	boxes,	and	do	instant
editing	on	the	mini	filter	panel.
Remember	that	the	maximum	height	of	the	tool	bar	is	25	pixels.
	

	Step	4.	Use	the	Virtual	Clipboard	to	Save	and	Restore	the	Search
Value
In	this	step	you	will	learn	how	to	use	the	Virtual	Clipboard	to	save	the	value	the
end-user	enters	in	the	SURNAME	field	and	restore	it	the	next	time	the
Framework	is	executed.
To	do	this	you	will	use	the	Framework	Manager	methods	avSaveValue	and
avRestoreValue.
	
1.			Exit	from	the	Framework.
2.			Display	the	Visual	LANSA	editor.
3.			Make	sure	the	source	code	of	your	mini	filter	is	visible.
4.			Locate	the	#SURNAME.KeyPress	event	routine.
5.			Add	this	statement	above	the	END_IF	statement:
	
Invoke	#AvFrameworkManager.avSaveValue	WithID1(SURNAME)
FromAValue(#SurName)
	

This	statement	saves	the	value	of	the	#SURNAME	field	in	the	Virtual	Clipboard
with	the	symbolic	name	SURNAME.

6.			Next	locate	the	uInitialize	event	and	add	this	statement	before	the
ENDROUTINE	statement	so	that	the	value	of	SURNAME	is	restored	from
the	Virtual	Clipboard:
	
Invoke	#AvFrameworkManager.avRestoreValue	WithID1(SURNAME)
ToAValue(#SurName)

	

7.			Now	compile	the	filter.
8.			Start	the	Framework	and	locate	the	Employees	business	object.
9.			Type	S	in	the	mini	filter	and	press	Enter	to	fill	the	instance	list.
10.			Close	the	Framework	and	start	it	again	and	select	the	Employees	business
object.	Notice	that	the	mini	filter	now	contains	the	letter	S	which	was	entered
in	the	previous	Framework	execution.

	
		

Summary
Important	Observations
You	can	have	multiple	panels	in	your	filter	and	use	one	of	many	mini	filter
panels	based	on	a	condition	rather	than	always	using	the	same	one.
When	a	mini	filter	is	being	used,	there	can	only	be	one	filter	for	the	business
object	because	the	reason	for	having	a	mini	filter	is	to	save	space	to	allow	the
instance	list	to	be	wider.

Tips	&	Techniques
The	Advanced	section	of	the	Programming	Techniques	sample	application	has
examples	of	simple	and	complex	minifilters.

What	I	Should	Know
How	to	create	a	mini	filter.
How	to	use	the	virtual	clipboard.
	
	

	

VLF011WIN	-	Creating	a	Parent	Child	Instance	List
Objectives
To	learn	how	to	create	a	parent-child	instance	list	(see	Instance	Lists	with
Different	Types	of	Objects)	with	a	Hidden	Filter	and	a	relationship	handler.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Create	Two	New	Business	Objects
Step	2.	Establish	the	Parent-Child	Relationship
Step	3.	Create	a	Hidden	Filter	for	Company	Departments
Step	4.	Create	a	Relationship	Handler	to	Load	Sections
Step	5.	Display	Additional	Columns	in	the	Instance	List
Step	6.	Access	the	Properties	of	Hidden	Child	Objects
Summary
Before	You	Begin

In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
Tutorials	VLF000	–	VLF007WIN.

Step	1.	Create	Two	New	Business	Objects
In	this	step	you	will	use	the	Instant	Prototyping	Assistant	to	create	two	business
objects:	Company	Departments	and	Department	Sections.
The	Sections	business	object	will	become	the	child	of	the	Company
Departments	object.
1.			Start	the	Instant	Prototyping	Assistant	in	the	Framework.
2.			Type	in	the	names	of	two	new	business	objects	Company	Departments	and
Department	Sections.	Remember	to	separate	the	names	with	a	comma.

	
3.			Click	Next.
4.			Drag	the	Details	command	to	the	Department	Sections	business	object.

	
5.			Click	Next.
6.			Drag	both	business	objects	to	the	iii	HR	application.

	
7.			Click	Next.

8.			Click	Finish.
The	new	business	objects	are	now	visible	in	the	iii	HR	application:

	

Step	2.	Establish	the	Parent-Child	Relationship
In	this	step	you	will	establish	the	relationship	between	the	Company
Departments	and	Department	Sections	business	objects.
1.			Display	the	properties	of	the	Company	Departments	object.
2.			Click	on	the	Instance	List	/	Relations	tab.
3.			In	the	list	in	the	lower	left	portion	of	the	screen	scroll	down	and	select	the
Department	Sections	business	object.

4.			In	the	Relationship	Type	group	box	on	the	right	select	the	Child	or
Descendant	radio	button.

5.			Deselect	the	check	box	Allow	Selection	from	Navigation	Pane.
6.			Deselect	the	check	box	Allow	Side	by	Side	display.
7.			Click	the	Close	button	in	the	message	that	appears.

8.			Click	the	Close	button.
9.			Save	and	restart	the	Framework.
10.			Open	the	iii	HR	application.	Notice	that	the	Department	Sections	business
object	is	no	longer	displayed	in	the	navigation	pane.

	
11.			Select	the	Company	Departments	business	object	and	click	on	the	Emulate
Search	button	in	the	mock-up	filter.	Expand	one	of	the	Company
Departments	in	the	instance	list.	Notice	that	the	emulated	data	shows	its	child
business	objects,	the	Department	Sections.

	

Step	3.	Create	a	Hidden	Filter	for	Company	Departments
In	this	step	you	will	create	a	hidden	filter	that	loads	the	Company	Departments
to	the	instance	list	when	you	select	the	Company	Departments	business	object
in	the	navigation	pane.	With	a	hidden	filter	there	is	no	end-user	interaction	and
the	filter	is	not	visible.
1.			Display	the	Visual	LANSA	Editor.
2.			Create	a	reusable	part.	Specify	iiiCOM08	as	the	name	of	your	filter	and
Departments	Hidden	Filter	as	the	description.	(iii	are	your	initials.	If	you	are
using	an	unlicensed	or	trial	version	of	Visual	LANSA,	you	must	always	use
the	three	characters	DEM	to	replace	iii).

3.			In	the	Details	tab	specify	VF_AC007	as	the	Ancestor	of	the	reusable	part.

	
4.			Display	the	Source	tab.		
5.			Create	a	uInitialize	routine	after	the	BEGIN_COM	statement:
	
Mthroutine	Name(uInitialize)	Options(*Redefine)
Endroutine	

	
The	Endroutine	statement	may	be	created	automatically	if	you	have	the
AutoComplete	Prompter	turned	on.
	
6.			In	the	uInitialize	routine	make	the	filter	hidden	so	that	all	that	will	show	at
run-time	is	the	instance	list:
	
Set	#Com_Owner	avHiddenFilter(TRUE)
	

	
7.			Then	indicate	that	the		instance	list	updating	is	about	to	start	and	clear	the
instance	list:
Invoke	#avListManager.BeginListUpdate
Invoke	#avListManager.ClearList

	
8.			Read	all	the	departments	and	add	them	to	the	instance	list:
	
Select	Fields(#Deptment	#DeptDesc)	From_File(DEPTAB)
	
Invoke	#avListManager.AddtoList	Visualid1(#DeptDesc)
Visualid2(#Deptment)	AKey1(#Deptment)
BusinessObjectType(COMPANY_DEPARTMENTS)	NColumn1(0)
Acolumn1('')		Acolumn2('')	Acolumn3('')	Acolumn4('')	Acolumn5('')
Acolumn6('')	Acolumn7('')
	
EndSelect

	
Note:	It	is	necessary	to	initialize	the	additional	columns	with	the	AddToList,	as
you	will	later	populate	the	list	with	entries	for	Department	Sections,	which	will
fill	these	columns.
9.			Lastly	indicate	that	instance	list	updating	is	now	complete:
	
Invoke	#avListManager.EndListUpdate
	

	
Your	code	will	look	like	this:

	
10.			Compile	the	filter.
11.			Display	the	Framework	and	then	the	properties	of	the	Company
Departments	object.

12.			Display	the	Filter	Snap-in	Settings	tab.
13.			Specify	iiiCOM08	as	the	real	filter.

	
14.			Close	the	Company	Departments’	properties.
15.			Click	on	Employees	and	then	Company	Departments	again	so	that	the

hidden	filter	loads	the	departments	to	the	instance	list.

	
16.			Expand	a	Department.	Notice	that	no	Department	Sections	are	loaded.	You
will	create	the	relationship	handler	that	loads	the	sections	in	the	next	step.

	

Step	4.	Create	a	Relationship	Handler	to	Load	Sections
In	this	step	you	will	create	a	relationship	handler	that	loads	Sections	into	the
instance	list	when	a	Department	is	expanded.
You	could	have	loaded	the	all	the	Sections	in	the	hidden	filter	code	together
with	the	Departments,	but	by	using	a	relationship	handler	you	can	improve	filter
performance	by	first	only	adding	root	or	parent	objects	to	the	instance	list	and
then	dynamically	adding	the	child	objects.
	
1.			In	the	Visual	LANSA	editor,	create	a	process	iiiPROC2	–	Framework
Functions.	Create	a	function	belonging	to	this	process.		Specify	iiiFN04	as
the	name	of	your	function	and	Relationship	Handler	as	the	description.	(iii	are
your	initials.	If	you	are	using	an	unlicensed	or	trial	version	of	Visual	LANSA,
you	must	always	use	the	three	characters	DEM	to	replace	iii).

2.			Replace	the	existing	code	in	the	function	with	this	code	that	indicates	that
this	function	is	a	relationship	handler:
FUNCTION	OPTIONS(*DIRECT	*LIGHTUSAGE)	RCV_LIST(#VIS_LIST
#PID_LIST	#COL1_LIST	#COL2_LIST	#COL3_LIST	#COL4_LIST
#COL5_LIST	#COL6_LIST	#COL7_LIST	#COL8_LIST	#COL9_LIST
#COLA_LIST)
	
INCLUDE	PROCESS(*DIRECT)	FUNCTION(VFREL1)
INCLUDE	PROCESS(*DIRECT)	FUNCTION(VFREL2)

The	VFREL1	and	VFREL2	functions	which	you	include	contain	the	standard
definitions	for	relationship	builder	functions.
	
3.			Next	clear	all	the	keys	and	additional	columns	in	the	instance	list:
EXECUTE	SUBROUTINE(CLEARKEYS)
EXECUTE	SUBROUTINE(CLEARCOLS)

			
The	subroutines	you	call	in	the	relationship	handler	are	contained	in	the
VFREL2	function.
	
4.			Get	the	key	value	of	the	selected	department:
	

CHANGE	FIELD(#DEPTMENT)	TO(#SRC_AK1)
		

	
5.			Select	the	sections	in	the	current	department	and	set	the	values	of	the
instance	list	entry:
SELECT	FIELDS(*ALL)	FROM_FILE(SECTAB)
WITH_KEY(#DEPTMENT)
				EXECUTE	SUBROUTINE(SETAKEY)	WITH_PARMS(1	#DEPTMENT)
				EXECUTE	SUBROUTINE(SETAKEY)	WITH_PARMS(2	#SECTION)
				EXECUTE	SUBROUTINE(SETNCOL)	WITH_PARMS(1	#SECPCODE)
				EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(1	#SECADDR1)
				EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(2	#SECADDR2)
				EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(3	#SECADDR3)
				EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(4	#SECPHBUS)
				EXECUTE	SUBROUTINE(ADDTOLIST)
WITH_PARMS('DEPARTMENT_SECTIONS'	#SECDESC	#SECTION)
ENDSELECT

	
The	SETAKEY	subroutine	sets	the		key	values	of	the	child	instance	list.	The
first	parameter	of	the	subroutine	is	the	key	position	and	the	second	parameter
is	the	value	of	the	key.	There	is	also	a	SETNKEY	subroutine	to	set	a	numeric
key.
The	SETNCOL	and	SETACOL	subroutines	add	additional	columns	for	the
child	instance	list	entry.
The	ADDTOLIST	subroutine	adds	the	entry	to	the	instance	list.	The	first
parameter	of	the	subroutine	is	the	child	business	object	name,	the	second
parameter	is	the	Visual	ID	1	column	and	the	third	parameter	is	the	Visual	ID	2
column.
	
	
Your	code	will	now	look	like	this:

		
6.			Compile	the	function.
7.			Display	the	Framework.
8.			Display	the	properties	of	the	Company	Departments	business	object.
9.			In	the	Instance	List/Relations	tab	select	the	Department	Sections	business
object.

10.			In	the	Relationship	Handler	field,	type	in	the	name	of	the	relationship
handler.

	
12.			Close	the	Company	Departments	properties.
13.			Save	and	restart	the	Framework.
14.			Select	the	Company	Departments	business	object	in	the	iii	HR	application.
15.			Expand	a	department	in	the	instance	list.

	
The	sections	in	each	department	you	expand	are	loaded	dynamically.
Note	that	only	the	section	name	and	identifier	are	shown	in	the	list.	In	the	next
step	you	change	the	instance	list	to	show	additional	columns	for	the	sections.
	

Step	5.	Display	Additional	Columns	in	the	Instance	List
In	this	step	you	create	additional	columns	in	the	instance	list	to	show	all	the	data
loaded	for	sections	by	the	relationship	handler.
1.			Display	the	properties	of	the	Company	Departments	business	object.
2.			In	the	Instance	List	/	Relationships	tab	specify	these	additional	columns:

Column	Sequence Column	Type Column	Caption
30 ACOLUMN1 Street

40 ACOLUMN2 Town/Suburb

50 ACOLUMN3 State	and	Country

60 NCOLUMN1 Post	Code

70 ACOLUMN4 Phone

	

Your	instance	list	column	definitions	now	look	like	this:

	
3.			Close	the	properties	of	the	Company	Departments	object.	Your	instance	list
now	shows	the	additional	columns	for	the	sections:

	
3.			Close	the	properties	window	and	save	the	Framework.
4.		Select	the	iii	HR	application	in	the	web	Framework	and	then	the	Company
Departments	business	object

5.			Expand	a	department	in	the	instance	list	and	then	the	sections	underneath	it.
	

Step	6.	Access	the	Properties	of	Hidden	Child	Objects
In	this	step	you	will	learn	how	to	access	the	properties	of	the	hidden	child
business	object	Department	Sections	which	is	not	visible	in	the	navigation	pane.
1.			Display	the	Framework	menu	and	select	the	Applications…	menu	option.
2.			Select	the	iii	HR	application.
3.			Select	the	Department	Sections	business	object	to	display	the	properties	of
the	Department	Sections	business	object.

		
4.				Close	the	properties	of	the	Department	Sections	business	object.
	
There	is	also	an	alternative	way	of	displaying	the	properties	of	child	business

objects	which	are	not	accessible	from	the	navigation	pane:
5.			Display	the	sections	in	a	department	in	the	instance	list.
6.			Double-click	on	a	section	to	display	the	properties	of	the	Department
Sections	business	object.

	

Summary
Important	Observations
You	can	create	instance	lists	that	contain	more	than	one	type	of	object.	You	do
this	by	defining	relationships	between	business	objects.	The	relationships	can
either	be	peer-to-peer	or	parent-child.
In	situations	where	you	want	to	completely	fill	the	business	object	instance	list
programmatically,	the	filter	has	no	meaningful	interaction	with	the	end-user
and	can	be	hidden	from	view.
A	relationship	handler	is	an	RDML	function	that	is	called	to	dynamically
expand	the	relationship	between	a	parent	and	child	object.	By	doing	this	you
can	improve	filter	performance	by	only	adding	root	or	parent	objects	to	the
instance	list	initially.
The	Framework	instance	list	can	display	up	to	10	alphanumeric	and/or	10
numeric	additional	columns	in	an	instance	list.

Tips	&	Techniques
The	Advanced	section	of	the	Programming	Techniques	sample	application	has
examples	of	advanced	instance	lists.
LANSA	supplies	a	sample	relationship	handler	to	copy	from	when	creating
your	relationships.		The	source	is	stored	in	function	DF_REL01	in	the	process
DF_PROC.

What	I	Should	Know
How	to	create	a	parent-child	relationship	between	business	object
How	to	create	a	hidden	filter
How	to	write	a	relationship	handler
How	to	add	additional	columns	to	the	instance	list

	

	

	

	

VLF012WIN	-	Controlling	Navigation	Using	Switching	and	the
Virtual	Clipboard
Objectives
To	learn	how	to	use	switching	to	swap	control	between	different	business
objects	and	to	execute	commands	at	the	Framework,	application	or	business
object	level	(see	Object	Switching	Service).
To	learn	to	use	The	Virtual	Clipboard	to	store	the	switch	history.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Create	a	Filter	for	Department	Sections
Step	2.	Create	a	Details	Command	Handler	for	Department	Sections
Step	3.	Add	Logic	to	Switch	from	Sections	to	the	Employees	Business	Object
Step	4.	Record	Switch	History	using	the	Virtual	Clipboard
Step	5.	Use	the	Switch	History	to	Return	to	the	Original	Business	Object
	
Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
Tutorials	VLF000	–	VLF007WIN	and	VLF011WIN

Step	1.	Create	a	Filter	for	Department	Sections
In	this	step	you	will	make	the	Department	Sections	business	object	visible	in	the
navigation	pane	and	create	a	filter	for	it.
You	need	to	do	this	in	preparation	for	the	switching	exercise	because	object
switching	can	only	be	performed	on	objects	which	are	visible	in	the	navigation
pane.
	
1.			In	the	Framework,	display	the	properties	of	the	Company	Departments
business	object.

2.			Display	the	Instance	List	/	Relationships	tab.
3.			Select	Department	Sections	in	the	list	on	the	bottom	left.
4.			Select	the	option	Department	Sections	–	Allow	Selection	from	Navigation
Pane.

	
5.			Close	the	properties	of	the	Company	Departments	business	object.	The
Department	Sections	business	object	is	now	visible	in	the	navigation	pane.

6.			Display	the	properties	of	the	Department	Sections	business	object.
7.			Change	the	icon	for	example	to	 .
	
Next	you	need	to	replace	the	mock-up	filter	in	the	Sections	business	object	with
a	functional	filter	to	populate	the	instance	list:

6.			Start	the	Program	Coding	Assistant.
7.			Select	the	Department	Sections	business	object	in	the	iii	HR	application.
8.			Select	New	Filter,	Windows	as	the	platform	and	a	Filter	that	searches	a	file
or	a	view.

9.			Click	Next.
10.			Specify	SECTAB	as	the	physical	file,	and	DEPTMENT	and	SECDESC	as
the	visual	identifiers.

		
11.			Accept	the	other	defaults	set	by	the	Program	Coding	Assistant	and	click
Next.

12.			Specify	DEPTMENT	field	as	the	key	to	be	used	for	search	operations.
13.			Click	Next.
14.			Click	Generate	Code.
15.			On	the	Generated	Code	page	specify	iiiCOM09	as	the	name	of	your	filter
and	Sections	Filter	as	the	description.	(iii	are	your	initials.	If	you	are	using	an
unlicensed	or	trial	version	of	Visual	LANSA,	you	must	always	use	the	three
characters	DEM	to	replace	iii).

16.			Click	Create.	The	component	is	displayed	in	the	Visual	LANSA	Editor.
17.			Compile	the	filter.
18.			In	the	Framework,	snap	the	filter	in	the	Department	Sections	business
object.

19.			Test	the	filter.

	
	

Step	2.	Create	a	Details	Command	Handler	for	Department
Sections
In	this	step	you	will	create	a	Details	command	handler	which	will	show	the
employees	in	the	selected	Section.
1.			Create	a	reusable	part.	Specify	iiiCOM10	as	the	name	of	your	command
handler	and	Section	Details	as	the	description.	(iii	are	your	initials.	If	you	are
using	an	unlicensed	or	trial	version	of	Visual	LANSA,		you	must	always	use
the	three	characters	DEM	to	replace	iii).

2.			Click	on	the	Details	tab	and	specify	VF_AC010	as	the	Ancestor	of	your
component.

	
	
You	will	first	add	a	layout	manager	to	the	command	handler	to	control	the
placement	of	the	controls	on	it:

3.			Start	the	Layout	Helper	from	the	View	menu.
4.			Add	an	Attachment	Manager	to	the	reusable	part	iiiCOM10.
	

	
5.			Display	the	Common	Controls	tab	on	the	Favorites	tab.
6.			Drag	and	drop	a	panel	to	the	right	hand	side	(PANL_1).	Change	its	Width	to
94.	This	area	will	later	contain	the	Details	push	button.

7.			Drag	and	drop	another	Panel	over	the	centre	of	the	remaining	area
(PANL_2).	Use	the	Layout	Helper	to	add	the	attachment	manager	(ATLM_1)
to	this	panel	using	the	dropdown	on	the	right	hand	side.

8.			Drag	and	drop	the	grid	control	to	the	centre	of	PANL_2.	Your	grid	will	be
attached	to	the	sides	of	PANL_2.	You	have	created	a	command	handler	which
will	automatically	resize	with	the	rest	of	the	framework.

Your	command	handler	will	now	look	like	this:

	
9.			Display	the	PSLMST	file	in	the	repository	and	expand	it.
10.			Drag	the	fields	EMPNO,	SURNAME	and	GIVENAME	to	the	grid.
11.			Make	the	WidthType	of	the	GIVENAME	column	(GDCL_3)	Remainder.
12.			Make	the	SelectionStyle	of	the	grid	WholeRow.

	

Now	write	the	code	to	populate	the	Employee	grid	in	the	command	handler:
13.			Display	the	Source	tab.
14.			Add	a	uExecute	method	routine	after	the	BEGIN_COM	statement:
	
Mthroutine	uExecute	Options(*Redefine)
	

The	uExecute	method	is	invoked	whenever	the	user	executes	the	Framework
command	that	is	associated	with	the	command	handler.
	
15.			Use	the	GetCurrentInstance	method	to	get	the	current	Department	and
Section.
	
Invoke	#avListManager.GetCurrentInstance	AKey1(#DEPTMENT)
AKey2(#SECTION)
	

	
16.			Clear	the	Employee	grid:
	
Clr_list	#Grid_1
	

	
17.				Lastly	select	the	employees	that	belong	to	the	section	from	the	PSLMST1
logical	view	and	add	them	to	the	grid:
Select	fields(#EMPNO	#SURNAME	#GIVENAME)	from_file(PSLMST1)
with_Key(#DEPTMENT	#SECTION)
	
Add_entry	#GRID_1
	
Endselect

	
Your	code	will	now	look	like	this:

	
18.			Compile	your	command	handler.
19.			Snap	the	command	handler	in	the	Details	command	of	the	Department
Sections	business	object.

20.			Test	your	command	handler.

	

Step	3.	Add	Logic	to	Switch	from	Sections	to	the	Employees
Business	Object
In	this	step	you	will	add	logic	to	the	Sections’	Details	command	handler	to
display	the	details	of	a	selected	employee	in	the	Details	command	handler	of	the
Employees	business	object.
The	switch	to	the	Employees’	Details	command	handler	is	executed	in	a	button
click	event.
	
1.			Display	the	Design	tab	of	the	Details	command	handler.
2.			Drag	a	push	button	from	the	Common	Controls	tab	on	to	the	right	hand
panel	(PANL_1)	on	the	command	handler.

3.			Make	the	Caption	of	the	button	Details.

	
4.			Add	a	Click	event	for	the	button.
5.			In	the	click	event	add	a	statement	to	switch	to	the	Details	command	handler
of	the	Employees	business	object.
	
#avframeworkmanager.avSwitch	To(BUSINESSOBJECT)
NAMED(EMPLOYEES)	EXECUTE(DETAILS)		Caller(#com_owner)
ClearInstanceList(TRUE)
	

	
The	To	parameter	contains	BUSINESSOBJECT	to	indicate	the	switch	is	to	a
business	object	(you	can	also	switch	to	the	Framework	or	an	application).	
The	NAMED	parameter	must	contain	your	actual	business	object	name.	
The	EXECUTE	parameter	contains	the	name	of	the	command	to	execute.	
You	can	optionally	clear	the	instance	list	by	specifying	the	ClearInstancList
parameter.

	
6.			Next	add	the	following	event	routine	which	will	tell	the	Employees	business
object	which	instance	should	be	displayed	based	on	the	value	of	the	employee
in	the	grid:
Evtroutine	Handling(#avFrameworkManager.avAddSwitchInstances)
Caller(#Caller)	Options(*NOCLEARERRORS	*NOCLEARMESSAGES)
	
*	Make	sure	the	caller	is	this	component
If_ref	#Caller	is_not(*Equal_to	#Com_Owner)
Return
Endif
	
	
Invoke	Method(#avFrameworkManager.avAddSwitchInstance)
BusinessObjectType(EMPLOYEES)	Visualid1(#EMPNO)
Visualid2(#SURNAME)	Akey1(#EMPNO)
	
Endroutine

		
The	avAddSwitchInstances	event	routine	is	always	executed	immediately	after
you	execute	a	switch	using	the	avSwitch	method.		This	event	allows	you	to
control	what	data	will	be	placed	in	the	instance	list	of	the	target	business
object.		The	component	signaling	this	event	is	passed	in	the	Caller	parameter.
It	is	important	to	only	execute	the	code	in	this	event	if	the	component	that
signaled	this	event	is	the	component	itself.		Therefore	you	should	return	from
this	event	routine	if	the	caller	is	not	equal	to	#com_owner.		Notice	how	the
is_not(*Equal_to	is	used	to	compare	the	#Caller	and	#Com_Owner.		You	must
use	this	syntax	due	to	the	fact	that	you	are	comparing	the	component	itself	and
not	a	simple	string.
The	avAddSwitchInstance	method	specifies	what	data	to	add	in	the	target
instance	list.
There	is	no	reason	that	you	couldn’t	call	the	avAddSwitchInstance	method
repeatedly	to	place	multiple	entries	into	the	target	business	object’s	instance
list.
		
Your	code	should	now	look	like	this:

	
7.			Compile	the	command	handler.
8.			Test	the	switching:	when	you	select	an	employee	and	click	on	the	Details
button	on	the	Sections’	Details	Command	Handler,	the	Employees	business
object	should	be	displayed	with	the	selected	employee	details.

		

Step	4.	Record	Switch	History	using	the	Virtual	Clipboard
In	this	step	you	will	record	the	switch	history	using	the	virtual	clipboard	so	that
the	end-user	will	be	able	return	to	the	object	that	initiated	the	switch.
	
To	use	the	virtual	clipboard	most	effectively	you	need	to	devise	a	standardized
naming	protocol	for	items	that	are	posted	onto	it.	In	this	exercise	you	will	use
this	standard	to	store	the	switch	history:

ID1 SWITCH_HISTORY

ID2 Target	Business	Object	Name

ID3 Target	Command	Name

ID4 OBJECT_NAME	or	COMMAND_NAME

FromAValue <object	or	command	name>

	

In	effect	you	will	be	storing	a	switch	history	table	on	the	clipboard.		The	first
key	or	ID	is	the	code	SWITCH_HISTORY	to	indicate	that	all	records	with	this
ID	are	related	to	switching	history.	
The	ID2	and	ID3	contain	which	business	object	and	command	respectively	that
you	are	switching	to.		ID4	contains	where	you	came	from.		Therefore	you	need
to	add	two	records	to	the	virtual	clipboard;	one	where	ID4	equals
OBJECT_NAME	(the	business	object)	and	another	where	ID4	equals
COMMAND_NAME	(the	command).	
	
1.			Display	the	Source	tab	of	the	Sections’	Details	command	handler.
2.			In	the	PHBN_1.Click	event,	before	the	avSwitch	command,	write	this	code
to	add	the	appropriate	records	to	the	switch	history:	
	
*	Save	to	clipboard	return	list
#avframeworkmanager.avsavevalue	WithID1(SWITCH_HISTORY)
WithID2(EMPLOYEES)	WithID3(DETAILS)	WithID4(OBJECT_NAME)
FromAValue(#com_owner.Avobjecttype)
	

#avframeworkmanager.avsavevalue	WithID1(SWITCH_HISTORY)
WithID2(EMPLOYEES)	WithID3(DETAILS)
WithID4(COMMAND_NAME)	FromAValue(#com_owner.avcommandtype)
	

Use	your	business	object	name	for	the	WithID2()	parameter.
Note	that	the	actual	business	object	name	and	command	name	are	placed	in	the
clipboard	using	the	FromAValue	parameter.		Notice	how	you	can	use
avobjecttype	to	get	the	current	business	object	name	and	avcommandtype	to	get
the	current	command	name.		You	should	not	hard	code	these	values.	
Your	code	should	now	look	like	this:

	

3.			Compile	the	command	handler.
4.			Close	the	command	handler.
	

Step	5.	Use	the	Switch	History	to	Return	to	the	Original	Business
Object
In	this	step	you	will	use	the	switch	history	to	allow	the	end-user	to	return	to	the
Sections	business	object	from	where	they	initiated	the	switch.
1.			Open	the	Employees’	Details	command	handler	iiiCOM03.
2.			Display	the	Common	Controls	tab	in	the	Favorites	tab	and	drag	a	push
button	under	the	Save	button.

3.			Make	the	caption	of	the	button	Back.
4.			Make	the	name	of	the	button	BACK_BTN.
5.			Add	a	Click	event	for	the	button.
6.			In	the	Click	event	add	this	code	so	that	when	the	users	click	on	the	button,
they	will	be	switched	back	to	the	business	object	from	which	they	came:
EVTROUTINE	HANDLING(#BACK_BTN.Click)
	
define	field(#ff_objnme)	TYPE(*CHAR)	LENGTH(32)	DESC('Object
Name')
define	field(#ff_cmdnme)	TYPE(*CHAR)	LENGTH(32)	DESC('Command
Name')
	
*	Determine	the	business	object	name	to	switch	to
#avFrameworkManager.avrestorevalue	WithID1(SWITCH_HISTORY)
WithID2(#com_owner.Avobjecttype)
WithID3(#com_owner.Avcommandtype)	WithID4(OBJECT_NAME)
ToAValue(#ff_objnme)
	
*	Determine	which	command	within	the	business	object	to	switch	to
#avFrameworkManager.avrestorevalue	WithID1(SWITCH_HISTORY)
WithID2(#com_owner.Avobjecttype)
WithID3(#com_owner.Avcommandtype)	WithID4(COMMAND_NAME)
ToAValue(#ff_cmdnme)
	
*	Perform	the	switch
#avframeworkmanager.avSwitch	To(BUSINESSOBJECT)
NAMED(#ff_objnme)	EXECUTE(#ff_cmdnme)		Caller(#com_owner)
	

ENDROUTINE
	
When	you	want	to	send	the	user	back	to	the	component	from	which	the	switch
occurred,	you	need	to	look	at	the	switch	history	on	the	virtual	clipboard.	
Remember	that	you	need	to	retrieve	both	the	business	object	and	the	command
to	which	you	need	to	return.		That	requires	retrieving	two	values	from	the
virtual	clipboard.
The	code	first	retrieves	the	OBJECT_NAME	or	business	object	value	and	then
the	COMMAND_NAME	or	command	value.	
Again,	remember	that	you	don’t	want	to	hard	code	the	component	name,
which	is	why	avobjecttype	(business	object	name)	and	avcommandtype
(command	name)	where	used	as	the	values	to	the	WithID2	and	WithID3
parameters.
When	you	have	these	two	values	you	can	perform	another	switch	to	return	to
the	previous	component.
In	the	code	above,	the	business	object	was	retrieved	into	the	#ff_objnme	field
and	the	command	was	retrieved	into	the	#ff_cmdnme	field.		Now	you	simply
use	the	same	technique	learned	earlier	to	switch	to	a	business	object	and
execute	the	command.
	Your	code	should	look	like	this:

	
7.			Now	compile	the	command	handler.
	
You	are	now	ready	to	test	the	switch	history:

8.			In	the	Framework	select	a	section	from	the	Department	Sections	business
object.

9.			Select	an	employee	from	the	Sections’	Details	command	handler.
10.			Display	the	details	of	the	selected	employee	by	clicking	on	the	Details
button.

11.			On	the	Details	command	handler	of	the	Employees	business	object	click	on
the	Back	button	to	return	to	the	Sections	business	object.

	
	

Summary
Important	Observations
The	Framework	switching	service	allows	your	filters	and	command	handlers
to	switch	control	between	different	business	objects	and	to	execute	commands
at	the	Framework,	application	or	business	object	level.
The	target	business	object	must	be	able	to	be	selected	from	the	menu	(the
option	Allow	selection	from	the	navigation	pane	in	the	target	business	object
properties	should	be	checked,	and	the	user	should	be	authorized	to	the	business
object),	at	the	time	the	switch	occurs.	Switching	mimics	the	actions	that	a	user
would	perform.
You	can	use	the	Virtual	Clipboard	for	remembering	and	exchanging
information.
To	use	the	virtual	clipboard	most	effectively	you	need	to	devise	a	standardized
naming	protocol	for	items	that	are	posted	onto	it.
	
Tips	&	Techniques
The	Advanced	section	of	the	Programming	Techniques	sample	application	has
examples	of	switching	and	remembering	values	(virtual	clipboard).

What	I	Should	Know
How	to	switch	between	business	objects
How	to	use	the	virtual	clipboard	to	record	switch	history	so	that	the	end-users
can	switch	back	to	object	where	the	switch	was	initiated.

	

	

VLF013WIN	-	Signaling	Events
Objectives
To	learn	how	to	signal	that	an	event	has	happened	in	your	filter	or	command
handler	to	other	active	filters	or	command	handlers	so	that	they	can	take
appropriate	action	(see	Event	Signaling	Service).
To	learn	how	to	update	an	entry	in	the	instance	list	(see	Filters	and	List
Manager).

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Change	Employee	Surname	and	Save	the	Changes
Step	2.	Add	the	avSignalEvent	to	the	Employee	Details	Command	Handler
Step	3.		Add	a	Routine	to	Listen	for	the	EMPLOYEE_CHANGED	Event
Step	4.		Test	Signaling

Summary
Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
Tutorials	VLF000	–	VLF007WIN	and	VLF009WIN

Step	1.	Change	Employee	Surname	and	Save	the	Changes
In	this	step	you	will	change	the	surname	of	an	employee	and	save	the	changes.
The	instance	list	will	not	reflect	the	change	because	the	filter	does	not	know
about	the	change	event.
1.			Display	the	Employees	business	object	in	the	iii	DEM	application.
2.			Use	the	mini	filter	to	add	entries	to	the	instance	list.
3.			Select	one	of	the	entries	and	change	the	employee	surname	in	the	Details
command	handler.

4.			Click	the	Save	button.	Notice	that	the	new	surname	is	not	reflected	in	the
instance	list	entry:

	

5.			Close	the	Framework.
In	the	following	steps	you	will	use	the	signal	method	in	the	Details	command
handler	to	notify	the	Employees	filter	that	an	employee	has	changed.	You	will
then	add	code	to	update	the	instance	list.
	

Step	2.	Add	the	avSignalEvent	to	the	Employee	Details	Command
Handler
In	this	step	you	change	the	SAVE_BUTTON	event	in	the	Employee	Details
command	handler.
1.			Locate	and	open	the	Employee	Details	command	handler	iiiCOM03.
2.			Display	the	Source	tab.
3.			Locate	the	SAVE_BUTTON	Click	event.		Add	the	following	code	before
the	Endroutine:
	
#com_owner.avSignalEvent	WITHID(EMPLOYEE_CHANGED)
SENDAINFO1(#EMPNO)	TO(FRAMEWORK)
	

	

	
You	use	the	avSignalEvent	method	when	there	is	an	event	you	would	like	other
components	within	the	Framework	to	be	notified	about:	
You	place	the	event	id	to	be	signaled	in	the	WithID	parameter	and	any
alphanumeric	or	numeric	values	you	want	to	pass	in	the	SendAInfon	or
SendNInfon	parameters,	where	n	is	1,…,5.		In	this	example	the	event	is
EMPLOYEE_CHANGED	and	the	employee	number	is	the	value	to	be	passed.
By	default	the	value	of	the	To	parameter	is	FRAMEWORK	which	means	any
active	component	in	the	framework	will	receive	this	signal	and	will	need	to
test	to	see	if	it	pertains	to	them.		If	you	know	that	the	event	only	pertains	to	the
business	object	in	which	this	component	resides,	you	should	set	the	parameter
To	equal	to	BUSINESSOBJECT	so	that	a	very	limited	set	of	components	are
notified	of	this	event.		Using	this	technique	will	improve	performance	of	your

application.	For	a	mini	filter	you	need	to	signal	at	FRAMEWORK	level.
	
4.			Compile	the	command	handler.
	

Step	3.		Add	a	Routine	to	Listen	for	the
EMPLOYEE_CHANGED	Event
In	this	step	you	will	add	an	event	routine	to	the	Employees	filter	to	listen	for	the
EMPLOYEE_CHANGED	event.
1.			Locate	and	open	the	Employees	filter	iiiCOM07.
2.			Display	the	Source	tab.
3.			Add	an	event	routine	to	listen	for	an	avEvent	signal:
Evtroutine	Handling(#Com_Owner.avEvent)	WithId(#EventId)
Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
WithAinfo1(#Ainfo1)
	
Endroutine

The	avEvent	event	is	an	event	that	is	signaled	by	the	framework	when	the
avSignalEvent	method	is	called.		The	event	routine	receives	the	event	being
signaled	along	with	any	alphanumeric	or	numeric	data	that	accompanies	the
event.	
	
4.				Next	add	a	CASE	command	to	test	which	event	has	been	signaled	in	the
event	routine:
Case	#EventId.Value
	
EndCase

			
It	is	important	to	test	to	make	sure	that	the	EventID	matches	one	of	the	events
that	this	event	routine	handles	as	the	event	being	signaled	might	not	apply	to	the
component	in	which	you	have	placed	this	event	routine.
	
5.			Then	place	appropriate	WHEN	VALUE_IS	commands	to	handle	various
event	ids	that	apply	to	this	component.		In	this	case	we	only	want	to	handle
the	EMPLOYEE_CHANGED	event:
	
When	(=	EMPLOYEE_CHANGED)
	

Your	code	will	now	look	like	this:

	
6.			Next	add	code	to	save	the	current	key	values	from	overwrites:
	
Inz_List	#Save_Keys	1
	

	
7.			Assign	the	value	passed	by	the	signaled	event	to	the	EMPNO	field:
	
#EmpNo	:=	#AInfo1
	

	
8.			Start	updating	the	instance	list:
	
Invoke	Method(#avListManager.BeginListUpdate)
	

	
9.			Fetch	the	details	of	the	employee	that	has	been	updated:
	
FETCH	FIELDS(#SURNAME	#GIVENAME	#EMPNO	#SALARY)
FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
	

	
10.			Update	the	entry	in	the	instance	list:

	
Use	Builtin(BCONCAT)	With_Args(#GIVENAME	#SURNAME)
To_Get(#FULLNAME)
	
Invoke	#avListManager.AddtoList	Visualid1(#EMPNO)
Visualid2(#FULLNAME)	NColumn1(#SALARY)	AKey1(#EMPNO)

	
11.			Complete	the	instance	list	update:
	
Invoke	Method(#avListManager.EndListUpdate)
	

	
12.			Lastly	restore	the	saved	key	values:
	
Get_Entry	1	#Save_Keys
	

	
Your	finished	code	will	look	like	this:

		
13.			Compile	the	filter.
	

Step	4.		Test	Signaling
In	this	step	you	will	test	the	signaling	of	the	EMPLOYEE_CHANGED	event.
1.			Start	the	Framework.
2.			Select	the	iii	DEM	application	and	the	Employees	business	object.
3.			Use	the	filter	to	populate	the	instance	list.
4.			Select	an	employee	and	change	the	surname.
5.			Click	Save.	Notice	that	the	filter	now	listens	for	the
EMPLOYEE_CHANGED	event	and	updates	the	list	entry:

			

Summary
Important	Observations
The	Framework	manager	provides	a	simple	to	use	event	signaling	service	that
may	be	used	in	Windows	or	Web	browser	applications.
To	make	event-processing	work	you	need	a	filter	or	command	handler	that
signals	the	event	and	other	filters	or	command	handlers	that	listen	for	the
event.	Additional	information	may	be	sent	along	with	the	event.
To	update	an	instance	list	entry	you	use	the
#ListManager.UpdateListEntryData	method.
	
Tips	&	Techniques
	
What	I	Should	Know
How	to	signal	an	event
How	to	listen	for	a	signaled	event
How	to	update	an	entry	in	the	instance	list

	

VLF014WIN	-	Debugging/Tracing
Objectives
To	learn	how	to	use	the	tracing	service	to	help	you	locate	problems	in	your
filters	or	command	handlers.	(See	Basic	Tracing	Service.)

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Add	a	Trace	Statement	to	Indicate	Enter	Key	Was	Pressed
Step	2.		Add	More	Trace	Statements
Step	3.	Start	Tracing	Programmatically
Summary
	
Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
Tutorials	VLF000	–	VLF007xxx.

Step	1.	Add	a	Trace	Statement	to	Indicate	Enter	Key	Was	Pressed
In	this	step,	you	will	add	a	trace	statement	to	show	when	the	Enter	key	was
pressed	in	the	Employees	mini	filter.
1.			In	the	Visual	LANSA	editor	open	the	Employees	mini	filter	iiiCOM07.
2.			Display	the	Source	tab.
3.			Locate	the	event	routine	handling	the	#SURNAME.KeyPress	event.
4.			After	the	IF	statement	testing	if	the	Enter	key	was	pressed	add	this	tracing
command:
	
Invoke	#AvFrameworkManager.AvRecordTrace	Component(#Com_Owner)
Event('The	Enter	key	was	pressed')
	

	
5.			Compile	the	filter.
6.			Start	the	Framework.
7.			In	the	Framework	menu	select	the	Tracing	option	and	then	Application
Level.

	
The	Trace	Details	window	is	displayed:

	
8.			Expand	the	iii	HR	application	and	select	the	Employees	business	object.
(Move	the	tracing	window	to	the	side	if	necessary).

9.			Move	the	focus	to	the	mini	filter	and	press	Enter.	The	tracing	window	will
now	show	that	the	Enter	key	was	pressed.

		
10.			Close	the	Framework.
	

Step	2.		Add	More	Trace	Statements
In	this	step,	you	will	add	two	more	trace	statements	to	the	filter.
The	first	tracing	statement	will	show	which	key	was	pressed	in	the	surname
field.	The	second	statement	will	show	when	the	EMPLOYEE_CHANGED
event	was	signalled	and	the	employee	number	passed.
	
1.			Just	after	the	EVTROUTINE	HANDLING(#SURNAME.KeyPress)	event
add	this	statement	to	trace	the	value	of	the	key	that	was	pressed:
	
#AVFRAMEWORKMANAGER.avRecordTraceAValue
Component(#COM_OWNER)	AValue(#keycode)	Event('Key	was	pressed')
		

	
2.			Now	locate	the	event	routine	handling	the	#Com_Owner.avEvent	and	add
this	statement	to	trace	when	the	EMPLOYEE_CHANGED	event	is	triggered
and	to	show	the	employee	number	passed	by	the	event:
	
#AVFRAMEWORKMANAGER.avRecordTraceAValue
Component(#COM_OWNER)	AValue(#EMPNO)
Event(EMPLOYEE_CHANGED)
	

	

		

	
3.			Compile	the	filter.
4.			Start	the	Framework	and	expand	the	iii	HR	application.
5.			Turn	the	application	level	tracing	on	using	the	Framework	menu.
6.			Move	the	focus	to	the	mini	filter	and	press	F3.	The	tracing	window	shows
the	key	pressed.

	
7.			Next	select	employees	using	the	filter	and	then	select	one	employee	to
display	the	Employee	Details	command	handler.

8.			Change	one	of	the	employee	details	and	click	the	Save	button.
9.			Notice	the	EMPLOYEE_CHANGED	event	and	the	employee	number	are
shown	in	the	trace:

		
10.			Close	the	Framework.
	

Step	3.	Start	Tracing	Programmatically
In	this	step	you	will	add	code	to	start	tracing	when	the	Employee	filter	is	used
and	end	the	trace	when	the	filter	is	no	longer	used.
	
1.			Add	this	statement	to	the	uInitialize	method	routine	to	start	the	trace	when
the	filter	is	initialized:
	
Set	#AvFrameworkManager	avTrace(TRUE)
	

	
2.			Add	a	uTerminate	method	to	the	filter	and	a	statement	to	terminate	the	trace
when	the	filter	is	no	longer	used:
MTHROUTINE	NAME(uTerminate)	OPTIONS(*REDEFINE)
	
Set	#AvFrameworkManager	avTrace(False)
	
ENDROUTINE

	

		
3.			Compile	the	filter.
4.			Start	the	Framework.
5.			Select	the	iii	HR	application	and	then	the	Employees	business	object.	Notice
that	the	tracing	window	is	now	displayed.

6.			Select	employees	using	the	filter:

	
7.			Select	another	business	object	or	application.	Notice	that	the	tracing	window
is	closed	because	the	uTerminate	method	stopped	tracing	when	the	filter	was
no	longer	used.

8.			Close	the	Framework.
	

Summary
Important	Observations
The	Framework	manager	provides	a	basic	tracing	service	to	help	you	locate
problems	in	your	filters	or	command	handlers.
The	tracing	service	can	be	used	in	conjunction	with,	or	independently	of,	the
normal	LANSA	application	debugging	and	tracing	facilities.
	

Tips	&	Techniques
You	can	leave	these	method	calls	inside	your	code.		The	only	time	they	have
any	effect	is	if	tracing	is	turned	on.		Implementing	tracing	using	this	method	is
ideal	as	you	don’t	have	to	remove	the	code	at	all	if	you	do	not	wish	to	do	so.
The	trace	information	can	give	you	a	lot	of	detailed	information	about	what
has	happened	which	saves	you	having	to	run	your	application	in	debug	mode.	
The	first	column	in	the	tracing	window	contains	the	component	name,	so	you
always	know	which	component	the	traced	event	is	associated	with.
	
What	I	Should	Know
How	to	trace	Framework	applications
How	to	trace	specific	events	in	a	filter	or	command	handler
How	to	start	and	stop	tracing	programmatically

	

	
	

Tutorials	for	WAM	Web	Browser	Applications
Applies	to	WAM	only.
Includes:
VLF006WAM	-	Snapping	in	A	Real	WAM	Web	Filter
VLF007WAM		-	Snapping	in	a	Real	WAM	Web	Command	Handler
VLF009WAM	-	Adding	Instance	List	Columns	in	WAM	Applications
VLF011WAM	-	Creating	a	Parent	Child	Instance	List
VLF012WAM	-	Controlling	Navigation	Using	Switching	and	the	Virtual
Clipboard
VLF013WAM	-	Signaling	Events
VLF014WAM	-	Debugging/Tracing
After	you	have	created	and	validated	your	prototype,	you	can	develop	it	into	a
finished	application.	The	basic	structure	and	presentation	of	the	application	will
remain	unchanged	as	you	continue	to	use	the	Framework.	To	complete	the
application,	you	simply	replace	the	prototype	filters	and	command	handlers	with
real	WAM	ones.
In	these	tutorials,	you	will	replace	the	employee	filters	with	real	filters	and	the
Details	prototype	command	handler	with	a	real	command	handler:

			
These	tutorials	assume	you	are	working	on	a	LANSA	slave	system	connected	to
a	server.	If	you	are	using	an	independent	LANSA	system,	please	ignore	the
steps	to	check	objects	into	the	server.
	

The	Personnel	File
When	prototyping	your	application,	you	decide	your	business	objects	based	on
an	analysis	of	the	tasks	of	the	users	of	your	application.	At	that	point	the
database	structure	is	not	important.
Now	that	you	are	about	to	start	implementing	real	filters	and	command
handlers,	you	need	to	know	how	the	data	you	will	be	using	is	stored.
The	following	tutorials	are	based	on	the	PSLMST	Personnel	demonstration	file.
Locate	this	file	in	the	repository	and	view	its	properties:

	

	

VLF006WAM	-	Snapping	in	A	Real	WAM	Web	Filter
Objective
Learn	how	to	replace	prototype	filters	with	real	WAM	filters.	These	will
perform	the	actual	selection	of	the	items	for	the	Instance	List	when	the
Framework	is	running	in	web	mode.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Creating	Your	Real	WAM	Filter
Step	2.	Snapping	In	the	WAM	By	Name	Filter
Step	3.	Creating	a	WAM	By	Location	Filter
Step	4.	Snapping	in	the	WAM	By	Location	Filter	
Summary

Before	You	Begin
You	may	wish	to	review:
Filters		in		Key	Concepts
Framework	Programming.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
VLF001	-	Defining	Your	HR	Application
VLF002	-	Defining	Your	Business	Objects
VLF003	-	Prototyping	Your	Filters
VLF004	-	Prototyping	Your	Commands
VLF005	-	Validating	the	Prototype

Step	1.	Creating	Your	Real	WAM	Filter
In	this	step,	you	will	create	your	own	filter	by	creating	a	WAM	which	will	be
snapped	into	the	Visual	LANSA	Framework.
1.		Make	sure	that	the	Enable	Framework	for	WAMs	option	in	the	Framework
Details	tab	is	selected.	In	the	Visual	LANSA	editor	check	that	you	can	create
new	WAMs	(the	option	is	available	if	your	system	is	enabled	for	Web).

2.			Start	the	Program	Coding	Assistant	in	the	Framework	using	the
(Framework)	menu.

					The	Program	Coding	Assistant	window	is	displayed.	It	allows	you	to	create
different	types	of	components	that	can	be	plugged	into	your	filters,	instance
lists	and	command	handlers.		It	is	highly	recommended	to	use	the	program
coding	assistant	when	you	first	start	using	the	Framework.	

					Initially	you	will	most	likely	use	filters	that	generate	a	component	that	can	be
executed	(e.g.	CRUD	Filter	(Create/Read/Update/Delete),	Filter	that	searches
a	file	or	view).		As	you	progress	you	might	only	use	a	skeleton	filter	or
simply	copy	from	one	that	is	similar	to	one	that	you	want	to	create.

3.			If	you	are	using	a	non-English	system,	click	on	Framework	->	Your
Framework	in	the	top-left	tree	view.	The	Set	LANSA	code	generation
preferences	option	appears	at	the	bottom.	Select	this	option	and	set	your
preferences.

4.			Select	the	iii	HR	application	and	then	the	By	Name	filter.
5.			Choose	Web	–	using	WAM	components	as	the	platform	and	and	Filter	that
searches	using	a	file	or	a	view.

	
6.			Click	the	Next	button.
7.			Specify	PSLMST	as	the	Physical	File	that	most	closely	resembles	this
business	object

	
The	Program	Coding	Assistant	detects	the	Visual	and	Programmatic	Identifiers
required.
		
8.			Click	the	Next	button.
9.			On	the	next	page	specify	PSLMST2	as	The	view	to	be	used	for
searching/filtering	operations.

10.			Specify	SURNAME	as	the	Key	of	the	selected	view	to	be	used	for	search
operations.

		
11.			Click	the	Generate	Code	button.
		
The	next	page,	Generated	Code,	displays	the	source	code	for	your	filter.	You
now	need	to	create	the	component	that	will	contain	this	code:
12.			Specify	iiiCOM04	as	the	name	of	your	real	filter	and	By	Name	Filter	as	the
description.	(iii	are	your	initials	If	you	are	using	an	unlicensed	or	trial	version
of	Visual	LANSA,	you	must	always	use	the	3	characters	DEM	to	replace	iii).

13.			Click	on	the	Create	button	to	create	the	WAM.

	
After	a	brief	delay	a	message	is	shown	indicating	the	WAM	has	been	created.
14.			Switch	to	the	Visual	LANSA	editor.	Your	filter	is	displayed	in	the	Visual
LANSA	editor.

15.			Examine	the	code:
This	statement	tells	the	Framework	that	new	entries	are	about	to	be	added	to	the
instance	list:
#avListManager.BeginListUpdate

		
This	statement	clears	the	instance	list:
#avListManager.ClearList	

	
This	statement	reads	the	records	that	match	the	surname	entered	by	the	user:
Select	Fields(#XG_Ident)	From_File(PSLMST2)	With_key(#XG_Keys)
Generic(*yes)	Nbr_Keys(*Compute)

	
This	statement	sets	up	the	visual	Identifier(s)
#UF_VisID1	:=	#EMPNO
#UF_VisID2	:=	#SURNAME
#UF_VISID2	:=	#UF_VISID2.BlankConcat(#GIVENAME)

	
This	statement	adds	the	data	to	the	instance	list
Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#EMPNO)

	
VisualId1	will	be	shown	in	column	one	of	the	instance	list	and	VisualId2	will	be
shown	in	column	two	of	the	instance	list.		Akey1	is	the	key	that	uniquely
identifies	an	employee	(in	this	case	the	field	is	alphanumeric,	so	its	Akey1,	not
Nkey1).
This	statement	tells	the	Framework	that	you	have	finished	adding	entries	to	the
instance	list:
#avListManager.EndListUpdate

You	may	want	to	read	WAM	Filter	and	Command	Handler	Anatomy	to	see	how
WAMs	are	structured.	
	
16.			If	you	are	using	a	partition	with	language	NAT,	you	need	to	change	the
default	value	of	the	#UB_SEARCH	field	to	SEARCH	and	change	the
Web_Map	statement	to:
Web_Map	For(*both)	Fields(#XG_Keys	(#UB_SEARCH	*Desc))

	
17.			Select	the	Compile	option	in	the	Verify	menu.
18.			Ensure	that	the	All	webroutines	option	is	selected	for	the	Generate	XSL
option.

	
19.			Ensure	the	compilation	was	successful.
	
20.			Check	in	your	changes	to	the	server.	First	check	in	the	layout	weblet	for
your	WAM::
a.			Locate	the	layout	weblet	for	your	WAM	under	Weblets	in	the	Repository.
It	is	called	iiiCOM04_layout	(where	iii	correspond	to	your	initials).

b.			Right-click	the	weblet	to	bring	up	the	associated	pop-up	menu	and
choose	the	Check	in	option.

c.			Click	OK.
Then	locate	the	WAM	to	check	it	in:
a.			Right-click	the	WAM	to	bring	up	the	associated	pop-up	menu	and	choose
the	Check	in	option.

b.				Ensure	that	the	All	webroutines	option	is	selected	for	the	Generate	XSL
option.

c.			Click	OK	to	check	the	changes	in.

	d.			Wait	until	the	compiles	have	finished.
	
	

Step	2.	Snapping	In	the	WAM	By	Name	Filter
Now	that	you	have	compiled	your	new	filter	and	are	ready	to	test	it,	you	need	to
snap	it	into	the	Framework.
1.		In	the	Framework,	close	the	Program	Coding	Assistant.
2.		Select	the	iii	HR	application	and	double-click	on	the	Employee	business
object.

3.		On	the	resulting	Business	Object	Properties	dialog,	click	on	the	Filters	tab.
4.		Select	the	By	Name	filter.	You	will	replace	the	web	mock	up	filter	with	your
real	filter

5.		Click	on	the	Filter	Snap-in	Settings	Tab.
6.			Click	on	the	WAM	property	radio	button	in	the	Web	Browser	group	box.
7.			Type	the	name	of	your	WAM	filter	into	the	entry	field.

	
8.		Bring	up	the	Instance	List/Relations	tab.	Make	the	heading	of	the	first
column	in	the	instance	list	Number	(it	will	display	employee	numbers)	and

the	heading	of	the	second	column	Name	(it	will	display	employee	names).
					

					Make	sure	the		Save	and	Restore	Instance	Lists		option	is	not	selected.
					Make	sure	the		Enable	Clear	List	Button		is	selected.
9.		Use	the	(Framework)	menu	and	select	the	option	to	save	the	Framework.
					Accept	the	prompt	to	upload	the	Framework	and	wait	while	the	upload
completes.

10.	Use	the	(Framework)	menu	and	select	the	option	to	Execute	as	Web
Application...	

					Accept	the	default	options	and	press	OK.
11.	Select	the	iii	HR	application	in	the	web	Framework	and	then	the	Employees
business	object.	Bring	the	By	Name	filter	topmost.	Type	in	a	partial	surname
and	click	Search.

12.	Your	filter	is	now	snapped	into	the	Framework	and	usable.

	

Step	3.	Creating	a	WAM	By	Location	Filter
In	this	step,	you	will	create	a	real	By	Location	filter	that	will	locate	Employees
by	the	department	and	section	in	which	they	work.
1.		Start	the	Program	Coding	Assistant.
2.			Select	the	Framework	object	navigation	tree	in	the	upper	left	of	the	Program
Coding	Assistant	form.

3.			Drill	down	through	the	tree	to	find	your	By	Location	filter	and	select	it.
4.			Choose	Web	-	using	WAM	components	option	as	the	platform.
5.			Select	the	type	Filter	that	searches	using	a	file	or	view.
6.			Click	Next.
	The	Program	Coding	Assistant	shows	the	PSLMST	file	as	the	physical	file	and
detects	the	Visual	and	Programmatic	Identifiers	required.	You	do	not	need	to
change	any	of	these	values.
	
7.			Click	the	Next	button.	On	the	screen:

Select	the	file	view	named	PSLMST1	(Personnel	by	Department,	Section,
Employee	Number).
Select	the	search	keys	DEPTMENT	and	SECTION.
Uncheck	User	must	specify	all	Chosen	Keys.
Uncheck	Allow	Generic	Searching.
Check	Remember	key	values	between	filter	executions.

8.			Click	the	Generate	Code	button.	The	right	hand	side	of	the	Program	Coding
Assistant	now	shows	the	code	that	it	has	generated	for	your	filter.

9.			In	the	Generated	Code	window	specify	iiiCOM05	(where	iii	are	your
initials)	as	the	name	of	your	filter	and	give	it	a	description.	If	you	are	using	an
unlicensed	or	trial	version	of	Visual	LANSA,	you	must	always	use	the	3
characters	DEM	to	replace	iii.	Then	click	the	Create	button	to	create	your
filter.

					(Alternatively	you	can	copy	the	generated	code	to	the	clipboard	by	clicking
the	"Copy	Code	to	Clipboard"	button	and	paste	into	an	existing	WAM	if	you
have	created	one.)

10.		Your	filter	is	displayed	in	the	Visual	LANSA	editor.	Compile	it	and	choose
to	generate	XSL	for	all	web	routines.

11.		Check	in	the	WAM	and	its	associated	layout	weblet	to	the	server.
	

Step	4.	Snapping	in	the	WAM	By	Location	Filter	
In	this	step,	you	will	snap	in	your	Location	filter.
1.		In	the	Framework,	close	the	Program	Coding	Assistant.
2.		Select	the	iii	HR	application	and	double-click	on	the	Employees	business
object.

3.		On	the	resulting	Business	Object	Properties	dialog,	click	on	the	Filters	tab.
4.		Select	the	By	Location	filter.	You	will	replace	the	web	mock	up	filter	with
your	real	filter.

5.		Click	on	the	Filter	Snap-in	Settings	Tab.
6.		Click	on	the	WAM	property	radio	button	in	the	Web	Browser	group	box.
7.		Type	the	name	of	your	WAM	filter	into	the	entry	field.
8.		Use	the	(Framework)	menu	and	select	the	option	to	save	the	Framework.
					Accept	the	prompt	to	upload	the	Framework	and	wait	while	the	upload
completes.

					Use	the	(Framework)	menu	and	select	the	option	to	Execute	as	Web
Application...	

					Take	the	default	options	and	press	OK.
9.		Your	filter	is	now	snapped	into	the	Framework	and	usable.

Summary
Important	Observations
With	snap-in	real	filters,	you	have	now	created	real	functionality	in	your
application.

Tips	&	Techniques
The	source	code	for	the	filters	used	in	the	demonstration	application	can	be
found	in	the	repository	in	components	named	DM_FILT*.

What	I	Should	Know
What	you	need	to	do	to	create	your	own	WAM	filters.
How	you	snap	them	in	the	Framework.
How	to	use	the	Program	Coding	Assistant.
How	to	customize	the	way	that	instance	lists	are	displayed.
	

VLF007WAM		-	Snapping	in	a	Real	WAM	Web	Command
Handler
Objective
Learn	how	to	replace	prototype	command	handlers	with	real	web	handlers
which	will	perform	actual	processing	when	the	Framework	runs	in	web	mode.
To	replace	the	Details	prototype	command	handler	with	a	real	WAM	command
handler.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Creating	Your	Real	WAM	Command	Handler
Step	2.	Snapping	in	Your	WAM	Command	Handler
Summary

Before	You	Begin
You	may	wish	to	review:
Command	Handler
Framework	Programming.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
VLF001	-	Defining	Your	HR	Application
VLF002	-	Defining	Your	Business	Objects
VLF003	-	Prototyping	Your	Filters
VLF004	-	Prototyping	Your	Commands
VLF005	-	Validating	the	Prototype
VLF006WAM	-	Snapping	in	A	Real	WAM	Web	Filter

Step	1.	Creating	Your	Real	WAM	Command	Handler
In	this	step,	you	will	create	a	real	WAM	command	handler	for	the	Details
command.
1.			Start	the	Program	Coding	Assistant.
2.			Select	the	iii	HR	application,	then	the	Details	command	handler.
3.			Select	Web	–	using	WAM	components	as	the	platform.
4.			Select	Basic	Command	Handler	as	the	type	of	code	you	want	create.

	
5.			Click	the	Next	button.
6.			On	the	next	page	specify	PSLMST	as	The	physical	file	that	most	closely

resembles	this	business	object.

	
The	Program	Coding	Assistant	detects	the	Visual	and	Programmatic	Identifiers
required.

	
7.			Click	the	Next	button.
8.			On	the	next	page	specify	PSLMST	in	the	field	Add	fields	from	this	physical
file	in	the	section	Fields	that	you	want	to	appear	at	the	top	of	your	command
handler.

9.			Click	on	the	Add	All	button.

	
10.			On	the	next	page	select	the	Include	Default	Save	Button	and	Logic	and
click	the	Generate	Code	button.

	
The	next	page,	Generated	Code,	displays	the	source	code	for	your	command
handler.	You	now	need	to	create	the	component	that	will	contain	the	code:
11.			Specify	iiiCOM06	(where	iii	are	your	initials).	Make	the	description	of	the
component	Details	command	handler.

12.			Click	on	the	Create	button	button	and	wait	until	you	see	a	message	saying
the	component	has	been	created	in	the	development	environment.

	
13.			Switch	to	the	Visual	LANSA	editor.	The	iiiCOM06	WAM	is	displayed	in
the	editor.

	
14.			If	you	are	using	a	partition	with	language	NAT,	you	need	to	change	the
default	value	of	the	#UB_SAVE	field	to	SAVE	and	change	this	Web_Map
statement	to:
Web_Map	For(*both)	Fields((#UB_SAVE	*Desc)		#EMPNO	#SURNAME
#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE
#PHONEHME	#PHONEBUS	#STARTDTER	#TERMDATER		
#DEPTMENT	#SECTION	#SALARY	#STARTDTE	#TERMDATE
#MNTHSAL)

	
15.			Locate	the	#avFrameworkManager.uWAMEvent_1	handler	and	add	a
statement	to	save	any	changes	made	to	the	employee	details.	For	example:
UPDATE	FIELDS(#WAM_HEAD)	IN_FILE(PSLMST)
WITH_KEY(#EMPNO)

	
16.			Locate	the	uInitialize	event	routine.	This	routine	is	always	called	when	the
command	handler	is	invoked.	Notice	that	it	uses
#avListManager.GetCurrentInstance	method	to	get	the	key	value	of	the
currently	selected	item.

17.			The	uExecute	event	routine	is	only	ever	executed	when	the	WAM	is
executed	(that	is,	when	a	filter	is	started	or	a	command	handler	is	executed).
When	events	occur	inside	an	active	WAM	(for	example	a	button	click)
uExecute	is	not	signalled,	just	the	registered	uWAMEvent_N	event.

18.			Save	the	WAM.
19.		Check	in	your	changes	to	the	server:
First	check	in	the	layout	weblet	for	your	WAM::

a.			Locate	the	layout	weblet	for	your	WAM	under	Weblets	in	the	Repository.
It	is	called	iiiCOM06_layout	(where	iii	correspond	to	your	initials).

b.			Right-click	the	weblet	to	bring	up	the	associated	pop-up	menu	and
choose	the	Check	in	option.

c.			Click	OK.
Then:

a.		Compile	your	WAM	locally.
b.		If	it	compiles	ok,	select	it	in	the	Repository	tab.
c.		Right-click	the	WAM	to	bring	up	the	associated	pop-up	menu	and	choose
the	Check	in	option.

d.		In	the	Check	in	Options	dialog	select	the	option	to	generate	XSL	for	all
webroutines.

e.		Click	OK	to	check	the	changes	in.
f.		Wait	until	the	compiles	have	finished.

	

	

Step	2.	Snapping	in	Your	WAM	Command	Handler
Once	you	have	compiled	your	command	handler	and	are	ready	to	test	it	you
need	to	snap	it	into	the	Framework.	To	snap	in	your	own	command	handler:
1.		Display	the	Framework.
2.		Select	the	iii	HR	application	and	display	the	properties	of	the	Employees
object	by	double-clicking	it.

3.		On	the	resulting	properties	dialog,	click	on	the	Commands	Enabled	tab.
4.		Select	the	Details	command.
5.		Click	on	the	WAM	property	radio	button	in	the	Web	Browser	group	box.
						Type	the	name	of	your	command	handler	into	the	entry	field.

	
6.		Use	the	(Framework)	menu	and	select	the	option	Save	the	Framework.
Accept	the	prompt	to	upload	the	Framework	and	wait	while	the	upload
completes.

7.		Use	the	(Framework)	menu	and	use	the	option	to	Execute	as	Web
Application...		Select	the	default	options	and	press	OK.

8.		Select	the	iii	HR	application	in	the	web	Framework	and	then	the	Employees
business	object.	Bring	the	By	Name	filter	topmost.	Type	in	a	partial	surname
and	click	Search.	Now	click	on	an	employee.

9.	Your	command	handler	for	Details	is	now	snapped	in	the	web	Framework
and	usable.

	
	

Summary
What	I	Should	Know
What	you	need	to	do	to	create	your	own	WAM	command	handlers.
How	you	snap	them	in	the	web	Framework.

VLF009WAM	-	Adding	Instance	List	Columns	in	WAM
Applications
Objective
Learn	how	to	add	columns	to	an	Instance	List	in	a	WAM	Framework
application.
In	WAM	browser	applications,	you	can	add	columns	to	the	shipped	instance	list.
Specify	the	additional	columns	in	the	Instance	List/Relations	tab	sheet	in	the
properties	of	the	business	object	you	are	working	with.

Note:	in	this	tutorial,	you	will	modify	the	By	location	filter.	Normally,	you
should	do	the	same	modifications	to	the	By	name	filter.
To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1:	Add	Columns	to	the	Instance	List

Step	2:	Change	your	filter
Step	3:	Remove	the	Additional	Columns
Summary
	
Before	You	Begin
You	may	wish	to	review:
List	Manager
Adding	Additional	Columns	to	Instance	Lists	.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
VLF001	-	Defining	Your	HR	Application
VLF002	-	Defining	Your	Business	Objects
VLF003	-	Prototyping	Your	Filters
VLF004	-	Prototyping	Your	Commands
VLF005	-	Validating	the	Prototype
VLF006WAM	-	Snapping	in	A	Real	WAM	Web	Filter
VLF007WAM		-	Snapping	in	a	Real	WAM	Web	Command	Handler

Step	1:	Add	Columns	to	the	Instance	List
In	this	step,	you	will	configure	your	Employee	business	object	to	make	the	extra
columns	visible	in	the	instance	list.
1.		Start	the	Framework	as	a	designer.
2.		Open	the	properties	of	the	Employees	business	object.
3.		Display	the	Instance	List/Relations			tab	sheet.
4.		Two	visual	identifiers	are	already	defined.	Add	two	additional	columns:

Column	Sequence Column	Type Column	Caption
30 ACOLUMN1 Givename

40 NCOLUMN1 Salary

	

					Note	that	the	'Enable	Clear	List	Button'	checkbox	has	no	effect	in	your	own
Instance	Lists.

Step	2:	Change	your	filter
Next,	you	need	to	make	changes	to	your	filter	to	fill	the	extra	fields	in	the
instance	list	with	data.
1.		Open	the	By	Location	filter	iiiCOM05	which	you	created	in	VLF006WAM	-
Snapping	in	A	Real	WAM	Web	Filter.

2.		Make	these	changes	to	the	code:
a.		Change	the	GROUP_BY	command	to	include	the	#SALARY	field:
Group_By			Name(#XG_Ident)			Fields(#EMPNO	#SURNAME
#GIVENAME	#SALARY)
	
b.		Locate	Select	Fields(#XG_Ident)	command	and	change	the	AddtoList
statement	to:

*	Add	instance	details	to	the	instance	list
#avListManager.AddtoList	Visualid1(#EMPNO)	Visualid2(#Surname)
AKey1(#EMPNO)	AColumn1(#Givename)	NColumn1(#Salary)

	
	
3.		Save	the	changed	source	code.
4.		If	your	Web	server	is	on	a	System	i,	use	the	Host	Monitor	to	send	your
changes	to	the	System	i.

5.		Compile	your	new	WAM	on	the	server.
6.		Restart	the	Framework	and	test	the	result.

	

Step	3:	Remove	the	Additional	Columns
In	this	step	you	will	remove	the	additional	columns.
1.			Display	the	properties	of	the	Employees	business	object.
2.			Display	the	Instance	List	/	Relations	tab.
3.			Remove	the	column	sequence	numbers	for	Givename	and	Salary	fields.
4.			Close	the	properties	and	save	the	Framework.
	
	

Summary
What	You	Should	Know
How	to	add	columns	to	a	instance	list	in	a	browser	WAM	Framework
application.
	

	

VLF011WAM	-	Creating	a	Parent	Child	Instance	List
Objectives
To	learn	how	to	create	a	parent-child	instance	list	(see	Instance	Lists	with
Different	Types	of	Objects)	with	a	Hidden	Filter	and	a	relationship	handler.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Create	Two	New	Business	Objects
Step	2.	Establish	the	Parent-Child	Relationship
Step	3.	Create	a	Hidden	Filter	for	Company	Departments
Step	4.	Create	a	Relationship	Handler	to	Load	Sections
Step	5.	Display	Additional	Columns	in	the	Instance	List
Step	6.	Access	the	Properties	of	Hidden	Child	Objects
Summary

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
Tutorials	VLF000	–	VLF007WAM.

Step	1.	Create	Two	New	Business	Objects
In	this	step	you	will	use	the	Instant	Prototyping	Assistant	to	create	two	business
objects:	Company	Departments	and	Department	Sections.
The	Sections	business	object	will	become	the	child	of	the	Company
Departments	object.
1.			Start	the	Instant	Prototyping	Assistant	in	the	Framework.
2.			Type	in	the	names	of	two	new	business	objects	Company	Departments	and
Department	Sections.	Remember	to	separate	the	names	with	a	comma.

	
3.			Click	Next.
4.			Drag	the	Details	command	to	the	Department	Sections	business	object.

	
5.			Click	Next.
6.			Drag	both	business	objects	to	the	iii	HR	application.

	
7.			Click	Next.

8.			Click	Finish.
The	new	business	objects	are	now	visible	in	the	iii	HR	application:

	

Step	2.	Establish	the	Parent-Child	Relationship
In	this	step	you	will	establish	the	relationship	between	the	Company
Departments	and	Department	Sections	business	objects.
1.			Display	the	properties	of	the	Company	Departments	object.
2.			Click	on	the	Instance	List	/	Relations	tab.
3.			In	the	list	in	the	lower	left	portion	of	the	screen	scroll	down	and	select	the
Department	Sections	business	object.

4.			In	the	Relationship	Type	group	box	on	the	right	select	the	Child	or
Descendant	radio	button.

5.			Deselect	the	check	box	Allow	Selection	from	Navigation	Pane.
6.			Deselect	the	check	box	Allow	Side	by	Side	display.
8.			Click	the	Close	button	in	the	message	that	appears.

	
9.			Click	the	Close	button.
10.			Save	and	restart	the	Framework.
11.			Open	the	iii	HR	application.	Notice	that	the	Department	Sections	business
object	is	no	longer	displayed	in	the	navigation	pane.

	
12.			Select	the	Company	Departments	business	object	and	click	on	the	Emulate
Search	button	in	the	mock-up	filter.	Expand	one	of	the	Company
Departments	in	the	instance	list.	Notice	that	the	emulated	data	shows	its	child
business	objects,	the	Department	Sections.

	
13.			Close	the	application.
	

Step	3.	Create	a	Hidden	Filter	for	Company	Departments
In	this	step	you	will	create	a	hidden	filter	that	loads	the	Company	Departments
to	the	instance	list	when	you	select	1.			the	Company	Departments	business
object	in	the	navigation	pane.	With	a	hidden	filter	there	is	no	end-user
interaction	and	the	filter	is	not	visible.
1.			Start	the	Framework.
2.			Start	the	Program	Coding	Assistant.
3.			Select	the	iiiHR	application	and	then	the	Company	Departments	business
object,	then	New	Filter.

4.			Select	Web	–	Using	WAM	components	as	the	platform.
5.			Select	A	skeleton	filter	as	the	type	of	component	you	want	to	create.

		

It	is	recommended	that	you	use	the	Program	Code	Assistant	when	creating
WAM	filters	or	command	handlers	to	make	sure	they	meet	all	the	Framework
rules.
	
6.			Click	Generate	Code.
7.			In	the	Generated	Code	page	specify	iiiCOM11	as	the	name	of	your	filter	and
Departments	Hidden	Filter	as	the	description.	(iii	are	your	initials.	If	you	are
using	an	unlicensed	or	trial	version	of	Visual	LANSA,	you	must	always	use
the	three	characters	DEM	to	replace	iii).

8.				Click	Create.
After	a	brief	delay	a	message	is	shown	indicating	the	WAM	has	been	created.
9.			Switch	to	the	Visual	LANSA	editor	to	see	your	filter	skeleton.
10.			Locate	the	event	routine	handling	the	#avFrameworkManager.uexecute
event.

11.			In	the	event	routine	add	a	statement	to	indicate	that	the	filter	will	be
hidden:
	
Set	Com(#thisfilter)	Avhiddenfilter(true)
	

	
12.			Add	these	statements	to	start	updating	the	instance	list	and	then	clear	it:
Invoke	Method(#avListManager.BeginListUpdate)
Invoke	Method(#avListManager.ClearList)

	
13.			Select	Departments	and	their	descriptions	from	the	DEPTAB	file:
Select	Fields(#DEPTMENT	#DEPTDESC)	From_File(DEPTAB)
With_key(#DEPTMENT)	Generic(*yes)
	
Invoke	#avListManager.AddtoList	Visualid1(#DEPTMENT)
Visualid2(#DEPTDESC)	AKey1(#DEPTMENT)
	
EndSelect

		
14.			Lastly	indicate	that	the	instance	list	update	is	complete:

	
Invoke	Method(#avListManager.EndListUpdate)
	

You	code	will	now	look	like	this:

	
15.			Select	the	Compile	option	in	the	Verify	menu.
16.			Ensure	that	the	All	webroutines	option	is	selected	for	the	Generate	XSL
option.

17.			Ensure	the	compilation	was	successful.
18.			Check	in	your	changes	to	the	server:

a.			Right-click	the	WAM	to	bring	up	the	associated	pop-up	menu	and	choose
the	Check	in	option.

b.				Ensure	that	the	All	webroutines	option	is	selected	for	the	Generate	XSL
option.

c.			Click	OK	to	check	the	changes	in.
d.			Wait	until	the	compiles	have	finished.
		

Now	that	you	have	compiled	your	new	filter	and	are	ready	to	test	it,	you	need	to
snap	it	into	the	Framework.
19.			In	the	Framework,	close	the	Program	Coding	Assistant.
20.			Select	the	iii	HR	application	and	double-click	on	the	Company
Departments	business	object.

21.			On	the	resulting	Business	Object	Properties	dialog,	click	on	the	Filters	tab.

22.			Select	the	New	Filter	which	is	created	by	default.
23.			Click	on	the	Filter	Snap-in	Settings	Tab.
24.				Click	on	the	WAM	property	radio	button	in	the	Web	Browser	group	box.
25.				Type	the	name	of	your	WAM	filter	(iiiCOM11)	into	the	entry	field.

	
26.			Close	the	Company	Departments’	properties.
27.			Save	the	Framework.		Accept	the	prompt	to	upload	the	Framework	and
wait	while	the	upload	completes.

28.		Use	the	(Framework)	menu	and	select	the	option	to	Execute	as	Web
Application...		Accept	the	default	options	and	press	OK.

29.		Select	the	iii	HR	application	in	the	web	Framework	and	then	the	Company
Departments	business	object

	

	
30.			Expand	a	Department.	Notice	that	no	Department	Sections	are	loaded.	You
will	create	the	relationship	handler	that	loads	the	sections	in	the	next	step.

31.			Close	the	application.
	
	

Step	4.	Create	a	Relationship	Handler	to	Load	Sections
In	this	step	you	will	create	a	relationship	handler	that	loads	Sections	into	the
instance	list	when	a	Department	is	expanded.
You	could	have	loaded	the	all	the	Sections	in	the	hidden	filter	code	together
with	the	Departments,	but	by	using	a	relationship	handler	you	can	improve	filter
performance	by	first	only	adding	root	or	parent	objects	to	the	instance	list	and
then	dynamically	adding	the	child	objects.
	
1.			In	the	Visual	LANSA	editor,	create	a	process	iiiPROC2	–	Framework
Functions.	Create	a	function	belonging	to	this	process.		Specify	iiiFN04	as
the	name	of	your	function	and	Relationship	Handler	as	the	description.	(iii	are
your	initials.	If	you	are	using	an	unlicensed	or	trial	version	of	Visual	LANSA,
you	must	always	use	the	three	characters	DEM	to	replace	iii).

2.			Replace	the	existing	code	in	the	function	with	this	code	that	indicates	that
this	function	is	a	relationship	handler:
FUNCTION	OPTIONS(*DIRECT	*LIGHTUSAGE)	RCV_LIST(#VIS_LIST
#PID_LIST	#COL1_LIST	#COL2_LIST	#COL3_LIST	#COL4_LIST
#COL5_LIST	#COL6_LIST	#COL7_LIST	#COL8_LIST	#COL9_LIST
#COLA_LIST)
	
INCLUDE	PROCESS(*DIRECT)	FUNCTION(VFREL1)
INCLUDE	PROCESS(*DIRECT)	FUNCTION(VFREL2)

The	VFREL1	and	VFREL2	functions	which	you	include	contain	the	standard
definitions	for	relationship	builder	functions.
	
3.			Next	clear	all	the	keys	and	additional	columns	in	the	instance	list:
EXECUTE	SUBROUTINE(CLEARKEYS)
EXECUTE	SUBROUTINE(CLEARCOLS)

			
The	subroutines	you	call	in	the	relationship	handler	are	contained	in	the
VFREL2	function.
	
4.			Get	the	key	value	of	the	selected	department:
	

CHANGE	FIELD(#DEPTMENT)	TO(#SRC_AK1)
		

	
5.			Select	the	sections	in	the	current	department	and	set	the	values	of	the
instance	list	entry:
SELECT	FIELDS(*ALL)	FROM_FILE(SECTAB)
WITH_KEY(#DEPTMENT)
				EXECUTE	SUBROUTINE(SETAKEY)	WITH_PARMS(1	#DEPTMENT)
				EXECUTE	SUBROUTINE(SETAKEY)	WITH_PARMS(2	#SECTION)
				EXECUTE	SUBROUTINE(SETNCOL)	WITH_PARMS(1	#SECPCODE)
				EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(1	#SECADDR1)
				EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(2	#SECADDR2)
				EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(3	#SECADDR3)
				EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(4	#SECPHBUS)
				EXECUTE	SUBROUTINE(ADDTOLIST)
WITH_PARMS('DEPARTMENT_SECTIONS'	#SECDESC	#SECTION)
ENDSELECT

	
The	SETAKEY	subroutine	sets	the		key	values	of	the	child	instance	list.	The
first	parameter	of	the	subroutine	is	the	key	position	and	the	second	parameter
is	the	value	of	the	key.	There	is	also	a	SETNKEY	subroutine	to	set	a	numeric
key.
The	SETNCOL	and	SETACOL	subroutines	add	additional	columns	for	the
child	instance	list	entry.
The	ADDTOLIST	subroutine	adds	the	entry	to	the	instance	list.	The	first
parameter	of	the	subroutine	is	the	child	business	object	name,	the	second
parameter	is	the	Visual	ID	1	column	and	the	third	parameter	is	the	Visual	ID	2
column.
	
	
Your	code	will	now	look	like	this:

		
6.			Compile	the	function.
7.			Check	in	your	changes	to	the	server:

a.			Right-click	the	WAM	to	bring	up	the	associated	pop-up	menu	and	choose
the	Check	in	option.

b.				Ensure	that	the	All	webroutines	option	is	selected	for	the	Generate	XSL
option.

c.			Click	OK	to	check	the	changes	in.
d.			Wait	until	the	compiles	have	finished.

	
8.			Display	the	Framework.
9.			Display	the	properties	of	the	Company	Departments	business	object.
10.			In	the	Instance	List/Relations	tab	select	the	Department	Sections	business
object.

11.			In	the	Relationship	Handler	field,	type	in	the	name	of	the	relationship
handler.

	
12.			Close	the	Company	Departments	properties.
13.			Save	the	Framework.		Accept	the	prompt	to	upload	the	Framework	and
wait	while	the	upload	completes.

14.		Use	the	(Framework)	menu	and	select	the	option	to	Execute	as	Web
Application...	Accept	the	default	options	and	press	OK.

15.		Select	the	iii	HR	application	in	the	web	Framework	and	then	the	Company
Departments	business	object

16.			Expand	a	department	in	the	instance	list	and	then	the	sections	underneath
it.

	
The	sections	in	each	department	you	expand	are	loaded	dynamically.
Note	that	only	the	section	name	and	identifier	are	shown	in	the	list.	In	the	next
step	you	change	the	instance	list	to	show	additional	columns	for	the	sections.
17.			Close	the	application.
	
	

Step	5.	Display	Additional	Columns	in	the	Instance	List
In	this	step	you	create	additional	columns	in	the	instance	list	to	show	all	the	data
loaded	for	sections	by	the	relationship	handler.
1.			Display	the	properties	of	the	Company	Departments	business	object.
2.			In	the	Instance	List	/	Relationships	tab	specify	these	additional	columns:

Column	Sequence Column	Type Column	Caption
30 ACOLUMN1 Street

40 ACOLUMN2 Town/Suburb

50 ACOLUMN3 State	and	Country

60 NCOLUMN1 Post	Code

70 ACOLUMN4 Phone

	

Your	instance	list	column	definitions	now	look	like	this:

3.			Close	the	properties	and	save	the	Framework.		Accept	the	prompt	to	upload
the	Framework	and	wait	while	the	upload	completes.

4.		Use	the	(Framework)	menu	and	select	the	option	to	Execute	as	Web
Application...

						Accept	the	default	options	and	press	OK.
5.		Select	the	iii	HR	application	in	the	web	Framework	and	then	the	Company
Departments	business	object

6.			Expand	a	department	in	the	instance	list	and	then	the	sections	underneath	it.
	

		
7.			Close	the	application.
	

Step	6.	Access	the	Properties	of	Hidden	Child	Objects
In	this	step	you	will	learn	how	to	access	the	properties	of	the	hidden	child
business	object	Department	Sections	which	is	not	visible	in	the	navigation	pane.
1.			Display	the	Framework	menu	and	select	the	Applications…	menu	option.
2.			Select	the	iii	HR	application.
3.			Select	the	Department	Sections	business	object	to	display	the	properties	of
the	Department	Sections	business	object.

		
4.				Close	the	properties	of	the	Department	Sections	business	object.
	
There	is	also	an	alternative	way	of	displaying	the	properties	of	child	business

objects	which	are	not	accessible	from	the	navigation	pane:
5.			Display	the	sections	in	a	department	in	the	instance	list.
6.			Double-click	on	a	section	to	display	the	properties	of	the	Department
Sections	business	object.

	

Summary
Important	Observations
You	can	create	instance	lists	that	contain	more	than	one	type	of	object.	You	do
this	by	defining	relationships	between	business	objects.	The	relationships	can
either	be	peer-to-peer	or	parent-child.
In	situations	where	you	want	to	completely	fill	the	business	object	instance	list
programmatically,	the	filter	has	no	meaningful	interaction	with	the	end-user
and	can	be	hidden	from	view.
A	relationship	handler	is	an	RDML	function	that	is	called	to	dynamically
expand	the	relationship	between	a	parent	and	child	object.	By	doing	this	you
can	improve	filter	performance	by	only	adding	root	or	parent	objects	to	the
instance	list	initially.
The	Framework	instance	list	can	display	up	to	10	alphanumeric	and/or	10
numeric	additional	columns	in	an	instance	list.

Tips	&	Techniques
The	Advanced	section	of	the	Programming	Techniques	sample	application	has
examples	of	advanced	instance	lists.
LANSA	supplies	a	sample	relationship	handler	to	copy	from	when	creating
your	relationships.		The	source	is	stored	in	function	DF_REL01	in	the	process
DF_PROC.

What	I	Should	Know
How	to	create	a	parent-child	relationship	between	business	object
How	to	create	a	hidden	filter
How	to	write	a	relationship	handler
How	to	add	additional	columns	to	the	instance	list

	

	

	

	

VLF012WAM	-	Controlling	Navigation	Using	Switching	and	the
Virtual	Clipboard
Objectives
To	learn	how	to	use	switching	to	swap	control	between	different	business
objects	and	to	execute	commands	at	the	Framework,	application	or	business
object	level	(see	Object	Switching	Service).
To	learn	to	use	The	Virtual	Clipboard	to	store	the	switch	history.

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Create	a	Filter	for	Department	Sections
Step	2.	Create	a	Details	Command	Handler	for	Department	Sections
Step	3.	Add	Logic	to	Switch	from	Sections	to	the	Employees	Business	Object
Step	4.	Record	Switch	History	using	the	Virtual	Clipboard
Step	5.	Use	the	Switch	History	to	Return	to	the	Original	Business	Object
Summary
	
Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
Tutorials	VLF000	–	VLF007WAM	and	VLF011WAM

Step	1.	Create	a	Filter	for	Department	Sections
In	this	step	you	will	make	the	Department	Sections	business	object	visible	in	the
navigation	pane	and	create	a	filter	for	it.
You	need	to	do	this	in	preparation	for	the	switching	exercise	because	object
switching	can	only	be	performed	on	objects	which	are	visible	in	the	navigation
pane.
	
1.			In	the	Framework,	display	the	properties	of	the	Company	Departments
business	object.

2.			Display	the	Instance	List	/	Relationships	tab.
3.			Select	Department	Sections	in	the	list	on	the	bottom	left.
4.			Select	the	option	Department	Sections	–	Allow	Selection	from	Navigation
Pane.

	
5.			Close	the	properties	of	the	Company	Departments	business	object.	The
Department	Sections	business	object	is	now	visible	in	the	navigation	pane.

6.			Display	the	properties	of	the	Department	Sections	business	object.
7.			Change	the	icon	for	example	to	 .
	
Next	you	need	to	replace	the	mock-up	filter	in	the	Sections	business	object	with
a	functional	filter	to	populate	the	instance	list:

8.			Start	the	Program	Coding	Assistant.
9.			Select	the	Department	Sections	business	object	in	the	iii	HR	application.
10.			Select	New	Filter,	WAM	as	the	platform	and	a	Filter	that	searches	using	a
file	or	a	view.

11.			Click	Next.
12.			Specify	SECTAB	as	the	physical	file,	and	SECTION	and	SECDESC	as	the
visual	identifiers.

		
13.			Accept	the	other	defaults	set	by	the	Program	Coding	Assistant	and	click
Next.

14.			Specify	DEPTMENT	field	as	the	key	to	be	used	for	search	operations.
15.			Click	Generate	Code.

16.			On	the	Generated	Code	page	specify	iiiCOM12	as	the	name	of	your	filter
and	Sections	Filter	as	the	description.	(iii	are	your	initials.	If	you	are	using	an
unlicensed	or	trial	version	of	Visual	LANSA,	you	must	always	use	the	three
characters	DEM	to	replace	iii).

17.			Click	Create.	You	will	shortly	see	a	message	saying	the	component	has
been	created.

18.			Switch	to	the	Visual	LANSA	Editor.
19.			Compile	the	filter.
20.			Check	the	filter	and	its	associated	layout	weblet	into	the	server.
21.			In	the	Framework,	snap	the	filter	in	the	Department	Sections	business
object.

22.			Save	the	Framework	definition	and	upload	it	to	the	server.
23.			Execute	the	Framework	as	a	web	application.
24.			Test	the	filter.

	
	25.			Close	the	application.
	

Step	2.	Create	a	Details	Command	Handler	for	Department
Sections
In	this	step	you	will	create	a	Details	command	handler	which	will	show	the
employees	in	the	selected	Section.
1.			Start	the	Program	Coding	Assistant.
2.			Select	the	Department	Sections	business	object	in	the	iii	HR	application.
3.			Select	the	Command	Handler	->	Details.
4.			Select	Web	–	using	WAM	components	as	the	platform.
5.			Select	Skeleton	Command	Handler:

	
6.			Click	Next.

7.			Make	sure	the	option	Include	Default	Save	Button	and	Logic	is	not	selected.
8.			Click	Generate	Code.
9.		In	the	Generated	Code	page	specify	iiiCOM13	as	the	name	of	your	command
handler	and	Section	Details	as	the	description.	(iii	are	your	initials.	If	you	are
using	an	unlicensed	or	trial	version	of	Visual	LANSA,	you	must	always	use
the	three	characters	DEM	to	replace	iii).

10.			Click	Create.
11.			Wait	until	you	see	a	message	stating	that	the	component	has	been	created.
12.			Switch	to	the	Visual	LANSA	editor.
13.			Locate	the	comment	saying	Map	fields	used	in	this	form.
14.			Add	these	statements	underneath	the	comment:
Def_list	Name(#WAM_LIST)	type(*working)	Fields(#EMPNO	#SURNAME
#GIVENAME)
Web_Map	For(*both)	Fields(#WAM_LIST)

The	WAM_LIST	working	list	specifies	the	fields	to	be	shown	on	the	command
handler.	The	Web_Map	statement	displays	the	fields.

Your	code	will	now	look	like	this:

	
15.			Add	this	code	in	the	routine	handling	the
#avFrameworkManager.uInitialize	event	to	determine	which	section	is
selected:		
	
Invoke	#avListManager.GetCurrentInstance	Found(#Ret_Code)
AKey1(#DEPTMENT)	AKey2(#SECTION)
	

Ignore	the	error	message.	Your	code	will	now	look	like	this:

	
16.			Add	this	code	in	the	routine	handling	the	#avFrameworkManager.uExecute
event:
Define	#Ret_Code	reffld(#IO$STS)
Def_cond	Name(*RetOkay)	Cond('#Ret_Code	=	OK')
	
Clr_list	#WAM_LIST
	
Select	fields(#WAM_LIST)	from_file(PSLMST1)	with_Key(#DEPTMENT
#SECTION)
Add_Entry	#WAM_LIST
EndSelect

	
If	the	return	code	from	the	avListManager.GetCurrentInstance	method	is	OK,
this	code	selects	the	employee	fields	from	the	PSLMST1	logical	view	and	adds
them	to	the	command	handler.
Your	code	will	now	look	like	this:

	
16.			Compile	the	command	handler.
17.			Display	the	Design	tab	to	see	the	command	handler	user	interface.
	
You	will	only	need	one	of	the	buttons	created	by	the	Program	Coding	Assistant
in	the	command	handler:

18.			Select	PUSHB2	and	right-click,	then	select	the	option	Delete	Weblet:
ub_pushb2

	
19.			To	align	the	remaining	button	on	the	right,	select	the	table	containing	it,
display	the	Details	tab	and	set	the	Align	property	to	right:

		
Your	command	handler	now	looks	like	this:

	
20.			Save	and	compile	the	command	handler.
21.			Check	the	WAM	and	its	associated	layout	weblet	into	the	server	with	the
Compile	option	selected.

22.			In	the	Framework,	snap	the	command	handler	in	the	Details	command	of
the	Department	Sections	business	object.

23.			Save	the	Framework	and	upload	the	details	to	the	server.
24.			Execute	the	Framework	as	a	Web	application.
25.			Test	your	command	handler.

		
26.			Close	the	application.
	

Step	3.	Add	Logic	to	Switch	from	Sections	to	the	Employees
Business	Object
In	this	step	you	will	add	logic	to	the	Sections’	Details	command	handler	to
display	the	details	of	a	section's	employees	in	the	Details	command	handler	of
the	Employees	business	object.
The	switch	to	the	Employees’	Details	command	handler	is	executed	in	the
button	click	event.
	
1.			Display	the	Source	tab	of	the	Section	Details	command	handler.
2.			Locate	the	Override	Field(#UB_PUSHB1)	statement	and	change	it	to:
	
Override	Field(#UB_PUSHB1)	Default('Details')
	

3.				In	the	#avFrameworkManager.uWAMEvent_1	eventroutine	(handling	the
Details	button	click	event)	add	this	code	to	clear	the	instance	list	in	the
Employee	Details	command	handler	and	populate	it	with	the	selected
section's	employees:
Invoke	Method(#avListManager.BeginListUpdate)
ForBusineesObject(EMPLOYEES)
	
Invoke	Method(#avListManager.ClearList)
	
Select	Fields(#EMPNO	#GIVENAME	#SURNAME)	From_File(PSLMST1)
With_key(#DEPTMENT	#SECTION)	Generic(*yes)	Nbr_Keys(*Compute)
	
Invoke	#avListManager.AddtoList	Visualid1(#EMPNO)
Visualid2(#SURNAME)	AColumn1(#givename)AKey1(#EMPNO)
EndSelect
	
Invoke	Method(#avListManager.EndListUpdate)

	
In	WAM	command	handlers	you	can	name	the	instance	list	you	want	to	use,	in
this	case	the	instance	list	for	business	object	EMPLOYEES.	(In	Windows	you
use	the	avAddSwitchInstances	event	to	work	with	another	business	object's
instance	list.)

	
4.		Then	add	a	statement	to	switch	to	the	Details	command	handler	of	the
Employees	business	object:
	
#avframeworkmanager.avSwitch	To(BUSINESSOBJECT)
NAMED(EMPLOYEES)	EXECUTE(DETAILS)		Caller(#com_owner)	
	
The	To	parameter	contains	BUSINESSOBJECT	to	indicate	the	switch	is	to	a
business	object	(you	can	also	switch	to	the	Framework	or	an	application).	
The	NAMED	parameter	must	contain	your	actual	business	object	name.	
The	EXECUTE	parameter	contains	the	name	of	the	command	to	execute.	
	
Your	code	will	now	look	like	this:

	
5.			Compile	the	command	handler	and	check	it	in.
6.			Execute	the	Framework	as	a	web	application.
7.			Test	the	switching:	when	you	select	a	section	and	click	on	the	Details	button
on	the	command	handler,	the	Employees	business	object	is	displayed	with	the
section's	employees	in	the	instance	list.	The	details	of	the	first	employee	in
the	list	are	shown.

		
8.			Close	the	application.
	

Step	4.	Record	Switch	History	using	the	Virtual	Clipboard
In	this	step	you	will	record	the	switch	history	using	the	virtual	clipboard	so	that
the	end-user	will	be	able	return	to	the	object	that	initiated	the	switch.
To	use	the	virtual	clipboard	most	effectively	you	need	to	devise	a	standardized
naming	protocol	for	items	that	are	posted	onto	it.	In	this	exercise	you	will	use
this	standard	to	store	the	switch	history:

ID1 SWITCH_HISTORY

ID2 OBJECT_NAME/COMMAND_NAME

FromAValue <object	or	command	name>

	

In	effect	you	will	be	storing	a	switch	history	table	on	the	clipboard.		The	first
key	or	ID	is	the	code	SWITCH_HISTORY	to	indicate	that	all	records	with	this
ID	are	related	to	switching	history.	
The	ID2	indicates	whether	you	are	switching	to	a	business	object	or	command.	
The	actual	business	object	name	and	command	name	are	placed	in	the	clipboard
using	the	FromAValue	parameter.		You	can	use	avobjecttype	to	get	the	current
business	object	name	and	avcommandtype	to	get	the	current	command	name.	
You	should	not	hard	code	these	values.
	
1.			Display	the	Source	tab	of	the	Sections’	Details	command	handler.
2.			In	the	#avFrameworkManager.uWAMEvent_1	eventroutine,	before	the
avSwitch	command,	write	this	code	to	add	the	appropriate	records	to	the
switch	history:	
	
#avframeworkmanager.avsavevalue	WithID1(SWITCH_HISTORY)
WithID2(OBJECT_NAME)	FromAValue(#ThisHandler.avObjectType)
	
#avframeworkmanager.avsavevalue	WithID1(SWITCH_HISTORY)
WithID2(COMMAND_NAME)
FromAValue(#ThisHandler.avCommandType)
	

Your	code	should	now	look	like	this:

	

3.			Compile	the	command	handler	and	check	it	in.
4.			Close	the	command	handler.
	

Step	5.	Use	the	Switch	History	to	Return	to	the	Original	Business
Object
In	this	step	you	will	use	the	switch	history	to	allow	the	end-user	to	return	to	the
Sections	business	object	from	where	they	initiated	the	switch.
1.			Open	the	Employees’	Details	command	handler	iiiCOM06.
2.			Display	the	Design	tab.
3.			In	the	Repository	tab,	locate	Weblets,	then	the	ub_pushb1	weblet.

	
4.			Drag	and	drop	the	ub_pushb1	weblet	next	to	the	Save	button	in	the
command	handler.

	
5.			Display	the	Source	tab.

6.			Add	this	code	before	the	UHandleEvent	webroutine	to	set	the	caption	of	the
button	to	Back:
Override	Field(#UB_PUSHB1)	Default('Back')
Web_Map	For(*both)	Fields(#UB_PUSHB1)

	
7.			In	the	UHandleEvent	register	the	Back	button	Click	event:
Invoke	Method(#avFrameworkManager.avRegisterEvent)
Named(UB_PUSHB1.CLICK)	Signalaswamevent(2)

	
The	UHandleEvent	will	now	look	like	this:

	
8.			Next	scroll	to	the	end	of	the	WAM	source	and	add	an	event	routine	to	handle
the	Back	button	Click	event:
Evtroutine	Handling(#avFrameworkManager.uWAMEvent_2)
Options(*noclearmessages	*noclearerrors)
Endroutine

	
9.			In	this	routine	add	this	code	so	that	when	the	users	click	on	the	button,	they
will	be	switched	back	to	the	business	object	from	which	they	came:
define	field(#ff_objnme)	TYPE(*CHAR)	LENGTH(32)	DESC('Object
Name')
define	field(#ff_cmdnme)	TYPE(*CHAR)	LENGTH(32)	DESC('Command
Name')

	
#avframeworkmanager.avrestorevalue	WithID1(SWITCH_HISTORY)
WithID2(OBJECT_NAME)	ToAValue(#ff_objnme)
#avframeworkmanager.avrestorevalue	WithID1(SWITCH_HISTORY)
WithID2(COMMAND_NAME)	ToAValue(#ff_cmdnme)
	
#avframeworkmanager.avSwitch	To(BUSINESSOBJECT)
NAMED(#ff_objnme)	EXECUTE(#ff_cmdnme)	Caller(#com_owner)

	
When	you	want	to	send	the	user	back	to	the	component	from	which	the	switch
occurred,	you	need	to	look	at	the	switch	history	on	the	virtual	clipboard.	
Remember	that	you	need	to	retrieve	both	the	business	object	and	the	command
to	which	you	need	to	return.		That	requires	retrieving	two	values	from	the
virtual	clipboard.
The	code	first	retrieves	the	OBJECT_NAME	or	business	object	value	and	then
the	COMMAND_NAME	or	command	value.	
When	you	have	these	two	values	you	can	perform	another	switch	to	return	to
the	previous	component.
	Your	code	should	look	like	this:

	
10.			Compile	the	command	handler	and	check	it	in.
	
You	are	now	ready	to	test	the	switch	history:
11.			In	the	Framework	select	a	section	from	the	Department	Sections	business
object.

12.			Display	the	details	of	the	section's	employees	by	clicking	on	the	Details
button.

13.			On	the	Details	command	handler	of	the	Employees	business	object	click	on

the	Back	button	to	return	to	the	Sections	business	object.

	
14.			Close	the	application.
	

Summary
Important	Observations
The	Framework	switching	service	allows	your	filters	and	command	handlers
to	switch	control	between	different	business	objects	and	to	execute	commands
at	the	Framework,	application	or	business	object	level.
The	target	business	object	must	be	able	to	be	selected	from	the	menu	(the
option	Allow	selection	from	the	navigation	pane	in	the	target	business	object
properties	should	be	checked,	and	the	user	should	be	authorized	to	the	business
object),	at	the	time	the	switch	occurs.	Switching	mimics	the	actions	that	a	user
would	perform.
You	can	use	the	Virtual	Clipboard	for	remembering	and	exchanging
information.
To	use	the	virtual	clipboard	most	effectively	you	need	to	devise	a	standardized
naming	protocol	for	items	that	are	posted	onto	it.
	
Tips	&	Techniques
The	Advanced	section	of	the	Programming	Techniques	sample	application	has
examples	of	switching	and	remembering	values	(virtual	clipboard).

What	I	Should	Know
How	to	switch	between	business	objects
How	to	use	the	virtual	clipboard	to	record	switch	history	so	that	the	end-users
can	switch	back	to	object	where	the	switch	was	initiated.

	

	

VLF013WAM	-	Signaling	Events
Objectives
To	learn	how	to	signal	that	an	event	has	happened	in	your	filter	or	command
handler	to	other	active	filters	or	command	handlers	so	that	they	can	take
appropriate	action	(see	Event	Signaling	Service).
To	learn	how	to	update	an	entry	in	the	instance	list	(see	Filters	and	List
Manager).

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Change	Employee	Surname	and	Save	the	Changes
Step	2.	Add	the	avSignalEvent	to	the	Employee	Details	Command	Handler

Step	3.	Add	a	Routine	to	Listen	for	the	EMPLOYEE_CHANGED	Event
Step	4.	Test	Signaling
Summary
	
Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
Tutorials	VLF000	–	VLF007WAM	and	VLF009WAM

Step	1.	Change	Employee	Surname	and	Save	the	Changes
In	this	step	you	will	change	the	surname	of	an	employee	and	save	the	changes.
The	instance	list	will	not	reflect	the	change	because	the	filter	does	not	know
about	the	change	event.
The	By	Location	and	By	Date	filters	for	the	Employee	business	object	are	no
longer	required,	so	you	can	delete	them		before	this	step	(if	you	have	completed
the	Windows	tutorials,	you	will	already	have	removed	them	from	your
Framework	design).
1.			Display	the	Employees	business	object	in	the	iii	DEM	application.
2.			Use	the	By	Name	filter	to	add	entries	to	the	instance	list.
3.			Select	one	of	the	entries	and	change	the	employee	surname	in	the	Details
command	handler.

4.			Click	the	Save	button.	Notice	that	the	new	surname	is	not	reflected	in	the
instance	list	entry:

	
In	the	following	steps	you	will	use	the	signal	method	in	the	Details	command
handler	to	notify	the	Employees	filter	that	an	employee	has	changed.	You	will
then	add	code	to	update	the	instance	list.
5.			Close	the	application.
	
	

Step	2.	Add	the	avSignalEvent	to	the	Employee	Details	Command
Handler
In	this	step	you	change	the	#avFrameworkManager.uWAMEvent_1
eventroutine	in	the	Employee	Details	command	handler	to	signal	that	employee
details	have	changed.
1.			Locate	and	open	the	Employee	Details	command	handler	iiiCOM06.
2.			Display	the	Source	tab.
3.			Locate	the	#avFrameworkManager.uWAMEvent_1	eventroutine.		Add	the
following	code	before	the	Endroutine	statement:
	
Invoke	#ThisHandler.avSignalEvent	WithId(EMPLOYEE_CHANGED)
SendAInfo1(#EMPNO)	to(BUSINESSOBJECT)	

		
Your	code	will	look	like	this:

	
You	use	the	avSignalEvent	method	when	there	is	an	event	you	would	like	other
components	within	the	Framework	to	be	notified	about:	
You	place	the	event	id	to	be	signaled	in	the	WithID	parameter	and	any
alphanumeric	or	numeric	values	you	want	to	pass	in	the	SendAInfon	or
SendNInfon	parameters,	where	n	is	1,…,5.		In	this	example	the	event	is
EMPLOYEE_CHANGED	and	the	employee	number	is	the	value	to	be	passed.
By	default	the	value	of	the	To	parameter	is	FRAMEWORK	which	means	any
active	component	in	the	framework	will	receive	this	signal	and	will	need	to
test	to	see	if	it	pertains	to	them.		If	you	know	that	the	event	only	pertains	to	the
business	object	in	which	this	component	resides,	you	should	set	the	parameter
To	equal	to	BUSINESSOBJECT	so	that	a	very	limited	set	of	components	are
notified	of	this	event.		Using	this	technique	will	improve	performance	of	your
application.
	

4.			Compile	the	command	handler	and	check	it	into	the	server.
5.			Close	the	command	handler.
	

Step	3.	Add	a	Routine	to	Listen	for	the	EMPLOYEE_CHANGED
Event
In	this	step	you	will	change	the	Employees	filter	to	listen	for	the
EMPLOYEE_CHANGED	event.
1.			Locate	and	open	the	Employees	filter	iiiCOM04.
2.			Display	the	Source	tab.
3.			Register	the	EMPLOYEE_CHANGED	event	in	the	UHandleEvent
webroutine:
	
Invoke	Method(#avFrameworkManager.avRegisterEvent)
Named(EMPLOYEE_CHANGED)	Signalaswamevent(2)

	
The	UHandleEvent	will	now	look	like	this:

4.			Scroll	to	the	end	of	the	WAM	source	and	add	an	event	routine	to	listen	for
the	EMPLOYEE_CHANGED	event	signal:
Evtroutine	Handling(#avFrameworkManager.uWAMEvent_2)
Withid(#eventid)	WithAinfo1(#Ainfo1)	Options(*noclearmessages
*noclearerrors)
	
Endroutine

		
5.			In	the	event	routine	first	add	code	to	check	the	event	id:

If	'#EventId.Value	=	EMPLOYEE_CHANGED'
	
Endif

	
6.			Then	save	the	current	key	values	from	overwrites	done	by	the	select	loop:
	
Inz_List	#Save_Keys	1
	

	
7.			Assign	the	value	passed	by	the	signaled	event	to	the	EMPNO	field:
	
#EmpNo	:=	#AInfo1
	

	
8.			Start	updating	the	instance	list:
	
Invoke	Method(#avListManager.BeginListUpdate)
	

	
9.			Fetch	the	details	of	the	employee	that	has	been	updated:
	
FETCH	FIELDS(#SURNAME	#GIVENAME	#EMPNO)
FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
	

	
10.			Update	the	entry	in	the	instance	list:
	
Use	Builtin(BCONCAT)	With_Args(#SURNAME	#GIVENAME)
To_Get(#FULLNAME)
Invoke	#avListManager.AddtoList	Visualid1(#EMPNO)
Visualid2(#FULLNAME)	AKey1(#EMPNO)
	

	
11.			Complete	the	instance	list	update:

	
Invoke	Method(#avListManager.EndListUpdate)
	

	
12.			Lastly	restore	the	saved	key	values:
	
Get_Entry	1	#Save_Keys
	

	
Your	finished	code	will	look	like	this:

13.			Compile	the	filter	and	check	it	in.
	

Step	4.	Test	Signaling
In	this	step	you	will	test	the	signaling	of	the	EMPLOYEE_CHANGED	event.
1.			Start	the	Framework	as	a	web	application.
2.			Select	the	iii	DEM	application	and	the	Employees	business	object.
3.			Use	the	filter	to	populate	the	instance	list.
4.			Select	an	employee	and	change	the	surname.
5.			Click	Save.	Notice	that	the	filter	now	listens	for	the
EMPLOYEE_CHANGED	event	and	updates	the	list	entry:

			

6.			Close	the	application.
	

Summary
Important	Observations
The	Framework	manager	provides	a	simple	to	use	event	signaling	service	that
may	be	used	in	Windows	or	Web	browser	applications.
To	make	event-processing	work	you	need	a	filter	or	command	handler	that
signals	the	event	and	other	filters	or	command	handlers	that	listen	for	the
event.	Additional	information	may	be	sent	along	with	the	event.
To	update	an	instance	list	entry	you	use	the	#avListManager.AddtoList
method.
	
Tips	&	Techniques
	
What	I	Should	Know
How	to	signal	an	event
How	to	listen	for	a	signaled	event
How	to	update	an	entry	in	the	instance	list

	

VLF014WAM	-	Debugging/Tracing
Objectives
To	learn	how	to	use	the	tracing	service	to	help	you	locate	problems	in	your
filters	or	command	handlers.	(See	Basic	Tracing	Service.)

To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Add	a	Trace	Statement	to	Indicate	Enter	Key	Was	Pressed
Step	2.	Add	More	Trace	Statements
Summary
Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:

Tutorials	VLF000	–	VLF007WAM.

Step	1.	Add	a	Trace	Statement	to	Indicate	Enter	Key	Was	Pressed
In	this	step,	you	will	add	a	trace	statement	to	show	when	the	Search	button	was
clicked	in	the	Employees	filter.
1.			In	the	Visual	LANSA	editor	open	the	Employees	filter	iiiCOM04.
2.			Display	the	Source	tab.
3.			Locate	the	event	routine	handling	Search	button	click	event
(#avFrameworkManager.uWAMEvent_1).

4.			Add	this	tracing	command	in	the	beginning	of	the	event	handling	routine:
	
Invoke	#AvFrameworkManager.AvRecordTrace	Component(#Com_Owner)
Event('	*	The	Search	button	was	clicked	*')
	

	
5.			Compile	the	filter	and	check	it	into	the	server.
6.			Start	the	Framework	as	a	web	application.
7.			In	the	Execute	Framework	as	a	Web	Application	dialog	select	theTurn
Tracing	On	option	and	click	OK:

The	Framework	and	the	Trace	Details	windows	are	displayed:

	
The	Tracing	information	displays	detailed	information	about	the	execution	of
your	Framework.

8.			Expand	the	iii	HR	application	and	select	the	Employees	business	object.
(Move	the	tracing	window	to	the	side	if	necessary).

9.			In	the	Tracing	window	click	on	the	Clear	button	to	clear	the	trace
information.

10.			Type	in	a	partial	name	in	the	Employee	filter	and	click	the	Search	button.
The	tracing	window	will	now	show	that	the	Search	button	was	clicked	(scroll
the	trace	details	to	locate	your	trace	event).

		
	

Step	2.	Add	More	Trace	Statements
In	this	step,	you	will	add	another	trace	statement	to	the	filter.	The	statement	will
show	when	the	EMPLOYEE_CHANGED	event	was	signalled	and	the
employee	number	passed.
	
1.			Locate	the	event	routine	handling	the	EMPLOYEE_CHANGED	event
(#avFrameworkManager.uWAMEvent_2)	and	add	this	statement	to	trace
when	the	EMPLOYEE_CHANGED	event	is	triggered	and	to	show	the
employee	number	passed	by	the	event:
	
#AVFRAMEWORKMANAGER.avRecordTraceAValue
Component(#COM_OWNER)	AValue(#EMPNO)
Event(EMPLOYEE_CHANGED)
	

	

		
	
2.			Compile	the	filter	and	check	it	in.

3.			In	the	Framework	select	employees	using	the	filter	and	then	select	one
employee	to	display	the	Employee	Details	command	handler.

4.			Change	one	of	the	employee	details	and	click	the	Save	button.
5.			Notice	the	EMPLOYEE_CHANGED	event	and	the	employee	number	are
shown	in	the	trace:

		
6.			Close	the	Framework.
	
	

Summary
Important	Observations
The	Framework	manager	provides	a	basic	tracing	service	to	help	you	locate
problems	in	your	filters	or	command	handlers.
The	tracing	service	can	be	used	in	conjunction	with,	or	independently	of,	the
normal	LANSA	application	debugging	and	tracing	facilities.
	

Tips	&	Techniques
You	can	leave	these	method	calls	inside	your	code.		The	only	time	they	have
any	effect	is	if	tracing	is	turned	on.		Implementing	tracing	using	this	method	is
ideal	as	you	don’t	have	to	remove	the	code	at	all	if	you	do	not	wish	to	do	so.
The	trace	information	can	give	you	a	lot	of	detailed	information	about	what
has	happened	which	saves	you	having	to	run	your	application	in	debug	mode.	
	
What	I	Should	Know
How	to	trace	Framework	applications
How	to	trace	specific	events	in	a	filter	or	command	handler
	
	
	
	

Tutorials	for	Deployment
Applies	to	Windows	only.
Includes:
VLF008WIN	-	Deploying	the	Windows	Framework
When	your	application	is	complete,	you	use	the	Deployment	Tool	to	create	a
package	which	will	contain	the	software	to	be	installed	by	your	users.
The	way	you	create	your	package	varies	depending	on	the	environment	it	is	to
be	used	in.	In	this	tutorial,	you	will	learn	how	to	deploy	the	Framework	with	the
tutorial	application	for	independent	PCs.

The	application	is	to	run	independently	on	every	PC	that	it	is	installed	on.	Your
users	will	be	starting	up	the	Framework	as	end-users.
The	Deployment	Tool	is	a	feature	of	Visual	LANSA	and	is	not	specific	to	the
Visual	LANSA	Framework.	For	more	details,	refer	to	the	LANSA	Application
Deployment	Tool	Guide.
Refer	to	Visual	LANSA	Framework	Deployment	Check	Lists	guide	for	detailed
information	on	how	to	deploy	your	application.
	

mk:@MSITStore:lansa047.chm::/Documents/vlfdeploymentchecklists.htm

VLF008WIN	-	Deploying	the	Windows	Framework
Objective
Learn	how	to	deploy	your	Windows	Framework	applications.
To	achieve	this	objective,	you	will	complete	the	following	steps:
Step	1.	Create	the	Package
Step	2.	Specify	the	Startup	Form	and	Database	Type
Step	3.	Disable	all	Prompting
Step	4.	Add	Framework	Components
Step	5.	Add	Other	Framework	Objects
Step	6.	Add	Your	Own	Components
Step	7.	Add	the	Data
Step	8.	Add	an	Icon
Step	9.	Check	the	Package
Step	10.	Build	the	Package
Step	11.	Ship	the	Package
Summary

Before	You	Begin
Note	that	this	tutorial	is	only	an	outline	of	steps	and	options	to	select	to	deploy
the	Framework	and	the	tutorial	application.
Your	real	application	might	contain	objects	other	than	your	filters,	command
handlers,	etc	that	must	also	be	deployed.	For	example,	if	your	application	uses	a
Date	handling	BIF	like	CONVERTDATE	you	might	have	to	add	messages
BIF0101	and	BIF0102	from	the	LANSA	system	message	file	DC@M01.
You	may	wish	to	review:
The	Visual	LANSA	Framework	Deployment	Check	Lists	guide	for	detailed
information	on	how	to	deploy	your	application..
In	order	to	complete	this	tutorial,	you	must	have	created	an	application	ready	to
be	deployed.
	

mk:@MSITStore:lansa047.chm::/Documents/vlfdeploymentchecklists.htm

Step	1.	Create	the	Package
To	create	a	package	for	your	software:
1.		Start	the	Deployment	Tool	from	the	Tools	tab	on	the	ribbon.
2.		Click	on	the	New	Application	button.
					The	New	Application	dialog	is	displayed:

3.		Create	the	new	application	with	the	name	iiiTUT	where	iii	are	your	initials.
					Make	its	description	Framework	tutorial	application.
4.	If	you	have	a	company	defined,	select	it.		
If	you	don't	have	a	company,	create	a	company	using	the	company	prompt	and
the	new	company	button	on	the	company	dialog.

	

	

					Click	OK.
5.	With	the	company	selected,	create	the	application.		

	
					The	application	is	created	and	the	New	Package	dialog	is	displayed:

4.		Create	a	new	package	in	the	iiiTUT	application	using	the	package	template
called	XALONE.

					Make	its	description	Version	1	of	Framework	tutorial	application.
					Click	Create.

Step	2.	Specify	the	Startup	Form	and	Database	Type
You	will	be	deploying	your	application	to	end-users	who	will	not	require	the
design	or	administration	facilities	of	the	Framework.	In	this	step,	you	will	make
the	Framework	run	in	user	mode.
1.		Click	on	the	parameter	Form	to	Execute	(FORM=)	in	the	Required	execution
parameters	area.

2.		Specify	UF_EXEC	in	the	window	which	is	displayed.

3.		Close	the	window.
By	default	the	application	will	be	deployed	on	a	PC	which	has	MS	SQL	Server
database	system	installed.	If	the	PC	on	which	you	plan	to	deploy	the	package
has	another	type	of	database,	specify	it	by	clicking	the	DBMS	Type	parameter.

Step	3.	Disable	all	Prompting
When	the	end-user	executes	your	package,	you	do	not	want	to	prompt	for	any
setup	parameters.	To	disable	the	prompting,	select	the	parameter	and	uncheck
Prompt	in	X_START.
1.		For	example,	disable	the	Prompting	of	the	Current	Language	option.
					Double-click	the	Language	(LANG=)	parameter.
					Deselect	the	Prompt	in	X_START	check	box	in	the	window	which	is
displayed.

					Close	the	window.
2.		Check	all	the	Required	Execution	Parameters	and	make	sure	the	prompting
is	turned	off	for	all	of	them!

	

Step	4.	Add	Framework	Components
Next,	you	add	the	components	that	make	up	the	Framework	to	the	package.
1.		Click	on	the	Objects	button	on	the	toolbar.
2.		Expand	the	Reusable	parts	node.

a.		Select	all	components	starting	with	FP_*	and	drag	them	to	the	area	on	the
right.

b.		Select	all	components	starting	with	UF_*	and	drag	them	to	the	area	on	the
right.

c.		Select	all	components	starting	with	VF_*	and	drag	them	to	the	area	on	the
right.

And	if	you	want	to	be	able	to	run	the	demonstration	system:
d.		Select	all	components	starting	with	DF_*,	DM_*,	DX_*,	iiiCOM*	and
drag	them	to	the	area	on	the	right.

	
3.		Next	select	all	the	forms:

a.		Expand	the	forms.
b.		Select	all	components	starting	with	FP_*	and	drag	them	to	the	area	on	the
right.

c.		Select	all	components	starting	with	UF_*	and	drag	them	to	the	area	on	the
right.

d.		Select	all	components	starting	with	VF_*	and	drag	them	to	the	area	on	the
right.

And	if	you	want	to	be	able	to	run	the	demonstration	system:
e.		Select	all	components	starting	with	DF_*,	DM_*,	DX_*,	iiiCOM*	and
drag	them	to	the	area	on	the	right.

	
	

4.		Next	select	processes	and	functions:
a.Expand	Processes/Functions.

Locate	process	UF_SYSBR	and	process	VF_PR001	and
VF_PROX1	and	drag	them	to	the	area	on	the	right.

If	you	want	to	run	the	demonstration	system,	also	add	processes
starting	with:	DF_*,	DFX*,	UF_*,	VF_*,	iiiPROC*.

5.		If	the	end-user	will	be	storing	user	information	in	DBMS	tables	VFPPF06/07
(See		Store	Users	in	XML	File	and	Store	users	in	DBMS	Tables	VFPPF06/07
)	you	need	to	include	them	in	the	package:
a.	Bring	up	the	Other	Objects	tab.
b.		Expand	the	Files	node	and	then	all	files	starting	with	V.

Select	files	VFPPF06	and	VFPPF07	and	drag	them	to	the	right-
hand	side	of	the	window.

If	you	want	to	run	the	demonstration	system,	also	add	these	files:
DEPTAB,	DXDOCS,	FP*,	PSL*,	SECTAB	and	SKLTAB.

6.		For	a	complete	list	of	Framework	objects	see	section		Framework	Repository
Objects	.

Step	5.	Add	Other	Framework	Objects
You	also	need	to	include	some	other	Framework	objects	in	the	package.
1.		Double-click	Non-LANSA	Objects	to	browse	for	the	objects..

2.		Locate	your	XML	files	in	the	execute	directory	of	your	partition	(for
example	C:\Program	Files\LANSA\X_WIN95\X_LANSA\x_DEM\execute).

3.		Select	VF_SY001_system.xml,	vf_sy001_users.xml	(if	your	application	uses
Framework	Users	and	Authorities),	vf_sy001_servers.xml,
vf_sy001_tables.xml	(if	your	application	uses	code	tables).

4.		Also	select	the	splash	screen	for	the	HR	system	UF_im002.gif,	and	if	you
want	to	run	the	demonstration	system,	add	df_demo*.htm,	df_demo*.bmp,
vf_ic*.gif.

5.			If	you	are	deploying	the	demonstration	system,	add	vf_um823.htm,	
__DEFAULT__VF*,		__PALLETTE__VF*	and	the	RAD_PAD	files	for
Statistical	Reporting	and	Employees	business	objects.

6.		Lastly	select	U_bif987.dll	and	u_bif985.dll	from	the	LANSA	Execute
directory.

7.		Click	the	Add	to	Package	button.

Step	6.	Add	Your	Own	Components
In	this	step,	you	will	add	all	of	your	custom	components	(filters,	command
handlers	etc.)	used	in	the	application.
1.		Select	Components	in	the	Programs	tab.
2.		Choose	the	components	which	start	with	iii	(iii	being	your	initials)	and	drag
them	to	the	right-hand	side	of	the	window.	These	are	your	command	handlers
and	filters.

Step	7.	Add	the	Data
You	also	need	to	include	the	personnel	files	with	data.
1.		Expand	Files	in	the	Other	Objects	tab.
2.		Locate	the	Personnel	System	files	PSLMST,	PSLSKL,	PSLEVENT,
PSLTIMES,	SECTAB,	SKLTAB	and	DEPTAB	and	add	them	to	the	selected
items.

3.		Select	the	files	and	click	on	the	Include	File	Data	button.
					The	Data	column	now	indicates	the	files	will	be	included	with	their	data	in
the	package.

4.		Click	OK.

Step	8.	Add	an	Icon
You	also	need	to	specify	an	icon	for	the	Framework	program	folder.
1.		Click	on	the	Icon	button	on	the	toolbar	of	the	Package	Control	Panel.
2.		Select	an	icon	(for	example,	C:\Program
Files\LANSA\X_WIN95\X_LANSA\x_DEM\source\S_grap.ico).

3.		Click	OK.

Step	9.	Check	the	Package
You	are	now	ready	to	check	the	package	and	create	it.
1.		Save	the	package	definition.

2.		Select	the	Check	Package	option	in	the	options	menu.
					The	message	you	receive	should	tell	that	no	errors	were	encountered.

Step	10.	Build	the	Package
You	are	now	ready	to	build	the	package.
1.		Click	on	the	Build		button.

2.		Wait	for	the	package	compilation	to	complete.

Step	11.	Ship	the	Package
Your	application	package	has	been	created	in	the	X_APPS	directory		(for
example.	C:\Program	Files\LANSA\X_WIN95\X_LANSA\X_APPS).
Note	that	the	PCs	on		which	this	package	is	installed	on	must	have	the	specified
database	system	installed.
1.		You	will	need	to	give	your	users	the	FRTUT_v1.0.0_en-us.msi	file.
2.		They	will	install	the	package	by	double	clicking		FRTUT_v1.0.0_en-us.msi.

					The	setup	program	automatically	launches	the	Framework.
3.		When	the	Framework	is	first	launched	executable	files	are	copied	and	the
Framework	is	displayed.

4.		The	users	can	now	start	using	the	application.

Summary
Important	Observations
When	shipping	your	application	created	with	the	Visual	LANSA	Framework,
you	are	shipping	the	actual	Framework	to	the	end-users	(for	end-user
execution	mode	only).
Remember	to	include	your	own	custom	objects	(for	filters	and	command
handlers)	when	shipping	your	application.
If	shipping	user	information,	you	must	remember	to	include	the	VFPPF06	and
VFPPF07	files.
This	tutorial	demonstrated	the	steps	for	shipping	Visual	LANSA	Framework
applications	for	Windows.	The	deployment	of	Web	Framework	applications
were	not	part	of	this	tutorial.
The	Deployment	Tool	is	a	feature	of	Visual	LANSA	and	is	not	specific	to	the
Visual	LANSA	Framework.	For	more	details,	refer	to	the	LANSA	Application
Deployment	Tool	Guide.

What	You	Should	Know
How	to	deploy	Framework	applications	on	Windows.
		
	

	

		
	
	
	
	
	

Frequently	Asked	Questions
Framework	presentation
How	do	I	make	the	VLF	use	my	corporate	look?
How	do	I	enroll	my	own	visual	styles?
How	do	I	change	a	visual	style	at	run	time?
Can	I	define	the	toolbar	by	application?
How	can	I	change	the	visual	styles	used	in	Web	browser	applications
I	want	to	restore	the	default	window	layout	for	the	Framework
How	do	I	create	an	elaborate	prototype?
Can	I	change	the	business	object	instance	caption	that	appears	in	the	area	above
my	command	handlers?
Can	I	stop	VLF	NET	overriding	CCS	changes	to	background	Colors	of	objects
in	WAMs?
Language
Text	appears	in	English	when	I	execute	Framework	as	a	web	application	
How	can	I	translate	text,	for	example	the	caption	of	the	instance	list	Clear	List
button?
Pictures
How	do	I	change	Help	About	logos?
How	do	I	change	introduction	logos?
How	do	I	change	the	logo	shown	when	the	Framework	starts	executing?
How	do	I	enrol	my	own	bitmaps	and	icons?
Where	does	the	Images	Palette	get	the	pictures	from	(when	using	the	HTML
formatted	Images	Palette)?	
When	I	execute	my	Framework	in	a	browser	some	of	my	icons	and	bitmaps
don't	display	properly?
How	are	icons	and	bitmap	names	used	when	my	Framework	is	executed	in	a
browser?
How	can	I	convert	icons	and	bitmaps	to	GIF	files?
Where	do	I	need	to	put	my	GIFs	so	that	my	browser	applications	can	use	them?
Servers
How	do	I	run	my	application	in	SuperServer	mode?

Can	my	Web	browser	applications	be	used	with	System	i	multi-tier	web	server
configurations?
Can	my	Web	browser	applications	be	used	with	Windows	multi-tier	web	server
configurations?
How	do	I	pick	up	the	servers	that	have	been	defined	in	the	Framework	using	the
Servers	option	of	the	Administration	menu?
Changes	not	taking	effect
I	have	created	a	new	command	but	it	does	not	appear	in	the	menus	or	the
toolbar?
I	change	Instance	Command	Presentation	but	the	changes	do	not	take	effect?
I	have	just	deleted	an	object	but	it	is	still	visible?
I	have	just	changed	my	Framework	design	but	the	change	has	not	taken	effect?
Why	options	I	have	disabled	for	Windows	and/or	the	Web	browser	are
displayed?			
Versions	and	Upgrades
Are	copies	of	my	Framework	design	kept?
How	can	I	change	the	list	of	Framework	versions	shown?
Can	I	use	Visual	LANSA	Framework	in	Direct-X	mode?
Settings
How	are	Framework	settings	remembered?
How	are	instance	lists	remembered?
Security
When	I	run	the	Framework	security	does	not	seem	to	work?
When	I	start	the	Framework	as	an	administrator	(for	example	UF_ADMIN),	the
Framework	appears	briefly	and	then	disappears?
Do	I	have	to	(re)define	my	user	profiles	into	the	Framework?
Do	I	have	to	(re)define	my	user	passwords	into	the	Framework?
Are	there	techniques	to	minimize	user	profile	(re)definition?
Web
What	is	a	temporary	directory	and	what	is	it	used	for?
How	can	I	purge	old	information	from	my	temporary	directory?
Can	I	purge	old	information	from	my	temporary	directory	in	a	batch	job?
How	can	different	users	access	different	data	libraries	in	Web	applications?

Can	I	run	web	applications	using	secure	sockets	layer	(SSL)?
How	can	I	make	my	web	applications	launch	into	a	new	window?
How	can	I	execute	the	VLF	as	a	web	application	without	using	SSI?
How	can	I	hide	the	address	and	status	bars	on	Framework	popup	windows	when
using	IE7?
The	URL	to	start	my	deployed	VLF	web	browser	application	is	too	complex	for
users	to	reliably	type	in	to	their	browsers
What	should	I	do	when	I	get	a	mysterious	WAM	crash	in	my	Framework	RAMP
application?
Why	do	I	get	a	message	saying	'Compression	source	file	vf_multi_NAT.js	not
found'?
Why	do	I	get	a	message	saying	'Compression	source	file	vf_multi_LLL.js	not
found'?
How	can	I	tell	if	my	WAM	function	is	executing	in	a	browser	(VLF.WEB)	or
under	.NET	(VLF.NET)?
How	to	find	out	the	L4Web	images	folder	and	path	name	in	a	VLF-WEB
application?
How	can	users	sign	off	from	VLF-WEB	sessions?
Can	I	customise	the	VLF	WEB	signon	dialog?
Testing
I	do	my	unit	and	suite	testing	in	Design	mode.	Is	this	a	good	practice?
Other
How	do	I	execute	an	initial	Framework	level	command	when	starting	up	a
Framework	application?			
I	have	just	deleted	an	object	and	want	to	get	it	back	again?
Why	are	some	menus	and	menu	options	in	brackets?
Can	more	than	one	person	design	the	same	Framework	at	the	same	time?
Can	I	change	the	options	that	the	user	searches	for	in	the	Quick	Find	box?
Can	I	control	what	happens	when	the	user	clicks	on	an	option	that	they	have
located	by	using	the	Quick	Find	box?
	
Also	See
Frequently	Asked	Questions	(Users	and	Security)

Frequently	asked	Questions	about	Code	Tables
Frequently	Asked	Questions	about	Custom	Properties
	

Can	I	customise	the	VLF	WEB	signon	dialog?
If	you	are	comfortable	with	HTML	and	Javascript	you	can	create	your	own
customised	signon	window.
To	implement	please	refer	to	file	called	UF_HT002_SAMPLE.js	which	is
located	in	the	partition	execute	folder.	The	instructions	are	included	in	the
source.
	

When	I	include	a	jQuery	Weblet	in	a	VLF	Wam	it	doesn’t	look
right.	What	is	wrong?
Maybe	you	haven’t	included	a	jQuery	Theme	to	the	WAM.	The	WAM	guide	has
all	the	details	about	Theming	WAMS	but	here	are	the	basic	steps:

1.	Open	the	WAM	and	click	on	the	Design	tab.

2.	With	the	design	of	the	WAM	displayed,	select	Manage	External	Resources
from	the	Web	menu.

3.	Click	the	ADD	button	and	select	XWT01J	Redmond	-	JQuery	UI	Widgets	and
XWT01L	Redmond	-	LANSA	Theme	Extensions.	Make	sure	they	appear	in	that
order	in	the	list.	Click	OK.

4.	Save	and	re-run	the	WAM,	it	should	display	properly	now.

	
	

Can	I	use	Visual	LANSA	Framework	in	Direct-X	mode?
Yes	you	can.	See	Using	your	Visual	LANSA	Framework	in	Direct-X	mode.

Can	I	change	the	options	that	the	user	searches	for	in	the	Quick
Find	box?
Yes,	see	Quick	Find	Override	Feature.

	

Can	I	control	what	happens	when	the	user	clicks	on	an	option
that	they	have	located	by	using	the	Quick	Find	box?
Yes,	if	you	have	provided	the	list	of	options	to	be	searched.	See	Quick	Find
Override	Feature.
	

How	to	find	out	the	L4Web	images	folder	and	path	name	in	a
VLF-WEB	application?
			#Folder					:=	#Com_Owner.avImageFolder
			#FolderPath	:=	#Com_Owner.avImagePath

	
	

Can	I	change	the	business	object	instance	caption	that	appears	in
the	area	above	my	command	handlers?
Yes,	you	can.

In	WAM	applications	do	this:
	
Set	#ThisHandler	avHandlerCaption('My	alternate	caption')
		

	
In	WINDOWS	applications	do	this:
		
Set	#Com_Owner	avHandlerCaption('My	alternate	caption')
	

		
In	WINDOWS	applications	you	can	also	add	a	suffix	to	the	Window	and	title
bar	captions	using	this:
Set	#Com_Owner	avWindowSuffix('My	Window	Suffix')
Set	#Com_Owner	avTitleBarSuffix('My	Title	Bar	Suffix')

	
You	can’t	do	this	in	RAMP	because	the	command	handler	(VF_CH006)	is	a
sealed	program.
	

Can	I	stop	VLF	NET	overriding	CCS	changes	to	background
Colors	of	objects	in	WAMs?
	
Yes	you	can.	See	the	LANSA	Support	tip	Changing	Background	Colours	of
Objects	in	WAMs	used	in	VLF	.NET.
	

http://www.lansa.com/support/tips/t0556.htm

How	can	I	tell	if	my	WAM	function	is	executing	in	a	browser
(VLF.WEB)	or	under	.NET	(VLF.NET)?
This	is	how	you	do	it	in	a	WAM:				
If	Cond(#ThisHandler.DotNET	=	TRUE)
Message	Msgtxt('Execution	platform	on	client	is	.NET')
Else
Message	Msgtxt('Execution	platform	on	client	is	web	browser')
Endif

	

How	do	I	execute	an	initial	Framework	level	command	when
starting	up	a	Framework	application?			
If	you	want	to	execute	a	specific	command	when	a	Framework	starts,	refer	to
New	UF_SYSTM	IIP	(Imbedded	Interface	Point)	methods	that	you	can	override
(Windows)	and	the	SwitchCommand	parameter	in	Web	Application	Start
Options	(web).
Note	that	the	concept	of	a	default	command	at	the	Framework	level	has	no
meaning.
	

How	do	I	make	the	VLF	use	my	corporate	look?
See	Personalize	Your	Framework.

How	do	I	create	an	elaborate	prototype?
Sometimes	you	may	want	something	more	than	a	rough	mock	up	prototype	in
order	to	manage	the	end-users'	initial	impressions	and	expectations	of	your
application.	However,	trying	to	produce	elaborate	filter	or	command	handler
layouts	using	mock	ups	can	be	a	frustrating	experience	because	a	RAD-PAD	is
just	simple	HTML	document	with	very	limited	editing	capabilities.
In	this	situation	it	may	be	quicker	and	easier	to	create	stub	filters	and	command
handlers	and	use	the	Visual	LANSA	IDE	to	produce	much	more	sophisticated
form	layouts.	These	form	layouts	can	then	be	completed	at	the	end	of	the	design
cycle	rather	than	discarded.
Here’s	an	example	of	a	simple	stub	filter,	including	the	‘Emulate	Search’	button
and	logic:
*
===
*	Component			:	XXXXXXXXXX
*	Type								:	Reusable	Component
*	Ancestor				:	VF_AC007
*	Created					:	MM/DD/YYYY
*	By										:	XXXXXXXXXXXXXXXXXXXXXXXXXX
*
===
Function	Options(*DIRECT)
BEGIN_COM	ROLE(*EXTENDS	#VF_AC007)	HEIGHT(132)
LAYOUTMANAGER(#ATLM_1)	WIDTH(345)
	
DEFINE_COM	CLASS(#PRIM_ATLM)	NAME(#ATLM_1)
DEFINE_COM	CLASS(#PRIM_PANL)	NAME(#BUTTON_PANEL)
DISPLAYPOSITION(1)	HEIGHT(29)	LAYOUTMANAGER(#FWLM_2)
LEFT(0)	PARENT(#COM_OWNER)	TABPOSITION(1)	TABSTOP(False)
TOP(103)	WIDTH(345)
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_2)
ATTACHMENT(Bottom)	MANAGE(#BUTTON_PANEL)
PARENT(#ATLM_1)
DEFINE_COM	CLASS(#PRIM_PANL)	NAME(#BODY_PANEL)
DISPLAYPOSITION(2)	HEIGHT(103)	LAYOUTMANAGER(#ATLM_2)
LEFT(0)	PARENT(#COM_OWNER)	TABPOSITION(2)	TABSTOP(False)
TOP(0)	WIDTH(345)

DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_3)
ATTACHMENT(Center)	MANAGE(#BODY_PANEL)	PARENT(#ATLM_1)
DEFINE_COM	CLASS(#PRIM_FWLM)	NAME(#FWLM_1)
FLOWOPERATION(Center)	FLOWOPERATIONHOR(Center)
FLOWOPERATIONVER(Center)
DEFINE_COM	CLASS(#PRIM_FWLM)	NAME(#FWLM_2)
FLOWOPERATION(Center)	FLOWOPERATIONHOR(Decrease)
FLOWOPERATIONVER(Center)	MARGINTOP(4)	SPACING(4)
SPACINGITEMS(4)
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#SEARCH)
CAPTION(*MTXTVF_EMUL_SEARCH)	DISPLAYPOSITION(1)
LEFT(260)	PARENT(#BUTTON_PANEL)	TABPOSITION(1)	TOP(4)
WIDTH(85)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_4)
MANAGE(#SEARCH)	PARENT(#FWLM_2)
Define_Com	Class(#VF_UM822)	Name(#VF_UM822)	Reference(*Dynamic)
Define_Com	Class(#VF_UM823)	Name(#VF_UM823)	Reference(*Dynamic)
	
DEFINE_COM	CLASS(#PRIM_ATLM)	NAME(#ATLM_2)
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_1)
ATTACHMENT(Center)	PARENT(#ATLM_2)
	
Evtroutine	Handling(#SEARCH.Click)	Options(*NOCLEARMESSAGES
*NOCLEARERRORS)
Define	Field(#LIMIT)	Reffld(#STD_NUM)	Default(10)
Invoke	Method(#uSystem.EmulateObjectSearch)	Size(#Limit)
Avlistmanager(#avListManager)	Instance(#puVF_FP503Owner)
Endroutine
	
End_Com

		
Here’s	a	simple	stub	command	handler	you	might	use	as	a	starting	point:
*
===
*	Component			:	XXXXXXXXXX
*	Type								:	Reusable	Component
*	Ancestor				:	VF_AC010
*	Created					:	MM/DD/YYYY

*	By										:	XXXXXXXXXXXXXXXXXXXXXXXXXX
*
===
Function	Options(*DIRECT)
BEGIN_COM	ROLE(*EXTENDS	#VF_AC010)	HEIGHT(193)
LAYOUTMANAGER(#ATLM_1)	WIDTH(492)
DEFINE_COM	CLASS(#PRIM_ATLM)	NAME(#ATLM_1)
DEFINE_COM	CLASS(#PRIM_PANL)	NAME(#BUTTON_PANEL)
DISPLAYPOSITION(1)	HEIGHT(193)	LAYOUTMANAGER(#FWLM_2)
LEFT(400)	PARENT(#COM_OWNER)	TABPOSITION(1)	TABSTOP(False)
TOP(0)	WIDTH(92)
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_2)
ATTACHMENT(Right)	MANAGE(#BUTTON_PANEL)
PARENT(#ATLM_1)
DEFINE_COM	CLASS(#PRIM_PANL)	NAME(#BODY_PANEL)
DISPLAYPOSITION(2)	HEIGHT(193)	LAYOUTMANAGER(#ATLM_2)
LEFT(0)	PARENT(#COM_OWNER)	TABPOSITION(2)	TABSTOP(False)
TOP(0)	WIDTH(400)
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_3)
ATTACHMENT(Center)	MANAGE(#BODY_PANEL)	PARENT(#ATLM_1)
DEFINE_COM	CLASS(#PRIM_FWLM)	NAME(#FWLM_1)
FLOWOPERATION(Center)	FLOWOPERATIONHOR(Center)
FLOWOPERATIONVER(Center)
DEFINE_COM	CLASS(#PRIM_FWLM)	NAME(#FWLM_2)
FLOWOPERATIONHOR(Center)	MARGINTOP(4)	SPACING(4)
SPACINGITEMS(4)
Define_Com	Class(#VF_UM822)	Name(#VF_UM822)	Reference(*Dynamic)
Define_Com	Class(#VF_UM823)	Name(#VF_UM823)	Reference(*Dynamic)
	
DEFINE_COM	CLASS(#PRIM_ATLM)	NAME(#ATLM_2)
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_1)
ATTACHMENT(Center)	PARENT(#ATLM_2)
	
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#PHBN_1)
CAPTION('Button	1')	DISPLAYPOSITION(1)	LEFT(6)
PARENT(#BUTTON_PANEL)	TABPOSITION(1)	TOP(4)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_1)
MANAGE(#PHBN_1)	PARENT(#FWLM_2)
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#PHBN_2)

CAPTION('Button	2')	DISPLAYPOSITION(2)	LEFT(6)
PARENT(#BUTTON_PANEL)	TABPOSITION(2)	TOP(33)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_3)
MANAGE(#PHBN_2)	PARENT(#FWLM_2)
	
EVTROUTINE	HANDLING(#PHBN_1.Click)
OPTIONS(*NOCLEARERRORS	*NOCLEARMESSAGES)
Use	message_box_show	(ok	ok	info	*Component	'Button	1	has	not	been
implemented	yet')
ENDROUTINE
	
EVTROUTINE	HANDLING(#PHBN_2.Click)
OPTIONS(*NOCLEARERRORS	*NOCLEARMESSAGES)
Use	message_box_show	(ok	ok	info	*Component	'Button	1	has	not	been
implemented	yet')
ENDROUTINE
	
End_Com

	
	

Do	I	have	to	(re)define	my	user	profiles	into	the	Framework?
Yes	if	you	want	to	use	the	Framework’s	shipped	object	authority	model.	The
Framework	needs	a	way	to	associate	user	profiles	with	their	allowable
Framework	activities.	

	

Do	I	have	to	(re)define	my	user	passwords	into	the	Framework?
In	i5/System	i	based	applications	the	answer	is	generally	no.
In	System	i/i5	based	Framework	applications,	including	RAMP,	the	validation
of	a	password	for	a	user	profile	can	be	performed	by	IBM	i	at	the	point	the	user
accesses	the	i5/	System	i	system.	For	the	Framework	in	general	this	is	typically
happens	when	the	user	starts	a	super-server	session.	For	RAMP	this	is	typically
done	when	the	user	signs	on	to	their	5250	session.	In	web	browser	based
applications	either	web	server	user	authentification	or	a	user	exit	(IIP)	can	be
used	to	validate	the	password	via	the	operating	system,	rather	than	by	the
Framework	itself.				
In	Windows	applications	the	answer	is	generally	yes,	because	user	profile
management	in	Windows	products	is	generally	much	more	fragmented.

