
LANSA	Open
LANSA	Open	Guide
	

Introduction
Getting	Started
Function	Overview
Guidelines	for	Using	LANSA	Open
Quick	Start	for	Visual	Basic	Programmers
Function	Details
Troubleshooting
Appendix	A.	Error	Message	Codes

	
Edition	Date	May	27,	2014
©	LANSA
	

its:LANSA035.CHM::/lansa/vgudb1_0005.htm
its:LANSA035.CHM::/lansa/vgudb2_0005.htm
its:LANSA035.CHM::/lansa/vgudb7_0005.htm
its:LANSA035.CHM::/lansa/vgudb8_0005.htm
its:LANSA035.CHM::/lansa/vgudb9_0005.htm
its:LANSA035.CHM::/lansa/vgudba_0005.htm
its:LANSA035.CHM::/lansa/vgudbb_0005.htm
its:LANSA035.CHM::/lansa/error_message_codes.htm

1.	Introduction
1.1	What	Is	LANSA	Open?
1.2	The	LANSA	Object	Repository
1.3	Dynamic	Link	Libraries	(DLLs)
1.4	How	LANSA	Open	Works
1.5	Local	Data	Dictionary
1.6	Program	Examples?

1.1	What	Is	LANSA	Open?
LANSA	Open	is	'middleware'	software	that	facilitates	the	high	speed	transfer	of
information	and	data	between

PC-based	client	applications,	developed	using	any	of	the	popular
workstation	development	tools

and
a	server	(LANSA),	either	on	an	IBM	i,	Windows	or	Linux	platform.

An	integral	part	of	LANSA	Open	is	the	LANSA	Object	Repository,	which
contains	all	field	and	file	details	including	the	relevant	business	rules.	This
ensures	that	all	PC	applications	are	subjected	to	the	same	rigorous	security
checks,	data	validation	and	referential	integrity	checks	as	IBM	i	applications.

1.2	The	LANSA	Object	Repository
The	LANSA	Object	Repository	provides	significant	advantages	to	client/server
applications	because	it	centralizes	the	information	about	the	fields	and	files
which	make	up	the	application's	database.	By	centralizing	information	such	as
business	rules,	field	descriptions	and	help	text	in	the	LANSA	Repository,
application	development	time	is	reduced.	An	application	accessing	data	known
to	the	Repository	can	be	executed	on	the	server	or	on	a	client	PC.	The	same	set
of	rules	apply.
If	you	are	using	LANSA	Open	to	create	a	client/server	extension	to	an	existing
LANSA	or	non-LANSA	application,	check	the	LANSA	Repository	features
before	upgrading	the	existing	application	and	its	files.	The	LANSA	Repository's
facilities	may	reduce	or	even	eliminate	many	of	changes	which,	at	first,	appear
to	be	necessary.
Virtual	fields	are	just	one	example	of	using	the	LANSA	Repository	to	extend
your	existing	application	without	changing	your	files.	Using	virtual	fields,	your
dates	can	be	presented	to	applications	in	formats	such	as	DD/MM/YY	or
MM/DD/YY,	while	they	are	stored	in	YYYYMMDD	format.
Some	LANSA	Repository	features	that	you	can	use	to	enhance	your	existing
applications:

Field	validations	and	user	error	messages.
Field	defaults,	standard	names	for	labels	&	headings,	stamping	attributes,
edit	codes,	etc.
File	level	validations.
Validations	for	referential	integrity	checking.
Predetermined	Join	Fields
Database	event	triggers	for	fields	or	files.
Date,	calculation,	string	types	of	virtual	fields.
Multilingual	definitions.
Automated	help	and	error	messaging.

1.2.1	I/O	Modules	&	OAMs
The	LANSA	Repository	details	for	files	are	included	in	Input/Output	Modules.
These	modules	are	called	I/O	Modules	(IOMs),	or	Object	Access	Modules
(OAMs).	IOMs	are	only	used	on	the	IBM	i	in	partitions	that	are	not	enabled	for
RDMLX	or	where	no	OAM	exists.	OAMs	are	used	for	all	other	file	requests.
Including	process	and	data	information	in	the	IOM	or	OAM	means	that	this
information	will	move	wherever	the	database	moves.	The	information	is
accessed	by	all	LANSA	applications.
To	learn	more	about	the	LANSA	Repository	and	input/output	modules,	refer	to
Introduction	to	LANSA	Object	Repository	in	the	Introduction	to	LANSA	for
iSeries	Guide.

its:Lansa009.chm::/lansa/insb9_001.htm

1.3	Dynamic	Link	Libraries	(DLLs)
A	DLL	is	a	library	that	links	dynamically,	not	statically,	with	an	application.	The
library	contains	a	group	of	compiled	functions	or	programs.
Static	linking	of	libraries	results	in	very	large	programs	which	must	be
recompiled	and	linked	each	time	a	function	in	the	library	changes.
Dynamic	library	links	reduce	program	size	and	recompilations,	because
applications	link	to	the	library	to	obtain	the	current	code	when	they	are
executed.
The	use	of	DLLs	is	now	very	common	and	many	products	provide	and	can	use
DLLs.	For	example,	C#,	Visual	Basic,	Microsoft	Excel	and	Lotus	Notes	all	call
DLLs.	Some	products	require	external	DLLs	to	have	a	product	specific
interface.	These	products	require	a	DLL	to	be	written	to	interface	to	LANSA
Open.
LANSA	Open	provides	its	functions	in	a	DLL	which	must	be	loaded	onto	your
PC.

1.4	How	LANSA	Open	Works
Your	PC	based	application	can	be	developed	using	C#,	VB.NET,	Visual	Basic,
Paradox,	Delphi,	Gupta,	PowerBuilder,	Excel,	REXX,	C	or	in	fact	any	PC
development	tool	that	can	reference	a	third	party	DLL.

The	application	program	makes	calls	to	the	LANSA	Open	functions	which
reside	locally	on	the	PC.	This	call	may	be	to	a	function	to	format	data,	send
information	to	the	server	or	receive	information	from	the	server.

For	example,	if	the	application	calls	the	LANSA	Open	function	LceFetch	(to	get
a	record	from	the	host),	LANSA	Open	sends	a	request	for	data	to	the	server.
On	the	server,	a	LANSA	Open	program	receives	the	request	and	determines
what	action	to	take.

If	a	file	needs	to	be	accessed,	the	appropriate	LANSA	OAM	(or	I/O	Module)	is
called	and	the	data	is	retrieved	and	formatted.

Once	the	data	is	retrieved,	it	is	transmitted	back	to	the	PC.
The	PC	application	can	then	use	other	LANSA	Open	functions	to	access	that
data	which	is	stored	on	the	PC.

1.5	Local	Data	Dictionary
LANSA	Open	can	maintain	a	local	data	dictionary	on	the	PC's	hard	disk	to
record	the	file	and	field	information	(e.g.	description,	type,	length,	etc.)
normally	returned	by	the	host	during	the	Open	Session	function	call.
The	local	data	dictionary	avoids	the	constant	downloading	of	information	from
the	host	in	cases	where	the	information	has	not	changed.
The	use	of	the	local	data	dictionary	will	depend	on	your	application	and	the
user's	requirements.
The	local	data	dictionary's	details	are	kept	up	to	date	in	this	way:

For	files,	each	file	is	version	checked	with	the	host	and	details	updated
locally,	if	necessary,	on	a	per	file	basis.
For	fields,	if	any	field	definition	in	the	Repository	on	the	host	has	changed,
all	the	fields	for	that	file	are	replaced	in	the	local	data	dictionary.	This	occurs
regardless	of	whether	any	changed	field	is	requested	in	the	current	session	or
not.

You	specify	that	you	want	to	use	the	local	data	dictionary	in	the	Configuration
File.

1.6	Program	Examples?
A	number	of	sample	programs	are	provided	with	LANSA	Open	to	assist	you	in
understanding	the	use	of	the	LANSA	Open	functions	and	to	help	you	develop
your	own	applications.
You	will	find	these	programs	in	the	<LANSA	Root	Directory>\Open\Samples
directory.	If	you	did	not	elect	to	install	Samples	with	LANSA	Open,	you	can	do
so	at	any	time.
All	the	sample	programs	use	files	from	the	Personnel	System	which	is	shipped
as	part	of	the	DEM	or	demonstration	partition	with	LANSA.
In	order	to	execute	these	sample	programs,	you	must	have	the	DEM	partition
and	the	appropriate	files	loaded	onto	the	host.
A	printed	sub-set	of	the	Where	to	Find	the	Program	Examples	Visual	Basic
sample	application	is	provided	in	this	guide.
	

its:LANSA035.CHM::/lansa/vgudb8_0010.htm

2.	Getting	Started
Before	you	begin	development	with	LANSA	Open,	the	software	must	be
properly	installed	and	configured	on	your	PC.	The	appropriate	LANSA	license
must	be	installed	on	the	server	and	software	configuration	steps	must	also	be
performed	on	the	server.
In	this	section,	you	will	find	an	overview	of	some	of	the	installation	and
configuration	information	for	reference	purposes.	For	detailed	information,	refer
to	the	Installing	LANSA	on	Windows	Guide.

2.1	Installing/Upgrading	LANSA	Open
You	will	find	the	instructions	for	installing	and	upgrading	LANSA	Open	in	the
Installing	LANSA	on	Windows	Guide.
If	you	are	upgrading	from	an	older	version	of	LANSA	Open,	be	sure	to	read	the
Important	Note	for	LANSA	Open	Upgrade.
The	installation	will	load	the	following:

Windows	32	DLL	(LCOEW32.DLL)
A	Configuration	Utility
A	Help	file.

Sample	and	demonstration	programs	are	included	with	the	LANSA	Open
software.	Refer	to	the	Guidelines	for	Using	LANSA	Open	for	further	details
about	these	files.

its:lansa041.chm::/Lansa/vgudb2_0015.htm
its:LANSA035.CHM::/lansa/vgudb8_0005.htm

2.2	Configuration	File
LANSA	Open's	Configuration	File	parameters	are	recorded	in	the	Windows
System	Registry.
The	Configuration	File	parameters	are	set	to	default	values	during	the
installation	process.	When	the	LANSA	Open	installation	has	been	completed,
you	must	review	the	default	values	and	change	them	to	suit	your	installation's
requirements.	For	complete	details	of	these	parameters,	refer	to	LANSA	Open
Configuration	Parameters	in	the	Installing	LANSA	on	Windows	Guide.
You	will	view	and	maintain	the	Configuration	File	using	the	LANSA	Open
Configuration	Utility	which	opens	from	the	Configurator's	desktop	folder.
Always	use	this	utility	to	view	or	change	this	file.	Never	use	a	registry	editor	to
change	these	details.
Note:	You	will	need	to	log	on	as	system	administrator	to	install/change	the
Configuration	File	parameters.
You	can	override	some	of	LANSA	Open's	Configuration	File	parameters	for
individual	applications.	The	LANSA	Open	function	to	override	a	parameter	is
included	with	each	parameter's	description.

its:lansa041.chm::/Lansa/JMP_CONFIG.htm

2.3	Repository	on	the	Server
The	LANSA	Repository	centralizes	the	information	about	the	fields	and	files
which	make	up	your	server's	application	database	and	will	save	you	repeating
this	information	in	each	client	program.	In	order	to	access	any	file	using
LANSA	Open,	the	file	must	have	been	defined	to	the	Repository	and	an	I/O
Module	created.
If	you	are	already	using	Visual	LANSA	or	LANSA	for	iSeries	to	develop	your
applications,	your	files	will	most	likely	be	known	to	the	Repository.	Because	of
the	particular	benefits	the	Repository	brings	to	client/server	applications,	it	is
recommended	that	you	check	your	Repository	definitions	to	ensure	that	all	the
applicable	Repository	features	are	in	use.
If	you	have	not	previously	used	LANSA,	then	the	fields	and	files	must	be
defined	and	the	Repository	characteristics	added,	as	described	in	the
Introduction	to	LANSA	for	iSeries	Guide.
If	the	files	on	the	IBM	i	already	exist	but	are	not	known	to	LANSA,	you	will
need	to	load	these	files	into	LANSA	and	create	the	I/O	Modules	for	them.	Refer
to	Building	the	LANSA	Repository	-	Files	in	the	Introduction	to	LANSA	for
iSeries	Guide	for	the	steps	required	to	make	your	files	known	to	the	Repository.
If	you	are	creating	a	new	application,	you	must	define	the	fields	and	files	that
will	make	up	the	application's	database.	Building	the	LANSA	Repository	-	Files
and	Building	the	LANSA	Repository	-	Fields	in	the	Introduction	to	LANSA	for
iSeries	Guide	tells	you	how	to	do	this.

its:Lansa009.chm::/lansa/insbbc_0001.htm
its:Lansa009.chm::/lansa/insbbc_0001.htm
its:Lansa009.chm::/lansa/insbd_001.htm

2.4	Multilingual	Support
To	enable	LANSA	Open	to	display	messages	and	translate	data	correctly	from
the	Host	System,	these	two	files	must	be	converted	to	the	appropriate	language:

LCOECHAR.DAT	(Client	<->	IBM	i	Host	Character	Translation)
LCOEMESG.DAT	(Error	Message	Text	Translation)

A	default	LCOECHAR.DAT	file	translating	characters	between	Windows
Codepage	1252	and	EBCDIC	CCSID	1140	will	automatically	be	installed.	If
this	is	not	appropriate	for	your	language	then	you	must	select	another	one	of	the
shipped	LCOECHAR.DAT	files	or	your	own	custom	LCOECHAR.DAT.
EBCDIC	CCSID	1140	is	identical	to	CCSID	037	except	that	€	(the	Euro
symbol)	replaces	¤.	This	supports	the	entire	Windows	1252	character	set	except
for	the	following	characters:

Characters Hex
Range

Explanation

0x82	to
0x9E
inclusive
and
0xA0

These	characters	do	not	exist	in
EBCDIC	CCSID	1140.	For	this	reason
they	are	mapped	to	EBCDIC	Hex
values	below	0x40.	This	means	the
IBM	i	will	interpret	them	as	control
characters	and	thus	they	cannot	be
viewed	on	the	IBM	i	and	may	affect
the	display	of	characters	following
them.	However,	these	characters	may
still	be	saved	and	retrieved	because
when	these	Hex	values	are	retrieved	by
your	LANSA	Open	application,	they
will	be	mapped	back	to	their	correct
Windows	Codepage	Hex	Code	and
thus	should	appear	correctly	in	your
LANSA	Open	application.	These
characters	should	not	be	used	if	this
data	will	be	accessed	with	software
other	than	LANSA	Open.

0x9F Does	not	exist	in	EBCDIC	CCSID
1140.	Should	not	be	used	because	it

maps	to	0xFF	which	causes	strings	to
be	terminated.

¤ 0xA4 The	Euro	replaces	this	character

	

The	full	set	of	characters	supported	is:

3.	Function	Overview
This	chapter	describes	a	Dynamic	Link	Library	and	how	it	interacts	with
LANSA	Open.
To	help	you	to	become	familiar	with	the	LANSA	Open	functions,	we	have	listed
them,	with	a	brief	description,	in	the	context	that	you	would	use	them	in	your
applications.
A	generic	program	example	is	provided	at	the	end	of	the	chapter	in	order	to
show	you	how	to	apply	the	LANSA	Open	functions.
If	you	are	using	Visual	Basic	to	develop	your	client	programs,	the	Visual	Basic
application	extract	in	Quick	Start	for	Visual	Basic	Programmers	will	provide
you	with	more	specific	examples	of	using	the	LANSA	Open	functions.

its:LANSA035.CHM::/lansa/vgudb9_0005.htm

3.1	What	Are	DLLs?
The	Dynamic	Link	Library	(DLL)	contains	a	group	of	compiled	functions	or
programs	which	link	dynamically,	not	statically,	with	an	application.
LANSA	Open	provides	its	functions	in	a	DLL.	This	DLL	will	be	installed	with
the	LANSA	Open	installation	program.
Using	DLLs
In	order	to	use	the	installed	DLL	functions	in	your	application,	you	must
perform	two	steps:
1.		Make	the	DLL	functions	known	to	the	application.
2.		Call	the	desired	function.

3.1.1	Making	DLL	Functions	Known	to	Your	Application
Each	PC	application	product	has	its	own	way	of	identifying	and	interfacing	with
DLLs.	You	should	refer	to	the	user	guides	of	your	specific	PC	application
product	when	determining	how	to	use	DLL	functions.	You	might	find	this
information	under	one	of	these	topics:

external	functions
calling	functions
including	functions
Dynamic	Link	Libraries	(DLL).

It	is	important	that	the	DLL	be	located	in	the	proper	directory	of	the	PC	so	that
it	can	be	located	when	the	application	executes.	Refer	to	Important	Note	for
LANSA	Open	Upgrade	for	notes	regarding	the	location	of	the	LANSA	Open
DLL.
With	most	application	tools	and	programming	languages,	it	will	be	necessary	to
define	the	parameters	of	each	of	the	external	functions	in	the	DLL.	The
parameters	for	defining	the	functions	are	identified	in	the	online	Help	text	and
the	Function	Details.	This	step	need	only	be	performed	once	as	the	resulting
code	is	generally	copied	from	one	application	to	the	next	or	is	stored	in	a	file
which	can	be	copied	or	imported	into	the	application.
Once	the	DLL	functions	have	been	defined	to	the	application,	the	functions	can
be	called.
The	Visual	Basic	sample	programs	provided	with	LANSA	Open	contain	the
relevant	definitions	to	use	with	your	Visual	Basic	applications.

its:lansa035.chm::/lansa/vgudb2_0015.htm
its:lansa035.chm::/lansa/vgudba_0005.htm

3.1.2	Calling	DLL	Functions
DLL	functions	can	be	called	using	one	of	two	techniques:
1.		Call	by	function	name.
2.		Call	by	ordinal	number.
Calling	a	function	by	name	is	recommended	over	calling	a	function	by	ordinal
number,	in	case	the	ordinal	number	of	the	DLLs	change.	When	a	function	is
called	by	name,	its	position	in	the	DLL	is	not	important.	If	you	call	a	function
by	ordinal	number,	you	are	identifying	the	function	strictly	by	its	location	in	the
DLL.
When	calling	the	functions,	it	is	of	value	to	note	that	the	LANSA	Open
functions	for	all	Windows	versions	are	the	same,	even	though	the	DLL	files	are
different.
For	more	details	about	making	DLLs	known	to	your	application,	refer	to	the
Guidelines	for	Using	LANSA	Open.

its:Lansa035.chm::/lansa/vgudb8_0005.htm

3.2	LANSA	Open	Function	Summary
3.2.1	Which	LANSA	Open	Function	to	Use	and	When
3.2.2	Session	Management
3.2.3	Session	Definition
3.2.4	Data	Access
3.2.5	Miscellaneous	Functions

3.2.1	Which	LANSA	Open	Function	to	Use	and	When
When	using	LANSA	Open	functions,	there	will	always	be	a	consistent	structure
to	your	program	or	application.	Your	applications	will	have	four	basic	sections.
These	are:

Session	Management
(Open	Session)

Opens	a	communication	session	with	the	host	and	
obtains	the	session	identifier.

Session	Definition Defines	the	application-specific	session
characteristics	for	the	host.

Data	Access Accesses	data	on	the	host.

Session	Management
(Close	Session)

Closes	an	opened	host	session.

The	majority	of	the	LANSA	Open	functions	are	only	executed	in	one	of	these
sections.	Which	functions	go	where	is	explained	in	this	section.
The	sample	programs	supplied	with	the	LANSA	Open	software,	as	well	as	those
provided	on	LANSA's	web	site	show	you	how	these	functions	are	used	in	an
application.

3.2.2	Session	Management
Using	the	session	characteristics	defined	by	the	functions	described	in	the
Session	Definition	section,	your	application	will	open	a	communications	session
with	the	host.
An	application	may	have	more	than	one	session	open	with	the	host.

Open	Session
LceGetSessionId Obtains	a	valid	session	number.

LceOpenSession Opens	a	communication	session	with	the	host.

Close	Session
Once	your	application	has	completed,	the	communications	session	must	be
closed.	All	sessions	opened	on	the	host	by	your	application	should	be	closed	by
your	application.
Failure	to	close	a	session	will	result	in	an	unnecessary	resource	overhead	on	the
host.

LceEndSession Ends	the	specified	session	with	the	host.

3.2.3	Session	Definition
The	session	definition	functions	are	used	to	define	the	characteristics	of	your
application	to	the	host.	These	functions	must	be	performed	before	a	session	is
opened.	This	information	will	be	passed	to	the	host	when	the	session	opens:

LceUseSystem Specifies	the	host	system	to	be	used.

LceUsePartition Specifies	the	partition	to	be	used.

LceUseLanguage Instructs	the	session	to	use	the	specified
language.

LceSetSessionOption Sets	the	file	open	option	and	the	returned	data
format	for	the	session,	if	different	to	the
default	options	specified	in	the	Configuration
File.

LceSetCommitmentOn Turns	commitment	control	on.

LceSetCommitmentOff Turns	commitment	control	off.

LceUseUserId Specifies	the	host	User	Identifier	for	this
session.

LceUsePassword Specifies	the	password	corresponding	to	the
host	User	Identifier.

LceUseFile Specifies	the	files	to	be	used	in	the	session.

LceUseField Specifies	the	fields	to	be	used	in	the	session.

LceUsePriority Specifies	the	host	job	priority.

LceUseProcess Specifies	the	process	name	for	transaction
stamping.

LceUseFunction Specifies	the	function	name	for	transaction
stamping.

LceSetSelectOptions Specifies	the	options	to	be	used	for	the	first
SELECT	and	FETCH	functions.	These
options	can	be	changed	during	the	session	and
are	reset	after	each	SELECT.

LceUseExceptionalArguments Specifies	exceptional	arguments	(X_RUN
Parameters)	to	be	used.	This	option	should
only	be	used	with	a	host	that	supports
X_RUN	parameters.

3.2.4	Data	Access
The	majority	of	your	applications	will	consist	of	data	related	functions.
Once	your	application	has	opened	a	communications	session,	it	can	access	the
data	on	the	host.		Using	LANSA	Open,	you	can	get,	add,	change	and	delete
information	on	the	host.	You	may	also	execute	LANSA	and	other	host
programs.
There	are	a	wide	range	of	data	access	functions.	These	functions	have	been
grouped	into	the	following	functional	areas:

File
Processing	-
Single	Record

These	functions	are	used	to	fetch,	add,	change	or	delete	a
single	record	from	the	host.

File
Processing	-
Multiple
Record

These	functions	are	used	to	retrieve	one	or	more	records	from
the	host.

File
Commitment
Control

These	functions	are	used	if	you	have	commitment	control
invoked	for	your	host	database.

Retrieving
Repository
Details

These	functions	are	used	to	retrieve	information,	such	as
descriptions,	labels	and	column	headings,	which	are	stored	in
the	host	Repository.

Manipulating
Field	Data

These	functions	are	used	to	use	or	prepare	the	current	value
for	a	field.

Calling
Processes	on
the	Host

These	functions	are	used	to	execute	LANSA	and	iSeries
programs	or	OS/400	functions.

Message/Error
Handling

LANSA	Open	has	its	own	automated	error	management
facility,	or	alternatively,	your	application	can	perform	its	own
error	handling	using	the	functions	provided.

File	Processing	-	Single	Record
The	LceInsert,	LceUpdate	and	LceDelete	functions	have	a	validate	parameter
which	allows	a	check	to	be	made	without	performing	the	actual	operation.

LceCheckFor Checks	for	the	existence	of	a	record	in	the	specified
file.	The	validate	parameter	of	the	insert,	update	or
delete	function	can	be	used	instead	of	this	function.

LceSetSelectOptions Specifies	the	select	or	fetch	options.

LceFetch Fetches	the	values	of	the	specified	fields	from	the
specified	file.

LceInsert Inserts	the	values	of	the	specified	fields	into	a	record.

LceUpdate Updates	the	record	with	the	values	in	the	fields
specified.

LceDelete Deletes	a	record	from	the	specified	file.

Note:	When	multiple	users	are	accessing	a	database,	eventually	two	or	more
users	will	want	to	update	the	same	record	at	the	same	time.
What	should	you	do	about	this?
Refer	to	the	LceUpdate	or	LceDelete	function	details	to	find	out.
File	Processing	-	Multiple	Record
LceRequestSelect Selects	records	on	the	host.

LceRequestSelectWhere Provides	a	'where'	condition	to	be	used	when
selecting	records	on	the	host.

LceReceiveSelect Transfers	records	from	the	host	to	the	PC.

LceGetRecordCount Determines	how	many	records	were	transferred
from	the	host.

LceGetSelect Retrieves	the	next	record	from	the	records
transferred	to	the	PC.

LceSelect Selects	and	retrieves	specified	fields	from	file.

LceReceiveNextX Gets	the	next	record	transferred	from	the	host.

LceDeleteSelect Deletes	the	temporary	file	used	to	hold	the	host
records	transferred	to	the	PC.

File	Commitment	Control
These	functions	are	only	effective	if	the	LceSetCommitmentOn	function	has

been	executed	and	Commitment	Control	definitions	have	been	configured
correctly	on	the	host	files.

LceCommitWork Commits	the	current	transaction.

LceRollBackWork Rolls	back	the	current	transaction.

Retrieving	Repository	Details
These	functions	are	used	to	retrieve	information	from	the	Repository	for	your
PC	application:

LceGetFieldDesc Retrieves	the	field	description.

LceGetFieldHeading Obtains	the	three	line	field	heading.

LceGetFieldIndicator Returns	the	DBCS	field	indicator.

LceGetFieldLabel Returns	the	field	label.

LceGetFieldType Returns	the	field	type.

LceGetFieldValueH Sets	the	window	text	field	value.

LceGetFileDesc Returns	the	file	description.

LceGetFileType Returns	the	file	type.

LceGetVariable Retrieves	the	system	or	multilingual	variable.

LceGetFieldEdit Fetches	the	edit	code	or	word.

LceGetDefaultValueX Returns	the	field's	default	value.

LceGetFieldHelpText Returns	the	field's	help	text	to	a	buffer	or	displays	it	in
a	window.

LceGetFieldAttributes Returns	the	field's	attributes.

Manipulating	Field	Data
LceGetFieldValueX Retrieves	the	field's	current	value.

LceSetFieldValue Sets	the	field	value	in	the	field	information	area.

LceLocalDateTimeToServer Converts	the	DateTime	from	the	client's	local
timezone	into	UTC	(Universal	Coordinated
Time).	This	function	is	for	use	in	creating

Where	clauses	which	contain	DateTime	values.

LceGetFieldDataLength Retrieve	the	length	of	the	field's	current	value.

Calling	Processes	on	the	Host
These	functions	allow	you	to	execute	processes	on	the	host.
By	re-using	existing	host	processes	and	functions,	significant	savings	can	be
made	in	development	time.	Consistency	between	client	and	host	processes	is
also	maintained.
For	tasks	requiring	access	to	multiple	files,	perform	them	on	the	host,	to	allow
your	client	applications	to	benefit	from	the	host's	fast	file	processing.

LceLansaCall Executes	a	LANSA	process/function	or	an	iSeries
program	with	an	immediate	response.

LceExecute400 Executes	the	specified	function	on	the	iSeries.

LceSubmit Submits	a	LANSA	process/function	or	an	iSeries
program	in	batch	mode.

Lce3GLDefineParameter Defines	the	attributes	and	optionally	sets	the	values
of	the	parameter	used	in	the	Lce3GLCall	function.

Lce3GLCall Executes	the	specified	3GL	program	on	the	iSeries.

Lce3GLGetValue Fetches	the	parameter	value	returned	by	the
Lce3GLCall	function.

Message/Error	Handling
There	are	two	ways	to	manage	your	error	messages.
You	can:

let	LANSA	Open	perform	all	the	error	message	handling	automatically
or

do		your	own	error	message	handling.

LceDisplayErrors Displays	error	messages	automatically.

LceGetStatus Returns	the	error	status	and	message,	if	any.

LceGetMessageCount Counts	the	number	of	messages	sent	by	the	Host
System.

LceGetMessage Returns	the	specified	error	message.

3.2.5	Miscellaneous	Functions
There	are	some	other	optional	functions,	in	addition	to	those	already	listed.
The	LceASCIIToFloat	and	LceASCIIToInteger	functions	are	generally	not
needed	as	most	application	languages	provide	data	conversion	routines.	You
should	use	the	supplied	routines	where	possible.

LceASCIIToFloat Converts	a	string	containing	numerics	to	a	floating
point	number.

LceASCIIToInteger Converts	a	string	containing	numerics	to	a	long
integer	number.

LceUseTmpDrive2 Use	the	second	directory	for	the	PC's	temporary
files.

LceSetCommsCursor Set	the	cursor.	This	function	is	only	available	with
Windows	applications	and	must	be	specified	during
Session	Definition.	

LceSetCommsType Set	the	communications	type,	if	different	to	the
default,	when	accessing	the	host.	This	must	be
specified	during	Session	Definition.

LceVersion Returns	the	LANSA	Open	version	number	or
displays	it	in	a	dialogue	box.

LceGetSystemAttribute Returns	the	selected	system	attribute.

3.3	Generic	Coding	Example
The	following	example	shows	how	to	apply	the	LANSA	Open	functions	and	is
not	directed	to	any	one	language.	It	is	supplied	to	illustrate	the	steps	required,
using	familiar	constructs.
Note	that	this	is	a	simple	example	and	detailed	error	handling	has	been	omitted.
Your	own	application	programs	should	check	the	return	codes	from	the	LANSA
Open	functions	and	provide	for	the	appropriate	handling	of	any	errors.
/*	SESSION	DEFINITION	SECTION	*/
/*	Get	a	session	ID	*/
iSession	=	LceGetSessionId()
if	not	iSession
										return	FALSE
endif
/*	Specify	LANSA	partition	to	be	used	as	DEM	*/
if	not	LceUsePartition	(iSession,	"DEM")
										return	FALSE
endif
/*	Specify	the	language	of	the	partition	as	French	*/
if	not	LceUseLanguage	(iSession,	"FRA")
										return	FALSE
endif
/*	Set	the	execution	priority	on	host	to	20	*/
if	not	LceUsePriority	(iSession,	20)
										return	FALSE
endif
	
/*	Define	the	files	and	fields	to	be	used	*/
if	not	LceUseFile	(iSession,	"PSLMST,DEPTAB")
										return	FALSE
endif
if	not	LceUseField	(iSession,	"EMPNO,SURNAME,GIVENAME,SALARY")
										return	FALSE
endif
/*	OPEN	SESSION	SECTION	*/
if	not	LceOpenSession	(iSession)	.	.	.
										Error	("Could	not	open	a	session.")
										return	FALSE

endif	
/*	DATA	ACCESS	SECTION	*/
/*	Fetch	an	employee	record	*/
/*	Set	the	value	of	the	key	field,	EMPNO	*/
if	not	LceSetFieldValue	(iSession,	"EMPNO",	"A1001")
										return	FALSE
endif
/*	Fetch	the	record	from	the	host	*/
If	not	LceFetch	(iSession,	"SURNAME,	GIVENAME,	SALARY",	"PSLMST",	"EMPNO")
										Error	("Employee	record	not	found.")
										return	FALSE
else
										/*	Get	the	value	of	the	SURNAME	field	*/
										if	not	LceGetFieldValueX	(iSession,	"SURNAME",	strSurname	,	lFlags)
										return	FALSE
										endif
										/*	Get	the	value	of	the	SALARY	field	*/
										if	not	LceGetFieldValueX	(iSession,	"SALARY",	strSalary	,	lFlags)
										return	FALSE
										endif
										/*	Convert	the	SALARY	field	from	a	string	to	a	float	*/
										LceASCIIToFloat	(strSalary,	nSalary)
endif
	
/*	Select	all	employee	records	(No	keys)	*/
/*	Using	*RECEIVEIMMED	and	specifying	a	buffer	with	LceReceiveNextX
should	result	in
better	performance	*/
if	not	LceSetSelectOptions(iSessionId,	"*RECEIVEIMMED")
			return	FALSE
endif
	
/*	Specify	the	records	to	be	selected	from	the	host	*/
if	not	LceRequestSelect	(iSession,	"EMPNO,	SURNAME,	SALARY",	"PSLMST",	"",	FALSE)
									return	FALSE
else	
										/*	Transfer	the	selected	records	to	the	PC	*/
									Do	While	(LceReceiveNextX(iSessionId,	strBuff,	lSize,
																																					fldData,	iTotalFields)	=	LceTrue)

																	strEmpNo	=	CopyString(strBuff,	fldData(0).fieldLen)
																	iStartPos	=	fldData(0).fieldLen
																	strSurname	=	CopyString(strBuff,	iStartPos,	fldData(1).fieldLen)
																	iStartPos	=	iStartPos	+	fldData(1).fieldLen
																	strSalary	=	CopyString(strBuff,	iStartPos,	fldData(2).fieldLen)
									End	While
endif
/*	END	SESSION	SECTION	*/
LceEndSession	(iSession,	FALSE)
/*	iSession	is	now	invalid	and	the	data	dictionary	has	been	removed	from	memory.	*/
	
/*	Alternative	method	for	performing	the	above	query	*/
/*	Specify	the	records	to	be	selected	from	the	host	*/
if	not	LceRequestSelect	(iSession,	"EMPNO,	SURNAME,	SALARY",	"PSLMST",	"",	FALSE)
									return	FALSE
else	
										/*	Transfer	the	selected	records	to	the	PC	*/
									if	not	LceReceiveSelect	(iSession,	"PSLMST")
																		return	FALSE
										else
																		/*	Determine	how	many	records	were	transferred	*/
																		LceGetRecordCount	(iSession,	"PSLMST",	nRecordCount)
																		/*	Loop	through	all	transferred	records	*/
																										For	(I	=	1	to	nRecordCount)
																										/*	Get	a	record	from	the	data	transferred	*/
																										LceGetSelect	(iSession,	"PSLMST",	I,	"EMPNO,SURNAME")
																										LceGetFieldValueX	(iSession,	"EMPNO",	strEmpno	,	lFlags)
																										LceGetFieldValueX	(iSession,	"SURNAME",	strSurname	,
lFlags)
																		Next	
										endif
endif
/*	END	SESSION	SECTION	*/
LceEndSession	(iSession,	FALSE)
/*	iSession	is	now	invalid	and	the	data	dictionary	has	been	removed	from	memory.	*/
	
	

4.	Guidelines	for	Using	LANSA	Open
A	number	of	sample	programs	are	provided	with	LANSA	Open	to	assist	you	in
understanding	the	use	of	the	LANSA	Open	functions	and	also	to	help	you
develop	your	own	applications.
This	chapter	contains	some	things	you	need	to	know	when	using	specific	PC
application	development	tools.
This	information	is	current	at	the	time	of	printing.
Tip
If	you	visit	LANSA's	web	site,	you	will	find	the	latest	tips	for	using	LANSA
Open	as	well	as	declarations	and	sample	applications.

4.1	Where	to	Find	the	Program	Examples
You	will	find	the	sample	programs	in	the	<LANSA	Root
Directory>\Open\Samples	directory.
If	you	did	not	install	the	Samples	initially,	you	can	do	so	at	any	time.
Sample	programs	are	provided	in	Visual	Basic.

All	the	sample	programs	use	host	files	from	the	Personnel	System
which	is	shipped	as	part	of	the	demonstration	partition	(DEM).
In	order	to	execute	these	sample	programs,	you	must	have	the	DEM
partition	and	the	appropriate	files	loaded	onto	the	host.

For	the	latest	tips,	techniques	and	sample	programs,	visit	LANSA'S
WWW	site	at	http://www.lansa.com/support

http://www.lansa.com/support/

4.2	LANSA	Open	and	Visual	Basic
When	creating	applications	in	Visual	Basic	with	LANSA	Open,	each	of	the
LANSA	Open	functions	must	be	defined	to	your	Visual	Basic	application
program.	In	Visual	Basic,	the	easiest	way	of	doing	this	is	to	add	the	file
LCOE1632.BAS	to	your	project	using	the	Add	Module	option	of	the	Project
menu.	This	file	is	supplied	in	the	Visual	Basic	samples	that	come	with	LANSA
Open.
The	LANSA	Open	functions	can	also	be	defined	in	any	other	*.BAS		modules
of	your	programs.	If	you	want	to	define	the	functions	manually,	declare	them
using	the	following	format:

32	bit	Visual	Basic

Declare	Function	LceGetSessionId	Lib	"LCOEW32.DLL"	()	As	Integer

Special	Considerations
There	are	some	special	considerations	you	need	to	take	into	account	when
calling	the	DLL	functions	from	Visual	Basic.
These	are:

Pre-allocate	Strings
When	using	a	string	variable	to	receive	data	in	a	DLL	function,	Visual	Basic
must	be	forced	to	reserve	space	for	it	before	the	call.	This	is	done	by	re-
assigning	the	variable	to	spaces	or	nulls:
dim	s	as	string	
s	=	Space	(SIZE)	
or
s	=	String	(SIZE,	chr(0))
Failure	to	reserve	enough	space	will	result	in	a	GPF	(General	Protection	Fault)
error.

Testing	a	function's	results
Return	Code	"True"	is	defined	as	-1	in	Visual	Basic,	so	this	code:
if	lceFunction(…)	=	True	then	'	is	incorrect
if	lceFunction(…)	=	LceTrue	then		'	is	correct
LceTrue	is	a	constant	defined	to	be	1.

Null	terminated	strings
In	the	LANSA	Open	DLLs,	0	is	used	as	the	termination	marker	for	strings.
However,	Visual	Basic	does	not	recognize	0	as	the	terminating	character	in	a
string.	Your	Visual	Basic	program	will	have	to	detect	the	0	character.
In	the	sample	programs	supplied	with	LANSA	Open,	the	sTrim	function	is	used
to	remove	any	leading	or	trailing	blanks	from	a	given	string.	In	addition,	the
sTrim	function	recognizes	the	0	character	as	the	termination	character	of	a
string.	In	the	examples,	the	strings	are	always	pre-allocated	with	nulls,	rather
than	spaces	to	make	the	sTrim	function	more	efficient.
You	can	copy	the	sTrim	function	from	the	UTIL.BAS	module	of	the	Employee
sample	project	supplied	with	LANSA	Open.
Function	sTrim(s	As	String)	As	String
				'	this	function	trims	a	string	of	right	and	left	spaces
				'	it	recognizes	0	as	a	string	terminator
				Dim	i	As	Integer
				i	=	InStr(s,	Chr$(0))
				If	(i	>	0)	Then
								sTrim	=	Trim(Left(s,	i	-	1))
				Else
								sTrim	=	Trim(s)
				End	If
End	Function

Helpful	Visual	Basic	Routines
Visual	Basic	provides	routines	to	work	with	and	convert	strings	and	numeric
data,	such	as:

Val()
Str()	and	Str$()
Left()	and	Left$()
Right()	and	Right$()

4.3	LANSA	Open	and	C
Any	C	module	making	LANSA	Open	function	calls	should	include	the	LCOE.H
header	file	which	is	installed	with	the	'Development	Tools'.	The	LCOE.H	header
file	contains	a	list	of	constants	required	for	the	parameters	used	by	the	DLL
functions.	This	file	also	contains	the	definition	of	each	of	the	DLL	functions.
When	using	the	LCOE.H	header	file,	it	is	necessary	to	define	a	macro	to
indicate	what	operating	system	the	application	is	being	compiled	for.

For	32	bit	Windows,	the	macro	LCE_WIN32	must	be	defined.
These	macros	should	be	defined	before	the	LCOE.H	file	is	included.	This	step
may	be	done	inside	the	code	or	outside	the	code,	by	defining	the	macro	when
calling	the	compiler	(Option	‑D	on	most	compilers)	or	in	your	project's	settings.
There	are	two	methods	to	include	LANSA	Open	when	compiling	your	project.
1.		The	recommended	method	is	to	link	the	installed	lcoew32.lib	file	to	your
project.	See	your	compiler's	documentation	on	how	to	perform	this	task.	In
general	terms,	this	is	performed	by	adding	lcoew32.lib	as	a	dependency	to
your	project's	Linker	settings.

2.		In	previous	versions	of		LANSA	Open	the	following	method	was
documented:
"To	create	an	Import	Library	for	Windows,	you	should	create	your	own
Import	Library	file	using	a	DEF	file	as	input	to	the	LIB	utility.	The
SAMPLES\C	directory	has	an	example	of	a	DEF	file	for	this	purpose,	with
additional	information	as	comments.	Refer	to	Microsoft	documentation
describing	the	LIB	utility	and	modify	the	example	DEF	file	as	required."	
You	may	continue	to	use	this	method	but	it	is	no	longer	the	recommended
method.

4.4	LANSA	Open	and	Excel
When	creating	applications	with	Excel	macros,	you	do	not	have	to	explicitly
define	the	LANSA	Open	DLL	functions	to	Excel.	The	functions	are	simply
called	directly	as	external	functions	within	a	macro.
The	DLL	functions	can	be	called	using	the	Excel	CALL	command	where	the
command	might	be	used	as	follows:
SET.NAME("nSessionId",CALL("LCOEW32","LceGetSessionId","I"))
or
CALL("LCOEW32","LceEndSession","AIA",nSessionId,	FALSE)
The	format	of	the	CALL	command	is:
CALL("A","B","C",D,E,...)
where
			A	is	the	name	of	the	DLL	file,	LCOEW32
			B	is	the	name	of	the	LANSA	Open	function	to	be	executed
			C	is	the	description	of	the	parameters.	The	format	is	XYZ,
				where
										X	is	the	type	of	return	value
										Y	is	the	type	of	the	first	parameter
										Z	is	the	type	of	the	second	parameter,	etc.
			D,	E	...	are	the	parameters	passed	to	the	function
For	more	information	about	using	the	CALL	command,	refer	to	the	Excel
guides.	In	particular,	review	the	data	types	used	for	parameter	passing.	An
appendix	in	the	Excel	guides	will	list	the	data	types.
In	the	example:
CALL("LCOEW32","LceEndSession","AIA",nSessionId,	FALSE)
the	parameters	"AIA"	indicate	that	the	function	returns	a	Boolean	and	is	passed
an	integer	and	a	Boolean.
Commonly	used	values	include:

A	is	a	Boolean	passed	by	value
C	is	a	zero-terminated	ANSI	string	passed	by	reference
I	is	a	signed	integer	passed	by	value.

Where	the	function	returns	a	boolean	operator,	the	LANSA	Open	functions	are
commonly	used	in	this	manner:
	
IF(NOT(CALL("LCOEW32","LceOpenSession","AI",nSessionId)),RETURN(FALSE))
Be	sure	to	refer	to	the	Excel	macro	samples	provided.
	

5.	Quick	Start	for	Visual	Basic	Programmers
This	is	a	step	by	step	walk	through	the	Microsoft	Visual	Basic	code	required	to
fully	maintain	a	host	file.	It	uses	code	from	the	sample	program	SIMPLE.VBP
which	is	a	subset	of	the	Personnel	System	supplied	with	the	LANSA	Open
software.
You	will	find	the	complete	Visual	Basic	sample	application	on	the	LANSA
Open	installation	media.
Before	you	start	using	LANSA	Open	functions	in	your	program,	please	be	sure
to	read	the	guidelines	for	using	Visual	Basic	in	Guidelines	for	Using	LANSA
Open.

its:LANSA035.CHM::/lansa/vgudb8_0005.htm

5.1	Overview
This	Skill	File	Maintenance	program	shows	you	how	to	use	Visual	Basic	(VB)
and	LANSA	Open	to	maintain	a	file	residing	on	the	host	using	a	simple	VB
screen.

