
LANSA	Application	Deployment	Tool
LANSA	Application	Deployment	Tool
	

About	this	Guide
Introduction
What's	New?
Plan	your	Deployment
Getting	Started	with	the	Deployment	Tool
Configure	the	Deployment	Tool
Applications
Versions	and	Patches
Options	&	Settings
Deploy	LANSA	Communications
Deploy	Client	/	Server	Applications
Deploy	LANSA	for	the	Web	Applications
Just	In	Time	Upgrade	Guidelines
Deployment	Templates
Translate	a	LANSA-developed	Application
Review	your	Deployment	Package
Test	your	Deployment	Package
Install	an	Application
Upgrade	an	Existing	MSI	Application
Upgrade	an	Existing	V12	Application
Cloud	Customizations
How	to...?
Deployment	Tool	Tutorials
Cloud	Tutorials
Glossary

	
Edition	Date	June	15,	2015

its:lansa022.chm::/lansa/L4wdplwn_0010.htm
its:lansa022.chm::/lansa/dt_400.htm
its:lansa022.chm::/lansa/l4wdplb1_0005.htm
its:lansa022.chm::/lansa/l4wdplb2_0060.htm
its:lansa022.chm::/lansa/dt_0010.htm
its:lansa022.chm::/lansa/l4wdplb2_0055.htm
its:lansa022.chm::/lansa/dt_0030.htm
its:lansa022.chm::/Lansa/dt_0550.htm
its:lansa022.chm::/lansa/dt_0180.htm
its:lansa022.chm::/lansa/l4wdplb2_0065.htm
its:lansa022.chm::/lansa/l4wdplb3_0485.htm
its:lansa022.chm::/lansa/l4wdplb2_0010.htm
its:lansa022.chm::/lansa/l4wdplb3_0550.htm
its:lansa022.chm::/lansa/dt_0800.htm
its:lansa022.chm::/lansa/dt_1050.htm
its:lansa022.chm::/lansa/L4wDplb3_0035.htm
its:lansa022.chm::/lansa/L4wDplb3_0040.htm
its:lansa022.chm::/lansa/VLDTool19_0010.htm
its:lansa022.chm::/lansa/VLDTool19_0015.htm
its:lansa022.chm::/Lansa/VLDTool19_0155.htm
its:lansa022.chm::/Lansa/VLDTool19_0180.htm
its:lansa022.chm::/lansa/dt_0880.htm
its:lansa022.chm::/lansa/VLDtoolT_0010.htm
its:lansa022.chm::/Lansa/VLDtoolCT_0010.htm
its:lansa022.chm::/lansa/Glossary.htm

©	LANSA
	

About	this	Guide
The	LANSA	Application	Deployment	Tool	is	used	to	deploy	your	finished
applications	from	the	Visual	LANSA	development	system	to	a	runtime
environment	on	a	PC.
This	guide	describes	the	many	options	and	settings	required	to	deploy	a	Visual
LANSA	application	onto	a	target	PC.
It	is	intended	for	use	by	developers	or	other	staff	experienced	in	the	use	of
Visual	LANSA	and	with	knowledge	of	Windows	operating	systems.
You	are	also	advised	to	become	familiar	with	the	terminology	used	in	this	guide.
For	this,	refer	to	the	Glossary.
The	text	in	this	guide	is	available	while	using	the	Deployment	Tool	by	selecting
the	Contents	command	from	the	Help	menu	on	the	Deployment	Tool's	main
window	or	by	pressing	F1	to	invoke	context	help	while	using	the	software.
Before	you	use	this	guide,	you	should	review	the	following:
Who	should	use	this	Guide
How	to	use	this	Guide
Additional	Information.
For	the	latest	product	information	and	updates,	please	refer	to	the	technical
information	section	of	the	LANSA	Web	site	at	www.LANSA.com/support	
Always	use	the	documentation	relating	to	your	version	of	Visual	LANSA.
If	you	are	deploying	an	IBM	i	application,	refer	to	the	guide	Deploying	LANSA
Applications	on	IBM	i.

its:Lansa022.chm::/lansa/Glossary.htm
http://www.LANSA.com/support

Who	should	use	this	Guide
This	guide	has	been	written	for	Windows	developers	or	administrators	who	are
responsible	for	deploying	applications	on	to	customers'	PCs	-	whether	the
customers	are	internal	or	external	to	the	organization.
It	is	assumed	that	you	have	some	knowledge	of	Visual	LANSA,	as	well	as	the
target	PCs	characteristics	and	requirements	before	beginning	to	create	a
deployment	package.
Detailed	knowledge	of	the	LANSA	application	to	be	deployed	is	also	required,
as	all	the	objects	used	by	the	application	must	be	selected	for	inclusion	in	the
package	-	or	in	one	or	more	packages.

How	to	use	this	Guide
This	guide	contains	detailed	instructions	for	the	use	of	the	LANSA	Application
Deployment	Tool.	It	has	been	divided	into	sections	for	your	convenience:

For	a	general	overview	and	notes	to	review	before	you	start	creating
packages,	refer	to	the	Introduction.
Applications	describes	the	Applications	into	which	you	group	your	Versions
and	Patches	for	deployment.
Package	Options	&	Settings	describe	all	the	options	that	you	could	specify	to
define	the	details	of	the	packages	you	wish	to	deploy.
Templates	can	be	used	to	provide	a	basic	structure	for	a	version	based	on
common	deployment	scenarios.
Translating	a	LANSA-developed	Application	details	how	to	translate	the
LANSA	application	objects	and	incorporate	them	into	the	final	application.
Versions	and	Patches	covers	the	tasks	involved	in	creating	and	delivering
packages.

If	you	are	upgrading	from	an	earlier	version	of	the	Deployment	Tool,
be	sure	to	check	Upgrading	Existing	V12	Application	before	you	start.

its:lansa022.chm::/lansa/dt_400.htm
its:lansa022.chm::/lansa/dt_0030.htm
its:lansa022.chm::/Lansa/dt_0180.htm
its:lansa022.chm::/lansa/dt_0800.htm
its:lansa022.chm::/lansa/dt_1050.htm
its:lansa022.chm::/Lansa/dt_0550.htm
its:lansa022.chm::/Lansa/VLDTool19_0155.htm

Additional	Information
For	more	details	about	installing,	configuring	or	troubleshooting	LANSA
software,	you	may	need	to	refer	to	these	guides:

Installing	LANSA	on	Windows
LANSA	Communications	Setup

Both	of	these	guides	are	supplied	with	the	LANSA	online	guides	on	the	LANSA
Windows	DVD.
For	the	latest	product	information,	refer	to	the	LANSA	product	Web	site	at
www.LANSA.com/support
	

http://www.LANSA.com/support

1.	Introduction
For	an	overview	of	the	LANSA	Deployment	Tool,	please	review:
1.1	What	is	the	Deployment	Tool?
1.4	Who	should	use	the	LANSA	Deployment	Tool?
Deployment	Quick	Tour	in	Getting	Started	with	the	Deployment	Tool

its:lansa022.chm::/lansa/dt_0010.htm

1.1	What	is	the	Deployment	Tool?
The	Deployment	Tool	enables	you	to	package	and	distribute	your	Visual
LANSA-developed	product	to	your	customers,	whether	they	are	internally	or
externally	based.
Using	the	Deployment	Tool,	you	start	by	creating	an	Application.	Within	the
Application	you	create	a	Version	containing	the	relevant	objects	that	make	up
your	Visual	LANSA-developed	product.	You	select	specific	LANSA	objects	for
inclusion	in	the	Version	as	well	as	nominating	options	and	settings	that	relate	to
the	environment	in	which	the	Version	will	be	deployed.	Non-LANSA	objects
can	also	be	included	in	a	Version.
Once	you	have	completed	the	selection	process	the	Version	is	built	which
produces	an	MSI	file.
Your	Visual	LANSA-developed	products	are	thus	distributed	to	the	end	user	for
the	installation	of	all	the	relevant	objects	on	to	their	PC.	All	the	user	has	to	do	is
run	the	MSI	file	and	follow	the	prompts	-	or	you	can	use	the	Just	In	Time
Upgrade	to	automatically	update	the	user's	version	of	the	application,	as
necessary,	each	time	the	software	product	is	started.	(See	Glossary	for	a
description	of	the	MSI	file	and	Just	In	Time	Upgrade.)
Your	software	product	can	be	distributed	and	deployed	using:

An	automatic	installation	from	an	application	serving	system
A	web	based	download	which	is	initiated	by	operator	selection
A	copy	of	the	MSI	file	on	to	media	such	as	a	DVD
Systems	Center	Configuration	Manager	software.

Applications	may	be	maintained	by	creating	a	Version	or	a	Patch	based	on	an
existing	Version.	A	new	Version	may	be	used	for	a	first	installation	of	the
software	product	or	may	be	used	to	upgrade	an	existing	installation	of	the
software	product.	A	Patch	must	be	applied	to	an	existing	installation	of	the
Version	on	which	it	is	based.

its:lansa022.chm::/lansa/glossary.htm

1.2	The	Deployment	Model
A	Deployment	Tool	Application	in	combination	with	the	first	Version	created
within	the	Application	defines	the	core	of	your	software	product	and	becomes
the	building	block	for	subsequent	Versions	and	Patches	in	the	Application.
The	software	product	definition	is	contained	in	the	Version	and	Patch	details
when	the	Version	or	Patch	is	built,	and	the	resulting	MSI	file	(Version)	or	MSP
file	(Patch)	is	deployed.

Also	see
1.2.1	What	is	an	Application?
1.2.2	What	is	a	Version?
1.2.3	What	is	a	Patch?
1.2.4	What	is	a	Package?
1.2.5	What	do	you	need	to	deploy?

1.2.1	What	is	an	Application?
The	concept	of	an	Application	important	and	binding.	In	previous	releases	of
LANSA,	an	Application	could	consist	of	a	collection	of	unrelated	packages,	or
packages	used	for	different	purposes	such	as	a	client	install	package	and	a
server	install	package.	A	LANSA	Application	is	synonymous	with	a	software
product.
Now,	the	first	Version	in	an	Application	defines	the	full	product,	including	all
objects	and	settings,	and	is	used	as	the	basis	for	subsequent	Versions	and
Patches	of	the	Application.	Install	options	are	used	to	determine	what	and	how
the	package	is	installed,	for	example	if	installing	with	database	or	installing
client	portion	only.
In	the	Deployment	Tool	interface	the	Application	Name	identifies	an
Application.	It	has	an	Application	description	and	Company	Name,	which	are
visible	to	the	end	user	and	are	used	when	installing	and	uninstalling	the	software
product.
However,	from	a	Windows	Installer	perspective,	an	Application	must	have	a
unique	identifier	that	relates	all	of	the	Versions	and	Patches	within	this
Application	to	each	other.	Each	time	a	Version	or	a	Patch	is	built,	another
unique	identifier	is	generated	for	this	particular	build.	These	are	Globally
Unique	Identifiers	(GUIDs)	and	are	stored	at	the	Application	level.	The	MSI
and	MSP	installations	internally	use	these	unique	identifiers	to	validate	the
installs.	For	example,	when	the	second	Version	of	a	software	product	is	installed
the	Application's	unique	identifier	is	used	to	see	if	a	previous	Version	is	already
installed.	If	it	is	already	installed	the	Version	will	be	automatically	uninstalled
before	installing	the	second	Version	of	the	product.

1.2.2	What	is	a	Version?
A	Version	is	a	full	install	of	the	software	product.	A	Version	belongs	to	an
Application.
A	Version	is	identified	by	its	Version	Number.	The	Version	Numbering	is
arbitrary	but	subsequent	version	numbers	must	be	greater	than	previous	ones.
For	example,	1.0.0	then	1.0.1	then	1.3.0	then	1.3.3	and	so	on.	Notice	that
numbers	can	be	skipped	but	the	sequence	must	be	increasing.
A	suggested	way	to	use	your	Version	numbering	is:
													<major	release>.<minor	release>.<build	number>
A	Version	may	include:

LANSA	objects
Non-LANSA	objects
Database	setup	information
SuperServer	setup	information
Communications	details
Just-in-Time	delivery	information
Shortcuts.

Whatever	your	software	product	requires	to	execute	and	run	correctly	must	be
included	in	the	Version.
If	the	Version	includes	the	setting	Deploy	to	Development	System,	no	MSI	file	is
produced.	The	internal	object	definitions	must	be	imported	from	the	internal
files.	Refer	to	LANSA	Import	for	further	information.

its:lansa022.CHM::/lansa/L4wDplb3_0180.HTM

1.2.3	What	is	a	Patch?
A	Patch	is	used	to	deliver	a	set	of	changes	to	a	software	product	that	has	been
installed	using	the	Windows	Installer.	A	software	product	can	be	upgraded	by
installing	a	new	Version	(MSI	file)	or	by	applying	a	Patch	(MSP	file).

A	Patch	is	typically	used	to	apply	modified	compiled	objects,	shortcuts	and
executables.
You	should	NOT	use	a	patch	to	deploy	database	changes	as	they	are	complex
to	manage	and	can	easily	result	in	a	corrupted	database.
A	Patch	is	identified	by	its	Patch	Number.
The	Patch	number	has	a	direct	relationship	to	the	Version	or	Patch	it	was
based	on,	for	example	Patch	1.0.0.1	would	be	the	first	patch	against	Version
1.0.0.
To	create	a	Patch,	copy	a	parent	Version	or	Patch.
In	this	way	the	Patch	inherits	the	parent	definition	including	the	objects	to	be
deployed.
When	the	Patch	is	built,	a	full	MSI	file	is	built	in	exactly	the	same	manner	as
the	parent	Version	or	Patch	was	built.
The	resulting	MSI	file	is	compared	with	the	Version's	MSI	file	to	produce	a
difference	file	–	the	MSP	file.
Note	that	only	the	MSP	file	is	installable.
The	interim	MSI	is	deleted	once	the	MSP	has	been	constructed.

The	MSP	file	is	a	self-contained	package	that	contains	updates	to	the	software
product	and	describes	which	Version	can	receive	this	Patch.	In	many	cases	it	is
advisable	to	service	products	by	delivering	a	Patch	because	an	MSP	file	is
typically	much	smaller.
If	a	patch	is	only	to	be	used	to	ship	updated	objects	and	there	are	no	new
objects,	then	nothing	needs	to	be	changed	in	the	Package	Definition.	Just	save
the	Package	and	build	it.	Any	differences	between	the	Version	and	the	current
state	of	objects	will	be	included	in	the	Patch.
A	Patch	is	usually	created	from	the	last	Patch	definition,	so	that	it	includes	any
changes	made	to	the	Package	Definition,	like	the	addition	of	new	objects.
The	order	of	the	application	of	Patches	does	not	change	the	installed	result.	If
Patch	1	contains	MYFORM.DLL	version	1.0.0.1	and	Patch	2	contains
MYFORM.DLL	version	1.0.0.2	then	whether	Patch	1	is	installed	first	or	Patch	2
the	result	is	that	MYFORM.DLL	version	1.0.0.2	is	installed.

Similarly	when	a	Patch	is	uninstalled.	If	Patch	1	is	now	uninstalled,	it	will	only
affect	the	version	of	DLLs	which	it	installed.	As	version	1.0.0.2	is	installed,
uninstalling	Patch	1	will	not	replace	MYFORM.DLL	with	version	1.0.0.0.	It
will	still	be	version	1.0.0.2.	Only	when	Patch	2	is	then	uninstalled	will	it	be
restored	to	version	1.0.0.0.
This	may	sound	neat,	but	it	can	become	complex	to	manage	if	Patches	are
created	that	are	not	cumulative.	Each	Patch	should	include	all	the	changes	that
have	come	before,	or	back	them	out	if	necessary,	and	be	considered	as	the
ONLY	patch	required	to	move	the	installation	to	that	Patch	level.	So	no	matter
what	Patch	level	a	user	has	chosen	to	install,	to	get	to	the	latest	version	they	just
need	to	install	the	latest	Patch.	No	interim	Patches	are	required.
Note:	By	creating	patches	sequentially	from	a	single	build	machine	and	not
restoring	any	objects	to	a	prior	state	will	ensure	that	Patches	are	cumulative.

Also	see
1.2.2	What	is	a	Version?	for	information	on	versioning.

1.2.4	What	is	a	Package?
The	terminology	Package	is	still	used	as	a	generic	reference	to	a	Version	or
Patch.

1.2.5	What	do	you	need	to	deploy?
Deploy	the	MSI	file	or	MSP	file	resulting	from	the	build	of	your	Version	or
Patch	respectively.
If	a	Version	or	Patch	includes	the	setting	Deploy	to	Development	System
(specified	in	Settings)	the	build	processing	will	not	generate	MSI	or	MSP	files.
In	this	case	the	definitions	must	be	imported	from	the	internal	file	definitions.
Refer	to	LANSA	Import	for	further	information.

its:lansa022.chm::/Lansa/VLDTool6_0050.htm
its:lansa022.chm::/lansa/l4wdplb3_0180.htm

1.3	Upgrading	a	LANSA-developed	Application	previously
deployed
If	you	have	an	existing	Application	which	needs	to	be	modified	after	upgrading
your	development	environment	to	LANSA	V13	you	will	need	to:

Formulate	a	new	deployment	plan.	Refer	to	1.2	The	Deployment	Model.
Create	an	initial	Version	to	install	the	complete	application	using
Microsoft	Windows	Installer
Remove	references	to	the	old	Application	from	desktop.	Refer	to
Upgrade	Options.

There	are	two	different	methods	which	can	be	used	to	upgrade	a	LANSA-
developed	application	which	was	deployed	using	an	earlier	version	of	the
Deployment	Tool	(pre-version	13).
	

Step How	to	do	it

1.	Convert
Package	to
Version

Identify	the	base	package	to	be	used	as	a	starting	point	for	your
new	Application.	You	may	not	have	all	the	details	required	in	a
single	package	so	it	is	recommended	to	select	the	package	which
includes	the	main	set	of	application	objects	(files,	forms	etc…)	to
be	deployed.	The	package	setting	can	be	modified	as	required
after	conversion.	Refer	to	Convert	a	Pre-V13	Package.

1a.	Locate Locate	the	original	package(s)	used	to	deploy	your	Application.

its:lansa022.chm::/lansa/dt_0220.htm
its:lansa022.chm::/lansa/VLDTool6_0045.htm

original
package
definitions

In	this	scenario	you	will	not	be	copying	the	package	but	using	the
information	to	construct	a	Version	definition.

1b.	Create
Application
in
Deployment
Tool

Create	an	Application	and	Version	in	the	Deployment	Tool.	Select
an	appropriate	template	to	assist	with	the	construction	of	your
Application.

2.	Review
and	Modify
Version

Review	the	Version	and	ensure	all	required	settings	and	objects
have	been	included.	Ensure	ALL	objects	and	settings	are	provided
whether	they	relate	to	client,	server,	web-server	or	database.

3.	Build	and
test	Version

Build	the	Version	and	install	into	a	clean	environment,	or	into	a
test	environment	where	previous	package	was	installed	(to	test	the
upgrade	options).

	

1.4	Who	should	use	the	LANSA	Deployment	Tool?
There	are	many	uses	for	the	LANSA	Deployment	Tool	and	these	will	become
apparent	as	you	get	to	know	how	the	tool	works.	It	is	specifically	designed	to
satisfy	the	needs	of:

Organizations	with	software	to	be	distributed	to	internal	or	external
customers
Developers	using	Visual	LANSA.

2.	What's	New?
Following	is	an	outline	of	the	new	features	in	this	version	of	the	Deployment
Tool.

2.1	A	New	Deployment	Model
2.2	File	Library	Automatically	set	to	Partition	Library
2.3	Set	File	Library
2.4	Control	File	Data	Loading	and	Unloading
2.5	Network	Client	Installation	decided	during	Installation
2.6	Runtime	always	Included	in	Installation	Files
2.7	Translation	Tool	integrated	into	Visual	LANSA	Tools
2.8	Unknown	objects	are	no	longer	dropped	when	Package	is	saved
2.9	Host	Route	Table	and	Listener	defined	at	Application	Level	only
2.10	Backup	or	Restore	Applications
2.11	New	option	Require	Elevation
2.12	New	options	to	install	Web	Features
2.13	Options	not	selected	to	Prompt	during	Installation	are	no	longer	shown

2.1	A	New	Deployment	Model
Application	installation	uses	Windows	Installer	and	Windows	Installer	XML
instead	of	InstallShield	SETUP.EXE	to	install	your	software	product.
The	Deployment	Tool	interface	will	look	familiar	if	you	have	used	the
Deployment	Tool	in	previous	releases	of	LANSA.	The	interface	has	been
simplified	to	some	degree,	as	several	options	are	no	longer	relevant	in	the
Deployment	Model.	Refer	to	The	Deployment	Model	for	more	information.

its:lansa022.chm::/lansa/VLDTool1_0010.htm

2.2	File	Library	Automatically	set	to	Partition	Library
File	Library	is	soft	and	will	be	determined	during	installation	based	on	the
environment	libraries.	By	default	files	will	be	installed	into	the	Partition	Data
Library.

2.3	Set	File	Library
The	File	Library	can	now	be	configured	when	files	are	included	in	a	package.
During	the	Package	Installation	the	file	is	updated	and	installed	with	the
appropriate	library,	table	collection	and	owner	information	properties.

	

2.4	Control	File	Data	Loading	and	Unloading

When	installing	a	package	that	includes	files	which	already	exist	in	the	target
application,	in	the	package	definition	you	can	pre-determine	the	order	in	which:

data	is	unloaded	from	the	existing	file
new	data	shipped	in	the	package	is	loaded	into	the	target	file,	and
existing	data	reloaded.

2.5	Network	Client	Installation	decided	during	Installation
Network	Client	in	no	longer	an	option	associated	with	the	Application
definition.	Now	every	installation	puts	in	place	a	Network	Client	MSI	that	may
be	used	to	install	a	Network	Client	if	required.

2.6	Runtime	always	Included	in	Installation	Files
The	options	Deploy	LANSA	Execution	Environment	and	Deploy	with	EPCs	have
been	removed.	The	Microsoft	Installer	Files	will	always	include	the	current
LANSA	Execution	Environment	and	latest	EPCs.
Deploy	with	VC90	Runtime	has	also	been	removed	as	this	was	a	requirement	to
support	Installshield.	

2.7	Translation	Tool	integrated	into	Visual	LANSA	Tools
The	Translation	Tool	has	been	integrated	into	the	Visual	LANSA	Tools	menu.
There	are	two	relevant	options:

Translate	Object	Details	is	the	interface	to	be	used	by	the	translator	to	view
the	translation	files	created	by	a	Translation	Application.	The	details	relating
to	the	objects	can	be	translated,	updated	and	returned	to	the	Application
builder.	Refer	to	Translating	a	LANSA-developed	Application	for	more
information.
Import	Translations	allows	the	Application	builder	to	import	translations
received	from	a	translator	into	the	current	development	environment.

its:lansa022.chm::/lansa/dt_1050.htm

2.8	Unknown	objects	are	no	longer	dropped	when	Package	is
saved
Previously,	if	your	package	included	objects	which	were	not	known	in	the	local
repository	when	the	package	was	saved	these	objects	were	dropped	from	the
package.
In	the	current	release	any	unknown	objects	must	be	resolved	(checked	out,
imported	or	created)	before	the	package	will	build	successfully.	If	the	objects
are	not	required	they	must	be	manually	removed	from	the	package.

2.9	Host	Route	Table	and	Listener	defined	at	Application	Level
only
Previously,	if	a	Host	Route	Table	and	Listen	file	could	be	included	at	either
Application	or	Package	level.
In	the	current	release	the	Host	Route	Table	and	Listen	file	can	only	be	defined	at
Application	level	as	this	information	should	pertain	to	all	associated	Versions
and	Patches.

2.10	Backup	or	Restore	Applications
Applications	are	now	identified	by	a	set	of	GUIDs	(Globally	Unique	Identifiers)
which	are	generated	when	the	first	Version	is	successfully	built.	This	set	of
GUIDs	will	be	used	to	identify	the	Application	and	facilitate	upgrades	and
patches.	Without	these	GUIDs	you	cannot	upgrade	or	patch	your	software
product	so	backup	your	Application	definitions	regularly	including	the	GUIDs.

	

2.11	New	option	Require	Elevation
An	additional	option	Require	Elevation	has	been	added	to	determine	if	the
installation	requires	administrator	privileges	to	proceed	with	installation.

2.12	New	options	to	install	Web	Features
New	options	have	been	added	to	support	the	installation	of	Web	Administrator,
IIS	Plugin,	Web	Images,	Java	Service	Manager	and	Visual	LANSA	Framework.
Previously	these	features	were	required	to	be	installed	from	a	LANSA
installation	image.

	

2.13	Options	not	selected	to	Prompt	during	Installation	are	no
longer	shown
In	previous	versions,	options	which	were	not	selected	to	Prompt	During
Installation	were	shown	during	the	installation	as	unchangeable	values.	These
values	are	no	longer	displayed	during	the	installation.

	
	

3.	Plan	your	Deployment
Before	you	create	a	Deployment	Tool	application,	consider	how	you	will	be	best
to	organize	the	deployment	of	your	Visual	LANSA	Application.

	It	is	important	to	understand	that	deployment	is	more	complex
than	"just	picking	up	everything	and	moving	it	over	there".A
successful	deployment	requires	understanding,	planning	and
thorough	testing.

Start	by	considering	the	following	questions:
Where	is	the	application	going	to	be	installed?
Client?	Server?	Standalone?
Windows?	Linux?

How	is	the	application	to	be	installed	and	subsequent	upgrades	applied?
MSI	or	MSP	file?
Per-user	or	per-machine?
Just	in	Time	upgrade?
SCCM	integration?
Into	a	development	environment?

Do	you	need	to	distribute	different	parts	of	the	application	to	different
machines?
How	does	the	application	connect	to	the	database?
Are	there	any	templates	suitable	to	use	as	the	basis	for	you	Application?

If	you	can	answer	all	of	these	questions,	then	you	are	ready	to	start	deploying
your	application.
If	you	could	not	answer	all	of	the	questions	above,	you	need	to	develop	a	clearer
understanding	of	what	you	are	attempting	to	deploy	before	you	proceed!
Establish	the	minimum	supported	configuration
You	need	to	formally	define	the	minimum	configuration	your	solution	will
viably	need,	including:

Minimum	hardware	requirements
Minimum	software	requirements

Minimum	networking	capabilities
Maximum	data	volumes.

A	formal	minimum	supported	configuration	will:
Allow	you	to	make	informed	decisions	about	the	overall	solution	cost
Establish	the	environment	required	to	test	the	deployment	of	the	solution	or
any	patch/hotfix	made	to	it.
Raise	management's	awareness	of	the	risk	in	implementing	a	sub-minimum
supported	configuration	solution.

Repercussions	of	Per-Machine	vs.	Per-User	Installations
Windows	Installer	can	install	or	upgrade	a	software	product	for	all	users	of	a
computer	(per-machine	c	ontext)	or	for	a	particular	user	(per-user	context)	based
on	the	access	privileges	of	the	installing	user.	If	the	initial	Version	is	installed
per-machine	then	all	subsequent	Versions	and	Patches	must	be	installed	per-
machine.
If	you	plan	to	deliver	your	software	product	updates	using	Just-In-Time
upgrade,	then	the	users	who	is	running	the	application	MUST	have	the	rights	to
install	those	updates.		So	if	they	do	not	have	the	rights	to	install	per-machine
and	the	software	is	installed	per-machine	then	when	the	update	is	attempted	it
will	fail.

Also	see
3.1	Deployment	Tool	Environment
3.2	Lifecycle	of	an	Application
3.3	Version	or	Patch	Upgrade?
3.4	Per-User	or	Per-Machine	Install?
3.5	Digital	Signatures
3.6	Installation	Mode
3.7	SCCM	Integration

3.1	Deployment	Tool	Environment
The	recommended	configuration	for	creating	Deployment	Tool	Applications	is:

Development
PCs

Visual	LANSA	slave	systems	are	installed	on	the	Development
PCs	for	the	ongoing	application	development.
A	standalone	system	may	be	used	if	there	is	only	one	developer.

Master
Repository

All	development	work	must	be	saved	to	the	Master	Repository.
	

Deployment
System

It	is	recommended	to	have	a	separate	Deployment	System,	with
a	different	master	repository,	to	ensure	on-going	development	is
not	inadvertently	included	in	a	package.

Application
Server

The	Application	Server	is	a	simple	file	server	and	as	such	does
not	require	a	powerful	processor.
After	a	package	has	been	distributed	and	tested	it	is	ready	to
install	on	a	Target	PC.	It	is	recommended	to	have	a	separate
Application	Server	to	ensure	the	package	is	not	inadvertently	re-
built	or	modified.
If	the	Application	Server	is	used	for	Just	In	Time	processing	it

will	wait	for	requests	for	upgrades	from	a	Target	PC	before
installing	the	packages	on	the	Target	PC	as	required.
If	Just	in	Time	processing	is	not	used	the	package	installation	on
the	Target	PC	must	be	manually	initiated.
Refer	also	to	3.1.1	Using	a	Workstation	as	a	Server.

Target	PCs This	is	where	the	package	will	be	installed	and	the	application
executed.
This	includes	PCs	used	for	testing	the	package	and	installation
process.

MS	SQL	Database	License
Development
PCs	and
Deployment
System

Visual	LANSA	developers	with	a	Visual	LANSA	development
license	are	licensed	to	use	the	MS	SQL	database	server
software.	This	applies	whether	Visual	LANSA	is	installed	as
part	of	a	Network	or	Standalone	installation.

Target	PC A	separate	license	is	needed	for	applications	that	are	deployed
using	the	MS	SQL	software.

3.1.1	Using	a	Workstation	as	a	Server
The	listener	is	automatically	installed	on	PCs	running	Windows	Server.
If	the	PC	to	be	used	as	a	server	is	running	Windows	Workstation,	the	listener
must	be	manually	installed	by	executing	the	command:	lcolist	-I.	For	further
information	refer	to	Set	Up	Listener	on	the	Data/Application	Server	in	the
LANSA	for	the	Web	Administration	Guide.
You	must	check	the	status	of	the	listener	before	a	PC	can	be	used	as	a	server.

its:lansa085.chm::/lansa/GS07000.htm

3.2	Lifecycle	of	an	Application
Application	deployment	isn't	over	after	the	application	has	been	successfully
installed	on	the	target	system.		In	fact	this	is	just	the	beginning.
Your	applications	may	receive	minor	or	major	updates,	new	versions	of	LANSA
may	be	installed	or	new	versions	of	the	application	may	be	required	to	be
installed	alongside	existing	applications.	These	and	other	issues	determine	how
your	software	needs	to	be	managed	and	evolved	though	the	life	time	of	the
application.
The	following	scenario	details	one	method	for	managing	the	development	of
your	software:

In	this	scenario	three	different	development	environments	are	required	to

support	development	of	the	application	at	different	versions.
Development	of	the	application	commences	with	Version	1.0.0	on	a	Version	13
LANSA	system	V13PGMLIB	in	partition	BLD.		After	releasing	and	distributing
Version	1.0.0,	minor	changes	to	the	application	are	released	at	different	dates	as
patches	1.0.0.1	and	1.0.0.2.		These	patches	are	to	be	applied	to	the	existing
software	product.		It	may	be	required	for	users	to	install	both	patches,	or	the
patches	maybe	installable	independent	of	each	other.
When	more	significant	enhancements	to	the	application	are	planned	and
completed	these	are	released	as	Version	1.0.1.		Following	on	from	here	any
minor	changes	to	Version	1.0.1	are	released	as	patches	starting	with	Patch
1.0.1.1
At	this	point,	a	major	set	of	enhancements	are	planned	for	the	application.	
These	will	be	released	as	Version	2.0.0.		It	is	envisaged	that	it	may	not	be
necessary	/	advantageous	/	affordable	for	all	users	of	the	application	to	upgrade
to	this	Version	2.0.0	immediately	so	this	will	be	released	as	a	standalone
application	with	on-going	support	and	modifications	provided	for	Version	1.0.1.
To	facilitate	this	all	the	application	objects	are	exported	from	partition	BLD	to
partition	BL2	on	the	same	LANSA	System.		Development	and	released	of
Version	1.0.1	of	the	product	will	continue	in	partition	BLD	while	the	branch	of
the	application	in	partition	BL2	can	be	modified	without	impacting	Version
1.0.1.
This	shared	LANSA	system	with	separate	partitions	means:

The	Application	definition	is	shared	between	the	two	partitions.		Care	must
be	taken	to	build	the	Version	and	Patches	while	logged	into	the	correct
partition.
Any	files	used	by	the	application,	assuming	they	are	recompiled,	will	have	a
different	library	embedded	in	the	OAM	based	on	the	different	partition
Default	File	Library	of	the	partition	where	the	OAM	is	generated.		This	will
require	consideration	when	installing	and	upgrading	the	application	as	the
application	source	code	will	need	to	incorporate	appropriate	use	of	the
DEFINE_OVERRIDE_FILE	built-in	function	to	direct	the	file	to	the
appropriate	library.	For	more	information,	refer	to
DEFINE_OVERRIDE_FILE	in	the	Technical	Reference	Guide.
Both	versions	of	the	Application	will	be	based	on	the	same	Version	of
LANSA.	This	includes	EPCs.

So,	this	raises	the	issue,	what	do	you	do	if	you	need	to	continue	support	for
Version	1.0.1	and	Version	2.0.0	but	there	is	a	new	release	of	LANSA	available

its:lansa015.CHM::/LANSA/DEFINE_OVERRIDE_FILE.HTM

and	you	want	to	be	able	to	take	advantage	of	the	features	in	the	software	to
enhance	your	application.
Now	you	will	need	to	install	a	second	LANSA	system	ABCPGMLIB	at	release
level	V13SP1.		Export	all	the	application	objects	from	the	most	up-to-date
version	of	your	application,	in	this	case	partition	BL2,	and	import	into	the	new
partition	ABC	on	LANSA	system	ABCPGMLIB.		To	finalize	the	setup	of	the
new	LANSA	system	you	will	also	need	to	copy	the	Application	definition	from
X_APPS	into	the	new	location	and	optionally	the	associated	Version	and	Patch
definition	(for	historic	reference	only).		This	can	be	done	using	the	Backup	or
Restore	Applications		to	a	shared	location.	Copying	the	Application	is	important
as	the	GUIDs	from	the	original	Application	are	required	if	you	want	to	be	able
to	upgrade	Version	2.0.0	to	Version	3.0.0.

its:lansa022.chm::/lansa/BackupRestoreApplications.htm

3.2.1	Mapping	a	File's	Library	to	a	Fixed	Deployed	Schema
	Important	–	When	developing	an	application	which	includes	LANSA	files	it

is	important	to	plan	a	strategy	for	managing	files	updates	BEFORE	you	install
the	first	version	of	the	application.
By	default	LANSA	files	are	compiled	into	the	partition's	Default	File	Library.	
When	the	files	are	deployed	they	will,	as	the	default,	be	created	in	the	database
with	a	schema	name	the	same	as	the	deploying	partition's	Default	File	Library.	
Consequently,	if	the	development	environment	is	moved	to	another	partition
with	a	different	Default	File	Library	between	Version	releases	the	deployed	files
will	end	up	in	two	different	schemas	(if	you	use	the	default	processing).
Using	the	scenario	3.2	Lifecycle	of	an	Application:

Version	1.0.0	the	LANSA	files	compiled	in	partition	BLD	will	have	the
partition	Default	File	Library,	say	BLDDTALIB,	embedded	in	the
generated	OAM.
Version	2.0.0	is	released	from	a	different	partition	BL2	in	the	same
LANSA	system.		When	the	files	are	rebuilt	in	this	partition	the	partition
Default	File	Library,	say	BL2DTALIB,	will	now	be	the	library	embedded
in	the	OAM.
Version	3.0.0	is	released	from	a	new	LANSA	system	and	yet	another
partition	ABC.		When	the	files	are	rebuilt	in	this	partition	the	partition
Default	File	Library,	say	ABCDTALIB,	will	now	be	the	library	embedded
in	the	OAM.

How	should	an	application	be	deployed	to	a	consistent	schema?
1.		First,	decide	what	the	schema	you	want	to	use	in	the	deployed	application.	
This	does	not	have	to	correspond	to	a	library	name	in	the	build	environment
e.g.	LANSALIB

2.		Create	the	first	version	of	the	application	and	include	the	required	files.
Create	a	Library	Substitution	corresponding	to	the	library	name	selected	to	be
used	for	the	application	e.g.	LANSALIB.

3.		Select	this	substitution	to	be	used	for	the	files.	Refer	to	Configure	the	File
Library	Substitution	for	more	information.

4.		Modify	the	application	code	to	apply	the	appropriate	overrides	using	the
DEFINE_OVERRIDE_FILE	Built	In	Function.	This	is	required	to	direct	the
deployed	OAM,	which	has	embedded	in	it	the	LANSA	Library	of	when	the
OAM	was	generated,	to	the	appropriate	runtime	library	(schema).		Refer	to
DEFINE_OVERRIDE_FILE	in	the	Technical	Reference	Guide	for	more
information.

	
	

its:lansa022.chm::/Lansa/l4wdplb2_0100.htm
its:lansa015.CHM::/LANSA/DEFINE_OVERRIDE_FILE.HTM

3.3	Version	or	Patch	Upgrade?
When	upgrading	an	Application	you	will	need	to	consider	whether	you	should
do	this	as	a	Version	(MSI	file)	or	a	Patch	(MSP	file)	upgrade.		Before	making
this	decision	it	is	important	to	understand	how	these	respective	files	will	be
processed	by	Windows	Installer.
In	essence,	Windows	Installer	will	process	a	Version	upgrade	as	a	full
installation	rather	than	a	patch.	If	an	earlier	version	of	the	Application	is	located
on	the	target	system	Windows	Installer	will	uninstall	the	older	version	before
installing	the	new	version.	If	an	earlier	version	of	the	Application	cannot	be
located	on	the	target	system	Windows	Installer	will	proceed	as	if	this	is	a	first
time	install	of	the	Application.
In	contrast,	Windows	Installer	will	process	a	Patch	upgrade	by	first	determining
the	version	of	the	application	is	eligible	to	receive	the	patch.	If	the	application	is
eligible	to	be	upgraded	the	changes	contained	in	the	patch	are	applied	over	the
top	of	the	existing	application.	The	main	advantage	of	a	patch	install	over	a
version	install	is	that	a	patch	only	contains	changes	to	your	application	and
therefore	is	usually	much	smaller.
Patches	are	typically	designed	to	be	uninstallable.	Database	changes	may	be
complex	to	manage	and	thus	are	usually	delivered	by	a	Version	upgrade.
Database	changes	are	particularly	complex	when	uninstalling.	Firstly,	only	one
user	of	a	database	must	uninstall	the	database	changes.	So,	database	changes	are
NOT	backed-out	automatically,	you	must	specifically	request	it.	Secondly,	the
standard	uninstall	processing	provided	by	Windows	Programs	and	Features	does
not	provide	a	user	interface,	so	you	cannot	request	that	database	changes	be
backed	out.	You	must	use	the	command	line	instead.
By	default	a	patch	will	not	uninstall	database	changes.	To	do	so	or	not	to	do	so
is	a	complex	subject.	If	a	Patch	contains	database	changes	you	must	fully
inform	your	administrators	how	to	back	out	the	patch,	or	disable	patch	uninstall
in	the	Deployment	Tool	package.
In	order	to	uninstall	database	changes,	misexec	must	be	executed	from	the
command	line:
For	example:

msiexec	/package
C:\DEV\TRUNK\WORK\X_WIN95\X_LANSA\X_APPS\PATCHDB\PATCHDB_v2.0.0_en-
us.msi	/uninstall
C:\DEV\TRUNK\WORK\X_WIN95\X_LANSA\X_APPS\PATCHDB\PATCHDB_v2.0.0.5_en-

us.msp	SUDB=1	/qb
The	parameters	SUDB=1	/qb	are	optional.	If	they	are	not	specified	a	dialog	will
be	displayed	and	you	can	manually	check	Setup	DB	on.
Note,	these	are	the	functional	steps.	You	must	fully	consider	your	specific
situation	before	rolling	back	database	changes.	If	a	database	is	shared,	only	one
of	the	users	should	rollback	the	database	changes.	All	the	rest	perform	the
default	uninstall	of	the	patch	from	Programs	&	Features.
Alternatively,	to	back-out	a	Patch	which	contains	database	changes,	another
Patch	would	need	to	be	created	to	restore	the	database	objects	back	to	their
original	state.
Reasons	to	consider	using	a	Version	upgrade:

Name	of	the	Application	has	been	changed
Requirements	to	allow	users	to	have	parallel	installations	of	the	Application,
with	earlier	versions	and	latest	version	on	the	same	system
Major	change	to	functionality	in	Application	since	last	version	release
Major	upgrade	of	LANSA	applied	since	last	version	release
Need	to	install	latest	version	as	fully	functioning	Application
Modifications	to	software	include	database	changes.