	

Are	there	techniques	to	minimize	user	profile	(re)definition?
Yes.	These	include	the	use	of	group	users	and	role	based	users.
Using	group	users	will	not	impact	how	many	user	profiles	need	to	be	defined,
but	it	significantly	impacts	their	ongoing	maintenance.	It	is	easier	to	maintain	a
single	user	group	than	a	set	of	individual	users.	Note	that	the	Framework	allows
a	user	to	be	a	member	of	multiple	groups,	which	is	different	to	IBM	i.	You	can
use	Framework	user	groups	without	having	to	use	IBM	i	group	profiles.						
A	role	based	user	is	where	the	real	user	is	mapped	to	a	much	smaller	set	of
Framework	role	based	users.
For	example	real	users	Fred,	Mary	and	Bill	might	all	map	to	the	single	role
based	Framework	user	profile	ACC_CLERK.			

	

	
	

How	can	I	execute	the	VLF	as	a	web	application	without	using
SSI?
Use	these	scenarios	to	decide	the	one	that	best	applies	to	you.
I	am	in	the	process	of	configuring	the	Visual	LANSA	Framework	to	run	as	a

Web	application.	

When	running	the	Administrator's	Console	as	part	of	the	normal	configuration
steps,	uncheck	the	Use	Server	Side	Include	option.	When	choosing	this	option
you	use	client	side	transformations.	
You	must	refer	to	Enabling	WAM	Client	Side	XML	Transforms	in	the	>Web
Application	Start	Options.
I	have	been	successfully	executing	the	Visual	LANSA	Framework	as	a	Web

application.	I	would	like	to	stop	using	SSI.

Execute	the	Administrator's	Console	and	uncheck	the	Use	Server	Side	Include
option.	Save	and	verify	the	values.	When	choosing	this	option	you	must	use
client	side	transformations.	You	must	refer	to	Enabling	WAM	Client	Side	XML
Transforms	in	the	>Web	Application	Start	Options.
	

Can	I	run	web	applications	using	secure	sockets	layer	(SSL)?
Yes,	Framework	web	applications	will	run	with	Secure	Sockets	Layer
(SSL).	First	see	your	HTML	vendor's	documentation	regarding	setting	up	SSL
on	your	web	server	then	see	the	LANSA	for	the	Web	documentation	on	using
the	Web	Administrator	to	add	another	port	for	SSL	(usually	443)	with	identical
details	to	the	main	port	and	register	a	default	user	for	the	SSL	port.	With	SSL
running	correctly	on	your	web	server	simply	change	your	application	URLs	to
start	with	'https://'	instead	of	'http://'.
When	testing	your	SSL	setup	try	accessing	a	simple	HTML	page	first	and	then	a
LANSA	for	the	Web	function	(eg.	VF_PR004/VFU0401)	before	trying	to	run	a
Framework	application	under	SSL.

How	can	I	make	my	web	applications	launch	into	a	new	window?
If	you	launch	Framework	web	applications	from	shortcuts	or	from	the	Execute
as	a	Web	application...	menu	option	and	your	application	loads	into	a	existing	IE
window,	it	means	you	have	the	Reuse	windows	for	launching	shortcuts	internet
option	checked.
To	change	this	option	open	IE	and	from	the	Tools	menu	select	Internet	Options.
Select	the	Advanced	tab	and	from	the	Browsing	group	of	options	uncheck
Reuse	windows	for	launching	shortcuts.	Now	when	you	launch	a	Visual
LANSA	Framework	web	application	it	will	start	in	a	new	window.

How	can	different	users	access	different	data	libraries	in	Web
applications?
All	command	handlers	and	filters	have	an	initialisation	call:
Include	Process(*DIRECT)	Function(VFSTART)		[at	the	start	of	the	function]
	

together	with	a	close	logic,	inititiated	by	a	call	to	VFEND:
Include	Process(*DIRECT)	Function(VFEND)	[at	the	end	of	the	function]
	

Similarly	we	recommend	you	that		you	implement	your	own	initialise	and	close
calls.	For	example:
Include	Process(*DIRECT)	Function(MY_START)		[at	the	start	of	the	function]
Include	Process(*DIRECT)	Function(MYEND)	[at	the	end	of	the	function]
	

Ideally	MY_START	would	be	placed	after	VFSTART	and	MYEND	would	be
placed	before	VFEND.
Inside	your	MY_START	function,	you	can	retrieve	the	value	of	the	current
logged	on	user	by	using	the	VF_GET	feature	with	the	loggedonuser	keyword:
Use	Builtin(VF_GET)	With_Args('loggedonuser')	To_Get(#STD_USER)
	

Then	you	need	to	call	another	piece	of	logic	(for	example	a		CL	program)	to	set
the	library	list	for	the	user	logged	on.

When	I	start	the	Framework	as	an	administrator	(for	example
UF_ADMIN),	the	Framework	appears	briefly	and	then
disappears?
To	use	UF_ADMIN	(or	equivalent)	the	user	must	also	be	flagged	as
administrator.
No	error	message	is	shown	in	this	situation	because	this	would	visibly	indicate
the	exact	cause	of	a	security	violation	to	a	potentially	insecure	user.

I	do	my	unit	and	suite	testing	in	Design	mode.	Is	this	a	good
practice?
Definitely	not.	When	working	as	a	designer	additional	menu	options	appear,
security	is	disabled	and	additional	features	that	use	more	resources	are	enabled.
When	doing	unit	or	suite	testing	you	should	always	use	VL	Framework	-	as
User	entry	point	so	that	you	experience	the	same	environment	that	a	real	end-
user	would.

When	I	run	the	Framework	security	does	not	seem	to	work?
Are	you	using	the	VL	Framework	-	as	Designer	entry	point?	If	you	are	then
refer	to	I	do	my	unit	and	suite	testing	in	Design	mode.	Is	this	a	good	practice?

Why	options	I	have	disabled	for	Windows	and/or	the	Web
browser	are	displayed?			
Are	you	using	the	Framework	as	a	designer?	If	you	are	then	refer	to	I	do	my
unit	and	suite	testing	in	Design	mode.	Is	this	a	good	practice?

How	can	I	translate	text,	for	example	the	caption	of	the	instance
list	Clear	List	button?
Refer	to	source	code	of	the	Imbedded	Interface	Point	RDML	function	UFU0003
in	process	UF_SYSBR.

How	do	I	enroll	my	own	visual	styles?
Refer	to	the	source	code	of	shipped	component	UF_SYSTM	for	more	details.
Before	using	visual	styles,	investigate	the	use	of	a	Overall	Theme.	You	may	be
able	to	get	the	appearance	you	want	with	fewer	changes.
	

How	do	I	change	a	visual	style	at	run	time?
If	you	need	a	visual	style	to	change	at	run	time,	you	can	swap	in	a	new	style	or
styles	from	any	command	handler,	filter,	or	snap-in	instance	list	using	this	logic:
	
#avFrameworkManager.avSubstituteVisualStyle	Ustyle(#MYSTYLE_A)
Uasname('VF_VS106')
#avFrameworkManager.avSubstituteVisualStyle	Ustyle(#MYSTYLE_B)
Uasname('VF_VS101')	Usignalchanged(True)

	
Where	uStyle(#MYSTYLE_A)	is	a	visual	style	that	you	have	defined	in	the
repository,	and	'VF_VS106'	is	the	name	of	one	of	the	styles	currently	being	used
by	the	Framework.
If	uSignalChanged	is	true,	the	Framework	will	apply	the	changes	and	the
replacement	styles	will	be	visible.
For	more	information,	see	Change	a	visual	style	at	run	time.
	
	

I	have	created	a	new	command	but	it	does	not	appear	in	the
menus	or	the	toolbar?
Just	creating	the	command	is	not	enough	to	make	it	visible.		Commands	only
become	visible	in	pop-up	menus,	toolbars	or	on	menus	when	they	are	enabled
within	(i.e.:	associated	with)	an	object	(the	Framework,	an	application,	a
business	object	or	a	business	object	instance).
To	add	a	command	to	a	menu	in	the	menu	bar,	use	the	Menus…	or
Commands…	option	of	the	Framework	menu.
To	enable	a	command	double-click	on	the	object	and	select	the	Commands
Enabled	tab.

Can	I	define	the	toolbar	by	application?
No,	but	a	single	toolbar	button	(and	a	command)	can	be	used	by	many	different
applications	and	business	objects.	Toolbar	buttons	are	reused	(or	shared)	by
applications,	which	is	much	the	same	thing.
Take	the	command	"new"	for	example:
You	can	make	it	appear	on	the	toolbar	by	altering	the	definition	of	the

command.
You	can	enable	the	new	command	in	applications	1,	2	and	3.
When	the	button	is	clicked,	the	command	handler	in	the	current	application

(either				application	1,	2	or	3)	will	be	invoked	to	handle	the	command.
This	way	your	users	get	used	to	using	the	single	"New"	button	and	it	means
"Make	a	new	one	of	the	thing	I	am	currently	working	with".

I	change	Instance	Command	Presentation	but	the	changes	do	not
take	effect?
Sometimes	you	need	to	shut	down	and	restart	the	Framework	before	complex
changes	(like	using	a	separate	window)	will	take	full	effect.

How	do	I	run	my	application	in	SuperServer	mode?
There	are	two	ways	of	doing	this:
1.		Start	the	Framework	running	in	SuperServer	mode	externally.	You	can	do
this	by	using	the	LANSA	folder	icon	titled	Exec	Form	(to	RDML	System	i)
or	Exec	Form	(to	RDMLX	System	i),	or	by	using	the	option	to	execute	your
form	and	choosing	one	of	the	"Client	to	xxxxxx	Server"	options.

					Any	of	these	options	will	establish	your	SuperServer	connection	externally
(i.e.:	before	the	Framework	actually	starts	to	execute).	When	using	this
method	to	start	a	SuperServer	connection	you	should	only	execute
UF_ADMIN	or	UF_EXEC.	These	will	present	your	Framework	exactly	as	a
real	end-user	will	see	it.	You	cannot	do	Framework	design	activities	while
working	this	way.

2.		Allow	the	Framework	to	make	SuperServer	connections	itself.
By	defining	your	server	system	within	the	Framework	and	setting	the
appropriate	connection	properties	in	the	Framework	design	(see
Administration/Servers)	you	can	use	UF_DESGN,	UF_EXEC	and	UF_ADMIN
in	SuperServer	mode.
The	advantages	of	this	method	are:
You	can	execute	UF_DESGN	this	way,	thus	you	can	do	design	and	command

handler	and	filter	testing	activities	while	in	SuperServer	mode.
The	Framework	can	manage	connection	details	(eg:	user	and	password

verifications,	selective	offline	usage)	for	you,

Your	server	definitions	can	be	deployed.
This	environment	more	closely	resembles	what	you	would	do	in	a	real

Framework	that	has	been	deployed	to	end-users.

Are	copies	of	my	Framework	design	kept?
If	the	Keep	XML	File	Versions	option	in	your	Framework	is	turned	on	then
back	up	copies	of	your	Framework	design	are	kept	automatically.
A	copy	of	your	Framework	design	is	created	just	before	an	altered	Framework
design	is	saved.	In	other	words	a	snapshot	of	the	current	design	is	saved	just
before	the	altered	design	replaces	it.
Your	Framework	design	is	normally	saved:
Every	time	you	shut	down	the	Framework	if	a	change	has	been	made	to	the

design.
Just	before	you	snap	in	a	real	filter	or	command	handler	if	a	change	has	been

made	to	the	design.	This	is	done	in	case	your	filter	or	command	handler	fails,
causing	the	entire	Framework	to	shut	down	abnormally.
Every	10	minutes	or	whatever	Automatic	Save	Time	in	Minutes	interval	is

specified	in	your	Framework,	if	a	change	has	been	made	to	the	design,	since	the
last	time	it	was	saved.
Normally	Frameworks	are	stored	in	XML	formatted	files	named
VF_SY001_System.xml,	that	reside	in	the	execute	directory	of	the	associated
LANSA	partition.
You	will	also	find	files	with	names	like
vf_Sy001_System_YYYYMMDD_HHMMSS.xml.	These	are	the	saved
versions	of	your	Framework	design.	The	YYYYMMDD_HHMMSS	portion	of
the	name	reflects	the	date	and	time	they	were	saved.
If	you	copied	file	vf_Sy001_System_20010203_143000.xml	over	the	top	of	the
current	VF_SY001_System.xml	file	then	you	would	have	reverted	your
Framework	design	(but	not	necessarily	your	Images	Palette)	back	to	as	it	was	on
the	3rd	February,	2001	at	2:30pm.

I	have	just	deleted	an	object	but	it	is	still	visible?
Deleted	objects	are	immediately	marked	as	deleted.	When	you	close	the
Framework	and	save	the	changes	the	object	is	deleted.

I	have	just	deleted	an	object	and	want	to	get	it	back	again?
To	restore	a	deleted	object	you	need	to	revert	your	entire	Framework	definition
to	the	latest	saved	version	that	contained	the	deleted	object.	Refer	to	Are	copies
of	my	Framework	design	kept?	for	more	details	on	how	Framework	versions	are
saved.

How	do	I	change	Help	About	logos?
The	Framework	and	Application	Help	About	Logos	can	be	changed	to	any
Framework	enrolled	bitmap.	See	How	do	I	enrol	my	own	bitmaps	and	icons?
To	change	the	Help	About	Logo	for	the	Framework,	choose	the	Framework
menu,	and	the	Properties…	option.	Go	to	the	Help	About	tab	sheet.	A	very
small	version	of	your	enrolled	image	should	be	visible	in	the	Bitmaps	group	box
at	the	bottom	of	the	tab	sheet.	Select	it.
To	change	the	Help	About	Logo	for	an	application,	double-click	on	the
application's	icon	and	go	to	the	Help	About	tab	sheet.	A	very	small	version	of
your	enrolled	image	should	be	visible	in	the	"Bitmaps"	group	box	at	the	bottom
of	the	tab	sheet.	Select	it.

How	do	I	change	introduction	logos?
If	you	wish	to	change	the	default	Framework	and	application	images	to	an
image	of	your	own,	the	simplest	method	is	to	rename	your	image	to
UF_IM001.Gif	and	put	it	in	the	execute	directory	of	the	partition	that	the
Framework	is	being	run	in.	(replacing	the	shipped	UF_IM001.Gif)
You	can	change	the	introduction	images	of	the	Framework	and	its	applications
individually.	Firstly,	add	the	image	files	you	want	to	use	to	the	execute	directory
of	the	partition	that	the	Framework	is	being	run	in.
To	change	the	Framework	introduction	image,	choose	the	Framework	menu,
and	then	the	Properties…		option.	Go	to	the	Startup	tab	sheet.	Change	Image
File	to	the	name	of	the	bitmap	or	gif	that	you	want	to	use.	(Note:	Whether	the
image	is	displayed	or	not	depends	on	the	Options	field,	above	the	image	file.	If
the	option	chosen	is	full	image	or	real	image,	your	new	image	should	be
displayed).
To	change	an	application's	introduction	image,	double-click	on	the	application's
icon	and	go	to	the	Startup	tab	sheet.	Change		Image	File	to	the	name	of	the
bitmap	or	gif	that	you	want	to	use.
When	deploying	the	Framework	to	your	users,	remember	that	you	must	deploy
all	of	these	image	files	to	the	user's	partition	execute	directory.

How	do	I	change	the	logo	shown	when	the	Framework	starts
executing?
Open	the	component	UF_DESGN	and	follow	the	instructions	in	it.

I	have	just	changed	my	Framework	design	but	the	change	has	not
taken	effect?
Most	changes	in	the	Framework	are	displayed	instantly.	In	some	cases	with	less
commonly	used	options	it	may	be	necessary	to	shut	down	and	restart	the
Framework	to	see	a	change.

How	do	I	enrol	my	own	bitmaps	and	icons?
Open	component	UF_IB001	and	read	the	instructions.
Note:	We	will	supply	the	shipped	LANSA	VF_*	bitmaps	and	icons	on	request.
Please	contact	product	support	for	details.
	

Why	are	some	menus	and	menu	options	in	brackets?
See	Menu	Options	in	Brackets

How	are	Framework	settings	remembered?
The	Framework	remembers	things	between	executions	(eg:	the	main
Framework	window	size,	location	and	layout).
To	find	this	information	search	for	files	with	names	like
ppp_User_Virtual_ClipBoard.Dat	and	ppp_Framework_Virtual_ClipBoard.Dat
stored	in	a	temporary	directory	on	your	system	(where	"ppp"	is	the	partition
identifier).	These	files	store	virtual	clipboard	details	between	Framework
executions.
They	can	be	deleted	at	any	time	to	clear	the	Framework's	current	virtual
clipboard	content.	You	may	want	to	review	The	Virtual	Clipboard.

How	are	instance	lists	remembered?
In	Windows	applications	instance	lists	are	remembered.	To	find	out	where	they
are	kept	first	find	out	the	"Internal	Identifier"	of	the	business	object	involved,
say,	BUSINESSOBJ_N.
Then	search	for	files	with	names	BUSINESSOBJ_N_Part_1.Lst	and
BUSINESSOBJ_N_Part_2.Lst	in	a	temporary	directory	on	your	system.
These	files	store	the	instance	list	details	of	BUSINESSOBJ_N	between
Framework	executions.		They	can	be	deleted	at	any	time	to	cause	remembered
instance	list	details	to	be	lost.	You	should	always	delete	both	files	(Part_1	and
Part_2)	together.

Can	more	than	one	person	design	the	same	Framework	at	the
same	time?
Yes.	See	Development	Architecture.

Where	does	the	Images	Palette	get	the	pictures	from	(when	using
the	HTML	formatted	Images	Palette)?	
It	displays	all	the	.GIFs	files	in	the	current	partition's	/EXECUTE	directory.
To	include	a	new	GIF	file	into	the	palette	simply	copy	it	into	the	current
partition's	/EXECUTE	directory.

When	I	execute	my	Framework	in	a	browser	some	of	my	icons
and	bitmaps	don't	display	properly?
The	shipped	Framework	icons	should	display	correctly	when	displayed	in	a
browser.	The	small	bitmaps	for	applications	and	business	objects	are
not	displayed	in	the	web	version	of	the	Framework.	If	you	have	added	your
own	icons,	you	need	to	create	two	equivalent	gif	images	for	each	of	these	icons.
One	gif	must	be	16x16	pixels,	and	one	must	be	32x32	pixels.

How	are	icons	and	bitmap	names	used	when	my	Framework	is
executed	in	a	browser?
The	web	version	of	the	Framework	takes	the	icon	name	<name>	and	when
displaying	a	small	(16x16)	image	of	an	icon	it	looks	for	a	gif	called
<name>1.gif.
When	displaying	a	large	(32x32)	image	of	an	icon	it	looks	for	a	gif	called
<name>3.gif.
For	large	images	that	are	not	icons	(for	example,	help	about	images)	it	simply
looks	for	<name>.gif
For	example,	if	you	had	enrolled	an	icon	named	MYICON	into	the	Framework
for	use	in	Windows	environments	and	you	then	used	the	icon	in	a	Web	Browser
the	Framework	would	look	for	MYICON1.GIF	(16	x	16	small	version)	and
MYICON3.GIF	(32	x	32	large	version).

How	can	I	convert	icons	and	bitmaps	to	GIF	files?
MS	Paint	will	convert	bitmaps	to	gifs.	When	creating	a	gif,	ensure	that	the	color
that	represents	transparent	is	known	to	the	image	editor.	(in	MS	Paint	this	is
specified	under	image	attributes,	if	the	image	is	a	gif.)
To	work	with	icons	it	is	necessary	to	download	an	icon	editor.	These	can	be
found	for	various	prices	at	Tucows.com.	Depending	on	the	editor,	you	can	either
load	the	.ico	file	or	save	its	images	directly	as	gifs,	or	for	cheaper	icon	editors
you	can	load	the	icon	and	copy	and	paste	it	into	MS	Paint.	Icon	Studio	1.0	is	an
example	of	a	freeware	icon	editor

Where	do	I	need	to	put	my	GIFs	so	that	my	browser	applications
can	use	them?
While	developing	applications	you	need	to	put	them	into	your	private	working
folder	and	also	into	the	
LANSA	for	the	Web	images	directory.	Eventually	they	will	need	to	be	deployed
with	your	application.		
	

Can	my	Web	browser	applications	be	used	with	System	i	multi-
tier	web	server	configurations?
Yes,	but	there	are	some	additional	configuration	things	you	need	to	consider.	
The	browser	version	of	the	Visual	LANSA	Framework	generates	pages	at
runtime	that	are	included	in	the	LANSA	for	the	Web	page	via	Server	Side
Includes	(SSI).
In	a	multi	tier	environment	the	web	server	and	the	application	server	are	on
different	machines.	(This	is	sometimes	called	a	Model	B	implementation.)
Hence	there	is	a	requirement	for	the	application	server	(where	the	include	page
is	generated)	to	be	able	to	have	access	to	the	web	servers	IFS	system.
There	is	an	IBM	supplied	file	server	called	'QFileSvr.400'.		Creating	a	directory
in	there	using	the	host	name	of	another	machine	in	the	network	gives	you	access
to	the	other	machine's	IFS.
Conditions:
The	System	i	machines	must	be	in	the	same	network.
The	user	profile	and	password	used	by	the	LWEB	job	must	exist	in	the	web

server	machine.
The	host	directory	created	under	QFileSvr.400	is	NOT	persistent	across	IPLs.

It	must	be	recreated	after	each	IPL.
A	firewall	between	machines	might	require	extra	configuration	steps.

Command	to	execute:
						MKDIR	DIR('/QFileSvr.400/<target	System	i	host	name>')

Can	my	Web	browser	applications	be	used	with	Windows	multi-
tier	web	server	configurations?
The	browser	version	of	the	Visual	LANSA	Framework	generates	pages	at
runtime	that	are	included	in	the	LANSA	for	the	Web	page	via	Server	Side
Includes	(SSI).	

There	is	a	requirement	for	the	application	server	(where	the	include	page	is
generated)	to	be	able	to	access	the	web	server's	file	system.	Whether	the
application	server	is	a	System	i	or	a	Windows	PC	a	virtual	directory	must	be
created	in	the	Windows	web	server.
If	the	application	server	is	a	System	i	server
The	easiest	way	to	configure	the	temporary	files	directory	is	to	use	a	directory
in	the	System	i	IFS	system.	In	this	example	the	directory	nominated	for	the
temporary	files	is	/tmp	and	the	virtual	directory	(alias)	created	in	the	Windows
web	server	is	VLF_Temp.
Step	1.	On	the	Windows	web	server	PC,	open	the	Internet	Information	Services
located	in	the	Administrative	Tools	folder	in	the	Control	Panel.
Step	2.	Right	click	on	the	Default	Web	Site,	select	New	and	then	Virtual
Directory.
Step	3.	Follow	the	instructions	in	the	Wizard:

Alias Visual	LANSA	Framework_Temp

Directory Use	the	Browse	button	to	locate	the	tmp	directory	on	your
System	i	IFS.	Note	that	you	must	have	mapped	a	drive	to	/tmp

Access
Permissions

Allow	Directory	Browsing

User	Id	and
Password

Specify	the	user	and	password	to	access	the	IFS	directory

	

Step	4.	Stop	and	Restart	the	IIS	Admin	Service	located	in	the	Administrative
Tools	folder	in	the	Control	Panel.
Step	5.	Verify	the	virtual	directory	is	accessible.	Start	Internet	Explorer	and	type
http://localhost/vlf_temp/

Execute	the	Administrator's	Console:
	
http://<your	host>/cgi-bin/lansaweb?procfun+vf_pr004+vfu0402+<ppp>
	

Where	<your	host>	is	the	IP	address	of	your	LANSA	for	the	Web	server	and
<ppp>	is	the	partition	to	be	used.
The	values	for	the	Real	and	Virtual	Directories	would	then	be	set	like	this:

	

If	the	application	server	is	a	Windows	PC
Conceptually	the	issues	are	the	same.	However,	if	you	use	images	or	a
subdirectory	of	it,	you	might	not	require	the	configuration	of	a	virtual	directory.
In	this	example:
The	directory	nominated	for	the	temporary	files	on	the	Web	Server	machine	is

c:\Lansa\WebServer\Images\VLF_Temp\.
On	the	application	server,	drive	letter	G	is	mapped	to	the	Web	Server

machine's	c:\Lansa\WebServer\.
The	values	for	the	Real	and	Virtual	Directories	would	then	be	set	like	this:
	

How	can	I	change	the	visual	styles	used	in	Web	browser
applications
The	Framework	uses	Cascading	Style	Sheets	to	define	the	visual	aspects	of	Web
browser	applications.	The	cascading	style	sheets	are	shipped	in	three	sets	where
each	set	supports	a	different	skin.	The	shipped	cascading	style	sheets	are:
Cascading	Style	Sheet	Name Description Should	you

modify	this?
VF_VS001.css Styles	common	to	all	skins. No.

VF_VS001_<skin>.css	where
<skin>	is	WIN,	WEB	or	XP
	

Styles	specific	to	each	skin
that	you	should	not	modify.

Not
recommended.

UF_VS001_<skin>.css	where
<skin>	is	WIN,	WEB	or	XP

Styles	specific	to	each	skin
that	you	might	modify.

Possibly.

	

Please	note	the	following	before	attempting	to	modify	any	style	sheet:
New	versions	of	the	Framework	will	overwrite	any	installed	cascading	style

sheet	files.	You	need	to	save	any	changes	you	make	and	may	need	to	reapply
them	after	upgrading	to	new	Framework	versions.
You	need	some	knowledge	of	cascading	style	sheets	to	make	style	sheet

changes.	Numerous	training	and	tutorial	resources	related	to	cascading	style
sheets	can	be	found	on	the	Internet.	
Support	issues	related	to	changes	you	make	to	shipped	style	sheets	will	not	be

accepted.			
Style	sheets	are	complex	to	implement	and	test.	They	may	represent	a

significant	diversion	that	impacts	on	your	project	schedules.	We	recommend
making	style	sheet	changes	after	you	have	completed	implementing	the
functional	components	of	your	application.		

What	is	a	temporary	directory	and	what	is	it	used	for?
The	temporary	directory,	which	is	defined	via	the	Administrator's	console,	is
used	to	store	temporary	state	information	for	active	Web	browser	Visual
LANSA	Framework	applications.
It	is	also	used	to	dynamically	create	XML	data	islands	that	are	inserted	into	web
pages	being	back	sent	to	client	browser	applications.
With	regard	to	the	location	of	the	temporary	directory:			
The	temporary	directory	used	can	be	anywhere	in	a	network,	but	it	is	best

physically	located	on	the	LANSA	application	server	for	performance	reasons.
The	LANSA	application	server	uses	the	real	temporary	directory	name	when

it	is	creating	the	state	management	and	XML	data	island	files.	It	needs	this	name
to	be	correctly	specified	(from	it's	point	of	view)	so	that	it	can	write	to	files	in
this	directory.
The	LANSA	application	server	never	directly	uses	the	virtual	temporary

directory	name.	However,	it	needs	to	know	what	it's	name	is	(from	the	HTTP
server's	point	of	view)	so	that	it	can	generate	HTML	pages	containing	correctly
formatted	<!--#include	virtual="xxxxxxxxxxxxxx"	-->	directives	for	the	HTTP
server.		These	are	used	to	dynamically	insert	the	XML	data	islands	into	web
pages	being	sent	back	to	client	browsers.			
The	HTTP	server	needs	to	be	able	to	locate	the	temporary	directory	by	using

the	virtual	name	specified	in	the	<!--#include	virtual="xxxxxxxxxxx"	-->
directives.	This	allows	it	to	read	the	specified	file	and	include	it	into	the	HTML
page	that	is	sent	out	to	the	client's	browser.	This	is	why	SSI	(server	side
includes)	need	to	be	enabled	in	your	chosen	HTTP	server.

How	can	I	purge	old	information	from	my	temporary	directory?
Normally	temporary	files	are	deleted	automatically	when	web	users	sign	off	of
close	their	web	browser,	but	over	time	old	temporary	files	may	collect	in	the
temporary	directory	(eg:	turning	your	PC	off	while	using	a	browser	application
would	leave	it's	temporary	files	in	the	temporary	directory).	
To	purge	old	temporary	files	use	the	Administrator's	Console.
There	are	options	available	to	purge	all	temporary	directory	files	or	only	files
that	are	more	than	2	days	old.	You	should	not	use	the	option	to	purge	all	files
while	people	are	using	browser	applications.

Can	I	purge	old	information	from	my	temporary	directory	in	a
batch	job?
Yes.	The	purging	of	the	temporary	directory	can	be	done	by	calling	LANSA
function	VFU0030.	
In	the	example	VFU0030	is	being	called	to	purge	data	4	or	more	days	old:	
Define	Field(#DAY_RANGE)	Type(*DEC)	Length(001)	Decimals(0)
Change	#Day_Range	4	
Exchange	Fields(#DAY_RANGE)
Call	Process(*DIRECT)	Function(VFU0030)	Exit_Used(*NEXT)	Menu_Used(*NEXT)			

	

How	can	users	sign	off	from	VLF-WEB	sessions?
You	close	or	sign	off	a	Web	browser	application	in	two	ways:
By	using	a	Signoff	or	Exit	VLF	command	initiated	from	for	example	a	button.	
By	closing	the	web	browser	window	(for	example	by	Using	the	red	"x"	option
at	the	top	right	of	the	browser	window).
When	you	use	the	signoff	/exit	command	option,	a	message	is	sent	back	to	the
web	server	indicating	that	you	are	signing	off.	The	web	server	then	deletes	any
temporary	files	that	you	have	in	use.
When	you	use	the	"x"	option	to	close	the	browser	window,	it	is	not	always
possible	to	send	the	signoff	message	back	to	the	web	server	because	your	main
web	browser	window	is	in	the	process	of	closing.	This	behavior	depends	on	the
browser	you	are	using.	If	the	message	is	not	sent,	any	temporary	files	associated
with	your	session	will	be	left	in	place	until	they	are	purged	by	the	next	folder
clean	up	you	run.							
	
	

Text	appears	in	English	when	I	execute	Framework	as	a	web
application	
The	Visual	LANSA	Framework	browser	extension	uses	a	number	of
multilingual	text	strings	to	issue	status	or	error	messages,	as	captions,	etc.	By
default	these	text	strings	appear	in	English.	To	translate	the	shipped	English	text
strings:
Locate	the	multilingual	source	file	VF_MULTI_ENG.JS	in	the	execute

directory	of	the	partition	where	you	have	imported	the	Visual	LANSA
Framework.
Copy	it	to	another	file	and	rename	the	new	file	as	VF_MULTI_LLLL.JS

where	LLLL	is	the	desired	language	code	(e.g.	FRA,	TCHI,	etc.).
Edit	the	newly	created	VF_MULTI_LLLL.JS	with	any	text	editor	(e.g.

Notepad)	and	follow	the	instructions	provided	in	the	source.
Save	the	file	with	the	new	translations.

I	want	to	restore	the	default	window	layout	for	the	Framework
See	How	are	Framework	settings	remembered?
	

How	can	I	hide	the	address	and	status	bars	on	Framework	popup
windows	when	using	IE7?
Internet	Explorer	version	7	has	security	features	that,	with	default	settings,
prevents	the	Visual	LANSA	Framework	from	hiding	the	Address	and	Status
bars	on	popup	windows.
For	example	a	popup	window	with	a	calculator	can	appear	like	this:

	
	
To	prevent	the	address	and	status	bars	appearing	on	pop-up	windows	in	your
Web	browser	applications	perform	the	following	steps:
Close	any	popup	windows	displaying	unwanted	address	or	status	bars.
Open	Internet	Options	from	the	Tools	menu.
Select	the	Security	tab.
Select	the	security	zone	for	your	LANSA	for	the	Web	server.	Note:	It	is

recommended	that	you	list	your	LANSA	for	the	Web	server	as	a	Trusted	Site.
Select	the	Custom	Level	button.
Scroll	down	to	the	Miscellaneous	group	of	settings.
Under	'Allow	web	sites	to	open	windows	without	address	or	status	bars'	select

the	Enable	radio	button.
Click	OK	to	close	Security	Settings.

Click	Yes	on	the	change	of	settings	for	this	zone	warning.
Click	OK	to	close	Internet	Options.
Open	required	pop-up	windows	and	address	and	status	bars	should	not	be

displayed.
Note:	Customizing	security	settings	for	zones	other	that	the	Trusted	Sites	zone
can	pose	serious	security	risks	and	is	not	recommended	unless	you	are	certain	of
the	security	implications.
	

The	URL	to	start	my	deployed	VLF	web	browser	application	is
too	complex	for	users	to	reliably	type	in	to	their	browsers
Imagine	that	the	URL	needed	to	start	your	deployed	web	browser	application
was:
http://nnn.nn.nn.nn/VF_SY001_System_ENG_BASE.HTM?
Partition=PRO+SwitchTo=xxxx+SwitchObject=xxxxx+SwitchCommand=xxxxxxx
	
This	is	too	complex	for	anyone	to	reliably	type	in.	Some	of	the	options	you	have
to	avoid	having	people	type	it	in	to	a	browser	are:
Option	1:	Create	a	short	cut	on	their	desktop	that	resolves	to	the	URL.
You	can	even	create	the	shortcut	on	your	desktop,	then	drag	and	drop	it	into	an
e-mail.	The	e-mail	recipients	can	then	drag	and	drop	it	from	the	e-mail	onto
their	desktops.	When	they	click	on	the	shortcut	on	their	desktop	the	web
browser	will	be	started.
Option	2:	Create	a	simplified	start	up	HTML	file.
If	you	create	an	HTML	file	named	MyApplication.htm	(say)	on	your	web	server
that	contains	HTML	like	this:
	
<html>
<head><title>My	Application</title></head>
<body	onload='window.location.replace(
"http://nnn.nn.nn.nn/VF_SY001_System_*_BASE.HTM?
Partition=PRO+SwitchTo=xxxx+SwitchObject=xxxxx+SwitchCommand=xxxxxxx"
);'>
</body>
</html>
	

Then	the	users	only	ever	need	to	type	in	http://nnn.nn.nn.nn/MyApplication.htm
to	start	the	application.	An	additional	benefit	is	that	you	can	change	the
parameters	used	in	MyApplication.htm	at	any	time	without	the	users	needing	to
change	what	they	do.	Of	course	you	can	still	use	option	1	to	avoid	typing	in	any
URL	at	all.

http://nnn.nn.nn.nn/MyApplication.htm

What	should	I	do	when	I	get	a	mysterious	WAM	crash	in	my
Framework	RAMP	application?
Scan	you	drives	for	these	files	and	delete	all	occurrences	of	them:
X_ERR.LOG
LANSAWEB.LOG
LX_WAM.LOG

Then	execute	the	WAM	application	again	to	the	point	of	failure	and	then	scan
for	these	files	again	across	your	whole	hard	drive.
One	or	more	of	them	will	most	likely	contain	useful	error	information.
	

How	do	I	pick	up	the	servers	that	have	been	defined	in	the
Framework	using	the	Servers	option	of	the	Administration	menu?
This	code	snippet	demonstrates	how	to	display	a	message	showing	all	the
servers	defined	in	the	network:
*	Use	VL's	F2	feature	help	to	see	all	properties	exposed	by	this	server	object
	
Define_Com	Class(#VF_FP007)	Name(#Server)	Reference(*dynamic)
	
*	Get	the	first	server
	
Invoke	Method(#uSystem.uServerContainer.uFirstServer)	Userverref(#Server)
Ucursor(#vf_elnum)	Ureturncode(#vf_elretc)
Dowhile	Cond('#vf_elretc	=	ok')
	
*	The	VF_FP007	server	object	has	a	set	of	properties	that	define	the	server.
*	These	properties	are	READ	ONLY	in	this	context	and	must	not	ever	be
updated.
*	For	example	..
	
Use	message_box_add	('Caption'	#Server.uCaption)
Use	message_box_add	('Type'				#Server.uServerType)
Use	message_box_add	('LU	Name'	#Server.uServerLUName)
Use	Message_box_show	(ok	ok	info)
	
*	Get	the	next	server
	
Invoke	Method(#uSystem.uServerContainer.uNextServer)
Userverref(#Server)	Ucursor(#vf_elnum)	Ureturncode(#vf_elretc)
Endwhile
	

	

Why	do	I	get	a	message	saying	'Compression	source	file
vf_multi_NAT.js	not	found'?
This	happens	when	saving	the	Framework	in	a	monolingual	partition.
When	the	Framework	runs	in	the	browser	it	uses	a	file	named	vf_multi_LLL.js
(where	LLL	is	the	language	code)	to	access	multilingual	text	string	values.
There	are	three	such	files	shipped:	vf_multi_ENG.js,	vf_multi_FRA.js	and
vf_multi_JPN.js.
If	the	language	of	your	monolingual	partition	is	English,	French	or	Japanese,
simply	copy	the	file	corresponding	to	your	language	with	the	new	name	of
vf_multi_NAT.js.	These	files	are	located	in	the	partition	execute	folder.
If	the	language	of	your	monolingual	partition	is	none	of	the	above,	copy	the	file
but	also	edit	it	and	modify	it	according	to	your	own	language.
	

Why	do	I	get	a	message	saying	'Compression	source	file
vf_multi_LLL.js	not	found'?
This	happens	when	saving	the	Framework	in	a	multilingual	partition.
When	the	Framework	runs	in	the	browser	it	uses	a	file	named	vf_multi_LLL.js
(where	LLL	is	a	language	code)	to	access	multilingual	text	string	values.	There
are	3	such	files	shipped:	vf_multi_ENG.js,	vf_multi_FRA.js	and
vf_multi_JPN.js.
Simply	copy	one	of	those	files	with	the	new	name	of	vf_multi_LLL.js	where
LLL	is	the	desired	language	code.	These	files	are	located	in	the	partition	execute
folder.
You	will	then	have	to	edit	and	modify	the	contents	to	reflect	your	own	language.
	

How	can	I	change	the	list	of	Framework	versions	shown?
If	you	have	a	lot	of	Frameworks	and	start	up	as	a	VLF	designer	you	are	asked	to
choose	which	one	to	use:

	
	
If	you	want	to	change	this	list	of	choices,	or	keep	different	lists	of	choices,	then
it’s	worth	knowing:
The	displayed	list	of	choices	comes	from	a	text	file	that	you	name	in	your

VLF	system	entry	point.
The	shipped	entry	point	UF_DESGN	uses	the	name

vf_sy001_system_choice.txt	for	this	file	because	of	this	line	of	code:
	
Set	Com(#Com_Owner)	Usystemxmlfile('vf_sy001_system.xml')
Usystemxmlchoice('vf_sy001_system_choice')

	
vf_sy001_system_choice.txt	is	kept	in	the	LANSA	system’s	partition	execute

folder,	so	it	is	shared	on	multi-developer	systems.				
The	last	Framework	you	used	is	kept	in	a	file	named

vf_sy001_system_choice_Last_Used.txt,	which	resides	in	your	personal
temporary	directory	(*TEMP_DIR)	because	it	reflects	what	you	used	last.
	

Framework	Programming
Read	this	section	only	when	you	are	finished	with	your	prototype.
You	turn	your	prototype	into	a	real	application	by	writing	programs	that	act	as
real	filters	and	command	handlers.		As	you	complete	each	filter	or	command
handler	you	snap	it	into	the	Framework,	replacing	the	prototype	version.	For
example:

Your	Framework	gradually	evolves	from	being	a	prototype	application	into	a
real	application	as	you	replace	each	prototype	filter	and	command	handler	with
a	real	one.
Any	filter	or	command	handler	program	that	you	write	must	be	one	of	these
types:

WINDOWS A	Visual	LANSA	component	that	works	in	the	native	Windows
environment.
See	Windows	Filter	and	Command	Handler	Anatomy

		WAM A	LANSA	for	the	Web	component	that	works	with	the	web
browser	interface.	It	is	coded	as	an	RDMLX	component	that
uses	WEBROUTINE	commands.
You	can	only	use	WAM	command	handlers	and	filters	if	you

have	LANSA	10.5	or	later	installed.
See	WAM	Filter	and	Command	Handler	Anatomy

	

Hidden	command	handlers	are	a	type	of	command	handler	that	perform	tasks
but	which	are	not	displayed.	See	Hidden	Command	Handler	Anatomy.
Remember	that	normally	you	don't	have	to	code	filters	or	command	handlers	by
hand.	The	Framework	comes	with	a	Program	Coding	Assistant	that	will
generate	the	code	for	you.	
Once	you	understand	the	basic	anatomy	of	filters	and	command	handlers	you
can	progress	on	to	understanding	the	Framework	facilities	that	you	can	use
inside	them:
Framework	Ancestor	Components	(WINDOWS	only)
List	Manager	and	Instance	Lists
Framework	Manager
Web	Programming
Designing	Filter	and	Command	Handler	Layouts
As	you	gain	experience	with	filters	and	command	handlers	you	might	also	be
interested	in	some	advanced	features:
Advanced	Filter	Styles
Custom	Properties
Also	see:
Using	Unicode	Data	with	the	Framework
End-user	Help	(F1)
Programming	Tips

	

Windows	Filter	and	Command	Handler	Anatomy
Applies	to:	WINDOWS	only.
WINDOWS	filters	and	command	handlers:
Are	used	for	all	Windows	applications.
Are	usually	visual	in	nature
Can	have	their	forms	painted	by	using	the	normal	Visual	LANSA	form	painter
(i.e.:	use	the	Design	tab	when	reviewing	the	source	code	for	the	filter	or
command	handler	in	the	Visual	LANSA	editor).
Execute	on	the	client	system
Can	maintain	their	state	because	they	are	Windows	based.	
Structurally	WINDOWS	filters	or	command	handlers	look	like	this:

	
There	are	several	important	parts	in	any	filter	or	command	handler:

All	filters	and	command	handlers	extend	(i.e.:	inherit	from)	a	base	class
shipped	with	the	Framework.	Filters	extend	a	class	named	#VF_AC007
and	command	handlers	extend	a	class	named	#VF_AC010.	In	both	cases
the	base	classes	provide	a	set	of	pre-defined	behavior	to	the	command
handler	or	filter.

All	filters	and	command	handlers	can	have	an	optional	method	named
uInitialize	that	is	executed	just	once	when	the	filter	or	command	handler
is	being	created.	Typically	you	use	this	to	fill	in	details	on	the	form	that
the	filter	or	command	handler	will	display.

All	filters	and	command	handlers	can	have	an	optional	method	named
uTerminate	that	is	executed	just	once	when	the	filter	or	command	handler
is	being	destroyed.	Typically	you	use	this	to	free	up	things	that	the	filter
or	command	handler	uses.

Command	handlers	normally	have	a	uExecute	method.	This	method	is
invoked	whenever	the	user	executes	the	Framework	command	that	is
associated	with	the	command	handler.	Filters	do	not	have	uExecute
methods	because	there	is	no	command	associated	with	them.	They	simply
display	their	user	interface	and	then	wait	for	the	user	to	indicate	what	they
want	to	do	(eg:	Click	the	Search	button).

Command	handlers	can	have	an	optional	method	named	uActivate	that
executes	when	the	user	causes	the	command	handler	to	be	redisplayed	(ie:
activated).	Typically	when	switching	back	to	a	command	handler	from
another	business	object	–	but	they	did	not	execute	the	command.	Use	of
this	method	is	quite	rare	and	very	specialized.	Make	sure	you	understand
its	purpose	and	invocation	timing	before	using.

Most	filters	and	command	handlers	also	have	their	own	unique	event
handling	routines	(EvtRoutine/EndRoutine	command	pairs)	and	methods
MthRoutine	(Mthroutine/EndRoutine)	command	pairs.	This	example
shows	"Click"	event	routines	for	two	buttons	named		#Save_Button	and
#Transfer_Button.	The	logic	inside	these	routines	would	define	what
happens	when	the	respective	buttons	are	clicked	by	the	user.

Writing	WINDOWS	filters	or	command	handlers	is	just	like	writing	any	other
Visual	LANSA	reusable	visual	part,	except	that	the	Framework	manages	how,
when	and	where	your	filter	or	command	handler	is	created.
	

	

WAM	Filter	and	Command	Handler	Anatomy
Applies	to	WAM	only.
WAM	filters	and	command	handlers:
Can	only	be	used	if	you	are	using	LANSA	10.5	(or	later)
Are	usually	visual	in	nature
Uses	vlf_layout	or	vlf_layout_v2	as	it's	layout	weblet.	The	vlf_layout_v2
weblet	is	used	to	enable	the	use	of	Weblets	with	the	jQuery	UI	design	theme.
Can	have	their	forms	painted	by	using	the	WAM	editor.
Execute	on	the	server	system
Cannot	maintain	their	state	because	they	are	web	browser	based	
Structurally	the	basic	anatomy	of	a	WAM	function	looks	like	this:	

There	are	five	important	things	you	need	to	understand	about	the	structure	of
WAM	filters	and	command	handlers:

All	WAM	filters	and	command	handlers	extend	(i.e.:	inherit	from)	a	base
class	named	#PRIM_WAM.	The	base	classes	provide	a	set	of	pre-defined
behavior	to	the	WAM.

There	is	always	a	web	map	that	defines	what	is	sent	out	as	the	web	page.

In	this	example	the	push	buttons	#UB_SAVE	and	#UB_SEARCH	are
sent.

There	is	always	a	single	WEBROUTINE	defined	that	does	two	important
things:
–	It	registers	all	the	events	that	the	filter	or	command	handler	can	handle
and	associates	them	with	an	event	handling	routine.	In	this	example	the
click	events	for	the	#UB_SAVE	and	#UB_SEARCH	buttons	are
registered	and	associated	with	event	routines	(the	blue	and	brown	arrows
show	the	associations).
–	It	Indicates	to	the	Framework	manager	that	the	Framework	can	be
initialized	and	executed.
The	only	code	you	should	ever	add	to	the	uHandleEvent	routine	is
avRegisterEvent	method	invocations.	All	other	logic	should	be	put	into
the	appropriate	uInitialize,	uExecute,	uTerminate	or	uWAMEvent_N	event
handling	routines.

Filters	and	command	handlers	can	have	optional	uInitialize,	uTerminate
and	uExecute	event	handlers.	Since	WAM	routines	are	created	and
destroyed	every	time	they	are	executed,	the	uInitialize	and	uTerminate
routines	are	executed	every	time	the	WAM	is	invoked.	Therefore	they
should	only	contain	code	that	you	want	to	execute	at	the	start	and/or	end
of	every	single	WAM	interaction	with	the	client.
uExecute	is	only	ever	executed	when	the	WAM	is	executed	(that	is,	when
a	filter	is	started	or	a	command	handler	is	executed).		When	events	occur
inside	an	active	WAM	(for	example	a	button	click)	uExecute	is	not
signalled,	just	the	registered	uWAMEvent_N	event.

Most	filters	and	command	handlers	also	have	their	own	unique	event
handling	routines.	The	example	WAM	used	here	has	registered	events
(UB_SAVE.Click	and	UB_SEARCH.Click)	so	it	has	2	event	routines
defined	to	handle	the	respective	click	events.

Routines	execute	in	a	WAM	for	VLF	for	Web	in	this	order:
1.			uHandleEvent	(Note	that	messages	from	routine	uHandleEvent	will	be	sent
last	even	though	it	executes	first)

2.			uInitialize
3.			uExecute	(first	time	logic)

4.			User	WAM	Events
5.			uTerminate
	
Writing	WAM	filters	or	command	handlers	is	much	like	writing	any	other
WAM	program	except	that	the	Framework	manages	how,	when	and	where	the
filter	or	command	handler	is	created,	displayed	and	destroyed.
Normally	you	generate	your	WAM	by	using	the	Program	Coding	Assistant
initially	and	then	when	you	need	to	add	another	event	simply:
Register	the	event	and	associate	it	with	an	event	handling	routine.
Add	in	a	new	event	handling	routine	to	handle	the	event.
The	most	important	thing	to	remember	is	that	whenever	your	WAM	filter	or
command	completes	handling	an	event	it	then	ceases	to	exist.
	
	

Hidden	Command	Handler	Anatomy
Applies	to:	Windows	and	Web	applications.
Hidden	command	handlers:
Are	run	in	the	same	way	as	other	commands	but	do	not	appear	on	tabs	or	in
separate	windows	and	are	hidden	from	the	user
Are	used	to	perform	non-visual	tasks.
For	Windows	applications	are	reusable	parts	with	vf_ac020	set	as	their
ancestor.
For	Web	applications	they	are	simply	Visual	LANSA	functions.
Have	most	non-visual	Framework	and	instance	list	services	available	to	them.
	
Structurally,	Hidden	Command	Handlers	for	Windows	applications	are	similar
to	Windows	Command	Handlers	with	these	important	differences;
They	extend	the	base	class	#VF_AC020.
They	don't	use	the	optional	method	uInitialize.
They	don't	use	the	optional	method	uTerminate.
They	don't	listen	to	events.
	
Hidden	Command	Handlers	for	Web	applications	are:
Normal	Visual	LANSA	functions.
They	don't	include	visual	elements	such	as	Request	or	Display	commands.
They	cannot	signal	to	commands	in	the	same	business	object	at	the	same	level.
They	do	not	listen	to	events.
	
When	using	hidden	command	handlers	it	is	important	to	remember	that	they;
Should	always	have	the	Default	Command	option	set	to	NEVER	for	instance
level	commands	or	NO	for	business	object	level	commands.
Should	never	be	used	with	the	Hide	All	Other	Command	Tabs	option	set.
Should	never	be	attached	to	RAMP	Destination	screens.
Should	never	attempt	to	display	information	to	the	user	or	interact	with	the
user.	Hidden	means	hidden.
	

Example	of	a	Hidden	Command	Handler	for	Windows	Applications
Example	of	a	Hidden	Command	Handler	for	Web	Applications
	

Example	of	a	Hidden	Command	Handler	for	Windows
Applications
*	==
*	Type												:	COMMAND	HANDLER
*	Platform								:	MS-WINDOWS	(Visual	LANSA)
*	Ancestor								:	VF_AC020
*	Copyright							:	(C)	Copyright
*	Framework							:	Dem	Framework
*	==
*	An	instance	level	command,	reverses	the	Employee	Name	in	the	instance	list.
*	==
Function	Options(*DIRECT)
BEGIN_COM	ROLE(*EXTENDS	#VF_AC020)
	
*	==
*	Simple	Field	and	Group	Definitions
*	==
	
DEFINE	FIELD(#REVSD)	REFFLD(#VF_ELBOOL)
DEF_COND	NAME(*REVSD)	COND('#REVSD	*EQ	TRUE')
	
*	==
*	Handle	Command	Execution
*	==
	
Mthroutine	Name(uExecute)	Options(*REDEFINE)
	
*	Do	any	execution	logic	defined	in	the	ancestor
	
Invoke	#Com_Ancestor.uExecute
	
*	Get	the	Employee	number	of	the	current	instance
	
Invoke	#avListManager.GetCurrentInstance	AKey1(#EMPNO)	AColumn3(#REVSD)
	
*	Fetch	information	from	the	main	file	to	fill	in	the	header	fields	on	the	form
	

FETCH	FIELDS(#SURNAME	#GIVENAME)	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
	
*	Put	the	names	together	in	the	reverse	order
	
If	Cond(*REVSD)
	
*	Put	the	names	together	Given	name	first
	
Change	#UF_VisID2	#GIVENAME
Use	BConcat	(#UF_VisID2	#SURNAME)	(#UF_VisID2)
	
*	Set	the	reversed	flag
	
Change	#REVSD	FALSE
	
Else
	
*	Put	the	names	together	Surname	first
	
Change	#UF_VisID2	#SURNAME
Use	BConcat	(#UF_VisID2	#GIVENAME)	(#UF_VisID2)
	
*	Set	the	reversed	flag
	
Change	#REVSD	TRUE
	
Endif
	
*	Update	the	name	(Visual	ID	2)	to	the	instance	list
	
Invoke	Method(#avListManager.UpdateListEntryData)		AKey1(#EMPNO)	Visualid2(#UF_VisID2)	AColumn3(#REVSD)
	
Endroutine
	
End_Com

	

Example	of	a	Hidden	Command	Handler	for	Web	Applications
Example	1
*	This	is	an	example	of	VLF.WEB	hidden	command.
*	It	is	executed	on	the	web	server.
*	It	can	coded	in	RDML	or	RDMLX	format.
	
*	Regardless	of	whether	it	is	RDML	or	RDMLX	it	needs	to	use	the
*	VF*	series	of	built-in	functions	to	communicate	with	the	Framework
*	manager.
	
Function	Options(*DIRECT)
	
*	Get	the	current	instance	list	entry
	
Use	Builtin(VF)	With_Args(GETCURRENTINSTANCE)
	
*	Get	AKEY3	because	it	contains	the	employee	number
	
Use	Builtin(VF_GET)	With_Args(AKEY3)	To_Get(#EmpNo)
	
*	Issue	a	message	showing	the	employee	number	retrieved
	
Execute	Subroutine(Showmsg)	With_Parms('Employeee	number	selected	is'
#Empno)
	
*	Make	the	message	always	be	displayed	in	the	web	browser
	
Use	Builtin(VF_SET)	With_Args(AVSHOWMESSAGES	TRUE)
	
*	Finished
	
Return
	
*	Simple	subroutine	to	issue	a	message	onto	program	message	queue
	
Subroutine	Name(ShowMSG)	Parms((#MSGDTA	*RECEIVED)	(#TEMP1
*RECEIVED))
Define	Field(#Msgdta)	Type(*char)	Length(132)

Define	Field(#Temp1)	Type(*char)	Length(132)
Use	Builtin(BCONCAT)	With_Args(#MSGDTA	#TEMP1)
To_Get(#MSGDTA)
Message	Msgid(DCM9899)	Msgf(DC@M01)	Msgdta(#MsgDta)
Endroutine

	
Example	2
*	===
*	Description	...:	Instance	level	Hidden	Command	Handler
*
*	===
FUNCTION	OPTIONS(*DIRECT)
	
*	Simple	Field	and	Group	Definitions
*	===
DEFINE	FIELD(#REVSD)	REFFLD(#VF_ELBOOL)
DEF_COND	NAME(*REVSD)	COND('#REVSD	*EQ	TRUE')
	
*	Get	the	Employee	number	of	the	current	instance
*	and	the	revered	flag.
	
USE	BUILTIN(VF)	WITH_ARGS(GETCURRENTINSTANCE)
	
USE	BUILTIN(VF_GET)	WITH_ARGS(AKEY1)	TO_GET(#EMPNO)
	
*	Get	the	Name	state	from	the	clipboard
	
USE	BUILTIN(VF_RESTOREAVALUE)	WITH_ARGS(*BLANKS	PNCAFLT	REVERSED	#EMPNO)	TO_GET(#REVSD)
	
USE	BUILTIN(VF_TRACEAVALUE)	WITH_ARGS('Employee	name	is	surname	first?	'	#REVSD)
	
*	Fetch	information	from	the	main	file	to	fill	in	the
*	header	fields	on	the	form
	
FETCH	FIELDS(#SURNAME	#GIVENAME)	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
	
*	Put	the	names	together	in	the	reverse	order
	

IF	COND(*REVSD)
	
*	Put	the	names	together	Given	name	first
	
CHANGE	FIELD(#UF_VISID2)	TO(#GIVENAME)
USE	BUILTIN(BCONCAT)	WITH_ARGS(#UF_VISID2	#SURNAME)	TO_GET(#UF_VISID2)
	
*	Set	the	reversed	flag
	
CHANGE	FIELD(#REVSD)	TO(FALSE)
	
USE	BUILTIN(VF_TRACEAVALUE)	WITH_ARGS('Employee	name	has	been	reversed.	Name	is	now	'	#UF_VISID2)
	
ELSE
	
*	Put	the	names	together	Surname	first
	
CHANGE	FIELD(#UF_VISID2)	TO(#SURNAME)
USE	BUILTIN(BCONCAT)	WITH_ARGS(#UF_VISID2	#GIVENAME)	TO_GET(#UF_VISID2)
	
*	Set	the	reversed	flag
	
CHANGE	FIELD(#REVSD)	TO(TRUE)
	
USE	BUILTIN(VF_TRACEAVALUE)	WITH_ARGS('Employee	name	is	now	surname	first.	Name	is	now	'	#UF_VISID2)
	
ENDIF
	
*	Update	the	name	(Visual	ID	2)	to	the	instance	list
	
USE	BUILTIN(VF)	WITH_ARGS(BEGINLISTUPDATE)
	
*	Set	up	the	list	entry	details
	
USE	BUILTIN(VF_SET)	WITH_ARGS(VISUALID1	#EMPNO	VISUALID2	#UF_VISID2	AKEY1	#EMPNO)
	
USE	BUILTIN(VF_TRACEAVALUE)	WITH_ARGS('Employee	name	is	surname	first?	'	#REVSD)
	
*	Add	instance	details	to	the	instance	list

	
USE	BUILTIN(VF)	WITH_ARGS(ADDTOLIST)
	
*	Instance	list	updating	is	now	complete
	
USE	BUILTIN(VF)	WITH_ARGS(ENDLISTUPDATE)
	
*	Remember	which	way	the	name	is	presented
	
USE	BUILTIN(VF_SAVEAVALUE)	WITH_ARGS(#REVSD	PNCAFLT	REVERSED	#EMPNO)
	

	
	

Framework	Ancestor	Components
Applies	to	WINDOWS	only.
If	you	are	creating	a	filter,	command	handler	or	instance	list	browser	you	need
to	use	a	standard	shipped	ancestor.	This	means	that	your	component	will	inherit
some	predefined	behavior,	thus	minimizing	the	amount	of	code	you	need	to
write.
When	you	create	a	Reusable	Part	that	will	be	used	as	a	filter,	command	handler
or	instance	list,	you	need	to	set	the	Role	property	appropriately:
Type	of	Reusable	Part: The	code	at	beginning	of	your	program	must	say:
Filter Begin_Com	Role(*EXTENDS	#VF_AC007)	…

etc	,,,
Command	Handler Begin_Com	Role(*EXTENDS	#VF_AC010)		…

etc	,,,
Instance	List	browser Begin_Com	Role(*EXTENDS	#VF_AC012)	…

etc	,,,
Hidden	Command
Handler

Begin_Com	Role(*EXTENDS	#VF_AC020)	…
etc	,,,

Filters,	command	handlers	and	instance	lists	make	use	of		services	provided	by
two	components,	List	Manager	and	Instance	Lists	and	Framework	Manager:

(Ignore	the	PUVF_	components,	they	are	internal.)
The	best	way	to	explore	the	List	Manager	and	the	Framework	Manager	services

is	to	select	avListManager	or	avFrameworkManager	in	the	Visual	LANSA
outliner:

	
Double-click	them	and	then	use	the	component	property	sheets	and	F2	to
investigate	the	properties,	methods	and	events	that	they	provide:

To	see	examples	of	using	the	List	Manager	and	the	Framework	Manager	have	a
look	at		the	shipped	DF_FILTn	components.

List	Manager	and	Instance	Lists
The	component	that	manages	the	instance	list	is	called	the	List	Manager.	
Each	entry	in	the	instance	list	represents	a	specific	instance	of	the	business
object	(in	this	example	a	specific	employee):

See	Basic	Instance	List	Processing	for	an	explanation	of	how	filters,	instance
lists	and	command	handlers	interact.
When	a	list	entry	is	shown	on	the	screen,	it	needs	to	have	something	that	makes
it	easy	for	the	user	to	identify	it.	These	visual	identifiers	often	include	elements
that	are	very	definitely	never	used	as	programmatic	identifiers	such	as	a	name.
Most	business	objects	have	at	least	two	visual	identifiers.		See	Visual
Identifiers.
Each	entry	in	the	list	must	also	have	something	that	uniquely	identifies	it	within
the	list.	For	example	employee	number	A0070	uniquely	identifies	employee
Veronica	Brown.	This	programmatic	identification	is	required	so	your	filters	and
command	handlers	can	uniquely	identify	which	instance	of	a	business	object
they	are	working	with	(obviously,	name	is	not	necessarily	unique).	Many

business	objects	require	more	than	one	programmatic	identifier	to	make	them
unique.		See	Programmatic	Identifiers.
To	examine	the	identifiers	used	in	your	Framework	application,	see	Testing
Identifiers.
In	the	Windows	Framework	the	filter	can	be	coded	to	override	the	instance	list
column	headings	at	run	time.	This	can	be	used	to	make	the	instance	list	suit	the
result	of	different	filter	searches.	See	Overriding	Instance	List	Column
Headings.	Also	the	filter	or	command	handler	can	be	coded	to	sort	the	instance
list	at	run	time.	See	Programmatically	Sorting	the	Instance	List.
Note	that	you	do	not	necessarily	need	to	use	the	standard	instance	list	provided
by	the	Framework.	See	Optionally	Create	Your	Own	Instance	List.
	

Basic	Instance	List	Processing

In	the	Framework,	filters	create	lists	of	business	objects	such	as	customers,
orders,	etc.	When	the	user	clicks	on	a	business	object	instance	displayed	in	the
instance	list,	a	set	of	command	handler	tabs	typically	appear,	indicating	various
details	about	the	business	object	and	various	actions	that	users	can	take	on	it.
For	example:	

	
Programmatically	this	model	is	quite	simple:
Typically	a	"Search"	button	in	a	filter	works	like	this:
	

*	Indicate	start	of	list	update	and	set	the	Framework	to	busy
	
Invoke	Method(#avListManager.BeginListUpdate)
	
*	Clear	the	list	first
	
Invoke	Method(#avListManager.ClearList)
	
*	Select	the	business	object(s)	that	match	the	search	criteria,	often	from	rows
*	in	a	database	table	and	then	add	them	to	the	instance	list
	
Select	Fields()	From_File()	With_Key()	Where()
	
					Invoke	Method(#avListManager.AddtoList)
	
EndSelect
	
*	Indicate	the	end	of	list	update
	
Invoke	Method(#avListManager.EndListUpdate)

	
Structurally,	this	logic	reflects	how	most	filters	and	instance	lists	work	together.
	

Visual	Identifiers
When	you	create	a	filter	you	will	need	to	decide	on	the	set	of	visual	identifiers.
These	identifiers	allow	the	user	to	identify		and	filter	individual	business	object
instances.
When	you	manage	instance	lists	with	the	List	Manager	you	use	parameters
named	VisualID1	and	VisualID2	to	specify	(or	receive)	the	visual	identifiers
assigned	to	a	business	object	instance.
Both	parameters	are	alphanumeric	and	have	maximum	lengths	of	32	and	50
characters	respectively.	You	can	of	course	put	anything	you	like	into	these
visual	identifiers,	including	numeric	and	concatenated	information.	The
Framework	Manager	provides	a	standard	method	named	avMakeAlphaValue	to
help	you	convert	numeric	identifiers	such	as	Product	and	Customer	numbers
into	alphanumeric	form.
Here	are	some	examples	of	visual	identifiers:
Business
Object

Chosen	VisualID1 Chosen	VisualID2

Product Product	Number Product	Description
Customer Customer	Id Customer	Name
Employee Employee	Number Employee	Name	(Department	-	Work

Phone	Number)
Account Company	Id	:	Account

Number	
Account	Name

Department Department	Name Not	Required
Section Department	Code	–

Section	Code
Section	Name

	

Remember	that	visual	identifiers	are	only	used	so	that	people	can	identify	things
and	that	they	have	no	bearing	whatsoever	on	how	your	programs	will	identify
things.	You	might	even	dynamically	vary	the	visual	identifiers	used	from	object
instance	to	object	instance;	for	example	all	premium	customers	get	an	*	in	front
of	their	names	in	VisualID2.	

Programmatic	Identifiers
You	will	also	need	to	decide	on	programmatic	identifiers.	These	identifiers
allow	your	filters	and	command	handlers	(i.e.:	your	programs)	to	uniquely
identify	individual	business	object	instances.
In	the	List	Manager	you	use	a	set	of	parameters	to	indicate	your	chosen
programmatic	identifiers:
AKey1,	AKey2,	AKey3,	AKey4	and	AKey5	specify	(or	receive)	the
alphanumeric	values	that		identify	a	business	object	instance.	They	are
optional	and	their	maximum	length	is	32	characters	(each).
NKey1,	NKey2,	NKey3,	NKey4	and	NKey5	specify	(or	receive)	the	numeric
values	that	identify	a	business	object	instance.	They	are	optional	and	their
maximum	precision	is	15,0	(each).
So	a	business	object	instance	can	have	up	to	ten	programmatic	identifiers,	five
alphanumeric	and	five	numeric,	in	any	combination.	You	might	just	use	one	or
two	identifiers,	but	you	can	also	concatenate	several	pieces	of	information	into	a
single	AKeyn	value,	so	effectively	you	can	have	more	keys	than	10.	
Here	are	some	examples	of	how	you	might	identify	your	business	objects:

Business
Object

AKey1 AKey2 AKey3 AKey4 AKey5 Nkey1 Nkey2

Product 	 	 	 	 	 Product
Number

	

Customer Customer
Number

	 	 	 	 	 	

Account Account
Number

	 	 	 	 Company
Number

Major
Account

Department Department
Code

	 	 	 	 	 	

Section Department	
Code

Section
Code

	 	 	 	 	

	

Remember	that	these	identifiers	must	uniquely	identify	an	instance	of	the

business	object	to	your	programs	but	that	nobody	is	going	to	see	them	(unless
you	make	them	visual	identifiers).

Testing	Identifiers
You	can	use	a	generic	VLF	command	handler	to	test	the	visual	and
programmatic	identifiers	passed	from	the	instance	list.	It	shows	the	selected
business	object	and	its	identifier	values:

	
To	use	the	command	handler,	copy	and	paste	the	sample	code	to	a	reusable	part,
compile	it	and	snap	it	in	as	a	command	handler	for	any	business	object:
Function	Options(*DIRECT)
	
BEGIN_COM	ROLE(*EXTENDS	#VF_AC010)	HEIGHT(240)
HINT(*MTXTDF_DET1)	WIDTH(600)
	

DEFINE_COM	CLASS(#VF_ELXVI1.Visual)	NAME(#VF_ELXVI1)
DISPLAYPOSITION(1)	HEIGHT(19)	LEFT(8)	PARENT(#COM_OWNER)
TABPOSITION(1)	TOP(8)	USEPICKLIST(False)	WIDTH(416)
	
DEFINE_COM	CLASS(#VF_ELXVI2.Visual)	NAME(#VF_ELXVI2)
DISPLAYPOSITION(2)	HEIGHT(19)	LEFT(8)	PARENT(#COM_OWNER)
TABPOSITION(2)	TOP(26)	USEPICKLIST(False)	WIDTH(417)
	
DEFINE_COM	CLASS(#VF_ELXNK1.Visual)	NAME(#VF_ELXNK1)
DISPLAYPOSITION(7)	HEIGHT(19)	LEFT(272)
PARENT(#COM_OWNER)	TABPOSITION(7)	TOP(136)
USEPICKLIST(False)	WIDTH(247)
	
DEFINE_COM	CLASS(#VF_ELXNK2.Visual)	NAME(#VF_ELXNK2)
DISPLAYPOSITION(6)	HEIGHT(19)	LEFT(273)
PARENT(#COM_OWNER)	TABPOSITION(6)	TOP(155)
USEPICKLIST(False)	WIDTH(247)
	
DEFINE_COM	CLASS(#VF_ELXNK3.Visual)	NAME(#VF_ELXNK3)
DISPLAYPOSITION(5)	HEIGHT(19)	LEFT(273)
PARENT(#COM_OWNER)	TABPOSITION(5)	TOP(174)
USEPICKLIST(False)	WIDTH(247)
	
DEFINE_COM	CLASS(#VF_ELXNK4.Visual)	NAME(#VF_ELXNK4)
DISPLAYPOSITION(4)	HEIGHT(19)	LEFT(273)
PARENT(#COM_OWNER)	TABPOSITION(4)	TOP(192)
USEPICKLIST(False)	WIDTH(247)
	
DEFINE_COM	CLASS(#VF_ELXNK5.Visual)	NAME(#VF_ELXNK5)
DISPLAYPOSITION(3)	HEIGHT(19)	LEFT(273)
PARENT(#COM_OWNER)	TABPOSITION(3)	TOP(208)
USEPICKLIST(False)	WIDTH(247)
	
DEFINE_COM	CLASS(#VF_ELXAK1.Visual)	NAME(#VF_ELXAK1)
DISPLAYPOSITION(12)	HEIGHT(19)	LEFT(11)
PARENT(#COM_OWNER)	TABPOSITION(12)	TOP(136)
USEPICKLIST(False)	WIDTH(249)
	
DEFINE_COM	CLASS(#VF_ELXAK2.Visual)	NAME(#VF_ELXAK2)

DISPLAYPOSITION(11)	HEIGHT(19)	LEFT(11)
PARENT(#COM_OWNER)	TABPOSITION(11)	TOP(153)
USEPICKLIST(False)	WIDTH(249)
	
DEFINE_COM	CLASS(#VF_ELXAK3.Visual)	NAME(#VF_ELXAK3)
DISPLAYPOSITION(10)	HEIGHT(19)	LEFT(11)
PARENT(#COM_OWNER)	TABPOSITION(10)	TOP(172)
USEPICKLIST(False)	WIDTH(249)
	
DEFINE_COM	CLASS(#VF_ELXAK4.Visual)	NAME(#VF_ELXAK4)
DISPLAYPOSITION(9)	HEIGHT(19)	LEFT(11)	PARENT(#COM_OWNER)
TABPOSITION(9)	TOP(190)	USEPICKLIST(False)	WIDTH(249)
	
DEFINE_COM	CLASS(#VF_ELXAK5.Visual)	NAME(#VF_ELXAK5)
DISPLAYPOSITION(8)	HEIGHT(19)	LEFT(11)	PARENT(#COM_OWNER)
TABPOSITION(8)	TOP(208)	USEPICKLIST(False)	WIDTH(249)
	
DEFINE_COM	CLASS(#VF_ELBOOL.Visual)	NAME(#VF_ELBOOL)
CAPTION('Found	')	DISPLAYPOSITION(13)	HEIGHT(19)
LABELTYPE(Caption)	LEFT(8)	PARENT(#COM_OWNER)
TABPOSITION(13)	TOP(44)	USEPICKLIST(False)	WIDTH(209)
	
DEFINE_COM	CLASS(#VF_ELIDN.Visual)	NAME(#VF_ELIDN)
CAPTION('Business	Object	Type')	DISPLAYPOSITION(14)	HEIGHT(19)
LABELTYPE(Caption)	LEFT(8)	PARENT(#COM_OWNER)
TABPOSITION(14)	TOP(64)	USEPICKLIST(False)	WIDTH(329)
	
DEFINE_COM	CLASS(#VF_ELTXTS.Visual)	NAME(#VF_ELTXTS)
CAPTION('Type')	DISPLAYPOSITION(15)	HEIGHT(19)
LABELTYPE(Caption)	LEFT(344)	MARGINLEFT(30)
PARENT(#COM_OWNER)	TABPOSITION(15)	TOP(108)
USEPICKLIST(False)	WIDTH(159)
	
DEFINE_COM	CLASS(#VF_ELTXTL.Visual)	NAME(#VF_ELTXTL)
CAPTION('Business	Object	Caption')	DISPLAYPOSITION(16)	HEIGHT(19)
LABELTYPE(Caption)	LEFT(8)	PARENT(#COM_OWNER)
TABPOSITION(16)	TOP(107)	USEPICKLIST(False)	WIDTH(329)
	
DEFINE_COM	CLASS(#STD_TEXTL.Visual)	NAME(#STD_TEXTL)

CAPTION('Command	Caption')	DISPLAYPOSITION(17)	HEIGHT(19)
LABELTYPE(Caption)	LEFT(8)	PARENT(#COM_OWNER)
TABPOSITION(17)	TOP(84)	USEPICKLIST(False)	WIDTH(329)
	
DEFINE_COM	CLASS(#STD_TEXTS.Visual)	NAME(#STD_TEXTS)
CAPTION('Type')	DISPLAYPOSITION(18)	HEIGHT(19)
LABELTYPE(Caption)	LEFT(344)	MARGINLEFT(30)
PARENT(#COM_OWNER)	TABPOSITION(18)	TOP(84)
USEPICKLIST(False)	WIDTH(159)
	
*	--
	
*	Handle	Command	Execution
	
*	--
	
Mthroutine	Name(uExecute)	Options(*REDEFINE)
	
*		Do	any	execution	logic	defined	in	the	ancestor
	
Invoke	#Com_Ancestor.uExecute
	
*	Get	the	details
	
Invoke	#avListManager.GetCurrentInstance	AKey1(#vf_elxak1)
AKey2(#vf_elxak2)	AKey3(#vf_elxak3)	AKey4(#vf_elxak4)
AKey5(#vf_elxak5)	NKey1(#vf_elxnk1)	NKey2(#vf_elxnk2)
NKey3(#vf_elxnk3)	NKey4(#vf_elxnk4)	NKey5(#vf_elxnk4)
Found(#vf_elBool)	VisualId1(#VF_ELXVI1)	VisualId2(#VF_ELXVI2)
BusinessObjectType(#vf_elidn)
	
	
*	Display	other	details	as	well
	
Change	#Std_texts	#com_Owner.avCommandType
	
Change	#Std_textl	#com_Owner.avCommandCaption
	
Change	#vf_eltxts	#com_Owner.avObjectType

	
Change	#vf_eltxtl	#com_Owner.avObjectCaption
	
Endroutine
	
End_Com
	

Filters	and	List	Manager
Your	filter	components	will	control	what	entries	are	displayed	in	the	instance
list.
The	List	Manager	provides	these	methods	you	can	use	in	your	filters:

In	Windows	and	WAM	Applications Description 	

Invoke
#avListManager.BeginListUpdate

Is	used	to	indicate	to	the	list
manager	that	you	are	about	to	begin
updating	the	instance	list.	In	effect
BeginListUpdate	and
EndListUpdate	are	used	to	define
the	boundaries	of	your	list	update
transaction.	The	list	manager	will
cause	the	busy	light	to	be	displayed
when	you	begin	a	list	update.
Also	see	Updating	and	Deleting
Instance	List	Entries.

	

Invoke	#avListManager.ClearList Is	used	to	clear	the	current	instance
list.

	

Invoke	#avListManager.AddtoList Is	used	to	add	a	new	entry	to	the
instance	list	or	to	update	an	existing
one.	You	need	to	supply	VisualID1
and	VisualID2	as	well	as	AKeyn	and
NKeyn	values	to	this	method.
There	is	also	a	Select	parameter
available	to	indicate	whether	the
instance	should	be	selected.
The	AddToList	method	has	an
optional	BusinessObjectType
parameter	which	allows	filters	to
add	different	business	object	types
to	the	same	instance	list.
There	is	also	an	optional	RowColor
parameter	which	allows	filters	to
specify	the	color	when	adding	an

	

Instance	list	entry.	See	Changing	the
Color	of	List	Entries	(RowColor).

Invoke	#avListManager.EndListUpdate Is	used	to	indicate	to	the	list
manager	that	you	have	completed
updating	the	list.	The	list	manager
will	turn	off	the	busy	light	and
update	the	list	displayed	on	the
screen.

	

Invoke
#avListManager.RemovefromList
Not	currently	available	for	WAMs.

Is	used	to	remove	an	entry	from	the
instance	list.	AKeyn	and	NKeyn
values	are	required	to	uniquely
identify	which	entry	is	to	be
removed.	If	the	entry	does	not	exist
then	the	request	is	ignored.		

	

Invoke	#avListManager.
UpdateListEntryData
Not	currently	available	for	WAMs.

Is	used	to	rapidly	update	the	data
content	of	an	existing	instance	list
entry.	If	the	entry	does	not	exist	then
the	request	is	ignored.	Does	not	need
to	be	bracketed	by	BeginListUpdate
and	EndListUpdate	method	calls.

	

Invoke	#avListManager.
RefreshRelationship	
Not	currently	available	for	WAMs.
	

Is	used	to	refresh	a	child/descendant
tree	‘cluster’	in	an	instance	list	that
is	displayed	as	a	tree.	This	method
causes	a	tree	child	node	cluster	to	be
refreshed	by	calling	the	relationship
handler	again.	Things	you	need	to
know	about	this	method:
If	the	child	node	cluster	has	not
been	previously	expanded,	the
refresh	request	is	ignored.		
If	the	child	node	cluster	has	been
previously	expanded,	then	the
relationship	handler	is	called	to
(re)expand	the	relationship	again.
The	instance	list	entries	it	returns
cause	existing	tree	nodes	to	be

	

updated,	or	new	entries	to	be
inserted.	Tree	nodes	that	existed
before	the	relationship	handler	was
called,	but	were	not	returned	by	it,
are	deleted	from	the	tree	and
instance	list.
Typically	this	method	is	only	used
on	the	lowest	child	level	in	a	tree.
If	you	have	trouble	using	this
method,	turn	on	application	tracing
and	review	the	output	it	produces.
Also	see	Updating	and	Deleting
Instance	List	Entries.
	

Invoke
#avListManager.AlterColumnHeadings
	
Not	currently	available	for	WAMs.
	

Is	used	to	override	the	instance	list
column	headings	at	run	time.	This
can	be	used	to	make	the	instance	list
suit	the	result	of	different
filter	searches.

Invoke
#avListManager.ResetAlteredHeadings
	
Not	currently	available	for	WAMs.
	

Is	used	to	remove	all	overrides	the
instance	list	column	headings.

Invoke	#avListManager.DisplaySorted
	
Not	currently	available	for	WAMs.
	

Is	used	to	sort	the	instance	list	by	a
visible	or	hidden	column,	at	run	time.
Up	to	four	sort	columns	can	be
specified.

	

Refer	to	tutorial	VLF013WIN	-	Signaling	Events	or	VLF013WAM	-	Signaling
Events	for	step-by-step	instructions	of	how	to	update	entries	in	an	instance	list.

The	programming	model	used	to	manage	instance	lists	is	the	same	in	Windows
and	Web	browser	applications,	even	though	the	syntax	used	is	different.
This	example	fills	an	instance	list	with	Employee	details	in	Windows	and
WAM	applications:
*	Start	the	list	updating	and	clear	the	current	instance	list	
Invoke	Method(#avListManager.BeginListUpdate)
Invoke	Method(#avListManager.ClearList)
*	Select	all	employees	with	specified	surname	(generically)	and	add	to	instance	list	
Select	Fields(#SURNAME	#GIVENAME	#EMPNO)	From_File(PSLMST2)	With_Key(#SURNAME)
							Generic(*YES)
Use	Builtin(BCONCAT)	With_Args(#GiveName	#SurName)	To_Get(#FullName)
Invoke	Method(#avListManager.AddtoList)	Visualid1(#Empno)	Visualid2(#FullName)
							Akey1(#Empno)
EndSelect
*	Instance	list	updating	has	been	completed
Invoke	Method(#avListManager.EndListUpdate)

	

Updating	and	Deleting	Instance	List	Entries
A	special	parameter	Mode(DYNAMIC)	can	be	used	on	the	BeginListUpdate
method.		
Instance	list	activities	typically	fall	into	two	broad	modes	of	processing:
Search	and	Refresh:	Typically	a	search	button	clears	the	instance	list	and	then
completely	refills	it	from	a	user	initiated	search.	This	is	called
Mode(REFRESH)	processing	because	the	whole	instance	list	is	refreshed.
Sometimes	the	list	is	not	cleared,	but	progressively	added	to	allow	the	end-user
to	easily	perform	"and"	style	searches.	
Individual	Entry	Updating	and	Deleting:	Typically	a	command	handler	has
performed	some	action	that	it	knows	should	be	reflected	into	a	small	number
of	entries	already	in	the	instance	list.	This	is	called	Mode(DYNAMIC)
processing	because	only	a	few	entries	in	the	instance	list	need	to	have	their
visual	content	dynamically	updated	or	removed.	
Mode(REFRESH)	is	the	default	style	of	list	processing.
There's	some	differences	between	how	Mode(REFRESH)	and
Mode(DYNAMIC)	requests	are	handled	by	the	Framework:
When	you	use	the	default	Mode(REFRESH)	method,	the	visualization	of	the
instance	list	is	performed	when	the	EndListUpdate	method	is	executed.	This	is
done	by	clearing	the	entire	existing	visualization	and	rebuilding	it	from
scratch.	This	means	selections	and	focus	are	lost	and	trees	are	collapsed,	even
if	you	replace	the	list	with	the	exactly	the	same	content.
When	you	use	Mode(REFRESH)	you	can	execute	a	default	command	and	set
instance	selections.
When	you	use	Mode(DYNAMIC)	the	visualization	of	the	change	to	the
instance	list	is	performed	immediately.	You	can't	execute	a	default	command
and	set	or	change	the	instance	selection	because	all	you	are	intending	to	do	is
change	or	remove	its	visualization,	but	existing	selections	and	focus	are	not
lost	and	trees	are	not	collapsed.			
You	can't	use	#ListManager.ClearList	when	using	Mode(DYNAMIC)
updating.	This	will	cause	an	error	message	to	be	displayed.
Finally,	there's	two	ways	to	update	an	instance	list	entry:		You	can	use
#ListManager.AddtoList	or	#ListManager.UpdateListEntryData.	Both	will
cause	an	existing	entry	to	be	updated,	but	only	AddtoList	will	create	a	new	entry
when	the	specified	one	does	not	exist.	

The	main	difference	between	them	is:
UpdateListEntryData	only	updates	the	list	entry	values	that	you	specify	as
parameters.	For	example	you	can	just	update	additional	column	3.
AddtoList	updates	all	the	values	in	the	instance	list	entry	using	either	the
values	you	pass	as	parameters	or	their	default	values.	So	to	update	additional
column	3	you	probably	need	to	pass	values	for	additional	columns	1	and	2	as
well,	and	maybe	4,	5	and	6	as	well.					
The	preceding	points	mean	you	should	not	use	UpdateListEntryData	in
MODE(REFRESH)	updates.		
Warning:
Do	not	attempt	to	update	the	identifying	keys	of	an	instance	list	entry	either	by
using	UpdateListEntryData	or	using	RemoveFromList	followed	by	an
AddtoList.	The	identifying	keys	(Akey,	NKey)	should	be	values	that	are	not
changed	by	any	command	handlers.	Use	additional	columns	for	instance	list
values	that	can	be	changed.
When	a	Relationship	handler	is	used	to	dynamically	expand	he	nodes	in	an
instance	list	displayed	as	a	tree	you	can	use	the
#avListManager.RefreshRelationship	method	to	programmatically	cause	a	level
in	the	tree	to	be	completely	refreshed.
For	example,	the	shipped	demonstration	filter	DF_FILT08	contains	this	logic
listening	for	the	event	DEM_EMP_UPDATED	….
	
*	If	an	employee	update	has	been	triggered
	
When	(=	DEM_EMP_UPDATED)
	
*	Get	the	department	and	section	this	employee	belonged	to	at	the	time	they
were	added	to	the	instance	list
	
Invoke	#avListManager.GetCurrentInstance	AKey1(#Original_Deptment)
AKey2(#Original_Section)	AKey3(#Empno)		
	
*	Refresh	the	tree	node	that	the	employee	was	in	originally	(this	might	cause
the	employee	to	be	removed	from	the	node).
*	This	method	causes	the	relationship	handler	function	DFREL01	to	be	called
again	to	refresh	the	whole	tree	node.
	

Invoke	#avListmanager.RefreshRelationship
BusinessObjectType(DEM_ORG_SEC_EMP)	AKey1(#Original_Deptment)
Akey2(#Original_Section)
	
*	Now	see	what	department	and	section	the	employee	is	in	now.	If	either	has
changed,	update	the	tree	node	for	the
*	the	new	department/section.	If	this	node	has	never	been	expanded	this
request	will	be	ignored,	because	the	employee
*	will	be	shown	later	if	/	when	the	user	decides	to	expand	this	node.
	
Fetch	Fields(#Deptment	#Section)	from_file(PslMst)	with_key(#Empno)
	
If	((#Deptment	*ne	#Original_Deptment)	or	(#Section	*ne
#Original_Section))
Invoke	#avListmanager.RefreshRelationship
BusinessObjectType(DEM_ORG_SEC_EMP)	AKey1(#Deptment)
Akey2(#Section)
Endif
						

	

Command	Handlers	and	List	Manager
The	instance	list	allows	the	end-user	to	select	one	or	more	business	object
instances	and	then	execute	a	command	(i.e.	a	command	handler):

In	your	command	handler	you	often	need	to	find	out:
The	Current	Instance	which	is	the	selected	instance,	if	there	is	only	one,	or	the
instance	with	the	focus	if	there	are	more.
The	Selected	Instances	which	are	all	the	instances	that	have	been	selected.	
You	can	use	these	List	Manager	methods	in	your	command	handlers:

In	Windows	and	WAM	Applications Description 	

Invoke	#avListManager.
GetCurrentInstance

Used	to	ask	the	list	manager	for
details	of	the	current	business	object
instance.
If	your	command	handler	is
designed	to	handle	single	business
object	instances,	for	example	for
displaying	the	details	of	a	specific
product,	you	need	to	use	this	method
to	find	out	what	the	current	product
is.	

	

Invoke	#avListManager.
GetSelectedInstance

Used	to	ask	the	list	manager	to
return	all	selected	instances	in	the
list.	Some	command	handlers	are
designed	to	work	with	multiple
object	instances	(eg:	Printing	details
of	all	selected	employees).

	

Invoke	#avListManager.	GetFromList	
Not	currently	available	for	WAMs

Used	to	ask	the	list	manager	to
return	the	unique	identifier	and	the
visual	identifiers	for	an	instance	in
the	instance	list.	AKeyn	and	NKeyn
values	are	required	to	uniquely
identify	the	instance	to	be	read.

	

Invoke	#avListManager.GetInstance Used	to	ask	the	list	manager	to
return	all	instances	entries	in	the	list.
This	method	allows	command
handlers	to	be	designed	to	work	with
all	object	instances	returned	by	a
filter.

	

Invoke
#avListManager.AlterColumnHeadings
	
Not	currently	available	for	WAMs.
	

Is	used	to	override	the	instance	list
column	headings	at	run	time.	This
can	be	used	to	make	the	instance	list
suit	the	result	of	different
filter	searches.

Invoke
#avListManager.ResetAlteredHeadings
	
Not	currently	available	for	WAMs.
	

Is	used	to	remove	all	overrides	the
instance	list	column	headings.

Invoke	#avListManager.DisplaySorted
	
Not	currently	available	for	WAMs.

Is	used	to	sort	the	instance	list	by	a
visible	or	hidden	column,	at	run	time.
Up	to	four	sort	columns	can	be
specified.

	

In	Windows	applications	the	list	manager	also	signals	a	ListSelectionChanged
event	which	you	might	want	to	listen	to	use	in	more	complex	command
handlers.	It	is	signaled	whenever	the	selected	set	of	object	instances	changes.	In
Web	browser	applications	the	same	event	is	handled	by	completely
(re)executing	your	command	handler.	There	are	examples	of	this	type	of	event
handling	in	the	shipped	demonstration	and	programming	techniques

applications.		
Note:	You	should	not	attempt	to	change	the	content	or	selection	in	the	instance
list	in	any	way	within	a	ListSelectionChanged	event	handler.
The	programming	model	used	to	manage	instance	lists	is	the	same	in	Windows
and	Web	browser	applications.	This	is	how	you	would	find	out	what	the	current
Employee	is	an	Employees	instance	list	in	a	Windows	or	WAM	application:
Invoke	#avListManager.GetCurrentInstance	AKey1(#EMPNO)
	

This	is	how	you	would	find	all	the	Employees	that	are	currently	in	an	instance
list	whether	they	are	selected	or	not:
	
Def_cond	*RetOkay	'#RetCode	=	OK'
Invoke	#avListManager.GetInstance	First(TRUE)	Akey1(#Empno)
ReturnCode(#RetCode)
DoWhile	*RetOkay
Fetch	Fields(…..whatever	….)	From_File(PSLMST)	With_Key(#Empno)
Invoke	#avListManager.GetInstance	First(FALSE)	Akey1(#Empno)
ReturnCode(#RetCode)
EndWhile

	

Current/Selected	Instance
The	shipped	sample	command	handler	DF_DET14	shows	you	the	current	and
the	selected	instances	in	any	instance	list.
In	the	following	example	DF_DET14	has	been	assigned	as	the	command
handler	for	the	Status	command.	It	shows	the	current	instance	and	all	the
selected	instances	in	an	Employee	instance	list:

Note	the	dotted	lines	around	Paul	Smithson	indicating	it	is	the	current	instance.
Try	assigning	DF_DET14	as	the	command	handler	for	a	business	object	to	see
how	GetCurrentInstance	and	GetSelectedInstance	works.	Remember	that	the
command	you	assign	it	to	has	to	be	an	Instance	Command.

Authority	to	Instances
GetCurrentInstance	and	GetSelectedInstance	will	return	the	next	instance
(regardless	of	whether	or	not	the	current	user	is	authorized	to	the	instance	in	the
current	command	context).		Preventing	access	to	the	instance	at	this	level	is	an
application	issue,	which	can	may	be	handled	in	at	least	two	different	ways:
Modify	the	filter	to	invoke	#Com_Owner.avCheckInstanceAuth	and	based	on
the	returned	values	for	the	instance,	decide	whether	to	add	the	instance	to	the
instance	list.
Modify	the	command	handler	to	invoke	#Com_Owner.avCheckInstanceAuth
and	based	on	the	returned	values	for	the	instance	and	the	command,	decide
whether	some	or	all	fields	on	the	command	handler	should	become	invisible	or
read-only	for	the	current	user.

More	about	Instance	Lists
Please	note	that:
In	Windows	applications	instance	Lists	are	saved	when	the	Framework	is
closed	and	initialized	(depending	up	system	settings)	when	it	is	restarted.	
They	are	saved	on	a	user	basis.
In	Web	browser	applications	instance	list	are	neither	saved	nor	initialized.
Only	business	objects	have	instance	lists.	Command	handlers	designed	to	work
at	the	Application	or	Framework	level	(i.e.	not	with	business	objects)	must	not
reference	instance	lists.	In	Windows	command	handlers,	you	need	to	avoid	any
references	to	object	#avListManager	as	it	will	not	exist.				

Adding	Additional	Columns	to	Instance	Lists
VLF009WAM	-	Adding	Instance	List	Columns	in
WAM	Applications

VLF009WIN	-	Adding	Instance	List	Columns	in
Windows	Applications

Sometimes	you	might	want	to	add	additional	columns	to	an	instance	list:

Displaying	Additional	Columns
For	a	Windows	application:
You	can	display	additional	columns	in	the	shipped	instance	list.	You	specify
the	columns	on	the	Instance	List/Relations	tab	of	the	properties	folder	of	the
business	object	you	are	working	with.
or
Another	option	is	to	replace	the	standard	instance	list	with	your	own	instance
list	reusable	part.	There	is	a	Program	Coding	Assistant	that	will	generate	a
complete	instance	list.
To	attach	your	own	instance	list	display	the	Instance	List/Relations	tab	sheet
and	specify	the	name	of	the	reusable	part	you	have	created	in	the	Snap	in
Instance	List	Browser	field.
For	a	Web	browser	application:
You	can	display	additional	columns	in	the	shipped	instance	list.	You	specify
the	columns	on	the	Instance	List/Relations	tab	of	the	properties	folder	of	the
business	object	you	are	working	with.
If	you	look	at	the	properties	folder	for	the	shipped	demonstration	business
objects	you	will	see	the	layouts	of	the	instance	list	defined	like	this:

Programming	your	instance	list
Date/Time	Additional	Column	Programming	Example
	
	

Programming	your	instance	list
The	logic	you	use	to	work	with	your	instance	list	is	the	same	in	Windows	or
Web	browser	filters	even	though	the	syntax	is	different.
The	shipped	Windows	Sections	filter	DF_FILT4	uses	this	code	to	add	details	to
the	instance	list:
Select	Fields(#DEPTMENT	#SECTION	#SECDESC	#SECPHBUS	#SECPCODE)	From_File(SECTAB)	With_Key(#DEPTMENTW)
Invoke	Method(#avListManager.AddtoList)	Akey1(#Deptment)	Akey2(#Section)
							VisualID1(#Section)	VisualID2(#SecDesc)	AColumn1(#SecDesc)
AColumn2(#SecPhBus)	NColumn1(#SecPCode)
Endselect
	

The	shipped	WAM	filter	DM_FILT4	uses	functionally	identical	code	structured
like	this:
Select	Fields(#DEPTMENT	#SECTION	#SECDESC	#SECPHBUS	#SECPCODE)	From_File(SECTAB)	With_Key(#SEL_DEPT)
#avListManager.AddtoList	Visualid1(#DEPTMENT)	Visualid2(#SECTION)	Akey1(#DEPTMENT)	Akey2(#SECTION)
AColumn1(#SecDesc)	AColumn2(#SecPhBus)	NColumn1(#SecPCode)
Endselect
	

In	both	cases	the	additional	columns	are	added	to	the	instance	list	by	reference
to	properties	named	like	AColumn,	NColumn	and	DColumn.
AColumn	is	used	to	identify	alphanumeric	values	and	has	a	maximum	length	of
100	characters.	NColumn	is	used	to	identify	numeric	values	and	has	a	maximum
precision	of	30,9.	DColumn	is	used	to	identify	date	or	date/time	values	and	are
input	as	alphanumeric	values	with	a	maximum	length	of	19	characters.	Date	or
date/time	values	passed	to	the	DColumn	property	must	also	be	in	ISO	format,
i.e.,	CCYY-MM-DD	or	CCYY-MM-DD	HH:MM:SS.	However	different
display	formats	can	be	selected	on	the	Instance	List/Relations	tab.
Using	the	standard	shipped	instance	list,	in	both	Windows	applications	and	Web
browser	applications,	you	can	have	at	most	10	alphanumeric	columns,	10
numeric	columns	and	5	date	or	date/time	columns.
The	number	of	additional	columns	you	have	will	affect	the	performance	and
storage	space	used	by	your	application,	so	use	additional	columns	with	care.
	Also	see	Instance	List	with	more	than	10	alphanumeric	and/or	10	numeric
additional	columns.
Date/Time	Additional	Column	Programming	Example

	
	

Date/Time	Additional	Column	Programming	Example
Because	Date	or	Date/Time	values	passed	to	DColumn	properties	must	be	in
ISO	format,	values	from	LANSA	fields	need	to	be	formatted	before	they	are
passed.	Below	is	an	example	of	adding	Date	values	to	the	instance	list	from	an
RDML	VLF	filter.
	
Select	Fields(#EMPNO	#GIVENAME	#SURNAME	#DEPTMENT
#SECTION	#ADDRESS1	#PHONEHME	#POSTCODE	#STARTDTE)
From_File(PSLMST2)	With_Key(#SURNAME)	Generic(*YES)
Use	BConcat	(#GiveName	#SurName)	#FullName
EXECUTE	Subroutine(DateToISO)	With_Parms(#STARTDTE	#VF_ELDTS)
Invoke	Method(#avListManager.AddtoList)	Visualid1(#EMPNO)
Visualid2(#FullName)	Akey1(#DEPTMENT)	Akey2(#SECTION)
Akey3(#EMPNO)	AColumn1(#ADDRESS1)	AColumn2(#PHONEHME)
NColumn1(#POSTCODE)	DColumn1(#VF_ELDTS)
Endselect

SUBROUTINE	Name(DateToISO)	Parms((#RETDAT	*RECEIVED)
(#VF_ELDTS	*RETURNED))
DEFINE	Field(#D_Char8)	Type(*CHAR)	Length(8)
DEFINE	Field(#D_Num8)	Reffld(#DATE8)
DEFINE	Field(#D_Year)	Type(*CHAR)	Length(4)
DEFINE	Field(#D_Month)	Type(*CHAR)	Length(2)
DEFINE	Field(#D_Day)	Type(*CHAR)	Length(2)
OVERRIDE	Field(#D_Year)	To_Overlay(#D_Char8)
OVERRIDE	Field(#D_Month)	To_Overlay(#D_Char8	5)
OVERRIDE	Field(#D_Day)	To_Overlay(#D_Char8	7)
USE	Builtin(CONVERTDATE_NUMERIC)	With_Args(#RETDAT	B	J)
To_Get(#D_Num8)
USE	Builtin(NUMERIC_STRING)	With_Args(#D_Num8	N)
To_Get(#D_Char8)
USE	Builtin(CONCAT)	With_Args(#D_Year	'-'	#D_Month	'-'	#D_Day)
To_Get(#VF_ELDTS)
ENDROUTINE

	
	

RDMLX	Examples
In	RDMLX	filters	the	processing	is	much	easier	because	intrinsic	functions	can
be	used,	with	the	following	as	an	example	of	what	is	required	to	convert	RDML
field	#STARTDTE.
	
*	Convert	#STARTDTE	to	the	correct	format	for	Date/Time	columns
	
EXECUTE	Subroutine(DateToISO)	With_Parms(#STARTDTE	'DDMMYY'
#VF_ELDTS)
	
*	Format	conversion	subroutine	definition
	
SUBROUTINE	Name(DateToISO)	Parms((#RETDAT	*RECEIVED)
(#DATEFMT	*RECEIVED)	(#DATEOUT	*RETURNED))
DEFINE	Field(#DATEFMT)	Reffld(#VF_ELDTFM)
DEFINE	Field(#DATEOUT)	Reffld(#VF_ELDTS)
If	(#RETDAT.isdate(#DATEFMT))
#DATEOUT	:=	#RETDAT.AsDate(#DATEFMT).AsDisplayString(ISO)
ELSE
MESSAGE	Msgtxt('Date	is	not	in	the	correct	format')
Endif
ENDROUTINE

	
And	converting	RDMLX	field	in	RDMLX	filters	is	even	easier	with	only	the
following	required	to	convert	Date	or	DateTime	fields	to	the	correct	format.	In
this	case	the	RDMLX	Date	field	#VF_ELDAT.
	
#VF_ELDTS	:=	#VF_ELDAT.AsDisplayString(ISO)
	

	

Overriding	Instance	List	Column	Headings
In	the	Windows	Framework	the	filter	can	override	the	instance	list	column
headings,	using	the	avListManager.AlterColumnHeadings	method.	For
example:
invoke	#avListManager.AlterColumnHeadings	ForVisualID1('My	Visual	ID	1
Column	Heading')	ForVisualID2('My	Visual	ID	2	Column	Heading')
ForAColumn1('My	Additional	Alpha	Column
1	Heading')		ForNColumn1('My	Additional	Numeric	Column	1	Heading')		
ForBusinessObject(<<The	user	object	name/type	of	the	business	object>>)

The	overrides	are	cumulative.
If	the	instance	list	contains	a	tree	of	business	objects,	an	override	to	the	column
headings	for	any	business	object	in	the	tree	can	be	specified.	However,	the
overrides	apply	only	to	the	business	object	in	the	current	tree,	not	to
the	business	object	elsewhere	in	the	Framework.
If	you	want	to	remove	all	overrides	and	revert	all	the	column	headings	to	what
they	originally	were,	you	can	use	avListManager.ResetAlteredHeadings:
	
invoke	#avListManager.ResetAlteredHeadings
	

This	removes	all	overrides	for	any	business	object	in	the	current	tree.
	

Programmatically	Sorting	the	Instance	List
In	the	Windows	Framework	the	filter	or	command	handler	can	be	coded	to
sort	the	instance	list	using	the		avListManager.DisplaySorted	method:
		
invoke	#avListManager.DisplaySorted	ForBusinessObject(EMPLOYEES)
ByColumn_1(ACOLUMN1)	Ascending_1(FALSE)
		
invoke	#avListManager.DisplaySorted	ForBusinessObject(EMPLOYEES)
ByColumn_1(ACOLUMN1)	ByColumn_2(AKEY2)
		

The	ByColumn	parameter	can	be	any	of	these	values:
VISID1
VISID2
AKEY1	to	AKEY5
NKEY1	to	NKEY5
ACOLUMN1	to	ACOLUMN10
NCOLUMN1	to	NCOLUMN10
DCOLUMN1	to	DCOLUMN5

	

Changing	the	Color	of	List	Entries	(RowColor)
The	color	of	a	list	entry	can	be	changed	in	all	environments.	It	can	be	changed
from	a	Filter,	Command	Handler,	Relationship	Handler,	and	within	a	Snap	In
instance	list,	if	coded	for.

In	VLF.WIN	environment
In	VLF.WEB	environment
	

In	VLF.WIN	environment
#avListManager.AddToList	and	UpdateListEntryData	have	a	parameter,	called
RowColor	which	receives	a	string	that	must	be:
1)	blank	/	unspecified	-	leave	the	color	as	it	is.
2)	"DEFAULT"	-	set	the	color	back	to	what	it	would	normally	be.
3)	the	name	of	a	visual	style	that	has	been	defined	in	the	IDE,	and	that	has	been
enrolled	in	the	VLF	(in	your	equivalent	of	UF_SYSTM).
To	use	this	feature	in	Windows,	you	must	first	create	a	visual	style	for	each
color	you	want	to	use.	You	can	copy	from	the	base	visual	style	used	by	your
framework.		Edit	the	visual	style's	VALUE	and	set	the	normbackcolor	to	what
you	want:
Function	Options(*DIRECT)
begin_com	role(*EXTENDS	#PRIM_VS)	default(#SCHEME)
define_com	class(#PRIM_VSS)	name(#SCHEME)	captions(#CAPTION)
titles(#CAPTION)	values(#VALUE)
define_com	class(#PRIM_VSI)	name(#CAPTION)	facename('VL	Shell')
fontsize(8)	normbackcolor(192:215:249)	textcolor(MenuText)
define_com	class(#PRIM_VSI)	name(#VALUE)
alternbackcolor(192:215:249)	bordercolor(WindowText)	borderstyle(3DLeft)
errorbackcolor(192:215:249)	facename('VL	Shell')	fontsize(8)
normbackcolor(Red)	textcolor(MenuText)
End_Com

	
(You	could	also	change	other	properties	of	the	VALUE	if	necessary)
Save	the	visual	style	and	enrol	it	in	the	VLF	by	adding	a	line	to	your	version	of
UF_SYSTM	like	this:
*
==
*	This	IIP	method	(avEnrollVisualStyles)	enroll	all	framework	user
*	visual	styles.	To	use	this	routine	define	the	visual	style	into	the	LANSA
*	repository	in	the	usual	manner	and	then	add	a	new	invocation	of
*	avEnrollVisualStyle	to	the	following	routine.	If	the	visual	style	is
*	subsequently	changed	only	this	component	needs	to	be	recompiled	to
*	effect	the	change	into	all	other	components.
	

Mthroutine	Name(avEnrollVisualStyles)	Options(*REDEFINE)
	
...
	
*	Test	Style	with	red	background	for	highlighting	instance	list	rows
Invoke	Method(#Com_Owner.avEnrollVisualStyle)	Style(#<<name	of	my	red
visual	style>>)	Caption('Base	Style	with	red')
	
Endroutine

	
Compile	your	version	of	UF_SYSTM.
Now	you	can	specify	a	row	color	when	adding	or	updating	instance	list	entries
from	a	filter	or	command	handler,	like	this:
Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#DEPTMENT)	AKey2(#SECTION)	
Akey3(#Empno)	RowColor(<<name	of	my	red	visual	style>>)

	
If	you	subsequently	want	to	change	that	row	back	to	its	original	color	do	this:
Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#DEPTMENT)	AKey2(#SECTION)	
Akey3(#Empno)	RowColor(DEFAULT)

	
If	you	want	to	leave	the	color	unchanged	do	not	specify	the	RowColor:
Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#DEPTMENT)	AKey2(#SECTION)	
Akey3(#Empno)

	
or	set	it	to	*blanks:
Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#DEPTMENT)	AKey2(#SECTION)	
Akey3(#Empno)	RowColor(*blanks)

	
Relationship	Handler
Snap	in	Instance	List
	

	

Relationship	Handler
You	can	also	set	the	row	color	from	a	relationship	handler,	using	a	line	like	this:
EXECUTE	SUBROUTINE(SETROWCOL)	WITH_PARMS(<<name	of	my
red	visual	style>>	"color:RED")

	
(the	second	parameter,	"color:RED",	is	for	WEB	environments)
	
	

Snap	in	Instance	List
If	you	have	coded	a	snap	in	instance	list	handler,	it	can	be	modified	to	handle
changes	to	row	color	like	this:
define_com	#prim_vs	#TempVisualStyle	Reference(*dynamic)
...
	
*	--
*	Redefine	the	standard	uAddListEntry	method
*	--
Mthroutine	Name(uAddListEntry)	Options(*Redefine)
...
	
*		Add	the	details	to	the	instance	list
	
Add_Entry	#Inst_List
	
Set_Ref	#KeyedGridItems<#uInstanceIdentifier>	To(#Inst_list.CurrentItem)
	
*	Set	the	visual	Style	based	on	the	RowColor
invoke	#avListManager.uGetRowColor	uUII(#uInstanceIdentifier)
RowColorStyle(#TempVisualStyle)
if_ref	#TempVisualStyle	is_not(*null)
	
*	the	filter	has	set	a	RowColor	to	a	Visual	Style,	or	has	set	it	back	to
DEFAULT
set	#Inst_List.Currentitem	VisualStyle(#TempVisualStyle)
	
else
*	The	filter	has	not	specified	the	RowColor	or	has	specified	it	as	blank	-	no
change	to	row	style	-	do	nothing
	
endif
	
endroutine

You	can	handle	changes	to	row	color	similarly	in	mthroutine
UpdateListEntryData.
	

	
	

In	VLF.WEB	environment
The	RowColor	parameter	is	a	CSS	string	as	specified	by	the	CSS	standards.	No
visual	style	needs	to	be	created	or	enrolled.
The	RowColor	parameter	receives	a	string	that	must	be:
1)	blank	/	unspecified	-	leave	the	color	as	it	is.
2)	"DEFAULT"	-	set	the	color	back	to	what	it	would	normally	be.
3)	a	CSS	string,	for	example:	"color:RED;background-color:BLUE;font-
style:italic	"
The	color	name	can	be:	AQUA,	BLACK,	BLUE,	FUCHSIA,	GRAY,	GREEN,
LIME,	MAROON,	NAVY,	OLIVE,	PURPLE,	RED,	SILVER,	TEAL,	WHITE,
YELLOW	or	#nnnnnn	(a	Hex	color	name	-	e.g.	#FF0000)
Note	that	in	the	.Net	framework	only	these	CSS	attributes	are	supported:
color
background-color
font-style
font-size
font-weight
font-family
Shorthand	CSS	format	is	also	supported,	for	example	"font:italic	bold	12px".
	
WAMs
Relationship	Handler	
	
	

WAMs
The	AddToList	and	UpdateListEntryData	mthroutines	have	a	parameter,	called
RowColor,	which	is	used	to	control	the	color	of	rows.	This	is	how	you	use	it:
Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#DEPTMENT)	AKey2(#SECTION)	
Akey3(#Empno)	RowColor(color:RED;background-color:BLUE)
Select(FALSE)

	

Relationship	Handler	
You	can	also	set	the	web	row	color	from	a	relationship	handler	using	a
statement	like	this:
EXECUTE	SUBROUTINE(SETROWCOL)	WITH_PARMS('XXXXXX'
"color:RED;background-color:BLUE")

	
(The	first	parameter,	"XXXXXX",	is	for	VLF.WIN	environments.)
	

Popup	Panel	Hints	in	the	Instance	List
A	popup	panel	associated	with	an	instance	list	entry	can	be	made	to	appear
when	the	user	hovers	over	an	instance	list	entry.	This	feature	is	only	available
when	the	Framework	is	run	in	Direct-X	mode.
	

	
In	the	VLF	there	is	a	business	object	property	(Popup	Panel	Name)	on	the
instance	list	tab	which	stores	the	name	of	a	reusable	part	which	is	the	panel
inside	a	popup	panel.
If	this	property	is	blank	(the	default),	it	indicates	that	there	will	be	no	popup
panel	for	entries	of	this	business	object	type	(via	any	instance	list).
There	is	also	a	property	of	the	business	object	(Enable	Popup	Panels)	on	the
instance	list	tab	that	can	be	used	to	enable	or	disable	popups	for	any	business
object	within	the	tree	(default	is	false).	If	this	setting	is	true,	any	business	object
that	has	an	enabled	popup	panel	will	display	it	when	the	user	hovers	over	an
entry	of	that	business	object	type.
The	end-user	can	disable	or	enable	popups	globally,	by	right-mouse	clicking	on
the	instance	list	and	using	the	context	menu.	The	property	will	be	remembered
for	the	user	from	session	to	session.
How	to	Use	the	Instance	List	Popup	Feature

How	to	Use	the	Instance	List	Popup	Feature

	
See	shipped	examples	DF_T3301	DF_T3302	DF_T3303.
Create	a	reusable	part	with	an	ancestor	of	VF_AC021.	It	is	probably	easiest	to
copy	the	source	code	of	a	simple	popup	panel	like	DF_T3301,	and	modify	it.
Compile	your	reusable	part.
Now	snap	it	in	to	a	business	object	by	opening	the	business	object's	properties,
and	going	to	the	instance	list	tab,	and	setting	the	properties	shown	below.

	
Save	the	framework	and	run	it
If	you	run	the	framework	in	Direct-X	mode,	and	mouse	over	the	instance	list
over	an	item	of	the	correct	business	object	type,	you	should	see	the	popup.
The	user	can	enable	or	disable	all	available	popups	by	right	mouse	clicking
instance	list	popups,	as	shown.

	
In	the	popup	panel	the	mandatory	uLoad	routine	has	the	following	parameters:
Akey1-5	*input
NKey1-5	*input
Visual	ID	1
Visual	ID	2
User	Object	Type	of	the	business	object		*input
subtype	*input
EdgeLeft	*input
EdgeRight	*input
Left	*both
Top	*both
	
The	first	6	properties	are	the	standard	framework	identifiers	for	instance	list
entries.
The	EdgeLeft	/	EdgeRight	properties	are	the	position	of	the	left	and	right	edges
of	the	instance	list.	These	values	can	be	used	to	set	the	popup's	Left	position
relative	to	the	instance	list,	by	returning	the	Left	parameter.	(See	DF_T3303)
*	you	could	ignore	the	cursor	position	and	locate	the	popup	relative	to	the
list's	left	or	right	boundaries
#Left	:=	(#EdgeRight	-	200)

Left	and	Top	allow	the	panel	designer	to	re-position	the	popup	based	on	the
cursor	position.	The	values	received	are	based	on	the	cursor's	current	location.
The	designer's	logic	can	either	increment	these,	or	replace	them	with	a	position
that	ignores	the	cursor	position.		(See	DF_T3301)
	
*	If	you	want	to	offset	the	popup	from	the	cursor,	increment	these	values
#Left	+=	50
#Top	+=	10

For	now	this	feature	is	limited	to	the	primary	instance	list,	non-cluster	entries.
	
	
	

Instance	Lists	with	Different	Types	of	Objects
You	can		to	create	instance	lists	that	contain	more	than	one	type	of	object.	You
do	this	by	defining	relationships	between	business	objects.	The	relationships	can
either	be	peer-to-peer	or	parent-child.
For	step-by-step	instructions	of	how	to	create	parent-child	relationships	refer	to
one	of	these	tutorials:	VLF011WIN	-	Creating	a	Parent	Child	Instance	List	or
VLF011WAM	-	Creating	a	Parent	Child	Instance	List.	You	may	also	want	to
have	a	look	at	the	Advanced	Instance	List	examples	in	the	Advanced	section	of
the	Programming	Techniques	application.
The	Advanced	Instance	Lists	(1)	example	shows	the	instance	list	presented	as	a
tree	involving	different	types	of	business	objects:		products	and	two	child
objects	Orders	and	Suppliers.	Orders	also	have	the	child	object	Shipments:

	

Parent-Child	Relationships
Peer-to-Peer	Relationships
Defining	the	Object	Relationships
Reviewing	the	Instance	List	Relationships	Holistically
Prototyping	and	Displaying	Instance	Lists
Adding	Entries	to	the	Instance	List
Hiding	Objects	in	Navigation	Pane
Work	with	Hidden	Child	Objects
Changing	the	order	of	child	business	objects		in	the	instance	list	tree
Things	to	Watch	Out	For
Application	Tracing	for	Relationship	Handlers
Sample	Relationship	Handler	Function

Parent-Child	Relationships
The	shipped	Demonstration	application	supplies	a	parent-child	relationship
example	in	the	Organizations	business	object.
In	this	example	the	Organizations	business	object	instance	list	is	defined	so	that
it	may	contain	different	types	of	business	objects:
DEPARTMENTS
SECTIONS		
EMPLOYEES	(Resources)

Peer-to-Peer	Relationships
Peer	objects	are	used	when	a	single	instance	list	can	contain	different	types	of
objects	that	have	no	hierarchical	relationship.	In	this	way	you	can	start	building
filters	that	act	like	Google	over	corporate	data	(ie:	you	just	search	for	a	string
and	a	list	of	the	different	object	types	that	match	is	produced).			
For	an	example	of	an	instance	list	with	peer	relationships	see	the	Advanced
Instance	Lists(2)	sample	in	Advanced	Programming	Techniques:

	

Defining	the	Object	Relationships
Display	the	Instance	List/Relations	tab	in	the	properties	of	a	business	object	to
see	the	relationshop.		To	see	the	relationship	details,		select	an	object	in	the	list
of	available	business	objects.
In	this	example	you	can	see	that	an	EMPLOYEE	is	defined	as	a	child	of	a
SECTION:

If	you	are	using	parent-child	instance	lists,	you	must	use	VISUALID1.

Do	not	set	VISUALID1's	Column	Sequence	to	zero.

The	relationship	options	define	settings	that	impact	the	relationship	and	how	the
associated	instance	list	is	to	be	processed	and	displayed:
Allow	Selection	from	Navigation	Pane
Show	Additional	Columns
Allow	Side	by	Side	Display
Use	a	Shared	Instance	List	for	Relationships
	
Also	see:
Relationship	Type
Relationship	Handler
	
	
	
	

Reviewing	the	Instance	List	Relationships	Holistically
The	(Framework)	->	(Properties)	->	Relationships	tab	shows	the	relationships
between	business	objects	across	the	entire	Framework.
By	expanding	the	Advanced	Instance	List	business	object	(EXPRODUCT)	we
see	that	it	has	no	'Peer'	objects	and	two	'Child'	objects	Orders	and	Suppliers.

		
	

Prototyping	and	Displaying	Instance	Lists
The	standard	shipped	instance	list	browser	understands	that	when	child	objects
are	involved,	it	needs	to	produce	a	tree	structure	rather	than	a	flat	list:

As	you	move	up	and	down	the	instance	list	the	various	command	handlers	for
the	for	the	different	types	of	objects	appear	according	to	the	current	selection.
Equally,	depending	on	the	type	of	the	object,	commands	and	pop-up	menus	are
enabled	and	disabled.	In	some	contexts	a	command	is	qualified.	For	example,	if
you	click	on	a	COST	and	then	use	the	"New"	button	on	the	menu	bar,	it	will	ask
you	to	qualify	what	type	of	object:

Equally,	if	you	display	the	pop-up	menu	over	the	instance	list	it	will	ask	you	the
same	thing:

Adding	Entries	to	the	Instance	List
The	different	types	of	objects	may	be	added	into	the	instance	list	in	two
different	ways:
By	the	filter.	The	AddToList	method	has	a	new	optional	BusinessObjectType()
parameter	that	allows	filters	to	add	different	business	object	types	to	the	same
instance	list.	If	passed	as	blanks/nulls	or	not	specified	this	parameter	defaults	to
the	business	object	that	owns	the	filter.				
By	a	relationship	handler.	In	a	CHILD	relationship	only	you	can	optionally
specify	a	relationship	handler.	This	is	either	an	RDML	function,	or	a	reusable
part,	that	is	called	to	dynamically	"expand"	the	relationship	between	a	parent
and	child	object.	By	doing	this	you	can	improve	filter	performance	by	only
adding	root	or	parent	objects	to	the	instance	list	initially.
For	a	sample	of	such	a	function	see:
Sample	Relationship	Handler	Function
Sample	Relationship	Reusable	Part
When	objects	exist	in	parent/child	relationships	there	is	assumed	to	be	an
inherent	hierarchical	relationship	in	the	way	that	their	programmatic	identifiers
are	used	in	the	instance	list.	
For	example,	if	Product	used	AKey1(#Product_Number)	to	uniquely	identify
itself,		the	children	BOMs	and	Costs	are	also	expected	to	include	the	same	(and
correct)	product	number	as	their	AKey1	values.	They	would	both	also	use
additional	AKeyN	and	NKeyN	values	as	well	to	uniquely	identify	themselves.
Since	the	instance	list	in	this	example	now	contains	mixed	objects	(ie:	Products,
BOMs	and	Costs)	there	are	some	new	considerations.	For	example,	if	the	user
right	clicks	on	a	BOM	but	elects	to	display	the	Details	of	the	Product:

The	Product	Details	command	handler	is	invoked	and	displayed.

When	it	gets	the	current	instance	list	entry	it	will	actually	get	the	currently
selected	BOM	instance	list	entry.	The	program	can	tell	this	because	the
GetCurrentInstance	method	now	optionally	returns	the	BusinessObjectType
value	of	the	instance.
Most	likely	the	Product	Details	command	handler	does	not	need	to	know	the
specific	BusinessObjectType	because	the	inherent	hierarchical	relationship	in
the	programmatic	identifiers	used	for	Products,	BOMs	and	Costs	all	put	the
product	number	in	AKey1	…	which	is	all	that	the	Product	Details	command
handler	really	needs	to	know.

Hiding	Objects	in	Navigation	Pane
By	default	objects	specified	as	child	objects	are	still	allowed	to	be	selected	from
the	navigation	pane	in	their	own	right:

Depending	up	on	the	end-user's	perception	of	what	the	child	objects	are	you
may	or	may	not	choose	to	make	the	disappear	from	the	navigation	pane.
To	stop	them	appearing	in	the	navigation	panes	(so	that	they	are	only	visible	as
children	of	the	parent	object)		go	back	to	the	Instance	List/Relationship	tab	for
the	parent	business	object	and	uncheck	the	"Allow	Selection	from	Navigation
Pane"	check	boxes	for	both	child	objects.	The	child	objects	are	hidden:

If	you	do	leave	them	on	the	navigation	pane,	they	continue	to	function	as
discrete	business	objects	in	their	own	right	and	have	their	own	individual
instance	lists.	

Work	with	Hidden	Child	Objects
To	work	with	the	properties	of	a	child	object	which	is	not	visible	in	the
navigation	pane	you	can:
Double-click	on	any	instance	list	entry	related	to	the	business	object	in
question,	or
Select	the	(Applications...)	option	of	the	(Framework)	menu,	then	select	the
application	to	which	the	object	belongs	to	and	then	select	it	from	the	list	of
business	objects:

	

Changing	the	order	of	child	business	objects		in	the	instance	list
tree
When	business	object	relationships	are	defined	they	appear	in	the	instance	list
tree	in	the	order	they	were	defined.	Currently	there	is	no	automatic	facility	to
change	the	display	order.		If	you	need	to	change	the	order,	do	this:
Open	your	main	XML	(eg:	VF_SY001_System.XML)	with	Notepad,	maybe
saving	a	copy	first.		Look	for	the	relationship	definition	blocks.	They	look	like
this:
	
<OBJECT	TYPE="RELATION"	CLASS="VF_FP024"	ID="whatever"	>
<…..>
<…..>
</OBJECT>	

	
They	will	be	nested	inside	a	VF_FP003	block	like	this:
	
<OBJECT	TYPE="BUSINESS_OBJECT"	CLASS="VF_FP003"
ID="whatever"	>
<…..>
<…..>
<OBJECT	TYPE="RELATION"	CLASS="VF_FP024"	ID="whatever"	>	
<…..>
<…..>
</OBJECT>	
	
<OBJECT	TYPE="RELATION"	CLASS="VF_FP024"	ID="whatever"	>
<…..>
<…..>
</OBJECT>	
<…..>
<…..>
</OBJECT>	

		
Rearrange	the	complete	VF_FP024	blocks	inside	the	VF_FP003	blocks	into	the
desired	order	then	save	changes	and	restart	VLF.			

	

Things	to	Watch	Out	For
Relationships	between	business	objects	are	purely	visual	and	may	be	only
vaguely	conceptual.		It	is	important	to	understand	that	the	object	relationship
feature	is	not	designed	to	be	a	data	or	database	modeling	facility.
Creating	relationships	based	on	the	database	design	can	lead	to	common	errors
you	should	try	to	avoid:

Starting	Too	High
Sometimes	designers	structure	the	trees	like	database	table	structures,	but	start
too	high	in	the	structure	forcing	the	end-user	to	drill-down	too	many	levels.	For
example,	they	might	structure	a	tree	like	this	to	reflect	DBMS	table
relationships:		

If	the	end-users	are	not	really	concerned	with	the	Company	and	Division	level
then	their	presence	in	the	tree	makes	Order	navigation	needlessly	complex.
In	a	situation	like	this	the	Company	and	Division	selection	should	be	done	by
the	filter	and	no	tree	structure.	A	simple	list	of	orders	would	be	much	more
appropriate	and	quicker	for	end-users	to	understand	and	use:

Going	Down	Too	Low

Sometimes	designers	again	use	a	database	structure	and	go	too	low	in	the
structure	and	break	up	the	information	into	needlessly	small	fragments.	For
example,	they	might	structure	a	tree	like	this:

This	structure	forces	users	to	manipulate	line	items	one	by	one,	when	working
with	all	the	line	items	in	an	order	would	be	more	efficient.	So	a	simple	list	of
orders	orders	would	be	much	more	effective	for	end-users	to	understand	and
use:

With	a	command	tab	for	items	that	allow	all	the	line	items	associated	with	the
order	to	be	viewed	and	manipulated	in,	for	example,	a	single	grid	would
probably	be	more	appropriate.			
	

Application	Tracing	for	Relationship	Handlers
If	you	are	using	relationship	handlers	to	dynamically	expand	nodes	in	an
instance	list	tree	and	turn	on	application	level	tracing	you	will	find	a	large
amount	of	trace	data	is	produced	regarding	the	call	to	the	relationship	handler
and	what	it	returns.
This	makes	finding	problems	in	your	relationship	handlers	easier.
	

Sample	Relationship	Handler	Function
*
===
*	Component			:	DF_PROC/DFREL01
*	Type								:	Function
*	Disclaimer		:	The	following	material	is	supplied	as
*	sample	material	only.	No	warranty	concerning	this
*	material	or	its	use	in	any	way	whatsoever	is
*	expressed	or	implied
*
===
FUNCTION	OPTIONS(*DIRECT	*LIGHTUSAGE	*MLOPTIMIZE)
RCV_LIST(#VIS_LIST	#PID_LIST	#COL1_LIST	#COL2_LIST
#COL3_LIST	#COL4_LIST	#COL5_LIST	#COL6_LIST	#COL7_LIST
#COL8_LIST	#COL9_LIST	#COLA_LIST)
INCLUDE	PROCESS(*DIRECT)	FUNCTION(VFREL1)
	
*	The	Employee	group
	
GROUP_BY	NAME(#EMPLOYEE)	FIELDS(#EMPNO	#GIVENAME
#SURNAME	#PHONEBUS	#ADDRESS1	#ADDRESS2	#ADDRESS3
#POSTCODE	#PHONEHME	#DEPTMENT	#SECTION)
	
*	Clear	all	keys	and	additional	columns
	
EXECUTE	SUBROUTINE(CLEARKEYS)
EXECUTE	SUBROUTINE(CLEARCOLS)
	
*	Field	#SRC_TYPE	(Source	Business	Object	Type)	is
*	the	source	object	of	the	relationship	so	switch
*	on	that	initially
	
CASE	OF_FIELD(#SRC_TYPE)
	
*	Expand	Sections	in	a	Department/Organization
	
WHEN	VALUE_IS('=	DEM_ORG')
EXECUTE	SUBROUTINE(ORGSEC)

	
*	Expand	Employees	in	a	Department/Section
	
WHEN	VALUE_IS('=	DEM_ORG_SEC')
EXECUTE	SUBROUTINE(SECEMP)
	
OTHERWISE
	
ABORT	MSGTXT('Unknown	source	business	object	type	encountered	by
function	DFREL01')
	
ENDCASE
	
*	Finished	...	always	use	a	return	command
	
RETURN
	
*	Return	the	sections	in	a	department/organization
	
SUBROUTINE	NAME(ORGSEC)
	
CHANGE	FIELD(#DEPTMENT)	TO(#SRC_AK1)
	
*	We	can	now	read	all	the	EMPLOYEES	in	the	specified
*	department/section	and	add	them	to	the	instance	list
	
SELECT	FIELDS(*ALL)	FROM_FILE(SECTAB)
WITH_KEY(#DEPTMENT)
	
EXECUTE	SUBROUTINE(SETAKEY)	WITH_PARMS(1	#DEPTMENT)
EXECUTE	SUBROUTINE(SETAKEY)	WITH_PARMS(2	#SECTION)
	
EXECUTE	SUBROUTINE(SETNCOL)	WITH_PARMS(1	#SECPCODE)
	
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(1	#SECADDR1)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(2	#SECADDR2)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(3	#SECADDR3)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(4	#SECPHBUS)
	

EXECUTE	SUBROUTINE(ADDTOLIST)
WITH_PARMS('DEM_ORG_SEC'	#SECDESC	#SECTION)
ENDSELECT
	
*	Finished
	
ENDROUTINE
	
SUBROUTINE	NAME(SECEMP)
	
CHANGE	FIELD(#DEPTMENT)	TO(#SRC_AK1)
CHANGE	FIELD(#SECTION)	TO(#SRC_AK2)
	
SELECT	FIELDS(#EMPLOYEE)	FROM_FILE(PSLMST1)
WITH_KEY(#DEPTMENT	#SECTION)
	
EXECUTE	SUBROUTINE(SETAKEY)	WITH_PARMS(1	#DEPTMENT)
EXECUTE	SUBROUTINE(SETAKEY)	WITH_PARMS(2	#SECTION)
EXECUTE	SUBROUTINE(SETAKEY)	WITH_PARMS(3	#EMPNO)
	
EXECUTE	SUBROUTINE(SETNCOL)	WITH_PARMS(1	#POSTCODE)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(1	#ADDRESS1)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(2	#ADDRESS2)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(3	#ADDRESS3)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(4	#PHONEBUS)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(5	#PHONEHME)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(6	#DEPTMENT)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(7	#SECTION)
	
USE	BUILTIN(TCONCAT)	WITH_ARGS(#SURNAME	','	#GIVENAME)
TO_GET(#FULLNAME)
	
EXECUTE	SUBROUTINE(ADDTOLIST)
WITH_PARMS('DEM_ORG_SEC_EMP'	#FULLNAME	#EMPNO)
	
ENDSELECT
	
*	Finished
	

ENDROUTINE
	
*
===
INCLUDE	PROCESS(*DIRECT)	FUNCTION(VFREL2)

					
Note:	To	add	values	to	Date/Time	additional	columns	use	the	SETDCOL
subroutine	in	the	same	way	that	the	SETACOL	subroutine	is	used	to	add	values
to	alphanumeric	additional	columns.
To	convert	the	values	in	date/Time	fields	to	ISO	format	(required	for	Date/Time
additional	columns)	see	the	Date/Time	Additional	Column	Programming
Example.

Sample	Relationship	Reusable	Part
*	
===
*
*		Component			:	DF_T3507
*		Type								:	Reusable	Component
*		Ancestor				:	VF_AC023
*		May	be	used	with	both	VLF-WEB	and	VLF-WIN	versions
*	
===
	
Function	Options(*DIRECT)
begin_com	role(*EXTENDS	#VF_AC023)
	
mthroutine	name(uAddEntriesFor)	options(*REDEFINE)
	
	
CASE	OF_FIELD(#SourceType)
	
WHEN	VALUE_IS('=	DEM_ORG')
*	Expand	Sections	in	a	Department/Organization
	
#DEPTMENT	:=	#AKEY1
SELECT	FIELDS(*ALL)	FROM_FILE(SECTAB)
WITH_KEY(#DEPTMENT)
	
Signal	uAddListItem	AKey1(#DEPTMENT)	AKey2(#SECTION)
VisualId1(#SECDESC)	VisualId2(#SECTION)	AColumn1(#SECADDR1)
AColumn2(#SECADDR2)	AColumn3(#SECADDR3)
AColumn4(#SECPHBUS)	NColumn1(#SECPCODE)
BusinessObjectType(#TargetType)
	
ENDSELECT
	
	
WHEN	VALUE_IS('=	DEM_ORG_SEC')
*	Expand	Employees	in	a	Department/Section
	

	
CHANGE	FIELD(#DEPTMENT)	TO(#AKey1)
CHANGE	FIELD(#SECTION)	TO(#AKey2)
	
SELECT	FIELDS(*ALL)	FROM_FILE(PSLMST1)
WITH_KEY(#DEPTMENT	#SECTION)
	
Signal	uAddListItem	AKey1(#DEPTMENT)	AKey2(#SECTION)
AKey3(#EMPNO)	VisualId1((#Givename	+	'	'	+	#Surname))
VisualId2(#EMPNO)		AColumn1(#ADDRESS1)	AColumn2(#ADDRESS2)
AColumn3(#ADDRESS3)	AColumn4(#PHONEBUS)
AColumn5(#PHONEHME)	AColumn6(#DEPTMENT)
AColumn7(#SECTION)	NColumn1(#POSTCODE)
BusinessObjectType(#TargetType)
	
endselect
	
OTHERWISE
	
ABORT	MSGTXT('Unknown	source	business	object	type	encountered	by
component	DF_T3507')
	
ENDCASE
	
endroutine
	
End_Com

	

Physical	Instance	Lists
As	a	developer	it	may	be	useful	to	understand	how	the	actual	instance	list	data
content	is	physically	stored	and	processed.
Some	basics	of	the	physical	side	of	instance	lists	(also	see	Programmatic
Identifiers	earlier	in	this	section):
An	instance	list	entry	is	defined	and	accessed	by	a	programmatic	identifier
made	of	up	to	5	alphanumeric	and	5	numeric	values.	These	are	usually	referred
to	as	AKey1	->	AKey5	and	NKey1	->	NKey5.
The	composite	key	that	uniquely	defines	an	instance	entry	is	composed	of
AKey1-NKey1-AKey2-NKey2-AKey3-NKey3-AKey4-NKey5-AKey5-
NKey5.
Every	instance	list	entry	has	this	10-part	key,	even	when	you	do	not	specify	all
the	keys.	For	example,	when	adding	SECTIONS	to	the	example	instance	list,
only	AKey1(#DEPTMENT)	and	AKey2(#SECTION)	are	normally	specified.
When	this	is	done,	AKey3('	')	->	AKey5('	')	and	NKey1(0)	->	NKey5(0)	are
used	as	parameter	default	values	to	form	the	full	10-part	key.
The	preceding	point	means	that	if	you	really	want	to	use	a	blank	AKeyn()
values	or	zero	NKeyn()	values	as	part	of	a	real	key	then	it	may	be	problematic.
In	such	cases	you	should	consider	using	something	like	AKey4('<BLANK>')
and/or	NKey2(-9999)	to	logically	represent	blank	or	zero	as	real	non-blank
and	non-zero	key	values.	
The	AKeyn()	and	NKeyn()	values	are	purely	conceptual.	You	can	compose
them	in	any	way	you	feel	is	appropriate.	For	example,	if	you	have	a	need	for
more	than	5	AKeyn()	keys,	concatenate	2	or	more	of	them	together	into	a
single	AKeyn()	value.	For	example	the	SECTIONS-EMPLOYEES	instance
list	could	have	been	structured	with	this	key	usage	protocol	-	AKey1	is
(#DEPTMENT	+	"."	+	#SECTION)	and	AKey2	is	(#EMPNO).			
In	the	shipped	SECTIONS	business	object	the	key	usage	protocol	is	defined	as
AKey1	=	Department	Code	and	AKey2	=	Section	Code.
In	the	shipped	EMPLOYEES	business	object	the	key	usage	protocol	as	AKey1
=	Department	Code,	AKey2	=	Section	Code	and	AKey3	=	Employee	Number.
This	means	there	is	a	structured	key	relationship	between	a	parent	SECTION
and	child	EMPLOYEE.	
If	you	are	trying	to	visualize	the	physically	mixed	SECTIONS/EMPLOYEES
instance	list	in	your	mind,	imagine	the	entries	looking	something	like	this:

	
Business	Object
Type

AKey1 AKey2 AKey3 Visual
ID1

Visual	ID2

SECTIONS ADM 01 	 ADM 01

EMPLOYEES ADM 01 A1001 A1001 BEN	JONES

EMPLOYEES ADM 01 A1012 A1012 PATRICK	PAUL

SECTIONS ADM 02 	 ADM 02

EMPLOYEES ADM 02 A0090 A0090 FRED	BLOOGS

EMPLOYEES ADM 02 A1014 A1014 JOHN	MOORE

SECTIONS LEG 01 	 LEG 01

EMPLOYEES LEG 01 A1019 A1019 CHARLES
DICKENS

etc 	 	 	 	 	

	

This	key	structure	relationship	between	parent	SECTIONS	and	child
EMPLOYEES	is	absolutely	vital	to	being	able	to	process	instance	lists	sensibly,
and	to	displaying	them	in	Visual	LANSA	tree	controls.		Also	see	Planning
parent-child	relationships.
There	are	some	things	about	this	physical	instance	list	that	are	worth	noting:
You	can	add	the	entries	to	the	instance	list	in	any	order
You	can	dynamically	add	children	to	an	instance	list	"on	demand"
When	a	child	is	in	the	instance	list	it	must	have	a	parent
You	can	dynamically	update	individual	entries	in	a	parent-child	instance	list
without	collapsing	the	visual	tree
You	can	dynamically	delete	individual	entries	in	a	parent-child	instance	list
without	collapsing	the	visual	tree
You	can	dynamically	add	individual	entries	in	a	parent-child	instance	list
without	collapsing	the	visual	tree
	

Planning	parent-child	relationships
When	setting	the	key	structures	for	parent-child	relationships	-	it	can	be	helpful
to	fill	in	a	table	like	the	following	example:
Here	a	SECTION	may	contain	EMPLOYEEs.
An	EMPLOYEE	may	have	associated	SKILLs.
An	EMPLOYEE	may	have	associated	DOCUMENTs.		
BO ROLE AKey1 NKey1 AKey2
SECTION PARENT #DEPTMENT Implicitly

used	by
parent

#SECTION

EMPLOYEE
CHILD
(of	SECTION)

Must	be	same	as
parent’s
#DEPARTMENT
value	

Implicitly
used	by
parent	-	so
must	have
same
default
value.

Must	be	same
as	parent’s
#SECTION
value

SKILL
CHILD
(of	EMPLOYEE)

GRANDCHILD
(of	SECTION)

Must	be	same	as
parent	and
grandparent’s
#DEPARTMENT
value	

Implicitly
used	by
parent	and
grandparent
-	so	must
have	same
default
value.

Must	be	same
as	parent	and
grandparent’s
#SECTION
value

DOCUMENT
CHILD
(of	EMPLOYEE)

GRANDCHILD
(of	SECTION)

Must	be	same	as
parent	and
grandparent’s
#DEPARTMENT
value	

Implicitly
used	by
parent	and
grandparent
-	so	must
have	same
default
value.

Must	be	same
as	parent	and
grandparent’s
#SECTION
value

	

The	parent-child	association	rules	that	you	must	follow	are:
Any	child	business	object	must	have	exactly	the	same	keys	as	its	parent	plus
one	or	more	keys	to	uniquely	identify	itself.
A	child	business	objects	can	use	the	free	keys	not	used	by	its	parent.	They	can
only	start	immediately	after	the	last	parent	key	used	(real	or	implicit)	working
from	left	to	right	in	the	key	structure.
You	might	also	consider	condensing	key	structures	when	your	theoretical
planning	is	finished	–	the	keys	are	programmatic	and	not	visible	to	end-users.
For	example:	by	choosing	#DEPTMENT	+	“-“	+	#SECTION	as	the	AKey1
value	in	the	table	above	you	could	condense	it	towards	the	left	by	two	columns	-
freeing	up	a	considerable	amount	of	key	space.	
		

You	can	add	the	entries	to	the	instance	list	in	any	order
In	the	example	above	you	could	add	all	the	EMPLOYEES	first	in	any	order	and
then	add	the	SECTIONS	at	the	end	in	any	order.	The	order	you	add	entries	does
not	matter.

You	can	dynamically	add	children	to	an	instance	list	"on
demand"
In	this	example	you	could	just	add	the	three	SECTIONS	like	this:

Business	Object	Type AKey1 AKey2 AKey3 Visual	ID1 Visual	ID2
SECTIONS ADM 01 	 ADM 01

SECTIONS ADM 02 	 ADM 02

SECTIONS LEG 01 	 LEG 01

	

When	the	user	goes	to	expand	the	section	ADM-01	(say)	in	the	visual	tree	a
check	is	made	to	see	if	you	have	specified	a	Relationship	Handler	for	the
relationship	between	SECTIONS	and	EMPLOYEES.
If	you	have,	then	it	is	called	to	"expand"	the	relationship	between	SECTION
ADM-01	and	the	EMPLOYEES	that	work	in	the	section.	After	it	has	been
called,	the	physical	instance	list	would	look	like	this:
	

Business	Object
Type

AKey1 AKey2 AKey3 Visual
ID1

Visual	ID2

SECTIONS ADM 01 	 ADM 01

EMPLOYEES ADM 01 A1001 A1001 BEN	JONES

EMPLOYEES ADM 01 A1012 A1012 PATRICK	PAUL

SECTIONS ADM 02 	 ADM 02

SECTIONS LEG 01 	 LEG 01

	

At	the	end	of	this	section	is	an	example	of	a	RDML	function	used	to	handle	the
expansion	if	the	relationship	between	SECTIONS	and	an	EMPLOYEES.		
If	you	create	a	relationship	handler	to	dynamically	expand	entries	in	an	instance
list	then	you	need	to	identify	it	to	the	Framework	on	the	Instance	List	/

Relations	tab	as	the	Relationship	Handler	here:
	

	

When	a	child	is	in	the	instance	list	it	must	have	a	parent
If	a	child	object	is	in	the	instance	it	must	have	a	parent	in	the	instance	list	that
can	be	associated	with	that	has	the	same	structural	key.
If	one	does	not	exist	an	error	message	will	be	displayed	at	some	stage,	probably
when	the	instance	list	needs	to	be	visualized	as	tree	control.
For	example,	if	an	EMPLOYEE,	identified	by	the	fully	key	ADM-0-01-0-
A1001,	needs	to	be	visualized	in	a	Visual	LANSA	tree	then	a	search	is	made	for
its	parent	SECTION.
This	is	done	by	looking,	using	the	AKey1-NKey1-AKey2-NKey2-AKey3-
NKey3-AKey4-NKey5-AKey5-NKey5	structured	key,	first	for	SECTIONS-
ADM	(which	would	not	found),	then	SECTIONS-ADM-0	(which	would	also
not	be	found)	then	SECTIONS-ADM-0-01,	which	would	be	found,	thus
identifying	the	parent	correctly.	

	

You	can	dynamically	update	individual	entries	in	a	parent-child
instance	list	without	collapsing	the	visual	tree
To	do	this	use	#AvListManager.BeginListUpdate	Mode(DYNAMIC),	as	in
these	examples:
To	change	SECTION	ADM-02	to	have	a	VisualID2	of	hello:
	
Invoke	Method(#avListManager.BeginListUpdate)	Mode(DYNAMIC)
	
Invoke	Method(#avListManager.UpdateListEntryData)	AKey1('ADM')
AKey2('02')	VisualID2('hello')	BusinessObjectType(SECTIONS)
	
Invoke	Method(#avListManager.EndListUpdate)
		

To	change	employee	number	A1012's	VisualID2	to	FREDDO	FROG:
Invoke	Method(#avListManager.BeginListUpdate)	Mode(DYNAMIC)
	
Invoke	Method(#avListManager.UpdateListEntryData)	Visualid2('FREDDO
FROG')		Akey1('ADM')	Akey2('01')	Akey3('A1012')
BusinessObjectType(EMPLOYEES)
	
Invoke	Method(#avListManager.EndListUpdate)

		
Also	see	Updating	and	Deleting	Instance	List	Entries

	

You	can	dynamically	delete	individual	entries	in	a	parent-child
instance	list	without	collapsing	the	visual	tree
To	do	this	use	#AvListManager.BeginListUpdate	Mode(DYNAMIC),	as	in
these	examples:
To	delete	employee	number	A1012	from	the	instance	list:
	
Invoke	Method(#avListManager.BeginListUpdate)	Mode(DYNAMIC)
	
Invoke	Method(#avListManager.	RemoveFromList)	Akey1('ADM')
Akey2('01')
							Akey3('A1012')	BusinessObjectType(EMPLOYEES)
	
Invoke	Method(#avListManager.EndListUpdate)

	
To	delete	SECTION	ADM-02	and	its	child	EMPLOYEEs	from	the	instance	list
	
Invoke	Method(#avListManager.BeginListUpdate)	Mode(DYNAMIC)
	
Invoke	Method(#avListManager.RemoveFromList)	AKey1('ADM')
AKey2('02')
							BusinessObjectType(SECTIONS)
	
Invoke	Method(#avListManager.EndListUpdate)

		
Also	see	Updating	and	Deleting	Instance	List	Entries
	

You	can	dynamically	add	individual	entries	in	a	parent-child
instance	list	without	collapsing	the	visual	tree
To	do	this	use	#AvListManager.BeginListUpdate	Mode(DYNAMIC),	as	in
these	examples:
To	add	employee	number	A1012	to	the	instance	list:
Invoke	Method(#avListManager.BeginListUpdate)	Mode(DYNAMIC)
	
Invoke	Method(#avListManager.AddtoList)	Visualid1('A1012')
Visualid2('PATRICK	PAUL')	Akey1('ADM')	Akey2('01')	Akey3('A1012')
AColumn1('8217-436474')	AColumn2('121	MAIN	STREET')
nColumn1(4353)	BusinessObjectType(EMPLOYEES)
	
Invoke	Method(#avListManager.EndListUpdate)

	
To	add	SECTION	ADM-99	to	the	instance	list:
	
Invoke	Method(#avListManager.BeginListUpdate)	Mode(DYNAMIC)
	
Invoke	Method(#avListManager.AddtoList)	Akey1('ADM')	Akey2('99')
VisualID1('ADM')	VisualID2('99')		AColumn1('DEMO	SECTIION')
AColumn2('1627-7484')	NColumn1('3478')	BusinessObjectType(SECTIONS)
	
Invoke	Method(#avListManager.EndListUpdate)

		
Also	see	Updating	and	Deleting	Instance	List	Entries
	

Instance	List	Tips	and	Techniques
Page-at-a-Time	logic	may	indicate	a	conceptual	problem	with	filters
Instance	lists	do	not	have	to	reflect	the	database	that	underpins	them

Page-at-a-Time	logic	may	indicate	a	conceptual	problem	with
filters
You	can	use	the	classic	"page	at	a	time"	logic	with	instance	lists,	but	an	over-
reliance	on	it	may	indicate	that	your	filters	have	not	been	designed	properly.
The	purpose	of	a	filter	is	to	give	the	end-user	sufficient	search	power	to	rapidly
produce	short	instance	lists	of	exactly	what	they	want	to	work	with.	If	your	end-
users	must	always	have	to	page	to	find	the	information	they	want	to	work	with
you	should	consider	increasing	the	"zoom	in"	capability	of	your	filters	before
attempting	to	implement	complex	paging	techniques.								
For	example,	if	you	are	designing	a	Human	Resources	system,	one	of	the
essential	pieces	of	analysis	you	need	to	do	is	to	work	out	all	the	different	ways
that	end-users	would	want	to	build	list	of	employees.	For	example:
By	their	names
By	their	phone	numbers
By	the	office	they	work	in
By	their	current	employment	status
By	their	sex
By	their	birthdays
By	the	date	they	started	working	for	the	company
Those	that	have	resigned	but	are	still	on	file
By	their	skills
By	their	remuneration	ranges
By	those	without	outstanding	employment	issues.
Etc,	etc

	

If	you	have	a	system	with	5000	employees	then	simply	blasting	the	personal	file
out	onto	the	screen	with	some	"page	at	a	time"	logic	will	not	make	the	end-users
life	any	easier.
Sometimes	Framework	designers	take	this	one	step	further	and	let	end-users
define	(and	store)	standard	employee	'queries'	that	they	can	use	over	and	over	in
filters	to	build	instance	lists.
For	example,	a	HR	person	tasked	to	ensure	employee	satisfaction,	may,	on

every	Monday	morning,	need	to	build	a	list	of	all	the	people	who	started	work
last	week.
Equally	another	may	need	to	build	a	list	every	Friday	afternoon	of	people
working	at	a	certain	remote	location	so	as	to	phone	them	up	to	see	if	they	have
any	special	transportation	requirements	needed	on	the	weekend.			
Think	about	giving	end-users	the	EXACT	list	of	what	they	need	rather	than	a
large	list	with	some	accompanying	"page	at	a	time"	scrolling	logic.	
							