By	following	this	sample	code,	you	will	see	how	to	create	an	application	that
allows	you	to:

browse
add
change	and
delete	items	from	a	host	file.

You	can	cut	and	paste	the	code	from	this	program	to	use	in	your	own	VB
applications.	You	will	find	it	in	<\lansas>\SAMPLES\VB\SIMPLE.
The	Skills	File	Maintenance	program	(simple.vbp)	contains	only	one	form
(simple.frm)	and	uses	the	most	common	LANSA	Open	DLL	calls	to	update	the
file	SKLTAB.
In	Simple.frm,	wherever	possible,	the	code	is	linked	to	events	on	the	form
controls.	The	Form_Load	event	is	used	to	open	the	session,	the	Form_Unload	to

close	the	session	and	the	skills	list	click	event	is	used	to	navigate	through	the
records.

5.1.1	Program	steps
To	access	host	data	from	the	PC,	you:

Step	1:	Define	and	Open	the	host	session
1.		GetSessionId
2.		Set	Session	options
3.		Open	Session

Step	2:	Access	Data
1.		Get	Dictionary	Details	to	use
2.		Request	Records
3.		Retrieve	Records
4.		Process	Records

Step	3:	Close	the	host	session
Close	Session

5.2	Defining	and	Opening	the	Host	session
Note:	The	LCOE1632.BAS	module	supplied	with	the	sample	VB	programs
contains	all	the	Visual	Basic	V4.0	declarations	to	LANSA	Open	functions.	To
use	the	functions,	insert	the	file	into	your	project	by	using	the	File	Add	option
of	the	File	menu.	All	code	presented	in	this	chapter	can	be	found	in	simple.frm.

5.2.1	Declare	Variables
Three	variables	are	used	in	the	following	samples:	iSession,	iRet,	and	sBuff.
Declare	them	on	the	General	Declarations	section	of	your	form:
	
Dim	iSession	as	Integer,	iRet	as	integer,	sBuff	as	String
iSession	is	used	to	contain	the	LANSA	session	handle,	iRet	is	used	to	receive
the	return	code	from	LANSA	calls,	and	sBuff	is	a	general	purpose	buffer	for
data	retrieved	from	the	host.

5.2.2	GetSessionID
First,	you	must	get	a	session	ID	to	work	with.	This	ID	will	be	used	in	all
subsequent	LANSA	Open	DLL	Calls	(LceFunctions):
					ISession	=	LceGetSessionId()
If	iSession	=	0	Then
									MsgBox	"No	Session	ID"
								End
				End	If
			
	

5.2.3	Set	Session	Options
You	must	set	the	session	parameters	before	opening	the	host	session.
Note:	To	run	the	program,	replace	UserID,	Password	and	System	with	your
own.
	
				'Set	Session	ID
				
				'	System	/	User	dependent	parameters,	replace	to	run	program	!
				iRet	=	LceUseUserId(iSession,	"USERID")
				If	iRet	=	LceTrue	Then	iRet	=	LceUsePassword(iSession,	"PASSWORD")
				If	iRet	=	LceTrue	Then	iRet	=	LceUseSystem(iSession,	"SYSTEM")
				If	iRet	=	LceTrue	Then	iRet	=	LceUsePartition(iSession,	"DEM")
				If	iRet	=	LceTrue	Then	iRet	=	LceUseLanguage(iSession,	"ENG")
								
				'	set	file	for	session
				If	iRet	=	LceTrue	Then	iRet	=	LceUseFile(iSession,	"SKLTAB")
				'	set	fields	for	session
				If	iRet	=	LceTrue	Then	
							iRet	=	LceUseField(iSession,"SKILCODE,SKILDESC")
				End	If
				
				If	iRet	=	LceFalse	Then
								MsgBox	"Set	Session	failed"
								End
				End	If
Note:	Almost	all	LANSA	functions	return	an	integer,	1	(LceTrue)	for	success	or
0	(LceFalse)	for	failure.	VB	True	cannot	be	used	because	it	is	defined	as	-1.

5.2.4	Enabling	LANSA	Open	Default	Error	Handler
LANSA	Open,	by	itself,	can	trap	and	display	the	errors	which	can	occur	in	a
session.
To	enable	the	default	error	handler:
	
iRet	=	LceDisplayErrors(LceTrue,	0)

5.2.5	Opening	the	Host	Session
Opening	the	session	connects	the	user	to	the	host.
	
'open	Session
iRet	=	LceOpenSession(iSession)	
'-----------------------------
If	iRet	=	LceFalse	Then
				MsgBox	"Open	Session	failed"
				End
End	If
Note:	Normally,	you	only	need	to	open	one	session.	One	example	of	when	you
may	want	more	than	one	session	is	when	you	want	to	access	other	files	while
receiving	records	using	a	select	with	*RECEIVEIMMED	mode.

5.3	Data	Access
5.3.1	Using	Field	Labels	and	Descriptions	from	the	LANSA	Repository
5.3.2	Populating	a	List	with	the	Contents	of	a	Table
5.3.3	Retrieving	a	Specific	Record
5.3.4	Setting	a	New	Record's	Fields	to	Default	Values
5.3.5	Saving	Changes	/	Inserting	Records
5.3.6	Deleting	Records
5.3.7	Retrieving	Help	Text

5.3.1	Using	Field	Labels	and	Descriptions	from	the	LANSA
Repository
The	following	example	retrieves	field	descriptions	from	the	LANSA	Repository
to	be	used	on	the	screen	(e.g.	Skill,	Skill	Code	and	Description).	Using	the
names	&	descriptions	that	are	stored	centrally	in	the	Repository	ensures	that	you
maintain	consistency	between	all	users	of	the	system	and	allows	you	to	easily
accommodate	different	languages.
	
		'set	field	labels	and	lengths	by	reading
		'their	definitions	from	dictionary
	
				'Fill	the	buffer	with	as	many	zeroes	as	specified	in	the
				'FIELD_DATA_SIZE	constant	in	LCOE1632	module			
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
	
				'Get	skill	code	label
				iRet	=	LceGetFieldLabel(iSession,	"SKILCODE",	sBuff)
				lbCode.Caption	=	sTrim(sBuff)
				'---
				'Get	skill	description	label
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
				iRet	=	LceGetFieldLabel(iSession,	"SKILDESC",	sBuff)
								lbDesc.Caption	=	sTrim(sBuff)
Note:	The	sTrim	function	used	above	can	be	found	in	the	UTIL.BAS	module	of
the	employee	sample	program.			
Retrieve	the	SKILCODE	field's	long	description	from	the	LANSA	Repository
and	display	it	in	the	status	bar	at	the	bottom	of	the	form.
	
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))	'	pre-allocate	memory
				
				iRet	=	LceGetFieldDesc(iSession,	"SKILCODE",	sBuff)
			'--
				status2	=	sTrim(sBuff)
Read	and	set	the	maximum	length	for	fields	SKILCODE	and	SKILDESC.
	
Dim	length	as	integer,	decimals	as	integer				

	
				'Set	skill	code	field	length	
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
				iRet	=	LceGetFieldType(iSession,	"SKILCODE",	sBuff,	_
														length,	decimals)
				txtCode.MaxLength	=	length
				'--
				'Set	skill	description	field	length
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
				iRet	=	LceGetFieldType(iSession,	"SKILDESC",	sBuff,	_
														length,	decimals)
				txtDesc.MaxLength	=	length

5.3.2	Populating	a	List	with	the	Contents	of	a	Table
To	populate	a	list	with	the	contents	of	a	table,	you	must	first	request	the	set	of
records	you	want	to	use	and	then	receive	them.		*RECEIVEIMMED	mode	is
used	for	better	performance.	In	this	example,	LceSetSelectOptions	is	used	to	set
the	select	mode.
LceDeleteSelect	can	be	used	to	clear	any	previously	select	results.	This	is
required	if	a	previous	Select	is	interrupted	and	is	not	fully	received.
After	the	file	and	fields	in	it		have	been	selected	with	LceRequestSelect,	a
LceReceiveNextX	loop	is	used	to	retrieve	all	selected	records.
The	following	example	is	a	simplified	version	of	the	code	in	the	SetSkillsList
subroutine	in	SIMPLE.VBP.
	
		'	reads	all	skill	descriptions	and	populates	the	skill	list
	
	On	Error	Resume	Next
		
				'	remove	any	previous	query	results
				iRet	=	LceDeleteSelect(iSession,	"SKLTAB")
				'--
				'	Set	Select	to	IMMEDIATE	MODE	as	recommended	for	reasons	of	speed
				iRet	=	LceSetSelectOptions(iSession,	"*RECEIVEIMMED")
				'--
				'	Select	fields	and	file	from	which	records	will	be	retrieved
				iRet	=	LceRequestSelect(iSession,	"SKILDESC",	"SKLTAB",	"",	False)
				'---
	
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))	'	Initialize	buffer
				lstSkills.Clear	'Clear	List
				'---
				'Read	all	records	selected
				While	(LceReceiveNextX(iSession,	sBuff,	FIELD_DATA_SIZE,
fldData(0),	1)	=	LceTrue)
				'---
								If	(fldData(i).flags	=	0)	Then
												'	Value	is	not	SQLNULL	
												lstSkills.AddItem	sTrim(sBuff)	'	add	description	to	list

								End	If
				Wend

Notes:

All	the	records	have	to	be	retrieved,	otherwise	you	must	use	LceDeleteSelect
before	you	use	any	of	the	other	record	manipulation	functions.
While	not	used	in	this	case,	(in	this	example	the	whole	table	is	required)	the
number	of	retrieved	records	can	be	restricted	by	specifying	keys	in
LceRequestSelect.	The	key	values	are	set	with	LceSetFieldValue.	A	variation	of
LceRequestSelect,	LceRequestSelectWhere,	allows	the	specification	of	an
additional	SQL	WHERE-like	condition.
Instead	of	using	a	buffer	to	receive	the	data,	LceGetFieldValueX	could	be	used.
The	buffer	in	LceReceiveNextX	is	then	not	required.
	
					While	(LceReceiveNextX(iSession,"",	0,	vbNullString,	0)	=	LceTrue)
				'--
								iRet	=	LceGetFieldValueX(iSession,	"SKILDESC",	sBuff,	lFlags)
								lstSkills.AddItem	sTrim(sBuff)
				Wend

5.3.3	Retrieving	a	Specific	Record
To	retrieve	a	specific	record,	LceFetch	is	used.	Before	calling	LceFetch,	the
value	of	the	key	used	in	the	search	is	set	using	LceSetFieldValue.
If	LceFetch	returns	LceTrue	(1),	LceGetFieldValueX	can	then	be	used	to
retrieve	the	data.
	
Private	Sub	lstSkills_Click()
				'	synchronize	fields	with	list
				
				
				If	(lstSkills.ListIndex	>	-1)	Then
								'	Read	record
								iRet	=	LceSetFieldValue(iSession,	"SKILCODE",	mycode)	'	Set	Key
								'----------	---
								iRet	=	LceFetch(iSession,	"SKILCODE,SKILDESC",	"SKLTAB",	_
																		"SKILCODE")	'	Get	Record
								'---
								If	iRet	=	LceTrue	Then
												'	set	code
												sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))	_
																					'	required	when	calling	dlls
												iRet	=	LceGetFieldValueX(iSession,	"SKILCODE",	sBuff,	lFlags)	_
																				'	Get	Field
												'--
												If	lFlags	=	1	Then
															txtCode	=	"Null	value"
												Else
															txtCode	=	sTrim(sBuff)	'	display	data
												End	If
												
												'	set	desc
												iRet	=	LceGetFieldValueX(iSession,	"SKILDESC",	sBuff,	lFlags)
												'--
												If	lFlags	=	1	Then
															txtDesc	=	"Null	value"
												Else
															txtDesc	=	sTrim(sBuff)

												End	If
								End	If
								
								
				End	If
				
	
				Exit	Sub
				
End	Sub

5.3.4	Setting	a	New	Record's	Fields	to	Default	Values
A	new	record	is	added	to	a	table	using	LceInsert.	In	this	case,	the	Add	command
button	is	used	only	to	set	the	default	values	of	the	fields	retrieved	from	the
dictionary	(clears	record).	On	Save,	either	LceInsert	or	LceUpdate	is	called,
depending	on	whether	the	current	record	is	being	added	or	edited.
	
Private	Sub	cmdAdd_Click()
				
				
				'Code
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
				iRet	=	LceGetDefaultValueX(iSession,	"SKILCODE",	sBuff,	lFlags)
				'---
				If	lFlags	=	1	Then
								txtCode	=	"Null	value"
				Else
								txtCode	=	sTrim(sBuff)
				End	If
				
				'Desc
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
				iRet	=	LceGetDefaultValueX(iSession,	"SKILDESC",	sBuff,	lFlags)
				'---
				If	lFlags	=	1	Then
								txtDesc	=	"Null	value"
				Else
								txtDesc	=	sTrim(sBuff)
				End	If
				
				'set	flag	to	indicate	that	a	new	record	is	being	added.
				'this	flag	is	used	in	the	cmdSave_Click()	subroutine
				bAdding	=	True
	
End	Sub
	

5.3.5	Saving	Changes	/	Inserting	Records
The	command	button,	Save,	is	used	to	Insert	or	Update	a	record.	Before
updating	the	data	entered	by	the	user,	it	has	to	be	set	in	the	session	buffer.	In	this
case	it	is	done	in	the	Change	Event	of	the	form	fields.
Note	:	A	value	of		''''	is	invalid	as	it	is	not	a	null	terminated	string,	chr(0)	must
be	used	instead.
	
Private	Sub	txtCode_LostFocus	()
				
				
				If	txtCode	<>	""	Then
								iRet	=	LceSetFieldValue(iSession,	"SKILCODE",	txtCode)
								'---
				Else
'	note	we	require	a	null	terminated	string	
iRet	=	LceSetFieldValue(iSession,	"SKILCODE",	Chr(0))
				End	If
End	Sub
	
Private	Sub	cmdSave_Click()
				
				
				If	bAdding	=	True	Then
								'	user	is	inserting	a	new	record
								iRet	=	LceInsert(iSession,	"SKILCODE,SKILDESC",	_
																		"SKLTAB",	LceFalse)
								'---
				Else
								'	user	is	saving	changes	record
								iRet	=	LceUpdate(iSession,	"SKILCODE,SKILDESC",	_
																		"SKLTAB",	"SKILCODE",	LceFalse)
								'--
				End	If
				
				If	iRet	=	LceTrue	Then
								'	if	successful	force	a	refresh	so	list	shows	changes
								Call	RefreshSkillsList

				End	If
	
End	Sub
	

5.3.6	Deleting	Records
Deleting	a	record	is	similar	to	finding	one.	The	key	value	has	to	be	set	with
SetFieldValue.	In	this	case,	this	step	is	skipped,	as	it	is	already	set.
	
Private	Sub	cmdDelete_Click()
				
				
				iRet	=	LceDelete(iSession,	"SKLTAB",	"SKILCODE",	LceFalse)
				'---
				If	iRet	=	LceTrue	Then
								'	refresh	list	so	deleted	skill	doesn't	show
								Call	RefreshSkillsList
				End	If
				
End	Sub

5.3.7	Retrieving	Help	Text
Displays	the	field's	Help	text	from	the	LANSA	Repository	when	a	field	gets
focus	and	the	user	presses	F1:
	
Private	Sub	txtDesc_KeyDown(KeyCode	As	Integer,	Shift	As	Integer)		
				
				If	KeyCode	=	vbKeyF1	Then
								iRet	=	LceGetFieldHelpText(iSession,	"SKILDESC",	"U",	Chr(13)	_
&	Chr(10),	"",	0)
	
				End	If
End	Sub
	

5.4	Error	Handling
This	sample	program	relies	on	the	LANSA	Open	default	handlers,	but	if
required,	error	information	can	be	retrieved	using	LceGetStatus	and
LceGetMessages.	A	simple	function	to	display	errors	will	look	like	this:
	
Sub	DispLceError(iSessionID	As	Integer,	sSource	As	String)
				'	this	function	displays	LANSA	Open	errors
				'	Note	that	it	only	does	anything	if	LceDisplayErrors	is	off
				
				Dim	i	As	Integer
				Dim	sErrDesc	As	String,	iErrNo	As	Long
				Dim	sMsg	As	String,	nMsgs	As	Integer
				
				Dim	msgBuff	As	String	'	message	buffer	to	contain	final	message
				
				msgBuff	=	""
				'	Get	error	status
				sErrDesc	=	String((MESSAGE_LENGTH	+	1),	Chr$(0))
				'-----	Important	force	VB	to	reserve	space	for	DLL	reply
				Call	LceGetStatus(iErrNo,	sErrDesc,	MESSAGE_LENGTH)
				'--
				If	iErrNo	>	0	Then
								'	prepare	header	message	with	error	description
								msgBuff	=	"Error	:	"	&	Str	"1n"	&	sSource
								msgBuff	=	msgBuff	&	Chr(13)	&	sErrDesc	&	Chr(13)	&	Chr(13)
								'	read	remaining	messages
								sMsg	=	String(MESSAGE_LENGTH	*	3,	Chr(0))
								iRet	=	LceGetMessageCount(iSessionID,	nMsgs)
								'--
								For	i	=	1	To	nMsgs	'
												sMsg	=	String(MESSAGE_LENGTH	*	3,	Chr(0))
												iRet	=	LceGetMessage(iSessionID,	i,	sMsg,	MESSAGE_LENGTH)
												'--
												sMsg	=	sTrim(sMsg)	'	sTrim	detects	null	terminated	strings
												msgBuff	=	msgBuff	+	sMsg	'	add	message	to	buffer
								Next
								msgbox	msgBuff

				End	If
End	Sub

5.5	Closing	the	Session
Before	terminating,	an	application	has	to	close	the	open	session.	In	this	case,	the
Form_Unload	event	is	used	to	call	End	Session:
	
Private	Sub	Form_Unload(Cancel	As	Integer)
				
				If	iSession	>	0	Then
								iRet	=	LceEndSession(iSession,	LceFalse)
				End	If
	
End	Sub
Note:	Passing	LceTrue	as	the	second	parameter	(Resume)	of	LceEndSession
will	allow	re-use	of	the	same	Session	ID.	This	is	more	efficient	than	getting	a
new	Session	ID,	if	the	same	Host	and	Partition	are	required.
This	concludes	a	quick	introduction	to	LANSA	Open	functions	in	the	Visual
Basic	environment.	Detailed	information	about	each	LANSA	Open	function	can
be	found	in	Function	Details.

its:LANSA035.CHM::/lansa/vgudba_0005.htm

6.	Function	Details
Each	of	the	LANSA	Open	functions	is	described	in	detail	in	this	chapter.
The	functions	are	listed	in	alphabetical	sequence,	to	make	it	easier	for	you	to
find	the	one	you	are	looking	for.
At	the	beginning	are	guidelines	about	the	layout	and	terms	used	in	the	function
descriptions.
If	you	are	looking	for	the	actual	sequence	in	which	you	might	use	these
functions,	you'll	find	them	listed	in	the	Function	Overview.
Function	details	and	the	examples	given	for	each	function	in	this	chapter	can
also	be	found	in	LANSA	Open's	on-line	help.

its:LANSA035.CHM::/lansa/vgudb7_0005.htm

6.1	Function	Format
Each	LANSA	Open	function	is	described	using	this	format,	based	on	the
structure	of	a	'C'	function	line:

Returns LceFunction (param-type 	parameter1,

	 	 	param-type parameter2)

Parameters
Param-type	indicates	the	type	of	value	for	the	parameter,	while	parameter1	and
parameter2	represent	the	actual	variable	you	will	declare	and	use	in	your
application.
Valid	param-types	include:

Char
far	*

A	4	byte	pointer	to	a	character	string	in	C	or	a	simple	character	string
in	most	other	languages.

Float
far	*

A	4	byte	pointer	to	a	floating	point	value	in	C	or	a	floating	point
(decimal)	number	in	most	other	languages.

Int	far
*

A	4	byte	pointer	to	an	integer	value	in	C	or	an	integer	in	most	other
languages.

Long
far	*

A	4	byte	pointer	to	a	long	integer	value	in	C	or	an	integer	in	most
other	languages.

Int An	integer.

BOOL A	boolean	variable	(TRUE	or	FALSE).

HWND A	string	representing	the	Window	Handle	or	identifier.

Some	examples	of	parameter1	and	parameter2	you	will	see	are:

strNumericString To	represent	a	character	string	containing	numerics.

strFileName To	represent	a	character	string	containing	a	file	name.

isession To	represent	an	integer	variable	storing	the	session
identifier.

FOK To	represent	a	boolean	variable	(TRUE/FALSE).

The	actual	length	of	a	parameter	is	indicated	by	the	supplied	field	name	as	used
in	the	LCOE.H	header	file,	supplied	for	use	with	'C'	programs.

Return	Values
Represented	by	'Returns'	in	the	function	format,	this	is	the	value	that	the
function	returns	when	it	is	called.
Valid	values	include:

VOID No	value	is	returned

When	a	void	or	no	value	is	returned,	you	might	use	the	function	in	the	following
manner:

	LceFunction(parameter1,	parameter2)
	

	

or

	CALL	LceFunction(parameter1,	parameter2)
	

	

BOOL A	boolean	value	is	returned.
TRUE	is	1
FALSE	is	0.	False	normally	results	in	an	error	code.	A	list	of	the	error
codes	is	in	Appendix	A	of	this	guide.

When	a	boolean	value	is	returned,	you	might	use	the	function	in	the	following
manner:

	BOOL							fOK;
fOK	=	LceFunction(parameter1,	parameter2);
if	(fOK)
{	
};
	

	

or
If	LceFunction(parameter1,	parameter2)

	IF	LceFunction(parameter1,	parameter2)	
		/*	comment	*/
ELSE
		/*	comment	*/
ENDIF
	

	

or
in	Visual	Basic

	If	LceFunction(parameter1,	parameter2)	=	LceTrue	then	
		'	comment	
Else
		'comment	
End	If
	
'LceTrue	is	a	constant	declared	with	the	value	1,	don't	confuse		it	with	
'VB	True	=	-1
	

	

int An	integer	number	is	returned.

Long A	long	integer	is	returned.

When	an	integer	or	long	integer	is	returned,	you	might	use	the	function	in	the
following	manner:

	int								iVal;
iVal	=	LceFunction(parameter1,	parameter2)
	

	

Notes
This	section	provides	important	notes	regarding	the	use	of	the	function.

Portability
Considerations

This	section	will	also	note	any	differences	that	may	be
encountered	between	using	IBM	is	and	other	platforms	as
the	hosts.	A	general	discussion	regarding	host	platform
differences	may	be	found	in	Things	That	May	Be
Different	in	the	LANSA	Application	Design	Guide's
chapter:	Generated	Code	C	and	SQL/ODBC
Considerations.

Tips
If	there	is	a	more	efficient	way	of	using	the	LANSA	Open	function,	it	will	be
described	in	the	Tips	section.
For	the	latest	LANSA	Open	tips	and	program	samples,	check	out	LANSA's	web
site	at	http://www.lansa.com/support

Related	Functions
This	section	lists	any	other	related	functions	or	important	areas	of	this	guide	that
you	should	review.

http://www.lansa.com/support/

6.1.1	Examples
In	general,	two	simple	examples	of	how	the	function	might	be	used	are
provided.	The	first	example	is	based	on	the	Visual	Basic	Quick	Start	Skills
application	which	is	supplied	with	LANSA	Open.	A	portion	of	this	program	is
printed	in		Quick	Start	for	Visual	Basic	Programmers	in	this	guide.	The	second
example	may	be	a	C	example	or	a	generic	example	of	how	you	might	use	the
function.
In	the	Visual	Basic	examples,	it	is	assumed	that

a	session	is	set	and	open	as	shown	in	the	LceOpenSession	function's
example.
iSession	is	a	global	integer	variable	containing	the	open	session	number.
iRet	is	an	integer	used	to	get	the	Lce	Function	return	codes.
sBuff	is	a	string	buffer	used	to	temporarily	store	data	retrieved	with	LANSA
Open	functions.	Before	using	its	value,	call	sTrim	to	remove	padding	spaces
and	to	detect	the	end	of	the	string.

6.2	Lansa	Object	Names
LANSA	Version	13	introduced	long	names	for	LANSA	objects.	Each	LANSA
object	has	two	names	–	a	long	name	and	an	identifier.	Refer	to	the	LANSA
Object	Names	in	the	LANSA	Technical	Reference	Guide	for	further	details	on
long	names.
Lansa	Open	supports	the	use	of	either	the	long	name	or	identifier	to	identify
files,	fields,	processes	and	functions.	If	a	function	parameter	requires	a	list	of
field	names,	the	list	may	contain	all	long	names,	all	identifiers	or	any
combination	of	long	names	and	identifiers.

its:lansa015.chm::/Lansa/tgub5_0050.htm

6.2.1	C	Example
BOOL	fOK;
	
fOK	=	LceRequestSelect(iSession,	"EMPNO,	DEPTMENT,
DateStartedWithCompany,	AnnualSalary",	"EmplyeeDetails",	"DEPTMENT,
PositionType",	False);
	
	

6.3	Lce3GLCall
Executes	the	specified	3GL	program	on	the	IBM	i.	Parameters	can	be	passed	to
and	from	the	3GL	program	using	associated	LANSA	Open	functions.

BOOL 	Lce3GLCall (int iSession,

	 	 	char	far	* strProgram,

	 	 	char	far	* strLibrary,

	 	 	Int iParam)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strProgram The	name	of	the	IBM	i	program.	The	length	should	not	exceed
PROGRAM400_LENGTH	as	defined	in	the	LCOE.H	header	file.

strLibrary The	name	of	the	IBM	i	program	library.	The	length	of	strLibrary
should	not	exceed	LIBRARY_LENGTH	as	defined	in	the
LCOE.H	header	file.

iParam The	number	of	highest	first	level	parameter	block	specified	in
iParam	of		the	preceding	Lce3GLDefineParameter.	For	example,
if	you	defined	first	level	parameters	of	0	through	5,	iParam	is	set
to	5.			

Return	Values
TRUE	is	returned	if	the	session	can	execute	the	program.
FALSE	is	returned	if	an	error	occurs.

Notes
Portability
Considerations

Lce3GLCall	is	only	supported	if	your	host	system	is	an
IBM	i.	An	error	will	be	returned	by	the	host	if	you	make
a	call	to	any	other	platform.

The	Lce3GLCall	function	permits	the	passing	of	parameter	blocks	both	to	and
from	the	called	3GL	program.
Lce3GLDefineParameter	is	used	to	define	the	parameters	before	using	this	call.	
Lce3GLDefineParameter	should	define	a	contiguous	range	of	first	level

parameters.
Lce3GLGetValue	is	used	to	retrieve	the	parameters	in	returned	parameter
blocks.	The	Lce3GLDefineParameter	function	indicates	whether	there	will	be
any	returned	parameters.
Your	application	must	wait	until	the	IBM	i	program	has	completed.	Error
messages	will	be	routed	back	to	your	application.

This	function	can	only	be	executed	after	a	session	has	been	opened.
Tip
Use	Lce3GLCall	to	re-use	tried-and-true	3GL	programs	which	perform
complicated	calculations.

Related	Functions
6.4	Lce3GLDefineParameter
6.5	Lce3GLGetValue

6.3.1	VB	Example
Call	program	PROG001,	passing	a	4	character	alpha	parameter	and	receiving
back	an	80	character	parameter.
Sub	cmdCall_Click	()
				Dim	Prog	as	String
				Dim	Value	as	String
				Prog$	=	"PROG001"
				Value$	=	Text1.Text
				
				'	Define	the	parameters	to	pass
				Ret%	=	Lce3GLDefineParameter(SessId%,	0,	0,	"P",	"A",	4,	0,	Value$)
				Ret%	=	Lce3GLDefineParameter(SessId%,	1,	0,	"R",	"A",	80,	0,	RetData$)
				
				'	Call	the	3GL	program
				Ret%	=	Lce3GLCall(SessId%,	Prog$,	"*LIBL",	1)
				
				'	Retrieve	the	parameter	returned	from	the	3GL	program
				RetData$	=	String(256,	0)
				Ret%	=	Lce3GLGetValue(SessId%,	1,	0,	RetData$)
				Label2.Caption	=	RetData$
End	Sub
	

6.3.2	C	Examples
Pass	a	3	digit	packed	number	to	a	program	called	XXXX:
Lce3GLDefineParameter	(iSession,	0,	0,	"P",	"P",	3,	0,	&(value));
Lce3GLCall	(iSession,	"XXXX",	"*LIBL",	0);
	
The	same,	but	also	get	a	7	digits	packed	number	back	again:
Lce3GLDefineParameter	(iSession,	0,	0,	"P",	"P",	3,	0,	&(value));
Lce3GLDefineParameter	(iSession,	1,	0,	"R",	"P",	7,	0,	&NULL);
Lce3GLCall	(iSession,	"XXXX",	"*LIBL",	1);
Lce3GLGetValue(iSession,	1,	0,	&(value2));
	
Call	IBM	program	QCMDEXC	to	execute	a	WRKSBSJOB	QCMN	function:
pszFunction	=	"WRKSBSJOB	QCMD";
sprintf(pszSize,	"%d",	strlen(pszFunction))	
Lce3GLDefineParameter	(iSession,	0,	0,	"P",	"A",	256,	0,	pszFunction);
Lce3GLDefineParameter	(iSession,	1,	0,	"P",	"P",	15,	5,	pszSize);
Lce3GLCall	(iSession,	"QCMDEXC",	"*LIBL",	1);
	
Call	program	YYYY	that	receives	a	single	data	structure	made	up	of	an	A(10),	a
P(7,3)	and	a	S(6,0).	Get	back	all	values	returned	in	the	data	structure:
Lce3GLDefineParameter	(iSession,	0,	0,	"B",	"A",	10,	0,	"ABCD");
Lce3GLDefineParameter	(iSession,	0,	1,	"B",	"P",	7,	3,	"45.67");
Lce3GLDefineParameter	(iSession,	0,	2,	"B",	"S",	6,	0,	"10194");
Lce3GLCall	(iSession,	"YYYY",	"*LIBL",	0);
Lce3GLGetValue(iSession,	0,	0,	pszValue1);
Lce3GLGetValue(iSession,	0,	1,	pszDoubleValue);
Lce3GLGetValue(iSession,	0,	2,	pszLongValue);
	

6.4	Lce3GLDefineParameter
Defines	the	attributes	of	and	optionally	sets	the	current	value	of	a	parameter.
These	parameters	are	for	use	by	the	Lce3GLCall	function.

BOOL Lce3GLDefineParameter	 (int iSession,

	 	 	int iparam,

	 	 	int isubParam,

	 	 	char	far	* strDirection,

	 	 	char	far	* strDataType,

	 	 	int ilength,

	 	 	int idecimal,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

iparam The	first	level	number	of	the	parameter	to	be	set.	The	maximum
number	of	first	level	parameters	is	20.	The	base	level	starts	at
zero,	so	this	parameter	will	be	an	integer	in	the	range	0	to	19.

isubParam The	number	of	the	sub-parameter	within	this	first	level
parameter.	The	maximum	number	of	sub-parameters	is	256,
with	the	base	number	starting	at	zero.	This	parameter	will	be	an
integer	in	the	range	0	to	255.
Sub-parameters	for	a	first	level	parameter	must	be	defined	in
separate	Lce3GLDefineParameter	calls	in	numerically
ascending	order,	as	this	call	resets	all	numerically	higher	sub-
parameters	to	"undefined"	and	ensures	that	all	numerically
lower	sub-parameters	have	been	defined.

strDirection The	direction/s	in	which	the	entire	first	level	parameter	block
will	be	passed.	Its	value	should	be:
P	=	pass	the	parameter	block	to	the	3GL	program.

R	=	the	parameter	block	is	returned	by	the	3GL	program.
B		=	it	is	passed	in	both	directions.
This	value	will	override	any	previous	strDirection	value
supplied	for	this	first	level	parameter	number.

strDataType The	data	type	of	this	sub-parameter	and	must	be	one	of	the
following:
A	=	Alphanumeric
P	=	Packed
S	=	Signed
B	=	Binary

iLength The	field	length	of	this	parameter.
The	aggregate	data	length	(iLength,	except	for	"Packed")	of	all
sub-parameters	for	any	first	level	parameter	block,	must	not
exceed	MAX_PARAM_LENGTH	(i.e.	the	sum	of	the	length	of
each	sub-parameter	for	the	specified	block)	as	defined	in	the
LCOE.H	header	file.

iDecimal The	number	of	decimal	places	of	this	parameter.

strValue The	string	equivalent	of	the	value	to	be	passed	to	the	3GL
program	when	strDirection	is	"P"	or	"B".	It	is	ignored	if
strDirection	is	"R".
This	parameter	must	be	supplied	and	may	consist	of	a	NULL
string	(i.e.	"").
An	error	will	occur	if	the	resulting	value	of	a	DBCS	conversion
is	data	longer	than	iLength.
If	the	parameter	is	defined	as	"Binary",	the	strValue	"string"
pointer	passed	in	this	parameter	is	used	as	the	base	to	access
exactly	iLength	bytes	without	regard	for	NULL	string
terminating	characters.

Return	Values
TRUE	is	returned	if	the	parameter	can	be	set.
FALSE	is	returned	if	an	error	occurs.

Notes

Portability
Considerations

Lce3GLDefineParameter	is	only	supported	if	your	host
system	is	an	IBM	i.	If	you	make	a	call	to	any	other
platform	an	error	will	be	returned	by	the	host.

LANSA	Open	maintains	a	local	parameter	area	which	is	used	when	passing
parameters	to	and	from	the	host	using	Lce3GLCall.	On	the	IBM	i,	LANSA
Open	will	call	the	3GL	program	with	pointers	to	each	of	the	defined	(and
requested)	blocks	in	the	subsequent	Lce3GLCall	request.

This	function	may	be	executed	at	any	time	after	the	session	has	been	opened.
This	function	performs	no	communication	with	the	host.

Related	Functions
6.3	Lce3GLCall
6.5	Lce3GLGetValue

6.4.1	Examples
See	Lce3GLCall	for	examples	of	using	this	function.

6.5	Lce3GLGetValue
Retrieves	the	parameter	value	returned	by	the	Lce3GLCall	function.

BOOL Lce3GLGetValue	 (int iSession,

	 	 	Int iParam,

	 	 	Int iSubParam,

	 	 	Char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

iParam The	first	level	number	of	the	parameter	to	be	retrieved.

iSubParam The	number	of	the	sub-parameter	within	this	first	level	parameter.

strValue The	storage	location	to	receive	the	returned	value.	The	size	of
strValue	should	be	at	least	iLength	+	4	(as	defined	in
Lce3GLDefineParameter).

Return	Values
TRUE	is	returned	if	the	session	has	got	the	parameter	value.
FALSE	is	returned	if	an	error	occurs.

Notes
Portability
Considerations

Lce3GLGetValue	is	only	supported	if	your	host	system	is
an	IBM	i.	Unpredictable	data	will	be	returned	by
Lce3GLGetValue	if	an	error	was	returned	by	the	host
from	Lce3GLCall.

The	Lce3GLGetValue	function	retrieves	the	value	of	a	sub-parameter	from	a
first	level	parameter	block,	following	a	call	to	Lce3GLCall,	so	that	a	parameter
passed	back	by	the	called	IBM	i	program	may	be	used	in	the	application.
The	sub-parameter	requested	in	this	function	must	be	in	a	first	level	parameter
block	which	has	been	declared	using	an	Lce3GLDefineParameter	function	with
a	strDirection	of	"R"	(parameter	block	is	return	by	the	3GL	program)	or	"B"
(parameter	block	is	passed	in	both	directions).

The	sub-parameter	data	is	converted	to	a	string.	If	the	parameter	you	requested
is	numeric,	strValue	will	contain	a	string	value	representing	the	numeric	value.
You	need	to	convert	the	string	value	to	a	numeric	before	using	it	in	your
application.
If	the	parameter	is	defined	as	"Binary",	the	strValue	"string"	pointer	passed	in
this	parameter	is	used	as	the	base	into	which	to	return	exactly	iLength	bytes
without	regard	for	NULL	string	terminating	characters.	(That	is,	NULL	value
bytes	are	copied	and	do	not	terminate	the	data).
If	the	parameter	is	defined	as	"Date",	"Time"	or	"DateTime",	strValue	will
contain	the	date	and/or	time	string	in	the	current	locale	format.
An	error	will	be	returned	if	the	3GL	program	returned	data	in	the	parameter
block	that	is	not	suitable	for	conversion	using	the	defined	type,	length	and
decimals.

This	function	may	be	executed	at	any	time	after	the	session	is	opened.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.4	Lce3GLDefineParameter
6.3	Lce3GLCall

6.5.1	Examples
See	Lce3GLCall	for	examples	using	this	function.

6.6	LceASCIIToFloat
Converts	a	string	containing	a	numeric	into	a	floating	point	number.

VOID LceASCIIToFloat (char	far	* StrNumericString,

	 	 	Float	far	* pFloat)

Parameters
strNumericString The	source	string	containing	the	numeric	value	to	be

converted.

pFloat Points	to	the	target	variable	in	which	the	value	is	to	be
returned.

Return	Values
No	return	value.

Notes
LceASCIIToFloat	is	to	be	used	when	the	development	tool	you	are	using	does
not	provide	the	necessary	conversion	routines.
Most	languages	provide	some	type	of	conversion	routine	and	it	is	recommended
that	you	use	the	one	provided	by	the	application	tool	with	which	you	are
programming.	Do	not	use	this	function	if	other	routines	are	available.
For	C	application	developers,	this	function	is	unnecessary	since	the	standard	C
libraries	supply	conversion	routines	between	strings	and	numeric	variables.

LceASCIIToFloat	can	be	called	at	any	time.

6.6.1	C	Example
float	Salary;
LceASCIIToFloat((char	far	*)	"32.456",	(float		*)	&Salary);
	

6.6.2	Pseudocode	Example
CALL	LceASCIIToFloat("32.456",	Salary)
	

6.7	LceASCIIToInteger
Converts	a	string	containing	numerics	into	a	long	integer	number.

VOID LceASCIIToInteger (char	far	*	 strNumericString,

	 	 	Long	far	* pVal)

Parameters
strNumericString The	source	string	containing	the	numeric	value.

pVal Points	to	the	long	integer	in	which	the	value	is	to	be
returned.

Return	Values
No	return	value

Notes
LceASCIIToInteger	is	to	be	used	when	the	development	tool	you	are	using	does
not	provide	the	necessary	conversion	routines.
Most	languages	provide	some	type	of	conversion	routine	and	it	is	recommended
that	you	use	the	one	provided	by	the	application	tool	with	which	you	are
programming.	Do	not	use	this	function	if	other	routines	are	available.
For	C	application	developers,	this	function	is	unnecessary	since	the	standard	C
libraries	supply	conversion	routines	between	strings	and	numeric	variables.

This	function	can	be	called	at	any	time.

6.7.1	C	Example
LONG		lAge;
LceASCIIToInteger((char	far	*)	"24",	(long	*)	&lAge);
	

6.7.2	Pseudocode	Example
CALL	LceASCIIToInteger("24",	lAge)
	

6.8	LceCheckFor
Checks	for	the	existence	of	a	record	in	the	specified	file	using	the	keys
specified.

BOOL	 LceCheckFor (int	 iSession,

	 	 	char	far	*	 strFileName,

	 	 	char	far	*	 strKeyList)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFileName The	name	of	the	file.	The	file	used	must	have	been	declared
using	an	LceUseFile	function.

strKeyList A	list	of	field	names	to	be	used	as	keys.	The	key	fields	must
have	been	declared	using	the	LceUseField	function.

Return	Values
TRUE	is	returned	if	the	session	can	find	the	record.
FALSE	is	returned	if	an	error	occurs	or	the	record	does	not	exist.

Notes
Portability
Considerations

An	I/O	error	(Error	37)	will	result	if	you	provide	an
empty	string	for	the	strKeyList	parameter	and	your	host
system	is	a	Windows,	Linux	or	other	non-IBM	i	host.	If
your	host	system	is	LANSA	on	an	IBM	i,	no	error	will
occur	but	the	call	will	return	FALSE.

This	function	is	used	to	check	if	a	record	already	exists	in	a	file.	You	must	know
the	specific	key	fields	to	the	file.	That	is,	the	key	list	must	match	the	actual	file's
keys.	The	values	for	the	keys	are	set	using	the
LceSetFieldValue/LCeSetFieldValueU	function.
You	might	use	the	LceCheckFor	function	when	you	wish	to	find	out	if	a	record
exists	but	you	do	not	want	to	fetch	the	record.	For	example,	if	checking	if	a	file
has	related	information	on	another	file	before	deleting	a	record.
Tip

The	LceInsert,	LceUpdate	and	LceDelete	functions	have	a	validate	parameter
which	allows	a	check	to	be	made	without	performing	the	actual
insert/update/delete	operation.	Use	this	validate	parameter	with	these	functions
instead	of	this	LceCheckFor	function.
Alternatively,	you	can	use	the	LANSA	Repository	to	perform	these	referential
integrity	checks	(for	insert,	update,	and	delete)	provided	that	you	have	created
the	proper	validation	rules	in	the	Repository.	For	example,	LANSA	will	check
that	a	customer	number	exists	in	the	customer	file	before	it	creates	a	new	order
for	that	customer	in	the	order	file.

Related	Functions
6.71	LceUseFile
6.58	LceSetFieldValue
LceSetFieldValueU
6.43	LceInsert
6.67	LceUnicodeToHex
6.10	LceDelete

6.8.1	VB	Example
'	if	record	doesn't	already	exist	insert	new
	
'	set	key	fields	with	values	of	record	to	insert
iRet	=	LceSetFieldValue(iSession,	"EMPNO",	sEmpNo)
iRet	=	LceSetFieldValue(iSession,	"SKILCODE",	SkillKey(i))
	
if	iRet=LceTrue	then	
			'	check	if	record	with	above	key	values	exist
			iRet	=	LceCheckFor(iSession,	"PSLSKL",	"EMPNO,SKILCODE")
			If	iRet	=	LceFalse	Then		
			'	record	doesn't	exist	so	insert
							iRet	=	LceInsert(iSession,	_
														"EMPNO,SKILCODE,GRADE,DATEACQ,COMMENT",		_	
														"PSLSKL",	LceFalse)
			End	If
End	If
	

6.8.2	C	Example
BOOL	fOK;
int		iSession;
	
fOK	=	LceSetFieldValue(iSession,	"EMPNO",	"12345");
fOK	=	LceSetFieldValue(iSession,	"DEPT",	"SALES");
	
fOK	=	LceCheckFor(iSession,	"PSLFIL",	"EMPNO,	DEPT");
	

Pseudocode	Example
strName	=	"PSLFIL"
strKeys	=		"EMPNO,	DEPT"
IF	NOT	LceSetFieldValue(iSession,	"EMPNO",	"12345")
									/*	return	error	*/
ENDIF
IF	NOT	LceSetFieldValue(iSession,	"DEPT",	"SALES")
									/*	return	error	*/
ENDIF
IF	LceCheckFor(iSession,	strName,	strKeys)
									/*	record	was	found	*/
ELSE
									/*	no	record	found	*/
ENDIF
	

6.9	LceCommitWork
Commits	the	current	transaction	if	LceSetCommitmentOn	has	been	set.

BOOL	 LceCommitWork (int iSession)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

Return	Values
TRUE	is	returned	if	the	session	can	perform	the	function.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	is	used	to	set	a	commit	point	for	a	transaction	or	set	of
transactions	on	the	host.

To	use	LceCommitWork,	an	LceSetCommitmentOn	function	must	be
executed	before	the	session	is	opened.
This	function	can	only	be	executed	after	a	session	has	been	opened.