Reasons	to	consider	using	a	Patch	upgrade:
Provide	enhancements	to	existing	functionality
Provide	new	functionality	(excluding	database	changes)
Changing,	removing	or	adding	shortcuts
Agile	development	requiring	frequent	deployment	of	a	small	set	of	changes
Apply	bug	fixes	to	rectify	problems	with	your	application.

Note:	Patch	install	and	uninstall	use	the	logic	in	the	Version	install.
Thus,	new	features	for	a	Patch	added	in	a	LANSA	release	require	a
new	Package	Version	to	be	deployed	first	before	you	can	use	the	new
LANSA	features	to	patch	your	application.	
This	also	means	that	patching	Versions	created	with	a	previous	version
of	LANSA	may	not	work	correctly	as	the	Patch	code	may	not	be
compatible	with	the	Version	code.	It	is	therefore	highly	recommended
to	NOT	upgrade	the	LANSA	configuration	which	built	the	Version.
What	you	need	to	do	is	to	retain	a	separate	Build	Configuration	for
each	Version	of	LANSA	which	you	need	to	support	in	the	field.	

If	your	application	will	retain	users	on	both	LANSA	Version	13.0	and
13.1	for	example,	then	you	will	need	to	retain	a	Configuration	for	both
13.0	and	13.1.	This	is	good	practice	anyway,	to	ensure	that	as	little	as
possible	changes	between	different	releases	of	your	application.	Of
course	you	can	insist	that	all	users	upgrade	to	the	latest	Version	of
your	application	if	they	want	to	receive	updates.	Then	you	need	only
maintain	the	one	Build	Configuration.

3.4	Per-User	or	Per-Machine	Install?
Windows	Installer	can	install	an	application,	or	an	update,	for	all	users	of	a
computer	(per-machine)	or	for	a	particular	user	(per-user)	based	on	the	access
privileges	of	the	user	and	the	operating	system.		When	defining	the	deployment
package	the	context	of	the	update	install	needs	to	be	considered.		If	the	contexts
of	the	application	and	update	are	different,	the	application	may	not	be	updated
as	expected.

3.5	Digital	Signatures

To	utilize	digital	signatures,	an	appropriate	entry	must	be	entered	in	the
Company	details	associated	with	the	Application.		These	details	are	entered	in
the	Signing	Tool	Command	Line.		The	format	and	syntax	of	the	command	will
be	determined	by	the	signing	tool	utilized.

The	specified	command	is	executed	during	the	build	processing	to	ensure	the
resulting	MSI	or	MSP	file	is	digitally	signed.

3.5.1	Why	digitally	sign	MSI	and	MSP	files?
If	the	generated	MSI	or	MSP	file	is	signed	by	a	validated	digital	certificate	the
following	warning	will	not	be	issued	when	downloading	from	the	internet:

Digitally	signed	files	also	detail	the	party	responsible	for	the	production	of	the
file	in	the	file	properties.

	

	

3.6	Installation	Mode
The	MSI	or	MSP	files	produced	by	the	Deployment	Tool	build	process	are
already	associated	with	the	Microsoft	Windows	Installer	(msiexec.exe)	which
manages	the	installation	defined	by	these	files.		As	the	files	are	associated	with
the	Microsoft	Installer,	the	file	installation	can	be	started	by	simply	double
clicking	the	files	in	Explorer.
Alternatively	the	MSI	or	MSP	files	can	be	installed	via	the	command-line	by
supplying	the	MSI	or	MSP	file	name	as	a	parameter	to	the	msiexec.exe
command.		Various	parameters	are	available	to	control	how	the	install	is
processed	including	unattended	install,	quiet	install	and	verbose	install	modes.
In	addition	there	are	switches	associated	with	the	msiexec.exe	command	to
control	the	logging	mode.
Note:	Regardless	of	the	logging	mode	used	on	the	msiexec.exe	command,	all
Deployment	Tool	installations	will	automatically	log	their	installation	behavior
(for	example	in	MSI2ce4c.log)	to	a	randomly	named	file	in	the	end	user's
defined	%TEMP%	folder.	

3.7	SCCM	Integration

The	MSI	and	MSP	files	produced	by	the	Deployment	Tool	may	be	integrated
into	Microsoft	Systems	Centre	Configuration	Management	or	Systems
Management	Server	tools.		These	products	provide	a	sophisticated	facility	to
distribute	application	software	within	a	corporate	environment	and	also	provide
an	alternative	facility	to	LANSA's	Just	In	Time	upgrade.

4.	Getting	Started	with	the	Deployment	Tool
Deployment	Tool	Quick	Tour
The	Deployment	Tool	has	two	main	windows	and	from	these	windows	you	will
access	all	the	options,	settings	and	commands	used	with	the	deployment	tool.
After	you	start	the	Deployment	Tool	(see	below)	you	will	see	the	4.1
Deployment	Tool	Main	Window.
When	you	select	a	Version,	Patch	or	Template	to	work	with,	you	will	see	the	4.2
Package	Maintenance	Window.

Context	4.3	Help	is	available	from	within	the	Deployment	Tool.

Start	the	Deployment	Tool
Start	the	Deployment	Tool	by	selecting	the	Tool	ribbon	in	Visual	LANSA	then
select	the	Deployment	Tool	 .

4.1	Deployment	Tool	Main	Window
When	the	Deployment	Tool	is	opened,	the	main	window	is	launched.	A	tree
format	displays	any	existing	Deployment	Tool	Applications	and	the	Packages
within	them.

From	this	window	you	will	create,	delete,	organize	and	access	your
Applications	for	maintenance.

4.1.1	File	menu
4.1.4	Main	window	toolbar

4.1.2	View	menu
4.3	Help

4.1.3	Tools	menu

4.1.1	File	menu

Use	the	File	Menu	to	Exit	the	Deployment	Tool.	Alternately	use	Alt+X	or	close
the	Main	Window.

4.1.2	View	menu

Options	on	the	View	Items	are	not	specific	to	an	Application.
	 Default	Cross
Reference
Options

Set	the	default	values,	by	object	type,	to	be	used	as	cross
reference	settings	in	a	package.
These	settings	apply	across	all	applications.
Refer	to	5.2	Default	Cross	Reference	Settings.

	Template
Maintenance

Create,	edit	or	delete	Template	definitions.	An	alternative
way	to	create	a	deployment	template	is	to	save	a	package
definition	as	a	template.

	Company
Maintenance

Create	or	edit	Company	details.	Alternatively	Company
details	can	be	access	for	maintenance	when	creating	an
Application.

4.1.3	Tools	menu

Items	on	the	Options	menu	are	not	specific	to	an	Application	or	Package.
	 Search
Application

Search	one	or	all	applications	to	check	which	packages
included	an	object.
Refer	to	Search	Application.

	Backup	or
Restore
Applications

It	is	recommended	to	backup	any	Applications	which	have
been	released.		This	will	provide	a	controlled	version	of	the
released	Application	which	can	be	restored	in	the	event	of	any
corruption	of	the	Application.
Refer	to	Backup	or	Restore	Applications.

	 Convert
pre-V13
Package

The	package	structure	has	been	modified	in	LANSA	V13.		To
re-use	any	predefined	packages	they	must	first	be	converted	to
a	compatible	format.		Any	predefined	packages	must	include	a
.ldl	file	definition	to	be	eligible	to	convert.
Refer	to	Convert	pre-V13	Package

	 Convert
pre-V13
Template

The	template	structure	has	been	modified	in	LANSA	V13.		To
re-use	any	predefined	templates	they	must	first	be	converted	to
a	compatible	format.
Refer	to	Convert	pre-V13	Template

its:lansa022.chm::/lansa/L4wDplb3_0030.htm
its:lansa022.chm::/lansa/BackupRestoreApplications.htm
its:lansa022.chm::/lansa/VLDTool6_0045.htm
its:lansa022.chm::/lansa/VLDTool14_0010.htm

4.1.4	Main	window	toolbar

The	options	available	on	the	main	window	toolbar	are	available	on	the	package,
and	in	some	cases	application	context	menus	(from	a	mouse	right	click).

New Create	an	application.
The	package	option	is	only	available	if	an	entry	is
selected	in	the	tree	view.
Refer	to	Create	an	Application.

Open Open	an	application,	Version	or	Patch.	Refer	to	Open	a
Package
The	open	option	is	only	available	if	a	package	is	selected
in	the	tree	view.

Delete Delete	application	or	package.	Refer	to	Delete	an
Application?	or	Delete	a	Package.

Check Perform	a	pre-build	check	of	a	package	to	verify
everything	required	for	the	package	settings/options	has
been	supplied.

Build When	the	package	definition	has	been	completed,	use	the
build	option	to	generate	the	package.

View	Log Review	the	last	build	log	for	a	selected	package.
Distribute After	a	package	has	been	successfully	built	it	is	available

to	be	distributed.	When	a	package	is	flagged	this
indicates	the	package	is	complete	and	ready	for
distribution.

Review	Objects View	the	objects	included	in	a	package	definition.	
Objects	directly	selected	for	inclusion	in	the	package	can
be	viewed,	or	a	separate	tab	details	the	complete	list	of
objects	including	cross	referenced	objects.		The	list	of
objects	can	be	saved	to	a	file.

	 Go	to	folder Opens	the	folder	containing	the	Application	definition
and	related	files	in	Windows	Explorer.

its:lansa022.chm::/LANSA/l4wdplb3_0065.HTM
its:lansa022.chm::/lansa/dt_0570.htm
its:lansa022.chm::/lansa/dt_0055.htm
its:lansa022.chm::/lansa/dt_0600.htm

Communications
Administrator

Include	or	change	a	Host	Route	table	for	an	Application.
When	you	first	select	the	Communications	Administrator
option	a	copy	of	your	current	LANSA	system's	Host
Route	(lroute.dat)	and	Listener	(listen.dat)	files	will	be
added	to	the	Application	definition.	These	versions	of	the
Host	Route	and	Listener	files	can	be	modified	as
required.

4.2	Package	Maintenance	Window
When	you	select	a	package	(by	double	clicking	on	it	in	the	Application	tree)	the
Package	Maintenance	Window	will	open.

From	this	window	you	access	all	the	options	and	settings	used	to	define	a
Version	or	Patch.	From	this	window,	you	will	also	Save	your	options	and
settings,	Build	your	package	and	can	optionally	save	it	as	a	Template	(if	you
wish	to	use	the	package	settings	as	the	basis	of	another	package).
If	you	use	a	Deployment	Template	as	the	basis	of	a	package,	the	creation	of	a
package	may	require	you	to	change	very	few	options.	Options	shown	in	gray
indicate	that	the	option	has	been	pre-set	by	the	Deployment	Template	on	which
the	package	is	based.
The	options	and	settings	are	accessed	from	either	the	groups	of	scrollable
options	in	the	body	of	the	window	(these	subsets	are	called	the	Installation

Options)	or	the	toolbar	buttons.	When	you	select	one	of	the	subsets	or	toolbar
buttons,	the	relevant	dialog	window	is	opened	for	you	to	make	your	selection.
Each	of	these	options	and	settings	is	described	in	this	guide.

4.2.1	Package	File	Menu
4.2.3	Package	Verify	Menu

4.2.2	Package	Edit	Menu
4.2.4	Package	Maintenance	toolbar

4.2.1	Package	File	Menu

Use	the	File	Menu	to	save	and/or	exit	the	current	package	and	return	to	the	main
window.

Save Save	the	package	definition.	(Ctrl	+	S)

	 Save	and
Exit

Save	the	package	definition	and	close	the	Package
Maintenance	Window.	(Ctrl	+	E)

	 Save	as
Template

Save	the	current	package	as	a	deployment	template

	 Exit Close	the	Package	Maintenance	Window.	(Alt	+	X)

4.2.2	Package	Edit	Menu

The	Package	Edit	Menu	in	the	Package	Maintenance	Window	provides	access
to	options	for	configuring	and	defining	the	current	package.	Most	of	the
Package	Edit	Menu	options	are	also	available	on	the	Package	Maintenance
toolbar.

	 Change
Description

Modify	the	package	description	for	easier	identification

	 Associated
Template

This	option	is	only	shown	if	the	current	package	has	an
associated	template.
Verify	and	if	necessary	remove	the	template	associated	with	the
current	package.	
Refer	to	Associated	Template.

Repository
Objects

Select	LANSA	and	non-LANSA	objects	to	be	included	in	the
package.

Package
Settings

The	Package	Settings	determine	the	additional	processing	that
will	occur	as	part	of	the	package	build	processing.	Each	option
selected	will	include	or	omit	specific	features	with	the	package
during	the	build.

Application
Icon

Select	an	icon	to	identify	the	Application	when	a	shortcut	is
created	on	the	target	machine	during	package	installation.

X_RUN
Arguments

When	a	package	is	built	any	X_RUN	arguments	defined	will
be	incorporated	into	a	start	file.
The	most	commonly	used	arguments	are	covered	by	other
options	in	the	Package	Maintenance	Window,	however,

its:lansa022.chm::/lansa/l4wdplb3_0280.htm

additional	X_RUN	information	can	be	provided	to	change	the
behavior	of	your	application	at	run	time.

Commands
to	execute

Enter	any	operating	system	level	commands	you	require	to	run
before	or	after	the	package	is	installed	on	a	target	machine.

Languages The	Package	Languages	dialog	allows	you	to	select	the
installation	language(s)	to	be	used	when	a	package	is	installed.

Web
Designs

Indicate	the	Languages	and	Technology	Services	to	be	included
when	the	package	includes	WAMs.

Files	with
Special
Processing

Include	Special	Files	with	the	Package.		These	files	are
installed	and	special	processing	may	be	executed	during	the
processing	dependent	on	the	file	type	and	instructions.

	

4.2.3	Package	Verify	Menu

Typically	you	would	only	use	entries	on	the	Package	Options	menu	(aside	from
Change	Package	Description,	Template	associated	with	Package	and
Communications	Administrator)	when	the	Package	definition	is	complete.

Check Verify	the	package	as	a	pre-build	operation.	(This	is	quicker	than
attempting	a	build	only	to	have	it	fail).

Build After	a	package	has	been	saved	you	can	build	the	package	based	on
the	current	definition.

View
Log...

Review	the	log	file	associated	with	the	last	build	of	the	current
package.

4.2.4	Package	Maintenance	toolbar
All	the	options	available	on	the	Package	Maintenance	toolbar	are	also	available
in	the	4.2.2	Package	Edit	Menu	and	the	4.2.3	Package	Verify	Menu.

The	Package	Maintenance	Window	contains	a	toolbar	for	easy	access	to	the
actions	on	the	Menus.	If	a	toolbar	icon	is	shown	as	inactive	(that	is,	grayed	out)
it	may	be	because	it	is	defined	as	"hide"	in	the	deployment	template	associated
with	the	current	package.	Refer	to	Deployment	Template	Options	&	Settings	to
learn	the	control	a	template	has	over	package	options	and	settings.
The	tools	on	the	toolbar	are:

Save	Package Save	your	Package	selections.	For	information	refer	to
Save	a	Package.

Check	package Verify	the	package	as	a	pre-build	operation.	(This	is
quicker	than	attempting	a	build	only	to	have	it	fail).

Build	Package After	a	package	has	been	saved	you	can	build	the	package
based	on	the	current	definition.

View	log Review	the	log	file	associated	with	the	last	build	of	the
current	package.

Select
Repository
Objects

Select	Objects,	such	as	Components,	Functions	and
Process	to	be	included	in	the	package.	For	information
refer	to	Select	Repository	Objects.

Package
Settings

Select	the	components	to	be	included	with	the	package,	for
example,	Deploy	with	Component	Support.	For
information	refer	to	Settings.

Application
Icon

Allows	you	to	specify	the	icon	to	be	used	for	the
Application's	desktop	shortcut.	For	information	refer	to
Application	Icon.

X_RUN
arguments

X_RUN	parameters	are	additional	arguments	for	the
X_RUN	command.	For	information	refer	to	X_RUN
Arguments.

Commands	to Select	Command	to	specify	OS	level	commands	to	be

its:lansa022.chm::/lansa/dt_0820.htm
its:lansa022.chm::/lansa/dt_0575.htm
its:lansa022.chm::/lansa/l4wdplb3_0085.htm
its:lansa022.chm::/lansa/VLDTool6_0050.htm
its:\lansa022.chm::/lansa/dt_0005.htm
its:lansa022.chm::/lansa/l4wdplb3_0100.htm

execute	before
and	after
import

executed	before	and	after	installation	of	the	package.	For
information	refer	to	Commands	to	Execute.

Languages Select	Language	if	you	are	using	multiple	languages.	For
information	refer	to	Languages.

Web	Designs Indicate	the	Languages	and	Technology	Services	to	be
included	when	the	package	includes	WAMs.

Files	with
Special
Processing

Include	Special	Files	with	the	Package.		These	files	are
installed	and	special	processing	may	be	executed	during
the	processing	dependent	on	the	file	type	and	instructions.

its:lansa022.chm::/lansa/dt_0115.htm
its:lansa022.chm::/lansa/dt_0340.htm

4.3	Help
You	can	use	the	function	key	F1	to	open	context	sensitive	help	from	anywhere
in	the	Deployment	Tool.	F1	will	go	directly	to	the	relevant	topic	in	the	LANSA
Application	Deployment	Tool	Guide	(this	guide).
Alternatively,	you	can	open	and	browse	through	the	whole	LANSA	Application
Deployment	Tool	Guide	from	the	Help	and	then	Contents	menu.

5.	Configure	the	Deployment	Tool
The	Deployment	Tool	is	available	to	use	as	soon	as	your	LANSA	system	is
installed.
After	installation	you	may	want	to	perform	the	following	configuration	steps	to
enhance	your	Deployment	Tool	experience.

5.1	Set	up	Company	Details	(required)
5.2	Default	Cross	Reference	Settings	(optional)

5.1	Set	up	Company	Details
Company	information	is	required	when	creating	an	Application.		Company
details	can	be	set	up	or	modified	at	any	time	by	accessing	the	Company
Maintenance	from	the	View	Menu.

Company	details	can	also	be	set	up	or	modified	using	the	prompt	button	on	the
Company	when	creating	an	Application.

Company	information	is	used	at	installation	time	to	group	applications	in	a
common	Windows	program	folder.	Multiple	Companies	can	be	created	if
required	and	can	be	selected	when	creating	the	Application.

The	Company	name	is	also	used	to	indicate	the	publisher	of	the	Application.

Also	see
5.1.1	Company	Maintenance
5.1.2	Create	a	Company

5.1.1	Company	Maintenance
To	review,	change	or	delete	a	company	open	the	Company	Maintenance	dialog
and	select	the	company	to	work	and	the	appropriate	action	from	the	toolbar.		An
alternate	way	to	open	a	company	is	to	double-clicking	the	company	in	the	list	of
companies.
Companies	can	also	be	created	from	this	dialog.

5.1.2	Create	a	Company

Company Required.
The	Company	Name	must	be	entered.		It	can	be	entered	as	text	or
a	Multilingual	Variable	can	be	nominated	if	the	Application	will
be	deployed	in	multiple	languages	with	a	variation	on	the
company	name	which	is	language	dependent.

Signing
Tool
Command
Line

Optional.
Any	command	entered	in	this	value	will	be	used	to	automatically
digitally	sign	the	MSI	and	MSP	files	generated	when	a	Version	or
Patch	is	built.	The	Signing	Tool	Command	Line	allows	the
specification	of	the	parameters	to	be	passed	to	signing	tool,	for
example	the	location	of	a	Digital	Certificate.		The	Signing	Tool
Command	Line	must	have	the	format:
signtool	[command]	[options]	[file_name	|	...]

About
URL	

Optional.	
If	entered	the	URL	will	be	displayed	in	the	Windows	Package
Maintenance	Window	when	the	Application	is	installed	on	an	end
user's	computer.

Help
URL	

Optional.
If	entered	the	URL	will	be	displayed	in	the	Windows	Package
Maintenance	Window	when	the	Application	is	installed	on	an	end
user's	computer.

Update Optional.

URL If	entered	the	URL	will	be	displayed	in	the	Windows	Package
Maintenance	Window	when	the	Application	is	installed	on	an	end
user's	computer.

	

5.2	Default	Cross	Reference	Settings
Typically,	each	Deployment	Package	you	create	will	include	a	selection	of
LANSA	and/or	non-LANSA	objects.	Cross	referencing	allows	you	to	select	an
object	(for	example,	a	Function	or	Component)	for	inclusion	in	a	Version	or
Patch,	and	then	have	all,	or	selected	types,	of	the	related	executable	and
definition	objects	automatically	included	at	build	time.
Use	the	Default	Cross	Reference	Settings	to	define	the	initial	cross	reference
behavior	and	options	to	be	used	in	each	package.	Any	default	options	defined
here	can	be	overridden	when	editing	the	Version	or	Patch,	but	the	investment	of
time	to	set	up	your	default	values	correctly	can	by-pass	several	repetitive	steps
in	the	definition	process.
Default	Cross	Reference	Options	will	apply	across	all	Applications	defined	in
the	Deployment	Tool.
Default	Cross	reference	behavior	is	defined	in	the	Default	Cross	Reference
Options	dialog	opened	from	the	View	menu	on	the	Deployment	Tool's	main
window.

Each	object	type	included	in	the	left	hand	side	of	the	Default	Cross	Reference
Options	has	their	own	default	settings.	Select	each	object	type	to	review	the
default	settings.

The	options	selected	in	the	Automatic	Cross	Reference	on	Add	section	of	the
dialog	control	how	the	default	cross	reference	options	are	displayed	and	applied
within	an	individual	package.	These	are:
None Cross	References	will	only	be	assigned	for	the	objects	included

in	a	package	if	you	manually	select	the	cross	reference	icon	
and	options	within	the	Package's	Repository	Object	Selection
dialog.

Prompt
options

When	you	add	objects	to	a	package	using	the	Repository
Object	Selection	dialog	and	press	OK	to	confirm	your	object
selection	you	will	be	presented	with	Cross	Reference	options
for	each	object	type	you	have	included	in	the	package.	The
initial	settings	are	defaulted	based	on	the	Default	Cross
Reference	Options	but	can	be	modified	to	suit	the	individual
package	requirements.

Automatically
apply	the
default
options

The	default	values	for	the	object	type,	as	set	up	in	the	Default
Cross	Reference	Options	section	of	the	Default	Cross
Reference	Options	dialog,	will	be	automatically	applied	to	any
objects	included	in	a	package.	The	default	values	can	still	be

overridden	in	a	package	by	selecting	the	cross	reference	icon	
in	the	package's	Repository	Object	Selection	dialog	and
modifying	the	settings	as	required.

The	settings	in	the	Default	Cross	Reference	Options	section	of	the	dialog
indicate	the	default	settings	for	an	object	type	to	be	applied	to	a	Version	or
Patch.	These	settings	can	be	overridden	when	editing	a	specific	Version	or
Patch.
It	is	recommended	to	not	use	the	option	Include	File	Data	as	this	will	then	be
the	default	option	used	not	only	in	the	first	Version	but	also	in	any	subsequent
Versions	and	Patches	and	as	such	may	produce	undesirable	results.
Refer	to	Cross	Reference	Settings	for	more	information.
	
	

its:lansa022.chm::/lansa/dt_0395a.htm

6.	Applications
The	first	step	in	deploying	your	LANSA-developed	application	is	to	create	an
application,	or	applications.	How	to	do	this	is	described	in	6.1	Create	an
Application.
If	you	are	new	to	the	Deployment	Tool,	refer	to	&a	href
lansa022.chm::/Lansa/l4wdplb2_0060.htm&Plan	your	Deployment	&a&	before
you	get	started.
The	Application	is	also	important	in	determining	whether	the	Host	Route	Table
and	Listener	Table	are	deployed	with	the	Application.	Refer	to	6.4	Include
Communications	Tables	for	further	information.
You	can	also	6.2	Change	an	Application's	Details	and	6.3	Delete	an	Application.

6.1	Create	an	Application

In	the	main	window,	select	the	New	Application	tool	on	the	toolbar.	
Alternatively	you	can	select	New	in	the	tree	menu.

Application Required.
Enter	a	name	for	the	Application	in	eight	characters	or	less.	The
first	character	must	be	an	alphanumeric	character	and	the	name
cannot	contain	embedded	blanks.		Applications	cannot	start	with
the	letter	X.

Application
Description

Required.
Enter	a	description	that	you	can	easily	find	and	understand	when
you	have	a	number	of	Applications.	It	is	also	the	name	that	the
user	will	see	when	the	application	is	installed.	It	can	be	entered	as
text	or	a	multilingual	variable.	If	the	Application	will	be	deployed
in	multiple	languages,	use	a	multilingual	variable	so	that	the
language	is	appropriate	for	the	end	user.
This	Application	description	will	be	used	when	installing	and
uninstalling	the	Application.	Thus	it	is	essential	that	a	different
description	is	used	for	each	language	if	more	than	one	language
needs	to	be	installed	on	a	single	PC.	This	is	because	using	the
same	language	description	will	cause	some	parts	of	the
installation	to	overwrite	each	other	which	will	cause	uninstall	and
upgrade	issues.

Company Required.
Select	a	Company	to	be	associated	with	this	Application.		To
define	a	Company	use	the	ellipse	button	to	access	the	Company

Maintenance.			The	Company	and	associated	details	are	used
during	the	build	processing	as	well	as	during	installation	and
uninstallation	of	the	Application.
Refer	to	Set	up	Company	Details	for	more	information.

Press	Create	once	you	have	entered	the	information	to	define	the	Application.
You	will	be	automatically	prompted	to	Create	a	Version	within	the	new
Application.

its:lansa022.chm::/lansa/VLDTool3_0010.htm
its:lansa022.chm::/lansa/dt_0565.htm

6.2	Change	an	Application's	Details

The	Application	Name	cannot	be	modified	but	the	associated	description
and	company	are	editable.

ApplicationNot	maintainable.
The	Application	Name	cannot	be	changed.

Description Required.
Modify	the	Application	description	as	required.
It	is	not	recommended	to	change	the	Application	Description
after	the	Application	has	been	distributed	as	the	description	is
used	during	the	installation	and	to	identify	the	installed
Application.

Company Required.
The	Company	Name	must	be	entered.		It	can	be	entered	as	text	or
a	Multilingual	Variable	can	be	nominated	if	the	Application	will
be	deployed	in	multiple	languages	with	a	variation	on	the
company	name	which	is	language	dependent.
It	is	not	recommended	to	change	the	Company	after	the
Application	has	been	distributed	as	the	Company	is	used	during
the	installation	and	to	identify	the	installed	Application.
Refer	to	Set	up	Company	Details	for	more	information.

Press	OK	to	save	any	changes	to	the	Application	or	Cancel	to	close	the	dialog
without	saving	changes.

its:lansa022.chm::/lansa/VLDTool3_0010.htm

6.3	Delete	an	Application

Select	the	Application	to	be	deleted	and	press	the	Delete	tool	in	the	toolbar
or	choose	the	Delete	command	from	the	right-click	menu.
You	will	be	prompted	to	confirm	the	deletion.

When	you	delete	an	Application,	all	Versions	and	Patches	within	the
Application	are	deleted.		Refer	to	Backup	and	Restore	Application
Definitions.

its:lansa022.chm::/lansa/L4wDplb3_0010.htm

6.4	Include	Communications	Tables

To	include	or	change	a	Host	Route	file	for	an	Application,	press	the
Communications	Administrator	tool	in	the	toolbar.
Initially,	the	host	route	(lroute.dat)	information	is	copied	(lroute.dat)	from
the	current	LANSA	system.		This	copy	can	be	modified	as	required	for	the
specific	Application.
Listener	information	can	also	be	deployed	by	selecting	to	view	the	listener
details	in	the	host	route	and	modifying	as	required.

Refer	to	Deploy	LANSA	Communications	for	more	information.

its:LANSA022.CHM::/lansa/l4wdplb2_0065.htm

7.	Versions	and	Patches
Before	you	select	the	objects	and	specify	the	settings	and	options	for	a	Package,
you	must	first	create	one	by	specifying	the	name	and	description	(as	a
minimum).
From	the	Package	menu	on	the	Deployment	Tool's	main	window,	you	can:
7.1	Create	a	Version
7.2	Create	a	Patch
7.3	Open	a	Package
7.4	Delete	a	Package
7.7	Check	a	Version	or	Patch
7.8	Build	a	Version	or	Patch
Check	the	7.8.1	Package	Build	Log
7.9	Package	Distributed
Additional	options	are	available	when	the	Package	is	open	for	editing	or	review,
including:
7.6	Save	a	Package
Save	a	package	as	a	template	as	shown	in	Create	a	Deployment	Template.
and
Other	8.	Options	&	Settings,	to	allow	for	the	configuration	of	the	Package.

its:lansa022.chm::/lansa/dt_0815.htm

7.1	Create	a	Version

The	initial	Version	in	an	Application	is	created	when	the	Application	is
created.		After	confirming	the	Application	details	the	New	Version	dialog	is
presented.

Subsequent	Versions	in	the	Application	are	created	by	copying	the	original
Version.		The	Create	Next	Version	option	is	available	in	the	context	(right	click)
menu	when	a	Version	is	selected	in	the	Main	Window	tree.		The	Version	will	be
created	under	this	selected	Application.

Application The	Application	containing	this	Package.	This	value	is	prefilled
and	cannot	be	modified.

Version Enter	the	next	Version	number.			Version	number	must	increase
for	subsequent	releases.		A	recommended	approach	for	naming	is
:
<major	version	number>.<minor	version	number>.
<build	number>

Description Enter	a	description.
Template
Name

A	template	can	only	be	selected	when	creating	the	first	Version	in
an	Application.
Select	a	template	to	use	as	the	basis	of	the	Version,	or	select	the
"no	template	required"	entry	in	the	list.
Deployment	templates	will	save	you	time	by	providing	some
preset	options	and	hiding	unnecessary	options.

To	save	time,	some	templates	have	been	supplied	with	the	Deployment	Tool.	For
a	list	of	the	templates,	refer	to	Supplied	Templates.
Press	OK	when	you	have	completed	these	entries.	The	Package	Maintenance
Window	will	be	opened	so	that	you	can	select	the	options,	settings	and	objects	to
be	included	in	your	new	Version.	Go	to	7.3	Open	a	Package.

its:Lansa022.chm::/lansa/dt_0830.htm

7.2	Create	a	Patch

A	Patch	is	created	by	copying	a	Version	or	Patch	in	the	same	Application.	
This	copied	Version	or	Patch	forms	the	basis	of	the	Patch	definition.
The	Create	Patch	option	is	available	in	the	context	(right	click)	menu	when
a	Version	or	Patch	is	selected	in	the	Main	Window	tree.		The	Patch	will	be
created	under	this	selected	Application.

Application The	Application	containing	this	Package.			This	value	is
prefilled	and	cannot	be	modified.

Patch Enter	the	next	Patch	number.			Patch	number	must	increase	for
subsequent	releases.		The	Patch	number	has	a	direct	relationship
to	the	Version	or	Patch	it	was	based	on,	for	example	Patch
1.0.0.1	would	be	the	first	patch	against	Version	1.0.0.		A
recommended	approach	for	naming	is	:
<major	version	number>.<minor	version	number>.
<build	number>.<patch	number>

Description Enter	a	description.
Uninstallable Allows	a	patch	to	be	uninstalled.		The	uninstall	process	will	roll

back	the	LANSA	component	DLLs	changed	by	the	patch.		If	the
Patch	install	updates	the	database,	any	changes	to	the	database
will	not	be	uninstalled.

Press	OK	when	you	have	entered	Patch	details.	The	Package	Maintenance
Window	will	be	opened	so	that	you	can	select	modify	Files	with	Special	Settings
and	the	objects	to	be	included	in	the	Patch.		All	other	settings	and	options

cannot	be	modified	and	reflect	values	of	the	original	copied	Version	or	Patch.

7.3	Open	a	Package

In	the	main	window,	select	the	Version	or	Patch	to	maintain	then	use	the
Open	tool	on	the	toolbar,	or	from	the	context	(right	click)	menu,	to	open	the
selected	Version	or	Patch.	A	package	can	also	be	opened	to	edit	by	double
clicking	the	package	in	the	Main	Window	tree.
When	you	Create	a	Version	or	Create	a	Patch	it	is	automatically	opened	to
edit.

The	Package	Maintenance	Window	is	the	starting	point	for	selecting	all	the
options,	settings	and	objects	in	your	Package.	These	options	and	settings	govern
the	behavior	of	a	package	during	its	installation	and	execution.

The	options	on	this	window	have	been	grouped	so	that,	for	the	majority	of
groups,	a	whole	group	can	be	ignored	and	default	values	assumed	if	they	are	not
relevant	to	your	package.	For	example,	if	the	package	is	not	using	the	Just	in
Time	facilities,	the	defaults	can	be	accepted,	and	you	can	then	ignore	the	whole
Just	In	Time	group.	Similarly,	if	you	are	not	deploying	to	a	local	database,	the

its:lansa022.chm::/lansa/dt_0565.htm
its:lansa022.chm::/lansa/VLDTool6_0040.htm

Database	options	can	be	ignored.
To	modify	the	base	definition	of	a	package,	refer	to:

7.3.1	Edit	Installation
Options			

7.3.3	Change
Description			

7.3.4	Associated
Template

For	details	of	each	group,	go	to:
Required	Execution	Parameters
Just	in	Time
Database
Upgrade	Options
Communications
LANSA	SuperServer
Desktop	settings
Installation	Dialogs

its:lansa022.chm::/lansa/dt_0190.htm
its:lansa022.chm::/lansa/dt_0235.htm
its:lansa022.chm::/lansa/dt_0210.htm
its:\lansa022.chm::/lansa/dt_0220.htm
its:lansa022.chm::/lansa/dt_0230.htm
its:lansa022.chm::/lansa/l4wdplb3_0285.htm
its:lansa022.chm::/lansa/dt_0215.htm
its:lansa022.chm::/lansa/dt_0225.htm

7.3.1	Edit	Installation	Options
All	of	the	values	displayed	in	the	Package	Maintenance	Window	are	available
for	review,	and	in	most	cases	can	be	changed.	If	the	package	was	created

using	a	deployment	template,	the	template	can	control	whether	an	option	is
display	only	or	can	be	changed.
not	using	a	deployment	template,	default	values	will	be	displayed.

Once	you	change	an	option,	it	will	display	with	a	gray	background	and	black
text	to	indicate	that	a	change	has	been	made.
Options	pre-set	to	a	specific	value	that	cannot	be	changed,	as	pre-determined	by
a	template,	are	displayed	with	a	gray	background	with	gray	text.
Options	that	must	be	entered,	as	pre-determined	by	a	template,	are	displayed
with	a	gray	background	with	black	text.	Refer	to	Deployment	Template	Options
&	Settings	for	more	information.
As	many	of	the	options	equate	directly	to	specific	execution	parameters,	the
equivalent	X_RUN	argument	is	included	at	the	end	of	the	option's	description.
For	a	full	explanation	of	the	use	of	the	X_RUN	command	and	parameters	you
should	review	Using	the	X_RUN	command	in	the	Technical	Reference	Guide.

	Important:	The	default	values	for	installation	options	are	enclosed
in	square	brackets;	for	example,	Language	(LANG)	has	a	default
value	of	[Current].		DO	NOT	enclose	your	installation	option	values
in	square	brackets.	If	you	do,	the	value	will	be	ignored	and	will
default	back	to	the	Deployment	Tool's	default	value	for	that	option
when	the	package	is	installed.

To	set	a	value	for	an	option	on	the	Package	Maintenance	Window:

Step How	to	do	it

1.
Double
click
on	an
option

Create	or	Open	a	Version.	Notice	the	font	and	highlighting	associated
with	the	displayed	Package	Maintenance	Window	options.	There	will
only	be	variation	from	the	standard	black	text	with	white	background
if	the	package	was	based	on	a	template.
Double	click	on	an	option	to	review	the	value	and	appearance	settings.
For	example,	double-click	the	Form	to	Execute	option:

its:lansa022.chm::/lansa/dt_0820.htm
its:LANSA015.CHM::/lansa/depb3_0000.htm

Refer	to	8.1	Installation	Options	for	information	on	specific	options.

2.	Set
up	the
Values
default

A	dialog	box	will	be	displayed	for	you	to	select	or	enter	your	required
values	and	options.
The	Values	tab	allows	you	to	specify	a	default	value	to	be	applied
when	the	package	is	installed.
If	the	option	is	a	free-form	entry,	like	Form	to	execute	(FORM),	an
edit	box	will	be	displayed.	Change	the	value	to	the	value	you	want
applied	during	the	package	setup	and	installation.

In	this	case	you	can	also	decide	if	you	want	this	value	to	be	prompted,
thus	enabling	it	to	be	changed	during	installation.	Some	options	also
include	Prompt	during	X_START	if	this	is	relevant.
DO	NOT	enclose	your	installation	option	values	in	square
brackets.
Prompt	during	Installation

When	installing	the	package	you	will	be	prompted	to	enter	or	confirm
the	value	for	this	option.	If	the	value	is	a	password	(i.e.	the	PSWD,
PSPW,	and	ASPW	parameters)	then	the	default	value	is	set	to
'*password_optional'.	If	there	is	no	value	for	the	parameter	at	the	time
of	the	installation,	then	the	default	value	is	set	to	'*optional_data_'.
For	more	details,	refer	to	the	8.1.8	MSI	Installation	Dialogs	and
Commands	and	Special	Variables	in	the	Technical	Reference.
Prompt	during	X_START
When	running	the	application	using	an	X_RUN	(typically	from	a
desktop	icon)	you	will	be	prompted	for	X_START	values	when	the
application	is	launched.	The	values	entered	will	be	used	as	default
values	on	the	X_START	prompt.	In	normal	circumstances,	this	option
should	not	be	selected.
Note:	If	you	nominate	to	Prompt	during	Installation	for	an	option	you
must	also	set	the	corresponding	dialog	Installation	Dialogs	display	to
Yes,	otherwise	the	option	will	NOT	be	prompted.
When	the	option	has	a	predefined	list	of	values,	a	series	of	radio	button
is	displayed	in	the	values	tab.

Tip:	You	can	open	consecutive	option	dialogs	without	closing	the
previous	dialog.	The	current	dialog	will	be	replaced	with	the	newly

its:lansa015.chm::/lansa/DEPB3_0160.htm

opened	dialog.

	

	

7.3.2	Edit	Settings
The	package's	settings	are	accessed	from	the	Package	Maintenance	Window's
toolbar,	and	consist	of:

8.4	Application	Icon
8.5	X_RUN	Arguments
8.6	Commands	to	execute
8.7	Languages
8.8	Web	Designs
8.9	Files	with	Special	Processing

Settings	can	be	selected	in	any	sequence.
All	the	package's	settings	are	available	for	review,	and	in	most	cases,	can	be
changed.	If	the	package	was	created	using	a	deployment	template,	the	template
can	control	whether	a	setting	is	only	for	display	or	if	it	can	be	changed.	Where	a
deployment	template	has	not	been	used,	default	values	will	be	displayed	for	a
new	package.
Options	pre-set	to	a	specific	value	and	not	changeable,	as	pre-determined	by	a
template,	are	displayed	with	the	message	Read	only	mode	-	Changes	to	the
values	cannot	be	saved.	To	modify	the	values,	the	reference	to	the	template
must	be	removed.	Refer	to	7.3.4	Associated	Template.