Instance	lists	do	not	have	to	reflect	the	database	that	underpins
them
Instance	lists	are	conceptual.	They	often	reflect	the	physical	structure	of	the
database	table(s)	that	underpins	them,	but	they	don't	have	to.
	
In	this	simple	SECTIONS-EMPLOYEES	relationship	used	through	these
examples,	imagine	the	visual	impact	of	a	section	containing	2000	employees.	In
a	case	like	this	you	might	consider	inventing	a	4	different	child	employee
business	objects	named	EMPLOYEES_A_G,	EMPLOYEES_H_M,
EMPLOYEES_N_T,	EMPLOYEES_U_END	to	split	up	the	children
alphabetically	into	4	groups.
	
Here's	another	simple	example.	Imagine	you	had	a	single	database	file
containing	messages.	Each	message	has	a	unique	identifying	7	digit	number.
Each	message	also	has	a	status,	somewhat	like	an	e-mail,	of	RECEIVED,
READ,	SENT	and	DELETED.	Conceptually	this	might	be	arranged	into	an
instance	list	like	this:
Business	Object	Type AKey1 AKey2
RECEIVE RECEIVE 	

MESSAGE RECEIVE 26272

MESSAGE RECEIVE 63738

READ READ 	

MESSAGE READ 73389

MESSAGE READ 74584

MESAAGE READ 73873

SENT SENT 	

MESSAGE SENT 78383

MESSAGE SENT 37383

DELETED DELETE 	

MESSAGE DELETE 62727

	

Conceptually	the	instance	looks	something	like	an	e-mail	inbox,	outbox	and
deleted	items.	It	is	not	directly	reflective	of	the	underpinning	database	design.

	

Create	Your	Own	Snap-in	Instance	List
If	the	shipped	instance	list	browser	will	not	do	exactly	what	you	need	then	you
can	always	write	your	own.	See	Optionally	Create	Your	Own	Instance	List
When	using	a	snap-in	instance	list	browser,	the	normal	generic	instance	list
layout	details	(columns,	sequence,	width,	etc)	on	the	"Instance	List	/	Relations"
tab	have	no	meaning.	You	have	full	control	of	all	these	options	from	within	your
own	snap	in	browser.
Your	snap	in	browser	can	visualize	the	instance	list	in	any	way	desired	(list,
grid,	tree,	etc).		
Instance	Lists	–	An	Example	Snap-In	Instance	List	Browser
This	example	snap	in	instance	list	browser	visualizes	a	SECTIONS-
EMPLOYEES	instance	list	as	a	3	level	tree.
It's	method	of	displaying	the	instance	list	information	has	been	significantly
tailored	to	be	different	to	the	way	that	the	standard	shipped	Instance	List
Browser	presents	the	information:

	
Source	for	Snap-in	Instance	List	Example
Instance	List	with	more	than	10	alphanumeric	and/or	10	numeric	additional
columns

Instance	List	with	more	than	10	alphanumeric	and/or	10	numeric
additional	columns
The	Framework	instance	list	can	display	up	to	10	alphanumeric	and/or	10
numeric	additional	columns	in	an	instance	list.	If	you	want	more	columns	you
need	to	create	your	own	snap-in	instance	list.		There	is	no	limit	as	to	how	many
additional	columns	can	be	displayed	by	a	snap-in	instance	list	browser.
To	create	the	instance	list	use	the	Code	Assistant	to	create	most	of	the	required
code	for	you.	A	working	example	is	shipped	in	component	DF_INST1.
Instance	List	Browsers	are	snapped	in	on	the	Business	Object	properties	tab
Instance	List	/	Relations:

	The	simplest	technique	for	a	putting	an	effectively	infinite	number	of	additional
columns	into	the	instance	list	is	to	use	the	AColumn<symbolic	name>(value)
and	NColumn<symbolic	name>(value)	properties	of	the	instance	list	manager.
(Note:	This	is	actually	an	old	technique	that	has	disappeared	over	time	because
of	the	popularity	of	the	newer	AColumnN()	and	NColumnN()	parameters	on	the
AddtoList	method.	This	used	to	be	the	only	way	that	any	additional	columns
could	be	used.)			
In	the	following	example	filter	following	this	is	the	salient	RDMLX	code:
*	Make	16	alphanumeric	columns	with	a	variety	of	symbolic	names	such	as
BILL,	MARY	..	A16
		
set	#avListManager	AColumn<BILL>(#Char07	+	BILL)
set	#avListManager	AColumn<MARY>(#Char07	+	MARY)
set	#avListManager	AColumn<TOTAL>(#Char07	+	TOTAL)
set	#avListManager	AColumn<CUSTNO>(#Char07	+	CUSTNO)	
set	#avListManager	AColumn<A5>(#Char07	+	A5)
set	#avListManager	AColumn<A6>(#Char07	+	A6)
set	#avListManager	AColumn<A7>(#Char07	+	A7)
set	#avListManager	AColumn<A8>(#Char07	+	A8)

set	#avListManager	AColumn<A9>(#Char07	+	A9)
set	#avListManager	AColumn<A10>(#Char07	+	A10)
set	#avListManager	AColumn<A11>(#Char07	+	A11)
set	#avListManager	AColumn<A12>(#Char07	+	A12)
set	#avListManager	AColumn<A13>(#Char07	+	A13)
set	#avListManager	AColumn<A14>(#Char07	+	A14)
set	#avListManager	AColumn<A15>(#Char07	+	A15)
set	#avListManager	AColumn<A16>(#Char07	+	A16)
	
*	Make	16	numeric	columns	with	a	variety	of	symbolic	names	such	as	BILL,
MARY	...	N16
	
set	#avListManager	nColumn<BILL>(#Zone07	+	1)
set	#avListManager	nColumn<MARY>(#Zone07	+	2)
set	#avListManager	nColumn<TOTAL>(#Zone07	+	3)
set	#avListManager	nColumn<CUSTNUM>(#Zone07	+	4)
set	#avListManager	nColumn<n5>(#Zone07	+	5)
set	#avListManager	nColumn<n6>(#Zone07	+	6)
set	#avListManager	nColumn<n7>(#Zone07	+	7)
set	#avListManager	nColumn<n8>(#Zone07	+	8)
set	#avListManager	nColumn<n9>(#Zone07	+	9)
set	#avListManager	nColumn<n10>(#Zone07	+	10)
set	#avListManager	nColumn<n11>(#Zone07	+	11)
set	#avListManager	nColumn<n12>(#Zone07	+	12)
set	#avListManager	nColumn<n13>(#Zone07	+	13)
set	#avListManager	nColumn<n14>(#Zone07	+	14)
set	#avListManager	nColumn<n15>(#Zone07	+	15)
set	#avListManager	nColumn<n16>(#Zone07	+	16)
	
*	Add	this	and	all	32	additional	columns	to	the	instance	list
	
Invoke	Method(#avListManager.AddtoList)	Visualid1(#Char07)
Visualid2(#char07)	Akey1(#char07)

	
As	an	example,	the	line		set	#avListManager	AColumn<CUSTNO>(#Char07	+
CUSTNO)	creates	an	additional	alphanumeric	column	symbolically	named
CUSTNO	and	sets	it	to	contain	the	current	value	of	field	#CHAR07
concatenated	with	the	string	'CUSTNO'	.

In	the	associated	snap	in	instant	list	manager	this	is	the	matching	RDMLX	code:
*	Set	the	visual	identifiers	into	the	grid	columns
	
#STD_TEXTS	:=	#VisualID1
#STD_TEXT	:=	#VisualID2
	
*	Get	the	additional	alphanumeric	columns	into	the	grid	columns.
*	Only	3	are	visualized	in	this	example,	but	all	16	could	be	display	if	required
	
#VF_ELXA01	:=	#AvListManager.Acolumn<BILL>
#VF_ELXA02	:=	#AvListManager.Acolumn<CUSTNO>	
#VF_ELXA03	:=	#AvListManager.Acolumn<A16>
	
*	Get	the	additional	numeric	columns	into	the	grid	columns.
*	Only	3	are	visualized	in	this	example,	but	all	16	could	be	visualized	if
required
	
#VF_ELXNK1	:=	#AvListManager.Ncolumn<BILL>
#VF_ELXNK2	:=	#AvListManager.Ncolumn<CUSTNUM>
#VF_ELXNK3	:=	#AvListManager.Ncolumn<N16>
	
*	Add	the	information	to	the	grid
	
Add_Entry	#GRID

	
The	line		#VF_ELXA02	:=	#AvListManager.Acolumn<CUSTNO>	shows	the
additional	alphanumeric	column	named	CUSTNO	being	copied	in	a	grid
column	field	#VF_ELXA02.			
Command	handlers	can	also	access	the	additional	columns	using	the	same
approach.
In	high	volume	exchanges	with	a	very	significant	number	of	additional	columns
there	are	possibly	more	"locked	in"	(ie:	less	generic	and	therefore	faster)
approaches	that	might	be	used	to	pass	additional	column	information	between	a
filters	and	an	instance	list	browsers.		
For	example,	just	a	single	additional	column	may	be	used	to	pass	a	"row	key"
between	the	filter	and	the	snap	in	instance	list	browser	in	the	instance	list.	A
unique	scope(*Application)	shared	reusable	VL	component	could	be	created	to

manage	the	storage	of	and	access	to	logical	rows	of	information,	possibly	using
a	SPACE	object	for	efficiency.	Both	the	filter	and	instance	list	browser	would
communicate	with	it	to	exchange	logical	row	details.						
Sample	Filter	using	34	columns	(16	alpha,	16	numeric	+	Visual	IDs)
Matching	Snap	in	Instance	List	Browser
	

Sample	Filter	using	34	columns	(16	alpha,	16	numeric	+	Visual
IDs)
	
BEGIN_COM	ROLE(*EXTENDS	#VF_AC007)	HEIGHT(123)
WIDTH(216)
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#PHBN_1)	CAPTION('Add
to	list	')	DISPLAYPOSITION(1)	LEFT(52)	PARENT(#COM_OWNER)
TABPOSITION(1)	TOP(28)
	
	
EVTROUTINE	HANDLING(#PHBN_1.Click)
	
Define	#Zone07	Reffld(#Date)	Length(7)	decimals(0)	edit_code(4)	Default(0)
Define	#Char07	*char	7	To_Overlay(#Zone07)
	
Invoke	Method(#avListManager.BeginListUpdate)
	
Invoke	Method(#avListManager.ClearList)
	
Begin_Loop	from(1)	to(50)	using(#Zone07)
	
*	Make	up	16	alphanumeric	columns	with	a	variety	of	symbolic	names	such
as	BILL,	MARY	...	A16
	
set	#avListManager	AColumn<BILL>(#Char07	+	BILL)
set	#avListManager	AColumn<MARY>(#Char07	+	MARY)
set	#avListManager	AColumn<TOTAL>(#Char07	+	TOTAL)
set	#avListManager	AColumn<CUSTNO>(#Char07	+	CUSTNO)
set	#avListManager	AColumn<A5>(#Char07	+	A5)
set	#avListManager	AColumn<A6>(#Char07	+	A6)
set	#avListManager	AColumn<A7>(#Char07	+	A7)
set	#avListManager	AColumn<A8>(#Char07	+	A8)
set	#avListManager	AColumn<A9>(#Char07	+	A9)
set	#avListManager	AColumn<A10>(#Char07	+	A10)
set	#avListManager	AColumn<A11>(#Char07	+	A11)
set	#avListManager	AColumn<A12>(#Char07	+	A12)
set	#avListManager	AColumn<A13>(#Char07	+	A13)

set	#avListManager	AColumn<A14>(#Char07	+	A14)
set	#avListManager	AColumn<A15>(#Char07	+	A15)
set	#avListManager	AColumn<A16>(#Char07	+	A16)
	
*	Make	up	16	numeric	columns	with	a	variety	of	symbolic	names	such	as
BILL,	MARY	...	N16
	
set	#avListManager	nColumn<BILL>(#Zone07	+	1)
set	#avListManager	nColumn<MARY>(#Zone07	+	2)
set	#avListManager	nColumn<TOTAL>(#Zone07	+	3)
set	#avListManager	nColumn<CUSTNUM>(#Zone07	+	4)
set	#avListManager	nColumn<n5>(#Zone07	+	5)
set	#avListManager	nColumn<n6>(#Zone07	+	6)
set	#avListManager	nColumn<n7>(#Zone07	+	7)
set	#avListManager	nColumn<n8>(#Zone07	+	8)
set	#avListManager	nColumn<n9>(#Zone07	+	9)
set	#avListManager	nColumn<n10>(#Zone07	+	10)
set	#avListManager	nColumn<n11>(#Zone07	+	11)
set	#avListManager	nColumn<n12>(#Zone07	+	12)
set	#avListManager	nColumn<n13>(#Zone07	+	13)
set	#avListManager	nColumn<n14>(#Zone07	+	14)
set	#avListManager	nColumn<n15>(#Zone07	+	15)
set	#avListManager	nColumn<n16>(#Zone07	+	16)
	
*	Add	this	and	all	the	additional	columns	to	the	instance	list
	
Invoke	Method(#avListManager.AddtoList)	Visualid1(#Char07)
Visualid2(#char07)	Akey1(#char07)
	
End_Loop
	
Invoke	Method(#avListManager.EndListUpdate)
	
ENDROUTINE
	
	
End_Com

	

Matching	Snap	in	Instance	List	Browser
BEGIN_COM	ROLE(*EXTENDS	#VF_AC012)	HEIGHT(218)
HINT(*MTXTDF_INST1)
LAYOUTMANAGER(#ATTACHMENT_MANAGER)	WIDTH(504)
	
*	Basic	attachment	layout	manager
	
DEFINE_COM	CLASS(#PRIM_ATLM)
NAME(#ATTACHMENT_MANAGER)
	
*	A	grid	display	VID1,2	and	3	alpha	columns	and	3	numeric	columns
	
DEFINE_COM	CLASS(#PRIM_GRID)	NAME(#grid)
COLUMNBUTTONHEIGHT(18)	DISPLAYPOSITION(1)	HEIGHT(218)
HINT(*MTXTDF_INST1)	LEFT(0)	PARENT(#COM_OWNER)
SELECTIONSTYLE(Multiple)	SHOWLINES(False)
SHOWSELECTION(True)	SHOWSORTARROW(True)	TABPOSITION(1)
TABSTOP(False)	TOP(0)	WIDTH(504)
DEFINE_COM	CLASS(#PRIM_ATLI)
NAME(#GRID_ATTACHMENT_ITEM)	ATTACHMENT(Center)
MANAGE(#grid)	PARENT(#ATTACHMENT_MANAGER)
DEFINE_COM	CLASS(#PRIM_GDCL)	NAME(#GDCL_1)
CAPTION('VisualID1')	CAPTIONTYPE(Caption)	DISPLAYPOSITION(1)
PARENT(#grid)	SORTONCLICK(True)	SOURCE(#STD_TEXTS)
DEFINE_COM	CLASS(#PRIM_GDCL)	NAME(#GDCL_2)
CAPTION('VisualID2')	CAPTIONTYPE(Caption)	DISPLAYPOSITION(2)
PARENT(#grid)	SORTONCLICK(True)	SOURCE(#STD_TEXT)
DEFINE_COM	CLASS(#PRIM_GDCL)	NAME(#GDCL_3)
CAPTION('ACol-BILL')	CAPTIONTYPE(Caption)	DISPLAYPOSITION(3)
PARENT(#grid)	SORTONCLICK(True)	SOURCE(#VF_ELXA01)
DEFINE_COM	CLASS(#PRIM_GDCL)	NAME(#GDCL_4)
CAPTION('ACol-CUSTNO')	CAPTIONTYPE(Caption)
DISPLAYPOSITION(4)	PARENT(#grid)	SORTONCLICK(True)
SOURCE(#VF_ELXA02)
DEFINE_COM	CLASS(#PRIM_GDCL)	NAME(#GDCL_5)
CAPTION('ACol-A16')	CAPTIONTYPE(Caption)	DISPLAYPOSITION(5)
PARENT(#grid)	SORTONCLICK(True)	SOURCE(#VF_ELXA03)
DEFINE_COM	CLASS(#PRiM_GDCL)	NAME(#GDCL_6)

CAPTION('NCol-BILL')	CAPTIONTYPE(Caption)	DISPLAYPOSITION(6)
PARENT(#grid)	SORTONCLICK(True)	SOURCE(#VF_ELXNK1)
DEFINE_COM	CLASS(#PRIM_GDCL)	NAME(#GDCL_7)
CAPTION('NCol-CUSTNUM')	CAPTIONTYPE(Caption)
DISPLAYPOSITION(7)	PARENT(#grid)	SORTONCLICK(True)
SOURCE(#VF_ELXNK2)
DEFINE_COM	CLASS(#PRIM_GDCL)	NAME(#GDCL_8)
CAPTION('NCol-N16')	CAPTIONTYPE(Caption)	DISPLAYPOSITION(8)
PARENT(#grid)	SORTONCLICK(True)	SOURCE(#VF_ELXNK3)
	
*	---
*	Redefine	the	standard	uClearInstanceList	method
*	---
	
MthRoutine	uClearInstanceList	Options(*Redefine)
	
*	Clear	the	visible	sections	grid	of	all	entries
	
Clr_List	#Grid
	
EndRoutine
	
*	--
*	Redefine	the	standard	uAddListEntry	method
*	--
	
Mthroutine	Name(uAddListEntry)	Options(*Redefine)
	
*	Set	the	visual	identifiers
	
#STD_TEXTS	:=	#VisualID1
#STD_TEXT	:=	#VisualID2
	
*	Get	the	additional	alphanumeric	columns.
*	Only	3	are	visualized,	but	all	16	could	be	shown	if	required
	
#VF_ELXA01	:=	#AvListManager.Acolumn<BILL>
#VF_ELXA02	:=	#AvListManager.Acolumn<CUSTNO>
#VF_ELXA03	:=	#AvListManager.Acolumn<A16>

	
*	Get	the	additional	numeric	columns.
*	Only	3	are	visualized,	but	all	16	could	be	shown	if	required
	
#VF_ELXNK1	:=	#AvListManager.Ncolumn<BILL>
#VF_ELXNK2	:=	#AvListManager.Ncolumn<CUSTNUM>
#VF_ELXNK3	:=	#AvListManager.Ncolumn<N16>
	
*	Add	the	entry	to	the	visible	grid
	
Add_Entry	#GRID
	
*	Finished
	
Endroutine
	
*	---
*	Handle	selection	of	a	section	in	the	grid
*	---
	
EVTROUTINE	HANDLING(#Grid.ItemGotSelection)
OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
*	Appropriate	code	needs	to	be	added
ENDROUTINE
	
*	---
*	Handle	unselection	of	a	section	in	the	grid
*	---
	
EVTROUTINE	HANDLING(#Grid.ItemLostSelection)
OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
*	Appropriate	code	needs	to	be	added
ENDROUTINE
	
*	-------------------------------------
*	Handle	focus	of	a	section	in	the	grid
*	-------------------------------------
	
EVTROUTINE	HANDLING(#Grid.ItemGotFocus)

OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
*	Appropriate	code	needs	to	be	added
ENDROUTINE
	
*	---
*	Handle	loss	of	focus	of	a	section	in	the	grid
*	---
	
EVTROUTINE	HANDLING(#Grid.ItemLostFocus)
OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
*	Appropriate	code	needs	to	be	added
ENDROUTINE
	
EVTROUTINE	HANDLING(#Grid.ItemGotFocusAccept
#Grid.ItemGotSelectionAccept)	Accept(#ACCEPT)
OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
*	Appropriate	code	needs	to	be	added
Set	Com(#ACCEPT)	Value(TRUE)
ENDROUTINE
	
END_COM
	

	

Source	for	Snap-in	Instance	List	Example
The	example	code	is:
	
*
===
*	Component			:	XXXXXXXXXX
*	Type								:	Reusable	Part
*	Description	:	Sample	of	a	snap	in	instance	list	browser
*	displaying	an	instance	list	as	a	tree	control.
*	Disclaimer		:	The	following	material	is	supplied	as
*	sample	material	only.	No	warranty	concerning	this
*	material	or	its	use	in	any	way	whatsoever	is
*	expressed	or	implied
*
===
	
BEGIN_COM	ROLE(*EXTENDS	#VF_AC012)	HEIGHT(181)
LAYOUTMANAGER(#ATTACHMENT_MANAGER)	WIDTH(482)
	
*		Overall	attachment	layout	manager
	
DEFINE_COM	CLASS(#PRIM_ATLM)
NAME(#ATTACHMENT_MANAGER)
	
*		The	unleveled	tree
	
DEFINE_COM	CLASS(#PRIM_TRVW)	NAME(#VIS_Tree)
COLUMNBUTTONHEIGHT(18)	DISPLAYPOSITION(1)
DRAGCOLUMNS(True)	FULLROWSELECT(True)	HEIGHT(181)	LEFT(0)
MULTIPLESELECTSTYLE(SameLevel)	PARENT(#COM_OWNER)
SELECTIONSTYLE(Multiple)	TABPOSITION(1)	TABSTOP(False)	TOP(0)
VIEWSTYLE(UnLevelled)	VISUALSTYLE(#VF_VS101)	WIDTH(482)
	
*	Attachment	item	for	layout	management
	
DEFINE_COM	CLASS(#PRIM_ATLI)
NAME(#TREE_ATTACHMENT_ITEM)	ATTACHMENT(Center)

MANAGE(#VIS_Tree)	PARENT(#ATTACHMENT_MANAGER)
	
*	Standard	2	fields	for	all	levels	in	the	tree
	
DEFINE_COM	CLASS(#PRIM_TVCL)	NAME(#Tree_VID1)
CAPTION('Code/Name')	CAPTIONTYPE(Caption)	DISPLAYPOSITION(1)
LEVEL(1)	PARENT(#VIS_Tree)	SORTONCLICK(True)
SOURCE(#VF_ELXVI1)	WIDTH(17)
	
DEFINE_COM	CLASS(#PRIM_TVCL)	NAME(#Tree_VID2)
CAPTION('Description')	CAPTIONTYPE(Caption)	DISPLAYPOSITION(2)
LEVEL(1)	PARENT(#VIS_Tree)	SORTONCLICK(True)
SOURCE(#VF_ELXVI2)	WIDTH(16)
	
*	2	sample	additional	alpha	columns	
	
DEFINE_COM	CLASS(#PRIM_TVCL)	NAME(#Tree_acolumn1)
CAPTION('Phone')	CAPTIONTYPE(Caption)	DISPLAYPOSITION(3)
LEVEL(1)	PARENT(#VIS_Tree)	SORTONCLICK(True)
SOURCE(#VF_ELXCA1)	WIDTH(13)
DEFINE_COM	CLASS(#PRIM_TVCL)	NAME(#Tree_acolumn2)
CAPTION('Address')	CAPTIONTYPE(Caption)	DISPLAYPOSITION(4)
LEVEL(1)	PARENT(#VIS_Tree)	SORTONCLICK(True)
SOURCE(#VF_ELXCA2)	WIDTH(14)
	
*	1	sample	additional	numeric	column
	
DEFINE_COM	CLASS(#PRIM_TVCL)	NAME(#Tree_Visncolumn1)
CAPTION('Zip	Code')	CAPTIONTYPE(Caption)	COLUMNALIGN(Right)
DISPLAYPOSITION(5)	LEVEL(1)	PARENT(#VIS_Tree)
SORTONCLICK(True)	SOURCE(#POSTCODE)
	
*	Hidden	columns	to	track	AKey1()	AKey2()	AKey3()	and
BusinessObjectType()	for	every	tree	item	
	
DEFINE_COM	CLASS(#PRIM_TVCL)	NAME(#TREE_IAK1)	LEVEL(1)
PARENT(#VIS_Tree)	SOURCE(#VF_ELXAK1)	VISIBLE(False)
DEFINE_COM	CLASS(#PRIM_TVCL)	NAME(#TREE_IAK2)	LEVEL(1)
PARENT(#VIS_Tree)	SOURCE(#VF_ELXAK2)	VISIBLE(False)

DEFINE_COM	CLASS(#PRIM_TVCL)	NAME(#TREE_IAK3)	LEVEL(1)
PARENT(#VIS_Tree)	SOURCE(#VF_ELXAK3)	VISIBLE(False)
DEFINE_COM	CLASS(#PRIM_TVCL)	NAME(#TVCL_BOT)	LEVEL(2)
PARENT(#VIS_Tree)	SOURCE(#VF_ELBOT)	VISIBLE(False)
	
*		Currently	focused	tree	item
	
Define_com	#Prim_Objt	#FocusTreeItem	Reference(*dynamic)
	
*		UI	Control	Definitions
	
Define	Field(#UI_ISDEAF)	Reffld(#VF_ELBOOL)
Def_Cond	Name(*UI_LISTEN)	Cond('#UI_IsDeaf	*ne	TRUE')
	
*	Tree	node	tracking	-	track	department	nodes	and	department	section	nodes
	
DEFINE_COM	CLASS(#Prim_kcol<#Prim_tvit	#deptment>)
NAME(#DepNodes)	STYLE(Collection)
DEFINE_COM	CLASS(#Prim_kcol<#Prim_tvit	#std_texts>)
NAME(#DepSecNodes)	STYLE(Collection)
	
*
==
*	Method	Definitions
*
==
*	--
*	Redefine	the	standard	uClearInstanceList	method
*	--
	
MthRoutine	uClearInstanceList	Options(*Redefine)
	
Invoke	#DepNodes.RemoveAll
	
Invoke	#DepSecNodes.RemoveAll
	
Clr_List	#Vis_Tree
	
Set_ref	#FocusTreeItem	*null

	
EndRoutine
	
*	---
*	Redefine	the	standard	uAddListEntry	method
*	---
	
Mthroutine	Name(uAddListEntry)	Options(*Redefine)
	
Define_com	#Prim_tvit	#DepParent	Reference(*Dynamic)	
Define_com	#Prim_tvit	#SecParent	Reference(*Dynamic)
	
*	The	filter(s)	supply	SECTIONS	and	EMPLOYEES	business	objects	in	the
instance
*	list,	but	this	instance	list	browser	has	decided	to	create	a	3	level	tree	to
*	visualize	the	data	slightly	differently.	Handle	each	business	object	type
differently			
	
CASE	OF_FIELD(#BusinessObjectType.Value)
	
*	========================
*	SECTIONS	business	object	
*	========================
	
WHEN	VALUE_IS(=	SECTIONS)
	
*	Check	for	a	parent	department	node	in	the	tree	and	add	one	if	required
	
Set_ref	#DepParent	#DepNodes<#AKey1.Value>
	
If_ref	#DepParent	is(*null)
	
#VF_ELXAK1	:=	#AKey1.Value
#VF_ELXAK2	:=	''
#VF_ELXAK3	:=	''
#VF_ELBOT		:=	''
#VF_ELXVI1	:=	#AKey1.Value
#VF_ELXVI2	:=	'Department	'	+	#AKey1.Value
#VF_ELXCA1	:=	''

#VF_ELXCA2	:=	''
#POSTCODE	:=	0
	
Add_Entry	#Vis_Tree
	
Set_Ref	#DepParent	#Vis_Tree.CurrentItem
	
Set_Ref	#DepNodes<#AKey1.Value>	#DepParent
	
Endif
	
*	Now	add	in	the	section	node	as	a	child	of	the	department	and	keep	a	track	of
it	
	
#VF_ELXAK1	:=	#AKey1.Value
#VF_ELXAK2	:=	#AKey2.Value
#VF_ELXAK3	:=	#AKey3.Value
#VF_ELBOT		:=	#BusinessObjectType.Value
#VF_ELXVI1	:=	'Section	'	+	#AKey2.Value
#VF_ELXVI2	:=	#AColumn1.Value
#VF_ELXCA1	:=	''
#VF_ELXCA2	:=	''
#POSTCODE	:=	#Ncolumn1.Value
	
Add_Entry	#Vis_Tree
	
Set	#Vis_Tree.CurrentItem	ParentItem(#DepParent)
	
Set_Ref	#DepSecNodes<(#AKey1.Value	+	'.'	+		#Akey2.Value)>
#Vis_Tree.CurrentItem
	
*	=========================
*	EMPLOYEES	business	object
*	=========================
	
WHEN	VALUE_IS(=	EMPLOYEES)
	
#VF_ELXAK1	:=	#AKey1.Value
#VF_ELXAK2	:=	#AKey2.Value

#VF_ELXAK3	:=	#AKey3.Value
#VF_ELBOT		:=	#BusinessObjectType.Value
#VF_ELXVI1	:=	#VisualId1.Value
#VF_ELXVI2	:=	#VisualId2.Value
#VF_ELXCA1	:=	#AColumn1.Value
#VF_ELXCA2	:=	#AColumn2.Value
#POSTCODE		:=	#NColumn1.Value
	
Add_Entry	#Vis_Tree
	
*	Final	the	section	node	(previously	added)	that	will	be	this	nodes	tree	parent
	
Set_Ref	#SecParent	#DepSecNodes<(#AKey1.Value	+	'.'	+		#Akey2.Value)>
	
*	Show	an	error	or	set	the	parent	item	correctly
	
If_ref	#SecParent	is(*null)
Use	message_box_show	(ok	ok	error	*Component	'Attempt	to	add	employee
with	out	a	valid	SECTIONS	parent')
else
Set	#Vis_Tree.CurrentItem	ParentItem(#SecParent)
Endif
	
ENDCASE
	
*		Finished
	
EndRoutine
*	---
*	Determine	whether	to	accept	selection	of	new	Sections	from	the	grid
*	---
EVTROUTINE	HANDLING(#Vis_Tree.ItemGotFocusAccept
#Vis_Tree.ItemGotSelectionAccept)	Accept(#ACCEPT)
OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
If	(#vf_elbot	*ne	'	')
If	Cond('#avFrameworkManager.uCurrentLockStatus	*EQ	TRUE')
#ACCEPT	:=	FALSE
#UI_ISDEAF	:=	TRUE
Else

#ACCEPT	:=	TRUE
#UI_ISDEAF	:=	FALSE
Endif
Endif
ENDROUTINE
*	---
*	Handle	selection	of	an	item	from	the	tree
*	---
EvtRoutine	Handling(#Vis_Tree.ItemGotSelection)
OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
	
If	(#vf_elbot	*ne	'	')
	
Signal	SetSelectedInstance		AKey1(#VF_ELXAK1)	AKey2(#VF_ELXAK2)
AKey3(#VF_ELXAK1)	BusinessObjectType(#VF_ELBOT)
	
*		Handle	the	special	case	where	the	focus	did	not	fire	correctly
	
If_ref	#FocusTreeItem	is(*null)
Set_ref	#FocusTreeItem	#Vis_Tree.CurrentItem
Signal	SetCurrentInstance		AKey1(#VF_ELXAK1)	AKey2(#VF_ELXAK2)
AKey3(#VF_ELXAK3)	BusinessObjectType(#VF_ELBOT)
Endif
	
Endif
EndRoutine
*	---
*	Handle	unselection	of	an	item	from	the	tree
*	---
EvtRoutine	Handling(#Vis_Tree.ItemLostSelection)
OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
If	(#vf_elbot	*ne	'	')
Signal	DropSelectedInstance		AKey1(#VF_ELXAK1)
AKey2(#VF_ELXAK2)	AKey3(#VF_ELXAK3)
BusinessObjectType(#VF_ELBOT)
Endif
EndRoutine
*	-------------------------------------
*	Handle	focus	of	an	item	from	the	tree

*	-------------------------------------
EvtRoutine	Handling(#Vis_Tree.ItemGotFocus)
OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
If	Cond(*UI_LISTEN)
If	(#vf_elbot	*ne	'	')
Signal	SetCurrentInstance		AKey1(#VF_ELXAK1)	AKey2(#VF_ELXAK2)
AKey3(#VF_ELXAK3)	BusinessObjectType(#VF_ELBOT)
Endif
Endif
EndRoutine
*	---
*	Handle	loss	of	focus	of	an	item	from	the	tree
*	---
EvtRoutine	Handling(#Vis_Tree.ItemLostFocus)
OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
If	(#vf_elbot	*ne	'	')
Signal	DropCurrentInstance		AKey1(#VF_ELXAK1)	AKey2(#VF_ELXAK2)
AKey3(#VF_ELXAK3)	BusinessObjectType(#VF_ELBOT)
Endif
EndRoutine
	
End_Com
	

Advanced	Instance	List	Processing
Creating	a	single	shared	'manager'	for	your	business	objects	allows	you	to
centralize	and	standardize	all	you	instance	list	activities	to	avoid	repeating	code
in	your	filters	or	command	handlers.
Using	a	shared	manager	you	can:
Create	shared	methods	and	make	them	available	to	all	your	filters	and
command	handlers
Delegate	activities	to	the	manager
Manage	the	notification	of	events	performed	by	filters	and	command	handlers
	
For	more	information,	see:							
Avoid	Duplicated	Instance	List	Code
Centralize	all	your	Instance	List	Activities
Moving	towards	Real	Business	Object	Management
Manipulate	Instance	Lists	from	RAMP	Scripts
Delegate	Common	Tasks	to	your	own	Instance	List	'Manager'		
Low	Level	Direct	Access	to	the	Visualization	Trees.

Avoid	Duplicated	Instance	List	Code
If	you	have	many	different	filters	then	you	may	end-up	with	duplicated	instance
list	code.	This	may	be	annoying	if	a	designer	decides	to	change	the	key	structure
or	additional	columns	that	are	used	in	an	instance	list,	because	you	have	to
change	all	the	filters	to	use	the	new	instance	list	format.
To	avoid	this,	do	what	you	always	do,	and	centralize	the	instance	list
manipulation	code	into	one	Visual	LANSA	reusable	part	that	all	your	filters
share.
Imagine	a	Visual	LANSA	reusable	part	named	EMPMNGR	that	adds
employees	to	an	instance	list	in	3	different	ways:	
BEGIN_COM	ROLE(*EXTENDS	#PRIM_OBJT)
	
*	Perform	employee	searches	and	add	to	the	instance	list
	
MthRoutine	PerformSearch	
Define_Map	*Input	#vf_lm002	#ListManager	Pass(*By_Reference)
Define_Map	*Input	#std_num	#SearchType
Define_Map	*Input	#EmpNo	#UseEmpNo	Mandatory('	')
Define_Map	*Input	#SurName	#UseSurName	Mandatory('	')
Define_Map	*Input	#PostCode	#UsePostCode	Mandatory(0)
Define_Map	*input	#Prim_Boln	#Clear	mandatory(true)
	
Invoke	#ListManager.BeginListUpdate
	
If	(#Clear)
Invoke	#ListManager.ClearList
Endif
	
Case	#SearchType
	
when	(=	1)
Select	fields(*all)	from_file(pslmst)	with_key(#UseEmpno)	Generic(*Yes)
#Com_Owner.AddEmployeetoList	ListManager(#ListManager)
Endselect
	
when	(=	2)
Select	fields(*all)	from_file(pslmst2)	with_key(#UseSurName)	Generic(*Yes)

#Com_Owner.AddEmployeetoList	ListManager(#ListManager)
Endselect
	
when	(=	3)
Select	fields(*all)	from_file(pslmst)	where(#PostCode	=	#UsePostCode)
#Com_Owner.AddEmployeetoList	ListManager(#ListManager)
Endselect
EndCase
	
Invoke	#ListManager.EndListUpdate
	
Endroutine
	
*	Add	an	employee	to	the	instance	list
	

MthRoutine	AddEmployeetoList	Access(*Private)	
	
Define_Map	*Input	#vf_lm002	#ListManager	Pass(*By_Reference)
	
#FullName	:=	#GiveName	+	"	"	+	#SurName
	
Invoke	Method(#ListManager.AddtoList)	Visualid1(#Empno)
Visualid2(#FullName)	Akey1(#Deptment)	Akey2(#Section)	Akey3(#Empno)
AColumn1(#Phonehme)	AColumn2(#Address1)	nColumn1(#PostCode)
	
Endroutine
	
END_COM
	

	
Now	imagine	you	have	five	employee	filters	like	this:

	

If	these	filters	each	declared	the	shared	VL	reusable	part	like	this:
DEFINE_COM	CLASS(#EMPMNGR)	NAME(#EmployeeManager)
scope(*Application)

	
then	they	can	perform	their	respective	searches	by	using	a	single	command	like
this:
Invoke	#EmployeeManager.PerformSearch	ListManager(#avListManager)
							SearchType(1)	UseEmpNo(#EmpNo)	Clear(true)

	
Or	like	this:
Invoke	#EmployeeManager.PerformSearch	ListManager(#avListManager)
							SearchType(2)	UseSurName(#SurName)	Clear(false)

	
It	is	worth	noting:
That	the	employee	manager	#EMPMNGR	object	uses
EXTENDS(#PRIM_OBJT).	This	defines	it	as	a	primitive	object	that	has	no
visual	context.
The	use	of	Scope(*Application)	when	declaring	#EMPMNGR.	This	makes
sure	that	only	a	single	#EMPMGR	object	is	ever	created	and	it	is	shared	by	all
your	filters	or	command	handlers.	
That	the	filters	might	not	have	to	have	any	search	logic	at	all	in	them,	nor
would	they	have	to	directly	access	the	database.	All	their	search	and	database
activities	could	be	handled	by	the	common	shared	#EMPMNGR	object.	
If	you	need	to	change	the	employee	instance	list	keys	or	the	additional
columns	you	now	only	need	to	change	and	recompile	#EMPMNGR.					

	
	

Centralize	all	your	Instance	List	Activities
Once	you	start	to	centralize	all	your	instance	lists	management	code	into	a
single	manager	component	you	will	find	it	can	be	used	in	many	different	ways.
For	example,	command	handlers	often	need	to	update	details	in	the	instance	list
when	the	user	updates	something.	For	example,	this	command	handler	would
need	to	update	the	instance	list	if	the	user	changed	the	employees'	name:

	
If	#EMPMNGR	had	a	shared	method	like	this:
MthRoutine	UpdateListDetails
Define_Map	*Input	#vf_lm002	#ListManager	Pass(*By_Reference)
Define_Map	*Input	#EmpNo				#ForEmpNo

	
Fetch	fields(*all)	from_file(PSLMST)	with_key(#ForEmpno)
	
Invoke	#ListManager.BeginListUpdate	Mode(DYNAMIC)
	
#FullName	:=	#GiveName	+	"	"	+	#SurName
	
Invoke	Method(#ListManager.UpdateListEntryData)	Visualid1(#Empno)
Visualid2(#FullName)	Akey1(#Deptment)	Akey2(#Section)	Akey3(#Empno)
AColumn1(#Phonehme)	AColumn2(#Address1)	nColumn1(#PostCode)
	
Invoke	#ListManager.EndListUpdate

	
EndRoutine

	
Then	all	any	command	handler	would	need	to	do	to	update	the	instance	list	is

declare	the	shared	#EMPMNGR	like	this	…
DEFINE_COM	CLASS(#EMPMNGR)	NAME(#EmployeeManager)
scope(*Application)

		
and	then	invoke	the	method	to	update	the	employees'	instance	list	details	….
#EmployeeManager.UpdateListDetails	ListManager(#avListManager)
ForEmpno(#Empno)

		
The	benefit	here	of	course	is	that	all	command	handlers	working	with	employee
information	could	reuse	the	UpdateListDetails	method	and	none	of	them	even
need	to	understand	how	this	is	done.
Sometimes	command	handlers	also	need	to	delete	individual	entries	from	the
instance	list,	so	if	the	centralized	instance	list	manager	contained	a	method	like
this:
MthRoutine	DeleteListDetails
Define_Map	*Input	#vf_lm002	#ListManager	Pass(*By_Reference)
Define_Map	*Input	#EmpNo				#ForEmpNo
Define_Map	*Input	#Deptment	#InDepartment
Define_Map	*Input	#Section		#InSection
	
Invoke	#ListManager.BeginListUpdate	Mode(DYNAMIC)
	
Invoke	Method(#ListManager.RemoveFromList)	Akey1(#InDeptment)
Akey2(#InSection)	Akey3(#ForEmpno)
	
Invoke	#ListManager.EndListUpdate
	
EndRoutine

	
Then	any	command	handler	would	only	need	to	declare	the	shared	manager:
DEFINE_COM	CLASS(#EMPMNGR)	NAME(#EmployeeManager)
scope(*Application)

		
and	invoke	the	method	like	this:
#EmployeeManager.DeleteListDetails	ListManager(#avListManager)
ForEmpno(#Empno)	InDepartment(#Deptment)	InSection(#Section)

	
to	delete	the	details	of	an	employee	from	an	instance	list.	
	

Moving	towards	Real	Business	Object	Management
If	you	extrapolate	the	ideas	in	the	preceding	section,	you	might	start	to	think
"Why	couldn't	the	manager	perform	the	actual	data	base	updates	and	deletes	as
well?"
If	the	instance	list	manager	#EMPMNGR	has	methods	like	UpdateListDetails
and	DeleteListDetails	that	work	on	the	employees'	in	the	instance	list,	why
couldn't	it	have	methods	named	UpdateEmployee	and	DeleteEmployee	that
updated	or	deleted	the	actual	database	rows	in	a	centralized	way,	and	then
automatically	reflected	the	change	into	the	instance	list	as	well?
Indeed	it	could,but	that's	getting	into	the	area	of	true	business	objects	managers,
which	is	a	bit	beyond	the	scope	of	this	document.						

Manipulate	Instance	Lists	from	RAMP	Scripts
Filters	and	command	handlers	can	more	easily	manipulate	the	instance	list	by
invoking	simplified	methods	in	a	shared	instance	list	'manager'.		To	do	this	all
they	have	to	do	is
Declare	the	shared	instance	list	manager	using	Scope(*Application)
Invoke	the	methods	in	exposes.
	
RAMP	5250	navigation	scripts	cannot	declare	a	VL	reusable	component	and
invoke	its	methods,	but	what	they	can	do	is	signal	events,	so	if	'something'	is
listening	for	the	events	they	signal,	then	it	can	invoke	the	manager	methods	on
their	behalf.
Typically	the	'something'	that	is	listening	for	RAMP	script	events	is	a	filter,
which	has	an	EVTROUTINE	something	like	this	in	it:
Evtroutine	Handling(#Com_owner.avEvent)	WithId(#EventId)
											WithAInfo1(#AInfo1)	WithAInfo2(#AInfo2)	WithAInfo3(#AInfo3)
											Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
	
Case	#EventId.Value
	
When	(=	UPDATE_EMPLOYEE_5250)
	
#EmployeeManager.UpdateListDetails	ListManager(#avListManager)
ForEmpno(#AInfo1)
	
When	(=	DELETE_EMPLOYEE_5250)
	
#EmployeeManager.DeleteListDetails	ListManager(#avListManager)
ForEmpno(#AInfo1)	inDepartment(#AInfo2)	InSection(#AInfo3)
	
EndCase
	
Endroutine

	
A	filter	with	this	code	in	it	is	listening	for	events	named
UPDATE_EMPLOYEE_5250	and	DELETE_EMPLOYEE_5250.	When	it
receives	one	of	them	it	routes	the	request	into	the	shared	instance	list	'manager'.

Of	course	there	needs	to	be	an	agreed	protocol	between	the	RAMP	script	and
the	filter	regarding	how	the	employee	key	details	are	passed	in	the	event
payload	parameters.		
When	a	RAMP	script	detects	a	5250	activity	that	means	the	instance	list	needs
to	be	updated	(eg:	deleting	or	updating	an	employee)	it	would	execute
JavaScript	script	coded	something	like	this:
AVSIGNALEVENT("DELETE_EMPLOYEE_5250",	"BUSINESSOBJECT",
objListManager.AKey1[0],	objListManager.AKey2[0],
objListManager.AKey3[0]);

	
Or
AVSIGNALEVENT("UPDATE_EMPLOYEE_5250",
"BUSINESSOBJECT",	objListManager.AKey3[0]);

Delegate	Common	Tasks	to	your	own	Instance	List	'Manager'		
So	far	we	have	seen	how	the	task	of	adding	to,	updating	and	deleting	instance
list	entries	may	be	delegated	to	a	common	shared	instance	list	'manager'.	
Any	other	activity	that	is	likely	to	involve	repeated	code	in	a	filter	or	a
command	handler	can	usually	be	delegated	in	the	same	way.			
For	example,	in	the	preceding	section	RAMP	scripts	can	access	the	instance	list
'manager'	by	signaling	an	event	to	it	via	a	listening	filter.	Since	you	will	not
always	know	which	filter	is	listening,	you	would	have	to	repeat	the	listening
code	in	every	filter.			
One	way	to	delegate	this	listening	task,	and	virtually	any	listening	task,	to	a
common	shared	instance	list	manager	is	as	follows:
In	the	instance	list	'manager'	define	2	collections	like	this:
*	Keep	track	of	all	registered	active	filters	and	command	handlers
	
DEFINE_COM	CLASS(#Prim_Acol<#VF_ac007>)	NAME(#ActiveFilters)
DEFINE_COM	CLASS(#Prim_Acol<#VF_ac010>)
NAME(#ActiveHandlers)

	
Then	add	2	methods	like	this:
MthRoutine	RegisterInitialize
Define_map	*input	#VF_AC007	#Filter	Pass(*By_Reference)
Mandatory(null)
Define_map	*input	#VF_AC010	#Handler	Pass(*By_Reference)
Mandatory(null)
	
*	Keep	track	of	registered	and	active	filters		
	
If_ref	#Filter	is_not(*null)
Invoke	#ActiveFilters.Insert	Item(#Filter)
Endif
	
*	Keep	track	of	all	registered	and	active	command	handlers
	
If_ref	#Handler	is_not(*null)
Invoke	#ActiveHandlers.Insert	Item(#Handler)
Endif

	
Endroutine
	
MthRoutine	RegisterTerminate
Define_map	*input	#VF_AC007	#Filter	Pass(*By_Reference)
Mandatory(null)
Define_map	*input	#VF_AC010	#Handler	Pass(*By_Reference)
Mandatory(null)
	
*	Remove	the	specified	filter	from	the	active	collection
	
If_ref	#Filter	is_not(*null)
Invoke	#ActiveFilters.Remove	Object(#Filter)
Endif
	
*	Remove	the	specifeid	command	handler	from	the	active	collection
	
If_ref	#Handler	is_not(*null)
Invoke	#ActiveHandlers.Remove	Object(#Handler)
Endif
	
Endroutine

	
Now,	in	each	filter	or	command	handler,	you	need	to	do	three	things:

	

Define	the	instance	list	manager:

	

				DEFINE_COM	CLASS(#EMPMNGR)	NAME(#EmployeeManager)
scope(*Application)

	

Register	with	the	instance	list	manager	when	starting	up.	In	a	filter	do	this:

	

				MthRoutine	uInitialize	Options(*Redefine)
				Invoke	#EmployeeManager.RegisterInitialize	Filter(#Com_Owner)	
				Endroutine

	

						In	a	command	handler	do	this:
	
					MthRoutine	uInitialize	Options(*Redefine)
					Invoke	#EmployeeManager.RegisterInitialize	Handler(#Com_Owner)	
					Endroutine

	

(De)Register	with	the	instance	list	manager	when	terminating.	In	a	filter	do
this:

	

					MthRoutine	uTerminate	Options(*Redefine)
					Invoke	#EmployeeManager.RegisterTerminate	Filter(#Com_Owner)	
					Endroutine

	

						In	a	command	handler	do	this:

	

					MthRoutine	uTerminate	Options(*Redefine)
					Invoke	#EmployeeManager.RegisterTerminate	Handler(#Com_Owner)	
					Endroutine

	

Your	instance	list	'manager'	is	now	aware	all	active	filters	and	command
handlers	that	are	actively	doing	something	with	the	business	object	(eg:
Employees).
It	can	start	to	perform	common	shared	actions	on	their	behalf.	
For	example,	if	your	instance	list	'manager'	had	an	event	routine	like	this	in	it:

Evtroutine	Handling(#ActiveFilters<>.avEvent)	WithId(#EventId)
WithAInfo1(#AInfo1)	WithAInfo2(#AInfo2)	WithAInfo3(#AInfo3)
COM_Sender(#SendingFilter)	Options(*NOCLEARMESSAGES
*NOCLEARERRORS)
	
Case	#EventId.Value
	
When	(=	UPDATE_EMPLOYEE_5250)
	
#Com_Owner.UpdateListDetails	ListManager(#SendingFilter.avListManager)
ForEmpno(#AInfo1)
	
When	(=	DELETE_EMPLOYEE_5250)
		
#Com_Owner.DeleteListDetails	ListManager(#SendingFilter.avListManager)
ForEmpno(#AInfo1)	inDepartment(#AInfo2)	InSection(#AInfo3)
	
EndCase
	
Endroutine

	
then	it	has	taken	over	the	job	of	listening	for	RAMP	script	events	for	all	filters.
There	is	no	longer	any	need	to	add	this	listening	code	to	any	specific	filter.	
The	use	of	#ActiveFilters<>.avEvent	is	special.	This	instance	list	manager	event
routine	is	listening	in	to	(or,	eavesdropping,	if	you	like)	to	all	the	filters	that
have	registered	with	it.	You	can	do	the	same	sort	of	thing	using
#ActiveHandlers<>	of	course.
On	the	other	side	of	this	coin,	an	instance	list	manager	can	also	signal	events	to
all	active	filters	and	command	handlers.	Typically	this	is	done	like	this:
First,	define	the	events	and	methods	to	signal	them	into	your	instance	lists
'manager',	like	in	this	example:
Define_Evt	EmployeeUpdate
Define_map	*input	#Empno	#EmployeeNumber
	
Define_Evt	EmployeeDelete
Define_map	*input	#Empno	#EmployeeNumber
	

Mthroutine	Sig_EmployeeUpdate
Define_map	*input	#Empno	#EmployeeNumber
Signal	EmployeeUpdate	EmployeeNumber(#EmployeeNumber)	
Endroutine
	
Mthroutine	Sig_EmployeeDelete
Define_map	*input	#Empno	#EmployeeNumber
Signal	EmployeeDelete	EmployeeNumber(#EmployeeNumber)
Endroutine

	
Now,	in	any	filter	or	command	handler	that	wants	to	be	notified	when	these
events	happen,	you	just	need	to	put	an	event	handling	routine	in	to	listen	like
this:
Evtroutine	Handling(#EmployeeManager.EmployeeUpdate)
EmployeeNumber(#EmployeeNUmber)	Options(*NOCLEARMESSAGES
*NOCLEARERRORS)
	
Use	Message_box_show	(ok	ok	info	*Component	("I	have	just	been	notified
that	employee	number	"	+	#EmployeeNumber	+	"	has	been	updated"))
	
Endroutine
	
Evtroutine	Handling(#EmployeeManager.EmployeeDelete)
EmployeeNumber(#EmployeeNUmber)	Options(*NOCLEARMESSAGES
*NOCLEARERRORS)
	
Use	Message_box_show	(ok	ok	info	*Component	("I	have	just	been	notified
that	employee	number	"	+	#EmployeeNumber	+	"	has	been	deleted"))
	
Endroutine

	
Finally,	in	the	filter	or	command	handler	that	wants	to	signal	(or	trigger,	or
notify)	the	event	to	others,	you	just	need	to	do	this:

	

#EmployeeManager.Sig_EmployeeUpdate	EmployeeNumber(#Empno)
or

#EmployeeManager.Sig_EmployeeDelete	EmployeeNumber(#Empno)
	

Low	Level	Direct	Access	to	the	Visualization	Trees
In	VLF-WIN	code	you	can	directly	access	the	VL	trees	(class	#PRIM_TRVW)
that	are	used	to	visualize	the	instance	list	content.
There	may	be	two	trees	–	the	primary	tree	and	possibly	a	secondary	tree	when
side-by-side	or	over-under	displays	are	used.	
Once	you	have	a	reference	to	the	tree	you	can	access	the	items	with	in	the	tree
and	the	columns	within	the	items.	
The	properties	#avListManager.avPrimaryTree	and
#avListManager.avSecondaryTree	yield	references	to	the	primary	and	secondary
VL	trees	used	to	visualize	an	instance	list.	
Some	significant	usage	points:
The	trees	are	the	visualizations	of	an	instance	list.	They	are	not	the	instance	list
itself.		If	you	change	the	way	that	an	instance	list	has	been	visualized,	you	are
not	changing	the	instance	list.
Do	not	save	tree	or	tree	item	references	in	your	code.	This	would	probably
cause	resource	leakage	or	other	problems.
Do	not	change	tree	or	tree	items	selection	or	focus.	Update	the	instance	list
instead.
Do		not	change	tree	or	tree	items	inside	beginlistupdate/endlistupdate	code
blocks.					
The	tree	references	are	not	applicable	if	you	are	using	your	own	snap-in
instance	list	browser.
Use	caution	with	your	changes	and	test	carefully	how	they	interact	with	the
rest	of	the	Framework.
VL	tree	level	programming	skills	are	assumed.
Some	examples:

Get	the	number	of	entries	in	primary	visualization	tree
#Std_text	:=	#AVLISTMANAGER.avPrimaryTree.Entries.AsString
Use	MESSAGE_BOX_SHOW	With_Args(ok	ok	info	*COMPONENT	('Tree
has	'	+	#Std_text	+	'	entries'))

Change	the	icon	associated	with	every	entry	at	level	1	in	a	tree
For	Each(#TreeItem)	In(#avListManager.avPrimaryTree.Items)
			#TreeItem.Image	<=	#vf_ic004

Endfor
Note:		This	example	is	iterating	over	the	tree	so	it	is	working	in	the	visual	order
of	the	currently	displayed	tree	-	not	necessarily	the	order	of	the	instance	list
entries.

Make	sure	the	first	entry	in	the	tree	is	visible
	
#avListManager.avPrimaryTree.Items<1>.EnsureVisible	:=	True
	

Note:		This	example	does	not	cater	for	an	empty	tree.
	

Export	Instance	List	Contents
Applies	to	Windows	and	.NET	applications
This	feature	allows	end-user	to	easily	export	the	entries	in	the	instance	list	to	a
document.	There	is	no	additional	effort	required	from	the	part	of	Framework
developers.	The	supported	document	formats	in	VLF.NET	are:
Excel
PDF
HTML
CSV
In	the	Windows	environment,	templates	are	not	available	and	the	only	format
currently	supported	is	CSV.

When	generating	a	Microsoft	Excel	report,	the	instance	list	tree	structure	can	be
retained	through	the	use	of	the	Outlining	feature	of	Microsoft	Excel.
Only	entries	that	are	available	at	the	time	of	the	report	generation	(which	means
that	if	you	use	a	relationship	handler	to	do	on-demand	loading	of	sub-rows,	the
report	will	include	only	entries	that	have	been	retrieved	–	which	will	happen
when	their	parent	node	is	expanded).	Retrieved	entries	that	are	hidden	because
their	parent	node	is	collapsed	will	still	be	included	in	the	report.
The	entries	will	be	exported	in	the	order	they	appear	at	the	time	of	the	report
generation.	The	same	applies	to	the	columns	order	(which	means	that	if	the	end-
user	moves	the	column	around,	that’s	the	setting	that	will	be	used	in	the	report

generation).
	
	
Getting	Started
Creating	Your	First	Report	Template
Publishing	Shared	Templates
Modifying	Report	Templates
	

Template	Support
End-users	or	Framework	developers	can	define	their	own	report	templates.
Report	templates	are	Excel	documents	that	contain	placeholders	for	actual
report	field	values.	Those	placeholders	will	be	substituted	with	real	values
during	report	generation.	Think	mail	merge	in	Microsoft	Word.	Placeholders
can	easily	be	identified	as	they	always	start	with	“<#”	and	end	with	“>”	(e.g.
“<#dem_org.n1>”.
Note	that	the	use	of	Excel	document	as	templates	does	not	limit	the	report
output	format	to	Excel	only.	Users	can	still	generate	Excel,	PDF,	and	HTML
reports.	CSV	format	however	does	not	support	the	use	of	templates	(templates
will	be	ignored	when	CSV	format	is	selected).
To	assist	Framework	developers	and	end-users	in	creating	report	templates,
VLF.NET	is	capable	of	producing	initial	templates	containing	all	the	fields	(i.e.
the	placeholders)	from	relevant	business	objects.	Framework	developers	or	end-
users	can	then	modify	this	template	easily	(remove	unwanted	columns,	apply
formatting	etc).
Benefits	of	Using	Excel	Document	as	Templates
The	use	of	Excel	document	as	a	report	template	allows	the	end-users	to	generate
reports	sophisticated	enough	to	satisfy	their	needs.	Any	formatting	applied	to	an
Excel	template	will	be	fully	applied	to	the	reports	generated	based	on	that
template.
Due	to	the	simplicity	of	Microsoft	Excel	and	its	popularity	amongst	office
workers,	this	feature	will	enable	end-users	to	easily	modify	or	even	create	their
own	templates,	apply	various	formatting	to	suit	their	needs.	Such	a	thing	is
unthinkable	for	more	complex	tools	such	as	Crystal	Reports.
	
Shared	and	Private	Templates
There	are	two	types	of	templates:
Shared	templates
Private	templates
Shared	templates	are	basically	public	templates,	shared	across	the	company.
Private	templates	are	“My	Templates”	-	they	are	accessible	only	to	the	users
creating	the	templates.	Private	templates	are	stored	in	the	“My	Documents”
folder	of	the	user	creating	the	private	reports.
Shared	templates	should	be	packaged	and	then	uploaded	to	your	Framework

website.
	
Shipped	Sample	Templates
Sample	templates	are	installed	to	the	partition	execute	folder	in	a	file	called
SampleReportTemplates.zip.	You	need	to	unzip	the	contents	of	the	zip	file	to
the		“My	Documents”	folder	on	your	PC	in	order	to	use	them.
	

Getting	Started
The	reporting	feature	appears	on	the	instance	list	context	menu.

	

Notice	the	two	new	menu	item	at	the	bottom	of	the	context	menu:
Export	List	(Microsoft	Excel)
Generate	a	report.	There	is	currently	no	report	template	available	(and	arrow
will	be	displayed	next	to	this	menu	item	if	there	are	templates	available)
The	current	output	format	is	Microsoft	Excel	document	as	indicated	in	the	menu
item.
Export	Settings	&	Tools
Allows	end-users	to	choose	output	format	&	manage	their	templates.

	

A	click	on	the	“Export	List	(Microsoft	Excel)”	will	export	the	instance	list
entries	to	an	Excel	document	without	using	any	template	(default	formatting
will	be	applied).

	
Now	change	the	output	format	to	PDF:

	

Reopen	the	context	menu:

	

	

Notice	that	the	Export	List	menu	item	now	indicates	that	the	current	output
format	is	PDF,	and	it	can	either	generate	Portrait	or	Landscape	pages	in	the
resulting	PDF	document.

	

Creating	Your	First	Report	Template
1.			Open	the	“Export	Settings	&	Tools”	menu

2.			Click	on	“Generate	an	Initial	Template”.
If	Excel	is	installed	it	will	open	up	showing	the	new	template.

Pay	attention	to	the	“value	placeholders”	–	those	texts	in	the	form	of
<#BusinessObject.Field>.

	

3.			Save	your	template,	close	it,	and	rename	it	to	a	more	descriptive	name.
As	mentioned	earlier,	report	templates	are	stored	under	“My	Documents”	folder.
To	rename	your	report	template,	you	will	need	to	open	the	folder	containing	the
template.	You	can	easily	do	that	from	the	context	menu.

	

	

	

4.			You	can	now	rename	the	template	file,	say	to	“Organization	Summary

Report”.

	

When	you	go	back	to	the	context	menu,	your	report	template	will	now	appear
under	“My	Templates”

	

Publishing	Shared	Templates
To	share	your	templates	with	other	people,	you	will	need	to	create	a	template
package	(which	is	basically	a	ZIP	file	containing	the	templates	you	want	to
share),	and	then	get	your	Framework	web	administrator	to	upload	the	package
to	the	Framework	website.
1.			Open	the	context	menu,	and	then	select	Create	Shared	Templates
Package.

	

A	dialog	box	will	appear,	showing	you	all	your	private	templates.
2.			Select	the	templates	you	want	to	share	and	the	output	folder	under	which	the
package	should	be	created.	Click	on	Create	Package.

If	everything	is	OK,	a	message	similar	to	below	will	appear,	and	then	a	new
Windows	Explorer	window	will	open	showing	the	output	folder.	Upload	the
ListExportTemplates.zip	file	to	your	Framework	website	(ask	your
network/web	administrator	to	do	that	if	necessary).

	

	

Modifying	Report	Templates
You	can	modify	the	initial	report	templates	in	any	way	you	like	(just	be	careful
not	to	change	the	field	names),	however	there	is	one	thing	that	you	that	you
need	to	be	aware	of	before	you	start	changing	the	templates:	named	cell	range.
Named	cell	range	is	an	Excel’s	feature	that	allows	a	range	of	cell	to	be	given	a
descriptive	name.	VLF.NET	makes	use	of	this	particular	feature	to	identify
which	part	of	the	Excel	worksheet	should	be	repeated	for	each	record	(when	you
have	a	tabular	report,	you	wouldn’t	want	to	repeat	the	report	title	and	column
headers	for	each	record).
Let’s	use	the	Resources	business	object	from	the	demo	framework	to	illustrate
this	concept.
The	following	explanation	is	based	on	Office	Excel	2003.
1.			Get	VLF.NET	to	create	a	new	template	for	you.

	

It’s	quite	clear	that	we	would	want	row	number	3	to	be	repeated	for	each	record,
but	not	row	number	1	and	2.
When	this	template	is	used	in	generating	the	actual	report,	VLF.NET
understands	that	you	want	only	to	repeat	row	3	because	the	a	special	name	has

been	assigned	to	row	3.
1.			To	see	that,	click	the	area	marked	in	the	screenshot	below:

	

After	you	click	it,	it	will	drop	down	and	display	the	named	range	defined	for
this	worksheet.

	

This	template	contains	only	one	named	range	which	is
__DEM_ORG_SEC_EMP__	(you	can	only	see	__DEM_ORG_SEC	as	it’s
truncated).	The	number	of	named	range	defined	in	a	sheet	corresponds	to	the
number	of	business	objects	used	in	the	template.
If	you	click	on	__DEM_ORG_SEC_EMP__	in	that	dropdown,	Excel	will	show
to	you	the	cell	range	associated	with	that	name.

	

	

It’s	important	to	you	to	understand	this	concept	when	you	start	modifying	your
templates.	There	will	be	times	when	you	would	need	to	adjust	the	named	range
when	you	insert	new	rows.
Let’s	say	that	you	want	to	split	the	one	row	into	2	rows	(so	that	each	record	will
generate	2	rows).	The	second	row	will	contain	the	Zip	Code	only.	To	do	this,
move	<#DEM_ORG_SEC_EMP.N1>	to	cell	A4.
You	now	need	to	extend	the	defined	range	to	cover	row	4	as	well.
2.			To	do	this,	open	the	Insert	menu,	and	then	choose	Name,	and	then	Define.

	
3.			Click	on	the	item	on	the	list,	and	then	click	on	the	range	text	box.	Excel	will
indicate	the	current	range	associated	with	__DEM_ORG_SEC_EM__.

	

4.			Extend	the	range	either	by	changing	row	3	to	4	or	by	pressing	shift	and	then
arrow	down	key.	Make	sure	you	press	the	OK	button	afterwards.

VLF.NET	Excel	Report	Template	Design	Frequently	Asked
Questions
Can	I	have	a	running	total	figure	in	my	report?
Can	I	include	charts	in	my	report?
Is	there	a	way	to	configure	a	template	to	force	all	data	to	be	retrieved	first	prior
to	generating	the	report?
How	can	I	put	printing	date	&	time	on	the	report?
How	can	I	insert	the	username	of	the	user	who	generates	the	report?
How	do	I	keep	some	rows	together	in	a	page?
How	can	I	tell	a	template	to	fit	all	columns	in	a	page	when	generating	reports?
	

Can	I	have	a	running	total	figure	in	my	report?
Yes.	Let’s	say	that	you	have	a	report	of	sections	grouped	by	department.	You
have	the	number	of	employees	for	each	section,	but	not	the	number	of
employees	per	department,	so	it	will	have	to	be	calculated	as	a	running	total.
Below	is	an	example	of	a	report	generated	from	your	template:

	

Now	let’s	go	through	the	steps	of	inserting	a	running	total	figure	into	the	report
template.

	

You	would	use	the	SUM	function	to	get	the	total	of	the	figures	that	would	be
inserted	into	column	C	in	the	generated	report.	It	would	then	be	logical	to	put
SUM(C4:C4)	formula	in	cell	B5.	That	however	will	not	work	because	in	the
final	report	the	range	will	always	cover	the	first	row	only.		In	order	to	get	the
range	expanded	properly,	you	will	need	to	add	an	extra	empty	row	after	your
section	band	(row	4),	and	change	your	formula	to	SUM(C4:C5).

	

	

	

Hide	the	extra	row	to	complete	the	process	(right-click	on	the	row	header,	select
Hide).

	

	

Can	I	include	charts	in	my	report?
Yes	you	can.	You	just	need	to	specify	the	chart	range	in	the	same	way	you	do
for	the	running	total.	Not	every	chart	type	is	supported	however	if	you	are
generating	reports	in	PDF	or	HTML	(generating	Excel	reports	are	not	affected
by	this	limitation).
Below	is	a	sample	of	a	report	generated	from	a	template	with	a	chart.

	

Is	there	a	way	to	configure	a	template	to	force	all	data	to	be
retrieved	first	prior	to	generating	the	report?
Yes.
If	you	are	using	relationship	handlers	to	retrieve	data	on-demand	as	the	user
expands	nodes	in	the	instance	list,	your	report	will	only	contain	rows	that	have
been	retrieved	from	the	server.
To	configure	a	template	to	force	all	data	to	be	retrieved	first	prior	to	generating
the	report,	you	need	to	create	a	‘configuration’	sheet	in	your	template.	A
configuration	sheet	is	a	special	sheet	called	‘<#Config>’	that	contains	report
settings.	This	sheet	will	not	be	included	in	the	final	report.	Set	the	property
ForceRetrieveAllData	to	True	by	putting	the	text	ForceRetrieveAllData	in
column	A1	and	text	True	in	column	B1.

	

How	can	I	put	printing	date	&	time	on	the	report?
Insert	the	<#Timestamp>	tag	into	your	template.

	

	

To	format	the	date	or	time	the	way	you	want,	open	the	Format	Cells	dialog	box
(if	you	don’t	format	the	cell	to	use	date	or	time	format,	the	generated	report	will
display	it	as	a	number).

	

How	can	I	insert	the	username	of	the	user	who	generates	the
report?
Insert	the	<#User>	tag	into	your	template.

	

How	do	I	keep	some	rows	together	in	a	page?
Define	a	named	cell	range	that	covers	the	rows	you	want	to	keep	together,	and
name	the	range	KeepRows_<Order>_<Name>.	You	should	substitute
<Order>	with	a	number	and	<Name>	with	any	name	(it’s	totally	arbitrary,	it’s
there	just	so	that	you	can	define	multiple	KeepRows	range	as	Excel	won’t	allow
you	to	have	two	ranges	with	the	same	name).	Order	will	almost	always	be	1
however	there	will	be	instances	where	you	will	want	to	put	numbers	greater
than	1	for	Order.

	

Example
Let’s	say	that	you	have	a	template	that	produce	the	following	report	and	you
want	to	make	sure	that	rows	that	make	up	a	record	are	kept	together	in	a	page,
so	as	to	avoid	the	situation	illustrated	in	the	next	figure.

	

	

To	make	sure	that	the	rows	of	a	record	are	kept	together,	define	a	named	range
called	KeepRows_1_Employee	(the	last	part	of	the	name	Employee	is
arbitrary;	you	can	call	it	anything	you	want,	but	you	need	to	keep
KeepRows_1_	the	same)	as	illustrated	below.

	

Notice	that	the	range	only	needs	to	cover	the	first	column	as	columns	are
irrelevant	here.

	

How	can	I	tell	a	template	to	fit	all	columns	in	a	page	when
generating	reports?
Open	the	Page	Setup	dialog	box,	set	to	‘fit	to	1	page	width’,	then	save	your
template.

	

	

	

Framework	Manager
The	Framework	Manager	(#AvFrameworkManager)	is	a	component		shipped
with	the	Framework	which	provides	a	standardized	set	of	services	you	can	use
in	your	filters	and	command	handlers.	You	access	Framework	Manager	services
using	methods,	setting	and	getting	properties	and	listening	for	events.

The	services	are:
UpperCase	Conversions
Numeric	to	Alphanumeric	Conversions
Application	Error	Handling
Framework	Locking	Service	to	Handle	Unsaved	Changes
Saving	unsaved	changes	using	uQueryCanDeactivate	/	avNotifyDeactivation
The	Virtual	Clipboard
Basic	Tracing	Service
Event	Signaling	Service
Object	Switching	Service
Custom	Property	Access	Service
User	Authority	Access	Service
Show	Messages	Service
Temporarily	Overriding	Object	Captions
Get	Visual	LANSA	Framework	Icon	Reference
Change	a	visual	style	at	run	time

Framework	Windows	Management
	
Also	see	Programmatic	server	connection	checking	.

UpperCase	Conversions
Applies	to	Windows	only.
The	Framework	manager	provides	an	uppercase	method.

For	example:
Invoke	#AvFrameworkManager.avUpperCase	Value(#LastName)	
	

will	convert	field	#LastName	to	uppercase.
Note	that	with	WAMs	and	other	components	enabled	for	Full	RDMLX	you	can
use	the	native	Uppercase	method	instead:
#LastName	:=	#LastName.uppercase
	

Numeric	to	Alphanumeric	Conversions
Applies	to	Windows	only.
The	Framework	manager	provides	a	method	for	converting	numeric	values	to
alphanumeric	form.	

For	example:
Invoke	#AvFrameworkManager.avMakeAlpha	fromNumeric(#ProdNo)	Into(#ProdNoC)	Length(5)
Invoke	#avListManager.AddtoList	VisualID1(#ProdNoC)	VisualID2(#ProdDesc)	NKey1(#ProdNo)
	

will	convert	the	numeric	field	#ProdNo	to	alphanumeric	format	in	#ProdNoC
(with	5	digits	presented).	#ProdNoC	is	then	used	as	the	alphanumeric	visual
identifier	for	an	entry	in	the	instance	list.
Method	avMakeAlphaValue	supports	output	in	various	formats	that	are	biased
to	the	conversion	of	non-decimal	identification	data	(eg:	Product	Numbers,
Customer	Numbers,	etc)	such	as	these	examples:
FromNumericValue()
Input	Value

Output
when
Length()
NOT
specified

Output
when
Length(3)
specified

Output
when
Length(7)
specified

Output	when
Length(15)
specified

1 1 001 0000001 000000000000001

345.678 345.678 345 0000345 000000000000345

123456789 123456789 789 3456789 000000123456789

67- 67- 067- 0000067- 000000000000067-

	

See	Visual	Identifiers.

Application	Error	Handling
Applies	to	Windows	only.
The	Framework	services	manager	provides	a	standardized	way	for	you	to
handle	fatal	errors	in	your	application.

How	To	Use	It
Example
Properties	Used

How	To	Use	It
You	invoke	the	error	handler	in	your	application	in	this	way:
Invoke	Method(#AvFrameworkManager.avHandleError)	CURR_COMP(*component)	CURR_CMD('<current	command>')	CURR_ROUT('<routine	name>')	CURR_INFO('<Free	formatted	information	about	the	error>')	
CURR_RETC('<return	code>')
	

Parameter	description:

CURR_COMP(*component) Leave	unchanged,	it	will	have	the	name	of	the
component	that	had	the	error

CURR_CMD('<current
command>')

Where	current	command	is	20	byte	long
character	field	indicating	the	causing	the	error

CURR_ROUT('<routine
name>')

Where	routine	name	is	10	byte	character	long
field	indicating	the	routine	name	where	the	error
has	occurred

CURR_INFO('<Free
formatted	information	about
the	error>')

Where	Free	formatted	information	about	the
error	is	a	255	byte	long	character	field	with	any
extra	information	you	might	think	useful	about
the	error

CURR_RETC('<return
code>')

Where	return	code	is	a	2	byte	long	character
field	containing	the	return	code,	if	applicable,	of
the	command	that	caused	the	error.

	

Example
If	your	program	had	to	locate	the	details	of	an	employee	and	this	information
could	not	be	found,	you	would	have	encountered	a	fatal	error	situation
indicative	of	some	sort	of	database	corruption.		In	such	a	situation	you	might
use	the	application	error	handler	like	this:		
	
Fetch	Fields(#SURNAME)	From_File(PSLMST)	With_Key(#EMPNO)
If_Status	Is_Not(*OKAY)
			Invoke	#AvFrameworkManager.avHandleError	Curr_Comp(*component)
							Curr_Rout(ButtonHandler)	Curr_Cmd(FETCH)	
							Curr_Info('Employee	details	could	not	be	accessed.')	
							Curr_Retc(#io$Sts)
Endif
	

The	standard	error	handler	then	does	a	number	of	things	(depending	up	on	how
your	Framework	is	configured)	including:
Displaying	the	fatal	error	details	to	the	user.
Recording	the	error	details	in	a	file.
Emailing	the	error	details	to	a	nominated	support	email	address.
Terminating	the	Framework.			

Properties	Used
Address	for	Error	Notification
Temporary	Directory	on	PC
	

Framework	Locking	Service	to	Handle	Unsaved	Changes
Applies	to	Windows.
The	Framework	manager	provides	a	locking	service	that	signals	there	are
unsaved	changes	in	a	command	handler	or	filter,	and	locks	the	Framework	until
the	user	has	taken	action	to	accept	or	cancel	the	changes.

A	simple	example	of	the	use	of	a	Framework	lock	is	where	a	business	object's
details	have	been	changed	and	the	user	then	clicks	on	another	instance	of	the
same	business	object	or	invokes	any	other	action	in	the	Framework	that	would
cause	the	changed	details	to	be	lost.
You	can	use	the	service	to	notify	the	user	about	unsaved	changes	and	to	lock	the
Framework	when	the	business	objects	details	change.	A	message	is	issued	and
the	user	has	the	choice	of	returning	to	the	business	object	details	to	save	them	or
continue	with	the	requested	action:

See	the	employee	details	command	handler,	DF_DET1,	and	the	section	details

command	handler,	DF_DET8,	for	complete	examples	of	the	use	of	the
Framework	locking	service	in	Windows	applications.
Framework	locking	is	implemented	through	two	Framework	properties	that	are
exposed	to	filters	and	command	handlers,	uLocked	and	uLockedMessage.

uLocked Values	are	FALSE,	USER,	PROGRAM	or
PROGRAM_EXIT.
USER	means	that	the	Framework	is	locked,	but	that	the
user	can	elect	to	end	the	lock.
PROGRAM	means	that	the	Framework	is	locked	and	only	a
program	can	unlock	it	by	setting	this	property	to	FALSE.
PROGRAM_EXIT	means	that	the	Framework	is
locked	except	when	exiting	or	closing	down	and	only	a
program	can	unlock	it	by	setting	this	property	to	FALSE.

uLockedMessage This	is	the	message	to	be	shown	to	the	user	if	they	attempt
to	do	something	that	would	violate	the	lock	state.

	

For	example	you	could	put	this	code	in	the	Changed	event	of	fields	on	a
command	handler	to	lock	the	Framework	until	the	user	has	saved	changes:
Set	#avFrameworkManager	uLocked(USER)	uLockedMessage('Details	for
the	current	Employee	not	saved.	Would	you	like	to	return	to	the	details
command	to	save.')
	

Note:	Framework	locks	apply	within	the	scope	of	each	main	Framework
window.	If	the	Allow	this	Object	to	be	Opened	in	a	New	Window	option	is	used
to	open	a	new	main	Framework	window,	the	new	window	and	all	its	child
windows	get	their	own	(new)	locking	scope	that	is	independent	of	all	others.
	

Saving	unsaved	changes	using	uQueryCanDeactivate	/
avNotifyDeactivation
In	version	epc831	or	later	of	the	Framework	it	is	possible	to	add	a	redefined
method	to	command	handlers	called	uQueryCanDeActivate.
This	method	is	invoked	when	the	end-users	try	to	move	from	the	command
handler	to	somewhere	else	in	the	Framework,	or	when	they	try	to	close	down
the	Framework.	It	is	run	when	the	user	clicks	on	another	command	tab,	a	new
instance	of	the	business	object	or	another	business	object	or	application.
It	is	particularly	useful	for	saving	unsaved	changes.	The	routine	can	check
whether	changes	need	to	be	saved.	If	so,	the	user	can	be	asked	"Do	you	want	to
save	your	changes	before	continuing?"	(Yes/No).	If	they	answer	Yes,	their
changes	can	be	saved.
At	the	time	the	routine	is	run,	the	command	handler	still	has	all	its	values	as
they	were	before	the	user	attempted	to	move	away.	So	checking	for	unsaved
changes,	and	saving	those	changes,	is	easy.
To	use	it,	you	need	to	set	the	avNotifyDeActivation	property	in	the	command
handler's	initialize	routine
*	Handle	Initialization
	
Mthroutine	Name(uInitialize)	Options(*REDEFINE)
	
*	Do	any	initialization	defined	in	the	ancestor
	
Invoke	#Com_Ancestor.uInitialize
	
*	Activate	Check	for	unsaved	changes	(Unsaved	changes	logic)
set	#Com_Owner	avNotifyDeactivation(TRUE)
	
Endroutine

	
Then	add	a	redefined	uQueryCanDeActivate	routine	to	your	command	handler:
	
*	The	Framework	initiates	this	when	the	user	moves	to	another	command	tab,
or	business	object	instance,		or	business	object,	or	application,	or	closes	the
framework.

*	(The	framework	may	initiate	this	method	multiple	times)
	
MTHROUTINE	NAME(uQueryCanDeactivate)	OPTIONS(*REDEFINE)
*	Define_Map	For(*Result)	Class(#vf_elBool)	Name(#Allow)
	
#Allow	:=	True
	
if	'(#pty_NeedsSaving	*eq	TRUE)'
	
*	If	something	needs	saving,	ask	the	user	if	they	want	to	save	it
	
USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS('YESNO'	'YES'
*Default	*Default	'The	notes	have	been	changed.	Would	you	like	to	save	your
changes	before	continuing?')	TO_GET(#MSG_RET)
	
if	'#MSG_RET	*eq	YES'
	
*	Save	everything
<<	my	save	logic>>
	
endif
	
#pty_NeedsSaving	:=	False
	
endif
	
endroutine

	
A	more	complicated	version	could	set	#Allow	to	false	if	there	was	an	error
during	the	save,	and	in	that	case	the	user	would	not	go	to	where	they	clicked,	(or
the	Framework	would	stay	open	if	they	were	attempting	to	close	it).
Also	see:
Reason	Code
Comments/Warnings

Reason	Code
The	optional	ReasonCode	parameter	gives	an	indication	of	what	the	user	is
trying	to	do	when	the	uQueryCanDeactivate	check	occurs.	Note	that	one	user
action	may	result	in	multiple	uQueryCanDeactivate	checks.
Application	Trace	Shows Code Description
VF_FPM09:MEXECUTECOMMAND 1 Execute	a	command

VF_UM040:ITEMGOTFOCUSACCEPT 11 Main	Instance	List	entry	got
focus

VF_UM083:ITEMGOTFOCUSACCEPT 12 Secondary	Instance	List	entry
got	focus

VF_SY100:GET_LOCKSTATUS 13 Snap-in	Instance	List
checking	uCurrentLockStatus

VF_UM037.TABCHANGING 2 User	clicked	on	a	different
tab

VF_UM014:ITEMGOTFOCUSACCEPT 21 Navigation	pane	(as	two	lists)
application	item	selected

VF_UM015:APPVIEWBUTTONSBYID 22 Navigation	pane	(as	two	lists)
–	View	button	pressed

VF_UM015:ITEMGOTFOCUSACCEPT 23 Navigation	pane	(as	two	lists)
business	object	selected

VF_UM016:UMENUITEMSELECTED 24 Navigation	pane	(as	drop
down)	item	selected

VF_UM016:ITEMGOTFOCUSACCEPT 25 Navigation	pane	(as	tree
view)	item	selected

VF_UM040.CLEAR_BUTTON 14 Clear	the	instance	list

VF_UM003:CLOSEQUERY 3 Close	a	force-floated
command	handler

VF_UM046:CLOSEQUERY 4 Close	a	separate	window
command	handler

VF_AC006:BEGINCLOSEFORM:A 31 Close	Main	Framework
window

VF_AC006:BEGINCLOSEFORM:B 32 Close	Secondary	Framework
window

VF_SY100:AVSWITCH 41 Switch

VF_SY150:USELECTAPPLICATION 26 Navigation	pane	application
selected

VF_SY153.USETTHEME 43 User	changes	THEME

	 999 Unknown

	

An	action	may	result	in	multiple	uQueryCanDeactivate	checks,	and	multiple
reason	codes.
If	you	want	to	determine	the	reason	code/s	for	a	particular	action,	start	an
application	level	trace	in	the	Framework	and	carry	out	the	action.	The	trace	will
show	you	the	action/s	that	occurred.
The	codes	have	been	grouped	in	this	way:
Command	opening,	Tab	Opening,	Floating	Command	Handler	Closing:	1-9
Instance	List:	10-19
Change	of	Application/Business	Object:		20-29
Framework	Closing:	30-39
Other	Known:	40-49
Unknown	999

	

	

	
	

Comments/Warnings
You	must	set	#Com_Owner.avNotifyDeactivation	to	TRUE	if	you	want	to	use
it.
The	uQueryCanDeactivate	method	may	be	invoked	several	times	by	a	single
user	click,	so	it	is	important	to	reset	#pty_NeedsSaving	in	the	routine,	so	that
subsequent	invokes	do	not	check	with	the	user	again.
There	are	warnings	in	the	feature	help	about	using	method
uQueryCanDeactivate	and	property	avNotifyDeactivation	in	version	epc831	of
the	framework.	These	warning	can	be	ignored.
This	method	can	be	useful	when	dealing	with	objects	that	don't	signal	when	they
have	changed.	By	using	this	method	you	can	compare	a	snapshot	of	the	object's
current	status	with	its	as-loaded	status,	just	at	the	point	the	user	has	finished
with	the	command	handler.	(Rather	than	checking	for	changes	every	second).
In	VLF-WIN,	if	Framework	locks	seem	to	be	released	automatically	after	a
number	of	minutes,	check	that	the	Framework's	autosave	interval	is	set	to	zero.
		

The	Virtual	Clipboard
Applies	to	Windows	and	WAM.
The	Framework	services	manager	provides	a	virtual	clipboard	facility.		See	the
tutorial	VLF012WIN	-	Controlling	Navigation	Using	Switching	and	the	Virtual
Clipboard	or	VLF012WAM	-	Controlling	Navigation	Using	Switching	and	the
Virtual	Clipboard	for	step-by-step	instructions	for	how	to	use	the	virtual
clipboard.
Note:	Most	of	the	facilities	that	the	virtual	clipboard	provides	are	available	in
Windows	or	Web	browser	applications.	The	recommended	way	of	learning	to
use	the	virtual	clipboard	is	to	conceptually	understand	this	material	from	the
Windows	point	of	view.	

The	clipboard	is	designed	to	serve	two	main	needs:
For	Remembering	Information	between	application	executions.
For		Exchanging	Information	between	components.
To	use	the	virtual	clipboard	most	effectively	you	need	to	devise	a	standardized
naming	protocol	for	items	that	are	posted	onto	it.
The	clipboard	uses	a	minimum	3	part	naming	standard	and	any	name	can
support	multiple	instances	(i.e.:	become	a	list	of	values)	and	optionally	function
in	multiple	languages,	so	it's	quite	easy	to	devise	an	object.property	style
naming	model	for	information	that	is	posted	to	it.
For	example,	when	a	user	starts	using	a	General	Ledger	application	they	may

need	to	select	the	Company	and	a	Currency	that	they	will	be	working	with.
These	values	are	accessed	by	lots	of	filters	and	command	handlers	within	the
application	as	the	user	moves	around.	
Conceptually,	we	now	have	a	"GL	Application"	object	that	contains
"SelectedCompany"	and	"SelectedCurrency"	properties.
Using	the	clipboard	you	can	easily	define	GLAPPLICATION.SelectedCompany
and	GLAPPLICATION.SelectedCurrency	as	things	on	the	clipboard.	Your
GLAPPLICATION	clipboard	object	is	infinitely	extensible	without	application
recompiles	and	can	contain	lists,	etc	as	required.
In	both	Windows	and	WAM	browser	applications	you	would	code	this	naming
standard	as:
Invoke	#AvFrameworkManager.avRestoreValue	WithID1(GLAPPLICATION)	WithID2(SelectedCompany)	ToAValue(#CompanyNo)
Invoke	#AvFrameworkManager.avRestoreValue	WithID1(GLAPPLICATION)	WithID2(SelectedCurrency)	ToAValue(#CurrCode)
	

Equally	you	might	devise	a	naming	protocol	for	information	that	is	private	(i.e.,
scoped)	within	an	individual	function.	For	example,	you	might	use	PRIVATE.
<function	name>.<property	name>.	To	save	the	value	of	#EMPNO	using	the
naming	standard	as	PRIVATE.<function	name>.EmployeeNumber	you	might
code	this	in	a	Windows	or	WAM	browser	application:
Invoke	#AvFrameworkManager.avSaveValue	WithID1(PRIVATE)	WithID2(*COMPONENT)	WithID3(EmployeeNumber)	FromAValue(#Empno)
	

See	also:
Listening	for	Changes
Other	Things	Worth	Knowing
Persistence,	Resetting	and	Deploying	in	Windows	Applications

Remembering	Information
Imagine	that	you	had	to	create	a	filter	like	this	and	needed	to	remember	what	the
last	value	entered	in	the	surname	field	was:

You	can	do	this	by	using	the	virtual	clipboard.
If	you	execute	this	code	whenever	the	surname	is	entered	or	changed:
Invoke	#AvFrameworkManager.avSaveValue	WithID1(SURNAME)	FromAValue(#SurName)
	

Then	you	have	saved	the	current	value	of	#Surname	(say,	"SMITH")	onto	the
virtual	clipboard	using	the	symbolic	name	SURNAME.
	

To	get	the	value	back	from	the	virtual	clipboard	you	do	this:
Invoke	#AvFrameworkManager.avRestoreValue	WithID1(SURNAME)	ToAValue(#SurName)
	
	

When	you	put	value	"SMITH"	onto	the	clipboard	using	the	symbolic	name
SURNAME	it	is	accessible	to	all	the	other	command	handlers	and	filters	in	your
Framework.
Sometimes	this	is	useful	because	you	can	pass	information	around	between
command	handlers	and	filters.
Sometimes	this	is	not	useful	and	you	need	to	have	private	information	on	the
clipboard.	One	way	to	do	this	is	to	use	compound	symbolic	names	for
information	that	you	put	onto	the	clipboard.	If	we	change	the	previous		code
samples	to:
Invoke	#AvFrameworkManager.avSaveValue	WithID1(*Component)	WithID2(SURNAME)
							FromAValue(#SurName)
	

	

Then	the	symbolic	names	used	to	identify	"SMITH"	on	the	virtual	clipboard	are
now	made	up	from	the	current	component/function	name	and	the	identifier
"SURNAME".	In	other	words	we	have	introduced	a	symbolic	object-naming
standard	that	will	allow	us	to	use	the	virtual	clipboard	in	a	more	organized	way.
The	best	way	to	learn	more	about	using	the	virtual	clipboard	to	remember	and
share	information,	is	to	look	at	the	Tutorials	and	the	shipped	Programming
Techniques	application.
			

Exchanging	Information
The	shipped	Tax	Calculator	(reusable	part	(DF_DET12)	uses	the	virtual
clipboard	to	exchange	information	between	components.

If	you	look	at	the	source	of	the	tax	calculator	you	will	see	this	command	being
executed	at	the	end	of	the	tax	calculation	routine	to	save	the	calculation	result
onto	the	virtual	clipboard:
Invoke	#AvFrameworkManager.avSaveValue	WithID1(Calculation)	WithID2(Tax)
																													FromNValue(#DF_ELNET)	Persistent(FALSE)
																													SignalChange(TRUE)
	

The	normal	calculator	DF_DET13	also	uses	the	clipboard:

After	each	calculation	DF_DET13	executes	this	code	to	post	calculation	results:
Invoke	#AvFrameworkManager.avSaveValue	WithID1(Calculation)	WithID2(Normal)	
																													FromNValue(#VTOTAL)	Persistent(FALSE)
																													SignalChange(TRUE)
	

This	is	an	example	how	to	get	net	salary	from	the	tax	calculator:	
EVTROUTINE	HANDLING(#MITM_TAXCALC.Click)
INVOKE	method(#AvFrameworkManager.avRestoreValue)	WITHID1(Calculation)	WITHID2(Tax)	TONVALUE(#Salary)	USENVALUEDEFAULT(#Salary)
SIGNAL	event(SomethingChanged)
ENDROUTINE
	

This	is	an	example	how	to	get	salary	from	the	standard	calculator:
EVTROUTINE	HANDLING(#MITM_NORMCALC.Click)
INVOKE	method(#AvFrameworkManager.avRestoreValue)	WITHID1(Calculation)	WITHID2(Normal)	TONVALUE(#Salary)	USENVALUEDEFAULT(#Salary)
SIGNAL	event(SomethingChanged)
ENDROUTINE
	

Note	the	use	of	the	UseNDefault(#Salary)	parameter,	to	ensure	that	the	current
value	is	unchanged	if	no	calculation	can	be	found	on	the	clipboard.		What	is
being	demonstrated	by	these	examples	is	the	exchange	of	information	between
the	calculators	and	a	form.
In	summary	both	the	tax	and	normal	calculators	post	their	latest	calculation	to
the	clipboard	all	the	time.
This	very	simple	concept	is	a	foundation	upon	which	more	complex	and
elaborate	information	exchanges	can	be	based.

Listening	for	Changes
Currently	this	part	of	the	Virtual	Clipboard	feature	is	only	available	in	Windows
applications.
In	the	preceding	section	the	use	of	the	virtual	clipboard	for	the	exchange	of
information	between	command	handlers	was	discussed.		In	the	example	the	user
had	to	use	the	right	mouse	button	and	select	a	pop-up	menu	option	to	cause	the
information	exchange	to	take	place	(i.e.:	it	was	manually	initiated).
However,	in	some	situations	the	virtual	clipboard	facility	is	most	effective	when
the	exchange	of	information	happens	without	user	intervention.		When	things
are	posted	to	the	clipboard	by	the	avSaveValue	method	you	can	use	the	special
SignalChange(TRUE)	parameter.	The	TRUE	must	be	in	uppercase.		For
example,	the	tax	calculator	(DF_DET12)	posts	its	latest	calculation	like	this:
Invoke	#AvFrameworkManager.avSaveValue	WithID1(Calculation)	WithID2(Tax)
																													FromNValue(#DF_ELNET)	Persistent(FALSE)
																													SignalChange(TRUE)

	
In	other	words	all	listening	filters	and	command	handlers	will	be	notified	that
something	on	the	clipboard	has	been	changed.	It	is	up	to	all	listening	filters	and
command	handlers	to	decide	whether	they	are	interested	in	the	thing	that	has
been	changed.
In	DF_DET2	(New	Employee)	you	will	find	a	routine	like	this:
Evtroutine	Handling(#AvFrameworkManager.avClipBoardChanged)	WithId1(#ID1)	ToNValue(#NValue)	
			If	'#Id1.Value	=	Calculation'
						Change	#Salary	#NValue.value			
			Endif
Endroutine
	

Here	DF_DET2	(New	Employee)	is	listening	to	the	system	for	clipboard
changes.	
When	one	occurs,	the	Id1	value	is	immediately	checked	(both	the	calculators
use	a	naming	protocol	that	puts	"Calculation"	in	the	ID1	field).		If	the	clipboard
value	that	has	been	changed	is	a	calculation,	then	the	new	value	is	mapped	into
the	salary	field.
You	can	try	this	out	by	executing	DF_DET2	(New	Employee)	and	DF_DET12
(Tax	Calculator)	at	the	same	time.	As	you	do	tax	calculations	they	are

immediately	and	automatically	mapped	into	the	new	employee's	salary	field.	
Again,	this	very	simple	example	demonstrates	a	foundation	upon	which	more
complex	and	elaborate	information	exchanges	can	take	place.

Other	Things	Worth	Knowing
Note	that:
Clipboard	information	is	normally	remembered	across	executions	of	a
Framework.	You	can	stop	this	from	happening	by	using	Persistent(FALSE)
when	using	the	avSaveValue	method.
You	should	not	put	confidential	or	critical	information	on	the	clipboard.	
The	volume	and	frequency	of	update	of	information	on	the	clipboard	will
affect	the	performance	of	your	application.

WithIdn
Information	posted	to	the	clipboard	is	assigned	a	set	of	identifiers.
In	Windows	applications	these	are	the	method	parameters	named	WithIdn.
You	can	have	up	to	5	of	these	in	Windows	applications	and	3	in	Web	browser
application.	Each	one	is	a	maximum	of	32	characters	long	and	they	can	contain
concatenated	data.
You	need	to	define	a	protocol	for	using	WithIdn	values.
Generally	WithID1(*Component)	is	a	good	way	of	making	sure	that	a
component's	clipboard	entries	do	not	interfere	with	those	of	another	component.
Of	course,	there	are	situations	where	you	do	want	clipboard	entries	to	be	shared
and	sometimes	your	filters	or	command	handlers	are	themselves	used	in	multi-
instance	contexts.	Refer	to	The	Virtual	Clipboard	for	details	of	sharing	the
clipboard	entries.
ToAValue	and	FromAValue
Many	of	the	examples	use	the	ToAValue	and	FromAValue	parameters	for
alphanumeric	information.	There	are	equivalent	ToNValue	and	FromNValue
parameters	for	working	with	numeric	values.
The	ToAValue	/	FromAValue	information	can	be	at	most	255	characters	long.
The	ToNValue	/	FromNValue	information	is	a	30,9	numeric	value,	but	the
maximum	precision	is	normally	constrained	by	the	operating	system	to	15	digits
(integer	or	decimal).	
ReturnCode
Method	avRestoreValue	has	a	ReturnCode	parameter	that	can	be	used	to	check
whether	a	clipboard	entry	was	found.	For	example:
Invoke	#AvFrameworkManager.avRestoreValue	WithID1(*Component)	WithID2(NumberofCopies)	ToNValue(#NumCopies)	ReturnCode(
If	'#IO$Sts	*ne	OK'

			Change	#NumCopies	42
Endif
	

UseAValueDefault,	UseAValueUDefault	and	UseNValueDefault
Method	avRestoreValue	has	UseAValueDefault,	UseAValueUDefault	and
UseNValueDefault	parameters	that	can	be	used	to	specify	which	default	value
should	be	used	when	a	clipboard	entry	cannot	be	found.
This	means	that	the	previous	example	could	be	more	easily	coded	like	this:
Invoke	#AvFrameworkManager.avRestoreValue	WithID1(*Component)	WithID2(NumberofCopies)	ToNValue(#NumCopies)	UseNValueDefault(42)
	

ForLanguage
There	is	an	additional	clipboard	parameter	named	ForLanguage	that	can	be	used
when	the	thing	being	remembered	is	language	dependent.	Typically	this	is	used
like	this:
Invoke	#AvFrameworkManager.avSaveValue	WithID1(*Component)	WithID2(#HelloMessage.Name)	FromAValue(#HelloMessage)	FoLanguage(*Language)
	

This	means	that	the	clipboard	maintains	different	#HelloMessage	values	for
different	languages.
Instance
There	is	an	additional	numeric	parameter	named	Instance	which	allows	you	to
keep	many	instances	of	a	value	on	the	clipboard.	This	effectively	allows	you	to
place	lists	of	things	onto	the	clipboard.
For	example,	imagine	you	had	a	list	view	containing	employee	numbers
(#EmpNo)	and	salaries	(#Salary)	in	your	program.		Then	this	code:
Change	#Instance	0
SelectList	#ListView
			Change	#Instance	'#Instance	+	1'
			Invoke	#AvFrameworkManager.avSaveValue	WithID1(*Component)	WithID2(EMPLOYEE_LIST_EMPNO)
																																FromAValue(#Empno)	Instance(#Instance)
			Invoke	#AvFrameworkManager.avSaveValue	WithID1(*Component)	WithID2(EMPLOYEE_LIST_SALARY)
																																FromNValue(#Salary)	Instance(#Instance)

Endselect

Invoke	#AvFrameworkManager.avSaveValue	WithID1(*Component)	WithID2(EMPLOYEE_LIST_COUNT)
																													FromNValue(#Instance)

	
Creates	a	list	(and	count)	of	employee	numbers	and	salaries	on	the	clipboard

Persistence,	Resetting	and	Deploying	in	Windows	Applications
In	Windows-based	Framework	applications	the	virtual	clipboard	contents	persist
indefinitely.
How	do	the	contents	persist?
The	virtual	clipboard	contents	persist	in	files	named
PPP_User_Virtual_ClipBoard.Dat	and
PPP_Framework_Virtual_ClipBoard.Dat,	where	PPP	is	the	current	partition
identifier.	These	files	must	reside	in	the	users'	temporary	directory.
Can	the	clipboard	file	names	or	storage	folder	be	changed?
Yes.	If	you	create	your	own	framework	entry	point(s)	you	can	alter	properties
uVCFolder	and	uVCFilePrefix	to	specify	the	folder	and/or	file	names	used	to
store	virtual	clipboard	data.
Refer	to	comments	of	the	shipped	version	of	UF_EXEC,	UF_DESGN,
UF_ADMIN	and	UF_DEVEL	for	more	information.			
	
How	can	the	contents	be	reset	or	reinitialized?
You	can	reset	the	contents	of	a	virtual	clipboard	by	shutting	down	the
Framework	and	deleting	the	files	PPP_Virtual_ClipBoard.Dat	and
PPP_Framework_Virtual_ClipBoard.Dat	from	the	temporary	directory.
If	you	are	logged	on	as	developer	you	can	do	this	by	using	the	menu	option
(Framework)	->	(Virtual	Clipboard)	->	Delete	clipboard	contents	at	exit.	As	you
shut	down	the	Framework	the	virtual	clipboard	files	will	be	deleted	instead	of
being	saved.			

	
	
When	the	Framework	is	restarted	it	will	be	unable	to	find	the	clipboard	files	so
the	virtual	clipboard	is	reset	to	being	empty.
However,	if	a	file	named	VF_User_Virtual_Clipboard_Default.dat	and/or
VF_Framework_Virtual_Clipboard_Default.dat	exist	in	the	LANSA	partition
execute	folder	they	will	be	used	to	re-initialize	the	clipboard	to	a	shipped	set	of
values.				
Deploying	Clipboard	Initial	Values
If	you	want	to	define	a	set	of	default	values	for	the	clipboard	files	that	are

shipped	to	end-users	for	use	the	very	first	time	they	log	on,	or	when	they
reset/reinitialize	their	clipboard	you	need	to	create	and	deploy	files
VF_User_Virtual_Clipboard_Default.dat	and/or
VF_Framework_Virtual_Clipboard_Default.dat.
To	make	these	files	use	the	developer	menu	options	(Framework)	->	(Virtual
Clipboard)	->	Save	as	default	like	this:

This	causes	your	current	clipboard	to	be	saved	as
VF_User_Virtual_Clipboard_Default.dat	and
VF_Framework_Virtual_Clipboard_Default.dat	in	your	partition	execute
directory,	ready	for	inclusion	into	your	deployment	package.	
	

Basic	Tracing	Service
Applies	to	Windows	and	WAM.
The	Framework	manager	provides	a	basic	tracing	service	to	help	you	locate
problems	in	your	filters	or	command	handlers.

The	tracing	service	can	be	used	in	conjunction	with,	or	independently	of,	the
normal	LANSA	application	debugging	and	tracing	facilities.
See	tutorial	VLF014WIN	-	Debugging/Tracing	or	VLF014WAM	-
Debugging/Tracing	for	step-by-step	instructions	of	how	to	trace	Framework
applications.
In	Windows	and	WAM	Applications
In	Windows	applications	you	can	add	tracing	capabilities	to	your	applications
by	using	one	or	more	of	the	three	available	avRecordTrace	methods:
avRecordTrace	for	general	tracing:
Invoke	#AvFrameworkManager.AvRecordTrace	Component(#Com_Owner)	
							Event('The	search	button	was	clicked')
	

avRecordTraceAValue	for	tracing	alphanumeric	values:
Invoke	#AvFrameworkManager.AvRecordTraceAValue	Component(#Com_Owner)	
							AValue(#Empno)	Event('Employee	selected')
	

avRecordTraceNValue	for	tracing	numeric	values:

Invoke	#AvFrameworkManager.AvRecordTraceNValue	Component(#Com_Owner)	
							NValue(#Salary)	Event('Salary	found')	
	

The	avRecordTrace	methods	will	do	nothing	at	all	until	tracing	is	turned	on.
This	generally	means	that	tracing	operations	can	be	left	in	your	application	with
only	minor	performance	overheads.
Tracing	is	turned	on	and	off	programmatically	by	setting	the	avTrace	property:
Set	#AvFrameworkManager	avTrace(TRUE)
Set	#AvFrameworkManager	avTrace(FALSE)
	

If	you	are	using	the	Framework	as	a	designer	you	can	turn	tracing	on	or	off	by
using	the	(Framework)	->	(Tracing)	->	Application	Level	or	System	Level	menu
options	at	any	time.		
To	trace	values	when	a	WAM	first	starts	use	a
#avFrameworkManager.uInitialize	event	handler.	Similarly	to	trace	values	as	a
WAM	closes	use	a	#avFrameworkManager.uTerminate	event	handler:
Trace	values	when	WAM	starts:
Evtroutine	Handling(#avFrameworkManager.uInitialize)
Options(*noclearmessages	*noclearerrors)
	
	Invoke	#AVFRAMEWORKMANAGER.avRecordTrace
Component(#com_owner)	Event('WAM	Filter	is	initialising')
Endroutine

	

Trace	values	when	WAM	ends:
Evtroutine	Handling(#avFrameworkManager.uTerminate)
Options(*noclearmessages	*noclearerrors)
	
	Invoke	#AVFRAMEWORKMANAGER.avRecordTrace
Component(#com_owner)	Event('WAM	Filter	is	terminating')
Endroutine

	

Event	Signaling	Service
Applies	to	Windows	and	WAM.
The	Framework	manager	provides	a	simple	to	use	event	signaling	service	that
may	be	used	in	Windows	or	Web	browser	applications:

Refer	to	tutorial	VLF013WIN	-	Signaling	Events	or	VLF013WAM	-	Signaling
Events	for	step-by-step	instructions	of	how	to	use	signalling.
When	something	significant	happens	in	your	filter	or	command	handler	you
may	choose	to	signal	an	event	to	other	active	filters	or	command	handlers	so
that	they	can	take	appropriate	action.	
To	make	event-processing	work	you	need	two	things:
A	filter	or	command	handler	needs	to	signal	the	event.		This	is	called
publishing	the	event.
Other	filters	or	command	handlers	need	to	listen	for	the	event.		This	is	called
subscribing	to	the	event.	
Additional	information	may	be	sent	along	with	the	event.	This	is	called	the
payload.
In	Windows	Applications
To	publish	an	event	in	a	Windows	application	you	use	the	method
avSignalEvent.	For	example:	
Invoke	#Com_owner.avSignalEvent	WithId(Employee_Deleted)	SendAInfo1(#EMPNO)

	
This	example	signals	an	event	identified	as	"Employee_Deleted".		It	includes
the	current	value	of	field	#EMPNO	as	additional	payload	string	1,	presumably
to	identify	the	employee	that	has	been	deleted.			
To	subscribe	to	(or	listen	for)	an	event	in	a	Windows	application	you	need	to
have	an	EvtRoutine	in	your	filter	or	command	handler.		To	do	this	you	listen	for
an	avEvent	signal	like	this	example:
EvtRoutine	Handling(#Com_owner.avEvent)	WithId(#EventId)	WithAInfo1(#AInfo1)
			If	'#EventId.Value	=	Employee_Deleted'
			
							Change	#EMPNO	#AInfo1.Value				
	
							<<	Handle	the	event	>>
			Endif
Endroutine
	

This	example	specifically	subscribes	to	the	event	identified	as	the
"Employee_Deleted"	event.	The	payload	protocol	used	for	this	event	says	that
the	employee	number	will	be	received	in	payload	additional	information	string
1.
	
In	WAM	Applications
To	publish	an	event	in	a	WAM	application	you	use	the	method	avSignalEvent.
For	example:
Invoke	#ThisHandler.avSignalEvent	WithId(UPDATE_LIST_ENTRY)	SendAInfo1(#EMPNO)

	
To	subscribe	to	(or	listen	for)	an	event	in	a	WAM	application	you	need	to	first
register	the	event	like	this	example;
Invoke	Method(#avFrameworkManager.avRegisterEvent)
Named(UPDATE_LIST_ENTRY)	Signalaswamevent(2)

		
Then	add	an	event	handler	as	in	the	following	example;
Evtroutine	Handling(#avFrameworkManager.uWAMEvent_2)
Withid(#eventid)	WithAinfo1(#Ainfo1)	Options(*noclearmessages
*noclearerrors)
		

If	'#EventId.Value	=	Update_List_Entry'
		
Change	#EMPNO	#AInfo1.Value
fetch	#xg_ident	pslmst	with_key(#empno)
		
*	Set	up	the	visual	Identifier(s)
		
#UF_VisID1	:=	#EMPNO
#UF_VisID2	:=	#SURNAME
Use	BConcat	(#UF_VisID2	#GIVENAME)	(#UF_VisID2)
		
*	Add	instance	details	to	the	instance	list
		
Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#EMPNO)
Endif
		
Endroutine

	
	

General	Considerations
Having	events	flying	around	in	your	application	impacts	its	performance.	You
need	to	assess	this	impact	in	an	environment	that	reflects	your	worst-case
deployment	environment.	Make	sure	that	you	do	not	use	too	many	events	or
do	too	much	processing	when	handling	an	event.	Your	event	model	needs	to	fit
into	the	resource	that	you	have	available	to	execute	it	in.	This	applies	doubly
to	Web	browser	applications	where	event	handling	causes	client-server
interactions	to	occur.
The	basic	payload	that	can	be	sent	along	with	an	event	allows	for	up	to	5
alphanumeric	strings	and	5	numeric	values.	If	this	is	not	enough	or	if	you	want
to	send	lists	of	information	use	the	virtual	clipboard.	The	shipped
Programming	Techniques	application	contains	an	example	of	sending	lists	of
information	along	with	an	event	by	using	the	virtual	clipboard.			
You	should	think	about	a	simple	and	consistent	naming	standard	for	your
events.	Do	not	use	event	identifiers	that	contain	periods	(".")	to	avoid	conflicts
with	events	issued	by	the	Framework.	Avoid	special	characters	that	may	cause
code	page	issues	with	different	execution	platforms.	

Look	at	the	shipped	"Programming	Techniques"	application	for	examples	of
how	to	code	and	use	events	in	Web	browser	applications.
For	more	detailed	information	about	event	handling	see:
avSignalEvent
#Com_owner.avEvent

avSignalEvent
WithId An	event	identifier	you	assign.	An	event	identifier	can	be	up	to

32	characters	in	length.

SendAInfo1-
SendAInfo5

These	allow	up	to	5	additional	alphanumeric	strings	to	be	sent
along	with	the	event.	The	protocol	used	to	assign	these
parameters	to	events	is	at	your	discretion.		Maximum	length	32
characters.

SendNInfo1-
SendNInfo5

These	allow	up	to	5	additional	numeric	values	to	be	sent	along
with	the	event.	The	protocol	used	to	assign	these	parameters	to
events	is	at	your	discretion.		Maximum	precision	30,9.	

Wait Indicates	whether	the	event	should	be	processed	by	the
listeners	before	control	is	returned	by	the	avSignal	Event
method.	Allowable	values	are	TRUE	or	FALSE.	The	default
value	is	FALSE.	Use	TRUE	with	caution	!					

To Indicates	the	scope	in	which	the	event	should	be	signaled.	The
default	value	FRAMEWORK	indicates	that	every	active
command	handler	and	filter	in	the	Framework	should	be
notified	of	this	event.	The	other	allowable	value	is
BUSINESSOBJECT,	which	indicates	that	event	should	only
be	signaled	within	the	current	business	object.	If	you	use
BUSINESSOBJECT	in	a	non-business	object	context,	then	it
is	treated	as	if	you	had	specified	FRAMEWORK.				

WindowScope
	

When	Framework	windows	have	been	opened	by	the	‘Open	in
a	New	Window…’	menu	option,	this	parameter	may	be	used	to
control	the	overall	scope	of	the	event	being	signaled.
CURRENT,	which	is	the	default	value,	indicates	the	event
should	only	be	signaled	to	applications	belonging	to	the
current	window.
MAIN	indicates	the	event	should	be	signaled	in	the	scope	of
the	main	window	only.
ALL	indicates	that	the	event	should	be	signaled	into	all	active
windows.
The	only	other	allowable	value	is	the	name	of	a	specific
window.

	

#Com_owner.avEvent
Some	things	worth	knowing	about	handling	the	avEvent	event	are:

Withid Identifies	the	event.		Structurally	a	good	way	to	handle	arriving	events
to	use	code	like	this:
Evtroutine	Handling(#Com_owner.avEvent)	WithId(#EventId)
												Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
	
			Change	#vf_elIdn	#EventId.Value
	
			Case	#vf_elIdn
	
						When	'=	Event1'	
												<<	Execute	subroutine	or	invoke	method	to	handle	event	1	>>
						When	'=	Event2'
												<<	Execute	subroutine	or	invoke	method	to	handle	event	2	>>
	
						When	'=	Event3'
												<<	Execute	subroutine	or	invoke	method	to	handle	event	3	>>
						...	etc	...
						...	etc	...
						...	etc	...
	
	
						When	'=	Eventn'
												<<	Execute	subroutine	or	invoke	method	to	handle	event	n	>>
	
			EndCase
	
Endroutine

	

WithAInfo1	->	WithAInfo5 Use	these	to	receive	the	SendAInfo1	->	SendAInfo5	values	specified
when	the	event	was	signaled.

WithNInfo1	->	WithNInfo5 Use	these	to	receive	the	SendNInfo1	->	SendNInfo5	values	specified
when	the	event	was	signaled.

Sender Use	this	to	determine	the	name	of	the	component	that	signaled	the

event.	This	is	most	commonly	used	like	this	….
EvtRoutine	Handling(#Com_owner.avEvent)	Sender(#Sender)
	
			*	If	this	event	was	not	signaled	by	this	component	itself	
	
			If	'#Sender.value	*ne	#Com_Owner.Name'
	
<<	handle	the	event	>>
	
			Endif
	
Endroutine

	

#Com_Owner.avFilterActivated
and
#Com_Owner.avHandlerActivated
	

Filters	and	Command	Handlers	have	properties	that	indicate	whether
they	are	currently	considered	to	be	activated.	These	are:
#Com_Owner.avFilterActivated	(in	a	filter)
#Com_owner.avHandlerActivated	(in	a	command	handler)
These	properties	contain	strings	TRUE	or	FALSE.
They	allow	logic	in	a	filter	or	command	handler	to	test	whether	it	is
currently	in	an	activated	state.	Typically	this	is	used	to	test	whether
signalled	events	should	be	ignored.
A	filter	or	command	handler	is	activated	if	it	is	in	a	state	where	a	user
may	be	able	to	interact	with	it.
A	filter	or	command	handler	in	a	minimized,	hidden	or	deactivated
window	may	still	be	considered	to	be	activated.		

	

You	should	only	check	for	events	that	your	program	is	interested	in.		Other
events	should	be	ignored	as	quickly	as	possible.
As	you	are	implementing	your	application	you	may	find	it	useful	to	maintain	a
table	of	events	like	this	example:

Event	Id Notified	To Waits	for
Completion

Additional
Alphanumeric
Information

Additional
Numeric
Information

_____________ FRAMEWORK
BUSINESSOBJECT

TRUE
/	FALSE

1=
2=
3=
4=
5=

1=
2=
3=
4=
5=

_____________ FRAMEWORK
BUSINESSOBJECT

TRUE
/	FALSE

1=
2=
3=
4=
5=

1=
2=
3=
4=
5=

_____________ FRAMEWORK
BUSINESSOBJECT

TRUE
/	FALSE

1=
2=
3=
4=
5=

1=
2=
3=
4=
5=

	

Object	Switching	Service
Applies	to	Windows	and	WAM.
See	the	tutorial	VLF012WIN	-	Controlling	Navigation	Using	Switching	and	the
Virtual	Clipboard	or	VLF012WAM	-	Controlling	Navigation	Using	Switching
and	the	Virtual	Clipboard	for	step-by-step	instructions	for	how	to	use	the	object
switching	service
This	service	allows	your	filters	and	command	handlers	to	switch	control
between	different	business	objects	and	to	execute	commands	at	the	Framework,
application	or	business	object	level.
The	target	business	object	must	be	able	to	be	selected	from	the	menu	(the	option
Allow	selection	from	the	navigation	pane	in	the	target	business	object	properties
should	be	checked,	and	the	user	should	be	authorised	to	the	business	object),	at
the	time	the	switch	occurs.	Switching	mimics	the	actions	that	a	user	would
perform.
The	switching	service	is	invoked	by	using	method
#avFrameworkManager.avSwitch	with	the	appropriate	parameters.		
Introductory	avSwitch	Examples	
Referencing	Applications,	Business	Objects	and	Commands
Advanced	avSwitch	Examples	
avSwitch	Method
AvAddSwitchInstances	Event
AvAddSwitchInstance	Method
Troubleshooting	Switch	Examples

Introductory	avSwitch	Examples	
Note	that	avSwitch	can	only	call	Framework	applications.	You	cannot	use	it	to
call	external	applications	such	as	Notepad.exe.

AvSwitch	Method	Examples	for
Windows	or	WAMs

Description

Invoke	#avFrameworkManager.avSwitch
To(Framework)
Execute(Tax_Calculator)
Caller(#Com_Owner)
	

Switches	control	to	the
Framework	and	executes	the
command	handler	associated	with
the	command	named
"Tax_Calculator".
	

Invoke	#avFrameworkManager.avSwitch
To(Framework)
Execute('*EXIT')
Caller(#Com_Owner)
	
	

	

Switches	control	to	the
Framework	and	executes	the
command	handler	associated	with
the	command	named	"*EXIT".
This	switch	would	cause	the
Framework	to	close	down.	It	is
handled	exactly	as	if	the	user
selected	"File"	then	"Exit"	from
the	menu	bar.
	

Invoke	#avFrameworkManager.avSwitch	
To(Application)	
Named(GeneralLedger)
Caller(#Com_Owner)
	
	

Switches	control	over	to	the
application	named
"GeneralLedger".	No	command
is	executed.
	

Invoke	#avFrameworkManager.avSwitch
To(BusinessObject)	
Named(Customers)
Caller(#Com_Owner)
	
	

Switches	control	over	to	the
business	object	named
"Customers".	No	command	is
executed.
	

Invoke	#avFrameworkManager.avSwitch Switches	control	over	to	the

To(BusinessObject)
Named(Customers)	
Execute(New)
Caller(#Com_Owner)
	
	

business	object	named
"Customers"	and	then	executes
the	command	named	"New".

	

Referencing	Applications,	Business	Objects	and	Commands
In	the	preceding	examples	many	names	are	used	to	identify	applications,
business	objects	and	commands	(eg:	Tax_Calculator,	GeneralLedger,	New,
'*EXIT').	These	names	are	not	the	captions	of	the	applications,	business	objects
or	commands,	because	captions	change	frequently	and	are	multilingual.
The	names	are	the	User	Object	Name/Type	values	associated	with	the
applications,	business	objects	or	commands.	For	example,	if	you	look	at	the
Identification	tab	of	the	definition	of	the	Exit	command:

Here	the	command's	Caption	is	'Exit'	(at	least	in	English)	and	it's	User	Object
Name	/	Type	is	'*EXIT'.	To	reference	the	Exit	command	in	a	switch	operation
you	should	use	the	value	'*EXIT'	(the	user	object	name/type),	not	'Exit'	(the
caption).			

Advanced	avSwitch	Examples	
In	the	shipped	Programming	Techniques	application	Switching,	command
handler	DF_DET17	displays	the	employees	that	work	in	the	currently	selected
section:

You	can	select	employee(s)	from	the	displayed	list	and	switch	over	to	show	their
details	by	clicking	the	Show	Details	button.		The	display	of	the	selected
employee(s)	details	is	achieved	by	using	the	avSwitch	method.	Please	refer	to
the	source	code	of	DF_DET17	for	a	complete	explanation	of	how	the	avSwitch
method	is	used.				

avSwitch	Method
Method:	avSwitch
Parameters:
Name Usage Class Description
To Input	-

Mandatory
Alpha	–	max
length	32

Specify	as	one	of
FRAMEWORK,
APPLICATION	or
BUSINESSOBJECT	indicating
the	object	to	which	control	is	to
be	switched.

Named Input	–
Optional

Alpha	–	max
length	32

Specifies	the	User	Object
Name/Type	of	the
APPLICATION	or
BUSINESSOBJECT	that	control
is	to	switch	to.

Execute Input	–
Optional

Alpha	–	max
length	32

Specify	the	User	Object
Name/Type	of	any	command
that	is	to	be	executed	in	the
target	FRAMEWORK,
APPLICATION	or
BUSINESSOBJECT.

ClearInstanceList Input	–
Optional

Boolean Clear	the	current	business	object
instance	list	before	adding	new
instances	with	the
avAddSwictInstance	method.
Specify	as	TRUE	or	FALSE	(in
uppercase)	only.	Default	value	is
FALSE.
NOTE:	This	parameter	is	only
effective	if	new	instances	are
added	with	the
avAddSwictInstance	method.

Caller Input	–
Mandatory

PRIM_OBJT Always	specify	this	argument	as
Caller(#Com_Owner).

CallerInfo Input	–
Optional

Alpha	–	max
length	20

Use	this	optional	argument	to
provide	additional	identification
information.	

TargetWindow
	

Input	–
Optional
	

Alpha	–	max
length	256
	
	

Specifies	the	target	window	in
which	the	switch	operation
should	be	performed.	Allowable
values	are	CURRENT	(the
current	window),	MAIN	(the
main	window)	or	specific
window	name.	The	default	value
is	MAIN.

	

Examples:
Refer	to	shipped	example	command	handler	DF_DET17.	

AvAddSwitchInstances	Event
Event:	avAddSwitchInstances
Parameters:
Name Usage Class Description
Caller Received

–	Optional
PRIM_OBJT Always	specify	this	argument	as

Caller(#Com_Owner).

CallerInfo Received	-
Optional

Alpha	–	max
length	20

Use	this	optional	argument	to	provide
additional	identification	information.	

	

Examples:
Refer	to	shipped	example	command	handler	DF_DET17.	

AvAddSwitchInstance	Method
Method:	avAddSwitchInstance
Parameters:
Name Usage Class Description
VisualID1 Input	–

Optional
Alpha	–
max
length
32

This	is	the	first	visual	identifier	of	the
business	object	instance.	Alphanumeric.

VisualID2 Input	-
Optional

Alpha	–
max
length
50

This	is	the	optional	second	visual	identifier	of
the	business	object	instance.	

AKey1
AKey2
AKey3
AKey4
AKey5
	

Input	-
Optional

Alpha	–
max
length
32

These	are	the	optional	alphanumeric
programmatic	identifiers	of	this	business
object	instance.	The	identification	protocol
used	for	the	identifier	is	at	your	discretion.

NKey1
NKey2
NKey3
NKey4
NKey5
	

Input	-
Optional

Numeric
–	max
(15,0)
precision

These	are	the	optional	numeric	programmatic
identifier	of	this	business	object	instance.	The
identification	protocol	used	for	the	identifier	is
at	your	discretion.

	

Examples:
Refer	to	shipped	example	command	handler	DF_DET17.	

Troubleshooting	Switch	Examples
The	following	table	should	be	used	as	a	checklist	for	resolving	switch	issues:
OK Check
	 The	To()	parameter	is	FRAMEWORK,	APPLICATION	or

BUSINESSOBJECT.

	 The	Named()	parameter	refers	to	the	User	Object	Name/Type	of	the
correct	application	or	business	object.	It	does	NOT	refer	to	the	Caption.

	 The	Execute()	parameter	refers	to	the	User	Object	Name/Type	of	the
correct	command.	It	does	NOT	refer	to	the	command's	Caption.

	 The	command	identified	by	the	Execute()	parameter	is	enabled	for	the
Framework,	application	or	business	object.	Display	the	Commands
Enabled	tab	of	the	Framework,	application	or	business	object	involved.
Verify	that	the	command	to	be	executed	in	shown	in	the	Enabled	list.			

	 The	parameter	Caller(#Com_Owner)	has	been	specified

	 In	all	avAddSwitchInstances	event	handlers	an	initial	check	like	this	has
been	made	to	ensure	that	the	event	should	be	handled	by	the	current
component:
If_ref	#Caller	is_not(*Equal_to	#Com_Owner)
			Return
Endif
	
See	shipped	example	DF_DET17	for	examples.

	

In	web	browser	applications	executing	with	trace	mode	on	will	show	the	switch
flow	operations	and	may	indicate	the	cause	of	the	error.

Custom	Property	Access	Service
The	Framework	services	manager	provides	a	facility	to	access	Custom
Properties.
In	Windows	applications	custom	property	values	are	retrieved	by	using	the
avGetUserProperty	method.
Method	avGetUserProperty	Parameters
Name Usage
AtLevel Use	this	parameter	to	specify	the	level	at	which	the	custom

property	is	defined.	Allowable	values	are	F	(Framework),	A
(Application)	or	B	(Business	Object).	The	default	value	is	F
(Framework)	level.	

WithName Use	this	parameter	to	specify	the	name	of	the	custom	property.
The	special	property	value	<name>.Count	can	be	used	to
obtain	a	count	of	how	many	instances	of	the	

Instance Use	this	parameter	when	a	property	has	multiple	values	(i.e.
instances)	to	specify	which	instance	should	be	returned.	The
default	value	is	1.

AlphaValue Use	this	parameter	to	specify	the	field	or	component	into
which	any	alphanumeric	value	that	the	property	has	should	be
returned.	The	custom	property	must	be	defined	as	type
alphanumeric	for	this	parameter	to	be	used	effectively.

NumericValue Use	this	parameter	to	specify	the	field	or	component	into
which	any	numeric	value	that	the	property	has	should	be
returned.	The	custom	property	must	be	defined	as	type
numeric	for	this	parameter	to	be	used	effectively.

BooleanValue Use	this	parameter	to	specify	the	field	or	component	into
which	any	Boolean	value	that	the	property	has	should	be
returned.	The	custom	property	must	be	defined	as	type
Boolean	parameter	to	be	used	effectively.

	

Examples	of	retrieving	Custom	Property	valuesExample	1

Retrieve	the	current	value	of	Framework	level	alphanumeric	property	named
PRINTER:
Windows
Invoke	Method(#avFrameworkManager.avGetUserProperty)	Withname(PRINTER)		AlphaValue(#C_Printer)
	
	

Example	2
Retrieve	the	3rd	instance	of	an	application	level	numeric	property	named
COMPANYNUMBER:
Windows
Invoke	Method(#avFrameworkManager.avGetUserProperty)	AtLevel(A)	
											Withname(COMPANYNUMBER)
											Instance(3)		NumericValue(#Company)
	
	

Example	3
Find	out	how	many	instances	of	a	business	object	level	property	named	STATE
exist:
Windows
Invoke	Method(#avFrameworkManager.avGetUserProperty)	AtLevel(B)	
											Withname(STATE.COUNT)	NumericValue(#State_Tot)
	
	

User	Authority	Access	Service
The	Framework	services	manager	provides	a	facility	to	access	the	current	user's
authority	to	a	nominated	object.	For	example,	this	service	can	be	used	to	help	a
component	decide	whether	to	enable	or	disable	buttons	or	switches.	It	is
available	only	to	Windows	applications.
In	Windows	applications	the	current	user's	authority	to	an	object	is	retrieved
using	the	avCheckUserAuthority	method.
Method	avCheckUserAuthority	Parameters
Name Usage
To Mandatory.	Use	this	parameter	to	specify	the	type	of	the	object

to	be	checked.	Allowable	values	are	APPLICATION,
BUSINESSOBJECT	and	COMMAND.	Values	may	be	specified
in	any	case.

Named Mandatory.	The	User	Object	Name	/	Type	of	the	object	to	be
checked.

InContext Optional	and	required	only	for	commands.	Use	this	parameter	to
specify	The	User	Object	Name	/	Type	of	the	object	the	command
is	associated	with.	Defaults	to	the	current	object.

ReturnValue Mandatory.	Returned	as	true	or	false.	True	means	the	user	has
authority	to	use	the	object	and	false	means	the	user	doesn't.

	

Examples	of	Authority	Checks	on	Objects
Check	the	authority	of	the	current	user	to	the	Demo	application	and	return	the
answer	to	the	variable	#STD_BOOL:
	
Invoke	Method(#avFrameworkManager.avCheckUserAuthority)	To(APPLICATION)	Named(DEMO)	ReturnValue(#Std_Bool)
	

Check	the	authority	of	the	current	user	to	the	Organization	business	object	and
return	the	answer	to	the	variable	#STD_BOOL:
	
Invoke	Method(#avFrameworkManager.avCheckUserAuthority)	To(BUSINESSOBJECT)	Named(DEM_ORG)	ReturnValue(#Std_Bool)
	

Check	the	authority	of	the	current	user	to	the	'Details'	command	of	the
Resources	business	object	and	return	the	answer	to	the	variable	#STD_BOOL:
	
Invoke	Method(#avFrameworkManager.avCheckUserAuthority)	To(COMMAND)	InContext(DEM_ORG_SEC_EMP)	Named(DETAILS)	ReturnValue(#Std_Bool)
	

Check	the	authority	of	the	current	user	to	the	'Details'	command	of	the	current
object	and	return	the	answer	to	the	variable	#STD_BOOL.
	
Invoke	Method(#avFrameworkManager.avCheckUserAuthority)	To(COMMAND)	Named(DETAILS)	ReturnValue(#Std_Bool)
	

	

Show	Messages	Service
The	Framework	services	manager	provides	a	facility	to	programmatically	show
the	current	set	of	messages.
In	Windows	applications	the	message	box	showing	the	current	set	of	messages
is	displayed	by	invoking	the	#Com_Owner.avShowMessages	method.	It	acts
exactly	as	if	the	user	had	pressed	the	Messages	button	on	the	status	bar.
Example	of	Showing	Messages
Show	the	current	set	of	messages:
Windows
Invoke	Method(#Com_Owner.avShowMessages)

Temporarily	Overriding	Object	Captions
Applies	to:	WINDOWS	only.
The	Framework	Manager’s	avOverrideCaptions	method	allows	you	to
temporarily	override	the	captions	associated	with	Applications,	Views,	Business
Objects	or	Commands.
You	can	use	this	feature	to	show	additional	information	about	the	state	of	an
object	in	its	caption,	for	example	by	indicating	a	count	of	how	many	associated
messages	exist	or	how	many	open	orders	were	found.				
Objects	are	identified	by	their	unique	system	or	user	assigned	User	Object
Name	/	Type	found	on	their	Identification	tab:

For	example	this	code	changes	the	basic	caption	of	the	DEMO	application:
	
Invoke	Method(#avFrameworkmanager.avOverrideCaptions)
Ofuserobjecttype(DEMO)	Caption('HR	Demo	Application	(5	messages)')
Fim(#Fim)

	
Which	causes	the	shipped	DEMO	application’s	caption	to	change	from	this:

To	this:

	
Some	things	worth	knowing:
Caption	overrides	are	not	persistent.	When	a	VLF	window	is	closed	the
overrides	are	lost.
Caption	overrides	apply	everywhere	(and	only)	within	the	scope	of	the
window	that	issues	the	change	request.
Changing	the	alphabetical	position	of	a	caption	may	or	may	not	change	its
relative	position.
	
The	parameters	of	the	avOverrideCaptions	method	are:

OfUserObjectType The	unique	system	or	user	assigned	type	that	identifies	the
object.

Caption The	new	caption	to	be	applied	to	the	object.

CaptionSingular The	new	singular	caption	to	be	applied	to	the	object.	This
caption	may	not	apply	to	all	object	types.

CaptionAccel The	new	caption	with	an	accelerator	to	be	applied	to	the
object.	This	caption	may	not	apply	to	all	object	types.

FIM The	framework	instance	manager	that	identifies	your
window.	Always	pass	as	FIM(#FIM).

	
	

Get	Visual	LANSA	Framework	Icon	Reference
The	Framework	services	manager	allows	command	handlers	or	filters	to
retrieve	the	reference	to	a	VLF	icon.	It	is	available	only	to	Windows
applications.
If	using	a	reference	to	an	icon	multiple	times,	it	is	better	to	use	the	avFindIcon
method	once	in	the	initialization	routine,	and	store	the	reference	in	a	dynamic
variable	defined	at	the	component	level.	(See	example)
The	reference	to	a	VF_	icon	is	retrieved	using	the	avFindIcon	method.
Method	avFindIcon	Parameters
Name Usage

Named Mandatory.	The	name	of	the	icon	to	be	retrieved.

Reference Mandatory.	Returned	as	a	reference	to	an	object	of	class
PRIM_ICON.

	

Example	of	using	the	avFindIcon	method
Set	a	list	item's	icon	to	the	Visual	LANSA	Framework	icon	named	VF_IC386
*	Component	definitions
DEFINE_COM	CLASS(#PRIM_ICON)	NAME(#ICON_NORM)
REFERENCE(*DYNAMIC)
...
*	Initialization	routine
invoke	#avSystem.avFindIcon	Named(VF_IC486)
Reference(#ICON_NORM)
...
*	Use	the	reference
set	#ltvw_1.CurrentItem	Image(#ICON_NORM)	
	

Change	a	visual	style	at	run	time
If	you	need	a	visual	style	to	change	at	run	time,	you	can	swap	in	a	new	style	or
styles	from	any	command	handler,	filter,	or	snap	in	instance	list	using	this	logic:
	
#avFrameworkManager.avSubstituteVisualStyle	Ustyle(#MYSTYLE_A)
Uasname('VF_VS106')
#avFrameworkManager.avSubstituteVisualStyle	Ustyle(#MYSTYLE_B)
Uasname('VF_VS101')	Usignalchanged(True)
	

Where	uStyle(#MYSTYLE_A)	is	a	visual	style	that	you	have	defined	in	the
repository,	and	'VF_VS106'	is	one	of	the	styles	currently	being	used	by	the
Framework.
If	uSignalChanged	is	true	the	Framework	will	apply	the	changes	and	the
replacement	styles	will	be	visible.

Method	avSubstituteVisualStyle	Parameters
Name Usage

uStyle Mandatory.	The	new	style	to	be	used

uCaption Optional.	The	caption	for	the	style	(Default	is	the	style
name)

uSuffix Optional.	The	suffix	to	be	attached	to	the	caption	(Default	is
blank)

uAsName Optional.	The	name	of	the	visual	style	to	be	replaced
(Default	is	the	name	of	the	new	style)

uSignalChanged Optional.	Signal	the	VLF	to	apply	the	changes.	(Default	is
false)

	

	

	

	

	

	

	

	

	

Framework	Windows	Management
Programs	and	optionally	end-users	can	open	and	control	many	Framework
windows.
A	Framework	window	contains	a	new	instance	of	the	Framework,	or	some
subset	of	it.
For	example,	when	you	open	a	new	Framework	window	it	might	contain:
Another	instance	of	the	whole	Framework
Just	a	specific	application	(for	example	the	Demo	Application)
Just	a	specific	view	of	an	application	
Just	a	specific	business	object	(for	example	just	Organizations	or	Resources)		
	
If	the	Framework	application	design	allows	it,	end-users	can	open	new	windows
using	the	Windows	menu		and	then	Open	in	a	New	Window	…	Framework
menu	options.

	
Or	they	can	bring	up	the	windows	pop-up	menu	by	right	clicking	anywhere.
The	display	of	the	Windows	menus	is	controlled	using	the	Show	the	'Windows'
Menu	in	this	Framework	option.
When	multiple	windows	are	open,	a	window	control	bar	will	appear	under	the
tool	bar	of	all	the	Framework	windows:
	

	
As	a	designer	you	can	set	a	limit	on	how	many	windows	that	an	end-user	can
have	concurrently	open	using	the	Number	of	Additional	Windows	a	User	can
have	Open	Concurrently	option.	You	may	control	whether	the	whole
Framework,	individual	applications,	application	views	or	business	objects	may,

or	may	not,	be	opened	in	independent	windows	using	the	object's	Allow	this
Object	to	be	Opened	in	a	New	Window	property.
Allowing	end-users	to	control	their	own	desktops	and	work	practices	regarding
independent	windows	make	for	very	open	and	flexible	applications.	Trying	too
hard	to	programmatically	control	and	manage	what	end-users	do	with
independent	windows	may	prove	to	be	a	complex,	time	consuming	and
ultimately	fruitless	task.		
	
Notes
Framework	windows	are	available	in	Framework	Windows	applications	only.
This	may	constrain	application	design	when	complete	application	navigation
portability	needs	to	be	identical	in	both	the	Windows	and	web	environments.
However,	generally	web	users	can	achieve	equivalent	levels	of	functionality
by	opening	multiple	web	browser	instances	or	by	using	tabs	within	IE7.				
	
Please	do	not	confuse	Framework	windows	with	the	Object	Command
Presentation	option	in	the	Command	Display	tab	which	can	be	used	to	specify
that	a	command	handler	is	shown	as	a	separate	window.

Programmatically	Creating	and	Managing	Windows
Notifying	other	Windows	of	Significant	Events
Keeping	Windows	Open
Switching	in	Windows
Windows	and	Imbedded	Interface	Points
Windows	Resource	Usage
	

Programmatically	Creating	and	Managing	Windows
Your	programs	can	create	and	manage	windows	by	calling	the	method
avShowWindow	in	the	Framework	manager.	For	example:
	
Open	a	whole	new	instance	of	the	Framework	in	another	window	named
MYWINDOW:
	
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)
For(FRAMEWORK)	WindowName(MYWINDOW)	

	
Open	the	DEMONSTRATION	application:
	
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)
For(APPLICATION)	ofType(DEMO)	WindowName(DEMO_WINDOW)	

	
Open	an	application	view	named	HR:
	
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)	For(VIEW)
ofType(HR)	WindowName(DEMO_VIEW)

	
Open	business	objects	Organizations	and	Resources	in	two	independent
windows:
	
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)
For(BUSINESSOBJECT)	ofType(DEM_ORG)	WindowName(DEMO_EMP)
	
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)
For(BUSINESSOBJECT)	ofType(DEM_ORG_SEC_EMP)
WindowName(DEMO_SECTION)

	
Remember	that	the	OfType(XXXXXXX)	names	you	specify	on	calls	to
avShowWindow	are	Object	User	Object	/	Type	values	specified	on	the
Identification	tab	of	the	properties	of	the	respective	object:

Using	the	avShowWindow	method
When	the	avShowWindow	method	is	invoked,	it	tests	whether	a	window	with
the	name	specified	exists.
	
If	the	named	window	already	exists,	it	is	activated	(ie:	restored	from	being
minimized,	if	required,	and	brought	to	the	front	of	all	the	Framework	windows).
	
If	the	named	window	does	not	exist,	it	is	created.
	
Then	in	both	cases:
The	window's	open	information	properties	and	object	reference	are	updated
with	anything	you	supplied	(see	Window	Opening	Information).
A	switch	operation	is	performed	inside	the	window	to	any	application	or
business	you	may	have	nominated.	
	
In	simple	terms,	you	are	saying	to	the	Framework	"Display	a	window	with	this
name	and	pass	this	information	into	it,	then	cause	it	to	switch	to	this	application
or	this	business	object".
	
When	you	create	a	new	window	or	switch	an	existing	window	it	happens
asynchronously	to	your	program.	So	if	you	use	avShowWindow	and	then
immediately	enumerate	all	open	windows	you	will	not	find	the	window	you	just
created	(yet).
Window	Names
You	may	have	noticed	from	the	preceding	examples	that	windows	have
symbolic	names.	Here	are	some	things	you	should	know	about	window	names:
	
The	names	ALL,	MAIN	and	CURRENT	are	reserved.
When	an	end-user	opens	a	window	it	is	automatically	assigned	a	unique	name
that	starts	with	USER_.	Do	not	rely	on	USER_	window	names	being	the	same
from	Framework	signon	to	signon	or	from	Framework	version	to	version.			
Names	are	not	end-user	visible.	They	are	programmatic	names,	case
insensitive	and	may	be	up	to	256	characters	long.	Being	case	insensitive	means

they	are	often	uppercased,	so	using	just	‘A’	->	‘Z’	and	‘0’	->	‘9’	is	advisable.		
Window	names	are	uniquely	scoped	and	only	addressable	within	a	Framework
process	(ie:	a	LANSA	X_RUN.EXE	process).	This	means	that	if	you	start
multiple	X_RUN.EXE	processes	they	can	each	contain	a	unique	window
named	TESTWINDOW.	An	operation	that	involves	signaling	or	switching
window	TESTWINDOW	only	refers	to	it	within	the	current	X_RUN.EXE
process.	No	intra-process	windows	operations	are	currently	provided.				
	
Finding	a	Window
Enumerating	All	Windows
The	Current	and	Main	Windows
Window	Opening	Information

Finding	a	Window
You	can	find	a	specific	window	in	your	programs	like	this:
	
	
*	Define	a	temporary	class	#VF_SY154	reference.	
*	Use	VL's	F2=Feature	help	to	explore	the	properties
*	and	methods	that	class	#VF_SY154	exposes	for	you	to	use.
	
Define_Com	Class(#VF_SY154)	Name(#Window)	Reference(*Dynamic)
	
*	Ask	the	Framework	manager	to	locate	a	window	by	name	and	return	a
reference
	
#Window	<=	#AvFrameworkManager.avWindow<'USER_EMPLOYEES'>		
	
*	Remember	to	handle	the	fact	the	window	might	be	found	(or	not)		
	
If	(#Window	*isNot	*Null)
Use	Message_box_Add	('The	window	named'	#Window.WindowName	'is	at
position'	#Window.Top	#Window.Left)
Else
Use	Message_box_Add	('No	Window	named	USER_EMPLOYEES	is
currently	open')
Endif
	
Use	Message_Box_show
	
*	Just	to	be	absolutely	sure,	make	the	Window	reference	null	to	free	it.
*	You	should	never	hang	onto	VF_SY154	references	in	your	code.
	
#Window	<=	*Null

	
This	code	would	display	message	boxes	like	these:
	

	

	
Important	Note:		Always	free	#VF_SY154	object	references	in	your	programs.

Enumerating	All	Windows
You	can	enumerate	windows	in	your	programs	likes	this:
	
*	Loop	through	all	currently	opened	windows	by	using	the
*	Windows	collection	of	class	VF_SY154	objects	that	the
*	Framework	manager	exposes	for	use	in	your	programs
*	Use	the	VL	F2=Feature	Help	to	explore	the	properties
*	and	methods	that	class	#VF_SY154	exposes	for	you	to	use.
	
For	#Window	in(#AvFrameworkManager.avWindowCollection)
	
Use	Message_box_Add	('The	window	named'	#Window.WindowName	'is	at
position'	#Window.Top	#Window.Left)
	
EndFor
	
Use	Message_Box_show

	
This	code	would	display	a	message	box	like	this:
	

		
	
Important	Note:		Always	free	#VF_SY154	object	references	in	your	programs.

The	Current	and	Main	Windows
In	command	handlers	or	filters,	to	get	access	to	the	current	window	or	to	the
main	window	use	properties	#Com_Owner.avCurrentWindow	or
#Com_Owner.avMainWindow.	These	are	immediately	accessible	#VF_SY154
object	references	to	the	current	and	main	windows	respectively.	
	
For	example,	if	you	put	this	code	into	any	filter	or	command	handler	it	will
display	the	current	and	main	window	location:
	
Use	Message_box_Add	('The	current	window	named'
#Com_Owner.avCurrentWindow.WindowName	'is	at	position'
#Com_Owner.avCurrentWindow.Top	#Com_Owner.avCurrentWindow.Left)
	
Use	Message_box_Add	('The	main	window	named'
#Com_Owner.avMainWindow.WindowName	'is	at	position'
#Com_Owner.avMainWindow.Top	#Com_Owner.avMainWindow.Left)
	
Use	message_box_show

	
Like	this	example:
	

	
Important	Note:		Always	free	#VF_SY154	object	references	in	your	programs.

Window	Opening	Information
When	a	window	is	opened	or	activated	by	the	avShowWindow	method,
information	can	be	passed	to	it	in	the	parameters	OpenInfo1	->	OpenInfo5	and
OpenObjectRef.
	
These	parameters	optionally	allow	5	strings	of	up	to	256	characters	and	an
object	reference	to	be	used	exchange	information	between	windows.
	