Commitment	control	allows	you	to	recreate	events	from	a	specific	point	which
would	otherwise	be	lost	due	to	a	system	or	application	failure.	Host
commitment	control	only	applies	to	files	for	which	it	has	been	specified.	It	is
your	responsibility	to	ensure	that	commitment	control	has	been	properly
configured	on	the	host.
Refer	to	the	appropriate	host	database	manuals	and	Commitment	Control	in	the
LANSA	Application	Design	Guide	and	Using	Commitment	Control	in	the
LANSA	for	iSeries	User	Guide	for	more	details	about	commitment	control	and
commitment	control	processing.

Related	Functions
6.54	LceSetCommitmentOff
6.55	LceSetCommitmentOn
6.52	LceRollBackWork

its:LANSA065.CHM::/lansa/dsnbe_0060.htm
its:LANSA010.CHM::/lansa/ugubc_c10060.htm

6.9.1	VB	Example
iRet	=	LceSetCommitmentOn(iSession)
iRet	=	LceOpenSession(iSession)	'	enable	commit	mode
...
if	(bCommit)	then
			iRet	=	LceCommitWork	(iSession)	
else
			iRet	=	LceRollBackWork	(iSession)
	

6.9.2	C	Example
BOOL	fOK;
int		iSession;
	
iSession	=	LceGetSessionId
fOK	=	LceSetCommitmentOn(iSession);
fOK	=	LceOpenSession(iSession);
	
/*	perform	file	updates	*/
fOK	=	LceCommitWork(iSession);
	

6.10	LceDelete
Deletes	one	or	more	records	from	the	specified	file	using	the	specified	keys.

BOOL 	LceDelete (int	 iSession,

	 	 	char	far	*	 strFileName,

	 	 	char	far	* strKeyList,

	 	 	BOOL	 fValidate)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFileName The	name	of	the	file.	The	file	must	have	been	declared	using	an
LceUseFile	function.

strKeyList A	list	of	key	field	names.	The	keys	must	always	be	specified	in
the	correct	order.	These	fields	must	have	been	declared	using
the	LceUseField	function.
You	do	not	have	to	specify	the	complete	key	list.	That	is,	you
could	list	the	first	two	fields	in	a	file	which	has	three	key	fields,
however,	if	you	use	a	subset	of	the	key	fields,	you	are	implicitly
using	a	"generic	select"	on	the	unspecified	keys,	i.e.	match	key1
and	key2	while	key3	can	have	any	value.	In	this	case,	you	are
requesting	that	all	records	which	match	the	partial	key	are
deleted.
If	you	specify	a	unique	key	you	will	perform	the	delete	of	a
single	record.

fValidate This	parameter	provides	a	"check	but	do	not	delete"	facility,	if
you	wish	to	check	that	a	record	can	be	deleted	before	you
perform	the	actual	delete.
True	=	perform	the	validate	only.
False	=	perform	the	delete	immediately.

Return	Values
TRUE	is	returned	if	the	session	can	delete	the	record	or	has	deleted	the	record.

FALSE	is	returned	if	an	error	occurs	or	the	record	does	not	exist.

Notes
When	multiple	users	are	working	with	a	file,	it	is	possible	that	two	users	will
want	to	delete	the	same	record.	LANSA	Open	will	handle	this	situation
automatically	if	you	leave	the	strKeyList	blank.	In	this	case,	if	a	user	attempts	to
delete	a	record	which	has	already	been	deleted	by	another	user,	LANSA	Open
issues	an	appropriate	message.	Because	LANSA	Open	does	this	check	for	you,
record	locking	on	the	host	is	unnecessary.

This	function	can	only	be	executed	after	a	session	has	been	opened.
Tip
The	LANSA	Repository	will	perform	referential	integrity	checks	when	deleting
records,	provided	that	you	have	added	the	relevant	validation	rules.	For
example,	LANSA	can	check	that	a	customer	has	no	orders	in	the	order	file
before	allowing	the	customer	record	to	be	deleted	from	the	customer	file.

Related	Functions
6.71	LceUseFile
6.58	LceSetFieldValue
6.59	LceSetFieldValueU
6.43	LceInsert
6.67	LceUnicodeToHex
6.8	LceCheckFor

6.10.1	VB	Example
'	set	key	of	record	to	delete
iRet	=	LceSetFieldValue(iSession,	"EMPNO",	EmpNo)
If	iRet	=	LceTrue	then	
				'	see	if	the	record	can	be	deleted
				iRet	=	LceDelete(iSession,	"PSLMST",	"EMPNO",	LceTrue)
				if	iRet	=	LceTrue	then	
								'	record	can	be	deleted	so	delete
								iRet	=	LceDelete(iSession,	"PSLMST",	"EMPNO",	LceFalse)
				else
								msgBox	"Can't	delete"
				End	if	
End	if	
					'	normally	you	just	delete	the	record.	LANSA	Open	automatically	
					'	will	set	and	display	error	codes	and	messages.	
	

6.10.2	C	Example
Delete	a	record	from	a	file.
BOOL	fOK;
int		iSession;
	
fOK	=	LceSetFieldValue(iSession,	"EMPNO",	"12345")
	
fOK	=	LceDelete(iSession,	"PSLMST",	"EMPNO",	FALSE);
	

6.10.3	Psuedocode	Example
Check	if	record	can	be	deleted.
strName	=	"PSLMST"
strKey		=	"EMPNO"
IF	NOT	LceSetFieldValue(iSession,	strKey	,	"12345")
									return	error	
ENDIF
IF	LceDelete(iSession,	strName,	strKey,	TRUE)
										delete	of	the	record	can	be	performed	
ELSE
										cannot	delete	the	record	
										display	error	messages	
ENDIF
	

6.11	LceDeleteSelect
LceDeleteSelect	is	used	to	break	the	loop	when	multiple	records	are	retrieved
from	the	host	using	LceReceiveNextX.
If	the	process	is	to	finish	normally,	this	function	is	not	necessary.

BOOL	 LceDeleteSelect (int	 iSession,

	 	 	char	far	*	 strFileName)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFileName The	name	of	the	file.

Return	Values
TRUE	is	returned	if	the	session	has	been	canceled.
FALSE	is	returned	if	an	error	occurs.

Notes
No	other	communications	can	be	performed	during	the	LceReceiveNextX	loop
process.	The	LceDeleteSelect	does	not	cancel	the	data	transfer.	It	must	wait	for
all	selected	records	to	be	transferred	and	then	perform	the	delete.

This	function	performs	no	communications	to	the	host.

Related	Functions
6.50	LceRequestSelect
6.49	LceReceiveSelect
6.53	LceSelect
6.51	LceRequestSelectWhere
6.48	LceReceiveNextX
6.64	LceSetSelectOptions

6.11.1	VB	Example
										'	remove	any	previous	select	results	not	read.	
										'	If	any	exist,	the	next	select	will	fail.	
iRet	=	LceDeleteSelect(iSession,	"SECTAB")
	
'	get	the	new	data	
iRet	=	LceSetSelectOptions(iSession,	"*RECEIVEIMMED")
iRet	=	LceRequestSelect(iSession,	"SKILCODE,SKILDESC",	"SKLTAB",	_
								"",	False)
	

6.11.2	C	Example
BOOL	fOK;
int		iSession;
	
fOK	=	LceDeleteSelect(iSession,	"PSLMST");
	

6.11.3	Psuedocode	Example
strName	=	"PSLMST"
IF	NOT	LceDeleteSelect(iSession,	strName)
									/*	return	error	*/
ENDIF	
	

6.12	LceDisplayErrors
Specifies	whether	error	message	handling	is	to	be	automated,	with	error
messages	automatically	displayed	in	a	dialog	box.

BOOL	 LceDisplayErrors (BOOL fDisplay,

	 	 	HWND hwnd)

Parameters
fDisplay TRUE	if	LANSA	Open	is	to	display	messages.

FALSE	if	the	application	is	to	handle	error	messages.

hwnd Handle	of	parent	window	for	the	error	dialog	box.	This	should	be	a
valid	window	handle,	usually	the	main	window	for	the	application.
This	parameter	can	be	NULL	if	the	application	cannot	supply	a
window	handle	that	will	always	be	valid.	If	NULL	is	specified,	the
active	window	at	the	time	the	error	occurs	will	be	used.	Error
messages	will	not	be	displayed	if	an	invalid	window	handle	is
specified.

Return	Values
TRUE	if	the	function	is	successful.
FALSE	is	returned	if	an	error	occurs.

Notes
There	are	two	types	of	error	message	within	LANSA	Open:
1.		Messages	sent	by	the	host	when	a	function	results	in	errors.
2.		Messages	generated	by	the	LANSA	Open	functions.
This	function	allows	your	application	to	use	LANSA	Open's	automated	error
message	display	facilities,	displaying	both	types	of	messages	in	a	list	box.
The	default	action	is	NOT	to	display	messages.
If	this	function	is	not	used	or	if	fDisplay	is	set	to	FALSE,	applications	must
handle	error	messages	themselves	using	LceGetStatus	and	LceGetMessage.

Related	Functions
6.40	LceGetStatus

6.34	LceGetIBMiSignon

6.12.1	VB	Example
'	enable	default	error	handler
iRet	=	LceDisplayErrors(LceTrue,	0)
…
'	disables	default	error	handle
iRet	=	LceDisplayErrors(LceFalse,	0)
	
'	enable	default	error	handler	setting	txtMsg	in	frmDispErr	as	the	
'	field	to	display	error	text
load	frmDispErr
iRet	=	LceDisplayErrors(LceTrue,	frmDispErr.txtMsg.hWnd)
	

6.12.2	C	Example
BOOL	fOK;
fOK	=	LceDisplayErrors(TRUE,	NULL);

6.12.3	Psuedocode	Example
IF	NOT	LceDisplayErrors(TRUE,	NULL)
									/*	return	error	*/
ENDIF
	

6.13	LceEndSession
Ends	the	specified	session	with	the	host.

BOOL LceEndSession (int	 iSession,

	 	 	BOOL fResume)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

fResume Close	or	keep	the	conversation	open.	Refer	to	Notes.

Return	Values
TRUE	is	returned	if	the	session	has	ended	successfully.
FALSE	is	returned	if	an	error	occurs.

Notes
If	fResume	is	set	to	TRUE,	all	the	session	information	is	de-allocated	but	the
communications	conversation	is	kept	active.	The	given	session	identifier
remains	valid.	The	TRUE	option	allows	the	session	to	be	opened	again	later
with	different	fields,	files	etc.,	but	without	allocating	another	conversation.
If	fResume	is	set	to	FALSE,	then	the	session	is	ended	and	the	communications
conversation	is	de-allocated.	At	some	point	in	your	application,	this	function
should	always	be	called	with	fResume	set	to	FALSE	for	every	session	opened,
even	if	it	has	already	been	called	with	fResume	set	to	TRUE.
Failure	to	terminate	the	session	may	result	in	a	communications	resource
overhead	on	the	host.
If	you	do	not	end	the	opened	sessions,	they	may	remain	open	on	the	host	until
they	are	terminated	manually.	When	you	are	building	and	testing	your
applications,	you	must	be	careful	to	terminate	sessions	on	the	host	which	were
not	closed	properly.	For	example,	if	your	PC	application	fails	and	an
LceEndSession	was	not	executed,	you	may	have	to	remember	to	terminate	the
session	on	the	host	manually.

6.13.1	VB	Example
'	The	call	below	specifies	fResume	to	be	TRUE.
'	This	leaves	the	communications	path	open.
'	All	files	and	LANSA	resources	are	disassociated	from	the	
'	session.	The	session	Id	is	still	valid.
	
If	iSession	>	0	Then
									iRet	=	LceEndSession(iSession,	LceTrue)
End	If
	
....
	
'	At	a	later	stage	in	the	processing	you	may	wish	to	re-
use	the	session.		'	To	do	this	you	must	re-open	it.	
'	This	will	be	fast	because	the	underlying	communications	path	already
'	exists.
	
'	Now	you	will	start	the	processing	for	the	new	session.
'	For	example,	you	would	set	up	a	new	set	of	files	and	fields	for	use	
'	over	the	session.
....
iRet	=	LceUseFile(iSession,"PLSMST")	
iRet	=	LceOpenSession(iSession)
....
	
'	Finally,	if	you	have	no	further	need	for	the	session,
'	end	it	specifying	fResume	as	FALSE.
'	This	will	free	all	LANSA	resources	associated	with	it	as	well	as
'	de-allocating	the	underlying	communications	path.
	
iRet	=	LceEndSession(iSession,	LceFalse)

6.13.2	C	Example
End	the	session	completely.
BOOL	fOK;
int		iSession;
	
LceEndSession(iSession,	FALSE);	

6.14	LceExecute400
Executes	an	IBM	i	command.

BOOL LceExecute400 (int iSession,

	 	 	char	far	*	 strCommand)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strCommand The	IBM	i	command.	For	this	entry,	you	must	know	the	format
of	the	command.	You	must	ensure	that	the	syntax	of	this
parameter	is	correct	and	that	the	length	does	not	exceed
COMMAND400_LENGTH	as	defined	in	the	LCOE.H	header
file.

Return	Values
TRUE	is	returned	if	the	session	has	executed	the	command.
FALSE	is	returned	if	an	error	occurs.

Notes
Portability
Considerations

LceExecute400	is	only	supported	if	your	host	system	is
an	IBM	i.	An	error	will	be	returned	by	the	host	if	you
make	a	call	to	any	other	platform.

Any	command,	program	or	function	initiated	by	this	function	must	be	batch
oriented	(i.e.	have	no	screen	interaction).	Your	application	must	wait	until	the
command	or	function	has	completed	before	a	return	value	is	passed	back	to	your
application.	Error	messages	will	be	routed	back	to	your	application.

This	function	can	only	be	executed	after	a	session	has	been	opened.
Tip
While	LceExecute400	can	execute	a	program	or	LANSA	function	on	the	IBM	i,
you	will	find	it	much	easier	to	use	the	LceLansaCall,	LceSubmit	or	Lce3GLCall
function.	Passing	information	with	these	functions	is	less	complicated	than	it	is
with	LceExecute400.

Related	Functions
6.66	LceSubmit

6.3	Lce3GLCall
6.44	LceLansaCall

6.14.1	VB	Example
'	print	report	on	Active	Jobs	in	the	IBM	i
strComm	=	"SNDMSG	MSG('Hello')	TOUSR(QSYSOPR)"
IF	NOT	LceExecute400(iSession,	strComm)
									/*	return	error	*/
	

6.14.2	C	Example
Call	a	program	on	the	IBM	i.
BOOL	fOK;
int		iSession;
	
fOK	=	LceExecute400(iSession,	"CALL	PGM(LIBL/NAME)");
	

6.15	LceFetch
Retrieves	the	values	of	the	specified	fields	for	a	single	record	from	the	specified
file	using	the	key	list.

BOOL 	LceFetch (int	 iSession,

	 	 	char	far	*	 strFieldList,	

	 	 	char	far	*	 strFileName,

	 	 	char	far	*	 strKeyList)	

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldList A	list	of	field	names	to	be	retrieved	from	the	file.	Each	field
listed	must	have	been	declared	using	an	LceUseField	function.

strFileName The	name	of	the	file.	This	file	must	have	been	declared	using	an
LceUseFile	function.

strKeyList A	list	of	field	names	to	be	used	as	keys.	These	key	fields	must
have	been	declared	using	the	LceUseField	function.
This	list	must	match	the	sequence	of	the	actual	keys	to	the	file,
however,	all	file	keys	do	not	need	to	be	specified.	A	partial	key
can	be	used.	When	a	partial	key	is	used,	the	first	record
matching	the	partial	key	will	be	returned.

Return	Values
TRUE	is	returned	if	the	session	has	fetched	the	record.
FALSE	is	returned	if	an	error	occurs.

Notes
The	LceGetFieldValueX/	LceGetFieldValueU	is	used	to	obtain	the	values	of	the
fields	once	this	fetch	has	completed	successfully.
For	record	locking,	refer	to	the	LceSetSelectOptions	function.

This	function	can	only	be	executed	after	a	session	has	been	opened.
Warning:	If	you	are	selecting	records	and	have	used	*RECEIVEIMMED	on
the	LceSetSelectOptions	function,	you	cannot	perform	a	fetch	in	the	same

session	until	all	selected	records	have	been	read.	If	you	need	to	read	records
from	another	file,	you	must	either	open	another	session	or	use	a	predetermined
join	field	on	the	file	on	the	host.	Refer	to	the	LceSetSelectOptions	function	for
more	details.

Related	Functions
6.71	LceUseFile
6.58	LceSetFieldValue
6.59	LceSetFieldValueU
6.29	LceGetFieldValueX
6.30	LceGetFieldValueU
6.64	LceSetSelectOptions
6.8	LceCheckFor
6.50	LceRequestSelect
6.48	LceReceiveNextX

6.15.1	VB	Example
Sub	SetCurrentEmployee(EmpNo	As	String)
	
'	Set	Employee	EmpNo	as	the	active	record	
	
				If	EmpNo	<>	""	Then
	
								'	set	the	key	value	for	this	fetch
								iRet	=	LceSetFieldValue(iSession,	"EMPNO",	EmpNo)
				
								'	get	the	selected	employee	details
								If	iRet	=	LceTrue	Then
												iRet	=	LceFetch(iSession,	_
																			"EMPNO,SURNAME,GIVENAME,ADDRESS1,ADDRESS2,"	&	_
																			"ADDRESS3,POSTCODE,PHONEHME,PHONEBUS,"	&	_
																			"DEPTMENT,SECTION,STARTDTE,TERMDATE,SALARY",	_
																			"PSLMST",	"EMPNO")
												If	iRet	=	LceTrue	Then
																		'	Call	GetFieldValues	to	retrieve	values.
												End	If
								End	If
					Else		
				'	Handle	error
					End	If
End	Sub
	
Sub	GetFieldValues()
				Dim	sBuff	As	String
				Dim	lFlags	As	Long
	
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))	'	set	buffer
	
				'	read	field	values	and	set	text	boxes	
	
				'	EmpNo
				iRet	=	LceGetFieldValueX(iSession,	"EMPNO",	sBuff,	lFlags)
				txtEmpNo.Text	=	sTrim(sBuff)

				'	Surname
				iRet	=	LceGetFieldValueX(iSession,	"SURNAME",	sBuff,	lFlags)
				txtSurname.Text	=	sTrim(sBuff)
				'	Givename
				iRet	=	LceGetFieldValueX(iSession,	"GIVENAME",	sBuff,	lFlags)
				txtGiven.Text	=	sTrim(sBuff)
				…
				'	PHONEBUS
				iRet	=	LceGetFieldValueX(iSession,	"PHONEBUS",	sBuff,	lFlags)
				if	lFlags	=	1	then
								txtBusPhone.Text	=	""
				Then
								txtBusPhone.Text	=	sTrim(sBuff)
				End	If
End	Sub
	

6.15.2	C	Example
BOOL											fOK;
int												iSession;
unsigned	long		lFlags;
	
fOK	=	LceSetFieldValue(iSession,	"EMPNO",	"12345");
fOK	=	LceFetch(iSession,	"SURNAME,	GIVENAME",	"PSLMST",	"EMPNO");
if	(fOK)
{
									fOK	=	LceGetFieldValueX(iSession,	"SURNAME",	strLastName,	&lFlags);
									fOK	=	LceGetFieldValueX(iSession,	"GIVENAME",	strFirstName,	&lFlags);
}
	

6.15.3	Psuedocode	Example
strName	=	"PSLMST"
strKey		=	"EMPNO"
strList		=	"SURNAME,	GIVENAME"
strLastName	=	""
strFirstName	=	""
	
IF	NOT	LceSetFieldValue(iSession,	strKey	,	"12345")
									/*	return	error	*/
ENDIF
IF		LceFetch(iSession,	strList,	strName,	strKey)	
									CALL	LceGetFieldValueX(iSession,	"SURNAME",	strLastName,	lFlags)
									CALL	LceGetFieldValueX(iSession,	"GIVENAME",
										StrFirstName,	lFlags)
ELSE
									/*	error	occurred	*/
ENDIF
	

6.16	LceGetDefaultValue
This	function	has	been	replaced	by	6.17	LceGetDefaultValueX	and	is	supported
for	backward	compatibility	only.	It	does	not	support	RDMLX	fields.

BOOL LceGetDefaultValue (int	 iSession,

	 	 	char	far	* strFieldName,

	 	 	char	far	* strValue)

6.17	LceGetDefaultValueX
Retrieves	the	default	value	of	a	field,	if	it	has	been	defined	in	the	Repository.
The	retrieved	default	is	fully	evaluated.	For	example,	if	the	field	is	the	current
date,	the	actual	current	date	will	be	retrieved.

BOOL LceGetDefaultValueX (int	 iSession,

	 	 	char	far	* strFieldName,

	 	 	char	far	* StrValue,

	 	 	unsigned	long	far	* pulFlags)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name	of	a	field	previously	declared	with
LceUseField.

strValue Pointer	to	the	array	to	receive	the	returned	value.	The	field
value	is	stored	in	this	parameter	once	the	function	has	executed
successfully.	It	will	be	a	zero	length	string	if	no	default	value	is
specified	in	the	Data	Dictionary.	The	size	of	strValue	must	be
at	least	FIELD_DATA_SIZE	+	1	as	defined	in	the	LCOE.H
header	file.

pulFlags Identifies	the	returned	value	as	*SQLNULL.	If	the	field	has	a
default	value	of	*SQNULL	pulFlags	will	return	1	otherwise	it
will	return	0.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field's	default	value	(or	zero	length
string).
FALSE	is	returned	if	an	error	occurs.

Notes
The	LceGetDefaultValueX	function	uses	string	parameters.	Even	if	the	field	you
are	getting	is	numeric,	it	will	contain	a	string	value	representing	the	default
numeric	value.	You	will	need	to	convert	the	string	value	to	a	numeric	before
using	it	in	your	application.	Note	also	that	no	edit	code	or	word	will	be	applied

and	that	any	"decimal	point"	used	(if	appropriate)	will	be	that	which	applies	on
the	host.	If	the	returned	string	is	for	a	Date	or	Time,	the	format	will	be	that	of
the	current	locale.
Use	LceGetDefaultValueU	for	Unicode	fields.

This	function	may	be	executed	at	any	time	after	the	session	is	opened.
This	function	communicates	with	the	host	for	all	initial	calls	for	a	given	field
name.	If	the	field	is	defined	as	dynamic	(i.e.	the	contents	can	change	at	any
time)	each	subsequent	call	will	retrieve	the	latest	version	of	the	field	from
the	host.

Tip
Wherever	possible,	for	data	entry	screens,	default	values	should	be	defined	in
the	Repository	to	reduce	the	amount	of	keying	required.

Related	Functions
LceGetDefaultValueU
6.29	LceGetFieldValueX
6.23	LceGetFieldHeading
6.24	LceGetFieldHelpText
6.25	LceGetFieldIndicator
6.26	LceGetFieldLabel
6.33	LceGetFileType

6.17.1	VB	Example
'	Declare	variables.
	
Dim	sBuff	As	String	
Dim	iRet	As	Integer
Dim	lFlags	As	Long
	
'	Associate	fields	with	the	session.	Note	that	this	only	has	to	be	
'	done	once	for	a	particular	field.
	
iRet	=	LceUseField(iSession,	"DEPTMENT,	DEPTDESC")
	
'	Get	the	default	value	for	Department	Code.	Note	that	the	subroutine
'	sTrim()	removes	leading	and	trailing	blanks	as	well	as	any	NULL	
'	terminator	at	the	end	of	the	string.
	
sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
iRet	=	LceGetDefaultValueX(iSession,	"DEPTMENT",	sBuff,	lFlags)
If	lFlags	=	1	Then
			txtCode.Text	=	"Null	value"
Else
			txtCode.Text	=	sTrim(sBuff)
EndIf
	
'	Get	the	default	value	for	Department	Description.
	
sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
iRet	=	LceGetDefaultValueX(iSession,	"DEPTDESC",	sBuff,	lFlags)
If	lFlags	=	1	Then
			txtDesc.Text	=	"Null	value"
Else
			txtDesc.Text	=	sTrim(sBuff)
EndIf
	

6.17.2	C	Example
BOOL										fOK;
int											iSession;
char										strSurname[FIELD_DATA_SIZE	+	1];
unsigned	long	ulFlags;
	
fOK	=	LceGetDefaultValueX(iSession,	"SURNAME",	(char	far	*)	strSurname,	&ulFlags);
	

6.17.3	Psuedocode	Example
strValue	=	spaces(FIELD_DATA_SIZE	+	1)
iValue		=	0
lFlags	=	0
IF	LceGetDefaultValueX(iSession,	"EMPNO",	strValue,	lFlags)
				IF	NOT	lFlags	=	1
									iValue	=	ConvertStringToInteger	(strValue)
				ENDIF
ELSE
									/*	return	error	*/
ENDIF
	

6.18	LceGetDefaultValueU
Retrieves	the	default	value	of	a	Unicode	field,	if	it	has	been	defined	in	the
Repository.	The	retrieved	default	is	fully	evaluated.	For	example,	if	the	field	is
the	current	date,	the	actual	current	date	will	be	retrieved.

BOOL LceGetDefaultValueX (int	 iSession,

	 	 char	far	* strFieldName,

	 	 wchar_t	far strValue,

	 	 int iValueSize,

	 	 unsigned	long	far	* pulFlags)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name	of	a	field	previously	declared	with
LceUseField.

strValue Pointer	to	the	array	to	receive	the	returned	value.	The	field
value	is	stored	in	this	parameter	once	the	function	has	executed
successfully.	It	will	be	a	zero	length	string	if	no	default	value	is
specified	in	the	Data	Dictionary.	The	size	of	strValue	should	be
at	least	the	maximum	size	of	the	field.

iValueSize The	size	(in	bytes)	of	the	strValue.

pulFlags Identifies	the	returned	value	as	*SQLNULL.	If	the	field	has	a
default	value	of	*SQLNULL	pulFlags	will	return	1	otherwise	it
will	return	0.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field's	default	value	(or	zero	length
string).
FALSE	is	returned	if	an	error	occurs.

Notes
The	LceGetDefaultValueU	function	uses	string	parameters.	Even	if	the	field	you

are	getting	is	numeric,	it	will	contain	a	string	value	representing	the	default
numeric	value.	You	will	need	to	convert	the	string	value	to	a	numeric	before
using	it	in	your	application.	Note	also	that	no	edit	code	or	word	will	be	applied
and	that	any	"decimal	point"	used	(if	appropriate)	will	be	that	which	applies	on
the	host.	If	the	returned	string	is	for	a	Date	or	Time,	the	format	will	be	that	of
the	current	locale.
If	a	non-Unicode	field	is	passed	to	this	function,	it	will	call
LceGetDefaultValueX	and	the	returned	value	will	be	automatically	converted
into	Unicode.

This	function	may	be	executed	at	any	time	after	the	session	is	opened.
This	function	communicates	with	the	host	for	all	initial	calls	for	a	given	field
name.	If	the	field	is	defined	as	dynamic	(i.e.	the	contents	can	change	at	any
time)	each	subsequent	call	will	retrieve	the	latest	version	of	the	field	from
the	host.

Tip
Wherever	possible,	for	data	entry	screens,	default	values	should	be	defined	in
the	Repository	to	reduce	the	amount	of	keying	required.

Related	Functions
6.29	LceGetFieldValueX
6.23	LceGetFieldHeading
6.24	LceGetFieldHelpText
6.25	LceGetFieldIndicator
6.26	LceGetFieldLabel
6.33	LceGetFileType

6.18.1	C	Example
BOOL										fOK;
int											iSession;
char										strDataType[FIELD_TYPE_LENGTH	+	1];
FLDLEN								length;
int											iDecimal;
wchar_t							*pwstrSurname;
unsigned	long	ulFlags;
long										lDataLen;
	
fOK	=	LceGetFieldType(iSession,	"SURNAME",	strDataType,	&length,
&decimal);
lDataLen	=	((lDataLen	+	1)	*	sizeof(wchar_t));
pwstrSurname	=	malloc(lDataLen);
fOK	=	LceGetDefaultValueU(iSession,	"SURNAME",	pwstrSurname,	lDataLen,	&ulFlags);
	

6.19	LceGetFieldAttributes
Retrieves	the	field's	attributes.	These	attributes	can	be	used	to	validate	data
before	it	is	assigned	to	the	field.

BOOL LceGetFieldAttributes (int	 iSession,	

	 	 	char	far	*	 strFieldName,

	 	 	unsigned	long	far	* pulFlags)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name.	The	field	must	have	been	declared	using	an
LceUseField	function.

pulFlags Indicates	whether	certain	field	attributes	apply	to	the	field.
This	field	is	treated	as	a	bitmap.	If	the	attribute	applies	to	the
field	the	corresponding	bit	is	set	to	True	(1).
Bit	1	–	Can	the	value	be	*SQLNULL
Bit	2	–	Is	the	Datetime	value	received	from	the	server	in	UTC
Bit	3	–	Is	the	Integer	value	unsigned

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field	attributes.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	performs	no	communications	to	the	host.
This	function	must	be	executed	after	the	session	is	opened.

Related	Functions
6.27	LceGetFieldType
6.26	LceGetFieldLabel
6.23	LceGetFieldHeading
6.25	LceGetFieldIndicator
6.58	LceSetFieldValue

6.29	LceGetFieldValueX
6.29	LceGetFieldValueX
6.30	LceGetFieldValueU

6.19.1	VB	Example
Private	Sub	lstSkills_Click()
	
				'	This	subroutine	sets	the	fields	displayed	to	the	details	of	the	
				'	list's	currently	selected	skill				
	
				Dim	iRet	As	Integer
				Dim	sBuff	As	String
				Dim	lFlags	As	Long
				Dim	lDataLen	As	Long
				Dim	fSQLNullEnab	As	Boolean
	
				iRet	=	LceGetFieldAttributes(iSession,	"SKILDESC",	lFlags)
				If	(lFlags	And	LCE_FLDATTR_SQLNULL)	Then
								fSQLNullEnab	=	True
				Else
								fSQLNullEnab	=	False
				End	If
	
				iRet	=	LceSetFieldValue(iSession,	"SKILCODE",	txtCode.Text)
	
				If	txtDesc.Text	<>	""	Then
								iRet	=	LceSetFieldValue(iSession,	"SKILDESC",	txtDesc.Text)	
				Else
								If	fSQLNullEnab	=	True	Then
												'	""	is	not	a	null	terminated	string
												iRet	=	LceSetFieldValue(iSession,	"SKILDESC",	vbNullString)
								Else
												'	Display	message	to	enter	a	valid	description
												Exit	Sub
								End	If
				End	If
	
			iRet	=	LceInsert(iSession,	"SKILCODE,SKILDESC",	"SKLTAB",	LceFalse)
				End	If
End	Sub
	

6.19.2	C	Example
BOOL	fOK;
int		iSession;
int		iRet;
long	lFlags;
BOOL	fSQLNullEnab;
	
fOK	=	LceGetFieldAttributes(iSession,	"	SKILDESC	",	&lFlags);
fSQLNullEnab	=	(lFlags	&	LCE_FLDATTR_SQLNULL);
	
iRet	=	LceSetFieldValue(iSession,	"SKILCODE",	strCode);
if	(fSQLNullEnab	&&	(strcmp(strDesc,	"")	==	0))
			iRet	=	LceSetFieldValue(iSession,	"SKILDESC",	Null);
else
			iRet	=	LceSetFieldValue(iSession,	"SKILDESC",	strDesc);
				
iRet	=	LceInsert(iSession,	"SKILCODE,SKILDESC",	"SKLTAB",	False);
	

6.19.3	Psuedocode	Example
strFieldName	=	""
lFlags	=	0
	
LceGetFieldDataLength(iSession,	strFieldName,	lFlags)
	
IF	lFlags	And	LCE_FLDATTR_SQLNULL	
SQLNullEnabled	=	True
ELSE
SQLNullEnabled	=	False
ENDIF
	
IF	lFlags	And	LCE_FLDATTR_DATEINUTC	
DateInUtc	=	True
ELSE
DateInUtc	=	False
ENDIF
	
IF	lFlags	And	LCE_FLDATTR_UNSIGNED	
SQLNullEnabled	=	True
ELSE
SQLNullEnabled	=	False
ENDIF
	

6.20	LceGetFieldDataLength
Retrieves	the	data	length	for	the	field's	current	value.

BOOL LceGetFieldDataLength (int	 iSession,	

	 	 	char	far	*	 strFieldName,

	 	 	FLDLEN	far	*	 pLength)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name.	The	field	must	have	been	declared	using	an
LceUseField	function.

pLength Pointer	to	the	variable	to	receive	the	field	length.	This
indicates	the	number	of	characters	or	digits.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field	data	length.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	performs	no	communications	to	the	host.
This	function	must	be	executed	after	the	session	is	opened.
If	the	field	is	currently	*SQLNULL,	the	length	will	be	returned	as	zero.

Related	Functions
6.27	LceGetFieldType
6.26	LceGetFieldLabel
6.23	LceGetFieldHeading
6.25	LceGetFieldIndicator

6.20.1	VB	Example
Private	Sub	lstSkills_Click()
	
				'	This	subroutine	sets	the	fields	displayed	to	the	details	of	the	
				'	list's	currently	selected	skill				
	
				Dim	iRet	As	Integer
				Dim	sBuff	As	String
				Dim	lFlags	As	Long
				Dim	lDataLen	As	Long
	
				If	(lstSkills.ListIndex	>	-1)	Then	'	selected
								'	Read	record	
								'	set	key	
								iRet	=	LceSetFieldValue(iSession,	"SKILCODE",	_
															SkillKey(lstSkills.ListIndex))	
								'	fetch	record
								iRet	=	LceFetch(iSession,	"SKILCODE,SKILDESC",	"SKLTAB",	_	
															"SKILCODE")	'	Get	Record
	
								'	get	data	and	set	fields	
								'	get	code
								iRet	=	LceGetFieldDataLength(iSession,	"SKILCODE",	lDataLen)
								sBuff	=	String(lDataLen	+	1,	Chr(0))	
								iRet	=	LceGetFieldValueX(iSession,	"SKILCODE",	sBuff,	lFlags)	'	Get	Field
								txtCode	=	sTrim(sBuff)	'	display	data
								'	get	description
								iRet	=	LceGetFieldDataLength(iSession,	"SKILDESC",	lDataLen)
								sBuff	=	String(lDataLen	+	1,	Chr(0))	
								iRet	=	LceGetFieldValueX(iSession,	"SKILDESC",	sBuff,	lFlags)
								txtDesc	=	sTrim(sBuff)
				End	If
End	Sub
	

6.20.2	C	Example
BOOL	fOK;
int		iSession;
char	*pstrSurname;
long	lFlags;
long	lDataLen;
	
fOK	=	LceGetFieldDataLength(iSession,	"SURNAME",	&lDataLen);
pstrSurname	=	malloc(lDataLen	+	1);
fOK	=	LceGetFieldValueX(iSession,	"SURNAME",	(char	far	*)	pstrSurname,	&lFlags);
	

6.20.3	Psuedocode	Example
strValue	=	""
iValue		=	0
lFlags	=	0
lDataLen	=	0
	
LceGetFieldDataLength(iSession,	"EMPNO",	lDataLen)
/*	Allocate	buffer	for	field	value	*/
LceSetFieldValue(iSession,	"EMPNO",	szBuffer)
	

6.21	LceGetFieldDesc
Retrieves	the	field	description	from	the	Repository.

BOOL LceGetFieldDesc (int	 iSession,	

	 	 	char	far	*	 strFieldName,

	 	 	char	far	*	 strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name.	The	field	must	have	been	declared	using	an
LceUseField	function.

strValue The	buffer	location	to	receive	the	returned	value.	The	size
should	be	at	least	FIELD_DESC_LENGTH	+	1	as	defined	in
the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field	description.
FALSE	is	returned	if	an	error	occurs.

Notes
If	the	partition	is	multilingual,	the	field	description	will	be	based	on	the
language	defined	when	the	session	is	open.

This	function	can	only	be	executed	after	the	session	is	opened.
This	function	performs	no	communications	to	the	host.

Tip
Always	get	your	field	descriptions	from	the	Repository	rather	than	hard	code
them	in	your	PC	application.	By	retrieving	descriptions	from	the	Repository,
they	will	be	consistent	across	both	PC	and	host	applications	and,	for
multilingual	applications,	will	be	in	the	language	required.

Related	Functions
6.26	LceGetFieldLabel
6.23	LceGetFieldHeading
6.25	LceGetFieldIndicator

6.27	LceGetFieldType
6.73	LceUseLanguage
6.17	LceGetDefaultValueX
6.18	LceGetDefaultValueU
6.24	LceGetFieldHelpText

6.21.1	VB	Example
Private	Sub	txtCode_GotFocus()
	
				'	sets	txtCode	as	the	current	field	
				'	sets	form	status	line	to	contain	the	current	field's	long
				'	description
				'	sets	the	current	field	name	to	use	with	"get	extended	help"	
	
				Dim	sBuff	As	String,	iRet	As	Integer
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))	'	pre-allocate	memory
	
				'	set	form	status	line	to	contain	the	current	field	long	description	
				iRet	=	LceGetFieldDesc(iSession,	"SKILCODE",	sBuff)
				frmMain.status2	=	(sTrim(sBuff))	
	
				'	store	the	current	field	name	to	use	with	"get	extended	help"	
				sLastField	=	"SKILCODE"	'	for	help
	

6.21.2	C	Example
BOOL	fOK;
int		iSession;
char	strDescription[FIELD_DESC_LENGTH	+	1];
	
fOK	=	LceGetFieldDesc(iSession,	"SURNAME",	(char	far	*)	strDescription);
	

6.21.3	Psuedocode	Example
strDescription	=	""
IF	NOT	LceGetFieldDesc(iSession,	"SURNAME",	strDescription)
									/*	return	error	*/
ENDIF
End	Sub
	

6.22	LceGetFieldEdit
Retrieves	the	field	edit	code	or	word	specified	for	a	field	in	the	LANSA
Repository.

BOOL LceGetFieldEdit (int	 iSession,

	 	 	char	far	*	 strFieldName,

	 	 	char	far	* strEdit,

	 	 	char	far	* strFlag)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name.	This	must	have	been	declared	using	an
LceUseField	function.

strEdit The	array	to	receive	the	returned	edit	code	or	word.	The	size
of	strEdit	should	be	at	least	FIELD_EDIT_LENGTH	+	1	as
defined	in	the		LCOE.H	header	file.
Returned	strFlag
W	=	strEdit	will	contain	an	"Edit	Word"	within	single	quotes	"
'	".
E		=	strEdit	will	contain	a	single	character	which	is	the	"Edit
Code".
N	=	no	edit	code	or	word	was	defined	and	the	contents	of
strEdit	are	undefined.

strFlag The	array	to	receive	a	flag	indicating	the	edit	type	in	strEdit.
The	size	of	strFlag	should	be	at	least
FIELD_EDIT_FLAG_LENGTH	+	1.	
E	=	the	field	uses	an	edit	CODE.
W	=	the	field	uses	an	edit	WORD.
N	=	the	field	has	no	edit	specified.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field's	edit	code	or	word.	FALSE	is

returned	if	an	error	occurs.

Notes
Detailed	information	regarding	the	use	of	edit	codes	and	words	may	be	found	in
the	IBM	i	DDS	Reference	Manual.

This	function	performs	no	communications	to	the	host.
This	function	can	only	be	executed	after	the	session	is	opened.

Related	Functions
6.26	LceGetFieldLabel
6.23	LceGetFieldHeading
6.27	LceGetFieldType
6.65	LceSetSessionOption

6.22.1	VB	Example
Function	LceSetValue(iSession	As	Integer,	sFldName	As	String,	_
																											sStrValue	As	String)	As	Integer	
	
				'	this	function	is	a	replacement	for	LceSetFieldValue	to	be	
				'	used	when	you	have	to	strip	edit	codes	from	date	and	value	fields	
				'	it	also	replaces	empty	fields	""	with	null	terminated	strings	
	
				Dim	sFlag	As	String
				Dim	sEdit	As	String
				Dim	sBuff	As	String
				Dim	sValue	As	String
				Dim	i	As	Integer
				Dim	iRet	As	Integer
	
				If	sStrValue	=	""	Then
								'	null	nothing	to	do
								iRet	=	LceSetFieldValue(iSession,	sFldName,	Chr(0))
				Else
								'	Get	Field	edit	type	to	remove	formatting	characters	if	required
								sEdit	=	String(FIELD_EDIT_LENGTH,	0)
								sFlag	=	String(FIELD_EDIT_FLAG_LENGTH,	0)
								iRet	=	LceGetFieldEdit(iSession,	sFldName,	sEdit,	sFlag)
								If	iRet	=	LceTrue	Then
												Select	Case	sFlag
																Case	"E"
																				sValue	=	sStrValue	'	copy	value
																				sEdit	=	sTrim(sEdit)
																				Select	Case	sEdit
																								Case	"Y"	'	
																												'	date	so	Remove	date	Separator
																												i	=	InStr(sValue,	sDtSep)
																												While	i	>	0
																																sValue	=	Left(sValue,	i	-	1)	+		_
																																									Mid(sValue,	i	+	1,	99)
																																i	=	InStr(sValue,	sDtSep)
																												Wend

																								Case	"1"	'	
																												'	currency	remove	Thousand	separator
																												i	=	InStr(sValue,	sTwSep)
																												While	i	>	0
																																sValue	=	Left(sValue,	i	-	1)	+		_	
																																								Mid(sValue,	i	+	1,	99)
																																i	=	InStr(sValue,	sTwSep)
																												Wend
																				End	Select
																				'	Save	field
																				iRet	=	LceSetFieldValue(iSession,	sFldName,	sValue)
																Case	"W"
																Case	"N"
																				'	nothing	to	do
																				iRet	=	LceSetFieldValue(iSession,	sFldName,	_
																																																			sStrValue)
												End	Select
								End	If
				End	If
				'	set	return	code
				LceSetValue	=	iRet
End	Function
	

6.22.2	C	Example
BOOL	fOK;
int		iSession;
char	strEdit[FIELD_EDIT_LENGTH	+	1];
char	strFlag[FIELD_EDIT_FLAG_LENGTH	+	1];
	
fOK	=	LceGetFieldEdit(iSession,	"SURNAME",	(char	far	*)	strEdit,	(char	far	*)	strFlag);
	

6.22.3	Psuedocode	Example
strEdit	=	spaces(FIELD_EDIT_LENGTH	+	1)
strFlag	=	""
	
IF	NOT	LceGetFieldEdit(iSession,	"SURNAME",	strEdit,	strFlag)
									/*	return	error	*/
ENDIF
IF	strFlag	=	"E"
									/*	field	edit	is	code	*/
ELSE
									IF	strFlag	=	"W"
																		/*	field	edit	is	word	*/
									ELSE
																	/*	no	field	edits	*/
ENDIF
	

6.23	LceGetFieldHeading
Retrieves	a	field's	column	headings	from	the	Repository.

BOOL LceGetFieldHeading (int iSession,

	 	 	char	far	*	 strFieldName,

	 	 	int	 iHeading,

	 	 	char	far	*	 strValue)	

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name.	The	field	must	have	been	declared	using	an
LceUseField	function.

iHeading The	heading	level	(1,	2	or	3).	Heading	levels	are	the	equivalent
of	the	Column	Heading	lines	in	the	Repository.

strValue The	array	to	receive	the	returned	value.	The	size	should	be	at
least	FIELD_HEADING_LENGTH	+	1	as	defined	in	the
LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field	heading.
FALSE	is	returned	if	an	error	occurs.