7.3.3	Change	Description
Select	Change	Description	from	the	Edit	menu	on	the	Package	Maintenance
Window	to	change	the	current	Version	or	Patch	description.		The	option	to	allow
a	Patch	to	be	Uninstallable	can	also	be	modified.

7.3.4	Associated	Template
The	Associated	Template	option	is	only	available	if	there	is	a	template
associated	with	the	current	Version	or	Patch.	It	is	opened	from	the	command	on
the	Edit	menu	in	the	Package	Maintenance	Window.
Use	this	option	to	verify	what	template	the	package	has	been	based	on,	and	if
necessary	remove	the	template	association	to	allow	greater	flexibility	in	the
package	definition.	The	associated	template	can	hide	or	restrict	access	to	some
of	the	Settings	and	options.

Packages	based	on	a	Template
In	many	cases,	you	will	be	able	to	limit	the	number	of	options	you	need	to
consider	by	basing	your	Package	on	a	deployment	template	when	the	package	is
created.	A	Template	can	contain	pre-set	options	and	even	have	some	complete
subsets	of	options	disabled	or	hidden.
The	Package	Maintenance	Window	reflects	the	options	specified	for	the
selected	template	so	the	Package	Maintenance	Window	you	see	may	not	be
identical	to	the	one	in	the	following	example.	Pre-set	options	are	displayed	with
a	gray	background	and	gray	text.

Note:	If	a	package	uses	a	deleted	template,	it	will	simply	ignore	the
template	settings	when	loaded.	This	means	that	the	package	will	now
display	in	its	default	state,	with	all	options	visible	and	changeable.

For	more	information	refer	to	Deployment	Template	Options	&	Settings.

its:lansa022.chm::/lansa/dt_0820.htm

7.4	Delete	a	Package

Highlight	the	package	to	be	deleted	in	the	list	in	the	Deployment	Tool's
main	window	and	press	the	Delete	icon.
The	Delete	icon	will	only	be	available	to	use	if	the	package	is	closed.	If	a
package	has	been	released,	you	will	be	prompted	for	confirmation	of	the
deletion.

Once	the	Delete	option	is	used,	the	package	definition	and	all	physical
objects	will	be	deleted.
There	is	no	back	out	facility	for	a	package	deletion.

7.5	Convert	a	Pre-V13	Package
Use	this	option	to	convert	a	package	in	a	pre-V13	LANSA	environment	to	be
used	as	the	base	Version	of	your	Application	in	Version	13.		In	the	main
window,	select	the	Convert	a	pre-V13	Package	option	from	the	Tools	menu	to
locate	and	convert	a	package	defined	in	an	earlier	version	of	LANSA.

Before	converting	any	package	ensure	you	have	understand	The	Deployment
Model	and	the	changes	in	the	deployment	paradigm	in	Version	13.
Important	–	If	you	have	several	packages	in	pre-V13	LANSA	to	install	a	single
Application	select	the	most	complex	package	to	convert.		Any	additional
objects,	options	or	settings	can	be	added	after	the	conversion	is	complete.
The	conversion	interface	is	a	four	step	process:

1.		Enter	path	where	package	to	be	converted	exists.
2.		Select	a	package	to	convert.
3.		Confirm	and	modify	details	as	required.
4.		When	details	are	complete	select	OK	to	convert	the	selected	Package.

its:lansa022.chm::/lansa/VLDTool1_0010.htm

ApplicationApplication	is	pre-filled	from	the	copied	Application	and	cannot
be	modified.

Description Enter	an	Application	description	or	use	the	copied	Application
description.		This	is	important	as	it	is	used	to	identify	the	installed
Application.

Company Select	a	Company	to	be	used	as	the	distributor	of	this
Application.		If	no	Companies	available	create	Company	details
using	the	Company	Maintenance	on	the	View	Menu.		Refer	to	Set
up	Company	Details	for	more	information.

Version
Number

Enter	an	appropriate	Version	Number	to	indicate	the	software
release.

Description Enter	a	description	for	the	Version.		This	is	for	information	only
as	is	not	used	in	the	installed	Application.

its:lansa022.chm::/lansa/VLDTool3_0010.htm

7.6	Save	a	Package

Save	a	package	by	selecting	the	Save	tool	on	the	Package	Maintenance
Window	toolbar	or	select	the	Save	command	in	the	Package	menu.

When	you	save	a	package,	the	options,	settings	and	object	lists	specified	are
stored	in	an	LDL	file	which	is	written	to	the	package	work	folder.
Once	you	have	saved	a	package,	you	can	build	it	as	described	in	7.8	Build	a
Version	or	Patch.

Note:	Until	a	package	is	saved	for	the	first	time,	a	minimum	set	of
information	is	saved	to	the	disk.	If	you	do	not	save	the	package,	the
next	time	you	open	it,	you	will	only	see	the	defaults	(that	is,	the
minimum	set	of	information	that	was	saved).

The	saved	package	details	are	stored	in	a	working	directory	structure:

7.7	Check	a	Version	or	Patch

From	the	Deployment	Tool	main	window	or	the	Package	Maintenance
Window	toolbar,	select	the	Check	option.	The	Check	option	is	also	available
on	the	context	(right	click)	menu	in	the	Deployment	Tool	main	window.
This	option	is	only	available	after	you	have	saved	a	Version	or	Patch
and	before	attempting	to	build.	If	you	make	further	changes,	the	Build	and
Check	options	are	disabled	until	the	package	is	Saved	again.

This	is	an	optional	step	to	perform	before	attempting	to	build	a	package.	Use	the
Check	option	to	identify	any	issues	in	the	package,	allowing	them	to	be	rectified
before	the	package	build	is	initiated.	This	can	save	considerable	time	at	the
package	Build	stage.

	Important	-	Before	attempting	to	build	a	package,	it	is
recommended	that	you	correct	the	conditions	for	all	warning	messages
returned	by	this	package	check	process.

7.8	Build	a	Version	or	Patch

Once	a	Version	or	Patch	has	been	Saved,	and	optionally	passed	the	pre-build
Check	process	successfully,	you	can	build	it.
To	start	the	build	process,	select	the	Build	icon	in	the	Deployment	Tool	main
window	or	Package	Maintenance	Window	toolbar.		The	build	option	is	also
available	on	the	context	(right	click)	menu	in	the	Deployment	Tool	main
window.

The	Build	process	uses	the	definitions	from	the	associated	files	(created	when
the	package	is	saved)	to	create	the	required	folders,	run	any	necessary	exports,
and	copy	the	required	objects	into	the	package	structure.	If	you	have	included
any	Cross	Referenced	objects	in	the	package,	they	will	be	resolved	during	the
build.
The	final	phase	in	the	build	process	generate	WIX	XML	source	files	which	are
then	compiled	and		converted	into	MSI	and	MSP	files	by	the	WIX	toolset.
Package	build	is	not	supported	on	a	network	client	installation.

7.8.1	Package	Build	Log
Whenever	a	package	is	built,	a	build	log	is	created	containing	all	the	messages
generated	during	the	package	build	process.

Select	View	Log	from	the	Deployment	Tool	Main	Window	or	Package
Maintenance	Window	toolbars.	The	View	Log	option	is	also	available	on	the
context	(right	click)	menu	in	the	Deployment	Tool	main	window.
This	option	is	only	available	when	the	selected	package	has	been	built.

The	log	displayed	will	look	something	like	this:

Use	the	options	along	the	top	of	the	dialog	to	filter	the	messages	to	be
displayed.	The	options	selected	will	be	remembered	from	build	to	build.
Take	special	note	of	the	Show	automatically	option	as	this	will	determine
whether	the	View	Log	is	automatically	presented	immediately	after	the	build
has	completed.

	Important	-	If	a	build	fails	for	any	reason,	look	at	the	Build	Log	for
an	explanation.

The	actual	log	file	associated	with	this	dialog,	lpcreate.log,	is	stored	in	the
corresponding	package	directory,	<sysdir>\X_Apps\

<Application>\X_PKGWRK\<Version>\Build\dpcreate.log	Details	of
any	export	logs	generated	during	the	build	process	are	automatically
incorporated	into	the	lpcreate.log	and	identified	by	a	prefix	of	->.
	

7.9	Package	Distributed

To	indicate	that	a	Package	has	been	distributed	select	Distributed	from	the
Package	Maintenance	Window	toolbar	or	context	(right	click)	menu	of	the
selected	Package.
A	package	can	only	be	flagged	as	distributed	after	it	has	been	built.
Distributing	a	package	means	that	it	is	now	available	for	automatic
download	from	a	Just	in	Time	server.		This	is	also	an	indication	that	the
package	should	not	be	rebuilt	without	careful	consideration	of	any
subsequent	Version	or	Patches	in	this	Application.		If	the	package	is	rebuilt
the	new	set	of	GUIDs	generated	will	be	incompatible	with	subsequent
Patches.

If	your	packaging	system	is	the	same	system	that	you	are	using	for
Just	in	Time	deployment,	the	distributed	package	can	be	downloaded
immediately.	This	may	not	be	desirable,	so	it	is	recommended	that	you
use	different	machines	for	creating	and	deploying	packages.

8.	Options	&	Settings
The	Options	and	Settings	are	divided	into	three	main	categories.	These	are:

The	8.1	Installation	Options	that	are	accessed	from	the	main	window	of	the
Package	Maintenance	Window.
The	application's	objects	described	in	8.2	Select	Repository	Objects.
The	8.3	Settings	which	are	accessed	from	the	Package	Maintenance
Window's	toolbar,	and	consist	of:
8.4	Application	Icon
8.5	X_RUN	Arguments
8.6	Commands	to	execute
8.7	Languages
8.8	Web	Designs
8.9	Files	with	Special	Processing

Options	and	settings	can	be	selected	in	any	sequence.

8.1	Installation	Options
The	installation	options,	which	are	specified	via	the	Package	Maintenance
Window,	govern	the	behavior	during	installation	and	subsequent	execution	on
the	target	PC.
For	the	majority	of	the	installation	options,	whole	groups	can	be	ignored	and	the
defaults	used.	For	example,	if	the	Just	In	Time	feature	is	not	going	to	be	used,
you	can	ignore	that	group	of	options.
Basing	the	initial	Version	of	an	Application	on	a	Deployment	Template	will
reduce	the	need	to	specify	requirements	even	further.
Many	of	the	installation	options	equate	directly	to	specific	LANSA	execution
parameters,	so	where	applicable,	the	equivalent	X_RUN	argument	is	included	at
the	end	of	the	item's	description.	You	will	find	a	full	explanation	of	X_RUN	and
these	arguments	in	Using	the	X_RUN	Command	in	the	Technical	Reference.

The	default	values	for	installation	options	are	indicated	enclosed	in
square	brackets;	for	example,	Language	(LANG)	has	a	default	value
of	[Current].		DO	NOT	enclose	your	installation	values	in	square
brackets.	If	you	do,	they	will	be	ignored	and	will	default	back	to	the
Deployment	Tool's	nominated	default	value	for	that	option.

The	Parameter	groups	required	are:
8.1.1	Execution	Parameters
8.1.2	Additional	LANSA	Features
8.1.3	Just	in	Time
8.1.4	SuperServer
8.1.5	Database
8.1.6	Desktop	Settings
8.1.7	Upgrade	Options
8.1.8	MSI	Installation	Dialogs

its:LANSA015.CHM::/lansa/depb3_0000.htm

8.1.1	Execution	Parameters
These	are	mandatory	parameters	that	must	be	specified	before	a	Visual	LANSA
application	can	be	executed.	You	can	specify	to	launch	a	Process,	Function	or
Form	-	not	all	of	them.

Require
Elevation
	

Indicates	if	the	Application	must	be	installed	with	Administrator
rights.
Yes	–	Elevation	is	required	to	install	application.
No	–	Elevation	is	not	required	to	install	application.
Default:	No

Language
(LANG)
	

Enter	the	language	code	to	be	used	when	the	application	is
executed.
Default:	[Current]	-	The	language	code	used	when	the	package	is
created.

Process
to
Execute
(PROC)
	

Specify	the	process	that	is	used	to	start	the	application	once	it	is
installed.	If	a	Process	or	Form	to	Execute	is	not	specified,	the
Process	to	be	executed	will	be	set	to	the	special	process
*INSTALL.
Typically	Upgrade	packages	will	not	need	to	specify	a	Process,
Function	or	Form	as	the	information	will	have	been	deployed
previously.
Unpredictable	results	will	occur	if	both	a	Process	and	a	Form	to
Execute	are	specified.
This	object	should	be	included	in	the	package.
Default:	[None]

Function
to
Execute
(FUNC)
	

Specify	the	Function	that	should	be	called	after	the	application	is
installed.
If	this	option	is	specified	you	must	also	specify	a	Process	to
Execute	(PROC).
This	object	should	be	included	in	the	package.
Default:	[None]

Form	to
Execute

Specify	the	Form	that	is	used	to	start	the	application	once	installed.

(FORM)
	

Unpredictable	results	will	occur	if	a	Process	and	Form	to	Execute
are	both	specified.
This	object	should	be	included	in	the	package.
Default:	[None]

Partition
identifier
(PART)
	

Enter	the	partition	to	be	used	when	the	application	is	executed.
Default:	[Current]	-	The	partition	used	when	the	package	is
created.

LANSA
User
(USER)
	

The	LANSA	user	for	application	execution.
Default:	[QPGMR]

	

8.1.2	Additional	LANSA	Features
Install
Listener

Indicates	if	the	listener	will	be	installed.
Yes	–	Listener	will	be	installed.
No	–	Listener	will	not	be	installed.
Default:	No

Install	Web
Administrator

Indicates	if	the	LANSA	for	the	Web	Administrator	will	be
installed.		This	is	used	to	configure	the	LANSA	for	the	Web
software	on	the	Web	Server	and	the	Data/Application	Server.
Yes	–	LANSA	for	the	Web	Administrator	will	be	installed.
No	–	LANSA	for	the	Web	Administrator	will	not	be	installed.
Default:	No

Install	IIS
Plugin

Indicates	if	the	IIS	Plugin	will	be	installed.		The	LANSA	for
the	Web	IIS	Plug-in	is	an	ISAPI	based	Web	serving	technology
that	can	be	used	to	deploy	LANSA	applications	using	the
Microsoft	IIS	Web	Server.	The	IIS	Plug-in	is	the	component
used	to	build	the	link	between	the	Web	Server	and	the
Data/Application	Server.
Yes	–	IIS	Plugin	will	be	installed.
No	–	IIS	Plugin	will	not	be	installed.
Default:	No

Install	Web
Images

Indicates	if	the	Web	Images	will	be	installed.		The	Web	Images
are	a	default	set	of	image	files	used	by	LANSA	for	the	Web.
Yes	–	Web	Images	will	be	installed.
No	–	Web	Images	will	not	be	installed.
Default:	No

Install	Java
Service
Manager

Indicates	if	the	Java	Service	Manager	will	be	installed.		The
LANSA	Integrator	Java	Service	Manager	allows	developers	to
integrate	Java	programs	with	their	existing	LANSA	or	3GL
applications.		It	provides	a	standardized	interface	for	calling
Java	classes	using	Java	service	programs.
Yes	–	Java	Service	Manager	will	be	installed.

No	–	Java	Service	Manager	will	not	be	installed.
Default:	No

Install	Visual
LANSA
Framework

Indicates	if	the	Visual	LANSA	Framework	will	be	installed.
Yes	–	Visual	LANSA	Framework	will	be	installed.
No	–	Visual	LANSA	Framework	will	not	be	installed.
Default:	No

	

8.1.3	Just	in	Time
Set	the	Just	in	Time	(JIT)	options	if	you	want	upgrades	to	the	application	to	be
automatically	deployed	from	a	central	server	when	the	end	user	starts	the
application.	If	you	are	going	to	distribute	changes	manually	or	via	DVD	or	a
network,	you	can	bypass	these	JIT	options.
Before	you	select	your	Just	In	Time	options	and	settings,	please	review	the
recommendations	in		Just	in	Time	Upgrade	Guidelines.

Upgrade
option
(UPGD)

This	option	is	used	to	describe	how	Just	In	Time	upgrades
from	an	Application	Server	will	be	performed.
No	Upgrade	-	Do	not	do	any	JIT	upgrade	processing.
New	Versions/Patches	-	Get	a	copy	of	any	new	Version	or
Patches.
Default:	No	Upgrade

Standalone
Install
Required
(UPSI)

This	option	specifies	whether	the	installation	of	packages
requires	all	users	to	be	disconnected	from	the	LANSA	system.
It	is	added	to	the	start	up	process	for	the	application	when
starting	it	from	its	Icon.
Yes	-	The	system	must	have	no	active	users	before	installing
the	package.	If	any	user	is	connected	packages	will	not	be
installed/upgraded.
No	-	Users	can	remain	connected	when	packages	are	being
installed/upgraded.	Typically	this	would	only	be	suitable	for
Network	Client	packages,	or	packages	being	installed	on	a
Standalone	system.
Prompt	User	-	The	user	will	be	prompted	if	any	part	of	the
application	is	active	prior	to	installation/upgrade	of	packages.
Default:	Yes

Application
Server	Name
(ASLU)

Default:	[None]
Specify	the	Name	of	the	Application	Server	(ASLU)	where	the
Just	In	Time	updates	will	be	located.	Refer	to	The
PSXX=Parameter	name	PSLU=	in	the	Technical	Reference.

Application
Server	User

Default:	[User]
Specify	the	user	name	to	be	used	for	connecting	to	the

its:LANSA022.CHM::/lansa/l4wdplb3_0550.htm
its:LANSA015.CHM::/lansa/depb3_0060.HTM

(ASUS) Application	Server.	Refer	to	The	PSXX=Parameter	name
PSUS=	in	the	Technical	Reference.
You	do	not	need	to	specify	this	option	if	the	value	is	the
same	as	the	LANSA	User.

Application
Server
Password
(ASPW)

Default:	[None]
Specify	the	password	to	be	used	for	connecting	to	the
Application	Server.
For	information,	refer	to	The	PSXX=Parameter	name	PSPW=
in	the	Technical	Reference.

Client	to
Server	Table
(ASCT)

Default:	[None]
For	information,	refer	to	The	PSXX=Parameter	name	PSCT=
in	the	Technical	Reference.

Server	to
Client	Table
(ASST)

Default:	[None]
For	information,	refer	to	The	PSXX=Parameter	name	PSST=
in	the	Technical	Reference.

Connection
Failure	Action
(UPCF)

Select	the	action	to	take	if	the	connection	to	the	Application
Server	fails.
Abort	–	End	the	application	upgrade	and	the	application.
Continue	–	End	the	application	upgrade,	but	continue
executing	the	application.
Prompt	user	–	Prompt	the	user	for	the	required	action.
Default:	Prompt	User

Download
failure	action
(UPDF)

Select	the	action	to	take	if	the	download	from	the	Application
Server	fails.
Abort	–	End	the	download	immediately,	and	end	the
application.
Continue	–	End	the	download	immediately,	but	continue	with
the	application	execution.
Prompt	user	–	Prompt	the	user	for	the	required	action.
Default:	Prompt	User

Application
Server
Trusted

Yes	–	Use	Kerberos	Authentication	when	calling	the
CONNECT_SERVER	Built-In	Function.

its:LANSA015.CHM::/lansa/depb3_0060.HTM
its:LANSA015.CHM::/lansa/depb3_0060.HTM
its:LANSA015.CHM::/lansa/depb3_0060.HTM
its:LANSA015.CHM::/lansa/depb3_0060.HTM

Connection
(ASTC)

No	–	Do	not	use	Kerberos	Authentication	when	calling	the
CONNECT_SERVER	Built-In	Function.
Default:	No
For	information,	refer	to	The	PSXX=Parameter	name	PSTC=
in	the	Technical	Reference.

	

its:LANSA015.CHM::/lansa/depb3_0060.HTM

8.1.4	SuperServer
Use	the	LANSA	SuperServer	installation	options	to	configure	your	application
to	automatically	connect	to	a	server	at	run	time.	You	do	not	need	to	specify
these	options	if	you	are	using	the	LANSA	SuperServer	Built-In	Functions	in
your	application.
LANSA	SuperServer	Built-In	Functions	include	DEFINE_OS_400_SERVER,
CONNECT_SERVER	and	CONNECT_FILE.

Server
Type
(PSTY
and
DBID)

If	you	are	using	the	PSXX	parameters,	specify	the	Server	Type
you	wish	to	connect	to.
None	-	You	are	not	using	the	PSXX	parameters.
RDMLX	IBM	i	-	You	are	connecting	to	an	IBM	i	server	with
LANSA	enabled	for	RDMLX.	This	sets	PSTY	and	DBID	to
*ANY.
IBM	i	-	You	are	connecting	to	an	IBM	i	server.	This	sets	PSTY
and	DBID	to	*AS400.
Non-IBM	i	-	You	are	connecting	to	a	server	other	than	an	IBM	i
(e.g.,	Windows	Server).	This	sets	PSTY	and	DBID	to	*OTHER.
Default:	[None]
If	Non-IBM	i	is	selected	you	may	need	to	set	the	values	for
Server	Exceptional	Arguments.

Server
Name
(PSLU)

Default:	[None]
The	name	of	the	server	you	wish	to	connect	to	as	defined	in
LANSA	Communications	Administrator.	A	corresponding	entry
should	exist	in	the	LANSA	Communications	Administration
table	(lroute.dat).

User	for
Server
(PSUS)

Default:	[User]
You	do	not	need	to	specify	this	option	if	the	value	is	the	same	as
the	LANSA	User.

Password
for
Server
(PSPW)

Default:	[None]
If	PSPW	is	only	being	used	to	specify	the	default	password	for
the	CONNECT_SERVER	Built-In	Function	do	not	specify	it
here.		Add	the	parameter	via	the	X_RUN	Arguments	dialog.

	

	
For	details	of	all	the	following	options,	refer	to	the	PSXX=	Parameter	in	the
Technical	Reference.

Server	Exceptional
Arguments	(PSEA)

Default:	[None]
	

Use	Commitment
Control	(PSCC)

Default:	[None]
	

DBCS	Capable
(PSDB)

Default:	[None]

Divert	Locks
(PSDL)

Default:	[None]

Show	Please	Wait
Message	(PSWM)

Default:	[None]

Server	Execution
priority	(PSEP)

Default:	[None]

Client	to	Server
Table	(PSCT)

Default:	[None]

Server	to	Client
Table	(PSST)

Default:	[None]

Server	Trusted
Connection	(PSTC)

Yes	–	Use	Kerberos	Authentication	when	calling	the
CONNECT_SERVER	Built-In	Function.
No	–	Do	not	use	Kerberos	Authentication	when
calling	the	CONNECT_SERVER	Built-In	Function.
Default:	No

	

its:LANSA015.CHM::/lansa/depb3_0060.htm

8.1.5	Database
These	options	control	whether	the	package	will	check	for	the	existence	of	a
database	and	the	connection	to	the	database.		The	database	options	are	only
relevant	if	the	deployed	application	uses	a	local	database.

	The	installation	and	upgrade	of	Sybase	ASA	databases	is	no	longer
supported	by	the	Deployment	Tool.

For	more	information	on	the	X_RUN	database	arguments	refer	to	The	DBID,
DBUT,	DBII	and	DBIT	Parameters	in	the	Technical	Reference	Guide.
Setup
Database
(SUDB)

This	value	is	typically	set	as	Yes.	
Web	Application	Server	install,	SuperServer	Server	install	and
Standalone	installs	would	set	this	to	Yes.
Exceptions	are		instances	where	multiple	installs	access	the	same
shared	database.	In	such	a	case	its	up	to	the	installer	to	check	this
option	in	the	install	dialog	for	the	server	and	leave	it	unchecked
for	the	clients.
For	example	installing	a	Corporate	Application,	that	is	an
Application	using	a	shared	database,	only	the	first	installation	of
the	Application	onto	a	user's	PC	will	require	the	database	to	be
setup	as	part	of	the	installation	processing.	To	help	end-users
install	it	correctly,	the	setting	should	be	set	to	No	so	that	only	the
Administrator	installing	it	for	the	first	time	would	need	to	change
the	default	setting.	The	Administrator	may	even	install	it	directly
on	the	Database	Server,	even	though	it	will	not	be	executed	there,
just	to	have	a	restricted	location	to	install	it	to.
Its	also	possible	to	set	it	to	No	and	not	allow	it	to	be	changed	in
the	Local	Database	Dialog.	Then	it	can	only	be	changed	to	Yes	by
running	it	from	the	command	line.	This	gives	the	best	protection
against	inadvertent	Database	Setup.
To	allow	the	first	installation	to	override	the	setting	of	No,	the
option	to	Prompt	during	Installation	should	be	selected.
Yes	–	Install	files	and	file	data	shipped	with	the	Version	or	Patch
into	the	nominated	database.		This	will	not	create	the	database.
No	–	The	database	is	not	modified.

its:Lansa015.CHM::/lansa/depb3_0025.htm

Default:	No
DBMS
Type
(DBUT)
	

Select	the	DBMS	type	you	wish	to	install	into	from	the	List.
No	Database	
MS	SQL	Server	
Oracle	
Sybase	ASA	
Default:	No	database.
If	this	option	is	set	to	No	Database	the	install	processing	will
automatically	set	DBII=*NONE	and	all	other	database	options
will	be	ignored.

Data
Source
Name
(DBII)
	

The	Data	Source	Name	for	the	database	to	receive	the	package.
Default:	[Default]
If	no	database	is	required	leave	the	Data	Source	Name	(DBII)	as
[Default]	and	set	DBMS	Type	(DBUT)	to	No	Database.
If	the	Data	Source	Name	is	set	as	[Default]	the	install	will	attempt
to	create	a	Data	Source	Name	using	the	Application	Description.	
If	a	Data	Source	Name	already	exists	with	this	value	this	Data
Source	Name	will	be	used.

	

Database
User
(DBUS)

The	Database	User	to	be	used	for	connection	to	database.
Default:	[Default]
If	the	Data	Source	Name	supplied	is	already	defined	on	the	target
system,	and	the	Database	User	is	set	as	*DEFAULT,	the	Database
User	will	be	derived	from	the	existing	Data	Source	Name.
If	the	Data	Source	Name	supplied	is	already	defined	on	the	target
system,	and	the	Database	User	is	set	to	a	value	other	than
*DEFAULT,	the	Data	Source	Name	definition	will	be	updated
with	the	Database	User	supplied.
If	the	Data	Source	Name	supplied	does	not	exist,	the	package
installer	will	create	the	Data	Source	Name	using	the	Database
User	and	Database	Password	supplied.		When	the	Database	User
is	set	to	the	special	value	*DEFAULT	the	User	will	be	set	as

follows:
MS	SQL	Server	–	sa	
Oracle	–		SYSTEM	
Sybase	ASA	(all	versions)	–	DBA	
	

Database
Password
(PSWD)
	

The	password	to	be	used	for	connection	to	database
Default:	[Default]
If	the	Data	Source	Name	supplied	is	already	defined	on	the	target
system,	and	the	Database	Password	is	set	as	*DEFAULT,	the
Database	Password	will	be	derived	from	the	existing	Data	Source
Name.
If	the	Data	Source	Name	supplied	is	already	defined	on	the	target
system,	and	the	Database	Password	is	set	to	a	value	other	than
*DEFAULT,	the	Data	Source	Name	definition	will	be	updated
with	the	Database	Password	supplied.
If	the	Data	Source	Name	supplied	does	not	exist,	the	package
installer	will	create	the	Data	Source	Name	using	the	Database
Password	supplied.		When	the	Database	Password	is	set	to	the
special	value	*DEFAULT	the	Password	will	be	set	as	follows:
MS	SQL	Server	–	""	(Empty	string)
Oracle	–	MANAGER		
Sybase	ASA	9	–	SQL		
Sybase	ASA	10	–	sql		
Sybase	ASA	11	–	sql		
	

Database
Server
Name
	

The	name	of	the	database	server.
Default:	[Default]
If	a	new	Data	Source	Name	is	generated	by	the	package
installation	a	value	of	*DEFAULT	will	set	the	Database	Server
Name	to	the	same	value	as	the	Data	Source	Name.
If	a	pre-existing	Data	Source	Name	is	being	used	a	value	of
*DEFAULT	will	use	the	Data	Server	Name	from	the	existing	Data
Source	Name.

Database
Name
	

The	database	name	to	use	when	installing	into	an	Adaptive	Server
Anywhere	or	MS	SQL	Server	database.
Default:	[Default]
If	a	new	Data	Source	Name	is	generated	by	the	package
installation	the	default	will	set	the	Database	Name	to	the	same
value	as	the	Data	Source	Name.
If	a	pre-existing	Data	Source	Name	is	being	used	a	value	of
*DEFAULT	will	use	the	Database	Name	from	the	existing	Data
Source	Name.

Use
Trusted
Connection

This	allows	the	user	to	specify	if	Windows	Authentication	should
be	used	when	connecting	to	a	MS	SQL	Server	Database.	This
option	is	only	relevant	for	MS	SQL	Server	or	Sybase	ASA
databases.
Yes	-	Use	Windows	Authentication.	In	this	case	the	Database	User
and	Database	Password	will	be	ignored.
No	-	Do	not	use	Windows	Authentication.	In	this	case	the
Database	User	and	Database	Password	specified	are	used	to
connect	to	the	database.
Default:	Yes

	

8.1.6	Desktop	Settings
These	settings	control	the	creation	of	Windows	application	shortcuts	on	the
target	PC's	desktop.
Typically,	these	options	are	only	required	for	the	initial	install	of	an	application.
For	subsequent	upgrade	packages	you	should	change	these	options	to	No.
Create	Communication
Administration	Shortcut

Yes	-	Create	a	shortcut	to	LANSA
Communications	Extensions.
No	-	Do	not	create	a	shortcut	to	LANSA
Communications	Extensions.
Default:	Yes

Create	ODBC	Administration
Shortcut

Yes	-	Create	a	shortcut	to	ODBC
Administrator.
No	-	Do	not	create	a	shortcut	to	ODBC
Administrator.
Default:	No

	

8.1.7	Upgrade	Options
Delete
Previous
Target
Directory

If	this	Application	has	already	been	installed	on	the	target
machine	in	a	different	directory,	the	install	process	can	attempt	to
automatically	remove	the	previous	installation.		The	Application
Code	will	be	used	to	look	up	the	previous	install	location	in	the
registry	and	will	attempt	to	delete	the	associated	folder.		This
setting	can	be	prompted	during	the	installation.
Yes	–	Remove	the	directory	where	this	Application	was
previously	installed.
No	–	Do	not	remove	the	directory	where	this	Application	was
previously	installed.
Default:	No

Previous
Application
Folder
Name
Directory

If	the	previous	installation	is	to	be	removed,	indicate	the	name	of
the	Previous	Application	Folder	as	it	was	installed.		Any	desktop
icon	or	program	folder	matching	this	name	will	be	deleted	during	
the	installation	process.
Default:	[Application	Name]

	

8.1.8	MSI	Installation	Dialogs
Many	installation	options	in	the	Deployment	Tool	allow	for	a	value	to	be
prompted	during	installation.	Preferably,	the	end	user	should	not	be	required	to
alter	the	installation	settings	but	this	does	provide	flexibility	for	the	same
Version	to	be	installed	to	different	configurations.
Patch	installs	a	limited	user	interface	-	the	only	configuration	dialog	displayed	is
the	DBMS	dialog.		Most	installation	dialogs	can	only	be	displayed	when
installing	a	Version.
If	you	wish	to	use	prompting	during	installation	you	must	ensure	that	both:

The	Prompt	during	installation	checkbox	associated	with	the	option	is
checked
The	corresponding	Installation	Dialog	is	flagged	as	Display	Yes.

	Important	-	If	the	Prompt	during	Installation	option	is	selected	but
the	associated	installation	dialog	is	set	to	No	the	option	will	NOT	be
displayed	to	prompt.

Display
Application
Dialog

Yes	-	display	the	Application	dialog	during	installation.
No	-	do	not	display	the	Application	dialog	during	installation.
Default:	No

Select	of	the	database	system	requires	the	option	DBMS	Type
(DBUT)	to	be	set	as	Prompt	during	Installation.

Display
DBMS
Dialog

Yes	-	display	the	DBMS	dialog	during	installation.
No	-	do	not	display	the	DBMS	dialog	during	installation.
Default:	No

Selection	of	the	Data	source	requires	the	option	Data	Source
Name	(DBII)	to	be	set	as	Prompt	during	Installation.

Display
SuperServer
Options	1

Yes	-	display	the	first	dialog	containing	SuperServer	X_RUN
connection	arguments	during	installation.
No	-	do	not	display	the	first	dialog	containing	LANSA
SuperServer	X_RUN	connection	arguments	during	installation.
Default:	No

The	options	on	this	dialog	will	only	be	available	to	be	changed	if
the	SuperServer	option	Modify	SuperServer	Options	1	is	set	to
Yes.	These	options	do	not	have	individual	checkboxes	for
Prompt	during	Installation	as	their	availability	as	a	group	is
controlled	by	this	option.

Display
SuperServer
Options	2
	

Yes	-	display	the	second	dialog	containing	SuperServer	X_RUN
arguments	during	installation.
No	-	do	not	display	the	second	dialog	containing	LANSA
SuperServer	X_RUN	arguments	during	installation.
Default:	No

The	options	on	this	dialog	will	only	be	available	to	be	changed	if
the	SuperServer	option	Modify	SuperServer	Options	2	is	set	to
Yes.	These	options	do	not	have	individual	checkboxes	for
Prompt	during	Installation	as	their	availability	as	a	group	is
controlled	by	this	option.

Quiet	Install Yes	–	only	show	basic	dialogs	with	no	waiting	during
installation.	Performs	the	same	function	as	providing	the	/qb
command	line	switch	to	msiexec.exe
No	–	show	the	full	set	of	dialogs	during	installation	as
configured	by	other	options.
Default:	No.
Yes	causes	an	installation	to	behave	exactly	like	the	/qb
command	line	option.	Dialogs	are	displayed	but	there	are	no
prompts	to	answer.	This	is	the	only	setting	possible	in	an	MSI	or
MSP.	For	more	options,	the	command	line	has	to	be	used.	Using
the	command	line	will	override	whatever	setting	is	chosen	for
Quiet	Install.
This	setting	allows	a	JIT	install	to	quietly	install	an	MSI
upgrade,	like	the	MSPs	do	by	default.	Of	course	its	also	allows
manual	installs	to	be	quiet	too.

	

8.2	Select	Repository	Objects

To	specify	the	objects	to	be	included	in	your	Application,	open	the	Select
repository	objects	dialog	by	selecting	the	Repository	Objects	icon	from	the
Package	Maintenance	Window	toolbar.
Select	the	objects	for	inclusion	from	the	repository	tree	and	drag	into	the
panel	on	the	right	hand	side.

The	object	types	available	for	inclusion	in	a	Version	or	Patch	are:

.NET
Components

ActiveXs Bitmaps Built-in
Functions

Cursors External Fields Files

Resources

Forms Icons Lists Message	Files

Messages Multilingual
Variables

Non-LANSA
Objects

Objects	from
Tasks

Processes	&
Functions

Reusable	Parts System	Variables Technology
Services

Application
Templates

Visual	Styles WAMs Web
Components

Weblets 	 	 	

	

Different	object	types	have	differing	requirements,	so	the	8.2.1	Selected	Object
Viewer	panel	changes	format	to	suit	each	object	type.	For	example,	the	Process
and	Function	view	contains	a	tree	view	to	show	the	selected	items,	whereas
Forms	are	shown	as	a	list.
Selecting	Objects
Objects	listed	in	the	repository	tree	can	be	viewed	in	alphanumeric	groupings
(the	default)	or	as	a	full	listing	of	objects	in	alphabetically	order.	Right	click	on
an	object	type	in	the	repository	tree	to	toggle	the	alphanumeric	grouping	on	and
off.

To	select	the	items	to	appear	in	the	package,	use	the	mouse	and	Shift+Ctrl	keys
to	select	one	or	more	items	in	the	tree,	and	then	drag	and	drop	them	into	the
selection	area	on	the	right.	Alternately,	double	clicking	on	an	item	at	the	lowest
level	will	also	select	it	for	inclusion	in	the	package.
Selection	is	"self	expanding".	That	is,	if	you	select	a	Process/Function	header
item,	and	drag	and	drop	it	in	the	right	side	of	the	window,	the	process	and	ALL
functions	within	it	will	be	selected.
You	can	select	multiple	items	at	the	same	tree	level.	For	example,	you	can	select
both	Components	and	Processes/Functions.	When	you	drop	the	selected	items
on	the	right,	ALL	the	selected	Processes/Functions	and	Components	will	be

selected.	The	Components	will	be	added	to	the	Component	list	and	the
Processes	and	Functions	will	be	added	to	the	Process/Function	list.
For	more	information	on	object	selection	refer	to	8.2.1	Selected	Object	Viewer
and	8.2.2	Special	Considerations	for	Object	Types.
Refresh	Repository	Objects
Any	changes	in	the	repository,	specifically	the	additional	or	deletion	of	objects,
are	not	automatically	reflected	in	the	Select	Repository	Objects	repository	tree.	
The	repository	can	be	manually	refreshed	using	the	 	Refresh	option.
Cross	References
Cross	References	enables	you	to	reduce	the	number	of	objects	explicitly
selected	for	inclusion	in	a	Version	or	Patch.		It	is	strongly	recommended	that
you	define	Cross	References	for	your	objects.
If	you	add	cross	referencing	to	the	selected	objects,	the	build	process	will
automatically	include	the	appropriate	related	objects	used	by	the	selected
objects	into	your	package.		Refer	to	Default	Cross	Reference	Settings,	8.2.3
Cross	Reference	Settings	and	Objects	Included	in	Package	for	more
information.

its:lansa022.chm::/lansa/l4wdplb3_0055.htm
its:lansa022.chm::/lansa/l4wdplb3_0555.htm

8.2.1	Selected	Object	Viewer
Objects	selected	for	inclusion	in	the	package	can	be	viewed	in	the	right	hand
panel	on	the	Select	Repository	Object	dialog.
The	tool	bar	options	available	in	the	object	viewer	are	dependent	on	the	type	of
object	being	worked	with.
Any	objects	previously	included	in	a	package,	which	no	longer	exists	in	the
local	repository	but	are	known	to	exist	on	the	master	repository	are	indicated	by
an	 	icon.
Any	objects	previously	included	in	a	package,	which	are	no	longer	known	to
exist	in	the	local	or	master	repositories,	are	indicated	by	a	 (question	mark)
icon.

The	available	toolbar	options	relate	to	the	type	of	object:

This	option	is	available	for	all	object	types.
To	deselect	an	object,	so	it	will	not	be	included	in	the	package,	highlight	the
object(s)	in	the	selected	object	list	and	press	the	Delete	icon.
When	a	Process	is	deleted,	all	Functions	are	also	be	deleted.

This	option	is	available	for	fields,	files,	forms,	processes,	functions,
reusable	parts,	system	variables,	WAMs,	and	weblets.
Select	the	Cross	Reference	option	in	the	toolbar	to	add	Cross	References
for	specific	package	objects.	Refer	to	8.2.3	Cross	Reference	Settings	for
more	information.

This	option	is	only	available	for	files.

You	can	include	the	data	with	a	file	for	deployment	and	control	how	this
data	is	loaded	with	consideration	of	any	existing	file	data.	Highlight	the
required	file(s),	and	select	the	Include	File	Data	icon	in	the	toolbar	the
select	the	appropriate	drop	down	entry	to	determine	how	file	data	will	be
unloaded	and	loaded.
Refer	to	Include	and	Process	File	Data	for	more	information.

This	option	is	only	available	for	files.
Indicate	the	library	(and	subsequently	the	collection	and	owner)	to	be
applied	when	file(s)	are	deployed.
Refer	to	Configure	the	File	Library	Substitution	for	more	information.