For	example,	if	a	filter	or	command	handler	opened	a	window	named
DEMO_WINDOW	and	passed	5	strings	to	it	like	this:
	
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)
For(BUSINESSOBJECT)	ofType(EMPLOYEES)
WindowName(DEMO_WINDOW)	OpenInfo1('Test	String	1')
OpenInfo2('Test	String	2')		OpenInfo3('Test	String	3')		OpenInfo4('Test	String
4')		OpenInfo5('Test	String	5')			

	
Then	if	a	filter	or	command	handler	executing	inside	DEMO_WINDOW
executed	this	code:
	
Use	Message_box_Add	('In	window
named'#Com_Owner.avCurrentWindow.WindowName)
Use	Message_box_Add	('OpenInfo1
='#Com_Owner.avCurrentWindow.OpenInfo<1>)
Use	Message_box_Add	('OpenInfo2
='#Com_Owner.avCurrentWindow.OpenInfo<2>)
Use	Message_box_Add	('OpenInfo3
='#Com_Owner.avCurrentWindow.OpenInfo<3>)
Use	Message_box_Add	('OpenInfo4
='#Com_Owner.avCurrentWindow.OpenInfo<4>)
Use	Message_box_Add	('OpenInfo5
='#Com_Owner.avCurrentWindow.OpenInfo<5>)
Use	message_box_show

	
The	result	would	look	like	this:

	

		
You	can	get	access	to	the	opening	information	associated	with	any	window	by
getting	a	class	#VF_SY154	reference	to	the	window	(see	preceding	sections
Finding	a	Window	and	Enumerating	All	Windows).
	
You	can	update	the	opening	information	currently	associated	with	any	window
by	setting	the	OpenInfo<>	properties	like	this	example,	which	updates	the
MAIN	window:
	
#Com_Owner.avMainWindow.OpenInfo<1>	:=	"Return	String	1"
#Com_Owner.avMainWindow.OpenInfo<2>	:=	"Return	String	2"
#Com_Owner.avMainWindow.OpenInfo<3>	:=	"Return	String	3"
#Com_Owner.avMainWindow.OpenInfo<4>	:=	"Return	String	4"
#Com_Owner.avMainWindow.OpenInfo<5>	:=	"Return	String	5"

		
The	OpenObjectRef	property	may	be	used	to	pass	any	type	of	object	reference
between	windows.	By	doing	this	you	can	pass	and	share	any	amount	or	type	of
information	between	windows.		
To	get	a	filter	or	command	handler	in	the	new	window	to	use	the	OpenInfo	data,
add	a	uShowWindowCompleted	method	routine	to	the	command
handler/filter.	See	Notifying	other	Windows	of	Significant	Events.
	

Notifying	other	Windows	of	Significant	Events
The	avSignalEvent	method	may	be	used	to	notify	other	windows	of	an	event.
	
To	control	the	scope	of	the	signal	use	the	WindowScope()	parameter,	which	may
be	specified	as	CURRENT,	ALL,	MAIN	or	a	specific	window	name.
The	default	value	for	this	parameter	is	CURRENT.
	
Using	the	‘Wake	Up’	Method	uShowWindowCompleted
The	signaling	approach	works	well	when	you	know	the	window	in	question	is
open	and	listening	for	the	event.
	
However,	what	if	you	don’t	know	whether	the	window	in	question	is	actually
open?	This	situation	is	easiest	to	handle	this	way.
	
Imagine	a	command	handler	or	filter	in	the	MAIN	window	that	executes	this
method:
	
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)
For(BUSINESSOBJECT)	ofType(EMPLOYEES)
																																	WindowName(EMP_WINDOW)	OpenInfo1(#EMPNO)

	
	
What	this	says	is	"Show	a	window	named	EMP_WINDOW	(creating	it	if	you
need	to).	It	should	contain	just	the	EMPLOYEES	business	object.	Set	its
opening	information	string	to	the	value	of	#EMPNO".
	
Now	imagine	a	filter	(or	command	handler)	that	is	either	started,	or	already
active,	inside	the	window	EMP_WINDOW.
	
It	has	this	special	‘Wake	up’	method	in	it:
	
Mthroutine	uShowWindowCompleted	Options(*Redefine)
	

			#Empno	:=	#Com_Owner.avCurrentWindow.OpenInfo<1>
		
			Use	message_box_show	(ok	ok	info	*Component	#Empno)
	
Endroutine

	
	
This	method	is	invoked	every	time	some	other	window	executes:
	
								#AvFrameworkManager.avShowWindow
WindowName(EMP_WINDOW)

	
In	other	words,	this	is	a	method	that	is	saying	‘wake	up,	another	window	wants
you	to	do	something’.	Typically	the	command	handler	or	filter	that	is	‘woken
up’	would	use	information	passed	in	the	open	information	strings	to	determine
what	it	should	do	next.
	
This	feature	may	be	used	to	interlink	high	level	business	objects.	For	example
imagine	a	window	working	with	details	named	CUSTOMER_WINDOW	and
another	working	with	order	information	named	ORDER_WINDOW.
	
Scattered	through	the	command	handlers	belonging	to	CUSTOMER_WINDOW
you	would	find	method	calls	like	this:
	
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)
For(BUSINESSOBJECT)
																																		ofType(ORDERS)	WindowName(ORDER_WINDOW)
																																		OpenInfo1(#OrderNumber)

	
	
	
Scattered	through	the	command	handlers	belonging	to	ORDER_WINDOW	you
would	find	method	calls	like	this:
	
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)

For(BUSINESSOBJECT)
																																		ofType(CUSTOMERS)
WindowName(CUSTOMER_WINDOW)
																																		OpenInfo1(#CustomerNumber)

	
	
Orders	and	Customers	are	now	interlinked	making	it	very	easy	for	an	end-user
to	swap	between	the	two	applications.

Keeping	Windows	Open
Creating	a	new	window	is	a	relatively	expensive	operation.	Often	end-users	
close	windows	just	make	them	‘get	out	of	the	way’	and	five	seconds	later	they
will	often	open	the	same	window	again,	usually	with	different	data	content.
A	simple	solution	to	this	problem	is	to	use	the	parameter	KeepOpen(TRUE)	in
the	avShowWindow	method	or	to	change	the	KeepOpen	property	in	class
#VF_SY154	window	objects.
With	KeepOpen(TRUE),	when	end-users	close	a	window,	it	is	simply
minimized	just	to	get	it	out	of	their	way.	This	means	that	in	five	seconds	time
when	they	want	to	display	it	again,	it	does	not	have	to	be	created	from	scratch.		
When	you	set	a	window	to	KeepOpen(TRUE),	it	can	only	be	closed	when	the
end-user:
Uses	the	signoff	or	exit	command
Closes	the	main	window
Uses	the	option	‘Close	All	Windows	-	Except	Main’
Or	when	a	program	changes	it	to	KeepOpen(FALSE).	
You	should	never	set	the	MAIN	window	to	KeepOpen(TRUE).		
	

Switching	in	Windows
The	use	of	multiple	windows	reduces	the	need	to	use	classic	switching.
	
However,	you	can	request	that	a	window	switch	to	some	other	task	by	using	the
avSwitch	Method	.	You	can	control	which	window	is	switched	by	using	the
TargetWindow()	parameter,	which	may	be	specified	as	MAIN,	CURRENT	or	a
specific	window	name.	The	default	value	for	this	parameter	is	MAIN.
	
There	are	some	rules	about	window	switching	that	you	need	to	be	aware	of:
When	a	window	is	opened	it	has	a	scope.
A	window's	scope	includes	all	the	things	that	can	ever	be	used	inside	it.
By	limiting	a	windows	scope	the	time	taken	to	create	it	can	be	substantially
reduced.		
	
For	example	if	you	open	a	FRAMEWORK	window	then	every	application,
business	object	and	every	command	defined	in	the	Framework	is	within	its
scope.
	
However,	if	you	open	a	BUSINESSOBJECT	window,	then	only	the	business
object	specified	and	any	related	application	or	Framework	level	commands	are
in	the	window’s	scope.
	
This	means	you	cannot	open	a	window	named	TEST,	containing	just	business
object	A	(say),	and	then	later	request	that	it	switch	to	business	object	B.	This	is
because	business	object	B	is	not	in	window	TEST’s	scope.		
	
You	cannot	legitimately	switch	a	window	out	of	its	scope.	You	can	try	to	do	this
and	may	even	get	it	to	do	some	‘interesting’	things,	but	this	type	of	switching	is
not	supported	by	the	Framework.	Using	it	may	produce	unpredictable	results,
either	now	or	in	future	Framework	versions.			
	
This	also	explains	why	the	default	value	TargetWindow(MAIN)	is	used	on	the
avSwitch	method	instead	of	TargetWindow(CURRENT).		The	MAIN	window
has	within	its	scope	everything	in	the	Framework,	so	the	switch	operation	will

always	be	valid,	at	least	from	the	scope	perspective.
	
Once	you	start	to	modify	TargetWindow()	parameters	values	you	need	to	think
about	whether	the	switch	will	be	within	the	target	windows	scope.			

Windows	and	Imbedded	Interface	Points
The	system	IIPs	(Imbedded	Interface	Points)	provide	four	methods	that	you	can
overload	to	perform	special	logic	whenever	the	main	window	or	a	secondary
window	is	opened	or	closed.	These	are	called:
avMAINWindowReady	–	Main	window	has	opened	and	is	ready	for	work
avSECONDWindowReady	–	Secondary	window	has	opened	and	is	ready	for
work
avCloseMAINWindow	–	Main	window	is	to	be	closed
avCloseSECONDWindow	–	Secondary	window	is	to	be	closed
Refer	to	Imbedded	Interface	Points	(IIPs)	and	the	shipped	version	of	reusable
part	UF_SYSTM	for	more	information	about	these	methods	and	about	how	to
implement	you	own	IIPs.

Expanding,	Shrinking	and	Focusing	Panes
In	the	Windows	Framework	a	filter	or	command	handler	can	programmatically
shrink	the	filter	pane,	the	command	handler	pane,	the	instance	list,	or	the
navigate	pane,	and	can	also	re-expand	them.	Command	handlers	can	also
programmatically	expand	themselves	to	occupy	the	space	used	by	the	filters	and
instance	list	(Maximize),	and	restore	themselves	back	to	their	original	size.
avPaneShrink	and	avPaneExpand	methods	are	opposites.	A	shrunk	pane	can	be
expanded	back	to	its	original	size	using	avPaneExpand.	If	a	pane	is	not	shrunk,
then	avPaneExpand	will	do	nothing.
avPaneMaximize	and	avPaneRestore	are	opposites.	A	command	handler	can	be
expanded	to	use	all	the	space	used	by	the	filter	and	instance	list	by	using
avPaneMaximize.	When	maximized,	a	command	handler	can	be	returned	to	its
original	size	by	using	avPaneRestore.
avPaneFocus	causes	a	pane	to	become	expanded	and	then	to	receive	the	focus.
These	methods	are	asynchronous	–	the	request	is	queued	up	and	waits	for	the
command	handler	or	filter	that	issued	the	instruction		to	finish	its	processing
before	the	expand/shrink/maximize/restore	is	performed.
avPaneShrink	Method
avPaneExpand	Method
avPaneMaximize	Method
avPaneRestore	Method
avCmdPanelState	Property
	

avPaneShrink	Method
Method:	avPaneShrink
Parameters:
Name Usage Class Description
Caller Input	–

Mandatory
PRIM_OBJT Always	specify	this	argument	as

Caller(#Com_Owner).

Pane Input	-
Mandatory

Alpha	–	max
length	32

Specify	as	one	of	FILTER,
INSTANCE_LIST,	NAVIGATE_PANE,
COMMAND_HANDLER	indicating	the
pane	to	be	shrunk.

	

Examples:
	
invoke	#avFrameworkManager.avPaneShrink	Caller(#Com_Owner)
Pane(FILTER)
	

	

	
	

avPaneExpand	Method
Method:	avPaneExpand
Parameters:
Name Usage Class Description
Caller Input	–

Mandatory
PRIM_OBJT Always	specify	this	argument	as

Caller(#Com_Owner).

Pane Input	-
Mandatory

Alpha	–	max
length	32

Specify	as	one	of	FILTER,
INSTANCE_LIST,	NAVIGATE_PANE,
COMMAND_HANDLER	indicating	the
pane	to	be	expanded	back	to	its	original	size
after	being	shrunk.

	

Examples:
	
invoke	#avFrameworkManager.avPaneExpand	Caller(#Com_Owner)
Pane(FILTER)
	

	

	

avPaneMaximize	Method
Method:	avPaneMaximize
Parameters:
Name Usage Class Description
Caller Input	–

Mandatory
PRIM_OBJT Always	specify	this	argument	as

Caller(#Com_Owner).

Pane Input	-
Optional

Alpha	–	max
length	32

Specify	as	COMMAND_HANDLER
indicating	the	pane	to	be	Maximized.

	

Examples:
	
invoke	#avFrameworkManager.avPaneMaximize	Caller(#Com_Owner)
Pane(COMMAND_HANDLER)
	

	

	

avPaneRestore	Method
Method:	avPaneRestore
Parameters:
Name Usage Class Description
Caller Input	–

Mandatory
PRIM_OBJT Always	specify	this	argument	as

Caller(#Com_Owner).

Pane Input	-
Optional

Alpha	–	max
length	32

Specify	as	COMMAND_HANDLER
indicating	the	pane	to	be	restored	back	to	its
original	size	after	a	Maximize.

	

Examples:
	
invoke	#avFrameworkManager.avPaneRestore	Caller(#Com_Owner)
Pane(COMMAND_HANDLER)
	

	

avPaneFocus	Method
Method:	avPaneFocus
Parameters:
Name Usage Class Description
Caller Input	–

Mandatory
PRIM_OBJT Always	specify	this	argument	as

Caller(#Com_Owner).

Pane Input	-
Mandatory

Alpha	–	max
length	32

Specify	as	one	of	FILTER,
INSTANCE_LIST,	NAVIGATE_PANE,
COMMAND_HANDLER	indicating	the
pane	to	be	focused.

	

Examples:
	
	invoke	#avFrameworkManager.avPaneFocus	Caller(#Com_Owner)
Pane(FILTER)
	

		
Refer	to	the	View	menu	option	in	the	shipped	example	Framework:

And	to	the	shipped	example	hidden	command	handler	DF_DET45	which
implements	these	menu	options.
Filters	(class	#VF_AC007),	Command	Handlers	(class	#VF_AC010)	and
Custom	Instance	List	Browsers	(class	#VF_AC012)	components	may	override
ancestor	method		uAcceptFocus	to	specifically	control	which	visible	control
receives	the	focus	when	avPaneFocus	is	used.
See	shipped	example	components	DF_FILT1	(filter),	DF_T0023	(command
handler)	and	DF_INST1	(custom	instance	list	browser)	for	examples	of	this.				

avCmdPanelState	Property
Method:	avCmdPanelState	
Parameters:
	Name Usage Class Description
Caller Input	–

Mandatory
PRIM_OBJT Always	specify	this	argument	as

avCmdPanelState<#Com_Owner>.

	
Examples:
	
#CPState	:=	#avFrameworkManager.avCmdPanelState<#Com_Owner>
	

	

Windows	Resource	Usage
Usage	Expectations
Resource	Leakage

Usage	Expectations
When	using	multiple	Framework	windows	you	need	to	consider	resource
utilization.
Every	VLF	window	you	open	consumes	additional	resources.	The	amount	of
resource	consumed	depends	significantly	on	the	design	of	your	application	and
the	programming	techniques	you	use.	You	need	to	balance	resource	utilization
with	resource	availability	on	deployed	systems.
There	are	some	usage	expectations	you	need	to	have	about	using	Framework
windows:
It	would	be	reasonable	for	a	user	to	have	two	or	10	or	even	20	windows	open,
but	not	50	windows.
Windows	are	heavyweight	objects.	They	are	intended	to	allow	end-users	to
concurrently	perform	and	switch	between	high	level	business	tasks	such
working	with	Customers,	Products	and	Orders	concurrently.	They	are	not
intended	to	handle	simple	lightweight	tasks	such	as	handling	an	F4	prompt.
	
	

Resource	Leakage
	
A	common	resource	utilization	issue	encountered	in	Windows	applications	is
that	when	you	close	a	window	not	all	of	the	resources	associated	with	it	are
freed	up	for	reuse.	This	is	called	‘resource	leakage’	and	if	left	unchecked	it	may
eventually	cause	your	application	to	fail	or	act	unpredictably.	To	help	you	in	this
area	the	VLF	includes	a	simple	diagnostic	tool	to	track	some	resource	leakage	at
a	high	level.
	
These	facilities	are	only	activated	when	you	use	the	VLF	as	a	designer.
	
If	you	open	and	close	a	secondary	Framework	window	and	see	a	message	like
the	example	below,	it	indicates	a	resource	leakage	detected	by	the	VLF:		
	

	
This	message	is	saying	that	a	VL	component	(in	this	case	a	command	handler
instance	named	DF_DET1)	was	not	destroyed	when	the	window	was	closed.
	
In	other	words,	DF_DET1	has	‘leaked’	resources.	You	should	investigate	the
cause	of	this	and	try	to	prevent	it.	If	you	can’t	work	out	why	this	message	is
being	displayed	you	should	consult	your	Visual	LANSA	mentor	for	VL
application	design	advice.
	
In	VLF	applications	of	simple	to	medium	complexity	you	are	unlikely	to	see
this	message.	However	as	the	sophistication	of	your	VLF	and	VL	application
components	increases	you	may	encounter	this	message.		
	

A	common	cause	of	this	message	is	what	is	called	a	‘circular	reference’.	This	is
where	one	VL	component	(say,	a	command	handler	‘A’)	contains	a	reference	to
some	other	object	(say,	a	reusable	part	named	‘B’)	which	itself	contains	a
reference	back	to	command	handler	‘A’.
	
The	circular	reference	path	may	be	even	more	complex.	Component	‘A’	might
refer	to	‘B’	which	refers	to	‘C’	which	refers	to	‘D’	which	refers	back	to	‘A’.	This
is	a	much	longer	path,	but	it	is	still	circular	in	nature.
	
Some	rough	guidelines	for	avoiding	circular	references:
	
Try	to	avoid	using	Reference(*Dynamic)	variables	or	object	reference
collections	that	are	scoped	across	an	entire	BEGIN_COM/END_COM	block
(that	is,	across	your	whole	VL	program).	
When	they	are	used,	make	sure	that	structured	logic	is	in	place	(and	used)	to
remove	or	nullify	any	object	references	that	they	may	contain.
When	Scope(*Application)	variables	or	collections	are	used	to	track	object
references	make	sure	that	logic	is	in	place	(and	used)	to	remove	the	references
again	at	the	appropriate	time.			
	
In	other	words,	imagine	you	are	an	object	instance	called	‘A’	and	that	other
objects	store	references	to	you	in	their	variables	or	collections.	If	you	want	‘A’
to	be	destroyed,	then	you	need	to	make	sure	all	referencing	objects	drop	all	their
references	to	‘A’	first.	Object	‘A’	will	not	be	destroyed	as	long	as	any	object
holds	a	single	reference	to	‘A.
Important	Disclaimer:	This	VLF	facility	is	a	diagnostic	feature.	It	only	tracks
resource	leakage	in	objects	that	are	‘known’	to	the	VLF	runtime	environment.
As	you	create	more	sophisticated	VLF	applications	they	could	in	turn	create	and
destroy	many	objects	that	the	VLF	runtime	does	not	know	about	and	therefore
cannot	track	or	report	on.	Just	because	you	do	not	see	the	preceding	message
box	it	does	not	mean	that	your	application	is	not	leaking	resources.					
	
	

Advanced	Filter	Styles
Filters	are	a	powerful	mechanism	for	building	business	object	instance	lists	in
many	different	ways.
The	following	section	presents	some	ideas	for	advanced	filter	techniques	that
you	might	like	to	use	in	your	application:
Instant	Filters
Drill	Down	Filters
Power	Filters
Hidden	Filter	
Mini	Filters

Instant	Filters
An	instant	filter	can,	for	example,	present	a	list	of	all	available	departments.
When	you	click	on	a	department	the	sections	business	object	instance	list	is
instantly	cleared	and	refilled	with	all	the	sections	that	belong	to	the	selected
department:

The	shipped	filter	DF_FILT4	provides	an	example	of	an	"Instant"	filter.

Drill	Down	Filters
A	drill-down	filter	can,	for	example,	present	a	tree	of	departments	(at	level	1)
and	their	associated	sections	(at	level	2).	From	the	tree	you	can	select	a
department	and	then	drill	down	to	the	sections	within	the	department.		As	you
select	departments	and	sections	in	the	tree	the	associated	employees	appear
instantly	in	the	instance	list:

The	shipped	filter	DF_FILT3	provides	an	example	of	a	"Drill	Down"	filter.
	

Power	Filters
You	can	pack	a	lot	of	search	power	into	a	single	filter	by	providing	multiple
search	capabilities	like	this	example:

Hidden	Filter
In	situations	where	you	want	to	completely	fill	the	business	object	instance	list
programmatically,	the	filter	has	no	meaningful	interaction	with	the	end-user	and
can	be	hidden	from	view.
Here	is	an	example	of	a	hidden	filter	that	selects	all	the	employees	in	an	HR
system	and	adds	them	to	the	instance	list:

Notice	that	the	filter	is	not	visible.	This	filter	has	a	uInitialize	routine	like	this:

	

Mthroutine	Name(uInitialize)	Options(*Redefine)
*	Do	the	ancestor		thing

Invoke	#Com_Ancestor.uInitialize

*	Define	this	as	a	hidden	filter	(you	can	only	ever	sensibly	have	a	
*	single	filter	when	it's	hidden)

Set	#Com_Owner	avHiddenFilter(TRUE)

*	Now	fill	the	instance	list	with	all	employee	details	

Invoke	#avListManager.BeginListUpdate

Invoke	#avListManager.ClearList

Select	Fields(#EmpNo	#SurName	#GiveName)	From_File(PSLMST)	
Use	BConcat	(#GiveName	#SurName)	#Std_TextL
Invoke	Method(#avListManager.AddtoList)	Visualid1(#Empno)	Visualid2(#Std_TextL)					Akey1(#Empno)
EndSelect

Invoke	#avListManager.EndListUpdate

*	Finished

EndRoutine
	

Mini	Filters
Properties
	

Events RDML	for	a	Windows	Mini	Filter RDMLX	for	a	WAM	Mini	Filter

The	tutorial	VLF010WIN	-	Creating	a	Mini	Filter	shows	how	to	create	a	mini
filter.
A	mini	filter	very	similar	to	a	hidden	filter.	The	difference	is	that	a	mini	filter
still	requests	a	search		value	from	the	user,	using	a	field	and	search	button	that
exist	permanently	on	the	Framework	identification	bar	(the	field	and	search
button	are	only	visible	if	a	mini	filter	is	being	used).

	
The	filter	sets	up	the	search	field	and	button	on	the	identification	bar.	The	filter
itself	is	hidden.	The	user	enters	a	search	value	into	the	search	field	on	the
identification	bar	and	presses	the	button	on	the	identification	bar.	This	executes
the	filter,	which	gets	the	value	that	the	user	entered,	and	uses	it	to	do	a	search
and	put	the	result	on	the	instance	list.

The	filter	sets	up	and	communicates	with	the	search	field	on	the	identification
bar	using	Framework	properties.
Send	Properties
Windows:
Set	#Com_Owner	avMiniFilter(TRUE)
set	#Com_Owner	avMiniFiltFldCap1('Search	for')
set	#Com_Owner	avMiniFiltValue1('<<Initial	search	value>>')
set	#Com_Owner	avMiniFiltButtonCap1('Search')
	

	
Receive	Properties
It	receives	the	value	in	a	search	field	by	reading	the	Framework	property	for
that	search	field:
USE	BUILTIN(VF_GET)	WITH_ARGS(AVMINIFILTVALUE1	*BLANKS)	TO_GET(#ALPHASEARCH)
	

Windows:
Windows	filters	receive	information	as	parameters	of	a	method	routine.	This
includes	the	number	of	the	button	that	was	pressed.
Mthroutine	Name(uMiniFilterButton)	Desc('Handle	a	mini	filter	button	click')	Help('Overwrite	this	method	with	your	own	logic	if	required.')	Options(*REDEFINE)
*	Define_Map	For(*input)	Class(#vf_elnum)	Name(#uButton)
*	Define_Map	For(*input)	Class(#vf_elurl)	Name(#uValue1)	Mandatory('	')
*	Define_Map	For(*input)	Class(#vf_elurl)	Name(#uValue2)	Mandatory('	')
*	Define_Map	For(*input)	Class(#vf_elurl)	Name(#uValue3)	Mandatory('	')
	

There	can	be	up	to	3	search	fields	and	up	to	3	buttons.	The	search	fields	are
always	alpha	–	if	the	user	enters	a	numeric	value,	the	RDML	of	the	filter	could
be	coded	to	convert	it	to	numeric	and	issue	a	message	if	there	is	a	problem.
The	routine	in	the	filter	that	handles	a	click	of	a	button	has	access	to	the	values
in	any	of	the	3	fields.
If	a	mini	filter	is	being	used,	then	there	should	only	be	one	filter	for	the	business
object.	The	reason	for	having	a	mini	filter	is	to	save	space	to	allow	the	instance
list	to	be	wider,	so	if	there	are	other	filters	you	should	use	a	normal	filter,	not	a
mini	filter.
	

Properties
n	on	the	end	of	a	property	name	can	be	1,2,	or	3.
These	properties	are	set	in	the	initialize	routine	of	the	RDML	of	a	filter.
Name Description Type Possible	Values MaxLength
avMiniFilter Indicates

the	filter	is
a	mini	filter

Boolean TRUE
FALSE

5

avMiniFiltValuen The	(alpha)
contents	of
the	search
field

Character 	 256

avMiniFiltFieldn Indicates
this	field	is
to	be
displayed

Boolean TRUE
FALSE

5

avMiniFiltButtonn Indicates
this	button
is	to	be
displayed

Boolean TRUE
FALSE

5

avMiniFiltFldCapn The	caption
that	the
mini	filter
field	will
display

Character 	 30

avMiniFiltFldCapWidn The	width
of	the
caption

pixels 	 999

avMiniFiltFldWidn The
displayed
width	of
the	caption
and	field

pixels 	 999

avMiniFiltButtonCapn The	caption
that	the
mini	filter
button	will
display

Character 	 30

AvMiniFilterPanel The	panel
that	is	to	be
displayed
to	manage
the	mini-
filter
content.
Valid	in
Windows
applications
only.	When
used	all
other	filter
properties
are	not
applicable,
because
they	are
entirely
supplanted
by	the
windows
panel
specified
here.
For
example
you	can	add
combo
boxes,	drop
downs,
check
boxes,	and

#PRIM_PANL
	

Reference	to	a
panel	contained
within	and
owned	by	the
VF_AC007	filter
object	or	*null		
Any	nominated
panel	must	be:
Owned	by	the
filter	itself,	not
by	an	ancestor.
Not	be	the	filter
itself
(#Com_Owner).
Not	layout
managed	by	the
filter.
	

N/A
	

do	instant
editing	on
the	panel.

	

Events
	
Name Description
(Windows)
Mthroutine
Name(uMiniFilterButton)

This	method	routine	in	the	filter	is	executed	when
the	user	clicks	on	any	search	button.
This	method	routine	in	the	filter	is	coded	to
a)	work	out	which	button	was	pressed
b)	get	the	value	that	the	user	put	in	the	search	field,
and	use	it	to	execute	the	search	logic	and	load	the
instance	list	with	the	result.

	

	

Code	Examples
RDML	for	a	Windows	Mini	Filter
RDMLX	for	a	WAM	Mini	Filter
	

RDML	for	a	Windows	Mini	Filter
	
==
*	Type												:	FILTER
*	Ancestor								:	VF_AC007
*	Application					:	Programming	Techniques	(Advanced)
*	Business	Object	:	Mini	Filter	(Simple)
*	Filter										:	Mini	Filter	(Simple)
*	Note:	This	should	be	the	only	filter	for	this	business	object
*	==

Begin_Com	Role(*EXTENDS	#VF_AC007)	Height(138)	Width(303)
*	===
*	Component	definitions
*	===

*	Nothing	is	displayed	by	this	filter.
*	The	Framework	mini	filter	supplies	the	search	button	and	the	search	field
*	This	filter	communicates	with	the	mini	filter	on	the	Framework	identification	bar
*	using	properties	like	avMiniFiltField1,	and	using	the	redefined	method	routine
*	called	uMiniFilterButton.

*	===
*	Method	Routine	Redefines
*	===

*
*	Initialize
*

Mthroutine	Name(uInitialize)	Options(*REDEFINE)

*	Make	the	mini	filter	visible	for	this	business	object
*	Note:	This	should	be	the	only	filter	for	this	business	object
set	#Com_Owner	avMiniFilter(TRUE)

*	Enable	one	search	field	and	one	search	button	on	the	mini	filter
*	Give	them	captions,	and	widths	if	required

set	#Com_Owner	avMiniFiltField1(TRUE)
*	set	the	total	field	width	(including	caption)	to	300
set	#Com_Owner	avMiniFiltFldWid1(300)

set	#Com_Owner	avMiniFiltFldCap1(*MTXTDF_SURNAME)
*	set	the	caption	width	to	200
set	#Com_Owner	avMiniFiltFldCapWid1(200)

set	#Com_Owner	avMiniFiltButton1(TRUE)
set	#Com_Owner	avMiniFiltButtonCap1(*MTXTDF_SEARCH)
*	set	#Com_Owner	avMiniFiltButtonWid1(200)

*	You	could	also	pass	an	initial	search	value	using:
*	set	#Com_Owner	avMiniFiltValue1('my	initial	search	value')
	
endroutine

*
*	Perform	Search	instruction	from	the	mini	search	panel
*

Mthroutine	Name(uMiniFilterButton)	Desc('Handle	a	mini	filter	button	click')	Help('Overwrite	this	method	with	your	own	logic	if	required.')	Options(*REDEFINE)
*	Define_Map	For(*input)	Class(#vf_elnum)	Name(#uButton)
*	Define_Map	For(*input)	Class(#vf_elurl)	Name(#uValue1)	Mandatory('	')
*	Define_Map	For(*input)	Class(#vf_elurl)	Name(#uValue2)	Mandatory('	')
*	Define_Map	For(*input)	Class(#vf_elurl)	Name(#uValue3)	Mandatory('	')

Define	#Button	*dec	1	0

*	Determine	which	mini	filter	button	the	user	pressed
change	#Button	#uButton
case	#button
when	'=	1'

*	Get	the	search	value	that	the	user	entered	into	the	mini	filter
USE	BUILTIN(UPPERCASE)	WITH_ARGS(#UVALUE1)	TO_GET(#SURNAME)

*	Do	the	search	and	put	the	results	into	the	instance	list

Invoke	Method(#avListManager.BeginListUpdate)

Invoke	Method(#avListManager.ClearList)

*	Select	employee	records	using	full	or	partial	surname	in	surname	order	and	add	to	instance	list
Select	Fields(#EMPNO	#GIVENAME	#SURNAME)	From_File(PSLMST2)	With_Key(#SURNAME)	Generic(*YES)
*	add	an	entry	to	the	instance	list	on	the	right	of	the	filter
Execute	Subroutine(ADDLIST)	With_Parms(#SURNAME	#GIVENAME	#EMPNO)
Endselect

*	Indicate	end	of	list	update
Invoke	Method(#avListManager.EndListUpdate)

endcase

endroutine

*	===
*	Subroutines
*	===

*
*	add	an	entry	to	the	instance	list	on	the	right	of	the	filter
*
Subroutine	Name(ADDLIST)	Parms(#SURNAME	#GIVENAME	#EMPNO)

*	Build	up	visual	identifier

Use	BConcat	(#GiveName	#SurName)	#FullName

Invoke	Method(#avListManager.AddtoList)	Visualid1(#Empno)	Visualid2(#FullName)	Akey1(#Empno)

Endroutine

End_Com
	

RDMLX	for	a	WAM	Mini	Filter
	
	*
==
*	Description	...:	Mini	Filter	(Simple)
*
==
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('vlf_layout')
	
*		Standard	declares	for	a	filter
	
Define_Com	Class(#vf_sw100)	Name(#avFrameworkManager)
Define_Com	Class(#vf_aw007)	Name(#ThisFilter)	Reference(*Dynamic)
Define_Com	Class(#vf_lw002)	Name(#avListManager)
Reference(*Dynamic)
Define_Com	Class(#fp_in001)	Name(#FastPart)	Reference(*Dynamic)
	
*		VL	Framework	map	fields.	DO	NOT	CHANGE.
	
Web_Map	For(*both)	Fields((#VF_FRAMEI	*private)	(#VF_FRAMEW
*private)	(#VF_FRAMES	*private)	(#VF_ELXTOF	*private)	(#VF_ELXN01
*private)	(#VF_ELXN02	*private)	(#VF_ELXN03	*private)	(#VF_ELXN04
*private)	(#VF_ELXN05	*private)	(#VF_ELXN06	*private)	(#VF_ELXN07
*private)	(#VF_ELXN08	*private)	(#VF_ELXN09	*private)	(#VF_ELXN10
*private)	(#VF_ELXA01	*private)	(#VF_ELXA02	*private)	(#VF_ELXA03
*private)	(#VF_ELXA04	*private)	(#VF_ELXA05	*private)	(#VF_ELXA06
*private)	(#VF_ELXA07	*private)	(#VF_ELXA08	*private)	(#VF_ELXA09
*private)	(#VF_ELXA10	*private)	(#VF_ELMETA	*private))
	
*		Standard	webroutine	used	by	all	VLF	WAM	filters	and	command	handlers.
DO	NOT	CHANGE	the	Web	routine	name.	Use	this	routine	to	register	WAM
events.
	
Webroutine	Name(UHandleEvent)
	
*		Standard	WAM	initialisation.
	

*	NOTE:	THE	EVENTS	FOR	MINI	FILTERS	ARE	PRE	REGISTERED	IN
THE	FRAMEWORK.	THEREFORE,	YOU	DON'T	NEED	TO	REGISTER
THEM.	THEY	ARE:
*	uWAMEvent_21	-->	mini	filter	button	ONE	was	clicked
*	uWAMEvent_22	-->	mini	filter	button	TWO	was	clicked
*	uWAMEvent_23	-->	mini	filter	button	THREE	was	clicked
	
#avFrameworkManager.avInitializeWAM	Type(FILTER)
Invoker(#com_owner)	Listmanager(#avListManager)
Filtermanager(#ThisFilter)	Fastpartmanager(#FastPart)
	
#avFrameworkManager.avHandleWAMEvent	Anchorblock(#vf_framew)
Event(#vf_event)	Designmode(#vf_framed)	Skin(#VF_Frames)
Metatag(#vf_elmeta)	Tof(#vf_elxtof)	N01(#vf_elxn01)	N02(#vf_elxn02)
N03(#vf_elxn03)	N04(#vf_elxn04)	N05(#vf_elxn05)	N06(#vf_elxn06)
N07(#vf_elxn07)	N08(#vf_elxn08)	N09(#vf_elxn09)	N10(#vf_elxn10)
A01(#vf_elxA01)	A02(#vf_elxA02)	A03(#vf_elxA03)	A04(#vf_elxA04)
A05(#vf_elxA05)	A06(#vf_elxA06)	A07(#vf_elxA07)	A08(#vf_elxA08)
A09(#vf_elxA09)	A10(#vf_elxA10)	Ssiname(#VF_FRAMEI)
	
Endroutine
	
*		Handle	initialization	of	filter
	
Evtroutine	Handling(#avFrameworkManager.uexecute)
Options(*noclearmessages	*noclearerrors)
	
*	Activate	this	Filter	as	a	mini	Filter
	
*	This	filter	will	use	a	search	field	and	search	button	on	the	framework
identification	bar	(below	the	toolbar)
*	to	interact	with	the	user.	This	filter	will	not	be	displayed.
	
*	Note:	This	should	be	the	only	filter	for	this	business	object.
	
*	Enable	one	search	field	and	one	search	button	on	the	mini	filter.	Give	them
captions,	and	widths	if	required.
	
Set	Com(#thisfilter)	Avminifilter(true)	Avminifiltfield1(true)

Avminifiltfldcapwid1(250)	Avminifiltfldcap1(*MTXTDF_SURNAME)
Avminifiltfldwid1(350)	Avminifiltbutton1(true)
Avminifiltbuttoncap1(*MTXTDF_SEARCH)	Avminifiltbuttonwid1(150)
	
Endroutine
	
Evtroutine	Handling(#avFrameworkManager.uWAMEvent_21)
Options(*noclearmessages	*noclearerrors)	Value1(#Val1)
	
*	The	value	that	the	user	entered	on	the	search	field	on	the	framework
identification	bar	is	provided	in	the	Value1	parameter	of	this	event	routine.
#Surname	:=	#Val1.UpperCase
	
*	Start	instance	list	update.	Clear	the	instance	list
#avListManager.BeginListUpdate
#avListManager.ClearList
	
*	Fill	the	instance	list	based	on	the	search	value	specified	by	the	user.
Select	Fields(#SURNAME	#GIVENAME	#EMPNO	#PHONEHME
#ADDRESS1	#POSTCODE)	From_File(PSLMST2)
With_Key(#SURNAME)	Generic(*YES)
Execute	Subroutine(ADDLIST)
Endselect
*	Instance	list	updating	has	been	completed
#avListManager.EndListUpdate
	
Endroutine
	
*	==
*	SUBROUTINE:	Add	an	entry	to	Instance	List
*	==
Subroutine	Name(ADDLIST)
*	Build	up	visual	identifier
	
#Fullname	:=	#Givename	+	"	"	+	#Surname
	
*	Add	to	instance	list	using	the	user	defined
*	identification	protocol:
	

*	=====================
*	Visual	Identification
*	=====================
*	VisualID1	=	Employee	Number
*	VisualID2	=	Concatenation	of	first	name	(#GiveName)
*	and	last	name	(#SurName)
*	===========================
*	Programmatic	Identification
*	===========================
*	AKey1	=	Employee	number
*	==
*	Additional	Columns	for	instance	list	manager
*	==
*	AColumn1	=	Phone	(Home)
*	AColumn2	=	Address	Line	1
*	NColumn1	=	Post	Code	(Zip)
#avListManager.addToList	Visualid1(#Empno)	Visualid2(#Fullname)
Akey1(#Empno)	Acolumn1(#Phonehme)	Acolumn2(#Address1)
Ncolumn1(#Postcode)
	
Endroutine
	
End_Com

	
	

Web	Programming
The	Visual	LANSA	Framework	allows	you	to	create	filters	or	command
handlers	that	may	be	executed	using	a	Web	Browser	interface.	It	does	this	by
using	LANSA	for	the	Web's	Web	Application	Modules	(WAMs).
Programming	WAM	applications	is	different	to	programming	5250	based
LANSA	for	i	applications	or	Windows	Visual	LANSA	applications.
Another	option	you	have	is	to	create	Framework-AJAX	Applications.

WAM	Programming
Stateless	Programming
UB_xxxxx	User	Buttons
Maintaining	State	in	WAM	Filters	and	Command	Handlers
Using	LANSA	Weblets	with	Framework	WAMs
Rules	for	WAM	Filters	and	Command	Handlers

Stateless	Programming
The	fundamental	difference	between	Web	programming	and	LANSA	for	i	or
Visual	LANSA	programming	has	to	do	with	understanding	stateless	programs.
Programs	are	stateless	when	they	do	not	maintain	any	state	between	their
interactions	with	the	browser	user	(or	anything	else	out	there	on	the	Internet).
This	means	that	the	variables	defined	in	the	program	cannot	be	used	to
remember	things	between	interactions.	Other	more	subtle	states	cannot	be	kept
intact	either,	such	as	the	location	of	a	file	cursor,	an	open	file	connection	or	an
allocated	resource.
To	illustrate	the	impact	of	stateless	programming	to	consider	this	simple
program	specification:
Display	a	field	called	#NUMBER	that	starts	with	value	0.	Every	time	the	user
presses	enter	increment	#NUMBER	and	display	the	new	result.
In	5250	programs	(LANSA/RPG)	or	in	a	Windows	programs	(Visual
LANSA/Visual	Basic)	the	logic	would	be:
Define	#NUMBER	with	a	default	value	of	zero
Change	#NUMBER	to	#NUMBER	+	1
Display	the	incremented	#NUMBER	value
	

In	stateless	programs	#NUMBER	(and	in	fact	your	whole	program	and	all	its
state)	ceases	to	exist	between	interactions	with	the	user.	Therefore	the	variable
cannot	be	used	to	remember	it's	previous	value	between	interactions	with	the
user.
The	change	to	your	programming	approach	is	easy	enough.	You	simply	need	to
do	this:	
Define	#NUMBER
Restore	the	current	value	(i.e.	state)	of	#NUMBER
Change	#NUMBER	to	#NUMBER	+	1
Save	the	new	value	(i.e.	state)	of	#NUMBER
Display	the	new	#NUMBER	value	(at	which	point	your	program	ceases	to	exist)
	

LANSA	for	the	Web	and	the	Framework	both	provide	facilities	to	save	and
restore	state	for	you	(more	on	that	later).	Maintaining	state	is	easy,	but	you	need
to	understand	that	it	is	happening	and	how	it	impacts	your	applications.
	

UB_xxxxx	User	Buttons
The	Framework	is	shipped	with	a	set	of	fields	and	weblets	named	UB_xxxxx.
These	are	a	collection	of	weblets	which	you	can	use	in	WAM	based	filters	and
command	handlers.
There	is	a	UB_xxxxx	weblet	for	each	UB_xxxxx	field.
In	addition,	each	UB_xxxxx	field	shipped	has	a	visualization	attribute	of	the
corresponding	weblet.
The	code	in	the	UB_xxxxx	weblet	draws	the	UB_xxxxx	button	on	the	form.
How	are	they	used?
You	can	place	the	user	buttons	on	filters	and	command	handlers	and	use	them	to
trigger	functions,	for	example	Save.	There	are	button	weblets	for	the	most
common	uses,	for	example	OK,	Save	and	Delete,	and	spare	buttons	you	can
format	for	your	own	particular	uses,	for	example	Show	Details	or	Calculate.
	
How	can	the	captions	be	changed?
The	buttons	not	already	assigned	to	a	particular	purpose	can	be	modified	to
display	any	caption.	The	easiest	way	of	doing	this	is	to	override	the	field
definition:
OVERRIDE	FIELD(#UB_PUSHB1)	DEFAULT('''Show	Details''')
	

Or	if	the	application	is	multilingual	then	a	multilingual	text	variable	would	be
used:
OVERRIDE	FIELD(#UB_PUSHB1)	DEFAULT(*MTXTDF_SHOWDETAILS)
	

How	are	the	buttons	placed	on	a	web	form?
You	place	the	user	buttons	on	web	forms	by	including	them	in	a	Web_Map
For(*both)	statement	of	the	command	handler	or	filter.
Once	the	UB_xxxxx	field	is	used	in	a	Web_Map,	you	may	choose	to	generate
the	XSL	for	the	WAM.	In	such	case,	the	field	appears	somewhere	on	the	page	as
a	button.
However,	you	would	normally	want	to	paint	the	form	yourself	to	have	more
control	over	where	all	the	form	elements	appear.	In	such	case	you	would	just
drag	the	UB_xxxxx	weblet	and	drop	it	in	the	desired	place	on	the	form.
	

The	tabbing	order	of	buttons	may	be	controlled
Use	the	TabIndex	property	of	the	avSetButton	method.
For	example:
Invoke	Method(#ThisHandler.avSetButton)	ButtonName(UB_SAVE)
TabIndex(‘1’)
Invoke	Method(#ThisHandler.avSetButton)	ButtonName(UB_SAVE)
TabIndex(‘2’)

	
User	buttons	can	be	hidden	or	disabled
User	buttons	can	be	added	to	a	web	form	and	then	hidden	or	disabled	if	they	are
not	relevant.
To	hide	or	disable	a	button	use	the	avSetButton	method	of	the	command	handler
or	filter	with	the	Visible	or	Enabled	keywords.	For	example,	to	hide	the	Save
button	in	a	Command	Handler	defined	as
	
Define_Com	Class(#vf_aw010)	Name(#ThisHandler)	Reference(*Dynamic)
	

you	would
Invoke	Method(#ThisHandler.avSetButton)	Buttonname(UB_SAVE)	Visible(FALSE)

	
To	disable	it:
Invoke	Method(#ThisHandler.avSetButton)	Buttonname(UB_SAVE)	Enabled(FALSE)
	

How	to	detect	when	a	button	is	pushed?
You	must	register	a	Wam	event	in	the	uHandleEvent	web	routine	where	the
Named	keyword	has	normally	the	format
<field	name>.CLICK
For	example,	to	register	a	Wam	event	which	fires	when	the	user	clicks	on	the
Save	button:
#avFrameworkManager.avRegisterEvent	Named(UB_SAVE.CLICK)	Signalaswamevent(n)
	

You	would	then	require	an	event	routine	to	handle	that	event:
Evtroutine	Handling(#avFrameworkManager.uWAMEvent_n)	Options(*noclearmessages	*noclearerrors)
	

A	simple	example	of	a	wam	command	handler	that	uses	a	user	button

Begin_Com	Role(*EXTENDS	#PRIM_WAM)	Layoutweblet('vlf_layout')
Define_Com	Class(#vf_sw100)	Name(#avFrameworkManager)
Define_Com	Class(#vf_aw010)	Name(#ThisHandler)	Reference(*Dynamic)
Define_Com	Class(#vf_lw002)	Name(#avListManager)	Reference(*Dynamic)
Define_Com	Class(#fp_in001)	Name(#FastPart)	Reference(*Dynamic)

*	VL	Framework	map	fields.	DO	NOT	CHANGE.

Web_Map	For(*both)	Fields((#VF_FRAMEI	*private)	(#VF_FRAMEW	*private)	(#VF_FRAMES	*private)	(#VF_ELXTOF	*private)	(#VF_ELXN01	*private)	(#VF_ELXN02	*private)	(#VF_ELXN03	*private)	(#VF_ELXN04	*private)	(#VF_ELXN05	*private)	(#VF_ELXN06	*private)	(#VF_ELXN07	*private)	(#VF_ELXN08	*private)	(#VF_ELXN09	*private)	(#VF_ELXN10	*private)	(#VF_ELXA01	*private)	(#VF_ELXA02	*private)	(#VF_ELXA03	*private)	(#VF_ELXA04	*private)	(#VF_ELXA05	*private)	(#VF_ELXA06	*private)	(#VF_ELXA07	*private)	(#VF_ELXA08	*private)	(#VF_ELXA09	*private)	(#VF_ELXA10
*PRIVATE)	(#VF_ELMETA	*PRIVATE))

*	Map	fields	used	in	this	form.
Web_Map	For(*both)	Fields((#empno	*ouput)	#surname	#givename	#salary	(#UB_SAVE	*noid))

Webroutine	Name(UHandleEvent)

*	Register	the	event	that	will	execute	when	clicking	on	the	Save	button	in	this	filter	as	wam	event	number	1.

Invoke	Method(#avFrameworkManager.avRegisterEvent)	Named(UB_SAVE.CLICK)	Signalaswamevent(1)

*	Standard	WAM	initialisation.

Invoke	Method(#avFrameworkManager.avInitializeWAM)	Type(COMMAND)	Invoker(#com_owner)	Listmanager(#avListManager)	Handlermanager(#ThisHandler)	Fastpartmanager(#FastPart)
Invoke	Method(#avFrameworkManager.avHandleWAMEvent)	Anchorblock(#vf_framew)	Event(#vf_event)	Designmode(#vf_framed)	Skin(#VF_Frames)	Metatag(#vf_elmeta)	Tof(#vf_elxtof)	N01(#vf_elxn01)	N02(#vf_elxn02)	N03(#vf_elxn03)	N04(#vf_elxn04)	N05(#vf_elxn05)	N06(#vf_elxn06)	N07(#vf_elxn07)	N08(#vf_elxn08)	N09(#vf_elxn09)	N10(#vf_elxn10)	A01(#vf_elxA01)	A02(#vf_elxA02)	A03(#vf_elxA03)	A04(#vf_elxA04)	A05(#vf_elxA05)	A06(#vf_elxA06)	A07(#vf_elxA07)	A08(#vf_elxA08)	A09(#vf_elxA09)	A10(#vf_elxA10)	Ssiname(#VF_FRAMEI)
Endroutine

*	Initialize	the	command	handler
Evtroutine	Handling(#avFrameworkManager.uInitialize)	Options(*noclearmessages	*noclearerrors)
*	Get	the	current	employee	number	from	the	instance	list
Invoke	Method(#avListManager.getCurrentInstance)	Akey1(#Empno)
Endroutine

*	Handle	execution	of	the	command	handler
Evtroutine	Handling(#avFrameworkManager.uexecute)	Options(*noclearmessages	*noclearerrors)

Fetch	Fields(#SURNAME	#GIVENAME	#SALARY)	From_File(PSLMST)	With_Key(#EMPNO)

Endroutine

*	Handle	click	of	the	save	button
Evtroutine	Handling(#avFrameworkManager.uWAMEvent_1)	Options(*noclearmessages	*noclearerrors)

Update	Fields(#GIVENAME	#SURNAME	#SALARY)	In_File(PSLMST)	With_Key(#EMPNO)

Endroutine
End_Com
	

Maintaining	State	in	WAM	Filters	and	Command	Handlers
You	may	need	to	maintain	state	in	filters	and	command	handlers.	There	are
various	ways	to	do	this:
Use	the	WAM	capabilities
Use	the		Framework's	Virtual	Clipboard

Use	the	WAM	capabilities
Visual	LANSA	Framework	filters	and	command	handlers	have	normally	one
Webroutine.	Thus	to	maintain	the	state	of	fields	in	Framework	filters	and
command	handlers	is	quite	simple.	You	must	include	the	fields	in	a	Web_Map.
You	would	normally	define	a	Web_Map	for	both	input	and	output.
This	means	that	the	simple	incremental	program	defined	earlier	as:
Define	#NUMBER	with	an	initial	value	of	zero.
Change	#NUMBER	to	#NUMBER	+	1.
Display	the	incremented	#NUMBER	value.
Would	function	correctly	when	coded	like	this:
Function	Options(*Direct)
Define	#Number	*dec	7	0	default(0)
Web_Map	For(*both)	Fields(#Number)

Webroutine	Name(UHandleEvent)
etc
Endroutine
	

Use	the		Framework's	Virtual	Clipboard
The	Framework	extends	the	LANSA	for	the	web	state	model	by	providing	a
facility	called	the	virtual	clipboard.
Using	the	virtual	clipboard	you	might	code	the	function	like	this:
Define		#Number	*dec	7	0	default(0)
Web_Map	For(*both)	Fields(#Number)
	

To	save	the	#Number	value:
	
#avFrameworkManager.avSaveValue	Withid1(*Component)	Withid2(Save_Number)	Fromavalue(#Number)
	

To	restore	the	#Number	value:
	
#avFrameworkManager.avRestoreValue	Withid1(*Component)	Withid2(Save_Number)	
	

The	virtual	clipboard	also	allows	you	to	dynamically	define	complex	lists	(and
even	lists	within	lists).	It	also	allows	information	to	be	easily	passed	between
filters	and	command	handlers.
The	shipped	Programming	Techniques	application	contains	several	examples	of
using	the	Virtual	Clipboard	facility.

Using	LANSA	Weblets	with	Framework	WAMs
In	Visual	LANSA	Framework	WAM	applications	you	can	use	LANSA	Weblets.
When	using	LANSA	Weblets	you	need	to	be	aware	of	the	following:
When	LANSA	Weblets	submit	requests	to	the	web	server,	they	need	to	be
identified	to	your	WAM	filter	or	command	handler	as	an	'event'.
The	event's	identifier	allows	your	WAM	filter	or	command	handler	to
determine	which	Weblet	made	the	request	and	act	accordingly	(for	example
Which	button	was	clicked?	Ok,	Save	or	Cancel?).		
The	identification	of	an	event	involves	using	a	special	property	named
VF_WAMEVENT.
The	value	assigned	to	it	identifies	the	event	to	your	filter	or	command	handler.
	
To	use	LANSA	Weblets	in	VLF	WAMs	follow	these	steps:
1.		Add	the	LANSA	weblet	to	the	VLF	filter	or	command	handler	WAM	in	the
WAM	editor	of	the	LANSA	IDE.

2.		On	the	Weblet's	details	tab	set	the	property	VF_WAMEVENT	to	the
identifier	of	the	event,	e.g.	'BUTTON.CLICK'.	Note	that	the	value	must	be
enclosed	in	single	quotes.

3.		Set	the	on_click_wamname	property	of	the	weblet	to	the	name	of	the	VLF
filter	or	command	handler	WAM,	e.g.	'DM_T2901',	and	the
on_click_wrname	property	to	'uHandleEvent'.	The	correct	values	for	these
properties	will	be	available	from	dropdowns	on	the	property	fields.

4.		Register	an	event	in	the	VLF	WAM	with	the	same	event	identifier	as	used	in
the	reentryvalue	property	of	the	LANSA	weblet.

5.		Create	a	corresponding	event	handler	in	the	VLF	WAM	to	perform	the
required	processing.

	

Rules	for	WAM	Filters	and	Command	Handlers
To	make	sure	your	filter	or	command	handler	meets	the	rules	you	should	use	the
Program	Code	Assistant.

Touch	Device	Considerations
Framework	web	applications	can	be	run	on	iPads	and	Android	touch	devices.
User	interaction	in	touch	devices	is	based	on	touch	interface.	To	enable	touch
friendly	functionality	in	the	Framework,	use	the	web	startup	URL	parameter
TOUCH=Y	.
If	this	parameter	has	not	been	specified	or	its	value	is	any	other	than	Y,	the
Framework	makes	a	guess	as	to	whether	it	is	being	run	on	a	touch	device.

There	is	also	a	URL	parameter	ZOOM=	which	can	be	used	to	change	the	default
CCS	zoom	value.	For	more	information	see	Web	Application	Start	Options.
	

When	Designing	Applications	for	Touch	Devices
Use	mini	filters	whenever	possible	to	leave	more	space	for	the	instance	list	and
commands.

Avoid	tree	views	in	instance	lists.
Note	that	when	the	VLF	is	running	on	touch	devices,	the	Log	off	Inactivity
Timeout	and	Log	on	Inactivity	Timeout	options	are	disabled.	You	should	use
device	specific	timeout	settings	to	control	access	to	the	device.
Avoid	using	command	handlers	that	are	displayed	in	their	own	windows.
Command	handlers	should	always	be	displayed	in	one	of	the	tabs.
	

When	Executing	A	Framework	Application	on	a	Touch	Device
In	touch	devices	the	Framework	will	always	appear	as	if	the	following
properties	had	been	set	(switching	views	is	not	allowed):

The	splitter	bars	are	wider	to	make	it	easier	to	drag	them.
To	minimize	the	need	to	resize,	commands	are	automatically	maximized	when
they	finish	execution.
One	touch	on	an	instance	list	entry	will	execute	the	default	command.
To	bring	up	the	context	menu,	touch	and	hold	for	longer	than	a	second.

Also	see	Tracing	on	iPads	and	Tracing	on	Android	Touch	Devices.
	

Tracing	Web	Applications
Tracing	in	Web	browser	applications	can	be	turned	on	by	checking	the	Turn
Tracing	On	option	when	launching	your	application	on	the	web:	You	can	also
add	?Trace=Y	to	end	of	any	Framework	URL	to	initiate	tracing:

To	trace	values	when	a	WAM	first	starts	use	a
#avFrameworkManager.uInitialize	event	handler.	Similarly,	to	trace	values	as	a
WAM	closes	use	a	#avFrameworkManager.uTerminate	event	handler:
Trace	values	when	WAM	starts:
Evtroutine	Handling(#avFrameworkManager.uInitialize)
Options(*noclearmessages	*noclearerrors)
	
	Invoke	#AVFRAMEWORKMANAGER.avRecordTrace
Component(#com_owner)	Event('WAM	Filter	is	initialising')
Endroutine

	
Trace	values	when	WAM	ends:
Evtroutine	Handling(#avFrameworkManager.uTerminate)
Options(*noclearmessages	*noclearerrors)
	
	Invoke	#AVFRAMEWORKMANAGER.avRecordTrace
Component(#com_owner)	Event('WAM	Filter	is	terminating')
Endroutine

	
Also	see:

Tracing	on	iPads
Tracing	on	Android	Touch	Devices

Tracing	on	iPads

1.		In	the	Settings	panel	touch	Safari	and	then	Developer.

	

2.				In	the	Developer	panel	turn	the	Debug	Console	on:

3.				When	you	now	go	back	to	Safari	you	can	see	a	small	Debug	Console	area.	If
there	are	logs	to	show,	touching	the	arrow	on	the	right	will	bring	up	the	debug
console	like	this:

Javascript	errors	also	show	up	in	the	Debug	Console.
	

Tracing	on	Android	Touch	Devices
Tracing	on	Android	touch	devices	is	not	as	straightforward	as	on	iPads	because
there	is	no	browser	inbuilt	console.
There	are	a	few	tools	to	remote	debug	Webkit	browsers.	Here	we	are	only	going
to	cover	the	Android	Debug	Bridge	–	adb	–	which	lets	you	output	trace
statements	to	a	dos	command	prompt.	To	use	adb	you	require:
The	platform	tools	included	in	the	Android	SDK	package:
http://developer.android.com/sdk/index.html.		Note:	the	entire	package	is	quite
big,	it	should	be	enough	to	just	get	the	platform	tools.
A	USB	connection	to	a	PC	or	laptop.	Check	that	your	device	has	USB
Debugging	enabled:	Settings	–	Applications	–	Development	–	USB	debugging
	
To	start	using	adb:

1.			Connect	the	device	to	the	computer	and	open	a	DOS	prompt	and	change
directory	to	the	platform	tools.

2.			Type	this	command	and	press	Enter:

	

3.			Type	this	command	and	press	Enter:

	

4.			Type	this	command	and	press	Enter:

http://developer.android.com/sdk/index.html

	
If	no	devices	are	listed	it	probably	means	that	the	proper	driver	is	missing.
Otherwise	you	should	see	something	like	this:

	

5.				To	start	tracing,	first	clear	the	log:

	

6.				Next	you	can	issue	this	command	which	will	filter	the	browser	messages:

	
From	here	on	any	trace	messages	will	come	out	on	the	DOS	window:

For	more	information	about	the	adb	interface	see:
http://developer.android.com/guide/developing/tools/adb.html.
	

http://developer.android.com/guide/developing/tools/adb.html

VLF.NET	Applications
Any	Framework	Web	Browser	application	can	be	compiled	as	a	.NET
executable.	The	VLF.NET	feature	supports	all	existing	and	new	WAM	filters
and	command	handlers	and	all	RAMP	screens	and	scripting.				
		
How	is	the	VLF.NET	feature	activated?
To	enable	the	VLF.NET	feature:
Open	your	Framework	as	a	designer.	Use	the	(Framework)	->	(Properties…)
menu	options.	Display	the	Framework	Details	tab.	Ensure	that	the	Enable
Framework	for	Web	Browser	Applications	option	is	checked.
Check	the	Compile	Framework	as	Microsoft	.NET	Executable	option.

When	you	next	save	the	Framework	with	these	options	selected,	the	Framework
is	compiled	as	a	.NET	executable.
	
Are	there	any	circumstances	under	which	VLF.NET	feature	cannot	be
used?
Yes,	if	the	users	are	behind	a	proxy	server	that	requires	them	to	enter	their
username	and	password,	the	VLF.NET	feature	cannot	be	used.	This	is	a
limitation	of	.NET	ClickOnce	deployment	technology	which	does	not	currently
support	downloading	of	files	through	a	proxy	server	that	requires	non-Windows
integrated	authentication.
	

Microsoft's	.NET	Framework
To	use	VLF.NET	both	developers	and	end-users	need	to	have	Microsoft’s	.NET
Framework	2.0	(or	later)	and	.NET	Framework	2.0	Service	Pack	1	installed.
If	.NET	Framework	3.5	has	been	installed,	.NET	Framework	2.0	Service	Pack	1
does	not	need	to	be	installed	separately.
Some	problems	have	been	reported	when	installing	.NET	Framework	2.0
Service	Pack	1	on	Vista,	in	which	case	.NET	Framework	3.5	will	be	have	to	be
installed.
.NET	2.0	Software	Development	Kit	(SDK)	is	not	required.

	

Deployment
For	step-by-step	instructions	of	how	to	deploy	a	VLF.NET	application,	see
Check	List/Planning	Sheet	WEB-NET.
Also	see	VLF.NET	Manual	Deployment	–	An	Alternative	Way	of	Deploying
VLF.NET
When	you	save	the	Framework	with	the	VLF.NET	feature	activated,	additional
.NET	files	are	created	in	addition	to	the	normal	VLF.WEB	HTML	and	JS	files.
If	your	Framework	was	stored	in	an	XML	file	named	My_Framework.XML	and
enabled	for	languages	ENG	and	FRA,		these	additional	.NET	files	would	be
produced	during	a	save:	

ENG My_Framework_ENG.application
My_Framework_ENG.exe.manifest
My_Framework_ENG.framework.deploy
My_Framework_ENG.app.exe.deploy

FRA My_Framework_FRA.application
My_Framework_FRA.exe.manifest
My_Framework_FRA.framework.deploy
My_Framework_FRA.app.exe.deploy

	

So	there	are	four	files	per	language,	suffixed	with	.application,	.exe.manifest,
.framework.deploy	and	app.exe.deploy.

	

What	files	need	to	be	put	onto	the	HTTP	web	server?
The	four	files	per	language	described	above	and	files	VF_WB001.HTM	and
VF_MULTI_YYY.js	(where	YYY	is	the	language	code).
If	you	are	using	RAMP	VF_SY120.HTM	and	VF_SY120.JS	need	to	be
included.	
These	files	are	self	contained.
Of	course,	the	WAM	functions	used	by	your	Framework	as	filters	and	command

mk:@MSITStore:lansa047.chm::/Documents/checklistplanningsheetwebnet.htm

handlers	need	to	reside	on	your	application	server	as	do	any	other	AJAX	HTML
files,	Style	sheets,	script	files,	etc.				

	

Where	should	these	files	be	served	from?
For	a	developer,	from	your	private	folder.
In	production	environments,	your	L4Web	images	folder	is	the	recommended
folder.
The	server	can	be	an	IIS	Windows	server	or	a	System	i	Apache	HTTP	server.
	
System	i	Apache	server	configuration	changes
With	a	System	i	Apache	server	some	minor	configuration	changes	may	need	to
be	made	to	the	MIME	types	control	table	so	that	the	files	are	served	correctly:	
Use	the	Apache	administration	browser	interface	(*ADMIN	instance	in	port
2001)	and	click	on	Content	Settings	link.
In	the	MIME	tab,	click	on	the	ADD	button	to	add	the	following	Content-type
entries:

File	Extension Value
application application/x-ms-application

manifest application/x-ms-manifest

deploy application/octet-stream

	

Or	if		editing	the	configuration	file	with	a	text	editor,	in	the	relevant	section	add
these	lines:
AddType	application/x-ms-application	application
AddType	application/x-ms-manifest	manifest
AddType	application/octet-stream	deploy

	

VLF.NET	Manual	Deployment	–	An	Alternative	Way	of
Deploying	VLF.NET
ClickOnce	deployment	strategy	is	not	viable	in	some	circumstances,	such	as
ones	where	strict	security	policy	is	in	place	and	all	applications	have	to
explicitly	be	given	permission	to	run.
Under	ClickOnce	deployment	method,	.NET	framework	downloads	the
application	files	to	the	current	user	profile	directory	and	then	runs	the
application	from	there,	making	it	very	hard	for	the	system	administrator	to
define	a	rule	in	the	security	policy	to	allow	the	application	to	run.
A	new	feature	in	this	release	will	address	this	problem	by	enabling	the	network
administrator	to	generate	a	version	of	VLF.NET	that	can	be	launched	locally
and	does	not	employ	ClickOnce	deployment	technology.	It	is	important	to	note
however	that	this	alternative	deployment	method	does	not	change	the	fact	that
you	will	still	need	to	have	a	LANSA	web	server	to	serve	the	content	of	your
framework.
The	generated	application	files	can	then	be	manually	copied	(XCOPY
deployment)	to	a	location	accessible	by	end-users,	such	as	a	network	share.	This
way	of	deploying	VLF.NET	will	also	come	in	handy	when	Citrix	environment	is
used	as	it	means	only	one	copy	of	VLF.NET	needs	to	be	present	in	the	server	as
opposed	to	one	copy	per	user	if	ClickOnce	deployment	is	used.
Below	are	the	steps	to	produce	VLF.NET	application	files	for	manual
deployment:
1.			Deploy	the	ClickOnce	files	as	normal	to	the	website	hosting	VLF.NET
2.			Enter	in	the	URL	to	launch	it	on	the	address	bar	of	your	browser	-	make	sure
to	include	any	additional	parameters	(such	as	Partition=xxx)	that	are	required.
Add	an	additional	parameter	“GenerateDesktopApp=Y”.	This	parameter	is
the	key	to	the	files	generation	as	instead	of	running	the	framework,	VLF.NET
will	generate	the	application	files.	It	will	also	write	out	a	configuration	file
containing	all	the	parameters	that	you	specified	in	the	query	string.

3.			When	completed,	VLF.NET	will	open	the	folder	containing	the	generated
files	in	Windows	Explorer.	Those	are	the	files	you	(or	the	network
administrator)	need	to	manually	deploy.	Once	deployed,	the	administrator
needs	to	identify	the	main	executable	file	(it’s	the	executable	file	outside	the
Content	subfolder	–	do	not	do	anything	to	the	files	inside	the	Content
subfolder)	and	do	these	steps:

a.Modify	the	Windows	security	policy	to	allow	the	executable	file	to	run.
b.Modify	the	.NET	security	policy	to	grant	Full	Trust	to	the	executable.	This
is	especially	important	when	the	files	are	in	a	network	share	as	by	default
they	will	be	treated	as	partially	trusted.

c.Optional	-	create	a	shortcut	to	the	executable	file	for	the	convenience	of	the
end-users.

	

	

Configuration	File
Since	the	application	is	going	to	be	launched	locally,	there	is	no	notion	of	a
URL	and	query	string.	To	allow	you	to	specify	parameters	when	launching
VLF.NET	locally,	a	configuration	file	is	employed	as	a	means	to	specifying
these	parameters.	The	name	of	the	configuration	file	is	the	same	as	the	name	of
the	executable	file,	but	ends	with	.config	extension.	If	you	rename	the
executable	file,	make	sure	to	rename	the	configuration	file	as	well	to	match	the
executable	file.
When	you	generate	the	application	files	(by	specifying	the	parameter
GenerateDesktopApp=Y)	a	default	configuration	file	will	be	generated	for	you

based	on	the	parameters	that	you	specified	in	the	query	string	of	the	URL	at	the
time	of	generation.	If	later	you	need	to	change	the	values	of	the	parameters,
open	the	configuration	in	a	text	editor	(such	as	notepad)	and	carefully	change
the	values	of	the	parameters.

	

Launching	a	VLF.NET	Application
The	URL	used	to	launch	a	VLF.NET	application	looks	just	like	a	normal	HTML
one.	For	example:
http://hostname/My_Framework_ENG.application
	
Also,	the	VLF	URL	based	parameters	like	+Trace=Y	are	passed	to	VLF.NET
applications	just	like	a	normal	HTML	ones	are.	For	example:
http://hostname/My_Framework_ENG.application?Developer=Y+Trace=Y
	
The	URL	used	to	launch	a	VLF.NET	application	defaults	to	partition	DEM,	so	if
you	are	using	another	partition,	you	must	specify	the	partition	parameter.	For
example:
http://hostname/My_Framework_ENG.application?partition=EX1
	
Download	size
The	minimum	download	size	of	a	VLF.NET	application	during	the	initial
download	is	approximately	6.5	-	8	MB.	It	will,	however,	depend	on	the	size	of
your	Framework.	Subsequent	downloads	should	be	significantly	smaller.
	
How	does	ClickOnce	deployment	technology	used	by	VLF.NET	work?
When	the	user	enters	the	application	URL	in	their	browser,	the	browser
downloads	a	small	manifest	file	which	it	then	passes	to	the	.NET	runtime.	If	this
is	the	first	time	the	application	is	run,	.NET	runtime	will	download	all	the	files
required	to	run	the	application	and	store	it	on	your	local	computer.	It	will	then
verify	the	integrity	of	the	application	before	running	it.
The	next	time	the	user	points	their	browser	to	the	same	URL,	.NET	runtime	will
check	if	the	application	files	have	been	updated	on	the	server	and	download	the
updated	or	new	files	as	required.	It	is	important	to	note	that	your	VL	Framework
version	number	will	be	used	to	determine	if	there	is	an	updated	version	of	the
application	available.
It	is	therefore	recommended	that	the	checkbox	Automatically	Increment	when
Saving	(Framework	->	Properties…	->	Identification	tab)	is	ticked	so	that	the
version	number	is	incremented	automatically	with	every	save.

http://hostname/My_Framework_ENG.application
http://hostname/My_Framework_ENG.application?Developer=Y+Trace=Y
http://hostname/My_Framework_ENG.application

If	this	option	is	not	selected,	you	will	need	to	change	the	version	number
yourself	whenever	you	are	uploading	the	files	to	the	webserver.
	

	

Digital	Certificates
How	are	.NET	applications	signed	at	compile	time?
If	you	have	a	digital	certificate	that	is	issued	by	a	certification	authority	(such	as
VeriSign)	you	can	sign	your	VLF.NET	application	to	ensure	their	authenticity	to
end-users.	To	do	this	you	need	to	specify	the	Certificate	File	(PFX)	and	optional
Certificate	File	Password	in	the	Developer	Preferences	tab.	These	are	used
when	you	save	your	Framework	to	digitally	sign	your	VLF.NET	application.

	
The	certification	authority	supplied	my	certificate	in	two	files:	.PVK	and
.SPC	(or	.PVK	and	.CER).	Can	I	use	them?
Yes	but	you	will	need	to	create	a	Personal	Information	Exchange	(PFX)	file	first
from	those	2	files.	Use	pvk2pfx	tool	to	do	so.	The	information	about	this	tool
can	by	found	on	http://msdn.microsoft.com/en-us/library/aa906332.aspx.
	

	

What	happens	if	a	valid	digital	certificate	is	not	used?
If	a	valid	digital	certificate	(a	digital	certificate	issued	by	a	certification
authority)	is	not	used,	the	application	will	be	signed	with	an	auto-generated
temporary	digital	certificate.	The	application	can	still	be	deployed	and	run,
however	the	first	time	the	application	is	run	by	a	user,	a	dialog	box	similar	to
below	will	appear	warning	the	user	that	the	publisher	of	the	application	can’t	be
verified.
Please	note	that	the	temporary	digital	certificate	is	generated	for	testing
purposes	only	and	VLF.NET	applications	signed	with	this	temporary	certificate
should	not	be	used	in	production	environment.

http://msdn.microsoft.com/en-us/library/aa906332.aspx

	
Is	VLF.NET	a	Full	Trust	or	Partial	Trust	.NET	application?
VLF.NET	is	a	Full	Trust	.NET	application.	This	means	that	VLF.NET	is	not
subjected	to	code	access	security	checking.
The	ClickOnce	deployment	process	will	take	care	of	this	automatically	and	it	is
not	necessary	for	the	users	or	administrators	to	configure	their	computers.
If	a	valid	certificate	issued	by	a	certification	authority	is	used,	the	first	time	the
application	is	run	by	a	user	a	dialog	box	will	appear,	warning	the	user	that	the
application	requires	access	to	the	computer	that	is	potentially	unsafe.

	
I’m	using	a	valid	certificate	issued	by	a	certification	authority.	Is	there	a

way	to	prevent	the	user	from	being	prompted	with	the	potentially	unsafe
access	security	warning	dialog	box?

	

Yes,	your	certificate	will	need	to	be	added	to	the	‘Trusted	Publisher’	section	of
every	computer	that	is	going	to	run	VLF.NET.	Your	domain	administrator
should	be	able	to	configure	this	easily	for	you.

	

How	are	.NET	applications	verified	at	execution	time?
VLF.NET	applications	are	downloaded	using	a	Microsoft	.NET	web	based
deployment	technology	called	‘ClickOnce’.	The	download	procedure	it	uses
automatically	verifies	the	digital	certificate	associated	with	your	application.		
	
Can	I	run	VLF.NET	over	SSL	(HTTPS)?
Yes,	but	you	will	need	an	SSL	certificate	issued	by	a	trusted	Certification
Authority	(such	as	VeriSign)	installed	on	your	web	server.	Below	is	an	extract
from	MSDN	in	regards	to	ClickOnce	deployment	over	SSL:
A	ClickOnce	application	will	work	fine	over	SSL,	except	when	Internet
Explorer	raises	a	prompt	about	the	SSL	certificate.	The	prompt	can	be	raised
when	there	is	something	wrong	with	the	certificate,	such	as	when	the	site	names
do	not	match	or	the	certificate	has	expired.	To	make	ClickOnce	work	over	an
SSL	connection,	make	sure	that	the	certificate	is	up-to-date,	and	that	the
certificate	data	matches	the	site	data.

	

	

VLF.NET	Form	Layout	Details
VLF.NET	form	layout	details	are	remembered	between	sessions.
They	are	stored	in	a	file	under	a	directory	called	VLF,	which	is	a	subdirectory
under	the	roaming	profile	application	data	folder	of	the	current	Windows	user.
The	file	is	named	after	the	Framework	name	with	.xml	extension.	The	layout
details	can	be	reset	by	deleting	this	file.
You	can	also	reset	the	layout	details	easily	from	the	application	window	menu.
To	open	the	window	menu,	click	on	the	application	icon.	Click	on	‘Reset	User
Settings	to	Default’.	Note	that	it	will	also	clear	the	most	recently	used	business
object	list	if	it	is	enabled	for	the	Framework.

	
	
If	it	is	installed	on	C:	drive	and	your	Framework	name	is	MyFramework,	the
settings	file	is	called	MyFramework.xml	and	can	be	found	under
C:\Users\UserName\AppData\Roaming\VLF.

	

How	are	the	form	layout	details	stored?
They	are	stored	by	user,	not	device,	and	they	are	stored	for	individual
Frameworks.

	

	

Visual	Themes
VLF.NET	supports	five	themes:
Current	Windows	theme
2007	Blue
2007	Silver
2007	Graphite
2007	Olive

	

If	one	of	the	2003	themes	is	selected,	it	will	be	replaced	with	the	equivalent
2007	theme	(e.g.	2003	Silver	will	be	mapped	to	2007	Silver).
See	Web	Application	Start	Options.

	

Windows	Framework	Properties	Applicable	to	VLF.NET
Some	Windows	Framework	and	business	object	properties	which	are	ignored	by
VLF.WEB	are	observed	by	VLF.NET.

	

Framework	-	Details	Tab

Properties Behavior	in	VLF.NET

Allow	Panes	to	be	Shrunk	and
Expanded

Allow	panes	to	be	pinned	and	unpinned

Enable	the	Position	Menu
Option

Allow	panes	to	be	docked,	undocked,	and
dragged	around

Allow	Search/Recently	Used
Limit

Same	as	in	Windows	Framework
applications

Search	Field	Width Same	as	in	Windows	Framework
applications

	

Command	Display	Tab

Properties Behavior	in	VLF.NET

Command	Tab
Style

Supports	Tabs,	Buttons,	and	FlatButtons	(Stacked	is	not
supported)

Command	Tab
Location

Same	as	in	Windows	Framework	applications

	

Business	Object	–	Instance	List	/	Relations	Tab

Properties Behavior	in	VLF.NET

Instance	List	Tool	Bar
Location

Same	as	in	Windows	Framework
applications

	

Business	Object	–	Filter	Settings	Tab

Properties Behavior	in	VLF.NET

Filter	Tab	Style Same	as	in	Windows	Framework	applications

Filter	Tab	Location Same	as	in	Windows	Framework	applications

	

	
	

Framework-AJAX	Applications
	
To	understand	what	AJAX	applications	are,	see
http://en.wikipedia.org/wiki/AJAX	for	a	generic	description.	
	

Benefits	of	AJAX	applications
See	http://en.wikipedia.org/wiki/AJAX	for	a	general	description	of	the	benefits
of	an	AJAX	application.
In	the	Framework,	AJAX	applications	offer:
Optimal	web	performance	by	avoiding	full	page	or	full	frame	refreshes
The	ability	to	create	web	forms	that	are	close	to	Windows	rich	client	in
function	and	speed.
On-the-fly	data	validation
On-the-fly	data	fetching/updating/deleting
Maximum	control	and	freedom	in	processing	logic	and	UI	interactions
	

Disadvantages	of	AJAX	applications
Compared	to	WAM	applications,	AJAX	application	development	requires	an
extended	skill	set	and	usually	longer	development	times.
Also,	AJAX	applications	generally	produce	higher	web	and	application	server
hit	rates.	The	requests	are	usually	simpler,	but	made	more	often.	This	changes
the	profile	of	the	performance	load	on	your	web	and	application	servers.	This	is
a	very	important	consideration	in	your	application	design.			
	

When	should	I	use	an	AJAX	application?
Generally,	you	should	only	use		AJAX	applications	when	the	additional	cost	of
developing	them	is	less	that	the	value	of	the	benefit	they	deliver	(the	problem	of
course	is	in	assessing	the	true	value	of	the	benefit	they	deliver).					
A	typical	Framework-WEB	application	should	mainly	consist	of	WAM
functions,	with	the	occasional	AJAX	routine	used	in	selected	application	areas.
You	might	use	AJAX:
When	optimal	performance	is	required	(for	example	high	volume	data	entry)	

http://en.wikipedia.org/wiki/AJAX
http://en.wikipedia.org/wiki/AJAX

When	optimal	or	elaborate	UI	interactions	are	required	(for	example	order
entry)
As	demonstration	vehicles	for	customer	or	end-users
In	areas	that	are	very	heavily	used	by	customer	or	end-users
	
Mandatory	Skills
AJAX	Applications	in	the	Framework
AJAX	Exercises
Tracing
Messages	and	Errors
Frequently	Asked	Questions
Restrictions
Recommendations
	

Mandatory	Skills
To	create	AJAX	applications	you	must	have:
At	least	basic	JavaScript	and	HTML	or	DHTML	programming	skills
LANSA	RDML	or	RDMLX	programming	skills
The	material	in	this	guide	assumes	that	you	have	these	skills	already.
You	do	not	need	any	XML	or	XSLT	skills.
	
Getting	Started
If	you	do	not	have	basic	JavaScript	or	HTML/DHTML	skills	you	should	build
them	up	first	using	simple	examples.	There	are	many	excellent	books	and	web
sites	that	can	help	you	acquire	these	basic	skills.		For	example
http://www.w3schools.com/.
If	you	already	have	these	skills	and	wish	to	apply	them	in	the	Framework-AJAX
context,	the	best	place	to	start	is	with	the	AJAX	Exercises	in	this	guide.						
	

http://www.w3schools.com/

AJAX	Applications	in	the	Framework
You	can	create	filters	and	command	handlers	as	AJAX	routines	(just	as	you	use
VL	components	or	WAMs	to	create	filters	and	command	handlers).
			

	
An	AJAX	routine	usually	consists	of	at	least	two	parts:

An	AJAX
page

This	is	an	HTML/JavaScript	document	that	visualizes	the	filter	or
command	handler	inside	the	Framework.	It	manages	all	the
interactions	between	the	user,	the	Framework	and	the	AJAX
functions	executing	on	the	server(s).
	

One	or
more
AJAX
functions			

These	are	normal	RDML	or	RDMLX	functions	that	execute	on	the
application	server.	They	use	AJAX	processing	to	communicate
with	the	AJAX	page.	An	AJAX	page	will	often	use	multiple
AJAX	functions.	Sometimes	AJAX	functions	service	multiple
AJAX	pages.
They	are	not		WAMs	or	VL	components.

	

	

AJAX	Pages	and	Functions
Interaction	between	AJAX	pages	and	AJAX	functions
Information	Flow	Between	AJAX	Pages	and	Functions
Things	an	AJAX	pages	must	provide	to	the	Framework
Things	the	Framework	Provides	to	an	AJAX	page
	

AJAX	Pages	and	Functions
	
AJAX	Pages
An	AJAX	page	is	an	HTML	document.	Typically	it	contains	JavaScript	to
manage	interactions	between	the	application	server	and	the	user	interface.
For	example,	an	HTML	page	may	display	a	“Search”	button	on	the	user
interface.
When	the	user	clicks	it,	JavaScript	code	(executing	on	the	client	PC)	assembles
a	request	and	sends	it	to	the	application	server.
The	AJAX	function	(executing	on	the	server)	receives	the	request,	processes	it,
and	sends	back	a	response.
The	JavaScript	code	in	the	AJAX	page	receives	the	response	and	updates	the
user	interface,	for	example	by	dynamically	displaying	a	list	of	customers.		
There	are	two	significant	things	about	this	interaction:
The	request	sent	to	the	application	server	is	handled	asynchronously.	This
allows	the	user	and	JavaScript	to	do	other	things	while	waiting	for	the	server
to	respond.
The	JavaScript	typically	dynamically	rebuilds	just	part	of	the	user	interface
(for	example	a	list)	rather	than	rebuilding	the	entire	HTML	page	or	frame	from
scratch.								
	
AJAX	Functions
AJAX	functions	are	normal	RDML	or	RDMLX	functions,	so	they	are
architecturally	different	to	WAMs.	They	have	no	user	interface	capabilities.
There	only	purpose	is	to	receive	information	from	and	return	information	to
AJAX	page(s).
The	information	is	received	and	returned	as	pure	data.
The	AJAX	page	manages	how	the	information	is	input	by,	or	displayed	to,	the
user.	
	

Where	do	AJAX	pages	and	functions	reside?
AJAX	pages	reside	on	your	web	server,	typically	in	your	Framework	private
folder	while	you	are	doing	development.

AJAX	functions	reside	on	your	application	server.
Typically	your	web	server	and	application	server	are	on	the	same	computer.
	

Where	do	AJAX	pages	and	functions	execute?
The	JavaScript	in	AJAX	pages	execute	inside	a	web	browser	on	a	client	PC.
The	RDML	or	RDMLX	code	inside	an	AJAX	function	executes	on	your
application	server.
Very	rarely	do	your	web	browser	and	application	server	reside	on	the	same
computer.		The	most	notable	exception	is	when	you	are	developing	applications
using	the	VL-IDE	on	your	PC	and	executing	them	under	the	IIS	web	server
which	is	also	executing	on	your	PC.		
	

Interaction	between	AJAX	pages	and	AJAX	functions
The	Framework	model	for	exchanging	information	between	the	JavaScript	in	an
AJAX	page	and	the	RDML(X)	code	in	an	AJAX	module	simply	re-uses	the
Framework’s	Virtual	Clipboard	model.
Here’s	a	simple	example	of	an	AJAX	interaction:
	

	
An	AJAX	page	has	presented	a	form	with	a	Product	Description	and	a	Search
button.	When	the	user	clicks	the	button,	a	list	of	products	that	contain	the
description	is	displayed.
For	example	the	user	enters	“BOLTS”	as	the	product	description	and	clicks
Search.	
	
The	AJAX	Page	JavaScript,	executing	on	the	client,	handles	the	Search	button
click	and:
Saves	the	value	“BOLTS”	with	the	name	“Description”	onto	the	virtual
clipboard.
Sends	a	request	to	the	application	server.	The	request	contains:	

The	name	of	the	AJAX	function	to	be	invoked	on	the	server

The	action	that	the	AJAX	function	should	take	(for	example
PRODUCTSEARCH)

The	JavaScript	function	to	call	when	the	request	has	been	completed

It	then	does	nothing	more.	The	search	request	response	will	come	back	from	the
server	asynchronously	when	it	has	been	completed.
	
The	AJAX	function	is	invoked	on	the	application	server:
It	gets	the	request	that	the	client	made	(PRODUCTSEARCH).
It	gets	the	value	of	the	name	“Description”	from	the	clipboard	(“BOLTS”).
It	finds	all	the	products	containing	the	word	“BOLTS”	and	puts	their	Numbers
and	Descriptions	and	Quantity	on	Hand	values	onto	the	clipboard	in	a	list.

It	completes	execution.
	
The	Framework	detects	the	completion	of	the	server	AJAX	function.	It	then
calls	the	JavaScript	function	(in	the	AJAX	page)	that	was	nominated	to	handle
the	response.	The	JavaScript	function	then:
Removes	all	the	<TR>	table	rows	for	a	product	table	is	it	is	displaying	on	the
web	page.
Reads	from	the	clipboard	the	list	of	product	numbers,	descriptions	and
quantity	on	hand	values	that	the	AJAX	function	put	there.	From	this
information	it	formats	a	new	set	of	<TR>	table	rows	and	displays	them	to	the
user.
	

					
	
Almost	all	AJAX	Page	-	AJAX	function	interactions	follow	this	basic	flow	of
control	model.	What	they	actually	do	of	course	varies	widely.
The	magic	of	AJAX	is	that	this	small	Product	Search	area	may	be	imbedded
inside	a	much	larger	and	more	complex	AJAX	page.	When	the	search	is
executed,	only	the	Product	Search	area	is	refreshed	by	the	browser,	not	the
entire	page.	

Information	Flow	Between	AJAX	Pages	and	Functions
The	primary	means	of	sharing	information	between	AJAX	pages,	AJAX
functions	and	RAMP	scripts	is	the	virtual	clipboard.

	
The	virtual	clipboard	is	essentially	a	namespace	of	names,	values	and	lists:
JavaScript	code	(executing	on	the	client	PC)	in	your	AJAX	pages	can	read	or
write	information	from/to	the	virtual	clipboard.		
RDML/RDMLX	code	(executing	on	the	web	server)	in	your	AJAX	functions
can	read	or	write	information	from/to	the	virtual	clipboard.
RAMP	JavaScript	code	(executing	on	the	client	PC)	in	your	AJAX	pages	can
read	or	write	information	from/to	the	virtual	clipboard.
	
The	clipboard	they	all	use	is	shared.	It	is	created	when	the	Framework-WEB
session	is	started	and	persists	until	the	session	ends,	when	it	is	destroyed.
Clipboard	content	changes	are	invisibly	transferred	between	the	client	PC	and
web	server	(or	vice-versa)	as	required.
Only	the	clipboard	changes	are	transferred,	but	of	course	the	number	of	changes
you	make	impacts	how	much	information	needs	to	be	transferred.

Some	good	practice	tips	for	using	the	virtual	clipboard	are:		
You	should	develop	and	document	standards	for	the	names	and	values	it
contains.
The	amount	of	clipboard	data	you	transfer	from	the	client	to	the	server
particularly	impacts	application	performance.	Transferring	large	amounts	of
data	from	the	server	to	the	client	has	less	impact.	
	

AJAX	Information	in	the	Framework	Virtual	Clipboard
When	you	are	using	AJAX	applications,	the	Framework	puts	some	information
onto	the	virtual	clipboard	automatically.	Generally	you	should	treat	this
information	as	read-only	so	as	to	avoid	interfering	with	the	operation	of	the
Framework.
	
Name
Part	1

Name
Part	2

Name	Part	3 Usage	Comment

AJAX SYSTEM AJAXPAGE Current	AJAX	page	name

AJAX SYSTEM AJAXMODULE Default	RDML	or	RDML	AJAX
function	name

AJAX SYSTEM REQUEST Current	request

AJAX SYSTEM PAYLOAD Current	payload

AJAX SYSTEM RETURNCODE Latest	Return	Code

AJAX SYSTEM MESSAGECOUNT Latest	Message	Count	(can	be
updated)

AJAX SYSTEM MESSAGE Latest	Message	Instance

AJAX SYSTEM <any	other> Do	not	use	this	namespace.	It	is
reserved	for	the	current	and	future
Framework	versions.

	

Typically	you	will	only	ever	need	to	access	AJAX.SYSTEM.REQUEST	and
AJAX.SYSTEM.PAYLOAD	in	your	server	side	AJAX	functions	like	this:

	
	
*	Get	the	action	and	payload	that	the	Javascript	sent	
	
Execute	Subroutine(GETA)	With_Parms(SYSTEM	REQUEST	1	#REQUEST)	
Execute	Subroutine(GETA)	With_Parms(SYSTEM	PAYLOAD	1	#PAYLOAD)	
	
*	Now	switch	on	the	requested	action	
	
Case	Of_Field(#REQUEST)	
	
*	Load	10	sample	entries	
	
When	Value_Is(=	LOAD10)	
Execute	Subroutine(Load10)	
	
*	Validate	a	zip	code	
	
When	Value_Is(=	VALIDATE)	
Execute	Subroutine(VALIDATE)	
	
*	Handle	a	bad	request	
	
Otherwise	
Abort	Msgid(DCM9899)	Msgf(DC@M01)	Msgdta(('Unknown	request	'	+	#REQUEST	+	'	received	by	'	+	*FUNCTION))	
	
Endcase	

	
Typically	this	allows	one	AJAX	function	to	handle	many	different	AJAX	page
requests	coming	from	many	different	AJAX	pages.
	

Things	an	AJAX	pages	must	provide	to	the	Framework
When	you	create	an	HTML	document	that	is	to	be	used	by	the	Framework	as	an
AJAX	page,	it	needs	to	expose	three	JavaScript	functions	to	the	Framework	like
this:
	
<HTML>	
<HEAD>	
<link	rel='stylesheet'	type='text/css'	href='vf_vs001.css'	>				
<script>	
/*	==	*/	
/*	========================	Handle	Page	Initialization	====================	*/	
/*	==	*/	
function	VF_AJAX_Initialize()	
{	
			return;	
}		
/*	==	*/	
/*	========================	Handle	Page	Execution	=========================	*/	
/*	==	*/	
function	VF_AJAX_Execute()	
{	
		return;	
}		
/*	==	*/	
/*	=======================	Handle	Page	Termination	========================	*/	
/*	==	*/	
function	VF_AJAX_Terminate()	
{	
		return;	
}	
…etc…	
…etc…	

	
Once	this	has	been	done	the	AJAX	page	can	be	used	by	the	Framework.	See
Exercise	1:	AJAXEX1	–	Hello	World	for	an	example	of	doing	this.	

Things	the	Framework	Provides	to	an	AJAX	page
The	Framework	formally	exposes	various	JavaScript	objects	for	use	by	the
AJAX	page:
	

Name Type Comments
Using	BUSY	and	SETBUSY Function Sets	the	Framework	busy	state	to

true	or	false

Using	BUSY	and	SETBUSY Function Queries	the	current	Framework
state.	Returns	true	or	false

SENDREQUEST	Function Function Sends	a	request	to	an	AJAX
function	on	the	server

AVSAVEVALUE	Function Function Saves	a	named	value	to	the	virtual
clipboard

AVRESTOREAVALUE	and
AVRESTORENVALUE
Functions

Function Restores	an	alphanumeric	named
value	from	the	virtual	clipboard

AVRESTOREAVALUE	and
AVRESTORENVALUE
Functions

Function Restores	a	numeric	named	value
from	the	virtual	clipboard

Using	STYLESHEET Function Returns	the	name	of	the	variable
style	sheet	that	should	be	used	for
the	user	selected
WINDOWS/XP/WEB	look.
XP	WEB	look	is	no	longer
available.

Using	AJAXGLOBAL	to
Share	Information	between
Pages

Object Global	object	for	exchanging
information	between	AJAX	pages.

You	can	add	tracing	to	your
AJAX	pages	by	using	the
supplied	AVTRACE	function.

Function Add	information	to	the	trace
record

	 	 	

	

	
	

Using	BUSY	and	SETBUSY
BUSY
BUSY()	returns	True	or	False	indicating	whether	the	Framework	is	currently	in
a	busy	state.
Usually,	but	not	always,	you	want	to	ignore	a	user’s	request	if	the	Framework	is
busy.
	
SETBUSY
SETBUSY(True	or	False)	allows	you	to	set	the	Framework’s	busy	state.
Usually,	but	not	always,	you	want	to	use	SETBUSY(True)	just	before	sending	a
request	to	the	server	and	then	use	SETBUSY(False)	when	the	server	operation
completes.
	

Using	SENDREQUEST
SENDREQUEST	Function
Sends	an	asynchronous	request	to	an	AJAX	function	on	the	web	server.
Syntax
SETBUSY(SenderWindow,Function,Request,Payload,ResponseHandler,UserObject,ReportErrors,RouteMessages)
	

Parameters
SenderWindow Required.	Always	pass	as	window	so	as	to	identify	the

window	from	which	the	request	originated.

Function Required.	The	name	of	the	AJAX	style	RDML	or
RDMLX	function	to	be	invoked	on	the	server.	If	passed
as	null	or	""	it	will	default	to	the	name	of	the	function
defined	in	the	Framework	along	with	this	page.

Request Required.	The	request	that	is	to	be	passed	into	the	AJAX
function.	Typically	this	value	is	used	so	that	a	single
AJAX	function	can	handle	multiple	different	requests.

Payload Required.	The	payload	that	is	to	be	passed	into	the	AJAX
function.	Typically	used	to	qualify	the	Request	with
additional	information.	If	passed	as	null	or	""	it	will	be
passed	into	the	AJAX	function	as	blanks.	Maximum
length	256.		

ResponseHandler Required.	The	JavaScript	function	that	is	to	receive
control	when	the	AJAX	function	completes	execution.

UserObject Optional.	Any	JavaScript	object	that	should	be	passed
into	the	Handler.	Typically	used	to	qualify	to	the	handler
function	the	visual	item	it	should	update.			

ReportErrors Optional.	Indicates	whether	fatal	errors	detected	in	the
AJAX	function	should	be	reported	by	the	Framework.
Passed	as	True	or	False.	Default	is	True.

RouteMessages Optional.	Indicates	whether	messages	returned	by	the
AJAX	function	should	be	automatically	routed	into	the
Framework	message	area.	Pass	as	True	or	False.	Default
is	True.

	

Return	Value
None.
	

Handle	SENDREQUEST	Responses
When	you	issue	a	SENDREQUEST	operation	you	must	nominate	the	JavaScript
response	handler	function	that	is	to	receive	control	when	the	AJAX	function
completes	execution:
SETBUSY(SenderWindow,Function,Request,Payload,ResponseHandler,UserObject,ReportErrors,RouteMessages)
		
The	response	handler	JavaScript	function	must	be	declared	like	this:
function

MyHandler(Function,Request,Payload,UserObject,FatalError,FatalMessage)
	
These	parameters	are	always	passed	into	the	response	handler	by	the
Framework:

Function The	name	of	the	AJAX	function	that	has	completed
execution.

Request The	request	that	the	AJAX	function	handled.

Payload The	payload	that	was	presented	to	the	AJAX	function.

UserObject The	UserObject	that	was	passed	into	the	SENDREQUEST
function	that	initiated	this	response.

FatalError Contains	True	or	False	indicating	whether	a	fatal	error	was
detected	when	executing	the	AJAX	function.

FatalMessage A	composite	message	containing	all	the	error	messages
returned	by	an	AJAX	function	that	experienced	a	fatal	error.
If	no	fatal	error	was	detected	this	value	is	passed	as	"".		

	

	

Using	AVSAVEVALUE	and	AVRESTORExVALUE
These	are	like	other	virtual	clipboard	access	routines	used	elsewhere	in	the
Framework.

AVSAVEVALUE	Function
Saves	an	alphanumeric	or	numeric	value	onto	the	Framework	virtual	clipboard.
	
Syntax
AVSAVEVALUE(vValue,	sID1,	sID2,	sID3,	iInstance,	sLanguage)
	
Parameters

vValue Required.	Alphanumeric	or	numeric	value	to	save	to	the	virtual
clipboard.	

If	this	parameter	is	a	JavaScript	variable	of	type	string,	the	value
is	posed	to	the	clipboard	as	an	alphanumeric	value	and	can
therefore	only	be	sensibly	retrieved	using	the
AVRESTOREAVALUE	function	(or	equivalent).	
If	it	is	of	type	number,	it	is	posted	as	type	numeric	to	the
clipboard	and	can	only	be	sensibly	retrieved	using	the
AVRESTORENVALUE	function	(or	equivalent).	
	

sID1 Required.	String	that	contains	the	Virtual	Clipboard	identifier	1.

sID2 Optional.	String	that	contains	the	Virtual	Clipboard	identifier	2.

sID3 Optional.	String	that	contains	the	Virtual	Clipboard	identifier	3.

iInstance Optional.	Integer	that	contains	the	instance	number.	Defaults	to	1
when	not	specified.	Instances	are	typically	used	to	create	lists	of
clipboard	values	and	usually	accompanied	by	another	clipboard
value	that	indicates	how	many	entries	currently	exist	in	the	list.

sLanguage Optional.	String	that	contains	the	language	code.	Defaults	to
ALL	languages	when	not	specified.

	

Return	Value
None.
	

AVRESTOREAVALUE	and	AVRESTORENVALUE	Functions
Restore	an	alphanumeric	or	numeric	value	from	the	Framework	virtual
clipboard.
	
Syntax
AVRESTOREAVALUE/AVRESTORENVALUE(Default,	sID1,	sID2,	sID3,
iInstance,	sLanguage)
	
Parameters

Default Required.	String/Number	that	contains	the	default	value	to	return

if	the	value	is	not	found.	

sID1 Required.	String	that	contains	the	Virtual	Clipboard	identifier	1.

sID2 Optional.	String	that	contains	the	Virtual	Clipboard	identifier	2.

sID3 Optional.	String	that	contains	the	Virtual	Clipboard	identifier	3.

iInstance Optional.	Integer	that	contains	the	instance	number.	Defaults	to	1
when	not	specified

sLanguage Optional.	String	that	contains	the	language	code.	Defaults	to
ALL	languages	when	not	specified.

	

Return	Value
None.
	

Using	STYLESHEET
STYLESHEET	returns	a	script	which	contains	the	name	of	the	main	cascading
style	sheet	associated	with	the	current	Framework	web	session.		
It	has	no	arguments.
	

Using	AJAXGLOBAL	to	Share	Information	between	Pages
AJAXGLOBAL	is	a	JavaScript	object	that	is	only	accessible	to	AJAX	pages.
You	can	use	it	to	share	information	between	AJAX	pages.
	
For	example,	if	AJAXPAGE01.HTM	did	this:
	
AJAXGLOBAL.CurrentCompany	=	“ACME	Engineering”	
	

	
then	AJAXPAGE002.HTM	could	do	this:
			
alert(AJAXGLOBAL.CurrentCompany);		
	

	
Use	code	like:
	
if	(typeof(AJAXGLOBAL.XXXXXX)	==	”undefined”)		
	

	
to	check	whether	object	XXXXXX	exists	in	AJAXGLOBAL.	
	
AJAXGLOBAL	is	a	very	efficient	way	to	share	information	between	AJAX
pages,	but	it	is	only	accessible	to	AJAX	page	scripts,	so	if	you	want	share
information	with	server	AJAX	functions	or	RAMP	scripts	you	should	use	the
virtual	clipboard	instead.
	
AJAXGLOBAL	persists	from	session	start	to	session	end	at	which	time	it	is
destroyed.

AJAX	Exercises
Exercise	1:	AJAXEX1	–	Hello	World
Exercise	2:	AJAXEX2	–	Doing	Some	Simple	AJAX
Exercise	3:	AJAXEX3	–	Using	Asynchronous	Processing	
Exercise	4:	AJAXEX4	–	Using	the	Instance	List	

Exercise	1:	AJAXEX1	–	Hello	World
AJAX	Page	AJAXEX1.HTM
The	Steps
In	your	Framework	create	four	new	commands	named	AJAXEX1,	AJAXEX2,
AJAXEX3	and	AJAXEX4.	Use	(Framework)	->	(Commands)	to	do	this:

	
Manually	create	an	application	named	‘AJAX	Examples’
In	application	‘AJAX	Examples’,	manually	create	a	business	object	named
‘AJAX’.
Delete	all	filters	from	object	AJAX.	It	is	not	going	to	have	any	filters	or	an
instance	list.
Change	business	object	AJAX	so	that	its	Object	Command	Presentation	option
is	Use	all	of	Window:	
	

	
In	the	AJAX	business	object	enable	the	commands	AJAXEX1,	AJAXEX2	and
AJAXEX3.	These	should	all	be	business	object	level	commands,	because
object	AJAX	is	not	going	to	have	an	instance	list	associated	with	it.
Make	command	AJAXEX1	the	default	command	for	the	object	AJAX.	Save
your	Framework	and	restart	it:
	

	
Copy	and	paste	the	DHTML-JavaScript	code	in	AJAX	Page	AJAXEX1.HTM
using	NOTEPAD	and	save	it	into	your	Framework	private	working	folder	as
an	AJAX	page	file	named	AJAXEX1.HTM.
Now	snap	AJAX	page	file	AJAXEX1.HTM	into	your	Framework	as	the
command	handler	to	be	associated	with	command	AJAXEX1	like	this:

	
Save,	restart	and	execute	your	Framework	in	a	web	browser.	Select	application
‘AJAX	Examples’	and	then	select	business	object	AJAX.	This	should	execute
the	default	command	AJAXEX1,	causing	a	‘Hello	World’	display	like	this:			

	

	
	

AJAX	Page	AJAXEX1.HTM
	
<HTML>	
<HEAD	id='HEAD_Tag'>	
<link	rel='stylesheet'	type='text/css'	href='vf_vs001.css'	>				
<script>	
/*	==	*/	
/*	========================	Handle	Page	Initialization	====================	*/	
/*	==	*/	
function	VF_AJAX_Initialize()	
{	
			/*	Insert	the	variable	style	sheet	(ie:	XP,	WIN,	WEB	style)	into	this	page	*/	
			{	
						var	objLink		=	document.createElement("LINK");	
						objLink.rel		=	"stylesheet";	objLink.type	=	"text/css";		
						objLink.href	=	STYLESHEET();	

						document.getElementById("HEAD_Tag").insertAdjacentElement("afterBegin",objLink);	
			}	
			/*	Finished	*/	
			
			return;	
}		
/*	==	*/	
/*	========================	Handle	Page	Execution	=========================	*/	
/*	==	*/	
function	VF_AJAX_Execute()	
{	
		SETBUSY(false);		
		return;	
}		
/*	==	*/	
/*	=======================	Handle	Page	Termination	========================	*/	
/*	==	*/	
function	VF_AJAX_Terminate()	
{	
		return;	
}		
/*	==	*/	
</script>	
</HEAD>	
<BODY	id='HEAD_Tag'>	

	
<P	align='center'>Hello	World</p>	
</BODY>	
</HTML>	

	

Exercise	2:	AJAXEX2	–	Doing	Some	Simple	AJAX
AJAX	Page	AJAXEX2.HTM
AJAX	Function	AJAXEX2
The	Steps
	
Copy	and	paste	the	DHTML-JavaScript	code	in	AJAX	Page	AJAXEX2.HTM
using	NOTEPAD	and	save	it	into	your	Framework	private	working	folder	as
an	AJAX	page	file	named	AJAXEX2.HTM.
Copy	and	paste	the	AJAX	function	code	in	AJAX	Function	AJAXEX2	into	an
RDML	function	named	AJAXEX2	into	your	VL-IDE.	Compile	RDML
function	AJAXEX2	so	that	it	is	executable	on	your	web	server.
In	business	object	AJAX,	snap	AJAX	page	file	AJAXEX2.HTM	and	AJAX
function	AJAXEX2	into	your	Framework	as	the	command	handler	to	be
associated	with	command	AJAXEX2	like	this:
	

	
	
Save,	restart	and	execute	your	Framework	in	a	web	browser.	Select	application
‘AJAX	Examples’	and	then	select	business	object	AJAX.	This	should	execute

the	default	command	AJAXEX1.	Click	on	the	AJAXEX2	tab	to	execute	the
AJAXEX2	command:
	

	
Enter	a	number	and	then	click	the	increment	and	decrement	buttons.	The	value
you	enter	is	sent	to	the	AJAX	function	on	the	web	server	and	incremented	or
decremented	as	requested.	The	result	is	then	redisplayed	in	the	AJAX	page.
	
Sending	a	number	to	a	web	server	to	be	incremented	or	decremented	is	only	to
illustrate	the	foundations	upon	which	all	AJAX	applications	are	built,	including:
	
Sending	request	to	the	server
Receiving	responses	from	the	server
Asynchronous	processing
Dynamic	updating	of	the	web	page		
	
You	should	review	the	JavaScript/DHTML	code	in	AJAXEX2.HTM	and	the
RDML	code	in	AJAX	function	AJAXEX2	until	you	understand	the	basics	of
what	it	is	doing	and	how	it	is	doing	it.	

		

AJAX	Page	AJAXEX2.HTM
	
<HTML>	
<HEAD	id='HEAD_Tag'>	
<link	rel='stylesheet'	type='text/css'	href='vf_vs001.css'	>				
<script>	
/*	==	*/	
/*	========================	Handle	Page	Initialization	====================	*/	
/*	==	*/	
function	VF_AJAX_Initialize()	
{	
			/*	Insert	the	variable	style	sheet	(ie:	XP,	WIN,	WEB	style)	into	this	page	*/	
			{	
						var	objLink		=	document.createElement("LINK");	
						objLink.rel		=	"stylesheet";	objLink.type	=	"text/css";		
		objLink.href	=	STYLESHEET();	
						document.getElementById("HEAD_Tag").insertAdjacentElement("afterBegin",objLink);		
			}	
				
			/*	Finished	*/	
			return;	
}		
/*	==	*/	
/*	========================	Handle	Page	Execution	=========================	*/	
/*	==	*/	
function	VF_AJAX_Execute()	
{	
		SETBUSY(false);		
		return;	
}		
/*	==	*/	
/*	=======================	Handle	Page	Termination	========================	*/	
/*	==	*/	
function	VF_AJAX_Terminate()	
{	
		return;	
}		

/*	--	*/	
/*	Rationalized	virtual	clipboard	access	to	name	space	AJAX	*/		
/*	--	*/	
function	Put(val,np2,np3,inst)	{AVSAVEVALUE(val,"AJAX",np2,np3,inst);}	
function	GetN(np2,np3,inst)				{return(AVRESTORENVALUE(0,"AJAX",np2,np3,inst));}	
/*	--	*/	
/*	Handle	a	click	of	button	BUTTON_onclick		*/	
/*	--	*/	
function	BUTTON_onclick(strRequest)	
{	
		/*	Ignore	if	already	busy	doing	something	else	*/	
		if	(BUSY())	return;		
	
		/*	Validate	the	number	and	put	it	onto	the	clipboard	*/	
		{	
					var	floatNumber	=	parseFloat(NUMBER_Tag.value);		
					if	(isNaN(floatNumber))	{	alert("Invalid	number	entered");	return;	}	
					Put(floatNumber,"NUMBER");			
		}	
			
		/*	Make	busy	now	*/	
		SETBUSY(true);	
	
		/*	Update	the	message	area	*/	
	
		MESSAGE_Tag.innerText	=	"Processing	your	request	now.	Please	wait.";	
		MESSAGE_Tag.style.backgroundColor	=	"orange";		
			
		/*	Now	send	INCREMENT/DECREMENT	request	the	server	RDML	function	named	AJAXEV2	*/	
					
		if	(strRequest	=="I")	SENDREQUEST(window,"","INCREMENT","",INCREMENT_response);		
		else																			SENDREQUEST(window,"","DECREMENT","",DECREMENT_response);		
					
		/*	Finished	*/	
		return;	
}		
/*	-------------------------------------	*/	
/*	Handle	server	responding	to	INCREMENT	*/	
/*	-------------------------------------	*/	

function	INCREMENT_response(strFunction,strRequest,strPayload,objObject,flagFatalError,strFatalMessage)	
{	
		/*	Handle	a	fatal	error	in	the	server	function	*/		
		if	(flagFatalError)	{	alert(strFatalMessage);	SETBUSY(false);	return;	}			
			
		/*	Otherwise	display	the	result	to	the	user	*/	
		NUMBER_Tag.value	=	GetN("NUMBER").toString();	
		MESSAGE_Tag.innerText	=	"Increment	operation	completed	normally.";	
		MESSAGE_Tag.style.backgroundColor	=	"yellow";		
		SETBUSY(false);		
			
		/*	Finished	*/	
		return;	
}	
/*	-------------------------------------	*/	
/*	Handle	server	responding	to	DECREMENT	*/	
/*	-------------------------------------	*/	
function	DECREMENT_response(strFunction,strRequest,strPayload,objObject,flagFatalError,strFatalMessage)	
{	
		/*	Handle	a	fatal	error	in	the	server	function	*/		
		if	(flagFatalError)	{	alert(strFatalMessage);	SETBUSY(false);	return;	}			
			
		/*	Otherwise	display	the	result	to	the	user	*/	
		NUMBER_Tag.value	=	GetN("NUMBER").toString();	
		MESSAGE_Tag.innerText	=	"Decrement	operation	completed	normally.";	
		MESSAGE_Tag.style.backgroundColor	=	"aqua";		
		SETBUSY(false);		
			
		/*	Finished	*/	
		return;	
}	
</script>	
	
</HEAD>	
<BODY	id='HEAD_Tag'>	

	
<P	align='center'>Hello	World	2</p>	
	Input	Number	==>	<input	id='NUMBER_Tag'	type='text'>
	then	click	a	button	==>		

<input	id='BUTTON1_Tag'	type='button'	value='Increment'	onclick='BUTTON_onclick("I");'>	
<input	id='BUTTON2_Tag'	type='button'	value='Decrement'	onclick='BUTTON_onclick("D");'>	

<div	id='MESSAGE_Tag'	align='center'></div>		
</BODY>	
</HTML>	

	
	
	

AJAX	Function	AJAXEX2
	
	
*	This	is	just	a	simple	RDML	function.	
*	It	is	NOT	a	WAM	function.	
*	It	is	driven	by	the	virtual	clipboard	
	
Function	Options(*DIRECT	*HEAVYUSAGE)	
	
*	Define	local	fields	
	
Define	Field(#REQUEST)	Reffld(#STD_OBJ)	
Define	Field(#NUMBER)	Type(*DEC)	Length(30)	Decimals(9)	
Define	Field(#MSGDTA)	Type(*CHAR)	Length(132)	
	
*	Get	the	action	the	Javascript	requested	in	paramter	3	
*	when	it	executed	this	...	
*	SENDREQUEST(window,"","INCREMENT",INCREMENT_response);	
*	or	this	
*	SENDREQUEST(window,"","DECREMENT",DECREMENT_response);	
	
Execute	Subroutine(GETA)	With_Parms(SYSTEM	REQUEST	1	#REQUEST)	
	
*	Now	switch	on	the	requested	action	
	
Case	Of_Field(#REQUEST)	
	
*	Get	NUMBER	from	the	clipboard,	increment	and	put	back	
	

When	Value_Is('=	INCREMENT')	
Execute	Subroutine(GETN)	With_Parms(NUMBER	'	'	1	#NUMBER)	
Change	Field(#NUMBER)	To('#NUMBER	+	1')	
Execute	Subroutine(PUTN)	With_Parms(NUMBER	'	'	1	#NUMBER)	
	
*	Get	NUMBER	from	the	clipboard,	decrement	and	put	back	
	
When	Value_Is('=	DECREMENT')	
Execute	Subroutine(GETN)	With_Parms(NUMBER	'	'	1	#NUMBER)	
Change	Field(#NUMBER)	To('#NUMBER	-	1')	
Execute	Subroutine(PUTN)	With_Parms(NUMBER	'	'	1	#NUMBER)	
	
Otherwise	
Use	Builtin(BCONCAT)	With_Args('Unknown	request'	#REQUEST	'received	by'	*FUNCTION)	To_Get(#MSGDTA)	
Abort	Msgid(DCM9899)	Msgf(DC@M01)	Msgdta(#MSGDTA)	
Endcase	
	
*	Finished	
	
Return	
	
*	===	
*	Rationalized	subroutines	for	virtual	clipboard	access	
*	===	
	
Subroutine	Name(PUTA)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#AVAL	*RECEIVED))	
Define	Field(#NP2)	Type(*CHAR)	Length(28)	
Define	Field(#NP3)	Type(*CHAR)	Length(24)	
Define	Field(#INST)	Type(*DEC)	Length(7)	Decimals(0)	
Define	Field(#AVAL)	Type(*CHAR)	Length(256)	
Use	Builtin(VF_SAVEAVALUE)	With_Args(#AVAL	AJAX	#NP2	#NP3	#INST)	
Endroutine	
	
Subroutine	Name(PUTN)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#NVAL	*RECEIVED))	
Define	Field(#NVAL)	Type(*DEC)	Length(30)	Decimals(9)	
Use	Builtin(VF_SAVENVALUE)	With_Args(#NVAL	AJAX	#NP2	#NP3	#INST)	
Endroutine	
	
Subroutine	Name(GETA)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#AVAL	*RETURNED))	

Use	Builtin(VF_RESTOREAVALUE)	With_Args('	'	AJAX	#NP2	#NP3	#INST)	To_Get(#AVAL)	
Endroutine	
	
Subroutine	Name(GETN)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#NVAL	*RETURNED))	
Use	Builtin(VF_RESTORENVALUE)	With_Args(0	AJAX	#NP2	#NP3	#INST)	To_Get(#NVAL)	
Endroutine	

	

Exercise	3:	AJAXEX3	–	Using	Asynchronous	Processing	
AJAX	Page	AJAXEX3.HTM
AJAX	Function	AJAXEX3
The	Steps
	
Copy	and	paste	the	DHTML-JavaScript	code	in	AJAX	Page	AJAXEX3.HTM
using	NOTEPAD	and	save	it	into	your	Framework	private	working	folder	as
an	AJAX	page	file	named	AJAXEX3.HTM.
Copy	and	paste	the	AJAX	function	code	in	AJAX	Function	AJAXEX3	into	an
RDMLX	function	named	AJAXEX3	into	your	VL-IDE.	Compile	RDML
function	AJAXEX3	so	that	it	is	executable	on	your	web	server.
In	business	object	AJAX,	snap	AJAX	page	file	AJAXEX3.HTM	and	AJAX
function	AJAXEX3	into	your	Framework	as	the	command	handler	to	be
associated	with	command	AJAXEX3	like	this:
	

	
Save,	restart	and	execute	your	Framework	in	a	web	browser.	Select	application
‘AJAX	Examples’	and	then	select	business	object	AJAX.	This	should	execute
the	default	command	AJAXEX1.	Click	on	the	AJAXEX3	tab	to	execute	the

AJAXEX3	command:
	

	
This	AJAX	example	is	designed	to	demonstrate	the	asynchronous	nature	of
AJAX	processing.
It	is	updating	the	zip	codes	associated	with	people.	As	you	change	zip	codes	and
press	Enter	or	tab	your	change	will	be	sent	to	the	server	for	processing.	While
this	is	happening	you	can	update	other	zip	codes.
Try	this	sequence:
Click	on	the	first	zip	code	and	select	it.

Then	type	“1”,	Tab	->,	“2”,	Tab	->,	“3”,	Tab	->,	etc	as	fast	as	you	can.
The	display	should	look	like	this:
	

	
As	you	make	each	change	and	press	the	tab	->	key,	your	change	is	sent	to	the
server	for	immediate	validation.	You	can	then	keep	making	changes	while	the
server	handles	this	request.					
In	a	real	application	you	are	more	likely	to	be	entering	order	lines	(say)	and	the
changes	you	make	are	updated	immediately	into	the	server	database.
You	should	review	the	JavaScript/DHTML	code	in	AJAXEX3.HTM	and	the
RDML	code	in	AJAX	function	AJAXEX3	until	you	understand	the	basics	of

what	it	is	doing	and	how	it	is	doing	it.	
	

AJAX	Page	AJAXEX3.HTM
	
<HTML>	
<HEAD	id='HEAD_Tag'>	
<link	rel='stylesheet'	type='text/css'	href='vf_vs001.css'	>				
<script>	
/*	==	*/	
/*	========================	Handle	Page	Initialization	====================	*/	
/*	==	*/	
function	VF_AJAX_Initialize()	
{	
			/*	Insert	the	variable	style	sheet	(ie:	XP,	WIN,	WEB	style)	into	this	page	*/	
			{	
						var	objLink		=	document.createElement("LINK");	
						objLink.rel		=	"stylesheet";	objLink.type	=	"text/css";		
		objLink.href	=	STYLESHEET();	
						document.getElementById("HEAD_Tag").insertAdjacentElement("afterBegin",objLink);		
			}	
				
			/*	Finished	*/	
			return;	
}		
/*	==	*/	
/*	========================	Handle	Page	Execution	=========================	*/	
/*	==	*/	
function	VF_AJAX_Execute()	
{	
		/*	Request	that	the	server	makes	up	10	example	name/address/zipcode	details	*/	
		SENDREQUEST(window,"","LOAD10","",LOAD10_response);			
		/*	Finished	*/	
		return;	
}		
/*	==	*/	
/*	=======================	Handle	Page	Termination	========================	*/	
/*	==	*/	

function	VF_AJAX_Terminate()	
{	
		return;	
}		
/*	--	*/	
/*	Rationalized	virtual	clipboard	access	to	name	space	AJAX	*/		
/*	--	*/	
function	Put(val,np2,np3,inst)	{AVSAVEVALUE(val,"AJAX",np2,np3,inst);}	
function	GetA(np2,np3,inst)				{return(AVRESTOREAVALUE("","AJAX",np2,np3,inst));}	
function	GetN(np2,np3,inst)				{return(AVRESTORENVALUE(0,"AJAX",np2,np3,inst));}	
/*	----------------------------------	*/	
/*	Handle	server	responding	to	LOAD10	*/	
/*	----------------------------------	*/	
function	LOAD10_response(strFunction,strRequest,strPayload,objObject,flagFatalError,strFatalMessage)	
{	
		var	inst	=	0;	
		/*	Handle	a	fatal	error	in	the	server	function	*/		
		if	(flagFatalError)	{	alert(strFatalMessage);	SETBUSY(false);	return;	}			
			
		/*	Otherwise	load	the	tabe	with	the	10	results	and	display	to	the	user	*/	
		for	(inst	=	1;	inst	<=	10;	inst++)	
		{	
					var	objTR								=	TBODY_Tag.rows(inst	-	1);		
	var	objTDName				=	objTR.children(0);	
	var	objTDAddress	=	objTR.children(1);	
	var	objINZipCode	=	objTR.children(2).children(0);	
					var	objTDStatus		=	objTR.children(3);	
	
					objTDName.innerText				=	GetA("EX3","NAME",inst);		
					objTDAddress.innerText	=	GetA("EX3","ADDRESS",inst);		
					objINZipCode.value					=	GetN("EX3","ZIPCODE",inst).toString();		
					objINZipCode.__validatedvalue	=	objINZipCode.value;		
					objTDStatus.innerText		=	"	Loaded	from	Server	";		
					objTDStatus.style.backgroundColor	=	"palegreen";		
										
		}	
	
		/*	Hide	the	message	panel	and	show	the	table	panel	*/	
	

		DIV_Message.style.visibility	=	"hidden";	DIV_Message.style.display				=	"none";		
		DIV_Table.style.visibility			=	"visible";	DIV_Table.style.display						=	"inline";		
	
		/*	Drop	busy	status	*/	
		SETBUSY(false);		
			
		/*	Finished	*/	
		return;	
}	
/*	--	*/	
/*	Handle	key	press	in	TBODY	and	tabbing	to	next	input	zip	code	*/	
/*	--	*/	
function	NextZipCode(objINZipCode)	
{	
		var	intNext	=	parseInt(objINZipCode.__Instance,10)	+	1;		
		if	(intNext	>	10)	intNext	=	1;		
		var	objNextINPUT	=	document.getElementById("IN"	+	intNext.toString());		
		if	(objNextINPUT	!=	null)	objNextINPUT.focus();	
}	
	
function	TBODY_onkeydown()	
{	
		/*	Ignore	if	not	valid,	or	not	enter	or	ab	key	*/	
		if	((event.keyCode	!=	13)	&&	(event.keyCode	!=	9))	return;		
		if	(typeof(event.srcElement.__validatedvalue)	==	"undefined")	return;		
	
		/*	Extract	the	INPUT	field	involved,	ignore	if	not	zip	code	or	not	changed	*/		
		{	
					var	objINZipCode	=	event.srcElement;	
	/*	If	unchanged	do	nothing	*/	
					if	(objINZipCode.__validatedvalue	==	objINZipCode.value)		
	{		
				if	(event.keyCode	==	13)	NextZipCode(objINZipCode);		
	}	
	else	
	{		
								while	(objINZipCode.value.length	<	5)	objINZipCode.value	=	"0"	+	objINZipCode.value;		
								var	floatNumber	=	parseFloat(objINZipCode.value);		
					/*	var	intInstance	=	parseInt(objINZipCode.__Instance,10);	*/

								var	intInstance	=	parseInt(objINZipCode.getAttribute("__Instance"),10);
	
								if	(isNaN(floatNumber))	{	alert("Invalid	number	entered");	return;	}	
								/*	reaching	here	means	a	zip	code	that	has	been	changed,	so	send	validation	request	*/	
								{	
											var	objTDStatus	=	objINZipCode.parentElement.nextSibling;		
							objTDStatus.innerText		=	"	Validating	at	Server	";		
											objTDStatus.style.backgroundColor	=	"gold";		
}	
								objINZipCode.contentEditable		=	false;	
								Put(floatNumber,"EX3","ZIPCODE",intInstance);				
SENDREQUEST(window,"","VALIDATE",intInstance.toString(),VALIDATE_response,objINZipCode);					
if	(event.keyCode	==	13)	NextZipCode(objINZipCode);		
	}			
		}		
	
		/*	Finished	*/	
		return;	
}	
/*	------------------------------------	*/	
/*	Handle	server	responding	to	VALIDATE	*/	
/*	------------------------------------	*/	
function	VALIDATE_response(strFunction,strRequest,strPayload,objINZipCode,flagFatalError,strFatalMessage)	
{	
		var	objTDStatus	=	objINZipCode.parentElement.nextSibling;		
	
		/*	Handle	a	fatal	error	in	the	server	function	*/		
		if	(flagFatalError)	{	alert(strFatalMessage);	return;	}			
	
		objINZipCode.contentEditable	=	true;	
	
		if	(GetA("EX3","RESPONSE")	==	"OK")	
		{		
					objINZipCode.__validatedvalue	=	objINZipCode.value;			
					objTDStatus.innerText		=	"	Validated	and	Updated	by	Server	";		
					objTDStatus.style.backgroundColor	=	"springgreen";		
		}	
		else	
		{	

					objTDStatus.innerText		=	"	Validation	by	Server	failed	-	"	+	GetA("EX3","MESSAGE")	+	"	";		
					objTDStatus.style.backgroundColor	=	"tomato";		
		}		
	
		/*	Zap	the	object	reference	*/		
			objINZipCode	=	null;	
}	
	
</script>	
	
</HEAD>	
<BODY	id='BODY_Tag'>	

	
<P	align='center'>High	Volume	Update</p>	
<div	id='DIV_Message'>	
<P	align='center'>Loading	...	please	wait</p>	
</div>	
<div	id='DIV_Table'	style='visibility:hidden;display:none;'>	
<table>	
<thead>	
<tr>	
<th>Name</th><th>Address</th><th>Zip	Code</th><th>Status</th></tr>	
</thead>	
<tbody	id='TBODY_Tag'	onkeydown='TBODY_onkeydown();'>	
<tr><td></td>	<td>	</td>	<td>
<input	id='IN1'		type='text'	maxlength=5'	__Instance=1></td><td>	</td></tr>	
<tr><td></td>	<td>	</td>	<td>
<input	id='IN2'		type='text'	maxlength=5'	__Instance=2></td><td>	</td></tr>	
<tr><td></td>	<td>	</td>	<td>
<input	id='IN3'		type='text'	maxlength=5'	__Instance=3></td><td>	</td></tr>	
<tr><td></td>	<td>	</td>	<td>
<input	id='IN4'		type='text'	maxlength=5'	__Instance=4></td><td>	</td></tr>	
<tr><td></td>	<td>	</td>	<td>
<input	id='IN5'		type='text'	maxlength=5'	__Instance=5></td><td>	</td></tr>	
<tr><td></td>	<td>	</td>	<td>
<input	id='IN6'		type='text'	maxlength=5'	__Instance=6></td><td>	</td></tr>	
<tr><td></td>	<td>	</td>	<td>
<input	id='IN7'		type='text'	maxlength=5'	__Instance=7></td><td>	</td></tr>	
<tr><td></td>	<td>	</td>	<td>

<input	id='IN8'		type='text'	maxlength=5'	__Instance=8></td><td>	</td></tr>	
<tr><td></td>	<td>	</td>	<td>
<input	id='IN9'		type='text'	maxlength=5'	__Instance=9></td><td>	</td></tr>	
<tr><td></td>	<td>	</td>	<td>
<input	id='IN10'	type='text'	maxlength=5'	__Instance=10></td><td>	</td>
</tr>	
</tbody>	
</table>	
</div>	
</BODY>	
</HTML>	

	
	

AJAX	Function	AJAXEX3
*	This	is	just	a	simple	RDMLX	function.	
*	It	is	NOT	a	WAM.	
*	It	is	driven	by	the	virtual	clipboard	
	
Function	Options(*DIRECT	*HEAVYUSAGE)	
	
*	Define	local	fields	
	
Define	Field(#REQUEST)	Reffld(#STD_OBJ)	
Define	Field(#PAYLOAD)	Reffld(#STD_TEXTL)	
Define	Field(#INSTANCE)	Type(*DEC)	Length(7)	Decimals(0)	
	
*	Get	the	action	and	paylaod	Javascript	supplied	
	
Execute	Subroutine(GETA)	With_Parms(SYSTEM	REQUEST	1	#REQUEST)	
Execute	Subroutine(GETA)	With_Parms(SYSTEM	PAYLOAD	1	#PAYLOAD)	
	
*	Now	switch	on	the	requested	action	
	
Case	Of_Field(#REQUEST)	
	
*	Load	10	sample	entries	
	
When	Value_Is(=	LOAD10)	

Execute	Subroutine(Load10)	
	
*	Validate	a	zip	code	
	
When	Value_Is(=	VALIDATE)	
Execute	Subroutine(VALIDATE)	
	
*	Handle	a	bad	request	
	
Otherwise	
Abort	Msgid(DCM9899)	Msgf(DC@M01)	Msgdta(('Unknown	request	'	+	#REQUEST	+	'	received	by	'	+	*FUNCTION))	
	
Endcase	
	
*	Finished	
	
Return	
	
*	===	
*	Request	handling	subroutines	
*	===	
	
Subroutine	Name(Validate)	
	
*	The	paylaod	contains	the	instance	number	of	the	zip	code	
*	that	is	to	be	validated	by	this	request,	so	get	it	as	a	number	
	
#Instance	:=	#Payload.AsNumber()	
	
*	Now	get	the	zip	code	number	associated	with	the	instance	
	
Execute	Subroutine(GetN)	With_Parms(EX3	ZipCode	#Instance	#Std_Num)	
	
*	Now	validate	the	zip	code	and	give	response	codes	and	error	messages	
	
Case	(#Std_Num)	
	
When	(<	123)	
	

Execute	Subroutine(PutA)	With_Parms(EX3	Response	1	ER)	
Execute	Subroutine(PutA)	With_Parms(EX3	Message	1	('Zip	code	'	+	#Std_Num.AsString()	+	'	is	less	than	123'))	
	
When	(>	77777)	
	
Execute	Subroutine(PutA)	With_Parms(EX3	Response	1	ER)	
Execute	Subroutine(PutA)	With_Parms(EX3	Message	1	('Zip	code	'	+	#Std_Num.AsString()	+	'	is	greater	than	77777'))	
	
Otherwise	
	
Execute	Subroutine(PutA)	With_Parms(EX3	Response	1	OK)	
	
Endcase	
	
Endroutine	
	
Subroutine	Name(Load10)	
#Instance	:=	0	
Execute	Subroutine(Add)	With_Parms('Fred	Bloggs'	'121	Smith	St'	32627)	
Execute	Subroutine(Add)	With_Parms('Mark	Bloggs'	'121	Smith	St'	32627)	
Execute	Subroutine(Add)	With_Parms('Bill	Bloggs'	'121	Smith	St'	32627)	
Execute	Subroutine(Add)	With_Parms('John	Doe'	'11	Jones	St'	40210)	
Execute	Subroutine(Add)	With_Parms('Susan	Doe'	'11	Jones	St'	40210)	
Execute	Subroutine(Add)	With_Parms('Junior	Doe'	'11	Jones	St'	40210)	
Execute	Subroutine(Add)	With_Parms('John	Handcock'	'15	Wash	Road'	40314)	
Execute	Subroutine(Add)	With_Parms('Helen	Handcock'	'15	Wash	Road'	6314)	
Execute	Subroutine(Add)	With_Parms('Fred	Handcock'	'15	Wash	Road'	60314)	
Execute	Subroutine(Add)	With_Parms('Mark	Smith'	'151	Teller	Avenue'	60315)	
Endroutine	
	
Subroutine	Name(Add)	Parms((#Std_text	*received)	(#Std_textl	*received)	(#std_num	*received))	
#Instance	+=	1	
Execute	Subroutine(PutA)	With_Parms(EX3	Name	#Instance	#Std_Text)	
Execute	Subroutine(PutA)	With_Parms(EX3	Address	#Instance	#Std_Textl)	
Execute	Subroutine(PutN)	With_Parms(EX3	ZipCode	#Instance	#Std_Num)	
Endroutine	
	
*	===	
*	Rationalized	subroutines	for	virtual	clipboard	access	

*	===	
	
*	===	
*	Rationalized	subroutines	for	virtual	clipboard	access	
*	===	
	
Subroutine	Name(PUTA)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#AVAL	*RECEIVED))	
Define	Field(#NP2)	Type(*CHAR)	Length(28)	
Define	Field(#NP3)	Type(*CHAR)	Length(24)	
Define	Field(#INST)	Type(*DEC)	Length(7)	Decimals(0)	
Define	Field(#AVAL)	Type(*CHAR)	Length(256)	
Use	Builtin(VF_SAVEAVALUE)	With_Args(#AVAL	AJAX	#NP2	#NP3	#INST)	
Endroutine	
	
Subroutine	Name(PUTN)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#NVAL	*RECEIVED))	
Define	Field(#NVAL)	Type(*DEC)	Length(30)	Decimals(9)	
Use	Builtin(VF_SAVENVALUE)	With_Args(#NVAL	AJAX	#NP2	#NP3	#INST)	
Endroutine	
	
Subroutine	Name(GETA)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#AVAL	*RETURNED))	
Use	Builtin(VF_RESTOREAVALUE)	With_Args('	'	AJAX	#NP2	#NP3	#INST)	To_Get(#AVAL)	
Endroutine	
	
Subroutine	Name(GETN)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#NVAL	*RETURNED))	
Use	Builtin(VF_RESTORENVALUE)	With_Args(0	AJAX	#NP2	#NP3	#INST)	To_Get(#NVAL)	
Endroutine	

	
	
	

Exercise	4:	AJAXEX4	–	Using	the	Instance	List	
AJAX	Page	AJAXEX4.HTM
AJAX	Function	AJAXEX4
The	Steps
	
Copy	and	paste	the	DHTML-JavaScript	code	in	AJAX	Page	AJAXEX4.HTM
using	NOTEPAD	and	save	it	into	your	Framework	private	working	folder	as
an	AJAX	page	file	named	AJAXEX4.HTM.
Copy	and	paste	the	AJAX	function	code	in	AJAX	Function	AJAXEX4	into	an
RDML	function	named	AJAXEX4	into	your	VL-IDE.	Compile	RDML
function	AJAXEX4	so	that	it	is	executable	on	your	web	server.
In	the	shipped	demonstration	business	object	“Resources”	add	command
AJAXEX4	as	a	new	instance	level	command	(like	Details,	Transfer,	etc).
Snap	AJAXEX4.HTM	and	AJAXEX4	into	as	the	handlers	associated	with
command	AJAXEX4	like	this:	

	
Save,	restart	and	execute	your	Framework	in	a	web	browser.	Select	the
“Resources”	business	object	and	build	a	list	of	employees.	Select	one.	This
should	display	the	default	“Details”	command.	Switch	to	the	AJAXEX4	tab	and

you	should	see	the	details	of	the	employee	displayed	like	this		(in	VLF.WEB):

Or	this	(VLF.NET):

This	AJAX	example	is	designed	to	demonstrate	how	business	object	instance
list	details	are	passed	into	AJAX	pages.
They	are	passed	into	the	VF_AJAX_Execute	function	as	a	JavaScript	instance
list	object	which	contains	these	properties	and	arrays:
	
Name Type
strVisualID1 String.	Visual	ID1

strVisualID2 String.	Visual	ID2.

strBusinessObjectType String.	Business	Object	Type.

arraystrAKeyN Array[5]	String.	AKey	values.

arraynumNKeyN Array[5]	numbers.	NKey	values.

intAColumnCount Count	of	additional	alpha	columns.

arraystrAColumn Array	of	additional	alpha	columns.

intNColumnCount Count	of	additional	numeric	columns.

arraynumNColumn Array	of	additional	numeric	columns.

<all	others> There	may	be	other	values	and	properties	in	this
object.	You	should	NOT	reference	them	in	your	code
to	avoid	future	version	incompatibilities	and/or
failures.

	

Note	1:	Some	of	these	values	may	be	blank	padded	and	needed	to	be	trimmed
for	presentation.
Note	2:	The	Framework-AJAX	facility	is	primarily	designed	to	be	used	in	full
screen	command	handlers	that	largely	act	as	on	their	own,	as	demonstrated	in
the	preceding	exercises	1	through	3.	
	
	

AJAX	Page	AJAXEX4.HTM
	
<HTML>	
<HEAD	id='HEAD_Tag'>	
<link	rel='stylesheet'	type='text/css'	href='vf_vs001.css'	>				
<script>	
/*	==	*/	
/*	========================	Handle	Page	Initialization	====================	*/	
/*	==	*/	
function	VF_AJAX_Initialize()	
{	

			/*	Insert	the	variable	style	sheet	(ie:	XP,	WIN,	WEB	style)	into	this	page	*/	
			{	
						var	objLink		=	document.createElement("LINK");	
						objLink.rel		=	"stylesheet";	objLink.type	=	"text/css";		
		objLink.href	=	STYLESHEET();	
						document.getElementById("HEAD_Tag").insertAdjacentElement("afterBegin",objLink);		
			}	
				
			/*	Finished	*/	
			return;	
}		
/*	==	*/	
/*	========================	Handle	Page	Execution	=========================	*/	
/*	==	*/	
function	VF_AJAX_Execute(objInstance)	
{	
		/*	Put	the	current	instance	list	entry	EMPNO	onto	the	clipboard															*/	
		/*	The	employee	number	is	in	AKey	number	3,	which	is	Javascritp	array	entry	2	*/	
		Put(objInstance.arraystrAKeyN[2],"EX4","EMPNO");			
	
		/*	Request	that	the	server	do	a	FETCH	operation	using	the	employee	number	*/	
		SENDREQUEST(window,"","FETCH","",FETCH_response);			
			
		/*	Finished	*/	
		return;	
}		
/*	==	*/	
/*	=======================	Handle	Page	Termination	========================	*/	
/*	==	*/	
function	VF_AJAX_Terminate()	
{	
		return;	
}		
/*	--	*/	
/*	Rationalized	virtual	clipboard	access	to	name	space	AJAX	*/		
/*	--	*/	
function	Put(val,np2,np3,inst)	{AVSAVEVALUE(val,"AJAX",np2,np3,inst);}	
function	GetA(np2,np3,inst)				{return(AVRESTOREAVALUE("","AJAX",np2,np3,inst));}	
function	GetN(np2,np3,inst)				{return(AVRESTORENVALUE(0,"AJAX",np2,np3,inst));}	

/*	----------------------------------	*/	
/*	Handle	server	responding	to	LOAD10	*/	
/*	----------------------------------	*/	
function	FETCH_response(strFunction,strRequest,strPayload,objObject,flagFatalError,strFatalMessage)	
{	
		/*	Handle	a	fatal	error	*/	
		if	(flagFatalError)	{	alert(strFatalMessage);	SETBUSY(false);	return;	}			
	
		/*	Put	the	employee	number	out	onto	the	screen	*/		
		Vis_EMPNO.innerText	=	GetA("EX4","EMPNO");										
		
		/*	Get	the	IO	Status	and	handle	found	and	not	found	*/	
	
		if	(GetA("EX4","IO_STS")	==	"OK")	/*	Employee	was	found	*/	
		{	
					Vis_SURNAME.innerText	=	GetA("EX4","SURNAME");										
					Vis_GIVENAME.innerText	=	GetA("EX4","GIVENAME");										
					Vis_SALARY.innerText	=	GetN("EX4","SALARY").toString();										
					Vis_POSTCODE.innerText	=	GetN("EX4","POSTCODE").toString();										
					DIV_Table.style.visibility			=	"visible";	DIV_Table.style.display	=	"inline";		
					DIV_Message.style.visibility	=	"hidden";	DIV_Message.style.display	=	"none";		
		}	
		else	/*	Employee	was	not	found	*/	
		{	
					DIV_Message.children(0).innerText	=	"Employee	number	"	+	Vis_EMPNO.innerText	+	"	could	not	be	found";		
					DIV_Message.style.visibility	=	"visible";	DIV_Message.style.display	=	"inline";		
					DIV_Table.style.visibility	=	"hidden";	DIV_Table.style.display	=	"none";		
		}	
	
		/*	Drop	busy	status	*/	
		SETBUSY(false);		
			
		/*	Finished	*/	
		return;	
}	
</script>	
	
</HEAD>	
<BODY	id='BODY_Tag'>	

	
<P	align='center'>Instance	List	Example</p>	
<div	id='DIV_Message'>	
<P	align='center'>Loading	...	please	wait</p>	
</div>	
<div	id='DIV_Table'	style='visibility:hidden;display:none;'>	
<table>	
<tr><td>Employee	Number</td><td	id='Vis_EMPNO'></td></tr>	
<tr><td>Last	Name</td><td	id='Vis_SURNAME'></td></tr>	
<tr><td>First	Name</td><td	id='Vis_GIVENAME'></td></tr>	
<tr><td>Current	Salary</td><td	id='Vis_SALARY'></td></tr>	
<tr><td>Zip	Code</td><td	id='Vis_POSTCODE'></td></tr>	
</table>	
</div>	
</BODY>	
</HTML>	

	
	

AJAX	Function	AJAXEX4
	
*	This	is	just	a	simple	RDML	function.	
*	It	is	NOT	a	WAM.	
*	It	is	driven	by	the	virtual	clipboard	
	
Function	Options(*DIRECT	*HEAVYUSAGE)	
	
*	Define	local	fields	
	
Define	Field(#REQUEST)	Reffld(#STD_OBJ)	
Define	Field(#MSGDTA)	Type(*CHAR)	Length(132)	
	
*	Get	the	action	the	Javascript	requested	
	
Execute	Subroutine(GETA)	With_Parms(SYSTEM	REQUEST	1	#REQUEST)	
	
*	Now	switch	on	the	requested	action	
	

Case	Of_Field(#REQUEST)	
	
*	Get	details	of	an	employee	
	
When	Value_Is('=	FETCH')	
Execute	Subroutine(FETCH)	
	
Otherwise	
Use	Builtin(BCONCAT)	With_Args('Unknown	request'	#REQUEST	'received	by'	*FUNCTION)	To_Get(#MSGDTA)	
Abort	Msgid(DCM9899)	Msgf(DC@M01)	Msgdta(#MSGDTA)	
Endcase	
	
*	Finished	
	
Return	
	
*	Get	details	of	an	employee	
	
Subroutine	Name(FETCH)	
	
*	Get	the	requested	employee	number	
	
Execute	Subroutine(GETA)	With_Parms(EX4	EMPNO	1	#EMPNO)	
	
*	Fetch	the	details	
	
Fetch	Fields(#Surname	#GiveName	#PostCode	#Salary)	From_File(Pslmst)	With_Key(#Empno)	
	
*	Send	back	the	IO	status	+	the	details	
	
Execute	Subroutine(PUTA)	With_Parms(EX4	IO_STS	1	#IO$STS)	
Execute	Subroutine(PUTA)	With_Parms(EX4	SURNAME	1	#SURName)	
Execute	Subroutine(PUTA)	With_Parms(EX4	GIVENAME	1	#GIVENAME)	
Execute	Subroutine(PUTN)	With_Parms(EX4	POSTCODE	1	#POSTCODE)	
Execute	Subroutine(PUTN)	With_Parms(EX4	SALARY	1	#SALARY)	
	
Endroutine	
	
*	===	

*	Rationalized	subroutines	for	virtual	clipboard	access	
*	===	
	
Subroutine	Name(PUTA)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#AVAL	*RECEIVED))	
Define	Field(#NP2)	Type(*CHAR)	Length(28)	
Define	Field(#NP3)	Type(*CHAR)	Length(24)	
Define	Field(#INST)	Type(*DEC)	Length(7)	Decimals(0)	
Define	Field(#AVAL)	Type(*CHAR)	Length(256)	
Use	Builtin(VF_SAVEAVALUE)	With_Args(#AVAL	AJAX	#NP2	#NP3	#INST)	
Endroutine	
	
Subroutine	Name(PUTN)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#NVAL	*RECEIVED))	
Define	Field(#NVAL)	Type(*DEC)	Length(30)	Decimals(9)	
Use	Builtin(VF_SAVENVALUE)	With_Args(#NVAL	AJAX	#NP2	#NP3	#INST)	
Endroutine	
	
Subroutine	Name(GETA)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#AVAL	*RETURNED))	
Use	Builtin(VF_RESTOREAVALUE)	With_Args('	'	AJAX	#NP2	#NP3	#INST)	To_Get(#AVAL)	
Endroutine	
	
Subroutine	Name(GETN)	Parms((#NP2	*RECEIVED)	(#NP3	*RECEIVED)	(#INST	*RECEIVED)	(#NVAL	*RETURNED))	
Use	Builtin(VF_RESTORENVALUE)	With_Args(0	AJAX	#NP2	#NP3	#INST)	To_Get(#NVAL)	
Endroutine

	
	

Tracing
Tracing	in	Your	Client	Side	AJAX	Pages
Tracing	in	Your	Server	Side	AJAX	Functions
	

Tracing	in	Your	Client	Side	AJAX	Pages
You	can	add	tracing	to	your	AJAX	pages	by	using	the	supplied	AVTRACE
function.
The	information	you	trace	appears	in	the	trace	window	when	you	execute	the
Framework	in	trace	mode.	The	AVTRACE	function	is	defined	like	this:
AVTRACE("Example1","Search	Button	Clicked","");
	
Here’s	an	example	of	an	AJAX	page	tracing	data	when	the	user	clicks	a	search
button:
function	BUTTON_Search()	
{	
			
		/*	Ignore	if	already	busy	*/	
		if	(BUSY())	return;		
			
		/*	Make	busy	now	*/	
		SETBUSY(true);	
			
		/*	Put	surname	and	given	name	input	by	user	onto	virtual	clipboard	*/	
		PutA(SURNAME_Search.value,"SURNAME");		
PutA(GIVENAME_Search.value,"GIVENAME");		
	
		/*	Trace	the	values	that	were	put	onto	the	clipboard	*/	
		AVTRACE("BUTTON_Search","Surname	value	set",SURNAME_Search.value);		
	
AVTRACE("BUTTON_Search","Given	Name	value	set",GIVENAME_Search.value);	
	
…etc…	

Tracing	in	Your	Server	Side	AJAX	Functions
You	can	add	tracing	to	your	AJAX	functions	by	using	the	Framework
VF_TRACENVALUE	and	VF_TRACEAVALUE	built-in	functions.
The	information	you	trace	appears	in	the	trace	window	when	you	execute	the
Framework	in	trace	mode.	Here	is	an	example	of	a	AJAX	function	tracing	a
FETCH	operation:
	
Subroutine	Name(GET)	
	
*	Get	the	employee	number	supplied	and	trace	it		
	
Execute	Subroutine(GETA)	With_Parms(EMPNO	'	'	1	#EMPNO)	
	
Use	Builtin(VF_TraceAvalue)	With_Args('GET	received	employee	number'	#EMPNO)	
	
Fetch	Fields(#PSLMST)	From_File(PSLMST)	With_Key(#EMPNO)	Issue_Msg(*YES)	
	
Execute	Subroutine(PUTA)	With_Parms(IO_STATUS	'	'	1	#IO$STS)	
	
*	If	the	record	was	found	trace	the	salary	and	surname	values	retrieved	
	
If_Status	Is(*OKAY)	
Use	Builtin(VF_TraceNvalue)	With_Args('GET	request	found	salary'	#Salary)	
Use	Builtin(VF_TraceAvalue)	With_Args('GET	request	found	surname'	#Surname)	
	
…etc…		
	

	

VF_TRACEAVALUE	and	VF_TRACENVALUE
The	VF_TRACEAVALUE	and	VF_TRACENVALUE	Built-In	functions	are
used	to	trace	the	logic	flow	and	the	values	of	variables	in	your	browser
command	handlers	and	filters.
The	values	that	are	traced	are	added	to	the	trace	window	that	is	displayed	when
Framework	Web	browser	applications	are	executed	in	trace	mode	(by	adding	?
Trace=Y	to	the	URL	that	Is	used	to	start	the	application	or	by	checking	the
Trace	Mode	On	option).		