Notes
A	field's	column	heading	can	be	stored	in	the	Repository	in	up	to	three	separate
lines.	The	three	lines	(or	levels)	make	up	the	complete	column	heading.	For
example,	the	name	for	the	Corporate	Customer	Number	might	be	stored	as:

Corporate

Customer

Number

If	you	need	a	shorter	field	description,	use	either	of	these	functions:
LceGetFieldLabel	to	get	the	field's	label

LceGetFieldDesc	to	get	the	field's	description.
To	see	how	these	lines	are	recorded,	refer	to	Building	the	LANSA	Repository	-
Fields	in	the	Introduction	to	LANSA	for	iSeries	Guide.

This	function	performs	no	communications	to	the	host.
This	function	can	only	be	executed	after	the	session	is	opened.

Tip
Use	this	function	to	get	the	fields'	column	headings	from	the	Repository	rather
than	hard	coding	them	in	your	applications.	By	retrieving	the	Repository
information,	all	your	PC	applications	will	be	consistent	and	your	maintenance
will	be	reduced.
If	the	partition	is	multilingual,	the	field's	column	headings	will	be	based	on	the
language	defined	when	the	session	was	opened.

Related	Functions
6.71	LceUseFile
6.21	LceGetFieldDesc
6.27	LceGetFieldType
6.73	LceUseLanguage
6.17	LceGetDefaultValueX
6.18	LceGetDefaultValueU

its:Lansa009.chm::/lansa/insbd_001.htm

6.23.1	VB	Example
'	set	Surname	column	headings	using	LANSA	Repository	information
'	
dim	sBuff	as	string
sBuff	=		String(FIELD_HEADING_LENGTH,	Chr(0))	
iRet	=	LceGetFieldHeading(iSession,	"SURNAME",	1,	sBuff)
lbHead1.Caption	=	sTrim	(sBuff)
iRet	=	LceGetFieldHeading(iSession,	"SURNAME",	2,	sBuff)
lbHead2.Caption	=	sTrim	(sBuff)
iRet	=	LceGetFieldHeading(iSession,	"SURNAME",	3,	sBuff)
lbHead3.Caption	=	sTrim	(sBuff)
	

6.23.2	C	Example
BOOL	fOK;
int		iSession;
char	strHeading[FIELD_HEADING_LENGTH	+	1];
	
fOK	=	LceGetFieldHeading(iSession,	"SURNAME",	2,	strHeading);
	

6.23.3	Psuedocode	Example
strHead1	=	""
strHead2	=	""
strHead3	=	""
IF	NOT	LceGetFieldHeading(iSession,	"SURNAME",	1,	strHead1)
									/*	return	error	*/
ENDIF
IF	NOT	LceGetFieldHeading(iSession,	"SURNAME",	2,	strHead2)
									/*	return	error	*/
ENDIF
IF	NOT	LceGetFieldHeading(iSession,	"SURNAME",	3,	strHead3)
									/*	return	error	*/
ENDIF
	

6.24	LceGetFieldHelpText
Retrieves	the	Help	Text	for	a	field	from	the	LANSA	Repository	and	either
returns	it	in	the	specified	buffer	or	displays	it	in	a	window.

BOOL LceGetFieldHelpText (int iSession,	

	 	 	char	far	*	 strFieldName,

	 	 	char	far	* strType,

	 	 	char	far	* strEOL,

	 	 	char	far	*	 strHelpBuf,

	 	 	long	 lHelpBufLen)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name.	The	field	must	have	been	declared	using	an
LceUseField	function.

strType The	type	of	help	requested.
U	=	Return	User	help	text.
D	=	Return	Developer	&	User	help	text.

strEOL The	formatting	characters	to	be	added	to	the	end	of	each	help
text	line.	You	may	use	this	parameter	to	specify	how	carriage
returns	and	line	feeds	are	to	be	inserted	(e.g.	"\n\r").	A	zero
length	string	indicates	no	characters	are	to	be	inserted.	The	size
of	strEOL	should	not	exceed	HELP_EOL_SIZE	as	defined	in
the	LCOE.H	header	file.

strHelpBuf The	buffer	to	receive	the	returned	text.

lHelpBufLen The	size	of	the	buffer.	Help	Text	is	potentially	very	large.	If
you	specify	a	buffer	length	of	zero,	LANSA	Open	will	display
a	dialogue	box	containing	the	returned	help	text,	up	to	the
maximum	size	permitted	by	the	operating	system.		If	you
specify	a	size,	it	will	limit	the	amount	of	text	returned.	In	this
case,	the	additional	text	is	truncated.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	help	text.
FALSE	is	returned	if	an	error	occurs.

Notes
The	text	returned	does	not	include	any	host	display	attributes.	To	maintain
consistency	with	the	text	as	displayed	on	a	host	terminal,	these	attributes	are
converted	to	spaces.	This	means	that	there	will	be	2	additional	spaces	at	the
beginning	of	each	line.	This	is	also	the	case	when	the	help	text	is	presented	on	a
5250	terminal.
The	font	and	character	size	used	to	present	the	help	text	is	specified	in	the
Configuration	File,	described	in	Configuration	File.

This	function	may	only	be	executed	after	the	session	is	opened.
Tip
Use	this	function	to	retrieve	the	LANSA	Repository's	Help	text,	rather	than
record	it	in	a	PC	file	or	hard	code	it	in	a	program.	This	will	ensure	that	your	PC
and	host	applications	are	consistent	and	will	reduce	your	on-going	application
maintenance.	If	the	partition	is	multilingual,	the	help	text	will	be	based	on	the
language	defined	when	the	session	is	opened.

Related	Functions
6.26	LceGetFieldLabel
6.23	LceGetFieldHeading
6.25	LceGetFieldIndicator
6.27	LceGetFieldType
6.73	LceUseLanguage

its:LANSA035.CHM::/lansa/VGUDB2_0030.htm

6.24.1	VB	Example
Private	Sub	Form_KeyDown(KeyCode	As	Integer,	Shift	As	Integer)
	
				'	This	function	displays	LANSA	Repository	Help	text	when	the	user	
				'	presses	F1	in	a	form
	
				Dim	sBuff	As	String
	
				If	KeyCode	=	vbKeyF1	Then	'	f1	pressed
				
								If	sLastField	<>	""	Then	'	focus	is	in	a	field	
											'	Display	field	help	text
	
											sBuff	=	String(2049,	Chr(0))	'	set	buffer

			iRet	=	LceGetFieldHelpText(iSession,	_

										sLastField,	"U",	Chr(13),	sBuff,	2048)
											'	display	help	text
											Call	ShowText("Data	Entry	Help",	sTrim(sBuff),	_
																		"",	"",	"")	'	see	util.bas
								End	If						
				End	If
End	Sub
	

6.24.2	C	Example
BOOL	fOK;
int		iSession;
char	strHelpText[4096	+	1];
	
									/*	Return	help	text	to	calling	program	*/
fOK	=	LceGetFieldHelpText(iSession,	"SURNAME",	"U",	"\n",	(char	far	*)	strHelpText,
																						(long)sizeof(strHelpText));
									/*	Display	help	text	in	a	dialogue	box	*/
fOK	=	LceGetFieldHelpText(iSession,	"SURNAME",	"U",	"\r\n",	"",	0L);
	

6.25	LceGetFieldIndicator
Retrieves	the	DBCS	(Double	Byte	Character	Set)	flag	from	the	LANSA
Repository	for	non-Unicode	string	fields	such	as	Alpha,	Char	and	String.	It	is
irrelevant	for	other	filed	types	including	Unicode	fields	(NCHAR,
NVARCHAR).

BOOL LceGetFieldIndicator (int iSession,

	 	 	char	far	*	 strFieldName,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name.	The	field	must	have	been	declared	using	an
LceUseField	function.

strValue The	array	to	receive	the	returned	value.	The	size	should	be	at
least	FIELD_IND_LENGTH	+	1.
Y	=	the	field	uses	DBCS	characters.
N	=	the	field	uses	single	byte	characters.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field	indicator.
FALSE	is	returned	if	an	error	occurs.

Notes
Non-string	fields	and	Unicode	code	fields	will	return	'N'.
This	function	performs	no	communications	to	the	host.
This	function	can	only	be	executed	after	the	session	is	opened.

Related	Functions
6.26	LceGetFieldLabel
6.23	LceGetFieldHeading
6.27	LceGetFieldType

6.25.1	VB	Example
Sub	TranslateField(sFieldName	as	string,	sValue	as	string)
	
									'	if	required	this	function	translates	an	IBM	i	Double	Byte
									'	Character	string	into	a	Unicode	string	using	a	hypothetical
									'	Translate	DCB	function
	
			Dim	sInd	as	String	
	
			sInd	=	String	(FIELD_IND_LENGTH,	chr(0))
			'	get	field	indicator	
			If	LceGetFieldIndicator(iSession,	sFieldName,	strInd)	=	LceTrue	Then	
						If	strInd	="Y"	then	'	is	a	DBC
										Call	TranslateDBC	(sValue)	'	call	translator
						End	If	
			End	if	
End	Sub
	

6.25.2	C	Example
BOOL	fOK;
int		iSession;
char	strIndicator[FIELD_IND_LENGTH	+	1];
	
fOK	=	LceGetFieldIndicator(iSession,	"SURNAME",	(char	far	*)	strIndicator);
	

6.25.3	Psuedocode	Example
strIndicator	=	""
IF	NOT	LceGetFieldIndicator(iSession,	"SURNAME",	strIndicator)
									/*	return	error	*/
ENDIF
IF	strIndicator	=	"Y"
									/*	field	uses	DBCS	*/
ELSE
									/*	single	byte	character	*/
ENDIF
	

6.26	LceGetFieldLabel
Retrieves	the	field's	label	from	the	LANSA	Repository.

BOOL LceGetFieldLabel (int	 iSession,

	 	 	char	far	*	 strFieldName,

	 	 	char	far	*	 strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name.	The	field	must	have	been	declared	using	an
LceUseField	function.

strValue Pointer	to	the	array	to	receive	the	returned	value.	The	size
should	be	at	least	FIELD_LABEL_LENGTH	+	1	as	defined	in
the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field	label.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	performs	no	communications	to	the	host.
This	function	can	only	be	executed	after	the	session	is	opened.

Tip
Using	the	Repository's	label	rather	than	coding	it	in	your	application	will	ensure
that	your	PC	and	host	applications	are	consistent	and	your	maintenance	is
reduced.
If	the	partition	is	multilingual,	the	label	will	be	based	on	the	language	defined
when	the	session	is	open.
If	your	application	needs	a	longer	name,	instead	of	using	this	function,	use	the
LceGetFieldHeading	function	to	get	the	field's	3	line	Column	headings	from	the
Repository.

Related	Functions
6.21	LceGetFieldDesc

6.23	LceGetFieldHeading
6.27	LceGetFieldType
6.25	LceGetFieldIndicator
6.73	LceUseLanguage
6.17	LceGetDefaultValueX
6.18	LceGetDefaultValueU

6.26.1	VB	Example
Private	Sub	Form_Load()
	
			'	initializes	the	form	setting	field	labels	and	sizes
	
Dim	iRet	As	Integer,	sBuff	As	String,	length	As	Integer
Dim	decimals	As	Integer
	
				…
			'read	and	set	field	labels
			'Code
			sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
			iRet	=	LceGetFieldLabel(iSession,	"SKILCODE",	sBuff)
			lbCode.Caption	=	sTrim(sBuff)
			'Desc
			sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
			iRet	=	LceGetFieldLabel(iSession,	"SKILDESC",	sBuff)
			lbDesc.Caption	=	sTrim(sBuff)
				…
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
				iRet	=	LceGetFieldType(iSession,	"SKILCODE",	sBuff,	length,_
				decimals)
				txtCode.MaxLength	=	length
			'note	this	is	valid	only	if	no	edit	codes	are	used	
	
End	Sub
	

6.26.2	C	Example
BOOL	fOK;
int		iSession;
char	strLabel[FIELD_LABEL_LENGTH	+	1];
	
fOK	=	LceGetFieldLabel(iSession,	"SURNAME",	strLabel);
	

6.26.3	Psuedocode	Example
strLab	=	""
IF	NOT	LceGetFieldLabel(iSession,	"SURNAME",	strLab)
									/*	return	error	*/
ENDIF
	

6.27	LceGetFieldType
Retrieves	the	field's	type.

BOOL LceGetFieldType (int	 iSession,

	 	 	char	far	*	 strFieldName,

	 	 	char	far	*	 strDataType,

	 	 	FLDLEN	far	*	 pLength,

	 	 	int	far	* piDecimal)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name.	The	field	must	have	been	declared	using	an
LceUseField	function.

strDataType The	variable	which	will	receive	the	Data	Type.	The	size	of
strDataType	should	be	at	least	FIELD_TYPE_LENGTH	+	1.

	 A	=	Alpha
P	=	Packed
S	=	Signed.
H	=	String,	Char
E	=	Date
M	=	Time
Z	=	DateTime
F	=	Float
I	=	Integer
Y	=	Boolean
8	=	NChar
9	=	NVarChar

pLength Pointer	to	the	variable	to	receive	the	field	length.	This
indicates	the	number	of	characters	or	digits.

piDecimal Pointer	to	the	variable	to	receive	the	number	of	decimal	places.
Only	used	with	numeric	fields.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field	type.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	performs	no	communications	to	the	host.
This	function	must	be	executed	after	the	session	is	opened.

Related	Functions
6.21	LceGetFieldDesc
6.26	LceGetFieldLabel
6.23	LceGetFieldHeading
6.25	LceGetFieldIndicator
6.17	LceGetDefaultValueX
6.18	LceGetDefaultValueU

6.27.1	VB	Example
iRet	=	LceGetFieldType(iSession,	"SKILCODE",	sBuff,	length,_
				decimals)
txtCode.MaxLength	=	length		'	note	this	is	valid	only	if	no	_
																												'	edit	codes	are	used	
	

6.27.2	C	Example
BOOL	fOK;
int		iSession;
char	strDataType[FIELD_TYPE_LENGTH	+	1];
FLDLEN		length;
int		iDecimal;
	
fOK	=	LceGetFieldType(iSession,	"SURNAME",	strDataType,	&length,	&iDecimal);
	

6.27.3	Psuedocode	Example
strDataType	=	""
iLength	=	0
iDecimal	=	0
	
IF	NOT	LceGetFieldType(iSession,	"SURNAME",	strDataType,	iLength,	iDecimal)
									/*	return	error	*/
ENDIF
	

6.28	LceGetFieldValue
This	function	has	been	replaced	by	6.29	LceGetFieldValueX	and	is	supported
for	backward	compatibility	only.	It	does	not	support	RDMLX	fields.

BOOL LceGetFieldValue (int iSession,

	 	 	char	far	* strFieldName,

	 	 	char	far	* strValue)

6.29	LceGetFieldValueX
Retrieves	the	value	of	a	field.

BOOL LceGetFieldValueX (int iSession,

	 	 	char	far	* strFieldName,

	 	 	char	far	* srValue,

	 	 	unsigned	long	far	* pulFlags)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name.	The	field	used	in	this	function	must	have	been
declared	using	an	LceUseField	function.

strValue The	buffer	location	for	the	returned	value.	The	field	value	is
stored	here	once	the	function	has	executed	successfully.	The
size	should	be	at	least	the	length	of	the	data	+	1.	The	data
length	may	be	obtained	using	LceGetFieldDataLength.	The
maximum	field	size	is	RDMLX_FIELD_DATA_SIZE	as
defined	in	the	LCOE.H	header	file.

pulFlags Identifies	the	returned	value	as	*SQLNULL.	If	the	field	has	a
value	of	*SQNULL	pulFlags	will	return	1	otherwise	it	will
return	0.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field	value.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	uses	string	parameters.	Even	if	the	field	you	are	getting	is	numeric
or	date/time,	it	will	contain	a	string	value	representing	the	respective	numeric	or
date/time	value.	You	will	need	to	convert	the	string	value	to	a	numeric	or
date/time	before	using	it	in	your	application.	This	conversion	should	be	done
using	the	facilities	provided	with	your	development	toolset.	If	none	are
provided,	refer	for	example	to	the	LceASCIIToFloat	and	LceASCIIToInteger
functions.

If	this	function	is	used	for	Unicode	fields,	only	characters	that	can	be	displayed
in	the	current	codepage	will	be	translated	correctly.	Characters	which	cannot	be
translated	will	appear	as	question	marks	("?").	To	avoid	this	restriction	use
LceGetFieldValueU.

This	function	may	be	executed	at	any	time	after	the	session	is	opened.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.30	LceGetFieldValueU
6.58	LceSetFieldValue
6.59	LceSetFieldValueU
6.20	LceGetFieldDataLength

6.29.1	VB	Example
Private	Sub	lstSkills_Click()
	
				'	This	subroutine	sets	the	fields	displayed	to	the	details	of	the	
				'	list's	currently	selected	skill				
	
				Dim	iRet	As	Integer
				Dim	sBuff	As	String
				Dim	lFlags	As	Long
				Dim	lDataLen	As	Long
	
				If	(lstSkills.ListIndex	>	-1)	Then	'	selected
								'	Read	record	
								'	set	key	
								iRet	=	LceSetFieldValue(iSession,	"SKILCODE",	_
															SkillKey(lstSkills.ListIndex))	
								'	fetch	record
								iRet	=	LceFetch(iSession,	"SKILCODE,SKILDESC",	"SKLTAB",	_	
															"SKILCODE")	'	Get	Record
	
								'	get	data	and	set	fields	
								'	get	code
								iRet	=	LceGetFieldDataLength(iSession,	"SKILCODE",	lDataLen)
								sBuff	=	String(lDataLen	+	1,	Chr(0))	
								iRet	=	LceGetFieldValueX(iSession,	"SKILCODE",	sBuff,	lFlags)	'	Get	Field
								If	lFlags	=	1	Then
											txtCode.Text	=	"Null	value"
								Else
											txtCode.Text	=	sTrim(sBuff)
								EndIf
								'	get	description
								sBuff	=	String(RDMLX_FIELD_DATA_SIZE	+	1,	Chr(0))	
								iRet	=	LceGetFieldValueX(iSession,	"SKILDESC",	sBuff,	lFlags)
								If	lFlags	=	1	Then
											txtDesc.Text	=	"Null	value"
								Else
											txtDesc.Text	=	sTrim(sBuff)

								EndIf
				End	If
End	Sub
	

6.29.2	C	Example
BOOL	fOK;
int		iSession;
char	*pstrSurname;
long	lFlags;
long	lDataLen;
	
fOK	=	LceGetFieldDataLength(iSession,	"SURNAME",	&lDataLen);
pstrSurname	=	malloc(lDataLen	+	1);
fOK	=	LceGetFieldValueX(iSession,	"SURNAME",	(char	far	*)	pstrSurname,	&lFlags);
	
if	(lFlags	==	1)
{
				realloc(pStrSurname,	21);
				strcpy(pStrSurname,	"Surname	Not	Provided");
}
	

6.29.3	Psuedocode	Example
strValue	=	""
iValue		=	0
lFlags	=	0
lDataLen	=	0
	
LceGetFieldDataLength(iSession,	"EMPNO",	lDataLen)
/*	Allocate	buffer	for	field	value	*/
LceGetFieldValueX(iSession,	"EMPNO",	szBuffer,	lFlags)

6.30	LceGetFieldValueU
Retrieves	the	value	of	a	Unicode	field.	Unicode	fields	are	field	types	NCHAR
and	NVARCHAR.

BOOL LceGetFieldValueU (int iSession,

	 	 char	far	* strFieldName,

	 	 wchar_t	far strFieldValue,

	 	 int iFieldValueSize,

	 	 unsigned	long	far	* pulFlags)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name.	The	field	used	in	this	function	must	have
been	declared	using	an	LceUseField	function.

strFieldValue The	buffer	location	for	the	returned	value.	The	field	value	is
stored	here	once	the	function	has	executed	successfully.	The
size	should	be	at	least	the	length	of	the	data	in	bytes	plus	the
width	of	Unicode	character.	The	data	length	may	be	obtained
using	LceGetFieldDataLength	(see	notes).	The	maximum
field	size	is	RDMLX_FIELD_DATA_SIZE	as	defined	in	the
LCOE.H	header	file.

iFieldValueSize The	size	(in	bytes)	of	strFieldValue.

pulFlags Identifies	the	returned	value	as	*SQLNULL.	If	the	field	has
a	value	of	*SQNULL	pulFlags	will	return	1	otherwise	it	will
return	0.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field	value.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	uses	string	parameters.	Even	if	the	field	you	are	getting	is	numeric

or	date/time,	it	will	contain	a	string	value	representing	the	respective	numeric	or
date/time	value.	You	will	need	to	convert	the	string	value	to	a	numeric	or
date/time	before	using	it	in	your	application.	This	conversion	should	be	done
using	the	facilities	provided	with	your	development	toolset.	If	none	are
provided,	refer	for	example	to	the	LceASCIIToFloat	and	LceASCIIToInteger
functions.
If	a	non-Unicode	field	is	passed	to	this	function,	it	will	call	LceGetFieldValueX
and	the	returned	value	will	be	automatically	converted	into	Unicode.
If	using	LceGetFieldDataLength	to	determine	the	size	of	the	buffer,	remember
that	LceGetFieldDataLength	returns	the	numbers	of	characters.	When	allocating
the	buffer	for	Unicode	and	DBCS	fields,	you	may	need	to	adjust	the	length	if
the	function	you	are	using	to	allocate	the	buffer	requires	the	length	in	bytes
rather	than	characters.	To	convert	characters	to	bytes	you	must	multiply	the
number	of	characters	by	the	size	of	a	Unicode	character	(normally	2	bytes).	For
example	in	C	use	sizeof(wchar_t)	to	get	the	size	of	a	Unicode	character.

This	function	may	be	executed	at	any	time	after	the	session	is	opened.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.59	LceSetFieldValueU
6.20	LceGetFieldDataLength

6.30.1	C	Example
BOOL	fOK;
int		iSession;
wchar_t	*pwstrSurname;
long	lFlags;
long	lDataLen;
	
fOK	=	LceGetFieldDataLength(iSession,	"SURNAMEU",	&lDataLen);
lDataLen	=	((lDataLen	+	1)	*	sizeof(wchar_t));
pwstrSurname	=	malloc(lDataLen);
fOK	=	LceGetFieldValueU(iSession,	"SURNAME",	pwstrSurname,
lDataLen,	&lFlags);
	
if	(lFlags	==	1)
{
				realloc(pStrSurname,	21);
				strcpy(pStrSurname,	"Surname	Not	Provided");
}
	

6.30.2	Psuedocode	Example
strValue	=	""
iValue		=	0
lFlags	=	0
lDataLen	=	0
	
LceGetFieldDataLength(iSession,	"EMPNO",	lDataLen)
/*	Allocate	buffer	for	field	value	*/
LceGetFieldValueX(iSession,	"EMPNO",	szBuffer,	lFlags)

6.31	LceGetFieldValueH
Sets	the	text	of	the	given	window	handle	(hwndValue).

BOOL LceGetFieldValueH (int iSession,

	 	 	char	far	*	 strFieldName,

	 	 	HWND hwndValue)

Parameters
iSession The	session	identifier	returned	by	LceGetSessionId.

strFieldName The	field	name.

hwndValue The	handle	to	a	window	which	will	receive	the	value.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	field	value.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	is	similar	to	an	LceGetFieldValueX	or	LceGetFieldValueU	except
that	it	allows	you	to	retrieve	the	value	of	the	field	into	a	window	handle	value,
i.e.	a	window	field.
Refer	to	the	LceGetFieldValueX	or	LceGetFieldValueU	for	details	of	how	this
function	works.	The	field	will	be	blank	if	the	value	is	*SQLNULL.

LceGetFieldValueH	must	be	executed	after	the	session	is	opened	and	data
has	been	retrieved	from	the	host.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.29	LceGetFieldValueX
LceGetFieldValueU

6.31.1	VB	Example
	
iRet	=	LceGetFieldValueH(iSession,	"SURNAME",	_
																	frmDetails.txtSurname.hWnd)
	

6.31.2	C	Example
BOOL	fOK;
int		iSession;
HWND	hwndField;
	
fOK	=	LceGetFieldValueH(iSession,	"SURNAME",	hwndField);
	

6.32	LceGetFileDesc
Retrieves	the	file	description	from	the	Repository.

BOOL LceGetFileDesc (int iSession,

	 	 	char	far	*	 strFileName,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	returned	by	LceGetSessionId.

strFileName The	file	name.	This	file	must	have	been	declared	using	an
LceUseFile	function.

strValue The	variable	which	will	receive	the	returned	value.	The	size
should	be	at	least	FILE_DESC_LENGTH	+	1	as	defined	in	the
LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	has	retrieved	the	file	description.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	performs	no	communications	with	the	host.
This	function	must	be	executed	after	the	session	is	opened.

Tip
By	retrieving	the	description	from	the	LANSA	Repository	rather	than	including
it	in	your	PC	application,	your	PC	descriptions	will	be	consistent	with	your	host
applications	and	your	maintenance	will	be	reduced.	If	the	partition	is
multilingual,	the	description	will	be	in	the	required	language.

Related	Functions
6.71	LceUseFile
6.33	LceGetFileType
6.73	LceUseLanguage

6.32.1	VB	Example
dim	sDescription	as	String	
	
'	get	the	LANSA	Repository	Description	to	use	in	list	label
	
sDescription	=	string	(FILE_DESC_LENGTH	+	1	,chr(0))
iRet	=	LceGetFileDesc(iSession,	"PSLMST",	sDescription)
lbFileList.caption	=	sTrim	(sDescription)
	

6.32.2	C	Example
BOOL	fOK;
int		iSession;
char	strDescription[FILE_DESC_LENGTH	+	1];
	
fOK	=	LceGetFileDesc(iSession,	"PSLMST",	strDescription);
	

6.32.3	Psuedocode	Example
strDescription	=	""
IF	NOT	LceGetFileDesc(iSession,	"PSLMST",	strDescription)	
									/*	return	error	*/
ENDIF
	

6.33	LceGetFileType
Retrieves	the	file	type.

BOOL LceGetFileType (int iSession,

	 	 	char	far	*	 strFileName,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	returned	by	LceGetSessionId.

strFileName The	file	name.	The	file	must	have	been	declared	using	an
LceUseFile	function.

strValue The	buffer	location	for	the	returned	value.	The	size	should	be	at
least	FILE_TYPE_LENGTH	+	1.
The	file	types	returned:
P	=	a	physical	file
L	=	a	logical	file.

Return	Values
TRUE	is	returned	if	the	session	has	got	the	file	type.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	performs	no	communications	to	the	host.
This	function	can	only	be	executed	after	the	session	is	opened.

Related	Functions
6.71	LceUseFile
6.32	LceGetFileDesc

6.33.1	VB	Example
dim	sFileType	as	string	
'	get	file	type	and	append	it	to	list	label
sFileType	=	string	(FILE_TYPE_LENGTH	+	1,	chr(0))
iRet	=	LceGetFileType(iSession,	"PSLMST",	sFileType)
lbFileList.Caption	=	lbFileList.Caption	+	"	Type:"	+	sFileType	
	

6.33.2	C	Example
	
BOOL	fOK;
int		iSession;
char	strFileType[FILE_TYPE_LENGTH	+	1];
	
fOK	=	LceGetFileType(iSession,	"PSLMST",	strFileType);
	

6.33.3	Psuedocode	Example
strFileType	=	""
IF	NOT	LceGetFileType(iSession,	"PSLMST",	strFileType)
							/*	return	error	*/
ENDIF
	

6.34	LceGetIBMiSignon
Returns	the	status	of	the	user	profile	on	the	IBM	i	host	and	the	date	the
password	expires.

BOOL

	

LceGetIBMiSignon

	

(char	far	*

int

strServer,	

iMapperPort,

	 	 	BOOL fSSLRequired

	 	 	char	far	*	 strUserid,

	 	 char	far	* strPassword,

	 	 BOOL fEncryptPassword,

	 	 char	far	* strReturnCode

	 	 char	far	* strExpiryDate)

Parameters
strServer The	IBM	i	server	name	or	IP	address.	The	length	should

not	exceed	SYSTEM_LENGTH	as	defined	in	LCOE.h.

iMapperPort Defaults	to	449	if	passed	as	0.

fSSLRequired This	parameter	provides	the	ability	to	use	SSL	to
communicate	with	the	IBM	i	server.
True	=	Use	SSL
False	=	Do	not	use	SSL.

strUserid The	User	Identifier.	The	length	should	not	exceed
USERID_LENGTH	as	defined	in	the	LCOE.h	header	file.

strPassword The	password.	The	length	should	not	exceed
PASSWORD_LONG_LENGTH	as	defined	in	the
LCOE.H	header	file

fEncryptPassword This	parameter	provides	the	ability	to	encrypt	the
password	in	communications	with	the	IBM	i	server.
True	=	Encrypt	the	password.

False	=	Do	not	encrypt	the	password

strReturnCode The	buffer	location	for	the	return	code.	The	size	should	be
at	least	RETURN_CODE_LENGTH	+	1.
The	return	codes	returned:
OK	-	Signon	is	OK
CE	-	Communications	error
LE	-	Local	Encryption	error
NR	-	User	name	does	not	exist
SE	-	Server	error
WP	-	Wrong	Password
UD	-	User	name	is	disabled
LP	–	Password	is	too	long

strExpiryDate The	buffer	location	for	the	returned	expiry	date.	The	size
should	be	at	least	EXPIRY_DATE_LENGTH	+	1.	The
format	of	the	date	is	YYYYMMDD.
Only	valid	if	strReturnCode	is	OK.
Returned	as	"99991231"	if	the	password	never	expires

Return	Values
TRUE	indicates	that	request	completed	without	error.
FALSE	indicates	an	error	occurred.

Notes
Because	of	the	way	that	the	IBM	i	operating	system	handles	user	names	and
short	passwords	(Password	level	0	or	1)	with	the	US	English	(CCSID	037)
characters	'@',	'#'	and	'$',	this	facility	will	only	work	with	such	user	names	and
short	passwords	if	the	IBM	i	is	operating	in	US	English	(CCSID	037).
The	current	implementation	of	SSL	used	for	this	facility	ensures	that	encryption
is	negotiated	and	used	for	communication	between	the	client	and	the	IBM	i
server.	It	does	not	verify	that	the	IBM	i	server	is	that	specified	on	the	security
certificate	that	has	been	downloaded.
The	interplay	between	SSL	Required	and	Encrypt	Password	is	interesting.	If
SSL	is	available	and	SSL	Required	is	TRUE,	then	strictly	speaking	password
encryption	is	not	needed	because	the	entire	communication	stream	is	encrypted,

so	Encrypt	Password	could	be	specified	as	FALSE.	If	SSL	Required	is	FALSE,
then	we	recommend	that	Encrypt	Password	be	specified	as	TRUE.
The	reasons	for	Return	Code	CE	-Communications	error	can	include:

a	misspelling	in	the	IBM	i	Server	name;
the	IBM	i	Server	name	not	being	locatable	by	your	DNS;
a	firewall	between	the	local	computer	and	the	IBM	i	server;
the	IBM	i	server	being	offline;
TCP/IP	not	being	started	on	the	IBM	i	server;
TCP/IP	host	servers	not	being	started	on	the	IBM	i	server;
SSL	Required	TRUE	and	the	SSL	TCP/IP	host	servers	not	being	started	on
the	IBM	i	server;
SSL	Required	FALSE	and	the	non-SSL	TCP/IP	host	servers	not	being	started
on	the	IBM	i	server.

If	Return	Code	'SE	-	Server	Error'	is	returned,	a	review	of	the	joblog	for	the
QZSOSIGN	job	on	the	IBM	i	server	should	show	the	reason	in	detail.

Related	Functions
6.12	LceDisplayErrors
6.61	LceSetIBMiSignon

6.34.1	VB	Example
Declare	Function	LceGetIBMiSignon	Lib	"LCOEW32"	(_
				ByVal	sServer	As	String,	_
				ByVal	iMapperPort	As	Integer,	_
				ByVal	bSslRequired	As	Byte,	_
				ByVal	sUserId	As	String,	_
				ByVal	sPassword	As	String,	_
				ByVal	bEncryptPassword	As	Byte,	_
				ByVal	sReturnCode	As	String,	_
				ByVal	sExpiryDate	As	String	_
)	As	Integer
	
Sub	LopenTest1()
	
Dim	sServer	As	String
Dim	iMapperPort	As	Integer
Dim	bSslRequired	As	Byte
Dim	sUserId	As	String
Dim	sPassword	As	String
Dim	bEncryptPassword	As	Byte
Dim	sReturnCode	As	String
Dim	sExpiryDate	As	String
	
sServer	=	"myserver"
iMapperPort	=	0
bSslRequired	=	False
sUserId	=	"myuser"
sPassword	=	"mypasswd"
bEncryptPassword	=	True
	
sReturnCode	=	String(3,	Chr(0))
sExpiryDate	=	String(20,	Chr(0))
	
Call	LceGetIBMiSignon(sServer,	iMapperPort,	bSslRequired,	sUserId,
sPassword,	bEncryptPassword,	sReturnCode,	sExpiryDate)
	
Sheet1.Columns("B").ColumnWidth	=	20

Sheet1.Cells(2,	"B")	=	"Return	Code"
Sheet1.Cells(2,	"C")	=	sReturnCode
Sheet1.Cells(3,	"B")	=	"Expiry	Date"
Sheet1.Cells(3,	"C")	=	sExpiryDate
	
End	Sub	

6.34.2	C	Example
char	strServer[SYSTEM_LENGTH	+	1]	=	"myserver";
int		iMapperPort	=	0;
BOOL	fSSLRequired	=	false;
char	strUserid[USERID_LENGTH	+	1]	=	"myuser";
char	strPassword[PASSWORD_LONG_LENGTH	+	1]	=	"mypasswd";
BOOL	fEncryptPassword	=	true;
char	strReturnCode[RETURN_CODE_LENGTH	+	1];
char	strExpiryDate[EXPIRY_DATE_LENGTH	+	1];
BOOL	rc;
	
rc	=	LceGetIBMiSignon(strServer,	iMapperPort,	fSSLRequired,	strUserid,
strPassword,	fEncryptPassword,	strReturnCode,	strExpiryDate);
	
if	(rc)
{
			if	(strcmp(strReturnCode,	"OK")	==	0)
			{
						printf("Signon	details	successfully	retrieved.	Expiry	Date:	%s\n",
strExpiryDate);
			}
			else
			{
						printf("The	request	to	the	server	has	failed	with	return	code:	%s\n",
strReturnCode);
			}
}
else
{
			printf("The	function	failed	to	run	successfully\n");
}	

6.34.3	C#	Example
		
namespace	LansaOpenNative
{
			class	LansaOpen
			{
						[DllImport("lcoew32.dll",	CharSet	=	CharSet.Ansi)]
						public	static	extern	int	LceGetIBMiSignon(
									StringBuilder																													server,
									int																																							mapperPort,
									int																																							sslRequired,
									StringBuilder																													userId,
									StringBuilder																													password,
									int																																							encryptPassword,
									StringBuilder																													returnCode,
									StringBuilder																													expiryDate);
			}
}
	
private	void	LOpenSample()
{
			String	strServer	=	"myuser";
			int	iMapperPort	=	0;
			bool	fSSLRequired	=	false;
			String	strUserid	=	"myuser";
			String	strPassword	=	"mypasswd";
			bool	fEncryptPassword	=	true;
			StringBuilder	strReturnCode	=	new	StringBuilder(3);
			StringBuilder	strExpiryDate	=	new	StringBuilder(20);
			bool	rc;
	
			rc	=	LansaOpen.LceGetIBMiSignon(
						new	StringBuilder(strServer),
						iMapperPort,
						(fSSLRequired	?	1	:	0),
						new	StringBuilder(strUserid),
						new	StringBuilder(strPassword),

						(fEncryptPassword	?	1	:	0),
						strReturnCode,
						strExpiryDate);
	
			if	(rc)
			{
						if	(strReturnCode.ToString()	==	"OK")
						{
									txtStatusField.Text	=	String.Format("Signon	details	successfully	retrieved.
Expiry	Date:	{0}",	strExpiryDate);
						}
						else
						{
									txtStatusField.Text	=	String.Format("The	request	to	the	server	has	failed
with	return	code:	{0}",	strReturnCode);
						}
			}
			else
			{
						txtStatusField.Text	=	"The	function	failed	to	run	successfully";
			}
}

6.35	LceGetMessage
This	function	retrieves	an	error	message	sent	by	the	last	function	executed	on
the	Host	System.
The	LceGetMessage	function	is	useful	if	you	are	planning	to	program	your	own
error	handling.	Host	error	messages	generally	result	from	database	operations
and	operations	such	as	LceExecute400,	LceSubmit	or	LceLansaCall.

BOOL LceGetMessage (int iSession,	

	 	 	int iMessageNum,

	 	 	char	far	*	 strMessageBuf,

	 	 	int iMessageBufLen)

Parameters
iSession The	session	identifier	returned	by	LceGetSessionId.

iMessageNum The	sequence	number	of	the	error	message.

strMessageBuf The	buffer	to	return	the	message	in.

iMessageBufLen The	size	of	the	buffer.

Return	Values
TRUE	indicates	that	error	messages	were	successfully	retrieved.
FALSE	indicates	an	error	occurred.

Notes
Portability
Considerations

The	diagnostic	and	error	messages	returned	by	OAMs
running	on	a	Windows,	Linux	or	other	non-IBM	i	host
system	may	be	different	to	those	returned	by	LANSA	I/O
Modules	on	the	IBM	i,	as	many	of	them	are	issued	by	the
native	DBMS.	For	example,	DB2/400	on	the	IBM	i,
ODBC	with	SQL	Server	or	SQL	Anywhere	on	Windows.

The	number	of	errors	returned	from	the	Host	System	can	be	determined	by
calling	the	LceGetMessageCount	function.

This	function	performs	no	communications	to	the	host.

Related	Functions
6.12	LceDisplayErrors
6.36	LceGetMessageCount

6.35.1	VB	Example
Sub	DispLceError(iSessionId	As	Integer,	sSource	As	String)
				'	this	function	displays	LANSA	Open	errors.
				'	Note	that	it	is	only	applicable	if	LceDisplayErrors	is	off
				'	otherwise	it	will	never	get	called,	as	LANSA	takes	care	of	its	
				'	own	error	messages
				
				Dim	i	As	Integer
				Dim	sErrDesc	As	String,	iErrNo	As	Long
				Dim	sMsg	As	String,	nMsgs	As	Integer
				
				Dim	msgBuff	As	String	'	message	buffer	to	contain	final	message
				
				msgBuff	=	""
				'	Get	error	status
				sErrDesc	=	String((MESSAGE_LENGTH	+	1),	Chr$(0))
				Call	LceGetStatus(iErrNo,	sErrDesc,	MESSAGE_LENGTH)
				'	if	there	was	an	error	
				If	iErrNo	>	0	Then	
								'	prepare	header	message	with	error	description
								msgBuff	=	sGetText("Error	:	")	&	str(iErrNo)	&	"	"	&	sSource
								msgBuff	=	msgBuff	&	Chr(13)	&	sErrDesc	&	Chr(13)	&	Chr(13)
								'	read	remaining	messages
								iRet	=	LceGetMessageCount(iSessionId,	nMsgs)
								For	i	=	1	To	nMsgs	'
												sMsg	=	String(MESSAGE_LENGTH	*	3,	Chr(0))
												iRet	=	LceGetMessage(iSessionId,	i,	sMsg,	MESSAGE_LENGTH)
												sMsg	=	sTrim(sMsg)	'	sTrim	detects	null	terminated	strings
												msgBuff	=	msgBuff	+	sMsg	'	add	message	to	buffer
								Next															
				Else
								'	no	error	just	display	message
								msgBuff	=	sGetText("Error")	&	"	:	"	&	sSource
				End	If
				msgBox	msgBuff	'	display	errors
End	Sub
	

6.35.2	C	Example
BOOL	fOK;
int		iSession;
int	i;
int	iMessageCount;
char	strMessageBuf[MESSAGE_LENGTH	+	1];
	
fOK	=	LceGetMessageCount(iSession,	&iMessageCount);
if	(fOK)
{
									for	(i	=	1;	i	<=	iMessageCount;	i++)
									{
																		fOK	=	LceGetMessage(iSession,	i,	strMessageBuf,
																		sizeof(strMessageBuf));
																							/*	Process	the	Message	returned	*/
									}
}
	

6.36	LceGetMessageCount
This	function	returns	the	number	of	messages	which	have	been	returned	by	the
Host	System.

BOOL LceGetMessageCount (int iSession,	

	 	 	int	far	*	 piMessageCount)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

piMessageCount Pointer	to	the	variable	to	hold	the	number	of	messages.

Return	Values
TRUE	indicates	a	successful	return.
FALSE	indicates	an	error	occurred.

Notes
This	function	is	useful	if	you	are	planning	to	program	your	own	error	handling.
Host	error	messages	generally	result	from	database	operations	and	operations
such	as	LceExecute400,	LceSubmit,	or	LceLansaCall.
The	value	returned	by	this	function	can	be	used	as	a	loop	parameter	when
retrieving	messages	using	the	LceGetMessage	function.	For	example,	if	an
LceUpdate	failed,	the	host	system	may	have	sent	a	number	of	validation	errors.
This	function	can	be	used	to	determine	the	number.

This	function	performs	no	communications	to	the	host.
Tip
If	you	use	the	LceDisplayErrors	function,	you	will	not	need	to	use	this	function
as	all	the	error	handling	will	be	performed	by	LANSA	Open.

Related	Functions
6.12	LceDisplayErrors
6.34	LceGetIBMiSignon

6.36.1	VB	Example
Refer	to	the	LceGetMessage	6.36.1	VB	Example	.

6.36.2	C	Example
BOOL	fOK;
int		iSession;
int	i;
int	iMessageCount;
char	strMessageBuf[MESSAGE_LENGTH	+	1];
	
fOK	=	LceGetMessageCount(iSession,	&iMessageCount);
if	(fOK)
{
									for	(i	=	1;	i	<=	iMessageCount;	i++)
									{
																		fOK	=	LceGetMessage(iSession,	i,	strMessageBuf,
																		sizeof(strMessageBuf));
																										/*	Process	the	Message	returned	*/
									}
}
	

6.37	LceGetRecordCount
Returns	the	number	of	records	which	were	retrieved	as	a	result	of	the
LceReceiveSelect	function.

BOOL LceGetRecordCount (int iSession,

	 	 	char	far	*	 strFileName,

	 	 	int	far	* piValue)

Parameters
iSession The	session	identifier	returned	by	LceGetSessionId.

strFileName The	file	name.	This	file	name	must	be	the	same	as	the	file	name
used	in	the	preceding	LceReceiveSelect	function.

piValue The	buffer	location	which	will	receive	the	returned	value.

Return	Values
TRUE	is	returned	if	the	session	has	retrieved	the	record	count	of	the	select.
FALSE	is	returned	if	an	error	occurs.