This	option	is	only	available	for	non-LANSA	objects	and	Messages.
Select	Non-LANSA	objects	or	Messages	in	the	Other	Objects	list	and	use
the	Find	option	on	the	toolbar	to	open	an	appropriate	dialog	to	search	for
and	select	the	objects	you	wish	to	include	in	the	package.
The	selected	objects	will	initially	be	assigned	to	install	in	the	DFTPATH
which	is	set	as	the	Partition	Execute	Directory	(e.g.	/x_ppp/EXECUTE
where	ppp	is	the	partition	identifier)	by	default.

This	option	is	only	available	for	non-LANSA	objects.
To	install	the	objects	into	a	different	location,	highlight	the	required	objects,
and	select	the	Set	the	Install	Path	option	on	the	toolbar.	This	will	open	the
Installation	Path	Definitions	dialog	where	you	can	8.2.6	Configure	the
Non-LANSA	Object	Installation	Path.

	

its:lansa022.chm::/lansa/l4wdplb2_0095.htm
its:lansa022.chm::/lansa/l4wdplb2_0100.htm

8.2.2	Special	Considerations	for	Object	Types
It	is	important	to	understand	what	objects	you	need	to	deploy.	This	will	depend
on	the	environment	you	are	deploying	to,	and	requires	some	understanding	of
how	objects	are	bound	into	a	compiled	object.
The	following	list	provides	some	general	guidelines	for	object	selection	and
inclusion.	Not	all	object	types	are	included	in	this	list,	only	those	with	special
considerations.
	

Built-In
Functions

3GL	User	Defined	Built-In	Functions	will	automatically	find
the	associated	DLL	when	the	package	is	built	if	the	Visual
LANSA	naming	convention	is	followed.
RDML	User	Defined	Built-In	Functions	can	be	selected	to
enable	the	deployment	of	the	internal	definition.	The	associated
function	must	be	added	manually	to	the	package.
The	associated	DLLs	can	be	included	in	your	package	by
selecting	Deploy	Execution	Add-ons	in	the	Settings.

Editor	Lists When	an	Editor	List	is	selected	all	objects	currently	included
in	the	Editor	List	will	be	included	in	the	package	when	it	is
saved.
When	the	package	is	saved,	the	individual	objects	will	be
saved	but	the	selected	Editor	List	is	not	included	as	an	object.	
To	pick	up	any	changes	to	the	Editor	List	it	must	be	added	to
the	package	again.

Fields Field	definitions	only	need	to	deployed	with	an	application	if
the	application	uses	the	LANSA	repository	help	facilities.

Files Files	need	to	be	included	if	the	application	accesses	a	windows
database	which	is	to	be	set	up	as	part	of	the	application
installation.
File	data	can	also	be	included.		Refer	to	Include	and	Process
File	DataInclude	and	Process	File	Data.

Messages Messages	are	grouped	by	the	Language,	Message	File,	and	the
first	three	characters	of	the	message	identifier
Use	the	Search	icon	 	on	the	toolbar,	or	double	click	the	Non-

its:lansa022.chm::/lansa/VLDTool6_0050.htm
its:lansa022.chm::/lansa/l4wdplb2_0095.htm

LANSA	objects	in	the	tree,	to	locate	and	select	the	required
messages.
Messages	should	only	be	deployed	into	other	development
systems.

Message
Files

Message	files	only	need	to	be	selected	when	you	are	deploying
to	another	development	system.

Multilingual
Variables

When	grouped	alphanumerically,	Multilingual	Variables	are
grouped	by	the	first	alphanumeric	character	after	the	*MTXT
prefix	of	the	Multilingual	Variable	name.
In	Visual	LANSA,	Multilingual	Variables	are	compiled	into	the
application	DLLs.	There	is	no	need	to	deploy	Multilingual
Variables,	other	than	when	you	are	deploying	to	another
development	system	or	to	support	web	applications	where
multilingual	variables	are	resolved	at	runtime.

Non-
LANSA
Objects

Non-LANSA	objects	are	Third	Party	software	such	as	ActiveX
controls	or	parameter	files.
There	is	no	definitive	set	of	Non-LANSA	objects	associated
with	Visual	LANSA	so	you	need	to	use	the	Search	icon	 	on
the	toolbar,	or	double	click	the	Non-LANSA	objects	in	the	tree,
to	activate	a	search	dialog	to	locate	and	select	the	required
objects.
Refer	to	Configure	the	Non-LANSA	Object	Installation	Path	to
understand	how	to	control	where	the	Non-LANSA	object	will
be	installed.

Objects
from
Task(s)

When	a	task	is	selected,	all	objects	that	have	been	modified
under	the	task	will	be	immediately	included	in	the	package.
Removing	the	task	will	remove	the	objects.
Task	with	Open,	Work	or	Closed	status	can	be	added	to	a
package.
Note:	When	the	package	is	saved	the	individual	objects	will	be
saved	but	the	selected	task	is	not	included	as	an	object.

Processes
and
Function

Functions	are	available	for	selection	as	child	items	of
Processes.	If	you	select	a	Process,	all	Functions	will	be
automatically	included.	If	you	select	just	a	Function,	the

its:LANSA022.CHM::/lansa/l4wdplb3_0475.htm

Process	will	be	automatically	included.

System
Variables

Typically,	System	Variables	only	need	to	be	included	if	you
are	deploying	a	web	application.	Process	related	Variables
should	be	set	up	as	part	of	Process	and	Functions	cross
referencing	so	that	they	are	automatically	included	when	the
package	is	built.
System	Variables	related	to	List	Graphical	Variables	must	be
included	manually.

Technology
Services

The	standard	Technology	Services	are	defined	under
Technology	Provider	LANSA.

Application
templates

Application	templates	should	only	be	included	in	packages	for
deployment	to	another	LANSA	development	system.	There	is
no	need	to	include	them	in	the	package	if	you	are	deploying	an
execution-only	application.

WAMs When	a	WAM	is	selected	the	default	layout	Weblet	for	the
WAM	will	be	automatically	added	to	the	package.

Note:	When	the	package	is	built,	any	DLLs	associated	with	selected
objects	will	be	automatically	included	in	the	package	unless	the
Deploying	to	Development	System	(specified	in	Settings)	is	selected.

its:lansa022.chm::/Lansa/VLDTool6_0050.htm

8.2.3	Cross	Reference	Settings

Cross	Reference	Settings	are	available	in	the	Select	Repository	Objects
dialog	for	object	types	that	may	refer	to	other	LANSA	objects	in	their
definition.	This	allows	you	to	select	a	particular	object	type	and
automatically	include	"related"	objects	when	the	package	is	built.
If	Cross	References	is	available	for	an	object	type,	the	Cross	Reference
Icon	will	be	shown	on	the	toolbar	for	the	Selected	Object	panel	in	the	Select
Repository	Objects	dialog.

When	the	Cross	Reference	icon	is	clicked,	the	Cross	Reference	settings	dialog	is
opened.

The	package	objects	selected	to	have	Cross	References	applied	against	them	are
displayed	on	the	left	of	the	Cross	reference	settings	dialog.		The	available	Cross
Reference	object	types	are	listed	on	the	right	of	the	dialog.		Cross	Referenced
objects	are	included	in	the	package	during	build	processing	and	are	applied	in	a
top	down	fashion.		That	is	to	say,	only	objects	directly	used	by	the	selected
package	objects	can	be	included	in	the	package	using	Cross	Reference	settings.
If	the	selected	objects	already	have	Cross	Reference	settings	applied,	the
checkboxes	will	attempt	to	reflect	the	settings.	Where	there	is	a	conflict,	that	is,
a	cross	reference	object	type	is	selected	for	one	object,	and	the	same	cross
reference	object	type	is	not	selected	for	the	other	object,	the	Cross	Reference
checkbox	will	be	grayed.

In	addition	to	the	selection	of	object	types	associated	with	the	selected	object(s)
you	can:
Include	File	Data
If	Files	are	available	for	inclusion	as	a	Cross	Reference	object,	the	option	to
Include	File	Data	will	also	be	available.		This	option	has	no	effect	if	the	Files
option	has	not	been	selected.
It	is	recommended	to	not	use	this	option	unless	you	have	a	clear	understand	of
the	consequences.		Selecting	Include	File	Data	will	include	file	data	in	the	first
Version	as	well	as	any	subsequent	Versions	and	Patches	and	as	such	may
produce	undesirable	results.		If	file	data	should	be	included	in	the	application	it
is	recommended	to	explicitly	add	the	file(s)	to	the	package	and	select	the
appropriate	file	data	inclusion	option.		Generally	file	data	is	not	included	with
application	files	and	in	the	case	of	table	files	data	will	only	be	included	in	the
first	version	when	setting	up	the	database.		Subsequent	releases	of	the
Application	will	need	to	be	reviewed	to	ensure	the	appropriate	file	data	option	is
applied.
If	you	do	choose	to	use	this	option	it	is	the	equivalent	of	selecting	Include	Data,
Ignore	Duplicates	in	the	object	selection	interface.
Cascade	Selection
Cascading	Selection	causes	a	flow-on	effect	such	that	any	object	included	as	a
Cross	Referenced	object	will	also	have	its	cross	referenced	object	included.
If	in	the	Deployment	Tool's	Default	Cross	Reference	Settings	you	selected:
					Prompt	Options
					The	Cross	References	dialog	will	be	automatically	shown	when	you	press

its:lansa022.chm::/lansa/l4wdplb3_0055.htm

OK	on	the	Select	Repository	Objects	after	adding	objects.	If	you	selected	to
Prompt	Options	for	more	than	one	object	type,	e.g.	Fields	and	Files,	the	Cross
Reference	options	will	be	prompted	once	per	object	type.	In	each	Cross
Reference	dialog	press	OK	to	accept	whatever	settings	you	have	chosen	and
to	apply	them	to	all	of	the	objects	displayed	on	the	left	hand	side.	Press
Cancel	to	leave	the	dialog	without	applying	Cross	References	to	the	objects.

					Automatically	apply	the	default	options
					When	object	are	selected	for	inclusion	in	the	package	in	the	Select
Repository	object	dialog	and	you	press	OK	to	confirm	the	selection,	Cross
Reference	information	is	immediately	applied	to	the	object.	When	you
deselect	an	object	(that	is,	delete	it	from	the	selected	objects	using	the	Delete
icon)	any	associated	Cross	References	are	also	removed.

					Once	Cross	References	have	been	applied	to	an	object,	it	will	be	shown	in
the	Object	Selection	dialog	with	a	blue	tick.

Cross	Referenced	objects	are	evaluated	when	the	package	is	built.		Objects
included	in	a	package	as	cross	referenced	objects	can	be	distinguished	from
explicitly	selected	objects	so	that	the	next	time	the	package	is	opened	the
selected	objects	are	the	same.
Refer	to	Default	Cross	Reference	Settings	and	Objects	Included	in	Package	for
more	information.

its:lansa022.chm::/lansa/l4wdplb3_0055.htm
its:lansa022.chm::/lansa/l4wdplb3_0555.htm

8.2.4	Include	and	Process	File	Data

Use	the	option	Include	File	Data	to	determine	if	file	data	should	be
included	when	deploying	the	file	and	how	to	manage	any	existing	file	data
–	if	the	file	already	exists	–	in	relation	to	new	file	data.

	To	avoid	unnecessarily	unloading	and	reloading	file	data	when
installing	patches	or	later	versions	of	an	Application	where	the	file
definitions	have	not	changed,	use	the	option	Exclude	data,	Reload
existing.

Also	note,	that	after	installing	an	MSI,	the	DAT	file	is	deleted.	This
means	it	is	not	available	for	a	patch	to	use,	unless	the	patch	has
changed	the	table	layout	or	the	data	is	different,	in	which	case	the
patch	will	include	it.	So	to	avoid	complications,	with	patches,	always
use	the	option	Exclude	data,	Reload	existing.

It	is	highly	recommended	when	creating	a	patch	to	go	through	ALL
the	files	you	have	shipped	and	change	the	File	Data	option	to	Exclude
data,	Reload	existing.

The	following	processing	options	are	available:

File	Data Action

option

Exclude	data,
Drop
existing

No	file	data	is	included	in	the	package.		If	the	file	already
exists,	all	data	will	be	removed.

Exclude	data,
Reload
existing

No	file	data	is	included	in	the	package.		If	the	file	already
exists,	all	data	will	be	retained.
When	installing	patches,	if	the	file	definition	has	not
changed,	this	option	should	be	used	to	avoid	unloading	and
reloading	file	data.
This	is	the	default	option.

Include	data,
Drop
existing

File	data	is	included	in	the	package.		If	the	file	already
exists,	all	data	will	be	removed	and	package	data	will	be
loaded.

Include	data,
Ignore
duplicates

File	data	is	included	in	the	package.		If	the	file	already
exists,	all	data	will	be	retained	and	package	data	will	be
loaded.		Any	duplicate	records	in	the	package	data	will	be
ignored.

Include	data,
Replace
duplicates

File	data	is	included	in	the	package.		If	the	file	already
exists,	all	data	will	be	retained	and	package	data	will	be
loaded.		Any	duplicate	records	in	the	package	data	will
replace	the	existing	record.

Include	data
(new	files
only)

This	option	is	deprecated.	It	will	be	removed	in	the	next
release.
File	data	is	included	in	the	package	and	will	be	installed	if
the	file	does	not	already	exist.
If	the	file	already	exists	in	the	application	no	processing	of
the	file	data	will	occur.

Include	data
(existing
files	only),
Drop
existing

This	option	is	deprecated.	It	will	be	removed	in	the	next
release.
File	data	is	included	in	the	package	but	will	only	be	installed
if	the	file	already	exists.		Any	pre-existing	file	data	is	not
reloaded.

Include	data This	option	is	deprecated.	It	will	be	removed	in	the	next

(existing
files	only),
Ignore
duplicates

release.
File	data	is	included	in	the	package	but	will	only	be	installed
if	the	file	already	exists.		Any	pre-existing	file	data	is
reloaded	after	the	new	file	data	and	duplicate	records	in	the
package	data	will	be	ignored.

Include	data
(existing
files	only),
Replace
duplicates

This	option	is	deprecated.	It	will	be	removed	in	the	next
release.
File	data	is	included	in	the	package	but	will	only	be	installed
if	the	file	already	exists.		Any	pre-existing	file	data	is
reloaded	before	the	new	file	data	and	duplicate	records	in	the
package	data	will	replace	the	existing	record.

	

8.2.5	Configure	the	File	Library	Substitution

Use	the	option	Set	Library	Substitution	to	assign	the	library	where	files	are
to	be	installed.		The	Library	Substitution	also	determines	collection	and
owner	properties	applied	to	the	table	in	the	target	database.

When	files	are	added	to	a	package,	a	default	Library	Substitution	is	derived	and
assigned	based	on	the	file	properties	and	saved	Settings.

Files	compiled	before	LANSA	V13	and	Other	files	will	automatically	be
assigned	PARTLIB	as	the	Library	Substitution,	indicating	the	file	should
be	installed	at	partition	level.
Files	compiled	with	LANSA	V13	or	later	will	automatically	be	assigned
PARTDTALIB	as	the	Library	Substitution,	indicating	the	file	should	be
installed	into	the	partition	Default	File	Library	level.

The	following	default	Library	Substitutions	are	automatically	created	and	cannot
be	modified,	although	they	can	be	selected	to	apply	to	files	if	they	comply	with
the	restrictions	mentioned	above:

Library
Substitution

Evaluated	as

PARTLIB Files	will	install	at	partition	level,	for	example:
<sysdir>\X_DEM
Library,	Collection	and	Owner	information	is	derived	from
the	file	OAM	and	CTD	included	in	the	package.

PARTDTALIB Files	will	install	at	partition	level,	for	example:

<sysdir>\X_DEM<resolved	value	of
*PARTDTALIB>
Library,	Collection	and	Owner	information	is	derived	from
the	resolved	value	of	*PARTDTALIB.

PARTPGMLIB Files	will	install	at	partition	level,	for	example:
<sysdir>\X_DEM<resolved	value	of
*PARTPTALIB>
Library,	Collection	and	Owner	information	is	derived	from
the	resolved	value	of	*PARTPGMLIB.

	

To	create	an	alternative	Library	Substitution:

Step How	to	do	it

1.	Create	a
Library
Substitution

In	the	File	Library	Substitutions,	select	the	library	you	wish	to
use	or	create	one	by	pressing	the	Create	a	Library	Substitution
button	 	to	open	the	Library	Substitution	Maintenance	dialog.

2.	Define
the	Library
Substitution

In	the	Library	Substitution	Maintenance	dialog,	you	can
create	a	Library	Substitution	to	be	used	instead	of	the	default
values.

Substitution	Id
You	must	specify	a	name	by	which	to	identify	the	Library
Substitution.	The	Library	Substitution	Id	must	be	ten
characters	or	less,	with	the	first	character	being	an
alphanumeric	character.	Do	not	use	embedded	blanks.
Library	Substitution

Enter	your	desired	library	(schema	name)	as	a	free-format
entry.

3.	Save	the
Library
Substitution

Press	OK	to	save	the	library	substitution.	You	will	be	returned
to	the	File	Library	Substitutions	dialog.

4.	Modify
the	Library
Substitution

To	modify	the	library	substitution,	delete	the	entry	and	re-
enter	the	details	as	required.

	

8.2.6	Configure	the	Non-LANSA	Object	Installation	Path

Use	the	option	to	Set	the	Install	Path	to	set	up	and	configure	the	target
directories	where	any	non-LANSA	objects	are	to	be	installed.

All	non-LANSA	objects	added	to	the	package	are	automatically	set	to	install
into	the	DFTPATH	directory.	The	DFTPATH	corresponds	to	the	partition
execution	directory	where	the	application	is	installed.	It	is	recommended	not	to
modify	or	delete	this	path.
To	assign	an	alternative	installation	path,	select	the	non-LANSA	object(s)	in	the
Object	Viewer	then	use	the	Set	the	Install	path	option	 to	select	(and	create	or
modify)	the	required	installation	path.
To	create	an	installation	path:

Step How	to	do	it

1.	Create
or	modify
an
Installation
Path

In	the	Installation	Path	Definitions,	select	the	path	you	wish	to
use	or	create	one	by	pressing	the	Define	a	new	installation	path
button	 	to	open	the	Other	Path	Maintenance	dialog.

2.	Define
the
Installation
Path

In	the	Other	Path	Maintenance	dialog,	you	can	create	an
Installation	Path,	maintain	Installation	Paths	and	select
Installation	Paths	for	one	or	more	objects.

Installation	Path	Id
You	must	specify	a	name	by	which	to	identify	the	path.	The
Installation	Path	Id	must	be	eight	characters	or	less,	with	the
first	character	being	an	alphanumeric	character.	Do	not	use
embedded	blanks.
Installation	Path
Enter	your	desired	path	as	a	free-format	entry	or	select	a	path
from	the	dropdown	list	of	available	paths.
Environment	variables	can	be	used	to	identify	a	path.	For
example:	%ProgramFiles%\LANSA	would	be	evaluated	to
something	like	c:\Program	Files\LANSA.	These	variables	are
NOT	validated	so	you	must	ensure	that	they	are	correct	and
exist	on	the	target	systems.	An	unmatched	environment
variable	on	the	target	system	will	cause	the	copy	of	the	file	and
package	installation	to	fail.

3.	Save	the
Installation
Path

Press	OK	to	save	the	path	information.	You	will	be	returned	to
the	Installation	Path	Definitions	dialog.

	

The	list	of	predetermined	Installation	Path	Values	corresponds	with	the
following	system	variables:

Installation	Path Evaluated	as

Partition	Execute	Directory *PART_DIR_EXECUTE

Partition	Object	Directory *PART_DIR_OBJECT

Partition	Source	Directory *PART_DIR_SOURCE

Partition	Directory *PART_DIR

Partition	Drive *PART_DRIV

System	Execute	Directory *SYS_DIR_EXECUTE

System	Object	Directory *SYS_DIR_OBJECT

System	Source	Directory *SYS_DIR_SOURCE

System	Directory *SYS_DIR

System	Drive *SYS_DRIV

Temp	Directory *TEMP_DIR

	

To	determine	the	actual	directory	the	corresponding	system	variable	refers	to,
check	the	Directories	branch	of	the	Installation	Details	in	the	relevant	LANSA
System's	Product	Information,	described	in	the	Visual	LANSA	User	Guide.

its:Lansa012.chm::/lansa/l4wusr1_0035.htm

8.3	Settings

Select	Settings	from	the	Package	Maintenance	Window	toolbar	or	the
Package	Edit	Menu.

The	Settings	options	determine	the	additional	processing	that	will	occur	as	part
during	the	build	processing.	Each	option	selected	will	include	or	omit	specific
parts	of	the	package	from	the	final	build.

	
	
When	deciding	which	Settings
to	select,	you	should	consider
how	the	package	is	to	be
deployed.	Each	additional
option	will	add	more	objects	to
the	package.
If	the	application	is	to	be
installed	from	a	DVD	or	LAN,
the	size	of	the	package	may
not	be	of	great	significance.
Upgrade	packages	will	often
only	need	to	include	changed
executable	objects	(functions
and	components)	as	the
execution	environment	will
have	already	been	deployed
with	the	initial	package.
You	should	aim	to	keep	Just
In	Time	upgrades	from	a
remote	server	to	a	minimum
size.

	

								

	

Deploy	with
LANSA	Client
Support

This	option	is	only	required	for	Applications	that	are	to
support	a	local	database.
The	build	processing	will	execute	the	special	process
*CLTEXPORT.

Deploy	to	Client
without	local
database

This	option	is	recommended	for	most	Client/Server
applications.
The	build	processing	will	execute	the	special	process
*SYSEXPORT.
Select	this	option	to	include	the	*.XQ*	files	required	for
the	application	to	execute.	The	.XQ*	files	are	used	in
place	of	a	local	DBMS	for	read-only
dictionary/repository	access	such	as	prompting,	display
help	text,	etc.
Any	PC	that	executes	an	application	using
DBID=*ANY,	DBID=*AS400,	DBID=*OTHER,
DBID=*NONE	or	DBII=*NONE	needs	to	have	the
special	.XQ*	files	created	or	installed	on	it,	or	available
to	it	via	a	connected	server	disk	drive.
Refer	to	The	*.XQ	files	in	Technical	Reference	for	more
information.

Deploy	to
Development
System

This	option	is	available	so	developers	can	export	source
code.
Select	this	option	to	include	the	complete	repository
definitions	of	the	selected	objects.
This	option	is	not	required	for	packages	that	contain
executable	applications	but	is	intended	as	a	means	to
distribute	LANSA	internal	object	definitions,	including
function	and	component	source,	field	and	file
definitions,	task	tracking	details,	cross	reference
information	and	other	LANSA	objects.
Selection	of	this	option	will	cause	the	MSI	generation	to
be	bypassed	in	the	build	processing.		There	will	be	no
MSI	or	MSP	file	produced.		Definitions	must	be
imported	from	the	…\X_PKGWRK\1.0.0\Build\internal
directory.	Refer	to	LANSA	Import	For	more
information.

Deploy	System
Definition

This	will	cause	the	Export	of	the	LANSA	internal
database	to	include	the	system	definition	table
(LX_F96)	and	other	system	related	details.	The
information	in	these	tables	is	required	when	executing

its:Lansa015.CHM::/lansa/depb3_0050.htm
its:lansa022.chm::/lansa/l4wdplb3_0180.htm

an	application.
This	option	should	be	chosen	if	you	expect	the	package
to	be	installed	into	a	new	database,	or	to	a	new	system.

Deploy	Partition
Definition

This	will	cause	the	Export	of	the	LANSA	internal
database	to	include	the	partition	definition	table
(LX_F46),	the	partition	language	table	(LX_F60)	and
other	partition	related	details.	The	information	in	these
tables	is	required	when	executing	an	application.
This	option	should	be	chosen	if	you	expect	the
Application	to	be	installed	into	a	new	database,	or	to	a
new	system.

Omit	Object
Definitions

This	option	will	bypass	the	Export	of	the	LANSA
internal	database	definitions	for	the	selected	objects
(including	LX_F02,	LX_F03,	LX_F04	and	LX_F62).	It
will	allow	you	to	ship	the	package	without	the	internal
definitions.
This	should	NOT	be	selected	when	Deploy	to
Development	is	selected	or	if	deploying	files.
Object	Definitions	are	required	when	deploying	to	a
development	system,	when	deploying	files	or	if
deploying	to	a	system	where	you	intend	to	use	the
database	for	accessing	the	internal	database	definitions
required	at	execution	time.

Deploy
Execution
Database
Support

A	copy	of	the	LANSA	database	support	image	is
included	in	the	package.
This	setting	is	required	if	your	application	needs	access
to	a	local	database.
Once	an	application	is	deployed,	there	is	no	need	to
include	the	execution	database	support	in	subsequent
"upgrade"	packages,	except	for	major	LANSA	version
upgrades.

Deploy
Execution	Add-
ons

MAPI	support	is	to	be	included	in	the	package.
Typically	this	is	only	included	if	your	application
incorporate	email	functionality.
Once	an	application	is	deployed,	there	is	no	need	to

include	the	execution	add-ons	in	subsequent	"upgrade"
packages,	except	for	major	LANSA	version	upgrades.

Deploy	with
Component
Support

A	copy	of	the	component	support	execution
environment	image	is	included	in	the	package	and
installed	when	the	package	is	installed.
This	is	a	requirement	for	all	applications	that	are	to
execute	Visual	LANSA	components.
Once	an	application	is	deployed,	there	is	no	need	to
include	the	component	support	in	subsequent	"upgrade"
packages,	except	for	major	LANSA	version	upgrades.

Deploy	with
Web
Environment
Support

A	copy	of	the	LANSA	for	the	Web	on	Windows
execution	environment	installation	images	are	included
in	the	package	and	installed	when	the	package	is
installed.
This	is	a	requirement	for	all	applications	that	are	to
execute	LANSA	Web	applications.

Deploy	LANSA
Communications

A	copy	of	the	LANSA	Communications	Extensions
installation	image	is	included	in	the	package	and	is
installed	when	the	package	is	installed.	This	includes	all
the	support	required	for	a	LANSA	SuperServer	client
application.
This	is	a	requirement	for	all	Client/Server	applications
and	must	be	included	if	the	Deploy	Server	Support
option	on	this	dialog	is	selected.
Once	an	application	is	deployed,	there	is	no	need	to
include	the	LANSA	communications	in	subsequent
"upgrade"	packages,	except	for	major	LANSA	version
upgrades.

Deploy	Server
Support

A	copy	of	the	LANSA	communications	server	support
installation	image	is	included	in	the	package	and	is
installed	when	the	package	is	installed.
This	option	only	needs	to	be	selected	if	the	package	is	to
be	installed	on	a	server	system	that	will	be	receiving
LANSA	SuperServer	connections	from	remote	clients.
The	Deploy	LANSA	Communications	option	in	this

dialog	must	also	be	selected	if	this	option	is	selected.
Once	an	application	is	deployed,	there	is	no	need	to
include	the	server	support	in	subsequent	"upgrade"
packages,	except	for	major	LANSA	version	upgrades.

Deploy	with
Translation	List

This	is	a	specialized	option	to	facilitate	the	translation
of	LANSA	object	related	information	and	is	typically
used	during	the	application	development	cycle	to
distribute	the	object	information	to	translators.
When	this	option	is	selected,	the	LANSA	internal
definitions	for	the	selected	objects	will	be	stored	in	flat
files	(i.e.	TL*.DAT	files)	and	supplied	with	the
application	for	translation.	A	translation	package	must
be	installed	into	an	existing	LANSA	system	where	the
translator	is	able	to	open	the	translation	dialog	to
complete	the	translations.	Once	translated,	the
information	should	be	zipped	and	returned	to	the
developer	for	loading	back	into	their	development
system	using	the	Import	Translations…	command	on
the	Tools	menu	in	Visual	LANSA.
Refer	to	Translating	a	LANSA-developed	Application
for	information.

Omit	the
Application
Compiled
Objects

If	this	option	is	selected,	the	package	builder	will	not
copy	the	executables	for	the	selected	LANSA	objects	to
the	package.
The	build	process	will	fail	if	this	option	is	selected
and	the	package	includes	any	files	with	data.
Note:	This	setting	should	only	be	used	when	deploying
to	another	development	system.	If	the	Deploy	to
Development	System	option	in	this	dialog	is	selected
with	this	option,	when	the	internal	data	is	loaded,	all
files	included	will	automatically	have	their	library
updated	to	that	of	the	target	partition's	data	library.

Export	Whole
Partition

This	option	will	cause	the	Export	of	the	LANSA
internal	database	to	include	the	definitions	for
everything	in	the	partition	regardless	of	any	object
selections	made.

its:lansa022.chm::/lansa/dt_1050.htm

Note:	This	option	will	only	cause	the	definitions	of	all
objects	to	be	deployed.	Objects	must	be	selected	if	you
wish	to	deploy	them	for	execution.

	

	ImportantLANSA	Execution	Environment	and	any	installed	EPCs	will	be
automatically	included	in	all	generated	MSI	and	MSP	files.
	
	

8.4	Application	Icon
The	Application	Icon	Selector	allows	you	to	choose	the	icon	to	be	used	in	the
Windows	Package	Maintenance	Window	and	for	the	desktop	shortcut	on	the
computer	where	the	Application	is	installed.	

To	open	the	Application	Icon	Selector,	select	the	Icon	tool	from	the
Package	Maintenance	Window	toolbar.

Once	you	have	selected	an	icon,	it	will	be	displayed	to	the	right	of	this	dialog	as
shown	in	this	screen	picture.
Press	Use	Default	to	select	the	default	LANSA	icon.
You	can	enter	the	path	and	icon	name	or	prompt	using	the	 	button	to	open	a
common	file	dialog	to	search	the	icon	to	be	used	in	the	application.

Select	the	icon	that	you	required	and	press	Open	to	return	to	the	Application
Icon	Selector	dialog.	The	icon	that	you	have	selected	will	be	displayed	to	the
right	of	the	path.

8.5	X_RUN	Arguments
When	a	package	is	built,	the	X_RUN	arguments	from	the	Installation	Options
will	be	combined	into	a	start	file.	The	options	in	the	Package	Maintenance
Window	cover	the	most	commonly	used	arguments.	However,	there	are	other
settings	that	you	may	want	to	include	to	change	the	behavior	of	your	application
at	run	time.

You	can	enter	these	other	settings	using	the	X_RUN	arguments	view	dialog
box.	Open	this	dialog	by	selecting	the	X_RUN	icon	from	the	Package
Maintenance	Window	toolbar.

When	adding	a	new	argument,	it	must	be	entered	in	the	same	format	as	used	for
an	X_START	file.
Arguments	entered	here	will	be	added	into	the	X_START	file	AFTER	the
automatically	created	entries	that	are	prompted,	in	alphabetical	order.	Therefore
if	a	promptable	parameter	is	used	the	prompt	will	also	be	after	the	automatically
prompted	parameters.
For	more	information,	refer	to	Using	X_START	as	a	Front	End	to	X_RUN	in	the
Technical	Reference.

its:LANSA015.CHM::/lansa/depb3_0150.htm

8.6	Commands	to	execute
Any	commands	entered	allow	you	to	execute	operating	system	level	commands
before	or	after	a	package	is	installed	on	a	target	machine.

To	open	the	Commands	to	execute	dialog,	select	the	Commands	to	execute
icon	from	the	Package	Maintenance	Window	toolbar.

Separate	tabs	are	created	for	entry	of	commands	to	execute	before	package
installation	and	after	package	installation.
Select	the	Commands	to	run	before	Install	tab	to	enter	the	commands	you	wish
to	execute	before	the	install.
Select	the	Commands	to	run	after	Install	tab	to	enter	the	commands	you	wish	to
execute	after	the	install.
Enter/amend	the	commands	as	you	require	in	the	relevant	tab.
Press	the	OK	button	when	the	command	entry	is	completed.		The	commands	are
updated	when	the	package	is	saved.

Clear	all	commands	from	the	currently	open	tab.

Import	commands	into	the	currently	opened	tab	from	the	tab	delimited	file
nominated	in	the	associated	text	box.

	Important	-	You	are	responsible	for	ensuring	that	the	package
installs	correctly,	and	that	the	commands	executed	before	and	after	the
LANSA	installation	processing	execute	correctly	and	in	the	sequence
you	require.

The	Conditions	and	Commands	available	for	use	are	provided	in	these	lists:
8.6.1	Conditions	to	Control	the	Execution	of	a	Command
8.6.2	Valid	Commands	and	Parameters
8.6.3	Valid	Substitution	Variables	for	Command	Parameters
Tips	when	using	commands	to	execute

Directory	and	path	type	substitution	variables	that	contain	imbedded	blanks
when	resolved	will	cause	the	execution	of	the	LANSA	Import	to	fail.	To
correct	this	issue	the	value	should	be	enclosed	in	double	quotes.	For
example,	"%dirp%execute".
If	you	include	the	command	MD	(make	directory)	all	intermediary
directories	must	exist.	For	example	if	you	intend	to	create	a	directory
c:\Program	Files\MYAPP\other	objects	when	currently	only
c:\Program	Files	can	be	assumed	to	exist	you	will	need	to	include	the
commands:
MD	"c:\Program	Files\MYAPP"
MD	"c:\Program	Files\MYAPP\other	objects"

8.6.1	Conditions	to	Control	the	Execution	of	a	Command

Condition Meaning Negative
Condition

Comments

* Comment	Line Not	available Line	ignored

ALL Always	true Not	available 	

OSENG Operating	System	language	is
English

NOSENG Win	32
environments	only

OSFRA Operating	System	language	is
French

NOSFRA Win	32
environments	only

OSJPN Operating	System	language	is
Japanese

NOSJPN Win	32
environments	only

UNIX Operating	system	is	UNIX NUNIX 	

WIN Operating	system	is	Windows
(any)

NWIN 	

WIN32 Operating	System	is	Windows
32	bit

NWIN32 	

WIN95 Operating	System	is	Windows
9X/98

NWIN95 	

WINNT Operating	System	is	Windows
NT

NWINNT 	

	

8.6.2	Valid	Commands	and	Parameters

Command Parameter(s) Comments

ABORT Message	Text Aborts	execution	showing	the	message
specified.

ATTRIB File	Name 	

Attribute Changes	the	attributes	of	the	specified	file.
Specify	the	attribute	as	+r	or	-r	only.

CLOSE None Close	the	open	output	file.

COPY From	File Copies	the	specified	file.

To	File

COPYGROUP File	Suffix Copies	a	group	of	files	by	generic	name	and
type	to	a	target	directory.

Target
Directory

DEL File	Name Deletes	the	specified	file.

EXECFATAL .EXE	File
Name

Execute	the	specified	file	with	the	specified
parameters.	This	is	the	same	as	the
EXECUTE	command	except	that	if	an	error
occurs	while	running	the	application,	it	is
counted	as	a	fatal	error.	(EXECUTE	counts	it
as	a	warning).	Errors	are	either	errors	in
launching	the	application	such	as	'File	Not
Found'	or	exit	codes	returned	by	the
application.	(For	Windows	platform	details,
refer	to	Microsoft	documentation	on	the
CreateProcess	and	GetExitCodeProcess
functions.)

Parameters

EXECUTE .EXE	File
Name

Execute	the	specified	file	with	the	specified
parameters.

Parameters

FNEXTEXPR File	Name As	per	NEXTEXPR,	but	import	is	forced	with
a	question.

LAUNCH
Note:	This
command	is
reserved	for
system	use.

Process
Name

Starts	a	LANSA	process	and/or	function
executing.

Function
Name

LAUNCHFORM
Note:	This
command	is
reserved	for
system	use.

Form	Name Starts	a	LANSA	form	executing.

MD Directory
Name

Makes	the	specified	directory.

MESSAGE Message	Text Shows	the	specified	message	in	the	log.

NEXTEXPR File	Name Queues	up	a	subsequent	import.

NOPARTWARN None Turns	off	different	partition	warning	message.

Open File	Name Opens	the	specified	file	for	output.

QUESTIONn Text	of
question

Asks	a	question	to	in	a	message	box	(n	in
range	1	to	9).

RD Directory
Name

Removes	the	specified	directory.

ROLLSET *YES Sets	a	flag	to	roll	sets	of	records	when	they
are	imported.	Although	implemented	to
support	the	default	Web	Pages,	it	may	be	used
for	other	file	types.

*NO

SCANREP
Note:		This
command	is
reserved	for
system	use.

Source
Character

Converts	characters	in	the	imported	data	from
the	Source	Character	to	the	Target	Character.
The	following	special	values	are	supported	for
the	Target	Character:	*HASH_SIGN_CHAR,
*AT_SIGN_CHAR,
*DOLLAR_SIGN_CHAR.

Target
Character

SYSTEM System
Command

Executes	the	specified	system	command.

USEPART *SOURCE Sets	the	partition	to	be	the	partition	from
which	the	export	came.

*INITIAL Sets	the	partition	to	be	the	initial	partition
specified	by	the	user	when	starting	the	import.
*INITIAL	is	the	default.

VLDATA
Note:		This
command	is
reserved	for
system	use.

*YES Indicates	that	this	data	was	exported	from	a
Visual	LANSA	system.	This	is	generated	if
necessary	when	using	the	Deployment	Tool	or
the	EXPORT_OBJECTS	Built-In	Function.
*	NO	is	the	default.

*NO

WRITE Data Writes	the	specified	data	to	the	output	file.

	

8.6.3	Valid	Substitution	Variables	for	Command	Parameters

Variable Comment

%PART% Current	Partition	Identifier

%LANG% Current	Language	Identifier

%DIRL% Current	LANSA	root	Directory

%DIRP% Current	Partition	Directory

%TEMP% Current	Temporary	Directory

%PKGD% Current	Package	Directory

%EXPR% File	being	import	from

%SOSD% Current	operating	system	prefix	(Linux	only)

%DBID% Current	DBID	value

%DBII% Current	DBII	value

%DBIT% Current	DBIT	value

%DBUT% Current	DBUT	value

%DBUS% Current	DBUS	value

%PSWD% Current	PSWD	value

%YQUn% Command	line	is	ignored	unless	answer	to	QUESTIONn	was	yes

%NQUn% Command	line	is	ignored	unless	answer	to	QUESTIONn	was	no

%EXPD% Original	EXPR	parameter	used	in	import

%LFRA% Command	line	is	ignored	unless	LANSA	language	code	is	FRA
(French)

%LJPN% Command	line	is	ignored	unless	LANSA	language	code	is	JPN
(Japanese)

%LOTH% Command	line	is	ignored	unless	LANSA	language	code	is	not
FRA	or	JPN

%MULT% Command	line	is	ignored	unless	the	current	partition	is
multilingual

%MONO% Command	line	is	ignored	unless	the	current	partition	is	mono-
lingual

%USER% Current	USER	value

	

	

8.7	Languages

The	Languages	dialog	allows	you	to	select	the	installation	language(s)	to	be
used	when	a	package	is	installed.	To	open	the	Languages	dialog	select	the
Language	icon	from	the	Package	Maintenance	Window	toolbar.
The	current	language	is	used	as	the	default	language	and	as	such	is	pre-
selected.

The	current	partition	languages	will	be	displayed	in	the	Languages	dialog	with
the	current	language	from	the	Visual	LANSA	log	in	screen	selected	by	default.
When	the	installation	package	is	built	by	the	Deployment	Tool,	an	MSI	or	MSP
file,	depending	on	whether	this	package	is	a	full	application	version	or	a	patch,
will	be	created	for	every	language	selected	via	the	Languages	dialog.	The
resulting	Windows	Installer	files	are	named	by	concatenating	the	application
code	with	the	version	number	and	the	"culture	code"	derived	from	these
language	codes.
For	example,	selecting	English,	French	and	Japanese	for	application	D20A,
version	1.22.33	will	result	in	the	following	build	output:
D20A_v1.22.33_en-us.msi
D20A_v1.22.33_fr-fr.msi
D20A_v1.22.33_ja-jp.msi

This	will	allow	the	installation	of	an	English,	French	and	Japanese	application	to
be	performed	by	the	end	user.	Unlike	different	versions	of	an	application	that
cannot	exist	as	side-by-side	installations,	language	variants	may	be	installed	on
the	same	computer	at	the	same	time.