Generally	trace	Built-In	functions	may	be	left	in	your	code	as	they	are	only
activated	when	trace	mode	is	turned	on.	Do	not	do	this	in	code	sections	that	are
executed	many	times	per	interaction.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	Windows YES

Visual	LANSA	for	UNIX/Linux NO

Arguments
No Type Req/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Event	Description 1 256 	 	

2 A
N

Opt Alphanumeric	Value	1	to
trace
Numeric	Value	1	to	trace

1
1

256
30

	
0

	
9

3 A
N

Opt Alphanumeric	Value	2	to
trace
Numeric	Value	2	to	trace

1
1

256
30

	
0

	
9

4 A
N

Opt Alphanumeric	Value	3	to
trace
Numeric	Value	3	to	trace

1
1

256
30

	
0

	
9

Return	Values
None.

Technical	Notes
The	general	usage	rules	apply	to	this	Built-In	function.

Examples
Example	1:	This	code	fragment	is	seen	in	many	applications	generated	by	the
Program	Coding	Assistant:
Use	Builtin(VF_TRACEAVALUE)	With_Args('#VF_EVENT	value	is	unknown	and	has	been	ignored'	#VF_EVENT)
	

Example	2:	Trace	some	alpha	values:

Use	Builtin(VF_TRACEAVALUE)	With_Args('Department	and	section	are'	#DEPTMENT	#SECTION)
	

Example	3:	Trace	some	numeric	values:
Use	Builtin(VF_TRACENVALUE)	With_Args('Salary='	#SALARY)
Use	Builtin(VF_TRACENVALUE)	With_Args('Zip	Code='	#POSTCODE)
	

Messages	and	Errors
Messages	Issued	by	AJAX	Functions
Handling	Fatal	Errors	in	AJAX	Functions

Messages	Issued	by	AJAX	Functions
By	default,	messages	returned	by	your	AJAX	functions	are	collected	by	the
Framework	and	routed	into	the	Framework	message	area.	This	means	that	they
will	appear	on	the	browser	task	bar	and	be	visible	when	the	messages	button	is
used.
	
You	can	stop	this	happening.
	
When	invoking	the	SENDREQUEST	function	pass	the		8th	parameter	as	false	to
turn	off	this	behavior:
	
Eg:	SENDREQUEST(window,"","LOAD10","",LOAD10_response,null,true,false);			
	

	
You	can	access	the	messages	yourself	by	retrieving	them	from	the	AJAX	virtual
clipboard	object	like	this	example	does:
	
						var	i	=	0;	
						var	intMESSAGECOUNT	=	AVRESTORENVALUE(0,"AJAX","SYSTEM","MESSAGECOUNT");			
	
						for	(i	=	1;	i	<=	intMESSAGECOUNT;	i++)		
						{		
									Var	strMessageText	=	AVRESTOREAVALUE	("","AJAX","SYSTEM","MESSAGE",i);		
									alert(strMessageText);		
						}	
	
						AVSAVEVALUE(0,"AJAX","SYSTEM","MESSAGECOUNT");					

	

Handling	Fatal	Errors	in	AJAX	Functions
By	default	fatal	errors	in	your	server	side	AJAX	functions	are	generally	trapped
and	displayed	by	the	Framework.
You	can	stop	this	from	happening	and	handle	the	error	display	yourself.
When	invoking	the	SENDREQUEST	function	pass	the	7th	parameter	as	false.
	
Eg:	SENDREQUEST(window,"","LOAD10","",LOAD10_response,null,false);			
	

	
This	tells	the	Framework	not	display	the	fatal	error	details	itself.
	
In	all	cases	your	JavaScript	request	handler	is	always	called	with	parameters
that	indicate	that	a	fatal	error	has	occurred	and	a	composite	message	is	made	up
of	all	the	trapped	error	messages.
	
function	Resp(strFunction,strRequest,strPayload,objObject,flagErrorFatal,strFatalMessage
{	
			
/*	Handle	a	fatal	error	in	the	server	function	*/		
	
if	(flagFatalError)		
{		
			alert(strFatalMessage);		
			SETBUSY(false);		
			return;		
}	
	
/*	Else	process	the	response	from	the	server	*/	
	
…	etc	……				

					
Note:		The	fatal	error	flag	refers	to	fatal	errors	in	the	server	side	AJAX	function,
not	to	fatal	errors	in	your	client	side	JavaScript,	which	you	should	trap	and
handle	yourself.
	

Frequently	Asked	Questions
Are	AJAX	applications	secure?
In	general	internet	usage,	AJAX	applications	are	not	always	secure	(depending
up	how	they	were	designed).	However,	the	Framework	implementation	is
secure.
AJAX	applications	can	only	be	used	within	Framework	managed	web	sessions.	
They	can	be	used	over	https	connections.
	

How	do	I	screen	paint	my	AJAX	pages?
AJAX	pages	are	standard	HTML	documents	which	can	be	painted	with	many
different	tools,	such	as	Microsoft	FrontPage,	etc.
However,	as	you	start	to	do	more	advanced	AJAX	applications	you	will	see	that
static	screen	painters	are	really	not	that	useful	when	dealing	with	web	pages
where	much	of	the	content	is	dynamically	created	and	updated	by	executing
JavaScript	AJAX	code	(this	is	also	true	of	many	Windows	Rich	Client	screen
painters	as	well).	

Do	I	need	to	backup	my	AJAX	pages?
Yes.	It	is	very	important	that	you	do	this	or	you	will	lose	your	work.

Do	I	need	to	backup	my	AJAX	functions?
Yes,	but	not	independently	of	your	LANSA	repository.
Since	AJAX	functions	are	just	LANSA	functions	they	will	be	backed	up
whenever	you	backup	your	LANSA	development	environment.
	

Restrictions
Some	restrictions	that	you	should	consider	are:
AJAX	functions	can	be	coded	as	RDML	or	RDMLX	(depending	your
functional	requirements	and	application	design,	RDML	and	RDMLX	functions
executing	on	an	i5	server	may	exhibit	different	performance	characteristics).			
The	Framework	manager	object	#VF_SW100	(typically	named
#AVFrameworkManager)	can	only	be	used	in	WAMs.	The	current	AJAX
implementation	does	not	support	use	of	the	Framework	manager.
The	virtual	clipboard	is	the	only	means	of	exchanging	information	between
AJAX	pages	and	AJAX	functions.	Alpha	values	placed	on	it	are	limited	to	256
characters.	Numeric	values	are	limited	to	a	maximum	precision	of	21
significant	digits	and	9	decimals.	If	you	need	longer	alpha	or	numeric	fields
you	may	need	to	break	you	information	up	in	the	AJAX	page	pieces	and
reassemble	it	in	the	AJAX	function.
The	operation,	maintenance	and	support	of	the	JavaScript	and	HTML	you	put
into	your	AJAX	pages	is	entirely	your	responsibility,	both	now	and	in	the
future.				
When	coding	your	AJAX	pages	the	Framework’s	internal	JavaScript	and
DHTML	model	is	exposed	to	you.	You	should	not	use	any	of	its	methods,
properties	or	events,	nor	alter	its	behavior	in	any	way,	unless	the	technique	you
use	is	specifically	documented	by	LANSA	for	public	usage.	Failure	to	observe
this	rule	may	result	in	the	introduction	of	incompatibilities	with	future	versions
of	the	Framework,	voiding	or	limitation	of	any	maintenance	contract	you	may
have	in	place	for	the	Framework	and	being	charged	for	problem	resolutions
that	are	traced	back	to	any	such	usage	or	modifications.		
	

Recommendations
As	you	develop	more	AJAX	pages	you	will	probably	start	to	build	up	a	library
of	common	JavaScript	functions.	These	are	best	externalized	in	a	separate	.JS
and	shared	by	all	your	AJAX	pages,	rather	than	repeated.
	
Set	up	some	naming	and	usage	standards	for	the	content	of	the	virtual
clipboard.	This	will	make	life	easier	for	other	developers,	encourage	reuse	and
minimize	information	bloat.	For	example:
	
Major	Name	Space:	AJAX	(virtual	clipboard	name	part	1)
Minor	Name	Space:	CUSTOMER	(virtual	clipboard	name	part	2)

Object	Name	(Name	Part
3)

Description Type

NAME Current	Customer	Name String	–	max	40

ZIPCODE Current	Customer	Zip
Code

Number	–	6
digits

	

In	effect,	you	have	AJAX.CUSTOMER.NAME	and
AJAX.CUSTOMER.ZIPCODE
	
Major	Name	Space:	AJAX	(virtual	clipboard	name	part	1)
Minor	Name	Space:	PRODUCT	(virtual	clipboard	name	part	2)

Object	Name	(Name
Part	3)

Description Type

NUMBER Current	Product
Number

Number	–	7	digits

NAME Current	Product
Name

String	–	max	40

PRICE Current	Product
Price

Number	–	11	digits,	2
decimals

	

Major	Name	Space:	ACCOUNTING	(virtual	clipboard	name	part	1)
Minor	Name	Space:	USER	(virtual	clipboard	name	part	2)

Object	Name	(Name	Part	3) Description Type
USRPRF System	i	User	Profile String	–	max	10

PRINTER Default	Printer String	–	max	10	

	

	

Web	Configuration	Assistant
The	Web	Configuration	Assistant	makes	the	web	configuration	of	the
Framework	easier.	Its	use	is	optional,	the	alternative	is	to	configure	the	VLF
web	using	the	Developer	Preferences	(in	Framework	Properties)	and	the	VLF
Administrator	Console.
Initially,	you	specify	the	caption,	IP	address	and	port	for	the	web	server:

The	Web	Configuration	Assistant	then	detects	information	about	the	server	and
if	necessary	requests	more	details:

The	web	server	details	specified	using	the	Web	Configuration	Assistant	are
recorded	in	the	Developer	Preferences	tab	for	the	web	server.
The	Web	Configuration	Assistant	can	be	accessed	from	either	the	(Framework)
menu,	or	from	the	Framework	Properties	-->	Framework	Details	tab.

Before	you	start,	it	will	make	configuration	easier	if	you	ensure	that	the
following	has	been	done:
LANSA	for	the	Web	is	installed,	configured,	and	started	on	the	web	server.
The	partition	you	are	working	with	on	the	web	server	is	enabled	for	LANSA
for	the	Web,	and	has	been	initialised.
The	partition	you	are	working	with	on	the	web	server	is	enabled	for	RDMLX.
The	Framework	(EPC870	or	later)	has	been	imported	into	that	partition	on	the
web	server.
The	web	server	is	accessible	from	your	PC.
If	the	webserver	is	located	on	a	different	machine	to	your	development
machine,	map	a	network	drive	to	the	web	server,	and	record	the	drive	letter
used.	See	Do	you	want	to	use	a	mapped	drive	when	uploading	to	the
websever?
The	Web	Configuration	Assistant	will	define	your	web	server(s)	to	the	VLF.	It

will	create	a	VLF	temporary	files	directory	and	your	project	directory	within	the
images	directory	on	the	webserver.
Start	by	entering	the	web	server's	description,	ip	address	and	port,	and	press
next.	Then	follow	any	subsequent	instructions.

Warnings
The	Web	Configuration	Assistant	cannot	configure	the	VLF	for	multi-tier	web
environments.
The	Web	Configuration	Assistant	may	not	be	able	to	detect	the	location	of	the
images	directory,	on	the	webserver.	If	so,	you	will	need	to	supply	this
information.
The	detected	values	are	saved	during	the	last	step.	No	changes	will	be	saved
unless	you	do	the	last	step	(Save	my	settings).
The	detector	programs	running	on	the	web	server	need	to	have	sufficient
authority	to	create	test	files	and	subdirectories	in	the	images	directory.
The	first	time	a	web	server	is	accessed,	there	may	be	such	a	long	delay	that	the
Web	Configuration	Assistant	thinks	that	it	has	failed.	If	you	press	the	next
button	again,	it	may	succeed	on	the	2nd	attempt.	
See:
Web	Server	Caption
Web	Server	IP	Address
Web	Server	Port
The	type	of	server
The	webserver’s	images	path
The	location	of	the	images	directory	on	the	server
Do	you	want	to	use	a	mapped	drive	when	uploading	to	the	websever?
Private	Working	Folder
Temporary	Folder	Name
	

Web	Application	Start	Options
Applies	to	WAM	and	.NET.
When	you	start	a	Web	browser	Framework	application	you	can	optionally	add
details	to	the	URL	that	impact	the	way	that	your	application	executes.
Typically	starting	URLs	are	formatted	like	this	example:
http://nnn.nn.nn.nn/...../vf_Sy001_System_ENG_BASE.htm
	

Optionally	you	can	add	parameters	to	the	URL	formatted	like	this:
http://nnn.nn.nn.nn/...../vf_Sy001_System_ENG_BASE.htm?
Parm=value+Parm=value+	+Parm=value
	

where	the	allowable	parm	and	values	are:
Parm Comments
Partition=xxx Specify	the	partition	that	the	Framework	is	to

connect	to.
VLF.WEB	applications	default	this	parameter	to	the
partition	that	the	Framework	was	saved	from.
VLF.NET	applications	default	this	parameter	to
DEM,	so	you	should	always	specify	this
parameter.			

Trace=XXXX Specify	the	trace	mode	as	Y	or	TRUE	for	a	user
level	trace.	Specify	trace	mode	SYSTEM	for	a
deeper	system	level	trace.		
Note:	In	RAMP-TS	sessions	automatic	error
trapping	is	suppressed	when	TRACE	mode	has	been
turned	on.		This	may	allow	script	and	HTML	errors
to	be	more	easily	isolated	and	debugged.

User=xxxx Specify	the	user	that	the	Framework	is	to	use	when
connecting	to	the	system.	This	value	defines	what
user	profile	value	prefills	any	log	on	dialog	required
by	the	Framework.		If	User=	and	Password=	are
both	specified	then	the	any	log	on	dialog	will	be
bypassed	and	the	values	passed	directly	to	the

server.	Security	considerations	may	apply	to	the
viability	of	specifying	user	and	password	details	on
URLs.

Developer=Y	or
Developer=True		
	

Indicates	that	the	current	user	is	a	developer.
Additional	error	handling	and	checking	will	be
activated	to	aid	the	development	process.	Do	NOT
use	this	option	in	applications	deployed	to	end-users
or	while	performing	performance	testing.
	

Password=xxxx Specify	the	password	that	the	Framework	is	to	use
when	connecting	to	the	system.	This	value	defines
what	password	value	prefills	any	log	on	dialog
required	by	the	Framework.	If	User=	and
Password=	are	both	specified	then	the	any	log	on
dialog	will	be	bypassed	and	the	values	passed
directly	to	the	server.	If	no	password	is	required
specify	Password=none.	Security	considerations
may	apply	to	the	viability	of	specifying	user	and
password	details	on	URLs.

SwitchTo=xxxx
SwitchObject=xxxxx
SwitchCommand=xxxxxxx

SwitchTo=,	SwitchObject=	and	SwitchCommand=
values	may	be	specified	to	cause	a	Framework
Switch	instruction	to	be	executed	immediately	that
the	Framework	commences	execution.
Switching	to	an	instance	level	command	associated
with	a	business	object	is	not	possible	because	the
user	must	manually	select	an	instance	first.			

URLDATA1=	xxxxx
through
URLDATA5=xxxxx

Specify	up	to	five	user	data	values	that	need	to	be
passed	into	the	application	from	the	starting	URL.
The	values	specified	in	these	parameters	can	be
accessed	by	shipped	User	Imbedded	Interface	Point
(IIP)	UFU0001	(or	equivalent)	as	fields
#URLDATA1	through	#URLDATA5.
Executing		WAM	filters	or	command	handlers
can	access	these	values	by	getting	properties
#Com_Owner.avURLData1	through

#Com_Owner.avURLData5.			
These	values	may	be	specified	in	encoded	URI
format	if	required	(eg:	to	handle	imbedded	blanks,
etc).	

Stats=Y Specify	the	stats	mode	as	Y	to	cause	a	basic
statistics	window	to	be	displayed	and	updated	while
the	application	is	executing.	See	following	note	1
for	details.

WAMHelp=Y Activates	end-user	help	for	fields	on	WAMs.

TSUser=xxxxxxxx
NLUser=xxxxxxxx
	

The	overriding	user	profile	that	should	be	used	in
RAMP-TS	or	RAMP-NL	applications	when
attempting	to	connect	to	the	5250	server.	Note	that
RAMP-NL	does	not	support	the	use	of	user	profiles
containing	the	"@"	(at)	symbol.		See	Note	2
following	for	user	profile	default	rules.	

TSPassword=xxxxxxxxxx
NLPassword=xxxxxxxxxx
	

The	overriding	password	that	should	be	used	in
RAMP-TS	or	RAMP-NL	applications	when
attempting	to	connect	to	the	5250	server.	See	Note	2
following	for	password	default	rules.	

NLHostName=xxxxxxxxx The	symbolic	host	or	connection	name	that	newlook
should	use	in	RAMP	applications	when	attempting
to	connect	to	the	5250	server.	This	symbolic	name
must	be	defined	to	newlook	as	a	connection.	The
default	is	blank.	If	you	use	the	NLHostName
parameter	you	should	not	specify	an	NLIPAddress
or	NLPortNumber	parameter	value.		

NLIPAddress The	IP	address	that	newlook	should	use	in	RAMP
applications	when	attempting	to	connect	to	the	5250
server.	The	default	is	the	host	name	from	which	the
Framework	start	page	was	started.	If	you	use	the
NLIPAddress	parameter	you	should	not	specify	an
NLHostName	parameter	value.		

NLPortNumber The	IP	port	number	that	newlook	should	use	in
RAMP	applications	when	attempting	to	connect	to

the	5250	server.	The	default	is	23.	If	you	use	an
NLPortNumber	parameter	you	should	also	specify
an	NLIPAddress	value.	If	you	use	the
NLPortNumber	parameter	you	should	not	specify	an
NLHostName	parameter	value.		

NLLiteClient
	

Indicates	whether	newlook	should	use	a	liteclient
license	when	it	is	started,	regardless	of	any	default
value	determined	when	the	Framework	was
generated.
Allowable	positive	values	are	NLLiteClient=Y	or
NLLiteClient=TRUE.	Any	other	value	will	be	taken
as	negative	(ie:	false).
	

NLIniFile Specify	Name	of	the	newlook	.INI	file	to	use	with
your	RAMP	application.	This	value	will	override	the
one	specified	in	the	Server	definition.

NLUpdateFile Specify	Name	of	the	nlupdate.txt	file	to	use	with
your	RAMP	application.	This	value	will	override	the
one	specified	in	the	Server	definition.

NLCodeBase Specify	Name	of	the	newlook.cab	file	to	use	with
your	RAMP	application.	This	value	will	override	the
one	specified	in	the	Server	definition.

DEBUG=Y,<<host	IP>>:
<<port>>
	

Allows	WAM	command	handlers	and	filters	to	be
debugged	remotely.
The	<<host	IP>>	is	the	ip	of	the	computer	where	the
Visual	LANSA	development	environment	(IDE)	is
running.
On	LANSA	systems	earlier	than	SP5	+	EPC830,	the
<<port>>	is	the	port	used	by	the	listener	(see	the
Communications	Administrator	for	the	port	used	by
your	listener).
An	example	of	using	remote	debug	for	WAMS	on
your	own	PC	would	be	to	add:
+DEBUG=Y,127.0.0.1:4545	to	the	URL

		
On	LANSA	systems	where	EPC830	has	been
applied	and	later	systems,	LANSA	has	a	separate
service	for	debugging
The	<<port>>	for	this	service	can	be	found	in	the
IDE,	under	Options,	Settings,	Debug.	It	is	often	port
51234.
An	example	of	using	remote	debugging	for	WAMS
on	your	own	PC	would	be	to	add:
+DEBUG=Y,127.0.0.1:51234	to	the	URL

	

Theme=XXXX
	

Used	in	.NET	applications	only.	Ignored	in	other
applications.
Specifies	the	color	and	style	theme	to	be	used	in	the
executing	application.
If	not	specified,	the	theme	specified	in	the
Framework	definition	by	the	application	designer	is
used.
Allowable	values	are		2007BLUE,	2007SILVER,
2007GRAPHITE	and	2007OLIVE.

NETURL When	a	VLF.NET	application	is	started,	the
NETURL=value	indicates	the	place	from	which
VLF	related	HTML	pages	and	JavaScript	files
should	be	loaded.
For	a	VLF	developer	this	is	most	typically	their
private	folder,	for	example
NetURL=http://MYHOST/images/MyPrivateFolder/
	
In	a	production	application	this	is	most	typically	the
LANSA	for	web	images	folder,	for	example
http://MYSERVER/Images/

TSPrivateSet= Specifies	the	Private	Definition/aXes	Project	Folder
that	any	RAMP-TS	session	started	should	use.
When	used,	specify	just	the	private	definition/aXes
folder	name,	not	the	complete	path	name.	The	path

to	the	folder	is	implicit.	If	not	specified,	the	private
definition/aXes	folder	used	will	default	to	the	value
associated	with	the	RAMP-TS	server	flagged	as	the
“deployment	server”	at	the	time	the	framework	was
last	saved.							

TSPrivateShared= This	property	corresponds	to	the	Contains	SHARED
Object	option	in	a	RAMP-TS	server	definition
which	allows	you	to	have	the	SHARED	object	in
your	own	private	definition/aXes	folder.	Allowable
values	are	True	and	False.
If	you	use	TSPRIVATESHARED=TRUE	and	the
file	is	not	found	you	will	get	an	error.

TSLoadPath= Specifies	the	load	path	that	any	RAMP-TS	session
started	should	use.		If	not	specified,	the	load	path
used	will	default	to	the	value	associated	with	the
RAMP-TS	server	flagged	as	the	“deployment
server”	at	the	time	the	framework	was	last	saved.
						

TSIPAddress= Specifies	the	IP	address	that	any	RAMP-TS	session
started	should	use.	If	not	specified,	the	IP	address
will	default	to	IP	address	of	the	VLF-WEB	session.
Typically	TSIPADDDRESS	and	TSPORTNUMBER
are	used	together.	The	VLF-WEB	session	and	the
RAMP-TS	session	must	be	in	the	same	domain.	The
RAMP-TS	server’s	IP	address	needs	to	be	defined
as	a	trusted	server.				

TSPortNumber= Specifies	the	port	number	any	RAMP-TS	session
started	should	use.		If	not	specified,	the	port	number
used	will	default	to	the	value	associated	with	the
RAMP-TS	server	flagged	as	the	“deployment
server”	at	the	time	the	framework	was	last	saved.
Typically	TSIPADDDRESS	and	TSPORTNUMBER
are	used	together.					

TSUSEHTTP= TSUSEHTTPS=Y	is	for	RAMP-TS	only.	It	indicates
that	aXes	should	be	loaded	using	https:\\	as

the	protocol.	If	used,	the	VLF-WEB	(LANSA	for
the	Web)	application	must	also	use	https:\\.
Additionally	both	aXes	and	LANSA	for	the	web
must	load	from	the	same	domain	(that	is	literally
from	the	exactly	the	same	name	on	the	URL).			

TOUCH=Y
	
	
	

Enables	and	disables	Framework	functionality	to
make	it	more	touch	friendly.	For	an	overview	please
refer	to	Touch	Device	Considerations.
If	the	TOUCH	parameter	is	not	present	in	the	URL
the	VLF	will	guess	whether	it's	running	on	such
device.
	

ZOOM=
	

The	CSS	zoom	to	apply	to	the	VLF.	The	default
zoom	value	is	1.4.
	

CHKPSWEXPIRY	=	Y
CHKPSWEXPIRY	=	Yes

Set	to	Y	to	compare	the	expiry	date	of	the	password
typed	in	during	WEB	sign	on	with	the	current	date.
If	the	difference	is	less	than	the	value	specified	in
ISSUEWARNING,	a	warning	message	is	issued.
Refer	to	the	shipped	Web	IIP	for	User	signon
function	UFU0001	in	process	UF_SYSBR.

ISSUEWARNING	=	nnn Specifies	how	many	days	before	the	password
expiry	date	a	message	will	be	issued	during	Web
signon	to	warn	that	the	password	is	about	to	expire.
Refer	to	the	shipped	Web	IIP	for	User	signon
function	UFU0001	in	process	UF_SYSBR.

ALLOWPSWCHG	=	Y
ALLOWPSWCHG	=	Yes

When	this	parameter	is	set	to	Yes,	the	end-user	can
change	the	IBM	i	password.	The	signon	dialog	will
contain	fields	in	which	to	enter	the	old	and	the	new
password,	and	a	Change	button.
Refer	to	the	shipped	Change	Password	IIP	function
UFU0006	in	process	UF_SYSBR.

IBMISERVER Name	or	IP	address	of	the	IBM	i	Server	Mapper	for

password	expiry	and	password	change.

IBMIPORT Port	of	the	server	specified	in	IBMISERVER.

	

	
Also	see	The	URL	to	start	my	deployed	VLF	web	browser	application	is	too
complex	for	users	to	reliably	type	in	to	their	browsers.
Note	1:	Using	Stats=Y
Using	Stats=Y	causes	a	basic	statistics	window	to	be	displayed	and	updated
while	the	application	is	executing.
The	details	shown	reflect	elapsed	times	as	measured	by	the	client	system.
SERVER-SIDE:		This	is	the	time	between	when	the	web	form	was	submitted	to
the	server	and	when	it	arrived	back	at	the	client	system,	therefore	it	includes	the
server	side	processing	time	and	all	send	and	receive	communication	delays.	
CLIENT-SIDE:	This	is	the	time	between	when	the	web	form	arrived	at	the
client	and	when	all	client	side	processing	of	it	was	completed	(excluding	any
additional	time	taken	by	the	browser	to	draw	the	web	form).	
OVERALL:	This	is	the	time	between	when	the	web	form	was	submitted	to	the
server	when	all	client	side	processing	of	it	was	completed	(excluding	any
additional	time	taken	by	the	browser	to	draw	the	web	form).		OVERALL	is
approximately	equal	to	SERVER-SIDE	+	CLIENT-SIDE.
In	very	broad	terms	these	statistics	can	be	used	to	identify	problem	areas	in	your
application	such	as:
High	SERVER-SIDE	values	may	indicate	that:
Your	filter	or	command	handler	may	be	too	complex	and	taking	too	long	to
execute	on	the	server.
The	communications	delay	between	your	client	system	and	your	web	server	is
too	long.			
High	CLIENT-SIDE	values	may	indicate	that:		
Your	filter	or	command	handler	is	causing	the	client	side	to	do	too	much
processing.	A	cause	of	this	may	be	the	overloading	of	the	client	side	by	browse
lists	with	too	many	entries	in	them	or	by	client	systems	with	slow	or	busy
CPUs.						

Note	2:	RAMP-TS	and	RAMP-NL	User	Profile	and	Password

defaulting
The	user	profile	and	password	used	by	RAMP-TS	or	RAMP-NL	when
attempting	to	connect		to	a	5250	server	are	defaulted	as	follows:
If	your	Framework	is	using	Framework	security	and	the	user	needs	to	log	on,
the	user	profile	and	password	they	use	to	log	on	become	the	initial	default
values.
For	RAMP-NL	only,	the	user	profile	that	the	user	logs	on	to	the	framework	as
may	have	a	specific	RAMP-NL	user	profile	or	password	associated	with	it.
These	values,	if	present,	will	override	the	initial	defaults.
Any	user	(TSUSER/NLUSER)	or	password
(NLPASSWORD/TSPASSWORD)	parameters	specified	on	the	start	up	URL
will	override	any	of	the	preceding	default	values.
Finally,	a	user	profile	and	password	may	be	returned	by	the	system	logon
validation	program.	These	values	will	completely	override	any	other	default	or
deduced	user	or	password	values.
Tip:	If	you	are	having	problems	with	RAMP	user	profiles	or	passwords	then	try
executing	your	application	with	TRACE=Y	to	see	the	values	that	are	being
used.		
	
	

Program	Coding	Assistant
The	Program	Coding	Assistant	is	designed	to	help	you	more	easily	create	filters,
command	handlers	and	snap	in	instance	lists	by	generating	code	for:
Complete	Visual	LANSA	components.
Code	fragments	for	operations	you	commonly	perform.
Complete	LANSA	for	the	Web	Application	Modules	(WAMs).
Using	the	Program	Coding	Assistant	to	generate	code	involves	these	steps:
Step	1.	Select	Object
Step	2.	Select	the	Target	Platform
Step	3.	Select	Type	of	Code	–	Review	Abstracts
Step	4.	Fill	in	Prompts
Step	5.	Generate	Code
Step	6.	Create	the	Component

Step	1.	Select	Object
Select	the	application,	business	object,	filter	or	command	handler	that	you	want
to	generate	code	for:

Step	2.	Select	the	Target	Platform
Select	the	platform	that	you	want	to	generate	code	for:

Step	3.	Select	Type	of	Code	–	Review	Abstracts
Select	the	type	of	code	you	want	to	generate:

To	get	more	details	about	the	type	of	code	click	on	it	and	review	the	abstract
that	appears	on	the	right	hand	side	of	the	window:

Step	4.	Fill	in	Prompts
Fill	in	the	prompt(s)	appropriate	for	type	code	that	you	want	to	generate:

Step	5.	Generate	Code
Generate	the	code:

	

Step	6.	Create	the	Component
Create	the	Visual	LANSA	component	to	contain	the	generated	code.
Alternatively	you	can	paste	the	generated	code	to	the	clipboard	and	then	to	the
Visual	LANSA	editor:

	

Code	Tables
Most	commercial	applications	involve	the	use	of	codes	and	their	decodes	in
many	situations.	For	example:

Country	Code Country	Decode
1 North	America

61 Australia

44 Great	Britain

31 Netherlands

64 New	Zealand

65 Singapore

81 Japan

	

Currency	Code Country	Decode
USD US	Dollar

GBP Great	Britain	Pound

AUD Australia	Dollar

JPY Japanese	Yen

	

Sex	Code Sex	Decode
M Male

F Female

U Unspecified

	

Document	Code Document	Decode
DOC MS-Word	Document

PPT MS-PowerPoint	Document

RTF Rich	Text	Document

TXT Text	Document

	

Application	end-users	need	to	be	able	to	select	a	code	from	a	displayed	list	of
decodes,	validate	it	using	a	referential	integrity	check	and	decode	it	to	present
the	decode	on	a	form	or	in	a	report
Typically	codes	come	in	relatively	short	lists	of	less	than	100	items	and	thus
end-users	can	select	the	one	that	they	want	from	for	example	a	group	or	radio
buttons	or	a	drop-down	combo	box.
However	some	code	tables	are	large.	For	example	a	customer	code	table	could
store	10,000	customers.	To	handle	large	code	tables	you	need	to	provide	the
end-user	with	intelligent	prompting	capability	that	allows	them	to	quickly	locate
the	customer	they	are	interested	in.		
Framework	Code	Tables
Code	Table	Data	Flow
Setting	up	a	Code	Table
Using	a	Code	Table	in	your	application
Advanced	options	when	setting	up	a	code	table
Frequently	asked	Questions	about	Code	Tables
Using	Assistants	to	handle	more	complex	"codes"

Framework	Code	Tables
The	Framework	Code	Tables	provide	a	number	of	facilities	to	make	it	possible
to	more	productively	handle	codes,	decodes	and	prompting	in	your	application.
Code	Tables	are:	
Fully	configurable
Designers	simply	specify	the	keys	and	data	items	that	define	the	code	table	to
the	Framework.
To	design	a	Currencies	code	table	the	Framework	designer	needs	to	define	the
Currency	Code	as	a	key	and	the	Currency	Description	as	a	Data	item.		
May	be	sourced	from	your	database	tables	
The	data	inside	code	tables	can	come	from	your	existing	database	tables	or	the
Framework	can	store	it	automatically.
The	Currencies	code	table	could	be	stored	and	managed	by	the	Framework	itself
in	its	own	database	table	or	sourced	from	one	of	your	own	database	tables	(or
from	anywhere	else	that	your	computer	can	access).
The	format	of	the	code	table	you	define	does	not	have	to	be	the	format	of	the
database	table	it	is	sourced	from.	Sometimes	the	data	in	a	table	is	sourced	from
"hard	coded"	program	values.	For	example	the	Sex	table	mentioned	previously
may	be	defined	as	data	within	a	program	only	and	never	be	actually	stored
anywhere.			
Can	be	updated	in	deployed	applications	by	end-users
Optionally	end-user	administrators	can	be	allowed	to	update	information	stored
in	code	tables.
The	user	interface	for	updating	the	Code	Table	is	provided	by	the	Framework.
The	final	updating	and	storage	of	the	information	in	the	table	can	be	done
automatically	by	the	Framework	or	by	a	program	that	you	provide.
Can	be	visualized	by	you	to	your	end-users	in	various	ways
Codes	can	be	visualized	to	end-users	in	different	ways,	ranging	from	a	group	of
radio	buttons	(eg:	the	Sex	code	table)	to	a	drop-down	combo	box	(eg:	the
Currencies	code	table).				
Are	an	alternative	to	defining	simple	small	database	tables
Code	tables	are	a	way	of	defining	simple	tables	quickly	and	easily.	They	are
suited	to	tables	with	less	than	100	data	items,	with	small	numbers	of	fields	(2	-
6),	that	do	not	require	validation	checks	when	the	table	data	is	entered,	virtual

fields,	or	logical	views.		
If	you	require	functionality	beyond	these	limits,	you	should	define	your
database	table	as	LANSA	files,	and	write	your	own	prompt	assistant	program.

Code	Table	Data	Flow

	

Setting	up	a	Code	Table
To	define	a	code	table
Start	your	Framework	as	a	designer.
Select	the	(Framework)	and	then	(Design	Code	Tables)	menu	options.
The	resulting	form	allows	you	to	define	new	code	tables	and	change	existing
ones:
Step	1.	Create	a	Table
Step	2.	Define	a	Table
Step	3.	Enter	data	into	a	code	table

Step	1.	Create	a	Table
Use	the	new	button	to	create	a	new	table.	On	the	identification	tab	give	your
table	a	caption	and	most	importantly	a	User	Object	Name/Type.	The	example
shown	is	the	shipped	Australian	States	code	table.
The	User	Object	Name/Type	will	be	used	by	programs	to	identify	which	table
they	want	to	use.

Step	2.	Define	a	Table
Define	the	field	structure	of	this	table,	and	some	other	details:
Go	to	the	Definition	tab.	For	this	example	the	field	name	can	be	anything,	as
long	as	it	is	unique	within	this	table.	This	is	because	this	table	will	use	the
default	table	data	storage	function	(UFU0010).	For	tables	whose	data	is	stored
on	an	application	database	file	(e.g.	table	VF_DEPTAB)	it	is	easier	if	the	field
names	of	the	code	table	match	those	of	the	application's	database	file.
Mark	as	keys	those	fields	that	will	uniquely	identify	each	row	of	data	in	the
table.	There	must	be	at	least	one	key	field.	Key	fields	must	not	be	greater	than
32	characters	or	15,5	numeric.	There	must	be	no	more	than	5	key	fields.
Specify	the	field	lengths	and	decimals	if	necessary.
Leave	the	language	field	as	"No	Language	Field	–	Monolingual	Table	Data"
Uncheck		Read_Only
Leave	the	Function	handling	table	data	storage	as	the	default	–	UFU0010
Press	the	Save	button
You	have	now	defined	a	code	table.
	

	

Step	3.	Enter	data	into	a	code	table
Go	to	the	data	tab.
Enter	data	by	selecting	the	row	you	want	to	enter	data	for,	and	then	editing	the
values	in	the	right	hand	panel.	Each	time	you	select	a	different	row,	or	press
the	save	button,	the	data	for	a	changed	row	is	saved.	Once	a	row	has	been
saved	you	cannot	edit	a	key	field	for	that	row.	(Delete	the	row	and	re-enter	it	if
you	need	to	change	a	key)

In	this	example	the		data	is	stored	and	retrieved	by	the	default	table	data	storage
function	(UFU0010)	on	database	file	FPTAB.	But	if	you	wanted	you	could
nominate	your	own	table	data	storage	function	which	would	store	and	retrieve
the	table	data	from	an	application	database	file	(or	anywhere	else	you	wanted	to
store	and	retrieve	it	from).

Using	a	Code	Table	in	your	application
Once	the	table	and	its	data	content	are	defined	to	the	Framework	you	can	start	to
use	it	within	your	applications	in	various	ways:
As	a	part	of	a	referential	integrity	check
As	a	decode	or	lookup	operation	in	your	programs	

As	a	part	of	a	referential	integrity	check
Code	tables	may	be	used	to	define	standard	referential	integrity	checks	in	the
LANSA	repository	or	in	LANSA	RDML	functions.	For	example	you	might
need	to	check	that	a	state	code	"NT"		that	has	arrived	from	someone	else's
application	is	a	valid	state	code.	
Only	tables	with	data	that	is	stored	in	a	physical	file	(either	user	defined	or	the
generic	Framework	table	storage	file	FPTAB)	allow	referential	integrity	checks.
In	the	RDML,	a	check	against	a	code	table	named	VF_STATES	would	look
like:
*Use	the	logical	view	(kya)	keyed	by:	
*Table	name,	AKey1,	Nkey1,	AKey2,	Nkey	2,	Akey3,	Nkey3	...,	field	name		
CHECK_FOR	in_file(FPTABkya)	with_key('VF_STATES'	'NT')	IF_STATUS	*EQUALKEY
...
ENDIF
	

A	LANSA	file	validation	check	against	the	employee	table	would	look	like	this

	

As	a	decode	or	lookup	operation	in	your	programs	
Code	tables	may	be	accessed	by	programs	operating	in	non-visual	contexts.	For
example	a	batch	reporting	programming	may	need	to	convert	the	currency	code
"USD"	to	the	description	"US	Dollars"	before	printing	it	on	a	report.	
Only	tables	with	data	that	is	stored	in	a	physical	file	are	accessible	by	such
functions.	
*Use	the	logical	view	(nma)	keyed	by:	
*Table	name,	field	name,	AKey1,	Nkey1,	AKey2,	Nkey	2,	Akey3,	Nkey3	...		
	
FETCH	fields(#FP_EPTVAL)		from_file(FPTABnma)	with_key('VF_CURRENCY'	'DESCRIPTN'	#MyCurrencyCodeField)	
	
Change	#MyDescriptionField	#FP_EPTVAL
	

For	more	examples,	refer	to	Frequently	asked	Questions	about	Code	Tables
	

Advanced	options	when	setting	up	a	code	table
Multilingual	Data
Sequencing
Choosing	the	description	field
Creating	your	own	table	data	handler	function
Read	Only	Tables
Inactive	Table	Entry	indicator
Creating	Your	Own	Table	Data	Handler	Reusable	Part
	

Multilingual	Data
In	multilingual	applications	it	may	be	necessary	to	have	multilingual	table	data.
In	such	situations	it	is	common	for	a	single	code	to	have	several	descriptions,	or
sometimes,	a	different	set	of	codes	for	different	languages.	The	code	tables
system	handles	this	by	having	one	record	for	each	language	for	each	code.
Consider	the	table	data	for	the	VF_TITLE	table
Title	Code Language Title	Description
MR ENG Mr.

MR DEU Herr.

MRS ENG Mrs.

MRS DEU Frau.

MISS ENG Miss.

MISS DEU Frl.

	

The	language	field	parameter	(on	the	table	definition	tab)	is	used	to	designate
which	of	the	key	fields	is	a	language	code	field.	(the	field	called	"language"	in
this	case).
At	run	time	only	the	table	entries	with	the	correct	language	code	for	the	user
will	be	displayed.
If	multilingual	table	data	is	not	required,	set	the	language	field	to	the	value	"No
Language	Field	-	Monolingual	Table	Data".	In	this	case,	all	table	entries	will
appear	at	run	time.	
A	table	doesn't	necessarily	have	to	be	multilingual	just	because	the	partition	is
multilingual.
	

Sequencing
In	the	code	table	visualization	tab	you	can	specify	which	of	the	table	fields
should	be	used	to	sequence	the	table	entries	when	they	are	displayed	to	the	end-
user	at	run	time.
	

Choosing	the	description	field
In	the	code	table	visualization	tab	you	can	specify	which	of	the	table	fields
should	be	used	as	the	caption	for	the	table	entries	when	they	are	displayed	to	the
end-user	at	run	time.
	

Creating	your	own	table	data	handler	function
Your	table	can	share	the	default	table	data	handler	or	you	can	create	your	own
function.	The	simplest	method	of	creating	a	table	data	handler	is	to	copy	one	of
the	following	example	functions
Tables	where	the	data	is	stored	in	the	shipped	generic	table	data	file	(FPTAB)
can	share		the	default	table	data	handler	UF_SYSBR/UFU0010,	or	use	their
own	version	of	it.
Tables	where	the	data	is	stored	in	an	application's	physical	file	can	create	their
own	table	data	handler	function.	See	the	data	handler	function
UF_SYSBR/UFU0011	for	an	example.	This	function	reads	and	writes	data
from/to	file	DEPTAB,	for	the	table	DEPTAB.
Tables	where	the	data	comes	from	hard	coding	in	the	table	data	handler	function
can	create	their	own	table	data	handler	function.	See	the	data	handler
UF_SYSBR/UFU0012	for	an	example	of	this	type	of	data	handler.	It	supplies
the	data	for	the	SEX	Table.
Tables	can	also	get	their	data	from	a	flat	file,	using	a	table	data	handler	function
similar	to	UF_SYSBR/UFU0013,	provided	the	end-user	is	running	the
Windows	Framework	and	has	access	to	the	flat	file.
Table	data	handler	functions	may	or	may	not	allow	data	to	be	updated.
UFU0012	and	UFU0013	are	examples	of	table	data	handler	functions	that
supply	table	data	but	will	not	store	edited	table	data.
	

Read	Only	Tables
This	table	property	is	set	in	the	table	definition	tab.
It	is	sensible	to	make	a	table	read-only	if	its	table	data	handler	has	no	method
for	saving	or	updating	data.	The	read	only	option	could	also	be	used	for	those
tables	where	the	complete	data	set	has	been	added	and	saved,	and	the	designer
does	not	wish	to	allow	the	administrator	to	modify	the	table	data	in	future.
	

Inactive	Table	Entry	indicator
In	some	circumstances	it	is	useful	to	be	able	to	distinguish	between	table	entries
that	are	live,	and	inactive	table	entries	that	are	present	only	because	they	belong
to	historical	data.	The	inactive	table	entries	need	to	be	present	so	that	historical
data	is	displayed	correctly,	but	they	shouldn't	be	used	when	creating	new	data.
If	you	want	to	flag	some	of	the	table	entries	as	inactive,	create	a	field	to	hold
this	information	(a	one	character	field)	and	then	choose	that	field	in	the	Inactive
Table	Entry	indicator	drop	down.

Creating	Your	Own	Table	Data	Handler	Reusable	Part
A	reusable	part	code	table	data	handler	can	source	data	from	any	source	that	a
data	handler	function	can,	and	if	it	is	enabled	for	RDMLX,	it	can	process
Unicode		table	fields.
A	Framework	code	table	can	use	the	default	reusable	part	data	handler,
UF_TDH01,	or	use	a	custom	data	handler.	If	UF_TDH01	is	used	as	a	table’s
data	handler,	data	will	be	written	and	read	from	the	shipped	VLF	Code	Table
files	FPTAB	(main	data	file)	and	FPTABU	(Unicode	value	file).
If	a	custom	data	handler	reusable	part	is	created,	it	must	extend	VF_AC024,	the
Table	Data	Handler	ancestor	class,	and	redefine	the	methods	included	in	the
ancestor	class.	The	default	behaviour	can	be	optionally	included	by	calling	the
ancestor	methods	in	the	redefined	methods	first.	See	comments	in	UF_TDH01
for	more	details.
See	Code	Table	Definition/	Reusable	Part	Data	Handler	(ID)	and	Code	Table
Definition/	Use	a	Reusable	Part.
	

Frequently	asked	Questions	about	Code	Tables
Q:	Are	code	table	real	database	files?
A:	No,	code	tables	are	abstract	or	conceptual	definitions	only.		You	define	to	the
Framework	the	columns	that	are	in	the	code	table	and	indicate	which	ones
define	the		unique	key	for	a	row	in	the	code	table.		The	table	data	is	frequently
stored	in	a	real	database	file,	though	it	may	share	the	database	file	with	other
tables.
Q:	Where	does	the	data	in	a	code	table	come	from?
A:	It	can	come	from	anywhere.	By	default	the	Framework	is	shipped	with	an
RDML	function	that	will	store	code	table	data	inside	a	single	database	table.
However	you	can	supply	your	own	data	storage	function	that	can	sources	the
code	table	data	from	anywhere	that	you	want.	This	type	of	function	is	referred
to	as	a	Table	Data	Handler	Function.
Q:	How	do	I	create	a	Data	Storage	function?			
A:	A	Table	Data	Handler	function	is	a	normal	LANSA	RDML	function	that
communicates	with	the	Framework	using	a	pre-defined	protocol.	If	you	want	to
create	your	own	Table	Data	Handler	function,	see	process	UF_SYSBR
functions	UFU0010	–	UFU0015	for	examples.
Q:	Can	Data	Storage	Functions	interact	with	the	end-user?
A:	No.	Data	storage	functions	are	designed	to	act	as	data	retrieval	and	update
routines	that	can	work	in	many	different	contexts.	For	example	they	can	be
invoked	as	a	remote	procedure	by	a	Windows	based	Framework	application	or
on	a	remote	server	as	part	of	browser	based	application.	This	means	that	they
need	to	be	able	to	operate	in	contexts	where	no	user	interface	is	available	to
them.
Q:	What	are	the	benefits	in	using	code	tables?
A:	The	main	benefits	in	using	the	Framework	code	table	system	are	simply	in
improved	productivity	and	consistency.	By	using	a	standard	shipped	architecture
for	code	table	maintenance	your	can	develop	and	maintain	applications	more
rapidly	and	avoid	the	cost	and	complexity	of	developing	your	own	code	table
system.	
	

Q:	How	do	I	interface	an	external	LANSA	function	(or	LANSA	for	the	web
function)	with	the	Framework	generic	table	data	file	(FPTAB)?
A:	The	data	in	FPTAB	is	unusual	in	that	it	contains	one	record	for	every	non-

key	cell	in	the	table.
For	example,	in	the	Australian	States	table	there	are	the	fields
CODE	(a	key)
DESCRIPTN
MYSEQ
	

Each	state	will	be	represented	as	two	records	in	FPTAB:	One	record	for
DESCRIPTN	and	one	record	for	MYSEQ.	Both	records	will	contain	all	the	key
data	(CODE	in	this	case).
Akey1
(FP_EKEY1)

Nkey1(FP_EKEYN1) Other
keys2
-	5

Property
Name(FP_EPTNAM)

Alpha
property	value
(FP_EPTVAL)

NSW 	 	 DESCRIPTN New	South
Wales

NSW 	 	 MYSEQ 	

QLD 	 	 DESCRPTN Queensland

QLD 	 	 MYSEQ 	

... 	 	 	 	

	 	 	 	 	

	

ExamplesI	want	to	check	that	a	currency	code	entered	by	a	user	is	valid
*Use	the	logical	view	(kya)	keyed	by:	
*Table	name,	AKey1,	Nkey1,	AKey2,	Nkey	2,	Akey3,	Nkey3	...,	field	name		
	
CHECK_FOR	in_file(FPTABkya)	with_key('VF_CURRENCY'	#MyCurrencyCodeField)
IF_STATUS	*EQUALKEY
	
ENDIF
	

I	want	to	display	the	description	of	a	currency	code	that	I	have	read	from
somewhere

*Use	the	logical	view	(nma)	keyed	by:	
*Table	name,	field	name,	AKey1,	Nkey1,	AKey2,	Nkey	2,	Akey3,	Nkey3	...		
	
FETCH	fields(#FP_EPTVAL)		from_file(FPTABnma)	with_key('VF_CURRENCY'	'DESCRIPTN'	#MyCurrencyCodeField)	
	
Change	#MyDescriptionField	#FP_EPTVAL
	

I	want	to	read	through	the	currency	codes	and	report	on	all	transactions	for
each	currency
*Use	the	logical	view	(nma)	keyed	by:	
*Table	name,	field	name,	AKey1,	Nkey1,	AKey2,	Nkey	2,	Akey3,	Nkey3	...		
	
SELECT	*ALL	from_file(FPTABnma)	with_key('VF_CURRENCY'	'DESCRIPTN')	
	
(assuming	that	there	is	always	a	DESCRIPTN	for	a	CURRENCY)
	
ENDSELECT
	

I	want	to	read	through	the	currency	codes	and	report	on	all	transactions	for
each	currency,	and	I	need	to	know	both	the	exchange	rate	and	the
description
*Use	the	logical	view	(nma)	keyed	by:	
*Table	name,	field	name,	AKey1,	Nkey1,	AKey2,	Nkey	2,	Akey3,	Nkey3	...		

SELECT	*ALL	from_file(FPTABnma)	with_key('VF_CURRENCY'	'DESCRIPTN')	

Change	#MyDescriptionField	#FP_EPTVAL

*	Get	a	numeric	cell	value
*	Use	a	second	logical	view	to	avoid	confusing	the	pointer	
FETCH	fields(#FP_EPTNV)		from_file(FPTABn2a)	with_key('VF_CURRENCY'	'EXCHRATE'	#FP_EKEY1)	

Change	#MyExchangeRateField	#FP_EPTNV

ENDSELECT
I	want	to	report	on	all	combinations	of	Currency	and	Department
*Use	the	logical	view	(nma)	keyed	by:	
*Table	name,	field	name,	AKey1,	Nkey1,	AKey2,	Nkey	2,	Akey3,	Nkey3	...		

SELECT	*ALL	from_file(FPTABnma)	with_key('VF_CURRENCY'	'DESCRIPTN')	

Change	#MyCurrencyCodeField				#FP_EKEY1		
Change	#MyCurrencyDescriptionField	#FP_EPTVAL

*	Now	read	through	all	the	departments
*	Use	another	logical	view	(n2a)	to	avoid	confusing	the	pointer	
SELECT	*ALL		from_file(FPTABn2a)	with_key('VF_DEPTAB'	'DESCRIPTN')	

Change	#MyDepartmentCodeField				#FP_EKEY1	
Change	#MyDepartmentDescriptionField	#FP_EPTVAL

ENDSELECT
ENDSELECT
	

Note:	It	helps	coding	if	for	every	table	type	there	is	a	non-key	field		(e.g.
Description)	that	must	exist	for	every	table	entry.
I	want	to	decode	from	a	table	with	a	numeric	key
Say	there	is	a	table	VF_POSTCODE	keyed	by	#POSTCODE	(numeric)
*Use	the	logical	view	(nmn)	keyed	by:	
*Table	name,	field	name,	NKey1,	Akey1,	NKey2,	Akey	2,	Nkey3,	Akey3	...		

FETCH	fields(#FP_EPTVAL)		from_file(FPTABnmn)	with_key('VF_POSTCODE'	'DESCRIPTN'		#MyPostCodeField)	

Change	#MyDescriptionField	#FP_EPTVAL
	

I	want	to	decode	from	a	table	with	a	mixed	key
Say	there	is	a	table	VF_POSTCODE	keyed	by	#POSTCODE	(numeric)	and
#COUNTRY	(alpha)
	
*Use	the	logical	view	(nmn)	keyed	by:	
*Table	name,	field	name,	NKey1,	Akey1,	NKey2,	Akey	2,	Nkey3,	Akey3	...		

FETCH	fields(#FP_EPTVAL)		from_file(FPTABLnmn)	with_key('VF_POSTCODE'	'DESCRIPTN'		#MyPostCodeField	*blanks	0	#MyCountryCodeField)	

Change	#MyDescriptionField	#FP_EPTVAL
	

I	want	to	read	departments	in	description	order
*Use	the	logical	view	(val)	keyed	by:	
*Table	name,	field	name,	Numeric	Property	Value,	Alpha	Property	Value.		

SELECT	*ALL	from_file(FPTABval)	with_key('VF_DEPTAB'	'DESCRIPTN')	

(assuming	that	there	is	always	a	DESCRIPTN	for	a	department)

ENDSELECT
	

Using	Assistants	to	handle	more	complex	"codes"
The	preceding	sections	deal	with	handling	simple	codes,	decodes	and	prompting
(things	such	as	Currencies,	Companies,	Countries,	etc).	This	approach	is	okay
when	working	with	small	sets	of	relatively	static	information.
However	in	most	commercial	applications	there	are	"codes"	such	as	Customer
Numbers,	Order	Numbers,	Policy	Numbers,	Product	Numbers.
These	types	of	codes	have	several	important	characteristics:
The	information	associated	with	them	is	often	quite	dynamic.
They	are	used	all	over	the	application	and	cross	business	objects.	For	example,
when	creating	a	new	Order	references	to	the	"codes"	for	Customers	and
Products	are	heavily	used.
They	are	used	all	day	every	day	by	the	end-users.	Using	these	"codes"	and
moving	around	within	them	is	at	the	core	of	the	application's	functionality.
An	interesting	way	to	handle	them	involves	the	generic	concept	of	an
"Assistant".	
An	"Assistant"	hangs	around	in	a	small	window	(or	windows)	ready	to	pop	up
and	offer	specialized	assistance	to	the	end-user	at	the	appropriate	time
(somewhat	like	the	one	used	in	MS-Office	applications).
The	traditional	F4=Prompt	option	used	in	many	5250	style	applications	is	an
example	of	a	very	specialized	type	of	Assistant	(i.e.:	it	pops	up	at	the
appropriate	time	and	assistants	the	end-user	to	identify	the	"code"	that	they	want
to	use.
However,	in	the	Windows	GUI	word	the	concept	of	an	assistant	can	be
significantly	extended	to	offer	substantially	more	functionality	to	the	end-user.
For	example	in	a	large	order	processing	application	there	might	be	"assistants"
for	Customers,	Products	and	Orders	…	which	are	the	three	predominant
business	objects	within	the	application.						
In	the	Framework	the	assistant(s)	could	be	made	to	appear	to	end-users	in
several	ways:

Approach	1:	Single	Window	–	Multiple	Assistants		
Here	the	Framework	designer	has	defined	a	single	application	called
"Assistants"	which	has	no	filters	and	three	full	screen	commands	called
"Product	Assistant",	"Order	Assistant"	and	"Customer	Assistant".	"Product
Assistant"	is	the	default	command.
When	the	end-user	clicks	on	the	"Assistants"	application	they	immediately	see	a
single	window	with	3	tabs	(one	for	each	assistant)	like	this	(the	actual	content	of
the	assistant	windows	has	been	omitted):

Note	that	the	assistant	window	floats	on	top	what	the	end-user	is	currently	doing
in	the	main	Framework	window.	The	assistant	can	interact	with	the	application
in	the	main	window	in	any	way	that	is	desired.	For	example,	selecting	a
customer	in	a	Customer	Assistant	might	cause	the	customer	number	to	appear	in
the	"Customer	Number"	entry	field	on	the	underlying	Order	Entry	form	(this	is
the	classic	F4=Prompt	interaction	done	in	a	non-modal	way).			

Approach	2:	Multiple	Windows	–	Multiple	Assistants
Here	the	Framework	designer	has	defined	a	single	application	called
"Assistants"	which	contains	three	business	objects	called	"Product	Assistant",
"Order	Assistant"	and	"Customer	Assistant".	Each	has	a	single	command
(which	is	the	default).
When	the	end-user	clicks	on	"Assistants"	they	can	select	from	"Product
Assistant",	"Order	Assistant"	or	"Customer	Assistant".	By	clicking	on	one	of
more	the	Assistants	they	can	display	each	assistant	in	it's	own	window.

Note	that	the	assistant	window(s)	float	on	top	what	the	end-user	is	currently
doing	in	the	main	Framework	window.	Here	the	end-user	has	all	three	assistants
active	together	to	help	them	input	order	details	into	the	main	form	underneath.

Approach	3:	Multiple	Windows	–	Multiple	Assistants	(some
Complex)
This	approach	is	very	like	approach	2,	except	that	selected	assistants	can	be
made	more	complex	and	have	multiple	tabs	of	information	associated	with
them:

Here	the	"Product	Assistant"	has	been	made	more	complex	and	it	has	the	tabs
"History",	"Bookings",	"Availability"	and	"Basic	Details"	associated	with	it.
In	using	approach	3	it	is	important	to	remember	that	something	like	a	"Product
Assistant"	primary	role	is	to	help	users	locate	and	display	commonly	requested
product	information	only.	It	can	be	set	up	to	be	invoked	from	anywhere	that
product	information	is	displayed	anywhere	else	in	your	application.
You	can	get	carried	away	with	an	Assistant	and	attempt	to	make	it	too	powerful
and	too	encompassing,	to	the	detriment	of	the	real	"Product"	business	object	in
your	application.	

How	are	Assistants	started?
Since	assistants	are	just	normal	Framework	or	business	object	level	command
handlers	they	can	be	started	from	many	different	places	directly	by	end-users:
Option(s)	in	drop	down	menus
Icon(s)	on	the	toolbar	
Right	Mouse	menu	option(s)
How	and	when	they	appear	in	these	situations	is	definable	by	the	Framework
designer.
Programmatically	you	can	also	start	an	assistant	by	using	the	normal	Switch
operation.

How	do	Assistants	interact	with	other	parts	of	the	application?
Assistants	are	free	floating	modeless	windows.
They	communicate	with	the	rest	of	the	application	by	signaling	events	to	it.
The	respond	to	the	rest	of	the	application	by	listening	for	events	signaled	by	it.
This	very	simple	architecture	is	flexible	and	extensible.
Here's	some	examples	of	simple	even	driven	interactions:
Example	1	–	A	classic	F4=	Prompt	style	request	
An	order	entry	form	is	asking	the	user	to	input	a	customer	number.
The	user	indicates	that	they	would	like	to	prompt	the	customer	by	pressing	a
button	or	an	image	(eg:	a	question	mark).
The	Order	Entry	form	signals	a	"SelectCustomer"	event	and	may	optionally
include	details	of	information	already	input	by	the	user	(eg:	partial	customer
name,	number	etc)	as	part	of	the	"payload"	associated	with	the	event.
The	Customer	Assistant	detects	the	"SelectCustomer"	event	and	allows	the	user
to	search	for	the	required	customer.	The	"payload"	associated	with	the	event
may	be	used	to	speed	up	or	narrow	the	initial	search.	When	the	user	locates	and
selects	the	required	customer	the	Customer	Assistant	signals	a
"CustomerSelected"	event	and	would	include	the	customer	number	(and	maybe
their	name)	as	the	"payload"	associated	with	the	event.
The	Order	Entry	form	detects	the	"CustomerSelected"	event	and	updates	the
details	of	the	order	being	input	with	the	selected	customer	details.	
Example	2	–	A	more	advanced	non-modal	prompt	request	
An	Order	Entry	form	is	currently	active.
The	Customer	Assistant	window	is	also	floating	around.
The	user	goes	directly	to	the	Customer	Assistant	window	and	searches	for	a
customer.	When	they	select	it	the	Customer	Assistant	signals	a
CustomerSelected"	event	and	would	include	the	customer	number	(and	maybe
their	name)	as	the	"payload"	associated	with	the	event.
The	Order	Entry	form	detects	the	"CustomerSelected"	event	and	updates	the
details	of	the	order	currently	being	input	with	the	selected	customer	details.	
In	web	applications	particularly	this	is	a	more	efficient	way	to	perform
prompting	because	it	cuts	out	the	number	of	interactions	with	the	remote	server
that	are	required	to	complete	the	interaction.
Example	3	–	Multiple	Item	Prompting

Event	driven	processing	allows	multiple	item	selections.
An	Order	Entry	form	is	currently	active.
The	Product	Assistant	is	window	also	floating	around.
The	user	goes	directly	to	the	Product	Assistant	Window	and	selects	four
different	products.	When	they	have	completed	this	selection	the	Product
Assistant	signals	a	"ProductsSelected"	event.	It	would	include	a	list	of	product
numbers	(and	maybe	product	descriptions)	in	the	payload	of	the
"ProductsSelected"	event.
The	Order	Entry	form	detects	the	"ProductsSelected"	event	and	updates	the
details	of	the	order	currently	being	input	with	the	all	the	products	selected.	
Example	4	–	Some	other	uses	for	Assistants
Here's	some	ideas	for	extending	the	concept	of	an	Assistant	…
An	all	powerful	Assistant.	The	preceding	examples	used	3	discrete	assistants.
There	is	nothing	to	stop	you	designing	a	single	assistant	that	can	handle
multiple	things.	For	example,	a	single	assistant	could	easily	be	designed	to
signal	"CustomerSelected",	"ProductSelected"	or	"OrderSelected"	(with
appropriate	payloads)	depending	upon	its	interaction	with	the	user.			
A	"Currency	Calculation	Assistant"	that	performs	currency	calculations	and
broadcasts	"CurrencyCalculationPerformed"	events.				
An	"Alerts	and	Messages	Assistant"	that	polls	a	server	application	periodically
for	alerts	and	messages	that	are	relevant	to	the	current	user.	When	one	is
detected	it	switches	to	a	Framework	level	command	to	display	the	details	to
the	user.	
A	"Chat	and	Messages	Assistant"	that	allows	the	end-user	to	create	and	send
messages	to	other	application	users	in	a	controlled	manner.	This	would
probably	be	linked	to	the	preceding	example	in	some	way	(or	simply	an
extension	of	it).
A	"Server"	Assistant	that	allows	the	end-user	to	display	and	manipulate	server
side	things	that	he/she	has	initiated	(eg:	Reports,	Output	queues,	Message
Queues,	etc).		

	

Using	Unicode	Data	with	the	Framework
The	Framework	can	handle	Unicode	data	for	certain	parameters	in	certain
methods.
For	example,	all	the	methods	for	reading	and	writing	data	to/from	the	instance
list	can	handle	Unicode	data	for	the	Visual	Identifiers	and	AColumns.
The	general	rules	are:

Writing	Data
When	writing	data	to	the	Framework,	you	can	continue	to	use	the	same
parameter,	and	use	either	an	Alphanumeric	field	or	a	Unicode	(NChar
NVarChar)	field	as	input.
For	example	both	these	statements	are	valid:
#avListManager.AddtoList	AColumn1(#MyAlphaField)
#avListManager.AddtoList	AColumn1(#MyUnicodeField)

	

Reading	Data
When	reading	Unicode	data	from	Unicode-enabled	parameters,	you	must	use
the	new	u	version	of	the	parameter	if	you	want	the	Unicode	data	to	be	displayed
correctly.
For	example	if	reading	Unicode-data	that	is	outside	the	native	character	set,	this
statement	is	not	valid:
#avListmanager.GetSelectedInstance	AColumn1(#MyUnicodeField)
	

But	this	one	is	OK:
#avListmanager.GetSelectedInstance	AColumn1u(#MyUnicodeField)

	
However,	if	you	are	not	reading	Unicode	data	that	is	outside	the	native	character
set,	all	these	statements	are	OK:
#avListmanager.GetSelectedInstance	AColumn1(#MyUnicodeField)
#avListmanager.GetSelectedInstance	AColumn1(#MyAlphaField)
#avListmanager.GetSelectedInstance	AColumn1u(#MyUnicodeField)

So	pre-existing	logic	will	continue	to	run	ok.
	

Relationship	Handlers
If	you	are	using	a	relationship	handler	to	build	tree-style	instance	lists,	and	you
want	to	add	Unicode	data	to	the	instance	list,	you	must	use	a	reusable	part	as	the
relationship	handler,	not	a	function.
	

Examples
See	shipped	examples	DF_T35*	and	DM_T35*	for	examples	of	using	Unicode
with	filters,	command	handlers,	relationship	handlers	and	snap	in	instance	lists.

Note	about	VLF	Tools	and	Extensions
If	you	have	created	VLF	tools	or	extensions	that	read	the	internal	VLF	object
model,	you	may	need	to	modify	and/or	recompile	them.	Some	of	the	VLF's
internal	properties	have	been	changed	to	be	Unicode	and	you	may	need	to	add
.asNativeString	to	your	references.
	
Also	see:
Unicode	Data	in	Code	Tables
Unicode	Data	in	Virtual	Clipboard
Unicode	Data	in	Tracing

	

	

Unicode	Data	in	Code	Tables
Unicode	data	can	also	be	used	in	code	tables	if	a	reusable	part	data	handler	is
used.	Set	the	data	type	of	the	table	column	to	‘U’	in	the	Code	Table	definition
tab	of	the	Design	Code	Tables	form.
A	default	reusable	part	table	data	handler,	UF_TDH01	is	shipped	with	the
Framework.	If	UF_TDH01	is	used	as	a	table’s	data	handler,	data	will	be	written
and	read	from	the	shipped		code	table	files	FPTAB	(main	data	file)	and
FPTABU	(Unicode	value	file).	Custom	Reusable	part	data	handlers	can	also	be
created	and	used	with	code	tables.
If	a	custom	data	handler	reusable	part	is	created,	it	must	extend	VF_AC024,	the
Table	Data	Handler	ancestor	class,	and	redefine	the	methods	included	in	the
ancestor	class.	The	default	behavior	can	be	optionally	included	by	calling	the
ancestor	methods	in	the	redefined	methods	first.	See	comments	in	UF_TDH01
for	more	details.
	

Unicode	Data	in	Virtual	Clipboard
To	save	Unicode	values	use	the	avSaveValue	method	as	you	normally	would	but
pass	Unicode	values	to	the	FromAValueU	parameter:
#AvFrameworkManager.avSaveValue	WithID1(PRIVATE)	WithID2(*COMPONENT)	WithID3(MyUnicodeString)	FromAValueU(#UnicdeTxt)

Similarly	when	retrieving	Unicode	values:
#AvFrameworkManager.avRestoreValue	WithID1(PRIVATE)	WithID2(*COMPONENT)	WithID3(MyUnicodeString)	ToAValueU(#UnicdeTxt)

	

Unicode	Data	in	Tracing
The	Framework	manager’s	basic	tracing	service	is	now	Unicode	enabled.
Unicode	strings	can	be	traced	and	will	present	in	the	Tracer	form	and	in	the
saved	trace	files.	Unicode	strings	and	Unicode	enabled	fields	can	be	passed	to
the	tracing	service	using	the	Event	parameter	or	the	AValue	parameters.
For	example:
#AVFRAMEWORKMANAGER.avRecordTraceAValue	Avalue(#VF_elurlu)
Component(#COM_OWNER)	Event('Trace	the	value	of	a	Unicode	field,
#VF_elurlu	-	')

	

	

	

	

	

	

End-user	Help	(F1)
This	section	describes	how	you	create	and	display:
Help	Text	for	Windows	Applications
Help	Text	for	Web	Applications
Disabling	or	diverting	the	F1=Help	key	in	Framework	applications

Help	Text	for	Windows	Applications
Help	for	Windows	Framework	applications	is	handled	through	the	normal
LANSA	field	and	component	based	help	text	facility.	See	the	sections	on	Help
Text	in	Visual	LANSA	Components	–	A	Developer's	View	and	the	iSeries	User
Guide	for	details	about	creating	and	displaying	help	text	for	Windows
applications.

Help	Text	for	Web	Applications
The	Framework	optionally	provides	F1=Help	support	to	your	web	browser
applications.
It	does	this	by	trapping	F1=Help	requests	made	by	the	user	and	then	invoking	a
WEBEVENT	function	named	UFU0002	in	process	UF_SYSWB.
Alternatively	the	shipped	UF_SY002	offers	a	basic	example	of	how	to	use	a
WAM	to	display	application	help.	Refer	to	the	Web	Details	tab	in	Framework
Properties:

Developers	may	modify	the	default	behaviour	by	creating	their	own	version	of
UF_SY002	(with	a	different	name)	and	cause	it	to	display	a	CHM	document	or
even	a	specific	section	of	a	CHM	document.

To	activate	F1=Help	processing	in	your	WAM	filters	or	command
handlers:
Use	WAMHELP=Y	on	the	URL	you	use	to	start	your	Framework	application.
This	activates	WAM	Help.
	

Disabling	or	diverting	the	F1=Help	key	in	Framework
applications
The	F1	key	is	special	in	all	Visual	LANSA	applications.	It	invokes	the	online
help,	and	it	is	almost	impossible	in	any	Windows	application	created	with	any
tool	to	use	it	for	any	other	purpose.
However,	you	can	disable	it,	or	capture	it	and	use	it	in	a	different	way	(for
example	to	display	a	CHM	document).
The	following	example	demonstrates	how	to	capture	and	disable	the	F1=Help
key.	It	is	a	customized	copy	of	the	shipped	user	entry	point	form	UF_EXEC.
To	try	it,	create	a	form	with	a	name	different	to	UF_EXEC	and	paste	in	the
following	code.
See	the	notes	at	the	end	of	this	code	for	more	information	about	creating
customized	entry	point	forms.
	
*
===
*	
*	Component			:	XX_EXEC
*	Type								:	Form
*	Ancestor				:	VF_AC006
*
*
===
*
*	PLEASE	NOTE:		This	component	is	a	COPY	of	the	shipped	version.
*															You	may	choose	to	modify	it.	Refer
*															to	the	end	of	this	component	for	more	details	about	making	your
*															own	version	of	this	component.
*
Function	Options(*DIRECT)	
BEGIN_COM	ROLE(*EXTENDS	#VF_AC006	*implements
#Prim_App.IHelpHandler)	CLIENTWIDTH(771)	LEFT(153)	TOP(32)
WIDTH(779)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#BROWSER)	WIDTH(247)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#COMMANDHANDLER)
WIDTH(578)

DEFINE_COM	CLASS(*ANCESTOR)	NAME(#COMMAND_PANEL)
WIDTH(578)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#INTRO)	WIDTH(578)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#INTRO_PANEL)
WIDTH(578)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#RIGHT_PANEL)
WIDTH(578)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#SELECT_PANEL)
WIDTH(247)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#TOP_PANEL)
WIDTH(578)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#WORK_PANEL)
WIDTH(578)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#STATUS)	LEFT(239)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#TOOLBAR)	WIDTH(767)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#IDENT_PANEL)
WIDTH(767)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#MAIN_PANEL)
WIDTH(767)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#IDENT_BUTTON)
LEFT(746)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#CURRENT_OBJECT)
WIDTH(467)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#APPLICATION)
WIDTH(185)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#LEFT_PANEL)
WIDTH(185)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#STATUS_BAR)
WIDTH(771)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#MiniFilter)	WIDTH(467)
DEFINE_COM	CLASS(*ANCESTOR)	NAME(#Right_panel_Main)
LEFT(189)	WIDTH(578)
	
	
*
===
*	Method	Routines
*
===

	
MthRoutine	uInitializeFramework	Options(*Redefine)
	
*	Set	up	for	end	user	mode
	
Set	#Com_Owner	iDesignMode(FALSE)
Set	#Com_Owner	uAdminMode(FALSE)
	
*	Set	to	start	up	image	name
	
Set	#Com_Owner	uStartupImage(#uf_im001)
	
*	Nominate	the	XML	file	containing	the	Framework	design
	
Set	#Com_Owner	uSystemXMLFile('vf_sy001_system.xml')
uSystemXMLChoice('vf_sy001_system_choice')
	
EndRoutine
	
Mthroutine	Name(ProcessHelpRequest)	Options(*Redefine)
*	Define_Map	For(*input)	Class(#prim_objt)	Name(#Requestor)
Pass(*by_reference)
*	Define_Map	For(*input)	Class(#prim_alph)	Name(#Tag)
*	Define_Map	For(*input)	Class(#prim_boln)	Name(#Handled)
	
**
*	Add	logic	here	to	determine	if	F1	is	ignored	or	not.
**
	
*	If	Handled	is	true	this	will	stop	the	help	request	going	to	the	normal	VL	help
facility.
	
Set	Com(#Handled)	Value(True)
	
Endroutine
	
*	
===
*		MAKING	YOUR	OWN	VERSION	OF	THIS	COMPONENT

*	
===
*
*	It	is	not	recommended	that	you	create	development	or	design	entry	points
for	your
*	framework.	Simply	use	the	shipped	ones	and	use	the	'Save	As'	option	to
create
*	different	frameworks.	Then	only	create	administrator	and	user	entry	points
as
*	required	for	production	users,	locking	them	into	a	specific	XML	file	and
never
*	allowing	the	end	user	a	framework	XML	file	choice.
*
*		To	create	your	own	User	entry	point	do	the	following:
*
*		->	Create	a	VL	form	with	your	chosen	entry	point	name	(eg:	MYEXEC).
*
*	->	Copy	the	code	from	UF_EXEC	into	your	new	form.	Initially	this	will
cause
*	errors	to	be	displayed.
*
*		->	Change	the	ancestor	of	your	new	form	to	VF_AC006.
*
*		->	The	copied	code	should	contain	a	method	routine	that	will
*		look	like	this:
*
*		MthRoutine	uInitializeFramework	Options(*Redefine)
*		Set	#Com_Owner	iDesignMode(FALSE)
*		Set	#Com_Owner	uAdminMode(FALSE)
*		Set	#Com_Owner	uStartupImage(#uf_im001)
*		Set	#Com_Owner	uSystemXMLFile('vf_sy001_system.xml')
*		EndRoutine
*
*		This	code	defines	whether	this	entry	point	should	allow	application
*		design	(iDesignMode),		whether	the	administration	of	users	and	servers
*		should	be	allowed	(uAdminMode).	It	also	defines	what	the	startup	bitmap
*		to	be	shown	is	(uStartUpImage)	and	the	name	of	the	XML	file	containing
*		the	framework	design.
*

*		->	Change	these	properties	as	desired	and	then	compile	and	test	your
*		entry	point.	You	should	not	make	any	other	changes	to	the	logic
*		in	your	entry	point.
*
*		->	Optionally	include	a	uSystemXMLChoice	file	name	to	allow	the	user	to
*		select	which	framework	should	be	opened	from	a	list	contained	in	the
*		specified	file.
*
*		->	In	design	mode	entry	points	only,	optionally	add	the
uSystemXMLSaveAs
*		property	to	indicate	the	designer	can	save	the	framework	XML	file	with	a
*		different	name.
*
*		->	If	you	enroll	a	bitmap	into	the	LANSA	repository,	say,	your	company
*		logo	under	the	name	#MYLOGO	then	changing	the	line:
*
*		Set	#Com_Owner	uStartupImage(#uf_im001)
*
*		to:
*
*		Set	#Com_Owner	uStartupImage(#MYLOGO)
*
*		will	cause	your	logo	to	be	presented	while	the	framework	is	starting.
*
*	->	UF_DESGN,	UF_DEVEL,	UF_ADMIN	and	UF_EXEC	are	designed	to
act	as	framework
*	entry	points	only.	You	should	not	try	to	use	UF_DESGN,	UF_DEVEL,
UF_ADMIN	and	UF_EXEC
*	(or	any	copied	version	of	them)	inside	any	framework	in	any	way.
*
	
End_Com

Designing	Filter	and	Command	Handler	Layouts
When	you	are	implementing	filters	or	command	handlers	you	will	need	to
understand	how	to	design	different	form	layouts.	The	recommended	approach	to
designing	forms	is:
Use	the	Code	Assistant	to	generate	the	initial	code	for	your	filter	or	command
handler.	Alter	this	code	as	required	to	add	any	additional	functionality	to	your
filter	or	command	handler.	
Next,	compile	your	filter	or	command	handler.	This	will	cause	a	basic	form
layout	to	be	created	for	you.
Continue	to	use	the	basic	form	layout	until	you	are	satisfied	that	your	filter	or
command	handler	is	functionally	complete.
When	you	your	filter	or	command	handler	is	functionally	complete,	change	the
form	layout	to	be	exactly	what	you	want.	This	is	called	fine	detailing.	Do	this
only	when	your	filter	or	command	handler	is	functionally	complete.
How	you	fine	detail	your	form	layouts	depends	on	the	type	application	you	are
working	with:
WINDOWS:	Use	the	Visual	LANSA	Form	Editor	just	as	you	would	for	any
other	Windows	application.
WAM:	Use	the	WAM	Form	Editor	just	as	you	would	for	any	other	WAM	based
application.
	

Programming	Tips
Component	Names	and	Identifiers
Advanced	Enter	Key	Handling	in	VL	applications
Possible	Technique	for	Handling	"New"	in	VLF	And	Ramp	Application
Designs

Component	Names	and	Identifiers
LANSA	components	have	a	name,	which	may	be	longer	than	8	characters,	and
an	identifier.
When	working	with	the	Framework,	use	the	identifier	when	specifying	the
components	or	functions	to	be	used	as	filters,	command	handlers,	imbedded
interface	points,	etc.
However,	you	can	prompt	and	search	for	plug-in	components	using	their	long
name.	When	you	select	a	component,	its	identifier	is	returned	and	saved	in	the
XML	schema.
	

Advanced	Enter	Key	Handling	in	VL	applications
The	Enter	key	is	often	used	to	indicate	the	initiation	of	some	activity	(eg:	to
perform	a	search,	to	save	an	update,	etc)	in	VL	applications.
Typically	the	ButtonDefault()	property	is	used	on	push	buttons	such	as	"Search"
or	"Save"	so	that	the	Enter	key	causes	a	virtual	click	event	to	be	issued	against
the	button.
In	complex	VL	forms	containing	many	different	reusable	parts	the	use	of	the
ButtonDefault()	property	may	become	problematic	for	two	reasons:
Only	a	single	button	can	be	the	default	at	any	point	in	time	on	a	Windows
form.
There	is	no	ability	to	use	program	logic	to	decide	what	the	Enter	key	actually
means	and	how	it	should	be	handled	in	different	contexts.	
The	most	powerful	solution	to	handling	the	Enter	key	differently	in	different
places	on	complex	forms	is	be	solved	by	using	the	KeyPress	event.	This	allows
the	VL	program	to	specifically	trap	the	Enter	key	and	then	respond	to	it	in
different	ways.
Consider	the	following	modifications	made	to	the	logic	in	the	filter	DF_FILT1
example	shipped	with	the	VLF.
1.	No	button	has	ButtonDefault()	specified
This	prevents	any	confusion	about	which	button	the	Enter	key	should	be
directed	to.

	

2.	The	user	may	initiate	an	Employee	name	search	in	two	ways

	

Evtroutine	Handling(#Surname.KeyPress)	Keycode(#KeyCode)
	
if	('#KeyCode.Value	=	Enter')
	
If	*SEARCHOK
			Execute	Search
Else
			Use	Message_box_show	(ok	ok	Error	*Component	'Enter	a	search	name')	

Endif
	
Endif
	
Endroutine
	
*
*	Search	button	pressed
*
	
Evtroutine	Handling(#Search_phbn.Click)
	
Execute	Search
	
Endroutine

	
The	first	event	routine	handles	the	use	of	the	Enter	key	within	the	Surname
field.	If	the	user	presses	Enter	then	either	a	search	is	performed	or	an	error
message	is	displayed	(Condition	*SEARCHOK	is	true	if	field	#Surname	is	non-
blank).
The	second	routine	handles	a	specific	click	of	the	Search	button.
Both	routines	share	a	common	SEARCH	subroutine	to	perform	the	search	logic.
Note	that	where	multiple	fields	(or	other	visual	controls)	are	used	you	can
handle	them	all	through	a	single	routine	like	this:	
		
Evtroutine	Handling(#Surname.KeyPress	#GiveName.KeyPress
#ComboBox1.KeyPress	etc	etc)
											Keycode(#KeyCode)

	

	

Possible	Technique	for	Handling	"New"	in	VLF	And	Ramp
Application	Designs
This	VLF	design	approach:
Maximizes	command	handler	Visual	LANSA	code	reuse
Allows	you	to	easily	pipeline	users	using	wizard	style	processing	for	new
objects	(eg:	New	Orders,	New	Customers,	etc).
	Any	normal	Framework	filter	can	add	a	special	type	of	"New"	object	to	the
instance	list	(even	at	entry,	before	any	searching	is	done):
	For	example:
	

		
	
Here	a	demo	system	shows	an	Employee	with	number	<New	Employee>	and
Name	Click	to	Add	a	New	Employee.
When	the	instance	list	entry	is	clicked	the	Basic	Details	command	handler	tab
for	<New	Employee>	is	invoked.	It	sees	something	special	in	the	instance	list

key	(for	example	"<NEW>	in	AKey1)	and	knows	that	it	is	being	invoked	to
input	a	new	employee's	basic	details,	rather	than	display	the	details	of	an
existing	employee	and	it	changes	its	behavior	accordingly.
Basic	Details	command	handler	might	also	decide	when	handling	a	<NEW>
employee	that	when	the	Save	button	is	clicked	that	the	user	is	automatically
driven	to	the	Skills	tab,	which	might	then	decide	to	drive	them	to	the
Documents	tab.
In	other	words	the	three	tabs	Basic	Details,	Skills	and	Documents	act	like	a	New
Employee	wizard	that	drives	(or	pipelines)	the	user	creating	a	new	employee
through	the	required	tabs.	The	tabs	could	even	change	their	button	captions	to
Next	and	Previous	when	handling	a	<NEW>	objects,	instead	of	using	the	more
traditional	OK	and	Save	they	use	for	updating	existing	employee	details.
	

Quick	Find	Override	Feature
The	Quick	Find	box	is	a	dialog	that	appears	on	the	top	right	of	the	VLF,	if
enabled.		It	is	enabled	in	the	Framework	Details	tab	by	setting	the	Search	Field
Width	to	a	non-zero	value:

	
As	the	user	types	in	a	search	string,	a	list	of	all	the	business	objects	that	have	a
caption	that	contains	this	search	string	are	displayed,	and	the	user	can	click	on
any	of	them,	to	immediately	switch	to	that	business	object.

Why	Override	the	Way	Quick	Find	Works?
The	standard	behaviour	is	for	all	the	business	objects	that	contain	the	search
string	to	appear	in	the	list	for	selection.
For	very	large	frameworks	with	many	business	objects	this	may	not	be	what	the
user	wants.
Instead,	they	may	want	a	shorter	list	of	their	commonly	used	options.	And	they
may	want	a	specific	switch	to	a	command	within	a	business	object	when	the
user	clicks	that	option.
They	may	want	a	shortcut	value	to	take	them	to	a	particular	business	object,
even	though	the	shortcut	is	not	present	in	the	business	object's	caption.

	

What	Does	Overriding	Quick	Find	Do?
You	can	override	what	appears	when	the	user	searches	using	the	quick	Find
Box,	and	what	happens	when	they	click	on	one	of	the	entries	displayed.

	

The	marked	area	in	the	picture	above	is	what	can	be	controlled.	(The	Recently
used	options	behave	as	they	always	have.	They	can	be	deactivated	if	not
required.)
	

Setup
To	override	the	search	options,	modify	your	version	of		the	IIP	component
UF_SYSTM.

Step	1
Start	by	activating	the	override	feature	by	setting	PavQFUserOverride	to	True	in
this	routine:
*	To	turn	on	Quick	Find	list	overriding	change	FALSE	to	TRUE
*	in	this	property	get	routine	...
	
Ptyroutine	Name(GavQFUserOverride)	Options(*Redefine)
Set	Com(#PavQFUserOverride)	Value(True)
Endroutine

	
(This	also	stops	the	framework	from	searching	its	own	list	of	business	objects
and	applications.)

	

Step	2
Control	the	complete	list	of	all	possible	options	that	the	user	can	search	through
by	adding	your	options	in	this	routine:
*	Use	this	method	to	load	the	Quick	Find	list	with	your	own	values
*	You	must	set	PavQFUserOverride	to	true	for	this	to	be	active
	
Mthroutine	Name(avQFLoadSearchList)	Options(*REDEFINE)
	
Invoke	#avQuickFind.AddSearchListEntry	Text('Option	One	-	Resources')
GUID('GUID1')
Invoke	#avQuickFind.AddSearchListEntry	Text('Option	Two	-	Selected	and
Current')	GUID('GUID2')
Invoke	#avQuickFind.AddSearchListEntry	Text('Option	Three	-	Techniques')
GUID('GUID3')
	
Endroutine

For	each	possible	entry,	add	the	text	to	be	displayed	(82	characters),	and	a

unique	identifier	(32	characters).	
When	the	user	enters	a	search	value,	the	option	text	will	be	searched	to	see	if	it
contains	the	search	string,	and	will	appear	as	an	option	for	the	user	if	it	does.

	

Step	3
Control	what	happens	when	the	user	clicks	on	an	option	using	this	routine:
What	you	do	could	be	anything,	but	most	commonly	would	be	a	switch.
*	This	routine	receives	the	selection	that	the	end-user	made	in	the	Quick	Find
list.
*	This	routine	determines	what	happens	when	the	user	selects	an	entry	from
the	Quick	Find	list
*	You	must	set	PavQFUserOverride	to	true	for	this	to	be	active
	
Mthroutine	Name(avQFActionSelection)	Options(*REDEFINE)
	
define	#vf_wkGUID	reffld(#VF_ELIDN)
change	#vf_wkGUID	#GUID
	
Case	OF_FIELD(#vf_wkGUID)
	
when	'=	GUID1'
*	Resources
Invoke	#avFrameworkManager.avSwitch	To(BusinessObject)
Named(DEM_ORG_SEC_EMP)	Execute(Details)	Caller(#Com_Owner)
	
when	'=	GUID2'
*	Selected	and	Current
Invoke	#avFrameworkManager.avSwitch	To(BusinessObject)
Named(BD8D1D64689F468E8FA84DA2DA1A87FA)	Caller(#Com_Owner)
	
when	'=	GUID3'
*	Programming	Techniques	application
Invoke	#avFrameworkManager.avSwitch	To(Application)
Named(78A26552E6E94627BBCC4DF3A248CD1F)	Caller(#Com_Owner)
	
	

endcase
	
Endroutine

	

	

Step	4	(Optional)
You	can	cause	the	complete	list	of	options	to	be	rebuilt.
Normally	the	complete	list	of	all	possible	options	that	the	user	can	search
through	is	built	only	once.	However,	it	is	possible	to	indicate	to	the	QuickFind
component	that	it	should	rebuild	the	list	of	possible	options	the	next	time	the
user	modifies	the	search	string.
This	can	be	done	from	anywhere	that	can	access	#uSystem	(e.g.	a	command
handler	or	filter),	with	an	instruction	like:
	
set	#USYSTEM.uUserIIP	avQFRebuildList(true)
	

If	setting	this	property	to	true	and	using	the	override	feature,	it	is	necessary	for
the	avQFLoadSearchList	IIP	routine	to	reset	avQFRebuildList	to	false	when	it
has	finished	loading.
	

Advanced	Topics
Using	your	Visual	LANSA	Framework	in	Direct-X	mode
Considerations	for	ISVs
Deploying	a	Framework	Version
Users,	Groups	and	Security	
Server	Profile	Management	and	Issues
Multilingual	Application	Issues
Imbedded	Interface	Points	(IIPs)
Custom	Properties
Writing	queries	over	Visual	LANSA	Framework	objects

Using	your	Visual	LANSA	Framework	in	Direct-X	mode
When	you	start	a	version	13	Visual	LANSA	application,	you	have	a	choice	of
these	Render	Types:

W Win32

X DirectX

M Mixed	W32	and	DirectX

However,	the	Visual	LANSA	Framework	can	only	be	run	using	Render	Types
W	and	M.
Win32
Mixed	Mode
	

Win32
If	you	start	the	UF_DESGN/UF_DEVEL/UF_ADMIN/UF_EXEC	form	using
Render	Type	W,	the	application	will	run	in	Win32	mode,	which	is	closest	to	the
way	it	has	always	run	prior	to	Version	13	of	Visual	LANSA.
All	parts	of	the	VLF	will	run	in	this	mode,	even	any	of	your	own	snap	in
components	with	the	RenderStyle	set	to	Direct-X.
	

Mixed	Mode
If	you	start	the	UF_DESGN/UF_DEVEL/UF_ADMIN/UF_EXEC	form	using
Render	Type	M,	most	of	the	Visual	LANSA	Framework	application	will	run	in
Win32	mode,	but	the	instance	list,	and	any	snap	in	instance	lists		will	run	in
Direct-X	mode.
Snap	In	Instance	Lists
Snap	In	command	handlers	and	filters

Snap	In	Instance	Lists
If	you	have	any	snap	in	instance	lists,	they	will	now	be	running	in	Direct-X
mode,	so	you	should	test	carefully	that	your	snap	in	instance	lists	still	behave
the	way	you	want.	Direct-X	mode	instance	lists	will	look	different	and	may
behave	differently.
In	particular,	in	Direct-X	the	list's	current	item	changes	as	the	user	moves	the
mouse	over	it,	and	the	source	fields	of	the	list	columns	also	change.	Previously
(Win32	mode)	the	current	item	changed	only	when	the	user	clicked	on	an	item.
Also	check	that	your	instance	list	resizes	correctly.	This	can	be	a	problem	if
your	snap	in	list	has	W32	controls	(including	activeX	and	the	List	View)	that
are	not	directly	sized	by	the	parent	object's	layout	manager.
　

Snap	In	command	handlers	and	filters
Your	snap	in	command	handlers	and	filters	and	any	RAMP	command	handlers
will	run	in	Win32	mode	as	they	did	previously.
You	have	the	option	of	changing	the	code	of	your	snap	in	command	handlers
and	filters,	and	setting	the	component's	RenderStyle	to	DirectX,	and
recompiling.	If	you	do	so,	and	the	VLF	is	running	in	Mixed	mode,	they	will	run
as	DirectX	components.	You	should	be	extremely	cautious	and	test	very
carefully	when	doing	this.
An	important	difference	is	that	in	DirectX	mode,	when	the	user	mouses	over	a
list/grid,	the	source	fields	of	the	columns	change	automatically.
If	your	command	handler	uses	a	list	and	a	details	panel	that	changes	when	the
user	clicks	on	a	list	entry,	you	may	find	that	some	fields	on	the	details	panel	are
now	changing	as	the	user	mouses	over	the	list.	If	the	user	then	saves	the	data	on
the	details	panel,	they	may	be	saving	a	mixture	of	altered	and	unaltered	field
values.
Another	important	difference	is	in	the	sizing	of	W32	objects	(in	particular
ActiveX	controls)	when	their	size	is	not	controlled	directly	by	a	layout	manager.
Another	important	difference	is	that	bringing	a	panel	or	control	to	the	front	does
not	hide	other	controls	or	panels	behind	it.
Another	difference	is	in	the	font	used	by	DirectX	which	may	occupy	more	space
than	the	W32	font.
This	is	not	a	complete	list	of	all	the	differences	between	DirectX	and	the
standard	W32	mode.
Be	cautious	if	you	decide	to	change	a	filter	or	command	handler	to	use	DirectX
mode.	You	may	well	need	to	redesign	it.	Do	not	under	any	circumstances
change	over	all	your	filters	and	command	handlers	without	understanding	the
differences	between	DirectX	and	Win32,	and	thoroughly	testing	as	you	change.
	
	

Considerations	for	ISVs
If	you	are	an	ISV	developing	Framework	based	applications	for	sale,		there	are
some	additional	Framework	issues	you	should	consider.		These	primarily
revolve	around	name	space	contention.	
For	example,	a	standard	Framework	will	reference	components	UF_ADMIN,
UF_EXEC,	UF_DESGN,	UF_DEVEL,	UF_SYSTM	and	UF_IB001.	If	a
customer	has	Frameworks	supplied	by	you	and	from	another	source,	and
attempts	to	use	them	in	the	same	LANSA	partition,	then	there	will	be	contention
for	the	namespaces	of		these	UF_	components.
Please	refer	to	Deploying	a	Framework	Version	for	more	details	of	these	issues
and	how	to	overcome	them.		

Deploying	a	Framework	Version
Once	the	development/testing	cycle	has	finished	and	it	is	time	to	ship	the
executable	version	you	will	have	a	single	Framework	definition.
Let’s	assume	the	final	Framework	definition	XML	file	is	Ship.xml.	This	is	the
only	Framework	that	the	end-users	will	execute.
Because	end-users	must	not	have	a	choice	of	Frameworks,	you	must	create	your
own	versions	of	the	available	entry	point	forms.	However,	it	is	not
recommended	that	you	create	development	or	design	entry	points	for	your
Framework.	Simply	use	the	shipped	ones	and	use	the	'Save	As'	option	to	create
different	frameworks.	Then	only	create	administrator	and	user	entry	points	as
required	for	production	users,	locking	them	into	a	specific	XML	file	and	never
allowing	the	end-user	a	framework	XML	file	choice.

1. Create	the	required	customized	entry	point	forms	to	your	Framework.
These	might	be	named,	say,	SHIPADM	and	SHIPUSR.

2. In	the	uInitializeFramework	routine	of	all	the	forms	change	this	line	to
disable	the	SaveAs	functionality:
Set	Com(#Com_Owner)	Usystemxmlfile('vf_sy001_system.xml')
Usystemxmlchoice('vf_sy001_system_choice')
Usystemxmlsaveas(TRUE)

To:
Set	Com(#Com_Owner)	Usystemxmlfile('ship.xml')
Usystemxmlsaveas(FALSE)

	

3. Compile	SHIPADM	and	SHIPUSR.
	

4. You	now	have	a	completely	independent	Framework	(named	SHIP).	It	is
designed	by	executing	form	UF_DESGN,	administered	by	executing
SHIPADM	and	you	execute	applications	via	SHIPUSR.
	

Naming	Space	Considerations	for	Managing	Different	Frameworks
Refer	to	Visual	LANSA	Framework	Deployment	Check	Lists	for	detailed
information	on	how	to	deploy	your	application.

mk:@MSITStore:lansa047.chm::/Documents/vlfdeploymentchecklists.htm

Naming	Space	Considerations	for	Managing	Different
Frameworks
Naming	space	issues	may	arise	when	managing	independent	Frameworks,
especially	when	you	install	your	Framework	at	a	site	that	is	using	Framework(s)
supplied	by	other	software	vendor(s).
If	you	have	different	Frameworks	in	use	in	the	same	LANSA	partition,	a	name
space	conflict	may	arise	with:
Framework	Entry	Points:	Multiple	independent	Frameworks	cannot	have	the
same	entry	point	names	(for	example	UF_DESGN,	UF_DEVEL,UF_ADMIN,
UF_EXEC).
Filters	and	Command	Handlers:	You	cannot	have	two	different	command
handlers	with	the	same	name	in	the	same	LANSA	partition.	When	creating	a
new	Framework	you	should	assign	it	its	own	unique	naming	standard	for	filters
and	command	handlers.
You	cannot	have	two	versions	of	these	shipped	Framework	programs	in	the
same	partition:
UF_IB001	icon	and	bitmap	enroller.
UF_SYSTM	User	Imbedded	Interface	Point	(IIP).
UFU0001	(process	UF_SYSBR)	sign-on	program	for	Web	browser
applications.
Look	at	the	source	code	of	these	programs	for	details	of	how	to	create	a
Framework	unique	version.
	
	

Users,	Groups	and	Security	
The	Framework	has	a	convenient,	optional	security	system	with	user	profiles,
passwords,	and	authorities	to	objects	in	the	Framework.	This	system	offers	a
moderate	level	of	security	and	it	can	interface	with	your	own	security	system	if
need	be.	
It	is	not	and	cannot	be	a	one	stop	shop	for	security	due	to	the	nature	and	variety
of		environments	it	operates	with.
Framework	security	is	optional.	If	you	want	to,	you	can	switch	off	Framework
security	and	just	use	the	server's	native	security	(the	http	server	security	for	web
users).	In	this	way	you	can	still	control	who	accesses	your	application,	but	you
won't	be	able	to	control	what	they	can	do	within	the	Framework.
Basic		Framework		Security
Five	Things	You	Need	to	Know	About	Basic	Framework	Security
Advanced	Options
Frequently	Asked	Questions	(Users	and	Security)
Some	Scenarios
More	Information
Creating	Web	Interface	for	Maintaining	Users	and	Authorities

Basic		Framework		Security
The	Framework	can	maintain	its	own	user	profiles,	their	passwords,	and	their
authority	to	objects	in	the	Framework.	
It	stores	this	information	in	the	database	files	VFPPF06	and	VFPPF07.
This	is	in	addition	to	the	server's	own	native	security	system	of	user	profiles	and
passwords
Set	Up	Server	or	Servers
Activating	Basic	Framework	Security
Maintaining	Users
Maintaining	User	Authorities
Maintaining	User	Groups
	

Set	Up	Server	or	Servers
If	Framework	applications	are	going	to	be	run	as	Web	applications	that	use
Framework-defined	users	and	authorities	or	if	user	and	authority	details	are	to
be	maintained	on	a	remote	server,	a	server	profile	must	be	correctly	set	up	in	the
Framework.
Server	profiles	are	set	up	using	the	(Administration)	menu,	(Servers...)	option.
Select	the	New	button	and	complete	the	Identification	tab
Complete	the	Server	Details	tab.	Note	that	the	server	name	must	correspond	to
an	entry	in	the	LANSA	Communications	Administrator.
Close	and	save	the	Framework.

	

Activating	Basic	Framework	Security
Activation	of	this	facility	is	done	using	the	(Framework)	menu,	(Properties...)
option,	on	the	User	Administration	settings	tab.
Select	the	Use	Framework	Users	and	Authority	setting.	(Do	not	close	and	save
the	Framework	yet)
Select	the		Store	Users	in	DBMS	Tables	VFPPF06/07	setting.
Set	End-users	must	sign	on	to	this	Framework	to	In	both	MS-Windows	and
Web	Browser	Applications
Choose	between	Users	Sign	on	Locally	to	Use	the	Framework	or	Users	Sign
on	to	a	Remote	Server	to	Use	the	Framework.	Choose	Users	Sign	on	to	a
Remote	Server	to	Use	the	Framework	if	Framework	applications	are	going	to
be	run	as	Web	applications	off	a	remote	server	or	user	and	authority	details	are
to	be	maintained	on	a	remote	server.
Now	close	and	restart	the	Framework

	

Maintaining	Users
Now	that	Framework	security	is	activated	you	can	maintain	users.
Start	the	Framework	in	design	mode.
Go	to	the	(Administration)	menu	-->	(Users...),	User	Details	tab.
You	can	use	the	"New	User"	button	to	create	a	user.

The	most	important	setting	for	a	user	is	the	user	profile.	This	value	is	used	to
identify	a	user.	Both	the	Framework	and	the	server	identify	the	user	using	the
user	profile.
The	password	is	used	to	validate	a	user's	web	sign	on	or	local	sign	on.
You	can	press	F2	on	each	setting	to	get	contextual	help
The	first	user	you	want	to	create	is	probably	the	administrator.	Once	this	user	is

defined	to	the	Framework,		this	user	can	maintain	other	users	by	starting	the
Framework	in	administration	mode.
You	can	copy	the	properties	and	authorities	of	the	selected	User	or	Group	into	a
new	one	using	the	Copy	button.
	
	

Maintaining	User	Authorities
You	can	maintain	a	user's	authority	to	Framework	objects	on	the	Authorities	tab:

	
If	you	uncheck	a	Framework	object	for	a	user,	the	user	will	not	be	able	to	see
that	object	(application	/	business	object	/	command)	when	they	use	the
Framework	in	execute	or	administrator	mode.

Maintaining	User	Groups
The	Framework	allows	you	to	create	user	groups.	You	can	assign	Framework
authorities	group	by	group	instead	of	individually.
A	user	can	be	a	member	of	several	groups,	or	one,	or	none.	The	user	gets
authority	to	anything	they	are	individually	authorised	to	as	well	as	anything	that
any	group	they	belong	to	is	authorised	to.
Group	authorities	are	additive	-	a	user	can	gain	authorities	by	being	a	member
of	a	group,	but	cannot	lose	any	authorities
To	create	a	new	group	use	the	"New	Group"	button.
To	attach	a	user	to	a	group	go	to	the	user's	"User	Details"	tab.
Check	the	entry	for	the	group	that	you	want	to	add	the	user	to	in	the	"Groups
this	user	belongs	to"	list.
More	Details	about	Groups
	

Five	Things	You	Need	to	Know	About	Basic	Framework	Security
These	general	concepts	apply	to	the	most	common	configurations:
User	and	authority	data	is	usually	stored	in	files	VFPPF06	and	VFPPF07	on	the
server
Data	in	VFPPF06/07	controls	access	to	Framework	objects	for	both	Web	and
Windows	users
There	are	two	sets	of	user	profiles	and	passwords	on	the	server
You	can	assign	authorities	to	groups	of	users
In	design	mode	security	is	not	applied
	

User	and	authority	data	is	usually	stored	in	files	VFPPF06	and
VFPPF07	on	the	server

The	data	about	the	users,	their	passwords,	and	their	authorities	to	Framework
objects	(applications,	business	objects	and	commands)	will	usually	be	stored	in
files	VFPPF06	and	VFPPF07	in	the	data	library	of	the	LANSA	partition	that	the
Framework	is	running	in.	These	are	ordinary	LANSA	files	so	you	can	easily
check	whether	user	details	have	been	stored	on	the	server.
The	administrator	must	be	connected	to	the	server	at	the	time	that	the	user
details	are	saved.

Data	in	VFPPF06/07	controls	access	to	Framework	objects	for
both	Web	and	Windows	users

There	are	two	sets	of	user	profiles	and	passwords	on	the	server
The	Framework	stores	its	own	user	profiles	and	passwords	in	files	VFPPF06
and	VFPPF07.	But	the	server	also	has	its	own	native	method	of	storing	user
profiles	and	passwords.
When	a	Windows	user	connects	to	the	server	they	use	the	server's	native	user
profile	and	password.	But	once	they	are	connected,	the	Framework	controls
which	Framework	objects	they	can	access	using	its	Framework	authorities,	if
the	user	profile	exists	in	the	Framework	security	files.
If	the	Framework	web	sign	on	is	switched	on,	the	Framework	will	check	the
browser	user's	password	against	the	password	stored	in	VFPPF06/07	(entered
by	the	administrator).

You	can	assign	authorities	to	groups	of	users
The	Framework	allows	you	to	create	groups	and	you	can	assign	Framework
authorities	to	a	group.
A	user	can	be	a	member	of	several	groups,	or	one,	or	none.	The	user	gets
authority	to	anything	they	are	individually	authorised	to	as	well	as	anything	that
any	group	they	belong	to	is	authorised	to.
Group	authorities	are	additive	-	a	user	can	gain	authorities	by	being	a	member
of	a	group,	but	cannot	lose	any	authorities
More	Details	about	Groups

In	design	mode	security	is	not	applied
When	the	Framework	is	run	in	design	mode,	Framework	authority	to
applications	/	business	objects	/	commands	is	not	applied,	because	the	designer
needs	to	be	able	to	see	all	Framework	objects.
To	test	how	Framework	security	will	be	applied	to	end-users,	start	the
Framework	using	UF_EXEC,	or	access	the	Framework	using	a	web	browser.
	

Advanced	Options
There	are	ways	to	extend	or	modify	security	to	handle	your	site's	requirements
which	apply	to	the	most	common	configurations:
You	can	add	your	own	extra	layers	of	security	checking
You	can	make	the	Framework	validate	user	profiles	and	passwords	using	your
own	security	system
You	do	not	have	to	use	Framework	security
A	user	who	signs	on	with	one	profile	can	be	automatically	changed	to	another
Two	different	Frameworks	can	share	the	same	set	of	users
User	and	security	data	can	be	stored	as	an	XML	file	instead	of	using	files
VFPPF06/07
You	can	store	other	information	relating	to	a	user
You	can	include	the	user	profile	and	password	in	a	start	URL
Export	or	Import	of	Full	or	Partial	User	Data

You	can	add	your	own	extra	layers	of	security	checking
There	are	many	overrides	(Imbedded	Interface	Points)	that	you	can	use	to	make
the	Framework	do	additional	checking.
These	can	make	the	Framework	do	your	own	check	of:
the	choice	of	password	(see	avPasswordRules)
the	user	profile	and	password	(see	avPrivateConnect	(Windows)	or	UFU0001
(web))
the	user's	authority	to	an	application,	business	object	or	command	(see
avCheckAuth	(Windows	only))
the	user's	authority	to	instances	of	a	business	object	(see	avCheckInstanceAuth
(Windows	only))
the	user's	authority	to	a	particular	command	for	a	particular	instance	of	a
business	object	(see	avCheckInstanceAuth	(Windows	only))
Create	Your	Own	Imbedded	Interface	Points	(IIP)

You	can	make	the	Framework	validate	user	profiles	and
passwords	using	your	own	security	system
The	overrides	(Imbedded	Interface	Points)	can	also	be	used	to	make	the
Framework	validate	users	according	to	your	own	system.
You	can	have	your	own	program	validate	web	sign	on.
You	can	have	your	own	method	routine	do	the	connect	to	server.
(see	avPrivateConnect	in	UF_SYSTM	(Windows)	or	UFU0001	(Web))
See	also	Create	your	own	Imbedded	Interface	Points	(IIP)

You	do	not	have	to	use	Framework	security
The	Framework	security	is	optional.	If	you	like	you	can	switch	off	Framework
security	and	just	use	the	server's	native	security	(the	http	server	for	web	users).
In	this	way	you	can	still	control	who	accesses	your	application,	but	you	won't	be
able	to	control	what	they	can	do	within	the	Framework.
Or	you	can	switch	off	the	web	and	Windows	sign	on	(allowing	the	server	to
handle	these)	but	still	apply	the	user's	authorities	to	Framework	objects.

A	user	who	signs	on	with	one	profile	can	be	automatically
changed	to	another
A	feature	of	the	Imbedded	Interface	Points	(IIPs)	is	that	they	can	be	used	to
automatically	change	one	user	profile	to	another.	(see	avPrivateConnect	or
avSetSessionValues	(Windows)	or	UFU0001	(web))
This	can	be	useful	if	you	have	many	users	who	fall	into	a	few	standard
categories	and	you	want	to	avoid	registering	them	all	in	the	Framework.	Refer
also	to	More	details	about	being	signed	on	as	a	Different	User.

Two	different	Frameworks	can	share	the	same	set	of	users
If	you	have	two	Frameworks	it	is	possible	to	share	the	same	users.	User	details
such	as	the	profile,	caption,	disabled	status	and	password	are	shared,	but
separate	user	authorities	for	each	Framework	are	stored.	Refer	also	to	More
details	about	being	signed	on	as	a	Different	User.
If	you	want	Frameworks	to	have	entirely	separate	users	ensure	that	the
Frameworks	have	different	"User	Set"	values.
(Go	to	(Framework)	-->	(Properties...)	-->User	Administration	Settings	tab	-->
User	Set)

User	and	security	data	can	be	stored	as	an	XML	file	instead	of
using	files	VFPPF06/07
A	less	secure	option	for	Frameworks	with	no	web	access	is	to	store	the	user
definitions	and	authorities	in	local	file	VF_Sy001_Users.XML	.
When	authority	is	stored	in	VF_Sy001_Users.XML,	VF_Sy001_users.XML
must	exist	on	the	user's	PC	.	This	method	can	still	be	used	when	users	connect
to	a	remote	server,	as	long	as	VF_Sy001_Users.XML	is	present	on	every	user's
PC,	or	is	accessible	on	the	network	by	every	user's	PC.
Authority	stored	in	VF_Sy001_Users.XML	must	exist	on	the	user's	PC,	but	can
be	used	when	connecting	to	a	server	(provided	it	exists	on	every	user's	PC	or
can	be	accessed	on	the	server	by	every	user's	PC).
User	definitions	and	authorities	stored	in	VF_SY001_Users.XML	cannot	be
used	at	all	when	the	Framework	is	running	in	web	mode.
Important	facts	about	storing	user	definitions	as	XML:
You	can	change	the	name	of	the	users	definition	file	to	something	else.
You	can	specify	a	complete	path	to	the	file.	This	could	be	a	path	to	a	drive	on
the	network,	so	that	all	users	could	share	the	same	XML	file.
You	should	never	alter	the	content	of	the	XML	file	with	anything	other	than
through	the	Framework.
In	the	partition	execute	directory	files	named
VF_Sy001_Users_YYYYMMDD_HHMMSS.XML	may	be	found.	These
represent	user	definition	versions	that	were	saved	at	the	time	specified	in	their
names.	You	can	use	these	to	back	out	unwanted	user	definition	changes.	You
should,	from	time	to	time,	delete	old	saved	versions.
The	use	of	the	shipped	Framework	user	profile	management	facilities	is
optional.	Not	using	them	does	not	preclude	your	application	from	using
multiple	users	and	user	profile	management	facilities	of	its	own	design.
To	use	this	facility:
Go	to	(Framework)	-->	(Properties...)	-->User	Administration	Settings	tab	and
uncheck	the	option	Store	Users	in	DBMS	Tables	VFPPF067/07.

You	can	store	other	information	relating	to	a	user
The	Framework	will	allow	you	to	define	other	information	that	you	want	to
store	against	each	user.
This	information	can	be	retrieved	by	command	handlers	and	filters	at	run	time.
You	could	use	this	information	to	make	the	Framework	behave	differently	for
different	users.
See	Custom	Properties.

You	can	include	the	user	profile	and	password	in	a	start	URL
When	the	user	starts	a	Web	browser	VLF	application,	the	URL	used	to	start	to
web	Framework	can	include	the	user	profile	and	password
See	Web	Application	Start	Options.

Export	or	Import	of	Full	or	Partial	User	Data
You	can	import	data	about	users	from	a	different	system,	provided	that	data	can
be	accessed	by	a	LANSA	function.
You	can	export	user	data	from	the	Framework	as	an	XML	file	(except
passwords)
The	imported	data	can	replace	all	existing	users,	or	it	can	update	just	some
details	of	existing	users.
The	information	about	users	that	can	be	exported	and	imported	includes	the
groups	they	belong	to	and	their	authorities.
You	can	also	manually	edit	an	exported	XML	file	of	user	data	and	then	import
it.
Also	see:
How	to	Export	User	Data
How	to	Import	User	data	from	an	XML	file
Set	up	the	Framework	to	Generate	an	XML	file	from	an	External	Source	of	user
data	and	import	it

How	to	Export	User	Data
Sign	on	as	Administrator/	Designer.
(Administration)	-->		(Users).

Press	the	Export	Users	button.	The	Framework	will	request	a	target	directory
and	file	name.
Press	Save	to	create	an	XML	file	of	User	data.

How	to	Import	User	data	from	an	XML	file
Sign	on	as	Administrator/	Designer.
(Administration)	-->	(Users).

Press	the	Import	Users	from	XML	button.	The	Framework	will	request	a
directory	and	filename.
Specify	the	name	and	location	of	your	file	and	press	Open.
The	XML	file	of	User	data	must	be	correctly	formatted.	The	structure	is	the
same	as	the	exported	XML.	It	should	look	like	this:
<?xml	version="1.0"	?>	
<EXTRACT>
		<USERS	ACTION="UPDATE">
				<USER	ACTION="UPDATE"	UUSERPROFILE="FRED">
						<USEQUENCE	TYPE="N"	VALUE="1"	/>	
						<UCAPTION	LANG="ENG"	VALUE="USER	FRED"	/>	
						<UHINT	LANG="ENG"	VALUE=""	/>	
						<UICONNAME	VALUE="VF_IC496"	/>	

						<UUSEROBJECTTYPE	VALUE="FRED_OBJ"	/>	
						<UPASSWORD	VALUE="FREDSPSWD"	/>
						<UEMAILADDRESS	VALUE="FRED@LANSA.COM.AU"	/>	
						<UTEMPDIRECTORY	VALUE="C:\DOCUME~1\user\LOCALS~1\Fred\"	/>	
						<UDISABLED	VALUE="FALSE"	/>	
						<UADMIN	VALUE="FALSE"	/>	
						<UGROUPUSER	VALUE="FALSE"	/>	
						<USIGNOFFTIMEOUT	TYPE="N"	VALUE="0"	/>	
						<USIGNONTIMEOUT	TYPE="N"	VALUE="0"	/>	
						<GROUPS	ACTION="REPLACE">
								<GROUP	VALUE="GROUP_1"	/>	
						</GROUPS>		
						<AUTHORITIES	ACTION="REPLACE">
								<AUTHORITY	TYPE="FRAMEWORK"	OBJECT="SHIPPED_FRAMEWORK"	VALUE="ALLOW"	/>	
						</AUTHORITIES>
				</USER>
		</USERS>
</EXTRACT>
	

If	you	want	to	create	a	LANSA	function	that	generates	XML	like	this,	start	by
looking	at	function	UF_SYSBR/UFU0004.
Also	see
The	rules	for	Creating	an	XML	file	of	User	Data

Set	up	the	Framework	to	Generate	an	XML	file	from	an	External
Source	of	user	data	and	import	it
Read	the	comments	in	the	shipped	example	component	UF_IMPUS.	(It's	a
Visual	LANSA	reusable	part.)
Now	create	your	own	version	of	component	UF_IMPUS,	so	that:
a.		It	reads	from	your	own	source	of	user	data.
b.		Writes	it	out	in	the	standard	XML	format.
c.		Returns	an	OK	return	code	and	the	full	name	of	the	XML	file	produced.
Now	sign	on	to	the	Framework	as	Designer.
1.		Select	Framework,	then	Properties	and	then	User	Administration	Settings.
2		Change	the	setting:	Import	Users	Imbedded	Interface	Point	to	the	name	of
your	function.

3.		Save	the	Framework	and	Exit.
4.		Sign	on	as	the	Administrator	or	Designer
5.		Select	Administration	then	Users.
You	will	now	see	a	new	button	available	called	Import	Users.
When	the	Administrator	presses	this	button,	the	Framework	will	run	your
function,	and	will	then	import	the	user	data	from	the	XML	file	it	produces.	This
will	create	or	update	users	in	the	Framework.

The	rules	for	Creating	an	XML	file	of	User	Data
The	structure,	and	permissible	elements,	are	as	shown	in	the	following	code
example:
<?xml	version="1.0"	?>	
<EXTRACT>
		<USERS	ACTION="UPDATE">
				<USER	ACTION="UPDATE"	UUSERPROFILE="FRED">
						<USEQUENCE	TYPE="N"	VALUE="1"	/>	
						<UCAPTION	LANG="ENG"	VALUE="USER	FRED"	/>	
						<UHINT	LANG="ENG"	VALUE=""	/>	
						<UICONNAME	VALUE="VF_IC496"	/>	
						<UUSEROBJECTTYPE	VALUE="FRED_OBJ"	/>	
						<UPASSWORD	VALUE="FREDSPSWD"	/>
						<UEMAILADDRESS	VALUE="FRED@LANSA.COM.AU"	/>	
						<UTEMPDIRECTORY	VALUE="C:\DOCUME~1\user\LOCALS~1\Fred\"	/>	
						<UDISABLED	VALUE="FALSE"	/>	
						<UADMIN	VALUE="FALSE"	/>	
						<UGROUPUSER	VALUE="FALSE"	/>	
						<USIGNOFFTIMEOUT	TYPE="N"	VALUE="0"	/>	
						<USIGNONTIMEOUT	TYPE="N"	VALUE="0"	/>	
						<GROUPS	ACTION="REPLACE">
								<GROUP	VALUE="GROUP_1"	/>	
						</GROUPS>		
						<AUTHORITIES	ACTION="REPLACE">
								<AUTHORITY	TYPE="FRAMEWORK"	OBJECT="SHIPPED_FRAMEWORK"	VALUE="ALLOW"	/>	
						</AUTHORITIES>
				</USER>
		</USERS>
</EXTRACT>
	

General	rules
Other	element	types	will	be	ignored.
Property	elements	(e.g.	uSequence,	uCaption)	have	a	VALUE	attribute.
Numeric	property	elements	should	also	have	a	TYPE	=	"N"	attribute.
Boolean	properties	such	as	<UADMIN>,	<UDISABLED>,	<UGROUPUSER>
are	specified	using	VALUE="TRUE"	or	VALUE="FALSE"

The	ACTION	attribute	can	only	be	specified	for	USERS	USER	GROUPS	or
AUTHORITIES.
ACTION="UPDATE"	means	change/add	what	is	specified	in	the	XML,	but
leave	everthing	else	as	it	is.	If	it	doesn't	exist	already,	it	will	be	created.
ACTION="REPLACE"	means	change/add	what	is	specified	in	the	XML	and
remove	anything	that	is	not	specified	in	the	XML.
ACTION="DELETE"	means	remove	the	object/s.
Rules	for	Specific	Elements/Attributes
Element Attribute Description Value/s
<USERS> ACTION Replace	all	users	or	add

to/change	existing
REPLACE,	UPDATE

<USER> ACTION How	to	handle	properties
not	specified	in	the	XML,	or
To	delete	the	user

REPLACE,	UPDATE,
DELETE

	 UUSERPROFILE The	User	Profile	of	the	User 	

<GROUPS> ACTION 	 REPLACE,	UPDATE,
DELETE

<GROUP> VALUE The	User	profile	of	the
Group.	The	Group	should
exist	in	the	Framework
already.	If	not,	the	Group
should	be	defined	as	a
<USER>	prior	to	other
users,	in	the	XML.

	

<AUTHORITIES> ACTION Replace	all	authorities,	Add
to/change	existing
authorities,	or	delete	the
specified	authorities

REPLACE,	UPDATE,
DELETE

<AUTHORITY> TYPE The	type	of	object	that	the
user	will	not	be	authorised
to	use.

FRAMEWORK,
APPLICATION,
BUSINESS_OBJECT,
COMMAND_REFERENCE,
APPLICATION_VIEW,
SERVER

	 OBJECT The	"User	Object	Name	/
Type"	of	the	object	the	user
will	not	be	able	to	use.

	

	 VALUE Allow	the	user	to	use	this
object	(only	used	with	the
FRAMEWORK	object)	or
Disallow	the	user	to	use	this
object	(all	other	kinds	of
objects)

ALLOW,	DISALLOW

	 COMMAND (This	only	applies	to
Authority	to
COMMAND_REFERENCE
objects)
	

	

	 OWNER (This	only	applies	to
Authority	to
COMMAND_REFERENCE
objects)
This	is	the	"User	Object
Name	/	Type"	of	the	object
(Framework,	application	or
business	object)		to	which
the	command	is	applied

	

	 OWNTYP The	type	of	object	the
command	applies	to

FRAMEWORK,
APPLICATION,	or
BUSINESS_OBJECT

	

Writing	your	own	version	of	the	User	Authority	report
If	you	want	a	customized	report	to	be	produced	when	the	administrator	presses
the	User	Authorities	Report	File	button,	you	need	to	write	your	own	report
component.
To	do	this:
Start	by	reading	the	comments	in	the	shipped	example	component
UF_REPUS.	(It's	a	Visual	LANSA	reusable	part.)
Then	copy	UF_REPUS	to	make	your	own	version	of	the	component.	First	try
using	it	unchanged	so	that	you	can	see	what	it	does.	Compile	it.
	
To	test	the	component,	sign	on	to	the	Framework	as	Designer.	Then:
Select	Framework,	then	Properties	and	then	User	Administration	Settings.
Change	the	setting:	Report	on	Users	-	Imbedded	Interface	Point	(Id)	to	the
name	of	your	reusable	part.
Save	the	Framework	and	Exit.
Sign	on	as	the	Administrator	or	Designer
Select	Administration	then	Users.

Press	the	"User	Authorities	Report	File"	button.	It	will	now	run	your
component,	and	it	should	produce	a	.CSV	file	and	ask	you	where	to	save	it.
Compare	the	report	produced	with	what	you	want	to	achieve,	and	modify	your
version	of	the	component	to	suit.	You	can	request	different	selection	criteria
from	the	administrator,	and	output	the	data	in	different	structures.	You	could
also	output	to	a	database	if	you	wish.

Frequently	Asked	Questions	(Users	and	Security)
I	do	my	unit	and	suite	testing	in	Design	mode.	Is	this	a	good	practice?
When	I	run	the	Framework	security	does	not	seem	to	work?
When	I	start	the	Framework	as	an	administrator	(for	example	UF_ADMIN),	the
Framework	appears	briefly	and	then	disappears?
Why	options	I	have	disabled	for	Windows	and/or	the	Web	browser	are
displayed?
Why	does	a	user	with	my	user	profile	get	automatically	created?
Can	I	control	which	user	profile	appears	on	the	status	bar?
How	can	my	RDML	programs	access	the	user	profile	that	the	user	signed	on	as,
and	the	user	profile	shown	in	the	status	bar?
What	are	the	user	timeout	settings	used	for?
How	can	I	allow	the	user	to	change	their	own	password?
	

I	do	my	unit	and	suite	testing	in	Design	mode.	Is	this	a	good
practice?
Definitely	not.	When	working	as	a	designer	additional	menu	options	appear,
security	is	disabled	and	additional	features	that	use	more	resources	are	enabled.

When	doing	unit	or	suite	testing	you	should	always	use	the	UF_EXEC	(user)
entry	point	form	so	that	you	experience	the	same	environment	that	a	real	end-
user	would.	

		

When	I	run	the	Framework	security	does	not	seem	to	work?
Are	you	using	the	VL	Framework	-	as	Designer	entry	point?	If	you	are	then
refer	to	I	do	my	unit	and	suite	testing	in	Design	mode.	Is	this	a	good	practice?
	

Why	options	I	have	disabled	for	Windows	and/or	the	Web
browser	are	displayed?	
Are	you	using	the	Framework	as	a	designer?	If	you	are	then	refer	to	I	do	my
unit	and	suite	testing	in	Design	mode.	Is	this	a	good	practice?
	

Why	does	a	user	with	my	user	profile	get	automatically	created?
When	you	start	the	Framework,	if	you	are	not	required	to	sign	on	and	if	the
Framework	cannot	find	a	user	with	the	user	profile	that	you	started	LANSA
with,	it	will	create	a	temporary	Framework	user	with	the	appropriate	user
profile.	It	does	this	because	it	needs	to	have	a	current	user.

What	are	the	user	timeout	settings	used	for?
The	timeout	settings	are	used	if	you	want	to	force	the	user	to	sign	on	again	if
they	have	been	inactive	for	a	certain	period,	or	if	you	want	the	Framework	to
close	if	the	user	has	been	inactive	for	a	certain	period.	Use	F2	when	editing	the
settings	for	more	details.
Note	that	when	the	VLF	is	running	on	touch	devices,	the	Log	off	Inactivity
Timeout	and	Log	on	Inactivity	Timeout	options	are	disabled.	You	should	use
device	specific	timeout	settings	to	control	access	to	the	device.
	

Can	I	control	which	user	profile	appears	on	the	status	bar?
	

Windows:
You	can	change	the	user.	If	you	use	your	connect	to	server	method	(see	IIP
avPrivateConnect)	you	can	make	the	user	connect	as	one	user	profile	and	return
another.	Or	you	can	modify	IIP	avSetSessionValues	to	give	a	user	a	different
session	value	for	user	profile.
Or	in	client	server	applications,	you	can	change	the	user	that	is	shown	by
changing	the	value	of	field	CHK_VUSER	in	the	RDML	of	the	Server	IIP
function	to	validate	sign	on	(default	is	function	UFU0005).	See	the	source	code
of	UF_SYSBR/UFU0005	for	more	details.
	

Web:
You	can	change	the	user	that	is	shown	by	changing	the	value	of	field
CHK_VUSER	in	the	RDML	of	the	User	Sign	on	IIP	(default	is	function
UFU0001).
CHANGE	FIELD(#CHK_VUSER)	TO(*User)
	

or
CHANGE	FIELD(#CHK_VUSER)	TO(*WebUser)
	

or
CHANGE	FIELD(#CHK_VUSER)	TO(#CHK_USER)
	

How	can	my	RDML	programs	access	the	user	profile	that	the
user	signed	on	as,	and	the	user	profile	shown	in	the	status	bar?
Windows:
Change	#MYUSERFIELD	*USER

	
Web:
Change	#MYUSERFIELD	to	*USER

or
Change	#MYUSERFIELD	to	*WebUser

or
USE	builtin(VF_GET)	with_args(LOGGEDONUSER)
to_get(#MYUSERFIELD)

	
WAM:
Change	#MYUSERFIELD		#thishandler.avLoggedonUser

	

How	can	I	allow	the	user	to	change	their	own	password?
Windows:
Change	the	setting	for		Users	can	change	their	own	password	in	the	User
Administration	Settings	tab	in	Framework	details.
This	option	is	only	available	if		the	option	Users	sign	on	locally	to	use	the
Framework	has	been	selected.
	
Web:
There	is	no	Framework	setting	to	allow	the	user	to	change	their	own	password.
A	way	of	achieving	this	would	be	to	change	the	User	Sign	on	IIP	(default	is
function	UFU0001)	to	make	the	Framework	check	against	your	own	user
profile/password	files.	Then	write	an	ordinary	command	handler	that	interfaces
with	your	own	user	profile/password	files	and	allows	the	user	to	change	their
password.
	

When	I	start	the	Framework	as	an	administrator	(for	example
UF_ADMIN),	the	Framework	appears	briefly	and	then
disappears?
To	use	UF_ADMIN	(or	equivalent)	the	user	must	also	be	flagged	as
administrator.
No	error	message	is	shown	in	this	situation	because	this	would	visibly	indicate
the	exact	cause	of	a	security	violation	to	a	potentially	insecure	user.
	

Some	Scenarios
These	scenarios	illustrate	some	of	the	alternatives	that	can	be	used:
Scenario:	System	i	Web	Server
Scenario:	System	i	Server,	Users	Connect	with	Super	Server
Scenario:	Windows	Server,	Users	Connect	with	Super	Server

Scenario:	System	i	Web	Server
Assumptions Settings Modifications	to	your	version	of

UFU0001
Enroll	Typical	Users	in	the
Framework

When	the	users	connect	to	the	System	i	web	server,	their	entered	password	will
be	validated	by	the	HTTP	Server	against	the	server's	native	profile/password.
The	IIP	function	UFU0001	will	receive	the	user	profile	that	the	user	logged	on
to	the	HTTP	server	with,	and	switch	it	to	the	profile	of	the	typical	user.
The	users	will	get	the	authorities	to	Framework	objects	that	their	typical	user
has.
	

Assumptions
Scenario:	System	i	Web
Server

Settings Modifications	to	your	version	of
UFU0001

Enroll	Typical	Users	in	the
Framework

Users	will	need	to	maintain	their	own	passwords	(via	5250)
The	administrator	will	not	want	to	maintain	two	sets	of	user	profiles
The	administrator	will	want	to	control	user's	access	to	Framework	objects
according	to	group
	

Settings
Scenario:	System	i	Web
Server

Assumptions Modifications	to	your	version	of
UFU0001

Enroll	Typical	Users	in	the
Framework

(Framework)	-->	(Properties...)	-->	User	Administration	settings	tab:

Option Setting
Use	Framework	authority Checked

Store	user	profiles	on	DBMS	tables	VFPPF06/07 Checked

End	users	must	sign	on	to	this	Framework In	MS-Windows
Only

Users	sign	on	to	a	remote	server	to	use	the
Framework

Checked

	

Configure	the	HTTP	server	on	the	System	i	to	validate	user	profile	and
password
	

Modifications	to	your	version	of	UFU0001
Scenario:	System	i	Web	Server Assumptions Settings Enroll	Typical	Users	in	the	Framework

Make	a	new	version	of	UFU0001	that	looks	up	the	Framework	user	profile
("typical	user")	that	typifies	the	user	who	has	signed	on	to	the	HTTP	server	and
switch	to	the	typical	user.	(users	who	are	not	found	can	have	a	default	typical
user	assigned	to	them).
The	look	up	could	be	done	using	a	database	file	of	user	profiles,	or	it	could	be
done	by	calling		a	CL	program	that	accesses	the	user's	System	i	group	profile,
on	the	basis	that	the	Framework's	"typical	users"	are	the	same	as	the	System	i
group	profiles.
in	the	RDML	in	your	version	of	UFU0001
CALL	PGM(GETGRPPRF)	PARM(#CHK_USER	#GRPPRF)	EXIT_USED(*NEXT)	MENU_USED(*NEXT)																																								
CHANGE	#CHK_USER	#GRPPRF
CHANGE	#CHK_VALP	'FALSE'
	

CL	program	GETGRPPRF	could	be	something	like:
PGM								PARM(&USRPRF	&GRPPRF)																																				
DCL	&GRPPRF	*CHAR	10																																																
DCL	&USRPRF	*CHAR	10																																																
													RTVUSRPRF		USRPRF(&USRPRF)	GRPPRF(&GRPPRF)													
ENDPGM																																																														
	

You	can	also	modify	UFU0001	to	display	the	user	that	they	logged	on	as,	rather
than	the	"typical	user"	they	have	been	changed	to.
change	#CHK_VUSER	*WEBUSER	
	

Compile	your	version	of	UFU0001
To	change	the	Framework	to	use	your	version	of	UFU0001,	go	to		(Framework)
-->	(Properties...)	-->	Web/RAMP	Details	tab.	Specify	your	function	name	in	the
option	IIP	-	User	Sign	on	Function	Name.

Enroll	Typical	Users	in	the	Framework
Scenario:	System	i	Web	Server Assumptions Settings Modifications	to	your	version	of	UFU0001 	

As	administrator,	start	the	Windows	Framework	in	connect	to	the	remote	server
mode.
Enroll	all	the	typical	users	in	the	Framework.	(The	password	does	not	matter)
Give	the	typical	users	authority	to	Framework	objects	that	these	users	should
have.
Save	the	Framework.
	

Scenario:	System	i	Server,	Users	Connect	with	Super	Server
Assumptions Settings Enroll	Users	and	Groups

When	the	users	connect	to	the	server,	their	entered	password	will	be	validated
against	the	server's	native	profile/password.
The	users	will	inherit	the	authorities	to	Framework	objects	according	to	the
group	/	groups	they	belong	to.

Assumptions
Scenario:	System	i	Server,	Users	Connect	with	Super	Server Settings Enroll	Users	and	Groups

Users	will	need	to	maintain	their	own	passwords	(via	5250)
The	administrator	will	be	able	to	maintain	the	Framework	user	profiles	and	the
server	user	profiles
The	administrator	will	want	to	control	user's	access	to	Framework	objects
according	to	group
	

Settings
Scenario:	System	i	Server,	Users	Connect	with	Super	Server Assumptions Enroll	Users	and	Groups

(Framework)	-->	(Properties...)	-->	User	Administration	settings	tab:

Option Setting
Use	Framework	authority Checked

Store	user	profiles	on	DBMS	tables	VFPPF06/07 Checked

End	users	must	sign	on	to	this	Framework In	MS-Windows
Only

Users	sign	on	to	a	remote	server	to	use	the
Framework

Checked

	

Enroll	Users	and	Groups
Scenario:	System	i	Server,	Users	Connect	with	Super	Server Assumptions Settings

Start	the	Framework	in	administration	or	design	mode	and:
Create	the	appropriate	groups
Give	each	group	the	appropriate	authorities	to	Framework	objects
Create	the	individual	users	(the	password	does	not	matter)
Attach	each	user	to	the	group	/	groups	that	they	should	belong	to
	

Scenario:	Windows	Server,	Users	Connect	with	Super	Server
Assumptions Settings Enroll	Users	and	Groups

When	the	users	connect	to	the	server,	the	initial	connection	is	made	to	the
database	using	the	Database	Profile	and	Database	Password	(for	example	DBA	/
SQL)
Once	the	initial	connection	is	made,	the	Framework	is	able	to	access	the	user
profile	and	password	information	in	files	VFPPF06/07,	and	can	validate	the	user
profile	and	password	that	the	user	enters.
The	users	will	inherit	the	authorities	to	Framework	objects	according	to	the
group	/	groups	they	belong	to.

Assumptions
Scenario:	Windows	Server,	Users	Connect	with	Super	Server Settings Enroll	Users	and	Groups

Administrator	will	maintain	users	passwords
The	administrator	will	maintain	only	the	Framework	user	profiles
The	server	will	be	defined	to	the	Framework	with	its	own	Database	User	and
Database	Password
The	administrator	will	want	to	control	user's	access	to	Framework	objects
according	to	group
	

Settings
Scenario:	Windows	Server,	Users	Connect	with	Super	Server Assumptions Enroll	Users	and	Groups

(Framework)	-->	(Properties...)	-->	User	Administration	settings	tab:

Option Setting
Use	Framework	authority Checked

Store	user	profiles	on	DBMS	tables	VFPPF06/07 Checked

End	users	must	sign	on	to	this	Framework In	MS-Windows
Only

Users	sign	on	to	a	remote	server	to	use	the
Framework

Checked

	

(Administration)	-->	(Servers)	-->	Server	Details	tab:

Option Setting
Server	Type Win

Database	User <<User	profile	to	make	the	initial	connection	as	-	e.g.
DBA>>

Database
Password

<<password	for	the	initial	connection	-	e.g.	SQL>>

	

	

Enroll	Users	and	Groups
Scenario:	Windows	Server,	Users	Connect	with	Super	Server Assumptions Settings

Start	the	Framework	in	administration	or	design	mode	and:
Create	the	appropriate	groups
Give	each	group	the	appropriate	authorities	to	Framework	objects
Create	the	individual	users	(the	password	does	not	matter)
Attach	each	user	to	the	group	/	groups	that	they	should	belong	to
	

More	Information
More	Details	about	Groups
Create	Your	Own	Imbedded	Interface	Points	(IIP)
More	Details	about	being	Signed	on	as	a	Different	User
How	to	Share	Users	between	Different	Frameworks
	

More	Details	about	Groups
Creating	an	Authority	Group
Press	the	New	Group	button.	Go	to	the	User	Details	tab	and	give	the	group	a
caption	and	a	user	profile.	The	group's	profile	does	not	have	to	exist	anywhere,
because	groups	cannot	sign	on.
Specifying	Authorities	for	the	Group
Go	to	the	Authorities	tab.	Authorize	the	group	to	Framework	objects	in	exactly
the	same	way	as	you	would	a	user.
Attaching	a	User	to	a	Group
Click	an	individual	user	in	the	list	on	the	left	of	the	users	panel	and	go	to	the
User	Details	tab.	The	group	that	you	created	is	shown	in	the	list	of	groups	at	the
bottom	of	this	tab.	Check	the	group	to	attach	the	user	to	it	(or	attach	it	to	the
user).
Authorities	are	Additive
If	an	individual	user,	or	any	of	the	groups	they	belong	to,	are	authorized	to	an
object,	then	the	user	can	use	the	object.
This	means	that:
If	the	individual	user	is	not	authorized	to	the	object,	but	one	of	the	groups	they
belong	to	is	authorized,	the	user	will	be	able	to	use	the	object.
If	the	individual	user	is	authorized	to	the	object,	and	the	user	is	attached	to	a
group	that	is	not	authorized	to	the	object,	the	user	will	still	be	able	to	use	the
object
If	the	user	belongs	to	two	groups,	and	one	group	is	authorized	to	an	object	and
one	group	isn't,	the	user	will	be	able	to	use	the	object.

Authorities	of	a	Member	of	a	Group
When	viewing	the	Authorities	tab,	the	objects	to	which	a	user	has	group
authority	are	shown	as	shaded	and	protected.	This	is	because	you	cannot	remove
users'	authorities	to	an	object	to	which	they	have	group	authority	(because
authorities	are	additive).
You	can	remove	users'	authorities	to	an	object	to	which	they	have	individual
authority,	but	not	group	authority.
You	can	also	authorize	the	individual	users	to	an	object	to	which	they	do	not
have	group	authority.	This	is	called	an	individual	override	authority	to	an	object.
Note	about	Individual	Override	Authority

Giving	individual	override	authority	to	an	object	may	cause	the	Framework	to
give	the	user	individual	authority	to	the	parents	of	the	object	(if	the	user	is	not
authorized	to	the	parent	already).	This	implementation	ensures	the	users	have	a
coherent	individual	authority	even	if	they	are	removed	from	all	groups.
The	user	is	given	individual	authority	only	to	the	direct	ancestors	of	the	object.
However,	if	new	objects	that	belong	to	the	same	parent	are	subsequently	added
to	the	Framework	this	may	result	in	unexpected	individual	authority	to	the	new
object.	To	avoid	this	problem,	when	adding	new	objects	to	a	Framework	which
has	already	had	user	authorities	set	up,	set	the	new	object's	Restricted	Access
property	to	checked.	Alternatively,	you	can	edit	each	user's	authority	after
adding	the	new	Framework	object.
Custom	Property	Values	Cannot	Be	Assigned	to	Group	Profiles
Do	not	assign	custom	property	values	to	group	profiles	because	they	will	not	be
applied	to	any	users	belonging	to	the	group.
	

Create	Your	Own	Imbedded	Interface	Points	(IIP)
Windows:
The	Imbedded	Interface	Point	(IIP)	for	Windows	is	the	component	specified	in
the	Framework	Details	tab	(to	get	there	menu	(Framework)	-->	option
(Properties...)	-->	Framework	Details	tab).	The	option	is	called	User	Imbedded
Interface	Point.	The	shipped	value	for	this	is	component	UF_SYSTM.
To	do	your	own	IIP	Windows	checking,	all	you	have	to	do	is	create	your	own
version	of	UF_SYSTM	with	a	different	name,	and	then	edit	it	and	modify	the
relevant	method	routine	to	do	what	you	want	it	to	do,	compile	it,	and	then
change	the	option	from	UF_SYSTM	to	the	name	of	your	version.
Web:
The	Imbedded	Interface	Point	(IIP)	for	web	is	the	function	specified	in	the
Web/RAMP	Details	tab	(to	get	there	menu	(Framework)	-->	option
(Properties...)	-->	Web/RAMP	Details	tab).	The	option	is	called	"IIP	User	Sign
on	function	name".	The	shipped	value	for	this	is	component	UFU0001.
To	do	your	own	IIP	web	checking,	all	you	have	to	do	is	create	your	own	version
of	function	UFU0001	with	a	different	name,	and	then	modify	it	to	do	what	you
want	it	to	do,	compile	it,	and	then	change	the	Framework	setting	from	UFU0001
to	the	name	of	your	version	of	the	function.
Most	of	the	documentation	for	these	IIPs	is	in	the	source	code	of	UF_SYSTM
and	UFU0001.	Also	see	What	Imbedded	Interface	Points	are	Provided?

More	Details	about	being	Signed	on	as	a	Different	User
If	you	have	many	users	who	fall	into	a	few	standard	categories	you	may	want	to
avoid	registering	them	all	in	the	Framework.	
Instead	you	can	register	one	Framework	user	for	each	of	the	standard	categories.
Let's	call	these	users	"typical	users".	Give	each	of	the	typical	users	the	correct
authority	to	Framework	objects.
Switch	off	the	Framework	web	sign	on	option,	and	use	the	server	(or	HTTP
server)		to	validate	the	user's	password	and	profile.
After	they	have	signed	on,	your	IIP	program	can	look	up	which	category	the
user	belongs	to	and	change	them	to	their	typical	user.	They	will	then	have	the
authorities	of	the	typical	user.
	

How	to	Share	Users	between	Different	Frameworks
In	order	to	share	users:
The	Framework	must	store	user	details	on	VFPPF06	and	VFPPF07
The	two	Framework	objects	must	have	different	user	object	types
The	user	set	must	be	the	same	for	both	Frameworks
	

Creating	Web	Interface	for	Maintaining	Users	and	Authorities
Note	that	by	default	the	Administration	application	and	the	Users	and
Authorities	business	object	are	restricted	access	objects.	You	should	specifically
grant	the	Administrator	authority	to	these	objects.
It	is	possible	to	use	the	Administrator	interface	in	a	deployed	Framework	web
application	to	create	users	and	groups,	set	authorities	and	custom	property
values
To	use	the	web	interface	to	create	and	maintain	users	and	authorities	you	must
merge	the	Administration	application	and	the	Users	and	Authorities	business
object	to	your	Framework:
1.	Start	the	Framework	in	Design	mode.
2.	Start	the	Merge	Tool	using	the	Merge	Tool	option	in	the	Framework	menu.
See	Using	the	Merge	Tool.
3.	Locate	the	merge	list	VF_Administration_Merge_List.txt	in	your	partition
execute	folder	using	Windows	Explorer	and	copy	it.	Paste	it	in	the	Merge	Files
area	in	the	Merge	Tool	window.
4.	To	merge	the	Administration	application	and	the	Users	and	Authorities
business	object:
Select	the	two	objects	in	the	Merge	List	area	in	this	order:

VF_FP002	–	Administration

VF_FP003	–	Business	Object	(Users	and	Authorities).

Select	all	the	objects	in	the	Reference	List:
	

		
Note	that	the	Merge	Selected	button’s	caption	should	now	show	Merge	Selected
(16).
Click	on	the	Merge	Selected	button.
Click	on	the	Perform	All	Selected	Merges	button.
When	you	receive	a	message,	uncheck	the	check	box	and	click	the	Close
button.	Do	not	Save	and	Restart	yet.
Click	on	the	Perform	All	Selected	Merges	button	again.
When	you	finish,	Save	and	Restart	the	Framework	but	do	not	upload	your
changes	to	the	web	server	yet.
When	the	Framework	restarts,	make	a	dummy	change	to	the	Framework,	save
and	upload	your	changes.
You	can	now	administer	users	and	authorities	in	a	Framework	web	application
provided	you	have	signed	on	as	an	Administrator.
	
New	Framework	objects	required	for	this	functionality
	

Object	type Caption Web	Handler Comments
Application Administration N/A 	

Business	Object Users	and
Authorities

N/A 	

Business	Object
web	filter

by	User
Profile
	

Process:
UF_USRM
Function:
UFUMF1

Is	a	*WEBEVENT
function

Business	Object
commands

New	User AJAX	page:
UFUMUDX.htm

For	all	commands,
use	the	option	Is	an
AJAX	style	routine.