Notes
The	number	retrieved	can	be	used	as	a	loop	counter	when	processing	the
received	records.	The	LceGetSelect	function	requires	the	number	of	the	record
it	is	to	get.	You	can	create	a	loop	containing	the	LceGetSelect	function,	where
the	end	condition	is	the	value	returned	by	this	function.
This	LceGetRecordCount	function	is	used	with	a	number	of	other	select
processing	functions.	The	general	pattern	of	these	functions	is	as	follows:

LceSetSelectOptions	sets	the	selection	search	characteristics.	The
*RECEIVEIMMED	option	cannot	be	used	with	this	function	when	it	is	used
with	this	group	of		functions.
LceRequestSelect	selects	records	on	the	host.
LceReceiveSelect	transfers	the	records	from	the	host	to	the	PC.
LceGetRecordCount	determines	how	many	records	were	transferred.
LceGetSelect	retrieves	a	single	record	from	the	group	of	records	transferred.
This	function	can	only	be	executed	after	the	LceRequestSelect	and

LceReceiveSelect	functions	have	been	issued.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.64	LceSetSelectOptions
6.50	LceRequestSelect
6.51	LceRequestSelectWhere
6.49	LceReceiveSelect
6.48	LceReceiveNextX
6.53	LceSelect
6.11	LceDeleteSelect

6.37.1	VB	Example
iRet	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	_
							"EMPNO",	FALSE);
iRet	=	LceReceiveSelect(iSession,	"PSLMST");
iRet	=	LceGetRecordCount(iSession,	"PSLMST",	&iRecords);
	

6.37.2	C	Example
BOOL	fOK;
int		iSession;
int		iRecords;
	
fOK	=	LceSetSelectOptions(iSession,	"*BACKWARDS,		*MAXREC25");
fOK	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	"	",	FALSE);
fOK	=	LceReceiveSelect(iSession,	"PSLMST");
fOK	=	LceGetRecordCount(iSession,	"PSLMST",	&iRecords);
for	(iCount=0;	iCount	<	iRecords;	i++)	
{
									fOK	=	LceGetSelect(iSession,	"PSLMST",	iCount,	"SURNAME,	SALARY");
}
	

6.38	LceGetSelect
Retrieves	the	specified	fields	with	the	values	in	the	given	record	from	the
previous	LceReceiveSelect.

BOOL LceGetSelect (int iSession,

	 	 	char	far	* strFileName,

	 	 	int iRecord,

	 	 	char	far	* strFieldList)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFileName The	name	of	the	file.	This	name	must	be	the	same	as	the	file
name	used	in	the	preceding	LceReceiveSelect	function.

iRecord The	required,	or	next,	record	number.	This	number	indicates
which	record	is	to	be	retrieved	from	the	file.	This	value	must	not
be	greater	than	the	value	returned	by	the	LceGetRecordCount
function.

strFieldList A	list	of	fields	to	be	retrieved	from	the	file.	This	list	must	be
based	on	the	initial	list	defined	in	the	LceRequestSelect	or
LceSelect	function.	The	list	may	be	a	subset.	You	do	not	have	to
retrieve	all	the	fields	which	were	requested	but	you	cannot
request	a	field	which	was	not	defined	in	the	LceRequestSelect.

Return	Values
TRUE	is	returned	if	the	session	selected	the	records.
FALSE	is	returned	if	an	error	occurs.

Notes
Use	the	LceGetFieldValueX/LceGetFieldValueU	function	to	obtain	the	value	of
a	specific	field.
The	LceGetSelect	function	is	used	with	a	number	of	other	select	processing
functions.	The	general	pattern	of	these	functions	is	as	follows:

LceSetSelectOptions	sets	the	selection	search	characteristics.	The

*RECEIVEIMMED	option	cannot	be	used	with	this	group	of	functions.
LceRequestSelect	selects	records	on	the	host.
LceReceiveSelect	transfers	the	records	from	the	host	to	the	PC.
LceGetRecordCount	determines	how	many	records	were	transferred.
LceGetSelect	retrieves	a	single	record	from	the	group	of	records	transferred.
This	function	can	only	be	executed	after	a	session	has	been	opened.

Related	Functions
6.17	LceGetDefaultValueX
6.18	LceGetDefaultValueU
6.37	LceGetRecordCount
6.64	LceSetSelectOptions
6.50	LceRequestSelect
6.49	LceReceiveSelect
6.48	LceReceiveNextX
6.51	LceRequestSelectWhere
6.53	LceSelect
6.11	LceDeleteSelect

6.38.1	VB	Example
dim	iRet	As	Integer,	iRecords	As	Integer,	iCount	As	Integer,	_
									sBuff	As	String,	lFlags	As	Long	
	
iRet	=	LceSetSelectOptions(iSession,	"*BACKWARDS,		*MAXREC25")
iRet	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	_	
									"",	FALSE)
iRet	=	LceReceiveSelect(iSession,	"PSLMST")
iRet	=	LceGetRecordCount(iSession,	"PSLMST",	iRecords)
sBuff	=	space(256,	chr(0))
For	iCount=1	to	iRecords
									iRet	=	LceGetSelect(iSession,	"PSLMST",	iCount,	"SURNAME")
									iRet	=	LceGetFieldValueX(iSession,	"SURNAME",	sBuff,	lFlags)
									lstNames.AddItem		sTrim	(sBuff)
									lstNames.ItemData	(lstNames.NewIndex)	=	iCount
Next
	

6.38.2	C	Example
BOOL	fOK;
int		iSession;
int		iRecords;
char	strSurname[FIELD_DATA_SIZE	+	1];
long	lFlags;
	
fOK	=	LceSetSelectOptions(iSession,	"*BACKWARDS,		*MAXREC25");
fOK	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	"",	FALSE);
fOK	=	LceReceiveSelect(iSession,	"PSLMST");
fOK	=	LceGetRecordCount(iSession,	"PSLMST",	&iRecords);
for	(iCount=1;	iCount	<=	iRecords;	iCount++)
{
									fOK	=	LceGetSelect(iSession,	"PSLMST",	iCount,	"SURNAME");
									fOK	=	LceGetFieldValueX(iSession,	"SURNAME",	(char	far	*)	strSurname,	lFlags);
}
	

6.39	LceGetSessionId
Obtains	a	valid	session	identifier.	This	is	usually	the	first	function	issued	by
your	application.

int LceGetSessionId (VOID)	 	

	 	 	 	

Parameters
None

Return	Values
The	returned	value	is	a	positive	session	identifier.
0	is	returned	if	a	new	session	cannot	be	allocated.

Notes
The	session	ID	is	used	as	a	parameter	in	the	following	functions	to	indicate
which	session	is	being	referenced.
More	than	one	session	ID	can	be	retrieved	and	then	opened	using
LceOpenSession.

All	functions	that	use	the	session	id	must	be	executed	after	this	function.

Related	Functions
6.46	LceOpenSession
6.13	LceEndSession

6.39.1	VB	Example
Global	iSession	as	Integer			'	declare	as	global	as	all	functions	
																											'	will	use	it	as	a	parameter
…
'Get	Session	ID
iSession	=	LceGetSessionId()
If	iSession	=	0	Then
			MsgBox	"No	Session	ID"
			End	'	nothing	you	can	do	
End	If
	

6.39.2	C	Examples
C	Example	1
int	iSession;
iSession	=	LceGetSessionId();
if	(iSession	=	0)
{
									/*	return	error	*/
}
	

C	Example	2
Get	two	session	IDs:
int	iSession1;
int	iSession2;
	
iSession1	=	LceGetSessionId();
iSession2	=	LceGetSessionId();
	

6.40	LceGetStatus
Returns	the	error	status	and	any	messages	from	LANSA	Open	functions	which
result	in	an	error	return	code.

VOID LceGetStatus (long	far	* plErrorCode,	

	 	 	char	far	*	 strErrorMessage,

	 	 	int iMsgLen)

Parameters
plErrorCode Pointer	to	the	variable	to	receive	the	error	status.

0	=	a	successful	return.
Non-zero	=	an	error	occurred.

strErrorMessage Array	to	receive	error	messages,	if	any.	This	array	will	be
empty	if	no	error	message	text	is	found.

iMsgLen Maximum	number	of	characters	to	copy	to	strErrorMessage.

Return	Values
None

Notes
Portability
Considerations

The	Validation	error	(36)	and	I/O	error	(37)	returned	by
OAMs	on	Windows,	Linux	or	other	non-IBM	i	platforms,
may	be	different	to	those	returned	by	LANSA	I/O
Modules	on	an	IBM	i,	as	many	of	them	translate	from	the
native	DBMS.	For	example,	DB2/400	on	the	IBM	i,
ODBC	with	SQL	Server	or	SQL	Anywhere	on	Windows.

LANSA	Open	maintains	a	local	error	message	area.	When	a	LANSA	Open
function	returns	an	error,	the	error	message	associated	with	the	error	is	saved,
provided	the	error	message	area	is	empty.	If	it	is	not	empty,	the	message	is
ignored.
LceGetStatus	retrieves	the	error	message(s)	and	at	the	same	time	clears	the	error
message	area.	LceGetStatus,	therefore,	needs	to	be	executed	after	every
LceGetFunction	function.

This	function	performs	no	communications	with	the	host.
Tip
An	alternative	to	LceGetStatus	is	LceDisplayErrors,	LANSA	Open's	automated
error	message	handing	facility.

Related	Functions
6.12	LceDisplayErrors

6.40.1	VB	Example
Refer	to	the	LceGetMessage	6.35.1	VB	Example	.

6.40.2	C	Example
long	lErrorCode;
char	strErrorMessage[100];
	
LceGetStatus(&lErrorCode,	strErrorMessage,	sizeof(strErrorMessage));
if	(lErrorCode	!=	0)
{																								process										error}	
/*	Issue	a	block	of	related	LANSA	Open	calls	*/
/*	Process	first	error	which	may	have	occurred	*/
LceGetStatus(&lErrorCode,	strErrorMessage,	sizeof(strErrorMessage));
if	(lErrorCode	!=	0)
{				process	error	}
	

6.41	LceGetSystemAttribute
Retrieve	information	about	the	host	system.

BOOL LceGetVariable (int iSession,

	 	 	int iAttrbiute,

	 	 	int	far	*	 iValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

iAttribute The	attribute	to	retrieve.	Available	attributes	are	listed	in	the
Notes.

iValue The	value	of	the	option.	Refer	to	the	Notes	for	the	available
values.

Return	Values
TRUE	is	returned	if	the	session	can	retrieve	the	requested	value.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	can	only	be	executed	after	a	session	has	been	opened.
The	following	system	attributes	may	be	retrieved:
LCE_SYS_CHARSET_TYPE
Specifies	the	Host	Type.	Available	values	are	LCE_HOST_EBCDIC	and
LCE_HOST_ASCII	as	defined	in	the	LCOE.H	header	file.
LCE_SYS_OS_TYPE
Specifies	the	Operating	System	type.	Available	values	are
LCE_HOST_ISERIES,	LCE_HOST_WINDOWS,	LCE_HOST_UNIX	as
defined	in	the	LCOE.H	header	file.

6.41.1	VB	Example
Dim	iValue	As	Integer
iRet	=	LceGetSystemAttribute	(iSession	LCE_SYS_CHARSET_TYPE,	iValue)
	

6.41.2	C	Example
int		iSession;
int		iValue;
fOK	=	LceGetVariable(iSession,	LCE_SYS_OS_TYPE,	&iValue);
	

6.42	LceGetVariable
Retrieve	the	value	associated	with	a	given	system	or	multilingual	variable.

BOOL LceGetVariable (int iSession,

	 	 	char	far	*	 strVariableName,

	 	 	char	far	*	 strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strVariableName The	system	or	multilingual	variable	name.

strValue Pointer	to	the	array	to	receive	the	returned	value.	This	will
be	a	zero	length	string	if	no	value	is	returned	from	the	host.
The	size	should	be	at	least	FIELD_DATA_SIZE	+	1	as
defined	in	the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	can	retrieve	the	requested	value.
FALSE	is	returned	if	an	error	occurs.

Notes
If	the	request	is	for	a	multilingual	variable,	the	partition	must	be	multilingual.
The	value	returned	will	be	based	on	the	language	defined	when	the	session	is
open.
This	function	uses	string	parameters.	Even	if	the	variable	you	are	getting	is	non-
numeric,	it	will	contain	a	string	value	representing	the	variable's	numeric	value.
You	will	need	to	convert	the	string	value	to	a	numeric	before	using	it	in	your
application.	Note	also	that	any	"decimal	point"	used	(if	appropriate)	will	be	that
which	applies	on	the	host.

This	function	may	be	executed	at	any	time	after	the	session	is	opened.
LceGetVariable	communicates	with	the	host	for	all	initial	calls	for	the	given
variable.	Subsequent	calls	will	result	in	communication	with	the	host	only	if
the	variable	is	defined	as	dynamic.

6.42.1	VB	Example
				Dim	sBuff	As	String
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))	'	set	buffer
iRet	=	LceGetVariable	(iSession	"*COMPANY",	Company)
Form.Caption	=	Company	
	

6.42.2	C	Example
BOOL	fOK;
int		iSession;
char	strValue[FIELD_DATA_SIZE	+	1];
fOK	=	LceGetVariable(iSession,	"*DATE",	strValue);
	

6.43	LceInsert
Inserts	a	record	into	the	specified	file,	using	the	values	contained	in	the	fields.

BOOL LceInsert (int iSession,

	 	 	char	far	* strFieldList,

	 	 	char	far	* strFileName

	 	 	BOOL fValidate)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldList A	list	of	fields	to	be	inserted	when	the	record	is	added.	Each
field	must	have	been	declared	using	an	LceUseField	function.

strFileName The	name	of	the	file.	This	file	must	have	been	previously
declared	using	an	LceUseFile	function.

fValidate This	parameter	provides	a	"check	but	do	not	insert"	facility.
True	=	Perform	validate	only.
False	=	Perform	insert	immediately.	

Return	Values
TRUE	is	returned	if	the	session	can	insert	or	has	inserted	the	record.
FALSE	is	returned	if	an	error	occurs.

Notes
Only	the	fields	specified	in	the	field	list	will	be	inserted	into	the	file.	Other
fields	will	have	their	default	values	assigned,	provided	the	default	values	are	set
in	the	LANSA	Repository.

This	function	may	only	be	executed	after	a	session	has	been	opened.
Tip
If	you	record	the	appropriate	validation	rules	in	the	LANSA	Repository,
LANSA	will	perform	referential	integrity	checks	when	inserting	new	records.
For	example,	LANSA	can	check	that	a	customer	record	exists	in	the	customer
file	before	attempting	to	insert	a	new	order	record	for	that	customer	in	the	order

file.

Related	Functions
6.71	LceUseFile
6.58	LceSetFieldValue
6.59	LceSetFieldValueU
6.67	LceUnicodeToHex
6.10	LceDelete
6.8	LceCheckFor

6.43.1	VB	Example
Private	Sub	cmdSave_Click()
	
'	Saves	changes	or	inserts	a	new	record.		Note	that	the	fields	are	
'	updated	as	the	user	changes	them.
'	Errors	are	automatically	handled	by	LANSA	
	
				Dim	iRet	As	Integer				
				
				If	bAdding	=	True	Then
								'	user	is	inserting	a	new	record
								iRet	=	LceInsert(iSession,	"SKILCODE,SKILDESC",	"SKLTAB",	_
LceFalse)
				Else
								'	user	is	saving	changed	record
				End	If
				
				If	iRet	=	LceTrue	Then
								'	if	successful	force	a	refresh	so	list	shows	changes
								Call	RefreshSkillsList
				End	If
End	Sub
	

6.43.2	C	Example
Insert	a	record	into	the	file.
BOOL	fOK;
int		iSession;
	
fOK	=	LceSetFieldValue(iSession,	"EMPNO",	"12345");
fOK	=	LceSetFieldValue(iSession,	"SURNAME",	"Buckley");
	
fOK	=	LceInsert(iSession,	"EMPNO,	SURNAME",	"PSLMST",	FALSE);
	

Psuedocode	Example
Checks	if	a	record	can	be	inserted.
strName	=	"PSLMST"
strList		=	"EMPNO,	SURNAME"
	
IF	NOT	LceSetFieldValue(iSession,	"EMPNO"	,	"12345")
									/*	return	error	*/
ENDIF
IF	NOT	LceSetFieldValue(iSession,	"SURNAME"	,	"Buckley")
									/*	return	error	*/
ENDIF
IF	LceInsert(iSession,	strList,	strName,	TRUE)
									/*	insert	the	new	record	can	be	performed	*/
ELSE
									/*	cannot	insert	the	new	record	*/
									/*	display	error	messages	*/
ENDIF
	
	

6.44	LceLansaCall
This	function	is	used	to	initiate	the	immediate	execution	of	a	LANSA
process/function	or	an	IBM	i	program.	If	the	program	you	call	expects	user
interaction,	this	function	will	fail.
When	using	this	function,	your	application	must	wait	until	the	called	program	or
function	has	been	completed.	Error	messages	will	be	routed	back	to	your
application.

BOOL LceLansaCall (int iSession,

	 	 	char	far	* strProcess,

	 	 	char	far	* strFunction,

	 	 	char	far	* strProgram,

	 	 	char	far	* strExchangeList)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strProcess The	name	of	the	LANSA	process.

strFunction The	name	of	the	LANSA	function.

	 or

strProgram The	name	of	the	IBM	i	program.

strExchangeList A	list	of	field	names	to	be	passed	to	and	from	the	program.
Refer	to	Notes.

Return	Values
TRUE	is	returned	if	the	session	has	executed	the	process/function	or	program.
FALSE	is	returned	if	an	error	occurs.

Notes
Portability
Considerations

The	format	which	uses	strProgram	is	only	supported	if
your	host	system	is	an	IBM	i.	An	error	will	be	returned
by	the	host	if	you	make	a	call	with	strProgram	to	any

other	platform.
When	calling	a	program	on	the	IBM	i,	the	exchange	list
may	only	contain	fields	of	type	A,	P,	and	S.	If	exchanging
numeric	fields,	the	maximum	length	is	30	and	the
maximum	decimals	is	9.

Parameters	can	be	passed	to	the	called	function	or	program	via	the	exchange	list
of	field	names	in	strExchangeList.	Each	field	used	in	this	exchange	list	must
have	been	declared	using	an	LceUseField	function.	The	value	for	the	field	is
assigned	using	the	LceSetFieldValue/LceSetFieldValueU	function.	The	LANSA
process	and	function	to	be	executed	do	not	have	to	be	declared	previously	by	an
Lce	function	call.
Parameters	can	be	returned	from	the	called	function	or	program	via	the
exchange	fields.	The	returned	value	for	the	field	is	stored	and	may	be	accessed
using	the	LceGetFieldValueX/LceGetFieldValueU	function.

This	function	can	only	be	executed	after	a	session	has	been	opened.
Tip
This	function	is	ideal	to

re-use	an	existing	host	process	or	IBM	i	program.
perform	a	task	that	requires	access	to	multiple	files.

If	you	don't	want	to	wait	until	the	host	process	completes,	use	the	LceSubmit
function	instead.
If	you	wish	to	call	a	3GL	program	that	either	passes	or	receives	parameters,	use
Lce3GLCall	instead.

Related	Functions
6.66	LceSubmit
6.14	LceExecute400
6.3	Lce3GLCall

6.44.1	VB	Example
Private	Sub	cmdPrintDepartment_Click()
				'	ask	the	host	to	print	a	list	of	the	department's	
				'	employees	
				'	set	department	to	print	
				iRet	=	LceSetFieldValue(iSession,	"DEPTMENT",	DeptKey(cmbDepartment.ListIndex))
				If	iRet	=	LceTrue	Then
								iRet	=	LceLansaCall(iSession,	"PSLSYS",	"EMPLIST",	"",	"DEPTMENT")
				End	If
End	Sub
	

6.44.2	C	Example
BOOL	fOK;
int		iSession;
long	lFlags;
fOK	=	LceSetFieldValue(iSession,	"MONTH",	"JAN");
fOK	=	LceSetFieldValue(iSession,	"YEAR",	"1994");
	
fOK	=	LceLansaCall(iSession,	"PROCREP",	"SALES01",	"",	"MONTH,	YEAR");
fOK	=	LceGetFieldValueX(iSession,	"SURNAME",	strLastName,	&lFlags);
	

6.45	LceLocalDateTimeToServer
Converts	the	DateTime	value	from	the	client's	local	timezone	into	UTC
(Universal	Coordinated	Time).	This	function	must	be	used	when	creating	a
where	clause	for	LceRequestSelectWhere,	if	DateTime	values	are	required	in
the	where	clause.

BOOL LceLocalDateTimeToServer (int	 iSession,

	 	 	char	far	* strFieldName,

	 	 	char	far	* strDate)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	field	name	of	a	DateTime	field	previously	declared	with
LceUseField.

strDateTime Pointer	to	the	array	that	specifies	the	DateTime	to	be
converted.	The	converted	DateTime	will	be	returned	in	this
parameter.

Return	Values
TRUE	is	returned	if	the	session	has	successfully	converted	the	DateTime.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	should	only	be	used	when	specifying	a	value	for	a	DateTime	field
in	a	where	clause.	It	must	not	be	used	to	convert	a	DateTime	value	which	is	then
passed	to	LceSetFieldValue	as	this	API	will	automatically	do	the	conversion.

This	function	may	be	executed	at	any	time	after	the	session	is	opened.

Related	Functions
6.29	LceGetFieldValueX
6.33	LceGetFileType
6.51	LceRequestSelectWhere

6.45.1	VB	Example
Public	Type	FIELD_DETAIL
				fieldLen	As	Long
				flags	As	Long
End	Type
	
Sub	SetEmployeesList()
				Dim	i	As	Integer
				Dim	fldData(2)	As	FIELD_DETAIL
	
				'	clear	list
				lstOrders.Clear
				If	cmbSection.ListIndex	=	-1	Then	
Exit	Sub	'	no	department	do	nothing
				End	If	
	
				'	Select	data
				iRet	=	LceSetSelectOptions(iSession,	"*RECEIVEIMMED")
				'	Request	data
				If	iRet	=	LceFalse	then	exit	sub	'	Failed
	
				iRet	=	LceLocalDateTimeToServer(iSession,	"ORDRTIME",	sOrderStartDate)
	
				iRet=	LceRequestSelectWhere(iSession,	_
										"ORDERNUM,	ORDRTIME",	"ORDERS",	"",	"ORDRTIME	>	"	+	sOrderStartDate,	FALSE)
	
				If	iRet	=	LceTrue	Then
								sBuff	=	String(40,	Chr(0))
								i	=	0
								'	Read	all	records
								While	(LceReceiveNextX(iSession,	sBuff,	FIELD_DATA_SIZE	*	2,	fldData(0),	2)	=	LceTrue)	
												lstOrders.AddItem	(sTrim(Mid(sBuff,	1,	fldData(0).fieldLen))	_
																									&	"	"	&	sTrim(Mid(sBuff,	fldData(0).fieldLen	+	1,	fldData(1).fieldLen)))	
												i	=	i	+	1
								Wend
								'	Select	first	on	list
								If	lstEmployees.ListCount	>	0	Then	lstEmployees.ListIndex	=	0

			else
							'	failed
							…
				End	If
End	Sub
	

6.45.2	C	Example
BOOL	fOK;
int		iSession;
int		iCount;
char	szOrderStartDate[DATETIME_LEN];
char	szWhereClause[256];
	
fOK	=	LceSetSelectOptions(iSession,	"*BLOCKBYRRN");
fOK	=	LceLocalDateTimeToServer(iSession,	"ORDRTIME",	szOrderStartDate)
sprintf(szWhereClause,	"ORDRTIME	>	%s",	szOrderStartDate);
fOK	=	LceRequestSelectWhere(iSession,	
										"ORDERNUM,	ORDRTIME",	"ORDERS",	"",	szWhereClause,	FALSE);
	
fOK	=	LceReceiveSelect(iSession,	"ORDERS");
fOK	=	LceGetRecordCount(iSession,	"ORDERS",	&iRecords);
for	(iCount=0;	iCount	<	iRecords;	i++)
{
								fOK	=	LceGetSelect(iSession,	"ORDERS",	iCount,	"ORDERNUM,	ORDRTIME");
}

6.46	LceOpenSession
Opens	a	communications	session	with	the	host.

BOOL LceOpenSession (int iSession)

Parameters
iSession The	session	identifier	returned	by	LceGetSessionId.

Return	Values
TRUE	is	returned	if	the	session	can	be	opened.
FALSE	is	returned	if	an	error	occurs.

Notes
LceOpenSession	is	used	in	conjunction	with	a	number	of	LANSA	Open
"session	definition"	functions	that	set	the	session's	options.
The	time	taken	to	open	a	session	will	depend	upon	many	factors	including	the
client	and	host	system's	hardware	and	software.

The	more	fields	and	files	used,	the	longer	the	time	it	will	take	to	open	the
session.	A	theoretical	maximum	of	256	files	and	2800	fields	may	be	used	in
a	session.
	
This	function	must	be	executed	after	an	LceGetSessionId	function.

Tip
For	consecutive	file	processing,	set	the	fResume	parameter	to	TRUE	when
calling	LceEndSession.	This	keeps	the	communications	session	with	the	host
system	active.	You	can	then	use	the	same	session	identifier	(for	processing	the
other	files)	in	LceOpenSession.
You	can	also	have	more	than	one	session	open	(via	LceOpenSession)	if	you
need	to	access	more	than	one	file	concurrently	when	using	the
*RECEIVEIMMED	option	for	selecting	records.

Related	Functions
6.39	LceGetSessionId
6.13	LceEndSession
6.69	LceUseExceptionalArguments

6.71	LceUseFile
6.72	LceUseFunction
6.73	LceUseLanguage
6.74	LceUsePartition
6.75	LceUsePassword
6.76	LceUsePriority
6.77	LceUseProcess
6.78	LceUseSystem
6.79	LceUseTmpDrive2

6.46.1	VB	Example
iRet	=	LceOpenSession(iSession)	
	

6.46.2	C	Example
if	LceOpenSession(iSession)
{
									/*	return	okay	*/
}
else
{
									/*	return	error	as	session	failed	to	open	*/
}
	

6.47	LceReceiveNext
This	function	has	been	replaced	by	6.48	LceReceiveNextX	and	is	supported	for
backward	compatibility	only.	It	does	not	support	RDMLX	fields.

BOOL LceReceiveNext (int iSession,

	 	 	char	* strBuffer,

	 	 	int iBufferSize)

6.48	LceReceiveNextX
Retrieves	the	selected	record	which	is	being	sent	immediately	from	the	host.

BOOL LceReceiveNextX (int iSession,

	 	 	char	* strBuffer,

	 	 BUFLEN bufferSize,

	 	 PFIELD_DETAILS pDataDetails,

	 	 int iFields)

Parameters
iSession The	session	identifier.

strBuffer A	pointer	to	a	buffer	to	contain	the	returned	record.

iBufferSize The	size	of	the	buffer	passed.

pDataDetails For	each	field,	it	provides	the	length	of	the	data	and	any	special
flags.	See	the	structure	definition	in	the	LCOE.H	header	file.
Refer	to	notes	for	further	details.

iFields The	maximum	number	of	fields	to	retrieve	in	the	buffer.

Return	Values
TRUE	is	returned	if	the	session	can	receive	the	selected	record.
FALSE	is	returned	if	no	more	records	are	found	or	an	error	occurs.	To
distinguish	between	an	error	and	no	record	found,	use	the	LceGetStatus	function
to	check	that	no	error	exists.

Notes
The	LceReceiveNextX	function	is	used	with	a	number	of	select	processing
functions	but	only	after	a	call	to	LceRequestSelect	or	LceRequestSelectWhere
and	if	you	are	using	the	*RECEIVEIMMED	option.
The	general	pattern	of	these	functions	is	as	follows:

LceSetSelectOptions	with	option	*RECEIVEIMMED	specified.
LceRequestSelect	or	LceRequestSelectWhere	selects	records	on	the	host.
(The	LceRequestSelectWhere	function	allows	you	to	attach	a	Where	clause

to	your	selection	criteria.)
LceReceiveNextX	reads	the	records	transferred	from	the	host	to	the	PC.
(Unless	you	have	another	session	open,	once	a	*RECEIVEIMMED	select
has	been	initiated,	then	all	the	records	must	be	selected	via	the
LceReceiveNextX	function	before	any	other	function	which	results	in
communication	with	the	Host	(e.g.	LceFetch)	can	be	performed.

If	at	any	time	the	remaining	records	for	a	Select	call	are	not	needed,	they	can	be
discarded	by	executing	an	LceDeleteSelect	function.
If	no	buffer	is	specified,	when	a	call	to	LceReceiveNextX	is	performed,	all	the
values	in	the	field	information	will	be	updated	with	the	values	for	the	current
record.	These	values	can	be	obtained	in	the	same	way	you	would	retrieve	the
field	values	after	a	call	to	LceGetSelect,	i.e.	using	the	LceGetFieldValueX
function.
If	a	buffer	is	specified,	the	buffer	will	be	updated	with	the	field	values	in	the
order	specified	on	the	call	to	LceRequestSelect.	This	buffer	is	for	use	in	your
client	program	and	it	cannot	be	accessed	by	other	LANSA	Open	functions,	i.e.
LceGetFieldValueX/LceGetFieldValueU.	The	buffer	provides	a	more	efficient
method	of	accessing	the	data.	Using	the	buffer	can	improve	performance
greatly.
The	size	of	each	value	returned	is	stored	in	fieldLen	in	the	pDataDetails
parameter.	You	can	use	fieldLen	to	move	from	field	to	field	in	the	buffer.	This
size	includes	the	0x00	terminator	between	the	values.
ulFlags	in	the	pDataDetails	parameter	identifies	the	returned	value	as
*SQLNULL.	If	the	field	has	a	value	of	*SQLNULL,	pulFlags	will	return	1
otherwise	it	will	return	0.
To	ensure	the	buffer	is	large	enough	to	store	the	data	for	all	requested	fields,	use
the	maximum	field	length	when	determining	the	amount	of	memory	to	allocate
for	the	buffer.	This	can	be	obtained	using	LceGetFieldType.	However,	the
maximum	may	not	always	be	required.	Since	RDMLX	fields	are	not	padded,	a
smaller	buffer	may	be	sufficient.	An	error	will	be	displayed	if	the	buffer	is	not
large	enough	to	store	all	the	requested	fields.
For	backward	compatibility	the	size	of	each	value	returned	for	an	RDML	field
will	continue	to	be	defined	by	the	following	rules:

ALPHA FIELD	LENGTH+1

SIGNED FIELD	LENGTH+4

PACKED FIELD	LENGTH+4

This	size	includes	the	0x00	terminator	between	the	values.	If	the	value	is
actually	shorter	than	the	length	specified	then	it	will	be	padded	with	0x00.	This
padding	occurs	after	processing	the	current	setting	for	alpha	or	numeric
pad/strip.

This	function	may	only	be	executed	once	a	session	has	been	opened.

Related	Functions
6.64	LceSetSelectOptions
6.50	LceRequestSelect
6.51	LceRequestSelectWhere
6.29	LceGetFieldValueX
6.18	LceGetDefaultValueU
6.11	LceDeleteSelect
6.27	LceGetFieldType

6.48.1	VB	Example
Public	Type	FIELD_DETAIL
				fieldLen	As	Long
				flags	As	Long
End	Type
	
Public	Const	TOTAL_FIELDS	=	2
	
Sub	SetSkillsList()
				'	reads	all	skill	descriptions	and	populates	the	skill	list
				On	Error	Resume	Next
				
				Dim	iRet	As	Integer
				Dim	i	As	Integer
				Dim	sBuff	As	String	
				Dim	sTemp	As	String
				Dim	iPos	As	Long
				Dim	iLovalPos	As	Long
				Dim	fldData(TOTAL_FIELDS)	As	FIELD_DETAIL
	
				'	remove	any	previous	query	results	
				iRet	=	LceDeleteSelect(iSession,	"SKLTAB")
				
				'	Request	select
				'	Set	Select	to	IMMEDIATE	MODE	is	recommended	to	increase	speed
				iRet	=	LceSetSelectOptions(iSession,	"*RECEIVEIMMED")
				iRet	=	LceRequestSelect(iSession,	"SKILCODE,SKILDESC",	"SKLTAB",	_
											"",	False)
	
				'	Clear	previous	selection
				sBuff	=	String(FIELD_DATA_SIZE,	Chr(0))
				lstSkills.Clear
				ReDim	SkillKey(0)
				i	=	0	'	reset	counter
	
				'Read	all	records	selected
				While	LceReceiveNextX(iSession,	sBuff,	FIELD_DATA_SIZE,	fldData(0),	TOTAL_FIELDS)	=	LceTrue

								ReDim	Preserve	SkillKey(i	+	1)	'	resize	array	key
	
								iPos	=	1
								If	(fldData(i).flags	=	1)	Then
												'	Display	error	as	key	field	should	not	be	Null
								Else
												sTemp	=	Trim(Mid(sBuff,	iPos,	fldData(0).fieldLen))
												iLovalPos	=	InStr(1,	sTemp,	Chr(0),	vbTextCompare)
												If	iLovalPos	>	0	Then
																sTemp	=	Trim(Left(sTemp,	iLovalPos	-	1))
												End	If
	
												SkillKey(i)	=	sTemp	
	
												iPos	=	iPos	+	fldData(0).fieldLen
	
												If	(fldData(i).flags	=	1)	Then
																'	Value	is	SQLNULL	
																sTemp	=	"No	description	provided"
												Else
																sTemp	=	Trim(Mid(sBuff,	iPos,	fldData(1).fieldLen))
																iLovalPos	=	InStr(1,	sTemp,	Chr(0),	vbTextCompare)
																If	iLovalPos	>	0	Then
																				sTemp	=	Trim(Left(sTemp,	iLovalPos	-	1))
																End	If
												End	If
	
												lstSkills.AddItem	sTemp	
								End	If
	
								i	=	i	+	1	'	increment	index
	
				Wend
				'	select	first	record
				If	lstSkills.ListCount	>	0	Then	lstSkills.ListIndex	=	0
End	Sub
	

6.48.2	C	Examples
C	Example	1
BOOL	fOK;
BOOL	fNext;
int		iSession;
int		iCount;
long	lFlags;
	
fOK	=	LceSetSelectOptions(iSession,	"*RECEIVEIMMED");
fOK	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	"",	FALSE);
	
fNext	=	TRUE;
iCount	=	0;
while	(fNext)
{
								/*	process	records	as	they	are	received	*/
								fNext	=	LceReceiveNextX(iSession,	"",	0,	NULL,	0);
								if	(fNext)
								{
												fOK	=	LceGetFieldValueX(iSession,	"SURNAME",	strSurname,	&lFlags);
												fOK	=	LceGetFieldValueX(iSession,	"SALARY",	strSalary,	&lFlags);
								}
								/*	count	number	of	records	received	*/
								iCount	=	iCount	+	1;
}
	

C	Example	2
#define	TOTAL_FIELDS			2
	
BOOL										fOK;
int											iSession;
int											iCount;
long										lFlags;
FIELD_DETAILS	fldDetails[TOTAL_FIELDS];
char										szBuff[256];
	

fOK	=	LceSetSelectOptions(iSession,	"*RECEIVEIMMED");
fOK	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	"",	FALSE);
	
iCount	=	0;
while	(LceReceiveNextX(iSession,	sBuff,	256,	&fldDetails,	TOTAL_FIELDS))
{
			if	(fldDetails[0].fldLength	=	1)
			{
						/*	Display	error	as	a	Surname	must	exist	*/
			}
			else
			{
						strcpy(szSurname,	sBuff);
						strcpy(szSalary,	sBuff	+	fldDetails[0].fldLength);
			}
	
			/*	count	number	of	records	received	*/
			iCount	=	iCount	+	1;
}
	

6.49	LceReceiveSelect
Performs	the	data	transfer,	from	the	host	to	the	PC,	from	a	file	of	one	or	more
records	which	have	been	identified	by	an	LceRequestSelect	or	an
LceRequestSelectWhere	function.

BOOL LceReceiveSelect (int iSession,

	 	 	char	far	* strFileName)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFileName The	name	of	the	file.	This	name	must	correspond	to	the	file
name	used	in	the	preceding	LceRequestSelect	or
LceRequestSelectWhere	function.

Return	Values
TRUE	is	returned	if	the	session	has	received	the	selected	records.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	is	used	with	a	number	of	other	select	processing	functions.	The
general	pattern	of	these	functions	is	as	follows:

LceSetSelectOptions	sets	the	selection	search	characteristics.	The
*RECEIVEIMMED	option	cannot	be	used	with	this	function.
LceRequestSelect	or	LceRequestSelectWhere	selects	records	on	the	host.
LceReceiveSelect	transfers	the	records	from	the	host	to	the	PC.
LceGetRecordCount	determines	how	many	records	were	transferred.
LceGetSelect	retrieves	a	single	record	from	the	group	of	records	transferred.
This	function	can	only	be	executed	after	a	session	has	been	opened	and
following	an	LceRequestSelect	function.

Related	Functions
6.64	LceSetSelectOptions
6.50	LceRequestSelect
6.51	LceRequestSelectWhere

6.37	LceGetRecordCount
6.38	LceGetSelect
6.53	LceSelect
6.11	LceDeleteSelect

6.49.1	VB	Example
Dim	iRet	As	Integer,	iRecords	As	Integer,	iCount	As	Integer,	_
									sBuff	As	String,	lFlags	As	Long	
	
iRet	=	LceSetSelectOptions(iSession,	"*BACKWARDS,		*MAXREC25")
iRet	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	_	
							"",	FALSE)
iRet	=	LceReceiveSelect(iSession,	"PSLMST")
iRet	=	LceGetRecordCount(iSession,	"PSLMST",	iRecords)
sBuff	=	space(256,	chr(0))
For	iCount=1	to	iRecords
									iRet	=	LceGetSelect(iSession,	"PSLMST",	iCount,	"SURNAME")
									iRet	=	LceGetFieldValueX(iSession,	"SURNAME",	sBuff,	lFlags)
									lstNames.AddItem		sTrim	(sBuff)
									lstNames.ItemData	(lstNames.NewIndex)	=	iCount
Next
	

6.49.2	C	Example
BOOL	fOK;
int		iSession;
int		iRecords;
	
fOK	=	LceSetSelectOptions(iSession,	"*BACKWARDS,		*MAXREC25");
fOK	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	"",	FALSE);
fOK	=	LceReceiveSelect(iSession,	"PSLMST");
fOK	=	LceGetRecordCount(iSession,	"PSLMST",	&iRecords);
for	(iCount=0;	iCount	<	iRecords;	i++)
{
				fOK	=	LceGetSelect(iSession,	"PSLMST",	iCount,	"SURNAME,	SALARY");
}
	

6.50	LceRequestSelect
This	function	is	used	to	identify	one	or	more	records	matching	the	search
criteria,	from	a	file	on	a	host.

BOOL LceRequestSelect (int iSession,

	 	 	char	far	* strFieldList,

	 	 	char	far	* strFileName,

	 	 	char	far	* strKeyList,

	 	 	BOOL fGeneric)

Parameters
iSession The	session	identifier	returned	by	LceGetSessionId.

strFieldList A	list	of	fields	to	be	retrieved	from	the	file.	Each	field	listed
must	have	been	declared	using	an	LceUseField	function.

strFileName The	name	of	the	file	to	be	used.	This	file	must	have	been
declared	using	an	LceUseFile	function

strKeyList A	list	of	the	key	field	names	in	the	sequence	in	which	they	are
used	in	the	file.	These	fields	must	have	been	declared	using	the
LceUseField	function.	The	values	for	the	keys	are	set	using	the
LceSetFieldValue/LceSetFieldValueU	function.	Refer	to	Notes
for	key	and	generic	search	considerations.
Key	fields	must	not	be	specified	if	the	*BLOCKBYKEY	option
was	used	in	the	preceding	LceSetSelectOptions.

fGeneric Refer	to	notes	for	further	information.
True	=	apply	a	generic	search.
False	=	do	not	apply	a	generic	search.

Return	Values
TRUE	is	returned	if	the	session	has	selected	records.
FALSE	is	returned	if	an	error	occurs.

Notes

Key	and	Generic	search	considerations:
You	must	know	the	specific	key	fields	to	the	file.	The	key	fields	listed	can	be
a	subset	of	the	actual	keys	to	the	file,	but	the	sequence	in	which	the	keys	are
listed	must	match	the	sequence	of	the	keys	in	the	file.	This	is	very	important.
The	sequence	of	the	keys	must	match	the	file.	If	you	need	the	keys	in	a
different	sequence	you	must	use	a	logical	file.
The	fGeneric	flag	determines	whether	the	keys	must	match	exactly	or
whether	a	generic	key	search	should	apply.	If	a	generic	search	is	used	on	a
file	with	more	than	one	key	field,	then	the	search	will	apply	only	to	the	last
non-blank	key	field	specified.	Any	blank	key	field	will	be	considered
generic.
The	fGeneric	flag	is	ignored	for	fields	of	type	Date,	Time,	DateTime,
Integer,	and	Float.
You	do	not	have	to	use	the	complete	key	list.	You	could	use	the	first	two
fields	in	a	file	with	three	key	fields.	If	you	use	a	subset	of	the	key	fields,	you
are	implicitly	using	a	generic	search	on	the	unspecified	keys,	i.e.	match	key1
and	key2	while	key3	can	have	any	value.	In	this	case,	you	do	not	use	the
fGeneric	search.	If	you	did	use	the	generic	search	in	this	situation,	you	will
get	a	generic	search	based	on	key2	and	key3.

This	LceRequestSelect	function	is	used	with	a	number	of	other	select	processing
functions.	The	general	pattern	of	these	functions	is	as	follows:

LceSetSelectOptions	sets	the	selection	search	characteristics.
LceRequestSelect	selects	records	on	the	host.
LceReceiveSelect	transfers	the	records	from	the	host	to	the	PC.
LceGetRecordCount	determines	how	many	records	were	transferred.
LceGetSelect	retrieves	a	single	record	from	the	group	of	records	transferred.
This	function	may	only	be	executed	after	a	session	has	been	opened.

Tip
For	a	better	performance	when	retrieving	records,	use	the	LceRequestSelect	and
LceReceiveNextX	functions	with	the	select	option	set	to	*RECEIVEIMMED.

Related	Functions
6.64	LceSetSelectOptions
6.50	LceRequestSelect
6.51	LceRequestSelectWhere

6.48	LceReceiveNextX
6.37	LceGetRecordCount
6.38	LceGetSelect
6.53	LceSelect
6.11	LceDeleteSelect

6.50.1	VB	Example
Dim	iRet	As	Integer,	iRecords	As	Integer,	iCount	As	Integer,	_
									sBuff	As	String,	lFlags	As	Long	
	
iRet	=	LceSetSelectOptions(iSession,	"*BACKWARDS,		*MAXREC25")
iRet	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	_	
									"",	FALSE)
iRet	=	LceReceiveSelect(iSession,	"PSLMST")
iRet	=	LceGetRecordCount(iSession,	"PSLMST",	iRecords)
sBuff	=	space(256,	chr(0))
For	iCount=1	to	iRecords
									iRet	=	LceGetSelect(iSession,	"PSLMST",	iCount,	"SURNAME")
									iRet	=	LceGetFieldValueX(iSession,	"SURNAME",	sBuff,	lFlags)
									lstNames.AddItem		sTrim	(sBuff)
									lstNames.ItemData	(lstNames.NewIndex)	=	iCount
Next
	

6.50.2	C	Example
BOOL	fOK;
int		iSession;
int		iRecords;
	
fOK	=	LceSetSelectOptions(iSession,	"*BACKWARDS,		*MAXREC25");
fOK	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	"",	FALSE);
fOK	=	LceReceiveSelect(iSession,	"PSLMST");
fOK	=	LceGetRecordCount(iSession,	"PSLMST",	&iRecords);
for	(iCount=0;	iCount	<	iRecords;	i++)
{
									fOK	=	LceGetSelect(iSession,	"PSLMST",	iCount,	"SURNAME,	SALARY");
}
	

6.51	LceRequestSelectWhere
Identifies	one	or	more	records	matching	the	search	criteria	in	a	file	on	the	host.
No	data	is	transferred	from	the	host.