	Undefined	languages	will	default	to	English	(ENG).

8.7.1	Custom	Language	Definition

The	language	code	pairs	used	to	generate	the	MSI	and	MSP	file	names	are
mapped	in	<sysdir>\X_Apps\X_Wix\Content\Languages.xml

To	support	additional	languages	modify	the	Languages.xml	file	by	adding	an
entry	for	the	required	language	in	the	format:

<Language	Id="WXYZ"	Culture="wx-yz"	Locale="2052"
CodePage="950"/>

	

In	addition	you	will	need	to	define	an	appropriate	WIX	localization	file	in	…
\X_Apps\X_Wix\Source,	for	example,	file	wx-yz.wxl.

8.8	Web	Designs

Indicate	the	Languages	and	Technology	Services	to	be	shipped	with	any
WAM	or	weblet	included	in	the	Application.

If	WAMs	and	weblets	have	been	developed	with	multiple	Web	Designs	to
support	different	languages	and/or	technology	services,	use	this	feature	to	select
the	web	designs	to	be	included	in	the	current	deployment.
By	default	only	the	web	design	for	the	current	language	and	technology	service
will	be	selected.
The	Current	Language	is	nominated	on	the	screen	when	you	log	on	to	LANSA.	

The	Current	Technology	Service	defaults	to	LANSA	XHTML	but	can	be
changed	on	the	Web	menu	in	the	LANSA	Editor.

8.9	Files	with	Special	Processing

The	Files	with	Special	Processing	dialog	opens	from	the	Package
Maintenance	Window	toolbar.
Special	Files	are	files	to	be	installed	in	predefined	locations	with	specific
processing	per	file	Type.

Files	can	be	delivered	using	the	Files	with	Special	Processing	dialog.	
As	well	as	delivering	these	files,	the	Special	Processing	associated	with	the
Type	nominated	determines	how	it	is	processed	during	installation.	For
example,	shortcuts,	X_START	files	or	the	definition	of	an	End	User	License
Agreement	can	be	delivered.
To	deliver	files	which	do	not	require	special	processing	use	the	Object	Selection
dialog	and	include	these	files	as	Non-LANSA	objects,	or	as	External	Resources
if	they	are	defined	in	the	LANSA	database.
Shortcuts	to	files	such	as	.doc	and	.rtf	rely	on	Windows	file	associations	to
work,	therefore	the	applications	that	load	these	files	must	be	installed	separately.
All	shortcuts	will	be	created	in	the	Application's	program	folder	and	not	placed
on	the	end	user's	desktop.	Only	the	default	Application	shortcut	is	automatically
placed	on	the	desktop.

ID
	

Required.
Sequential	numbers	are	automatically	generated	but	this	can	be

re-sequenced	as	required.
Type
	

Required.
The	[Shortcut]	Type	can	be	selected	from	drop	down	list.	The
supported	types	are:
			Standard,	Licenses,	Readme,	URL,	XRun,	XStart,
			Executable,	System,	WebUsers,	ActiveX
Shortcuts	to	existing	executables	can	be	created	using	the	System
type.
Shortcuts	to	web	pages	can	be	created	using	the	URL	type.
Licenses	supplies	a	text	file	to	be	used	as	the	License	Agreement
when	running	the	MSI	File.	This	will	replace	the	file	supplied	in
…\X_Apps\X_Wix\Content\license.rtf	
Refer	to	End-User	License	Agreement	Dialog	for	more
information.
XRun	will	run	X_Run.exe	with	any	Parameters	provided.
XStart	will	run	X_Start.exe	using	the	original	start	file	as	the
basis,	with	overrides	applied	as	supplied	in	the	Parameters.
WebUser	indicates	the	DC_W08.dat	file.
There	are	three	ways	to	execute	non-LANSA	objects:
		Standard:	Ship	the	object	and	Open	it.	(Shortcut	text	has	'Open').
This	is	most	appropriate	for	non-executables,	like	a	spreadsheet.
The	application	that	opens	the	object	must	already	be	installed.
		Executable:	Ship	the	object	and	execute	it	with	parameters.
(Shortcut	text	has	'Start)
		System:	Execute	an	object	which	is	already	installed	with
parameters.	(Shortcut	text	has	'Start')
All	three,	Standard,	Executable	and	System,	can	be	used	with	any
file	extension	that	has	a	registered	default	program	on	the
installed	machine.

Language Optional.
Leave	blank	for	all	languages	supported	by	the	Application	or
select	a	Partition	Language	from	the	drop	down	list.	If	a	language
is	entered,	ensure	this	is	also	selected	in	the	Languages.
Files	may	be	targeted	at	specific	language	installations.

its:lansa022.chm::/lansa/VLDTool19_0075.htm

For	all	languages,	leave	the	Language	column	empty	(meaning	all
languages)	and	use	a	Multilingual	Variable	to	provide	an
appropriate	description	if	multiple	languages	are	supported.
For	a	single	language,	select	the	specific	language	from	the	drop
down	list	of	Partition	Languages.	Ensure	the	selected	language	is
a	selected	as	a	supported	package	language.		Enter	a	description
appropriate	for	this	language	or	use	a	multilingual	variable.

DescriptionOptional.
Multilingual	variables	can	be	selected	to	provide	a	description
appropriate	to	each	language	process.
If	no	Description	is	entered,	the	filename	will	be	used.

Path Optional.
The	target	path	where	special	files	will	be	installed.
The	System	Type	may	use	a	Path	with	a	sub-directory,	for
example:
[PersonalFolder]MySubDir\MyThesis.docx
The	following	substitution	variables	are	supplied	by	MS
Windows	and	may	be	specified	in	the	Path	surrounded	by	square
brackets,	for	example	[SystemFolder].

							 Substitution	variable Expanded	Path
							 AdminToolsFolder C:\ProgramData\Microsoft\Windows\Start

Menu\Programs\Administrative	Tools\
AppDataFolder C:\Users\Installer.NYB\AppData\Roaming\
CommonAppDataFolder C:\ProgramData\
CommonFilesFolder C:\Program	Files\Common	Files\
FontsFolder C:\Windows\Fonts\
LocalAppDataFolder C:\Users\Installer.NYB\AppData\Local\
MyPicturesFolder C:\Users\Installer.NYB\Pictures\
NetHoodFolder C:\Users\Installer.NYB\AppData\Roaming\Microsoft\Windows\Network

Shortcuts\

PersonalFolder C:\Users\Installer.NYB\Documents\

PrintHoodFolder C:\Users\Installer.NYB\AppData\Roaming\Microsoft\Windows\Printer
Shortcuts\

ProgramFilesFolder C:\Program	Files\
RecentFolder C:\Users\Installer.NYB\AppData\Roaming\Microsoft\Windows\Recent\
SendToFolder C:\Users\Installer.NYB\AppData\Roaming\Microsoft\Windows\SendTo\
StartMenuFolder C:\ProgramData\Microsoft\Windows\Start	Menu\
StartupFolder C:\ProgramData\Microsoft\Windows\Start	Menu\Programs\Startup\
System16Folder C:\Windows\system\
SystemFolder C:\Windows\system32\
TempFolder C:\Temp\
TemplateFolder C:\ProgramData\Microsoft\Windows\Templates\
WindowsFolder C:\Windows\

					Any	path	that	exists	in	the	MSI	Directory	table	may	be	used	in	the	same	way.
You	can	use	Orca	on	an	MSI	(right	click	Edit	with	Orca)	to	see	the	Directory
table.	Following	is	an	example	of	the	Directory	table:

					For	example,	to	reference	myapp.exe	in	the	x_win95\x_lansa\execute
directory	use	[dir_X_Win95.X_Lansa.Execute]myapp.exe

					To	obtain	Orca,	install	the	Windows	SDK	and	run	Orca-x86_en-us.msi.	In
version	8.0	of	the	SDK	you	will	find	it	here:	C:\Program	Files
(x86)\Windows	Kits\8.0\bin\x86

ParametersOptional.
Depending	on	the	File	Type	selected,	parameters	can	be	provided
to	execute	with	file	processing.	Parameters	are	only	applicable	for
XStart,	XRun,	Executable	or	System	File	Types.

9.	Deploy	LANSA	Communications
For	a	general	understanding	of	LANSA	Communications	refer	to:

What	are	LANSA	Communications	extensions?	in	the	LANSA
Communications	Setup	Guide.

Also	refer	to	these	topics	in	this	guide:
Include	Host	Route	and	Listener	Tables
For	package	settings	and	installation	options	relating	to	LANSA
Communications,	go	to	LANSA	Communications	Package	Settings	&
Options.

Translations	for	LANSA	Communications	Administrator	are	only	required	if
you	are	working	in	a	language	other	than	English,	French	or	Japanese	and	want
to	review	or	modify	the	lroute.dat	or	listener.dat	files	using	the	LANSA
Communications	Administrator	interface	running	in	your	preferred	language.

its:Lansa045.CHM::/lansa/ougub1_010.htm
its:LANSA022.CHM::/lansa/l4wdplb3_0105.htm
its:LANSA022.CHM::/lansa/l4wdplb3_0110.htm

9.1	Include	Host	Route	and	Listener	Tables
The	LANSA	Communications	Administrator	is	incorporated	into	the
Deployment	Tool	to	allow	the	creation	and	maintenance	of	a	communication
files	specific	to	an	Application.	The	communication	files	are	the	Host	Route
Table	(lroute.dat)	and	Listener	Table	(listen.dat).
When	the	Communication	Administrator	is	first	opened	against	an	Application
a	default	set	of	communication	files	is	created.	These	files	can	then	be	modified
as	required	to	support	the	Application.
To	include	the	Communication	files:

Step How	to	do	it

1.	Select
Communications
Administrator
for	an
application

To	include	or	change	Communication	files,	select	the
Application	in	the	tree	view	then	press	the	Communications
Administrator	icon	in	the	Main	Window	toolbar.

2.	Set	up	the
Host	Route
entries

The	Route	Information	for	deployed	application	dialog	box
will	open	to	display	a	copy	of	the	host	route	table	lroute.dat
from	the	current	LANSA	system.	This	version	of	the	host
route	table	is	saved	into	the	Application	work	folder.
Change,	remove	and	add	host	route	entries	in	the	local
communication	files	as	required	to	support	the	deployed
Application.	Closing	the	dialog	box	saves	any	changes.

3.	Set	up	the
listener

If	you	are	Deploying	Server	Support	or	installing	a	web
application	you	may	also	need	to	configure	the	Listener	port.
On	the	Route	Information	for	deployed	application	dialog
select	the	Advanced	menu	option	Listener...

This	will	create	a	default	listener	table	listen.dat.	If	necessary
change	the	listener	information	as	required	to	support	the
deployed	application.	Closing	the	dialog	box	saves	any
changes.
This	version	of	the	listener	table	is	saved	into	the	Application
work	folder	along	with	the	host	route	table.

	

4.	Set
appropriate
Package	settings
and	options

Including	the	Communication	files	in	an	Application	does
NOT	automatically	mean	they	will	be	installed	with	a	Version
or	Patch.	The	appropriate	Settings	and	Installation	options
must	also	be	selected.
Refer	to	9.2	LANSA	Communications	Package	Settings	&
Options	for	more	information.

	

9.2	LANSA	Communications	Package	Settings	&	Options
The	following	package	settings	should	be	reviewed	when	you	are	deploying
LANSA	Communications:

Deploy	LANSA
Communications

A	copy	of	the	LANSA	Communications	Extensions
installation	image	is	included	in	the	package	and	is
installed	when	the	package	is	installed.
This	option	must	be	selected	to	deploy	the	lroute.dat
file.
Refer	to	Deploy	LANSA	Communications.

Deploy	Server
Support

A	copy	of	the	LANSA	Server	Support	installation	image
is	included	in	the	package	and	installed	when	the
package	is	installed.

	

Communications
Install	Listener Yes	–	Listener	will	be	installed

No	–	Listener	will	not	be	installed
Default:	No

	

Desktop	Settings
Create	Communications
Administration	shortcut

Yes	–	Create	a	shortcut	to	LANSA
Communications	Extensions
No	–	Do	not	create	a	shortcut	to	LANSA
Communications	Extensions
Default:	Yes

	

	

its:lansa022.chm::/lansa/l4wdplb2_0065.htm

10.	Deploy	Client	/	Server	Applications
A	myriad	of	Client	/	Server	configurations	can	be	implemented.	Before	you	start
deploying	any	Client	/	Server	application	it	is	essential	to	understand:

What	pieces	of	the	application	belong	on	the	server	and	what	pieces	belong
on	each	client.
What	are	the	requirements	of	the	runtime	environment	on	the	respective
client	and	server.
How	the	client	is	intended	to	communicate	with	the	server.
How	are	updates	to	the	client	and	server	going	to	be	managed.
If	you	have	appropriate	LANSA	licenses	to	install.
Scenario?	Network	Client?	Web	Application?

Some	of	the	common	Client	/	Server	scenarios	that	can	be	implemented	are:
					10.2	SuperServer	Application	using	Built-In	Functions	to	connect	to	server
					10.4	SuperServer	Application	connecting	to	an	IBM	i	server
					11.2	Data	Application	Server	with	Windows	Application	Database
					10.5	Network	Client	Installation

10.1	Client	/	Server	Deployment	Considerations
If	the	Client	/	Server	application	includes	the	package	settings	Deploy
system	definition	or	Deploy	partition	definition	ensure	the	Visual	LANSA
system	where	you	are	creating	the	application	has	the	appropriate	system	and
partition	settings	as	required	in	the	runtime	environment.
If	your	application	uses	SuperServer	to	connect	to	a	remote	system	it	is
recommended	to	embed	the	SuperServer	Built-In	Functions	in	the
application	logic	rather	than	using	the	SuperServer	options	supplied	with	the
Deployment	Tool.	This	provides	a	consistent	interface	which	is	encapsulated
and	controlled	within	the	application	code.
Ensure	Communication	Administration	file	(lroute.dat)	and	listener
(listen.dat)	are	updated	with	correct	information	to	connect	to	server
Ensure	the	option	to	Install	Listener	is	selected	when	listener	is	required
When	installing	the	server	side	of	an	application	the	setting	Database	Setup
(SUDB)	should	be	set	to	ensure	the	database	is	modified.		Conversely	when
installing	the	client	the	setting	Database	Setup	(SUDB)	should	not	be	set	and
only	runtime	objects	should	be	installed.

10.2	SuperServer	Application	using	Built-In	Functions	to	connect
to	server
In	this	scenario	the	database	is	installed	on	the	server	and	the	clients	are
installed	as	"fat"	clients	with	the	application	DLLs	installed	locally.		Connection
to	the	server	is	established	using	SuperServer	Built-In	Functions.	

Using	SuperServer	Built-In	Functions	is	the	recommended	approach
for	establishing	a	connection	to	a	remote	system.	This	decision	is
made	during	the	application	development.

To	support	this	scenario:
1.		The	server	portion	of	the	deployed	application	will	depend	on	the	type	of
server	used.

					For	guidelines	on	setting	up	the	server	application,	including	the	system
variables,	files	(including	message	files)	and	their	OAMs	refer	to,	as
applicable:

					10.2	SuperServer	Application	using	Built-In	Functions	to	connect	to	server
					10.4	SuperServer	Application	connecting	to	an	IBM	i	server
					11.2	Data	Application	Server	with	Windows	Application	Database.
2.		Executable	for	the	deployed	application	will	be	installed	on	each	client
including	the	application's	forms,	processes	and	functions.		Database	accesses
will	be	directed	to	the	server.

Client	Package
The	client	package	can	be	based	on	template	XCLTBIF.
The	following	Settings	should	be	considered	and	reviewed:

Deploy	to	Client	without	local	database
Deploy	System	definition
Deploy	Partition	definition
Omit	Object	Definitions
Deploy	with	Component	Support
Deploy	LANSA	communications

Omit	any	unnecessary	options	to	minimize	the	package	size.	Most	of	these
options	only	need	to	be	included	in	the	initial	package	or	after	LANSA	software

its:lansa022.chm::/lansa/l4wdplb3_0340.htm
its:lansa022.chm::/Lansa/VLDTool6_0050.htm

upgrades	have	been	applied	and	need	to	be	deployed.
The	following	Options	and	details	should	also	be	considered	and	reviewed:

Process/Function/Form	to	Execute.	Specify	the	application	executable	that	is
to	be	used	to	start	the	application	once	installed.
Install	Listener.
The	Communication	Administration	file	(lroute.dat)	and	listener	(listen.dat)
will	need	to	be	included	to	facilitate	connection	to	the	data	server.

Note:	The	DBMS	Type	is	typically	set	as	NONE	(that	is,	no	local	database).

its:lansa022.CHM::/LANSA/dt_0190.HTM
its:Lansa022.chm::/lansa/dt_0230.htm

10.3	SuperServer	Application	connecting	to	a	Windows	or	Linux
Server
In	this	scenario	the	database	is	installed	on	the	server	and	the	clients	are
installed	as	"fat"	clients	with	the	application	DLLs	installed	locally.
To	support	this	scenario	create	two	Deployment	Tool	applications:
1.		The	first	application	will	be	installed	on	the	server	and	includes	system
variables,	files	(including	message	files)	and	their	OAMs.

2.		The	second	application	must	be	installed	on	each	client	and	includes	the
application's	forms,	processes	and	functions.

Server	Package
A	windows	server	package	can	be	based	on	template	XSRVOTH.
The	following	Settings	should	be	considered	and	reviewed:

Deploy	System	definition
Deploy	Partition	definition
Deploy	Execution	Database	Support
Deploy	Execution	Add-ons
Deploy	with	Component	Support
Deploy	LANSA	Communications
Deploy	Server	Support

The	following	Options	and	details	should	also	be	considered	and	reviewed:
Install	Listener.
Communication	Administration	file	(lroute.dat)	and	listener	(listen.dat)	will
need	to	be	included	to	facilitate	connection	to	the	data	server.
DBMS	Type	(DBUT).	An	appropriate	server	database	type	should	be
nominated,	for	example,	Oracle	or	MS	SQL	Server.
Database	Source	Name	(DBII).

Client	Package
Using	SuperServer	Built-In	Functions	is	the	recommended	approach
for	establishing	a	connection	to	a	remote	system.	For	details	on
installing	a	Client	application	which	utilizes	SuperServer	Built-In
Functions	refer	to	Superserver	Application	using	Built-In	Functions	to
connect	to	server.

its:Lansa022.chm::/lansa/l4wdplb3_0425.htm
its:lansa022.chm::/lansa/VLDTool6_0050.htm
its:Lansa022.chm::/lansa/dt_0230.htm
its:Lansa022.chm::/lansa/dt_0210.htm
its:lansa022.chm::/Lansa/VLDTool10_0010.htm

The	client	package	can	be	based	on	template	XCLTOTH	and	requires	the
appropriate	X_RUN	parameters	to	be	provided	to	connect	to	a	server.
The	following	Settings	should	be	considered	and	reviewed:

Deploy	to	Client	without	local	database
Deploy	System	definition
Deploy	Partition	definition
Deploy	Execution	Add-ons
Deploy	with	Component	Support
Deploy	LANSA	Communications

The	following	Options	and	details	should	also	be	considered	and	reviewed:
LANSA	User
Process/Function/Form	to	Execute	-	Specify	the	executable	to	be	used	to
start	the	application	once	installed
Install	Listener
The	Communication	Administration	file	(lroute.dat)	and	listener	(listen.dat)
will	need	to	be	included	to	facilitate	connection	to	the	data	server.
SuperServer	options:
Server	Type	(DBID)
Server	Name	(PSLU)
User	for	Server	(PSUS)
Password	for	Server	(PSPW)
Divert	Locks	(PSDL)
Server	Exception	Arguments	(PSEA)	(for	example	DBID,	DBII,	DBIT,
DBUT,	DBUS,	PSWD,	RPTH,	TPTH)
DBMS	Type	(DBUT).	Typically	set	as	NONE	(that	is,	no	local	database).

its:Lansa022.chm::/lansa/l4wdplb3_0410.htm
its:Lansa022.chm::/lansa/VLDTool6_0050.htm
its:Lansa022.chm::/lansa/dt_0190.htm
its:lansa022.chm::/lansa/l4wdplb3_0285.HTM
its:lansa022.chm::/Lansa/dt_0210.htm

10.4	SuperServer	Application	connecting	to	an	IBM	i	server
In	this	scenario	the	database	is	installed	on	an	IBM	i	server	and	the	clients	are
installed	as	"fat"	clients	with	the	application	DLLs	installed	locally.
To	support	this	scenario	create	a	single	Deployment	Tool	application	to	be
installed	on	each	client.	This	will	include	the	application's	forms,	processes	and
functions	much	the	same	as	when	connecting	to	a	Windows	or	Linux	client.
The	IBM	i	portion	of	the	application	must	be	deployed	using	the	LANSA	for
iSeries	Export	and	Import	facilities.	This	will	include	the	system	variables,	files
(including	message	files)	and	their	OAMs.

Client	Package
Using	SuperServer	Built-In	Functions	is	the	recommended	approach
for	establishing	a	connection	to	a	remote	system.	For	details	on
installing	a	Client	application	which	utilizes	SuperServer	Built-In
Functions	refer	to	Superserver	Application	using	Built-In	Functions	to
connect	to	server.

The	client	package	can	be	based	on	template	XCLT400	or	XCLT400X	and
requires	the	appropriate	X_RUN	parameters	to	be	provided	to	connect	to	an
appropriate	LANSA	for	iSeries	server	and	partition.
The	following	settings	should	be	considered	and	reviewed:

Deploy	to	Client	without	local	database
Deploy	System	definition
Deploy	Partition	definition
Omit	Object	Definitions
Deploy	with	Component	Support
Deploy	LANSA	Communications

The	following	Options	and	details	should	also	be	considered	and	reviewed:
LANSA	User
Process/Function/Form	to	Execute	-	Specify	the	executable	to	be	used	to
start	the	application	once	installed
Install	Listener
Communication	Administration	file	(lroute.dat)	and	listener	(listen.dat)	will
need	to	be	included	to	facilitate	connection	to	the	data	server.

its:lansa022.chm::/Lansa/VLDTool10_0010.htm
its:Lansa022.chm::/LANSA/VLDTool14_0025.htm
its:Lansa022.chm::/lansa/l4wdplb3_0350.htm
its:Lansa022.chm::/lansa/dt_0190.htm

DBMS	Type.	Typically	set	as	NONE	(that	is,	no	local	database).
SuperServer	options:
Server	Type	(DBID)
Server	Name	(PSLU)
User	for	Server	(PSUS)
Password	for	Server	(PSPW)
Divert	Locks	(PSDL)
Use	Commitment	Control	(PSCC)
DBCS	Capable	(PSDB)
Client	to	Server	(PSCT)	and	Server	to	Client	(PSST)

	

its:Lansa022.chm::/lansa/dt_0210.htm
its:lansa022.chm::/lansa/l4wdplb3_0285.HTM

10.5	Network	Client	Installation
The	main	application	installation	is	generally	referred	to	as	the	primary
installation	to	distinguish	it	from	the	network	client	installation	which	is	a	small
'.msi'	file	automatically	created	for	most	primary	installations	and	delivered	by
the	primary	installation.	It	constitutes	a	'Network	Client'	installation	and	only
installs	shortcuts	to	the	primary	installation	on	a	file	server,	from	where	it	must
be	executed.	It	cannot	be	copied	elsewhere	and	run.
To	install	a	client	application	in	a	corporate	environment,	you	must	first	install
the	primary	application	on	a	file	server.	Then	provide	a	shortcut	to	the	client
installation	'.msi'	to	users	with	access	to	that	file	server.	For	example:	
\\SRV1\Programs\	Lansa	Pty	Ltd\Personnel
System\X_Win95\X_Lansa\Execute\D20A_Client_En-us.msi.

Apart	from	this	introductory	dialog	and	progress	information,	no	other	user
interface	is	presented	to	the	end	user.	No	configuration	options	are	required	as
the	client	uses	the	primary	installation	as	the	target	for	the	shortcuts	it	creates.
These	shortcuts	are	defined	by	the	primary	installation's	definition.
	

11.	Deploy	LANSA	for	the	Web	Applications
Considerations

The	machine	where	the	installation	is	built	must	be	a	fully	working	example
of	the	application.	This	is	vital	as	many	configuration	files	are	pulled	directly
from	the	Build	environment.
LANSA	for	the	Web	applications	on	Windows	consist	of	three	logical	parts:
the	Web	Server	(e.g.	IIS),	the	Data	Application	server	(i.e.	LANSA)		and	the
Database	Server	(e.g.	SQL	Server).	It	is	most	common,	even	in	high
transaction	environments,	to	locate	the	Database	Server	on	a	dedicated
machine	so	that	as	much	RAM	as	possible	may	be	allocated	to	the	database.
The	Web	Server	and	Data	Application	Server	are	then	installed	together	on	a
separate	machine,	again	the	RAM	is	largely	available	for	the	LANSA
processes	to	execute	in.	In	systems	with	a	high	throughput,	multiple	Web
Server/App	Server	machines	may	be	installed	with	a	Load	Balancer	to	share
the	load	between	them,	or	even	a	simple	DNS	round-robin	multiple	IP
address	setup	to	load	balance	between	the	servers.
Linux	and	IBM	i	servers		may	also	host	any	part,	or	all,	of	LANSA	for	the
Web.	Some	common	scenarios	which	involve	a	part	of	Windows	and	a	part
elsewhere	are:
Windows	Web	Server	with	IBM	i	Data	Application	Server	and	DB2	i
Database	Server.
Linux	Web	Server	with	Windows	Data	Application	Server	and	SQL	Server
Database	Server.
Windows	Web	Server	and	Data	Application	Server	with	Linux	Oracle
Database	Server
IIS	must	be	enabled	on	the	Web	Server.	Specific	settings	are	not	required	as
the	install	automatically	configures	what	it	requires.
The	User	ID	for	the	Web	Configuration	must	be	able	to	log	on	to	the	Data
Application	Server	and	should	be	a	member	of	the	user	group	"LANSA
Users".	This	is	configured	automatically.
When	deploying	LANSA	shipped	weblets	(typically	the	std_*	weblets)	or
external	resources	(XW*	external	resources),	either	as	selected	objects	or	a
cross-referenced	objects,	ensure	the	package	has	been	built	in	an
environment	where	the	appropriate	version	of	these	objects	has	been
installed.

A	WAM	or	WEBEVENT	function	cannot	be	automatically	launched	from	a
deployed	package	in	a	browser.
A	URL	shortcut	can	be	created	to	launch	the	Web	Application	using	the	Files
with	Special	Processing	option.
To	request	a	runtime	License	for	your	LANSA	web	application	you	must
supply	the	CPU	details	of	the	Windows	server	on	which	the	application	is
installed.	This	is	achieved	using	a	shipped	LANSA	utility,	called	X_CPU.
Refer	to	the	LANSA	Support	web	page	for	further	information.	
To	review	the	current	licenses	on	the	runtime	environment	execute	the
process	*LICENSES.
The	LANSA	utility	X_CPU	and	the	process	*LICENSES	are	included	when
you	deploy	the	LANSA	runtime.
Template	XWAMENB	has	been	created	to	assist	with	the	deployment	of	a
WAM	Application.
Refer	to	the	Installing	LANSA	on	IBM	i	Guide	or	Installing	LANSA	on
Windows	Guide	for	more	information	on	installing	the	Web	Server.

Restrictions
The	web	user	is	not	configured	to	be	the	partition	security	officer
Update	X46SEC	with	the	web	user	so	that	the	Web	Administrator	may
connect	successfully.	E.g.	Set	it	to	PCXUSER	as	the	default.
Default	SQL	Server	Instance	MSSQLSERVER	is	not	fully	supported
If	a	default	SQL	Server	instance	is	used,	the	web	user	will	not	be	given
permission	to	login	to	the	database.
Deploying	a	large	set	of	files	in	the	Web	Images	may	fail	with	messages	like
"too	long	for	an	identifier"
The	images	directory	will	need	to	be	deployed	manually.
JSM	Service	must	be	stopped	before	building	a	version	which	includes
Integrator
Some	shortcuts	are	not	removed	when	the	application	is	uninstalled.
MSI	Install	will	fail	part	way	through	if	there	is	a	pending	reboot.	The	install
will	be	rolled	back.
Reboot	the	machine	and	restart	the	install.

Also	see
11.1	Web	Server	Deployment

its:lansa022.chm::/Lansa/L4wDplb3_0020.htm
javascript:void(0);openCHM('lansa040.chm','lansa');
javascript:void(0);openCHM('lansa041.chm','lansa');

11.2	Data	Application	Server	with	Windows	Application	Database

11.1	Web	Server	Deployment
Do	not	use	a	template.
The	settings	required:

Deploy	LANSA	communications
The	options	required:

Require	Elevation	Yes
Setup	Database	No
Install	Web	Administrator
Install	IIS	Plugin
Install	Web	Images
Server	Name	(PSLU)	set	to	the	same	name	used	by	the	Build	environment
(in	L4W3SERV.CFG).
Communications	route	created	of	the	same	name	as	the	PSLU	value.
These	server	names	must	match	so	that	the	development	environment
configuration	options	are	used,	otherwise	a	new	entry	is	created	with	default
settings.

Web	Server	objects	are	non-LANSA	objects	such	as	cascading	stylesheets,
images,	and	scripts	used	to	render	the	browser	interface.	They	are	all	shipped
simply	by	choosing	to	Install	Web	Images.
Automatically	Configured	Items

Sets	up	the	L4w3serv.cfg	file.	Note	that	HostRouteLuName	is	assigned	from
PSLU.	There	is	not	a	specific	MSI	Property	for	this.	This	means	that	it	is	not
necessary	to	run	the	Web	Administrator	to	setup	this	file.

Manual	tasks	after	Installation
If	IIS	Plugin	is	already	installed,	the	configuration	of	IIS	will	not	be	done.	
Manual	steps	will	be	required	to	configure	the	existing	plugin	to	use	the
MSI-installed	app/server	or	to	replace	the	plugin	with	the	MSI-shipped
version.	
Note	that	uninstalling	the	existing	Plugin	before	installing	the	MSI	may	be	a
simpler	option,	and	then	configure	the	plugin	to	use	the	existing	app	server.

11.2	Data	Application	Server	with	Windows	Application	Database
Do	not	use	a	template.
Include	any	application	objects	in	the	package	e.g.	WAMs.	If	the	Web	Server	is
on	the	same	machine	as	the	Data	Application	Server,	then	also	configure	the
Package	as	described	in	11.1	Web	Server	Deployment.11.1	Web	Server
Deployment
The	settings	required:

Deploy	System	Definition
Deploy	Partition	Definition
Omit	Object	Definitions
Deploy	Execution	Database	Support
Deploy	with	Component	Support
Deploy	with	Web	Environment	Support
Deploy	LANSA	communications
Deploy	Server	Support

The	options	required:
Require	Elevation	Yes
Setup	Database	Yes
Install	Listener
Install	Web	Administrator
Specify	*LICENSES	for	the	Process	To	Execute.	This	will	remind	the
installer	to	obtain	a	license	as	well	as	provide	the	opportunity	to	enter	the
license.

The	Communication	Administration	file	(listen.dat)	will	need	to	be	included	to
facilitate	connection	to	the	data	server.		This	is	created	by	selecting	the
Application,	clicking	on	the	Communication	Administrator	icon	and	clicking	on
the	Listener	from	the	menu.	There	is	no	need	to	create	a	Route,	unless	installing
the	Web	Server	too.	Note	that	the	Listener	TCP	Port	will	be	prompted	during	the
install.
Connection	details	for	the	database	must	be	specified	to	ensure	correct	entries
are	created	in	the	X_LANSA.PRO	file.
It	is	not	possible	to	launch	a	web	application	on	completion	of	the	installation;
however	a	shortcut	can	be	created	to	assist	with	launching	the	application	after

it	is	installed.		For	example	enter	shortcut	details	similar	to	those	following:

Automatically	Configured	Items
The	dc_w08.dat	is	shipped	and	installed	from	the	development	environment.
Grant	"Everyone"	full	control	to	the	root	install	folder	and	subtree.
Deploy	with	Web	Environment	Support	ships	and	imports	the	following
directories	(ALWAYS	whether	SUDB=Y	or	SUDB=N):
Lansa\Imports\std_weblets
Lansa\Imports\WebResources
Creates/sets	up	a	Local	User
If	SQL	Server,	creates	that	Local	User	as	a	database	user	and	sets	up
appropriate	access	rights.

Manual	tasks	after	Installation
If	not	SQL	Server,	give	the	web	user	appropriate	rights	to	logon	to	the
database	server.
Set	the	web	user	as	the	partition	security	officer	by	modifying	table	LX_F96
column	X96OWN
The	dc_w08.dat	is	shipped	and	installed	from	the	development	environment.
Any	modifications	from	the	default	need	to	be	made	manually	after	install
using	the	Web	Administrator.
The	default	values	are:	Any	web	server,	from	any	port,	with	anonymous
user,	for	any	partition.

Troubleshooting
If	a	connect	in	the	Web	Administrator	returns	error	0x1C,	then	Install	Server
Support	has	been	omitted.	A	communications	trace	reveals	failure	to	load
LXCP0010.DLL.

12.	Just	In	Time	Upgrade	Guidelines
Let's	start	at	the	beginning.

What	is	Just	in	Time	Deployment?
Simplistically,	Just	in	Time	(JIT)	Deployment	provides	a	centralized,	automated
update	facility	for	any	application	deployed	using	the	Deployment	Tool.
In	Version	13	Just	in	Time	deployment	only	supports	Package	Upgrades.	DLL
Upgrades	are	no	longer	supported.
All	the	Packages	associated	with	an	Application	are	installed	on	a	centralized
Application	Server,	that	is,	the	initial	Version	and	any	subsequent	major
upgrades	or	Patches.	After	the	initial	installation,	each	time	a	user	launches	the
Application	from	a	Target	PC,	the	Target	PC	connects	to	the	Application	Server
to	see	if	new	upgrades	are	available	to	install.	Any	new	upgrades	will	be
automatically	installed	before	the	Application	is	launched.

How	does	it	work?
To	get	started	the	initial	Package	to	install	the	application	must	include:

The	application	objects,	the	same	as	any	other	deployment
Information	defining	the	Application	Server,	so	the	target	PC	can	connect	to
the	Application	Server	to	install	future	Packages

A	variety	of	deployment	templates	are	available	to	assist	in	the	construction	of
these	Packages.
The	initial	Package	may	be	delivered	in	various	ways	including:

file	share	on	the	network
web	site
an	ftp	server
CD	or	DVD

It	is	only	after	this	initial	installation	that	Just	in	Time	Deployment	really	comes
into	play	although	we	have	now	identified	the	Application	Server	and	set	up	the
Just	in	Time	configuration	to	access	the	Application	Server	whenever	the
Application	is	started	on	the	Target	PC.
Subsequent	updates	to	the	application	are	either	a	major	upgrade	Version	or	a
Patch.
When	you	are	using	Package	Upgrades	(the	most	common	option)	and	you
deploy	a	Package	upgrade	to	the	Application	Server	you	no	longer	create	an

entry	for	the	Package	in	the	associated	APPLPKG.DAT	file.	It's	a	simple	matter
of	just	copying	the	MSI	or	MSP	into	the	Application	directory
Each	time	a	user	launches	the	Application	on	a	Target	PC	a	connection	is
established	with	the	Application	Server.		Before	the	Application	is	started	the
Just	in	Time	processing	checks	if	there	are	any	upgrades	which	have	not	already
been	applied	locally.		If	any	Packages	are	found	they	are	installed	before	the
Application	is	launched.
For	more	detailed	information	on	the	Just	in	Time	set	up	refer	to:
12.2	Package	Upgrades
12.3	Application	Servers
12.4	Target	PCs	and	the	Client	Application
12.6	Just	In	Time	Upgrade	Recommended	Settings
12.7	Troubleshooting	Just	in	Time
12.8	Tracing	Just	in	Time	Connections
12.9	Upgrading	to	Version	13	using	JIT	Upgrade
12.10	Customizing	Just	In	Time	Package	Upgrade

12.1	Major	differences	in	Package	13	JIT	Upgrade
It's	the	same	as	it	was	in	essence,	though	it	is	now	just	the	one	file	to	deploy,
not	a	set	of	directories	and	files.
Now	that	LANSA	produces	MSI	and	MSP	files	they	can	be	deployed	using
Microsoft	SCCM	–	System	Centre	Configuration	Manager.	LANSA	JIT
Upgrade	is	not	required.
SCCM	is	a	far	more	capable	deployment	engine	than	LANSA	JIT	Upgrade,
though	SCCM	can	be	more	complex	to	set	up	in	the	first	place.	Thus
LANSA	JIT	Upgrade	will	be	kept	as	simple	as	possible	leaving	the	SCCM
functionality	for	more	complex	deployment	scenarios.
V12	Application	Server	can	be	upgraded	independently	to	V13
V13	Application	Server	will	deliver	V12	packages	the	same	as	the	V12
Application	Server.
The	MSI	delivered	is	the	latest	one	in	the	x_apps	folder.
The	MSP	delivered	is	the	next	one	that	has	not	been	installed	and	matches
the	language	of	the	installed	MSI.
The	install	may	be	customized	by	adding	an	optional	SETUP.TXT	file	with
parameters	to	add	to	the	msiexec	command	line.	That	is,	any	of	the
properties	that	the	MSI	and/or	Windows	Installer	exposes.
An	MSI	is	an	independent	install	and	an	MSP	is	intended	to	be	a	cumulative
install,	so	the	prerequisite	functionality	has	been	removed.
The	authorized	users	have	been	removed.
Only	a	single	application	is	installed.	The	multiple	applications	options	have
been	removed.
JIT	DLL	Upgrade	is	no	longer	supported.
Multiple	languages	are	supported	for	each	install
Multilingual	Text	Variables	are	now	used	for	all	text	values	which	appear	in
the	MSI	UI,	in	order	to	support	multiple	languages.

12.2	Package	Upgrades
Package	upgrades	allow	for	the	execution	environment	to	be	deployed	and
upgraded	when	the	users	starts	their	application.
Package	upgrades	allow	you	to	keep	a	tight	control	over	what	is	being	deployed
as	each	time	you	send	a	Package	to	the	server	to	deploy	you	are	creating	a
record	of	what	has	changed.

Patches	are	an	excellent	way	to	deliver	LANSA	EPCs	to	an
Application.	Only	the	LANSA	EPC	will	be	delivered	by	the	Patch.

12.3	Application	Servers
Any	Just	in	Time	configuration	must	include	an	Application	Server.
All	distributed	Versions	or	Patches	are	stored	on	the	Application	Server.		The
Application	Server	then	receives	requests	for	upgrades	when	a	user	starts	the
application	on	their	PC.		Any	new	Versions	or	Patches	(depending	on	your
Upgrade	Option	UPGD)	will	then	be	sent	to	the	client	PC	in	response.	As	such,
the	Application	Server	is	a	simple	file	server,	and	does	not	require	a	powerful
processor.

Installing	an	Application	Server
An	Application	Server	must	have:

A	Visual	LANSA	installation
A	listener	installed	and	running	to	receive	requests	from	any	Client	PCs
A	valid	LANSA	SuperServer	license.		A	single	seat	LANSA	SuperServer
license	is	usually	sufficient	as	it	is	only	used	during	the	Just	In	Time
Upgrade	processing.		After	any	upgrade	Versions	or	Patches	have	been
downloaded	the	license	will	be	made	available	again.

	Tip			The	simplest	way	to	set	up	the	Application	Server(s)	is	to
install	Visual	LANSA.

Applying	Packages	to	the	Application	Server
Each	Application	made	available	for	Just	in	Time	Package	Upgrade	deployment
on	the	Application	Server	must	include	a	directory	structure	like:

<sysdir>\x_apps\[Client	App	Name]\
This	directory	structure	is	a	mirror	of	the	directory	structure	on	the	deployment
system.
Within	the	[Client	App	Name]	directory	only	the	MSI/MSP	to	be	deployed	is
required.		The	original	MSI	used	to	install	the	Application	must	be	included.