	 New	Group AJAX	page:
UFUMUDX.htm

	

Business	Object
instance
commands

Details AJAX	page:
UFUMUDX.htm

	

	 Delete	Profile AJAX	page:
UFUMUDX.htm

	

	 Custom
Properties

AJAX	page:
UFUMUPX.htm

	

	 Authorities AJAX	page:
UFUMUAX.htm

	

	

	
Other	required	objects
Object	type Name Comments Include	in

deployment
package

	 	 	 	

Process	skeleton UF_USRM Standard	VLF NO

skeleton	for	web
functions.

RDML
Process/Function

UF_USRM/UFUMF1
	

Users	and
Authorities
WEBEVENT
filter

YES
(follows
naming
standard	so	it
should	be
automatically
included	in
export	list)

Web	Pages UFUMUDX.htm
	

AJAX	handler
for	commands:
New	User
New	Group
Details
Delete	Profile

YES	for	all
AJAX	pages
(follows
naming
standard	so	it
should	be
automatically
included	in
export	list)	–
target	private
folder

	 UFUMUPX.htm AJAX	handler
for	Custom
Properties
command

	

	 UFUMUAX.htm AJAX	handler
for	User
Authorities
command.

	

	 Delete	Profile AJAX	page:
UFUMUDX.htm

	

	 Custom	Properties AJAX	page:
UFUMUPX.htm

	

	 Authorities AJAX	page:
UFUMUAX.htm

	

Merge	list	(text
file)

VF_Administration_Merge_List.txt 	 NO

	

	

Server	Profile	Management	and	Issues
Normally	server	definitions	are	stored	in	a	file	named	VF_Sy001_Servers.XML
that	resides	in	the	execute	directory	of	the	associated	LANSA	partition.
Some	important	facts	about	server	definitions:
You	can	change	the	name	of	the	server's	definition	file	to	something	else.
You	should	never	alter	the	content	of	the	XML	file	with	anything	other	than
through	the	Framework.	
In	the	partition	execute	directory	files	named
VF_Sy001_Servers_YYYYMMDD_HHMMSS.XML	may	be	found.	These
represent	server	definition	versions	that	were	saved	at	the	time	specified	in
their	names.	You	can	use	these	to	back	out	unwanted	server	definition	changes.
You	should,	from	time	to	time,	delete	old	saved	versions.
You	do	not	have	to	use	the	shipped	server	management	facilities.	Not	using
them	does	not	preclude	your	application	from	using	multiple	servers	and
normal	LANSA	SuperServer	facilities.

Deploying	Server	Definitions
Server	definitions	are	changed	using	the	UF_ADMIN	entry	point	form	or
equivalent	(see	Starting	the	Framework).	If	you	don't	want	this	capability	in
your	deployed	applications	then	don't	deploy	UF_ADMIN	or	equivalent	to	your
end-users.
The	ability	of	end-users	to	edit	server	settings	may	have	an	effect	on	what	you
decide	to	ship	in	VF_Sy001_Servers.XML	when:	
Deploying	your	Framework	to	end-user	environment	for	the	first	time.
Upgrading	your	Framework	in	end-user	environments.
Some	of	the	options	you	have	are:
Don't	deploy	VF_Sy001_Servers.XML	at	all.	Deploy	your	application	with
instructions	on	how	to	use	UF_ADMIN	(or	equivalent)	so	that	end-users	can
define	their	own	unique	server	environment.
Centrally	deploy	VF_Sy001_Servers.XML	with	all	server	details	predefined	in
it.	No	end-user	use	of	UF_ADMIN	(or	equivalent)	would	be	required	for
server	definition.	Normally	this	is	only	an	option	when	only	a	well	defined	set
of	server	systems	is	possible.
Deploy	VF_Sy001_Servers.XML	with	a	predefined	set	of	partially	completed
set	of	server	examples	in	it.	Combine	this	with	instructions	to	your	end-users
on	how	to	use	UF_ADMIN	(or	equivalent)	to	use	the	shipped	examples	so	as
to	define	their	own	unique	environment.
Scenario:	In	House	Development,	Well	Known	Servers
Scenario:	ISV,	Single	Unknown	Server
Scenario:	ISV,	Multiple	Unknown	Servers

Scenario:	In	House	Development,	Well	Known	Servers
Scenario:	In	house	development	applications,	only	allow	connection	to	a	set	of
well	known	servers.	
Example:	ACME	engineering	develops	their	own	Framework	based
applications	in	house.	They	deploy	them	to	their	own	PCs,	which	utilize	one	of
three	different	System	i	backend	servers	located	in	different	offices	and
manufacturing	plants	around	the	country.						
Recommendation:	
Ship	"ready	to	run"	so	that	end-users	do	not	have	to	be	involved	in	any	server
definition	at	all:
Deploy	a	Framework	VF_Sy001_Servers.XML.
Deploy	a	LANSA	Communications	Administrator	LROUTE.DAT	file
containing	the	predefined	server	details.
Do	not	allow	end-users	to	alter	the	shipped	details.
Include	appropriate	icons	into	server	definitions	(often	location	based).	

Scenario:	ISV,	Single	Unknown	Server
Scenario:	ISV	development,	application	only	allows	connection	to	a	single	(but
unknown)	server.
Example:	ACE	software	develop	and	sell	a	Framework	based	healthcare
package.	They	sell	it	to	companies	in	the	healthcare	industry.	It	is	designed	to
work	using	a	single	System	i	or	Window	2000	computer	as	its	back	end
server.								
Recommendation:	
Ship	"almost	ready	to	run"	definitions	so	that	end-user	involvement	in	server
definition	administration	is	minimized:
Deploy	a	Framework	VF_Sy001_Servers.XML.
Use	a	non-committal	non-specific	name	for	the	server	(eg:	SERVER1,
GLSERVER,	etc).
Deploy	a	LANSA	Communications	Administrator	LROUTE.DAT	file
containing	the	predefined	server	details	(except	for	the	IP	address).	
End-users	only	need	to	use	the	LANSA	Communications	Administrator	to
alter	the	"Fully	Qualified	Name	of	the	Host	(Address)"	of	the	shipped
definition	to	have	the	correct	IP	address.
Include	appropriate	icon	into	the	server	definition	(probably	related	to	your
Framework	application).	

Scenario:	ISV,	Multiple	Unknown	Servers
Scenario:	ISV	development,	application	allows	connection	to	multiple
unknown	servers.
Example:	XYZ	software	develop	and	sell	an	insurance	agent	package.	It	is
designed	to	work	using	many	different	System	i	or	Window	2000	computer	as
its	back	end	servers.	Typically	the	servers	are	located	in	different	cities	and	most
agents	require	access	to	two	or	more	of	the	servers.									
Recommendation:	
Ship	a	set	of	"almost	ready	to	run"	servers	so	that	in	most	situations	end-user
involvement	is	minimized.	Allow	end-users	to	define	new	servers	in	exceptional
circumstances:
Deploy	a	Framework	VF_Sy001_Servers.XML	with	a	predefined	set	of
servers	in	it.
Use	non-committal	generic	names	for	the	servers	(eg:	SERVER1,	SERVER2,
SERVER3).		
Deploy	a	LANSA	Communications	Administrator	LROUTE.DAT	file
containing	all	the	predefined	server	details	(except	for	the	IP	addresses).	
End-users	should	initially	use	UF_ADMIN	to	delete	server	definitions	that	are
not	required	(leaving	their	definitions	in	LROUTE.DAT	will	do	no	harm)	and
to	specify	the	caption	details	for	the	servers	that	are	required.	
End-users	then	need	to	use	the	LANSA	Communications	Administrator	to
alter	the	"Fully	Qualified	Name	of	the	Host	(Address)"	of	the	servers	that	they
do	need	to	use.
End-users	may	need	to	use	the	UF_ADMIN	and	LANSA	Communications
Administrator	facility	to	define	additional	servers	in	exceptional
circumstances.		
	

Server	Connection	Recovery
The	Windows	Framework	can	be	configured	to	handle	a	temporary	loss	of
connection	to	a	server.	For	example,	this	might	happen	when	a	user's	laptop
moves	out	of	range	of	the	wireless	base	station.
The	Framework	can	be	configured	to	check	the	server	connection:
Prior	to	a	move	by	the	user	to	any	business	object	or	application
Prior	to	executing	a	command
At	intervals	specified	by	the	designer.
The	Framework	checks	the	connection	by	attempting	to	run	a	simple	function
on	the	server.
If	the	reconnection	attempt	fails,	or	if	the	function	runs	but	does	not	return	an
OK	value,	then	the	Framework	can	respond	in	a	number	of	ways:
The	default	response	is	to	stop	Framework	activity,	advise	the	user,	and	to
attempt	reconnect	when	the	user	clicks	ok.
The	application	designer	also	has	the	option	of	writing	their	own	server
connection	test	function.	This	could	be	coded	to	return	a	connection	error
code,	even	if	the	function	runs	ok.	This	might	be	useful	for	advising	all
Framework	users	that	an	upgrade	is	in	progress	and	they	need	to	log	off.	(See
example	function	UF_SYSBR/UFU0004)
Programmatic	connection	checking	in	Framework	filters	and	command
handlers	is	also	available,	using	the
#avFrameworkManager.avCheckConnection	method.	This	would	need	to	be
coded	into	filters	just	prior	to	doing	a	database	search,	or	coded	into	command
handlers	just	prior	to	doing	a	save.
Filters	and	command	handlers	can	also	detect	that	connection	recovery	is
underway	by	listening	for	events	signaled	by	the	Framework	manager	such	as
avSessRecoverStarted,	avSessRecovered	and	avSessRecoverFailed.
	
Some	things	worth	knowing
A	server	connection	check	will	not	happen	while	your	RDML(X)	code	is
executing	unless	the	code	specifically	requests	avCheckConnection.
Even	if	the	"Check	before	executing	command"	option	is	checked,	you	will	still
need	to	include	invoke	#avFrameworkManager.avCheckConnection	in	your
command	handlers	and	filters	prior	to	doing	any	server	database	IO.	(for

example,	prior	to	doing	searches	and	saves).
To	use	connection	recovery	you	need	to	make	sure	any	database	commitment
control	boundaries	you	use	do	not	span	user	interactions.	A	database
commitment	control	boundary	cannot	span	a	session	reconnection.			
If	you	are	using	connection	recovery	you	should	avoid	using	session	based
values	(eg:	the	server	*JOBNBR)	as	‘keys’	to	information	in	your	application
session	because	they	will	probably	change	after	a	reconnection.			
The	session	recovery	feature	deals	with	LANSA	super-sever	sessions	only.	It
does	not	recover	a	5250	RAMP	session.				
If	the	Framework	is	locked	by	Framework	locking,	connection	checking	and
recovery	is	not	performed,	except	for	these	situations:
Automatic	connection	checks	that	occur	at	timed	intervals
Specific	filter	and	command	handler	usage	of	avCheckConnection

	

Server	Connection	Recovery	Settings
These	settings	are	available	in	the	Server	properties	tab:
Attempt	Automatic	session	recovery
Time	interval	between	checks	of	connection	status
Check	connection	before	executing	commands
Check	connection	before	selecting	applications	and	business	objects
Action	to	take	when	session	cannot	be	recovered
Check	Connection	using	function

Attempt	Automatic	session	recovery
Switches	on	server	connection	checking	by	the	Framework.
When	it	is	switched	off,	you	can	still	code	#avFramework.avCheckConnection
in	your	command	handlers	and	filters
The	default	is	unchecked.
This	property	is	in	the	Server	Details	tab.
	

Time	interval	between	checks	of	connection	status
This	specifies	the	interval	between	periodic	checks	that	the	server	is	still
connected.	0	means	the	checks	are	disabled.
If	a	server	connection	check	occurs	for	some	other	reason	(eg:	filter	or
command	handler	executes	the	avCheckConnection	method)	the	timer	is	reset,
so	a	full	time	interval	elapses	before	the	next	check	is	performed.
If	the	user	cancels	a	request	to	reattempt	connection,	the	periodic	checks	are
stopped.
If	after	an	unsuccessful	reconnection	attempt,	the	"Action	to	take	when	the
session	cannot	be	recovered"	is	ABORT,	the	periodic	checks	are	stopped.
The	default	is	30	seconds.
This	property	is	in	the	Server	Details	tab.
	

Check	connection	before	executing	commands
When	checked,	the	Framework	will	check	that	the	server	connection	is	ok,	just
prior	to	executing	commands.	If	the	connection	cannot	be	recovered,	the
command	will	not	be	executed.
The	default	is	checked.
This	property	is	in	the	Server	Details	tab.
	

Check	connection	before	selecting	applications	and	business
objects
When	checked,	the	Framework	will	check	that	the	server	connection	is	ok,	just
prior	to	moving	to	a	new	business	object	or	application.	If	the	connection	cannot
be	re-established,	the	move	will	not	occur.	This	includes	programmatic
switching.
The	default	is	checked.
This	property	is	in	the	Server	Details	tab.
	

Action	to	take	when	session	cannot	be	recovered
Retry/Notify	-	If	the	first	reconnect	attempt	fails,	notify	the	user	and	when	they
press	OK	attempt	to	reconnect.	Continue	to	loop	until	a	successful	reconnect
occurs,	or	the	user	presses	Cancel.	If	the	user	presses	cancel,	no	more	checks
will	be	made	until	the	user	attempts	an	action	that	results	in	a	check	connection.
Abort	-	If	the	first	reconnect	attempt	fails,	notify	the	user,	and	then	stop.	No
more	checks	will	be	made	until	the	user	attempts	an	action	that	results	in	a
check	connection.
This	property	is	in	the	Server	Details	tab.
	

Check	Connection	using	function
This	is	the	name	of	the	function	that	is	run	on	the	server	to	determine	whether
the	super	server	connection	is	active	or	not.	See	UF_SYSBR/UFU0004	for
details.
Refer	to	the	documentation	in	the	source	code	of	the	shipped	function
UF_SYSBR/UFU0004	for	details	of	how	to	make	your	own	version	and	the
conventions	it	should	follow.	
This	property	is	in	the	Server	Details	tab.
	

Programmatic	server	connection	checking
#avFrameworkManager.avCheckConnection	method	is	available	in	filter	and
command	handler	code.
It	should	be	used	to	check	the	server	connection	within	a	command	handler	or
filter	just	prior	to	performing	an	operation	that	will	use	the	connection	(for
example	a	search	or	save).
Invoking	this	method	causes	the	server	check	function	to	be	called	on	the	server,
so	it	is	advisable	to	consider,	and	verify	by	testing,	the	performance
ramifications	of	how	often	you	invoke	it.	For	example,	invoking	it	in	every
iteration	of	a	loop	that	inserts	100	database	rows	would	be	ill	advised.			
Method:	avCheckConnection
Parameters:
Name Usage Class Description Default
Server Input	-

Optional
Alpha	–
max
length
32

The	server	to	check	(user
object	name/type	of	the
server)

Current
Server

AttemptReconnect Input	–
Optional

Boolean If	the	connection	is	found	to
have	failed,	attempt	one
reconnect

TRUE

IssueMessages Input	–
Optional

Boolean Issue	messages	advising	the
user	that	the	connection	has
failed
If	this	is	set	to	FALSE,	the
ActionOnFail	parameter	is
ignored,	and	no	attempt	is
made	to	communicate	with
the	user.	

TRUE

ActionOnFail Input	–
Optional

Boolean Action	if	the	one	attempt	to
reconnect	fails.	Can	be
ABORT	or
NOTIFY/RETRY
Abort

The	server
value	(set
in	the
server
properties)

the	user	is	advised,
no	further	action	is
taken,	the	timer	is
deactivated.
If	the	user
subsequently
initiates
avCheckConnection,
another	single
attempt	to	reconnect
is	made.

Notify/Retry
notifies	the	user,
waits	for	their
instruction	to	try
again,	and	then	tries
again,	if	they	press
OK.
On	each	loop	the
user	can	chose	OK
or	Cancel.	If	they
choose	Cancel:
No	further	action	is
taken,	the	timer	is
deactivated.
If	the	user
subsequently
initiates
avCheckConnection,
the	whole
notify/retry	cycle
starts	again.

	

OfflineOK Input	-
Optional

Boolean If	this	is	TRUE	and	the	user
has	never	connected	to	this
server	(e.g.	they	are

TRUE

working	offline,	or	the
system	has	been	defined	to
use	the	local	database),
avCheckConnection	will
return	OK.
If	this	is	FALSE	and	the
user	has	never	connected	to
this	server,
avCheckConnection	will
return	ER

ReturnValue Output	-
Optional

Alpha	–
max
length	2

Normally	OK	(now
connected)	or	ER	(not
connected).	But	the
connection	testing	function
IIP	can	be	coded	to	pass
back	other	values

	

	

Examples

Examples

	

EVTROUTINE	HANDLING(#PHBN_1.Click)
*	basic
invoke	#avFrameworkManager.avCheckConnection	ReturnValue(#df_elretc)
if	'#df_elretc	*eq	OK'
invoke	#Com_Owner.uSelectData
endif
ENDROUTINE
	
EVTROUTINE	HANDLING(#PHBN_2.Click)
*	silent	(Attempt	one	reconnect	if	unconnected,	don't	advise	the	user	of
anything	-	this	program	will	advise)
invoke	#avFrameworkManager.avCheckConnection
AttemptReconnect(TRUE)	IssueMessages(FALSE)	ActionOnFail(ABORT)
ReturnValue(#df_elretc)
if	'#df_elretc	*eq	OK'
invoke	#Com_Owner.uSelectData
else
USE	BUILTIN(Message_box_show)	WITH_ARGS(*Default	*Default
*Default	*Default	'My	own	message	advising	that	connection	is	disabled')
endif
ENDROUTINE
	
EVTROUTINE	HANDLING(#PHBN_3.Click)
*	detect	without	even	one	attempt	to	recover	-	ActionOnFail	will	be	irrelevant
*	this	will	only	detect	that	the	super	server	connection	has	been	lost,	even	if
the	TCPIP	link	has	subsequently	been	restored
*	(to	detect	that	you	are	able	to	connect	requires	an	attempt	to	reconnect)
invoke	#avFrameworkManager.avCheckConnection
AttemptReconnect(FALSE)	IssueMessages(TRUE)	ActionOnFail(ABORT)
ReturnValue(#df_elretc)
if	'#df_elretc	*eq	OK'
invoke	#Com_Owner.uSelectData
endif
ENDROUTINE

	
EVTROUTINE	HANDLING(#PHBN_4.Click)
*	attempt	one	reconnection,	but	if	that	fails,	advise	the	user	but	do	not	retry
invoke	#avFrameworkManager.avCheckConnection
AttemptReconnect(TRUE)	IssueMessages(TRUE)	ActionOnFail(ABORT)
ReturnValue(#df_elretc)
if	'#df_elretc	*eq	OK'
invoke	#Com_Owner.uSelectData
endif
ENDROUTINE

	

	

Public	Signals
The	following	events	can	be	listened	for	in	command	handlers	and	filters
avSessRecoverStarted	-	This	indicates	that	the	Framework	has	detected	that	the
server	connection	has	been	lost	and	a	session	recovery	is	being	started.
avSessRecovered	-	This	indicates	that	the	Framework	has	successfully	restored
the	connection,	by	connecting	to	the	server	again
avSessRecoverFailed	-	This	indicates	that	reconnection	attempts	have	failed	and
have	been	abandoned	for	now
	

Examples
	
EVTROUTINE	#avFrameworkManager.avSessRecoverstarted
	
set	#SEARCH_BUTTON	enabled(false)
invoke	#avFrameworkManager.avRecordTrace	component(#com_Owner)
event('Filter	heard	avSessRecoverStarted')
	
ENDROUTINE
	
EVTROUTINE	#avFrameworkManager.avSessRecovered
	
set	#SEARCH_BUTTON	enabled(true)
invoke	#avFrameworkManager.avRecordTrace	component(#com_Owner)
event('Filter	heard	avSessRecovered	Sucessfully')
	
ENDROUTINE
	
	
EVTROUTINE	#avFrameworkManager.avSessRecoverFailed
	
invoke	#avFrameworkManager.avRecordTrace	component(#com_Owner)
event('Filter	heard	avSessRecoverFailed')
set	#SEARCH_BUTTON	enabled(false)
	
ENDROUTINE

	

	
	

Multilingual	Application	Issues
When	building	filters	and	command	handlers	for	use	in	multilingual
environments	use	exactly	the	same	procedures	as	you	would	for	any	other
Visual	LANSA	application.
The	only	difference	between	designing	any	multilingual	Visual	LANSA
application	and	a	Framework	based	Visual	LANSA	application	is	in	the	input	of
the	multilingual	Framework	design	details.
This	input	process	mostly	involves	the	captions	used	for	the	Framework,	the
applications,	the	business	objects,	the	commands	and	any	"Help	About"	details.
Specifying	multilingual	details	for	the	Framework	details	is	quite	simple.	
Assume	that	you	have	a	Framework	that	was	designed	using	language	code
ENG	(English).	You	now	want	to	translate	the	Framework	details	to	language
code	FRA	(French).
You	would:

1. Invoke	the	UF_DESGN	(or	equivalent)	entry	point	for	the	Framework.
Make	sure	that	the	language	code	specified	is	the	language	that	you	are
interested	in	translating	to	(eg:	FRA	for	French).
	

2. Display	the	various	Framework,	application,	business	object	and	command
property	dialogs	and	simply	overtype	the	displayed	captions	with	the
translated	captions	(initially	you	should	do	this	for	just	a	few	things	and
verify	that	they	work	correctly	(see	step	3)	before	completing	the
translation	job).
	

3. Close	down	the	Framework.	The	changed	details	will	be	saved.	You	should
now	find	that	if	you	execute	the	Framework	with	language	code	ENG	you
get	English	details	displayed,	if	you	execute	the	Framework	with	language
code	FRA	you	should	get	the	French	details	displayed.
	

Technically,	there	are	two	things	about	the	way	translated	strings	are	processed
you	may	need	to	understand:

1. The	Framework	definition	file	vf_sy001_System.xml	(or	equivalent)	holds	the
translated	strings	for	all	languages.	If	you	look	in	this	file	you	may	find	XML	like	this

example	(which	is	the	definition	of	the	EXIT	command):
			<MEMBER	TYPE="COMMAND"	CLASS="VF_FP009"	ID="COMMAND_1"	>
						<PROPERTY	NAME="UBITMAPNAME"	VALUE="VF_BM013"/>
						<PROPERTY	NAME="UCAPTION"	LANG="ENG"	VALUE="Exit"/>
						<PROPERTY	NAME="UICONNAME"	VALUE="VF_IC035"/>
						<PROPERTY	NAME="USEQUENCE"	TYPE="N"	VALUE="2"/>
			</MEMBER>
	

you	can	see	the	definition	of	the	caption	property:
						<PROPERTY	NAME="UCAPTION"	LANG="ENG"	VALUE="Exit"/>

After	translation	using	the	methods	previously	described	(into	French	and	Italian,	say)
then	they	would	now	appear	in	the	XML	file	as:
					<PROPERTY	NAME="UCAPTION"	LANG="ENG"	VALUE="Exit"/>
					<PROPERTY	NAME="UCAPTION"	LANG="FRA"	VALUE="Sorter"/>
					<PROPERTY	NAME="UCAPTION"	LANG="ITL"	VALUE="Uscire"/>
	

	

2. When	language	dependent	properties	from	the	Framework	definition	file
vf_sy001_System.xml	are	being	processed,	the	logic	used	to	locate	them	goes	like
this:
Look	for	property	in	the	current	language
If	not	found,	and	current	language	is	not	English,	try	English
If	not	found,	and	current	language	is	English,	try	"NAT"	(National	language)
	

Imbedded	Interface	Points	(IIPs)
The	Framework	is	shipped	with	a	large	number	of	imbedded	interface	points
(IIPs).
IIPs	are	places	at	which	externally	exposed	code	is	invoked	to	perform	specific
internal	(or	imbedded)	logic	while	the	Framework	is	executing.	
For	example,	in	Windows	applications	there	is	an	IIP	method	named
avConnectFiles	that	defines	how	files	are	to	be	connected	up	to	a	server	system
by	the	Framework.
This	standard	shipped	IIP	version	does	this:
Mthroutine	avConnectFiles	options(*Redefine)
*	==>	Define_map	*input		#std_obj		#UserProfile
*	==>	Define_map	*input	#vf_elnum	#DftBlockSize
*	==>	Define_map	*input	#vf_elnum	#DftMaxRecSel
	
USE	BUILTIN(CONNECT_FILE)	WITH_ARGS('*'	*SSERVER_SSN	#DftBlockSize.Value
																																				#DftMaxRecSel.Value)
Endroutine
	

If	you	want	you	can	modify	this	shipped	IIP	logic	to	do	something	different	for
your	Framework.		
In	Windows	applications	the	IIPs	are	defined	as	methods	in	the	shipped
component	UF_SYSTM.
In	Web	browser	applications	the	IIPs	are	defined	as	RDML	functions	in	the
shipped	process	UF_SYSBR.	
If	you	want	to	learn	more	about	IIPs	then	a	good	place	to	start	is	by	looking	at
the	source	code	shipped	in	component	UF_SYSTM	(for	Windows	applications)
and	in	the	functions	contained	in	the	process	UF_SYSBR	(for	Web	browser
applications).				

What	Imbedded	Interface	Points	are	Provided?
Windows
Web
Both	Windows	and	Web

Windows
In	Windows	Frameworks	these	IIPs	are	available:

Method Description 	
avCheckAuth	Method This	method	allows	you	to	add	your	own	layer

of	security	on	top	the	Framework	security.
	

avCheckInstanceAuth
Method

This	method	allows	you	to	add	instance-level
security	on	top	the	Framework	security.

	

AvCheckUserLicense This	IIP	method	allows	you	to	license	your
Framework.

	

avCloseMAINWindow Main	window	is	to	be	closed

avCloseSECONDWindow Secondary	window	is	to	be	closed

AvConnectFiles Connects	file	to	a	server	system. 	

AvDisConnectFiles Disconnects	files	from	a	server	system. 	

AvEnrollVisualStyles This	method	allows	you	to	enroll	your	own
visual	styles.

	

avMAINWindowReady Main	window	has	opened	and	is	ready	for	work

AvPasswordRules This	IIP	method	allows	the	Framework
designer	to	code	rules	that	new	passwords
must	obey.	These	rules	only	apply	to
passwords	created	for	local	sign	on.	Examples
of	such	rules	might	be	"Must	be	more	than	6
characters"	or	"Must	not	contain	the	same
letter	twice"	or	"Must	contain	at	least	one
digit".

	

AvPrivateConnect This	IIP	method	replaces	the	standard
Framework	logon	/	connection	process	with	a
private	version.

	

AvPrivateDisconnect This	IIP	method	replaces	the	standard
Framework	disconnection	with	a	private
version.

	

avQFActionSelection This	controls	what	happens	when	the	clicks	on
one	of	the	entries	located	in	the	quick	find
dialog.	(If	Quick	Find	Override	Feature	is
activated).

avQFLoadSearchList This	overrides	the	list	of	possible	values	that	can
be	searched	for,	in	the	Quick	Find	dialog.	(If
Quick	Find	Override	Feature	is	activated).

avSECONDWindowReady Secondary	window	has	opened	and	is	ready	for
work

avSetBCSessionValues Sets	session	values	just	before	the	connection
to	the	server	occurs.
Most	session	values	are	set		by	IIP
avSetSessionValues,	but	since	this	occurs	after
connection	to	the	server,	it	is	not	appropriate
for	some	session	values	(for	example	session
value	PSRR).	Use	this	IIP	to	set	the	session
values	that	need	to	be	set	prior	to	connection.

	

AvSetSessionValues Sets	session	values	(via	Built-In
SET_SESSION_VALUE)	for	users	at	sign	on
time.

	

avValidateLANSAName This	IIP	method	is	used	to	check	the	names	of
functions,	processes,	wams	and	reusable	parts
generated	by	the	Program	Coding	Assistant

	

AvValidateUser Supports	imbedded	validation	of	user	profiles
and	passwords.

	

UF_SYSBR/UFU0005
	

This	server	function	allows	Windows	Client
Server	applications	to	modify	the	user	profile
after	the	user	has	connected	to	the	server.	This
allows	framework	security	to	be	based	on	a
different	user	than	the	user	profile	that	was
used	to	connect	to	the	server.
A	typical	use	of	this	function	would	be	to
create	a	VLF	user	profile	for	each	category	of
user,	and	assign	the	appropriate	VLF

	

authorities	to	this	user	profile.	Then	when
individual	users	sign	on	to	the	server,	this
function	allocates	them	to	the	appropriate	VLF
user	based	on	user	data	held	on	the	server,	or
based	on	their	iSeries	group	profile.
See	the	source	code	of	UF_SYSBR/UFU0005
for	more	details
	

	

	
RAMP	Dynamic	Naming	IIPs

avMakeControlName This	method	is	called	each	time	a	cell	in	the
Input/Output	control	grid	in	Dynamic	Naming
interface	receives	the	focus.	It	allows	you	to
standardise	the	screen’s	field	names	should	your
application	use	a	certain	naming	convention.

avMakeFormName This	method	is	called	when	a	form	has	yet	to	be
named	using	Dynamic	Naming.

avValidateControlNam Validate	the	name	given	to	a	Newlook	screen’s
control.

avValidateFormName Validate	the	name	given	to	a	Newlook	screen.

	

Refer	to	the	shipped	component	UF_SYSTM	for	more	details	of	these	methods
and	how	to	change	them.	

Web
In	Web	browser	Frameworks	these	IIPs	are	available:
RDML	Function Description
UF_SYSBR/UFU0001 Validates	the	user	profile	and	password	of	a	user

accessing	a	web-based	Framework.

UF_SYSWB/UFU0002 Displays	field	and	function	level	help

	

Refer	to	the	shipped	processes	UF_SYSBR	and	UF_SYSWB	for	more	details	of
these	functions	and	how	to	change	them.

Both	Windows	and	Web
Both	Web	browser	and	Windows	Frameworks	may	use	these	IIPs:
RDML	Function Description
UF_SYSBR/UFU0003 This	method	allows	you	to	use	your	own	multilingual

text	for	Framework	captions	such	as	the	"Clear	List"
on	the	Instance	list.	See	MTXT	String	Loader.

UF_SYSBR/UFU0006 Use	to	allow	end-users	to	change	the	IBM	i	password
in	the	Framework	logon	dialog.
Typically	you	would	change	this	function	to	add	your
site's	specific	password	rules.

UF_SYSBR/UFU0010 Default	Code	Table	Data	handler.	This	function	stores
and	retrieves	data	for	code	tables	that	do	not	have
their	own	Code	Table	Data	handler.

UF_SYSBR/UFU0011 Code	Table	Data	handler	demonstrating	that	data	can
be	stored	and	retrieved	from	file	DEPTAB,	for	Code
Table	VF_DEPTAB.

UF_SYSBR/UFU0012 Code	Table	Data	handler	demonstrating	that	data	can
be		retrieved	from	hard	coded	values	in	the	function,
for	Code	Table	VF_SEX.

UF_SYSBR/UFU0013 Code	Table	Data	handler	demonstrating	that	data	can
be		retrieved	from	a	.dat	file	on	a	PC,	or	from	hard
coded	values	when	running	on	the	System	i,	for	Code
Table	VF_COUNTRY.

UF_SYSBR/UFU0014 Code	Table	Data	handler	demonstrating	that	data	can
be		retrieved	from	a	.dat	file	on	a	PC,	or	from	hard
coded	values	when	running	on	the	System	i,	for	Code
Table	VF_CURRENCY.

UF_SYSBR/UFU0015 Code	Table	Data	handler	demonstrating	that	data	can
be		retrieved	from	a	.dat	file	on	a	PC,	or	from	hard
coded	values	when	running	on	the	System	i,	for	Code
Table	VF_USASTATES.

	

	Refer	to	the	shipped	process	UF_SYSBR	for	more	details	of	these	functions
and	how	to	change	them.
	
	
	

Adding	your	own	object	security	validation
In	Windows	applications	you	can	add	your	own	layer	of	object	security	on	top
of	the	Framework	security	by	modifying	the	IIP	method	avCheckAuth.	This	can
be	used	to	make	the	Framework	security	conform	to	your	site's	standards.	It	can
also	be	used	to	alter	the	behaviour	of	filters	or	command	handlers	for	particular
users.
The	IIP	routine	receives	an	identifier	for	the	object	(This	is	the	user	object	name
/	type	parameter	which	can	be	viewed	on	the	identification	tab	sheet	for	the
object)	and	the	user	profile.
A	special	case	is	when	the	object	being	validated	is	a	command	reference	(a
command	for	a	particular	Framework	or	application	or	business	object)	the	IIP
receives	the	user	profile,	an	identifier	for	the	Framework/application/business
object,	and	an	identifier	for	the	command.	(The	identifier	is	the	user	object
name	/	type	parameter).
See	the	source	of	UF_SYSTM,	method	avCheckAuth,	for	details.
The	IIP	routine	could	be	changed	to	do	something	like	FETCH	a	security	record
for	this	user	and	object	from	a	file	containing	authorization	data.
The	IIP	routine	returns	a	result	as	OK	or	ER.	When	the	Framework	is	run	in	a
mode	other	than	design,	the	Framework	will	evaluate	the	IIP	routine	for	each
object,	and	automatically	display	it	or	hide	it	as	appropriate.
The	security	of	the	IIP	routine	is	additive	with	the	Framework	security	-	If	the
Framework's	security	says	that	the	user	is	not	authorized	to	the	object,	OR	the
IIP	routine	says	that	the	user	is	not	authorized	to	the	object,	the	object	won't	be
displayed	for	that	user.
If	you	want	to,	you	can	access	avCheckAuth	from	the	code	in	your	filters	and
command	handlers,	and	alter	their	behaviour	based	on	the	returned	"additional
information	parameter".	
When	you	invoke	avCheckAuth	from	a	filter	you	are	validating	the	business
object.	For	the	business	object	to	have	been	visible	in	the	first	place,	the	IIP
routine	must	have	returned	OK	for	that	business	object,	but	it	could	also	return
the	additional	information	parameter.	The	filter	could	use	this	to	decide	whether
to	restrict	filter	options	for	particular	users.
When	you	invoke	avCheckAuth	from	a	command	handler	you	are	validating	a
command	reference	(a	Framework/application/business	object	-	command
combination).	For	the	command	to	be	available	for	the

Framework/application/business	object,	the	IIP	routine	must	have	returned	OK
for	this	command	reference,	but	it	could	also	return	the	additional	information
parameter.	The	command	handler	could	use	this	parameter	to	allow	some	users
to	edit	all	fields	while	restricting	other	users	to	work	with	a	reduced	set	of
fields,	or	to	view	only	access.
One	point	to	remember	when	writing	an	avCheckAuth	routine	is	that	if	your
users	connect	to	a	server,	they	will	not	be	connected	to	the	server	at	the	time
their	authority	to	the	Framework	or	servers	are	evaluated.	However	they	will	be
connected	at	the	time		their	authority	to	applications,	business	objects	and
commands	are	evaluated.

avCheckAuth	Method
avCheckAuth	Method	(when	invoked	from	Command	Handlers	and	Filters).
Method:	avCheckAuth	(when	invoked	from	a	filter)
Parameters:
Name Usage Class Description
ReturnCode Output	-

Mandatory
Alpha
-	max
length
5

According	to	the	IIP
avCheckAuth:
OK	-	the	user	is	authorized	to	this
business	object
ER	-	the	user	is	not	authorized	to
this	business	object

UserAuthInformation Both-
Optional

Alpha
-	max
length
75

This	is	optional	additional
information	about	the	current
user	and	the	current	business
object,	that	can	be	passed	from
the	IIP	avCheckAuth	in
UF_SYSTM	back	to	the	filter.

	

Method:	avCheckAuth	(when	invoked	from	a	command	handler)
Parameters:
Name Usage Class Description
ReturnCode Output	-

Mandatory
Alpha
-	max
length
5

According	to	the	IIP
avCheckAuth:
OK	-	the	user	is	authorized	to	this
command	reference
ER	-	the	user	is	not	authorized	to
this	command	reference

UserAuthInformation Output	-
Optional

Alpha
-	max
length
75

This	is	optional	additional
information	about	the	current
user,	the	current	business	object,
and	the	current	command,	that

can	be	passed	from	the	IIP
avCheckAuth	back	to	the	filter.

	

Adding	your	own	instance	level	security	validation
You	can	add	instance	level	security	to	the	Framework	by	modifying	the	IIP
avCheckInstanceAuth.	For	example	if	we	take	the	employees	business	object	in
the	demonstration	system,	the	same	user	can	be	authorized	to	different
commands	depending	on	the	employee	selected.	This	can	be	used	to	strengthen
security	or	to	make	the	Framework	security	conform	to	your	site's	standards.	It
can	also	be	used	to	alter	the	behaviour	of	filters	or	command	handlers	for
particular	users	and	particular	business	object	instances.
The	IIP	routine	receives	an	identifier	for	the	business	object	and	an	identifier	for
the	command	(In	both	cases	the	identifier	is	the	user	object	name	/	type
parameter	which	can	be	viewed	on	the	identification	tab	sheet	for	the	business
object	or	command),	the	user	profile,	and	the	identifying	keys	for	the	business
object	instance.
(A	special	case		is	if	avCheckInstanceAuth	is	invoked	by	a	filter.	In	this	case	no
identifier	for	the	command	is	specified).
See	the	source	of	UF_SYSTM,	method	avCheckInstanceAuth,	for	details.
The	IIP	routine	could	be	changed	to	do	something	like	FETCH	a	security	record
for	this	user	profile,	business	object,	command,	and	business	object	instance.
Based	on	this	security	record	it	can	return	OK	or	ER.
The	IIP	routine	returns	a	result	as	OK	or	ER.	When	the	Framework	is	run	in	a
mode	other	than	design,	the	Framework	will	evaluate	the	IIP	routine	for	each
business	object	instance,	and	automatically	display	or	hide	the	commands
appropriate	to	that	business	object	instance	and	user.
The	security	of	the	avCheckInstanceAuth	IIP	routine	is	additive	with	the
Framework	security	-	If	the	Framework's	security	says	that	the	user	is	not
authorized	to	the	object	(application/business	object/command	reference),	OR
the	IIP	routine	says	that	the	user	is	not	authorized	to	the	command	for	that
instance	of	the	business	object,	the	command	won't	be	displayed	for	that	user.
If	you	want	to,	you	can	access	avCheckInstanceAuth	from	the	code	in	your
filters	and	command	handlers,	and	alter	their	behaviour	based	on	the	returned
"additional	information	parameter".	
When	you	invoke	avCheckInstanceAuth	from	a	filter	you	are	validating	the
instance	of	the	business	object	(for	any	command).	Based	on	the	return	code
and	the	additional	information	parameter	the	filter	could	decide	(for	example)
which	of	the	data	selected	from	the	database		should	get	added	to	the	instance
list.

When	you	invoke	avCheckInstanceAuth	from	a	command	handler	you	are
validating	a	command	reference	(a	Framework/application/business	object	-
command	combination)	for	a	particular	business	object	instance.	For	the
command	to	be	available	for	this	business	object	instance,	the	IIP	routine	must
have	returned	OK	for	this	command	reference	and	business	object	instance,	but
it	could	also	return	the	additional	information	parameter.	The	command	handler
could	use	this	parameter	to	allow	(instance	by	instance)	some	users	to	edit	all
fields	while	restricting	other	users	to	work	with	a	reduced	set	of	fields,	or	view
only	access.

avCheckInstanceAuth	Method
avCheckInstanceAuth	Method	(when	invoked	from	Command	Handlers	and
Filters).
Method:	avCheckInstanceAuth	(when	invoked	from	a	filter)
Parameters:
Name Usage Class Description
ReturnCode Output	-

Mandatory
Alpha	-
max
length	5

According	to	the	IIP
avCheckInstanceAuth:
OK	-	the	user	is	authorized	to
this	business	object	instance
ER	-	the	user	is	not	authorized
to	this	business	object
instance

UserAuthInformation Output	-
Optional

Alpha	-
max
length
75

This	is	optional	additional
information	about	the	current
user	and	the	current	business
object	instance	that	can	be
passed	from	the	IIP
avCheckInstanceAuth		back
to	the	filter.

AKey1
AKey2
AKey3
AKey4
AKey5
	

Input	-
Optional

Alpha	-
max
length
32

These	are	the	optional
alphanumeric	programmatic
identifiers	of	this	business
object	instance.	The
identification	protocol	used
for	the	identifier	is	at	your
discretion.

NKey1
NKey2
NKey3
NKey4
NKey5
	

Input	-
Optional

Numeric
-	max
(15,0)
precision

These	are	the	optional
numeric	programmatic
identifier	of	this	business
object	instance.	The
identification	protocol	used
for	the	identifier	is	at	your
discretion.

	

Method:	avCheckInstanceAuth	(when	invoked	from	a	command	handler)
Parameters:
Name Usage Class Description
ReturnCode Output	-

Mandatory
Alpha	-
max
length	5

According	to	the	IIP
avCheckInstanceAuth:
OK	-	the	user	is	authorized	to
this	command	for	this
business	object	instance
ER	-	the	user	is	not	authorized
to	this	command	for	this
business	object	instance

UserAuthInformation Output	-
Optional

Alpha	-
max
length
75

This	is	optional	additional
information	about	the	current
user,	the	current	business
object	instance	and	the
current	command	that	can	be
passed	from	the	IIP
avCheckInstanceAuth		back
to	the	filter.

AKey1
AKey2
AKey3
AKey4
AKey5
	

Input	-
Optional

Alpha	-
max
length
32

These	are	the	optional
alphanumeric	programmatic
identifiers	of	this	business
object	instance.	The
identification	protocol	used
for	the	identifier	is	at	your
discretion.

NKey1
NKey2
NKey3
NKey4
NKey5

Input	-
Optional

Numeric
-	max
(15,0)
precision

These	are	the	optional
numeric	programmatic
identifier	of	this	business
object	instance.	The
identification	protocol	used
for	the	identifier	is	at	your

	 discretion.

	

avCheckInstanceAuth	Example
Example	of	an	avCheckInstanceAuth	User	IIP	in	UF_SYSTM	(or	equivalent):
	
Mthroutine	Name(avCheckInstanceAuth)	Options(*Redefine)
*	==>	Define_Map	For(*input)		Class(#std_obj)	Name(#UserProfile)
*	==>	Define_Map	for(*input)	class(#vf_eltxts)	Name(#ObjectType)
*	==>	Define_Map	For(*input)		Class(#vf_elidn)	Name(#BusObjectName)
*	==>	Define_Map	For(*input)		Class(#vf_elidn)	Name(#CmdObjectName)	mandatory('	')
*	==>	Define_Map	For(*output)	Class(#std_Bool)	Name(#ReturnCode)
*	==>	Define_Map	for(*output)	class(#std_TextL)	Name(#UserAuthInformation)	mandatory('	')
	
*	==>	Define_map	for(*input)	class(#vf_elXAK1)	Name(#AKey1)
*	==>	Define_map	for(*input)	class(#vf_elXAK2)	Name(#AKey2)
*	==>	Define_map	for(*input)	class(#vf_elXAK3)	Name(#AKey3)
*	==>	Define_map	for(*input)	class(#vf_elXAK4)	Name(#AKey4)
*	==>	Define_map	for(*input)	class(#vf_elXAK5)	Name(#AKey5)
*	==>	Define_map	for(*input)	class(#vf_elXNK1)	Name(#NKey1)
*	==>	Define_map	for(*input)	class(#vf_elXNK2)	Name(#NKey2)
*	==>	Define_map	for(*input)	class(#vf_elXNK3)	Name(#NKey3)
*	==>	Define_map	for(*input)	class(#vf_elXNK4)	Name(#NKey4)
*	==>	Define_map	for(*input)	class(#vf_elXNK5)	Name(#NKey5)
	
Set	Com(#ReturnCode)	Value(OK)
	
Define	Field(#UF_WKOBJT)	Reffld(#VF_ELIDN)
Define	Field(#UF_WKOBJ1)	Reffld(#VF_ELIDN)
Define	Field(#UF_WKOBJ2)	Reffld(#VF_ELIDN)
	
Change	Field(#UF_WKOBJT)	To('#OBJECTTYPE.VALUE')
Change	Field(#UF_WKOBJ1)	To('#BusObjectName.VALUE')
Change	Field(#UF_WKOBJ2)	To('#CmdObjectName.VALUE')
	
Case	Of_Field(#UF_WKOBJT)
When	Value_Is('=	BUSINESS_OBJECT')
	
Case	Of_Field(#UF_WKOBJ1)
When	Value_Is('=	EMPLOYEES')

	
Case	Of_Field(#UF_WKOBJ2)
When	Value_Is('=	SKILLS')
*	invoked	by	the	Framework	to	determine
*	whether	to	show	a	command	tab
If	Cond('#AKEY1.VALUE	*eq	A1002')
Set	Com(#ReturnCode)	Value(ER)
Endif
When	Value_Is('=	VIDEO')
*	invoked	by	the	Framework	to	determine
*	whether	to	show	a	command	tab
If	Cond('#AKEY1.Value	*eq	A1001')
Set	Com(#ReturnCode)	Value(ER)
Endif
when	'=	*blanks'
*	this	routine	has	been	invoked	from
*	a	filter	in	order	to	determine	whether
*	to	add	an	entry	to	the	instance	list
If	Cond('#AKEY1.Value	*eq	A1003')
Set	Com(#ReturnCode)	Value(ER)
Endif
Endcase
Endcase
	
Endcase
	
Endroutine
	

Custom	Properties
The	Visual	LANSA	Framework	uses	a	quite	straightforward	Framework,
Application	and	Business	Object	model	to	define	commercial	computer
systems.
You	can	extend	this	model	by	adding	your	own	custom	properties	to	the	whole
Framework,	to	Applications	within	it,	or	even	to	individual	Business	Objects:

The	easiest	way	to	understand	the	concept	of	custom	properties	is	probably	to
consider	this	smattering	of	typical	commercial	application	requirements:
Only	some	users	of	this	application	can	delete	contracts.

This	user	can	display	graphs	upside	down.
Some	users	can	only	view	contracts	signed	in	certain	states.
All	graphs	presented	should	be	rose	colored.	
This	user	is	restricted	to	working	within	this	list	of	companies	…
This	user	can	view	other	employees	at	higher	reward	levels.
All	reports	should	always	be	printed	locally.
My	preferred	reporting	currency	is	….	
This	system	is	installed	in	Japan?
This	user	normally	works	in	Korea.
The	URL	of	our	company	web	site	is	www.mycompany.com	(but	it	may
change	later).	
Does	this	system	have	a	local	Data	Base?
The	preferred	date	format	for	this	user	is
I	need	to	associate	an	internal	build	number	and	date	with	my	Framework	to
be	shown	in	error	situations.	
There	are	many	ways	to	address	these	types	of	common	requirements.	One	way
is	to	add	them	as	custom	properties	to	your	Framework
For	example,	take	the	simple	"The	URL	of	our	company	web	site	is
www.mycompany.com	(but	it	may	change	later)"	requirement.	To	make	the
company	web	site	URL	a	soft	coded	value	in	your	Framework	you	would	do	the
following:
As	a	DESIGNER
You	would	define	a	Framework	level	custom	property	named	COMPANYURL.
It	would	most	likely	be	of	type	Alphanumeric	with	a	maximum	length	of	256.	It
would	not	be	changeable	by	on	site	Administrators	and	have	a	default	value	of
www.mycompany.com.		
As	a	DEVELOPER
You	would	retrieve	the	value	of	custom	property	COMPANYURL	into	your
programs	to	avoid	hard	coding	of	the	company	URL.
In	both	Windows	and	WAM	applications	you	would	retrieve	the	value	like	this:
			Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(F)	
										Withname(COMPANYURL)	AlphaValue(#COMP_URL)	
	

As	an	ADMINISTRATOR

You	would	have	nothing	to	do.	You	may	notice	that	every	time	you	create	a	user
profile	it	has	a	property	called	"Company	Web	Site"	associated	with	it	that	has
value	www.mycompany.com	but	you	would	not	be	able	to	change	it.	Only	the
Framework	DESIGNER	would	be	able	to	change	the	value.
As	a	more	complex	example	consider	the	"Some	users	can	only	view	contracts
signed	only	in	certain	states"		requirement.	You	could	use	custom	properties	to
satisfy	this	requirement	like	this:					
As	a	DESIGNER
You	might	define	an	application	level	custom	property	named
ALLOWSTATES.	It	might	be	defined	as	a	fixed	alphanumeric	list	like	this:
Value Caption	to	Display	to	User
ALL Allow	all	States

CA California	Only

NY New	York	Only

MN Minnesota	Only

	

As	a	DEVELOPER
You	would	retrieve	the	value	of	ALLOWSTATES	into	your	programs	and	use	it
to	control	how	your	program	behaves.
In	both	Windows	and	WAM	applications	you	would	retrieve	the	value	like	this:
			Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(A)	
										Withname(ALLOWSTATE)	AlphaValue(#ALL_STATE)	
	

In	either	case	#ALL_STATE	would	contain	ALL,	CA,	NY	or	MN	which	you
program	would	then	use	to	control	access	to	various	contracts	within	your
application.	
As	an	ADMINISTRATOR
When	you	define	a	user	you	can	switch	to	the	Custom	Properties	tab	of	the
current	user	and	select	which	states	the	user	can	view	contracts	from.	You
would	have	to	select	from	a	list	that	look	like	this:

These	simple	examples	demonstrate	the	essence	of	custom	properties.	They	of
course	have	considerably	more	capability	than	this.	For	example	you	can
specify	the	type	as	Alphanumeric,	Numeric	or	Boolean	and	have	multiple
selection	lists.
See	also	Frequently	Asked	Questions	about	Custom	Properties	and	Things	to	be
careful	with	when	using	Custom	Properties.
Defining	Custom	Properties
When	defining	a	new	property	these	options	are	displayed:
Defined	In
Caption
Sequence
Name
Help	Text
Property	Type
Maximum	Decimals
Maximum	Length
Uppercase
Input	Method
Maximum	Entries	in	List
Allow	Multiple	Selection
Value(s)	can	be	changed	by	Administrator
Fixed	/	Default	Values
	

Frequently	Asked	Questions	about	Custom	Properties
How	do	I	handle	lists	of	custom	properties	programmatically?
All	custom	properties	have	a	special	".Count"	property	associated	with	them.
This	property	tells	you	how	many	instances	of	a	custom	property	currently
exist.		
For	example,	suppose	you	have	specified	a	Framework	level	custom	property
named	STATES	where	the	Administrator	could	choose	one	or	more	states	from
a	fixed	list.
To	determine	how	many	states	were	chosen	for	the	current	user	you	do	this:		
			Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(F)	
										Withname(STATES.Count)	Numericvalue(#Tot_State)
	

#Tot_State	now	contains	how	many	entries	are	currently	in	the	list	of	states.
If	you	then	wanted	get	the	state	values	from	the	list	you	might	code	this:
			Begin_Loop	To(#Tot_sTate)	Using(#Index)
	
								Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(F)	
															Withname(STATES)	Instance(#Index)	AlphaValue(#State_Code)
	
								Add_Entry	<<	possibly	some	user	visible	list	>>
	
			End_Loop
	

Why	are	the	.COUNT	values	different	by	list	type?
The	.COUNT	values	returned	to	your	program	will	vary	by	the	type	of	custom
property	and	the	input	method	you	have	specified:
Type Input

Method
.COUNT	Value	/	Comments

All Single
Value

Always	1

Alphanumeric,
Numeric

List	of
Values

Always	returned	as	the	maximum	number	of	entries
allowed	in	the	list.	Your	program	needs	to	screen	out
which	entries	are	"null"	according	to	their	values
returned	(e.g.	blank	or	zero	values	may	be	considered

to	be	"null"	entries	within	your	application).	

Boolean List	of
Values

Not	a	valid	custom	property	definition.	You	cannot
define	this	type	of	custom	property.	

Alphanumeric,
Numeric

Fixed
List

The	number	of	entries	actually	selected	by	the
administrator	(or	by	default).	The	default	behavior	is
to	select	the	first	entry	in	the	default	fixed	list
specified	by	the	designer.		

Boolean Fixed
List

Always	the	maximum	number	of	entries	allowed	in
the	fixed	list.	See	next	question	as	well.		

	

What	are	Boolean	Fixed	Lists	For?
Boolean	fixed	lists	allow	multiple	Boolean	values	to	be	consolidated	into	a
single	custom	property.	This	is	often	easier	and	more	efficient	that	coding
multiple	single	Boolean	values	and	it	keeps	the	options	together.
For	example,	imagine	you	need	to	store	these	custom	properties:
User	is	allowed	Jump
User	is	allowed	to	Hop
User	is	allowed	to	Skip
User	is	allowed	to	Run
You	can	do	this	by	defining	four	Boolean	single	value	properties	(e.g.	named
JUMP,	HOP,	SKIP	and	RUN).	They	would	appear	to	the	administrator	like	this:	

To	retrieve	these	properties	programmatically	you	would	do	something	like	this:
			Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(F)	
										Withname(JUMP)	BooleanValue(#CAN_Jump)
	
			Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(F)	
										Withname(HOP)	BooleanValue(#CAN_Hop)
	
			Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(F)	

										Withname(SKIP)	BooleanValue(#CAN_Skip)
	
			Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(F)	
										Withname(RUN)	BooleanValue(#CAN_Run)
	

You	can	also	do	this	by	using	a	Boolean	fixed	list	containing	4	entries	(e.g.
named	ACTIONS).	This	would	appear	to	the	administrator	like	this:	

In	this	case	each	entry	in	the	list	represents	a	user	state	and	would	be
programmatically	accessed	like	this:
					Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(F)	
										Withname(ACTIONS)	Instance(1)	BooleanValue(#CAN_Jump)
	
					Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(F)	
										Withname(ACTIONS)	Instance(2)	BooleanValue(#CAN_Hop)
	
					Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(F)	
										Withname(ACTIONS)	Instance(3)	BooleanValue(#CAN_Skip)
	
					Invoke	Method(#avFrameworkManager.avGetUserProperty)	Atlevel(F)	
										Withname(ACTIONS)	Instance(4)	BooleanValue(#CAN_Run)

What	about	Multilingual	Systems?
Custom	property	captions,	help	text	and	fixed	list	user	visible	captions	are	all
multilingual	capable.	You	should	be	able	to	cause	all	aspects	of	your	custom
properties	that	are	visible	to	administrators	to	be	presented	in	the	correct
language	by	using	the	normal	Framework	translation	procedures.	
Why	aren't	property	names	unique	in	the	Framework?
There	are	2	main	reasons	for	this:
It	means	you	can	define	a	property	like	PRINTERNAME	in	both	the	Human
Resources	application	and	in	the	General	Ledger	application	and	have	a
different	value	specified	for	each	application.
You	can	create	search	lists	for	a	property.	For	example	you	could	look	for	a
property	named	PRINTERNAME	at	the	business	object	level.	If	it	was	not
found	then	look	at	the	application	level.	If	it	was	still	not	found	you	might
finally	look	at	the	Framework	level.	

My	custom	property	does	not	seem	to	have	the	expected	value?
Things	that	you	should	check	first	include:
The	custom	property	has	default	values.
The	Framework	was	saved	and	restarted	since	property	was	defined	or
changed.
You	are	signed	on	as	an	end-user	(i.e.	Using	UF_EXEC	or	equivalent).
A	level	A	(Application)	property	is	being	referenced	by	a	command	handler
but	there	is	no	current	application	selected.
A	level	B	(Business	Object)	property	is	being	referenced	by	a	command
handler	but	there	is	no	current	business	object	selected.

	

Things	to	be	careful	with	when	using	Custom	Properties
Test	Custom	Properties	by	Signing	on	as	an	End-user
You	should	always	test	your	custom	properties	signed	on	as	an	end-user	and
using	the	UF_EXEC	(or	equivalent)	entry	point.	Testing	while	signed	on	as
designer	(UF_DESGN	or	equivalent)	or	as	an	administrator	(UF_ADMIN	or
equivalent)	is	not	advisable.					
Save	and	Restart	the	Framework	after	Altering	Custom	Properties
If	you	do	wish	to	test	your	custom	properties	while	using	the	Framework	as	a
designer	or	administrator	then	you	should	always	save	and	restart	the
Framework	after	making	any	changes	to	custom	property	definitions	and	before
running	applications	that	access	them.			
Always	specify	Default	Value(s)
You	should	always	specify	a	default	value	for	any	property.	There	are	several
reasons	for	doing	this:
If	the	property	cannot	be	changed	by	the	administrator	then	this	is	of	course
essential.
If	the	administrator	does	not	set	or	change	the	property	for	a	specific	user	then
the	value	is	not	stored	with	the	user.	The	current	default	value	is	always	used.		
If	the	property	can	be	changed	by	the	administrator	then	a	good	default	will
save	the	administrator	time	and	reduce	your	support	costs.					

Spend	time	on	Help	Text
Spending	three	minutes	on	simple	custom	property	help	text	now	may	save	you
a	day	of	support	time	later.
Changing	and	Redeploying	Custom	Properties
If	you	change	the	definition	of	an	existing	custom	property	and/or	remove
values	from	a	list	associated	with	it	and	then	(re)deploy	your	Framework
definition	you	need	to	carefully	consider	the	ramifications,	especially	if	many
users	already	have	their	own	unique	values	and	lists	for	the	property	saved.			
Having	too	many	Custom	Properties
While	there	is	no	specific	limit	on	how	many	custom	properties	you	can	define
with	in	a	Framework,	having	more	than	100	would	mean	that	your	Framework
might	start	to	encounter	some	usability	issues.
Custom	User	properties	in	WAMs
When	using	Custom	User	properties	in	WAMs,	do	not	set	or	retrieve	custom

user	properties	in	the	uHandleEvent	routine.		Allow	the	Framework	to	initialize
the	WAM	first.	Set	or	retrieve	custom	properties	in	the	uExecute	or	other
routines.

Writing	queries	over	Visual	LANSA	Framework	objects
You	can	write	query	programs	that	report	on	the	objects	in	the	Visual	LANSA
Framework	(VLF).
You	might	use	them	to	produce	lists	of	objects	in	the	framework,	either	to	locate
error	situations	or	to	assess	development	progress,	in	the	same	way	as	you
might	write	queries	over	the	LANSA	internal	DC@	repository	files.	You	can
extract	information	from	the	framework	and	transform	it	into	other	forms	or
other	media.
There	are	some	important	restrictions:
Such	programs	should	never	be	run	in	a	production	or	end-user	environments.
They	are	tools	for	the	developer	in	the	developer's	environment	only.
These	programs	can	access	internal	VLF	properties	that	are	not	usually
accessible	to	command	handlers	or	filters.
The	possibility	exists	that	the	VLF	properties	might	change	in	the	future.	If
this	happens	you	might	have	to	change	your	query	programs,	usually	very
slightly.	
These	properties	are	not	externally	documented.	If	you	don’t	understand	a
property	or	how	it	works	then	you	may	need	to	put	a	question	onto	a	forum.
The	VLF	properties	are	read	only	–	they	should	never	be	written	as	you	may
corrupt	your	framework	file.
	
Getting	Started
Using	the	First	Query	Example
Using	the	Second	Query	Example
Using	the	Third	Query	Example
Creating	Your	Own	Queries
Other	things	worth	knowing	about		Query	Programs
Examples

Getting	Started
Create	a	VL	reusable	part	named	UF_TRVRS.		Copy	and	paste	the	supplied
example	code	from	UF_TRVRS	-	Signal	VLF	Objects	into	it	and	compile	it.
UF_TRVRS	is	the	engine	that	drives	all	queries.	It	traverses	the	current	and
signals	back	to	your	program	when	it	finds	different	types	of	framework	objects:

	

	

You	start	it	by	invoking	#UF_TRVRS.uTraverseFramework.	For	each	object
encountered	uTraverseFramework	sends	a	signal	back	to	your	query	program.
The	signals	are	not	issued	in	any	particular	order.	This	process	is	very	like
parsing	an	XML	document.
For	example,	it	you	wanted	to	make	a	list	of	all	the	captions	of	all	the
applications	in	a	framework	you	would	add	a	routine	like	this	to	your	query
program:
	
EvtRoutine	Handling(#UF_TRVRS.Application)	Reference(#TheApplication)
	
#Std_TextL	:=	#TheApplication.UCaption
Add_Entry	#MyListView
	
Endroutine

	

Using	the	First	Query	Example
Create	a	VL	reusable	part	named	UF_QRY01.	Copy	and	paste	the	supplied
example	code	from	UF_QRY01	-	Simple	Example	of	How	to	Listen	For
General	Framework	Objects	And	View	Their	Properties	into	it.
All	query	examples	are	VLF	command	handlers	and	need	to	be	snapped	into	the
framework.
Create	a	VLF	Application	named	“Programmer	Tools”	(say)	and	add	a	single
business	object	named	“Reports”	(say)	to	it.
Delete	all	filters	from	the	“Reports”	business	object.
Change	the	“Command	Tab	Show	All”	option	on	the	“Commands	Display”	tab
to	True.	
Associate	a	command	named	“Example	1”	with	the	business	object	as	a
business	object	level	command	(ie:	not	an	instance	level	command).	Make	it	the
default	command.
Snap	reusable	part	UF_QRY01	in	as	the	command	handler.	
Save	and	restart	your	framework	and	then	execute	the	“Example	1”	command.
Click	the	“Report”	button.	The	resulting	display	should	look	something	like
this:	

	

This	report	shows	all	the	commands	defined	in	your	framework	that	are	not
used.	This	example	report	is	not	especially	useful.	It	is	designed	to	demonstrate
how	you	can	go	about	creating	reports	that	match	your	exact	needs.	

Using	the	Second	Query	Example
Repeat	the	preceding	process	using	UF_QRY02	-	Listening	for	General
Framework	Objects	And	View	Their	Properties	to	create	a	reusable	part	named
UF_QRY02	and	snap	in	as	the	command	handler	for	a	tab/command	handler
named	“Example	2“.
When	you	execute	“Example	2”	and	click	the	report	button	the	resulting	display
should	look	like	this:

This	report	lists	all	the	snap	in	components	for	every	filter	and	command
handler	in	the	framework.	This	example	report	is	not	especially	useful.	It	is
designed	to	demonstrate	how	you	can	go	about	creating	reports	that	match	your
exact	needs.	

Using	the	Third	Query	Example
Repeat	the	preceding	process	using	UF_QRY03	-	Listening	for	Ramp	Objects
And	View	Their	Properties	to	create	a	reusable	part	named	UF_QRY03	and
snap	in	as	the	command	handler	for	a	tab/command	handler	named	“Example
3”.	When	you	execute	“Example	3”	and	click	the	report	button	the	resulting
display	should	look	like	this:

	

This	report	shows	all	the	RAMP	destination,	special	and	junction	scripts	defined
and	allows	you	to	display	the	script	lines	and	the	function	keys	associated	with
them.		This	example	report	is	not	especially	useful.	It	is	designed	to	demonstrate
how	you	can	go	about	creating	reports	that	match	your	exact	needs.	

Creating	Your	Own	Queries
Using	the	examples	provided	you	should	be	able	to	start	to	create	your	own
reports	that	match	your	exact	needs.	If	you	have	a	question	or	don’t	understand
something	use	the	VLF	forum.				

Other	things	worth	knowing	about		Query	Programs
Query	program	listens	for	the	signals	from	UF_TRVRS	for	the	types	of	object	it
is	interested	in,	and	stores	information	about	the	objects.
The	query	program	can	store	the	object	information	any	way	it	chooses:	It	can
store	object	references	in	a	collection,	or	in	a	List	or	grid	(using	the
.RelatedReference	property	of	the	current	item).	Or	it	can	get	the	object
property	information	at	the	time	it	receives	the	signal,	and	store	it	in	fields	in	an
ordinary	list.
There	are	two	kinds	of	framework	object:
Normal	objects	with	names	like	VF_FPnnn	(e.g.	VF_FP003).	There	are
multiple	instances	of	these	objects,	and	if	you	have	the	object	reference,	it	is	a
reference	to	a	particular	instance.	You	automatically	have	access	to	all	the
properties	of	the	instance.
Member	objects	with	names	like	VF_FPMnn	(e.g.	VF_FPM09).	These	objects
were	designed	this	way	for	performance	reasons.	In	this	case	there	is	only	one
actual	instance,	and	the	properties	of	all	instances	are	stored	internally	inside
the	single	object	instance.	To	get	the	properties	of	a	particular	instance,	you
must	first	set	a	property	called	CurrentMemberGUID	to	the	value	for	that
instance.
The	main	framework	objects	in	these	examples	are:

	

VF_FP001 The	framework

VF_FP002 Application

VF_FP003 Business	Object

VF_FPM08 Application/Business	Object	link

VF_FPM09 Command	Definition

VF_FPM10 Command	Reference	(link	between	a	command	and	a	business
object	or	application	or	framework)		This	contains	command
handler	information.

VF_FPM14 Filter

	

The	main	RAMP	objects	are:

VF_FP025 RAMP	Container

VF_FP026 Session

VF_FPM27 Destination

VF_FPM28 Junction

VF_FPM29 Special

VF_FPM30 Script

	

By	exploring	these	objects	using	the	Visual	LANSA	F2=Feature	Help	option
you	can	discover	the	properties	that	they	contain.	If	you	have	questions	about
the	properties	please	post	a	message	to	the	VLF	forum.

Examples
UF_TRVRS	-	Signal	VLF	Objects
UF_QRY01	-	Simple	Example	of	How	to	Listen	For	General	Framework
Objects	And	View	Their	Properties
UF_QRY02	-	Listening	for	General	Framework	Objects	And	View	Their
Properties
UF_QRY03	-	Listening	for	Ramp	Objects	And	View	Their	Properties

UF_TRVRS	-	Signal	VLF	Objects
===
*	
*	Component			:	UF_TRVRS
*	Type								:	Reusable	Component
*	Ancestor				:	PRIM_OBJT
*	
*	PLEASE	NOTE:		This	UF_	(User	Framework)	component	is	the	shipped
version.	You
*	may	choose	to	modify	it.	You	should	do	this	by	copying	the	source
*	code	of	this	component	into	your	own	component	and	then	change
*	the	copied	version.	This	will	prevent	the	accidental	loss	of	your
*	changes	if	you	upgrade	your	Visual	LANSA	framework	version.	Refer
*	to	the	end	of	this	component	for	more	details	about	making	your
*	own	version	of	this	component.
*	
*	This	is	example	code	only	-	No	warranty	is	expressed	or	implied.
*	Neither	this	program,	nor	any	derivative	of	it,	should	be	ever	be	used	in
*	production	or	end-user	environments.
*	
*
===
*	
*	This	reusable	part	can	be	used	to	signal	VLF	objects	-	See	UF_QRY01,	02
03
*
===

FUNCTION	OPTIONS(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_OBJT)

Define_Com	Class(#VF_SY001)	Name(#USYSTEM)	Reference(*dynamic)
scope(*Application)
Define_Com	Class(#VF_FP001)	Name(#UFRAMEWORK)
Reference(*dynamic)	scope(*Application)

Define_Com	#VF_AC009	#TempVF_AC009	Reference(*Dynamic)

Define_Com	#VF_FP001	#TempVF_FP001	Reference(*Dynamic)
Define_Com	#VF_FP002	#TempVF_FP002	Reference(*Dynamic)
Define_Com	#VF_FP003	#TempVF_FP003	Reference(*Dynamic)

Define_Com	#VF_FPM09	#TempVF_FPM09	Reference(*Dynamic)
Define_Com	#VF_FPM10	#TempVF_FPM10	Reference(*Dynamic)
Define_Com	#VF_FPM14	#TempVF_FPM14	Reference(*Dynamic)

Define_Com	#VF_FP025	#TempVF_FP025	Reference(*Dynamic)
Define_Com	#VF_FP026	#TempVF_FP026	Reference(*Dynamic)

Define_Com	#VF_FPM27	#TempVF_FPM27	Reference(*Dynamic)
Define_Com	#VF_FPM28	#TempVF_FPM28	Reference(*Dynamic)
Define_Com	#VF_FPM29	#TempVF_FPM29	Reference(*Dynamic)
Define_Com	#VF_FPM30	#TempVF_FPM30	Reference(*Dynamic)

*
===
*	Events	signalled	back	to	user	application	for	each	type	of	object	found
*
===

Define_evt	Framework
define_map	*input	#VF_FP001	#Reference	Pass(*By_Reference)

Define_evt	Application
define_map	*input	#VF_FP002	#Reference	Pass(*By_Reference)
define_map	*input	#VF_FP001	#VisParent1	Pass(*By_Reference)

Define_evt	BusinessObject
define_map	*input	#VF_FP003	#Reference	Pass(*By_Reference)
define_map	*input	#VF_FP001	#VisParent1	Pass(*By_Reference)
define_map	*input	#VF_FP002	#VisParent2	Pass(*By_Reference)

Define_evt	CommandDefinition
define_map	*input	#VF_FPM09	#Reference	Pass(*By_Reference)

Define_evt	CommandReference

define_map	*input	#VF_FPM10	#Reference	Pass(*By_Reference)
define_map	*input	#VF_FPM09	#CommandDefinition	Pass(*By_Reference)
define_map	*input	#VF_FP001	#VisParent1	Pass(*By_Reference)
define_map	*input	#VF_FP002	#VisParent2	Pass(*By_Reference)
define_map	*input	#VF_FP003	#VisParent3	Pass(*By_Reference)

Define_evt	Filter
define_map	*input	#VF_FPM14	#Reference	Pass(*By_Reference)
define_map	*input	#VF_FP001	#VisParent1	Pass(*By_Reference)
define_map	*input	#VF_FP002	#VisParent2	Pass(*By_Reference)
define_map	*input	#VF_FP003	#VisParent3	Pass(*By_Reference)

define_evt	RAMPContainer
define_map	*input	#VF_FP025	#Reference	Pass(*By_Reference)

define_evt	RAMPSession
define_map	*input	#VF_FP026	#Reference	Pass(*By_Reference)

define_evt	RAMPDestination	
define_map	*input	#VF_FPM27	#Reference	Pass(*By_Reference)

define_evt	RAMPJunction
define_map	*input	#VF_FPM28	#Reference	Pass(*By_Reference)

define_evt	RAMPSpecial
define_map	*input	#VF_FPM29	#Reference	Pass(*By_Reference)

define_evt	RAMPScript
define_map	*input	#VF_FPM30	#Reference	Pass(*By_Reference)

*
===
*	This	is	the	method	exposed	to	the	user	application
*
===

Mthroutine	Name(uTraverseFramework)

Invoke	#Com_Owner.uEnumerateOBJECT	Reference(#uFramework)
Parent(*null)

Invoke	#Com_Owner.uEnumerateOBJECT
Reference(#uSystem.uNodeContainer)	Parent(*null)

Endroutine

*
===
*	This	method	is	internal	and	not	exposed
*
===

Mthroutine	Name(uEnumerateOBJECT)	Access(*PRIVATE)
Define_Map	For(*input)	Class(#VF_AC001)	Name(#Reference)
Pass(*By_Reference)
Define_Map	For(*input)	Class(#VF_AC001)	Name(#Parent)
Pass(*By_Reference)

Define_com	#vf_elindx	#EnumIndex
Define_com	#vf_elmbri	#EnumMemberGUID

If_ref	#Reference	is_not(*null)

*	Handle	this	object	bvy	signalling	each	type	found

Case	#Reference.uClass

*	Framework

When	(=	VF_FP001)
set_ref	#TempVF_FP001	(*Dynamic	#Reference)
Signal	Framework	Reference(#TempVF_FP001)

*	Application

When	(=	VF_FP002)
set_ref	#TempVF_FP002	(*Dynamic	#Reference)

set_ref	#TempVF_FP001	(*Dynamic	#TempVF_FP002.uAuthorityParent)
Signal	Application	Reference(#TempVF_FP002)
VisParent1(#TempVF_FP001)

*	Business	Object

When	(=	VF_FP003)
set_ref	#TempVF_FP003	(*Dynamic	#Reference)
set_ref	#TempVF_FP002	(*Dynamic	#TempVF_FP003.uAuthorityParent)
set_ref	#TempVF_FP001	(*Dynamic	#TempVF_FP002.uAuthorityParent)

Signal	BusinessObject	Reference(#TempVF_FP003)
VisParent1(#TempVF_FP001)	VisParent2(#TempVF_FP002)

*	RAMP	Container

When	(=	VF_FP025)
set_ref	#TempVF_FP025	(*Dynamic	#Reference)
Signal	RAMPContainer	Reference(#TempVF_FP025)

*	RAMP	Session

When	(=	VF_FP026)
set_ref	#TempVF_FP026	(*Dynamic	#Reference)
Signal	RAMPSession	Reference(#TempVF_FP026)

Endcase

*	Enumerate	all	members

If_ref	#Reference.ecMemberManagers	is_not(*null)
For	#Manager	#Reference.ecMemberManagers

#EnumIndex	:=	0

Dowhile	(#Manager.Enumerate_MEMBERS(#Reference	#EnumIndex
#EnumMemberGUID	7))

#Manager.Currentmemberguid	:=	#EnumMemberGUID

Case	#Manager.VF_FPNNNClass

*	Command	Definition

When	(=	VF_FP009)
set_ref	#TempVF_FPM09	(*Dynamic	#Manager)
Signal	CommandDefinition	Reference(#TempVF_FPM09)

*	Command	reference

When	(=	VF_FP010)
set_ref	#TempVF_FPM10	(*Dynamic	#Manager)
#uFrameWork.VF_FP009Manager.CurrentmemberGUID	:=
#TempVF_FPM10.uCommandGUID

set_ref	#TempVF_AC009	(*Dynamic	#TempVF_FPM10.uLinkedOwner)

If_Ref	Com(#TempVF_AC009)	Is(*INSTANCE_OF	#VF_FP001)
*	Framework	Command
set_ref	#TempVF_FP003	*null
set_ref	#TempVF_FP002	*null
set_ref	#TempVF_FP001	(*Dynamic	#TempVF_AC009)
ENDIF

If_Ref	Com(#TempVF_AC009)	Is(*INSTANCE_OF	#VF_FP002)
*	Application	Command
set_ref	#TempVF_FP003	*null
set_ref	#TempVF_FP002	(*Dynamic	#TempVF_AC009)
set_ref	#TempVF_FP001	(*Dynamic	#TempVF_FP002.uAuthorityParent)
ENDIF

If_Ref	Com(#TempVF_AC009)	Is(*INSTANCE_OF	#VF_FP003)
*	Business	Object	Command
set_ref	#TempVF_FP003	(*Dynamic	#TempVF_AC009)
set_ref	#TempVF_FP002	(*Dynamic	#TempVF_FP003.uAuthorityParent)
set_ref	#TempVF_FP001	(*Dynamic	#TempVF_FP002.uAuthorityParent)

ENDIF

Signal	CommandReference	Reference(#TempVF_FPM10)
CommandDefinition(#uFrameWork.VF_FP009Manager)
VisParent1(#TempVF_FP001)	VisParent2(#TempVF_FP002)
VisParent3(#TempVF_FP003)

*	Filter

When	(=	VF_FP014)
set_ref	#TempVF_FPM14	(*Dynamic	#Manager)
set_ref	#TempVF_FP003	(*Dynamic	#Reference)
set_ref	#TempVF_FP002	(*Dynamic	#TempVF_FP003.uAuthorityParent)
set_ref	#TempVF_FP001	(*Dynamic	#TempVF_FP002.uAuthorityParent)

Signal	Filter	Reference(#TempVF_FPM14)	VisParent1(#TempVF_FP001)
VisParent2(#TempVF_FP002)	VisParent3(#TempVF_FP003)

*	RAMP	Destination

When	(=	VF_FP027)
set_ref	#TempVF_FPM27	(*Dynamic	#Manager)
Signal	RAMPDestination	Reference(#TempVF_FPM27)

*	RAMP	Junction

When	(=	VF_FP028)
set_ref	#TempVF_FPM28	(*Dynamic	#Manager)
Signal	RAMPJunction	Reference(#TempVF_FPM28)

*	RAMP	Special

When	(=	VF_FP029)
set_ref	#TempVF_FPM29	(*Dynamic	#Manager)
Signal	RAMPSpecial	Reference(#TempVF_FPM29)

*	RAMP	Script

When	(=	VF_FP030)
set_ref	#TempVF_FPM30	(*Dynamic	#Manager)

Signal	RAMPScript	Reference(#TempVF_FPM30)

Endcase

Endwhile

Endfor
Endif

*	Enumerate	all	children	recursively

If_ref	#Reference.ecchildcollection	is_not(*null)
For	#Child	in(#Reference.ecchildcollection)
Invoke	#Com_Owner.uEnumerateOBJECT	Reference(#Child)
Parent(#Reference)
Endfor
Endif

Endif

Endroutine

END_COM

UF_QRY01	-	Simple	Example	of	How	to	Listen	For	General
Framework	Objects	And	View	Their	Properties
===
*	
*	Component			:	UF_QRY01
*	Type								:	Reusable	Component
*	Ancestor				:	VF_AC010	(Command	Handler)
*	
*	PLEASE	NOTE:		This	UF_	(User	Framework)	component	is	the	shipped
version.	You
*	may	choose	to	modify	it.	You	should	do	this	by	copying	the	source
*	code	of	this	component	into	your	own	component	and	then	change
*	the	copied	version.	This	will	prevent	the	accidental	loss	of	your
*	changes	if	you	upgrade	your	Visual	LANSA	framework	version.	Refer
*	to	the	end	of	this	component	for	more	details	about	making	your
*	own	version	of	this	component.
*	
*	This	is	example	code	only	-	No	warranty	is	expressed	or	implied.
*	Neither	this	program,	nor	any	derivative	of	it,	should	be	ever	be	used	in
*	production	or	end-user	environments.
*	
*
===
*	
*	This	is	the	simplest	example	of	how	to	listen	for	general	Framework	objects
and	view	their	properties
*
===
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#VF_AC010)	Height(336)
Layoutmanager(#ATLM_2)	Width(552)
*
==
*	Simple	Field	and	Group	Definitions
*
==
*

==
*	Component	definitions
*
==

*	Body	and	Button	arrangement	panels

Define_Com	Class(#PRIM_PANL)	Name(#BUTTON_PANEL)
Displayposition(2)	Height(336)	Layoutmanager(#BUTTON_FLOW)
Left(464)	Parent(#COM_OWNER)	Tabposition(2)	Tabstop(False)	Top(0)
Width(88)
Define_Com	Class(#PRIM_PANL)	Name(#BODY_HEAD)
Displayposition(1)	Height(336)	Layoutmanager(#ATLM_1)	Left(0)
Parent(#COM_OWNER)	Tabposition(1)	Tabstop(False)	Top(0)
Verticalscroll(True)	Width(464)

*	Attachment	and	flow	layout	managers

Define_Com	Class(#PRIM_ATLM)	Name(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#BUTTON_ATTACH)
Attachment(Right)	Manage(#BUTTON_PANEL)	Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_FWLM)	Name(#BUTTON_FLOW)
Direction(TopToBottom)	Flowoperation(Center)	Marginbottom(4)
Marginleft(4)	Marginright(4)	Margintop(4)	Spacing(4)	Spacingitems(4)

Define_Com	Class(#PRIM_ATLI)	Name(#BODY_ATTACH)
Attachment(Center)	Manage(#BODY_HEAD)	Parent(#MAIN_LAYOUT)

*	The	report	button

Define_Com	Class(#PRIM_PHBN)	Name(#PHBN_REPORT)
Buttondefault(True)	Caption('Report')	Displayposition(1)	Left(4)
Parent(#BUTTON_PANEL)	Tabposition(1)	Top(4)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_SAVE_BUTTON)
Manage(#PHBN_REPORT)	Parent(#BUTTON_FLOW)

*	The	Traverse	component
Define_Com	Class(#UF_TRVRS)	Name(#UF_TRVRS)

Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)	Marginbottom(2)
Marginleft(2)	Marginright(2)	Margintop(2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Center)
Parent(#ATLM_1)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Center)
Manage(#BODY_HEAD)	Parent(#ATLM_2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_3)	Attachment(Right)
Manage(#BUTTON_PANEL)	Parent(#ATLM_2)

Define_Com	Class(#Prim_kCol<#VF_FP003	#VF_ELIDN>)
Name(#collBusObj)

*	List	of	the	GUIDs	of	all	the	Commands
Def_List	Name(#ListCmdGd)	Fields(#cmdGUID	#cmdUID)	Type(*Working)
Entrys(*MAX)
define	#cmdGUID	reffld(#vf_elidn)	desc('GUID	for	a	command	definition')
define	#cmdUID	reffld(#vf_elidn)	desc('uIdentifier	for	a	command	definition')

*	List	of	the	GUIDs	of	all	the	Command	References
Def_List	Name(#ListCmRGd)	Fields(#cmdRefGUD	#cmdRefUID)
Type(*Working)	Entrys(*MAX)
define	#cmdRefGUD	reffld(#vf_elidn)	desc('GUID	for	a	command	reference')
define	#cmdRefUID	reffld(#vf_elidn)	desc('uIdentifier	for	a	command
definition')

Define_com	#VF_FPM09	#TheVF_FPM09	Reference(*Dynamic)
Define_com	#VF_FPM10	#TheVF_FPM10	Reference(*Dynamic)
Define_Com	Class(#PRIM_LTVW)	Name(#LTVW_1)	Componentversion(2)
Displayposition(1)	Fullrowselect(True)	Height(332)	Left(2)
Parent(#BODY_HEAD)	Showsortarrow(True)	Tabposition(1)	Top(2)
Width(460)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_4)	Attachment(Center)
Manage(#LTVW_1)	Parent(#ATLM_1)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_1)	Caption('Unused
Commands')	Captiontype(Caption)	Displayposition(1)	Parent(#LTVW_1)
Source(#DF_ELTXTL)	Width(100)

*
==
*	Events	Definitions
*
==

*
==
*	Property	Definitions
*
==

*
==
*	Method	Definitions
*
==
*	--
*	Handle	Command	Execution
*	--

Mthroutine	Name(uExecute)	Options(*REDEFINE)

*	The	return	code	field	and	testing	condition

Define	#Ret_Code	reffld(#IO$STS)
Def_cond	Name(*RetOkay)	Cond('#Ret_Code	=	OK')

*	Do	any	execution	logic	defined	in	the	ancestor

Invoke	#Com_Ancestor.uExecute

Endroutine

*
==
*	Subroutines
*

==

*
==
*	Event	Handlers
*
==

*	--
*	Handle	the	save	button
*	--

EVTROUTINE	HANDLING(#PHBN_REPORT.Click)

*	Clear	Lists
clr_list	#listCmdGD
clr_list	#listCmRGD

*	Tell	the	Traverse	reusable	part	to	read	through	the	entire	system	in	no
particular	order
*	This	program	listens	for	the	signals	for	each	new	object,

*	Collect	all	the	information
invoke	#UF_TRVRS.uTraverseFramework

*	Now	display	a	list	of	any	commands	that	are	not	referenced	by	anything
invoke	#Com_Owner.Check_Unused

ENDROUTINE

*	Listen	for	a	Business	Object		-	An	example	of	storing	ordinary	objects

EVTROUTINE	HANDLING(#UF_TRVRS.BusinessObject)
Reference(#TempVF_FP003)

*	Store	all	the	business	objects	in	a	collection

Set_ref	Com(#collBusObj<#TempVF_FP003.uIdentifier>)
to(#TempVF_FP003)

endroutine

*	Listen	for	a	Command	Definition		Object

EVTROUTINE	HANDLING(#UF_TRVRS.CommandDefinition)
Reference(#TempVF_FPM09)	

*	All	the	Command	Definitions	are	stored	as	internal	members	of	a	single
object,	#VF_FPM09.

*	There	is	only	one	object	reference	that	needs	to	be	stored
set_ref	#TheVF_FPM09	#TempVF_FPM09

*	But	to	access	the	information	about	a	particular	Command	Definition,	we
need	to	know
*	the	value	of	a	special	property	called	.CurrentMemberGUID.

*	So,	store	that	value	in	a	list

Change	#cmdGUID	#TempVF_FPM09.CurrentMemberGUID
Change	#cmdUID	#TempVF_FPM09.uIdentifier

Add_entry	#ListCmdGD

endroutine

*	Listen	for	a	Command	Usage	(Command	Reference)		Object

EVTROUTINE	HANDLING(#UF_TRVRS.CommandReference)
Reference(#TempVF_FPM10)	CommandDefinition(#TempVF_FPM09)	

*	All	the	Command	References	are	stored	as	internal	members	of	a	single
object,	#VF_FPM10.

*	There	is	only	one	object		that	needs	to	be	stored
set_ref	#TheVF_FPM10	#TempVF_FPM10

*	But	to	access	the	information	about	a	particular	Command	Reference,	we
need	to	know
*	the	value	of	a	special	property	called	.CurrentMemberGUID.

*	So,	store	that	value	in	a	list

Change	#cmdRefGUD	#TempVF_FPM10.CurrentMemberGUID

*	Store	the	uIdentifier	of	the	command	that	is	refered	to
Change	#cmdRefUID	#TempVF_FPM09.uIdentifier

Add_entry	#ListCmRGd

ENDROUTINE

*	Check	which	commands	are	not	used	anywhere

mthroutine	Check_Unused

clr_list	#LTVW_1

selectlist	#ListCmdGD

*	Which	commands	do	not	have	a	Command	Reference	that	uses	them?
Loc_Entry	In_List(#ListCmRGd)	Where(#cmdUID	*eq	#cmdrefUID)

if_status	is_not(*Okay)

*	Get	Details	of	the	command	definition	being	processed
*	(Set	the	GUID	property	first)
set	#TheVF_FPM09	CurrentMemberGUID(#cmdGUID)

#df_eltxtl	:=	'Command:	'		+		#TheVF_FPM09.uCaption	+	'	is	not	used
anywhere'	

*	To	see	what	other	command	definition	properties	you	can	view,	click	on

#TheVF_FPM09	above	and	press	F2,	and	look	at	the	properties	of	the
VF_FPM09	class

add_entry	#LTVW_1
endif
endselect
endroutine
End_Com
	

UF_QRY02	-	Listening	for	General	Framework	Objects	And
View	Their	Properties
===
*	
*	Component			:	UF_QRY02
*	Type								:	Reusable	Component
*	Ancestor				:	VF_AC010	(Command	Handler)
*	
*	PLEASE	NOTE:		This	UF_	(User	Framework)	component	is	the	shipped
version.	You
*	may	choose	to	modify	it.	You	should	do	this	by	copying	the	source
*	code	of	this	component	into	your	own	component	and	then	change
*	the	copied	version.	This	will	prevent	the	accidental	loss	of	your
*	changes	if	you	upgrade	your	Visual	LANSA	framework	version.	Refer
*	to	the	end	of	this	component	for	more	details	about	making	your
*	own	version	of	this	component.
*	
*	This	is	example	code	only	-	No	warranty	is	expressed	or	implied.
*	Neither	this	program,	nor	any	derivative	of	it,	should	be	ever	be	used	in
*	production	or	end-user	environments.
*	
*
===
*	
*	This	demonstrates	how	to	listen	for	general	Framework	objects	and	view
their	properties
*
===
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#VF_AC010)	Height(336)
Layoutmanager(#ATLM_2)	Width(552)
*
==
*	Simple	Field	and	Group	Definitions
*
==
*

==
*	Component	definitions
*
==

*	Body	and	Button	arrangement	panels

Define_Com	Class(#PRIM_PANL)	Name(#BUTTON_PANEL)
Displayposition(2)	Height(336)	Layoutmanager(#BUTTON_FLOW)
Left(464)	Parent(#COM_OWNER)	Tabposition(2)	Tabstop(False)	Top(0)
Width(88)
Define_Com	Class(#PRIM_PANL)	Name(#BODY_HEAD)
Displayposition(1)	Height(336)	Layoutmanager(#ATLM_1)	Left(0)
Parent(#COM_OWNER)	Tabposition(1)	Tabstop(False)	Top(0)
Verticalscroll(True)	Width(464)

*	Attachment	and	flow	layout	managers

Define_Com	Class(#PRIM_ATLM)	Name(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#BUTTON_ATTACH)
Attachment(Right)	Manage(#BUTTON_PANEL)	Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_FWLM)	Name(#BUTTON_FLOW)
Direction(TopToBottom)	Flowoperation(Center)	Marginbottom(4)
Marginleft(4)	Marginright(4)	Margintop(4)	Spacing(4)	Spacingitems(4)

Define_Com	Class(#PRIM_ATLI)	Name(#BODY_ATTACH)
Attachment(Center)	Manage(#BODY_HEAD)	Parent(#MAIN_LAYOUT)

*	The	report	button

Define_Com	Class(#PRIM_PHBN)	Name(#PHBN_REPORT)
Buttondefault(True)	Caption('Report')	Displayposition(1)	Left(4)
Parent(#BUTTON_PANEL)	Tabposition(1)	Top(4)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_SAVE_BUTTON)
Manage(#PHBN_REPORT)	Parent(#BUTTON_FLOW)

*	The	Traverse	component
Define_Com	Class(#UF_TRVRS)	Name(#UF_TRVRS)

Define_Com	Class(#PRIM_GRID)	Name(#LTVW_1)	Displayposition(1)
Height(332)	Left(2)	Parent(#BODY_HEAD)	Rowresize(True)
Showsortarrow(True)	Tabposition(1)	Top(2)	Width(460)
Define_Com	Class(#PRIM_GDCL)	Name(#LVCL_1)	Caption('Parent
Framework')	Captiontype(Caption)	Displayposition(1)	Parent(#LTVW_1)
Source(#FP_EKEY1)	Width(12)
Define_Com	Class(#PRIM_GDCL)	Name(#LVCL_2)	Caption('Parent
Application')	Captiontype(Caption)	Displayposition(2)	Parent(#LTVW_1)
Source(#FP_EKEY2)	Width(12)
Define_Com	Class(#PRIM_GDCL)	Name(#LVCL_3)	Caption('Parent
Business	Object')	Captiontype(Caption)	Displayposition(3)	Parent(#LTVW_1)
Source(#FP_EKEY3)	Width(17)
Define_Com	Class(#PRIM_GDCL)	Name(#LVCL_4)	Displayposition(4)
Parent(#LTVW_1)	Source(#DF_ELTXTL)	Widthtype(Remainder)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)	Marginbottom(2)
Marginleft(2)	Marginright(2)	Margintop(2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Center)
Parent(#ATLM_1)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Center)
Manage(#BODY_HEAD)	Parent(#ATLM_2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_3)	Attachment(Right)
Manage(#BUTTON_PANEL)	Parent(#ATLM_2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_4)	Attachment(Center)
Manage(#LTVW_1)	Parent(#ATLM_1)

*	Framework	-	class	#VF_FP001	#TempVF_FP001	Reference(*Dynamic)
*	Application	-	class	#VF_FP002	#TempVF_FP002	Reference(*Dynamic)
*	Business	Object	-	class	#VF_FP003	#TempVF_FP003	Reference(*Dynamic)
*	Command	-	class	#VF_FPM09	#TempVF_FPM09	Reference(*Dynamic)
*	Command	Usage	-	class	#VF_FPM10	#TempVF_FPM10
Reference(*Dynamic)
*	Filter	-	class	#VF_FPM14	#TempVF_FPM14	Reference(*Dynamic)

*
==
*	Events	Definitions
*

==

*
==
*	Property	Definitions
*
==

*
==
*	Method	Definitions
*
==
*	--
*	Handle	Command	Execution
*	--

Mthroutine	Name(uExecute)	Options(*REDEFINE)

*	The	return	code	field	and	testing	condition

Define	#Ret_Code	reffld(#IO$STS)
Def_cond	Name(*RetOkay)	Cond('#Ret_Code	=	OK')

*	Do	any	execution	logic	defined	in	the	ancestor

Invoke	#Com_Ancestor.uExecute

Endroutine

*
==
*	Subroutines
*
==

*
==

*	Event	Handlers
*
==

*	--
*	Handle	the	save	button
*	--

EVTROUTINE	HANDLING(#PHBN_REPORT.Click)

*	Tell	the	Traverse	reusable	part	to	read	through	the	entire	system	in	no
particular	order
*	This	program	listens	for	the	signals	for	each	new	object,

clr_list	#LTVW_1
invoke	#UF_TRVRS.uTraverseFramework

ENDROUTINE

*	Listen	for		a	Framework	Object

EVTROUTINE	HANDLING(#UF_TRVRS.Framework)
Reference(#TempVF_FP001)

*	Output	generic	details
Invoke	#Com_Owner.uOutputGeneric		uLevel(1)	uType('Framework')
uObject(#TempVF_FP001)

add_entry	#LTVW_1

*	Store	a	reference	to	the	object	against	the	list	line
Set	Com(#ltvw_1.currentitem)	Relatedreference(#TempVF_FP001)

ENDROUTINE

*	Listen	for	an	Application	Object

EVTROUTINE	HANDLING(#UF_TRVRS.Application)
Reference(#TempVF_FP002)	VisParent1(#TempVF_FP001)

*	Output	generic	details
Invoke	#Com_Owner.uOutputGeneric		uLevel(2)		uType('Application')
uObject(#TempVF_FP002)	VisParent1(#TempVF_FP001)

*	For	more	details	of	the	application	object,	click	on	#TempVF_FP002	above
and	press	F2,	and	look	at	the	properties	of	class	VF_FP002

add_entry	#LTVW_1

*	Store	a	reference	to	the	object	against	the	list	line
Set	Com(#ltvw_1.currentitem)	Relatedreference(#TempVF_FP002)

ENDROUTINE

*	Listen	for	a	Business	Object		Object

EVTROUTINE	HANDLING(#UF_TRVRS.BusinessObject)
Reference(#TempVF_FP003)	VisParent1(#TempVF_FP001)
VisParent2(#TempVF_FP002)

*	Output	generic	details
Invoke	#Com_Owner.uOutputGeneric		uLevel(3)		uType('Business	Object')
uObject(#TempVF_FP003)	VisParent1(#TempVF_FP001)
VisParent2(#TempVF_FP002)

*	For	more	details	of	the	business	object	object,	click	on	#TempVF_FP003
above	and	press	F2,	and	look	at	the	properties	of	class	VF_FP003

add_entry	#LTVW_1

*	Store	a	reference	to	the	object	against	the	list	line
Set	Com(#ltvw_1.currentitem)	Relatedreference(#TempVF_FP003)

ENDROUTINE

*	Listen	for	a	Filter		Object

EVTROUTINE	HANDLING(#UF_TRVRS.Filter)
Reference(#TempVF_FPM14)	VisParent1(#TempVF_FP001)
VisParent2(#TempVF_FP002)	VisParent3(#TempVF_FP003)

*	Output	generic	details
Invoke	#Com_Owner.uOutputGeneric		uLevel(3)		uType('Business	Object')
uObject(#TempVF_FP003)	VisParent1(#TempVF_FP001)
VisParent2(#TempVF_FP002)	VisParent3(#TempVF_FP003)

*	Specific	details
*	For	more	details	of	the	filter	object,	click	on	#TempVF_FPM14	above	and
press	F2,	and	look	at	the	properties	of	class	VF_FPM14

#DF_ELTXTL	:=	'Filter		'	+	#TempVF_FPM14.uCaption	+	'Snap	in	windows
filter	'	+	#TempVF_FPM14.uFilterName	+	'	Snap	In	Web	function	'	+
#TempVF_FPM14.uWebFilterFunction	+	'	'	+	'Snap	in	wam	filter	'	+
#TempVF_FPM14.uWAMComponent

add_entry	#LTVW_1

*	Store	a	reference	to	the	object	against	the	list	line
Set	Com(#ltvw_1.currentitem)	Relatedreference(#TempVF_FPM14)

ENDROUTINE

*	Listen	for	a	Command	Usage	(Command	Reference)		Object

EVTROUTINE	HANDLING(#UF_TRVRS.CommandReference)
Reference(#TempVF_FPM10)	CommandDefinition(#TempVF_FPM09)
VisParent1(#TempVF_FP001)	VisParent2(#TempVF_FP002)
VisParent3(#TempVF_FP003)

*	Output	generic	details
Invoke	#Com_Owner.uOutputGeneric		uLevel(3)		uType('Command

Reference')		VisParent1(#TempVF_FP001)	VisParent2(#TempVF_FP002)
VisParent3(#TempVF_FP003)

*	Specific	details

*	Some	of	the	details	are	on	the	Command	Object	(VF_FPM09)
*	Most	of	the	details	are	on	the	Command	Reference	Object	(VF_FPM10)

*	For	more	details	of	the	Command	and	command	reference	objects,	click	on
#TempVF_FPM09	or	#TempVF_FPM10	above	and	press	F2,	and	look	at	the
properties	of	classes	VF_FPM09	and	VF_FPM10

#DF_ELTXTL	:=	'Command		'	+	#TempVF_FPM09.uCaption	+	'	Snap	in
windows	handler	'	+	#TempVF_FPM10.uHandlerName	+	'	Snap	In	Web
function	'	+	#TempVF_FPM10.uWebHandlerFunction	+	'	'	+	'	Snap	in	wam
handler	'	+	#TempVF_FPM10.uWAMComponent	+	'	uWAM'	+
#TempVF_FPM10.uWAM

add_entry	#LTVW_1

*	Store	a	reference	to	the	object	against	the	list	line
Set	Com(#ltvw_1.currentitem)	Relatedreference(#TempVF_FPM10)

ENDROUTINE

*	Output	a	line	of	description	of	the	object

mthroutine	uOutputGeneric	
define_map	*input	#std_num	#uLevel
define_map	*input	#df_elmsg	#uType
Define_Map	For(*input)	Class(#vf_fp001)	Name(#VisParent1)
Mandatory(*NULL)	Pass(*BY_REFERENCE)
Define_Map	For(*input)	Class(#vf_fp002)	Name(#VisParent2)
Mandatory(*NULL)	Pass(*BY_REFERENCE)
Define_Map	For(*input)	Class(#vf_fp003)	Name(#VisParent3)
Mandatory(*NULL)	Pass(*BY_REFERENCE)
Define_Map	For(*input)	Class(#vf_ac001)	Name(#uObject)
Mandatory(*NULL)		Pass(*BY_REFERENCE)

*	Parent	Details
Change	(#FP_EKEY1	#FP_EKEY2	#FP_EKEY3)	*null

*	Parent	1	details
if_ref	#VisParent1	is_not(*null)	
Change	#FP_EKEY1	#VisParent1.uUserObjectType
endif

*	Parent	2	details
if_ref	#VisParent2	is_not(*null)
Change	#FP_EKEY2	#VisParent2.uUserObjectType
endif

*	Parent	3	details
if_ref	#VisParent3	is_not(*null)
Change	#FP_EKEY3	#VisParent3.uUserObjectType
endif

*	Object	details
if_ref	#uObject	is_not(*null)
#DF_ELTXTL	:=	#uType	+	'	'	+	#uObject.uCaption	+	'	'	+	#uObject.uIdentifier
+	'	'	+	#uObject.uUserObjectType	
endif

endroutine

End_Com

UF_QRY03	-	Listening	for	Ramp	Objects	And	View	Their
Properties
*
===
*	
*	Component			:	UF_QRY03
*	Type								:	Reusable	Component
*	Ancestor				:	VF_AC010	(Command	Handler)
*	
*	PLEASE	NOTE:		This	UF_	(User	Framework)	component	is	the	shipped
version.	You
*	may	choose	to	modify	it.	You	should	do	this	by	copying	the	source
*	code	of	this	component	into	your	own	component	and	then	change
*	the	copied	version.	This	will	prevent	the	accidental	loss	of	your
*	changes	if	you	upgrade	your	Visual	LANSA	framework	version.	Refer
*	to	the	end	of	this	component	for	more	details	about	making	your
*	own	version	of	this	component.
*	
*	This	is	example	code	only	-	No	warranty	is	expressed	or	implied.
*	Neither	this	program,	nor	any	derivative	of	it,	should	be	ever	be	used	in
*	production	or	end-user	environments.
*	
*
===
*	
*	This	demonstrates	how	to	listen	for	RAMP	objects	and	view	their	properties
*
===
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#VF_AC010)	Height(336)
Layoutmanager(#ATLM_2)	Width(552)
*
==
*	Simple	Field	and	Group	Definitions
*
==
*

==
*	Component	definitions
*
==

*	Body	and	Button	arrangement	panels

Define_Com	Class(#PRIM_PANL)	Name(#BUTTON_PANEL)
Displayposition(2)	Height(311)	Layoutmanager(#BUTTON_FLOW)
Left(464)	Parent(#COM_OWNER)	Tabposition(2)	Tabstop(False)	Top(25)
Width(88)
Define_Com	Class(#PRIM_PANL)	Name(#BODY_HEAD)
Displayposition(1)	Height(311)	Layoutmanager(#ATLM_1)	Left(0)
Parent(#COM_OWNER)	Tabposition(1)	Tabstop(False)	Top(25)
Verticalscroll(True)	Width(464)

*	Attachment	and	flow	layout	managers

Define_Com	Class(#PRIM_ATLM)	Name(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#BUTTON_ATTACH)
Attachment(Right)	Manage(#BUTTON_PANEL)	Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_FWLM)	Name(#BUTTON_FLOW)
Direction(TopToBottom)	Flowoperation(Center)	Marginbottom(4)
Marginleft(4)	Marginright(4)	Margintop(4)	Spacing(4)	Spacingitems(4)

Define_Com	Class(#PRIM_ATLI)	Name(#BODY_ATTACH)
Attachment(Center)	Manage(#BODY_HEAD)	Parent(#MAIN_LAYOUT)

*	The	report	button

Define_Com	Class(#PRIM_PHBN)	Name(#PHBN_REPORT)
Buttondefault(True)	Caption('Report')	Displayposition(1)	Left(4)
Parent(#BUTTON_PANEL)	Tabposition(1)	Top(4)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_SAVE_BUTTON)
Manage(#PHBN_REPORT)	Parent(#BUTTON_FLOW)

*	The	Traverse	component
Define_Com	Class(#UF_TRVRS)	Name(#UF_TRVRS)

*	The	Output	List
Define_Com	Class(#PRIM_GRID)	Name(#LTVW_1)	Displayposition(1)
Height(142)	Left(2)	Parent(#BODY_HEAD)	Rowresize(True)
Showselection(True)	Showsortarrow(True)	Tabposition(1)	Top(2)	Width(460)
Define_Com	Class(#PRIM_GDCL)	Name(#LVCL_4)	Displayposition(1)
Parent(#LTVW_1)	Source(#DF_ELTXTL)	Width(100)
Widthtype(Remainder)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)	Marginbottom(2)
Marginleft(2)	Marginright(2)	Margintop(2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Center)
Parent(#ATLM_1)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Center)
Manage(#BODY_HEAD)	Parent(#ATLM_2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_3)	Attachment(Right)
Manage(#BUTTON_PANEL)	Parent(#ATLM_2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_4)	Attachment(Center)
Manage(#LTVW_1)	Parent(#ATLM_1)

*	The	Script	List
Define_Com	Class(#PRIM_MEMO)	Name(#SCRIPT)	Componentversion(1)
Currentline(1)	Displayposition(2)	Height(165)	Left(2)
Maximumlinelength(200)	Parent(#BODY_HEAD)
Showselectionhilight(False)	Tabposition(2)	Top(144)	Width(460)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_5)	Attachment(Bottom)
Manage(#SCRIPT)	Parent(#ATLM_1)
Define_Com	Class(#PRIM_MECL)	Name(#MECL_1)	Columnrole(Data)
Displayposition(1)	Parent(#SCRIPT)	Source(#VF_ELTXTB)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_1)	Caption('Member	ID')
Captiontype(Caption)	Displayposition(2)	Parent(#LTVW_1)
Source(#VF_ELIDN)

*	Show	Script	push	button
Define_Com	Class(#PRIM_PHBN)	Name(#PHBN_1)	Displayposition(3)
Left(0)	Parent(#COM_OWNER)	Tabposition(3)	Top(0)	Width(552)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_6)	Attachment(Top)
Manage(#PHBN_1)	Parent(#ATLM_2)

Define_Com	Class(#PRIM_PHBN)	Name(#PHBN_SCRIPT)	Caption('Show
Script')	Displayposition(2)	Left(4)	Parent(#BUTTON_PANEL)	Tabposition(2)
Top(33)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_1)
Manage(#PHBN_SCRIPT)	Parent(#BUTTON_FLOW)
Define_Com	Class(#PRIM_PHBN)	Name(#PHBN_FKEY)	Caption('Show
FKeys')	Displayposition(3)	Left(4)	Parent(#BUTTON_PANEL)
Tabposition(3)	Top(62)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_2)
Manage(#PHBN_FKEY)	Parent(#BUTTON_FLOW)

*	Framework	-	class	#VF_FP001	#TempVF_FP001	Reference(*Dynamic)
*	Application	-	class	#VF_FP002	#TempVF_FP002	Reference(*Dynamic)
*	Business	Object	-	class	#VF_FP003	#TempVF_FP003
Reference(*Dynamic)
*	Command	-	class	#VF_FPM09	#TempVF_FPM09	Reference(*Dynamic)
*	Command	Usage	-	class	#VF_FPM10	#TempVF_FPM10
Reference(*Dynamic)
*	Filter	-	class	#VF_FPM14	#TempVF_FPM14	Reference(*Dynamic)

*
==
*	Events	Definitions
*
==

*
==
*	Property	Definitions
*
==

*
==
*	Method	Definitions
*
==
*	--
*	Handle	Command	Execution

*	--

Mthroutine	Name(uExecute)	Options(*REDEFINE)

*	The	return	code	field	and	testing	condition

Define	#Ret_Code	reffld(#IO$STS)
Def_cond	Name(*RetOkay)	Cond('#Ret_Code	=	OK')

*	Do	any	execution	logic	defined	in	the	ancestor

Invoke	#Com_Ancestor.uExecute

Endroutine

*
==
*	Subroutines
*
==

*
==
*	Event	Handlers
*
==

*	--
*	Handle	the	save	button
*	--

EVTROUTINE	HANDLING(#PHBN_REPORT.Click)

*	Tell	the	Traverse	reusable	part	to	read	through	the	entire	system	in	no
particular	order
*	This	program	listens	for	the	signals	for	each	new	object,

clr_list	#LTVW_1

invoke	#UF_TRVRS.uTraverseFramework

ENDROUTINE

*	Listen	for	the	RAMP	Container

EVTROUTINE	HANDLING(#UF_TRVRS.RAMPContainer)
Reference(#TempVF_FP025)

*	Output	generic	details
Invoke	#Com_Owner.uOutputGeneric		uLevel(1)	uType('RAMP	Session')
uObject(#TempVF_FP025)

*	For	more	details	of	the	RAMP	Session	object,	click	on	#TempVF_FP025
above	and	press	F2,	and	look	at	the	properties	of	class	VF_FP025

add_entry	#LTVW_1

*	Store	a	reference	to	the	object	against	the	list	line
Set	Com(#ltvw_1.currentitem)	Relatedreference(#TempVF_FP025)

ENDROUTINE

*	Listen	for		a	RAMP	Session

EVTROUTINE	HANDLING(#UF_TRVRS.RAMPSession)
Reference(#TempVF_FP026)

*	Output	generic	details
Invoke	#Com_Owner.uOutputGeneric		uLevel(1)	uType('RAMP	Group')
uObject(#TempVF_FP026)

*	For	more	details	of	the	RAMP	Group	object,	click	on	#TempVF_FP026
above	and	press	F2,	and	look	at	the	properties	of	class	VF_FP026

add_entry	#LTVW_1

*	Store	a	reference	to	the	object	against	the	list	line
Set	Com(#ltvw_1.currentitem)	Relatedreference(#TempVF_FP026)

ENDROUTINE

*	Listen	for	a	RAMP	Destination

EVTROUTINE	HANDLING(#UF_TRVRS.RAMPDestination)
Reference(#TempVF_FPM27)	

*	Output	generic	details
Invoke	#Com_Owner.uOutputGeneric		uLevel(1)		uType('RAMP
Destination')		

*	Specific	details

*	For	more	details	of	the	RAMP	Destination	object,	click	on
#TempVF_FPM27	above	and	press	F2,	and	look	at	the	properties	of	class
VF_FPM27

*	Store	the	member	Identifier	for	this	destination
Change	#VF_ELIDN	#TempVF_FPM27.CurrentMemberGUID

#DF_ELTXTL	:=	'Destination		'	+	#TempVF_FPM27.uCaption	+	'	Technical
Caption	'	+	#TempVF_FPM27.uTechnicalCaption	+	'	Navigate	Script	ID	'	+
#TempVF_FPM27.uNavigateScriptIDN	+	'	Return	Script	ID	'	+
#TempVF_FPM27.uReturnScriptIDN	

add_entry	#LTVW_1

*	Store	a	reference	to	the	object	against	the	list	line
Set	Com(#ltvw_1.currentitem)	Relatedreference(#TempVF_FPM27)

ENDROUTINE

*	Listen	for	a	RAMP	Junction

EVTROUTINE	HANDLING(#UF_TRVRS.RAMPJunction)
Reference(#TempVF_FPM28)

*	Output	generic	details
Invoke	#Com_Owner.uOutputGeneric		uLevel(1)		uType('RAMP	Destination')

*	Specific	details

*	For	more	details	of	the	RAMP	Destination	object,	click	on
#TempVF_FPM28	above	and	press	F2,	and	look	at	the	properties	of	class
VF_FPM28

*	Store	the	member	Identifier	for	this	junction
Change	#VF_ELIDN	#TempVF_FPM28.CurrentMemberGUID

#DF_ELTXTL	:=	'Junction	'	+	#TempVF_FPM28.uCaption	+	'	Technical
Caption	'	+	#TempVF_FPM28.uTechnicalCaption	+	'	Script	ID	'	+
#TempVF_FPM28.uIdentifier	+	'	Screen	Name	'	+
#TempVF_FPM28.uScreenName

add_entry	#LTVW_1

ENDROUTINE

*	Listen	for	a	RAMP	Special

EVTROUTINE	HANDLING(#UF_TRVRS.RAMPSpecial)
Reference(#TempVF_FPM29)

*	Output	generic	details
Invoke	#Com_Owner.uOutputGeneric		uLevel(1)		uType('RAMP	Special')

*	Specific	details

*	For	more	details	of	the	RAMP	Destination	object,	click	on
#TempVF_FPM29	above	and	press	F2,	and	look	at	the	properties	of	class

VF_FPM29

*	Store	the	member	Identifier	for	this	special
Change	#VF_ELIDN	#TempVF_FPM29.CurrentMemberGUID

#DF_ELTXTL	:=	'Special		'	+	#TempVF_FPM29.uCaption	+	'	Technical
Caption	'	+	#TempVF_FPM29.uTechnicalCaption	

add_entry	#LTVW_1

ENDROUTINE

*	Listen	for	a	RAMP	Script

EVTROUTINE	HANDLING(#UF_TRVRS.RAMPScript)
Reference(#TempVF_FPM30)

*	Output	generic	details
Invoke	#Com_Owner.uOutputGeneric		uLevel(1)		uType('RAMP	Script')

*	Specific	details

*	For	more	details	of	the	RAMP	Destination	object,	click	on
#TempVF_FPM30	above	and	press	F2,	and	look	at	the	properties	of	class
VF_FPM30

*	Store	the	member	Identifier	for	this	script
Change	#VF_ELIDN	#TempVF_FPM30.CurrentMemberGUID

#DF_ELTXTL	:=	'Script		'	+	#TempVF_FPM30.uCaption	+	'	Technical
Caption	'	+	#TempVF_FPM30.uTechnicalCaption	

add_entry	#LTVW_1

*	Store	a	reference	to	the	object	against	the	list	line
Set	Com(#ltvw_1.currentitem)	Relatedreference(#TempVF_FPM30)

ENDROUTINE

*	Output	a	line	of	description	of	the	object

mthroutine	uOutputGeneric
define_map	*input	#std_num	#uLevel
define_map	*input	#df_elmsg	#uType
Define_Map	For(*input)	Class(#vf_fp001)	Name(#VisParent1)
Mandatory(*NULL)	Pass(*BY_REFERENCE)
Define_Map	For(*input)	Class(#vf_fp002)	Name(#VisParent2)
Mandatory(*NULL)	Pass(*BY_REFERENCE)
Define_Map	For(*input)	Class(#vf_fp003)	Name(#VisParent3)
Mandatory(*NULL)	Pass(*BY_REFERENCE)
Define_Map	For(*input)	Class(#vf_ac001)	Name(#uObject)
Mandatory(*NULL)		Pass(*BY_REFERENCE)

Change	#vf_elidn	*blanks

*	Object	details
if_ref	#uObject	is_not(*null)
#DF_ELTXTL	:=	#uType	+	'	'	+	#uObject.uCaption	+	'	'	+	#uObject.uIdentifier
+	'	'	+	#uObject.uUserObjectType
endif

endroutine

*	Button	press	-	Show	the	lines	of	script	for	a	script

EVTROUTINE	HANDLING(#PHBN_SCRIPT.Click)

Define_Com	Class(#VF_FPM30)	Name(#TempVF_FPM30)
Reference(*DYNAMIC)

selectlist	#LTVW_1
if	#LTVW_1.CurrentItem.Selected
If_Ref	Com(#LTVW_1.CurrentItem.RelatedReference)	Is(*INSTANCE_OF
#VF_FPM30)

set_ref	#TempVF_FPM30	(*Dynamic
#LTVW_1.CurrentItem.RelatedReference)
invoke	#Com_Owner.uShowScript	uScriptManager(#TempVF_FPM30)
UseScriptGUID(#VF_ELIDN)

endif
endif
endselect

ENDROUTINE

*	Show	a	script

mthroutine	uShowScript
Define_Map	For(*input)	Class(#VF_FPM30)	Name(#uScriptManager)
Pass(*BY_REFERENCE)
define_map	*input	#VF_ELMBRi	#UseScriptGUID

define	#First	reffld(#vf_elbool)
Define_Com	Class(#vf_elindx)	Name(#LoopLimit)

clr_list	#Script

*	When	working	with	any	VF_FPM	objects	you	have	to	set	the
CurrentMemberGUID	before	reading	or	writing	to	them.
*	This	is	stored	in	field	#VF_ELIDN	in	list	#LTVW_1

*	set	#VF_FPM30	to	the	correct	member
#uScriptManager.CurrentMemberGUID	:=	#UseScriptGUID

Change	Field(#LoopLimit)	To(#uScriptManager.uSLMax)
Change	Field(#VF_ELLICT)	To(0)

Change	#First		TRUE
Begin_Loop	To(#LoopLimit)
*	Read	each	script	line	into	field	#vf_eltxtb

Invoke	Method(#uSystem.uRestorePropertySet)	Ucursor('0')	Ufirst(#First)
Uname(uSL)	Ualphavalue(#vf_eltxtb)	Udefaultalphavalue('*NONE')
Ac0x1object(#uScriptManager.SetMember(#UseScriptGUID))

Add_Entry	To_List(#SCRIPT)

Change	#First	FALSE
End_Loop

endroutine

*	Button	press	-	Show	the	function	keys	for	a	destination

EVTROUTINE	HANDLING(#PHBN_FKEY.Click)

Define_Com	Class(#VF_FPM27)	Name(#TempVF_FPM27)
Reference(*DYNAMIC)

selectlist	#LTVW_1
if	#LTVW_1.CurrentItem.Selected
If_Ref	Com(#LTVW_1.CurrentItem.RelatedReference)	Is(*INSTANCE_OF
#VF_FPM27)

set_ref	#TempVF_FPM27	(*Dynamic
#LTVW_1.CurrentItem.RelatedReference)
invoke	#Com_Owner.uShowFKeys	uDestinationManager(#TempVF_FPM27)
UseDestGUID(#VF_ELIDN)

endif
endif
endselect

ENDROUTINE

*	Show	the	function	keys	for	a	destination

Mthroutine	Name(uShowFkeys)
Define_Map	For(*input)	Class(#VF_FPM27)	Name(#uDestinationManager)

Pass(*BY_REFERENCE)
define_map	*input	#VF_ELMBRi	#UseDestGUID

Define_Com	Class(#vf_elindx)	Name(#LoopLimit)
Define_Com	Class(#vf_elindx)	Name(#LoopIndex)
Define_Com	Class(#vf_elindx)	Name(#KeyTotal)

Clr_List	Named(#SCRIPT)

*	When	working	with	any	VF_FPM	objects	you	have	to	set	the
CurrentMemberGUID	before	reading	or	writing	to	them.
*	This	is	stored	in	field	#VF_ELIDN	in	list	#LTVW_1

Set_Ref	Com(#uDestinationManager)	To(#uFramework.VF_FP027Manager)
#uDestinationManager.CurrentMemberGUID	:=	#UseDestGUID
Change	Field(#LoopLimit)	To(#uDestinationManager.uKeyTotal)

*	Load	cherry	function	keys

Begin_Loop	Using(#LoopIndex)	To(#LoopLimit)

Change	Field(#vf_elindx)	To(#LoopIndex)

#vf_eltxtb	:=	'	Caption:	'	+	
#uDestinationManager.uKeyCaption<#LoopIndex>

#vf_eltxtb	+=	'	,	'

#vf_eltxtb	+=	'	Enabled	in	Newlook:	'	+
#uDestinationManager.uKeyEnabledNL<#LoopIndex>

#vf_eltxtb	+=	'	,	'

#vf_eltxtb	+=		'	Enabled	in	VLF:	'	+
#uDestinationManager.uKeyEnabledVLF<#LoopIndex>

#vf_eltxtb	+=	'	,	'

#vf_eltxtb	+=		'	Key	to	Send:	'		+
#uDestinationManager.uKeytoSend<#LoopIndex>

Add_Entry	To_List(#SCRIPT)

End_Loop
endroutine

End_Com
	

Troubleshooting
Troubleshooting	Filters	and	Command	Handlers
Troubleshooting	Snap-In	Instance	Lists
Debugging	Browser	Problems

Troubleshooting	Filters	and	Command	Handlers
Framework	fails	as	soon	as	you	select	your	new	Windows	filter	or	command
handler
When	you	recompile	your	Windows	filter	or	command	handler	it		fails	with	a
"Permission	Denied"	error.
Your	browser	application	filter	or	command	handler	behaves	unexpectedly	or
erratically

Framework	fails	as	soon	as	you	select	your	new	Windows	filter	or
command	handler
Environment:	Windows
Solution:	There	is	something	terminally	wrong	with	your	new	filter	or
command	handler.	You	should	check	all	of	the	following:
Your	filter	or	command	handler	is	a	Reusable	Part.
Your	filter	has	the	correct	ancestor	(VF_AC007	for	filters,	VF_AC010	for
command	handlers).
Your	filter	or	command	handler	does	not	have	an	RDMLX	level	coding	error
(e.g.:	divide	by	zero)	that	causes	it	to	fail	when	starting.	Carefully	check	all	of
the	messages	issued	for	the	exact	cause	of	the	error.	Try	running	your	filter	or
command	handler	in	Visual	LANSA	debug	mode.

When	you	recompile	your	Windows	filter	or	command	handler	it	
fails	with	a	"Permission	Denied"	error.
Environment:	Windows
Solution:	Your	filter	or	command	handler	is	active	while	you	are	trying	to
compile	it.	Shut	down	the	Visual	LANSA	Framework	while	recompiling	active
filters	or	command	handlers.

Your	browser	application	filter	or	command	handler	behaves
unexpectedly	or	erratically
Environment:	WAM
Solution:	Work	through	this	checklist	first:
Initially	try	executing	your	Framework	with	tracing	mode	on.	This	may	reveal
that	your	filter	is	not	processing	events	the	way	that	you	think	it	should	be.
If	the	problem	persists	try	adding	specific	trace	commands	to	your	function	that
indicate	in	more	detail	what	it	is	doing	and	what	data	it	is	processing.	Check	in
and	recompile	your	function,	then	execute	your	Framework	with	tracing	mode
turned	on.	Continue	to	add	trace	statements	and	recompile	your	function	until
the	logic	problem	is	located.
	

Troubleshooting	Snap-In	Instance	Lists
Problem:	You	receive	a	message	indicating	that	your	snap-in	instance	list
could	not	be	loaded:	Environment:	Windows

Solution:	There	is	something	terminally	wrong	with	your	new	snap-in	instance
list.
You	should	check	all	of	the	following:
Your	snap-in	browser	is	a	reusable	part.
Your	snap-in	browser	has	ancestor	VF_AC012.
Your	snap-in	browser	does	not	have	an	RDMLX	level	coding	error	(e.g.:
divide	by	zero)	that	causes	it	to	fail	when	starting.	Carefully	check	all	of	the
messages	issued	for	the	exact	cause	of	the	error.	Try	running	your	snap-in
browser	in	debug	mode.

Problem:	When	you	recompile	your	snap-in	browser	the	compile	fails	with	a
"Permission	Denied"	error.Environment:	Windows
Solution:	Your	snap-in	browser	is	active	while	you	are	trying	to	compile	it.
Shut	down	the	Framework	while	recompiling	snap-in	browsers.			

Debugging	Browser	Problems
Internet	Explorer
Firefox,	Chrome	and	Safari

Internet	Explorer
Make	sure	under	the	Tools	menu,	Internet	Options,	Advanced	tab:
Disable	script	debugging	is	unchecked.
Display	a	notification	about	every	script	error	is	checked.

	

With	those	settings	when	there	is	a	javascript	error	a	window	like	this	should
appear:

If	you	check	the	box	Use	the	built-in	script	debugger	in	Internet	Explorer	a
window	with	error	highlighted	should	come,	something	like	this:

	

	

	

Firefox,	Chrome	and	Safari
Unlike	IE,	the	errors	will	not	show	up	but	they	will	be	recorded	into	their
respective	web	consoles.
When	the	browser	seems	not	to	be	responsive	it	is	probably	because	some	sort
of	error	occurred.
Firefox	and	Chrome:	press	Ctrl+Shift+J
Firefox	Error	Console:

	

	

Chrome	error	console:

	

Safari:	press	Ctrl+Alt+C

Whichever	browser	you	are	using	the	information	above	will	be	very	useful	for
technical	support	purposes.
	
	
	

Application	Performance
Framework	based	applications	may	be	deployed	as	Windows	Client-Server
applications	and/or	as	Web	browser	applications.
The	nature	of	the	technologies	you	will	be	using	to	accomplish	this	mean	that
there	are	a	large	number	of	risk	variables	that	may	affect	the	performance	of
your	application	(this	actually	has	little	to	do	with	the	Framework	or	with
LANSA	specifically).
Some	risk	variable	are	under	your	direct	control	and	are	affected	by	what	you	do
during	the	design	phase	of	your	project.	Others	may	not	be	under	your	direct
control.	Some	may	only	appear	when	you	deploy	your	application.	Generally
you	should	identify	and	manage	risks	as	early	as	possible	in	your	project.
These	sections	describe	some	of	the	risk	variables	you	may	be	dealing	with	and
some	of	the	ways	that	you	might	manage	them:					
Work	as	an	End-User
Best-Case	Conditions
Worst-Case	Conditions
A	Risk	Check	List
Assessing	Performance	in	Framework	Web	Applications
Using	CITRIX,	ISA	and	Windows	Terminal	Server	Projected	Desktop
Technologies
Options	for	Very	Large	Frameworks

Work	as	an	End-User
All	performance	testing	should	be	performed	by	using	the	Framework	as	either
an	administrator	or	an	end-user.
Using	the	Framework	as	a	designer	produces	a	markedly	different	performance
profile.
	

Best-Case	Conditions
For	many	Windows	or	Web	browser	applications	this	type	of	operating
environment	represents	best-case	conditions:

	
Even	when	you	are	deploying	to	best-case	conditions	there	are	a	number	of
performance	risks	that	you	face.
It	is	important	when	designing	and	implementing	any	application	to	identify
your	best	case	and	worst	case	operating	conditions	as	early	as	possible	and	then
assess	the	risks	that	exist	in	the	gap	between	them.
See	A	Risk	Check	List	for	help	in	identifying	and	assessing	some	of	your
possible	risks.	

Worst-Case	Conditions
For	many	Windows	or	Web	browser	applications	this	type	of	operating
environment	represents	worst-case	conditions:

When	you	are	deploying	to	worst-case	conditions	there	are	a	number	of	very
significant	performance	risks	that	you	face.
It	is	important	when	designing	and	implementing	any	application	to	identify
your	best	case	and	worst	case	operating	conditions	as	early	as	possible	and	to
then	assess	the	risks	that	exist	in	the	gap	between	them.
See	A	Risk	Check	List	for	help	in	identifying	and	assessing	some	of	your
possible	risks.	
	

A	Risk	Check	List
General	Risks
Risk Possible

Issues
Possible	Mitigation

Develop	and	test
under	best	case
conditions	and	deploy
to	worst	case
conditions

Poor
performance
Applications
over-
functioned.

Set	up	a	worst	case	environment	and
use	it	early	and	frequently	during
development	to	identify	and	eliminate
problem	areas	prior	to	deployment.

Develop	and	test
under	worst	case
conditions	and	deploy
to	best	case	conditions

Poor
developer
productivity
Applications
under-
functioned.

Provide	developers	with	better
operating	conditions

	

Specific	Risks	(column	1	is	the	letter	shown	in	the	Best-Case	Conditions	&
Worst-Case	Conditions	diagrams).

Risk Description Possible	Issues	/
Comments

Possible	Mitigation

A Database	volume	and
load	not	reflective	of
deployed	conditions

	 Load	development
databases	with	realistic
volumes	as	soon	as
possible	during
development.
Use	load	emulation	tools
during	development	and
testing.

B Server	cannot	support
number	of	clients

Cost	overruns
Brick	wall	to
future	growth

Hardware	upgrade.
Use	load	emulation	tools
during	development	and
testing.

C Variable	throughput	of
Internet	connections,
even	with	apparently
high	bandwidths.

Peak	time	poor
throughput
Lack	of	control
over	ISPs	and
uncontrolled
communication
paths

Expectation	management

D Too	much	data	being
transferred

	 Reduce	data	to	realistic
volumes.

E Client	logic	too
complex

	 Reduce	complexity	of
client	logic	to	match
power	of	client	systems.

F Client	accessing	server
too	often

	 Reduce	number	of	times
that	communications
links	are	crossed	per
transaction.

G Firewall,	proxy,
wireless	and	VPN
configuration
differences	in	deployed
environments

Configuration
issues
Installation	issues
Performance
variations
Reliability
variations
Unanticipated
costs

	

H LAN	load Unanticipated
costs
Brick	wall	to
future	growth

	

I OS	or	Application
Server	differences	in
deployed	environments

Configuration
issues
Installation	issues
Performance

	

variations
Reliability
variations
Unanticipated
costs

J DBMS	differences	in
deployed	environments

Configuration
issues
Installation	issues
Performance
variations
Reliability
variations
Unanticipated
costs

	

	

	

Assessing	Performance	in	Framework	Web	Applications

To	resolve	a	performance	issue	in	your	Framework	web	application	you	need	to
do	this	repeatedly:

1.	 Identify	the	most	significant	problem	area.
2.	 Make	a	change	that	you	think	will	alleviate	the	problem.
3.	 Assess	the	impact	of	the	change	(is	it	actually	better	or	worse?)
4.	 Identify	the	next	most	significant	problem	area	and	go	back	to	step	2.

You	need	to	use	a	structured	and	reproducible	technique	in	identifying	the
problem	area	and	assessing	any	changes	you	make.	Following	are	some
suggestions	about	doing	this.

Step	1.	Use	consistent	and	reproducible	environments
Step	2.	Make	a	Reproducible	Assessment	Script	(ie:	a	RAS)
Step	3.	Perform	your	RAS	-	To	get	a	Baseline	or	to	Test	a	Change
Step	4.	Assessing	the	Average	CPU	per	Server	Interaction
Step	5.	Identify	and	Assess	any	Client-side	Problem	Areas
Step	6.	Identify	and	Assess	any	Server	Side	Problem	Areas	

	

Step	1.	Use	consistent	and	reproducible	environments
There	are	some	obvious	things	you	need	to	do.

Use	the	same:
PC
web	server
application	server
communications	channel	and	method
Perform	exactly	the	same	actions	on	each	test.
Make	your	test	like	a	real	end-user’s	experience	in	order	to	better	identify
significant	improvements	you	can	make.				
Use	a	PC	that	is	configured	like	an	‘average’	end-user’s	PC.

It	would	be	ideal	if	your	web	server,	application	server	and	communications
channel	were	always	under	the	same	load.	Practically	this	is	rarely	the	case,	so
you	need	to	be	able	to	compensate	for	this.	For	example	performing	a	test	at
6:00am,	in	an	empty	office,	and	the	comparing	the	elapsed	times	with	another
test	taken	at	10:30am,	when	everyone	is	working	flat	out,	would	be	silly.	
Normally	you	can	make	sure	your	PC	is	under	the	same	load,	but	sometimes
something	as	simple	as	receiving	a	large	e-mail	during	a	test	can	invalidate	your
results.
Define	exactly	what	your	PC,	web	server	and	application	server	will	be	on
paper	for	later	reference.
	

Step	2.	Make	a	Reproducible	Assessment	Script	(ie:	a	RAS)
Choose	the	application	areas	that	the	most	end-users	use	most	of	the	time.
In	many	commercial	applications	10%	of	the	application	is	often	used	90%
of	the	time	by	90%	of	the	users.	Always	assess	the	10%	that	is	used	most
first,	which	is	what	most	people	are	most	likely	to	complain	about.	
Choose	the	application	area	which	the	most	business	benefit	will	be	gained
from	any	improvements.		This	probably	means	using	the	90/10	rule	again,
but	even	within	that,	improving	just	one	area	like	Order	Entry	might	be
95%	of	the	overall	business	benefit	gain.	
Create	a	RAS	that	involves	30	or	more	interactions	with	the	web	server.
In	the	RAS	record	exactly	how	many	server	interactions	are	performed.
Rather	than	just	cruising	around	randomly	in	the	application,	make	the	RAS
work	as	end-users	would	work,	completing	typical	actions,	especially
where	cyclical	activities	are	repeatedly	performed.
Write	the	RAS	down	as	a	table	of	scripted	steps	so	that	it	can	be	easily
repeated.	This	also	allows	other	people	to	be	delegated	to	complete	the	test
cycles	for	you.		
Include	a	‘Perceived	Elapsed	Response	Time’	(PERT)	column	in	which	the
perceived	response	time	of	each	step	can	be	recorded	by	using	a	stopwatch.	
Producing	and	keeping	a	RAS	for	each	test	you	perform	is	useful	as	it
documents	any	gradual	improvements	you	make.	It	also	provides,	in	a	very
subjective	and	emotive	area,	something	objective	that	can	be	used	as	the
basis	for	discussions	with	management,	end-users,	etc.	

	

Step	3.	Perform	your	RAS	-	To	get	a	Baseline	or	to	Test	a	Change
Start	the	VLF	application	in	your	PC	browser	and	move	around	in	it.	Use
the	STATS=Y	option.	Do	not	use	developer=Y.	It	is	important	in
applications	that	are	used	for	long	periods	of	time	to	“warm	them	up”
before	commencing	a	test.	Delays	that	are	experienced	the	first	time	that
something	is	used	when	it	is	going	to	be	used	many	times	anyway,	will	just
confuse	your	results	and	make	them	atypical	of	what	a	real	end-users
experience	most	of	the	time.	This	may	lead	you	to	wrong	conclusions	about
what	is	the	most	significant	improvement	you	can	make.		
Locate	the	L4WEB	job	on	the	server	that	is	servicing	your	browser.
Get	positioned	at	step	1	of	your	RAS.
Record	the	current	CPU	time	for	your	L4Web	job	on	the	server.
Perform	the	RAS	exactly
Record	the	perceived	elapsed	response	time	(PERT)	for	each	step.
Save	the	STATS=Y	information	in	the	VLF	window.
Check	the	CPU	time	of	your	L4Web	on	the	server	and	record	the	delta	(ie:
how	much	CPU	time	was	used	on	the	server	to	complete	execution	of	your
RAS).
Divide	the	CPU	time	used	by	the	number	of	interactions	in	your	script	to
get	an	average	CPU	time	per	server	interaction	(this	is	why	not	performing
the	script	exactly	each	time	will	ruin	your	results).

	

	

	

	

Step	4.	Assessing	the	Average	CPU	per	Server	Interaction
What	is	your	average	server	CPU	time	per	server	interaction	from	your	RAS?
If	the	average	number	is	greater	than	1.0,	you	need	to	stop	and	think	carefully
about	your	application	and	your	performance	expectations.	Even	if	this	number
is	lower	(0.3	or	less)	and	you	are	going	to	have	a	lot	of	application	users,	you
need	to	think	carefully	about	this	number	and	what	it	means.		
You	should	do	some	rough	calculations	here	about	average	CPU	cycles	per
transaction,	the	number	of	concurrent	users,	user	clicking	rates	/	server	hit	rates,
etc,	and	see	if	what	you	want	to	achieve	and	what	it	is	possible	to	ever	achieve
are	at	least	in	the	same	ballpark.
Note:	A	Ballpark	Example	–	Imagine	providing	1000	users,	who	all	hit	the
server	on	average	every	5	seconds,	in	an	application	with	a	1.5	average	CPU
seconds	per	transaction	time.	They	expect	a	2.0	second	PERT	time.	In	a	5
second	interval	your	server	needs	to	provide	(even	just	theoretically	and	grossly
simplistically)	at	least	1000	x	1.5	=	1500	CPU	seconds.	That’s	asking	it	provide
300	CPU	seconds	of	processing	power	per	elapsed	second,	which	is
nonsensical.	Maybe	32	processors	would	help?	It	would,	but	you’d	still
probably	be	out	by	at	least	an	order	of	magnitude.
Performance	tuning	your	System	i	server	will	not	normally	reduce	this	number
(it	appears	that	sometimes	it	will	if	you	are	using	complex	SQL	requests).
Normally	IBM	i	level	performance	tuning	will	only	impact	the	elapsed	time	of
an	application.		
You	can	only	really	reduce	this	number	by:

Performance	tuning	your	programs	to	use	less	CPU	cycles.	
Increasing	the	power	of	your	System	i	server	so	that	it	can	execute	more
CPU	cycles	per	second.

Imagine	a	high	average	CPU	time	of	2.0	per	interaction.
This	means	your	application	requires	2.0	seconds	of	dedicated	CPU	cycles	to
complete	its	work	(on	average).	This	absolutely	does	not	mean	you	can	expect	a
2.0,	3.0	or	even	5.0	second	PERT	time	unless	it’s	11:15pm	at	night,	you	are	on	a
1000Mb	LAN,	using		a	memory	resident	application,	and	that	nobody	else	is
using	the	server	or	communications	network.
On	a	busy	system,	getting	access	to	2.0	seconds	of	CPU	cycles	may	take	30
elapsed	seconds	(or	even	a	lot	more)	as	your	L4Web	job	competes	with	other
L4Web	jobs,	5250	sessions,	batch	jobs,	the	Apache	HTTP	server,	network	file

managers,	printer	writers,	etc.					

Step	5.	Identify	and	Assess	any	Client-side	Problem	Areas

Examine	the	parts	of	the	STATS=Y	report	that	relate	to	your	RAS.
The	client-side	numbers	shown	here	are	elapsed	times.	They	indicate	how	long
the	JavaScript	in	your	VLF	client	took	to	execute.	This	means	the	numbers	are
impacted	by	other	things	that	are	happening	on	your	PC.	If	you	receive	en	e-
mail,	or	if	MS-Word,	SVCHOST.EXE	or	RUNDLL32.EXE	are	in	mysterious
loops	using	50%	of	your	PCs	CPU	cycles,	then	the	numbers	shown	here	will	be
impacted.				
The	Executed	Column
Look	at	all	the	entries	with	Executed	=	1.
Something	that	is	only	executed	once	in	a	RAS,	when	a	typical	end-user
actually	uses	in	many	times,	is	a	suspect	number	and	may	lead	you	to	fail	to
identify	the	most	significant	performance	improvement	areas.	In	this	case,
rewrite	your	RAS	so	that	the	executed	number	is	more	reflective	of	an	end-user
experience.		
The	Avg	Column
Where	the	executed	value	is	reflective	of	an	end-users	experience,	look	at	the
average	(Avg)	value.	Is	it	higher	than	1.0?	If	it	is,	then	this	is	probably
indicating	that	what	you	are	trying	to	do	in	your	client-side	JavaScript	is	too
complex	for	the	PC	being	used	for	the	RAS.
Some	areas	to	look	at	changing	to	asses	their	impacts	include	reducing	the
number	of:

Lists	being	displayed
Entries	in	the	instance	list
Use	a	more	powerful	PC

The	Difference	Between	STATS=Y	and	PERT	Times
The	Avg	time	displayed	is	an	elapsed	time.	The	means	the	Avg	number	and	your
perceived	elapsed	response	time	(PERT)	should	be	similar,	but	will	probably	not
be	the	same.
Your	PERT	time	includes	the	time	in	takes	IE	to	‘draw’	the	HTML	document
onto	the	screen.

If	the	Avg	value	and	the	associated	PERT	averages	consistently	vary	by	more
than	1	second	you	should	investigate	further.	One	potential	cause	of	problems	in
this	area	is	presenting	very	large	instance	lists	on	underpowered	PCs.	The
version	of	IE	being	used	may	also	impact	this	area.	It	is	reported	that	IE7	is
better	at	screen	drawing	that	IE6,	and	that	IE7	under	Vista	is	even	better	still.
	

	

Step	6.	Identify	and	Assess	any	Server	Side	Problem	Areas	

The	numbers	shown	here	are	the	elapsed	time	from	when	the	request	was	sent	to
the	server	until	a	response	was	received	back.	If	a	number	is	higher	than	you
think	it	should	be	and	you	want	to	reduce	it	there	are	several	things	you	need	to
look	at:
Your	WAM	programs	are	too	complex	for	the	System	i	server
This	should	show	up	when	you	do	step	‘Step	4	–	Assessing	the	Average	CPU
per	server	interaction’.	We	have	all	done	this	with	5250	programs,	batch
programs,	etc.	The	programs	are	just	too	complex	for	the	computer	to	process
when	a	lot	of	people	start	to	use	them	at	the	same	time.	Web	programs	are	no
different.	The	solutions	to	this	type	of	problem	are	the	same	as	for	5250
programs	or	batch	programs.
Note	–	Using	a	‘Hello	World’	baseline	You	may	be	able	to	classify	this	type	of
problem	by	using	a	simple	‘Hello	World’	program	in	your	VLF	application	test
harness.	If	the	‘Hello	World’	program	runs	well	and	your	other	program	runs
poorly,	then	the	most	likely	cause	of	the	problem	is	that	the	other	program	is
overly	complex.	
Your	communications	system	and/or	HTTP	server	are	overloaded	or	poorly
configured
If	you	have	a	reasonable	average	CPU	time	in	your	L4Web	interactions,	it	may
be	that	the	time	taken	to	get	the	HTTP	request	to	your	server	(or	back	again)	is
too	long	and	needs	to	be	improved.
Overloaded	or	Slow	Communication	Routes
Assessing	this	is	an	area	that	requires	specialized	tools	and	resources.	However,
if	you	are	working	in	an	environment	where	everybody	knows	that	from	9:00am
until	11:30am	printing	something	on	the	local	printer	goes	very	slowly,	and	that
copying	a	small	file	to	the	network	sever	takes	30	seconds,	then	you	almost
certainly	have	an	issue	in	this	area	that	will	impact	your	L4Web	jobs.										
Apache	Server	Tuning			
You	Apache	web	server	schedules	the	execution	of	your	HTTP	requests.	It	may
be	overloaded	or	performing	poorly	for	many	reasons.	For	example,	it	may	not
be	configured	properly	and	not	able	to	use	enough	execution	threads	to	handle

the	number	of	requests	being	sent	to	it.	Equally,	threads	may	be	being	blocked
or	lost	to	failing	requests.

Make	sure	you	all	the	very	latest	Apache	PTFs	applied.				
Review	the	IBM	supplied	Redbooks	related	to	Apache	tuning
Consult	an	expert	in	Apache	performance	tuning.
Note	–	Using	a	‘Hello	World’	baseline	-	You	may	be	able	to	classify	this
type	of	problem	by	using	a	simple	‘Hello	World’	program	in	your	VLF
application	test	harness.	If	the	‘Hello	World’	program	and	your	other
program	both	run	poorly,	then	you	may	have	HTTP	server	or
communication	issues.		

Your	L4Web	jobs	are	taking	too	long	to	execute
If	you	have	a	reasonable	average	CPU	time	in	your	L4Web	interactions,	it	may
that	your	L4Web	job	is	taking	too	long	to	processes	the	request.	For	example,	it
might	require	0.3	CPU	seconds	to	complete,	but	be	taking	40	elapsed	seconds	to
get	access	to	the	0.4	seconds	of	CPU	time.	This	is	exactly	the	same	type	of
problem	that	can	impact	5250	programs	or	batch	programs.	The	slow	response
time	happens	because	the	program	can’t	get	access	to	CPU	cycles.
Investigating	this	is	vanilla	System	i	tuning	stuff	…	subsystems,	machine	pool
storage	activity	levels,	time-slices,	priorities,	machine	pool	sizes,	etc.	Broadly
speaking,	you	would	be	looking	for	the	same	sort	of	signs	of	trouble	as	in	a
5250	application,	most	typically	exhibited	in	very	high	paging	rates	in	the	pools
in	which	the	L4Web	jobs	execute.
This	sort	of	assessment	may	culminate	in	a	hardware	upgrade	because	it	turns
out	to	be	cheaper	than	the	man-hours	spent	trying	to	force	too	much	work	into
too	small	a	computer.							
You	may	be	having	this	trouble	in	this	area	for	these	reasons:

When	you	plan	to	introduce	50	new	5250	users	to	you	System	i	you	would
naturally	consider	the	impact	this	would	have	on	its	daily	workload,
possibly	having	to	resize	the	machine	as	a	result.	Did	you	do	this	for	your
L4Web	users?
If	you	did,	did	you	account	for	the	fact	that	a	web	user	typically	uses	more
resources	than	a	5250	user?	For	example,	a	web	user	in	an	AJAX-style
application	like	the	VLF	will	typically	have	very	short	‘think	times’	and	be
hitting	the	System	i	CPU	for	cycles	much	more	often	that	a	5250	user	with
their	much	longer	‘think	times’.				

Same	things	to	try	here	are:

Make	your	programs	simpler	so	that	they	match	the	capabilities	of	the
server.	
Restructure	your	application	to	reduce	the	frequency	of	‘hits’	on	your
server.
Performance	tune	your	System	i	server,	especially	if	very	high	pool	paging
rates	are	observed.
Put	more	memory	onto	your	System	i	server	to	reduce	pool	paging	rates.
Upgrade	your	System	i	Server

	

	

Step	7.	Identifying	the	Next	Most	Significant	Problem	Area
After	making	your	assessments,	identify	the	single	thing	that	you	think	will
produce	the	most	significant	improvement.
Make	the	required	changes	and	repeat	steps	3	through	6	again	using	the	RAS.
If	it	makes	things	worse,	as	they	sometimes	do,	back	the	change	out.
If	it	makes	things	better,	identify	and	make	the	next	most	significant
improvement,	then	repeat	steps	3	through	7	again.			