BOOL LceRequestSelectWhere (int iSession,

	 	 	char	* strFieldList,

	 	 	char	* strFileName,

	 	 	char	* strKeyList,

	 	 	char	* strConditions,

	 	 	BOOL fGeneric)

Parameters
iSession The	session	identifier.

strFieldList A	list	of	field	names.	All	fields	must	have	been	declared	using
an	LceUseField	function.
Field	(i.e.	column)	names	may	be	specified	in	upper	or	lower
case.
Field	names	do	NOT	begin	with	"#"	(hash/pound)	signs.
This	list	may	refer	to	any	fields	from	the	specified	file.	Fields
may	be	real	or	virtual.

strFileName The	name	of	the	file.	This	file	must	have	been	declared	using
an	LceUseFile	function

strKeyList A	list	of	key	field	names.	These	key	fields	must	have	been
declared	using	the	LceUseField	function.	The	values	for	the
keys	are	set	using	the	LceSetFieldValue/	LceSetFieldValueU
function.
Key	fields	must	not	be	specified	if	the	*BLOCKBYKEY
option	was	used	in	the	preceding	LceSetSelectOptions.
Refer	to	the	notes	before	using	these	key	fields.

strConditions The	'Where'	clause	used	for	the	select.	Refer	to	the	notes	for

more	information,	including	how	to	correctly	use	DateTime
field	values.

fGeneric Refer	to	the	notes	for	more	information.
True	=	apply	a	generic	search.
False	=	do	not	apply	a	generic	search.

Return	Values
TRUE	is	returned	if	the	session	can	select	records.
FALSE	is	returned	if	an	error	occurs.

Notes
The	Where	clause,	specified	in	strConditions,	must	conform	to	the	rules	defined
for	Expression	format	and	definition	in	Specifying	Conditions	and	Expressions
in	the	LANSA	Technical	Reference	Guide.

If	the	Where	expression	uses	only	real	fields,	the	expression	is	evaluated
before	any	virtual	field	derivation	logic	is	executed.	This	means	that	if	the
expression	is	not	true,	the	record/row	is	skipped	before	incurring	the	virtual
field	derivation	overhead.
If	the	Where	expression	includes	one	or	more	virtual	fields,	the	expression	is
not	evaluated	until	all	virtual	logic	has	been	executed.
Bracketing	of	multiple	expression	components	is	mandatory.	For	example:

												(SALARY	*LT	30000)	*AND	(DEPTMENT	*EQ	'ADM')
Single	simple	expression	components	should	not	be	bracketed.	For	example:

												SALARY	*LT	30000
The	decimal	point	used	must	match	the	decimal	point	used	for	the	value	in
the	host	file.
Numeric	expression	calculations	and	comparisons	are	carried	out	at	(30,9)
precision	i.e.	21	integer	digits	and	9	decimal	digits	of	precision.	Calculations
or	comparisons	requiring	a	precision	above	this	level	may	produce
unexpected	results.
Alphanumeric	literal	values	must	be	enclosed	in	quotes	and	cannot	exceed
256	characters.
The	entire	Where	expression	cannot	exceed	2048	characters.
DateTime	field	values	must	be	converted	from	local	time	to	UTC	before
being	used	in	a	where	clause.	Use	LceLocalDateTimeToServer	to	do	the

its:LANSA015.CHM::/lansa/condexprsns.htm

adjustment.
Unicode	field	values	must	be	converted	to	a	formatted	hex	byte	stream
before	being	used	in	a	where	clause.	Use	LceUnicodeToHex	to	convert	a
Unicode	string	to	a	hex	byte	stream.

Key	and	Generic	search	considerations:
You	must	know	the	specific	key	fields	to	the	file.	The	key	fields	listed	can	be
a	subset	of	the	actual	keys	to	the	file,	but	the	sequence	in	which	the	keys	are
listed	must	match	the	sequence	of	the	keys	in	the	file.	This	is	very	important.
The	sequence	of	the	keys	must	match	the	file.	If	you	need	the	keys	in	a
different	sequence	you	must	use	a	logical	file.
The	fGeneric	flag	determines	whether	the	keys	must	match	exactly	or
whether	a	generic	key	search	should	apply.	If	a	generic	search	is	used	on	a
file	with	more	than	one	key	field,	then	the	search	will	apply	only	to	the	last
non-blank	key	field	specified.	Any	blank	key	field	will	be	considered
generic.
The	fGeneric	flag	is	ignored	for	fields	of	type	Date,	Time,	DateTime,
Integer,	and	Float.
You	do	not	have	to	use	the	complete	key	list.	You	could	use	the	first	two
fields	in	a	file	with	three	key	fields.	If	you	use	a	subset	of	the	key	fields,	you
are	implicitly	using	a	generic	search	on	the	unspecified	keys,	i.e.	match	key1
and	key2	while	key3	can	have	any	value.	In	this	case,	you	do	not	use	the
fGeneric	search.	If	you	did	use	the	generic	search	in	this	situation,	you	will
get	a	generic	search	based	on	key2	and	key3.

The	LceRequestSelectWhere	function	is	used	with	a	number	of	other	select
processing	functions.	If	the	*RECEIVEIMMED	option	is	not	used	with
LceSetSelectOptions,	the	general	pattern	of	these	functions	is	as	follows	:

LceSetSelectOptions	sets	the	selection	search	characteristics.
LceRequestSelectWhere	selects	records	on	the	host.
LceReceiveSelect	transfers	the	records	from	the	host	to	the	PC.
LceGetRecordCount	determines	how	many	records	were	transferred.
LceGetSelect	retrieves	a	single	record	from	the	group	of	records	transferred.

If	the	*RECEIVEIMMED	option	is	used,	then	the	functions	will	be	as	follows:
LceSetSelectOptions	sets	the	selection	search	characteristics.
LceRequestSelectWhere	selects	records	on	the	host.
LceReceiveNextX	reads	the	next	record	transferred.

This	function	can	only	be	executed	once	a	session	has	been	opened.
Tip
Performance	Considerations
For	better	performance,	whenever	possible	use	an	LceRequestSelect	instead	of
this	LceRequestSelectWhere	function.
If	your	host	is	an	IBM	i	and	when	LceRequestSelectWhere	must	be	used,
consider	using	the	*BLOCKBYRRN	and	*RECEIVEIMMED	select	options	in
the	preceding	LceSetSelectOptions	for	best	performance	and	lowest	impact	on
the	IBM	i	server.	Review	the	LceSetSelectOptions	for	more	details.
For	example:
LceSetFieldValue(iSessionId,	"DEPTMENT",	"ADM");
LceRequestSelectWhere(iSessionId,
"EMPNO,SURNAME,SALARY"
"PSLMST",
"DEPTMENT",
"SALARY	*GT	30000",
FALSE);
	
will	normally	be	more	efficient	than:
LceRequestSelectWhere(iSessionId,
"EMPNO,SURNAME,SALARY"
"PSLMST",
"",
"(SALARY	*GT	30000)	AND	(DEPTMENT	=	'ADM')",
FALSE);
	
Constantly	consider	the	viability	of	what	you	are	doing.
For	example,	a	select	operation	reading	10,000	rows	to	select	100,	frequently
used	from	multiple	PC	clients,	is	not	a	viable	operation	on	any	host	system.
Consider	setting	up	a	key/logical	view	to	better	support	this	type	of	operation.
The	concept	of	what	is	viable	varies	according	to

the	power	and	loading	of	the	host
the	speed	and	loading	of	the	communications	sub-system	moving	data
between	the	host	and	the	PC.
the	frequency	with	which	the	application	is	used	and	the	importance	of	the

result	it	produces.
Remember	that	the	LANSA	Open	functions	are	primarily	designed	to	act	as
high	performance	"back	ends"	to	programmer	designed	and	implemented
applications,	not	to	be	generic	end	user	query	tools	by	themselves.

Related	Functions
6.64	LceSetSelectOptions
6.45	LceLocalDateTimeToServer
6.67	LceUnicodeToHex
6.49	LceReceiveSelect
6.48	LceReceiveNextX
6.37	LceGetRecordCount
6.38	LceGetSelect
6.53	LceSelect
6.11	LceDeleteSelect

6.51.1	VB	Example
Public	Type	FIELD_DETAIL
				fieldLen	As	Long
				flags	As	Long
End	Type
	
Sub	SetEmployeesList()
				Dim	i	As	Integer
				Dim	fldData(3)	As	FIELD_DETAIL
	
				'	clear	list
				lstEmployees.Clear
				If	cmbSection.ListIndex	=	-1	Then	
Exit	Sub	'	no	department	do	nothing
				End	If	
	
				'	Select	data
				iRet	=	LceSetSelectOptions(iSession,	"*RECEIVEIMMED")
				'	set	keys	value		department/section
				If	iRet	=	LceTrue	Then	_
							iRet	=	LceSetFieldValue(iSession,	"DEPTMENT",	_
																	DeptKey(cmbDepartment.ListIndex))
				If	iRet	=	LceTrue	Then	_
							iRet	=	LceSetFieldValue(iSession,	"SECTION",	_
																	SectKey(cmbSection.ListIndex))
				'	Request	data
				If	iRet	=	LceFalse	then	exit	sub	'	Failed
	
				If	txtSurname	=	""	Then	'	no	surname	search
							iRet	=	LceRequestSelect(iSession,	"EMPNO,SURNAME,GIVENAME",	_
												"PSLMST1",	"DEPTMENT,SECTION",	False)
				Else
							iRet=	LceRequestSelectWhere(iSession,	_
										"EMPNO,SURNAME,GIVENAME",	_
										"PSLMST1",	"DEPTMENT,SECTION",	_
										"DEPTMENT	*EQ	"	&	_
										DeptKey(cmbDepartment.ListIndex))

	
				End	If
	
				If	iRet	=	LceTrue	Then
								sBuff	=	String(FIELD_DATA_SIZE	*	3	,	Chr(0))	'	plenty	of	space
								i	=	0
								ReDim	EmpKey(0)
								'	Read	all	records
								While	(LceReceiveNextX(iSession,	sBuff,	FIELD_DATA_SIZE	*	3,	fldData(0),	3)	_
															=	LceTrue)	
												ReDim	Preserve	EmpKey(i	+	1)
												'	Only	RDML	fields	retrieved	so	can	assume	starting	positions	are	in	fixed	positions
												lstEmployees.AddItem	(sTrim(Mid(sBuff,	28,	20))	_
																									&	"	"	&	sTrim(Mid(sBuff,	7,	20)))	'	Full	Name
												EmpKey(i)	=	sTrim(Left(sBuff,	5))	'	EmpNo
												i	=	i	+	1
								Wend
								'	Select	first	on	list
								If	lstEmployees.ListCount	>	0	Then	lstEmployees.ListIndex	=	0
			else
							'	failed
							…
				End	If
End	Sub
	

6.51.2	C	Example
BOOL	fOK;
int		iSession;
int		iRecords;
	
fOK	=	LceSetSelectOptions(iSession,	"*BLOCKBYRRN");
fOK	=	LceRequestSelectWhere(iSession,	"EMPNO,SURNAME,SALARY","PSLMST",	
"","(SALARY	*GT	50000)	AND	(SALARY	*LT	100000)",FALSE);
	
fOK	=	LceReceiveSelect(iSession,	"PSLMST");
fOK	=	LceGetRecordCount(iSession,	"PSLMST",	&iRecords);
for	(iCount=0;	iCount	<	iRecords;	i++)
{
								fOK	=	LceGetSelect(iSession,	"PSLMST",	iCount,	"EMPNO,SURNAME,SALARY");
}
	

6.52	LceRollBackWork
This	function	is	used	to	rollback	the	current	transaction	to	the	previous		commit
point	for	a	transaction	or	set	of	transactions	on	the	host.
An	LceSetCommitmentOn	function	must	have	been	executed	before
LceRollBackWork	can	be	used.

BOOL LceRollBackWork (int iSession)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

Return	Values
TRUE	is	returned	if	the	session	has	performed	the	function.
FALSE	is	returned	if	an	error	occurs.

Notes
LceRollBackWork	can	be	called	after	one	or	more	inserts,	updates	or	deletes
have	been	performed.
Commitment	control	allows	you	to	recreate	events	from	a	specific	point	which
would	otherwise	be	lost	due	to	a	system	or	application	failure.
Commitment	control	only	applies	to	files	for	which	it	has	been	specified	on	the
host.	It	is	your	responsibility	to	ensure	that	commitment	control	has	been
properly	configured	on	the	host.	Refer	to	the	appropriate	database	manuals	and
Commitment	Control	in	the	LANSA	Application	Design	Guide	and	Using
Commitment	Control	in	the	LANSA	for	iSeries	User	Guide	for	more	details
about	commitment	control	and	commitment	control	processing.

Related	Functions
6.54	LceSetCommitmentOff
6.55	LceSetCommitmentOn
6.9	LceCommitWork

its:LANSA065.CHM::/lansa/dsnbe_0060.htm
its:LANSA010.CHM::/lansa/ugubc_c10060.htm

6.52.1	VB	Example
	iRet	=	LceSetCommitmentOn(iSession)
iRet	=	LceOpenSession(iSession)	'	enable	commit	mode
...
if	(bCommit)	then
			iRet	=	LceCommitWork	(iSession)	
else
			iRet	=	LceRollBackWork	(iSession)	
end	if
	

6.52.2	C	Example
BOOL	fOK;
int		iSession;
	
iSession	=	LceGetSessionId
fOK	=	LceSetCommitmentOn(iSession);
fOK	=	LceOpenSession(iSession);
	
/*	perform	file	updates	*/
fOK	=	LceRollBackWork(iSession);
	

6.53	LceSelect
Select	and	retrieve	specified	fields	from	the	file	using	the	key	list	specified.

BOOL LceSelect (int iSession,

	 	 	char	far	* strFieldList,

	 	 	char	far	* strFileName,

	 	 	char	far	* strKeyList,

	 	 	BOOL fGeneric,

	 	 	int	far	* piRecordCount)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldList A	list	of	fields	to	be	retrieved	from	the	file.	Each	of	these
fields	must	have	been	declared	using	an	LceUseField
function.

strFileName The	name	of	the	file.	This	must	have	been	declared	using	an
LceUseFile	function.

strKeyList A	list	of	key	field	names.	These	key	fields	must	have	been
declared	using	the	LceUseField	function.	The	values	for	the
keys	are	set	using	the	LceSetFieldValue/	LceSetFieldValueU
function.	Refer	to	the	notes	for	key	and	generic	search
considerations.

fGeneric Refer	to	the	notes	for	further	information.
True	=	apply	a	generic	search.
False	=	do	not	apply	a	generic	search.

piRecordCount The	number	of	records	returned	by	the	select.

Return	Values
TRUE	is	returned	if	the	session	has	selected	records.
FALSE	is	returned	if	an	error	occurs.

Notes
Portability
Considerations

An	error	will	occur	if	you	attempt	to	use	a	generic	key
which	is	numeric	if	you	are	using	a	Windows,	Linux	or
other	non-IBM	i	host	system.

The	characteristic	of	this	LceSelect	search	can	be	specified	using	the
LceSetSelectOptions	function.
Note:	You	cannot	use	the	*RECEIVEIMMED	option	with	LceSelect.
This	function	is	a	simplified	version	of	these	functions:

LceRequestSelect
LceReceiveSelect
LceGetRecordCount.

Instead	of	calling	these	three	functions,	all	the	records	are	returned	after	the	one
LceSelect	call.
In	some	circumstances	the	use	of	LceSelect	may	not	be	the	best	option.	If	the
Host	is	slow	or	there	are	many	records	to	return,	then	it	may	be	better	to	use	the
LceRequestSelect,	LceReceiveSelect	and	LceGetRecordCount	functions,	as
LceRequestSelect	returns	control	to	the	caller	while	the	host	prepares	the	data.
While	this	is	happening,	your	application	can	perform	other	tasks	locally.
Key	and	Generic	search	considerations:

You	must	know	the	specific	key	fields	to	the	file.	The	key	fields	listed	can	be
a	subset	of	the	actual	keys	to	the	file,	but	the	sequence	in	which	the	keys	are
listed	must	match	the	sequence	of	the	keys	in	the	file.	This	is	very	important.
The	sequence	of	the	keys	must	match	the	file.	If	you	need	the	keys	in	a
different	sequence	you	must	use	a	logical	file.
The	fGeneric	flag	determines	whether	the	keys	must	match	exactly	or
whether	a	generic	key	search	should	apply.	If	a	generic	search	is	used	on	a
file	with	more	than	one	key	field,	then	the	search	will	apply	only	to	the	last
non-blank	key	field	specified.	Any	blank	key	field	will	be	considered
generic.
You	do	not	have	to	use	the	complete	key	list.	You	could	use	the	first	two
fields	in	a	file	with	three	key	fields.	If	you	use	a	subset	of	the	key	fields,	you
are	implicitly	using	a	generic	search	on	the	unspecified	keys,	i.e.	match	key1
and	key2	while	key3	can	have	any	value.	In	this	case,	you	do	not	use	the
fGeneric	search.	If	you	did	use	the	generic	search	in	this	situation,	you	will
get	a	generic	search	based	on	key2	and	key3.

This	function	can	only	be	executed	once	a	session	has	been	opened.

Related	Functions
6.64	LceSetSelectOptions
6.50	LceRequestSelect
6.49	LceReceiveSelect
6.51	LceRequestSelectWhere
6.37	LceGetRecordCount
6.38	LceGetSelect
6.11	LceDeleteSelect

6.53.1	VB	Example
Dim	iRet	As	Integer,	iRecords	As	Integer,	iCount	As	Integer,	_
									sBuff	As	String,	lFlags	As	Long	
	
iRet	=	LceSetSelectOptions(iSession,	"*BACKWARDS,		*MAXREC25")
iRet	=	LceSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	"",	_
									LceFalse,	iRecords)
	
sBuff	=	space(256,	chr(0))
For	iCount=1	to	iRecords
									iRet	=	LceGetSelect(iSession,	"PSLMST",	iCount,	"SURNAME")
									iRet	=	LceGetFieldValueX(iSession,	"SURNAME",	sBuff,	lFlags)
									lstNames.AddItem		sTrim	(sBuff)
									lstNames.ItemData	(lstNames.NewIndex)	=	iCount
Next
	

6.53.2	C	Example
BOOL	fOK;
int		iSession;
int		iRecordCount;
int		i;
long	lFlags;
	
fOK	=	LceSetSelectOptions(iSession,	"*BACKWARDS,		*MAXREC25");
	
fOK	=	LceSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	"",	
									FALSE,	&iRecordCount);
for	(i=1;	i	<=	iRecordCount;	i++)
{
									fOK	=	LceGetSelect(iSession,	"PSLMST",	i,	"SURNAME,	SALARY");
									fOK	=	LceGetFieldValueX(iSession,	"SURNAME",	(char	far	*)	strSurname,	lFlags);
}
	

6.54	LceSetCommitmentOff
Turns	off	commitment	control	on	the	host	system.

BOOL LceSetCommitmentOff (int iSession)	

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

Return	Values
TRUE	is	returned	if	commitment	control	is	successfully	turned	off.
FALSE	is	returned	if	an	error	occurs.

Notes
Once	this	function	has	been	executed,	the	LceCommitWork	or
LceRollBackWork	cannot	be	used.
You	must	end	this	session	before	you	can	turn	commitment	control	on	again.

This	function	must	be	executed	before	the	LceOpenSession	function.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.55	LceSetCommitmentOn
6.9	LceCommitWork
6.52	LceRollBackWork

6.54.1	VB	Example
'	set	commit	mode
iSession	=	LceGetSessionId():	
If	bCommit	=	True	Then
				iRet	=	LceSetCommitmentOn(iSession)
Else
				iRet	=	LceSetCommitmentOff(iSession)
End	If
iRet	=	LceOpenSession(iSession):
	

6.54.2	C	Example
BOOL	fOK;
int		iSession;
	
iSession	=	LceGetSessionId();
fOK	=	LceSetCommitmentOff(iSession);
fOK	=	LceOpenSession(iSession);
	

6.55	LceSetCommitmentOn
Turns	on	commitment	control	on	the	host	system.
	 LceSetCommitmentOn (int iSession)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

Return	Values
TRUE	is	returned	if	commitment	control	has	been	successfully	turned	on.
FALSE	is	returned	if	an	error	occurs.

Notes
Commitment	control	allows	you	to	recreate	events	from	a	specific	point	which
would	otherwise	be	lost	due	to	a	system	or	application	failure.	Host
commitment	control	only	applies	to	files	for	which	it	has	been	specified.	It	is
your	responsibility	to	ensure	that	commitment	control	has	been	properly
configured	on	the	host.	Refer	to	the	appropriate	IBM	manuals	and	Commitment
Control	in	the	LANSA	Application	Design	Guide	and	Using	Commitment
Control	in	the	LANSA	for	iSeries	User	Guide	for	more	details	about
commitment	control	and	commitment	control	processing.
This	function	must	be	executed	before	you	can	use	the	LceCommitWork	or
LceRollBackWork	functions.	
You	must	end	this	session	if	you	wish	to	switch	commitment	control	off.

This	function	must	be	executed	before	the	LceOpenSession	function.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.54	LceSetCommitmentOff
6.9	LceCommitWork
6.52	LceRollBackWork

its:LANSA065.CHM::/lansa/dsnbe_0060.htm
its:LANSA010.CHM::/lansa/ugubc_c10060.htm

6.55.1	VB	Example
'	set	commit	mode
iSession	=	LceGetSessionId():	
If	bCommit	=	True	Then
				iRet	=	LceSetCommitmentOn(iSession)
Else
				iRet	=	LceSetCommitmentOff(iSession)
End	If
iRet	=	LceOpenSession(iSession):
	

6.55.2	C	Example
BOOL	fOK;
int		iSession;
	
iSession	=	LceGetSessionId();
	
fOK	=	LceSetCommitmentOn(iSession);
	
fOK	=	LceOpenSession(iSession);
	

6.56	LceSetCommsCursor
The	Windows	hourglass	cursor	is	used	with	most	Windows	products	to	indicate
that	communication	between	the	client	and	server	is	in	progress.	This	function
allows	you	to	vary	the	type	of	cursor	or	to	have	no	cursor	at	all.

BOOL LceSetCommsCursor (int iCursorType)

Parameters
iCursorType The	Cursor	type	to	use.	Refer	to	the	notes	for	the	cursor	types

available.

Return	Values
TRUE	is	returned	if	the	function	is	successful.
FALSE	is	returned	if	an	incorrect	cursor	type	was	specified.

Notes
The	available	cursor	types	are:
LCE_CURSOR_DEFAULT
The	standard	LANSA	Open	cursor.	This	is	LANSA	Open's	default
communications	cursor.
LCE_CURSOR_HOURGLASS
The	standard	hourglass	cursor	which	could	be	used	when	LANSA	Open	is	used
with	a	product,	such	as	a	spreadsheet,	which	may	use	this	cursor.
LCE_CURSOR_NONE
No	cursor	will	be	set	when	communications	is	in	progress.	If	the	calling
application	does	not	set	the	cursor	itself,	then	the	standard	Windows	pointer	will
remain	displayed.

This	function	performs	no	communications	to	the	host.
Tip
Make	sure	that	the	most	frequently	used	cursor	type	is	set	in	the	System
Registry	as	described	in	Communication	and	Session	Parameters	in	the
Installing	LANSA	on	Windows	Guide.

its:Lansa041.chm::/lansa/l4winsb9_0015.htm

6.56.1	VB	Example
iRet	=	LceSetCommsCursor(LCE_CURSOR_HOURGLASS)

6.56.2	C	Example
C	Example	1
LceSetCommsCursor(LCE_CURSOR_NONE);

C	Example	2
iCursorDef	=	1
iCursorGlass	=	2
iCursorNone	=	3
	
CALL	LceSetCommsCursor(iCursorDef)
	

6.57	LceSetCommsType
The	Communications	Type	is	detected	automatically.	This	function	is	provided
for	backward	compatibility	only.	It	performs	no	actions	and	will	return
immediately	with	a	return	value	of	TRUE.

BOOL LceSetCommsType (int 	iCommsType)

6.58	LceSetFieldValue
Sets	the	field	value	in	the	field	information	area.	This	function	is	very
important.	It	is	used	to	assign	values	to	fields	in	an	information	area,	so	that
they	may	be	used	in	other	functions,	such	as	LceFetch.

BOOL LceSetFieldValue (int iSession,

	 	 	char	far	* strFieldName,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	name	of	the	field	as	used	in	the	Repository.	This	field
must	have	been	declared	using	an	LceUseField	function.

strValue The	string	which	contains	the	value.	The	length	of	this
parameter	should	not	exceed	RDMLX_FIELD_DATA_SIZE	+
1	as	defined	in	the	LCOE.H	header	file.	A	NULL	pointer
indicates	the	value	is	*SQLNULL.

Return	Values
TRUE	is	returned	if	the	session	has	set	the	field	value.
FALSE	is	returned	if	an	error	occurs.

Notes
This	concept	may	be	difficult	to	understand,	but	you	must	remember	that	you
are	accessing	data	on	a	server	and	not	locally.	You	do	not	have	the	files	and	their
field	characteristics	stored	locally.	The	file	and	field	definitions	are	not
compiled	into	your	applications.	As	a	developer,	you	may	know	that	the
employee	number	"EMPNO"	is	an	integer,	but	the	application	has	no	way	of
knowing	this	until	it	connects	to	the	server.	Consequently,	the	intermediate	step
of	setting	field	values	and	getting	field	values	is	required.
The	LceSetFieldValue	function	uses	string	parameters.	Even	if	the	field	you	are
setting	is	a	numeric,	it	must	be	assigned	a	string	value.	You	must	convert	the
numeric	value	to	a	string	before	using	it	in	this	function.
An	error	will	be	generated	if	you	attempt	to	assign	*SQLNULL	to	a	field	which

does	not	have	the	ASQN	input	attribute.	Use	LceGetFieldAttributes	to
determine	if	a	field	can	be	assigned	*SQLNULL.
If	the	field	is	a	Unicode	type	(NChar	or	NVarchar),	the	value	will	be
automatically	converted	to	Unicode	and	the	LceSetFieldValueU	function	called.

This	function	may	be	executed	at	any	time	after	the	session	is	opened.
This	function	performs	no	communications	to	the	host.

Related	Functions
LceSetFieldValueU
6.29	LceGetFieldValueX
6.18	LceGetDefaultValueU

6.58.1	VB	Example
Private	Sub	txtCode_Change()
				'	whenever	txtCode	changes,	set	field	value.	
				'	This	is	safer	than	using	lost	focus,	as	the	field	can
				'	change	without	getting	focus	
	
				Dim	iRet	As	Integer
	
				If	txtCode	<>	""	Then
								iRet	=	LceSetFieldValue(iSession,	"SKILCODE",	txtCode)							
				Else
								'	""	is	not	a	null	terminated	string
								iRet	=	LceSetFieldValue(iSession,	"SKILCODE",	vbNullString)
				End	If
End	
	

6.58.2	C	Examples
C	Example	1
BOOL	fOK;
int		iSession;
	
fOK	=	LceSetFieldValue(iSession,	"EMPNO",	"12345");
	

C	Example	2
BOOL	fOK;
int		iSession;
	
fOK	=	LceSetFieldValue(iSession,	"EMPNO",	NULL);
	

C	Example	3
strcpy(strField,	"EMPNO");
if	!LceSetFieldValue(iSession,	strField,	"12345")
{
									/*	return	error	*/
}
	
Note:	You	are	not	assigning	strField	=	"12345".	You	are	assigning	the	field
"EMPNO",	which	happens	to	be	stored	in	the	variable	strField,	to	the	value	of
"12345".

C	Example	4
iValue	=	12345;
sprintf(strValue,	"%ld",	iValue);
strcpy(strKey,		"EMPNO");
	
if	!LceSetFieldValue(iSession,	strKey	,	strValue)
{
									/*	return	error	*/
}
	
Note:	The	field	"EMPNO"	may	be	a	numeric	value	in	a	file;	however,	the	field
must	be	assigned	a	string	value.	If	the	value	entered	by	a	user	was	an	integer,	for

example	iValue,	it	must	be	converted	to	a	string	before	it	is	used	in	the
LceSetFieldValue	function.

6.59	LceSetFieldValueU
Sets	the	field	value	in	the	field	information	area.	This	function	should	be	used
for	Unicode	fields.	Unicode	fields	are	field	types	NChar	and	NVarchar.	This
function	is	very	important.	It	is	used	to	assign	values	to	fields	in	an	information
area,	so	that	they	may	be	used	in	other	functions,	such	as	LceFetch.

BOOL LceSetFieldValue (int iSession,

	 	 char	far	* strFieldName,

	 	 wchar_t	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldName The	name	of	the	field	as	used	in	the	Repository.	This	field
must	have	been	declared	using	an	LceUseField	function.

strValue The	string	which	contains	the	value.	The	length	of	this
parameter	should	not	exceed	RDMLX_FIELD_DATA_SIZE	+
2	as	defined	in	the	LCOE.H	header	file.	A	NULL	pointer
indicates	the	value	is	*SQLNULL.

Return	Values
TRUE	is	returned	if	the	session	has	set	the	field	value.
FALSE	is	returned	if	an	error	occurs.

Notes
See	notes	for	LceSetFieldValue.
If	this	function	is	used	with	non-Unicode	fields,	it	will	automatically	convert	the
value	to	an	ascii	value	and	call	LceSetFieldValue.

This	function	may	be	executed	at	any	time	after	the	session	is	opened.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.28	LceGetFieldValue
6.29	LceGetFieldValueX
6.18	LceGetDefaultValueU

6.59.1	VB	Example
Private	Sub	txtCode_Change()
				'	whenever	txtCode	changes,	set	field	value.	
				'	This	is	safer	than	using	lost	focus,	as	the	field	can
				'	change	without	getting	focus	
	
				Dim	iRet	As	Integer
	
				If	txtCode	<>	""	Then
								iRet	=	LceSetFieldValueU(iSession,	"TOWN",	txtCode)							
				Else
								'	""	is	not	a	null	terminated	string
								iRet	=	LceSetFieldValueU(iSession,	"TOWN",	vbNullString)
				End	If
End	
	

6.59.2	C	Examples
C	Example	1
BOOL	fOK;
int		iSession;
	
fOK	=	LceSetFieldValueU(iSession,	"TOWN",	"宮代町");
	

C	Example	2
BOOL	fOK;
int		iSession;
	
fOK	=	LceSetFieldValueU(iSession,	"TOWN",	NULL);
	

C	Example	3
strcpy(strField,	"TOWN");
if	!LceSetFieldValueU(iSession,	strField,	"Henty")
{
									/*	return	error	*/
}
	
Note:	You	are	not	assigning	strField	=	"12345".	You	are	assigning	the	field
"EMPNO",	which	happens	to	be	stored	in	the	variable	strField,	to	the	value	of
"12345".

6.60	LceSetHostType
The	Host	Type	is	detected	automatically.	This	function	is	provided	for	backward
compatibility	only.	It	performs	no	actions	and	will	return	immediately	with	a
return	value	of	TRUE.	If	your	application	needs	to	know	the	host	type,	use	the
new	function	LceGetSystemAttribute.

BOOL LceSetHostType (int iHostType)

Related	Functions
6.41	LceGetSystemAttribute

6.61	LceSetIBMiSignon
Sets	the	password	of	the	user	profile	on	the	IBM	i	host.

BOOL

	

LceSetIBMiSignon

	

(char	far	*

int

strServer,	

iMapperPort,

	 	 	BOOL fSSLRequired

	 	 	char	far	*	 strUserid,

	 	 char	far	* strPassword,

	 	 char	far	* strNewPassword,

	 	 BOOL fEncryptPassword,

	 	 	char	far	* strReturnCode)

Parameters
strServer The	IBM	i	server	name.	The	length	should	not	exceed

SYSTEM_LENGTH	as	defined	in	LCOE.h.

iMapperPort Defaults	to	449	if	passed	as	0.

fSSLRequired This	parameter	provides	the	ability	to	use	SSL	to
communicate	with	the	IBM	i	server.
True	=	Use	SSL
False	=	Do	not	use	SSL.

strUserid The	User	Identifier.	The	length	should	not	exceed
USERID_LENGTH	as	defined	in	the	LCOE.h	header	file.

strPassword The	password.	The	length	should	not	exceed
PASSWORD_LONG_LENGTH	as	defined	in	the
LCOE.H	header	file

strNewPassword The	new	password.	The	length	should	not	exceed
PASSWORD_LONG_LENGTH	as	defined	in	the
LCOE.H	header	file.

fEncryptPassword This	parameter	provides	the	ability	to	encrypt	the

password	in	communications	with	the	IBM	i	server.
True	=	Encrypt	the	password.
False	=	Do	not	encrypt	the	password

strReturnCode The	buffer	location	for	the	return	code.	The	size	should	be
at	least	RETURN_CODE_LENGTH	+	1.
The	return	codes	returned:
OK	-	Signon	is	OK
CE	-	Communications	error
LE	-	Local	Encryption	error
NR	-	User	name	does	not	exist
SE	-	Server	error
WP	-	Wrong	Password
UD	-	User	name	is	disabled
LP	–	Password	is	too	long
NE	–	New	Password	Error

Return	Values
TRUE	indicates	that	request	completed	without	error.
FALSE	indicates	an	error	occurred.

Notes
Because	of	the	way	that	the	IBM	i	operating	system	handles	user	names	and
short	passwords	(Password	level	0	or	1)	with	the	US	English	(CCSID	037)
characters	'@',	'#'	and	'$',	this	facility	will	only	work	with	such	user	names	and
short	passwords	if	the	IBM	i	is	operating	in	US	English	(CCSID	037).
The	current	implementation	of	SSL	used	for	this	facility	ensures	that	encryption
is	negotiated	and	used	for	communication	between	the	client	and	the	IBM	i
server.	It	does	not	verify	that	the	IBM	i	server	is	that	specified	on	the	security
certificate	that	has	been	downloaded.
The	interplay	between	SSL	Required	and	Encrypt	Password	is	interesting.	If
SSL	is	available	and	SSL	Required	is	TRUE,	then	strictly	speaking	password
encryption	is	not	needed	because	the	entire	communication	stream	is	encrypted,
so	Encrypt	Password	could	be	specified	as	FALSE.	If	SSL	Required	is	FALSE,
then	we	recommend	that	Encrypt	Password	be	specified	as	TRUE.
The	reasons	for	Return	Code	CE	-Communications	error	can	include:

a	misspelling	in	the	IBM	i	Server	name;
the	IBM	i	Server	name	not	being	locatable	by	your	DNS;
a	firewall	between	the	local	computer	and	the	IBM	i	server;
the	IBM	i	server	being	offline;
TCP/IP	not	being	started	on	the	IBM	i	server;
TCP/IP	host	servers	not	being	started	on	the	IBM	i	server;
SSL	Required	TRUE	and	the	SSL	TCP/IP	host	servers	not	being	started	on
the	IBM	i	server;
SSL	Required	FALSE	and	the	non-SSL	TCP/IP	host	servers	not	being	started
on	the	IBM	i	server.

If	Return	Codes	'SE	-	Server	Error'	or	'NE	-	New	Password	Error'	is	returned,	a
review	of	the	joblog	for	the	QZSOSIGN	job	on	the	IBM	i	server	should	show
the	reason	in	detail.

Related	Functions
6.12	LceDisplayErrors
6.34	LceGetIBMiSignon

6.61.1	VB	Example
Declare	Function	LceSetIBMiSignon	Lib	"LCOEW32"	(_
				ByVal	sServer	As	String,	_
				ByVal	iMapperPort	As	Integer,	_
				ByVal	bSslRequired	As	Byte,	_
				ByVal	sUserId	As	String,	_
				ByVal	sPassword	As	String,	_
				ByVal	sNewPassword	As	String,	_
				ByVal	bEncryptPassword	As	Byte,	_
				ByVal	sReturnCode	As	String	_
)	As	Integer
	
Sub	LopenTest1()
	
Dim	sServer	As	String
Dim	iMapperPort	As	Integer
Dim	bSslRequired	As	Byte
Dim	sUserId	As	String
Dim	sPassword	As	String
Dim	sNewPassword	As	String
Dim	bEncryptPassword	As	Byte
Dim	sReturnCode	As	String
Dim	i	As	Integer
	
sServer	=	"myserver"
iMapperPort	=	0
bSslRequired	=	False
sUserId	=	"myuser"
sPassword	=	"mypasswd"
sNewPassword	=	"mynewpassword"
bEncryptPassword	=	True
	
sReturnCode	=	String(3,	Chr(0))
sExpiryDate	=	String(20,	Chr(0))
	
Call	LceSetIBMiSignon(sServer,	iMapperPort,	bSslRequired,	sUserId,
sPassword,	sNewPassword,	bEncryptPassword,	sReturnCode)

	
Sheet1.Columns("B").ColumnWidth	=	20
Sheet1.Cells(4,	"B")	=	"Return	Code"
Sheet1.Cells(4,	"C")	=	sReturnCode
	
End	Sub	

6.61.2	C	Example
char	strServer[SYSTEM_LENGTH	+	1]	=	"myserver";
int		iMapperPort	=	0;
BOOL	fSSLRequired	=	false;
char	strUserid[USERID_LENGTH	+	1]	=	"myuser";
char	strPassword[PASSWORD_LONG_LENGTH	+	1]	=	"mypasswd";
char	strNewPassword[PASSWORD_LONG_LENGTH	+	1]	=
"mynewpassword";
BOOL	fEncryptPassword	=	true;
char	strReturnCode[RETURN_CODE_LENGTH	+	1];
BOOL	rc;
	
rc	=	LceSetIBMiSignon(strServer,	iMapperPort,	fSSLRequired,	strUserid,
strPassword,	strNewPassword,	fEncryptPassword,	strReturnCode);
	
if	(rc)
{
			if	(strcmp(strReturnCode,	"OK")	==	0)
			{
						printf("Signon	details	successfully	changed.");
			}
			else
			{
						printf("The	request	to	the	server	has	failed	with	return	code:	%s\n",
strReturnCode);
			}
}
else
{
			printf("The	function	failed	to	run	successfully\n");
}	

6.61.3	C#	Example
		
namespace	LansaOpenNative
{
			class	LansaOpen
			{
						[DllImport("lcoew32.dll",	CharSet	=	CharSet.Ansi)]
						public	static	extern	int	LceSetIBMiSignon(
									StringBuilder																													server,
									int																																							mapperPort,
									int																																							sslRequired,
									StringBuilder																													userId,
									StringBuilder																													password,
									StringBuilder																													newPassword,
									int																																							encryptPassword,
									StringBuilder																													returnCode);
			}
}
	
private	void	LOpenSample()
{
			String	strServer	=	"myserver";
			int	iMapperPort	=	0;
			bool	fSSLRequired	=	false;
			String	strUserid	=	"myuser";
			String	strPassword	=	"mypasswd";
			String	strNewPassword	=	"mynewpassword";
			bool	fEncryptPassword	=	true;
			StringBuilder	strReturnCode	=	new	StringBuilder(3);
			bool	rc;
	
			rc	=	LansaOpen.LceSetIBMiSignon(
						new	StringBuilder(strServer),
						iMapperPort,
						(fSSLRequired	?	1	:	0),
						new	StringBuilder(strUserid),
						new	StringBuilder(strPassword),

						new	StringBuilder(strNewPassword),
						(fEncryptPassword	?	1	:	0),
						strReturnCode);
	
			if	(rc)
			{
						if	(strReturnCode.ToString()	==	"OK")
						{
									txtStatusField.Text	=	"Signon	details	successfully	changed";
						}
						else
						{
									txtStatusField.Text	=	String.Format("The	request	to	the	server	has	failed
with	return	code:	{0}",	strReturnCode);
						}
			}
			else
			{
						txtStatusField.Text	=	"The	function	failed	to	run	successfully";
			}
}

6.62	LceSetKerberosOff
This	function	indicates	that	the	connection	to	the	server	should	no	longer	use
Windows	Credentials	(Kerberos	/	Single	Signon	/	SSO).

BOOL LceSetKerberosOff (int iSession)

Parameters
iSession The	session	identifier	as	returned	by	LceSetKerberosOff.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
If	you	use	this	function,	you	must	also	use	the	LceSetKerberosOn	function.

This	function	must	be	executed	after	LceGetSessionId	and	before
LceOpenSession.

Related	Functions
6.63	LceSetKerberosOn

6.63	LceSetKerberosOn
This	function	indicates	that	the	connection	to	the	server	will	be	made	using
Windows	Credentials	(Kerberos	/	Single	Signon	/	SSO)	rather	than	the	User	Id.
This	means	that	the	user's	Windows	profile	and	password	is	used	to	sign	on	to
the	server.	The	server	must	have	been	configured	for	Single	Sign	On,	and	the
user	enrolled,	before	this	can	be	done.

BOOL LceSetKerberosOn (int iSession)

Parameters
iSession The	session	identifier	as	returned	by	LceSetKerberosOn.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
If	you	use	this	function,	you	must	also	use	the	LceSetKerberosOff	function.

This	function	must	be	executed	after	LceGetSessionId	and	before
LceOpenSession.

Kerberos	works	without	further	configuration	directly	to	a	server	with
no	access	outside	that	server,	say	to	SQL	Server	or	a	file	share.

If	access	outside	of	that	1	server	is	required	–	so	called	"multi-hop"	–
then	this	is	what	is	supported:

1.Trust	whole	computer	to	*any*	services	–	We	have	tested	and
proved	this	is	working
2.Trust	a	specific	domain	user	to	*any*	services	–	We	have	tested	and
proved	this	is	working	(this	requires	setting	up	listener	properly	to	run
as	a	specific	user,	see	the	attached	document.	This	should	be	verified
first	using	lcoecho)

If	your	environment	does	not	allow	one	of	these	configurations	then
multi-hop	cannot	be	used.

Related	Functions
6.62	LceSetKerberosOff

6.64	LceSetSelectOptions
Specifies	the	options	to	be	used	for	the	next	SELECT	or	FETCH	function.
This	function	sets	the	characteristic	of	the	search	when	an	LceRequestSelect	or
LceSelect	function	is	used.	It	is	also	used	for	record	locking	when	an	LceFetch
function	is	used.

BOOL LceSetSelectOptions (int iSession,

	 	 	char	far	* strOptions)	

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strOptions A	comma-separated	list	of	SELECT	or	FETCH	options.	The
options	used	will	revert	to	their	default	values	after	the	next
LceRequestSelect	or	LceFetch	function.		Refer	to	the	Notes	for
details.

strOptions
Valid	SELECT	options:

*BACKWARDS Records	are	retrieved	in	reverse	order.

*STARTKEY This	key	is	used	as	the	starting	position	for	the
select.

*MAXRECnn Select	a	maximum	of	nn	records.

*BLOCKBYKEY[nnnn] Block	by	key.	Only	valid	on	IBM	i	hosts.

*BLOCKBYRRN[nnnn] Block	by	relative	record	number.	Only	valid	on
IBM	i	hosts.

*RECEIVEIMMED Receive	immediately.

Valid	FETCH	option:

*LOCK Locks	the	record	to	prevent	access	by	another	application.

If	no	options	are	specified,	or	if	one	is	missed,	the	default	for	that	option	is	used.
After	the	next	Select	request,	these	defaults	are	re-instated.
The	default	options	for	SELECT	are:

	 Forward	record	retrieval.

	 No	*STARTKEY	option.

	 No	record	selection	limit.

	 No	record	locking.

	 No	blocked	I/O	performed.

	 The	records	will	not	be	returned	until	they've	all	been	read	at	the	host.

The	default	option	for	FETCH:

	 No	record	locking.