Warning:	When	the	JIT	Application	Server	is	the	same	LANSA
system	as	the	Deployment	System	any	distributed	Package	will	be
available	to	be	downloaded	immediately.	For	this	reason	it	is
recommended	to	use	different	LANSA	systems	for	the	creation	and
deployment	of	Packages	to	facilitate	testing	of	the	Package	before	it	is
available	to	download.

Multi-tier	Application	Servers	are	not	supported	from	Version	13.	Use
Microsoft	SCCM	for	complex	deployments	such	as	these.

12.4	Target	PCs	and	the	Client	Application
The	LANSA	Application	installed	on	each	Target	PC	is	essentially	the	same	as
any	other	Client	Application	except	it	includes	a	reference	for	the	Application
Server.
Connecting	to	an	Application	Server
The	connection	to	an	application	server	is	generally	accomplished	using	the
X_RUN	ASXX	parameters.	These	parameters	work	identically	to	the	PSXX
parameters,	as	described	in	The	PSXX=	Parameter	in	the	Technical	Reference.
The	SSN	(Symbolic	Server	Name)	used	when	automatically	connecting	is
always	*APPSERVER.	This	value	cannot	be	changed.	Generally,	only	the
ASLU	and	ASPW	parameters	need	to	be	defined.	Refer	to	Just	in	Time
Options	for	more	information.
SuperServer	applications	may	connect	to	an	Application	Server	(via	the	ASXX
parameters)	as	well	as	their	normal	server	(via	Built-In	Functions	or	the	PSXX
parameters).	Alternatively,	SuperServer	applications	may	use	their	normal
server	as	an	Application	Server.	Where	more	than	one	server	connection	is
started	via	an	INIT	function,	the	first	connection	is	used	as	the	Application
Server.

		Important:	If	ASXX	parameters	are	used	to	connect	to	the
Application	Server	it	is	necessary	to	have	*.XQ*	files	on	the
Application	Server.	Refer	to	The	.XQ*	Files	in	the	Technical
Reference	for	details.

Refer	also	to	Connect	to	the	Required	Server.
Downloading	Packages	to	the	Target	PC
When	a	Deployment	Tool	Package	is	installed	on	the	Target	PC	the	same
directory	structure	mirrors	the	Application	Server,	that	is	the	directory	structure
is	created	like:
<sysdir>\x_apps\[Client	App	Name]\
When	the	Application	is	launched	on	the	Target	PC:

A	connection	to	the	Application	Server	is	established
The	Windows	Installer	GUID	of	the	current	application	is	queried	for	its
current	state	–	which	Package	and	Patches	are	installed,	and	this	is	sent	to
the	Application	Server	to	determine	if	there	is	a	later	MSI	available	(only	the

its:LANSA015.CHM::/lansa/depb3_0060.htm
its:LANSA022.CHM::/lansa/dt_0235.htm
its:LANSA015.CHM::/lansa/depb3_0050.htm
its:lansa022.chm::/lansa/dt_0880a.htm

latest	available	is	used),	and	if	not,	whether	there	is	a	later	Patch	available.	
Any	new	Version	or	Patch	is	downloaded.		Any	Package	that	previously
failed	to	install	correctly	will	be	attempted	to	download	and	install	again.
Even	if	a	new	Version	and	multiple	Patches	are	needed	to	be	installed,	only	1
is	installed	at	a	time.	The	application	is	then	launched	and	the	Application
Server	checked	again	to	see	if	there	is	a	Patch	available.	(It	also	checks	for
an	MSI	first,	but	as	that	has	just	been	installed,	it	can	only	possibly	find	a
Patch	to	install.)
Patches	are	installed	in	numerical	order.	Every	Patch	is	installed	that
matches	the	MSI.
When	the	Client	receives	the	MSI	or	MSP,	it	is	launched	using	SETUP.EXE
and	SETUP.BAT	and	then	x_run	terminates.	This	always	happens.
MSI	files	will	behave	just	like	a	manual	install.	That	is,	there	will	be	a	user
interface	requiring	user	interaction.	If	a	silent	install	is	required	then	a
custom	SETUP.TXT	file	needs	to	be	provided	on	the	Application	Server	to
pass	/quiet	or	/passive	to	the	MSI.
MSP	files	automatically	run	with	/passive.	Again	you	can	override	this	by
supplying	a	custom	SETUP.TXT	file.

Downloading	DLLs	to	the	Target	PC
When	DLLs	are	installed	on	the	Target	PC,	the	same	directory	structure	that
exists	on	the	Deploying	System	and	the	Application	Server,	is	created.	That
gives	a	directory	structure	like	this:
<sysdir>\[x_ppp]\
Each	DLL	installed	on	the	Target	PC	is	downloaded	to	this	directory	and	will
override	any	existing	Packages	of	the	same	DLL.

12.5	Application	Server	Development	Life	Cycle
Recommendations
Sections	Deployment	Tool	Environment	and	Application	Servers	raise	the	need
to	have	a	separate	Application	Server	from	the	Deployment	System.	This	is	to
prevent	production	systems	being	immediately	updated	as	soon	as	a	package	has
been	built	and	before	there	has	been	time	to	test	the	deployment.	But	how	does
this	work	in	practice?	What	steps	are	involved	in	producing	and	testing	a
deployment	in	a	controlled	manner?
The	crux	of	the	issue	is	that	the	package	contains	the	connection	details	for	the
Application	Server.	Thus	there	can	only	be	one	Application	Server	for	an
application.	But	two	separate	places	are	needed	to	go	to	for	Test	and	Production.
How	can	it	be	varied?
For	the	first	install	only,	the	tester	needs	to	specify	on	the	MSI	command	line
either:

a	different	application	server	or
a	different	dummy	test	application	name.

Note	that	specifying	an	x_run	parameter	on	the	MSI	command	line	not	only
changes	it	for	the	install,	but	it	also	changes	the	value	for	when	the	application
is	executed.	Subsequent	executions	of	the	application	will	continue	to	use	the
same	mechanism	to	access	the	correct	packages	on	the	correct	application
server.
Option	(1)	-	a	different	Application	Server
This	option	is	only	available	from	Version	13.2	onwards.
An	Application	Server	is	required	on	both	the	Deployment	System	and	a
separate	Production	System.	Both	Application	Servers	may	be	on	the	same
machine.
The	application	LANSAAPP	is	created	on	the	Deployment	System	with	the
Application	Server	name	set	to	the	Production	Application	Server.	That	is,	the
default	behaviour	is	to	use	the	Production	Application	Server.
Two	sets	of	route	information	need	to	be	included	in	the	application:	one	for	the
Production	Application	Server	and	one	for	the	Test	Application	Server.
The	tester	will	then	execute	the	first	MSI	using	the	command	line.	Change	to
the	directory	where	the	MSI	is	located	and	type	<MSI	filename>
ASLU=TEST.	For	example:

its:lansa022.chm::/Lansa/dt_445.htm
its:lansa022.CHM::/LANSA/dt_0295.HTM

LANSAAPP_1.2.3_en-us.msi	ASLU=TEST
Once	the	package	has	been	fully	tested,	it	is	copied	to	the	Production
Application	Server.
Option	(2)	-	a	different	Dummy	Test	Application	Name
The	Application	Server	is	separate	from	the	Deployment	System.	The
application	LANSAAPP	is	created	on	the	Deployment	System	and	copied	to
the	Application	Server	but	not	to	the	x_apps\LANSAAPP	directory.	A
separate	directory	is	created,	say	x_apps\TEST	and	all	the	packages	are	put	in
there.	The	same	ones	as	are	in	the	production	directory	x_apps\LANSAAPP,
any	setup.txt	file	plus	the	new	package.	If	there	is	a	setup.txt	file	it	will	need	to
also	specify	APPL=TEST.
Only	one	set	of	route	information	is	required	as	there	is	just	the	one	Application
Server.
The	tester	will	then	execute	the	first	MSI	using	the	command	line.	Change	to
the	directory	where	the	MSI	is	located	and	type	<MSI	filename>
APPL=TEST.	For	example:

LANSAAPP1.2.3_en-us.msi	APPL=TEST
Once	the	package	has	been	fully	tested,	its	copied	to	the	Production	directory	on
the	Application	Server.	For	example,	to	x_apps\LANSAAPP.

12.6	Just	In	Time	Upgrade	Recommended	Settings

Upgrade
Option	(UPGD
=)

New	Versions/Patches	is	the	only	functional	option	for
Upgrade	Option.	The	latest	Version	and	all	Patches	not
currently	installed	on	the	Client	will	be	downloaded	and
installed.
The	alternate	value	of	No	Upgrade	means	there	is	no	JIT
processing.

Application
name
	(APPL=)

The	APPL	parameter	is	included	in	the	generated	X_START
file	for	the	Package.		The	Application	Name	is	automatically
included	for	this	argument.

Locked
upgrades
	(_upgrade.lck
file)

During	the	install	of	a	Package,	a	temporary	file
_UPGRADE.LCK	is	created	in	the	root	directory	of	the
application	being	processed.
This	file	prevents	different	installations	of	the	Application
from	running	the	upgrade	simultaneously	on	the	same	PC.	
The	file	is	removed	when	the	upgrade	is	completed.
If	a	lock	is	found	during	the	upgrade,	the	application
upgrade's	behavior	will	be	governed	by	the	settings	for	the
Connection	failure	action	(UPCF=)	parameter.
Refer	to	the	Connection	failure	action	(UPCF=)	in	Just	in
Time	Options	for	details	of	this	parameter.

	

its:Lansa022.chm::/lansa/dt_0235.htm

12.7	Troubleshooting	Just	in	Time
An	error	occurred	while	checking	for	application	updates.

This	is	the	most	common	error	encountered	during	a	Just	in	Time
Upgrade	and	can	be	displayed	for	a	number	of	reasons.
The	first	step	to	determining	the	cause	is	to	examine	the	X_ERR.LOG
file	on	both	the	JIT	Application	Server	and	the	Client	PC.	In	most	cases
this	will	point	out	exactly	what	the	issue	is,	and	corrections	can	be	made
to	resolve	the	issue.
Refer	to	the	following	more	specific	issues	for	more	information.

	

Cannot	connect	to	JIT	Application	Server.

There	are	a	few	different	areas	to	check	in	this	case:
1.	Check	that	the	User	(ASUS)	and	Password	(ASPW)	supplied	are
correct	or	Trusted	Connection	is	selected	(ASTC).

Ensure	the	User	is	valid	as	a	login	to	the	JIT	Application	Server.
Double-check	the	User	and	Password	was	entered	correctly.
Check	the	User	and	Password	values	in	the	application	start	file	on
the	Client	PC.

2.	Check	the	Host	Route	entry	exists	and	is	correct	in	the	lroute.dat	file
using	the	LANSA	Communications	Administrator.

Ensure	LANSA	Communications	has	been	deployed	to	the	Client
PC.
An	appropriate	entry	should	exist	in	the	lroute.dat	file	on	the	Client
PC.		Check	the	LU	name,	Qualified	Name	and	port	number	are
correct.
Check	the	listener	is	started	on	the	JIT	Application	Server	and
listening	on	correct	port.

3.	Check	the	network	configuration
Verify	the	IP	Address	being	used
Correct	any	network	errors.

	

Errors	encountered	during	the	update	checking.

1.	Check	the	JIT	Application	Server	has	a	valid	SuperServer	license
installed
2.	Check	the	directory	structure

The	directory	structure	in	the	x_apps	directory	on	the	JIT
Application	Server	is	very	important	and	should	not	be	modified.
The	x_apps\<application	name>	folder	should	include	the	MSI	or
MSP	files	associated	with	the	application	Versions	and	Patches	to
be	deployed.

	

	

New	Package	not	downloaded	as	expected.

1.	Use	the	Windows	Control	Panel	Add	or	Remove	Programs	to
determine	the	Application	installed.	Compare	that	with	the	MSI	or	MSP
files	available	on	the	Application	Server.

	

12.8	Tracing	Just	in	Time	Connections
If	issues	still	exist	with	your	Just	in	Time	deployment	after	reviewing	the	12.7
Troubleshooting	Just	in	Time,	the	next	step	is	to	configure	tracing	to	obtain
more	detailed	information.
To	configure	tracing:

Step How	to	do	it

1.		Enable
Tracing	on	the
Client
Application

Add	the	following	X_RUN	commands	to	the	X_LANSA.PRO
or	X_START	start	file:
ITRO=Y
ITRL=4
ITRM=999999

or 	

Enable
tracing
globally

Add	the	following	X_RUN	values	to	the	system	environment
variables

2.	Enable
Tracing	on	the
Listener	on
the
Application
Server

Click	the	Log	and	Trace	button.	

In	the	Trace	panel,	select	the	Select	Basic	button	and	then	click
OK.
Stop	and	re-start	the	Listener.
Close	the	Communications	Administrator.

3.	Retry	the
connection

If	the	connection	continues	to	fails,	select	No	when	prompted
to	continue.
The	Listener	trace	files	can	be	located	in	the	Connect	directory
on	the	JIT	Application	Server.		Locate	the	log	file	x_lansa.trc.
The	Client	Application	trace	files	should	be	located	in	the
X_LANSA	directory	or	%temp%	directory	as	x_tracennn.txt
files.

4.	Contact
LANSA
Support

Contact	LANSA	support	and	forward	your	trace	files	and	any
detailed	information	relevant	to	your	Just	in	Time	setup.

5.	Remove
tracing

Remove	all	tracing	to	avoid	overheads	when	running	the
application.

	

12.9	Upgrading	to	Version	13	using	JIT	Upgrade
The	first	step	is	to	upgrade	the	Application	Server	to	Version	13.	It	will	continue
to	provide	V12	Package	upgrades	to	the	V12	clients	until	a	V13	Application	is
created	and	set	up.	It	is	critical	that	the	Application	name	of	the	V13	Package	is
the	same	as	the	V12	Package.	This	will	occur	automatically	if	you	convert	your
V12	Application	to	V13	using	the	feature	provided	in	the	Deployment	Tool.	
Refer	to	Convert	a	Pre-V13	Template	for	more	information.
When	the	MSI	file	has	been	placed	in	the	correct	location,	the	next	time	the	V12
Client	connects,	the	V13	server	will	detect	that	a	V13	Package	is	available	and
download	that.	It	will	no	longer	download	V12	packages.
Behind	the	scenes,	the	V13	server	always	supplies	a	SETUP.EXE	to	the	client
that	executes	the	MSI	file.	This	allows	for	customization	of	MSI	parameters,	but
is	crucial	to	the	V12	Client	being	able	to	install	the	V13	Package.	This	is
because	the	V12	Client	only	executes	SETUP.EXE.	Further,	if	the	Client	is	V12,
then	the	file	x_apps\<Application	name>\boot\cab2\build.dat	is	transferred	to
the	Client.	This	causes	the	V12	Client	to	execute	SETUP.EXE	because	the	build
number	inside	(e.g.	4051)	is	later	than	the	one	the	Client	is	using	(for	example
4050).

its:lansa022.chm::/lansa/VLDTool14_0010.htm

12.10	Customizing	Just	In	Time	Package	Upgrade
Why	would	you	want	to	customise	the	JIT	Package	Upgrade?

To	provide	command	line	parameters	to	the	MSI	to	alter	its	behaviour,	like
a	silent	install,	or	logging	parameters.
To	have	different	users	on	different	upgrade	paths.	Say,	some	users	receive
a	Patch	but	others	don't.
To	provide	your	own	SETUP.EXE	to	do	whatever	you	want.

A	SETUP.EXE	is	shipped	with	LANSA	13.0	in	the	execute	directory.	This
program	runs	a	file	called	SETUP.BAT	from	the	same	directory	as	SETUP.EXE
is	executed	from.
An	example	of	the	automatically	generated	SETUP.BAT	for	a	patch	is:
"TESTMSI2_v2.3.4.2_en-us.msp"		/passive
if	errorleve	1	exit	start	""
"C:\TestMSI2\X_Win95\X_Lansa\Execute\X_Run.exe"
	UPCD=815F0A60-A9EC-41AB-A755-858C28F00C2B
LANG=ENG	PROC=	FUNC=	FORM=VL_DEM20
PART=DEX	USER=QPGMR	INDB=N	INST=MSI
UPSI=YES	ASLU=*LOCAL	ASUS=	ASPW=
ASTY=*OTHER	ASCT=	ASST=	UPCF=PROMPT
UPDF=PROMPT	ASKC=NO	ASTC=YES
DBUT=MSSQLS	DBII=TESTMSI2	DBUS=	PSWD=
INIT=	PSTY=	PSLU=	PSUS=QPGMR	PSPW=	PSEA=
PSCC=	PSDB=	PSDL=	PSWM=	PSEP=	PSCT=	PSST=
PSTC=NO	APPL=TESTMSI2	DBID=	PSNM=	UPGD=Y
UPTP=P	CMTH=T	XENV=X_DOLLAR_SIGN_CHAR=$
XENV=X_HASH_SIGN_CHAR=#
XENV=X_AT_SIGN_CHAR=@
XENV=X_GEN_AT_SIGN_CHAR=@
The	first	line	is	the	MSI	or	MSP	to	be	run	-	in	this	case:
"TESTMSI2_v2.3.4.2_en-us.msp"	/passive.
The	Application	Server	generates	this	line.	The	second	line	contains	the
parameters	of	the	client	that	is	running	JIT.	This	line	is	added	by	the	Client
before	calling	SETUP.EXE.	This	launches	the	application	after	the	installation
of	the	Patch	completes.	SETUP.EXE	uses	the	API	ShellExecute	to	execute
SETUP.BAT	using	the	verb	'open'.

Patches	use	/passive	because	they	don't	have	any	questions	to	answer,
so	why	require	the	user	to	enter	anything?	The	/passive	option
displays	a	progress	bar	so	the	user	gets	feedback	that	something	is
happening.

When	setup.txt	has	/passive	specified,	an	MSI	install	will	NOT	start
x_run	after	installing.
/passive	prevents	the	Exit	Dialog	being	used	and	thus	x_run	is	not
started.	The	end	user	will	need	to	restart	the	application	manually.

So	that's	the	automatic	operation.
If	the	file	"SETUP.TXT"	exists	in	the	Application	directory,	the	contents	are
appended	to	the	MSI/MSP	filename,	for	example:

	/L*V+	"C:\package.log"

The	parameters	specified	are	MSI	Public	Properties.	Please	refer	to
msiexec.exe	Command-Line	Options	for	details.

Any	valid	MSI/MSP	parameters	can	be	used	here.	This	particular	example	logs
everything,	appending	to	the	file	c:\package.log.	This	is	the	first	level	of
customisation	-	add	parameters	to	the	MSI	command	line.	The	previous
SETUP.BAT	would	therefore	become:
"TESTMSI2_v2.3.4.2_en-us.msp"		/L*V+
"C:\package.log"
if	errorlevel	1	exit	
start	""
"C:\TestMSI2\X_Win95\X_Lansa\Execute\X_Run.exe"
	UPCD=815F0A60-A9EC-41AB-A755-858C28F00C2B
LANG=ENG	PROC=	FUNC=	FORM=VL_DEM20
PART=DEX	USER=QPGMR	INDB=N	INST=MSI
UPSI=YES	ASLU=*LOCAL	ASUS=	ASPW=
ASTY=*OTHER	ASCT=	ASST=	UPCF=PROMPT
UPDF=PROMPT	ASKC=NO	ASTC=YES
DBUT=MSSQLS	DBII=TESTMSI2	DBUS=	PSWD=
INIT=	PSTY=	PSLU=	PSUS=QPGMR	PSPW=	PSEA=
PSCC=	PSDB=	PSDL=	PSWM=	PSEP=	PSCT=	PSST=
PSTC=NO	APPL=TESTMSI2	DBID=	PSNM=	UPGD=Y

its:lansa022.chm::/Lansa/VLDTool19_0030.htm

UPTP=P	CMTH=T	XENV=X_DOLLAR_SIGN_CHAR=$
XENV=X_HASH_SIGN_CHAR=#
XENV=X_AT_SIGN_CHAR=@
XENV=X_GEN_AT_SIGN_CHAR=@
The	JIT	Application	Server	checks	if	there	is	an	x_apps	directory	for	the
requested	Application.	If	there	is,	then	an	MSI	will	be	downloaded.	If	not,	the
x_pkgs	directory	is	used.	This	allows	for	the	support	of	pre-13	clients	by	a	13.0
server.
The	server	then	checks	if	SETUP.EXE	is	in	the	Application	directory.	If	it	isn't
then	the	copy	in	the	LANSA	execute	directory	is	transferred	to	the	Client.	This
is	another	level	of	customisation	available.	A	developer	can	put	whatever
SETUP.EXE	file	they	like	in	the	Application	Directory	and	it	will	be
transferred	to	the	client	and	executed.	For	example	it	could	be	a	self-extracting
executable	as	a	way	to	get	other	files	downloaded	to	the	client.
Of	course,	your	custom	SETUP.EXE	will	need	to	run	SETUP.BAT	if	it	is
also	going	to	install	the	MSI/MSP	and	then	launch	the	application.	Support	by
LANSA	of	this	configuration	only	extends	to	delivering	the	custom
SETUP.EXE	to	the	Client.	What	it	does	after	that	you	will	need	to	support
yourselves.
So,	the	files	transferred	to	the	Client	are:

SETUP.EXE
SETUP.BAT
<The	next	MSI/MSP	file	that	the	client	does	not	have	installed>

Further,	if	the	Client	is	pre-13.0,	then	the	file	x_apps\<Application
name>\boot\cab2\build.dat	is	created	in	the	server's	LANSA	temporary
directory	(usually	%TEMP%)	and	this	is	transferred	to	the	Client.	This	causes
the	pre	13.0	Client	to	execute	SETUP.EXE	because	the	build	number	inside
(e.g.	4051)	is	later	than	the	one	the	Client	is	using	(e.g.	4050).
The	Application	Server	can	have	an	Application	Directory	that	does	not	match
the	original	Application	name.	The	Client	needs	to	install	the	first	MSI
specifying	the	new	name	as	an	MSI	property.	This	will	set	the	APPL	value	to
the	new	one	and	attach	to	JIT	using	the	new	APPL.	The	Server	will	generate	a
SETUP.BAT	that	specifies	APPL	on	the	MSI	command	line.
APPL	is	a	runtime	only	value	that	can	ONLY	be	set	on	the	MSI	command	line.
It	is	only	necessary	when	you	have	a	JIT	server.	The	1st	install	of	the	application

needs	to	set	the	value	too.	That	is	done	by	supplying	the	3	files	(SETUP.EXE,
SETUP.TXT	and	the	MSI)	that	the	JIT	provides	to	the	Client	and	just	getting
the	Client	to	run	SETUP.EXE	rather	than	the	MSI.	This	is	the	recommended
approach	to	ensure	consistency	of	APPL	value.	An	alternative	is	to	provide
instructions	for	the	Client	to	run	the	MSI	using	msiexec.exe	and	the	property
value	to	pass.	Or	a	batch	file	can	be	provided.
The	server	is	set	up	by	creating	the	new	APPL	directory	name.	Copy	the	MSI
file	from	the	original	directory.	JIT	will	now	correctly	not	find	any	updates	to
install	on	the	client.	Copy	MSP	files	in	as	required	and	JIT	will	install	them	the
next	time	the	application	is	executed.	There	must	be	at	least	one	MSI	or	MSP	in
the	directory	otherwise	a	750	error	is	output	to	X_ERR.LOG	on	the	server
(0750	-	Application	testmsi3	not	found	or	no	packages	in
applpkg.dat)
In	summary,	the	customisation	available	is:
1.		Create	SETUP.TXT	yourself	and	specify	the	MSI	parameters,	including	all
the	X_RUN	parameters	exposed	as	MSI	Properties.

2.		The	SETUP.EXE	can	be	replaced	and	perform	whatever	install	the
developer	desires	

3.		Use	a	different	Application	Name	than	the	one	it	was	built	with	-	for	multi-
client	support	at	different	Package	levels.	For	example,	Application	built	as
LANSAInventoryControl	could	be	put	in	directories
Customer1InventoryControl	and	Customer2InventoryControl.	These
can	then	be	maintained	at	different	levels	even	though	they	are	running
exactly	the	same	software.	They	can	also	be	given	different	Patches	too.

Example	setup.txt	files
1.		/qb
Displays	a	progress	dialog	only	for	both	MSI	and	MSP	installs	and	no
confirmation	dialog.	Thus	the	installs	happen	automatically	without	any	user
interaction.	MSI	installs	will	use	the	settings	from	the	previous	install.

2.		/l*vx	%TEMP%\InstallLog.txt
Diagnostic	log	file	output	to	user's	temporary	directory.

3.		/qf
Displays	a	full	user	interface	which	overrides	the	default	Patch	behaviour	of
/passive	and	also	overrides	the	Silent	Install	setting	inside	the	MSI/MSP.

	

13.	Deployment	Templates
Deployment	Templates	allow	you	to	define	default	settings	and	their	appearance
and	save	them	to	be	used	as	the	basis	for	a	new	Package.	Almost	every	subset	of
a	Package's	options	and	settings	can	be	defined	in	a	template.		However,	certain
areas,	such	as	Package	dependencies,	cannot	be	retained	in	a	template	as	they
pertain	to	specific	application	or	Package	information.
Why	use	deployment	templates?

If	you	are	deploying	using	the	same	deployment	scenario	repeatedly,	saving
the	initial	Package	as	a	template	and	then	using	this	template	to	create
subsequent	Packages	saves	time	and	ensures	consistency	in	the	deployment
options	and	settings.
By	using	templates,	you	can	greatly	limit	the	amount	of	information
displayed	on	the	Package	Control	Panel	-	thus	reducing	the	amount	of	time	it
takes	to	define	or	assemble	a	new	Package.	You	can	specify	that	an	option	is
hidden	from	view,	not	allowed	to	be	changed,	or	be	visible	and	editable.	This
means	that	there	may	only	be	a	handful	of	options	to	select	and	some	of
these	options	may	be	highlighted	as	"must	be	considered".

A	number	of	predefined	templates	are	supplied	with	the	Deployment	Tool.	
These	are	described	in	13.5	Supplied	Deployment	Templates.

Also	see
13.1	Create	a	Deployment	Template	or	13.3	Convert	a	Pre-V13	Template
13.2	Review,	Change	or	Delete	a	Deployment	Template
13.4	Deployment	Template	Options	&	Settings

13.1	Create	a	Deployment	Template
There	are	three	different	ways	to	create	a	deployment	template.

Step How	to	do	it

1a.
Manually
define	a
Deployment
Template

Selecting	the	Templates	menu	on	the	Main	Window.
From	the	Template	Maintenance	request	a	new	template	 	on
the	toolbar	or	from	the	File	menu.

OR 	

1b.	Copy	a
Package	as
a
Deployment
Template

When	you	have	created	a	Version	or	Patch	to	suit	your
deployment	scenario,	you	can	use	this	as	the	basis	for	a
deployment	template.
To	do	this,	with	the	Version	or	Patch	open	in	the	Control	Panel,
select	the	Save	as	Template	command	from	the	File	menu.

OR 	

1c.	Convert
a	pre-V13
Template

If	you	created	your	own	template	in	an	earlier	version	of	LANSA
these	can	be	converted	to	V13	Templates.
To	do	this,	select	the	Convert	a	per-V13	Template	command
from	the	main	Deployment	Tool	window.
Important	–	Do	NOT	convert	any	of	the	LANSA	supplied
templates	as	these	have	been	redesigned	in	Version13	and	many
of	the	old	templates	are	no	longer	relevant.

2.	Create
the
Deployment
Template

The	New	Template	dialog	will	be	opened	to	define	the	basic
template	properties.

Template	Name
Enter	a	name	for	the	Application	in	eight	characters	or	less.	The
first	character	must	be	an	alphanumeric	character	and	the	name
cannot	contain	embedded	blanks.
Template	Description
Enter	a	description	that	will	enable	you	to	easily	identify	this
template	in	the	list	of	templates.
Press	OK	when	complete.	The	Template	Control	Panel	will	be
opened	as	shown	in	13.4	Deployment	Template	Options	&
Settings.

	

13.2	Review,	Change	or	Delete	a	Deployment	Template
To	review,	change	or	delete	an	existing	Deployment	Template,	open	the
Template	Maintenance	dialog	from	the	Deployment	Tool's	main	window.		Select
the	template	you	want	to	work	with	in	the	list	of	templates	then	either	Open	the
template	 	to	review	or	modify	the	definition	or	delete	the	template	 	as
required.
An	alternate	way	to	open	a	template	is	to	simply	double-clicking	the	template	in
the	list	of	templates.

	A	Package	based	on	a	template	retains	an	association	with	the
template	after	it	is	created.		This	may	restrict	the	options	available	for
selection	and	modification.			Refer	to	Template	associated	with
Package	for	more	information.

its:LANSA022.CHM::/lansa/l4wdplb3_0280.htm

13.3	Convert	a	Pre-V13	Template
If	you	developed	templates	in	a	pre-V13	LANSA	environment,	these	templates
can	be	converted	to	be	usable	in	Version	13.		In	the	main	window,	select	the
Convert	a	pre-V13	Template	option	from	the	Tools	menu	to	locate	and	convert	a
template	defined	in	an	earlier	version	of	LANSA.

Before	converting	any	template	ensure	you	have	understand	The	Deployment
Model	and	the	changes	in	the	deployment	paradigm	in	Version	13.
Important	–	Do	NOT	convert	any	of	the	LANSA	supplied	templates	as	these
have	been	redesigned	in	Version13	and	many	of	the	old	templates	are	no	longer
relevant.
The	conversion	interface	is	a	three	step	process:

1.		Enter	path	where	template	to	be	converted	exists
2.		Select	a	template	to	convert.
3.		Confirm	and	modify	details	as	required.

When	details	are	complete	select	OK	to	convert	the	selected	Template.

its:lansa022.chm::/lansa/VLDTool1_0010.htm

Template Template	is	pre-filled	from	the	copied	Template	and	cannot	be
modified.

Description Enter	a	Template	description	to	detail	what	this	template
implements.

13.4	Deployment	Template	Options	&	Settings
When	you	create	a	template	or	open	an	existing	template	you	will	see	a	window
that	looks	very	similar	to	the	Control	Panel.	However	some	options,	like	Files
with	Special	Processing,	are	not	included	in	the	template	definition	as	they	are
Package	specific	information	which	cannot	be	generalized	in	any	meaningful
way.
If	you	have	created	a	template	by	copying	an	existing	Version	or	Patch	the
13.4.1	Template	Installation	Options	displayed	will	reflect	the	base	settings	and
options.		You	may	choose	to	review	the	template	and	hide	or	highlight	specific
options.
To	understand	how	values	and	appearance	are	controlled	by	templates	refer	to
13.4.2	Template	Option	Values	and	Appearance.

its:\Lansa022.chm::/lansa/dt_0200b.htm

13.4.1	Template	Installation	Options

Click	on	an	area	in	the	screen	picture	to	jump	to	the	details.

Select	the	Installation	subsets	from	the	main	area	of	the	window	and	the	settings
from	the	toolbar	to	specify	the	options	you	wish	to	use	for	your	template.	For
further	details	about	these	options	please	refer	to	the	description	of	the
equivalent	option	in	the	Control	Panel.

			

The	options	on	this	window	have	been	grouped	so	that,	for	the	majority	of
groups,	a	whole	group	can	be	ignored	and	default	values	assumed	if	they	are	not
relevant	to	your	Application	install.	For	example,	if	the	Application	is	not	using
the	Just	in	Time	facilities,	the	defaults	can	be	accepted,	and	you	can	then	ignore
the	whole	Just	In	Time	group.	Similarly,	if	you	are	not	deploying	to	a	local
database,	the	Database	options	can	be	ignored.
	
	

its:\Lansa022.chm::/lansa/dt_0200b.htm

	
	
	
	
	
	

13.4.2	Template	Option	Values	and	Appearance
Each	option	in	the	Control	Panel	can	be	configured	to	have	a	specific	default
value	and	to	indicate	how	or	even	if	the	option	is	displayed.
Similarly	each	subset	of	options	in	the	Control	Panel	can	be	configured	to
indicate	how,	or	even	if,	the	whole	subset	is	displayed.	Refer	to	13.4.3	Template
Subset	Appearance	for	more	information.

The	default	values	for	installation	options	are	enclosed	in	square
brackets;	for	example,	Language	(LANG=)	has	a	default	value	of
[Current].			DO	NOT	enclose	your	installation	option	values	in
square	brackets.		If	you	do,	they	will	be	ignored	and	Deployment
Tool's	default	value	will	be	used	for	that	option.

	

Step How	to	do	it

1.	Modify
Template
Installation
Option(s)

Create	or	open	a	template.
Double	click	a	Template	Installation	Option	to	review	the
definition.
For	example,	double	click	the	option	Form	to	Execute:

Refer	to	13.4.1	Template	Installation	Options	for	information	on
specific	options.

2.	Set	up
the	Values
default

The	Values	tab	allows	you	to	specify	a	default	value	to	be
applied	for	an	option	when	the	template	is	used.
If	the	option	is	a	free-form	entry,	like	Form	to	execute
(FORM=),	an	edit	box	will	be	displayed.	Change	the	value	to	the
default	value	you	want	to	be	applied	each	time	the	template	is
used	to	create	a	Version.

In	this	case	you	can	also	decide	if	you	want	this	value	to	be
prompted,	thus	enabling	it	to	be	changed	during	the	installation
process.		Where	relevant,	some	options	also	include	Prompt
during	X_START	for	selection.
Prompt	during	Installation
When	installing	the	Package	using	Windows	Installer	you	will	be
prompted	to	enter	or	confirm	the	value	for	this	option.
Prompt	during	X_START
When	running	the	application	using	an	X_RUN	(typically	from	a
desktop	icon)	you	will	be	prompted	for	X_START	values	when
the	application	is	launched.		The	values	entered	will	be	used	as
default	values	on	the	X_START	prompt.
When	the	option	has	a	predefined	list	of	values,	a	series	of	radio
button	is	displayed	in	the	values	tab.

3.	Review
the
Appearance
default

The	Appearance	tab	allows	you	to	control	how	the	option	or
subset	of	options	will	be	displayed	when	the	template	is	used.
Option	will	be	visible	and	editable
The	option	will	behave	as	normal	and	will	be	selectable	and
editable.
Hide	option
The	toolbar	icon	for	the	option	will	be	disabled.	Any	value
associated	with	the	option	in	the	Template	will	be	applied	to	the
Package	but	access	to	these	values	will	be	denied.
Prevent	changes
The	option	can	be	seen	but	cannot	be	changed.		Any
corresponding	Toolbar	icon	will	be	available	on	the
Package/Template	Control	Panel	toolbar,	but	the	OK	button	in
the	dialog	will	be	disabled.	Any	changes	attempted	will	be
ignored.
Option	is	required
The	required	option	is	displayed	with	a	gray	background	to
indicate	that	it	should	be	considered	before	the	Package	is	built.

4.	Save
Values	and
Appearance
settings

To	save	the	Values	and	Appearance	settings	simply	close	the
dialog.		The	template	interface	will	indicate	the	appearance
applied	to	each	option.

5.	Set	up
Template
Subset
Appearance

Refer	to	13.4.3	Template	Subset	Appearance	for	more
information.

6.	Set	up
other
Package
settings	and
options

Set	up	any	other	default	information	required	in	the	template	by
reviewing	the	various	options	and	settings	available	in	the
toolbar.
For	example,	the	template	may	be	set	to	use	your	Company's
Icon	as	the	default	Application	Icon.
Refer	to	Package	Options	and	Settings	for	more	information.

7.	Save	the
Deployment
Template

Save	the	template	definition	using	the	Save	 	option	on	the
toolbar	or	File	menu	or	by	using	the	shortcut	key	Ctrl	+	S.
You	can	also	Save	and	Exit	in	one	step	from	the	File	menu	or

its:LANSA022.CHM::/lansa/dt_0180.htm

using	the	shortcut	key	Ctrl	+	E.
To	Exit	without	saving	use	the	Exit	option	from	the	File	menu,
the	shortcut	key	Alt	+	X	or	just	close	the	Template	Control	Panel
dialog.

	

13.4.3	Template	Subset	Appearance
Each	subset	of	options	in	the	Control	Panel	can	be	configured	to	indicate	how,
or	even	if,	the	subset	is	displayed	when	the	template	is	used	to	generate	a
Version.			This	is	a	very	useful	way	to	remove	any	subsets	of	information	from
the	screen	if	they	are	not	relevant	for	the	template	implementation.
There	are	eight	subsets	of	options	on	the	Template	Control	Panel:

Required	Execution	Parameters
Communications
Just	in	Time
SuperServer
Database
Desktop	Settings
Upgrade	Options
Installation	Dialogs

To	configure	the	appearance	of	a	template	subset:

Step How	to	do	it

1.	Modify
Template
Subsets

Open	or	create	a	template.	Double	click	a	Template	Subset	to
review	the	definition.
For	example,	you	could	configure	the	whole	subset	Required
Execution	Parameters:

2.	Review
the
Appearance
default	for
the	Subset

The	Appearance	tab	allows	you	to	control	how,	and	even	if,	the
subset	of	options	will	be	displayed	when	the	template	is	used.
Option	will	be	visible	and	editable
The	subset	of	options	will	behave	as	normal.	All	options,	unless
modified	at	an	individual	level,	will	be	selectable.
Hide	option
The	subset	of	options	will	not	be	displayed	when	the	template	is
used	to	create	a	Version.	Any	values	for	specific	options	in	this
subset	will	be	applied	to	the	Package	but	will	not	be	available	to
be	reviewed	or	changed.

Prevent	changes
Options	can	be	seen	but	cannot	be	changed.
The	corresponding	subset	will	be	visible	in	the	Package
Control	Panel,	but	the	associated	options	will	be	disabled.	Any
changes	attempted	will	be	lost.

4.	Save
Appearance
settings

To	save	the	Appearance	settings	simply	close	the	dialog	and
save	the	template.

5.	Modify
other
template
settings	and
options

Refer	to	13.4.2	Template	Option	Values	and	Appearance.

	

13.5	Supplied	Deployment	Templates
The	Deployment	Tool	is	supplied	with	a	number	of	pre-defined	Templates	to
help	you	create	Packages	efficiently	and	accurately.		If	you	modify	any	of	these
templates	it	is	recommended	to	save	them	with	a	different	name	to	avoid	your
changes	being	overridden	during	future	upgrades	of	LANSA.
The	supplied	templates	are:
13.5.1	XACTIVEX	-	Publish	LANSA	Component	wrapped	as	ActiveX
13.5.2	XALONE	-	Standalone	system
13.5.3	XAPPSV	-	Set	up	an	Application	Server	without	database	for	Just	In
Time	Package	serving
13.5.4	XAPPSVDB	-	Set	up	an	Application	Server	with	database	for	Just	In
Time	Package	serving
13.5.5	XCLT400	-	Client	application	using	SuperServer	to	connect	to	an	IBM	i
data	server
13.5.6	XCLT400X	-	Client	application	using	SuperServer	to	connect	to	a
RDMLX	IBM	i	data	server
13.5.7	XCLTBIF	-	Client	application	using	SuperServer	Built-In	Functions	to
connect	to	the	data	server
13.5.8	XCLTJIT	-	LANSA	SuperServer	application	updated	by	Just	in	Time
13.5.9	XCLTOTH	-	SuperServer	application	connected	to	an	"Other"	data	server
13.5.10	XEXPORT	–	Export	internal	definitions
13.5.11	XOTHOBJ	–	Deploy	Non-LANSA	Objects
13.5.12	XSRVNET	-	Set	up	a	Network	server
13.5.13	XSRVOTH	-	Set	up	an	"Other"	data	server
13.5.14	XTRNAPP	–	Translation	Application	with	Object	Details	for
Translation
13.5.15	XTRNEXP	–	Export	Object	Details	for	Translation
13.5.16	XWAMENB	–	Web	Enable	for	WAM	Application

13.5.1	XACTIVEX	-	Publish	LANSA	Component	wrapped	as
ActiveX
This	template	assists	with	the	deployment	of	Visual	LANSA	components	to	be
exposed	as	ActiveX	controls	on	Microsoft	Windows.		It	is	assumed	the	target
PC	does	not	have	Visual	LANSA	installed.
Several	of	the	option	groups	have	been	hidden	as	this	template	is	designed
solely	to	publish	an	ActiveX	Component.
The	crux	of	this	template	is	contained	in	the	Commands	to	Execute	After
Installation	and	selection	of	option	Deploy	with	Component	Support.	
The	after	Package	installation	command	processing

Register	the	LANSA	Component	for	ActiveX	usage	on	the	target	system
Automatically	create	the	session	configuration	file	required	for	it	to	be
executed.