	

Using	CITRIX,	ISA	and	Windows	Terminal	Server	Projected
Desktop	Technologies
If	your	application	is	to	be	deployed	via	a	projected	desktop	technology	such	as
CITRIX	or	Windows	Terminal	Server,	you	need	to	ensure	that	you	test	early	and
often	in	an	environment	that	will	reflect	your	ultimate	deployment	environment.
For	example,	100	users	concurrently	starting	MS-Office	on	their	individual
desktops	presents	a	significant	load	on	their	individual	desktop	systems	but	little
load	on	the	server	other	than	basic	file	serving	(and	only	then	if	they	are	sharing
MS-Office	resources	on	the	server	in	some	way).	However	100	users	starting
MS-Office	in	a	projected	desktop	environment	reverses	this	load.	The	server
(where	the	100	instances	of	MS-Office	are	really	being	started	concurrently)	is
placed	under	a	significant	load	while	the	clients	experience	only	a	light	load	in
projecting	the	MS-Office	desktop	images.
Projected	desktop	technologies	are	attractive	propositions	from	the
maintenance,	control	and	deployment	points	of	view,	but	you	need	to	ensure	that
your	server(s)	are	capable	of	sustaining	the	aggregate	client	load.	If	you	design
an	application	that	is	predicated	on	having	significant	desktop	CPU	power	and
resources	available	on	each	individual	client	system,	then	change	your
deployment	model	to	use	a	projected	desktop	technology,	you	will	need	to
ensure	that	your	server(s)	can	handle	the	sum	total	of	all	the	client's	concurrent
CPU	loads	and	resource	requirements.

Options	for	Very	Large	Frameworks
Some	Frameworks	may	contain	more	than	500	business	objects.	With
frameworks	this	large	the	start	up	times,	both	for	users	and	developers,	can
become	annoying.	Additionally	having	multiple	developers	working	in	with	a
single	XML	framework	definition	file	may	present	management	issues.
An	alternative	to	a	large	framework	is	to	subdivide	it	into	multiple	smaller
frameworks.		Assuming	you	can	make	the	subdivision	(on	an	application	or
role-orientated	basis	probably),	you	could	be	dealing	with	for	example	three
frameworks	defined	like	this:
Entry	Point	Form	Name Framework	XML	Definition	File

MJDFRAME1 Frame_1.XML

MJDFRAME2
Frame_2.XML

MJDFRAME3 Frame_3.XML

	

The	three	entry	point	forms	would	just	be	normal	VLF	entry	point	forms:
Function	Options(*DIRECT)
	
BEGIN_COM	ROLE(*EXTENDS	#VF_AC006)
	
Mthroutine	Name(uInitializeFramework)	Options(*Redefine)
		Set	Com(#Com_Owner)	IDesignMode(FALSE)	Uadminmode(FALSE)
		Set	Com(#Com_Owner)	Usystemxmlfile(‘<<Framework’s	XML	file
definition	file>>')
Endroutine
	
End_com

	
Once	you	have	three	frameworks	you	can	put	them	in	a	folder	on	the	user
desktop	and	use	it	like	a	high	level	menu:

			

	

This	menu	system	offers	a	high	level	alternative	to	the	main	VLF	navigation
tree.	It	also	allows	end-users	a	large	choice	in	the	way	they	arrange	and	display
things.
Also,	it	is	usually	easier	to	swap	between	multiple	application	areas	open	in
different	windows	than	by	moving	around	in	the	VLF	navigation	tree.
You	can	also	fairly	easily	allow	one	framework	to	start	up	another.	This	VLF
hidden	command	handler	will	generically	launch	another	VL	form:

		BEGIN_COM	ROLE(*EXTENDS	#VF_AC020)
	
		MTHROUTINE	NAME(uExecute)	OPTIONS(*REDEFINE)
	
					Use	OV_SYSTEM_SERVICE	With_Args(START_LANSA	('FORM='	+
#Com_Owner.avAlphaArg1))
	
		Endroutine
	
		End_com

	
Let's	say	Framework	1	contains	applications	called	Framework	2,	Framework	3
and	Other	Frameworks.	The	Other	Frameworks	application	also	contains
business	objects	titled	Framework	2	and	Framework	3.		In	Framework	1	the
navigation	pane	looks	like	this:

This	shows	two	styles	of	accessing	Framework	2	or	3	from	within	Framework
1.
If	you	click	on	Framework	2	or	Framework	3	at	any	level	in	the	Framework	1
navigation	tree,	the	other	framework	is	launched	as	another	VL	process	by	the
generic	command	handler	above.
If	Framework	2	contained	300	business	objects	(say),	you	have	now	made	them
accessible	from	within	Framework	1	without	having	to	bear	the	overhead	of
actually	having	them	defined	in	Framework	1.	All	you	had	to	do	was	to	add	to
Framework	1	a	single	application	or	business	object	to	act	as	a	link.			
The	same	command	handler	would	be	defined	for	each	application	and	business
object,	like	this:

The	salient	points	are	that	the	command	handler	is	defined	as	a	default
command,	it	does	not	show	on	popup	menus,	it	executes	as	hidden	command,
and	the	alpha	argument	1	contains	the	name	of	the	VL	form	to	be	launched	by
the	command	handler.
You	can	now	start	your	frameworks	from	individual	desktop	icons	or	from	the
navigation	tree	in	Framework	1.			
There	are	some	additions	to	this	example	that	are	relatively	easy	to	make.	You
can	use:

A	marker	file	or	a	data	queue	to	check	whether	the	other	framework	is
already	active	and	avoid	starting	up	another	instance.
Your	own	logon	IIP	and	an	encrypted	temporary	stream	file	to	pass	logon
details	between	frameworks.	That	way	Framework	1	can	capture	the	last	set
of	logon/connection	details.	When	framework	2	or	3	start	up	they	can

bypass	asking	the	user	to	supply	the	logon	details	again.							
Data	queues	to	communicate	between	different	frameworks.	If	each
framework	has	a	‘framework	manager’	that	listens	to	an	associated	queue,	it
is	relatively	easy	to	communicate	between	the	frameworks.

Using	techniques	like	this	you	can	produce	a	result	that	is	just	as	integrated	and
probably	easier	to	use	than	a	single	very	large	framework.			
	

Definitions
This	section	describes	the	properties	and	options	in	the	Framework.
The	easiest	way	to	view	the	definitions	is	to	use	the	Assistant	when	running	the
Framework.	Select	the	object	you	want	information	for	and	press	F2.	The
definition	of	the	object	is	show	in	the	Assistant	window.
Framework	Window
Property	Tab	Sheets
Dialogs
Properties

Framework	Window
Title	Bar Toolbar Menu	Bar Popup	Menu Navigation

Pane
Application
Bar

Business	Object
Bar

Instance
List

Command
Tab

Application
View

	 	

	

Title	Bar
Framework	Window 	

The	horizontal	bar	below	the	toolbar	in	which	the	name	of	the	currently	selected
Application	or	Business	Object	is	displayed.
The	command	handler	folder	also	has	a	title	bar	showing	the	business	object	to
which	the	displayed	commands	apply.

Toolbar
Framework	Window 	

The	toolbar	has	buttons	for	commonly	used	commands.

Menu	Bar
Framework	Window 	

The	menu	bar	contains	menus	in	which	commands	are	grouped.
It	is	recommended	that	all	commands	in	the	Framework	are	included	in	the
menus	on	the	menu	bar.

Popup	Menu
Framework	Window 	

A	context	sensitive	menu	for	the	most	commonly	used	commands	for	the
selected	object.

Navigation	Pane
A	vertical	panel	positioned	by	default	on	the	left	of	the	window	where
applications	and	business	objects	are	displayed.

Application	Bar
Framework	Window 	

The	left-hand-side	of	the	navigation	bar	in	which	Applications	are	displayed.

Application	and	Business	Object	Tree
Framework	Window 	

The	application	and	business	object	tree	is	an	alternative	way	of	displaying	the
Application	Bar	and	the	Business	Object	Bar.

Business	Object	Bar
Framework	Window 	

A	panel	the	next	to	the	application	bar	in	which	Business	Objects	are	displayed.

Application	View
Framework	Window 	

Intermediate	groupings	of	business	objects.	You	can	have	up	to	ten	application
views	of	business	objects	in	an	application.

Filter	Tab
Framework	Window 	

A	tab	showing	the	Filter	for	a	business	object.

Filter	Folder
Framework	Window 	

A	folder	containing	tabs	for	all	the	filters	for	a	business	objects.
By	default	the	tab	is	shown	between	the	business	object	bar	and	the	instance	list.

Instance	List
Framework	Window 	

A	list	showing	all	the	selected	business	object	instances,	in	other	words	items	of
a	specified	business	object	type.
Filters	control	which	instances	are	displayed.
See	also:
Framework	Programming
Filters	and	List	Manager
Command	Handlers	and	List	Manager
More	about	Instance	Lists

Command	Tab
Framework	Window 	

A	tab	showing	the	command	handlers	for	a	Command.

Command	Folder
Framework	Window 	

A	folder	containing	tabs	for	all	the	Commands	applicable	for	the	selected
application,	business	object	or	instance.
By	default	the	folder	is	displayed	on	the	bottom	of	the	Framework	window.

Property	Tab	Sheets
Application	Views
Authorities
Bitmaps	and	Icons
Commands	Enabled
Command	Display
Custom	Properties
Developer	Preferences	–	Web	Server
Export	Design
Filter	Snap-in	Settings
Filter	Settings
Framework	Details
Help	About
Icons
Identification
Instance	List/Relations
Other	Options
Server	Details
Startup
Toolbar	and	Menus
Usage
User	Administration	Settings
User	Details
Visual	Styles
Visualization
Web/RAMP	Details

Application	Views
Use	this	tab	to	specify	application	views	for	the	currently	selected	application.
You	can	define	up	to	10	views	for	each	application.

Identification

Bitmaps	and	Icons
Create	Links
	

Authorities
Use	this	tab	to	set	authorities	to	Framework	objects	for	the	selected	user.

User	Authorities	Report	File
Export	Users
Import	Users	from	XML

Bitmaps	and	Icons
Use	this	tab	to	set	icons	and	bitmaps	for	an	object:

Icon
Bitmap
	
	
	

Create	Links
This	list	shows	all	the	business	objects	currently	defined	for	the	selected
application.

To	link	a	business	object	to	a	view,	first	select	the	view	you	want	to	link	the
business	object	to	and	then	check	the	box	beside	the	business	object.
	

	

Commands	Enabled
Use	this	tab	to	specify	which	commands	are	enabled	for	your	application	or
business	object.

*WEBEVENT	Function	and/or	WAM	Component	or	AJAX	Routine
AJAX	Page	(HTML	File)
Allow	in	Windows
Allow	on	Web
Alter	Development	Status
Associated	AJAX	Function
Business	Object	Command
Bypass	Locks
Component	Identifier
Default	Command
Enable	Command
Execute	as	Hidden	Command
Hide	All	Other	Command	Tabs
Instance	Command
Location	for	Buttons
Mock	Up	RAD-PAD
.NET	Component	Class	Name	and	Assembly
Show	on	Instance	List	Tool	Bar
Show	On	Popup	Menus
Optional	Arguments
Own	Window	Size
RAMP	Destinations
Restricted	Access
Sequence
Stay	Active
Type	of	Layout	Style	to	be	Used
	
See	also:
Command
Command	Handler
Mock	Up	Filters	and	Command	Handlers
Images	Palette

Prototype	Your	Commands	and	Their	Handlers
Create	Your	Own	Command	Handlers
		

Command	Display
Use	this	tab	to	define	how	commands	are	displayed:

Note	that	not	all	properties	are	available	for	all	object	types.
	
Allow	Float
Command	Tab	Location
Command	Tab	Show	All
Command	Tab	Style
Instance	Command	Presentation
Multiline	Tab	Sheet	Captions
Object	Command	Presentation
	

Custom	Properties
Use	this	tab	to	define	custom	properties:

Allow	Multiple	Selection
Caption
Defined	In
Fixed	/	Default	Values
Help	Text
Input	Method

Maximum	Decimals
Maximum	Entries	in	List
Maximum	Length
Name
Property	Type
Sequence
Uppercase
Value(s)	can	be	changed	by	Administrator
	
See	also:
Custom	Properties
Frequently	Asked	Questions	about	Custom	Properties
Things	to	be	careful	with	when	using	Custom	Properties
	

Data
Use	this	tab	to	work	with	Code	Table	Data.

	

Definition
Use	this	tab	to	define	your	code	table:

	
Code	Table	Field	Definitions
Function	Handling	Table	Data	storage
Inactive	Table	Entry	indicator
Language	Field

Read	Only
Code	Table	Definition/	Use	a	Reusable	Part
Code	Table	Definition/	Reusable	Part	Data	Handler	(ID)

Developer	Preferences	–	Web	Server
Use	this	tab	to	set	up	the	preferences	for	each	of	the	web	servers	you	are	using
(maximum	2):

Certificate	File	(PFX)
Certificate	File	Password
Host	Name	or	IP	Address
Images	Folder

Optional	Mapped	Drives	-	Images	Folder	and	Private	Working	Folder
Preferred	web	scheme/skin
Private	Working	Folder
Script	for	Uploading	to	your	LANSA	for	the	Web	Folders
Web	Server	Caption
	
	

Export	Design
Use	this	tab	to	export	your	Framework:

Email	Zip	File	To
Export	Developer	Preferences
Export	Framework	Design
Export	Images	Palette
Export	Include	All	Versions

Export	RAD-PAD	Defaults
Export	RAD-PAD	Notes
Export	RAMP	Definitions
Export	Servers
Export	Tables
Export	Users
	

Filters
Use	these	tabs	to	define	your	filters:
Filter	Snap-in	Settings	tab
Icons	tab
Identification	tab
	

Filter	Snap-in	Settings
Use	this	tab	sheet	to	define	your	filter:

*WEBEVENT	Function	and/or	WAM	Component	or	AJAX	Routine
AJAX	Page	(HTML	File)
Associated	AJAX	Function
Component	Identifier
Location	for	Buttons

Mock	Up	RAD-PAD
.NET	Component	Class	Name	and	Assembly
Stay	Active
Type	of	Layout	Style	to	be	Used
	
See	also:
Filter
Mock	Up	Filters	and	Command	Handlers
Images	Palette
Prototype	Your	Filters
Create	Your	Own	Filters
	

Filter	Settings
Use	this	tab	sheet	to	define	how	your	filter	is	displayed:

Filter	Tab	Style
Filter	Tab	Location
Multiline	Tab	Sheet	Captions

Framework	Details
Use	this	tab	to	set	options	for	the	entire	Framework:

Address	for	Error	Notification
Allow	Dynamic	Overriding	of	Default	Application	Texts
Allow	Panes	to	be	Shrunk	and	Expanded
Allow	Search/Recently	Used	Limit
Allow	Users	to	Switch	Views
Automatic	Save	Time	in	Minutes
Compile	Framework	as	Microsoft	.NET	2.0	Executable
Default	Font	when	Printing	a	Report	Using	Windows
Developer	Preferences	XML	File
Development	Status	Captions
Enable	Development	Status	Feature
Enable	Framework	for	AJAX	style	applications
Enable	Framework	for	WAMS
Enable	Framework	for	Web	browser	Applications
Enable	Framework	for	WEBEVENT	Functions
Enable	the	Position	Menu	Option
Encrypt	XML	Files	
Icon	and	Bitmap	Enroller
Keep	Versions	in	Subfolders
Keep	XML	File	Versions
Launch	from	Status	Bar
MTXT	String	Loader
.NET	Target	Platform
Nodes	XML	File
RAD-PAD	File	Format
Referenced	.NET	Assemblies
Search	Field	Width
Server	Settings	XML	File
Stay	Active	Default	for	Command	Handlers	and	Filters.
Table	Definitions	XML	File
Tool	Bar	Height
Tool	Bar	Style	

Trim	Working	Set
User	Imbedded	Interface	Point
View	as	A	Single	Tree
View	as	Drop	Down	on	Toolbar
View	as	Two	Lists	Over	and	Under
View	as	Two	Lists	Side	By	Side
VLF.NET	Screen	Layout	Persistence	Level
	

Help	About
This	tab	sheet	contains	properties:

Bitmap
Copyright	Text
Technical	Support
System	Info
	

Icons
Use	this	tab	sheet	to	set	icons:

Icon

Identification
Use	this	tab	to	identify	your	object	in	the	Framework:

Note	that	not	all	Identification	tab	properties	are	available	for	all	object	types.
	

Allow	Selection	from	Navigation	Pane
Allow	on	Web
Allow	in	Windows
Allow	this	Object	to	be	Opened	in	a	New	Window
Alter	Development	Status
Caption
Caption	(Singular)
Caption	with	Accelerator
Contains	Favorites
Hint
Internal	Identifier
Last	Changed
Number	of	Additional	Windows	a	User	can	have	Open	Concurrently
Multiple	Window	Control	Bar	Location
Restricted	Access
Sequence
Shortcut
Show	the	'Windows'	Menu	in	this	Framework
Show	Current	Business	Object	in	Window	Title
Unique	Identifier
User	Object	Name/Type
Your	Framework	Version	Number
	
	

Instance	List/Relations
This	tab	sheet	contains	properties:

Allow	Instance	List	to	be	sent	to	MS-Excel
Allow	Multiple	Selections

Allow	Selection	from	Navigation	Pane
Allow	Side	by	Side	Display
Business	Object	List
Columns	for	Instance	Lists	(Sequence,	Type,	Caption,	Width,	Decimals,	Edit
Code,	Date/Time	Output	Format	and	UTC	conversion.)
Double	Click	for	Default	Command
Enable	Child	when	Parent	Selected
Enable	Clear	List	Button
Enable	Parent	when	Child	Selected
Enable	Peers	when	Selected
Enable	Popup	Panels
File	Prefix	to	be	used	for	MS-Excel	(Business	object	properties,	Instance	List
tab)
Instance	List	Tool	Bar	Height	or	Width
Instance	List	Tool	Bar	Location
Instance	List	Tool	Bar	Text	Location
Popup	Panel	Name
Relationship	Handler
Relationship	Type
Use	a	Reusable	Part
Save	and	Restore	Instance	Lists
Show	Additional	Columns
Snap	in	Instance	List	Browser	ID
Use	Shared	Instance	List	for	Relationships
	
	

Istance	List	Relationships	Summary

	
	

Other	Options

As	the	Default	Command
Automatically	Enable	for	New	Applications
Automatically	Enable	for	New	Business	Object	Instances
Automatically	Enable	for	New	Business	Objects
	

Server	Details
The	Server	Details	tab	contains	these	properties:

The	properties	shown	on	the	Server	Details	tab	depend	on	the	type	of	server
chosen.
Attempt	Automatic	session	recovery
Action	to	take	when	session	cannot	be	recovered

Check	connection	before	executing	commands
Check	connection	before	selecting	applications	and	business	objects
Check	Connection	using	function
Client	Server	Translation	Table
Codebase
Commitment	Control
Database	Password
Database	Type
Database	User
DBCS	Capable
Divert	Locks
Engine
Execution	Priority
IBM	i	Host	Server	Mapper	Name	/	IP	address
IBM	i	Host	Server	Mapper	Port
IP	Address	and	Port	Number
Load	Path
Partition
Partition	is	Enabled	for	RDMLX
Private	Definition/aXes	Project	Folder
RAMP	Tools	Mode	Load	Path
Save	as	Deployment	Server
Selection	Block	Size
Selection	Limit
Server	Client	Translation	Table
Server	IIP	function	to	validate	sign	on
Server	Name
Server	Overrides
Server	Type
Show	on	Connect	Dialog
Time	interval	between	checks	of	connection	status
Update	File

Upper	and	Lower	Case	Password
Use	HTTPS
Use	Windows	Credentials
	

Startup
Use	this	tab	sheet	to	define	how	your	Framework	starts	up:

First	Time	Only
Image	File
Intro	Caption
Intro	URL
Options
URL
	
See	also:
How	do	I	change	introduction	logos?
How	do	I	change	the	logo	shown	when	the	Framework	starts	executing?
	

Subtypes
Use	this	tab	sheet	to	specify	business	object	subtypes:

See	SubTypes.
	

Toolbar	and	Menus
This	tab	sheet	contains	properties:

Show	in	Menu
Show	When	Disabled
Show	on	Toolbar
Show	When	Disabled
Toolbar	Button	Caption
Toolbar	Button	Width
Toolbar	Group
	

Usage

The	tab	lists	the	business	objects,	applications	and	Frameworks	in	which	a
selected	command	is	used.	It	also	shows	whether	the	command	is	a	default
command,	whether	it	is	hidden	and	whether	it	is	attached	to	a	RAMP	destination
screen.
	

User	Administration	Settings
Use	this	tab	to	specify	user	administration	settings	for	the	Framework.

Advise	User	With	a	Message

Alignment	of	Image	on	Form
Allow	IBM	i	password	change
Change	Password	IIP
Check	Password	Expiry
End-users	Must	Sign	on	to	this	Framework
Framework	Fatal	Error
Height
Image	/	Web	Page	to	Display	on	Form
Import	Users	Imbedded	Interface	Point
Launch	Button	Caption
Launch	URL	(Windows)
Launch	URL	(Web	/	.Net)
Log	off	Inactivity	Timeout
Log	on	Inactivity	Timeout
Maximum	Signon	Attempts	Allowed
Name	of	User	Set	to	be	Used
Report	on	Users	-	Imbedded	Interface	Point	(Id)
Store	Users	in	XML	File	and	Store	users	in	DBMS	Tables	VFPPF06/07
Use	Framework	Users	and	Authority
User	Can	Change	Own	Password
Users	May	Work	Offline	if	the	Remote	Server	Is	Not	Available
Users	Sign	on	Locally	to	Use	the	Framework
Users	Sign	on	to	a	Remote	Server	to	Use	the	Framework
Warn	before	(days)
Width

	
See	also:
Users
	

User	Details
This	tab	sheet	contains	properties:

Administrative	User
Caption
Email	Address
Groups	this	user	belongs	to
Log	off	Inactivity	Timeout
Log	on	Inactivity	Timeout
New	Password
RAMP	Password

RAMP	User
Temporary	Directory	on	PC
User	Is	Disabled
User	Profile
	

Visual	Styles
Use	this	tab	to	define	how	your	Framework	is	presented:

Note	that	not	all	Visual	Styles	tab	properties	are	available	for	all	object	types.
	
Visual	Style	Base	Style
Visual	Style	Protected	Fields	and	Areas
Visual	Style	Dark	Background	Small	Font
Visual	Style	Dark	Background	Large	Font
Visual	Style	Status	Bar	Fields
Visual	Style	URLs
Overall	Theme

End	User	can	change	theme
Before	using	visual	styles,	investigate	the	use	of	a	Overall	Theme.	You	may	be
able	to	get	the	appearance	you	want	with	fewer	changes.

Visualization
Use	this	tab	to	describe	how	the	table	data	will	be	presented	if	it	is	shown	in	a
combo	box	or	radio	buttons:

Displayed	Field
Sequence	Using
	

Web/RAMP	Details
Use	this	tab	to	set	design	and	run	time	properties	for	web	applications:

ASCII	Translation	Table	Name	and	Library

Caption
Client	CCSID
Close	Confirmation	Message
DBCS	Capable
EBCDIC	Translation	Table	Name	and	Library
Focused	Input	Field	Style
Generate	Web	Pages
IIP	–	Function	to	return	web	user	authorities
IIP	-	User	Signon	Function	Name
Languages
LANSA	Language	Code
Maximum	Web	Password	Length
Meta	Tag
RAMP	Javascript	Charset
Timeout	to	use	for	developers
Use	a	Webevent/WAM	for	Help
Web	Help	Function/Webroutine	Name
Web	Help	Process/WAM	Name
Web	Help	Window	Features
Web	Initial	Filter	Pane	height	(%)
Web	Initial	Filter	Pane	width	(%	of	right	panel)
Web	Initial	Navigation	Pane	width	(%)
Windows	Code	Page
	

Dialogs

Update	Server	from	Visual	LANSA	Workstation
If	your	Framework	is	enabled	for	Web	browser	applications,	this	form	is
presented	whenever	you	save	changes	you	have	made	to	your	Framework
design.

This	form	will	send	your	Framework	details	to	your	selected	LANSA	for	the
Web	server(s)	so	that	they	can	be	executed	as	part	of	a	Web	browser	application.
The	web	server(s)	to	which	the	details	will	be	sent	to	are	indicated	at	the	top	of
the	panel.	You	can	change	the	default	server	selection(s)	by	checking	or	un-
checking	the	server	name.			
Normally	the	Framework	will	automatically	check	the	correct	options	and	you
should	just	click	the	OK	button.
If	you	have	just	enabled	your	Framework	for	browser	applications	or	just
upgraded	your	Framework	version,	you	should	always	select	"Shipped	System
and	Demonstration	Objects"	and	"All	available	Images	(GIFs)"	the	very	first

time	that	you	save	your	changes	to	a	particular	web	server.		
When	you	click	the	OK	button	the	script	will	be	executed	to	upload	details	to
your	LANSA	for	the	Web	server(s).
While	this	is	happening,	a	Windows	command	window	may	be	displayed.	The
time	taken	will	depend	upon	the	options	you	have	selected	and	the	type	and
speed	of	the	communications	link	you	have	with	your	LANSA	for	the	Web
server.	When	the	script	has	completed	execution	the	window	is	displayed
showing	the	script	results.
You	should	scroll	through	the	results	checking	for	errors.
For	more	information	about	the	upload	script	and	your	associated	LANSA	for
the	Web	server(s)	refer	to	the	Developer	Preferences	–	Web	Server	tabs	in	your
Framework	properties	by	using	menu	options	(Framework)	->	(Properties).
The	options	available	on	this	form	are:
Current	Framework	Design	Details
RAD-PAD	Notes
Shipped	System	and	Demonstration	Objects
All	available	Images	(GIFs)

Current	Framework	Design	Details
Check	this	option	to	upload	your	Framework	design	and	associated	start	up	web
pages	to	your	LANSA	for	the	Web	server.	Normally	this	option	is	always
checked.		

RAD-PAD	Notes
Check	this	option	to	upload	your	RAD-PAD	notes	to	your	LANSA	for	the	Web
server.
You	can	choose	to	upload	all	existing	RAD-PAD	notes	or	only	the	ones	that	you
have	changed	since	you	last	saved	the	Framework	(within	the	current	design
session).	Normally	this	option	is	checked	automatically	by	the	Framework	and
you	would	only	ever	manually	check	it	to	force	an	upload	of	all	available	RAD-
PAD	notes	to	correct	a	synchronization	problem.		

Shipped	System	and	Demonstration	Objects
Check	this	option	to	upload	all	Framework	web	components	to	your	LANSA	for
the	Web	server.
This	option	is	normally	only	ever	checked	immediately	after	enabling	the
Framework	for	browser		applications	or	after	performing	a	Framework	version
upgrade.	Using	this	option	may	very	significantly	increase	upload	times.	

All	available	Images	(GIFs)
Check	this	option	to	upload	all	GIF	image	files	from	your	current	partition
EXECUTE	directory	to	your	LANSA	for	the	Web	server.	You	would	normally
only	select	this	option	immediately	after	enabling	the	Framework	for	browser	
applications	or	after	performing	a	Framework	version	upgrade.	Using	this
option	may	very	significantly	increase	upload	times.	

Execute	Framework	as	a	Web	Application

If	you	are	a	designer	and	your	Framework	is	enabled	for	web	applications	then
this	form	is	presented	when	you	use	the	(Framework)	then	(Execute	as	Web
Application	…)	menu	options.
It	allows	you	to	launch	your	Framework	as	web	application.	
Simply	choose	the	options	you	want	to	use	and	click	the	OK	button.	The	options
available	on	this	form	are:
Choose	Browser
Start
RAMP	Application	Testing
Turn	Tracing	On
In	Language
Touch	Device
URL
	

Choose	Browser
See	Using	VLF-WEB	Applications	with	Safari,	Firefox	or	Chrome.
Choose	the	browser	in	which	you	want	to	execute	the	Framework:
Chrome
Firefox
Safari
Internet	Explorer
	
.

Start
Elect	to	start	your	application	as	VLF.WEB	(Web	Browser)	or	VLF.NET	(.NET
application).	For	VLF.WEB	applications	you	may	choose	whether	to	start	your
application	inside	an	Internet	Explorer	window	or	in	its	own	window.							

RAMP	Application	Testing
This	group	box	appears	if	you	are	executing	an	application	that	may	use	RAMP.
The	server	name	should	specify	a	System	i	server	that	has	been	previously
defined	as	the	RAMP	server.	The	user	and	password	fields	will	be	used		to
connect	the	System	i	server	when	required.					
Note:	Using	this	option	adds	the	user	details	to	the	URL	that	will	be	opened	in
your	web	browser.	This	is	a	simple	and	convenient	way	to	perform	RAMP
application	testing.	However,	it	would	be	unusual	to	start	a	RAMP	application
this	way	in	an	end-user	application.					
	

Turn	Tracing	On
Select	this	option	to	trace	your	application.	A	trace	window	will	be	displayed
and	it	will	show	you	what	your	application	is	doing	on	the	client	(within	IE)	and
on	the	server.	Refer	to	the	"Debugging	your	Applications"	section	for	more
details	about	tracing.
Selecting	this	option	is	identical	to	adding	?Trace=Y	to	end	of	any	Framework
URL.	
	

In	Language
Choose	the	language	in	which	the	Framework	is	to	be	executed.
This	option	applies	to	VLF.WEB	and	VLF.NET	applications.
This	property	is	in	the	Web/RAMP	Details	tab.

	

URL
This	is	the	URL	that	will	be	opened	when	you	click	the	OK	button.	As	you
change	the	options	on	this	form	the	URL	will	be	changed	to	reflect	your
selections.
The	URL	is	an	input	area	so	that:
It	easy	for	you	to	copy	the	URL	(for	example	to	email	it	someone	else	who
you	want	to	execute	your	Framework	or	to	make	it	the	command	executed	by
an	icon	on	your	desktop).
So	that	you	can	add	special	options	to	it.	For	example,	your	product	vendor
might	ask	you	to	add	?Trace=System	to	the	end	of	the	URL	when	attempting
to	diagnose	a	problem.
	

Touch	Device
Adds	TOUCH=Y	to	the	URL.
Using	TOUCH=Y	enables	framework	functionality	to	make	it	more		touch
friendly.	For	an	overview	please	refer	to	Touch	Device	Considerations.
If	the	TOUCH	parameter	is	not	present	in	the	URL	the	VLF	will	guess	whether
it	is	running	on	such	device.
	

Properties

Add	Fields	from	this	Physical	File
Specify	the	name	of	a	physical	file	from	which	you	want	to	add	fields	to	this
definition.
This	is	a	Program	Coding	Assistant	property.

	

Additional	Columns	for	Building	AColumn	and	NColumn	Values
Specify	any	additional	columns	you	wish	to	add	to	the	instance	list	associated
with	this	business	object.
Any	field	name	can	be	specified	in	this	list	(even	ones	not	currently	defined	in
the	LANSA	data	dictionary).	The	fields	specified	do	not	necessarily	have	to	be
columns	in	any	physical	file	that	you	specify	at	the	top	of	the	form.
See	Visual	Identifiers	and	Programmatic	Identifiers	for	more	details	of	instance
lists.
This	is	a	Program	Coding	Assistant	property.

	

Address	for	Error	Notification
Specify	here	the	email	address	to	which	a	notification	of	fatal	errors	in	your
application	are	sent.
The	Framework	includes	standardized	Application	Error	Handling.	If	you	want
the	error	handler	to	allow	error	details	to	be	emailed	by	your	end-users	specify
the	email	address	here.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Framework	Details	tab.

	

Administrative	User
Use	this	option	to	indicate	which	users	are	administrative	users.
An	administrative	user	is	a	user	who	can	maintain	the	lists	of	user	profiles	and
servers.	They	use	UF_ADMIN	(or	equivalent)	as	the	entry	point	to	the
Framework.
This	option	is	only	checked	by	the	Framework	when	the	user	must	sign	on	to
use	the	local	database	and	the	user	initiated	the	Framework	using	UF_ADMIN
(or	equivalent).		Users	accessing	the	Framework	through	UF_DESGN	(or
equivalent)	are	not	checked	to	be	administrators.
Users	accessing	the	Framework	through	UF_DESGN	or	UF_ADMIN	(or
equivalent)	who	use	the	Framework	in	connect	to	server	mode	or	who	do	not
sign	in	are	not	checked	to	see	if	they	are	administrators.	
This	property	is	in	the	User	Details	tab.

	

Advise	User	With	a	Message
This	option	only	applies	to	Windows	Framework	applications.			
When	the	user	makes	an	unsuccessful	signon	attempt	that	exceeds	the	maximum
allowed,		a	status	bar	message	indicating	that	this	user	profile	has	been	disabled
is	displayed.	Further	attempts	to	sign	on	as	this	user	profile,	with	or	without	the
correct	password,	will	result	in	the	same	message.
To	re-enable	this	user	profile,	the	administrator	must	deselect	the	User	Is
Disabled	checkbox	for	this	user	in	the	User	Details	tab.
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

AJAX	Page	(HTML	File)
An	AJAX	page	is	an	HTML	document.	Typically	it	contains	JavaScript	to
manage	interactions	between	the	application	server	and	the	user	interface.
See	Framework-AJAX	Applications.
This	property	is	in	the	Commands	Enabled	tab	and	the	Filter	Snap-in	Settings	tab.

	

Alignment	of	Image	on	Form
Select	where	the	image	will	be	displayed	on	the	Sign	On	form.	You	can	choose
from	Centred	(default),	Left	or	Right.
If	a	web	page	is	used,	this	property	is	ignored.
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

Allow	Dynamic	Overriding	of	Default	Application	Texts
Specifies	whether	default	application	texts	(such	as	User	and	Password	labels	in
the	Sign	On	dialog)	can	be	overridden	dynamically	in	the	production
environment.

The	default	texts	are	overriden	by	modifying	the	VF_MULTI_YYY.js	file
(where	YYY	is	the	language	code)	and	placing	it	on	the	webserver.
In	the	development	environment,	this	file	can	be	found	on	the	LANSA	partition
execute	folder.
Note	that	this	file	needs	to	be	present	in	the	production	environment.
This	property	is	in	the	Framework	Details	tab.

	
	

Allow	Generic	Searching
Check	this	option	if	the	filter	is	to	support	generic	searching.
Technically	this	option	simply	means	that	SELECT	commands	generated	will
use	the	GENERIC(*YES)	parameter.
Also	see	Select	the	Keys	of	the	Selected	View	to	be	used	for	Search	Operations.
This	is	a	Program	Coding	Assistant	property.

	

Allow	Float
Uncheck	this	option	in	situations	where	commands	associated	with	this	object
are	not	allowed	to	float	free	in	a	separate	form.
For	example,	if	you	are	using	a	complex	ActiveX	control	on	your	form	and	you
find	that	it	does	not	function	correctly	when	floating	free,	use	this	option	to	stop
the	float	operation.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Command	Display	tab.

	

Allow	IBM	i	password	change
Check	this	option	to	allow	IBM	i	password	change.	When	this	property	is
enabled,	the	Change	IBM	i	Password	button	appears	in	the	Logon	panel	in	both
Windows	and	Web.	
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

Allow	in	Windows
Uncheck	this	option	if	you	do	not	want	this	application,	business	object	or
command	to	ever	be	usable	in	Windows	applications.				
Note	that	when	you	execute	an	application	in	Design	mode,	all	command
handlers	and	filters	are	visible,	regardless	of	whether	they	have	been	enabled	for
Windows.	To	test	how	your	application	will	appear	to	your	end-user,	execute	it
as	an	end-user.
This	property	is	in	the:
The	Commands	Enabled	tab
The	Identification	tab
	
	

	

Allow	Instance	List	to	be	sent	to	MS-Excel
This	option	allows	end-users	to	send	the	contents	of	the	instance	list	to	a
Comma	Separated	Variable	(CSV)	file.	If	the	end-user	has	MS-Excel,	then	this
will	automatically	display	the	data	as	a	spreadsheet.	The	user	can	then	save	the
spreadsheet	where	ever	they	want.
If	this	option	is	enabled,	a	new	menu	option	becomes	available	when	the	end-
user	right	mouse	clicks	on	the	instance	list,	called	Send	to	MS-Excel.	If	the	end-
user	takes	this	option,	the	current	visible	contents	of	the	instance	list	are	made
into	a	CSV	file.
The	column	and	record	ordering	is	the	same	as	the	user	sees	it	on	the	instance
list.
Visible	child	records	are	included	but	not	indented.
If	a	side-by-side	secondary	instance	list	is	visible	and	is	showing	data	this	data
will	also	be	included	in	the	CSV	file.
Default	is	checked	for	new	business	objects,	and	unchecked	for	pre-existing
business	objects.
Applies	to	Windows.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	
	

Allow	Multiple	Selection
When	the	input	method	is	an	Alphanumeric	or	Numeric	Fixed	List	use	this
option	to	indicate	whether	multiple	items	can	be	chosen	from	the	fixed	list.
This	property	is	in	the	Custom	Properties	tab.

	

Allow	Multiple	Selections
This	option	indicates	whether	the	user	is	allowed	to	concurrently	select	more
than	one	item	from	an	instance	list.
The	default	is	that	they	are	allowed	to.	This	option	is	only	applicable	to
VLF.WIN	applications	using	the	shipped	instance	list	browser.
If	an	instance	list	contains	peer	or	child	business	objects,	the	Multiple	Selections
option	for	the	primary/root	business	object	is	used.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Allow	on	Web
Uncheck	this	option	if	you	do	not	want	this	application,	business	object	or
command	to	ever	be	usable	in	Web	browser	applications.			
Note	that	when	you	execute	an	application	in	Design	mode,	all	command
handlers	and	filters	are	visible,	regardless	of	whether	they	have	been	enabled	for
Web.	To	test	how	your	application	will	appear	to	your	end-user,	execute	it	as	an
end-user.
This	property	is	in:
The	Commands	Enabled	tab
The	Identification	tab
	

	

Allow	Panes	to	be	Shrunk	and	Expanded
Applies	to	Windows	and	.NET.
In	Windows	Framework	applications:
Use	this	option	to	indicate	whether	your	application	will	allow	the	shrinking	and
expansion	of	the	main	Framework	panes.	When	this	option	is	enabled	the	major
pane	areas	of	the	Framework	display	a	small	close	button.
For	example,	here	is	a	Framework	application	displaying	the	shrink/expand
option	in	the	navigation	pane,	the	filter	pane	and	the	instance	list	pane:		

	
The	user	may	click	the	button	to	shrink	the	pane	when	they	do	not	need	to	use
it.
For	example,	here	the	user	has	shrunk	the	filter	pane	by	clicking	the	button	so
that	the	instance	list	is	easier	to	work	with.	The	filter	pane	is	reduced	to	a	slim
vertical	bar	displaying	>>.	To	expand	the	pane	again	the	user	clicks	the	>>
button:

	
If	the	filter	pane	was	positioned	above	the	instance	list	pane	like	this:

	
Then	clicking	the	‘shrink’	button	causes	it	to	shrink	to	a	slim	horizontal	bar
containing	the	words	‘Expand	Search	filter	for	Employees”.	Clicking	on	the	bar
expands	the	filter	back	into	its	normal	position	again	when	it	needs	to	be	used.

	
Commonly	the	shrink	button	is	used	to	hide	the	navigation	pane	while	working:

	
By	clicking	the	navigation	pane’s	shrink	button	it	is	reduced	to	a	slim	bar	down
the	left	hand	edge	of	the	form,	yielding	more	application	working	space	on	the
form:

	
In	VLF.NET	applications	this	option	controls	whether	panes	can	be	pinned	and
unpinned.
This	property	is	in	the	Framework	Details	tab.
	

	

Allow	Search/Recently	Used	Limit
Applies	to	Windows	and	.NET	applications.
This	option	defines	how	many	recently	used	business	objects	should	be
remembered.	The	minimum	sensible	value	is	1	and	the	maximum	is	100.	
For	more	information	see	Quick	Find	Box	on	the	tool	bar.
This	property	is	in	the	Framework	Details	tab.

	
	

Allow	Selection	from	Navigation	Pane
Uncheck	this	option	if	you	do	not	want	this	business	object	to	appear	in	the
navigation	pane	(see	Framework	Window).	Typically	this	option	is	unchecked
for	business	objects	that	should	not	be	directly	selectable	by	themselves	(objects
with	a	relationship	type	Child	in	Instance	List/Relationships	tab).
For	example,	an	ORDER-ITEM	business	object	may	be	defined	in	the
Framework,	but	it	is	not	something	that	would	be	directly	selectable	by	a	user.
Normally	an	ORDER-ITEM	would	only	be	accessible	via	its	parent	business
object	ORDER.								
Also	see	Work	with	Hidden	Child	Objects.
This	property	is	in	the	Identification	tab	and	the	Instance	List/Relations	tab.

	
	

Allow	Side	by	Side	Display
Use	this	option	to	specify	that	a	separate	instance	list	is	displayed	for	this	child
object	to	the	side	or	below	the	main	instance	list..
In	this	example	the	option	has	been	selected.	When	you	click	on	the	Employees
node	in	the	tree,	the	list	of	associated	employees	appear	under	it	like	this:

	
By	default	in	side-by-side	display	the	separate	instance	list	actually	appears
underneath.	To	make	it	side	by	side,	use	the	right	mouse	menu	and	then	select
Position	and	then	Side	by	Side:

This	is	the	type	of	display	layout	you	will	see:

		
The	advantage	of	this	type	of	display	is	that	different	children	can	have	quite
different	sets	of	additional	columns	to	their	parent,	or	to	each	other.
The	side	by	side	column	layout	details	come	from	the	currently	selected	child
business	object.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Allow	this	Object	to	be	Opened	in	a	New	Window
Use	this	option	to	control	whether	this	object	can	be	opened	in	a	separate
window.
If	an	application	is	not	allowed	to	be	opened	in	a	separate	window,	the	views	or
business	objects	it	contains	cannot	be	opened	in	a	separate	window.		
If	the	entire	Framework	can	be	opened	in	a	secondary	window,	implicitly	the
user	can	access	secondary	instances	of	any	application,	view	or	business	object
within	it	by	specifically	navigating	to	them.	So,	to	restrict	access	to	individual
business	objects	you	should	make	sure	that	the	option	is	also	controlled	at	the
Framework	level.
This	option	is	only	applicable	if	the	Show	the	'Windows'	Menu	in	this
Framework	option	is	selected	in	the	Framework.	This	option	only	applies	to
Windows.
The	options	are:

Never This	object	cannot	be	opened	in	another	window	by	an	end-
user.

Manually This	object	can	be	manually	opened	in	another	window	by	an
end-user.	They	do	this	by	using	the	Window	->	Open	in	a	New
Window	main	or	popup	menu	options.

Automatically This	object	should	be	opened	in	a	new	window	automatically
when	it	is	selected	in	the	navigation	pane.	In	effect	this	means
that	this	object	will	always	operate	in	a	separate	window	to	the
one	it	is	launched	from.		

Automatically
or	Manually

This	object	should	be	opened	in	a	new	window	automatically
when	it	is	selected	in	the	navigation	pane,	and	it	can	be
manually	opened	by	an	end-user.

	

Note	that	none	of	these	options	have	any	impact	on	the	ability	of	developers	to
programmatically	open	new	windows	by	using	the	avShowWindow	method	(see
Programmatically	Creating	and	Managing	Windows).
This	property	is	in	the	Identification	tab.
	

	

Allow	User	to	Clear	Instance	List
Check	this	option	if	the	generated	code	is	to	include	an	option	that	allows	the
end-user	to	clear	the	instance	list.
By	allowing	end-users	to	selectively	clear	the	instance	lists	(and	by	providing	an
array	of	different	filters)	the	end-user	can	build	instance	lists	that	match	quite
complex	business	criteria.	
E.g.:	A	list	of	all	employees	who	work	in	the	ADM	or	MKT	departments,	and
all	employees	who	started	work	in	the	first	3	months	of	this	year,	is	easy	using	2
very	simple	employee	filters.				
This	is	a	Program	Coding	Assistant	property.

	

Allow	Users	to	Switch	Views
Select	this	option	to	let	the	user	choose	how	to	display	the	Application	Bar.
This	property	is	in	the	Framework	Details	tab.

	
	

Alter	Development	Status
Use	this	option	to	set	a	development	status	indicator	and	notes	for	the	object.
See	Development	Status	Feature.
This	property	is	in:
The	Commands	Enabled	tab
The	Identification	tab
	

	
	

As	the	Default	Command
Enable	this	command	as	the	Default	Command.
When	a	command	is	enabled	as	the	default	command,	it	is	executed
immediately,	when	an	application,	business	object	or	business	object	instance	is
selected.
You	should	only	have	one	default	command	for	any	application	or	business
object.
This	property	is	in	the	Commands	Other	Options	tab.

	

ASCII	Translation	Table	Name	and	Library
This	is	the	name	and	library	of	the	System	i	translation	table	that	should	be	used
to	perform	translations	to	ASCII	format.
The	table	is	only	used	in	System	i	Web	browser	applications	and	only	during	the
sign	on	process.
The	default	value	for	this	property	is	*JOB	for	RDMXL	enabled	partitions,
otherwise	it	is	QASCII.		The	default	System	i	library	name	is	QSYS.
*JOB	means	the	translation	table	will	be	generated	based	on	the	client	code
page	and	the	System	i	server	job's	CCSID.	
This	property	is	in	the	Web/RAMP	Details	tab.

	

Associated	AJAX	Function
AJAX	functions	are	normal	RDML	or	RDMLX	functions	which	receive
information	from	and	return	information	to	AJAX	page(s).
See	Framework-AJAX	Applications.
This	property	is	in	the	Commands	Enabled	tab	and	the	Filter	Snap-in	Settings	tab.

	

Automatic	Save	Time	in	Minutes
Specify	here	how	often	you	want	the	Framework	settings	to	be	saved
automatically.
When	you	are	prototyping,	it	is	helpful	to	have	the	settings	saved	fairly
frequently,	so	that	you	do	not	lose	information	in	case	of	a	problem.
If	you	do	not	use	the	automatic	save	(by	setting	this	value	to	zero),	the	settings
are	saved	when	you	close	the	Framework.
This	property	is	in	the	Framework	Details	tab.

	

Automatically	Enable	for	New	Applications
Select	this	option	to	automatically	enable	this	command	for	all	new
applications.
This	property	is	in	the	Commands	Other	Options	tab.

	

Automatically	Enable	for	New	Business	Objects
Select	this	option	to	automatically	enable	this	command	for	all	new	business
objects.
This	property	is	in	the	Commands	Other	Options	tab.

	

Automatically	Enable	for	New	Business	Object	Instances
Select	this	option	to	automatically	enable	this	command	for	all	new	business
object	instances.
This	property	is	in	the	Commands	Other	Options	tab.

	

Automatically	Increment	when	Saving
If	this	option	is	checked,	the	revision	number	will	be	automatically	incremented
when	you	save	your	Framework.
This	property	is	in	the	Framework	Identification	tab.

	

Bitmap
Choose	a	bitmap	from	the	list.	The	bitmap	will	be	assigned	to	the	currently
selected	object.
A	bitmap	for	an	application	is	displayed	in	the	right-hand	corner	of	the
Framework	window.	The	bitmap	for	a	command	is	displayed	in	the	toolbar
button	if	it	has	one.
You	may	want	to	review	How	do	I	enrol	my	own	bitmaps	and	icons?.
This	property	is	in	the	Framework	Help	About	tab	and	the	Bitmaps	and	Icons	tab.

	
	

Blank	Lines	Around	Comments
Specify	the	number	of	blank	lines	in	generated	code	that	you	want	to	precede
single	comment	lines	or	comment	blocks.	Typical	values	are	0,	1	or	2.
This	is	a	Program	Coding	Assistant	property.

	

Business	Object	Command
Select	this	option	if	you	want	the	selected	command	to	apply	to	the	business
object	itself.	Business	object	commands	are	displayed	when	you	right-click	the
business	object.
Whether	a	command	is	best	implemented	as	applicable	to	the	business	object
itself	or	its	instances	depends	on	the	context.
For	example,	let's	assume	you	have	a	business	object	Employee,	with	instances
such	as	'employee	A1234	Veronica	Brown'.		To	allow	the	user	to	enter	new
employees,	you	would	create	the	command	New.	Logically	this	command
applies	to	the	business	object	Employee,	so	you	would	make	it	a	business	object
command.
To	view	details	of	an	individual	employee	(in	other	words	an	instance	of	the
Employee	business	object)	you	could	add	a	command	Details.	You	need	to
make	this	command	an	instance	command,	because	it	will	display	details	of	the
individual	employees	(such	as	phone	number,	salary	etc.),	not	about	the
business	object.	So	for	Details	you	would	select	the	Instance	Command	option.
This	property	is	in	the	Commands	Enabled	tab.
	

Business	Object	List
This	list	shows	all	the	business	objects	in	the	Framework.	Use	it	to	select
objects	to	be	related	with	the	business	object	currently	being	edited.
The	relationships	can	be	peer-to-peer	or	child	relationships.
For	more	information,	see	Different	Types	of	Objects	in	Instance	List	(Sub
objects).
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.

	

Bypass	Locks
VLF.WIN	only.
This	option	can	be	used	to	indicate	that	this	command	handler	is	not	blocked
from	execution	by	any	form	of	Framework	or	RAMP	screen	locking.
It	is	intended	for	use	by	simple	framework	level	command	handlers	like
calculators	that	are	initiated	by	buttons	on	the	button	bar.
It's	important	to	understand	that	when	you	allow	a	command	handler	to	bypass
locks,	the	command	needs	to	be	immediately	accessible	to	the	user	when	a
Framework	RAMP	lock	is	in	place	(eg:	on	the	button	bar,	on	visible	tab	or	on	a
right	mouse	menu).	
When	a	lock	is	in	place	a	user	cannot	navigate	through	Framework	interactions
to	ultimately	make	a	bypass	locks	command	accessible	-	that	would	require
prescient	software.
This	property	is	in	the	Commands	Enabled	tab.
	

	

Caption
Enter	here	the	caption	for	this	object.	Caption	is	the	visible	name	of	the	object.
How	the	caption	is	shown	depends	on	the	type	of	object:
For	an	application	it	is	the	text	displayed	for	the	application	under	its	icon	in
the	Application	Bar.
For	a	business	object	it	is	the	text	displayed	under	its	icon	in	the	Business
Object	Bar.
For	a	command	it	is	the	name	of	the	command	displayed	in	menus	and	in	the
command	tab.
For	a	filter	it	is	the	name	of	the	filter	displayed	in	the	filter	tab.
For	a	language	it	specifies	the	caption	of	the	language.
For	a	custom	property	it	specifies	the	caption	to	be	associated	with	the	custom
property.	This	caption	is	shown	to	the	administrator.
	
This	property	is	in:
The	Identification	tab
The	User	Details	tab
The	Web/RAMP	Details	tab
	

	

Caption	(Singular)
Enter	here	the	caption	of	your	business	object	in	singular.
Depending	on	the	context,	the	Framework	displays	the	caption	of	the	business
object	either	in	singular	or	plural	(for	example	'Customer'	and	'Customers').
For	instance	the	command		handler	title	area	shows	the	caption	in	singular.		The
plural	form	is	used	in	the	navigation	area	and	in	the	instance	list	heading	or	sub-
heading.
This	property	is	in	the	Identification	tab.

	

Caption	with	Accelerator
The	captions	for	commands	are	presented	in	contexts	that	allow	them	to	be	used
with	accelerator	keys.	For	example,	you	might	specify	a	command	with	caption
"Details"	and	the	accelerated	caption	"De&tails"	which	would	appear	as
"Details"	and	allow	Alt-E	to	be	used	to	invoke	the	command.		
This	property	is	in	the	Identification	tab.

	
	

Certificate	File	(PFX)
Applies	to	.NET	applications.
If	you	have	certificate	file	to	digitally	sign	your	VLF.NET	applications,	specify
its	full	path	and	name	here,	otherwise	leave	this	field	blank.	The	certificate	file
should	contain	a	PKCS#12	(or	Personal	Information	Exchange)	certificate	and
the	file	would	normally	have	.pfx	extension.
The	verify	button	may	be	used	to	confirm	that	the	file	specified	exists	and	is
accessible.
The	verify	button	does	not	verify	that	the	file	is	a	valid	certificate	file.
	This	property	is	in	the	Developer	Preferences	–	Web	Server	tab.

	

Certificate	File	Password
Applies	to	.NET	applications.
If	your	certificate	file	is	encrypted	and	requires	a	decryption	password,	specify
the	password	here,	otherwise	leave	this	field	blank.
Any	password	you	specify	here	is	stored	in	the	developer’s	preferences	XML
document	in	an	encrypted	format.
This	property	is	in	the	Developer	Preferences	–	Web	Server	tab.

	

Change	Password	IIP
Applies	to	WEB	and	WIN	applications.
This	is	the	shipped	Change	Password	Imbedded	Interface	Point	(IIP)	which
handles	requests	to	change	a	user's	IBM	i	password.
The	default	function	is	named	UFU0006	in	process	UF_SYSBR.	It	is	shipped
with	source	code.	Read	the	comments	in	the	source	code	to	learn	how	to	use	it.
Note:	the	nominated	function	MUST	be	RDMLX	enabled	because	this	feature	is
only	supported	by	RDMLX.
For	more	information	see	Imbedded	Interface	Points	(IIPs).
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

Check	Password	Expiry
Check	this	box	to	compare	the	password’s	expiry	date	with	the	current	date.
Specify	the	number	of	days	before	the	expiry	date	to	start	issuing	warnings	in
Warn	before	(days).
	This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

Check	Still	Connected	Before	Doing	Database	IO
Select	this	option	if	you	want	to	include	code	that	checks	the	connection	status
before	any	database	I/O	commands	are	executed.		
This	is	a	Program	Coding	Assistant	property.

	

Client	CCSID
Type	in	a	5	character	long	valid	IBM	i	CCSID.
Remarks:
This	value	is	only	valid	for	WEBEVENT	transactions.
The	value	must	be	exactly	5	characters	long.	Prefill	with	zeroes	if	required.
WAM	components	always	use	01208	(UTF-8).
When	in	doubt	always	try	using	00000.

	
This	property	is	in	the	Web/RAMP	Details	tab.

	

Client	Server	Translation	Table
For	System	i	servers	only,	specify	the	client	to	server	translation	table	to	be
used.
Note	that	these	values	are	automatically	defaulted	from	the	client	partition
definition.
The	default	translation	table	used	for	Framework	server	definitions	using
RDMLX	partitions/connections	is	*JOB.
Ensure	that	your	client	and	server	partition	definitions	match.
This	property	is	in	the	Server	Details	tab.

	

Close	Confirmation	Message
Enter	text	for	a	confirmation	message	for	end-users	closing	the	VLF.	The
message	will	be	shown	before	the	VLF	is	closed.
If	you	do	not	want	a	confirmation	message	to	be	shown,	leave	this	field	blank.
This	property	is	in	the	Web/RAMP	Details	tab.

	

Codebase
Use	this	property	to	add	a	reference	to	the	newlook.cab	file	on	your	webserver
for	when	the	application	is	deployed.	This	file	hosts	the	newlook	ActiveX
control	(nlocx.dll)	and	the	update	program	(nlupdate.exe).
Internet	Explorer	will	use	the	newlook.cab	file	to	download	and	install	the
newlook	ActiveX	control	if	it	is	not	already	on	the	user’s	PC.
References	to	the	newlook.cab	file	must	specify	the	subdirectory	in	which	it
resides	on	your	web	server	(which	is	below	the	directory	containing	the
VF_SY120.js	file).

Alternatively,	you	can	specify	this	value	as	a	URL	parameter	when	starting	your
application:
		
+NLCODEBASE=
	

This	property	is	in	the	Server	Details	tab.

	

Code	Table	Data
The	read-only	grid	shows	the	data	in	the	table.	To	edit	or	add	table	data,	click	on
the	row	you	want	to	edit	or	add	and	then	edit	the	values	in	the	right	hand	panel.
To	save	the	values	you	have	edited,	either	click	on	a	different	row	or	press	the
Save	button.	If	any	validation	errors	result	from	the	save	they	will	be	displayed
in	the	Framework	status	bar.
You	cannot	edit	key	values	once	the	row	has	been	successfully	saved.
If	the	table	is	a	read	only	table	you	cannot	edit	the	values	in	the	right	hand
panel.
Save	Button
The	Save	button	saves	the	selected	row.
It	passes	the	data	for	the	current	row	to	the	table	data	handler	function,	with	the
operation	code	of	INSUPD	-	see	the	source	for	function	UF_SYSBR/UFU0011
for	an	example	of	how	the	table	data	handler	does	the	save.
Delete	Button
The	Delete	deletes	the	selected	row.
It	passes	the	data	for	the	current	row	to	the	table	data	handler	function,	with	the
operation	code	of	DELETE	-	see	the	source	for	function	UF_SYSBR/UFU0011
for	an	example	of	how	the	table	data	handler	does	the	save.
Replace	All	Button
The	Replace	All	button	deletes	all	existing	table	data,	and	then	saves	all	the	data
displayed.
It	passes	the	operation	code	of	DELETEALL	to	the	table	data	handler	function,
which	deletes	all	table	data	for	the	function,	and	then	passes	the	data	for	each
row	to	the	table	data	handler	function	with	the	operation	code	of	INSUPD	-	see
the	source	for	function	UF_SYSBR/UFU0011	for	an	example	of	how	the	table
data	handler	handles	DELETEALL	and	INSUPD.
	
This	property	is	in	the	Code	Table	Data	tab.

	
	

Code	Table	Definition/	Reusable	Part	Data	Handler	(ID)
Enter	the	name	(identifier)	of	the	Reusable	Part	Code	Table	Data	Handler.
This	property	is	only	relevant	when	the	Use	a	Reusable	Part	check	box	is
checked.	The	Framework	will	use	this	LANSA	component	as	the	Code	Table’s
data	handler.	See	UF_TDH01	–	Default	Table	Data	Handler	for	an	example.
This	property	is	in	the	Code	Table	Definition	tab.

	

Code	Table	Definition/	Use	a	Reusable	Part
Check	this	box	to	use	a	reusable	part	as	the	VLF	Code	Table	Data	Handler.	If
this	option	is	checked,	at	run	time	the	Framework	will	look	for	a	reusable	part
when	expanding	an	instance	list	entry.
If	this	option	is	unchecked,	the	Framework	will	look	for	a	function.
The	reusable	part	must	have	ancestor	#VF_AC024.
The	component	should	redefine	the	uLoadTableData	and	uSaveTable	methods
as	a	minimum.	See	UF_TDH01	–	Default	Table	Data	Handler	for	an	example.
This	property	is	in	the	Code	Table	Definition	tab.

	

Code	Table	Field	Definitions
This	contains	the	field	definitions	for	the	code	table.	When	editing	field	data,
there	will	be	a	column	for	every	field	defined	in	this	grid.
Each	entry	in	this	grid	can	have	the	following	options:

Field
Name

The	choice	for	this	value	depends	on	the	kind	of	Table	Data
Handler	you	are	using.
For	Tables	with	data	sourced	from	user	defined	files	it	is	convenient
to	give	the	Table	field	the	same	name	as	the	file	field.	For	Tables
with	data	sourced	from	the	generic	storage	file	it	does	not	matter	as
long	as	the	name	is	unique	within	this	table	and	is	non-blank.
	

Key This	specifies	this	field	as	an	identifying	key	field	for	the	table.
Its	key	number	(e.g.	whether	its	AKey1	or	AKey2)	is	determined
by	its	sequence	in	the	grid,	relative	to	the	other	key	fields.
There	can	be	up	to	5	keys,	and	they	can	be	either	Numeric	or
Alphanumeric.	The	key	fields	must	be	chosen	so	that	they	uniquely
identify	a	table	data	row.
Alphanumeric	keys	can	be	up	to	32	characters	long.
Numeric	keys	must	fit	within	a	15,5	decimal	field.
	

Caption The	field	caption	is	used	to	identify	the	field	when	editing	data	or
selecting	a	field.
	

Type: The	field	type	-	Alpha	or	numeric
	

Max
Length

The	maximum	length	a	value	for	this	field	can	be.
Note:	Alpha	key	fields	should	never	be	more	than	32	characters.
Numeric	key	fields	should	fit	within	a	field	of	15,	5
	

Decimals The	number	of	decimal	places	for	numeric	fields.

Upper Values	in	this	field	should	always	be	upper	case

Case
Only

	

Move	Up
The	button	changes	the	sequence	of	a	field	definition.
The	relative	displayed	sequence	determines	the	key	sequence	for	key	fields

	

Move	Down
The	button	changes	the	sequence	of	a	field	definition.
The	relative	displayed	sequence	determines	the	key	sequence	for	key	fields
	
Delete
The	button	deletes	a	field	definition	from	this	Table
	
This	property	is	in	the	Code	Table	Definition	tab.

	
	

Columns	for	Instance	Lists
This	grid	allows	you	to	specify	column	details	used	by	the	standard	shipped
instance	lists.
If	you	have	created	your	own	snap-in	instance	list	(an	option	for	Windows
applications),	then	none	of	the	details	specified	in	this	grid	apply.
Use	these	values	to	control	how	instance	list	values	are	displayed:
Column	Sequence:	Zero	here	means	that	this	column	will	not	be	displayed.
Any	other	value	determines	where	this	column	will	be	displayed	relative	to
other	displayed	columns	from	left	to	right.	
Column	Type:	This	is	the	identifier	that	the	Framework	uses	to	determine
which	column	to	put	a	value	into	when	it	extracts	information	from	the
instance	list.	Additional	columns	must	be	used	contiguously	within	type	(i.e.:
you	can't	use	additional	alphanumeric	columns	1,	4	and	5	in	you	programs.
You	must	use	1,2	and	3,	even	if	you	choose	to	display	just	columns	1	and	3).
Column	Caption:	This	is	the	heading	that	will	be	shown	at	the	top	of	this
column	on	the	instance	list.
Column	Width:	This	is	the	percentage	width	that	this	column	will	have	when
displayed	in	the	instance	list.	A	zero	value	means	use	the	remainder	of	the
instance	list.	If	you	don't	want	a	column	to	appear,	set	its	Column	Sequence	to
zero.	
Column	Decimals:	This	is	the	number	of	decimal	places	that	will	be	shown,
for	columns	of	type	additional	numeric.
Edit	Code:	Edit	codes	can	be	applied	to	numeric	additional	columns.	To	set	an
edit	code	for	a	numeric	value,	select	the	edit	code	from	the	dropdown	on	the
instance	list	definition	grid.		The	edit	code	identifier	appears	first	followed	by
an	example	of	the	resulting	display	format.	The	edit	codes	available	map	to	the
standard	LANSA	codes	1,2,3,4,A,B,C,D,J,K,L,M,N,O,P,Q,Y	and	Z.	Default	is
no	edit	code	is	applied.	Note	that:	

This	feature	is	for	VLF-WIN	only.
Perfect	real	or	implied	visual	decimal	point	alignment	between	positive
and	negative	values	may	not	be	achievable.	Depending	upon	the	font
being	used	the	visual	impact	may	be	better	or	worse.						
Values	sent	to	MS-Excel	may	not	be	interpreted	as	numeric	values
because	trailing	CR,	“-“	or	breaking	space	pad	characters	(X0A)	may
not	be	automatically	considered	to	be	numeric	content	by	MS-Excel.		

Date/Time	Output	Format:	Select	the	output	format	for	Date/Time	additional
columns.	The	available	formats	are	for	both	Date	and	DateTime	values	and
correspond	to	all	the	formats	available	for	the	AsDisplayString	intrinsic
function	for	both	RDMLX	Date	and	DateTime	fields.	The	default	value
is	eight	character	system	format,	SYSFMT8.	This	property	is	only	applied	to
Date/Time	additional	columns.
UTC	Conversion:	Change	this	property	if	a	Coordinated	Universal	Time
(UTC)	conversion	is	required	for	the	DATETIME	value	shown	on	the	instance
list.	The	default	value,	Local	->	Local,	represents	no	conversion.	The	value
Local	->	UTC	assumes	that	the	value	added	to	the	instance	list	is	local	time
and	removes	the	UTC	offset	from	that	value	and	displays	the	converted
DATETIME	value	(now	UTC)	on	the	instance	list.	Similarly,	the	value	UTC	-
>	Local	assumes	a	UTC	value	was	added	to	the	instance	list	and	coverts	that	to
local	time.	This	property	is	only	applied	to	Date/Time	additional	columns	with
DATETIME	values.
	
For	example,	the	Employees	business	object	has	a	Visual	ID1	of	the	employee
name,	a	Visual	ID	2	of	the	employee	code/ID	and	additional	alphanumeric	and
numeric	columns	defined.	You	might	enter	details	into	the	grid	like	this:

This	causes	the	shipped	instance	list	to	display	an	instance	list	like	this	(web	or
Windows)

Note	that	at	run	time,	for	Windows	applications	only,	the	end-user	may	resize

columns	or	even	change	the	order	of	columns	(using	drag	and	drop),	and	the
Framework	will	remember	these	changes.	So	these	settings	are	just	a	starting
point,	for	Windows	Frameworks.
Windows	applications	also	have	the	option	of	using	a	snap	in	instance	list,
instead	of	the	shipped	instance	list.	To	add	more	features	to	your	displayed
instance	list	you	should	investigate	using	your	own	snap-in	instance	list.	For
more	details,	refer	to	Optionally	Create	your	own	Instance	List.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.

	

Command	Tab	Location
Applies	to	Windows	and	.NET	applications.
Use	this	option	to	specify	how		the	tabs	of	a	command	tab	folder	are	displayed
for	this	object.	The	tabs	can	be	displayed	on	the	top,	bottom,	left	or	right	of	the
tab	folder.
If	the	Command	Tab	Style	is	Buttons	or	FlatButtons,	the	only	possible	location
is	top.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Command	Display	tab.

	

Command	Tab	Show	All
Use	this	option	to	control	whether	the	tabs	for	all	commands	of	an	object	are
displayed	when	the	user	selects	one	of	its	commands.

Automatic This	value	sets	the	following	behavior:
For	business	object	instances,	the	tabs	for	all	commands	are
displayed	when	the	user	selects	one	command.
For	the	Framework,	applications	and	business	objects,	only	the
tab	for	the	selected	command	is	displayed.

True When	the	user	selects	a	command	for	this	object,	tabs	for	all
commands	that	apply	to	it	are	displayed.

False When	the	user	selects	a	command	for	this	object,	only	the	tab	for
the	selected	command	is	displayed.

	

Note:	This	option	is	only	applicable	to	Windows	applications.	Web	browser
applications	ignore	this	setting	and	behave	as	if	"True"	was	specified.
You	can	specify	this	property	for:
The	command	tab	of	the	Framework.
The	command	tab	of	an	application.
The	command	tab	for	a	business	object		and	the	command	tab	of	its	instances.

	
This	property	is	in	the	Command	Display	tab.

	

Command	Tab	Style
Applies	to	Windows	and	.NET	applications.
Use	this	option	to	specify	how	the	command	tab	folder	for	this	object	will	be
displayed.	Tabs	is	the	normal	tab	sheet	display,	Buttons	and	Flat	Buttons	display
the	tabs	as	buttons.	Stacked	displays	the	Tab	folder	as	a	set	of	vertical	bars.
Clicking	on	a	bar	displays	the	desired	tab	sheet.	Stacked	is	not	applicable	to
VLF.NET	applications.
Buttons,	FlatButtons	and	Stacked	can	only	be	used	with	Command	Tab
Location	Top.
This	property	is	in	the	Command	Display	tab.

	

Commitment	Control
Select	this	option	to	use	commitment	control.
This	property	is	in	the	Server	Details	tab.

	

Compile	Framework	as	Microsoft	.NET	2.0	Executable
Do	not	check	this	option	unless	requested	to	by	your	LANSA	product	vendor.
This	property	is	in	the	Framework	Details	tab.

	

Component	Identifier
The	identifier	of	the	LANSA	component	used	as	filter	or	command	handler.
See	Component	Names	and	Identifiers.
This	property	is	in	the	Commands	Enabled	tab	the	Filter	Snap-in	Settings	tab.

	
	

Contains	Favorites
Use	this	property	to	enable	shortcuts	to	an	end-user's	favorite	business	objects	to
be	stored	in	this	application.	When	this	property	is	selected,	the	end-users
simply	drag	business	objects	they	commonly	use	into	the	application	to	create
the	shortcut.
The	actual	business	objects	remain	in	the	application	they	belong	to.
The	favorites	information	is	stored	in	the	Framework	Virtual	Clipboard	in	the
user's	temporary	directory.
This	feature	is	available	in	Windows	only,	so	the	Allow	on	Web	property	is
normally	unchecked	if	Contains	Favorites	is	checked.	Favorites	applications
should	not	contain	any	Application	Views	or	real	business	objects.
An	application	designer	may	choose	to	create	multiple	favorites	applications
(for	example	Normal	Favorites,	End	of	Month	Favorites	and	Year	End
Favorites).
This	property	is	in	the	Identification	tab.

	

Contains	SHARED	Object
Check	this	option	to	indicate	to	RAMP-TS	that	the	SHARED	Object	file	is	to	be
retrieved	from	the	nominated	Private	Definition/aXes	Project	Folder.

A	RAMP-TS	session’s	SHARED	script	object	is	defined	in	the	script	file
UF_SY420_RTS.JS	and	by	default	resides	in	folder	\aXes\ts\skins,	which	means
it	is	common	to	all	RAMP	sessions	within	the	Axes	instance.
If	you	check	this	option	you	are	indicating	that	you	will	use	a	private	version	of
this	file	and	the	SHARED	Object	will	only	apply	to	this	particular	RAMP-TS
session.	You	will	need	to	copy	the	file	to	your	private	definition	folder.
This	also	means	the	SHARED	object	file	will	reside	in	folder	\aXes\ts\screens\
<your	private	definition/axes	project	folder>.
This	property	is	in	the	Server	Details	tab.

	

Copyright	Notice	to	Be	Used
Specify	the	copyright	notice	you	would	like	to	use	in	your	generated	code.
For	example	:	©	Acme	Software,	2014.	All	rights	reserved.
This	is	a	Program	Coding	Assistant	property.

	
	

Copyright	Text
Enter	here	the	copyright	text.
This	property	is	in	the	Help	About	tab.

	

Create	Component
You	can	use	this	field	to	specify	the	name	of	the	component	to	be	automatically
created	provided	you	started	the	Framework	from	within	the	Visual	LANSA
Development	environment	(IDE)	using	the	Tools	tab	on	the	ribbon.
The	type	of	component	created	depends	on	the	mode	you	are	running	the
Program	Coding	Assistant	in:
Mode Component	Type
Windows Reusable	Part

WAM A	Web	Application	Module

	

The	names	given	to	the	components	must	adhere	to	LANSA	naming	rules.	If
you	want	to	use	different	rules,	see	the	instructions	for	method	routine
avValidateLANSAName	in	UF_SYSTM.
The	names	must	not	already	be	in	use,	except	for	the	Process	name	which	may
exist	already.	By	default	the	process	name	can	be	maximum	8	characters.
The	Create	button	will	be	enabled	if	valid	component	names	are	entered	AND
the	Framework	was	started	via	the	Visual	LANSA	Development	environment.	It
may	take	the	Framework	several	seconds	to	determine	this.
The	Create	button	is	optional.	You	can	still	copy	and	paste	the	source	code	into
a	component	you	create	yourself.
This	is	a	Program	Coding	Assistant	property.

	

Database	Name
Enter	here	the	name	for	the	Windows	or	UNIX	database.
This	property	is	in	the	Server	Details	tab.

	

Database	Password
For	Windows	or	UNIX	databases.	Enter	here	the	database	user	password	if	the
password	is	different	to	the	user's	normal	sign	on	user	password.
For	example	the	default	password	for	an	SQL	Anywhere	database	is	SQL.
This	property	is	in	the	Server	Details	tab.

	

Database	Type
For	Windows	or	UNIX	databases.	Select	the	type	of	other	database.
This	property	is	in	the	Server	Details	tab.

	

Database	User
User	profile	for	Windows	or	UNIX	servers.	This	user	profile	will	be	used	as	the
database	user	for	all	users	connecting	to	the	server.
For	example,	the	default	user	profile	for	an	SQL	Anywhere	database	is	DBA.
If	a	database	user	is	not	specified	for	a	Windows	or	UNIX	server,	the	system
user	profile	is	used	as	the	database	user	profile	when	connecting	to	the	server.
For	more	complex	connections	the	user	has	the	option	of	specifying	their	own
connect	logic	in	UF_SYSTM,	method	avPrivateConnect.
This	property	is	in	the	Server	Details	tab.

	

DBCS	Capable
For	servers,	select	this	option	if	the	server	is	DBCS	capable.
For	languages,	check	this	option	of	the	language	you	are	defining	is	a	DBCS
language.	Normally	this	value	is	defaulted	for	you	and	you	should	use	the
default	value	unless	instructed	otherwise	by	your	product	vendor.
This	property	is	in	the	Server	Details	tab	and	the	Web/RAMP	Details	tab.

	

Default	Command
Yes The	selected	command	is	the	default	command	for	this	object.

For	instance	commands,	a	default	command	is	executed	when	the	user
clicks	or	double-clicks	on	an	entry	in	the	instance	list.		If	the	command
handler	is	shown	as	a	tab	sheet,	it	is	presented	leftmost	in	the	folder,
regardless	of	how	you	may	have	sequenced	any	other	tab	sheets	within
the	folder.

No The	selected	command	is	a	normal	command.
Normal	instance	commands	are	not	displayed	by	default	when	the	user
clicks	on	an	instance	list	entry	unless	the	user	has	chosen	this	command
when	they	clicked	on	the	previous	instance	list	entry.

Never Applicable	to	instance	commands	only.
This	command	is	never	the	default.	Even	if	the	user	chose	this
command	for	the	previous	instance	list	entry,	when	the	user	clicks	on
the	next	entry	this	command	is	not	shown.
When	subtypes	are	defined	for	a	business	object	and	an	instance
command	is	not	enabled	for	all	subtypes,	the	Default	Command	option
for	the	command	should	be	defined	as	Never.

	

The	concept	of	a	default	command	at	the	Framework	level	has	no	meaning.	If
you	want	to	execute	a	specific	command	when	a	Framework	starts,	refer	to	New
UF_SYSTM	IIP	(Imbedded	Interface	Point)	methods	that	you	can	override
(Windows)	and	the	SwitchCommand	parameter	in	Web	Application	Start
Options	(web).
This	property	is	in	the	Commands	Enabled	tab.

	

Default	Font	when	Printing	a	Report	Using	Windows
Specify	here	the	default	font	for	printing	reports.	This	has	to	be	a	font	known	to
Windows.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Framework	Details	tab.

	

Default	Properties	for	Fields	on	Filter	Panels
Specify	the	default	DEFINE_COM	values	that	should	be	added	to	fields
inserted	onto	panels	when	generating	filters.	
The	shipped	default	value	for	this	setting	is:	LabelPosition(Top)	Marginleft(0)
Margintop(19)	Height(38).
This	is	a	Program	Coding	Assistant	property.

	

Default	Properties	for	Fields	on	Handler	Panels
Specify	the	default	DEFINE_COM	values	that	should	be	added	to	fields
inserted	onto	the	header	area	of	panels	when	generating	command	handlers.	
The	shipped	default	value	for	this	setting	is:	LabelPosition(Left).
This	is	a	Program	Coding	Assistant	property.

	

Defined	In
Displays	the	caption	of	the	Framework,	application	or	business	object	in	which
the	custom	property	is	defined.	When	reviewing	custom	properties	at	one	level
(eg:	business	object	level)	the	custom	properties	from	higher	levels	will	also	be
displayed	(eg:	from	the	Framework	level)	for	reference,	but	they	cannot	be
changed.	A	message	to	this	effect	appears	at	the	bottom	of	the	form.
This	property	is	in	the	Custom	Properties	tab.

	

Displayed	Field
Use	this	option	to	select	which	of	the	table	fields	is	to	be	the	one	shown	for	each
combo	box	entry,	or	as	the	caption	for	each	radio	button.
This	property	is	in	the	Code	Table	Visualization	tab.

	
	

Development	Status	Captions
You	can	modify	the	captions	indicating	the	status	of	development.
For	more	information,	see	Development	Status	Feature.
This	property	is	in	the	Framework	Details	tab.

	

Developer	Preferences	XML	File
Use	the	Server	Settings	XML	File	property	to	specify	the	name	of	the	file	where
developer	preferences	for	the	Framework	are	stored.	This	file	is	located	in	the
Execute	directory	of	the	current	partition.
This	property	is	in	the	Framework	Details	tab.

	

Divert	Locks
Select	this	option	to	store	object	locks	on	the	server.
If	this	option	is	selected	and	a	connected	workstation	locks	an	object,	the	lock	is
stored	on	the	server	(diverted	to	the	server)	and	will	stop	other	workstations
from	working	with	the	object.
If	this	option	is	not	selected,	the	lock	is	stored	locally	on	the	workstation	and
only	applies	to	that	object	on	that	workstation.
This	property	is	in	the	Server	Details	tab.

	

Double	Click	for	Default	Command
Applies	to	Windows	only.
Select	this	option	to	invoke	the	default	command	for	a	business	object	instance
when	the	user	double-clicks	it.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Do	you	want	to	use	a	mapped	drive	when	uploading	to	the
websever?
If	the	webserver	is	on	a	different	machine	to	your	development	machine,	there
needs	to	be	a	way	to	get	files	from	the	development	machine	to	the	webserver.
The	easiest	way	to	do	this	is	to	map	a	drive	on	the	development	machine	that
points	to	the	webserver.	(On	the	development	machine,	use	windows	explorer	--
>	Tools	-->	Map	Network	Drive)
If	you	have	a	mapped	drive	that	points	to	the	webserver,	specify	it	here.
If	you	don't	have	a	mapped	drive	you	will	need	to	manually	copy	your
framework	files	to	the	images	directory,	and	also	to	the	project	folder,	on	the
web	server.	(every	time	you	save	changes	to	the	framework)
Or,	you	could	investigate	using	an	ftp	script	-	see	(framework)	-->	(framework
properties)	-->	developer	preferences	-->	Script	for	uploading	to	your	LANSA
for	the	web	folders	
See	Script	for	Uploading	to	your	LANSA	for	the	Web	Folders.
This	is	a	Web	Configuration	Assistant	property.

	

Drag	and	Drop	the	Fields
Choose	which	fields	you	want	to	display	in	the	list	of	child	objects,	and	which
fields	you	want	to	edit.
This	is	a	Program	Coding	Assistant	property.

	

EBCDIC	Translation	Table	Name	and	Library
This	is	the	name	and	library	of	the	System	i	translation	table	that	should	be	used
to	perform	translations	to	EBCDIC	format.
The	table	is	only	used	in	System	i	Web	browser	applications	and	only	during	the
sign	on	process.
The	default	value	for	this	property	is	*JOB	for	RDMXL	enabled	partitions,
otherwise	it	is	QEBCDIC.		The	default	System	i	library	name	is	QSYS.
*JOB	means	the	translation	table	will	be	generated	based	on	the	client	code
page	and	the	System	i	server	job's	CCSID.
This	property	is	in	the	Web/RAMP	Details	tab.

	
	

Edit	Panel
Drag	here	the	child	object	fields	you	want	to	edit.
This	is	a	Program	Coding	Assistant	property.

	

Email	Address
The	email	address	of	the	user.
This	property	is	in	the	User	Details	tab.

	

Email	Zip	File	To
Specify	here	the	email	address	of	the	recipient	of	the	xml	files	containing	the
definitions	of	your	prototype.	The	recipient	can	extract	the	contents	of	the
emailed	zip	file	to	their	partition	execute	directory,	and	then	run	the	Framework
to	see	what	the	application	prototype	looks	like.
This	property	is	in	the	Framework	Export	Design	tab.

	

Enable	Child	when	Parent	Selected
Default	is	checked.
When	this	option	is	checked,	this	indicates	that	when	an	instance	of	the	parent
object	(eg:	SECTIONS)	is	selected,	all	object	level	commands	associated	with
the	child	object	(eg:	EMPLOYEES)	should	be	enabled	and	made	available	for
use.	If	this	option	is	unchecked	the	child’s	object	level	commands	are	not
enabled.						
This	option	only	applies	when	the	business	object	is	not	selectable	from	the
navigation	pane.	This	option	is	disabled	if	the	‘Allow	Selection	from	navigation
Pane’	option	is	checked.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	
	

Enable	Clear	List	Button
Select	this	option	to	enable	the	Clear	List	button	in	the	Instance	List.
When	creating	your	filters	you	need	to	decide	whether	a	new	search	will
automatically	clear	the	contents	of	the	instance	list.	If	you	clear	the	list
automatically,	there	is	no	need	for	the	Clear	List	button.
If	you	decide	not	to	clear	the	list	automatically,	the	user	has	the	option	of	using
multiple	searches	and	different	search	criteria	to	build	up	the	instance	list.	In
this	case	you	would	enable	the	Clear	List	button	so	that	the	users	can	clear	the
list	when	required.
This	option	is	only	applicable	when	using	the	standard	shipped	instance	lists.	If
you	are	using	your	own	snap-in	instance	list	you	can	enable	the	clear	list
capability	by	whatever	means	you	feel	is	appropriate.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Enable	Command
Drag	a	command	to	the	Enabled	list	to	enable	it	for	your	object.
When	you	have	enabled	a	command,	you	can	specify	how	it	is	displayed	and
what	its	command	handler	is.
This	property	is	in	the	Commands	Enabled	tab.

	

Enable	Development	Status	Feature
Enables	the	Development	Status	Feature	which	allows	developers	to	attach	a
status	and	notes	to	framework	objects.
Note:	These	are	only	visible	when
The	Framework	is	run	in	development	mode
This	property	is	enabled
The	Framework	is	run	using	Render	Style	M.

This	property	is	in	the	Framework	Details	tab.

	

Enable	Framework	for	AJAX	style	applications
You	can	now	create	AJAX	style	command	handlers	for	Framework	web
applications	for	optimal	speed	and	functionality.
See	Framework-AJAX	Applications.
This	property	is	in	the	Framework	Details	tab.

	

Enable	Framework	for	WAMS
All	Frameworks	support	the	design	and	execution	of	native	Microsoft	Windows
applications.
Check	this	option	if	you	also	want	your	Framework	to	support	the	design	and
execution	WAM	browser	applications.
After	changing	this	option	you	should	always	save	and	restart	your	Framework.
See	also:
Computer	System	Requirements
and	Other	Requirements.
		Should	you	use	Windows	or	Web	Browser	Applications?
This	property	is	in	the	Framework	Details	tab.

	

Enable	Framework	for	Web	browser	Applications
All	Frameworks	support	the	design	and	execution	of	native	Microsoft	Windows
applications.
Check	this	option	if	you	also	want	your	Framework	to	support	the	design	and
execution	Web	browser	applications.
After	changing	this	option	you	should	always	save	and	restart	your	Framework.
This	property	is	in	the	Framework	Details	tab.

	
	

Enable	Framework	for	WEBEVENT	Functions
Check	this	option	only	when	you	have	an	existing	Framework	that	already
contains	WEBEVENT	filters	or	command	handlers	and	you	wish	to	add	more.
Otherwise	always	uncheck	this	option.
The	ability	to	use	WEBEVENT	filters	or	command	handlers	is	a	deprecated
feature.
Avoid		creating	new	WEBEVENT	filters	or	command	handlers.
This	property	is	in	the	Framework	Details	tab.

	
	

Enable	Parent	when	Child	Selected
Default	is	checked.
When	this	option	is	checked,	this	indicates	that	when	an	instance	of	the	child
object	(eg:	EMPLOYEES)	is	selected,	all	the	commands	associated	with	the
parent	object	(eg:	SECTIONS),	should	also	be	enabled	and	made	available	for
use.	If	this	option	is	unchecked	the	parent’s	commands	are	disabled.									
This	option	only	applies	when	the	business	object	is	not	selectable	from	the
navigation	pane.	This	option	is	disabled	if	the	‘Allow	Selection	from	navigation
Pane’	option	is	checked.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Enable	Peers	when	Selected
Indicates	whether	any	appropriate	peer	object(s)	command(s)	should	be	enabled
when	this	business	object	is	selected.
Default	is	true	(checked).				
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Enable	Popup	Panels
If	checked,	this	enables	instance	list	pop	up	panels	for	any	instance	list	entries
that	have	a	pop	up	panel	defined	for	their	business	object,	provided	the	end	user
has	not	disabled	instance	list	pop	ups.	(The	end-user	can	do	this	by	right-mouse
clicking	on	the	instance	list	and	disabling	Instance	List	Pop	Ups.)
This	feature	is	only	available	for	the	primary	instance	list	for	frameworks	being
run	in	Mixed	mode	(Render	mode	M).
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Enable	the	Position	Menu	Option
	
In	Framework	Windows	applications:
Select	this	option	to	disable	the	Position	menu	option	on	pop-up	(right-
click)	menus.
A	designer	can	choose	to	prevent	users	from	changing	the	relative	position	of
the	Frameworks	display	panes.	When	this	option	is	disabled,	the	user	will	not	be
able	to	cause	a	pane	to	float	either.
	
In	.NET	applications:
Select	this	option	to	allow	panes	to	be	docked,	undocked,	and	dragged	around.
	
This	property	is	in	the	Framework	Details	tab.

	

Encrypt	XML	Files	
Use	this	option	to	indicate	whether	the	XML	files	used	to	store	the	framework
definition,	server	definitions,	table	definitions	and	user	definitions	should	be
stored	in	an	encrypted	format.
Note:	The	storing	of	user	definitions	in	XML	files	is	an	old	feature	that	is	rarely
used.	You	should	not	use	this	feature	in	new	frameworks.		
When	this	option	is	enabled	the	content	of	the	<name>.XML	files	is	encrypted
as	they	are	saved	and	versioned	(if	versioning	is	enabled).		An	encrypted
<name>.XML.UNENC	copy	of	the	file	is	also	created	and	versioned	if
versioning	is	enabled.				
You	must	always	keep	the	<name>.XML.UNENC	file(s)	because	they	are	in
plain	text	format	and	protect	you	from	significant	data	loss	should	your
encryption	key	ever	be	lost	or	an	encrypted	file	be	accidentally	corrupted.				
You	should	deploy	the	<name>.XML	encrypted	file	versions	only.	Since	the
content	is	encrypted	it	is	very	difficult	for	anyone	to	modify	the	content	at	a
deployed	location.
The	encryption	key	is	composed	of	two	8	character	keys.	One	is	supplied	by
you	and	the	other	by	the	VLF	-	making	it	very	difficult	for	either	party	to
externally	decrypt	the	file	content.			
Your	part	of	the	key	is	always	provided	by	your	versions	of	the	UF_EXEC,
UF_DESGN,	UF_ADMIN	and	UF_DEVEL	system	entry	points.	Refer	to	the
shipped	example	source	code	for	more	details	of	how	to	set	up	your	own
encryption	key.		If	you	use	this	option	and	do	not	create	your	own	system	entry
points,	the	default	8-byte	user	encryption	key	of	"UDEFAULT"	is	used.		Note
that	changing	the	encryption	key	in	the	system	entry	point	by	itself	will	not
enable	XML	file	encryption	–	you	also	need	to	enable	this	framework	option.					
If	your	encrypted	XML	file	becomes	unusable	for	some	reason	or	if	you	lose
your	encryption	key,	delete	the	<name>.XML	files	that	are	encrypted	and
rename	the	<name>.XML.UNENC	versions	back	to	<name>.XML	and	then
restart	the	framework	as	a	designer.
	This	property	is	in	the	Framework	Details	tab.

	

End	User	can	change	theme
The	Framework	theme	is	specified	when	the	Framework	is	designed,	but	you
can	also	specify	that	the	end-user	can	override	the	theme.	If	you	select	this
option,	end-users	can	override	the	visual	style	for	their	application	using	the
Overall	Theme	option	of	the	Windows	menu.
Note	that	it	may	be	necessary	on	some	PCs	for	the	user	to	shut	down	and	restart
the	Framework	before	the	theme	is	fully	implemented.
This	property	is	in	the	Visual	Styles	tab.

	
	

End-users	Must	Sign	on	to	this	Framework
You	can	specify	that	end-users	must	sign	on	to	use	the	Framework	in	these
situations:
Never
In	both	Windows	and	Web	browser	applications
In	Web	browser	applications	only
In	Windows	applications	only
Note	that	disabling	a	sign	on	in	an	environment	is	not	the	same	as	disabling	user
authority	(see	Use	Framework	Users	and	Authority).
When	a	sign	on	is	disabled	but	user	authority	is	enabled,	then	the	user	profile	is
obtained	from	the	operating	environment	and/or	any	authority	related	imbedded
interface	points	(IIPs)	that	you	have	supplied.
The	user	profile	is	then	subject	to	the	normal	authority	rules	within	the
Framework.
Note	that	you	can	use	these	options	even	if	the	Use	Framework	Users	and
Authority	option	is	not	selected.
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

Engine
Use	this	setting	to	change	the	RAMP-TS	emulation	engine.	Setting	this	property
to	aXes-TS2	will	enable	the	use	of	aXes-TS2	compatible	browsers	for	RAMP-
TS	applications.
See	the	aXes	guide	for	details	on	the	aXes-TS2	emulation	engine.
This	property	is	in	the	Server	Details	tab.

	

Execute	as	Hidden	Command
Check	this	option	to	run	a	command	without	any	user	interface,	that	is,	hidden
from	the	user.	The	option	applies	to	both	Windows	and	Web	Framework
applications.
Hidden	commands	should	always	have	the	Default	Command	option	set	to
NEVER	for	instance	commands	or	NO	for	business	object		commands	and	the
Hide	All	Other	Command	Tabs	option	should	never	be	used.
Obviously,	never	attach	RAMP	Destination	screens	to	hidden	commands.
Also	see	Hidden	Command	Handler	Anatomy.
This	property	is	in	the	Commands	Enabled	tab.

	

Execution	Priority
Adjust	this	property	to	set	a	different	execution	priority	for	super-server	jobs	in
the	server	definition.	The	default	priority	is	20	however	if	it	is	set	to	a	lower
figure	the	super-server	job	will	have	a	higher	priority	and	receive	better	service
from	the	CPU.	Conversely,	a	higher	figure	will	give	a	lower	priority	to	the
super-server	job.	Note	that	this	setting	only	affects	VLF	super-server
connections	and	not	any	5250	RAMP	sessions.
See	Server	Overrides.
This	property	is	in	the	Server	Details	tab.

	

Execution	Mode	Load	Path
Specifies	the	path	that	any	RAMP-TS	session	started	should	use	at	runtime.	You
should	consult	with	your	product	vendor	before	changing	this	value.
This	property	is	in	the	Server	Details	tab.

	
	

Export	Developer	Preferences
Select	this	option	to	export	all	your	current	web	server	Developer	Preferences	–
Web	Server.
This	property	is	in	the	Framework	Export	Design	tab.

	

Export	Tables
Select	this	option	to	export	code	tables.
This	property	is	in	the	Framework	Export	Design	tab.

	

Export	Framework	Design
Select	this	option	to	export	the	Framework	design.
This	property	is	in	the	Framework	Export	Design	tab.

	

Export	Include	All	Versions
Select	this	option	to	export	all	the	versions	of	the	Framework.
This	property	is	in	the	Framework	Export	Design	tab.

	

Export	Images	Palette
Select	this	option	to	export	the	images	palette.
This	property	is	in	the	Framework	Export	Design	tab.

	

Export	RAMP	Definitions
Select	this	option	to	export	RAMP	definitions.
This	property	is	in	the	Framework	Export	Design	tab.

	

Export	RAD-PAD	Notes
Select	this	option	to	export	the	RAD-PAD	notes.
This	property	is	in	the	Framework	Export	Design	tab.

	

Export	RAD-PAD	Defaults
Select	this	option	to	export	RAD-PAD	defaults.
This	property	is	in	the	Framework	Export	Design	tab.

	

Export	Servers
Select	this	option	to	export	server	definitions.
This	property	is	in	the	Framework	Export	Design	tab.

	

Export	Users
Select	this	option	to	export	user	definitions.
This	option	is	only	enabled	if	your	system	Framework	is	configured	to	store
user	details	in	an	XML	file.
	
This	property	is	in	the	User	Authorities	tab.
This	property	is	in	the	Framework	Export	Design	tab.
	

	

Field	Prefix	to	be	Used
Specify	the	character	used	on	your	system	to	denote	a	field	or	variable	in
generated	code.	The	most	typical	value	is	the	#	sign.		
This	is	a	Program	Coding	Assistant	property.

	

Fields	That	You	Want	to	Appear	in	a	List	at	The	Bottom	of	Your
Handler
See	Fields	That	You	Want	to	Appear	on	the	Top	of	Your	Command	Handler.
This	is	a	Program	Coding	Assistant	property.

	

Fields	That	You	Want	to	Appear	on	the	Top	of	Your	Command
Handler
The	code	generator	can	attempt	to	create	a	starting	point	command	handler
layout	for	you	(you	are	expected	to	add	to	and	change	this	layout	later).
Visually,	the	starting	point	command	handler	is	laid	out	like	this	example:					

The	"Top"	of	the	command	handler	may	contain	single	field	instances	arranged
to	flow	down	the	viewing	area	.	The	"Bottom"	of	the	command	handler	contains
a	list	of	fields	arranged	across	the	viewing	area.
In	other	words,	this	is	the	classic	header/details	style	layout.	There	are	of	course
variations	on	this:
Header	fields	only:

List	fields	only:

Neither	Header	nor	List	fields:

By	examining	the	default	file	associated	with	this	command	handler	and	the
header	/	details	fields	you	have	specified	(or	not)	the	code	generator	will	attempt
to	anticipate	(and	generate)	default	code	that	is	structured	to	fill	in	the	form
details.
The	generated	code	is	usually	incomplete	and	it	needs	your	input	to	be	truly
executable.		
This	is	a	Program	Coding	Assistant	property.

			

File	Prefix	to	be	used	for	MS-Excel	(Business	object	properties,
Instance	List	tab)
This	setting	is	only	applicable	if	Allow	Instance	List	to	be	sent	to	MS-Excel	is
checked.	This	contains	the	prefix	that	is	used	to	construct	the	name	of	the	
Comma	Separated	Variable	(CSV)	file	produced	when	the	end-user	sends	the
instance	list	to	MS-Excel.
The	file	is	created	in	the	user's	temporary	directory,	with	a	name	of:
<<Prefix>>_<<Current	date/time>>.csv
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	
	

Filter	Tab	Location
Use	this	option		to	specify	where	the	tabs	of	the	filter	tab	folder	of	this	business
object	are	displayed.	The	tabs	can	be	displayed	on	the	top,	bottom,	left	or	right
of	the	tab	folder.
Applies	to	Windows	and.NET	applications.
This	property	is	in	the	Filter	Settings	tab.

	

Filter	Tab	Style
Use	this	option	to	specify	how	the	filter	tab	folder	for	the	selected	business
object		will	be	displayed.	Tabs	is	the	normal	tab	sheet	display,	Buttons	and	Flat
Buttons	display	the	tabs	as	buttons.
FlatButtons	should	only	be	used	with	Command	Tab	Location	Top.
Applies	to	Windows	and	.NET	applications.
This	property	is	in	the	Filter	Settings	tab.

	

First	Time	Only
Indicates	that	the	introduction	is	only	shown	once	during	a	session.
This	property	is	in	the	Framework	Startup	tab.

	

Fixed	/	Default	Values
Specify	the	default	value(s)	that	are	to	be	used	for	this	custom	property.	For
fixed	lists	two	values	are	specified	for	each	entry.	One	is	the	value	that	is	shown
to	the	Administrator,	the	other	is	the	value	that	is	accessed	programmatically.
For	example:
Value Caption	to	Display	to	User
CA California

NY New	York

MN Minnesota

	

This	property	is	in	the	Custom	Properties	tab.

Focused	Input	Field	Style
This	property	allows	Framework	designers	to	specify	the	style	of	input	fields	on
web	applications	when	they	get	focus.	In	this	way	the	field	that	is	receiving
input	can	be	highlighted	for	the	user.
The	value	specified	here	is	passed	as	cssText	to	the	style	property	of	the	HTML
element	representing	the	field	on	the	Web	page.	As	such	it	must	be	validly
formatted	as	a	style	string	that	would	be	used	in	JavaScript	or	on	an	HTML	page
or	unexpected	results	may	occur.	However	if	the	style	string,	or	some	part	of	it,
is	not	properly	formed	it	will	normally	be	ignored.
Valid	examples	of	style	strings,	and	therefore	this	property,	are:
background-color:azure;border:4px	double	red
background-color:#FDF5E6;border:3px	ridge	#C0C0C0
color:rgb(255,0,0);border:3px	inset	rgb(200,200,200)

		
NOTE:	To	avoid	this	property	replacing	an	input	field's	existing	style	use	a
prefix	of	'APPEND='	for	the	property.
To	make	the	previous	examples	add	to	existing	styles	use:
APPEND=background-color:azure;border:4px	double	red
APPEND=background-color:#FDF5E6;border:3px	ridge	#C0C0C0
APPEND=color:rgb(255,0,0);border:3px	inset	rgb(200,200,200)

		
Refer	to	the	Microsoft	JavaScript	documentation	for	more	details	about	valid
input	strings	to	the	Style	property.
This	property	is	in	the	Web/RAMP	Details	tab.

Framework	Fatal	Error
This	option	only	applies	to	Windows	Framework	applications.			
If	you	select	this	option,	a	Framework	fatal	error	will	be	initiated	when	a	user
has	exceeded	the	number	of	allowed	sign	on	attempts.
How	Framework	fatal	errors	are	handled	will	depend	on	how	the	Framework
has	been	set	up,	but	usually	the	Framework	will	send	an	email	to	the
administrator	and	then	shut	down.	Any	subsequent	attempts	to	sign	on	as	the
same	user	profile	after	restarting	the	Framework	will	result	in	the	same	action.
To	re-enable	this	user	profile,	the	administrator	must	deselect	the	User	Is
Disabled	checkbox	for	this	user	in	the	User	Details	tab.
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

Function	Handling	Table	Data	storage
This	is	the	function	that	will	store	any	table	data	entered	in	the	Data	tab.
Tables	where	the	data	is	stored	in	the	shipped	generic	table	data	file	(FPTAB)
can	share		the	default	table	data	handler	UF_SYSBR/UFU0010,	or	use	their
own	version	of	it.
Tables	where	the	data	is	stored	in	a	user	defined	physical	file	can	create	their
own	table	data	handler	function.	See	the	data	handler	function
UF_SYSBR/UFU0011	for	an	example.	This	function	reads	and	writes	data
from/to	file	DEPTAB,	for	the	table	DEPTAB.
Tables	where	the	data	comes	from	hard	coding	in	the	table	data	handler	function
can	create	their	own	table	data	handler	function.	See	the	data	handler
UF_SYSBR/UFU0012	for	an	example	of	this	type	of	data	handler.	It	supplies
the	data	for	the	SEX	Table.
Tables	can	also	get	their	data	from	a	flat	file,	using	a	table	data	handler	function
similar	to	UF_SYSBR/UFU0013.	They	could	conceivably	also	store	saved	data
on	a	flat	file.
This	property	is	in	the	Code	Table	Definition	tab.
	

	

Generate	Web	Pages
Use	this	option	to	enable	and	disable	the	production	of	start	up	web	pages	while
doing	development.
If	you	have	10	languages	defined	then	when	you	save	your	Framework	pages
will	be	generated	for	all	10	languages	and	then	copied	to	your	HTTP	server.
This	can	be	a	time	consuming	process,	so	you	can	selectively	disable
language(s)	while	you	are	developing	and	testing	to	reduce	this	time.	When	you
have	completed	your	development	cycle	you	can	then	(re)enable	them	to
produce	final	copies	of	all	the	HTML	start	up	pages	ready	for	deployment.
This	property	is	in	the	Web/RAMP	Details	tab.

	

Groups	this	user	belongs	to
Framework	authority	can	be	specified	for	groups	of	users.
Check	the	groups	whose	authority	you	want	to	give	to	this	user.	When	you	edit
this	user's	authority,	the	authority	that	this	user	receives	from	any	groups	they
belong	to	will	be	shown	as	shaded	and	non-input	capable.
Authorities	are	ADDITIVE,	so:
if	the	individual	user	is	not	authorized	to	the	object,	but	one	of	the	groups	they
belong	to	is	authorized,	the	user	will	be	able	to	use	the	object.
if	the	individual	user	is	authorized	to	the	object,	and	the	user	is	attached	to	a
group	that	is	not	authorized	to	the	object,	the	user	will	still	be	able	to	use	the
object
if	the	user	belongs	to	two	groups,	and	one	group	is	authorized	to	an	object	and
one	group	isn't,	the	user	will	be	able	to	use	the	object.	
To	create	a	group,	press	the	New	Group	button.	The	group	authorities	are	edited
in	the	same	way	as	an	individual	user's	authorities	are.
This	property	is	in	the	User	Details	tab.

	

Height
Enter	the	height	of	the	image/web	page	in	pixels,	to	be	displayed	on	the	Sign	On
form.
This	property	is	in	User	Administration	Settings	tab.

	

Help	Text
Specifies	any	help	text	to	be	associated	with	the	custom	property	and	shown	to
the	administrator	to	aid	him/her	in	selecting	the	correct	property	value.
This	property	is	in	the	Custom	Properties	tab.

	

Hide	All	Other	Command	Tabs
Select	this	option	to	indicate:
When	this	command	is	displayed	any	other	command	tabs	at	the	same	level
are	to	be	hidden	and	no	tabs	at	all	should	be	displayed.
This	command	is	not	to	appear	as	a	tab	when	the	other	command	tab	sheets	are
displayed.
For	example,	a	business	object	"Customer"	might	have	these	instance	level
commands:

Details	(the	default	command)
Notes
History
Delete

When	you	click	on	a	customer	in	the	instance	list,	a	tab	folder	with	tabs	Details,
Notes,	History	and	Delete	will	appear.
The	Details	tab	will	be	at	the	front	and	the	Details	command	handler	will	be
executed	to	fill	in	the	appropriate	details.		
If	the	Hide	All	Other	Command	Tabs	option	is	selected	for	the	Delete
command,	only	the	tabs	Details,	Notes,	History	will	be	displayed	when	you
click	on	a	customer	in	the	instance	list.
If	you	click	on	a	customer	in	the	instance	list	and	then	execute	the	Delete
command	from	a	right	mouse	popup	menu,	the	toolbar	or	the	menu	bar,	the
Delete	command	handler	will	be	displayed	with	no	tabs	at	all	visible.
This	property	is	in	the	Commands	Enabled	tab.

	

Hint
You	can	optionally	enter	a	description	for	the	object	to	be	displayed	in	a	hint.
This	property	is	in	the	Identification	tab.

	
	

	

Host	Name	or	IP	Address
Specify	either	the	IP	address	in	nnn.nnn.nnn:pp	format	or	the	host	name	of	your
LANSA	for	the	Web	development	system	server.
After	changing	this	value	you	should	always	verify	the	address	by	clicking	the
Verify	Web	button.
The	resulting	display	should	something	like	the	following	sample	(note	that	the
background	colors,	header/footer	areas	and	build	numbers	and	dates	may	be
different	to	this	sample).
Check	that	the	partition,	language	and	LANSA	system	program	library	values
are	what	you	expect	to	be	returned	from	your	development	server.
If	the	verification	process	fails	you	should	fully	resolve	the	problem	before
proceeding	further.
	

	
This	property	is	in	the	Developer	Preferences	–	Web	Server	tab.

	
	

IBM	i	Host	Server	Mapper	Name	/	IP	address
Name	or	IP	address	of	the	IBM	i	Server	Mapper.	Supports	full	40	character	long
IPV6	type	addresses.
This	property	is	in	the	Server	Details	tab.

	

IBM	i	Host	Server	Mapper	Port
Port	of	the	IBM	i	Server	Mapper	to	connect	to.	Defaults	to	IBM	default.
This	property	is	in	the	Server	Details	tab.

	

Icon
Choose	an	icon	from	the	list.	The	icon	will	be	assigned	to	the	currently	selected
object.
Note	that	you	can	right-click	the	list	of	icons	to	bring	up	a	pop-up	menu	to
toggle	between	large	and	small	icons.
You	may	want	to	review	How	do	I	enrol	my	own	bitmaps	and	icons?.
This	property	is	in	the	Framework	Icons	tab	and	the	Bitmaps	and	Icons	tab
	

	

Icon	and	Bitmap	Enroller
Specify	here	the	name	of	your	icon	and	bitmap	enroller.	Refer	to	the	shipped
source	code	of	component	UF_IB001	for	details	of	how	and	when	you	should
change	this	property.
This	property	is	in	the	Framework	Details	tab.

	

IIP	-	User	Signon	Function	Name
This	is	the	name	of	the	LANSA	RDML	function	that	will	be	called	on	the	web
server	to	validate	the	user	profile	and	password	of	the	user	attempting	to	access
browser	based	Framework.
The	default	function	is	named	UFU0001.
You	must	have	a	validly	executable	user	signon	function	in	all	Web	browser
applications.
Refer	to	Imbedded	Interface	Points	(IIPs)	for	more	details.
This	property	is	in	the	Web/RAMP	Details	tab.

	

IIP	–	Function	to	return	web	user	authorities
In	Windows	applications	the	Framework	authority	model	may	be	replaced	by
user	code	in	method	avCheckAuth.	See	the	shipped	example	in	Visual	LANSA
component	UF_SYSTM	(method	avCheckAuth)	for	more	details.			
In	web	browser	applications	you	may	also	replace	the	Framework	authority
model.	To	do	this	you	need	to	write	a	LANSA	function.	The	name	of	the
function	is	specified	in	this	field.	A	shipped	example	of	this	type	of	function	can
be	found	in	function	UFU0016	in	process	UF_SYSBR.
This	property	is	in	the	Web/RAMP	Details	tab.

	

Import	Users	Imbedded	Interface	Point
This	is	the	name	of	a	reusable	part	that	will	be	executed	when	the	Administrator
presses	the	Import	Users	button	in	the	User	Details	tab	(accessed	using	the
Users	option	of	the	Administration	menu).
The	specified	reusable	part	collects	user	data	from	external	sources	and	creates
an	XML	file	of	User	Data	from	it.	The	Framework	then	automatically	imports
the	User	Data	into	the	Framework	and	creates	users	from	it.
See	the	source	of	shipped	example	component	UF_IMPUS	for	more	details	on
how	to	create	a	component	like	this.
Also	see	section	Export	or	Import	of	Full	or	Partial	User	Data.
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

Image	File
The	name	of	the	image	file	to	be	displayed	at	startup,	without	path	information.
Place	the	file	in	the	Execute	directory	of	your	partition	(for	example
C:\X_WIN95\X_LANSA\X_DEM\EXECUTE).
Typically	image	files	need	to	be	deployed	with	your	application.
This	property	is	in	the	Framework	Startup	tab.

	

Image	/	Web	Page	to	Display	on	Form
The	name	of	the	image	file	to	be	displayed	on	the	Sign	On	form,	without	path
information.
Place	the	file	in	the	Execute	directory	of	your	partition	(for	example
C:\X_WIN95\X_LANSA\X_DEM\EXECUTE).
Typically	image	files	need	to	be	deployed	with	your	application.
Alternatively	this	may	be	specified	as	a	URL.	In	this	case	the	web	page	will	be
displayed	instead	of	an	image.
The	property	value	will	be	recognised	as	a	url	if	it	starts	with	http:	or	https:	or
file:	or	*AUTO*.
AUTO	implies	that	the	html	file	is	in	the	partition	execute	directory,	and	will
be	displayed	using	the	web	browser.

Examples
Web	pages:
http://www.lansa.com
https://www.lansa.com
	
A	html	file	that	exists	locally	on	the	PC:
file:	C:\Program
Files\LANSA\X_WIN95\X_LANSA\x_dem\execute\ENG_VF_UM087_01.htm
or
*AUTO*ENG_VF_UM087_01.htm
	
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

http://www.lansa.com
https://www.lansa.com

Images	Folder
For	a	System	i	web	server	this	is	the	folder	where	you	have	put	LANSA	for	the
Web	images	(the	LANSA	for	the	Web	Images	folder).	This	is	the	actual	IFS
directory,	not	the	HTTP	alias	assigned	to	it.
For	pre	Version	11.0	LANSA	systems	the	default	LANSA	for	the	Web	images
folder	is	LANSAIMG.
For	brand	new	Version	11.0	LANSA	systems,	the	default	LANSA	for	the	Web
images	folder	is	/LANSA_dc@pgmlib/webserver/images
Type	in	the	IFS	directory	name	of	your	LANSA	for	the	Web	images	folder.
For	a	Windows	web	server	this	is	the	HTTP	alias	name	of	the	folder	where	you
have	put	your	LANSA	for	the	Web	images.	If	your	Windows	server	is	using	IIS,
by	default	the	HTTP	alias	name	assigned	to	it	is	Images.	If	you	are	unsure,
please	contact	your	Web	Server	Administrator.
Type	in	the	Windows	web	server	images	alias	name.
Verify	the	path	name	is	correct	and	that	the	folder	is	accessible	by	clicking	on
the	Verify	button.
Note	that	by	default,	Directory	Browsing	is	disabled	in	IIS.	To	enable	Directory
Browsing,	go	to	the	Control	Panel/Administrative	Tools	and	double	click	on	
Internet	Information	Services.	Expand	the	local	computer,	then	the	Web	Sites
folder,	then	the	Default	Web	Site	folder.	Right-click	on	the	Images	folder,	select
Properties	and	tick	the	Directory	Browsing	box.
The	resulting	Internet	Explorer	display	should	show	the	index	of	the	images
folder.
If	the	verification	process	fails,	stop	and	resolve	the	problem	before	proceeding
further.
This	property	is	in	the	Developer	Preferences	–	Web	Server	tab.

	

Import	Users	from	XML
Use	this	option	to	import	user	data	from	an	XML	file.
See	How	to	Import	User	data	from	an	XML	file.
	
This	property	is	in	the	Authorities	tab.

	
	

Inactive	Table	Entry	indicator
In	some	circumstances	it	is	useful	to	be	able	to	distinguish	between	table	entries
that	are	live,	and	inactive	table	entries	that	are	present	only	because	they	belong
to	historical	data.	The	inactive	table	entries	need	to	be	present	so	that	historical
data	is	displayed	correctly,	but	they	shouldn't	be	used	when	creating	new	data.
To	flag	a	table	entry	as	inactive,	create	a	one	character	field	field	to	hold	the
inactive	indicator	and	then	choose	that	field	in	the	Inactive	Table	Entry	indicator
drop	down	list.
This	property	is	in	the	Code	Table	Definition	tab.

	

Include	Default	Save	Button	and	Logic
Check	this	option	if	you	want	your	generated	code	to	include	a	"Save"	button
and	an	associated	Click	event	handling	routine.
This	is	a	Program	Coding	Assistant	property.

	

Include	Default	Search	Button
Check	this	option	if	you	want	the	generated	code	for	this	filter	to	include	a
default	search	button	and	an	associated	Click	event	handling	routine.	
This	is	a	Program	Coding	Assistant	property.

	

Include	Layout	Managed	Button	and	Field	Areas
Check	this	option	if	you	want	the	generated	code	for	this	filter	to	include	a
layout	managed	field	and	button	areas.	
This	is	a	Program	Coding	Assistant	property.

	

Include	uInitalize	Routine	in	Command	Handler
Check	this	option	when	you	want	the	generated	code	for	this	command	handler
to	include	an	initialization	routine	(named	uInitialize).	Typically	only	command
handlers	that	Stay	Active	use	initialization	routines.
This	is	a	Program	Coding	Assistant	property.

	

Include	uInitialize	Routine	in	Filter
Check	this	option	when	you	want	the	generated	code	for	this	filter	to	include	an
initialization	routine	named	uInitialize.	Typically	only	filters	that	Stay	Active
use	initialization	routines.
This	is	a	Program	Coding	Assistant	property.

	

Include	uTerminate	Routine	in	Command	Handler
Check	this	option	when	you	want	the	generated	code	for	this	command	handler
to	include	a	termination	routine	(named	uTerminate).	Typically	only	command
handlers	that	Stay	Active	use	termination	routines.
This	is	a	Program	Coding	Assistant	property.

	

Include	uTerminate	Routine	in	Filter
Check	this	option	when	you	want	the	generated	code	for	this	filter	to	include	a
termination	routine	named	uTerminate.	Typically	only	filters	that	Stay	Active
use	termination	routines.
This	is	a	Program	Coding	Assistant	property.

	

Input	Method
Specifies	the	way	that	the	value(s)	for	the	custom	property	should	be	input.	The
options	available	are:

Single A	single	value	should	be	input.	May	be	selected	for	types
Alphanumeric,	Numeric	or	Boolean.

List A	list	of	values	should	be	input.	May	be	selected	for	types
Alphanumeric	and	Numeric.	

Fixed
List

The	administrator	should	choose	from	a	fixed	list	of	options.	May	be
selected	for	types	Alphanumeric,	Numeric	or	Boolean.		

	

This	property	is	in	the	Custom	Properties	tab.

Instance	Command
Select	this	option	if	you	want	the	selected	command	to	apply	to	the	instances	of
the	business	object.		Instance	commands	are	displayed	when	you	right-click	an
instance	in	the	Instance	List.
Whether	a	command	is	best	implemented	as	applicable	to	the	business	object
itself	or	its	instances	depends	on	the	context.
For	example,	let's	assume	you	have	a	business	object	Employee	with	instances
such	as	'employee	A1234	Veronica	Brown'.		To	allow	the	user	to	enter	new
employees,	you	would	create	the	command	New.	Logically	this	command
applies	to	the	business	object	itself,	Employee.	Therefore,	you	do	not	select	the
Instance	Command	option	for	command	New.
To	view	details	of	an	individual	employee	(in	other	words	an	instance	of	the
Employee	business	object)	you	could	add	a	command	Details.	You	need	to
make	this	command	an	instance	command	because	it	will	display	details	of	the
individual	employees	(such	as	phone	number,	salary	etc.),	not	about	the
business	object.	So	for	Details	you	would	select	the	Instance	Command	option.
An	instance	command	handler	can	be	written	in	such	a	way	that	it	processes
several	instances	at	once.	To	see	how	this	works	see	the	Programming
Techniques	application	->	Basic	->	Selected,	Current	or	All	Entries.
This	property	is	in	the	Commands	Enabled	tab.

	

Instance	Command	Presentation
Use	the	Instance	Command	Presentation	option	to	control	how	the	commands
for	the	business	object	instances	are	displayed:

Use	all	of	the
window

The	command	handlers	take	up	all	of	the	right-hand	side	of
the	window.

Use	part	of	the
window

The	command	handlers	take	up	the	bottom	part	of	the	right-
hand	side	of	the	window.

Separate
normal
window

The	command	handlers	are	shown	in	a	separate	window.

Separate	stay
on	top	window

The	command	handlers	are	shown	in	a	separate	window	that
always	stays	on	top	of	the	main	Framework	window.

	

This	property	is	in	the	Command	Display	tab.

Instance	List	Relationship	Summary
This	is	a	list	of	the	instance	list	relationships	between	all	the	business	objects	in
the	Framework.
The	list	shows	the	Caption	and	the	User	Object	Name/Type	of	the	business
object	and	any	child	or	peer-to-peer	relationships	it	has	with	other	business
objects.
For	more	information,	refer	to	Instance	Lists	with	Different	Types	of	Objects.
This	property	is	in	the	Framework	Istance	List	Relationships	Summary	tab.

	

Instance	List	Tool	Bar	Location
Applies	to	Windows	and	.NET	applications.
Set	this	option	to	Top,	Left,	Right	or	Bottom	to	cause	a	tool	bar	of	the
commands	associated	with	objects	in	the	instance	list	to	be	displayed	in	the
specified	location.	Set	this	option	to	None	to	prevent	an	instance	list	tool	bar
from	being	displayed.
The	existence	and	location	of	any	instance	list	tool	bar	is	an	application	designer
controlled	feature.		
This	option	only	applies	to	the	shipped	instance	browser.

	
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

	

Instance	List	Tool	Bar	Height	or	Width
Where	an	instance	list	tool	bar	is	displayed	use	this	option	to	control	the	height
(for	Top	or	Bottom	location)	or	width	(for	Left	or	Right	location)	of	the	tool	bar
and	the	images	that	appear	on	it.				
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.

	

Instance	List	Tool	Bar	Text	Location
VLF.WIN	only.
Specifies	if	and	where	the	text	associated	with	a	command	on	an	instance	list
tool	bar	is	to	be	displayed.	Options	are	<none>,	Left,	Right,	Top	and	Bottom.
For	example	these	settings:

Produce	an	instance	list	tool	bar	like	this	example:

	
These	settings:

Produce	an	instance	list	toolbar	like	this	example:

	
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.

	

Internal	Identifier
This	is	an	internal	identifier	automatically	generated	by	LANSA	to	uniquely
identify	this	object.	The	identifier	is	alphanumeric.
This	property	is	in	the	Identification	tab.

	
	
	

IP	Address
Specify	the	IP	address	of	the	host	where	RAMP-TS	has	been	installed.
Note	to	VLF-WEB	users:		
The	RAMP-TS	session	must	be	in	the	same	domain	as	the	VLF-WEB	host.
The	RAMP-TS	server’s	IP	address	must	be	included	in	the	list	of	trusted	sites
in	your	browser.

	
This	property	is	in	the	Server	Details	tab.

	

IP	Address	and	Port	Number
For	RAMP-NL	users	only.
The	Internet	Address	and	Port	number	of	the	Host	to	connect	to.		These
properties	are	ignored	if	a	Server	Name	has	been	specified.
Note	that	if	you	specify	an	IP	Address	and	Port	Number,	RAMP-NL	will
entirely	bypass	the	newlook	connection	definition.
This	means	that	RAMP-NL	will	derive	the	licensing	username	and	password
from	the	Framework	logon	profile,	not	the	newlook	connection	definition.
Consequently	the	newlook	licensing	signon	dialog	will	never	be	displayed.
Similarly,	RAMP-NL	will	ignore	all	other	options	specified	in	the	newlook
connection	definition,	such	as	screen	size	and	date	format.	Therefore,	if	you
need	to	for	example	support	27	x	132	screens,	you	cannot	use	the	IP	Address
and	Port	Number	option.
We	recommend	you	only	use	this	option	if	you	are	fully	aware	of	the	potential
consequences.
This	property	is	in	the	Server	Details	tab.

	

Intro	Caption
Specifies	the	caption	associated	with	a	URL	(e.g.:	"Visit	our	Web	Site	for	more
information")
This	property	is	in	the	Framework	Startup	tab.

	

Intro	URL
Specifies	how	the	URL	of	the	web	page	is	handled	when	it	is	displayed.	The
allowable	values	are:

Browser The	display	of	the	URL	is	displayed	in	a	separate	browser
window.	This	is	the	default.

Current
Window

The	display	of	the	URL	is	imbedded	inside	the	Framework's
introductory	panel.

	

This	property	is	in	the	Framework	Startup	tab.

Keep	newlook	SID	File	Versions
Select	this	option	to	keep	backup	copies	of	the	newlook	SID	files	before	making
changes	using	Dynamic	Naming.	For	more	information	refer	to	the	RAMP
Guide.
Note	that	newlook	licensing	features	may	limit	the	use	of	this	option	in	some
RAMP	environments.	Please	contact	your	product	vendor	for	further
information.	
This	property	is	in	the	Framework	Details	tab.

	

Keep	Versions	in	Subfolders
If	you	select	this	option	and	the	Keep	XML	File	Versions	option	is	checked,	old
versions	of	the	XML	will	be	stored	in	a	subfolder	of	the	usual	storage	location,
called\VF_Versions_\.
Usually	this	is	the	<<partition	execute	directory>>\VF_Versions_\	folder.
This	can	help	to	keep	your	partition	execute	directory	tidy.
Note	that	if	you	change	this	option:
Any	existing	XML	file	versions	will	not	be	moved	to	the	new	folder	-	you
should	do	this	manually.
Any	version	folders	no	longer	required	will	not	be	deleted.	You	should	do	this
manually	after	moving	any	XML	files	versions	in	the	folder	as	appropriate.			

This	property	is	in	the	Framework	Details	tab.

	

Keep	XML	File	Versions
Select	this	option	to	keep	back	up	copies	of	the	XML	files.	In	this	way	you	can
keep	copies	of	your	Framework	definition,	user	definitions	and	server
definitions.
If	you	do	not	keep	copies	of	your	Framework	you	will	not	be	able	to	revert	to
previously	saved	versions	in	the	event	of	an	accidental	object	deletion.	See	I
have	just	deleted	an	object	and	want	to	get	it	back	again?.
This	property	is	in	the	Framework	Details	tab.

	

Keys	of	the	View
Map	the	keys	in	the	instace	list	with	the	keys	in	file	or	view	that	is	used	to	read
the	child	object	data.
This	is	a	Program	Coding	Assistant	property.

	
	

Keys	from	the	Instance	List
Choose	the	keys	in	the	instance	list	which	are	used	to	map	to	the	child	data.
This	is	a	Program	Coding	Assistant	property.

	
	

Language	Field
This	is	used	for	multilingual	table	data	(see	the	shipped	Title	table	for	an
example	of	a	multilingual	table).
If	multilingual	table	data	is	not	required,	set	this	to	the	value	"No	Language
Field	-	Monolingual	Table	Data"	
A	table	does	not	necessarily	have	to	be	multilingual	just	because	the	partition	is
multilingual.	But	if		multilingual	data	is	required,	use	this	parameter	to	specify
which	table	field	will	contain	the	language	code	for	a	table	row.	A	language
field	must	also	be	a	key	field.
This	property	is	in	the	Code	Table	Definition	tab.
	

	

Languages
This	list	shows	details	of	all	the	languages	for	which	web	browser	capable
versions	of	the	Framework	will	be	produced.
This	list	should	always	include	the	language	you	are	currently	executing	the
Framework	in.	It	may	include	other	languages	valid	in	the	partition	in	which
you	are	working.	It	should	NOT	include	languages	that	are	not	valid	in	the
partition	in	which	you	are	working.
This	property	is	in	the	Web/RAMP	Details	tab.

	

LANSA	Language	Code
This	is	the	LANSA	language	code	associated	with	the	language	you	are	viewing
or	wish	to	define.	This	language	code	must	specify	a	language	that	is	validly
defined	to	LANSA	in	the	partition	in	which	you	are	currently	working.
If	you	are	working	in	a	mono-lingual	partition	you	should	define	a	single
language	with	code	NAT	and	caption	National	Language.
When	you	type	in	a	new	language	code	the	Framework	will	default	the	Caption,
Meta	Tag,	CCSID	and	DBCS	options	for	you.	Unless	you	know	exactly	what
these	options	do	you	should	use	the	default	values.	
Typically	LANSA	systems	use	these	language	codes:
Code Language
CES Czech

DEU German

DUT Dutch

ENG English

FIN Finnish

FRA French

GRE Greek

HEB Hebrew

ITL Italian

JPN Japanese

KOR Korean

NOR Norwegian

POR Portuguese

SCHI Simplified	Chinese

SWE Swedish

SFRA Swiss	French

TCHI Traditional	Chinese

TUR Turkish

	

This	property	is	in	the	Web/RAMP	Details	tab.

Last	Changed
This	field	indicates	when	the	object	was	last	changed	and	the	user	who	made	the
change.
This	property	is	in	the	Identification	tab.

	
	

Launch	Button	Caption
If	this	property	is	specified	(i.e.	it	is	not	blank),	a	button	will	appear	on	the
user’s	signon	screen.	When	the	button	is	clicked,	a	window	will	be	opened	with
the	URL	specified.
This	can	be	used	to	launch	any	URL	from	the	user's	sign	on	screen.	For	example
it	could	be	used	to	launch	a	website	showing	the	latest	company	details	in
VLF.WIN:

VLF.NET:

And	VLF.WEB:

	
This	property	is	in	the	Framework	User	Administration	Settings	tab.
	

	

	

Launch	from	Status	Bar
Select	this	option	to	display	the	Launch	button.	The	button	enables	users	to
launch	applications	directly	from	the	status	bar.
The	launch	button	is	available	only	when	the	Framework	is	executed	using
RenderType	M.
If	you	Allow	Users	to	Switch	Views,	the	Launch	button	is	always	visible	.
If	you	do	not	Allow	Users	to	Switch	Views	and	the	Launch	from	Status	Bar
option	is	selected,	the	application/application	view	buttons	are	shown:

	
See	Launching	Applications	from	the	Status	Bar.
This	property	is	in	the	Framework	Details	tab.

	
	

Launch	URL	(Windows)
The	URL	that	will	be	used	to	open	a	window	when	the	launch	button	on	the
Windows	sign	on	screen	is	clicked.
(The	launch	button	must	have	a	caption	to	make	it	appear.)
The	URL	may	start	with:
http://
https://
AUTO
	
AUTO	will	look	for	a	html	file	in	the	partition	execute	directory,	for	example:
	
*AUTO*df_demo_hr_page1.htm
	

	
A	typical	URL	to	launch	a	wam	webroutine	is:
http://<<The	Host>>:<<port>>/CGI-BIN/lansaweb?webapp=<<my	wam
name>>+webrtn=<<my
webroutine>>+ml=LANSA:XHTML+part=DEM+lang=ENG

	
This	property	is	in	the	Framework	User	Administration	Settings	tab.
	

	

Launch	URL	(Web	/	.Net)
The	URL	that	will	be	used	to	open	a	window	when	the	launch	button	on	the	web
or	.Net	sign	on	screen	is	clicked.
(The	launch	button	must	have	a	caption	to	make	it	appear.)
The	URL	may	start	with:
http://
https://
AUTO
	
AUTO	will	look	for	a	html	file	in	the	images	directory,	for	example:
	
*AUTO*df_demo_hr_page1.htm
	

	
A	typical	URL	to	launch	a	wam	webroutine	is:
http://<<The	Host>>:<<port>>/CGI-BIN/lansaweb?webapp=<<my	wam
name>>+webrtn=<<my
webroutine>>+ml=LANSA:XHTML+part=DEM+lang=ENG

	
This	property	is	in	the	Framework	User	Administration	Settings	tab.
	

	

List	Panel
Drag	here	the	fields	you	want	to	be	displayed	in	the	list	of	child	objects.
This	is	a	Program	Coding	Assistant	property.

	

Load	Path
For	RAMP	users	only.
Enter	the	path	where	the	RAMP	runtime	files	are	to	be	located.	These	files	are:
VF_SY120.htm	and	VF_SY120.js.
The	load	path	defaults	to	the	current	LANSA	system's	partition	execute
directory.	Usually	there	is	no	need	to	change	the	default.
This	property	is	in	the	Server	Details	tab.

	

Location	for	Buttons
Note:	WEBEVENT	command	handlers	and	filters	are	a	deprecated	feature.	Do
not	use	them	for	new	work.
Use	this	option	to	specify	the	location	of	the	buttons.
This	option	only	applies	to	WEBEVENT	command	handlers	and	filters.
This	property	is	in	the	Commands	Enabled	tab	the	Filter	Snap-in	Settings	tab.

	
	

Log	off	Inactivity	Timeout
Specify	here	the	period	of	inactivity,	in	minutes,	after	which	the	user	is
automatically	logged	off.
After	certain	periods	of	inactivity	it	may	be	assumed	that	the	user	no	longer
requires	the	application.	Automatically	closing	the	application	will	free	system
resources	and	improve	application	security.
Activity	is	defined	as	selection	of	an	application	or	business	object	or	the
execution	of	a	command.
A	setting	of	zero	will	disable	this	feature.
Note	that	when	the	VLF	is	running	on	touch	device,	this	option	is	disabled.	You
should	use	device	specific	timeout	settings	to	control	access	to	the	device.
Note	that	you	can	use	either	a	Log	on	or	a	Log	off	Inactivity	Timeout,	but	you
should	not	use	both.
This	property	is	in	the	Framework	User	Administration	Settings	tab	and	the	User	Details	tab.

	

Log	on	Inactivity	Timeout
Specify	here	the	period	of	inactivity,	in	minutes,	after	which	the	user	is	asked	to
confirm	their	log	on	password.
Long	periods	of	inactivity	may	present	a	security	risk	for	an	active	application.
Asking	for	confirmation	of	the	Log	on	password	will	ensure	only	authorised
uses	have	access	to	the	application.
Activity	is	defined	as	selection	of	an	application	or	business	object	or	the
execution	of	a	command.
If	Framework	users	are	not	specified	or	if	this	property	is	set	to	zero	this	feature
is	disabled.
Note	that	when	the	VLF	is	running	on	touch	device,	this	option	is	disabled.	You
should	use	device	specific	timeout	settings	to	control	access	to	the	device.
Note	that	you	can	use	either	a	Log	on	or	a	Log	off	Inactivity	Timeout,	but	you
should	not	use	both.
This	property	is	in	the	Framework	User	Administration	Settings	tab	and	the	User	Details	tab.

	
	

Major	Comment	Separator
Specify	the	character	that	should	be	repeated	to	delimit	major	comment	blocks
in	your	generated	code.	Typical	choices	include:
Equal:	=======================
	
Minus:	---
	
Plus:	++++++++++++++++++++++++
	
Underscore:	__________________________
	

This	is	a	Program	Coding	Assistant	property.

	
	

Marker	for	Code	Requiring	Manual	Completion
Specify	the	string	to	be	inserted	in	generated	code	where	manual	coding	is
required	to	complete	the	code.	Typical	choices	include:
=>	TO	BE	SPECIFIED	<=
	
??????????????
	

Avoid	using	values	starting	with	<<	for	this	setting.	Avoid	using	the	same
character	here	as	you	use	for	the	field	prefix	(e.g.:	#).
This	is	a	Program	Coding	Assistant	property.

	

Maximum	Decimals
For	numeric	custom	properties	a	maximum	number	of	decimals	in	the	range	0	to
5	may	be	specified.
This	property	is	in	the	Custom	Properties	tab.

	

Maximum	Entries	in	List
When	the	input	method	is	List	or	Fixed	List	specify	the	maximum	number	of
entries	that	can	exist	in	the	list.
This	property	is	in	the	Custom	Properties	tab.

	

Maximum	Length
For	alphanumeric	custom	properties	values	a	maximum	length	in	the	range	1	to
256	may	be	specified.
This	property	is	in	the	Custom	Properties	tab.

	

Maximum	Signon	Attempts	Allowed
Enter	in	this	field	the	number	of	unsuccessful	signon	attempts	that	should	be
allowed	before	a	user	is	rejected.
In	web	applications	a	rejected	user	is	also	disabled	and	must	be	specifically	re-
enabled	by	an	administrator.		
In	Windows	applications	rejected	users	are	forced	to	exit	the	Framework	with
an	error	message,	but	they	are	not	disabled.
This	property	is	in	the	Framework	User	Administration	Settings	tab.
	

	

Maximum	Web	Password	Length
Change	this	property	to	enable	the	maximum	allowable	length	for	passwords	to
be	extended	to	32	characters	for	Web	applications.	Minimum	value	allowed	is
10,	maximum	value	allowed	is	32.
This	property	is	in	the	Web/RAMP	Details	tab.

	

Meta	Tag
Specifies	the	<META>	tag	that	will	be	used	in	HTML	pages	produced	by
LANSA	for	the	Web	when	using	this	language.	Normally	this	value	is	defaulted
for	you	and	you	should	use	the	default	value	unless	instructed	otherwise	by	your
product	vendor.
This	property	is	in	the	Web/RAMP	Details	tab.

	

Minor	Comment	Separator
Specify	the	character	that	should	be	repeated	to	delimit	major	comment	blocks
in	your	generated	code.	Typical	choices	include:
Equal:	=======================
	
Minus:	---
	
Plus:	++++++++++++++++++++++++
	
Underscore:	__________________________
	
Blanks:																										
	

Avoid	using	the	same	character	here	as	you	use	for	the	field	prefix	(e.g.:	#).
This	is	a	Program	Coding	Assistant	property.

	

Mock	Up	RAD-PAD
The	RAD-PAD	mock	up	filter	or	command	handler	creates	a	tab	sheet	where
you	can	simply	type	in	a	description	and	add	pictures	from	the	Command	or
Filter	Handler.	The	mock	up	tab	sheet	contains	no	code	and	has	no	functionality.
A	real	filter	limits	the	items	shown	in	the	instance	list.	A		real	command	handler
controls	what	is	displayed	and	what	happens	when	the	user	selects	a	command.
When	you	are	finished	with	prototyping	your	application,	specify	the	name	of	a
Command	or	Filter	Handler	to	replace	the	mock	up	tab	sheets.
This	property	is	in	the	Commands	Enabled	tab	and	the	Filter	Snap-in	Settings	tab.

	
	

MTXT	String	Loader
Specify	here	the	name	of	your	end-user	visible	multilingual	string	program
loader.
The	string	loader	exposes	those	*MTXT	variables	that	are	compiled	into	the
Framework	during	the	build.	It	allows	you	to	use	your	own	multilingual	text	for
Framework	captions	such	as	the	"Clear	List"	on	the	Instance	list.
Refer	to	the	shipped	source	code	of	RDML	function	UFU0003	in	process
UF_SYSBR	for	details	of	how	and	when	you	should	change	this	property.
This	property	is	in	the	Framework	Details	tab.

	

Multiline	Tab	Sheet	Captions
Select	this	option	if	you	want	the	tab	sheet	captions	to	be	displayed	on	more
than	one	line.
This	option	is	only	applicable	when	the	tab	style	is	Tabs	and	the	tab	location	is
Top	or	Bottom.
This	property	is	in	the	Command	Display	tab	and	the	Filter	Settings	tab.

	

Multiple	Window	Control	Bar	Location
Use	this	option	to	change	the	location	of	the	Windows	Control	Bar	that	is
displayed	on	Framework	forms	when	more	than	one	Framework	window	is
open.	This	option	can	also	be	used	to	hide	the	Windows	Control	Bar.
The	default	location	is	Above	Title	Bar.
To	hide	the	Windows	Control	Bar,	select	option	None	-	Do	not	display	control
bar.

This	property	is	in	the	Identification	tab.

	

Name
Specifies	the	symbolic	name	to	be	associated	with	the	custom	property.	This
name	is	used	to	programmatically	identify	a	property.	They	are	only	ever	used
by	developers	and	are	never	seen	by	administrators.	Names	are	at	most	20
characters	long	and	can	only	contain	letters	from	the	English	alphabet	(A	->	Z),
underscore	(_)	or	0	through	9.		
This	property	is	in	the	Custom	Properties	tab.

	

Name	of	User	Set	to	be	Used
When	you	have	elected	to	store	user	and	authority	details	in	DBMS	tables
VFPPF06/07	(see	Store	Users	in	XML	File	and	Store	users	in	DBMS	Tables
VFPPF06/07)	you	may	also	specify	a	User	Set.
User	Sets	may	be	used	to
Divide	user	details	between	different	Frameworks.
Share	user	details	between	different	Frameworks.
For	example,	imagine	you	have	two	separate	Frameworks	named
GENLEDGER	and	CRM	defined.
Both	Frameworks	use	the	option	to	store	user	details	in	DBMS	tables	on	the
server.
Assuming	that	both	Frameworks	operate	in	the	same	LANSA	partition	then	they
will	both	be	use	the	same	DBMS	tables	to	store	their	user	details.	
Are	the	user	profiles	stored	in	the	DBMS	tables	to	be	shared	or	to	be	separated?
To	share	the	user	details	give	both	Frameworks	the	same	User	Set	Name.
To	separate	the	user	details	give	both	Frameworks	different	User	Set	Names.	
The	default	User	Set	name	is	SYSTEM.
It	is	strongly	recommended	that	you	restrict	User	Set	names	to	at	most	10
contiguous	uppercase	characters	of	the	English	alphabet	(i.e.	A->	Z	only	with
no	imbedded	blanks).	This	will	minimize	the	risk	of	any	code	page	conversion
issues	now	or	in	the	future.	
Please	note	that	separate	really	means	separate.
User1	in	user	set	A	has	absolutely	nothing	to	do	with	User1	in	user	set	B.	
This	property	is	in	the	Framework	User	Administration	Settings	tab.
	

	

.NET	Component	Class	Name	and	Assembly
The	component	class	name	of	the	.NET	component	that	is	snapped	in	to	the
framework	as	a	Filter,	Command	Handler	or	Relationship	Handler	and	the	name
of	the	Assembly	file	that	contains	the	class	that	is	snapped	into	the	Framework.
These	values	cannot	be	edited	but	must	be	set	using	the	Find	button.
See	the	VLF	.NET	Snap-in	Components	Guide	for	more	information.
This	property	is	in	the	Commands	Enabled	tab	and	the	Filter	Snap-in	Settings	tab.

	

.NET	Target	Platform
The	.NET	Target	Platform	option	specifies	the	target	platform	for	the	generated
VLF.NET	application.
The	default	value	is	AUTO	which	means	that	the	runtime	platform	is
determined	by	the	operating	system	architecture.	Setting	the	option	to	X86	will
force	the	generated	VLF-NET	application	to	run	in	32-bit.
Generally	designers	do	not	need	to	change	this	value	unless	their	VLF.NET
application	has	to	specifically	run	as	a	32-bit	application.
An	example	of	such	a	situation	is	when	an	application	uses	a	32-bit	ActiveX
control	(such	as	Office	Excel	2003	Web	Component),	it	is	necessary	to	force	the
generated	VLF.NET	application	to	run	in	32-bit	because	32-bit	ActiveX	cannot
be	hosted	in	64-bit	applications.	It	this	case	you	would	set	.NET	Target	Platform
to	X86.
This	property	is	in	the	Framework	Details	tab.

	

Nodes	XML	File
Use	the	Nodes	XML	File	property	to	specify	the	name	of	the	file	where	RAMP
screen	definitions	for	the	Framework	are	stored.	This	file	is	located	in	the
Execute	directory	of	the	current	partition.
The	default	value	is	Vf_Sy001_Nodes.xml.
The	file	name	before	the	.xml	extension	should	not	be	longer	than	14	characters
if	it	is	to	be	deployed	using	the	Deployment	Tool.
This	property	is	in	the	Framework	Details	tab.

	

Number	of	Additional	Windows	a	User	can	have	Open
Concurrently
Use	this	option	to	regulate	the	number	of	additional	windows	the	user	can	have
open	at	the	same	time.	Maximum	value	is	256.
Opening	multiple	windows	of	course	uses	more	workstation	resources,	so	you
should	avoid	allowing	an	excessive	number	of	windows	to	be	concurrently
open.
Also	see	Windows	Resource	Usage.
This	property	is	in	the	Identification	tab.

	
	

Object	Command	Presentation
Use	the	Object	Command	Presentation	option	to	control	how	the	commands	for
this	object	are	displayed:

Automatic All	the	window	is	used	except	when	the	command	is
displayed	for	business	object	that	has	one	or	more	filters.

Use	all	of	the
window

The	command	handlers	take	up	all	of	the	right-hand	side	of
the	window.

Use	part	of	the
window

The	command	handlers	take	up	the	bottom	part	of	the	right-
hand	side	of	the	window

Separate
normal
window

The	command	handlers	are	shown	in	a	separate	window.

Separate	stay
on	top	window

The	command	handlers	are	shown	in	a	separate	window	that
always	stays	on	top	of	the	main	Framework	window.

	

This	property	is	in	the	Command	Display	tab.

	

Open	Latest	Demonstration	System
Select	this	option	to	open	the	Latest	Demonstration	System
(VF_SY001_System_LastShipped.XML).
This	property	is	in	the	Select	Framework	dialog.

	
	

Optional	Arguments
Enter	optional	numeric	or	alphanumeric	values	that	are	passed	into	the
command	or	filter	handler.	Using	optional	arguments	allows	a	single	handler	to
be	easily	reused	for	different	tasks.
For	example,	DF_WEBBR	is	a	demonstration	command	handler	that	displays
web	pages.	By	specifying	DF_WEBBR	as	the	command	handler	and	putting
the	required	URL	(e.g.:	www.lansa.com)	into	Argument	1	will	cause	that	web
page	to	be	displayed.
The	optional	arguments	have	no	meaning	with	mock-up	handlers	because	they
have	no	functionality.
This	property	is	in	the	Commands	Enabled	tab.

	

Optional	Mapped	Drives	-	Images	Folder	and	Private	Working
Folder
If	you	are	building	browser		applications,	then,	the	Visual	LANSA	Framework
will	need	to	copy	data	from	your	Visual	LANSA	workstation	to	your	LANSA
for	the	Web	images	folder	and	to	your	Private	Working	Folder	(these	folders
reside	on	your	LANSA	for	the	Web	server	system).	
It	can	do	this	by	using	FTP	commands	or	DOS	COPY	commands.
DOS	COPY	commands	are	usually	faster.
To	use	DOS	COPY	commands	you	need	to	have	a	mapped	drive	that	allows
access	to	both	folders.
The	mapped	drive	can	be	in	either	\\server\xxx\xxxx	format	or	in
<drive>:\xxxx\xxxx	format	(often	drive	I:	is	used	for	such	mapped	drive
assignments	to	System	i	servers).	
If	you	have	mapped	drive	network	access	to	your	Images	and	Private	Working
folders	specify	both	paths	in	full.
You	should	use	the	Verify	Button	for	both	paths.	A	message	box	should	be
displayed	indicating	the	success	of	the	verification	process.	If	the	verification
process	fails	you	should	resolve	the	problem	before	proceeding	further.
See	Images	Folder	for	more	details	about	the	LANSA	for	the	Web	Images
folder.
See	Private	Working	Folder	for	more	details	about	setting	up	your	Private
Working	folders.
Also	see	Script	for	Uploading	to	your	LANSA	for	the	Web	Folders.
This	property	is	in	the	Developer	Preferences	–	Web	Server	tab.

	

Overall	Theme
Applies	to	Windows	Framework	applications.	Similar	options	can	also	be	used
with	Framework	.NET	applications	(see	Web	Application	Start	Options).
Visual	Themes	are	an	easy-to-activate	substititute	for	visual	styles.	They
produce	a	dramatic	improvement	in	appearance	with	very	little	effort.
To	use	visual	themes	you	must:
Be	executing	in	a	Visual	LANSA	11.5	or	later	environment
Be	at	Visual	LANSA	Framework	level	EPC831	or	later.
Select	a	theme	using	this	property
Themes	are	intended	for	use	on	screens	with	32	bit	color
When	a	theme	is	selected	the	appearance	of	the	entire	Framework	changes	to
the	new	theme	immediately,	including	your	own	command	handlers	and	filters.
If	you	want	to	use	a	visual	theme,	but	don't	want	it	to	change	the	appearance	of
a	filter	or	command	handler,	you	can	deactivate	themes	for	a	panel	or	the	whole
component	by	changing	the	ThemeStyle	property	to	None.
When	using	a	theme,	the	Visual	LANSA	Framework	switches	on	the
ThemedReadOnly	option.	This	means	that	your	read_only	fields	will	be
displayed	with	an	appropriate	read_only	background	for	the	theme,	and	it	will
override	any	visual	style	you	have	applied	to	the	field.	And	it	means	that	in
future,	you	do	not	need	any	special	coding	to	make	read-only	fields	look
different	to	input	capable	fields.
Note	that	if	the	option	End	User	Can	Change	Theme	is	selected,	any	choice	by
the	end-user	using	the	Overall	Theme	option	in	the	Windows	menu	overrides
this	value.
This	property	is	in	the	Visual	Styles	tab.