Return	Values
TRUE	is	returned	if	valid	options	are	set.
FALSE	is	returned	if	an	error	occurs.

Notes
Portability
Considerations

The	options	*BLOCKBYKEY	and	*BLOCKBYRRN
and	*LOCK	are	only	valid	on	IBM	i	hosts.	They	are
ignored	on	other	platforms.
For	RDMLX	files,	*BLOCKBYKEY	and
*BLOCKBYRRN	are	always	ignored.
For	RDML	files,	*BLOCKBYKEY	and
*BLOCKBYRRN	are	valid	for	IBM	i	hosts,	but	ignored
on	other	platforms.
The	option	*LOCK	is	only	valid	on	IBM	i	hosts.	It	is
ignored	on	other	platforms.	For	RDMLX	files,	if	the
OAM	cannot	support	locking	because	it	is	using	SQL,	an
error	will	be	returned	from	the	LceFetch	call.

*BACKWARDS
Records	are	retrieved	in	reverse	order.	This	option	indicates	that	rows	are	to	be
processed	in	reverse	order	to	that	which	would	normally	be	used.	Backwards
processing	by	sequential,	full	or	partial	key	is	supported.
This	option	must	not	be	used	with	either	of	the	*BLOCKBY	options.
*STARTKEY

The	key	is	used	as	the	starting	position	for	the	first	read	operation.	The	first
record	read	will	be	the	first	one	which	has	a	key	equal	to	or	greater	than	the	key
values	specified.	All	subsequent	records	are	then	processed	with	no	regard	to
the	keys.
*MAXRECnn
This	option	is	used	to	indicate	the	maximum	number	of	records	which	are	to	be
returned.	It	can	be	used	with	all	other	select	options.
The	nn	parameter	must	be	specified	and	it	must	be	greater	than	zero,	otherwise
no	records	will	be	returned.
*BLOCKBYKEY[nnnn]
Block	by	key.
This	is	a	select	option	that	will	improve	application	performance,	depending	on
whether	the	data	is	in	the	same	physical	order	as	the	primary	key	of	the	file.
*BLOCKBYKEY	is	generally	less	efficient	than	*BLOCKBYRRN	unless	the
IBM	i	physical	file	has	been	recently	reorganized.	(Reorganization	ensures	that
the	data	is	in	the	same	order	as	the	file's	primary	key.)
This	option	cannot	be	specified	with	the	*BLOCKBYRRN	option.	i.e.	You
cannot	specify	both	options.
Important	Note:	This	option	is	only	valid	on	IBM	i	hosts.	It	is	ignored	on	other
platforms.
Note	the	following	about	using	this	option:

It	may	only	be	used	when	an	entire	file	is	to	be	processed	from	end	to	end.
The	"nnnn"	portion	of	the	option	is	optional.	This	is	the	blocking	factor	that
the	host	based	I/O	module	should	use	when	reading	data	during	the	select
operation.	If	used,	it	must	be	an	integer	in	the	range	1	to	9999.		Generally	the
"nnnn"	option	should	be	reserved	for	use	in	high	speed	file	transfer
operations.	When	the	"nnnn"	option	is	not	specified,	the	OS/400	operating
system	will	automatically	calculate	an	appropriate	value.
Before	using	this	option,	the	associated	I/O	module	on	the	host	must	have
been	recompiled	some	time	after	the	system	definition	data	area,
DC@OSVEROP,	was	set	to	contain	options	*IOMXSERVER	and
*IOMBLOCKBYKEY.	Failure	to	do	this	will	cause	your	application	to	fail.
Refer	to	Version	Dependancy	Data	Area	DC@OSVEROP	in	the	LANSA	for
iSeries	User	Guide	for	more	details	about	data	area	DC@OSVEROP.
This	option	may	be	used	with	the	*RECEIVEIMMED	option.

its:LANSA010.CHM::/lansa/ugubc_c10025.htm

Rows	are	returned	in	the	order	of	the	primary	key	of	the	physical	file	from
which	data	is	being	selected.	The	host's	relative	record	numbers	are	not
available	and	have	no	defined	value	when	used	with	this	option.
The	following	LceRequestSelect	or	LceRequestSelectWhere	functions	may
only	refer	to	a	physical	file.	References	to	logical	files	are	not	supported	and
may	cause	unpredictable	results	and/or	errors.
The	key	fields	must	not	be	specified	on	the	following	LceRequestSelect	or
LceRequestSelectWhere	functions.
This	option	only	persists	until	the	next	Select	request.	After	the	Select
request	is	executed,	this	option	is	destroyed	and	the	defaults	are	reinstated.

*BLOCKBYRRN[nnnn]
Block	by	relative	record	number.
*BLOCKBYRRN	is	generally	the	most	efficient	type	of	IBM	i	sequential
database	file	access.	Used	correctly	and	with	an	appropriate	blocking	factor,	it
can	improve	sequential	access	time	by	a	factor	of	10	or	more.	This	improvement
may	not	be	significant,	however,	if	communications	between	the	IBM	i	and
your	PC	are	slow.
This	option	cannot	be	used	with	the	*BLOCKBYKEY	option.	i.e.	You	cannot
specify	both	options.
Important	Note:	This	option	is	only	valid	on	IBM	i	hosts.	It	is	are	ignored	on
other	platforms.
Note	the	following	about	using	this	option:

It	may	only	be	used	when	the	entire	file	is	to	be	processed	from	end	to	end.
The	"nnnn"	portion	of	the	option	is	optional.	This	is	the	blocking	factor	that
the	IBM	i	based	I/O	module	should	use	when	reading	data	during	the	select
operation.	If	used,	it	must	be	an	integer	in	the	range	1	to	9999.		Generally	the
"nnnn"	option	should	be	reserved	for	use	in	high	speed	file	transfer
operations.	When	the	"nnnn"	option	is	not	specified,	the	OS/400	operating
system	will	automatically	calculate	an	appropriate	value.
Rows	are	returned	in	the	order	of	their	relative	record	number	(i.e.	the	order
the	rows	were	created	or	organized	into)	from	the	physical	file.	The	IBM	i's
relative	record	numbers	are	not	available	for	use	with	this	option.
Before	using	this	option,	the	associated	I/O	module	on	the	IBM	i	must	have
been	recompiled	some	time	after	the	system	definition	data	area,
DC@OSVEROP,	was	set	to	contain	options	*IOMXSERVER	and
*IOMBLOCKBYKEY.	Failure	to	do	this	will	cause	application	failure.

Refer	to	Version	Dependancy	Data	Area	DC@OSVEROP	in	the	LANSA	for
iSeries	User	Guide	for	more	details	about	data	area	DC@OSVEROP.
*BLOCKBYRRN	can	be	used	with	the	*RECEIVEIMMED	option.
This	option	only	persists	until	the	next	Select	request.	After	the	Select
request	is	executed,	this	option	is	destroyed	and		the		defaults	are	reinstated.

*RECEIVEIMMED
Receive	immediately,	to	indicate	that	the	next	Select	operation	is	to	be
performed	in	"immediate"	mode.	This	option	may	substantially	improve	the
time	taken	to	select	rows,	particularly	where	a	large	number	are	involved.
Note	the	following	about	using	this	option:

This	option	only	persists	until	the	next	Select	request.	After	the	Select
request	is	executed,	this	option	is	destroyed	and	the	system's	defaults	are
reinstated.
This	option	can	only	be	used	with	the	LceRequestSelect	and
LceRequestSelectWhere	functions	-	not	with	LceSelect.
Once	a	"Select"	has	been	issued	under	this	option,	ALL	selected	records
must	be	received	by	using	LceReceiveNextX	until	LceReceiveNextX
indicates	that	there	are	no	more	rows	to	receive.	An	LceDeleteSelect	can	be
issued	to	purge	any	remaining	records.
This	option	cannot	be	used	with	the	LceSelect	function	or	the
LceReceiveSelect,	LceGetSelect	and	LceGetRecordCount	functions.	Doing
so	will	lead	to	unpredictable	results	and/or	application	failure.
While	repeated	LceReceiveNextX	operations	are	receiving	ALL	selected
records,	no	other	I/O	operation	at	all	(e.g.	LceFetch)	is	permitted	with	the
same	Session	Id,	regardless	of	whether	it	involves	the	same	file	or	not.
This	function	can	only	be	executed	once	a	session	has	been	opened.

The	LceSetSelectOptions	function	is	used	with	a	number	of	other	select
processing	functions.	The	general	pattern	of	these	functions	is	as	follows	if	the
*RECEIVEIMMED	option	is	not	used:

LceSetSelectOptions	sets	the	selection	search	characteristics.
LceRequestSelect	selects	records	on	the	host.
LceReceiveSelect	transfers	the	records	from	the	host	to	the	PC.
LceGetRecordCount	determines	how	many	records	were	transferred.
LceGetSelect	retrieves	a	single	record	from	the	group	of	records	transferred.

its:LANSA010.CHM::/lansa/ugubc_c10025.htm

If	the	*RECEIVEIMMED	option	is	used,	then	the	functions	will	be	as	follows:
LceSetSelectOptions	sets	the	selection	search	characteristics.
LceRequestSelect	selects	records	on	the	host.
LceReceiveNextX	reads	the	next	records	sent	and	stored	on	the	PC.

Related	Functions
6.15	LceFetch
6.50	LceRequestSelect
6.49	LceReceiveSelect
6.51	LceRequestSelectWhere
6.48	LceReceiveNextX
6.37	LceGetRecordCount
6.38	LceGetSelect
6.53	LceSelect
6.11	LceDeleteSelect

6.64.1	VB	Example
iRet	=	LceDeleteSelect(iSession,	"SKLTAB")
'	Set	Select	to	IMMEDIATE	MODE	is	recommended	for	reasons	of	speed
iRet	=	LceSetSelectOptions(iSession,	"*RECEIVEIMMED")
	
Refer	to	the	Visual	Basic	sample	programs	for	further	examples	of	using	this
function.

6.64.2	C	Examples
C	Example	1
Set	characteristics	for	a	select	search:
BOOL	fOK;
int		iSession;
fOK	=	LceSetSelectOptions(iSession,	"*BACKWARDS,		*MAXREC25");
fOK	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	"",	FALSE);
fOK	=	LceReceiveSelect(iSession,	"PSLMST");
fOK	=	LceGetRecordCount(iSession,	"PSLMST",	&iRecords);
for	(iCount=0;	iCount	<	iRecords;	i++)
{
									fOK	=	LceGetSelect(iSession,	"PSLMST",	iCount,	"SURNAME,	SALARY");
}
	

C	Example	2
Lock	a	record	during	a	fetch:
BOOL	fOK;
int		iSession;
	
fOK	=	LceSetSelectOptions(iSession,	"*LOCK");
	
fOK	=	LceSetFieldValue(iSession,	"EMPNO",	"12345");
fOK	=	LceFetch(iSession,	"SURNAME,	GIVENAME",	"PSLMST",	"EMPNO");
	

C	Example	3
Use	*RECEIVEIMMED	to	Select	Records:
BOOL	fOK;
int		iSession;
long	lFlags;
	
fOK	=	LceSetSelectOptions(iSession,	"*RECEIVEIMMED");
	
fOK	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	"",	FALSE);
	
fOK	=	LceReceiveNextX(iSession,"",0,NULL,0);

	
fOK	=	LceGetFieldValueX(iSession,	"SURNAME",	strSurname,	lFlags);
fOK	=	LceGetFieldValueX(iSession,	"SALARY",	strSalary,	lFlags);
	

C	Example	4
Use	blocking	by	key:
BOOL	fOK;
int		iSession;
fOK	=	LceSetSelectOptions(iSession,	"*BLOCKBYKEY");
	
fOK	=	LceRequestSelect(iSession,	"SURNAME,	SALARY",	"PSLMST",	"",	FALSE);
fOK	=	LceReceiveSelect(iSession,	"PSLMST");
fOK	=	LceGetRecordCount(iSession,	"PSLMST",	&iRecords);
for	(iCount=0;	iCount	<	iRecords;	i++)
{
									fOK	=	LceGetSelect(iSession,	"PSLMST",	iCount,	"SURNAME,	SALARY");
}
	

6.65	LceSetSessionOption
This	function	enables	you	to	switch	options	to:

vary	the	format	in	which	data	is	returned	to	you	(and	to	set	and	reset	the
option	during	the	session).
specify	the	time	of	file	opening.

The	default	values	are	reinstated	when	the	session	is	closed.
This	function	will	be	extended	to	support	more	options	as	they	are	required.

BOOL LceSetSessionOption (int iSession,

	 	 	int iOption,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier.

iOption The	option	to	be	set.	Available	options	are	listed	in	the	Notes.

strValue The	value	of	the	option.	Refer	to	the	Notes	for	the	available	values.

Return	Values
TRUE	is	returned	if	the	option	was	set	successfully.
FALSE	is	returned	if	an	invalid	option	or	value	was	specified.

Notes
The	default	values	required	for	these	options	should	be	set	in	the	Windows
System	Registry.	If	these	defaults	are	not	set,	LANSA	Open	sets	those	described
with	each	option.
Refer	to	Configuration	File	in	the	PC	Configuration	File	section	of	this	guide
for	further	information	about	setting	the	default	values.
LCE_OPT_NUMERIC_DATA
This	option	can	be	set	and	reset	at	any	time	during	a	session.

"PAD"	causes	LANSA	Open	to	return	all	numeric	values	with	leading	zeros.
This	can	be	useful	if	using	PACKED	data	to	store	dates.
"STRIP"	causes	LANSA	Open	to	return	all	numeric	values	with	the	leading
zeros	stripped.

its:LANSA035.CHM::/lansa/vgudb2_0030.htm

LANSA	Open's	default:	Numeric	values	will	be	returned	stripped	of	all	leading
zeros	and	only	containing	a	leading	sign	if	negative.
LCE_OPT_ALPHA_DATA
This	option	can	be	set	and	reset	at	any	time	during	a	session.

"PAD"	causes	LANSA	Open	to	return	all	alpha	values	with	the	trailing
spaces	up	to	their	correct	length.
"STRIP"	causes	LANSA	Open	to	return	all	alpha	values	with	the	trailing
spaces	stripped.

LANSA	Open's	default:	Alpha	values	are	returned	stripped	of	all	trailing	spaces.
LCE_OPT_EDIT_DATA
This	option	can	be	set	and	reset	at	any	time	during	a	session.
This	option	allows	you	to	specify	the	way	in	which	data	is	returned	to	you	by
LceGetFieldValueX.

"Y"	causes	LANSA	Open	to	format	the	data	before	it	is	returned.	If	you	have
recorded	an	Edit	Code	for	the	field	definition	in	the	Repository,	then	the	data
will	be	returned	in	the	format	associated	with	that	edit	code.	For	example,	a
date	could	be	returned	as	mm/dd/yy	instead	of	as	straight	numeric.	See	under
Creating	a	New	Field	Definition	for	Input	Options	when	Creating	a	New
Field	in	the	LANSA	for	iSeries	User	Guide	for	more	information	about	Edit
Codes.
"N"	causes	LANSA	Open	to	return	the	data	unedited.

LANSA	Open's	default:	Data	returned	is	not	reformatted,	regardless	of	the
field's	Edit	Code.
LCE_OPT_OPEN_FILE_ON_DEMAND
This	option	must	be	specified	before	the	session	is	opened

"Y"	causes	LANSA	Open	to	open	files	only	when	they	are	used.	This	saves
considerable	time	when	many	files	are	used	in	a	session,	however,	if	a	file
without	an	I/O	module	is	accessed	during	the	course	of	processing,
unacceptable	processing	delays	may	occur.
"N"	causes	LANSA	Open	to	open	all	the	files	to	ensure	that	they	all	have	I/O
modules,	before	returning	from	the	call	to	LceOpenSession.		If	a	file	without
an	I/O	module	is	detected,	LceOpenSession	will	fail.

LANSA	Open's	default:	All	the	files	are	opened	at	the	beginning	of	a	session,	to
ensure	that	all	the	I/O	modules	exist.

its:LANSA010.CHM::/lansa/ugub_20023.htm

6.65.1	VB	Example
'	Set	Numeric	padding
If	iRet	=	LceTrue	Then	iRet	=	LceSetSessionOption(iSession,			_
									LCE_OPT_NUMERIC_DATA,	"STRIP")
'	set	alphanumeric	padding
If	iRet	=	LceTrue	Then	iRet	=	LceSetSessionOption(iSession,		_
									LCE_OPT_ALPHA_DATA,	"PAD")
'	set	edit	characters	retrieved	with	data
If	iRet	=	LceTrue	Then	iRet	=	LceSetSessionOption(iSession,		_
									LCE_OPT_EDIT_DATA,	"Y")
'	set	open	files	only	on	demand
If	iRet	=	LceTrue	Then	iRet	=	LceSetSessionOption(iSession,		_
									LCE_OPT_OPEN_FILE_ON_DEMAND,	"Y")
	

6.65.2	C	Example
BOOL	fOK;
int		iSession;
	
fOK	=	LceSetSessionOption(iSession,	LCE_OPT_NUMERIC_DATA,	"STRIP");
fOK	=	LceSetSessionOption(iSession,	LCE_OPT_ALPHA_DATA,	"PAD");
fOK	=	LceSetSessionOption(iSession,	LCE_OPT_EDIT_DATA,	"Y");
fOK	=	LceSetSessionOption(iSession,	LCE_OPT_OPEN_FILE_ON_DEMAND,	"Y");
	

6.66	LceSubmit
LceSubmit	is	used	to	submit	a	LANSA	function/process	or	an	IBM	i	program,
such	as	a	report	program,	to	run	in	batch	mode.	If	you	submit	a	program	that
expect	user	interaction,	the	job	will	fail.
There	is	no	communication	between	the	called	program	and	your	calling
application	once	the	call	has	been	made.	A	return	value,	indicating	whether	the
job	has	been	successfully	submitted	is	passed	back	to	your	application.	Your
application	does	not	have	to	wait	for	the	program	to	complete.

BOOL LceSubmit (int iSession,

	 	 	char	far	* strProcess,

	 	 	char	far	* strFunction

	 	 	char	far	* strProgram,

	 	 	char	far	* strExchangeList,

	 	 	char	far	* strJobName,

	 	 	char	far	* strJobDesc,

	 	 	char	far	* strJobQueue,

	 	 	char	far	* strOutputQueue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strProcess The	name	of	the	LANSA	process.

strFunction The	name	of	the	LANSA	function.

	 Or

strProgram The	name	of	the	IBM	i	program.

strExchangeList A	list	of	field	names.

strJobName The	name	of	the	job.	The	default	value	is	*PGMPRO.

strJobDesc The	job	description.	The	default	value	is	QBATCH.

strJobQueue The	job	queue.	The	default	value	is	*JOBD.

strOutputQueue The	output	queue.	The	default	value	is	*JOBD.

Return	Values
TRUE	is	returned	if	the	session	can	execute	the	process/function	or	program.
FALSE	is	returned	if	an	error	occurs.

Notes
Portability
Considerations

The	format	which	uses	strProgram	is	only	supported	if
your	host	system	is	an	IBM	i.	An	error	will	be	returned
by	the	host	if	you	make	a	call	with	strProgram	to	any
other	platform.
When	calling	a	program	on	the	IBM	i,	the	exchange	list
may	only	contain	fields	of	type	A,	P,	and	S.	If	exchanging
numeric	fields,	the	maximum	length	is	30	and	the
maximum	decimals	is	9.

If	you	are	not	familiar	with	the	concept	of	job	name,	job	description,	job	queue
and	output	queue,	contact	your	host	Administrator.
Parameters	are	passed	to	the	called	program	or	function	using	the	list	of	field
names	in	strExchangeList.	Each	field	used	in	the	exchange	must	have	been
declared	using	an	LceUseField	function.	The	value	for	the	field	is	assigned
using	the	LceSetFieldValue/LCeSetFieldValueU	function.	The	LANSA	process
and	function	to	be	executed	do	not	have	to	be	declared	previously	by	an	Lce
function	call.

This	function	can	only	be	executed	after	a	session	has	been	opened.
Tip
If	you	wish	to	execute	an	IBM	i	program	that	either	passes	or	receives
parameters,	use	the	Lce3GLCall	function.
LceExecute400	function	can	also	be	used	to	submit	IBM	i	jobs,	but	its	use	is
much	more	complicated	and	it	is	best	suited	to	IBM	i	commands.

Related	Functions
6.44	LceLansaCall
6.14	LceExecute400
6.3	Lce3GLCall

6.66.1	VB	Example
Private	Sub	cmdPrintAll_Click()
				'	set	department	to	blank	to	print	all	departments
				iRet	=	LceSetFieldValue(iSession,	"DEPTMENT",	Chr(0))	
				If	iRet	=	LceTrue	Then
							iRet	=	LceSubmit(iSession,	"PSLSYS",	"EMPLIST",	"",	_
								"DEPTMENT",	"",	"",	"",	"")
				End	If
End	Sub	
	

6.66.2	C	Example
BOOL	fOK;
int		iSession;
	
fOK	=	LceSubmit(iSession,	"PROCREP",	"SALES01",	"",	"MONTH",	"",	"",	"",	"");
	

6.67	LceUnicodeToHex
This	function	converts	a	Unicode	string	into	a	formatted	stream	of	hex	bytes	to
be	used	in	the	where	clause.

int LceUnicodeToHex (wchar_t	far	* strString,

	 	 char	far	* strHexString,

	 	 int iHexStringSize)

Parameters
	 	

strString Unicode	string	to	be	converted.	Should	be	null	terminated.

strHexString The	generated	stream	of	hex	bytes.

iHexStringSize The	size	of	the	strHexString	buffer.	The	size	of	the	buffer
will	normally	be	((4	*	number	of	characters	in	strString)	+
5).

Return	Values
If	strHexString	is	NULL,	then	this	function	will	return	the	size	of	the	converted
string	(see	Notes).
If	strHexString	is	not	NULL,	the	following	is	returned:
TRUE	is	returned	if	every	character	in	the	Unicode	string	has	been	converted
without	errors.
FALSE	is	returned	if	an	error	occurs	or	the	buffer	is	not	large	enough	to	convert
the	entire	string.

Notes
This	function	should	be	used	when	including	a	Unicode	value	in	the	where
clause	in	LceRequestSelectWhere.
To	determine	the	size	of	the	buffer	required	to	store	the	converted	string	you
may	call	this	function	and	pass	NULL	for	the	strHexString	parameter.	The
function	will	not	perform	the	conversion	but	will	return	the	size	of	the	buffer
required	for	the	conversion.

Related	Functions

6.51	LceRequestSelectWhere

6.67.1	VB	Example
Dim	i	As	Integer
Dim	hexString	As	String
Dim	whereClause	As	String
	
iRet	=	LceSetSelectOptions(iSession,	"*RECEIVEIMMED")
If	iRet	=	LceFalse	then	exit	sub	'	Failed
	
hexString	=	String(200,	Chr(0))
iRet	=	LceUnicodeToHex(name,	hexString,	200)
If	iRet	=	LceFalse	then	exit	sub	'	Failed
	
whereClause	=	"NAME	=	"	+	hexString
	
iRet=	LceRequestSelectWhere(iSession,	_
								"EMPNO",	"WORKERS",	"",	whereClause,	LceFalse))

6.67.2	C	Example
BOOL	fOK;
int		iSession;
char*	strHexString;
char	strWhere[256];
int	bufferSize;
	
fOK	=	LceSetSelectOptions(iSession,	"*RECEIVEIMMED");
bufferSize	=	LceUnicodeToHex(strString,	NULL,	0);
strHexString	=	malloc(bufferSize)
fOK	=	LceUnicodeToHex(strString,	strHexString,	bufferSize);
sprintf(strWhere,	"NAME	=	%s",	strHexString);
fOK	=	LceRequestSelectWhere(iSession,	"EMPNO,SALARY","WORKERS",	
"",strWhere,FALSE);
free(strHexString);

6.68	LceUpdate
This	function	updates	an	existing	record	in	a	file.	The	list	of	fields	to	be	updated
is	specified	in	a	list.

BOOL LceUpdate (int iSession,

	 	 	char	far	* strFieldList,

	 	 	char	far	* strFileName,

	 	 	char	far	* strKeyList,

	 	 	BOOL fValidate)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldList A	list	of	fields	to	be	updated.	These	fields	must	have	been
declared	using	an	LceUseField	function.	Only	the	fields
specified	in	this	list	will	be	updated.		The	value	for	each	of	the
fields	in	the	list	must	be	set	using	the
LceSetFieldValue/LceSetFieldValueU	function.

strFileName The	name	of	the	file.	This	file	must	have	been	declared	using	an
LceUseFile	function.

strKeyList A	list	of	key	field	names.	The	fields	must	have	been	declared
using	an	LceUseField	function.	The	values	for	the	keys	are	set
using	the	LceSetFieldValue/LceSetFieldValueU	function.	Refer
to	the	Notes	for	the	benefits	of	leaving	this	key	list	blank.

fValidate This	parameter	provides	a	"	check	but	do	not	update"	facility.
True	=	Perform	validate	only.
False	=	Perform	update	immediately.

Return	Values
TRUE	is	returned	if	the	session	has	updated	or	can	update	the	record.
FALSE	is	returned	if	an	error	occurs.

Notes

When	multiple	users	are	working	with	a	file,	it	is	likely	that	two	users	will	want
to	update	the	same	record	at	the	same	time.	LANSA	Open	will	handle	this
situation	automatically	if	you	leave	the	strKeyList	blank.	In	this	case,	if	a	user
attempts	to	update	a	record	which	has	already	been	changed	by	another	user,
LANSA	Open	issues	an	appropriate	message	and	does	not	perform	the	update.
Because	LANSA	Open	does	this	check	for	you,	record	locking	on	the	host	is
unnecessary.
If	you	specify	a	key,	then	that	record	will	be	updated	regardless	of	whether	it
has	been	changed	since	it	was	selected.
If	you	do	specify	keys,	you	do	not	have	to	use	the	complete	key	list.	For
example,	you	could	use	the	first	two	fields	in	a	file	with	three	key	fields.	You
must	always	use	the	keys	in	the	correct	order.	If	you	use	a	subset	of	the	key
fields,	you	are	implicitly	using	a	"generic	select"	on	the	unspecified	keys,	i.e.
match	key1	and	key2	while	key3	can	have	any	value.	In	this	case,	you	are
requesting	that	all	records	which	match	the	partial	key	are	updated.	If	you
specify	a	unique	key,	you	will	perform	an	update	of	a	single	record.

This	function	can	only	be	executed	after	a	session	has	been	opened.
Tip
By	creating	the	proper	validation	rules	in	the	Repository,	you	can	use	LANSA	to
perform	referential	integrity	checks	for	you.	For	example,	the	Repository's	rules
could	specify	that	an	order's	details	can	only	be	changed	if	the	order	flag
indicates	that	the	order	hasn't	already	been	shipped.	The	relevant	error	message
can	also	be	stored	in	the	Repository	and	displayed	using	LANSA	Open's
automated	error	message	facility.

Related	Functions
6.71	LceUseFile
6.58	LceSetFieldValue
6.59	LceSetFieldValueU
6.43	LceInsert
6.10	LceDelete
6.8	LceCheckFor

6.68.1	VB	Example
Private	Sub	cmdSave_Click()
				'	saves	department	description	changes
				'	no	need	to	set	key	DEPTMENT	as	it	is	already	set
				
				If	txtDesc	<>	""	Then
									iRet	=	LceSetFieldValue(iSession,	"DEPTDESC",	txtDesc)
				Else
									'""	is	not	allowed,	sNull	same	as	chr(0)	
									iRet	=	LceSetFieldValue(iSession,	"DEPTDESC",	sNull)	
				End	If
			
				iRet	=	LceUpdate(iSession,	"DEPTDESC",	"DEPTAB",			_
											"DEPTMENT",	LceFalse)
				If	iRet	=	LceTrue	Then
								'	set	flag	to	cause	refresh	in	all	combos	displaying
								'	departments
										bDepFileChanged	=	True	
										Call	RefreshDepList
				End	If
End	Sub
	

6.68.2	C	Example
Update	a	record	from	a	file.
BOOL	fOK;
int		iSession;
	
fOK	=	LceSetFieldValue(iSession,	"SALARY",	"25000");
fOK	=	LceSetFieldValue(iSession,	"SURNAME",	"Buckley");
fOK	=	LceSetFieldValue(iSession,	"EMPNO",	"12345");
	
fOK	=	LceUpdate(iSession,	"SURNAME,	SALARY",	"PSLMST",	"EMPNO",	FALSE);
	

6.68.3	Psuedocode	Example
Check	if	the	record	can	be	updated.
strList	=	"SURNAME,	SALARY"
strName	=	"PSLMST"
strKey		=	"EMPNO"
IF	NOT	LceSetFieldValue(iSession,	strKey	,	"12345")
									/*	return	error	*/
ENDIF
IF	NOT	LceSetFieldValue(iSession,	"SALARY",	"25000")
									/*	return	error	*/
ENDIF
IF	NOT	LceSetFieldValue(iSession,	"SURNAME",	"Buckley")
									/*	return	error	*/
ENDIF
IF	LceUpdate(iSession,	strList,	strName,	strKey,	TRUE)
									/*	update	of	the	record	can	be	performed	*/
ELSE
									/*	cannot	update	the	record	*/
									/*	display	error	messages	*/
ENDIF
	

6.69	LceUseExceptionalArguments
Instructs	the	session	to	use	the	exceptional	arguments	when	opening	a	session.
This	function	is	optional	and	is	only	valid	when	used	against	LANSA	hosts
which	support	X_RUN	exceptional	arguments.

BOOL 	 (int	 iSession,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strValue The	list	of	exceptional	arguments.	The	length	of	this	parameter
should	not	exceed	EXCEPTIONAL_ARGS_LENGTH	as	defined	in
the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
Not	all	arguments	are	allowed	in	this	argument	list.	Some	arguments	are	set	by
calls	to	other	LANSA	Open	functions	(For	example,	the	partition	is	set	by
calling	LceUsePartition)	and	others	are	not	allowed	due	to	the	context	in	which
the	LANSA	request	processor	runs.
The	following	X_RUN	arguments	are	supported	in	this	function:
DBID=,	DBII=,	DBIT=,	DBUS=,	DBUT=,	FXQF=,	FXQM=,	HSKC=,	INIT=,
ITHP=,	ITRC=,	ITRL=,	ITRM=,	ITRO=,	ODBI=,	PPTH=,	PRTR=,	PSWD=,
RPTH=,	TERM=,	TPTH=,	WPDF=,	WPDS=,	WPEN=,	WPFD=,	WPFO=,
WPPD=.
Arguments	not	supported	will	be	ignored	by	the	host.
Names	assigned	to	DBID	and	DBII	must	be	enclosed	in	double	quotes	(")	if	the
name	contains	spaces.	For	example	(in	C):
LceUseExceptionalArguments(iSession,	"DBID=\"LX
Trunk\"	DBUS=DBA	PSWD=SQL");
Related	Functions

6.13	LceEndSession
6.46	LceOpenSession
6.72	LceUseFunction
6.73	LceUseLanguage
6.74	LceUsePartition
6.75	LceUsePassword
6.76	LceUsePriority
6.77	LceUseProcess
6.78	LceUseSystem
6.80	LceUseUserId

6.69.1	VB	Example
iRet	=	(iSession,	"DBUS=DBA	PSWD=SQL")
	

6.69.2	C	Example
BOOL	fOK;
int		iSession;
char	szUser[11];
char	szPassword[11];
	
iSession	=	LceGetSessionId();
fOK	=	LceUseSystem(iSession,	"SYSTEM1");
	
GetUserInformation(szUser,	szPassword);
fOK	=	LceUseUserId(iSession,	szUser);
fOK	=	LceUsePassword(iSession,	szPassword);
	
fOK	=	LceUsePartition(iSession,	"DEM");
fOK	=	LceUseLanguage(iSession,	"FRA");
fOK	=	LceUseProcess(iSession,	"ABCDE");
fOK	=	LceUseExceptionalArguments(iSession,	"DBUS=DBA	PASWD=SQL");
	
..
	
fOK	=	LceOpenSession(iSession);
	

6.70	LceUseField
This	function	is	used	to	declare	which	fields	from	the	Repository	(on	the	host)
are	to	be	used	in	the	PC	application.	The	LceUseField	function	indicates	that	the
Repository	field	information	will	be	required.

BOOL LceUseField (int iSession,

	 	 	char	far	* strFieldList)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strFieldList The	list	of	fields	to	be	used.	All	fields	in	this	list	must	be	defined
in	the	LANSA	Repository.	If	the	field	is	not	defined,	an	error	will
result.		The	length	of	each	field	should	not	exceed
FIELD_LENGTH	as	defined	in	the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
Any	data	dictionary	field	which	is	used	in	another	function	(e.g.	LceFetch)	must
have	been	declared	using	this	LceUseField	function.

This	function	must	be	executed	before	LceOpenSession	function	has	been
issued.	If	you	need	to	execute	this	function	after	a	session	has	been	opened,
you	must	end	the	session	or	open	a	new	session.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.21	LceGetFieldDesc
6.23	LceGetFieldHeading
6.25	LceGetFieldIndicator
6.26	LceGetFieldLabel
6.27	LceGetFieldType
6.29	LceGetFieldValueX
6.30	LceGetFieldValueU

6.30	LceGetFieldValueU
6.58	LceSetFieldValue
6.59	LceSetFieldValueU
6.46	LceOpenSession
6.13	LceEndSession

6.70.1	VB	Example
iRet	=	LceUseField(iSession,	"SKILCODE,SKILDESC")

6.70.2	C	Examples
C	Example	1
Define	fields	using	a	list.
BOOL	fOK;
int		iSession;
	
fOK	=	LceUseField(iSession,	"EMPNO,	GIVENAME,	SURNAME,	ADDRESS1");
	

C	Example	2
Define	fields	individually.
fOK	=	LceUseField(iSession,	"EMPNO");
fOK	=	LceUseField(iSession,	"GIVENAME");
fOK	=	LceUseField(iSession,	"SURNAME");
fOK	=	LceUseField(iSession,	"ADDRESS1");
	

6.70.3	Psuedocode	Example
strList	=	""EMPNO,	GIVENAME,	SURNAME,	ADDRESS1"
IF	NOT	LceUseField(iSession,	strList)
									/*	return	error	*/
ENDIF
	

6.71	LceUseFile
This	function	is	used	to	declare	which	files	on	the	host	are	going	to	be	used	in
the	application.

BOOL LceUseFile (int iSession,

	 	 	char	far	* strFileList)

Parameters
iession The	session	identifier	as	returned	by	LceGetSessionId.

strFileList The	list	of	files	to	be	used.	All	files	in	this	list	must	be	defined	in
the	LANSA	Repository.
The	length	of	each	file	should	not	exceed	FILE_LENGTH	as
defined	in	the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
Portability
Considerations

The	references	to	LIBRARY	and	multi-member	files	in
the	following	description	are	applicable	only	when	your
host	is	an	IBM	i.

The	absolute	specification	for	the	file	is
LIBRARY/FILENAME.MEMBER.BASEMEMBER
The	library	name	on	the	IBM	i	host	and	the	member	name	within	a	physical	file
are	optional.	In	general,	you	should	not	be	constructing	applications	which
require	these	parameters.
The	default	values	for	library	and	member	are:

LIBRARY *LIBL

MEMBER *FIRST

BASEMEMBER *FIRST

Any	file	which	is	used	in	another	function	(e.g.	LceFetch)	must	have	been

declared	in	an	LceUseFile	function.
If	the	file	has	not	been	defined	to	the	LANSA	Repository,	an	error	will	result.	If
you	are	using	host	files	which	were	not	created	by	LANSA,	they	must	be	loaded
into	the	LANSA	Repository	on	the		host	before	you	use	this	function.	Building
the	LANSA	Repository	-	Files	in	the		Introduction	to	LANSA	for	iSeries	Guide
explains	how	to	load	existing	IBM	i	files	to	LANSA.

This	function	must	be	executed	before	LceOpenSession	function	has	been
issued.	If	you	need	to	execute	this	function	after	a	session	has	been	opened,
you	must	end	the	session	or	open	a	new	session.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.32	LceGetFileDesc
6.33	LceGetFileType
6.46	LceOpenSession
6.13	LceEndSession

6.71.1	VB	Example
iRet	=	LceUseFile(iSession,	"SKLTAB")
	

6.71.2	C	Example
BOOL	fOK;
int		iSession;
	
fOK	=	LceUseFile(iSession,	"PSLMST,	DEPTAB");
fOK	=	LceUseFile(iSession,	"MYLIB/PSLMST");
	

6.71.3	Psuedocode	Example
strList	=	"PSLMST,	DEPTAB"
IF	NOT	LceUseFile(iSession,	strList)	
									/*	return	error	*/
ENDIF
	

6.72	LceUseFunction
Instructs	the	session	to	use	the	function	name	specified	for	transaction	stamping.

BOOL LceUseFunction (int iSession,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strValue The	function's	name.	The	length	of	this	name	should	not	exceed
FUNCTION_LENGTH	as	defined	in	the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
When	a	record	in	a	file	is	changed,	LANSA	can	maintain	a	"stamped"	audit
trail.		A	number	of	attributes,	including	date	and	time,	can	be	automatically
"stamped"	in	specified	fields	in	the	file.
If	the	field	stamping	attribute	has	been	set	to	"FUNC"	(i.e.	insert	function	name)
in	the	Repository,	the	value	in	strValue	will	be	used	when	stamping	the	function.
If	this	function	is	not	used,	the	default	value	"LCOE"	is	inserted.
For	more	information	about	LANSA's	field	stamping	attributes,	refer	to	the
section:	Input	Options	when	Creating	a	New	Field	in	the	LANSA	for	iSeries
User	Guide.

This	function	should	be	executed	after	the	LceGetSessionId	and	before	the
LceOpenSession.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.77	LceUseProcess

its:LANSA010.CHM::/lansa/ugub_20023.htm

6.72.1	VB	Example
iRet	=	LceUseProcess	(Isession,	"STAMPP")
iRet	=	LceUseFunction(iSession,	"STAMPF")
	

6.72.2	C	Example
BOOL	fOK;
int		iSession;
	
fOK	=	LceUseFunction(iSession,	"ABCD");
	

6.73	LceUseLanguage
Instructs	the	session	to	use	the	specified	language.	This	function	is	not	used	in	a
single	language	environment.

BOOL LceUseLanguage (int iSession,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strValue The	language	code	as	specified	in	the	partition	definition.	If	left
blank,	the	partition	default	language	(i.e.	the	national	language)	is
assumed.	strValue's	length	should	not	exceed
LANGUAGE_LENGTH	as	defined	in	the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
LANSA	uses	partitions	to	separate	different	environments	or	application	work
areas.	If	a	partition	is	defined	as	multilingual,	you	will	use	this	function	to
specify	the	language	to	be	used	in	that	partition	for	this	session.	(For	more
information	regarding	multilingual	processing,	refer	to	the	Partition
Multilingual	Attributes	in	the	LANSA	for	iSeries	User	Guide.)	Once	a	language
is	specified,	details	such	as	field	descriptions,	labels,	etc.	will	appear	in	the
language	specified.	File	data	is	not	affected.
Multilingual	installations:
The	actual	language	details	must	be	recorded	in	the	LANSA	Repository	on	the
host.	If	such	details	have	not	been	entered	for	the	fields	or	files	being	accessed,
the	equivalent	details	may	instead	be	returned	in	the	default	language.
Single	(national)	language	installations:
If	the	partition	is	single	language	and	you	execute	this	function,	but	do	not	leave
the	language	code	blank,	unpredictable	results	will	occur	during	the	call	to
LceOpenSession.

This	function	must	be	executed	after	LceGetSessionId	and	before

its:LANSA010.CHM::/lansa/ugub_50048.htm

LceOpenSession.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.74	LceUsePartition

6.73.1	VB	Example
iRet	=	LceUseLanguage(iSession,	"ENG")
	

6.73.2	C	Example
BOOL	fOK;
int		iSession;
	
iSession	=	LceGetSessionId();
fOK	=	LceUsePartition(iSession,	"DEM");
fOK	=	LceUseLanguage(iSession,	"FRA");
	
fOK	=	LceOpenSession(iSession);
	

6.74	LceUsePartition
Instructs	the	session	to	use	the	specified	partition.	This	function	is	optional,
however,	as	most	of	your	applications	will	require	a	specific	partition,	this
function	will	generally	be	used.	The	default	value	is	"SYS"	or	the	system
partition	in	LANSA.

BOOL LceUsePartition (int	 iSession,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strValue The	partition	name.	The	length	of	this	parameter	should	not	exceed
PARTITION_LENGTH	as	defined	in	the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
LANSA	uses	partitions	to	separate	different	environments	or	application	work
areas.	It	is	similar	in	concept	to	a	directory	on	a	PC	and	has	a	number	of
characteristics	associated	with	it.	The	LceUsePartition	function	is	used	to
specify	the	partition	to	be	used.
A	partition	cannot	be	changed	once	the	session	is	open.	The	session	must	be
closed	or	a	new	session	opened	if	you	wish	to	use	another	partition.	If	you	wish
to	use	more	than	one	partition,	you	must	start	more	than	one	session.	You	will
need	to	get	another	session	ID.

This	function	must	be	executed	after	LceGetSessionId	and	before
LceOpenSession.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.13	LceEndSession
6.46	LceOpenSession
6.73	LceUseLanguage

6.74.1	VB	Example
iRet	=	LceUsePartition(iSession,	"DEM")
	

6.74.2	C	Examples
C	Example	1
BOOL	fOK;
int		iSession;
	
iSession	=	LceGetSessionId();
fOK	=	LceUsePartition(iSession,	"DEM");
fOK	=	LceUseLanguage(iSession,	"FRA");
	
fOK	=	LceOpenSession(iSession);
	

C	Example	2
Use	two	partitions.
BOOL	fOK;
int		iSession1;
int		iSession2;
	
iSession1	=	LceGetSessionId();
fOK	=	LceUsePartition(iSession1,	"DEM");
fOK	=	LceOpenSession(iSession1);
	
iSession2	=	LceGetSessionId();
fOK	=	LceUsePartition(iSession2,	"TRN");
fOK	=	LceOpenSession(iSession2);
	

6.75	LceUsePassword
Instructs	the	session	to	use	the	specified	password.	This	function	is	used	in
conjunction	with	LceUseUserId.

BOOL LceUsePassword (int iSession,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strValue The	password.	The	length	should	not	exceed
PASSWORD_LONG_LENGTH	as	defined	in	the	LCOE.H	header
file.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
This	function	is	used	to	specify	the	host	user	password	relating	to	the	User	ID
specified	using	LceUseUserId.
If	you	are	using	a	Windows	version	of	LANSA	Open	with	Client	Access/400,
this	function	is	optional.	The	default	value	is	the	user	profile	and	password	used
when	the	communication	to	the	host	was	started	by	Client	Access/400.	Whilst
Client	Access/400	has	the	capability	for	LANSA	Open	to	provide	a	password,
other	routers	may	not	permit	this,	in	which	case	calls	to	this	function	are
ignored.
Be	careful	when	using	this	function.	Passwords	on	the	host	can	be	changed,	so
you	should	not	use	passwords	in	your	applications	unless	they	are	entered	by	the
user	or	are	encrypted	in	a	file	which	can	be	changed.

Portability
Considerations

An	IBM	i	requires	passwords	to	be	uppercase,	therefore
the	supplied	password	is	converted	to	uppercase	when	the
Host	Type	is	specified	or	defaulted	to	EBCDIC.
Windows,	Linux	or	other	non-IBM	i	platforms	may	have
case	sensitive	passwords	using	upper	and/or	lower	case
characters.	No	conversion	of	the	password	is	performed	if

the	Host	Type	is	specified	as	ASCII.