		The	after	commands	must	be	amended	to	correctly	identify	the
ActiveX	DLL	and	modify	the	configuration	file	settings	as	required
before	un-commenting	the	associated	commands.

The	Package	settings	include:
Deploy	with	Component	Support
Deploy	with	Server	Support	(or	just	include	x_dll.dll	as	a	Non-LANSA
object)

If	the	ActiveX	functionality	requires	database	access	you	should	also	consider
settings:

Deploy	System	definition
Deploy	Partition	definitions
Deploy	Execution	Database	Support.

		Deploy	with	Component	Support	includes	X_ActiveX.dll	and
X_RunDllServer.dll	however	these	DLLs	must	be	registered	in	order
for	LANSA	ActiveX	to	be	used.		This	step	is	detailed	in	the	After
Install	Commands	in	the	template.		If	installing	under	UAC	an
Administrative	install	is	required	to	register	the	DLLs.

Other	settings	must	be	configured	as	required.

Refer	to	Deploy	LANSA	Components	published	for	ActiveX	for	more
information.

its:\lansa022.chm::/lansa/l4wdplb3_0210.htm

13.5.2	XALONE	-	Standalone	system
Use	this	template	to	deploy	an	application	intended	to	run	as	a	standalone
Windows	application	with	its	own	database.		Create	one	application	containing
all	the	objects	required	to	execute	the	application.
The	Package	settings	include:

Deploy	System	definition
Deploy	Partition	definitions
Deploy	Execution	Database	Support
Deploy	with	Component	Support

In	addition:
DBMS	Type	(DBUT	=)	is	set	as	MSSQLS.		Modify	this	setting	as	required.

13.5.3	XAPPSV	-	Set	up	an	Application	Server	without	database
for	Just	In	Time	Package	serving

		An	alternative	approach	for	setting	up	an	Application	Server	is	to
install	LANSA	on	the	Just-in-Time	Application	Server.		This	will
automatically	set	up	the	listener	which	is	the	basic	element	required	on
the	Application	Server	in	this	scenario.

This	template	has	the	basic	settings	that	are	required	to	create	a	Version	that	will
be	used	to	set	up	an	Application	Server	with	no	database	for	Just	In	Time
Package	serving.
This	template	will	create	a	simple	listener	Package	to	be	deployed	to	an
Application	Server.		It	is	not	a	Just	in	Time	Package	but	is	used	to	set	up	the	JIT
Application	Server.
It	is	not	intended	to	include	any	objects	but	must	be	deployed	with	the

Communications	Administrator	to	install	correctly	and	facilitate	connection	to
the	data	server.		A	desktop	icon	is	created	to	access	the	LANSA
Communications	Administrator.
Install	Listener	is	set	as	Yes.
Process	to	Execute	(PROC)	is	set	as	*licenses	to	launch	the	Server	Licenses
interface	as	a	reminder	to	request	and	apply	appropriate	licenses	to	the	JIT
server.
X_RUN	Argument	RNDR=X	to	ensure	Server	Licenses	interface	is	executed	as
DirectX	application.
The	Package	settings	include:

Deploy	to	Client	without	database
Deploy	with	Component	Support
Deploy	LANSA	Communications
Deploy	Server	Support

This	template	replaces	XDLLSRV.
Refer	to	Application	Servers	and	Deploy	LANSA	Communications	for	more
information.

its:LANSA022.CHM::/lansa/dt_0295.htm
its:LANSA022.CHM::/lansa/l4wdplb2_0065.htm

13.5.4	XAPPSVDB	-	Set	up	an	Application	Server	with	database
for	Just	In	Time	Package	serving

	An	alternative	approach	for	setting	up	an	Application	Server	is	to
install	LANSA	on	the	Just-in-Time	Application	Server.		This	will
automatically	set	up	the	database	and	listener	which	are	the	basic
elements	required	on	an	Application	Server.

This	template	has	the	basic	settings	required	to	create	a	Version	to	set	up	an
Application	Server	with	a	database	for	Just	In	Time	Package	serving.		It	is	an
extension	of	the	XAPPSV	template.
This	Package	is	not	essentially	a	Just	in	Time	Package	but	is	used	to	set	up	the
JIT	Application	Server.	
Install	Listener	is	set	as	Yes.
Process	to	Execute	(PROC)	is	set	as	*licenses	to	launch	the	Server	Licenses
interface	as	a	reminder	to	request	and	apply	appropriate	licenses	to	the	JIT
server.
X_RUN	Argument	RNDR=X	to	ensure	Server	Licenses	interface	is	executed	as
DirectX	application.
The	Package	settings	include:

Deploy	System	definition
Deploy	Partition	definitions
Deploy	Execution	Database	Support
Deploy	with	Component	Support
Deploy	LANSA	Communications
Deploy	Server	Support

The	database	options	include:
Database	Type	of	MSSQLS.

The	user	is	prompted	to	select	and	confirmed	the	database	details.
Typically	the	Communication	Administration	file	(lroute.dat)	will	be	included
with	this	Package	to	facilitate	connection	to	the	data	server.
This	template	replaces	XDLLSDB.
Refer	to	Application	Servers	and	Deploy	LANSA	Communications	for	more
information.

its:LANSA022.CHM::/lansa/dt_0295.htm
its:LANSA022.CHM::/lansa/l4wdplb2_0065.htm

		Application	servers	do	not	require	a	database	to	be	installed
UNLESS	you	intend	to	run	the	application	on	the	Application	server
itself.

13.5.5	XCLT400	-	Client	application	using	SuperServer	to
connect	to	an	IBM	i	data	server

	The	recommended	template	is	XCLTBIF	and	use	BIFs	to
connect	to	the	data	server.

This	template	provides	the	basic	settings	required	to	create	a	Version	for	an
application	that	will	be	connecting	to	an	IBM	i	data	server	using	LANSA
SuperServer.		The	template	is	designed	for	an	application	with	no	local
database.
The	Server	Type	is	set	as	IBM	i	and	cannot	be	changed.
The	Package	settings	include:

Deploy	to	Client	without	local	database
Deploy	System	definition
Deploy	Partition	definitions
Omit	Object	definitions
Deploy	with	Component	Support
Deploy	LANSA	Communications

Nominate	a	Server	name	to	connect	to	and	ensure	this	exists	in	the
Communication	Administration	file.		Typically	the	Communication
Administration	file	(lroute.dat)	will	be	included	with	this	Package	to	facilitate
connection	to	the	data	server.
Ensure	the	Client	to	Server	(PSCT)	and	Server	to	Client	(PSST)	tables	are	set
up	correctly.
For	further	guidance	refer	to	SuperServer	Application	connecting	to	an	IBM	i		

its:LANSA022.CHM::/lansa/dt_1410.htm

13.5.6	XCLT400X	-	Client	application	using	SuperServer	to
connect	to	a	RDMLX	IBM	i	data	server

	The	recommended	template	is	XCLTBIF	and	use	BIFs	to
connect	to	the	data	server.

This	template	is	a	variation	of	the	XCLT400	template	with	the	Server	Type	set
as	RDMLX	IBM	i.
	

13.5.7	XCLTBIF	-	Client	application	using	SuperServer	Built-In
Functions	to	connect	to	the	data	server
This	template	is	designed	to	deploy	a	LANSA	application	that	will	connect	to	a
remote	data	server	using	the	SuperServer	Built-In	Functions.	
The	SuperServer	options	group	has	been	hidden	as	this	template	is	designed	to
use	the	SuperServer	Built-In	Functions	in	the	LANSA	application	to	connect	to
the	server.	Some	other	option	groups	have	also	been	hidden.
The	Package	settings	include:

Deploy	to	Client	without	local	database
Deploy	System	definition
Deploy	Partition	definitions
Omit	Object	Definitions
Deploy	with	Component	Support
Deploy	LANSA	Communications

Typically	the	Communication	Administration	file	(lroute.dat)	will	be	included
with	this	Package	to	facilitate	connection	to	the	data	server.

13.5.8	XCLTJIT	-	LANSA	SuperServer	application	updated	by
Just	in	Time

	The	recommended	template	is	XCLTBIF	and	use	BIFs	to
connect	to	the	data	server.

This	template	has	the	basic	settings	for	a	Just	in	Time	upgrade	to	apply	Package
updates	to	the	application	client.
The	Package	settings	include:

Deploy	with	Component	Support
Deploy	LANSA	Communications

Just	in	Time	Options	include:
Upgrade	Option	(UPGD)	of	New	Versions/Patches
Application	Server	Type	of	Non-IBM	i

		The	initial	Version	is	typically	installed	on	the	application	server
then	each	target	PC	would	install	the	Application	from	this	location.	
Subsequent	Version	or	Patches	will	be	automatically	installed	on	the
target	PC	from	the	Application	server	when	the	Application	is
launched.

13.5.9	XCLTOTH	-	SuperServer	application	connected	to	an
"Other"	data	server

	The	recommended	template	is	XCLTBIF	and	use	BIFs	to
connect	to	the	data	server.

This	template	is	a	variation	of	the	XCLT400	template	with	the	Server	Type	set
as	non-IBM	i	and	Server	Exception	Arguments	(PSEA)	are	highlighted	and
should	be	provided	as	required.
Refer	to	PSxx	Server	Parameters	for	more	information.

its:lansa022.chm::/lansa/l4wdplb3_0345.htm

13.5.10	XEXPORT	–	Export	internal	definitions
This	template	is	designed	to	export	the	internal	object	definitions	(fields,
components,	files	etc...)	to	be	imported	into	another	LANSA	repository.		This
template	will	not	generate	an	MSI	file.
All	the	install	options	have	been	hidden	as	Packages	cannot	be	installed.
The	Package	settings	include:

Deploy	to	Development	System
Omit	the	Application	compiled	objects

13.5.11	XOTHOBJ	–	Deploy	Non-LANSA	Objects
This	template	has	the	basic	settings	that	are	required	to	create	a	Version	to
deploy	non-LANSA	objects	to	a	specified	location.		This	template	may	be
useful	for	setting	up	a	Web	Server	with	required	objects	such	as	images,
cascading	stylesheets	and	scripts	if	these	files	are	not	defined	as	External
Resources.
The	Package	settings	include:

Deploy	with	Component	Support
These	Package	settings	are	the	minimum	requirements	to	install	the	Version.
Most	Package	options	are	not	relevant	for	installing	non-LANSA	objects.	

13.5.12	XSRVNET	-	Set	up	a	Network	server
This	template	has	the	basic	settings	that	are	required	to	create	a	Version	for
installing	an	Application	on	a	Network	Server.
The	Package	settings	include:

Deploy	System	definition
Deploy	Partition	definitions
Deploy	Execution	Database	support
Deploy	Execution	add-ons
Deploy	with	Component	Support

In	addition:
DBMS	Type	(DBUT	=)	is	set	as	MSSQLS.		Modify	this	setting	as	required.
Install	Listener	is	set	as	YES
Display	DBMS	Dialog	is	set	as	YES	to	allow	set	up	of	database

This	template	replaces	XNETSRV.

13.5.13	XSRVOTH	-	Set	up	an	"Other"	data	server

		The	simplest	way	to	set	up	a	non-IBM	i	Data	Server	is	to	install
Visual	LANSA.

This	template	has	the	basic	settings	that	are	required	to	create	a	Version	for	an
Application	that	will	be	used	to	set	up	a	Non-IBM	i	data	server.		This	type	of
server	would	have	SuperServer	clients.
The	Package	settings	include:

Deploy	System	definition
Deploy	Partition	definitions
Deploy	Execution	Database	support
Deploy	Execution	add-ons
Deploy	with	Component	Support
Deploy	LANSA	Communications
Deploy	Server	Support
Install	Listener	is	set	as	YES
Display	DBMS	Dialog	is	set	as	YES	to	allow	set	up	of	database

In	addition:
DBMS	Type	(DBUT	=)	is	set	as	MSSQLS.		Modify	this	setting	as	required.
Review	other	database	settings	which	may	be	required.

This	template	replaces	XSSVSRV.

13.5.14	XTRNAPP	–	Translation	Application	with	Object	Details
for	Translation
Use	this	template	to	deploy	the	LANSA	supplied	Translation	Tool	as	a
standalone	application.		Include	repository	objects	requiring	translation	then
distribute	to	translators.
This	template	is	designed	to	produce	a	standalone	alone	application	for	the
LANSA	Translation	Tool.		There	is	no	requirement	for	a	database.
The	Package	settings	include:

Deploy	to	Client	without	local	database
Omit	Object	Definitions
Deploy	with	Component	Support
Deploy	with	Translation	List
Omit	the	Application	Compiled	Objects

Other	options	values:
Form	to	execute	is	set	to	XPFTRLT	(the	LANSA	supplied	DirectX	form	to
launch	the	application)
DBMS	Type	is	set	as	no	database
X_RUN	value	RNDR=X	supplied	to	execute	application	as	DirectX.

		Modify	the	selected	Languages	to	include	the	base	language
and	any	languages	requiring	translation.

Refer	to	Translating	a	LANSA-developed	Application	for	more	information.

its:lansa022.chm::/lansa/dt_1050.htm

13.5.15	XTRNEXP	–	Export	Object	Details	for	Translation
Use	this	template	to	export	the	details	of	objects	to	be	translated.			Include
repository	objects	requiring	translation	then	distribute	the	generated	text	file	to
translators.	
This	template	is	designed	to	produce	a	standalone	alone	application	for	the
LANSA	Translation	Tool.		There	is	no	requirement	for	a	database	or	any
package	options	to	be	selected.
The	Package	settings	include:

Deploy	to	Development	System
Omit	Object	Definitions
Deploy	with	Translation	List
Omit	the	Application	Compiled	Objects

		Modify	the	selected	Languages	to	include	the	base	language	and
any	languages	requiring	translation.

Refer	to	Translating	a	LANSA-developed	Application	for	more	information.

its:lansa022.chm::/lansa/dt_1050.htm

13.5.16	XWAMENB	–	Web	Enable	for	WAM	Application
Use	this	template	to	web	enable	the	application	runtime	environment	to	support
a	WAM	based	application.
The	Package	settings	include:

Deploy	System	definition
Deploy	Partition	definitions
Deploy	Execution	Database	Support
Deploy	with	Component	Support
Deploy	with	Web	Environment	Support
Deploy	LANSA	Communications
Deploy	Server	Support

In	addition:
Install	Listener	is	set	as	Yes.
Install	Web	Administrator	is	Yes.
Install	IIS	Plugin	is	Yes.
Install	Web	Images	is	Yes.
Process	to	Execute	(PROC)	is	set	as	*licenses	to	launch	the	Server	Licenses
interface	as	a	reminder	to	request	and	apply	appropriate	licenses	to	the	JIT
server.
X_RUN	Argument	RNDR=X	to	ensure	Server	Licenses	interface	is	executed
as	DirectX	application.
Setup	Database	(SUDB)is	Yes.
DBMS	Type	(DBUT)	is	set	as	MS	SQL	Server.		Modify	this	and	related
database	settings	as	required	to	ensure	internal	definitions	are	imported.

	
	
	
	

14.	Translate	a	LANSA-developed	Application
Typically	LANSA	application	development,	or	any	type	of	application
development	for	that	matter,	is	performed	in	a	single	language.		For	multilingual
applications	the	task	of	translating	the	application	into	the	appropriate	languages
must	be	completed	and	all	translations	incorporated	into	the	application	before	it
is	distributed	to	users.
To	facilitate	the	translation	process	the	LANSA	Application	Deployment	Tool
provides	a	simple	mechanism	to	package	the	LANSA	objects	requiring
translations.		The	package	is	then	distributed	to	the	appropriate	translators	with
a	simple	translation	interface	provided	to	simplify	the	process.	

Further	information
14.1	Translate	using	standalone	Translation	Application
14.2	Translate	with	Visual	LANSA	development	environment
14.3	Load	Translations	for	Appropriate	Language

14.1	Translate	using	standalone	Translation	Application
14.1.1	Deploy	Translation	Application	including	Objects	to	Translate
14.1.2	Install	Translation	Application	and	Translate	Objects

14.1.1	Deploy	Translation	Application	including	Objects	to
Translate

Step How	to	do	it

1.	Create
an
application

Create	an	Application	to	contain	the	objects	to	be	translated.	

2.	Create	a
Version	(or
Patch)

Create	a	Version	using	the	template	XTRNAPP	if	translator
requires	a	standalone	translation	application.
This	template	sets	the	Deploy	with	Translation	List	in	the
Settings,	which	indicates	the	LANSA	internal	definitions	for	the
selected	Objects	are	supplied	with	the	Package.
This	template	is	designed	to	install	the	resulting	package	as	a
standalone	application.		Refer	to	XTRNAPP	–	Translation
Application	with	Objects	details	for	Translation	for	more
information.
A	Patch	can	be	created	based	on	an	existing	Version	created	with
this	template.		Note	–	if	translator	already	has	the	Translation
Application	you	may	choose	to	provide	only	the	objects
requiring	translation.		Refer	to	14.2.1	Deploy	Objects	to
Translate	for	more	information.

3.	Add
objects	for
translation

Use	the	Select	Repository	Objects	 	dialog	to	add	LANSA
objects	requiring	translation	to	the	Package.

4.	Add
languages
to	be
translated

Select	the	Languages	 	to	be	translated.		Include	the	base
language	to	be	used	as	source	for	translation	and	any	language
requiring	translations.

its:lansa022.chm::/lansa/VLDTool6_0050.htm
its:lansa022.chm::/lansa/VLDTool14_0015.htm

5.	Save
package

Save	 	the	Package.

6.	Build
package

Build	 	the	Version	or	Patch.

7.
Distribute
Application
to
Translators

Distribute	the	Version	or	Patch	 	to	your	translator(s)	by
providing	the	generated	MSI	(or	MSP)	file.

	

The	files	are	translated	as	described	in	14.1.2	Install	Translation	Application	and
Translate	Objects.

14.1.2	Install	Translation	Application	and	Translate	Objects

Step How	to	do	it

1.	Install
the
translation
application

Run	the	provided	MSI	(or	MSP)	file	to	install	the	translation
application	on	the	translator's	system.
The	install	will	automatically	launch	the	application	on

completion.
The	application	can	be	launched	from	the	desktop.

2.	Load	the
object
translation
information

When	the	application	is	executed	the	Language	selection	dialog	is
automatically	launched.		Select	to	load	translation	from,	by
default,
C:\	Program	Files	\<Company>\<Application
Description>\X_Win95\X_Lansa\X_Apps\
<Application>\<Application>\Source\Tlfiles
or	nominate	a	location	where	the	translation	files	are	available.
If	this	utility	has	not	been	used	before	the	default	location	for
translation	files	will	be	the	partition	source	directory	associated
with	the	installed	Package.
The	translation	languages	available	for	selection	is	based	on	the
languages	selected	when	the	package	was	created.
Note	-	If	the	tl*.txt	translation	files	are	not	located	at	the
nominated	location	an	error	is	issued	and	no	languages	are
available	for	selection.		Change	the	Load	from	path	to	the
location	of	the	translation	files	or	move	the	translation	files	to	the
specified	location	and	attempt	to	open	files	again.		The	translation
files	must	include	the	file	TLLANGS.txt.
Press	OK	to	proceed	with	the	translation	process.

Base	language

The	Base	language	is	normally	the	language	used	when
developing	the	application.	The	language	entered	is	used	to	locate
the	file	on	which	you	will	base	your	translations.	The	values	from
this	file	are	displayed	in	the	upper	half	of	the	Translate	Object
Details	dialog.
Translation	Language
Select	the	language	for	the	new	translations.	The	languages
available	for	translation	are	based	on	the	source	LANSA	system
and	are	provided	in	translation	file	TLLANGS.txt.

3.	Translate
Repository
Object
details

If	you	have	included	LANSA	objects	for	translation,	simply	work
through	the	list	of	Objects	in	the	left	of	the	window.

For	each	selected	Object,	the	text	in	the	base	language	will	be
shown	in	the	top	section	of	the	window	and	the	entries	requiring
translation	are	shown	in	the	bottom	section.
If	the	translated	description	is	longer	than	the	base	language
description	the	translation	will	be	highlighted	in	red.
Save	 	your	translations	periodically	as	a	safeguard.

4.	Save After	you	have	translated	all	the	objects	Save	 	the	translations

your
translations

and	Close	 	the	files.
If	you	attempt	to	Close	the	file	without	Saving	first	your
translations	will	be	lost.	You	will	be	warned	if	there	are	any
unsaved	changes	and	given	the	option	to	save	them.

5.	Zip	the
translations

Optionally	zip	the	tl*.txt	translation	files.

6.	Return
translation
files

The	generated	zip	file	TLFILES.zip	or	unzipped	tl*.txt
translation	files	should	be	returned	for	incorporation	into	the
development	environment.

	

Integration	of	the	files	back	into	the	development	environment	is	described	in
14.3	Load	Translations	for	Appropriate	Language.

14.2	Translate	with	Visual	LANSA	development	environment
14.2.1	Deploy	Objects	to	Translate
14.2.2	Run	the	Translation	Application	and	Translate	Objects

14.2.1	Deploy	Objects	to	Translate

Step How	to	do	it

1.	Create	an
application

Create	an	Application	to	contain	the	objects	to	be
translated.	

2.	Create	a
Version	(or
Patch)

Create	a	Version	using	the	template	XTRNEXP	if
translator	has	access	to	Visual	LANSA	environment
This	template	sets	the	Deploy	with	Translation	List	in	the
Settings,	which	indicates	the	LANSA	internal	definitions
for	the	selected	Objects	are	supplied	with	the	Package.
This	template	is	designed	to	install	the	resulting	Package
into	an	existing	LANSA	system.			Refer	to	XTRNEXP	–
Export	Object	Details	for	Translation	for	more
information.
A	Patch	can	be	created	based	on	an	existing	Version
created	with	this	template.

3.	Add	objects
for	translation

Use	the	Select	Repository	Objects	 	dialog	to	add	LANSA
objects	requiring	translation	to	the	Package.

4.	Add	languages
to	be	translated

Select	the	Languages	 	to	be	translated.		Include	the	base
language	to	be	used	as	source	for	translation	and	any
language	requiring	translations.

its:Lansa022.chm::/lansa/VLDTool6_0050.htm
its:lansa022.chm::/lansa/VLDTool14_0020.htm

5.	Save	package Save	 	the	Package.

6.	Build	package Build	 	the	Version	or	Patch.

7.	Distribute	the
objects	to	be
translated	to
Translators

Distribute	the	Version	or	Patch	 	to	your	translator(s)	by
providing	the	files	generated	in	<sysdir>\X_APPS\
<Application>\X_PKGWRK\
<Version>\Build\source\tlfiles.

	

The	files	are	translated	as	described	in	14.1.2	Install	Translation	Application	and
Translate	Objects.

14.2.2	Run	the	Translation	Application	and	Translate	Objects

Step How	to	do	it

1.	Launch
Translation
Application

Log	on	to	Visual	LANSA.		Ensure	you	have	authority	to	edit
objects	to	be	imported	or	log	in	as	security	officer.

Select	Translate	 	from	the	Tools	ribbon.

2.	Load	the
object
translation
information

When	the	interface	is	launched	the	Language	selection	dialog	is
automatically	launched	and	will	attempt	to	load	the	translation
files	from	the	last	location	used.		If	this	utility	has	not	been	used
before	the	default	location	for	translation	files	will	be	the
partition	source	directory.
The	translation	languages	available	for	selection	is	based	on	the
languages	selected	when	the	package	was	created.
Note	-	If	the	tl*.txt	translation	files	are	not	located	at	the
nominated	location	an	error	is	issued	and	no	languages	are
available	for	selection.		Change	the	Load	from	path	to	the
location	of	the	translation	files	or	move	the	translation	files	to	the
specified	location	and	attempt	to	open	files	again.		The
translation	files	must	include	the	file	TLLANGS.txt.
Press	OK	to	proceed	with	the	translation	process.

Base	language
The	Base	language	is	normally	the	language	used	when
developing	the	application.	The	language	entered	is	used	to	locate
the	file	on	which	you	will	base	your	translations.	The	values	from
this	file	are	displayed	in	the	upper	half	of	the	Translate	Object
Details	dialog.
Translation	Language
Select	the	language	for	the	new	translations.	The	languages

available	for	translation	are	based	on	the	source	LANSA	system
and	are	provided	in	translation	file	TLLANGS.txt.

3.	Translate
Repository
Object
details

If	you	have	included	LANSA	objects	for	translation,	simply
work	through	the	list	of	Objects	in	the	left	of	the	window.

For	each	selected	Object,	the	text	in	the	base	language	will	be
shown	in	the	top	section	of	the	window	and	the	entries	requiring
translation	are	shown	in	the	bottom	section.
If	the	translated	description	is	longer	than	the	base	language
description	the	translation	will	be	highlighted	in	red.
Save	 	your	translations	periodically	as	a	safeguard.

4.	Save
your
translations

After	you	have	translated	all	the	objects	Save	 	the	translations
and	Close	 	the	files.
If	you	attempt	to	Close	the	file	without	Saving	first	your
translations	will	be	lost.	You	will	be	warned	if	there	are	any
unsaved	changes	and	given	the	option	to	save	them.

5.	Zip	the
translations

Optionally	zip	the	tl*.txt	translation	files.

6.	Return
translation
files

The	generated	zip	file	tlfiles.zip	or	unzipped	tl*.txt	translation
files	should	be	returned	for	incorporation	into	the	development
environment.

	

Integration	of	the	files	back	into	the	development	environment	is	described	in

14.3	Load	Translations	for	Appropriate	Language.

14.3	Load	Translations	for	Appropriate	Language

Step How	to	do	it

1.	Receive
translations
back	from
the
translator

The	translator	will	return	a	tlfile.zip	file	or	a	group	of	tl*.txt	files
for	processing	and	integration	into	the	repository.
If	zip	file	is	received,	unzip	to	extract	the	associated	tl*.txt	files.	
Ensure	the	file	TLSRCCE.txt	is	included	with	returned	files	(or	use
the	original	from	the	sent	Version).

2.	Load	the
translations

Select	the	Import	Translations	from	the	Tools	ribbon	to	import	the
translations	returned	after	translation	work	has	been	completed.

Enter	the	location	of	the	tl*.txt	files	and	the	language	of	the
translations	to	be	loaded	back	into	the	LANSA	internal	database.

3.	Verify
translations
loaded
correctly

The	translations	will	be	loaded	back	into	the	active	partition.
Check	the	object	definitions	to	verify	that	translations	for	the
selected	language	have	been	correctly	loaded	into	the	active
partition.

	

	
	

15.	Review	your	Deployment	Package
After	you	have	built	and	distributed	a	Package	you	may	need	to	review	the
contents	and	definition	of	the	Package.		There	are	several	ways	to	do	this:

If	you	used	Cross-referencing	in	conjunction	with	your	Object	Selection	you
can	review	the	full	list	of	objects	included	in	the	Package	using	the	15.1
Objects	included	in	Package.
To	search	one	or	all	Applications	to	check	if	an	object	was	included	in	the
Package	use	the	15.2	Search	Application	feature	from	the	Options	Menu.
If	you	want	to	review	the	options	you	will	need	to	create	a	new	version	or
patch.

15.1	Objects	included	in	Package

After	a	Package	has	been	Built	 	select	the	Package	in	the	Main	Window,
then	use	the	Included	Objects	tool	on	the	toolbar	or	the	Objects	option	from
the	Package	menu.

During	the	Build	step,	the	repository	objects	included	in	the	Package	definition
are	used	in	combination	with	the	cross-reference	settings	to	determine	the
complete	set	of	objects	to	be	included	in	the	Package.
The	first	tab	in	the	Object	included	in	Package	dialog,	Selected	Objects,	details
all	the	objects	specifically	selected	for	inclusion	in	the	Package.

The	second	tab,	Cross	Referenced	Objects,	details	all	objects	included	in	the
Package,	that	is	objects	specifically	selected	for	inclusion	in	the	Package	and
any	cross	referenced	objects	included	in	the	Package	when	it	is	built.

Use	the	Save	to	File	option	 	on	the	Selected	Objects	tab	or	Cross	Referenced
Objects	tab	to	create	a	text	file	of	the	objects.
The	Delete	option	 	can	be	used	remove	objects	from	the	Package.		If	any
objects	are	removed	from	the	Package,	the	Package	will	need	to	be	re-built.
When	a	Package	is	modified	and	saved,	any	cross-referenced	objects	previously
included	in	the	Package	will	be	removed.		The	cross-referenced	objects	will	be
regenerated	when	the	Package	is	re-built.
If	you	re-build	a	Package	(without	re-saving	the	definition)	you	have	the	option
to:

re-build	the	list	of	cross-referenced	objects
or

use	the	cross-reference	object	list	generated	during	the	last	build.
If	any	of	the	objects	associated	with	the	Package	have	changed	it	is
recommended	that	you	rebuild	the	cross-referenced	object	list.

15.2	Search	Application

In	the	main	window,	select	Search	Application	from	the	Options	Menu.

Use	Search	Application	to	check	if	an	object	was	previously	deployed,	and	if	so
in	what	Package	or	Packages.

To	commence	a	search,	enter	any	string	you	want	to	search	for	in	the	object
name	then	nominate	whether	to	search	all	applications	or	a	specific	application.	
Press	the	search	button	 	to	start	the	search.		Result	displayed	in	the	list	can	be
saved	to	a	text	file	by	using	the	Save	button	 .
Initiate	a	new	search	by	changing	the	search	criteria	and	pressing	the	search
button	again.
	

15.3	Convert	pre-V13	Package
If	you	have	a	complex	package	defined	in	a	pre-V13	LANSA	environment,	this
package	can	be	converted	and	used	as	the	basis	for	a	new	application	in	Version
13.		In	the	main	window,	select	Convert	a	pre-V13	Package	from	the	Tools
menu	to	locate	and	convert	a	package	defined	in	an	earlier	version	of	LANSA.

If	the	previous	application	consisted	of	multiple	packages,	whether	designed	to
be	installed	to	separate	locations	(e.g.	separate	client	and	server	packages)	or
consecutively	(e.g.	LANSA	execution	environment	in	one	package	and
Application	objects	in	a	second	package),	select	the	package	which	includes	the
most	complexity	for	conversion.		Any	additional	information	can	be	added	to
the	new	Version	after	the	package	conversion	is	complete.
Important:	Unless	your	pre-V13	Package	includes	complex	commands,	a	large
selection	of	objects	or	other	complexity	which	would	be	time	consuming	to	re-
enter	it	may	be	easier	to	bypass	the	conversion	and	build	a	new	version	from
scratch	using	an	appropriate	template.		This	will	make	it	easier	to	maintain	as
the	template	will	restrict	the	options	available	in	the	user	interface.
The	conversion	interface	is	a	four	step	process:

1.		Enter	the	path	where	the	package	to	be	converted	exists.
2.		Select	a	package	to	convert.
3.		Confirm	details	and	enter	an	appropriate	Company.
4.		When	details	are	complete	select	OK	to	convert	the	selected	package.

Path
	

Start	by	selecting	the	location	of	the	package	to	be	converted.	
This	should	be	in	the	format	…
\X_WIN95\X_LANSA\X_PKGS\

Select
Package	to
Convert

If	the	Package	Root	Directory	entered	contains	any	Package
definitions	a	tree	of	the	Application	and	Package	will	be
displayed.
Select	the	Package	to	be	converted.		Details	from	the	selected
Package	will	be	used	to	pre-fill	the	Version	details.

ApplicationApplication	is	pre-filled	from	the	copied	Application	and	cannot
be	modified.

Description Enter	an	Application	Description.		This	Application	description
will	be	used	when	installing	and	uninstalling	the	Application.
Refer	to	Create	an	Application	for	more	information.

Company Required.

its:lansa022.chm::/lansa/l4wdplb3_0065.htm

Select	a	Company	to	be	associated	with	this	Application.		To
define	a	Company	use	the	ellipse	button	to	access	the	Company
Maintenance.	The	Company	and	associated	details	are	used
during	the	build	processing	as	well	as	during	installation	and
uninstallation	of	the	Application.
Refer	to	Set	up	Company	Details	for	more	information.

Version
Number

Enter	a	Version	number.		This	will	be	the	first	Version	of	this
Application	built	using	the	new	Deployment	Model.		Refer	to	The
Deployment	Model	for	more	information.

Description Enter	a	Package	description	or	use	the	pre-filled	description.

	

	

its:lansa022.chm::/lansa/VLDTool3_0010.htm
its:lansa022.chm::/lansa/VLDTool1_0010.htm

16.	Test	your	Deployment	Package
16.1	Allocate	a	PC	for	building	your	Deployment	Packages		
16.2	Allocate	the	necessary	PCs	for	testing	your	Deployment	Package		
16.3	Troubleshoot	the	Deployed	Application	
	

16.1	Allocate	a	PC	for	building	your	Deployment	Packages
Note:

Do	not	deploy	your	application	objects	directly	from	a	developer's	PC.
Do	not	use	network	clients	for	building	and	deploying	packages.
It	is	strongly	recommended	that	you	do	not	install	the	application	on	the
machine	that	constructs	it.

Dedicate	a	machine	to	assembling	and	building	packages.	This	machine	must
not	be	used	for	developing	or	executing	the	application	being	deployed.	A
dedicated	machine	allows	you	to	test	and	rebuild	Versions	and	Patches	without
inadvertently	including	any	application	modifications.
On	the	dedicated	machine,	install	a	full	version	of	LANSA.	LANSA	refers	to
this	as	the	Deployment	System.
When	development	has	finished,	ensure	that	each	finished	application	is	moved
to	your	Deployment	System.	You	can	then	construct,	or	reconstruct	the	package
from	a	controlled	environment	without	the	risk	of	including	unexpected
changes.

Also	see
16.2	Allocate	the	necessary	PCs	for	testing	your	Deployment	Package
	

16.2	Allocate	the	necessary	PCs	for	testing	your	Deployment
Package
Always	test	your	Package	before	distributing	it	to	customers.		This	can	be	a	time
consuming	task	but	is	essential	to	ensure	a	problem	free	installation.
Test	your	deployment	Package	by	installing	it	onto	any	PC	configuration	you
intend	to	support.
Consider:

testing	on	different	operating	systems
including	a	PC	with	your	minimum	specification
installating	in	different	languages	(if	required)
trying	out	variations	on	the	SETUP	values	which	are	available	to	be
modified	during	installation
testing	variations	of	the	X_START	values	available	when	the	application	is
launched
testing	with	different	DBMS	types	–	Sybase	ASA	and	MS	SQL	Server,	as
applicable
checking	any	user	authorization	that	may	be	required	(both	for	the	deployed
objects	and	the	deploying	environment)
testing	installation	of	your	Package	from	the	medium	or	location	it	will	be
distributed	to	customers	from	(e.g.	from	a	central	server	location	or	on	CD-
ROM).
installing	on	a	network	client.

	The	more	flexibility	you	include	in	your	Package	by	prompting	for
X_START	and	installation	values,	the	more	testing	you	will	be
required	to	perform	to	ensure	the	Package	is	robust	and	complete.

16.3	Troubleshoot	the	Deployed	Application
After	the	deployed	application	has	been	successfully	installed	or	updated,	if	you
encounter	issues	when	attempting	to	run	the	application,	refer	to	the	x_err.log	as
you	would	with	any	other	Visual	LANSA	application.		Specifically	check	for
warning	or	fatal	errors.
The	x_err.log	file	is	automatically	generated	and	updated	when	an	error	occurs,
both	in	the	development	environment	or	when	running	a	LANSA	application.	
Some	useful	information	about	the	x_err.log

All	Visual	LANSA	applications	will	produce	an	x_err.log	when	an	error
occurs.
The	x_err.log	generally	exists	in	the	user's	temp	directory.	However,
depending	on	a	user's	PC	configuration,	it	may	reside	elsewhere.	The	best
method	of	finding	the	x_err.log	is	to	search	your	hard	drive.
New	entries	get	appended	to	the	end	of	the	x_err.log	file.	Over	a	long	period,
this	can	cause	the	x_err.log	file	to	become	quite	extensive.		It	is
recommended	to	periodically	delete	the	x_err.log	file	to	remove	old	entries.
When	using	the	Deployment	Tool,	the	x_err.log	file	will	only	be	found	if	a
LANSA	application	error	occurs	during	Package	creation.		Messages
pertaining	to	the	Package	creation	are	logged	in	a	separate	file	lpcreate.log.	
Refer	to	Package	Build	Log	for	more	information.
In	a	Client/Server	environment,	if	the	application	is	being	run	on	the	client
when	an	error	occurs,	any	associated	information	will	appear	in	a	Fatal	Error
dialog	box.	If	however,	the	X_RUN	is	running	on	a	server	(via	a
CONNECT_SERVER),	the	server	cannot	initiate	a	dialog	on	the	client.	In
this	case	the	details	will	be	logged	into	the	x_err.log	file.

Refer	to	Troubleshooting	in	the	Visual	LANSA	Administrator's	Guide	for	more
information.
	
	

its:Lansa022.chm::/lansa/dt_0590.htm
its:Lansa011.chm::/lansa/l4wadm07_0010.htm

17.	Install	an	Application
After	defining	and	building	a	Version	or	Patch,	it	is	ready	to	be	distributed	for
installation.
There	are	three	mechanisms	used	to	install	Versions	or	Patches	with	the	most
used	options	being:
Windows	Installer	File	Install
Just	in	Time	Install
If	you	encounter	issues	during	the	installation	refer	to	17.4	Troubleshoot	the
Installation.
LANSA	Import	can	also	be	used	to	install	definitions	into	a	LANSA
development	environment.
Note:	A	Windows	Installer	file	will	not	be	generated	if	you	have	nominated	to
Deploy	to	the	Development	Environment.	Refer	to	LANSA	Import	for
instructions	on	how	to	install	definitions	into	a	Development	Environment.

17.1	Windows	Installer	File	Install
When	you	successfully	build	a	Version	an	MSI	file	will	be	produced.	This	will
include	all	the	objects	required	to	install	your	application	whether	it	be	a	server
installation,	a	client	installation,	a	network	client	or	other	variation.
Similarly	if	you	build	a	Patch,	an	MSP	file	will	be	produced.	The	MSP	must	be
installed	on	top	of	an	Application	which	has	previously	been	installed	using	an
MSI	file.	In	the	case	of	a	Patch	install,	only	new	or	modified	objects	will	be
installed.	Any	unmodified	objects	included	in	the	Patch	will	not	be	reinstalled.
Whether	an	object	has	been	modified	is	determined	based	on	the	DLL	File
Version	Number	of	the	shipped	DLL.	Refer	to	Set	DLL	Version	Information	for
more	detail.
The	products	of	the	Deployment	Tool	build	process,	the	MSI	or	MSP	file,	are
automatically	associated	with	the	Microsoft	Windows	Installer	process
(msiexec.exe).	To	start	the	installation,	you	can:

17.1.1	Double-click	the	MSI	or	MSP	file	in	explorer
					or

use	the	17.1.2	msiexec.exe	Command-Line	Options.
All	Deployment	Tool	installations	automatically	log	their	installation	behavior
to	an	MSI*.log	file	in	the	end	user's	defined	%TEMP%	folder,	for	example:
MSI2ce4c.log.
As	well	as	installing	the	Application,	a	standard	Windows	program	menu	folder
will	be	created	for	each	Application	using	the	Company	and	Application
descriptions	as	folder	names.	This	means	that	every	Application	built	with	the
same	Company	details	and	installed	on	the	same	PC	will	be	grouped	together.