	

Own	Window	Size
For	commands	that	will	appear	in	their	own	command	window	(see	Object
Command	Presentation)	you	can	specify	the	initial	height	and	width	that	should
be	used	for	the	command	window.
Separate	values	for	Windows	and	Web	Browser	contexts	may	be	specified.
All	values	specified	are	in	pixels.
If	you	do	not	specify	sizing	values	(or	set	them	to	zero)	the	Framework	will
attempt	to	guess	an	appropriate	value	for	you.
Any	sizing	values	that	you	specify	only	apply	the	first	time	the	command
window	is	presented	for	the	specific	command	involved.	Subsequent	redisplays
of	the	command	window	within	a	signed	on	session	will	reuse	the	size	that	the
command	window	had	when	it	was	last	presented	(i.e.	the	Framework	will
remember	the	window	size	for	a	each	specific	command	within	a	signed	on
session).					
To	assist	you	in	sizing	windows	in	Windows	applications	you	may	execute	the
command	window	and	then	size	the	window	to	the	exact	size	you	require.	If	you
are	working	as	an	application	designer,		the	current	window	size	and	a	button
Record	Size	are	available	to	help	you.
For	example:

This	command	window	shows	the	current	window	size	to	be	height	427	and
width	563.
Click	the	Record	Size	button	to	update	the	size	details	into	the	definition	of	the
command	currently	being	executed,	which	in	this	example	is	the	"New"
command	within	the	"Employees"	business	object.
In	Web	browser	applications	one	technique	that	can	be	used	to	determine	the
size	a	window	is:
Start	MS-Paint	and	create	a	small	image	(eg:	10	x	10).
Execute	the	browser		Framework	application	and	display	the	window	in
question.	Size	to	the	exact	size	required.
Use	Alt-Print	Screen	to	copy	the	window	image	to	the	clipboard.
Paste	the	window	image	into	MS-Paint.	Allow	MS-Paint	to	expand	the	current
image.
In	MS-Paint	check	the	pasted	image	attributes.	This	will	display	the	exact
width	and	height	of	the	pasted	window	image.

This	property	is	in	the	Commands	Enabled	tab.

	

Partition
Enter	here	the	partition	to	connect	to	on	the	server.
This	property	is	in	the	Server	Details	tab.

	

Partition	is	Enabled	for	RDMLX
If	the	partition	on	the	server	is	RDMLX	enabled	and	you	are	going	to	use
RDMLX	server	side	components,	functions	or	files	within	your	Framework
application,	you	should	select	this	option.
Select	this	option	for	example	when	your	VLF	application	might	be	using
CALL_SERVER_FUNCTION	to	run	an	RDMLX	function	or	accessing	an
RDMLX	file	on	the	server.
If	this	setting	is	selected,	the	connection	to	the	server	uses	the	built	in	function
DEFINE_ANY_SERVER.	See	the	documentation	for	the	restrictions	for	the
built	in	function	in	the	Technical	Reference	Guide.
This	property	is	in	the	Server	Details	tab.

	

New	Password
This	password	is	used	only	for	validating	the	user	profile	and	password	of	users
who	must	sign	on	to	use	the	local	database.	It	is	not	used	for	users	who	do	not
sign	on,	or	for	users	who	have	the	option	of	connecting	to	a	server.
The	administrator	can	use	this	field	to	assign	default	passwords	for	users	that
will	be	signing	on	to	use	the	local	database.
This	property	is	in	the	User	Details	tab.

	

Physical	File	from	which	the	Child	Data	Comes	From
Specify	here	the	name	of	the	physical	file	that	contains	the	data	for	the	child
object.
This	is	a	Program	Coding	Assistant	property.

	
	

Popup	Panel	Name
This	is	the	name	of	your	reusable	part	that	will	pop	up	when	the	user	mouses
over	an	instance	list	entry	of	this	business	object.
The	reusable	part	must	have	as	its	ancestor	VF_AC021.
In	order	for	the	pop	up	to	be	shown,	the	business	object	that	displays	the
instance	list	must	have	the	uListPopUp	enabled,	and	the	end-user	must	not	have
disabled	instance	list	pop	ups.	The	pop	up	panel	can	be	any	size	you	want.	The
panel	is	able	to	control	its	position	via	parameters	on	the	uLoad	method.	See
component	DF_T3303	for	an	example.
This	feature	is	only	available	for	the	primary	instance	list,	for	frameworks	being
run	in	Direct-X	mode	(Render	mode	M).
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Port	Number
Specify	the	IP	port	number	RAMP-TS	sessions	should	use.
This	property	is	in	the	Server	Details	tab.

	
	

Preferred	web	scheme/skin
The	choice	you	make	here	affects	the	backgrounds	used	in	any	RAD-PADs	you
create	while	prototyping	your	application.	Later	you	can	choose	to	execute	and
deploy	your	Web	browser	application	using	one	or	more	of	these	skins.	Choose
a	preferred	skin	from:

Windows
Classic

Your	browser		application	will	be	given	an	appearance	that	closely
resembles	the	classic	Microsoft	Windows	look	of	the	platform	it	is
executing	on.

Web
Page

Your	browser		application	will	be	given	an	appearance	that
distinctly	identifies	it	as	a	web	application.

Windows
XP

Your	browser	based	application	will	be	given	an	appearance	that
closely	resembles	the	Microsoft	Windows	XP	look,	even	when	it	is
not	executed	on	Windows	XP	platforms.
This	skin	is	no	longer	available	–	please	do	not	use.

	

This	property	is	in	the	Developer	Preferences	–	Web	Server	tab.

	

Private	Definition/aXes	Project	Folder
Type	in	the	name	of	the	folder	where	to	store	the	screens	defined	using	the
RAMP	Tools.	You	must	only	type	the	folder	name,	not	the	path	name.	The
folder	will	be	created	if	it	does	not	exist.
When	not	specified	the	private	definition/aXes	project	folder	defaults	to
/ts/screens	and	when	specified	it	will	become	of	subfolder	of	/ts/screens.
You	should	back	up	this	folder	on	a	daily	basis.
You	should	only	use	private	definition/aXes	project	folders	to	separate	screen
definitions	on	a	completely	separate	and	individual	project	basis.
You	should	never	use	private	definition/aXes	project	folders	to	separate	screen
definitions	on	a	developer,	task	or	unit	of	work	basis.
Screen	definitions	stored	in	separate	private	definition/aXes	project	folders
cannot	ever	be	merged	with	screen	definitions	stored	in	other	private
definition/aXes	project	folders.
Example
If	your	Private	Definition/aXes	Project	folder	is	/axes/ts/screens/MyProject/
this	property	would	be	completed	as:

	
This	property	is	in	the	Server	Details	tab.

	

Private	Working	Folder
The	private	working	folder	is	the	folder	where	you	will	upload	the	files	required
to	run	the	Visual	LANSA	Framework	in	a	browser.
Before	you	upload	the	files,	this	folder	must	exist	on	your	LANSA	for	the	Web
development	system	server	and	be	accessible	via	HTTP.
We	recommend	you	use	the	Web	Configuration	Assistant	to	create	the	private
working	folder.
If	you	want	to	create	this	folder	manually,	do	this:
For	a	System	i	web	server	create	a	folder	on	the	System	i	IFS.	To	make	sure
the	folder	is	accessible	via	HTTP	you	can	create	it	as	a	subfolder	of	the	Lansa
for	the	Web	Images	folder.
Type	in	the	path	to	the	private	working	folder.
For	example,	if	your	Lansa	for	the	Web	images	folder	is	LANSAIMG	and	you
created	a	subfolder	of	it	called	VLF_Fred_Private,	the	value	you	would	enter
into	this	field	would	be:
LANSAIMG/VLF_Fred_Private
Verify	that	the	value	entered	is	correct	and	that	the	folder	is	accessible	by
clicking	the	Verify	button.	The	resulting	Internet	Explorer	display	should	show
the	index	of	the	folder.
If	the	verification	process	fails	you	should	resolve	the	problem	before
proceeding.	See	LANSA	for	the	Web	Private	Working	Folder	Problems	for
some	ideas	about	problem	resolution.
For	a	Windows	web	server	create	a	folder	on	the	Windows	web	server.	You
can	create	it	as	a	subfolder	of	the	Web	Server's	Images	directory	to	make	sure
that	it	accessible	via	HTTP.
Type	in	the	path	to	the	private	working	folder.	
For	example,	for	an	IIS	web	server,	the	Images	folder	has	an	alias	name	of
Images.	So	suppose	that	the	path	for	images	was:
c:\Lansa\WebServer\Images
In	the	browser	you	can	type		http:/<nnn.nnn.nnn.nnn>/images/
to	access	the	Images	folder.
If	you	created	a	subfolder,	for	example,
c:\Lansa\WebServer\Images\VLF_Fred_Private
the	value	you	would	enter	into	this	field	would	be:

Images/VLF_Fred_Private
Verify	that	the	value	entered	is	correct	and	the	folder	is	accessible,	by	clicking
the	Verify	button.	The	resulting	Internet	Explorer	display	should	show	the	index
of	the	folder.
If	the	verification	process	fails	you	should	resolve	the	problem	before
proceeding.	See	LANSA	for	the	Web	Private	Working	Folder	Problems	for
ideas	about	problem	resolution.
Please	note:	each	Framework	developer	needs	to	have	a	private	working	folder
created	for	his	or	her	exclusive	use.
	
This	property	is	in	the	Developer	Preferences	–	Web	Server	tab.	It	is	also	a	Web	Configuration	Assistant
property.

	
	

Programmatic	Identifiers	for	Building	AKey	and	NKey	Values
Specify	the	programmatic	identification	protocol	you	wish	to	use	for	this
business	object.
For	example,	for	a	"Products"	business	object	you	might	decide	to	specify	field
PRODNO	(Product	Number)	as	the	single	programmatic	identifier	because	the
Product	Number	is	enough	to	uniquely	identify	a	"Product"	instance	to	your
programs.			
Any	field	name	can	be	specified	in	this	list	(even	ones	not	currently	defined	in
the	LANSA	data	dictionary).	The	fields	specified	do	not	necessarily	have	to	be
columns	in	any	physical	file	that	you	specify	at	the	top	of	the	form.
See	Visual	Identifiers	and	Programmatic	Identifiers	for	more	details	of	business
object	identification	protocols.
This	is	a	Program	Coding	Assistant	property.

	

Property	Type
Specifies	the	property	type	as	Alphanumeric,	Numeric	or	Boolean
(TRUE/FALSE	value).
This	property	is	in	the	Custom	Properties	tab.

	

Prototype	Only
You	can	execute	the	Framework	in	its	original	prototype	mode	by	selecting	this
check	box	when	you	select	the	Framework	file.
This	option	is	only	available	when	you	execute	the	Framework	as	Designer.
In	prototype	mode	all	these	Framework	features	default	to	using	their	original
prototype	state:
The	system	IIP
The	bitmap	and	icon	loader
Filters
Command	handlers
Snap-in	instance	list	browsers

This	property	is	in	the	Select	Framework	dialog.

	
.							
	

RAD-PAD	File	Name
The	name	of	the	RAD-PAD	file	that	is	associated	with	the	mock-up	version	of
this	filter.
This	property	is	in	the	Identification	tab.

	

RAD-PAD	File	Format
The	recommended	setting	for	this	option	is	HTML	format.
RTF	format	is	a	deprecated	feature.	You	should	not	use	it	in	new	Frameworks.
This	property	is	in	the	Framework	Details	tab.

	

RAMP	Destinations
The	RAMP	destination	screen	name.	For	more	information,	refer	to	the	RAMP
documentation.
This	property	is	in	the	Commands	Enabled	tab.

	

RAMP	Javascript	Charset
This	property	maps	to	the	charset=	attribute	of	a	an	externally	included
javascript	file.
It	specifies	the		character	encoding	to	be	used	for	the	RAMP	scripts	file,	for
example	vf_sy001_system_Nodes_RAMP_DEFAULT_SESSION.js.
This	property	is	in	the	Web/RAMP	Details	tab.

	

RAMP	Password
The	password	associated	with	the	RAMP	User.
Use	of	this	option	in	end-user	environments	is	unusual	(refer	to	RAMP	User
for	details).		
When	used,	specify	this	option	as	a	valid	System	i	password,	or	use	the	special
value	*PROMPT	to	indicate	that	the	user	should	be	prompted	for	the	correct
password	at	the	time	that	any	RAMP	connection	needs	to	be	established.
This	property	is	in	the	User	Details	tab.

	

RAMP	Tools	Mode	Load	Path
Specifies	the	path	that	any	RAMP-TS	session	started	should	use	at	design	time
when	using	the	choreographer	in	the	RAMP	Tools.	You	should	consult	with
your	product	vendor	before	changing	this	value.
This	property	is	in	the	Server	Details	tab.

	
	

RAMP	User
Applicable	to	RAMP	applications,	and	only	when	the	user	profile	that	will	be
used	by	RAMP	to	connect	to	your	System	i	server	is	different	to	the	Framework
user	profile.
Use	of	this	option	in	end-user	environments	is	unusual.		
Say	you	have	defined	user	profile	USERA	to	the	Framework.	Typically	an	end-
user	will	start	the	Framework	as	USERA	and	by	default	any	RAMP	connection
that	needs	to	be	established	will	also	be	started	under	user	profile	USERA.	Only
in	the	unusual	situation	where	the	end-user	needs	to	start	the	Framework	as
USERA,	but	establish	their	RAMP	session	as,	for	example,	USERB,	would	you
use	this	option.												
Specify	this	option	as	a	valid	System	i	user	profile,	or	use	the	special	value
*PROMPT	to	indicate	that	the	user	should	be	prompted	for	the	correct	user
profile	at	the	time	that	any	RAMP	connection	needs	to	be	established.
This	property	is	in	the	User	Details	tab.

	
	

Read	Only
This	is	for	tables	which	have	no	method	for	saving	or	updating	data	in	their
table	data	handler,	or	for	those	tables	where	the	complete	data	set	has	been
added	and	saved,	and	the	designer	does	not	wish	to	allow	the	administrator	to
modify	the	table	data	in	future.
This	property	is	in	the	Code	Table	Definition	tab.
	

	
	

Referenced	.NET	Assemblies
Add	here	the	.NET	assemblies	containing	your	snap-in	components,	one
assembly	in	each	line.	You	also	need	to	add	any	dlls	that	are	referenced	in	your
assemblies	such	as	LOpen.dll.
You	can	use	either	absolute	or	relative	paths.	If	you	use	a	relative	path,	the
assembly	has	to	be	in	the	LANSA	partition	execute	folder.
This	property	is	in	the	Framework	Details	tab.

	

Remember	Key	Values	between	Filter	Executions
Check	this	option	if	the	filter	is	to	include	code	to	remember	the	search	criteria
used	between	executions	on	the	virtual	clipboard.
For	more	information	about	the	virtual	clipboard	see	The	Virtual	Clipboard.
This	is	a	Program	Coding	Assistant	property.

	

Relationship	Handler
A	relationship	handler	is	an	RDML	function	or	reusable	part	that	is	called	to
dynamically	expand	the	relationship	between	a	parent	and	child	object.	By
doing	this	you	can	improve	filter	performance	by	only	adding	root	or	parent
objects	to	the	instance	list	initially.	For	a	sample	of	such	handlers	see	the
Sample	Relationship	Handler	Function	and	the	Sample	Relationship	Reusable
Part.
Relationship	handlers	are	used	by	the	shipped	instance	list	only,	they	are	not
applicable	when	writing	your	own	instance	list.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	
	

Relationship	Type
Use	this	option	to	specify	the	type	of	relationship	the	selected	business	object
has	with	the	object	being	edited.	The	relationship	can	be:

None There	is	no	relationship	between	the	objects.

Loosely
coupled
peer

This	business	object	can	be	displayed	in	the	same	instance	list	as
the	object	being	edited	even	though	there	is	no	hierarchical
relationship	between	them.

Child	or
descendant

This	object	is	a	child	object	of	the	object	being	edited.

	

This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Report	on	Users	-	Imbedded	Interface	Point	(Id)
This	is	the	name	of	a	reusable	part	that	is	executed	when	the	Administrator
presses	the	User	Authorities	Report	File	button	in	the	User	Details	tab	(accessed
using	the	Users	option	of	the	Administration	menu).
The	specified	reusable	part	requests	the	reporting	options	from	the
administrator,	and	then	produces	a	report.
The	report	could	be	in	the	form	of	a	.csv	file,	or	it	could	be	written	out	to	a
database.	It	is	entirely	up	to	the	programmer	to	choose:
The	options	requested	from	the	administrator	when	running	the	report
The	report	structure	and	content
The	way	in	which	the	report	is	output.
If	the	property	is	left	blank,	the	standard	report	program	is	used,	which	outputs	a
.csv	file	(which	can	be	read	by	excel.)
This	feature	is	intended	for	developers	who	do	not	want	to	use	the	standard
report	program,	because	they	want		different	report	content/structure/summaries,
or	have	exceedingly	large	volumes	of	user/authority	data,	or	want	to	output	the
report	data	in	a	different	form	(e.g.	to	a	local	database).
See	the	source	of	the	shipped	example	component	UF_REPUS	for	a	working
example	of	a	component	like	this.
Note	the	ancestor	of	the	component	must	be	VF_AC022.
It	is	suggested	that	developers	start	by	comparing	this	example	program	with	its
output,	and	then	make	a	copy	and	modify	their	program	to	get	the	results	they
want.
This	property	is	in	the	Framework	User	Administration	Settings	tab.
	

	

Restricted	Access
This	property	overrides	the	normal	behaviour	of	Framework	objects	which	is	to
inherit	their	use	authority	from	their	parent.
Normally,	for	example,	if	a	user	has	authority	to	use	an	application,	they	will
automatically	have	authority	to	use	a	business	object	in	that	application.	But	if
the	business	object	has	Restricted	Access	checked,	then	it	will	not	inherit	USE
authority	from	its	parent	application.	The	administrator	will	have	to	specifically
authorize	the	user	to	that	business	object	to	allow	the	user	to	use	it.
In	most	cases	Restricted	Access	should	be	left	unchecked,	so	that	authorities
specified	at	a	higher	level	will	cascade	to	all	child	objects.	This	makes	authority
specification	easier.
There	is	one	case	however,	where	you	may	find	it	useful	to	check	Restricted
Access.	Suppose	you	have	already	set	up	a	Framework,	all	your	users,	and	their
authorizations.	Now	you	wish	to	add	a	new	object	(application	or	business
object	or	command	ref)	to	the	Framework.	For	this	new	object	you	do	not	want
users	who	are	authorized	to	its	parent	to	automatically	get	authority	to	the	new
object.	In	this	case	you	would	check	the	new	object's	Restricted	Access
property.
	
This	property	is	in	the	Commands	Enabled	tab	and	the	Identification	tab.

	

Routine	to	listen	for	signals	to	update	the	instance	list
Select	this	option	if	you	want	to	create	filters	that	listen	for	changes	from
RAMP	command	handlers.
For	more	information,	refer	to	the	RAMP	Guide.
This	is	a	Program	Coding	Assistant	property.

	

Save	and	Restore	Instance	Lists
Select	this	option	if	you	want	the	instance	list	saved	when	the	Framework	is
closed	and	restored	the	next	time	the	Framework	is	executed.
In	this	way	the	user	does	not	have	to	use	the	filters	every	time	they	start	up	the
Framework.
This	option	is	only	applicable	to	Windows	applications.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Save	as	Deployment	Server
Select	this	option	if	you	want	these	server	details	be	used	when	deploying	the
application.	The	characteristics	of	this	server	will	then	be	used	as	default	values
in	the	deployed	application.
For	example,	if	you	start	a	deployed	VLF-WEB	application	that	uses	RAMP-TS
it	needs	to	know	the	IP	address	of	your	RAMP-TS	server	to	be	able	to	initiate
the	RAMP	5250	session.
The	IP	address	it	uses	can	come	from	one	of	two	places:
1.	An	IP	address	you	specify	on	the	start-up	URL	
2.	The	default	IP	address	-		which	was	saved	from	the	server	definition	with
"Save	as	deployment	server"	ticked	when	the	framework	definition	was	last
saved.
A	specific	IP	address	on	the	start	up	URL	will	always	take	precedence.
This	property	is	in	the	Server	Details	tab.

	

Script	for	Uploading	to	your	LANSA	for	the	Web	Folders
The	Framework	needs	to	copy	data	from	your	Visual	LANSA	workstation	to	the
LANSA	for	the	Web	Images	folder	and	to	your	LANSA	for	the	Web	Private
Working	Folder.

It	can	perform	these	copies	using	FTP	or	simple	DOS	COPY	commands
(providing	that	you	have	a	mapped	drive	to	the	your	IFS	folders).
It	does	this	by	expanding	and	then	executing	a	small	skeleton	script	that	you
provide.
You	need	to	create	(and	sometimes	modify)	the	script	that	will	be	used.
If	you	have	a	mapped	drive	and	have	input	the	Optional	Mapped	Drives	to
your	LANSA	for	the	Web	Folders	details	in	step	10:
Change	the	Script	Type	to	"DOS	File	COPY	Commands"
Click	the	Generate	Example	Button.
A	script	example	should	appear	in	the	script	window.
The	script	window	is	input	capable	and	you	can	change	the	script	if	you	need
to.
Review	the	script	and	check	that	the	directory	names	are	correct.	Change	them
as	required	so	that	information	can	be	copied	from	your	partition	execute

directory	to	your	LANSA	for	the	Web	images	directory	and	your	private
folder.
If	you	do	NOT	have	a	mapped	drive,	or	prefer	to	use	FTP	file	transfers:	
Change	the	Script	Type	to	"FTP	File	Transfer	Commands"
Click	the	Generate	Example	Button.
A	script	example	should	appear	in	the	script	window.
The	script	window	is	input	capable.
Replace	the	"===>	Replace	this	line	with	your	FTP	user	profile	<==="	string
in	line	2	of	the	script	with	the	user	profile	you	use	for	FTP	file	transfers.
Typically	this	is	your	System	i	user	profile	(eg:	QPGMR).
Replace	the	"===>	Replace	this	line	with	your	FTP	password	<==="	string	in
line	3	of	the	script	with	the	user	profile	you	use	for	FTP	file	transfers.
Typically	this	is	your	System	i	user	profile	password	(eg:	PGMR).	Note	that
your	user	profile	and	password	details	are	not	stored	in	the	Framework	XML
file	and	are	only	ever	kept	in	your	Visual	LANSA	system.
Review	the	script	and	check	that	the	directory	names	are	correct.	Change	them
as	required	so	that	information	can	be	copied	from	your	partition	execute
directory	to	your	LANSA	for	the	Web	images	directory	and	your	private
folder.
For	example,	after	pressing	the	"Generate	Example"	button	you	might	see	this:
OPEN	608.89.58.81
===>	Replace	this	line	with	your	FTP	user	profile	<===
===>	Replace	this	line	with	your	FTP	password	<===
LCD	"C:\PROGRAM	FILES\LANSA\X_WIN95\X_LANSA\x_dem\execute"
PROMPT	
...........	etc
	

If	your	FTP	user	profile	was	QPGMR	(say)	and	your	password	was	MOUSE
(say)	then	you	should	change	the	generated	example	to	be	like	this:
	
OPEN	608.89.58.81

QPGMR

MOUSE

LCD	"C:\PROGRAM	FILES\LANSA\X_WIN95\X_LANSA\x_dem\execute"

PROMPT	

...........	etc
For	a	Windows	web	server	and	for	an	Apache	web	server	running	on
System	i,	you	may	need	to	change	directory	names.
For	example,	if	the	virtual	name	for	your	Images	folder	was	Images	after
pressing	the	"Generate	Example"	button	you	might	see	this:
CD	"//Images"

MPUT	<<PUT_SHARED_FILES>>

CD	"//Images/My_Private_Folder"

MPUT	<<PUT_PRIVATE_FILES>>

...........	etc
	

If	the	real	name	for	your	Images	folder	was	LANSAIMG	you	should	change	the
generated	example	to	be	like	this:
CD	"\lansaimg"

MPUT	<<PUT_SHARED_FILES>>

CD	"\lansaimg\My_Private_Folder"

MPUT	<<PUT_PRIVATE_FILES>>

...........	etc
	

Note	that	the	upload	script	is	static.
If	you	change	any	of	your	folder	or	mapped	drive	details	you	will	probably	need
to	regenerate	the	upload	script	again.
This	property	is	in	the	Developer	Preferences	–	Web	Server	tab.

	

Search	Field	Width
Applies	to	Windows	Framework	and	.NET	applications.
This	option	defines	the	width	of	the	search	field	on	the	tool	bar.	A	value	of	zero
indicates	the	search	field	should	not	appear	and	the	search	feature	should	not	be
enabled.	
The	search	field	only	appears	in	the	main	Framework	window	or	in	full
Framework	window(s)	opened	from	within	it.	The	search	list	is	a	statically
positioned	list.	If	you	resize	the	VLF	main	window	while	it	is	displayed,	it	will
stay	in	the	same	position.	When	the	user	moves	the	focus	away	from	the	search
field,	the	search	list	will	immediately	disappear.		
The	most	recently	used	business	object	details	are	stored	in	the	system	virtual
clipboard,	so	they	are	lost	when	the	virtual	clipboard	is	cleared.		
The	first	time	that	a	user	performs	a	search	a	list	of	text	from	all	authorized
business	objects	is	built.	This	process	checks	the	user’s	authority	to	use	the
business	objects,	so	if	you	are	using	an	expensive	business	object	authority
checking	IIP	you	should	consider	this	when	enabling	this	feature.			
The	words	that	appear	in	the	search	field	and	the	results	list	are	all	exposed	as
normal	customer	modifiable	multi-lingual	variables.	They	may	be	customized	in
the	usual	manner.			
Also	see	Quick	Find	Box	on	the	tool	bar	and	Allow	Search/Recently	Used	Limit
.
	This	property	is	in	the	Framework	Details	tab.

	

	

Select	the	Keys	of	the	Selected	View	to	be	used	for	Search
Operations
Select	the	key(s)	of	the	selected	view	that	are	to	support	searching.
Imagine	that	you	had	two	views	of	an	employee's	table	available:
View	A	was	keyed	by	DEPTMENT	(Department),	SECTION	(Section)	and
EMPNO	(Employee	Number).		
View	B	was	keyed	by	SURNAME	(Employee	Last	Name)	and	GIVENAME
(Employee	Given	Name).
Now	imagine	that	you	wanted	your	end-users	to	be	able	to:
Search	for	all	the	employees	that	work	in	a	specific	department	or	section.	
Search	for	employees	by	full	or	partial	name.	
To	do	this	you	would	probably	create	2	filters:
The	first	(1)	would	use	view	A	with	these	options
Keys	to	be	used	in	search:	DEPTMENT	and	SECTION	only.				
User	must	specify	all	chosen	keys:	No.	Just	a	DEPTMENT	value	alone	may	be
specified	to	create	a	list	of	all	the	employees	in	a	department.			
Allow	generic	searching:	No.	Searching	for	departments	or	sections	with
generic	names	has	no	business	value	and	may	be	confusing.
The	second	(2)	would	use	view	B	with	these	options
Keys	to	be	used	in	search:	SURNAME	only.			
User	must	specify	all	chosen	keys:	Yes.	At	least	one	letter	of	a	surname	must	be
specified	before	the	search	button	can	be	clicked	to	prevent	extremely	large
searches	being	done	by	accident.	
Allow	generic	searching:	Yes.		
Note:	Key	selections	need	to	be	contiguous	from	the	first	key.	For	example,	if
you	select	key	number	3	you	must	also	select	key	numbers	1	and	2.	
This	is	a	Program	Coding	Assistant	property.

	

Select	the	View	to	Be	Used	For	Filtering	and	Searching
Operations
Select	the	view	of	the	primary	physical	file	that	is	to	be	searched	by	this	filter.
This	is	a	Program	Coding	Assistant	property.

	

Selection	Block	Size
This	is	the	block	size	parameter	used	by	the	CONNECT_FILE	Built-In	function
when	connecting	to	the	server.	This	property	defines	the	number	of	records	that
are	transferred,	in	one	hit,	from	the	server	by	SELECT	commands	executed	on
the	client	system.	Performance	is	improved	by	using	large	block	sizes,	so	the
default	when	you	define	a	new	server	is	500.	Conversely,	using	small	block
sizes	degrades	the	performance	of	your	application.		
It	is	recommended	that	you	do	not	set	this	to	a	value	less	than	50.
You	can	override	this	value	in	any	program	by	use	the	CONNECT_FILE	built-
in	function.
You	can	do	this	for	all	files,	generic	groups	of	files	or	individual	files.
Refer	to	the	CONNECT_FILE	built-in	function	in	the	LANSA	Technical	Guide
for	more	information.
Note	that	if	your	code	performs	UPDATE	or	DELETE	operations	without
WITH_KEY	or	WITH_RRN	parameters,	the	operations	are	performed	on	the
last	record	in	the	block,	which	may	not	be	the	the	last	record	read	into	your
program.
Therefore,	if	you	must	use	UPDATE	or	DELETE	operations	against	the	last
record	read,	it	is	recommended	that	you	supply	a	WITH_KEY	or	WITH_RRN
value	instead,	or	temporarily	use	the	CONNECT_FILE	built-in	function	to	push
the	block	size	down	to	1,	then	restore	it	back	to	a	high	value.
This	property	is	in	the	Server	Details	tab.

	

Selection	Limit
This	is	the	Selection	limit	parameter	used	by	the	CONNECT_FILE	Built-In
function	when	connecting	to	the	server.	It	sets	the	maximum	number	of	records
that	can	be	read	from	the	Server.
For	more	information	refer	to	the	LANSA	Technical	Reference	guide	and
review	the	help	for	the	CONNECT_FILE	Built-In	function.
This	parameter	can	be	overridden	using	your	own	logic.	See	Imbedded	Interface
Points	(IIPs).
This	property	is	in	the	Commands	Enabled	tab	and	the	Server	Details	tab.

	

Sequence
Use	this	property	to	assign	a	sequence	number	to	this	object.	This	number
controls	the	position	of	this	object	relative	to	other	objects	of	the	same	type.	For
example,	an	application	with	a	sequence	number	of	1	is	displayed	before	an
application	with	a	sequence	number	2	in	the	application	bar.
If	you	do	not	specify	a	sequence	number,	the	objects	are	displayed	in
alphabetical	order	of	their	captions.
For	custom	properties	this	is	the	sequence	in	which	the	property	is	to	be
displayed	to	the	administrator	(within	the	Framework,	application	or	business
object	to	which	it	belongs).
	
This	property	is	in	the	Custom	Properties	tab	and	the	Identification	tab.

	
	

Sequence	Using
Use	this	option	to	select	which	of	the	table	fields	is	to	be	the	one	used	to
determine	the	sequence	of	the	entries	in	either	the	combo	box	or	the	list	of	radio
buttons.	
If	you	choose	the	option	"All	key	fields"	this	means	that	the	table	entries	will	be
displayed	in	the	order	they	arrive	from	the	table	data	handler	function.
If	the	table	data	handler	function	is	the	generic	table	data	handler	then	the
arrival	sequence	is	sorted	by	the	key	fields.
This	property	is	in	the	Code	Table	Visualization	tab.

	

Server	Client	Translation	Table
For	System	i	servers	only	specify	the	server	to	client	translation	table	to	be	used.
Note	that	these	values	are	automatically	defaulted	from	the	client	partition
definition.
The	default	translation	table	used	for	Framework	server	definitions	using
RDMLX	partitions/connections	is	*JOB.
Ensure	that	your	client	and	server	partition	definitions	match.
This	property	is	in	the	Server	Details	tab.

	

Server	IIP	function	to	validate	sign	on
This	is	the	name	of	a	lansa	IIP	function	that	runs	on	the	server	during	sign	on.	It
is	run	after	the	user	has	connected	to	the	server,	but	before	VLF	authority	is
evaluated.	It	receives	the	user	profile	that	the	user	signed	on	as,	and	can	return	a
user	profile,	as	well	as	other	values.
This	function	must	exist	on	the	server.
See	the	source	for	function	UF_SYSBR/UFU0005	for	more	details
This	property	is	in	the	Server	Details	tab.

	
	

Server	Name
Enter	here	the	identifying	name	of	the	server.
For	other	types	of	server	except	newlook,	this	name	should	be	the	same	as	the
Partner	LU	Name	you	used	when	you	defined	the	server	to	the	LANSA
Communications	Administrator.
For	newlook	servers,	enter	the	name	of	the	newlook	connection	as	defined	in
the	newlook	Connection	Properties	panel.

	
You	can	leave	this	field	blank	in	which	case	the	IP	address	and	Port	will	be
used.
If	you	leave	all	the	fields	blank,		the	newlook	connection	panel	will	be	displayed
when	the	Framework	is	trying	to	establish	a	connection.
This	property	is	in	the	Server	Details	tab.

	

Server	Overrides
The	X_RUN	exceptional	arguments	may	be	used	to	override	the	parameters
used	on	the	X_RUN	command	started	on	the	server	system:
By	default,	the	following	client	X_RUN	parameter	values	are	passed	to	(and
inherited	by)	the	X_RUN	command	started	on	the	server	system:	LANG=,
PART=,	DEVE=,	DBID=,	DBII=,	DBUT=,	DBIT=,	DBUS=,	PSWD=,	USER=,
PSPW=,	CMTH=,	CDLL=,	TPTH=,	RPTH=,	DATF=,	XAFP=,	PRTR=,
HSKC=,	ODBI=,	TASK=,	PPTH=,	INIT=,	TERM=,	ITRO=,	ITRL=,	ITRM=
and	ITRC=.
All	other	X_RUN	parameter	values	on	the	server	system	are	defaulted	(on	the
server		system)	in	the	usual	manner	(i.e.:	from	a	profile	file,	from	system
environment	settings,	etc).	Refer	to	the	definition	of	the	X_RUN	command	for
details	of	all	parameter	values	and	the	methods	by	which	they	can	be	specified
and	defaulted.
You	may	override	any	server	X_RUN	parameter	(via	the	X_RUN	exceptional
argument	value)	except	for	CMTH=,	CDLL=,	PROC=,	MODE=,	PART=,
LANG=,	DBUG=,	DEVE=,	DATF=,	XAFP=,	USER=	and	PSPW=.	These
X_RUN	arguments	are	unconditionally	inherited	from	the	client	system.
Override	parameters	may	be	given	a	specific	value,	or	the	special	value
*SERVER,	which	indicates	that	the	server	default	should	be	used.	As	an
example,	a	Windows	client	using	DBII=*NONE	might	connect	to	a	Windows
Server	running	SQL	Server.	If,	by	default,	Windows	uses	the	database	type
SQLANYWHERE,	DBUT	needs	to	be	overridden.	The	X_RUN	exceptional
argument	value	could	be	set	to	either	DBUT=MSSQLS	or	DBUT=*SERVER.
This	property	is	in	the	Server	Details	tab.

	

Server	Settings	XML	File
Use	the	Server	Settings	XML	File	property	to	specify	the	name	of	the	file	where
server	settings	for	the	Framework	are		stored.	This	file	is	located	in	the	Execute
directory	of	the	current	partition.
The	default	value	is	Vf_Sy001_Servers.xml.
Please	refer	to	Development	Architecture	before	changing	this	value.
This	property	is	in	the	Framework	Details	tab.

	

Server	Type
Select	the	type	of	the	server	to	be	defined.
When	defining	a	RAMP-TS	server,	typically	you	would	select	the	option
LANSA	for	System	i	+	RAMP-TS.	Similarly,	when	defining	a	newlook	server,
typically	you	would	select	the	option	LANSA	for	System	i	+	RAMP-NL.
If	your	System	i	and	RAMP-TS	or	newlook	servers	have	different	IP	addresses
(even	though	they	might	be	the	same	physical	server),	choose	the	RAMP-TS
Only	or	RAMP-NL	Only	option.
This	property	is	in	the	Server	Details	tab.

	

Shortcut
Commands	that	appear	in	menus	may	have	an	associated	short	cut	key.	Using
the	short	cut	key	is	equivalent	to	clicking	on	the	command	in	the	menu.	The	list
of	available	short	cut	key	combinations	is	shown	in	the	drop-down.
Note:	The	preferred	shortcut	keys	are	function	keys	and	Ctrl+letter
combinations.	It	is	possible	to	set	the	shortcut	key	to	Alt+letter,	but	this	is	not
recommended	because	as	a	rule	Alt+letter	combinations	are	used	as	the	access
key	based	on	the	underlined	letter	of	the	caption.
F1,	Ctrl+F1	and	Ctrl+Shift+F1	will	always	bring	up	the	help	text	of	your
application.
This	property	is	in	the	Identification	tab.

	
	

Show	Additional	Columns
Use	this	option	to	indicate	whether	any	additional	columns	for	this	business
object	should	be	displayed	in	the	instance	lists	selection	tree.				
In	this	example	the	option	has	been	selected	so	that		additional	columns	from
the	SECTIONS	and	EMPLOYEES	business	objects	are	to	appear	in	the	main
instance	list	tree	together:

	

Notice	how	the	additional	columns	from	the	SECTIONS	business	object	and	the
EMPLOYEES	business	object	both	appear	in	the	tree,	even	though	they	contain
quite	different	content?		When	you	use	this	option	there	should	be	some	degree
of	commonality	in	the	way	that	the	different	business	objects	use	the	additional
columns	in	the	tree.
If	this	option	was	unchecked,	then	the	display	would	change	to	this:

	

The	SECTIONS	additional	columns	appear	in	the	tree,	but	now	only	the	most
basic	EMPLOYEES	details	now	appear.	Note	that	in	this	type	of	display	the
column	headings	and	layout	details	come	from	the	parent	business	object,	in	this
case	SECTIONS.

This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Show	Current	Business	Object	in	Window	Title
Check	this	option	to	force	the	Framework	to	always	show	the	current	business
in	window	titles.			
If	this	option	is	unchecked,	the	Framework	caption	will	be	used	for	all	window
titles	unless	the	Show	the	‘Windows’	Menu	in	this	Framework	option	is	checked
in	which	case	all	windows	will	show	the	current	business	object	as	the	window
title	regardless	of	this	option.
This	property	is	in	the	Identification	tab.

	

Show	in	Help	About	Text
If	this	option	is	checked,	the	Framework	version	number	will	be	automatically
included	at	the	start	of	the	text	displayed	when	end-users	the	Help	About
options.	This	allows	you	to	identify	which	version	of	your	Framework	an	end-
user	is	actually	executing.
This	property	is	in	the	framework's	Identification	tab.

				

Show	in	Menu
Choose	the	menu	in	which	the	command	is	displayed.
If	you	do	not	include	the	command	in	any	menu,	it	will	be	displayed	in	the	pop-
up	menu	associated	with	the	object	for	which	it	is	enabled.	However,	it	is	good
practice	to	include	commands	in	the	menu	bar	because	that	is	where	many	users
first	look	for	a	command.
To	create	a	new	menu,	use	the	Menus…	option	of	the	Framework	menu.
Note	that	the	Framework	and	Administrator	menus	are	built	in	the	Framework
and	cannot	be	changed.	See	Menu	Options	in	Brackets	for	information	of	how
to	run	the	Framework	with	these	menus	hidden.
This	property	is	in	the	Toolbar	and	Menus	tab.

	

Show	When	Disabled
This	option	only	applies	when	the	command	is	set	to	appear	on	a	menu	in	the
main	menu	bar.	It	does	not	apply	to	command	items	appearing	on	pop-up
menus.
Use	this	option	to	specify	whether	the	menu	option	for	this	command	is	shown
when	the	command	is	not	enabled	for	the	selected	object.
This	option	applies	to	Windows	and	Web	Framework	applications.
This	property	is	in	the	Toolbar	and	Menus	tab.

	

Show	on	Instance	List	Tool	Bar
Select	or	unselect	this	option	to	control	whether	a	button	for	a	command
reference	should	appear	on	the	instance	list	tool	bar	associated	with	the	instance
list.
Note:	If	child	or	parent	business	objects	have	a	reference	to	the	same	command
definition,	a	button	for	these	references	may	still	appear.
This	property	is	in	the	Commands	Enabled	tab.

	

Show	On	Popup	Menus
Select	or	unselect	this	option	to	control	whether	this	command	reference	should
appear	in	right	mouse	button	popup	menus	within	the	Framework.
Typically	you	would	not	select	this	option	when:
The	object	with	which	the	command	is	associated	has	a	single	default
command.
You	want	the	command	to	only	be	invoked	from	the	menu	bar	or	toolbar.	

This	property	is	in	the	Commands	Enabled	tab.

	

Show	on	Toolbar
Select	this	option	to	show	this	command	in	a	toolbar	button.	The	image	on	the
button	is	the	bitmap	associated	with	the	command.
Note	that	the	image	shown	on	the	command	handler	tab	for	this	command	is	the
icon	associated	with	the	command,	so	you	should	try	to	use	the	same	or	similar
images	for	both	the	bitmap	and	the	icon.
This	property	is	in	the	Toolbar	and	Menus	tab.

	

Show	the	'Windows'	Menu	in	this	Framework
Use	this	option	to	show	or	hide	the	Windows	menu	option	on	the	Framework
menu	bar:

And	on	right	mouse	pop-up	menus:

	 	
	
The	Windows	menu	option	allows	secondary	windows	containing	instances	of
the	entire	Framework,	a	specific	application,	a	specific	application	view	or	a
specific	business	object	to	be	opened	for	concurrent	use.
Being	able	to	have	multiple	windows	open	at	the	same	time	allows	end-users	to
more	easily	perform	and	seamlessly	interrupt	concurrent	tasks	within	your
application.
The	number	of	concurrent	windows	is	set	using	the	Number	of	Additional
Windows	a	User	can	have	Open	Concurrently.
You	may	have	designed	dependencies	into	your	filters	or	commands	handlers
that	preclude	them	from	functioning	correctly	when	there	are	multiple	instances
open	in	multiple	windows.	In	this	case	use	the	Allow	this	Object	to	be	Opened
in	a	New	Window	option	to	prevent	them	from	being	used	in	multiple	open
windows.						
Be	aware	that	the	Overall	Theme	options	are	also	on	this	menu	and	if	users	are

allowed	to	change	the	Overall	theme	of	the	Framework	this	menu	should	be
shown.
The	Windows	menu	option	is	not	applicable	to	Web	Browser	applications.
This	property	is	in	the	Identification	tab.

	

Show	on	Connect	Dialog
VLF.WIN	only.
This	property	controls	whether	a	server	appears	in	the	list	of	servers	on	the	end-
user's	Connect	dialog.
This	property	is	in	the	Server	Details	tab.

	

Show	When	Disabled
Use	this	option	to	specify	whether	the	toolbar	button	for	this	command	is	shown
when	the	command	is	not	enabled	for	the	selected	object.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Toolbar	and	Menus	tab.

	

Snap	in	Instance	List	Browser	ID
Specify	here	the	identifier	of	your	own	instance	list	for	your	Windows
Framework	application	which	will	replace	the	standard	shipped	instance	list.
Your	instance	list	must	be	a	compiled	reusable	part.
The	instance	list	typically	appears	in	the	upper	right	of	the	Framework	and	it
displays	the	list	of	business	object	instances	currently	selected.
See	Optionally	Create	Your	Own	Instance	List	for	more	details.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Specify	the	Underlying	Physical	File	that	Will	Be	Searched	by	this
Filter
Specify	the	name	of	the	primary	physical	file	(i.e.:	table	name)	that	will	be
searched	by	this	filter.
This	is	a	Program	Coding	Assistant	property.

	

Options
This	option	specifies	what	is	displayed	in	the	large	right-hand	frame	when	the
Framework	or	application	starts	up.	The	options	are:

None No	action,	the	introduction	panel	simply	hides	itself	from	view.

Full
Image	

The	image	specified	as	Bitmap	is	displayed	so	as	to	fill	the	entire
viewing	area	of	the	introduction	panel.	The		URL		property	has	no
meaning	when	this	option	is	selected.

Real
Image

The	image	is	displayed	in	its	real	size,	centered	in	the	viewing
area	on	the	introduction	panel.	If	a	URL	value	exists	then	its	text
is	centered	below	the	image	so	that	it	can	be	clicked	on.

No	Image No	image	is	to	be	displayed.	If	a	URL	value	exists	its	text	is
centered	in	the	viewing	area.			If	no	Introduction	URL	exists	a
completely	blank	form	is	displayed.

Embedded
URL

The	URL	specified	is	immediately	displayed	as	a	web	page
imbedded	in	the	introduction	panel.

	

This	property	is	in	the	Framework	Startup	tab.

Stay	Active
Set	this	option	to	YES	to	indicate	that	the	filter	or	command	handler	should	stay
active	even	when	it	is	not	visible.
This	option	is	recommended	for	heavily	used	filters	and	command	handlers.
Using	it	usually	sacrifices	memory	usage	for	a	performance	increase.
Alternatively,	setting	this	option	to	NEVER	can	minimize	memory	usage.	The
NEVER	Stay	Active	option	indicates	that	when	you	move	between	business
objects,	any	inactive	filters	or	command	handlers	(i.e.	ones	that	are	on	tabs	that
are	not	visible	to	the	user)	should	be	terminated.	This	means	that	their
uTerminate	methods	should	be	executed.	(Note:	Visible/active	filters	or
command	handlers	cannot	be	terminated	because	the	user	may	redisplay	them	at
any	time).
DEFAULT	sets	the	Stay	Active	option	for	filters	and	command	handlers	to	the
value	set	on	the	new	Framework	level	option,	Stay	Active	Default	for
Command	Handlers	and	Filters.
Programming	notes:
Normally	a	filter	or	command	handler	may	be	destroyed	when	the	tab	is	no
longer	required	and	recreated	when	it	is	displayed	(the	random
creation/destruction	process	is	controlled	by	the	system,	not	the	Framework).	If
a	filter	or	a	command	handler	is	heavily	used,	this	process	can	be	costly	and	can
be	avoided	by	setting	Stay	Active	to	YES.
If	you	have	filters	or	command	handlers	that	are	specified	as	Stay	Active,	you
can	find	out	when	the	filter	is	being	created	for	the	first	time	(uInitialize)	and
when	it	is	being	destroyed	(uTerminate)	so	that	you	can	in	turn	yourself	create
and	destroy	things	that	your	filter	and	command	handler	uses.
If	you	use	uInitialize	and	uTerminate	with	a	non-stay	active	filter	or	command
handler	they	still	work,	but	they	may	be	invoked	frequently	as	the	filter	or
command	handler	is	being	created	and	destroyed,	and	they	do	not	run	every
time	the	object	is	hidden	and	displayed.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Commands	Enabled	tab	and	the	Filter	Snap-in	Settings	tab.

	

Stay	Active	Default	for	Command	Handlers	and	Filters
This	option	defines	the	default	value	of	the	Stay	Active	option	for	all	command
handlers	and	filters	that	have	their	Stay	Active	option	set	to	DEFAULT.
Set	this	option	to	YES	to	indicate	that	filters	or	command	handlers	should	stay
active	even	when	it	is	not	visible.
This	option	is	recommended	for	frameworks	with	many	heavily	used	filters	and
command	handlers.	Using	it	usually	sacrifices	memory	usage	for	a	performance
increase.
The	NEVER	Stay	Active	option	indicates	that	when	you	move	between
business	objects,	any	inactive	filters	or	command	handlers	(i.e.	ones	that	are	on
tabs	that	are	not	visible	to	the	user)	should	be	terminated.	This	means	that	their
uTerminate	methods	should	be	executed.	(Note:	Visible/active	filters	or
command	handlers	cannot	be	terminated	because	the	user	may	redisplay	them	at
any	time).
The	NO	setting	means	that	the	framework	does	not	attempt	to	control	the
termination	of	filters	and	command	handlers.
	This	property	is	in	the	Framework	Details	tab.

	

Store	Users	in	XML	File	and	Store	users	in	DBMS	Tables
VFPPF06/07
The	Visual	LANSA	Framework	is	shipped	with	a	user	profile	and	authority
management	facilities	built	in.
These	facilities	can	be	enabled	or	disabled	(see	Use	Framework	Users	and
Authority).
If	they	are	enabled	the	user	and	authority	details	need	to	be	stored:
In	an	XML	formatted	file,	or
In	database	tables	VFPPF06	and	VFPPF07.	
The	option	to	use	XML	formatted	files	should	only	be	used	in	standalone
Windows	systems.
In	all	other	situations	storage	in	database	tables	is	the	recommended	option.
Web	browser	applications	must	use	the	database	tables	option.			
When	using	an	XML	formatted	file:
The	default	name	is	Vf_Sy001_Users.xml.
The	default	location	is	the	Execute	directory	of	the	current	partition.
If	the	XML	file	needs	to	be	in	a	different	directory	specify	the	full	path	as	well
as	the	file	name.
Please	refer	to	Associated	XML	Definition	Files	before	changing	this	value.
When	using	DBMS	tables:

The	DBMS	tables	should	be	located	on	your	server	system.
When	updating	user	profile	details	you	need	to	be	connected	to	the	server.	

This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

SubTypes
Business	objects	may	optionally	have	a	SubType	associated	with	them.
For	example,	a	business	object	named	BankAccount	might	be	sub-typed	as
being	a	Savings,	Check	or	Investment	Account.
The	purpose	of	subtypes	is	to	allow	the	display	of	commands	(and	their
associated	tabs)	for	the	business	object	to	be	conditioned	so	that	they	are	only
visible	and	useable	for	certain	subtypes.		
For	example,	the	command/tab	named	Transactions	might	only	be	validly
displayed	for	Check	and	Investment	accounts.
Likewise,	the	command/tab	named	Charges	might	only	make	sense	when	used
with	a	Savings	account.		
Subtypes	are	represented	by	a	code	that	you	can	associate	with	a	business	object
instance.	For	example	you	might	choose	the	codes	SAV,	CHK	and	INV	for	the	3
BankAccount	subtypes.
You	specify	how	commands	and	subtypes	are	related	by	using	the	SubTypes	tab
associated	with	the	business	object.	For	example:

	

	

SubTypes	should	be	no	more	than	5	characters	long,	and	contain	uppercase

letters	of	the	English	alphabet	(A	->Z)	or	numbers	(0	->	9)	only.
The	values	ALL,	NONE,	ALLOTHERS	and	OTHERS	should	not	be	used	for
SubTypes.
SubTypes	are	only	applicable	to	instance	level	commands/tabs.
Any	Command	that	is	not	enabled	for	all	subtypes	needs	to	have	its	Default
Command	option	set	to	'Never'
Once	you	start	using	subtypes	for	a	business	object	instance	list	you	should	use
them	for	every	instance	list	entry.	
When	you	insert	or	update	an	entry	into	an	instance	list	you	may	optionally
specify	a	subtype	to	be	associated	with	the	entry.
	
Examples	In	VL	Components	and	WAMs
Case	#T_TYP
	
when	(=	SAVINGS)
	Invoke	Method(#avListManager.AddtoList)	AKey1(#T_Acc)
VisualID1(#T_Acc)	Visualid2(#T_Nam)	AColumn1(#T_Typ)
NColumn1(#T_BAL)	SubType(SAV)
	
when	(=	CHECK)
Invoke	Method(#avListManager.AddtoList)	AKey1(#T_Acc)
VisualID1(#T_Acc)	Visualid2(#T_Nam)	AColumn1(#T_Typ)
NColumn1(#T_BAL)	SubType(CHK)
	
when	(=	INVESTMENT)
Invoke	Method(#avListManager.AddtoList)	AKey1(#T_Acc)
VisualID1(#T_Acc)	Visualid2(#T_Nam)	AColumn1(#T_Typ)
NColumn1(#T_BAL)	SubType(INV)
	
Endcase

	
Other	Examples
Working	examples	of	SubTypes	are	shipped	in	the	Programming	techniques
Application	(Advanced	examples).	Refer	to	the	shipped	example	VL
components	DF_T2801/02	and	WAMs	DM_T2801/02.
These	properties	are	set	in	the	Business	Object	Subtypes	tab.

	

System	Info
This	option	determines	where	the	Microsoft	program	that	provides	information
about	the	currently	running	Windows	system	is	located.	
You	can	specify	these	options	for	this	value:

Blank If	this	property	is	blank	the	system	information	button	will	be	invisible	(on	both	the	Framework	and	all	applications).

*Default If	you	specify	*DEFAULT	-	the	Framework	will	use:		
Use	Builtin(GET_REGISTRY_VALUE)	With_Args(HKEY_LOCAL_MACHINE	'SOFTWARE\Microsoft\Shared	Tools\MSInfo'	'Path')
	

to	get	the	path	to	the	windows	program	that	displays	system	info.

Any
other
value

Any	other	value	will	be	the	path	used	to	find	the	windows	program	that	displays	system	info.	(Used	when	the	*default	path	is	not
appropriate	for	the	PC).

	

This	property	is	in	the	Help	About	tab.

Table	Definitions	XML	File
Use	the	Table	Definitions	XML	File	property	to	specify	the	name	of	the	file
where	code	table	definitions	for	the	Framework	are		stored.		This	file	is	located
in	the	Execute	directory	of	the	current	partition.
The	default	value	is	Vf_Sy001_Tables.xml.
This	property	is	in	the	Framework	Details	tab.

	

Technical	Support
Enter	here	the	address	of	the	web	page	where	the	user	can	get	technical	support.
When	specified,	URLs	should	always	be	prefixed	by	http://,	https://	or	special
value	*auto*.
At	execution	time	in	VLF.WIN	applications	*auto*	is	replaced	by	the	current
LANSA	partition’s	execute	folder	name,	and	in	VLF.WEB	applications	*auto	is
removed	from	the	URL.
For	example,	*auto*MYFILE.HTM	would	become	C:\Program
Files\LANSA\X_WIN95\X_LANSA\x_dem\execute\MYFILE.HTM	in
VLF.WIN	applications	and	MYFILE.HTM	in	VLF.WEB	applications.
This	property	is	in	the	Help	About	tab.

	
	

Temporary	Directory	on	PC
The	temporary	directory	is	used	internally	to	store	temporary	error	reports	for
emailing	and	for	storing	instance	lists	between	Framework	executions.
If	left	blank,	the	temporary	directory	defaults	to	the	normal	system	defined
temporary	directory.	Usually	there	is	no	need	to	change	this	default.
On	CITRIX	metaframe	systems	the		system	defined	temporary	directory
concept	can	cause	problems,	and	therefore	it	may	be	necessary	to	define
different	temporary	or	work	directories	for	different	users.
This	property	is	in	the	User	Details	tab.

	

Temporary	Folder	Name
The	Web	Configuration	Assistant	creates	a	temporary	folder	named
VLF_temporary_files	on	the	web	server.
The	temporary	folder	is	used	to	store	temporary	state	information	for	active
Web	browser	Visual	LANSA	Framework	applications.
See	What	is	a	temporary	directory	and	what	is	it	used	for?
This	is	a	Web	Configuration	Assistant	property.

	

The	location	of	the	images	directory	on	the	server
This	is	the	full	path	of	the	images	directory	on	the	webserver.	In	other	words
this	is	the	location	of	the	images	directory	as	you	would	find	it	using	Windows
Explorer	if	you	were	signed	on	to	the	webserver.
Normally	this	property	is	automatically	detected.	If	you	are	required	to	specify
this	property,	you	will	need	to	be	able	to	view	the	webserver	to	determine	where
the	images	directory	is.
A	typical	example	of	a	location	on	a	Windows	web	server	would	be:
C:\PROGRAM	FILES\LANSA\WEBSERVER\IMAGES\	
A	typical	example	of	a	location	on	an	iSeries	web	server	would	be:
/LANSA_DC@PGMLIB/webserver/images/
This	is	a	Web	Configuration	Assistant	property.

	

The	physical	file	that	most	closely	resembles	this	business	object
is
Many	business	objects	have	a	database	file	/	table	that	closely	resembles	them.
For	example	the	CUSTMST	table	may	closely	represent	the	business	object
"Customers"	and	the	table	PRODMST	may	closely	represent	the	business	object
"Products".
If	you	specify	a	file	name	the	Program	Coding	Assistant	will	attempt	to
automatically	derive	an	identification	protocol	for	you.	Refer	to	Visual
Identifiers	and	Programmatic	Identifiers	for	more	details	about	business	object
identification	protocols.
The	method	used	to	derive	an	identification	protocol	works	like	this:
The	programmatic	identifiers	are	set	to	be	the	same	as	the	primary	key	of	the
table.		
The	visual	identifiers	are	set	to	be	the	same	as	the	primary	key	of	the	table.
While	the	visual	identifier	2's	aggregate	length	is	<	80	the	first	2	real	or	virtual
fields	in	the	table	definition	with	a	length	>=	15	are	added	to	the	visual
identifier	2	definition.
The	derived	identification	protocol	is	of	course	only	a	"guess"	on	the	part	of	the
Program	Coding	Assistant	and	you	should	always	review	and	alter	it	to	be
exactly	what	you	want.
This	is	a	Program	Coding	Assistant	property.

	
	

The	type	of	server
The	Web	Configuration	Assistant	detects	the	type	of	server	you	are	configuring.
This	is	a	Web	Configuration	Assistant	property.

	

The	webserver’s	images	path
This	is	the	images	path	that	a	browser	looks	for	on	the	webserver:
http://ip:port/Images.
This	is	a	Web	Configuration	Assistant	property.

	

http://ip:port/Images

Timeout	to	use	for	developers
If	you	are	using	a	web	browser	Framework	application	as	a	developer
(developer=Y	in	the	URL)	then	a	check	for	failing	filters	or	command	handlers
will	be	activated.	If	a	filter	or	command	handler	fails	to	respond	in	a	specified
time	a	message	like	this	will	appear:

You	can	then	wait	for	the	filter	or	command	handler	to	complete,	check	for	error
information	on	the	web	server	or	shut	down	the	Framework.
Use	this	option	to	set	the	timeout	to	be	used	in	error	resolution	for	developers.	It
can	be	in	the	range	of	1	to	3600	seconds.	The	default	is	20	seconds.
This	property	is	in	the	Web/RAMP	Details	tab.

	

Toolbar	Button	Caption
You	can	optionally	create	a	caption	for	the	toolbar	button.		You	will	probably
need	to	increase	the	Toolbar	Button	Width	to	make	the	caption	fit	properly.
This	property	is	in	the	Toolbar	and	Menus	tab.

	

Toolbar	Button	Width
The	width	of	the	button	in	pixels.	You	may	need	to	adjust	this	value	to	make	the
image	or	the	caption	on	the	button	fit	properly.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Toolbar	and	Menus	tab.

	

Toolbar	Group
You	can	optionally	group	the	buttons	in	the	toolbar.	The	groups	are
distinguished	by	a	separator.
To	create	a	group	assign	it	a	number	in	this	field.
This	property	is	in	the	Toolbar	and	Menus	tab.

	

Tool	Bar	Height
Use	this	option	to	set	the	height	of	the	tool	bar.	In	this	way	it	is	possible	to
create	a	tool	bar	that	has	more	than	one	row	of	buttons.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Framework	Details	tab.

	

Tool	Bar	Style	
Tool	Bar	Style	can	be	Advanced	or	Simple.
Advanced	toolbar	generally	look	like	this	example,	using	the	command	bitmaps
and	a	small	size.
Use	the	advanced	style	when	a	large	number	of	tool	bar	options	are	required	and
they	need	to	wrap	onto	secondary	lines:	

	
Simple	toolbars	present	a	simple	and	easier	interface	for	new	users.	They	are
built	from	the	command	icons	and	generally	are	much	larger,	like	this	example.
They	do	not	wrap	on	secondary	lines	so	the	number	you	can	display	is	limited
by	the	width	of	the	device.

	
This	property	is	in	the	Framework	Details	tab.

	
	

Trim	Working	Set
Set	this	property	to	reduce	the	amount	of	memory	your	Framework	uses.
If	this	option	is	enabled	in	a	VLF.WIN	application	the	working	set	of	the
windows	process	executing	the	Framework	is	trimmed:
When	the	start	up	of	the	Framework	is	complete
When	the	main	Framework	window	has	been	minimized	for	approximately	20
seconds.

This	property	is	in	the	Framework	Details	tab.
	

Type	of	Layout	Style	to	be	Used
Note:	WEBEVENT	command	handlers	and	filters	are	a	deprecated	feature.	Do
not	use	them	for	new	work.
Specify	the	type	of	layout	to	be	used	for	this	command.
This	option	only	applies	to	WEBEVENT	command	handlers	and	filters.
This	property	is	in	the	Commands	Enabled	tab	the	Filter	Snap-in	Settings	tab.

	

Unique	Identifier
This	is	a	unique	internal	identifier	automatically	generated	by	LANSA	to
uniquely	identify	this	object.	The	identifier	is	numeric	and	may	change	between
Framework	executions.
This	property	is	in	the	Identification	tab.
	

	

Update	File
Use	this	property	to	specify	the	newlook	update	program	file	to	be	used	when
the	application	is	deployed.
References	to	the	nlupdate.txt	file	must	specify	the	subdirectory	in	which	it
resides	on	your	web	server	(which	is	below	the	directory	containing	the
VF_SY120.js	file).

Alternatively,	you	can	specify	this	value	as	a	URL	parameter	when	starting	your
application:
	
+NLUPDATEFILE=

	
	This	property	is	in	the	Server	Details	tab.

	

Uppercase
For	alphanumeric	custom	properties	check	this	box	to	ensure	that	the	property
values	are	always	presented	and	input	in	uppercase.
This	property	is	in	the	Custom	Properties	tab.

	

Upper	and	Lower	Case	Password
This	setting	is	applicable	to	iSeries	servers	only.	If	checked,	the	password
entered	by	the	user	is	validated	exactly	as	typed.	If	unchecked	(the	default
value),	the	password	is	always	uppercased	before	being	compared	with	the
stored	value.
For	servers	other	than	iSeries,	the	password	entered	by	the	user	is	always
validated	exactly	as	typed.
This	property	is	in	the	Server	Details	tab.

	

URL
Specifies	the	URL	of	a	web	page	that	is	to	be	shown	at	startup.	(e.g.
http://www.lansa.com).
When	specified,	URLs	should	always	be	prefixed	by	http://,	https://	or	special
value	*auto*.
At	execution	time	in	VLF.WIN	applications	*auto*	is	replaced	by	the	current
LANSA	partition’s	execute	folder	name,	and	in	VLF.WEB	applications	*auto	is
removed	from	the	URL.
For	example	*auto*MYFILE.HTM	would	become	in	Framework	Windows
applications:
	
C:\Program
Files\LANSA\X_WIN95\X_LANSA\x_dem\execute\MYFILE.HTM
	

	
And	in	Framework	web	applications:
	
http://<your	host>/images/VLF_Private_folder/MYFILE.htm
	

	
This	property	is	in	the	Framework	Startup	tab.

	

http://www.lansa.com

Use	a	Grid	for	Displaying	Any	List
If	you	have	specified	fields	that	you	want	to	appear	in	a	list	at	the	bottom	of
your	command	handler	then	check	this	box	if	the	list	type	to	be	used	is	a	grid.
If	you	uncheck	this	box	then	a	list	view	will	be	used.
This	is	a	Program	Coding	Assistant	property.

	

Use	HTTPS
Select	this	option	to	launch	RAMP-TS	using	a	URL	with	the	https://	prefix
instead	of	the	usual	http://	in	order	to	connect	to	an	aXes	application	server	with
Secure	Sockets	Layer	(SSL)	activated.
If	the	Use	HTTPS	is	checked	for	the	Execution	Mode	Load	Path	property,
https://	is	used	during	the	execution	of	RAMP-TS	commands.
If	the	Use	HTTPS	is	checked	for	the	RAMP	Tools	Mode	Load	Path	property,
https://	is	used	during	RAMP	Tools	5250	sessions.

Note	the	appropriate	Port	Number	will	depend	on	the	port	SSL	is	configured	to
use	(usually	443)	and	whether	the	aXes	Application	server	is	configured	to	use
SSL	optionally	or	accepts	SSL	connections	only.
See	the	aXes	Reference	-	Section	8,	for	details	about	adding	SSL	support	to
aXes	Application	Servers.
This	property	is	in	the	Server	Details	tab.

	

Use	INI	file
Use	this	property	to	associate	a	Newlook	server	to	a	Newlook	ini	file.	The	name
of	the	file	is	not	validated.
Leave	as	*DEFAULT	to	use	Newlook.ini.
You	can	choose	the	Server	–	INI	file	combination	when	starting	Newlook	in	the
RAMP	Tools	choreographer:
At	runtime	the	INI	file	is	locked	it	to	the	selected	server.
You	can	override	this	setting	using	the	NLINIFILE	parameter	in	Web
Application	Start	Options.
	

Use	Framework	Users	and	Authority
Use	this	option	to	enable	and	disable	the	user	profile	and	authority	management
facilities	that	are	shipped	as	part	of	the	Framework.
If	the	user	profile	and	authority	management	facilities	are	disabled	all	other	user
and	authority	related	options	are	ignored.		
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

Use	‘liteclient’	license
If	you	check	this	option	newlook	will	be	started	using	the	option	to	use	a
‘liteclient’	license,	otherwise	newlook	will	be	started	using	a	default	license.
This	property	is	in	the	Server	Details	tab.

	
	

Use	a	Reusable	Part
If	this	property	is	selected	,	the	Framework	will	look	for	a	reusable	part	when
expanding	an	instance	list	entry	at	run	time,	otherwise	it	will	look	for	a	function.
The	reusable	part	must	have	ancestor	#VF_AC023.	See	DF_T3507	for	an
example.
The	component	signals	the	addition	of	new	instance	list	entries	using	Signal
uAddListItem
See	Relationship	Handler.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Use	Shared	Instance	List	for	Relationships
You	should	always	select	this	option.
This	property	is	in	the	Business	Object	Instance	List/Relations	tab.
	

	

Use	a	Webevent/WAM	for	Help
Select	whether	to	use	a	Webevent	function	or	a	WAM	to	invoke	the	help	text.
See	End-user	Help	(F1).
This	property	is	in	the	Web/RAMP	Details	tab.

	

Use	Windows	Credentials
This	setting	indicates	that	the	connection	to	the	server	will	be	made	using
Windows	Credentials	(Kerberos	/	Single	Signon	/	SSO).	This	means	that	the
user's	Windows	profile	and	password	is	used	to	sign	on	to	the	server.	The	server
must	have	been	configured	for	Single	Sign	On,	and	the	user	enrolled,	before	this
can	be	done.
See	the	documentation	for	the	CONNECT_SERVER	built-in	function	for	more
details.
If	Windows	credentials	are	used,	and	Framework	authority	is	in	use,	(See
Framework	properties	-->	User	Adminstration	Settings	-->	Use	Framework
users	and	authority),	the	Framework	will	evaluate	security	to	Framework
objects	based	on	the	iSeries	user	profile	that	the	user	connects	as,	not	the	user's
Windows	profile.
This	behaviour	can	be	changed	by	making	your	own	version	of	the	IIP	called
Server	IIP	function	to	validate	sign	on.	See	the	source	for	function
UF_SYSBR/UFU0005	for	more	details
Neither	aXes	nor	newlook	currently	support	Windows	Credentials	/	Kerberos
connection	-	so	it	is	not	possible	to	use	Kerberos	to	establish	RAMP	5250
sessions.	You	may	be	able	to	work	around	this	by	using	the	Server	IIP	function
to	supply	an	ordinary	profile	and	password	(fields	#CHK_NLUSR
#CHK_NLPSW)	for	RAMP	5250	connections,	when	Kerberos	has	been	used
for	the	initial	connection.		See	the	source	for	function	UF_SYSBR/UFU0005
for	more	details.　
This	property	is	in	the	Server	Details	tab	and	the	Web/RAMP	Details	tab.
	

User	Authorities	Report	File
This	button	produces	a	.csv	file	that	contains	a	complete	list	of	all	the	users	on
the	system	and	their	authority	to	every	object	on	the	system.	The	user	is
prompted	for	the	name	and	location	of	the	file.
This	property	is	in	the	Authorities	tab.

	

User	Can	Change	Own	Password
This	option	only	applies	to	Windows	Framework	applications.
If	this	option	is	selected,	users	can	change	their	own	passwords	by	pressing	the
"Change	Password"	button	on	the	logon	screen.
In	the	Change	Password	dialog	they	must	specify	their	current	password	and
specify	the	new	password	twice.	If	the	password	change	is	successful,	the	user
is	returned	to	the	logon	screen	with	the	new	password	already	entered.
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

User	Imbedded	Interface	Point
Specify	here	the	name	of	your	user	imbedded	interface	point	file.	This	is	an
advanced	property	which	is	only	required	if	you	are	using	multiple	Frameworks.
If	you	have	more	than	one	Framework	in	the	same	partition,	you	cannot	have
two	different	versions	of	UF_SYSTM	in	the	same	partition.	Look	at	the	shipped
source	code	of	UF_SYSTM	for	details	on	how	to	create	a	Framework	unique
version.
Change	this	property	with	extreme	caution.	For	more	information,	see
Imbedded	Interface	Points	(IIPs).
This	property	is	in	the	Framework	Details	tab.

	

User	Is	Disabled
The	administrator	can	use	this	check	box	to	enable	or	disable	a	user	profile.
Disabled	users	are	not	allowed	to	sign	on.
This	property	is	in	the	User	Details	tab.

	

User	Must	Specify	all	Chosen	Keys
Check	this	option	if	the	end-user	must	specify	a	value	for	all	of	the	selected
key(s)	before	they	can	click	the	"Search"	button.
Also	see	Select	the	Keys	of	the	Selected	View	to	be	used	for	Search	Operations.
This	is	a	Program	Coding	Assistant	property.

	

Users	May	Work	Offline	if	the	Remote	Server	Is	Not	Available
This	option	only	applies	to	Windows	Framework	applications.			
When	you	select	this	option	the	user	can	work	offline	and	without	entering	a
password.	The	Work	Offline	button	in	the	Connect	dialog	box	will	be	enabled
for	this	user.
Do	not	select	this	option	if	you	want	to	validate	the	user	profile	and	password	of
the	users	before	allowing	them	access	to	the	applications	in	the	Framework.
Note	that	for	users	working	in	Design	mode	this	option	is	always	enabled.
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

User	Object	Name/Type
Optional.	This	field	allows	you	to	assign	a	user-defined	object	type	for	this
object.
Depending	on	your	application,	you	may	find	it	useful	to	set	up	object	types	for
the	objects	you	are	working	with.		You	can	then	use	the	object	type	to	create
generic	filters	or	command	handlers	that	can	process	different	types	of	objects.
For	example,	you	could	write	a	generic	filter	handler	that	would	perform
processing	for	different	kinds	of	business	objects.	You	would	assign	the
business	objects	User	Object	Types	such	as	EMP	(for	employee)	and	CUST	(for
customer)	and	then	differentiate	the	processing	in	the	filter	handler	based	on
these	types.		You	would	not	use	the	Caption	property	of	the	object	for	this
purpose	because	it	can	be	multilingual.
Similarly	you	could	create	a	generic	command	handler	that	would	handle	both
New	and	Copy	commands.	You	would	assign	the	commands	using	different
user	object	types.
The	User	Object	Type	is	referenced	by	properties
#Com_Owner.avCommandType	and	#Com_Owner.avObjectType.	See	also
Framework	Ancestor	Components.
Click	on	the	Verify	Name	button	to	have	the	entered	value	checked	for
uniqueness	against	all	the	other	User	Object	Name/Type	values	in	the
Framework.	Note	that	this	check	is	automatically	carried	out	when	the	value	is
edited.

Note:	We	strongly	recommend	using	uppercase	alphanumeric
characters	from	the	English	Alphabet	(ie:	A->Z)	only	in	user	object
types	to	avoid	any	future	code	page	conversion	issues.	DBCS
characters	should	never	be	used.

	
This	property	is	in	the	Identification	tab.
	

	

User	Profile
Enter		here	the	user	profile	which	is	primarily	used	when	validating	users	who
must	sign	on	to	use	the	local	database.
This	user	profile	is	also	used	when	determining	the	temporary	directory	and
email	address	for	users	who	do	not	sign	on	or	who	connect	to	a	server.
This	property	is	in	the	User	Details	tab.

	

Users	Sign	on	Locally	to	Use	the	Framework
This	option	only	applies	to	Windows	Framework	applications.
If	you	select	this	option	the	user	will	connect	to	the	local	database	after	signing
on.
The	user's	profile	and	password	are	checked	locally	against	the	user	profile	and
password	specified	in	the	User	Details	tab.	The	check	is	not	case-sensitive.
If	the	user	starts	up	the	Framework	using	UF_ADMIN	(or	equivalent),	the
Framework	will	check	that	the	user	profile	is	an	administrator.	See	User	Details
tab.	
Users	can	be	disabled	if	they	exceed	the	maximum	allowed	signon	attempts.
The	way	in	which	the	user	is	disabled	can	be	either	a	simple	message	to	the	user
indicating	that	the	user	profile	has	been	disabled	or	it	can	be	with	a	fatal	error
and	an	email	to	the	administrator.
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

Users	Sign	on	to	a	Remote	Server	to	Use	the	Framework
This	option	only	applies	to	Windows	Framework	applications.			
If	you	select	this	option,	the	user	will	be	able	to	select	a	server	and	connect	to	it
after	signing	on.		If	there	is	only	one	server	defined	the	user	will	not	be	offered	a
choice	of	servers	but	will	be	connected	automatically.	If	no	servers	are
available,	the	user	cannot	sign	on.
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

Value(s)	can	be	changed	by	Administrator
Specify	whether	the	value(s)	associated	with	this	custom	property	can	be
changed	by	the	Administrator	for	individual	users.
This	property	is	in	the	Custom	Properties	tab.

	

Warn	before	(days)
Number	of	days	before	password	expiry	to	issue	a	warning	message.
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	
	

*WEBEVENT	Function	and/or	WAM	Component	or	AJAX
Routine
Note:	WEBEVENT	command	handlers	and	filters	are	a	deprecated	feature.	Do
not	use	them	for	new	work.	If	you	use	WEBEVENT	functions	in	your
framework	you	will	need	to	check	the	Enable	Framework	for	WEBEVENT
Functions	option	before	you	can	enrol	any	more	webevent	filters	or	command
handlers.
When	snapping	a	filter	or	command	handler	into	your	Framework	you	must	set
the	appropriate	radio	button	to	indicate	whether	you	are	snapping	in	a
*WEBEVENT	function,	a	WAM	component	or	an	AJAX	routine.
Type	the	name	of	the	handler	or	click	the	Find	button	to	search	for	the	handler.
WAM	components	may	only	be	used	if	you	are	using	LANSA	version	10.5	or
later.
You	can	optionally	define	a	*WEBEVENT	function	and	a	WAM	component	for
a	filter	or	command	handler.	For	example,	if	your	Framework	definition	is	used
with	a	LANSA	10.0	system	and	with	a	LANSA	11.0	server	system	then	you
could	nominate	a	*WEBEVENT	function	and	a	WAM	component.		At
execution	time	the	Framework	will	decide	which	one	to	use	based	on	the
capabilities	of	the	target	server	system.
This	property	is	in	the	Commands	Enabled	tab	and	the	Filter	Snap-in	Settings	tab.

	

Web	Help	Function/Webroutine	Name
This	is	the	name	of	the	webevent	function	that	is	executed	to	present	help	text	to
end-users.
The	shipped	default	value	for	webevents	is	UFU0002.	You	can	replace	the
shipped	help	text	presenter	with	your	own	version.	Refer	to	the	comments	in
shipped	RDML	function	UFU0002	in	process	UF_SYSWB	for	the	complete	set
of	instructions	on	how	to	do	this.
This	property	is	in	the	Web/RAMP	Details	tab.

	

Web	Help	Process/WAM	Name
The	name	of	the	LANSA	process	that	contains	the	function	that	is	executed	to
present	help	text	to	end-users	or	the	WAM	which	is	used	to	invoke	the	help	text.
The	shipped	default	value	is	UF_SYSWB.	You	can	replace	the	shipped	help	text
presenter	with	your	own	version.	Refer	to	the	comments	in	shipped	RDML
function	UFU0002	in	process	UF_SYSWB	for	the	complete	set	of	instructions
on	how	to	do	this.
Alternatively	you	can	use	a	WAM	to	display	the	help	text.	The	shipped
UF_SY002	offers	a	basic	example	of	how	to	use	a	WAM	to	display	application
help.
This	property	is	in	the	Web/RAMP	Details	tab.

	
	

Web	Help	Window	Features
This	property	allows	Framework	designers	to	specify	the	properties	of	the	Help
window	which	is	opened	when	an	end-user	presses	F1.
The	value	specified	here	is	passed	as	a	parameter	to	the	JavaScript	window.open
method	when	the	help	window	is	opened.	As	such	it	must	be	validly	formatted
as	a	window.open	parameter	or	unexpected	results	or	application	failures	may
occur.
Refer	to	Microsoft	JavaScript	documentation	for	more	details	about	this
parameter.
The	shipped	default	value	is
width=600,height=425,directories=no,toolbar=no,menubar=no,scrollbars=yes,resizable=yes.
This	property	is	in	the	Web/RAMP	Details	tab.

	

Web	Initial	Filter	Pane	height	(%)
This	property	gives	the	designer	some	control	over	the	height	of	the	filter	and
instance	list	panes,	relative	to	the	Framework,	when	the	web	Framework	starts
up.	The	percentage	is	the	ratio	of	the	height	of	the	filter/instance	list	panel	to	the
height	of	the	Framework:
	

	
This	property	is	in	the	Web/RAMP	Details	tab.

	

Web	Initial	Filter	Pane	width	(%	of	right	panel)
This	property	gives	the	designer	some	control	over	the	width	of	the	filter	pane
relative	to	the	right	panel	when	the	web	Framework	starts	up.	The	percentage	is
the	ratio	of	the	width	of	the	filter	to	the	width	of	the	main	right	hand	panel:
	

This	property	is	in	the	Web/RAMP	Details	tab.

	

Web	Initial	Navigation	Pane	width	(%)
This	property	gives	the	designer	some	control	over	the	width	of	the	navigation
pane	when	the	web	Framework	starts	up.	The	percentage	is	the	ratio	of	the
width	of	the	navigation	pane	to	the	width	of	the	Framework:
	

This	property	is	in	the	Web/RAMP	Details	tab.

	
	

Web	Server	Caption
Enter	here	a	short	description	that	that	you	can	use	to	recognize	the	server.
For	example,	you	may	be	using	two	web	servers	while	developing	applications.
One	might	be	the	web	server	running	on	your	desktop	PC	and	the	other	your
main	System	i	web	server.	In	this	case	you	need	need	to	establish	different
configuration	details	for	the	servers.		
This	property	is	in	the	Developer	Preferences	–	Web	Server	tab.	It	is	also	a	Web	Configuration	Assistant
property.
	

	

Web	Server	IP	Address
This	is	the	IP	address	of	the	webserver	(without	http://	or	the	port).	You	may
also	use	a	name	that	resolves	to	the	ip	address.
If	you	are	using	a	webserver	that	is	on	your	development	PC,	you	might	use
localhost,	or	127.0.0.1,	or	the	PC	name	as	your	webserver	IP	address.
This	is	a	Web	Configuration	Assistant	property.

	

Web	Server	Port
This	is	the	port	used	for	http	requests	to	the	web	server.	It	is	usually	80.	If	you
don't	want	a	port	to	be	specified,	use	value	0.
This	is	a	Web	Configuration	Assistant	property.

Width
Specify	the	width	of	the	image/web	page,	in	pixels,	to	be	displayed	on	the	Sign
On	form.
This	property	is	in	the	Framework	User	Administration	Settings	tab.

	

View	as	Drop	Down	on	Toolbar
Select	this	option	to	display	the	Application	Bar	as	a	drop-down	list	on	the
toolbar.
This	property	is	in	the	Framework	Details	tab.

	

View	as	A	Single	Tree
Select	this	option	to	display	the	Application	Bar	as	a	tree	view.
This	property	is	in	the	Framework	Details	tab.

	

View	as	Two	Lists	Side	By	Side
Select	this	option	to	display	the	Application	Bar	as	two	lists	side	by	side.
This	property	is	in	the	Framework	Details	tab.

	

View	as	Two	Lists	Over	and	Under
Select	this	option	to	display	the	Application	Bar	as	two	lists	above	and	below.
This	property	is	in	the	Framework	Details	tab.

	

View	Used	to	Read	the	Child	Data
Select	the	view	of	the	physical	file	that	contains	the	data	for	the	child	object.
This	is	a	Program	Coding	Assistant	property.

	

Windows	Code	Page
This	is	the	Microsoft	Windows	code	page	identifier	you	normally	use	with	this
language.
Typically	the	default	values	are	correct.	Refer	to	your	product	vendor	and/or
Microsoft	Windows	documentation	before	changing	this	value.
This	property	is	in	the	Web/RAMP	Details	tab.

	

Visual	Identifiers	for	Building	VisualID1	and	VisualID2	Values
Specify	the	visual	identification	protocol	you	wish	to	use	for	this	business
object.
For	example,	for	a	"Products"	business	object	you	might	decide	to	specify	fields
PRODNO	(Product	Number)	and	PRODDESC	(Product	Description)	as	the
visual	identifiers	that	are	typically	used	to	identify	a	product	to	end-users	of
your	application.	
Any	field	name	can	be	specified	in	this	list	(even	ones	not	currently	defined	in
the	LANSA	data	dictionary).	The	fields	specified	do	not	necessarily	have	to	be
columns	in	any	physical	file	that	you	specify	at	the	top	of	the	form.
See	Visual	Identifiers	and	Programmatic	Identifiers	for	more	details	of	business
object	identification	protocols.
This	is	a	Program	Coding	Assistant	property.

	

Visual	Style	Base	Style
This		style	sets	the	appearance	for	the	basic	look	of	the	object.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Visual	Styles	tab.

	

Visual	Style	Protected	Fields	and	Areas
This	style	sets	the	appearance	for	protected	areas.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Visual	Styles	tab.

	

Visual	Style	Dark	Background	Small	Font
This	style	sets	the	appearance	of	parts	of	the	interface	with	small	fonts	and	dark
background.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Visual	Styles	tab.

	

Visual	Style	Dark	Background	Large	Font
This	style	sets	the	appearance	of	parts	of	the	interface	with	large	fonts	and	dark
background.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Visual	Styles	tab.

	

Visual	Style	Status	Bar	Fields
This	style	sets	the	appearance	of	status	bar	fields.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Visual	Styles	tab.

	

Visual	Style	URLs
This	style	sets	the	appearance	of	URLs.
This	option	only	applies	to	Windows	Framework	applications.
This	property	is	in	the	Visual	Styles	tab.

	

VLF.NET	Screen	Layout	Persistence	Level
Specifies	the	way	that	VLF.NET	application	screen	layout	arrangements	are	to
be	persisted	and	managed.	The	default	Framework	option	indicates	that	a	single
screen	layout	applies	to	the	entire	framework.
The	Business	Object	option	indicates	that	each	business	object	may	have	its
own	screen	layout.		
This	property	is	in	the	Framework	Details	tab.

	

	

Your	Framework	Version	Number
You	can	specify	your	own	Framework	version	number.		It	consists	of	four
numbers,	each	of	which	must	be	in	the	range	1	to	9999999.
The	version	number	is	specified	in	the	Primary	Version	.	Secondary	Version	.
Build	Number	.	Revision	Number	format.		
The	version	number	is	significant	when	using	VLF.NET	as	it	indicates	to
Internet	Explorer	that	the	version	of	your	Framework	has	been	updated	on	the
web	server.				
See	Automatically	Increment	when	Saving	and	Show	in	Help	About	Text.
This	property	is	in	the	framework's	Identification	tab.

	
	

Appendix
What	is	Included	in	the	Framework?

What	is	Included	in	the	Framework?
LANSA	Repository	Objects:
Demonstration	Repository	Objects
User	Repository	Objects
Framework	Repository	Objects
Operating	System	Objects
Permanent	File	Objects
Temporary	or	Semi-Persistent	Files
Things	You	Should	Back	Up
	

LANSA	Repository	Objects
Demonstration	Repository	Objects
User	Repository	Objects
Framework	Repository	Objects

Demonstration	Repository	Objects
Name Type Description Deploy	to	Execution

Repositories(Windows)
Deploy	to
Execution
Repositories

DF* Function Demonstration
Functions

Not	usually Not	Usually

DF_* Reusable	
Part

Demonstration
application
components

Not	usually Not	usually

DF_* Form Demonstration
application
forms

Not	usually Not	usually

DF_* ActiveX Demonstration
application
activeX
components

Not	usually Not	usually

DF_EL* Simple
Field

Fields	are
used	by
demonstration
components

Not	usually Not	usually

DF_EL* Web
components

as	above Not	usually Not	usually

DF_EL* HTML
pages

as	above Not	usually Not	usually

DF_MAXNUM Field 	 	 	

DF_PROC Process Demonstration
Process

Not	usually Not	usually

DF_VS* Visual	Style Visual	styles
are	used	by
the
demonstration
components

Not	usually Not	usually

DFXPROC Process Framework
demonstration
RDMLX
process

Not	usually Not	usually

DM* WAM Demonstration
WAMs

Not	usually Not	usually

DM_* Reusable
part

Demonstration
reusable	parts

Not	usually Not	usually

DW* Function Demonstration
Functions
(web)

Not	Usually Not	Usually

DW* Web
components

Used	by	web
demonstration
functions

Not	Usually Not	Usually

DW* HTML
pages

referred	to	by
the	DW*	web
components

Not	Usually Not	Usually

DW_* Process Demonstration
Processes
(web)

Not	usually Not	usually

MTXTDF_* Multilingual
Variable

The
multilingual
variables	are
used	by
demonstration
components

Not	usually Not	usually

	

	

Notes:

1.		Modifications	will	be	overwritten	when	upgrading	Framework	versions.

User	Repository	Objects
Name Type Description Deploy	to	Execution

Repositories(Windows)
Deploy	to
Execution
Repositories

MTXTUB Multilingual
variable

Multilingual
variables

Not	usually Not	usually

MTXTUF_ Multilingual
Variable

Multilingual
variables

Not	usually Not	usually

UB* Weblet User	Button
Weblets

No Yes

UB_* Fields Buttons	for
web	functions

No Yes

UB_* web
components

Buttons	for
web	functions

No Yes

UB_* html	pages Buttons	for
web	functions

No Yes

UF_* Field Fields No No

UF_* Reusable
part

Reusable	parts Yes No

UF_EXEC
UF_ADMIN
UF_DEVEL
UF_DESGN

Form Framework
entry	points
for	normal
end-user,
administrator
end-user,
Framework
Developer
and
Framework
designer.

Usually No

UF_IB001 Reusable
Part

Icon	and
Bitmap

Usually No

Loader

UF_IM* Bitmaps Start	up	and
demonstration
bitmaps

Not	usually No

UF_SYSBR
Functions
UFU*
	

Process	with
functions
starting	with
UFU*

User	IIP
(includes
shipped	code
table	data
handlers)

Yes Yes

UF_SYSTM Reusable
Part

User
Imbedded
Interface
Points	(IIPs)

Usually No

UF_SYSWB

Functions
UFU*

Process	with
functions
starting	with
UFU*

User	IIP	(F1
Help	display
for	web)

No Yes

UF_VS* Visual	Styles Visual	styles
used	in	the
Framework

No No

	

Notes:
1.		Modifications	will	be	overwritten	when	upgrading	Framework	versions.	To
avoid	this	problem	refer	to	instructions	in	the	shipped	source	code.

Framework	Repository	Objects
Name Type Description Deploy	to	Execution

Repositories(Windows)
Deploy	to
Execution
Repositories

MTXTFP_ Multilingual
variable

Weekdays	etc. Not	usually Not	usually

FPTAB Database
file

Code	Table	data Yes Yes

MTXTVF_* Multilingual
Variable

Multilingual
variables

Not	usually Not	usually

VF* Form Framework
forms

Yes No

VF* Function Framework
functions

No Yes

VF_* Field Framework
fields

Yes Yes

VF_* Web
component

Framework	web
components

No Yes

VF_AC* Reusable
Part

Framework
ancestor	classes

Usually No

VF_AW* Reusable
part

WAM	ancestor
classes

No Yes

VF_AX* ActiveX Framework
ActiveX	classes

Usually No

VF_BM* Bitmaps Shipped	Bitmaps
(if	any)

No No

VF_CH* Reusable
Part

Default
command
handlers

Not	usually No

VF_CO* Reusable Communications Usually No

Part and	connections

VF_EL* Simple
Field

Fields	used	by
Framework

Not	Usually Yes

VF_EL* web
components

web	components
used	by	the
Framework

No Yes

VF_EL* html	pages html	pages	used
by	the
Framework

No Yes

VF_ER Reusable
Part

Error	Handler Usually No

VF_FL* Reusable
Part

Default	filters Not	usually No

VF_FP* Reusable
Part

Persists	Object
(XML	defined)

Usually No

VF_GP* Reusable
Part

General	Purpose
Objects

Usually No

VF_HE* Reusable
Part

Help	and
Assistant

Usually No

VF_IB* Reusable
Part

Icon	and	Bitmap
Library	Objects

Usually No

VF_IC* Icons Shipped	Icons
(if	any)

No No

VF_IM* Images Shipped	Images
(if	any)

No No

VF_LM* Reusable
Part

Instance	List
Management

Usually No

VF_LW* Reusable
part

Instance	List
Management

No Yes

VF_PC* Reusable
Part

Virtual
ClipBoard

Usually No

Manager

VF_PR001 Process
with	with
functions
VFU*

Framework
internal
functions

Yes Yes

VF_PR* Processes
except	for
VF_PR001
with
functions
VFU*

Framework
internal
functions

No Yes

VF_SK Reusable
Part

Skeleton	Layout Not	Usually No

VF_SW* Reusable
part

WAM
Framework
Services
Manager

No Yes

VF_SY* Reusable
Part

Framework
Managers

Usually No

VF_UM* Reusable
Part

User	Interface
Management

Usually No

VF_VS* Visual	Style Visual	Styles Not	Usually Not	Usually

VFPPF04 Database
file

Used	for	record
format	only

No No

VFPPF06 Database
file

User	data Yes Yes

VFPPF07 Database
file

User	authority
data	and	other
custom
properties

Yes Yes

VFU* WAM Commands	and
Filters

No No

vlf_* Weblet Framework
WAM	layout
weblet

No Yes

	

Notes:
1.		Behavioral	modifications	are	achieved	by	redefining	ancestor	methods.
2.		Behavioral	modifications	are	achieved	by	via	imbedded	interface	points
(IIPs).							

Operating	System	Objects
Permanent	File	Objects
Temporary	or	Semi-Persistent	Files

Permanent	File	Objects
File	NameFormat Resides	In Description

DF*.dll x_ppp\execute Executable
demonstration
components

DF*.gif x_ppp\execute Executable
demonstration
components

DF_DET18*.htm x_ppp\execute Executable
demonstration
components

DF_DET18*.xsl x_ppp\execute Executable
demonstration
components

dm_*.dll x_ppp\execute Executable
demonstration
components

DW*.dll x_ppp\execute web	executable
demonstration
components

DW*.s x_ppp\execute web	skeletons	used	at
compile	time.

DW_T12_DWT1202_AboutLANSA.htm x_ppp\execute Demonstration
application	material

DW_T12_DWT1203_AboutLANSA.doc x_ppp\execute Demonstration
application	material

DW_T12_DWT1204_Table*.XLS x_ppp\execute Demonstration
application	material

DW_T12_DWT1205_VLFOview.ppt x_ppp\execute Demonstration
application	material

DW_T12_DWT1206_AboutLANSA.pdf x_ppp\execute Demonstration
application	material

ENG_vf*	/	FRA_vf*	/	JPN_vf*	etc
.htm

x_ppp\execute Program	Coding
Assistant	help	html

ENG_vf*	/	FRA_vf*	/	JPN_vf*	etc
.vfi

x_ppp\execute Program	Coding
Assistant	included	text

ENG_vf*	/	FRA_vf*	/	JPN_vf*	etc
.vft

x_ppp\execute Program	Coding
Assistant	templates

FP_TABLE_*.dat x_ppp\execute Data	for	shipped	code
tables

FPTAB.dll x_ppp\execute io	module	for	the
FPTAB	file

LANSA047.chm x_lansa\execute Framework	Deployment
Check	Lists

LANSA048.chm x_lansa\execute Framework	User	Guide
and	Tutorial

Lansa049.chm x_lansa\execute RAMP	User	Guide

NL_Load_Test.htm x_ppp\execute RAMP	object

U_BIF985.DLL x_lansa\execute User	defined	Built-In
function

U_BIF987.DLL x_lansa\execute User	defined	Built-In
function

UF*.css x_ppp\execute Style	sheet

UF_*.dll x_ppp\execute Executable	user	defined
Framework

UF_IM*.gif x_ppp\execute Start	Up	and	Intro
images

UF_JS001.JS x_ppp\execute Scripts

VF_*	(except	VF_IC*).gif x_ppp\execute Program	Coding
Assistant	help	images

VF_*.dll x_ppp\execute Executable	shipped
Framework	components

VF_Framework_Virtual_Clipboard_Default.dat x_ppp\execute Default
shipment/deployment
settings	for	the
Framework	(ie:	system)
virtual	clipboard.

VF_HE003.dat x_ppp\execute Help	topic	cross
reference

VF_HT*.htm images
directory	and
also
x_ppp\execute

web	Framework	html

VF_ICnnn.gif images
directory	and
also
x_ppp\execute

Other	Images	for	web
Framework	-	e.g.
Images	Palette

VF_ICnnn1.gif images
directory	and
also
x_ppp\execute

16x16	pixel	Images	for
web	Framework	icons

VF_ICnnn3.gif images
directory	and
also
x_ppp\execute

32x32	pixel	Images	for
web	Framework	icons

VF_MACRO.sid x_ppp\execute newlook	macro	for
RAMP

vf_multi*.js x_ppp\execute Multilingual	text	strings
used	in	the	extension	of
the	Visual	LANSA
Framework

VF_SY001_Nodes
YYYYMMDD_HHMMSS.XML

x_ppp\execute RAMP	screen
definitions

VF_SY001_Nodes.XML x_ppp\execute RAMP	screen
definitions

VF_Sy001_Servers.xml x_ppp\execute Server	Definitions

VF_Sy001_Servers_YYYYMMDD_HHMMSS.xml x_ppp\execute Server	Definition	saved
version

VF_Sy001_System.xml x_ppp\execute Framework	definition

vf_sy001_system_*.JS X_ppp\execute The	equivalent	to	the
system.xml	but	as	java
script	so	it	loads	faster

VF_Sy001_System_*_Launch_*.htm x_ppp\execute Initiates	the	web
Framework.	Generated
by	Framework	save.

VF_SY001_System_*_BASE.HTM x_ppp\execute Initiates	the	web
Framework.	Generated
by	Framework	save.
Contains	embedded
VF_sy001_system.XML

vf_sy001_system_choice.txt x_ppp\execute Framework	version
selection

vf_sy001_system_Preferences_username.xml x_ppp\execute System	preferences

VF_Sy001_System_YYYYMMDD_HHMMSS.xml x_ppp\execute Framework	definition
saved	version

VF_Sy001_Tables.xml x_ppp\execute Code	Tables	definitions

VF_Sy001_Users.xml x_ppp\execute User	Definitions

VF_Sy001_Users_YYYYMMDD_HHMMSS.xml x_ppp\execute User	Definition	saved
version

vf_sy004_*.dat x_ppp\execute HTML	file	create

vf_sy120.htm x_ppp\execute newlook	runtime

manager

vf_sy120.js x_ppp\execute newlook	runtime
manager

UF_SY120.JS x_ppp\execute File	to	store	your	own
JavaScript	functions

VF_SY131_Filter_ENG.HTM x_ppp\execute Create	Framework
objects	for	Instant
Prototyping	Wizard

VF_SY131_Handler_ENG.HTM x_ppp\execute Create	Framework
objects	for	Instant
Prototyping	Wizard

VF_UM*.GIF x_ppp\execute Demonstration	material
gifs

vf_um703.htm x_ppp\execute newlook	Design	session

vf_um703.js x_ppp\execute newlook	Design	session

VF_UM835.xml x_ppp\execute Generic	script	editor

VF_User_Virtual_Clipboard_Default.dat
		
	

x_ppp\execute Default
shipment/deployment
settings	for	the	user
virtual	clipboard.

VF_VS*.css images style	sheets	for	web
Framework

VF_XP*.nlg x_ppp\execute Framework	newlook
macros

VF_XXnnn.js images web	Framework
javascript

VFPP*.dll x_ppp\execute io	modules	for	VFPP*
files	(user	profile
storage)

	

Notes:
1.		X_ppp	where	"ppp"	is	the	LANSA	partition	identifier		
2.		Special	considerations	apply	to	deploying	these	objects	to	multi-Framework
environments.

3.		Or	equivalent.	These	file(s)	may	have	different	names	in	differently
configured	Frameworks.

4.		These	files	need	to	be	deployed	if	your	Framework	has	elected	to	make	use
of	them.	You	can	deploy	these	Framework	DLL's	by	using	the	VL
Deployment	tool.	Use	the	option	to	add	Non-LANSA	Objects	under	the	Other
Objects	Tab	sheet.	You	will	have	to	create	a	new	path	name	e.g.	SYSPATH
that	points	to	the	System	Execute	folder	to	install	the	DLL's	into	the	correct
folder	on	the	target	PC.

5.		These	files	may	be	altered	by	administrators	at	deployed	sites.										
6.		These	files	are	used	by	shipped	Frameworks,	but	are	normally	replaced	with
user	defined	versions	before	shipment.

7.		For	Windows	execution	environments	VF_SY001_SYSTEM.XML	is
normally	deployed.	For	web	execution	environments	VF_SY001_System.xml
is	not	normally	deployed	because	it	is	imbedded	in
VF_SY001_System_*_BASE.HTM.	VF_SY001_System_*_BASE.HTM	is
deployed	for	web	execution	environments.

11.Required	for	RAMP.
13.Windows	Web	server	only
	
	

Temporary	or	Semi-Persistent	Files
Name	Format Resides	In Description Deploy	to

Execution
Environments

SeeNotes

ppp_User_
_Virtual_ClipBoard.Dat

Directory
defined	in
system
variable
*Temp_Dir

User
virtual
clipboard
data
storage

Not	Usually 1

ppp_Framework_
_Virtual_ClipBoard.Dat

Directory
defined	in
system
variable
*Temp_Dir

Framework
virtual
clipboard
data
storage

Not	Usually 1

Bbbbbbbbbbb_Part_1.Lst
Bbbbbbbbbbb_Part_2.Lst
	

Temporary
directory
defined	for
user.
Defaults	to
system
variable
*Temp_Dir

Saved
business
object
instance
list	details.	

Not	Usually 2

	

Notes:
1.		Where	"ppp"	is	the	LANSA	partition	identifier
2.		Where	"bbbbbbbbbbbb"	is	the	unique	Internal	Identifier	of	the	associated
business	object.

Things	You	Should	Back	Up
This	is	a	list	of	the	things	that	you	should	back	up	from	your	Framework:
Object When SeeNotes

Your	LANSA	Repository After	any	changes 	

Framework_Export*.zip As	required 	

VF_SY001_System*.XML Save	after	Framework	design
sessions

1

VF_SY001_Users*.XML Save	after	editing	user	details 1

VF_SY001_Servers*.XML Save	after	server	sessions 1

VF_SY001_Tables*.XML Save	after	editing	code	tables 1

VF_SY001_Nodes*.XML Save	after	editing	RAMP 1

VF_SY120.JS Save	after	editing	RAMP 	

UF_*		(User	repository
objects)

After	any	changes	to	these	objects 	

	

Notes:
1.		Or	equivalent.	These	files	may	have	different	names	in	differently	configured
Frameworks.

2.		Depending	upon	the	Framework	configuration	these	files	will	reside	either	in
the	LANSA	for	the	Web	images	directory	or	a	subdirectory	of	it	named
ppp_FLA	(where	ppp	is	the	identifier	of	the	partition	being	used).

	Visual LANSA Framework Guide
	Introduction
	What is the Visual LANSA Framework?
	What Does It Look Like?
	Should You Use the Framework?
	Who Is It For?
	What Are Its Benefits?

	What's New
	Features No Longer Supported
	IBM i Password Management
	IBM i Password Expiry Checking
	IBM i Password Expiry Checking in Windows
	IBM i Password Expiry Checking in Web

	Changing the IBM i Password
	Changing the IBM i Password in Windows
	Changing the IBM i Password in Web

	Customized User/Authority Reporting
	Development Status
	Updated Organizations Business Object Instance List
	Shipped Resources Instance List Browser Updated
	New Theme 2014 Clean
	Code Table Data Handlers Can Now Be LANSA Reusable Parts
	Reusable Parts as Instance List Relationship Handlers
	What Was New in Previous Versions
	New Features in EPC 130100 version of the Framework
	New Features in EPC 870 version of the Framework
	New Features in EPC 868 version of the Framework
	VLF.Web Runs in Internet Explorer, Firefox, Chrome and Safari
	Using VLF-WEB Applications with Safari, Firefox or Chrome
	Configuring Web RAMP-TS for Chrome, Safari and Firefox
	aXes-TS2 Can Now Be Used in RAMP-TS
	Date and Date/Time Columns
	Edit Code
	End-users Can Choose Instance List Columns to Be Displayed
	Control Row Color in Instance Lists
	Selection of Multiple Items Can Now Be Controlled in Instance Lists
	Instance List Toolbar Buttons Can Have Associated Text Descriptions
	Code Can Directly Access Visual Lansa Trees
	Button on Framework Signon Screen Can Launch A Web Page
	Web Page Can Be Shown on the VLF.WIN User Logon Screen
	Demonstration System
	Connecting to Servers
	VLF.NET Enhancements
	Commands and Command Handlers
	User-Interface Enhancements
	Other Enhancements

	New features in EPC 839 version of the Framework
	New features in EPC 831 version of the Framework
	VLF.NET
	Developer's Workbench
	Visual Themes
	Trace can be disabled for Framework Web applications
	Execute the Framework in Prototype Mode Only
	Improved filter and command handler snap-in facility
	Improved Images palette
	Specify your Framework version number
	Keep old XML Framework versions organized
	Set session values before connection
	Selection Block Size set to 500 by default
	Server connection recovery
	Programmatic instance list sorting
	Filters can override instance list column headings
	Maximum Web Password Length is now 32
	Optionally show current business object in window title
	Improved Focused Input Style
	Improved XP and Vista fields and buttons in web browser applications
	Show or hide Instance list tool bar buttons
	General Purpose Document Manager
	Maximum Number of Application Views increased to 100
	Quick Find Box on the tool bar
	Easy access to latest Demonstration System
	Enable/disable peer objects in instance lists
	The tabbing order of buttons can be controlled
	Control when an object can be opened in a new window
	Improved start up times for DBCS Web applications
	Control Web Framework start-up dimensions
	Visual Ids on Web can be hidden
	Programmatically shrinking and expanding panes in Windows
	Test the Activated state of filters and command handlers
	VLF.WEB logon improvements

	New features in EPC 826 version of the Framework
	New features in EPC 804 version of the Framework
	Framework Windows
	Favorites Folder
	Command Usage tab
	Navigation pane view buttons have changed
	Tree view
	List view
	Drop-down button

	Applications in tree navigation pane are shown in bold
	Instance List can optionally be displayed with alternate row color
	Translation of end-user visible text
	New default translation tables for Framework server definitions
	New UF_SYSTM IIP (Imbedded Interface Point) methods that you can override
	New Virtual Clipboard Control Options
	Improved Application Tracing for Relationship Handlers

	New features in EPC 793 version of the Framework
	You Need to Regenerate Your Web Browser and Javascript Files
	The Web Browser Application Load Window has Changed
	Faster Framework web start-up times including RAMP
	Faster Framework Windows start-up times including RAMP
	Improved Framework web application instance list performance
	Improved Framework Windows instance list handling
	Improved documentation for instance list processing and options
	New PROGRAM_EXIT option for Framework locking
	New Show in Menu when Disabled option
	New method #Com_Owner.avShowMessages
	The Preload Framework Images option has been removed

	New features in EPC 785 version of the Framework
	The Way the Demonstration System is Installed has Changed
	Merge Items from One Framework to Another

	If You Want Your Project to Succeed
	Getting Started
	Computer System Requirements
	Other Requirements
	Starting the Framework
	Should you use Windows or Web Browser Applications?
	Core Users and Occasional Users
	Using a Unified Technology Does Not Mean You Can Have a Single User Interface
	The Zero Deployment Advantage

	Setting Up Your Framework Environment
	Install the Framework on the Server
	System i Apache Web Server
	Step 1. Ensure that LANSA for the Web is installed and operational on your server
	Step 2. Make sure that your Apache HTTP server is configured to support server side includes and optionally VLF.NET application deployment
	Step 3. Ensure that Extended Exchange is enabled
	Step 4. Install the Framework software
	How to start the HTTP server Administration (ADMIN) facility

	Windows Web Server
	Step 1. Ensure that LANSA for the Web is installed and operational on your server.
	Step 2. Make sure that your HTTP server is configured to support server side includes
	Step 3. Install the Framework software

	Install and Configure the Framework on Visual LANSA Workstation(s)
	Step 1. Install the Base Visual LANSA Framework Software
	Step 2. Configure the Visual LANSA Workstation(s)
	Step 1. Verify use of Microsoft Internet Explorer
	Step 2. Enable the Framework for Web Browser applications
	Step 3. Set up your Windows webserver or your iSeries webserver
	Step 4. Save your Framework details to your web server
	Step 5. Test execution of your Framework in a Web Browser

	The Demonstration Application
	HTML Startup Page
	Graphical Content
	Complex Grids
	Web Content
	Google Maps Gadget Integration
	Wizards
	Data Entry
	Dynamic Report Generation
	Integration of desktop and folders into a VL application
	Integration with Microsoft Excel
	Video Content
	Mini-Filters
	Generic Notes Command Handler
	Generic Spooled Files Command Handler
	IBM i Server Message Queues

	The Programming Techniques Application

	Development Architecture
	Usage Scenario: One Designer � Multiple Developers
	Usage Scenario: Multiple Designers � Multiple Developers
	Development Status Feature
	How to Create a New Framework Version
	Use Save As
	Associated XML Definition Files
	Optionally Change Associated XML Definition Files

	Start a Framework Version
	Notes For RAMP Users

	How to Keep Automatic Backup Copies of Your Framework
	How to Export Framework Definitions
	How to Merge Items from one Framework to Another
	The Merge Tool Window
	Using the Merge Tool
	Example of Combining Two RAMP Framework Definitions
	Collecting the Definitions
	Merging the Definitions

	Key Concepts
	Menu Options in Brackets
	Application
	Business Object
	Filter
	Instance List
	Command
	Command Handler
	Navigation Pane
	Tree view
	List view
	Drop-down button
	Launching Applications from the Status Bar

	OBJECT-ACTION User Interfaces
	If you have used a PC then OBJECT-ACTION should be familiar
	If you have used a 5250 then OBJECT-ACTION should be familiar

	Mock Up Filters and Command Handlers
	Images Palette
	Tailoring the Window Layout
	Standard Look
	Wider Instance List
	Filter to the Right
	Filter in the Middle with Wider Instance List Area
	Filter and Instance List at the Bottom
	Application Choices to the Right
	Application Choices Moved to Tool Bar
	Standard Layout with Command Handler on Top
	Standard Layout with Command Handler on Top, Filter And Instance List Reversed
	Application Selection on Top
	Application Selection at the Bottom
	Floating Filters
	Floating Instance Lists

	Administration Objects
	Users
	Servers

	Help and Tutorials

	Building the Application
	Personalize Your Framework
	To Change these Settings
	Framework Caption
	Framework Icon
	Framework splash image
	The technical support URL
	The Sign on Screen image
	First Splash Screen

	Define Your Application
	Define Your Business Objects
	Optionally Group Business Objects into Application Views
	Prototype Your Filters
	Prototype Your Commands and Their Handlers
	Validate Your Design
	Create Your Own Filters
	Create Your Own Command Handlers
	Optionally Create Your Own Instance List
	Deploy the Application

	Tutorials
	Before You Use the Tutorials
	Tutorials for Prototyping
	VLF000 - Execute Framework Application
	Step 1. Execute the Visual LANSA Framework
	Step 2. Execute an Application
	Step 3. Using Filters to Find an Employee
	Step 4. Using Commands and Command Handlers
	Summary

	VLF001 - Defining Your HR Application
	Step 1. Create a New Application
	Step 2. Specify Identification Options
	Step 3. Specify Startup Options
	Step 4. View Commands Enabled
	Step 5. Execute the About Command
	Step 6. View Overall Themes
	Summary

	VLF002 - Defining Your Business Objects
	Step 1. Decide on the Business Objects
	Step 2. Create the Business Objects
	Step 3. Specify Business Object Commands
	Step 4. Add the Business Objects to the Application
	Step 5. Specify Business Object Icons
	Step 6. View the Business Objects
	Summary

	VLF003 - Prototyping Your Filters
	Step 1. Define By Name Filter for Employees
	Step 2. Prototype the Instance List
	Step 3. Prototype the Filter Designs for Employees
	Step 4. Filters for Statistical Reporting Business Object
	Step 5. View the Filters
	Summary

	VLF004 - Prototyping Your Commands
	Step 1. View Command Definitions
	Step 2. Set Command Display for New
	Step 3. Prototype the New Command Handler
	Step 4. Prototype the Other Command Handlers
	Step 5. Define Commands for Statistical Reporting
	Step 6. Specify Command Display
	Step 7. Prototype Command Handlers for Statistical Reporting
	Summary

	VLF005 - Validating the Prototype
	Step 1. Validate Your Prototype in Windows mode
	Step 2. (Optional) Setting up your Environment for Web Browser applications
	Step 3. (Optional) Validate Your Prototype in Web mode
	Summary

	Tutorials for Windows Applications
	The Personnel File
	VLF006WIN - Snapping in A Real Windows Filter
	Step 1. Creating Your Real By Name Filter
	Step 2. Snapping In the By Name Filter
	Step 3. Filter Code
	Step 4. Creating a Real By Location Filter
	Step 5. Snapping in the By Location Filter
	Summary

	VLF007WIN - Snapping in A Real Windows Command Handler
	Step 1. Creating Your Real Command Handler
	Step 2. Snapping in Your Command Handler
	Summary

	VLF009WIN - Adding Instance List Columns in Windows Applications
	Step 1: Add Columns to the Instance List
	Step 2: Change your filter
	Step 3: Remove the Additional Columns
	Summary

	VLF010WIN - Creating a Mini Filter
	Step 1. Create the Mini Filter Interface
	Step 2. Write the Mini Filter Code
	Step 3. Snap in the Mini filter and Test It
	Step 4. Use the Virtual Clipboard to Save and Restore the Search Value
	Summary

	VLF011WIN - Creating a Parent Child Instance List
	Step 1. Create Two New Business Objects
	Step 2. Establish the Parent-Child Relationship
	Step 3. Create a Hidden Filter for Company Departments
	Step 4. Create a Relationship Handler to Load Sections
	Step 5. Display Additional Columns in the Instance List
	Step 6. Access the Properties of Hidden Child Objects
	Summary

	VLF012WIN - Controlling Navigation Using Switching and the Virtual Clipboard
	Step 1. Create a Filter for Department Sections
	Step 2. Create a Details Command Handler for Department Sections
	Step 3. Add Logic to Switch from Sections to the Employees Business Object
	Step 4. Record Switch History using the Virtual Clipboard
	Step 5. Use the Switch History to Return to the Original Business Object
	Summary

	VLF013WIN - Signaling Events
	Step 1. Change Employee Surname and Save the Changes
	Step 2. Add the avSignalEvent to the Employee Details Command Handler
	Step 3. Add a Routine to Listen for the EMPLOYEE_CHANGED Event
	Step 4. Test Signaling
	Summary

	VLF014WIN - Debugging/Tracing
	Step 1. Add a Trace Statement to Indicate Enter Key Was Pressed
	Step 2. Add More Trace Statements
	Step 3. Start Tracing Programmatically
	Summary

	Tutorials for WAM Web Browser Applications
	The Personnel File
	VLF006WAM - Snapping in A Real WAM Web Filter
	Step 1. Creating Your Real WAM Filter
	Step 2. Snapping In the WAM By Name Filter
	Step 3. Creating a WAM By Location Filter
	Step 4. Snapping in the WAM By Location Filter
	Summary

	VLF007WAM - Snapping in a Real WAM Web Command Handler
	Step 1. Creating Your Real WAM Command Handler
	Step 2. Snapping in Your WAM Command Handler
	Summary

	VLF009WAM - Adding Instance List Columns in WAM Applications
	Step 1: Add Columns to the Instance List
	Step 2: Change your filter
	Step 3: Remove the Additional Columns
	Summary

	VLF011WAM - Creating a Parent Child Instance List
	Step 1. Create Two New Business Objects
	Step 2. Establish the Parent-Child Relationship
	Step 3. Create a Hidden Filter for Company Departments
	Step 4. Create a Relationship Handler to Load Sections
	Step 5. Display Additional Columns in the Instance List
	Step 6. Access the Properties of Hidden Child Objects
	Summary

	VLF012WAM - Controlling Navigation Using Switching and the Virtual Clipboard
	Step 1. Create a Filter for Department Sections
	Step 2. Create a Details Command Handler for Department Sections
	Step 3. Add Logic to Switch from Sections to the Employees Business Object
	Step 4. Record Switch History using the Virtual Clipboard
	Step 5. Use the Switch History to Return to the Original Business Object
	Summary

	VLF013WAM - Signaling Events
	Step 1. Change Employee Surname and Save the Changes
	Step 2. Add the avSignalEvent to the Employee Details Command Handler
	Step 3. Add a Routine to Listen for the EMPLOYEE_CHANGED Event
	Step 4. Test Signaling
	Summary

	VLF014WAM - Debugging/Tracing
	Step 1. Add a Trace Statement to Indicate Enter Key Was Pressed
	Step 2. Add More Trace Statements
	Summary

	Tutorials for Deployment
	VLF008WIN - Deploying the Windows Framework
	Step 1. Create the Package
	Step 2. Specify the Startup Form and Database Type
	Step 3. Disable all Prompting
	Step 4. Add Framework Components
	Step 5. Add Other Framework Objects
	Step 6. Add Your Own Components
	Step 7. Add the Data
	Step 8. Add an Icon
	Step 9. Check the Package
	Step 10. Build the Package
	Step 11. Ship the Package
	Summary

	Frequently Asked Questions
	Can I customise the VLF WEB signon dialog?
	When I include a jQuery Weblet in a VLF Wam it doesn�t look right. What is wrong?
	Can I use Visual LANSA Framework in Direct-X mode?
	Can I change the options that the user searches for in the Quick Find box?
	Can I control what happens when the user clicks on an option that they have located by using the Quick Find box?
	How to find out the L4Web images folder and path name in a VLF-WEB application?
	Can I change the business object instance caption that appears in the area above my command handlers?
	Can I stop VLF NET overriding CCS changes to background Colors of objects in WAMs?
	How can I tell if my WAM function is executing in a browser (VLF.WEB) or under .NET (VLF.NET)?
	How do I execute an initial Framework level command when starting up a Framework application?
	How do I make the VLF use my corporate look?
	How do I create an elaborate prototype?
	Do I have to (re)define my user profiles into the Framework?
	Do I have to (re)define my user passwords into the Framework?
	Are there techniques to minimize user profile (re)definition?
	How can I execute the VLF as a web application without using SSI?
	Can I run web applications using secure sockets layer (SSL)?
	How can I make my web applications launch into a new window?
	How can different users access different data libraries in Web applications?
	When I start the Framework as an administrator (for example UF_ADMIN), the Framework appears briefly and then disappears?
	I do my unit and suite testing in Design mode. Is this a good practice?
	When I run the Framework security does not seem to work?
	Why options I have disabled for Windows and/or the Web browser are displayed?
	How can I translate text, for example the caption of the instance list Clear List button?
	How do I enroll my own visual styles?
	How do I change a visual style at run time?
	I have created a new command but it does not appear in the menus or the toolbar?
	Can I define the toolbar by application?
	I change Instance Command Presentation but the changes do not take effect?
	How do I run my application in SuperServer mode?
	Are copies of my Framework design kept?
	I have just deleted an object but it is still visible?
	I have just deleted an object and want to get it back again?
	How do I change Help About logos?
	How do I change introduction logos?
	How do I change the logo shown when the Framework starts executing?
	I have just changed my Framework design but the change has not taken effect?
	How do I enrol my own bitmaps and icons?
	Why are some menus and menu options in brackets?
	How are Framework settings remembered?
	How are instance lists remembered?
	Can more than one person design the same Framework at the same time?
	Where does the Images Palette get the pictures from (when using the HTML formatted Images Palette)?
	When I execute my Framework in a browser some of my icons and bitmaps don't display properly?
	How are icons and bitmap names used when my Framework is executed in a browser?
	How can I convert icons and bitmaps to GIF files?
	Where do I need to put my GIFs so that my browser applications can use them?
	Can my Web browser applications be used with System i multi-tier web server configurations?
	Can my Web browser applications be used with Windows multi-tier web server configurations?
	How can I change the visual styles used in Web browser applications
	What is a temporary directory and what is it used for?
	How can I purge old information from my temporary directory?
	Can I purge old information from my temporary directory in a batch job?
	How can users sign off from VLF-WEB sessions?
	Text appears in English when I execute Framework as a web application
	I want to restore the default window layout for the Framework
	How can I hide the address and status bars on Framework popup windows when using IE7?
	The URL to start my deployed VLF web browser application is too complex for users to reliably type in to their browsers
	What should I do when I get a mysterious WAM crash in my Framework RAMP application?
	How do I pick up the servers that have been defined in the Framework using the Servers option of the Administration menu?
	Why do I get a message saying 'Compression source file vf_multi_NAT.js not found'?
	Why do I get a message saying 'Compression source file vf_multi_LLL.js not found'?
	How can I change the list of Framework versions shown?

	Framework Programming
	Windows Filter and Command Handler Anatomy
	WAM Filter and Command Handler Anatomy
	Hidden Command Handler Anatomy
	Example of a Hidden Command Handler for Windows Applications
	Example of a Hidden Command Handler for Web Applications

	Framework Ancestor Components
	List Manager and Instance Lists
	Basic Instance List Processing
	Visual Identifiers
	Programmatic Identifiers
	Testing Identifiers
	Filters and List Manager
	Updating and Deleting Instance List Entries

	Command Handlers and List Manager
	Current/Selected Instance
	Authority to Instances

	More about Instance Lists
	Adding Additional Columns to Instance Lists
	Programming your instance list
	Date/Time Additional Column Programming Example

	Overriding Instance List Column Headings
	Programmatically Sorting the Instance List
	Changing the Color of List Entries (RowColor)
	In VLF.WIN environment
	Relationship Handler
	Snap in Instance List

	In VLF.WEB environment
	WAMs
	Relationship Handler

	Popup Panel Hints in the Instance List
	How to Use the Instance List Popup Feature

	Instance Lists with Different Types of Objects
	Parent-Child Relationships
	Peer-to-Peer Relationships
	Defining the Object Relationships
	Reviewing the Instance List Relationships Holistically
	Prototyping and Displaying Instance Lists
	Adding Entries to the Instance List
	Hiding Objects in Navigation Pane
	Work with Hidden Child Objects
	Changing the order of child business objects in the instance list tree
	Things to Watch Out For
	Application Tracing for Relationship Handlers
	Sample Relationship Handler Function
	Sample Relationship Reusable Part
	Physical Instance Lists
	Planning parent-child relationships
	You can add the entries to the instance list in any order
	You can dynamically add children to an instance list "on demand"
	When a child is in the instance list it must have a parent
	You can dynamically update individual entries in a parent-child instance list without collapsing the visual tree
	You can dynamically delete individual entries in a parent-child instance list without collapsing the visual tree
	You can dynamically add individual entries in a parent-child instance list without collapsing the visual tree

	Instance List Tips and Techniques
	Page-at-a-Time logic may indicate a conceptual problem with filters
	Instance lists do not have to reflect the database that underpins them

	Create Your Own Snap-in Instance List
	Instance List with more than 10 alphanumeric and/or 10 numeric additional columns
	Sample Filter using 34 columns (16 alpha, 16 numeric + Visual IDs)
	Matching Snap in Instance List Browser
	Source for Snap-in Instance List Example

	Advanced Instance List Processing
	Avoid Duplicated Instance List Code
	Centralize all your Instance List Activities
	Moving towards Real Business Object Management
	Manipulate Instance Lists from RAMP Scripts
	Delegate Common Tasks to your own Instance List 'Manager'
	Low Level Direct Access to the Visualization Trees

	Export Instance List Contents
	Template Support
	Getting Started
	Creating Your First Report Template
	Publishing Shared Templates
	Modifying Report Templates
	VLF.NET Excel Report Template Design Frequently Asked Questions
	Can I have a running total figure in my report?
	Can I include charts in my report?
	Is there a way to configure a template to force all data to be retrieved first prior to generating the report?
	How can I put printing date & time on the report?
	How can I insert the username of the user who generates the report?
	How do I keep some rows together in a page?
	How can I tell a template to fit all columns in a page when generating reports?

	Framework Manager
	UpperCase Conversions
	Numeric to Alphanumeric Conversions
	Application Error Handling
	How To Use It
	Example
	Properties Used

	Framework Locking Service to Handle Unsaved Changes
	Saving unsaved changes using uQueryCanDeactivate / avNotifyDeactivation
	Reason Code
	Comments/Warnings

	The Virtual Clipboard
	Remembering Information
	Exchanging Information
	Listening for Changes
	Other Things Worth Knowing
	Persistence, Resetting and Deploying in Windows Applications

	Basic Tracing Service
	Event Signaling Service
	avSignalEvent
	#Com_owner.avEvent

	Object Switching Service
	Introductory avSwitch Examples
	Referencing Applications, Business Objects and Commands
	Advanced avSwitch Examples
	avSwitch Method
	AvAddSwitchInstances Event
	AvAddSwitchInstance Method
	Troubleshooting Switch Examples

	Custom Property Access Service
	User Authority Access Service
	Show Messages Service
	Temporarily Overriding Object Captions
	Get Visual LANSA Framework Icon Reference
	Change a visual style at run time
	Framework Windows Management
	Programmatically Creating and Managing Windows
	Finding a Window
	Enumerating All Windows
	The Current and Main Windows
	Window Opening Information

	Notifying other Windows of Significant Events
	Keeping Windows Open
	Switching in Windows
	Windows and Imbedded Interface Points
	Expanding, Shrinking and Focusing Panes
	avPaneShrink Method
	avPaneExpand Method
	avPaneMaximize Method
	avPaneRestore Method
	avPaneFocus Method
	avCmdPanelState Property

	Windows Resource Usage
	Usage Expectations
	Resource Leakage

	Advanced Filter Styles
	Instant Filters
	Drill Down Filters
	Power Filters
	Hidden Filter
	Mini Filters
	Properties
	Events
	Code Examples
	RDML for a Windows Mini Filter
	RDMLX for a WAM Mini Filter

	Web Programming
	WAM Programming
	Stateless Programming
	UB_xxxxx User Buttons
	Maintaining State in WAM Filters and Command Handlers
	Use the WAM capabilities
	Use the Framework's Virtual Clipboard

	Using LANSA Weblets with Framework WAMs
	Rules for WAM Filters and Command Handlers

	Touch Device Considerations
	Tracing Web Applications
	Tracing on iPads
	Tracing on Android Touch Devices

	VLF.NET Applications
	Microsoft's .NET Framework
	Deployment
	VLF.NET Manual Deployment � An Alternative Way of Deploying VLF.NET

	Launching a VLF.NET Application
	Digital Certificates
	VLF.NET Form Layout Details
	Visual Themes
	Windows Framework Properties Applicable to VLF.NET

	Framework-AJAX Applications
	Mandatory Skills
	AJAX Applications in the Framework
	AJAX Pages and Functions
	Interaction between AJAX pages and AJAX functions
	Information Flow Between AJAX Pages and Functions
	Things an AJAX pages must provide to the Framework
	Things the Framework Provides to an AJAX page

	AJAX Exercises
	Exercise 1: AJAXEX1 � Hello World
	Exercise 2: AJAXEX2 � Doing Some Simple AJAX
	Exercise 3: AJAXEX3 � Using Asynchronous Processing
	Exercise 4: AJAXEX4 � Using the Instance List

	Tracing
	Tracing in Your Client Side AJAX Pages
	Tracing in Your Server Side AJAX Functions

	Messages and Errors
	Messages Issued by AJAX Functions
	Handling Fatal Errors in AJAX Functions

	Frequently Asked Questions
	Restrictions
	Recommendations

	Web Configuration Assistant
	Web Application Start Options

	Program Coding Assistant
	Step 1. Select Object
	Step 2. Select the Target Platform
	Step 3. Select Type of Code � Review Abstracts
	Step 4. Fill in Prompts
	Step 5. Generate Code
	Step 6. Create the Component

	Code Tables
	Framework Code Tables
	Code Table Data Flow
	Setting up a Code Table
	Step 1. Create a Table
	Step 2. Define a Table
	Step 3. Enter data into a code table

	Using a Code Table in your application
	As a part of a referential integrity check
	As a decode or lookup operation in your programs

	Advanced options when setting up a code table
	Multilingual Data
	Sequencing
	Choosing the description field
	Creating your own table data handler function
	Read Only Tables
	Inactive Table Entry indicator
	Creating Your Own Table Data Handler Reusable Part

	Frequently asked Questions about Code Tables
	Using Assistants to handle more complex "codes"
	Approach 1: Single Window � Multiple Assistants
	Approach 2: Multiple Windows � Multiple Assistants
	Approach 3: Multiple Windows � Multiple Assistants (some Complex)
	How are Assistants started?
	How do Assistants interact with other parts of the application?

	Using Unicode Data with the Framework
	Unicode Data in Code Tables
	Unicode Data in Virtual Clipboard
	Unicode Data in Tracing

	End-user Help (F1)
	Help Text for Windows Applications
	Help Text for Web Applications
	Disabling or diverting the F1=Help key in Framework applications

	Designing Filter and Command Handler Layouts
	Programming Tips
	Component Names and Identifiers
	Advanced Enter Key Handling in VL applications
	Possible Technique for Handling "New" in VLF And Ramp Application Designs
	Quick Find Override Feature
	Setup

	Advanced Topics
	Using your Visual LANSA Framework in Direct-X mode
	Win32
	Mixed Mode
	Snap In Instance Lists
	Snap In command handlers and filters

	Considerations for ISVs
	Deploying a Framework Version
	Naming Space Considerations for Managing Different Frameworks

	Users, Groups and Security
	Basic Framework Security
	Set Up Server or Servers
	Activating Basic Framework Security
	Maintaining Users
	Maintaining User Authorities
	Maintaining User Groups

	Five Things You Need to Know About Basic Framework Security
	User and authority data is usually stored in files VFPPF06 and VFPPF07 on the server
	Data in VFPPF06/07 controls access to Framework objects for both Web and Windows users
	There are two sets of user profiles and passwords on the server
	You can assign authorities to groups of users
	In design mode security is not applied

	Advanced Options
	You can add your own extra layers of security checking
	You can make the Framework validate user profiles and passwords using your own security system
	You do not have to use Framework security
	A user who signs on with one profile can be automatically changed to another
	Two different Frameworks can share the same set of users
	User and security data can be stored as an XML file instead of using files VFPPF06/07
	You can store other information relating to a user
	You can include the user profile and password in a start URL
	Export or Import of Full or Partial User Data
	How to Export User Data
	How to Import User data from an XML file
	Set up the Framework to Generate an XML file from an External Source of user data and import it
	The rules for Creating an XML file of User Data

	Writing your own version of the User Authority report
	Frequently Asked Questions (Users and Security)
	I do my unit and suite testing in Design mode. Is this a good practice?
	When I run the Framework security does not seem to work?
	Why options I have disabled for Windows and/or the Web browser are displayed?
	Why does a user with my user profile get automatically created?
	What are the user timeout settings used for?
	Can I control which user profile appears on the status bar?
	How can my RDML programs access the user profile that the user signed on as, and the user profile shown in the status bar?
	How can I allow the user to change their own password?
	When I start the Framework as an administrator (for example UF_ADMIN), the Framework appears briefly and then disappears?

	Some Scenarios
	Scenario: System i Web Server
	Assumptions
	Settings
	Modifications to your version of UFU0001
	Enroll Typical Users in the Framework

	Scenario: System i Server, Users Connect with Super Server
	Assumptions
	Settings
	Enroll Users and Groups

	Scenario: Windows Server, Users Connect with Super Server
	Assumptions
	Settings
	Enroll Users and Groups

	More Information
	More Details about Groups
	Create Your Own Imbedded Interface Points (IIP)
	More Details about being Signed on as a Different User
	How to Share Users between Different Frameworks

	Creating Web Interface for Maintaining Users and Authorities

	Server Profile Management and Issues
	Deploying Server Definitions
	Scenario: In House Development, Well Known Servers
	Scenario: ISV, Single Unknown Server
	Scenario: ISV, Multiple Unknown Servers

	Server Connection Recovery
	Server Connection Recovery Settings
	Attempt Automatic session recovery
	Time interval between checks of connection status
	Check connection before executing commands
	Check connection before selecting applications and business objects
	Action to take when session cannot be recovered
	Check Connection using function

	Programmatic server connection checking
	Examples

	Public Signals
	Examples

	Multilingual Application Issues
	Imbedded Interface Points (IIPs)
	What Imbedded Interface Points are Provided?
	Windows
	Web
	Both Windows and Web
	Adding your own object security validation
	avCheckAuth Method

	Adding your own instance level security validation
	avCheckInstanceAuth Method
	avCheckInstanceAuth Example

	Custom Properties
	Frequently Asked Questions about Custom Properties
	Things to be careful with when using Custom Properties

	Writing queries over Visual LANSA Framework objects
	Getting Started
	Using the First Query Example
	Using the Second Query Example
	Using the Third Query Example
	Creating Your Own Queries
	Other things worth knowing about Query Programs
	Examples
	UF_TRVRS - Signal VLF Objects
	UF_QRY01 - Simple Example of How to Listen For General Framework Objects And View Their Properties
	UF_QRY02 - Listening for General Framework Objects And View Their Properties
	UF_QRY03 - Listening for Ramp Objects And View Their Properties

	Troubleshooting
	Troubleshooting Filters and Command Handlers
	Framework fails as soon as you select your new Windows filter or command handler
	When you recompile your Windows filter or command handler it fails with a "Permission Denied" error.
	Your browser application filter or command handler behaves unexpectedly or erratically

	Troubleshooting Snap-In Instance Lists
	Debugging Browser Problems
	Internet Explorer
	Firefox, Chrome and Safari

	Application Performance
	Work as an End-User
	Best-Case Conditions
	Worst-Case Conditions
	A Risk Check List
	Assessing Performance in Framework Web Applications
	Step 1. Use consistent and reproducible environments
	Step 2. Make a Reproducible Assessment Script (ie: a RAS)
	Step 3. Perform your RAS - To get a Baseline or to Test a Change
	Step 4. Assessing the Average CPU per Server Interaction
	Step 5. Identify and Assess any Client-side Problem Areas
	Step 6. Identify and Assess any Server Side Problem Areas
	Step 7. Identifying the Next Most Significant Problem Area

	Using CITRIX, ISA and Windows Terminal Server Projected Desktop Technologies
	Options for Very Large Frameworks

	Definitions
	Framework Window
	Title Bar
	Toolbar
	Menu Bar
	Popup Menu
	Navigation Pane
	Application Bar
	Application and Business Object Tree
	Business Object Bar
	Application View
	Filter Tab
	Filter Folder
	Instance List
	Command Tab
	Command Folder

	Property Tab Sheets
	Application Views
	Authorities
	Bitmaps and Icons
	Create Links
	Commands Enabled
	Command Display
	Custom Properties
	Data
	Definition
	Developer Preferences � Web Server
	Export Design
	Filters
	Filter Snap-in Settings
	Filter Settings
	Framework Details
	Help About
	Icons
	Identification
	Instance List/Relations
	Istance List Relationships Summary
	Other Options
	Server Details
	Startup
	Subtypes
	Toolbar and Menus
	Usage
	User Administration Settings
	User Details
	Visual Styles
	Visualization
	Web/RAMP Details

	Dialogs
	Update Server from Visual LANSA Workstation
	Current Framework Design Details
	RAD-PAD Notes
	Shipped System and Demonstration Objects
	All available Images (GIFs)

	Execute Framework as a Web Application
	Choose Browser
	Start
	RAMP Application Testing
	Turn Tracing On
	In Language
	URL
	Touch Device

	Properties
	Add Fields from this Physical File
	Additional Columns for Building AColumn and NColumn Values
	Address for Error Notification
	Administrative User
	Advise User With a Message
	AJAX Page (HTML File)
	Alignment of Image on Form
	Allow Dynamic Overriding of Default Application Texts
	Allow Generic Searching
	Allow Float
	Allow IBM i password change
	Allow in Windows
	Allow Instance List to be sent to MS-Excel
	Allow Multiple Selection
	Allow Multiple Selections
	Allow on Web
	Allow Panes to be Shrunk and Expanded
	Allow Search/Recently Used Limit
	Allow Selection from Navigation Pane
	Allow Side by Side Display
	Allow this Object to be Opened in a New Window
	Allow User to Clear Instance List
	Allow Users to Switch Views
	Alter Development Status
	As the Default Command
	ASCII Translation Table Name and Library
	Associated AJAX Function
	Automatic Save Time in Minutes
	Automatically Enable for New Applications
	Automatically Enable for New Business Objects
	Automatically Enable for New Business Object Instances
	Automatically Increment when Saving
	Bitmap
	Blank Lines Around Comments
	Business Object Command
	Business Object List
	Bypass Locks
	Caption
	Caption (Singular)
	Caption with Accelerator
	Certificate File (PFX)
	Certificate File Password
	Change Password IIP
	Check Password Expiry
	Check Still Connected Before Doing Database IO
	Client CCSID
	Client Server Translation Table
	Close Confirmation Message
	Codebase
	Code Table Data
	Code Table Definition/ Reusable Part Data Handler (ID)
	Code Table Definition/ Use a Reusable Part
	Code Table Field Definitions
	Columns for Instance Lists
	Command Tab Location
	Command Tab Show All
	Command Tab Style
	Commitment Control
	Compile Framework as Microsoft .NET 2.0 Executable
	Component Identifier
	Contains Favorites
	Contains SHARED Object
	Copyright Notice to Be Used
	Copyright Text
	Create Component
	Database Name
	Database Password
	Database Type
	Database User
	DBCS Capable
	Default Command
	Default Font when Printing a Report Using Windows
	Default Properties for Fields on Filter Panels
	Default Properties for Fields on Handler Panels
	Defined In
	Displayed Field
	Development Status Captions
	Developer Preferences XML File
	Divert Locks
	Double Click for Default Command
	Do you want to use a mapped drive when uploading to the websever?
	Drag and Drop the Fields
	EBCDIC Translation Table Name and Library
	Edit Panel
	Email Address
	Email Zip File To
	Enable Child when Parent Selected
	Enable Clear List Button
	Enable Command
	Enable Development Status Feature
	Enable Framework for AJAX style applications
	Enable Framework for WAMS
	Enable Framework for Web browser Applications
	Enable Framework for WEBEVENT Functions
	Enable Parent when Child Selected
	Enable Peers when Selected
	Enable Popup Panels
	Enable the Position Menu Option
	Encrypt XML Files
	End User can change theme
	End-users Must Sign on to this Framework
	Engine
	Execute as Hidden Command
	Execution Priority
	Execution Mode Load Path
	Export Developer Preferences
	Export Tables
	Export Framework Design
	Export Include All Versions
	Export Images Palette
	Export RAMP Definitions
	Export RAD-PAD Notes
	Export RAD-PAD Defaults
	Export Servers
	Export Users
	Field Prefix to be Used
	Fields That You Want to Appear in a List at The Bottom of Your Handler
	Fields That You Want to Appear on the Top of Your Command Handler
	File Prefix to be used for MS-Excel (Business object properties, Instance List tab)
	Filter Tab Location
	Filter Tab Style
	First Time Only
	Fixed / Default Values
	Focused Input Field Style
	Framework Fatal Error
	Function Handling Table Data storage
	Generate Web Pages
	Groups this user belongs to
	Height
	Help Text
	Hide All Other Command Tabs
	Hint
	Host Name or IP Address
	IBM i Host Server Mapper Name / IP address
	IBM i Host Server Mapper Port
	Icon
	Icon and Bitmap Enroller
	IIP - User Signon Function Name
	IIP � Function to return web user authorities
	Import Users Imbedded Interface Point
	Image File
	Image / Web Page to Display on Form
	Images Folder
	Import Users from XML
	Inactive Table Entry indicator
	Include Default Save Button and Logic
	Include Default Search Button
	Include Layout Managed Button and Field Areas
	Include uInitalize Routine in Command Handler
	Include uInitialize Routine in Filter
	Include uTerminate Routine in Command Handler
	Include uTerminate Routine in Filter
	Input Method
	Instance Command
	Instance Command Presentation
	Instance List Relationship Summary
	Instance List Tool Bar Location
	Instance List Tool Bar Height or Width
	Instance List Tool Bar Text Location
	Internal Identifier
	IP Address
	IP Address and Port Number
	Intro Caption
	Intro URL
	Keep newlook SID File Versions
	Keep Versions in Subfolders
	Keep XML File Versions
	Keys of the View
	Keys from the Instance List
	Language Field
	Languages
	LANSA Language Code
	Last Changed
	Launch Button Caption
	Launch from Status Bar
	Launch URL (Windows)
	Launch URL (Web / .Net)
	List Panel
	Load Path
	Location for Buttons
	Log off Inactivity Timeout
	Log on Inactivity Timeout
	Major Comment Separator
	Marker for Code Requiring Manual Completion
	Maximum Decimals
	Maximum Entries in List
	Maximum Length
	Maximum Signon Attempts Allowed
	Maximum Web Password Length
	Meta Tag
	Minor Comment Separator
	Mock Up RAD-PAD
	MTXT String Loader
	Multiline Tab Sheet Captions
	Multiple Window Control Bar Location
	Name
	Name of User Set to be Used
	.NET Component Class Name and Assembly
	.NET Target Platform
	Nodes XML File
	Number of Additional Windows a User can have Open Concurrently
	Object Command Presentation
	Open Latest Demonstration System
	Optional Arguments
	Optional Mapped Drives - Images Folder and Private Working Folder
	Overall Theme
	Own Window Size
	Partition
	Partition is Enabled for RDMLX
	New Password
	Physical File from which the Child Data Comes From
	Popup Panel Name
	Port Number
	Preferred web scheme/skin
	Private Definition/aXes Project Folder
	Private Working Folder
	Programmatic Identifiers for Building AKey and NKey Values
	Property Type
	Prototype Only
	RAD-PAD File Name
	RAD-PAD File Format
	RAMP Destinations
	RAMP Javascript Charset
	RAMP Password
	RAMP Tools Mode Load Path
	RAMP User
	Read Only
	Referenced .NET Assemblies
	Remember Key Values between Filter Executions
	Relationship Handler
	Relationship Type
	Report on Users - Imbedded Interface Point (Id)
	Restricted Access
	Routine to listen for signals to update the instance list
	Save and Restore Instance Lists
	Save as Deployment Server
	Script for Uploading to your LANSA for the Web Folders
	Search Field Width
	Select the Keys of the Selected View to be used for Search Operations
	Select the View to Be Used For Filtering and Searching Operations
	Selection Block Size
	Selection Limit
	Sequence
	Sequence Using
	Server Client Translation Table
	Server IIP function to validate sign on
	Server Name
	Server Overrides
	Server Settings XML File
	Server Type
	Shortcut
	Show Additional Columns
	Show Current Business Object in Window Title
	Show in Help About Text
	Show in Menu
	Show When Disabled
	Show on Instance List Tool Bar
	Show On Popup Menus
	Show on Toolbar
	Show the 'Windows' Menu in this Framework
	Show on Connect Dialog
	Show When Disabled
	Snap in Instance List Browser ID
	Specify the Underlying Physical File that Will Be Searched by this Filter
	Options
	Stay Active
	Stay Active Default for Command Handlers and Filters
	Store Users in XML File and Store users in DBMS Tables VFPPF06/07
	SubTypes
	System Info
	Table Definitions XML File
	Technical Support
	Temporary Directory on PC
	Temporary Folder Name
	The location of the images directory on the server
	The physical file that most closely resembles this business object is
	The type of server
	The webserver�s images path
	Timeout to use for developers
	Toolbar Button Caption
	Toolbar Button Width
	Toolbar Group
	Tool Bar Height
	Tool Bar Style
	Trim Working Set
	Type of Layout Style to be Used
	Unique Identifier
	Update File
	Uppercase
	Upper and Lower Case Password
	URL
	Use a Grid for Displaying Any List
	Use HTTPS
	Use INI file
	Use Framework Users and Authority
	Use �liteclient� license
	Use a Reusable Part
	Use Shared Instance List for Relationships
	Use a Webevent/WAM for Help
	Use Windows Credentials
	User Authorities Report File
	User Can Change Own Password
	User Imbedded Interface Point
	User Is Disabled
	User Must Specify all Chosen Keys
	Users May Work Offline if the Remote Server Is Not Available
	User Object Name/Type
	User Profile
	Users Sign on Locally to Use the Framework
	Users Sign on to a Remote Server to Use the Framework
	Value(s) can be changed by Administrator
	Warn before (days)
	*WEBEVENT Function and/or WAM Component or AJAX Routine
	Web Help Function/Webroutine Name
	Web Help Process/WAM Name
	Web Help Window Features
	Web Initial Filter Pane height (%)
	Web Initial Filter Pane width (% of right panel)
	Web Initial Navigation Pane width (%)
	Web Server Caption
	Web Server IP Address
	Web Server Port
	Width
	View as Drop Down on Toolbar
	View as A Single Tree
	View as Two Lists Side By Side
	View as Two Lists Over and Under
	View Used to Read the Child Data
	Windows Code Page
	Visual Identifiers for Building VisualID1 and VisualID2 Values
	Visual Style Base Style
	Visual Style Protected Fields and Areas
	Visual Style Dark Background Small Font
	Visual Style Dark Background Large Font
	Visual Style Status Bar Fields
	Visual Style URLs
	VLF.NET Screen Layout Persistence Level
	Your Framework Version Number

	Appendix
	What is Included in the Framework?
	LANSA Repository Objects
	Demonstration Repository Objects
	User Repository Objects
	Framework Repository Objects

	Operating System Objects
	Permanent File Objects
	Temporary or Semi-Persistent Files

	Things You Should Back Up