This	function	must	be	executed	after	the	LceGetSessionId	and	before	the
LceOpenSession.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.80	LceUseUserId
6.78	LceUseSystem

6.75.1	VB	Example
iRet	=	LceUseUserId(iSession,	sUserId)
iRet	=	LceUsePassword	(iSession,	sPassword)
	

6.75.2	C	Example
BOOL	fOK;
int		iSession;
char	szBuffer[PASSWORD_LONG_LENGTH	+	1];
	
/*	Call	dialog	to	get	password	*/
GetPassword	(szBuffer);
iSession	=	LceGetSessionId();
fOK	=	LceUseUserId(iSession,	"QPGMR");
fOK	=	LceUsePassword(iSession,	szBuffer);
...
fOK	=	LceOpenSession(iSession);
	

6.76	LceUsePriority
Instructs	the	session	to	use	the	specified	job	priority.	This	functions	sets	the
execution	priority	of	the	session	and	any	jobs	related	to	the	session	on	the	host
system.

BOOL LceUsePriority (int iSession,	

	 	 	int iValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

iValue The	priority	number.	The	default	value	is	20.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
Portability
Considerations

You	should	be	aware	of	the	implications	of	using	this
option.	If	you	specify	an	unreasonable	priority,	you	may
severely	impact	the	host	system	by	monopolizing	all	of
the	system	resources.	On	the	host,	you	should	never	use	a
priority	less	than	10.

	
This	function	should	be	executed	after	the	LceGetSessionId	and	must	be
specified	before	the	LceOpenSession	is	executed.	The	priority	cannot	be
changed	once	the	session	is	open.
This	function	performs	no	communications	to	the	host.
This	function	is	ignored	on	Linux	hosts.

Related	Functions
6.78	LceUseSystem

6.76.1	VB	Example
iRet	=	LceUsePriority(iSession,	25)

6.76.2	C	Example
BOOL	fOK;
int		iSession;
	
iSession	=	LceGetSessionId();
fOK	=	LceUsePriority(iSession,	25);
fOK	=	LceOpenSession(iSession);
	

6.77	LceUseProcess
Instructs	the	session	to	use	the	process	name	specified	in	strValue	for
transaction	stamping.

BOOL LceUseProcess (int iSession,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strValue The	process	name	to	be	inserted	with.	The	length	should	not	exceed
PROCESS_LENGTH	as	defined	in	the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
When	a	record	in	a	file	is	changed,	LANSA	can	maintain	a	"stamped"	audit
trail.		A	number	of	attributes,	including	date	and	time,	can	be	automatically
"stamped"	in	specified	fields	in	the	file.
If	the	field	stamping	attribute	has	been	set	to	"PROC"	(i.e.	insert	process	name)
in	the	Repository,	the	value	in	strValue	will	be	used	when	stamping	the	function.
If	this	function	is	not	used,	the	default	value	"LANSA"	is	inserted.
For	more	information	about	LANSA's	field	stamping	attributes,	refer	to	the
section:	Input	Options	when	Creating	a	New	Field	in	the	LANSA	for	iSeries
User	Guide.

This	function	must	execute	after	LceGetSessionId	and	before
LceOpenSession.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.72	LceUseFunction

its:LANSA010.CHM::/lansa/ugub_20023.htm

6.77.1	VB	Example
iRet	=	LceUseProcess	(Isession,	"STAMPP")
iRet	=	LceUseFunction(iSession,	"STAMPF")
	

6.77.2	C	Example
BOOL	fOK;
int		iSession;
	
fOK	=	LceUseProcess(iSession,	"ABCDE");
	

6.78	LceUseSystem
Instructs	the	session	which	host	system	to	use.	This	function	is	not	necessary	if
you	only	have	one	host	system.

BOOL LceUseSystem (int ISession,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strValue The	host	system	name.	The	length	should	not	exceed
SYSTEM_LENGTH	as	defined	in	the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
If	you	are	using	any	Windows	version	of	LANSA	Open	with	Client	Access/400,
this	function	is	optional.	The	default	host	system	will	be	the	one	used	when	the
communications	to	the	host	was	started.
Refer	to	Configuration	File	for	more	details.

This	function	must	be	executed	after	the	LceGetSessionId	and	before	the
LceOpenSession.	The	host	cannot	be	changed	once	the	session	is	open.
This	function	performs	no	communications	to	the	host.

Related	Functions
6.74	LceUsePartition
6.80	LceUseUserId
6.75	LceUsePassword

its:LANSA035.CHM::/lansa/vgudb2_0030.htm

6.78.1	VB	Example
iRet	=	LceUseSystem(iSession,	sSystem)
	

6.78.2	C	Example
BOOL	fOK;
int		iSession;
	
iSession	=	LceGetSessionId();
fOK	=	LceUseSystem(iSession,	"SYSTEM1");
fOK	=	LceOpenSession(iSession);
	

6.78.3	Psuedocode	Example
strSys	=	"SYSTEM1"
iSession	=	LceGetSessionId()
IF	NOT	LceUseSystem(iSession,	strSys)
									/*	return	error	*/
ENDIF
	

6.79	LceUseTmpDrive2
Instructs	the	session	to	use	the	directory	specified	as	TmpDrive2	in	the	PC
configuration	files,	for	the	storage	of	local	information.

BOOL LceUseTmpDrive2 (int iSession)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

Return	Values
TRUE	is	returned	if	the	session	can	perform	the	function.
FALSE	is	returned	if	an	error	occurs.

Notes
LANSA	Open	uses	local	(temporary)	files	on	the	PC	to	store	information.	The
actual	drives	used	are	specified	in	the	Registry	file.	Two	temporary	drives	can
be	specified.	Using	this	function	indicates	that	the	local	information	is	to	be
stored	in	the	second	temporary	drive.
Using	this	function	out	of	sequence	will	cause	your	application	to	fail	or
produce	unreliable	results.	For	example,	if	you	transfer	data	using	an	LceSelect
function	and	then	follow	it	with	an	LceUseTmpDrive2	function,	your
application	will	not	find	the	selected	data	as	it	would	have	been	stored	on
temporary	drive	1.	For	this	reason,	frequent	use	of	this	function	is	not	
recommended.

This	function	should	immediately	follow	LceGetSessionId	and	be	before
LceOpenSession	function.	Once	issued,	the	second	temporary	drive	will	be
used	for	the	remainder	of	the	session.
This	function	performs	no	communications	to	the	host.

6.79.1	VB	Example
iRet	=	LceUseTmpDrive2(iSession)
	

6.79.2	C	Example
BOOL	fOK;
int		iSession;
	
iSession	=	LceGetSessionId();
fOK	=	LceUseTmpDrive2(iSession);
fOK	=	LceOpenSession(iSession);
	

6.80	LceUseUserId
This	function	specifies	the	host	User	Id	to	be	used	when	accessing	the	host.
LANSA	programs	and	files	are	secured	by	User	Id.	Use	this	function	when	you
want	to	specify	a	user	other	than	the	one	used	by	default	when	starting	some
communications	software	to	the	host.

BOOL LceUseUserId (int iSession,

	 	 	char	far	* strValue)

Parameters
iSession The	session	identifier	as	returned	by	LceGetSessionId.

strValue The	User	Identifier.	The	length	should	not	exceed
USERID_LONG_LENGTH	as	defined	in	the	LCOE.H	header	file.

Return	Values
TRUE	is	returned	if	the	session	can	accept	the	value.
FALSE	is	returned	if	an	error	occurs.

Notes
If	you	use	this	function,	you	must	also	use	the	LceUsePassword	function.
If	you	are	using	any	Windows	version	of	LANSA	Open	with	Client	Access/400,
this	function	is	optional.	The	default	value	is	the	user	profile	and	password	used
when	the	communications	to	the	host	was	started.	Whilst	Client	Access/400	has
the	capability	for	LANSA	Open	to	provide	a	User	Id,	other	routers	may	not
permit	this,	in	which	case	calls	to	this	function	are	ignored.
As	User	IDs	can	easily	be	changed	on	the	host,	have	the	User	Id	entered	by	the
user	or	store	them	in	a	file	which	can	easily	be	changed.

This	function	must	be	executed	after	LceGetSessionId	and	before
LceOpenSession.

Related	Functions
6.75	LceUsePassword
6.78	LceUseSystem

6.80.1	VB	Example
iRet	=	LceUseUserId(iSession,	sUserId)
iRet	=	LceUsePassword	(iSession,	Password)
	

6.80.2	C	Example
BOOL	fOK;
int		iSession;
char	szBuffer[PASSWORD_LONG_LENGTH	+	1];
	
/*	Call	dialog	to	get	password	*/
GetPasword	(szBuffer);
iSession	=	LceGetSessionId();
fOK	=	LceUseUserId(iSession,	"QPGMR");
			fOK	=	LceUsePassword(iSession,	szBuffer);
...	
fOK	=	LceOpenSession(iSession);
	

6.81	LceVersion
This	function	returns	the	current	LANSA	Open	version	number	and	displays	it
in	a	dialog	box	on	the	screen.

long LceVersion (BOOL fDisplay,

	 	 	HWND hwnd)

Parameters
fDisplay A	boolean	to	indicate	whether	to	display	the	dialog	box.

hwnd A	valid	window	handle,	usually	the	main	window	for	the
application.
If	an	invalid	window	handle	is	specified,	the	dialog	box	will	not	be
displayed.
NULL	indicates	that	the	current	active	window	is	to	be	used.

Return	Values
The	return	value	is	a	long	integer.	The	major	version	number	is	in	the	High
Word	(2	bytes).	The	minor	version	number	is	in	the	Low	Word	(2	bytes).

Notes
This	function	can	be	executed	at	any	time.

6.81.1	VB	Example
'	get	Version
dim	l	as	long,	dVer	as	double
'	get	version
l	=	LceVersion(False,	0)
'	extract	major	/	minor	version	and	set	in	m.nn	format	
dVer	=	l	\	&H10000	+	((l	Mod	&H10000)	\	100)	/	100	
lbLansaVer.caption	=	str(dVer)
	

6.81.2	C	Example
Retrieve	version	information	and	do	not	display.
long	lVersion;
int	iMajorRel;
int	iMinorRel;
	
lVersion	=	LceVersion(FALSE,	NULL);
iMajorRel	=	HIWORD(lVersion);
iMinorRel	=	LOWORD(lVersion);
	

6.81.3	Psuedocode	Example
Display	version	number	in	current	active	window.
IF	NOT	LceVersion(TRUE,	NULL)
									/*	return	error	*/
ENDIF
	
	
	
	

7.	Troubleshooting
This	chapter	describes	some	of	the	communication	errors	you	could	encounter,
how	to	discover	the	cause	and	how	to	fix	the	error.
Error	Message	Codes	contains	a	list	of	error	message	codes	and	their	meanings.
7.1	What	to	Do	if	You	Have	Communications	Problems

its:LANSA035.CHM::/lansa/error_message_codes.htm

7.1	What	to	Do	if	You	Have	Communications	Problems
Communication	problems	can	be	caused	by	a	number	of	factors,	from	the
communications	router	to	the	application	on	the	PC.	While	the	actual
configuration	and	maintenance	of	communications	between	client	workstations
and	IBM	i	servers	is	beyond	the	scope	of	this	guide,	the	information	in	this
chapter	may	help	you	to	determine	the	cause	of	your	problem.
Start	with	these	basic	checks:

Can	you	get	a	5250	terminal	emulation	session	running	under	the
communications	router	in	order	to	sign	on	to	the	IBM	i?	

If	you	can't,	then	work	with	your	communications	router	and	its	configuration
options	until	you	can.	If	you	can't	run	a	terminal	emulation	session	then	there	is
no	way	that	you	are	going	to	get	a	session	using	LANSA	Open	to	start	and	run.

Check	that	the	user	profile	you	are	using:
Is	defined	on	the	IBM	i.
Is	8	characters	or	less	in	length.
Has	the	password	that	you	are	using.

Check	that	the	user	profile	you	are	using	is	validly	defined	and	is	authorized
to	use	the	LANSA	system	and	partition.	

Do	this	simple	test:
Sign	on	at	a	5250	terminal	and	immediately	type	the	command	LANSA
PARTITION(ppp).	Can	the	LANSA	command	be	found?	If	not,	you	have	a
basic	library	list	problem.	The	job	description	associated	with	the	user
profile	does	not	include	the	LANSA	program	library	(usually
DC@PGMLIB)	in	its	initial	library	list.
Use	the	DSPUSRPRF	command	to	view	the	Job	Description	associated	with
the	user	profile	and	note	down	the	associated	job	description.	Next	use	the
DSPJOBD	command	to	view	the	job	description	itself.	Ensure	it	has	an
initial	library	list	which	includes	the	LANSA	program	library	(usually
DC@PGMLIB)	and	the	LANSA	Communications	Library.
Also	check	that	the	Job	Description	has	LOG(4	00	*SECLVL)	logging,	if
you	are	trying	to	solve	a	problem.	This	will	ensure	any	OS/400	job	that	the
user	profile	starts	will	produce	an	OS/400	job	log.	This	job	log	will	almost

always	yield	useful	error	information.	If	you	request	help	from	your	LANSA
vendor,	always	send	example(s)	of	the	job	logs	resulting	from	failed
connection	attempts.

Check	that	the	partition	and	language	code	that	you	are	using	are	valid.	

Make	sure	that	the	partition	and	language	you	have	specified	are	valid.
The	partition	you	specify	must	exist	in	the	target	LANSA	system	on	the	IBM
i.
If	the	partition	you	specify	is	not	multilingual	then	the	language	you	specify
must	be	NAT	(National	Language).
If	the	partition	you	specify	is	multilingual	then	the	language	you	specify
must	be	a	valid	language	defined	within	the	specified	partition.

Check	that	your	LANSA	system	is	correctly	licensed.	

Sign	on	to	LANSA	for	iSeries	as	QSECOFR,	or	the	LANSA	system	owner,	and
use	the	command	LANSA	REQUEST(LICENSE)	to	display	your	current
licensing	status.

To	use	LANSA	Open	you	need	a	License	Type	of	LCE.

Check	the	communications	subsystem	on	the	IBM	i	is	active.	

Make	sure	the	subsystem	QCMN	is	active.
If	it	isn't,	start	it	and	try	the	connect	operation	again.	To	run	communication
sessions,	QCMN	must	be	active.

Check	the	communications	router	is	active	and	correctly	started	on	your
workstation.	

Make	sure	that	the	User	Id	and	Password	have	been	specified.
Make	sure	that	the	communications	router	you	are	using	is	started.
Check	the	IBM	i	LU	name	you	are	specifying.	Sign	on	to	your	IBM	i	and
use	the	DSPNETA	(Display	Network	Attributes)	command	to	determine
your	local	control	point	name	(for	example,	SYDASDEV).

Check	for	a	communication	job	on	the	IBM	i	

Does	an	OS/400	"workstation"	job	appear	in	the	QCMN	subsystem?
Use	the	OS/400	command	WRKSBSJOB	QCMN,	to	display	the	active
jobs	in	subsystem	QCMN.	Repeatedly	use	F5=Refresh,	to	refresh	the	list,	as
you	start	the	communications	connection	from	the	application	executing	on
the	workstation.

Normally	a	job	in	IBM	i	subsystem	QCMN	has	the	same	name	as	the
associated	PC	workstation.
If	a	job	appears	in	the	subsystem,	immediately	put	a	"5"	(Work	with)
against	it	and	then	choose	the	option	to	display	its	spooled	files.	When	it
completes	it	should	produce	an	IBM	i	job	log	(spool	file	QPJOBLOG).	If	it
does	not	produce	a	job	log	then	alter	the	job	description	associated	with	it
(described	previously)	and	attempt	the	operation	again.	Review	the	resulting
job	log	backwards.	Errors	and	escape	message	at	the	end	of	the	job	log	will
usually	show	the	cause	of	the	problem,	whereas	errors	and	escape	message	at
the	start	of	the	job	log	may	mislead	you	because	they	are	often	trapped	and
handled.	(For	example,	"Program	LCXP9000	not	found"	is	not	an	error,	it	is
simply	an	attempt	to	find	a	user	exit	program).
If	a	job	does	not	appear	in	the	subsystem,	use	the	DSPLOG	command	to
display	the	IBM	i	system	history	log.	Move	to	the	end	of	the	log	and	look	for
messages	that	relate	to	the	PC	workstation	involved.	Usually	such	messages
will	indicate	the	cause	of	(and	often	the	solution	to)	basic	IBM	i
communication	configuration	problems.
If	no	job	appears	in	the	subsystem	and	there	are	no	messages	in	the	IBM
i	system	history	log,	then	you	would	appear	to	have	such	a	fundamental
connection	problem	between	your	PC	and	IBM	i	that	the	IBM	i	does	not
even	become	aware	of	the	connection	request.	Proceed	to	review	the
configuration	details	of	your	communication	router	and	use	its	error	logging
and	tracing	capabilities.

Check	that	the	file	or	library	you	are	trying	to	open	exists	

Most	of	the	error	messages	found	in	job	logs	are	self	explanatory.	Trying	to
open	a	session	that	uses	a	file	that	does	not	exist	on	the	IBM	i	would	cause
an	Lce0023	return	code	0x01	to	be	received	by	LANSA	Open.	In	this	case,
the	job	log	of	such	a	job	could	look	like	this:

CPF4101	Message	:			File		<file	name>		in	library	*LIBL	not	found	or

inline	data	file	missing.	Cause	:			The	file	was	not	opened.	The	reason
code	is	03.

Possible	reason	codes	and	their	meanings:
			01	-	The	library	does	not	exist.
			02	-	The	file	does	not	exist	but	the	library	does	exist.
			03	-	The	file	does	not	exist.

			The	reason	for	that	failure	can	be	clearly	identified,	however,	there	are	other
errors	when	the	cause	is	not	so	straightforward.	For	example:

MCH0601	Message:	Space	offset	&2	is	outside	current	limit	for	object
&1.	

			This	could	be	caused	by:
The	space	declared	in	data	area	DC@A10	not	being	big	enough	to
hold	the	records	selected.	Increase	the	size	of	the	value	in	DC@A10.

MCH0802	Message:	Total	parameters	passed	does	not	match	number
required.	

			This	could	be	caused	by:
Using	the	*BLOCKBYRRNnnn	or	the	*RECEIVEIMMED	select
option,	but	with	*IOMXSERVER,	*IOMBLOCKBYKEY	and
*IOMBLOCKBYRRN	missing	from	data	area	DC@OSVEROP's	I/O
module.

Add	these	keywords	into	data	area	DC@OSVEROP	and	recreate	the
I/O	module.
Other	objects	in	the	library	list	with	same	name	as	the	I/O	module.

MCH3601	Message:	Pointer	not	set	for	location	referenced	
			This	could	be	caused	by:

An	RCLRSC	command	being	issued	directly	from	the	application,	or
position	480	in	data	area	DC@A01	being	set	to	"Y".

Either	don't	use	RCLRSC	or	change	position	480	of	the	DC@01	data
area	to	a	value	other	than	"Y".

General	Protection	Fault	(GPF)	

A	GPF	usually	occurs	when	an	application	tries	to	access	a	part	of	the	memory
that	is	already	allocated.	It	can	also	occur	when	running	out	of	stack	space.

If	you	request	help	from	your	LANSA	vendor,	be	sure	to	include	the
job	log	with	the	problem's	description.

	

Appendix	A.	Error	Message	Codes
These	error	codes	are	included:

LANSA	Open	Error	Codes
Error	Code	3	-	Internal	Error	Reason	Codes
Error	Code	23	-	CPI-C	Return	Codes

LANSA	Open	Error	Codes
Almost	every	LANSA	Open	function	returns	a	True	or	False	value.	If	a	False
value	is	returned,	it	will	be	defined	by	the	error	codes	in	this	list.
When	a	function	returns	FALSE,	LceGetStatus	can	be	used	to	determine	the
code.
The	object	in	error	is	included	in	the	error	message	where	applicable.	This	is
represented	by	%d,	%c	or	%100s	in	these	messages.

Error
Code

Reason

0 The	title:	Error

1 The	title:	LANSA	Open	Validation	Messages

2 The	title:	Cancel

3 Internal	Error.	Reason	Code	=	%d.
Note:	The	Reason	Codes	(represented	by	%d)	are	listed	in	Internal
Error	Reason	Codes.

4 An	error	was	encountered	while	allocating	memory.

5 Invalid	parameter.	The	parameter	cannot	be	a	NULL	pointer.

6 The	field	%100s	has	not	been	defined	for	the	current	session.

7 The	file	%100s	has	not	been	defined	for	the	current	session.

8 The	priority	%d	is	not	valid.	It	must	be	a	value	in	the	range	5	to	80.

9 The	heading	number	is	not	valid.	It	must	be	in	the	range	1	to	3.

10 The	field	%100s	cannot	be	set	to	the	value	specified	because	it
exceeds	%d,	the	maximum	length	for	the	field.

11 No	Select	Options	have	been	specified	in	the	Options	list.

12 The	Select	Option	%.100s	is	not	valid.	The	only	valid	Select	Options
are	*STARTKEY,	*BACKWARDS,	*LOCK,	*MAXREC.

13 The	function	has	not	been	specified,	or	it	exceeds	the	maximum	length
of	%d.

14 No	Fields	were	specified	in	the	Field	list.

15 The	parameter	%.100s	is	too	long.	It	exceeds	the	maximum	length	of
%d.

16 The	combination	of	parameters	is	not	valid.	A	program	cannot	be
specified	if	a	process	and	function	are	defined.	If	the	process	is
defined	the	function	must	be	defined	also.

17 The	temporary	directory	%.100s	is	not	valid.	Specify	a	directory	that
exists	in	the	Configuration	File.

18 The	object	%.100s	is	not	defined	in	the	current	session.

19 The	numeric	%.100s	is	not	in	a	valid	format	for	the	field	specified.	It
should	be	in	the	format	(%d,%d).

20 The	Session	ID	%d	is	not	valid.	It	must	be	a	positive	number	less	than
the	maximum	number	of	Sessions,	20.

21 The	Session	ID	%d	is	not	open.

22 The	Session	ID	%d	is	already	open.

23 A	Communications	Error	has	occurred	for	the	action	%.100s.	The
return	code	is	%d.
Note:	The	return	codes	(represented	by	%d)	are	listed	in		and	CPI-C
Return	Codes.

24 A	memory	allocation	error	occurred	while	trying	to	initialize	the
library.	No	LANSA	Open	functions	can	be	called.

25 The	LANSA.INI	file	is	not	valid.	No	LANSA	Open	functions	can	be
called.

26 The	communications	type	is	not	valid.	The	session	could	not	be
opened.

27 The	PC	Support	Router	has	not	been	started.	No	LANSA	Open
functions	can	be	called.

28 Communications	Manager	has	not	been	started.	No	LANSA	Open
functions	can	be	called.

29 No	previous	LceRequestSelect	was	done	for	this	file.

30 Error	in	OS400	command.

31 Error	in	called	program	or	process/function.

32 Submit	failed.

33 Commitment	control	not	started.

34 Field(s)	defined	in	LceUseField	function	not	defined	in	the	LANSA
Repository.

35 File(s)	defined	in	LceUseFile	function	are	not	known	to	the	LANSA
Repository.

36 Validation	errors	have	occurred.

37 I/O	errors	have	occurred.

38 Unknown	error	response	code	received.

39 The	name	%.100s	is	not	a	valid	file	name.

40 The	library	name	in	file	%.100s	is	too	long.

41 The	file	name	in	file	%.100s	is	too	long.

42 The	member	name	in	file	%.100s	is	too	long.

43 The	record	number	%d	is	not	valid.

44 Record	not	found.

45 The	maximum	number	of	concurrently	Open	Sessions,	%d,	has	been
reached.	A	new	Session	cannot	be	obtained.

46 The	list	passed	contains	an	invalid	comma	or	does	not	have	one	where
it	is	necessary.

47 An	internal	file	cannot	be	opened.	This	may	be	due	to	insufficient	disk
space	on	the	temp	drive	or	not	enough	file	handles.

48 Cannot	open	the	session	because	the	system	name,	userid	and
password	were	not	all	specified.

49 An	internal	file	could	not	be	written	to.	Ensure	that	there	is	enough
space	on	the	drive	which	was	nominated	as	the	temporary	drive	or	the
current	drive	if	one	was	not	specified.

50 You	are	not	licensed	to	use	this	product.	Contact	your	LANSA	vendor
to	obtain	a	LICENSE.

51 Your	license	is	valid,	however	the	maximum	number	of	users	are
already	using	it.

52 Failed	to	load	Dynamic	Link	Library	Module,	%.100s	.

53 Failed	to	load	Dynamic	Link	Library	Procedure,	%.100s	.

54 The	option	or	value	specified	is	not	valid.

55 A	key	list	cannot	be	specified	for	LceRequestSelect	or
LceRequestSelectWhere	when	blocking	options	are	used.

56 The	conditions	for	LceRequestSelectWhere	exceed	the	maximum
length	of	%d.

57 Blocked	I/O	cannot	be	used	with	the	*BACKWARDS	option.

58 The	Session	ID	%d	must	receive	all	the	records	via	LceReceiveNextX
before	this	function	can	be	used.

59 The	buffer	passed	to	LceReceiveNextX	is	too	small	to	contain	the
complete	record.	An	incomplete	record	has	been	returned.

60 LceReceiveSelect	cannot	be	used	when	the	*RECEIVEIMMED
option	has	been	specified.

61 LceReceiveNextX	cannot	be	called	unless	LceRequestSelect	or
LceRequestSelectWhere	is	called	with	the	*RECEIVEIMMED	option
specified.

62 No	more	records	to	be	returned	by	LceReceiveNextX.

63 The	options	*BLOCKBYRRN	and	*BLOCKBYKEY	are	not	valid
when	specified	together.

64 LceRequestSelect	and	LceRequestSelectWhere	cannot	be	called	for
logical	files	when	blocked	I/O	is	being	used.

65 Invalid	Communications	Cursor	Type	specified.

66 Invalid	Communications	Type	specified.

67 Invalid	Host	Type	specified.

68 The	variable	specified	does	not	exist	or	a	multilingual	variable	was
requested	in	a	non-multilingual	partition.

69 Invalid	Help	Text	Type	Specified.

70 End	Of	Line	string	specified	for	Help	Text	is	too	long.

71 Error	when	accessing	or	creating	a	Local	Data	Dictionary	file.	Ensure
that	there	is	enough	space	on	the	drive	which	was	nominated	as	the
Local	Data	Dictionary	drive	or	the	current	drive,	if	one	was	not
specified.

72 Invalid	Field	list.

73 Host	returned	an	error	code	on	last	operation.

74 Inconsistent	Type,	Length	or	Decimals	was	encountered	for	field
%.100s	.

75 Invalid	3GL	parameter	number	combination.	The	first	level	number
must	be	from	0	to	19.	The	sub-parameter	must	be	from	0	to	255.

76 Invalid	parameter	Direction	specified.

77 Invalid	parameter	Type	specified.

78 Aggregate	parameter	Length	for	this	first	level	number	exceeds	the
maximum	allowed	OR	numeric	parameters	length	or	decimals	is
invalid.

79 Parameter	%d,	%d	has	not	been	defined	using
Lce3GLDefineParameter.

80 Invalid	attempt	to	set	or	get	a	parameter	value	which	has	an
inappropriate	direction	value.	Direction	must	be	"P"	or	"B"	to	set	the
value,	or	"R"	or	"B"	to	get	the	value.

81 An	error	occurred	executing	the	host	3GL	program.

82 The	sum	of	the	length	of	the	fields	requested	for	use	exceeds	the	host's
maximum	I/O	buffer	size	of	%d.

83 The	operation	requested	has	resulted	in	a	communications	transaction
to	the	host	which	exceeds	the	hosts	receive	buffers	maximum	size	of
%d.

	

Error	Code	3	-	Internal	Error	Reason	Codes
This	error	code	is	returned	when	the	internal	logic	of	the	software	detects	a
condition	which	should	not	occur	in	normal	operation.
Specific	cause	information	is	not	available,	however,	a	Reason	Code
representing	an	internal	macro	is	returned.	This	code	may	assist	in	determining
the	cause	of	the	error.
Listed	below	are	the	Reason	Codes	and	the	associated	internal	macro	names.

Reason	Code Associated	Macro	Name

1 LCE_INTERR_INVALID_DATA_TYPE

2 LCE_INTERR_DBCS_TARGET_TOO_SMALL

3 LCE_INTERR_TOO_MANY_DIGITS

4 LCE_INTERR_TOO_MANY_DECIMALS

5 LCE_INTERR_NUMERIC_TARGET_TOO_SMALL

6 LCE_INTERR_RECV_BUFF_TOO_SMALL

7 LCE_INTERR_RECV_NO_TERMINATOR

8 LCE_INTERR_RECV_INVALID_COMMAND

9 LCE_INTERR_RECV_FATAL_ERROR

10 LCE_INTERR_RECV_BAD_FORMAT

11 LCE_INTERR_RECV_INVALID_IDENTIFIER

12 LCE_INTERR_REVERSE_BUFF_TOO_SMALL

13 LCE_INTERR_COMMS_ALREADY_ALLOCATED

14 LCE_INTERR_UNKNOWN_ACTION

15 LCE_INTERR_COMMS_RECV_BAD_DATA

16 LCE_INTERR_BUFF_TOO_MANY_FILES

17 LCE_INTERR_BUFF_FILE_READ

18 LCE_INTERR_BUFF_FILE_ACCESS

19 LCE_INTERR_RECV_INVALID_FILE_TYPE

20 LCE_INTERR_DBCS_BAD_CLIENT_STRING

21 LCE_INTERR_DBCS_BAD_HOST_STRING

22 LCE_INTERR_PACKED_BUFF_TOO_SMALL

23 LCE_INTERR_SIGNED_BUFF_TOO_SMALL

24 LCE_INTERR_TABLE_BUFF_TOO_SMALL

25 LCE_INTERR_TP_END_SESSION

26 LCE_INTERR_INVALID_TABLE_INDEX

27 LCE_INTERR_INVALID_TABLE_RECORD

28 LCE_INTERR_EDIT_BAD_FORMAT

29 LCE_INTERR_VARIABLE_BAD_TYPE

30 LCE_INTERR_DEFAULT_BAD_TYPE

31 LCE_INTERR_UNKNOWN_RC_LCLCE

32 LCE_INTERR_PARBLOCK_ZERO_MEM

	

Error	Code	23	-	CPI-C	Return	Codes
This	list	includes	the	most	common	return	codes	issued	with	a	communications
error	code	(Lce0023)	returned	by	LANSA	Open	when	using	the	CPI-C
communication	method	(i.e.	MS	Host	Integration	Server,	Network	Services	for
DOS).
Some	of	the	return	codes	associated	with	the	allocation	of	a	conversation	have
the	suffix	RETRY	or	NO_RETRY	in	their	name:

RETRY	means	that	the	condition	indicated	by	the	return	code	may	not	be
permanent	and	the	program	can	try	to	allocate	the	conversation	again.
Whether	or	not	the	retry	attempt	succeeds	depends	on	the	duration	of	the
condition.
NO_RETRY	indicates	that	the	condition	is	probably	permanent.

Please	note	that	LANSA	Open	always	returns	the	error	codes	in	hexadecimal
format.	This	documentation	lists	the	error	codes	in	decimal	format,	so	you	need
to	convert	the	returned	code	to	decimal	format	before	looking	up	the	error	in
this	table.

Dec
Value

Description Reason	for	error

6 SECURITY_NOT_VALID Userid/password	combination	invalid
(i.e.	user	profile	has	not	been	defined
in	the	host	or	this	is	an	incorrect
password	for	the	userid	-	note	that
passwords	are	case	sensitive	for
Windows,	Linux	and	non-IBM	i	hosts).
No	job	could	be	started	in	the	Host,	so
don't	look	for	a	job	log.

17 DEALLOCATED_ABEND 1.	LANSA	program	library	not	in
user's	job	description's	initial	library
list.
2.	When	I/O	module	was	compiled,
settings	*IOMXSERVER,
*IOMBLOCKBYKEY	and
*IOMBLOCKBYRRN	were	missing
in	DC@OSVEROP	data	area.	(Refer	to

MCH0802	in	the	job	log).
3.	Other	causes	may	be	discovered	in
the	IBM	i	Job	Log	or	Windows
Application	Event	Log.

18 DEALLOCATED_NORMAL 1.	Partition	doesn't	exist	or	user	is	not
authorized	for	the	partition.
2.	File	doesn't	exist	or	the	user	is	not
authorized	for	the	file.
3.	Language	used	is	not	defined	in	the
partition.
4.	Other	causes	may	be	discovered	in
the	IBM	i	Job	Log	or	Windows
Application	Event	Log.

19 PARAMETER_	ERROR On	the	Host	Integration	Server,	use
SNA	Server	Admin.	to	add	a	LU6.2
partner	relationship	between	the	"Local
LU"	and	"Partner	LU"	which	has	a
MODE	of	"BLANK".

20 PRODUCT_
SPECIFIC_ERROR

As	for	Error	19
(PARAMETER_ERROR).

24 PROGRAM_	PARAMETER-
CHECK

Most	likely	cause	is	that	the	userid	or
password	is	more	than	8	characters.
SNA	requires	userids	and	passwords	to
be	a	maximum	of	8	characters.

26 RESOURCE_
FAILURE_NO_	RETRY

Most	likely	cause	is	hardware	failure.
Check	the	connections	(cabling)
between	PC	and	host.

27 RESOURCE_
FAILURE_RETRY

PC	has	run	out	of	memory.	Confirm
by		opening	a	session	with	no
declarations.	Reduce	the	number	of
applications	loaded	when	the	system
starts.

	

	
	

	LANSA Open
	1. Introduction
	1.1 What Is LANSA Open?
	1.2 The LANSA Object Repository
	1.2.1 I/O Modules & OAMs

	1.3 Dynamic Link Libraries (DLLs)
	1.4 How LANSA Open Works
	1.5 Local Data Dictionary
	1.6 Program Examples?

	2. Getting Started
	2.1 Installing/Upgrading LANSA Open
	2.2 Configuration File
	2.3 Repository on the Server
	2.4 Multilingual Support

	3. Function Overview
	3.1 What Are DLLs?
	3.1.1 Making DLL Functions Known to Your Application
	3.1.2 Calling DLL Functions

	3.2 LANSA Open Function Summary
	3.2.1 Which LANSA Open Function to Use and When
	3.2.2 Session Management
	3.2.3 Session Definition
	3.2.4 Data Access
	3.2.5 Miscellaneous Functions

	3.3 Generic Coding Example

	4. Guidelines for Using LANSA Open
	4.1 Where to Find the Program Examples
	4.2 LANSA Open and Visual Basic
	4.3 LANSA Open and C
	4.4 LANSA Open and Excel

	5. Quick Start for Visual Basic Programmers
	5.1 Overview
	5.1.1 Program steps

	5.2 Defining and Opening the Host session
	5.2.1 Declare Variables
	5.2.2 GetSessionID
	5.2.3 Set Session Options
	5.2.4 Enabling LANSA Open Default Error Handler
	5.2.5 Opening the Host Session

	5.3 Data Access
	5.3.1 Using Field Labels and Descriptions from the LANSA Repository
	5.3.2 Populating a List with the Contents of a Table
	5.3.3 Retrieving a Specific Record
	5.3.4 Setting a New Record's Fields to Default Values
	5.3.5 Saving Changes / Inserting Records
	5.3.6 Deleting Records
	5.3.7 Retrieving Help Text

	5.4 Error Handling
	5.5 Closing the Session

	6. Function Details
	6.1 Function Format
	6.1.1 Examples

	6.2 Lansa Object Names
	6.2.1 C Example

	6.3 Lce3GLCall
	6.3.1 VB Example
	6.3.2 C Examples

	6.4 Lce3GLDefineParameter
	6.4.1 Examples

	6.5 Lce3GLGetValue
	6.5.1 Examples

	6.6 LceASCIIToFloat
	6.6.1 C Example
	6.6.2 Pseudocode Example

	6.7 LceASCIIToInteger
	6.7.1 C Example
	6.7.2 Pseudocode Example

	6.8 LceCheckFor
	6.8.1 VB Example
	6.8.2 C Example

	6.9 LceCommitWork
	6.9.1 VB Example
	6.9.2 C Example

	6.10 LceDelete
	6.10.1 VB Example
	6.10.2 C Example
	6.10.3 Psuedocode Example

	6.11 LceDeleteSelect
	6.11.1 VB Example
	6.11.2 C Example
	6.11.3 Psuedocode Example

	6.12 LceDisplayErrors
	6.12.1 VB Example
	6.12.2 C Example
	6.12.3 Psuedocode Example

	6.13 LceEndSession
	6.13.1 VB Example
	6.13.2 C Example

	6.14 LceExecute400
	6.14.1 VB Example
	6.14.2 C Example

	6.15 LceFetch
	6.15.1 VB Example
	6.15.2 C Example
	6.15.3 Psuedocode Example

	6.16 LceGetDefaultValue
	6.17 LceGetDefaultValueX
	6.17.1 VB Example
	6.17.2 C Example
	6.17.3 Psuedocode Example

	6.18 LceGetDefaultValueU
	6.18.1 C Example

	6.19 LceGetFieldAttributes
	6.19.1 VB Example
	6.19.2 C Example
	6.19.3 Psuedocode Example

	6.20 LceGetFieldDataLength
	6.20.1 VB Example
	6.20.2 C Example
	6.20.3 Psuedocode Example

	6.21 LceGetFieldDesc
	6.21.1 VB Example
	6.21.2 C Example
	6.21.3 Psuedocode Example

	6.22 LceGetFieldEdit
	6.22.1 VB Example
	6.22.2 C Example
	6.22.3 Psuedocode Example

	6.23 LceGetFieldHeading
	6.23.1 VB Example
	6.23.2 C Example
	6.23.3 Psuedocode Example

	6.24 LceGetFieldHelpText
	6.24.1 VB Example
	6.24.2 C Example

	6.25 LceGetFieldIndicator
	6.25.1 VB Example
	6.25.2 C Example
	6.25.3 Psuedocode Example

	6.26 LceGetFieldLabel
	6.26.1 VB Example
	6.26.2 C Example
	6.26.3 Psuedocode Example

	6.27 LceGetFieldType
	6.27.1 VB Example
	6.27.2 C Example
	6.27.3 Psuedocode Example

	6.28 LceGetFieldValue
	6.29 LceGetFieldValueX
	6.29.1 VB Example
	6.29.2 C Example
	6.29.3 Psuedocode Example

	6.30 LceGetFieldValueU
	6.30.1 C Example
	6.30.2 Psuedocode Example

	6.31 LceGetFieldValueH
	6.31.1 VB Example
	6.31.2 C Example

	6.32 LceGetFileDesc
	6.32.1 VB Example
	6.32.2 C Example
	6.32.3 Psuedocode Example

	6.33 LceGetFileType
	6.33.1 VB Example
	6.33.2 C Example
	6.33.3 Psuedocode Example

	6.34 LceGetIBMiSignon
	6.34.1 VB Example
	6.34.2 C Example
	6.34.3 C# Example

	6.35 LceGetMessage
	6.35.1 VB Example
	6.35.2 C Example

	6.36 LceGetMessageCount
	6.36.1 VB Example
	6.36.2 C Example

	6.37 LceGetRecordCount
	6.37.1 VB Example
	6.37.2 C Example

	6.38 LceGetSelect
	6.38.1 VB Example
	6.38.2 C Example

	6.39 LceGetSessionId
	6.39.1 VB Example
	6.39.2 C Examples

	6.40 LceGetStatus
	6.40.1 VB Example
	6.40.2 C Example

	6.41 LceGetSystemAttribute
	6.41.1 VB Example
	6.41.2 C Example

	6.42 LceGetVariable
	6.42.1 VB Example
	6.42.2 C Example

	6.43 LceInsert
	6.43.1 VB Example
	6.43.2 C Example

	6.44 LceLansaCall
	6.44.1 VB Example
	6.44.2 C Example

	6.45 LceLocalDateTimeToServer
	6.45.1 VB Example
	6.45.2 C Example

	6.46 LceOpenSession
	6.46.1 VB Example
	6.46.2 C Example

	6.47 LceReceiveNext
	6.48 LceReceiveNextX
	6.48.1 VB Example
	6.48.2 C Examples

	6.49 LceReceiveSelect
	6.49.1 VB Example
	6.49.2 C Example

	6.50 LceRequestSelect
	6.50.1 VB Example
	6.50.2 C Example

	6.51 LceRequestSelectWhere
	6.51.1 VB Example
	6.51.2 C Example

	6.52 LceRollBackWork
	6.52.1 VB Example
	6.52.2 C Example

	6.53 LceSelect
	6.53.1 VB Example
	6.53.2 C Example

	6.54 LceSetCommitmentOff
	6.54.1 VB Example
	6.54.2 C Example

	6.55 LceSetCommitmentOn
	6.55.1 VB Example
	6.55.2 C Example

	6.56 LceSetCommsCursor
	6.56.1 VB Example
	6.56.2 C Example

	6.57 LceSetCommsType
	6.58 LceSetFieldValue
	6.58.1 VB Example
	6.58.2 C Examples

	6.59 LceSetFieldValueU
	6.59.1 VB Example
	6.59.2 C Examples

	6.60 LceSetHostType
	6.61 LceSetIBMiSignon
	6.61.1 VB Example
	6.61.2 C Example
	6.61.3 C# Example

	6.62 LceSetKerberosOff
	6.63 LceSetKerberosOn
	6.64 LceSetSelectOptions
	6.64.1 VB Example
	6.64.2 C Examples

	6.65 LceSetSessionOption
	6.65.1 VB Example
	6.65.2 C Example

	6.66 LceSubmit
	6.66.1 VB Example
	6.66.2 C Example

	6.67 LceUnicodeToHex
	6.67.1 VB Example
	6.67.2 C Example

	6.68 LceUpdate
	6.68.1 VB Example
	6.68.2 C Example
	6.68.3 Psuedocode Example

	6.69 LceUseExceptionalArguments
	6.69.1 VB Example
	6.69.2 C Example

	6.70 LceUseField
	6.70.1 VB Example
	6.70.2 C Examples
	6.70.3 Psuedocode Example

	6.71 LceUseFile
	6.71.1 VB Example
	6.71.2 C Example
	6.71.3 Psuedocode Example

	6.72 LceUseFunction
	6.72.1 VB Example
	6.72.2 C Example

	6.73 LceUseLanguage
	6.73.1 VB Example
	6.73.2 C Example

	6.74 LceUsePartition
	6.74.1 VB Example
	6.74.2 C Examples

	6.75 LceUsePassword
	6.75.1 VB Example
	6.75.2 C Example

	6.76 LceUsePriority
	6.76.1 VB Example
	6.76.2 C Example

	6.77 LceUseProcess
	6.77.1 VB Example
	6.77.2 C Example

	6.78 LceUseSystem
	6.78.1 VB Example
	6.78.2 C Example
	6.78.3 Psuedocode Example

	6.79 LceUseTmpDrive2
	6.79.1 VB Example
	6.79.2 C Example

	6.80 LceUseUserId
	6.80.1 VB Example
	6.80.2 C Example

	6.81 LceVersion
	6.81.1 VB Example
	6.81.2 C Example
	6.81.3 Psuedocode Example

	7. Troubleshooting
	7.1 What to Do if You Have Communications Problems

	Appendix A. Error Message Codes
	LANSA Open Error Codes
	Error Code 3 - Internal Error Reason Codes
	Error Code 23 - CPI-C Return Codes