17.1.1	Double-click	the	MSI	or	MSP	file	in	explorer

Step How	to	do	it

1.	Deploy
the
Package

Copy	the	generated	MSI	or	MSP	file	to	the	deployment	media	or
appropriate	location.
By	default	the	Application	is	built	at	<sysdir>\X_APPS
The	Version	or	Patch	installer	file	can	be	found	below	this:
<sysdir>\X_PKGS\<application>\

2.	Install
the
Application

Open	Windows	Explorer	and	locate	the	Windows	Installer	File	for
the	appropriate	language.
Double	click	.msi	or	.msp	file	to	execute	it.
The	application	will	now	install.	Follow	the	prompts	and	provide
any	installation	details	required.		When	the	install	is	complete	the
Application	can	be	automatically	started	or	it	can	be	launched
from	the	desktop.

	

17.1.2	msiexec.exe	Command-Line	Options
When	installing	from	a	command-line,	supply	the	MSI	file	name	as	a	parameter
to	the	msiexec.exe	command	at	a	command	prompt.	The	general	format	of	the
command	is:

msiexec	/Option	<Required	Parameter>	[Optional	Parameter]	[Visual
LANSA	Public	Properties]
The	Visual	LANSA	Public	Properties	are	known	to	msiexec	as	Public
Properties.	The	names	of	these	properties	are	displayed	to	the	right	of	the	input
boxes	in	the	installation	dialogs.	For	example	(DBII)	to	the	right	of	Data
Source	Name	in	Setup	the	Local	Database	dialog.
These	Public	Properties	have	the	same	name	as	x_run	parameters	so	they	can	be
easily	matched	up.	All	values	are	specified	the	same	as	for	x_run	except	for
boolean	values.	For	x_run	a	Boolean	is	specified	as	Y	for	true	and	N	for	false.
For	an	msiexec	public	property,	1	is	true	and	0	is	false.	Internally	the	public
property	value	is	mapped	to	what	x_run	expects.	In	fact	when	the	MSI	is	built	in
the	Deployment	Tool	mapping	is	the	other	way	–	from	Y/N	to	1/0.	That's	what
an	MSI	requires.	For	example,	x_run	uses	SUDB=Y	and	msiexec	needs
SUDB=1.
Also	note	that	the	parameters	specified	in	the	JIT	setup.txt	customisation	file	are
Public	Properties.	So	you	need	to	specify	SUDB=1	in	this	setup.txt	file.
msiexec.exe	has	additional	parameters	and	switches	to	alter	its	behavior.	These
include	allowing	unattended,	quiet	and	verbose	modes	of	installation.	The
logging	level	can	also	be	modified	at	parameter	level.
One	of	the	optional	parameters	is	to	specify	public	property	values.	The
LANSA-specific	public	properties	which	may	be	set	on	the	command	line	are
displayed	to	the	right	of	entry	fields	in	the	installation	dialogs	in	brackets,	for
example,	(DBII).	These	codes	may	be	specified	on	the	command	line	to	set	the
Deployment	Tool	application	field	values	such	as	DBII='My	App	DSN',
DBSV=SRV1\SQLEXPRESS	and	DBAS=ACMEDB.
There	is	one	LANSA	public	property	which	is	not	displayed	on	a	dialog	as	it's	a
standard	Windows	Installer	dialog.	That	is	the	installation	Destination	Folder.
The	name	of	this	public	property	is	APPA.
Note	that	when	an	MSI	or	MSP	file	needs	to	be	specified,	sometimes	the	full
path	is	required.	So	it	is	recommended	that	you	always	specify	the	full	path.

Install	Options
										</package	|	/i>	<Product.msi>
										Installs	or	configures	a	product
					/a	<Product.msi>
										Administrative	install	-	Installs	a	product	on	the	network
					/j<u|m>	<Product.msi>	[/t	<Transform	List>]	[/g	<Language	ID>]
										Advertises	a	product	-	m	to	all	users,	u	to	current	user
					</uninstall	|	/x>	<Product.msi	|	ProductCode>
										Uninstalls	the	product
Display	Options
					/quiet
										Quiet	mode,	no	user	interaction
					/passive
										Unattended	mode	-	progress	bar	only
					/q[n|b|r|f]
										Sets	user	interface	level
										n	-	No	UI
										b	-	Basic	UI
										r	-	Reduced	UI
										f	-	Full	UI	(default)
					/help
										Help	information
Restart	Options
					/norestart
										Do	not	restart	after	the	installation	is	complete
					/promptrestart
										Prompts	the	user	for	restart	if	necessary
					/forcerestart
										Always	restart	the	computer	after	installation
Logging	Options
					/l[i|w|e|a|r|u|c|m|o|p|v|x|+|!|*]	<LogFile>
										i	-	Status	messages
										w	-	Nonfatal	warnings
										e	-	All	error	messages
										a	-	Start	up	of	actions
										r	-	Action-specific	records
										u	-	User	requests
										c	-	Initial	UI	parameters
										m	-	Out-of-memory	or	fatal	exit	information

										o	-	Out-of-disk-space	messages
										p	-	Terminal	properties
										v	-	Verbose	output
										x	-	Extra	debugging	information
										+	-	Append	to	existing	log	file
										!	-	Flush	each	line	to	the	log
										*	-	Log	all	information,	except	for	v	and	x	options
					/log	<LogFile>
										Equivalent	of	/l*	<LogFile>
Update	Options
					/update	<Update1.msp>[;Update2.msp]
										Applies	update(s)
					/uninstall	<PatchCodeGuid>[;Update2.msp]	/package	<Product.msi	|
ProductCode>
										Remove	update(s)	for	a	product
Repair	Options
					/f[p|e|c|m|s|o|d|a|u|v]	<Product.msi	|	ProductCode>
										Repairs	a	product
										p	-	only	if	file	is	missing
										o	-	if	file	is	missing	or	an	older	version	is	installed	(default)
										e	-	if	file	is	missing	or	an	equal	or	older	version	is	installed
										d	-	if	file	is	missing	or	a	different	version	is	installed
										c	-	if	file	is	missing	or	checksum	does	not	match	the	calculated	value
										a	-	forces	all	files	to	be	reinstalled
										u	-	all	required	user-specific	registry	entries	(default)
										m	-	all	required	computer-specific	registry	entries	(default)
										s	-	all	existing	shortcuts	(default)
										v	-	runs	from	source	and	recaches	local	package
Setting	Public	Properties
					[PROPERTY=PropertyValue]
	

A	help	dialog	is	displayed	by	msiexec.exe	if	no	options	are	specified	on	the
command-line	or	if	an	error	is	encountered	when	processing	the	command-line.
Sample	installation	commands:

Install	a	Version msiexec.exe	/i	<product>.msi

Administrative	install	of
a	version

msiexec.exe	/a	<product>.msi

Install	a	Patch msiexec.exe	/p	<product>.msp

Install	a	Patch	with
database	updates

msiexec.exe	/p	c:\<product>.msp	SUDB=1

Install	to	a	specific
directory	silently

msiexec.exe	/I	<product.msi>
APPA=c:\MyInstallLocation	/passive

LANSA	Public	Properties	not	documented	on	the	installation	dialogs
EXITDIALOGOPTIONALCHECKBOX Disable	the	Exit	Dialog	start	check

box	so	that	the	application	is	not
started.	If	it	is	set	to	0	the	check
box	is	not	shown.	Also	note	that	the
/passive	command	line	option	and
other	options	that	cause	the	Exit
Dialog	not	to	be	shown,	will	not
start	the	application	either.

For	additional	documentation	about	the	command	line	syntax,	refer	to	the
Windows	Installer	online	resources.

17.1.3	Administrative	Install
If	running	the	installation	with	User	Account	Control	(UAC)	enabled,	tasks
which	require	administrator	privileges	include:

Executing	an	All	Users	installation
Updating	a	local	database

To	perform	an	elevated	installation,	that	is	to	install	applications	or	patches
using	Windows	Installer	on	behalf	of	a	user	who	is	not	a	member	of	the
Administrators	group,	the	installation	must	be	started	from	a	privileged
command	prompt.
If	privileges	are	required	to	install	an	application,	subsequent	Windows	Installer
reinstallations,	repairs	or	uninstalls	of	the	application	must	also	use	elevated
privileges.
For	more	information	on	UAC	refer	to	relevant	Microsoft	documentation.
To	access	a	command	prompt	with	administrator	rights,	select	Run	as
Administrator	option	from	the	Command	Prompt	menu.
From	the	Command	Prompt	window	execute	the	msiexec.exe	command-line
with	the	required	parameters.	For	install,	re-install	and	repair	use	the	/I	option.
For	uninstall	use	the	/x	option.	If	Programs	&	Features	is	used	to	uninstall	then
some	directories	and	files	will	not	be	removed	which	may	be	removed	manually
(this	will	require	elevation).	All	other	changes	to	the	system,	for	example	to	the
registry,	will	still	be	backed	out.
If	the	Windows	Installer	is	executed	under	UAC	but	is	not	indicated	as	an
Administrative	install,	the	install	will	run	as	a	Limited	installation	preventing	an
All	Users	install.

17.1.4	Installation	from	a	Web	Browser
As	the	build	process	generates	a	single	MSI	file	it	is	simple	to	launch	the
Windows	Installer	file	from	a	URL.
Click	the	link	to	download	the	MSI	file	and	install	Application.
If	the	MSI	file	has	been	signed	by	a	validated	digital	certificate	the	following
warning	will	be	bypassed.

17.1.5	SCCM	Integration
As	the	Visual	LANSA	Deployment	Tool	produces	standard	Windows	Installer
MSI	and	MSP	files,	these	files	may	be	integrated	into	Microsoft	Systems	Centre
Configuration	Management	or	Systems	Management	Server	tools.	Both	of	these
products	provide	a	sophisticated	facility	to	distribute	application	software	within
a	corporate	environment	and	provide	an	alternative	facility	to	LANSA's	Just	In
Time	feature.

17.1.6	Version	Installation	Dialogs
The	dialogs	displayed	when	installing	a	Version	(MSI	file)	will	depend	on	the
Options	and	Settings	selected	when	creating	the	package	and	the	install
msiexec.exe	parameters	used	when	running	the	Windows	Installer.
A	Patch	(MSP	File)	only	displays	one	configuration	dialog	which	allows	install
behavior	to	be	modified.	That	is	the	Database	Setup	dialog	and	the	only	option
that	may	be	enabled	is	the	Setup	Database	checkbox.	For	all	but	one	user	of	the
database	they	must	not	check	this	box.	Only	one	user	must	setup	the	database.
This	is	extremely	important.
It	is	possible	to	run	the	Windows	Installer	without	displaying	the	following
dialogs	if	the	install	is	executed	in	quiet	or	passive	mode:

/quiet Quiet	display	option.
The	Windows	Installer	will	run	the	installation	without	displaying	a
user	interface.		No	prompts,	messages	or	dialog	boxes	will	be
displayed	to	the	user.	In	this	mode	the	user	cannot	cancel	the
installation.
	

/passive Passive	display	option.
The	Windows	Installer	will	display	a	progress	bar	to	indicate	that	an
installation	is	in	progress	however	there	will	be	no	prompts	or	error
messages	are	displayed	to	the	user.	In	this	mode	the	user	cannot
cancel	the	installation.

Refer	to	msiexec.exe	resources	for	more	information.

Welcome	Dialog
This	is	a	standard	Windows	Installer	Welcome	Dialog	using	the	Application
description	to	identify	the	Application.		The	Application	Name,	for	example
D20A,	is	important	to	some	aspects	of	the	application	but	the	end	user	will
usually	identify	the	Application	by	its	description.

Press	Next	to	proceed	through	the	install	wizard.

End-User	License	Agreement	Dialog
A	default	End	User	License	Agreement	is	supplied	in	the	directory	…
\X_Apps\X_Wix\Content\license.rtf	.	This	is	provided	as	an	example	only	and
should	be	modified	to	reflect	your	own	licensing	agreement	before	the	Version
or	Patch	is	built.
Alternatively	an	Application	and/or	Language	specific	version	of	the	License
Agreement	can	be	supplied	in	the	Files	with	Special	Processing.	Refer	to	Files
with	Special	Processing	for	more	information.
Accept	the	Licensing	Agreement	terms	and	press	Next	to	proceed	through	the
install	wizard.

Installation	Scope	Dialog
The	Installation	Scope	dialog	allows	the	user	to	choose	to	install	the	product	for
All	Users	or	for	the	Current	User.
By	default,	an	end	user	is	not	afforded	privilege	status	when	operating	under
UAC	conditions	and	therefore	will	only	be	able	to	install	for	the	current	user.
This	will	also	restrict	their	ability	to	install	or	modify	a	database	during	the
installation	process.
To	perform	an	All	Users	installation	when	operating	under	UAC	conditions	the
Application	must	be	installed	from	an	administrative	command	prompt.	Refer	to
Administrative	Install	for	more	information.
Select	the	appropriate	option	and	press	Next	to	proceed	through	the	install
wizard.

Destination	Folder	Dialog
The	Destination	Folder	dialog	uses	the	Application	description	and	Company
description	to	construct	a	default	location	where	the	application	will	be
installed.

For	an	all	user	installation,	Windows	Installer	will	automatically	pre-pend
the	defined	Program	Folder.
For	a	current	user	installation,	Windows	Installer	will	automatically	pre-
pend	the	current	user's	virtual	store.

The	derived	Destination	Folder	can	be	modified	by	entering	the	preferred
location	or	browsing	for	it.	When	the	Application	is	installed:

Special	Files	will	be	installed	in	the	User	sub-folder	and	developer-defined
shortcuts	will	use	this	location	as	their	target.
X_Start	files	will	be	created	in	the	Execute	sub-folder	using	the	Application
code	as	an	extension.	These	files	will	be	associated	with	the	Application	and
double	clicking	them	in	Explorer	will	start	the	application.
Any	Network	Client	MSI	file	will	be	installed	in	the	Execute	sub-folder.

Enter	the	appropriate	destination	folder	and	press	Next	to	proceed	through	the
install	wizard.

Setup	Application	Dialog
This	dialog	will	only	be	displayed	if	the	option	Display	Application	Dialog	is
selected	in	the	Deployment	Tool	options.
The	values	provided	on	this	dialog,	and	whether	they	can	be	modified	is
determined	by	the	options	selected	in	the	Deployment	Tool	interface	when
defining	the	Application.
Any	value	entered	in	the	Startup	Form,	Startup	Process	or	Startup	Function
indicates	the	DLL	to	be	used	to	launch	the	application	on	completion	of	the
wizard.	Only	one	of	these	3	options	should	be	entered.
Refer	to	Required	Execution	Parameters	for	more	information.
Confirm	or	modify	any	values	as	required	then	press	Next	to	proceed	through
the	install	wizard.
	

Setup	Local	Database	Dialog
This	dialog	will	only	be	displayed	if	the	option	Display	DBMS	Dialog	is
selected	in	the	Deployment	Tool	options.	This	dialog	is	only	relevant	when
installing	Applications	with	a	windows	database.
By	default	the	Data	Source	Name	will	be	set	to	the	Application	description	in
the	appropriate	language.
If	the	option	Setup	Database	is	not	checked	database	additions	and
modifications	will	be	bypassed	by	the	install	processing.	Most	installations
which	use	a	database	directly	would	check	this	option.	Exceptions	are		instances
where	multiple	installs	access	the	same	shared	database.	In	such	a	case	it	is	up
to	the	installer	to	check	this	option	in	the	install	dialog	for	the	server	and	leave	it
unchecked	for	the	clients.
The	Setup	Database	and	Upgrade	V12	Database	options	will	only	be	enabled
for	privileged	installation	when	operating	under	UAC.	This	will	require	an
Administrator	to	install	the	first	instance	of	the	Application	to	set	up	the
database.	Non-privileged	users	can	then	install	the	non-database	components	of
the	Application	locally	or	on	their	own	PC	accessing	this	database.
Also	note	the	field	start	file	codes	to	the	right	in	brackets	for	example,	(DBII).
As	well	as	standard	msiexec.exe	parameters	and	switches	such	as	'/i'	and	'/q',
these	code	may	be	specified	on	the	command-line	to	set	the	Deployment	Tool
application	field	values	such	as	DBII='My	App	DSN',
DBSV=SRV1\SQLEXPRESS	and	DBAS=ACMEDB.

	The	values	to	the	right	of	the	input	boxes	are	only	displayed	when
SHOWCODES=1.	They	indicate	the	X_RUN	or	special	values	which
can	be	used	to	set	the	corresponding	parameter	when	executing	the
installation	from	a	command	line	using	msiexec.exe.		For	example,
msiexec.exe	/p	c:\<product>.msp	DBAS=LANSADB
SUDB=1

Confirm	or	modify	any	values	as	required	then	press	Next	to	proceed	through	the
install	wizard.

User	ID	Dialog
This	dialog	is	displayed	when	one	of	these	LANSA	Features	is	installed:	IIS
Plugin,	Web	Support,	or	Java	Service	Manager.
The	Public	Properties	on	this	dialog	have	the	following	names	and	properties:
CREATENEWUSERFORSERVICE	-	New	Installs	default	to	Use	Existing
User.	Upgrades	default	to	Do	Not	Configure.
USERIDFORSERVICE
PASSWORDFORSERVICE
Note	that	none	of	these	properties	are	remembered	between	Install	and	Upgrade.
For	Upgrade	it	is	presumed	that	the	user	has	already	been	created	and	therefore
does	not	need	to	be	done	again.

Web	Sites	for	IIS	Plugin	Dialog
This	dialog	is	displayed	when	the	LANSA	Features	IIS	Plugin	is	installed.
The	Public	Properties	on	this	dialog	have	the	following	names	and	properties:
WEBSITEFORIISPLUGIN	-	formatted	as	<length><website><length>
<website>	For	example,	016Default	Web	Site010Web	Site	2
This	value	sets	the	right	hand	list	box	-	WebSiteSelected.	Only	valid	web	sites
will	be	listed.
WEBSITEFORIISPLUGIN	is	derived	from	WebSiteSelected	when	the	Next
button	is	clicked.

Web	Site	Virtual	Folders	Dialog
This	dialog	is	displayed	when	one	of	these	LANSA	Features	is	installed:	Web
Images	or	Java	Service	Manager.
The	Public	Properties	on	this	dialog	have	the	following	names	and	properties:
VIRTUALWEBSITE
VIRTUALDIRECTORYALIAS

Communication	Ports	Dialog
This	dialog	is	displayed	when	one	of	these	LANSA	Features	is	installed:
Listener,	IIS	Plugin,	or	Java	Service	Manager.
The	Public	Properties	on	this	dialog	have	the	following	names	and	properties:
HOSTROUTEPORTNUMBER
JSMPORTNUMBER
JSMADMINPORTNUMBER
	
Other	New	Public	Properties	which	have	no	User	Interface	and	therefore	default
to	these	values	unless	altered	on	the	command	line:
HTTPPORTNUMBER	-	80
AUTOSTARTJSMADMINISTRATORSERVICE	-	True

Setup	Server	Dialog
There	are	two	dialogs	relating	to	the	server	setup.	These	dialogs	will	only	be
displayed	if	the	option	Display	SuperServer	Option	1	and	Display	SuperServer
Option	2	respectively	are	selected	in	the	Deployment	Tool	options.

	The	values	to	the	right	of	the	input	boxes	are	only	displayed	when
SHOWCODES=1.	They	indicate	the	X_RUN	or	special	values	which
can	be	used	to	set	the	corresponding	parameter	when	executing	the
installation	from	a	command	line	using	msiexec.exe.		For	example,
msiexec.exe	/p	c:\<product>.msp	DBID=*AS400
PSLU=LANSA99

Confirm	or	modify	any	values	as	required	then	press	Next	to	proceed	through
the	install	wizard.
This	dialog	will	only	be	displayed	if	the	option	Display	SuperServer	Option	1	is
selected	in	the	Deployment	Tool	options.	This	dialog	is	only	relevant	when
installing	Applications	which	require	X_RUN	to	create	a	SuperServer
connection	to	the	database.
This	dialog	will	only	be	displayed	if	the	option	Display	SuperServer	Option	1	is
selected	in	the	Deployment	Tool	options.	This	dialog	is	only	relevant	when
installing	Applications	which	require	X_RUN	to	create	a	SuperServer
connection	to	the	database.

Setup	Type	Dialog
Currently	there	is	no	difference	between	a	Typical,	Custom	or	Complete
installation,	however	this	feature	may	be	utilized	in	the	future	releases	of
LANSA.
Press	Next	to	proceed	through	the	install	wizard.

Verification	Dialog
After	entering	or	confirming	the	values	on	the	previous	dialogs	a	final	dialog	is
displayed	to	highlight	any	obvious	issues	and	allow	a	final	confirmation	of
details	before	the	install	commences.	Several	checks	are	performed,	based	on
values	entered,	including	the	existence	of	the	installation	location	and	DSN	and
a	check	to	ensure	the	database	server	can	be	accessed.
If	any	validation	fails	the	Install	button	will	be	disabled	preventing	the
installation	from	continuing.	Review	the	text	information	and	use	the	Back
button	to	return	through	the	dialogs	to	correct	any	values,	or	modify	the	external
environment	to	rectify	any	issues.
Press	Install	to	start	the	installation	process.

Progress	Dialog
This	is	a	standard	Windows	Installer	MSI	dialog	which	displays	the	progress	of
the	installation.
Press	Cancel	to	interrupt	the	installation	process.

Completion	Dialog
After	the	installation	has	completed	successfully,	the	following	dialog	is
displayed.
At	the	base	of	the	dialog	is	an	option	to	automatically	start	the	application.	This
will	launch	the	form,	function	or	process	nominated	in	and	described	in	Setup
Application	Dialog.	An	application	shortcut	will	be	created	on	the	desktop.
Press	Finish	to	finalize	the	installation	process	and	optionally	launch	the
Application.

17.1.7	Patch	Installation	Dialogs
After	an	Application	has	been	installed	using	an	MSI	file,	it	can	be	patched	by	a
compatible	MSP	file.
As	a	Patch	install	does	not	support	the	full	functionality	of	a	Version	install,	the
number	of	dialog	is	considerable	reduced	and	do	not	allow	any	input	related	to
configuration.

	Note:		Versions	consist	of	a	three	part	number,	for	example,
1.22.333	and	Patches	use	a	four	part	number,	for	example,
1.22.333.4444,	which	relates	to	the	Version	the	Patch	is	based	on.		It	is
also	important	NOT	to	rebuild	a	Version	after	it	has	been	released	and
installed	as	any	subsequent	Patches	will	be	incompatible	unless	they
are	also	rebuilt	and	re-released	using	the	set	of	GUIDs	generated	for
the	Version.		Microsoft	Windows	Installer	technology	will	enforce	this
relationship.	

Welcome	Dialog
This	is	a	standard	Windows	Installer	Welcome	Dialog	using	the	Application
description	to	identify	the	Application.

Press	Next	to	proceed	through	the	install	wizard.

Confirmation	Dialog
Installing	a	patch	is	a	simple	matter	as	it	only	requires	the	end	user	to	answer	a
question	if	the	application	directly	uses	database	tables.	That	question	is
whether	or	not	to	setup	the	database.	For	all	but	one	of	the	users	of	the	database
the	checkbox	should	be	left	unchecked	-	the	default.
The	patch's	relationship	to	the	primary	application	version	and	the	primary's
current	configuration	is	all	that	is	necessary.	Once	a	patch	has	been	started,
following	the	same	steps	as	described	for	an	application	installation,	the	end
user	simply	has	to	confirm	that	they	wish	to	proceed.
Patches	may	deliver	a	wide	variety	of	changes	to	an	Application,	generally	this
will	involve	updating	'.dll'	and	'.exe'	files	and	modifying	shortcuts	and	so	on.
A	patch	is	capable	of	including	changes	to	a	database,	for	example,	table
definition	modifications.	Uninstalling	database	changes	require	careful
consideration	as	the	default	behavior	is	to	restore	the	database	table	back	to	its
previous	state	but	keep	all	the	data	in	its	current	state,	apart	from	the	dropping
of	new	columns	that	were	added	by	the	patch.	Some	complex	database	changes
may	allow,	say,	larger	numbers	to	be	in	a	column,	so	when	you	restore	the
previous	column	with	the	smaller	number	limits	with	the	larger	number	the
restore	will	fail.	Needless	to	say,	before	installing	a	Patch	that	contains	database
changes	a	backup	should	be	made	and	also	if	the	Patch	needs	to	be	uninstalled	a
backup	should	be	made	before	doing	so.
Press	Next	to	proceed	through	the	install	wizard.

Progress	Dialog

This	is	a	standard	Windows	Installer	MSI	dialog	which	displays	the	progress	of
the	installation.

Press	Cancel	to	interrupt	the	installation	process.

Completion	Dialog
Confirmation	that	the	Patch	has	been	successfully	applied	is	conveyed	by	the
completion	dialog.
Press	Finish	to	finalize	the	close	the	wizard.

17.1.8	Network	Client	Installation
The	main	Application	installation	is	generally	referred	to	as	the	primary
installation	to	distinguish	it	from	the	network	client	installation	which	is	a	small
MSI	file	automatically	created	for	most	primary	installations	and	delivered	by
the	primary	installation.	A	network	client	installation	will	only	install	shortcuts
to	the	primary	installation	on	a	file	server	from	where	it	must	be	executed.
To	install	a	client	application	in	a	corporate	environment,	you	must	first	install
the	primary	application	on	a	file	server.	Then	provide	a	shortcut	to	the	network
client	installation	MSI	file	to	users	with	access	to	that	file	server.	For	example:	
\\SRV1\Programs\	Lansa	Pty	Ltd\Personnel
System\X_Win95\X_Lansa\Execute\D20A_Client_En-us.msi
This	introductory	dialog,	which	also	displays	progress	information,	is	the	only
dialog	presented	for	a	network	client	install.	No	configuration	options	are
required	as	the	client	uses	the	primary	installation	as	the	target	for	any	shortcuts
created.	These	shortcuts	must	be	defined	by	the	primary	installations	definition.

17.1.9	Change,	Repair	or	Remove	Application
An	Application	can	be	changed,	repaired	or	removed	by

re-executing	the	MSI	file	used	to	install	the	Application	
using	the	standard	Windows	Program	and	Features	dialog

	Note:	Currently	the	Change	function	will	execute	but	there	are	no
options	available	to	change.		In	future	releases	optional	features,	like
installing	documentation,	may	be	implemented.

Re-install	MSI	File
Once	an	application	has	been	installed,	re-executing	the	MSI	file	will	present
the	end	user	with	a	maintenance	dialog.	This	allows	the	Application	install
options	to	be	changed	or	the	Application	can	be	repaired	or	uninstalled.
If	the	MSI	file	has	been	rebuilt	since	the	initial	installation	of	the	Application,
the	Application	must	be	uninstalled	using	the	Windows	Program	and	Features
interface	then	the	new	Version	can	be	installed	with	any	modifications	required.

Windows	Programs	and	Features
Alternately	use	the	Windows	Programs	and	Features	dialog	to:

Double	click	the	Application	to	remove	the	Application
Use	the	right	click	menu	to	select	Change,	Repair	or	Remove	the
Application

The	Application	description,	Company	description	and	Version	number	are	used
to	identify	the	Application	in	the	list	of	programs.		If	the	Company	information
in	the	Deployment	Tool	included	URL	details,	these	URLs	are	available	when
the	application	is	selected.	This	can	be	a	useful	mechanism	to	link	to	a	website
for	access	to	upgrades.
Simply	double	click	the	Application	entry	to	commence	the	uninstall.

17.2	Just	in	Time	Install
Just	in	Time	(JIT)	deployment	is	a	centralized,	automated	update	facility	for
deploying	Packages	set	up	to	use	Just	in	Time	processing.
All	the	Packages	associated	with	an	Application	are	installed	on	a	centralized
Application	Server,	that	is,	the	initial	Version	and	any	subsequent	upgrade
Versions	or	Patches.
Just	in	Time	installation	needs	to	be	set	up	when	the	initial	Application	Version
is	installed.	This	initial	Version	needs	to	be	applied	to	the	target	PCs	using	the
MSI.
After	the	initial	installation,	each	time	a	user	launches	the	Application	from	a
Target	PC,	the	Target	PC	connects	to	the	Application	Server	to	see	if	new
upgrades	are	available	to	install.	Any	new	upgrades	will	be	automatically
installed	before	the	Application	is	launched.
This	option	can	greatly	reduce	the	administration	costs	associated	with
deploying	application	upgrades.
Refer	to	Just	In	Time	Upgrade	Guidelines	for	more	information.

17.3	LANSA	Import
Deployment	Packages	created	with	the	Package	setting	Deploy	to	Development
System	can	be	imported	directly	into	another	LANSA	development	environment
using	the	standard	import	option.
This	is	a	mechanism	for	moving	LANSA	internal	definitions	between	LANSA
systems.
It	does	NOT:

Execute	the	Application	installation
Deploy	DLLs
Include	runtime	environment
Process	any	installation	options	or	settings

Step How	to	do	it

1.	Log	on	to
the	LANSA
Development
environment

Log	on	to	your	LANSA	Development	environment	taking	care
to	select	the	partition	where	you	intend	to	import	the	Package.
Also	select	an	appropriate	Task	to	be	used	for	the	import.

2.	Locate	and
import
LXXDIR.DEL

From	the	Tools	ribbon	select	the	Import	option.		This	allows
you	to	execute	an	import	while	within	the	LANSA	development
environment.
Locate	the	Package	folder	then	select	the	internal	folder	below
the	Package	folder.		This	should	contain	an	LXXDIR.DEL	file
created	by	the	Deployment	Tool.		Select	this	as	the	file	to
import.

File	Name
Specify	the	file	name	containing	the	import	listing.	By	default,
LANSA	imports	create	an	LXXDIR.DEL	file	that	contains
import	listing.	
Press	the	Open	button	to	select	the	file	to	be	imported.
	

3.	Open	and
import
LXXDIR.DEL

Review	the	import	options	and	press	Import	to	start	the	import.

When	the	import	has	completed	review	the	import	log	for	any
errors.

	

17.4	Troubleshoot	the	Installation
MSI*.log
All	Deployment	Tool	installations	automatically	log	their	installation	behavior
to	an	MSI*.log	file	in	the	end	user's	defined	%TEMP%	folder,	for	example:
MSI2ce4c.log.
dpinstal.log
When	a	Package	is	installed	using	Windows	Installer	File	Install	or	as	a	17.2
Just	in	Time	Install,	the	installation	process	creates	a	log	file	dpinstal.log	under
the	directory	...\X_APPS\<application>\<Version	or	Patch>.
If	there	are	any	issues	or	errors	encountered	during	the	installation	of	your
Application,	check	the	dpinstal.log	file.	Specifically	check	for	warning	or	fatal
errors.
installtrace.txt
If	interrogation	of	the	dpinstal.log	does	not	identify	why	your	installation	failed,
an	additional	trace	file	installtrace.txt	can	be	produced	by	setting	the
appropriate	X_RUN	values.
For	an	MSI	install	the	X_RUN	must	include:
ITRO=Y
For	host	monitor	package	installs	the	X_RUN	must	include:
ITRC=ALL
The	installtrace.txt		will	be	generated	into	your	temporary	directory.
...%temp%.
This	file	logs	the	progress	through	the	installation	and	may	need	to	be
forwarded	to	LANSA	for	interpretation.
	

18.	Upgrade	an	Existing	MSI	Application
An	end	user	cannot	downgrade	the	current	application,	for	example	Version
1.22.444	cannot	be	upgraded	to	Version	1.22.333.
Follow	the	same	procedure	that	is	used	to	install	a	new	version	on	top	of	an
existing	application.	That	is,	simply	double	click	the	MSI	file	or	run
msiexec.exe	from	a	command-line.
An	upgrade	defaults	all	settings	to	the	same	as	the	previous	install.	It	will
display	the	Local	Database	Dialog	to	allow	the	Setup	Database	check	box	to	be
selected	as	appropriate,	if	the	dialog	has	been	enabled.	All	other	user	data	entry
dialogs	are	skipped.	So	for	an	upgrade	only	the	following	dialogs	may	be
displayed:

Welcome	Dialog
License	Agreement	Dialog
Local	Database	Dialog	(optional)
Verification	Dialog
Progress	Dialog
Completion	Dialog

Refer	to	section	17.1.6	Version	Installation	Dialogs	for	more	information	about
the	above	dialogs.
The	upgrade	process	involves	uninstalling	the	previous	version	of	the
application	before	installing	the	new	version.	The	new	version	must	contain	the
complete	application	including	any	changes	to	the	database.	The	new
installation	will	save	a	copy	of	the	partition	folder	from	the	old	version	and
restore	it	before	running	the	upgrade	process	on	the	database,	which	for	tables
that	change	involves	unloading	the	data,	applying	the	changes	and	then
reloading	the	data.
A	new	version	of	an	application	cannot	be	installed	'side-by-side'	with	a
previous	version,	therefore	installing	a	new	version	will	always	result	in	the
previous	version	being	removed	first,	leaving	one	entry	for	the	application	in	the
control	panel.
Note	1:	As	an	upgrade	uses	the	values	from	the	previous	install	and	does	not
allow	them	to	be	changed	(except	for	the	database	parameters).	If	an	invalid
value	was	used	it	will	still	be	invalid.	To	override	this	behaviour,	use	a
command	line	prompt	with	msiexec.exe	to	run	the	install	and	pass	the	correct
parameter.	For	example,	if	the	Form	name	in	the	MSI	was	originally

"MYFORM"	but	needs	to	be	changed	to	"MYFORM2"	then	this	is	an	example
of	the	command	line:

Msiexec.exe	/i	MYAPP_v1.0.2_en-us.msi	FORM=MYFORM2
Note	2:	If	the	error	is	discovered	AFTER	upgrading,	you	will	need	to	uninstall
and	then	re-install	the	application	using	the	latest	MSI	file.	Tables	in	the
database	will	already	have	been	updated	so	do	not	install	the	original	MSI
which	may	have	different	table	definitions.
	

19.	Upgrade	an	Existing	V12	Application
By	default,	an	MSI	installs	into	\Program	Files	for	an	All	User	Install	or
\Documents	and	Settings	for	a	Current	User	install.	If	an	existing	Version	12
LANSA	application	has	been	installed	into	an	alternate	location	the	MSI	may
not	be	able	to	install	into	the	same	location,	for	example,	the	default	location
c:\x_win95.
To	upgrade	a	Version	12	LANSA	application	the	LANSA	Developer	must
identify	that	the	MSI	needs	to	offer	the	opportunity	to	upgrade.	When	the	MSI
is	installed	it	will	then	prompt	for	the	location	of	the	existing	install,	offering	the
last	installed	application	as	the	default.	It	will	copy	the	whole	partition	across	to
the	new	location	and	then	perform	the	install.	In	particular	this	will	allow	the
database	tables	to	be	upgraded	correctly.
To	support	this	functionality	there	are	two	settings	in	an	MSI:

Delete
Previous
Target
Directory

If	this	Application	has	already	been	installed	on	the	target
machine	in	a	different	directory,	the	install	process	can	attempt	to
automatically	remove	the	previous	installation.	The	Application
Code	will	be	used	to	look	up	the	previous	install	location	in	the
registry	and	will	attempt	to	delete	the	associated	folder.	This
setting	can	be	prompted	during	the	installation.
Yes	–	Remove	the	directory	where	this	Application	was
previously	installed.
No	–	Do	not	remove	the	directory	where	this	Application	was
previously	installed.
Default:	No

Previous
Application
Folder
Name
Directory

If	the	previous	installation	is	to	be	removed,	indicate	the	name	of
the	Previous	Application	Folder	as	it	was	installed.	Any	desktop
icon	or	program	folder	matching	this	name	will	be	deleted	during
the	installation	process.
Default:	[Application	Name]

Refer	to	Upgrade	Options	for	more	information.
	

20.	Cloud	Customizations
This	section	provides	some	ideas	on	how	you	may	customize	your	Cloud
environment	to	more	easily	administer	your	LANSA	application.
20.1	Amazon	Web	Services
20.1.2	Procedure	to	follow	when	Upgrading	Your	Application
20.1.3	Using	a	Single	Availability	Zone	(AZ)
20.1.4	Auto	Scaling	Considerations

20.1	Amazon	Web	Services
20.1.1	Add	Alarms	to	Your	CloudWatch	Log	Files
Installation	Error	Alarm
MSI	installation	error
Other	Alarms	to	Consider

20.1.1	Add	Alarms	to	Your	CloudWatch	Log	Files
The	standard	LANSA	CloudFormation	template	will	create	CloudWatch	log
files	for	you	so	you	may	query	what	is	happening	inside	your	EC2	instances
without	needing	to	RDP	into	the	instance	itself.	You	may	also	add	alarms	which
are	triggered	on	the	contents	of	the	log	files.	Two	very	useful	log	entries	to	look
for	is	a	general	installation	error	and	an	MSI	installation	error.
In	order	to	create	an	alarm	you	must	first	create	a	log	group	to	apply	it	to.	The
simplest	way	to	do	this	is	to	create	a	LANSA	stack.

Installation	Error	Alarm
1.		Open	the	CloudWatch	dialog
2.		Click	on	Logs,	select	the	cfn-logs	in	the	Log	Groups	and	then	click	Create
Metric	Filter.

3.		Use	a	space	delimited	Filter	Pattern	by	surrounding	the	pattern	in	square
brackets	–	[].
To	detect	errors	when	executing	CloudFormation	scripts	you	need	to	search
for	ERROR	in	the	first	field	and	Command	in	the	second	field,	the	remaining
fields	are	not	relevant	so	use	ellipsis	(…)	to	indicate	that.	If	the	sample	log
data	contains	your	error	log	data	you	can	click	Test	Pattern	to	test	it.
Otherwise	just	click	Assign	Metric.

4.		Change	the	default	Filter	Name	if	you	wish	and	then	enter	the	metric
Namespace	and	Metric	Name	as	indicated	below...

5.		The	following	result	will	be	displayed	with	the	text	that's	highlighted	in	red.
Click	Create	Alarm.

6.		Enter	a	Name	and	Description.	This	description	is	"Error	has	occurred
creating	or	updating	the	stack".	The	alarm	needs	to	be	displayed	as	soon	as
possible	so	it	is	set	to	a	single	error	line	in	one	period	and	the	period	is	1
minute.	Then	click	on	New	List	if	you	haven't	already	got	a	notification	list

7.		Enter	the	name	of	your	topic	like	LansaAdmin	and	enter	some	email
addresses	separated	by	commas.	Note	that	you	may	enlarge	the	email	list	by
dragging	the	bottom	right	hand	corner	as	indicated	by	the	arrow.	Then	click
Create	Alarm.

8.		This	alarm	is	now	ready	to	send	an	email	to	the	list	you	created	whenever
there	is	an	installation	error	in	the	LANSA	Stack.	There	is	one	issue:	the
alarm	will	be	listed	under	INSUFFICIENT.	This	is	because	the	filter	rarely
matches	any	data	at	all.	Only	when	there	is	an	error.	So	another	filter	needs	to
be	created	that	matches	on	all	data	but	uses	a	Metric	Value	of	zero	so	it	does
not	affect	the	statistics.

9.		So,	create	another	filter	on	the	cfn-logs	Log	Group	and	enter	no	pattern.	Just
click	Assign	Metric.

10.	Enter	the	same	Metric	Namespace	and	Metric	Name	as	for	the	previous
filter,	but	set	the	Metric	Value	to	0.

11.	The	cfn	logs	update	about	once	per	minute	and	hence	will	always	have	data
points.

MSI	installation	error
You	may	follow	a	similar	procedure	to	Installation	Error	Alarm	to	add	a	filter	to
the	event-logs	Log	Group.	These	Log	Streams	are	an	amalgamation	of	the	three
Windows	event	logs:	System,	Security	and	Application.
An	MSI	installation	error	is	indicated	by	an	Error	being	reported	in	the
Application	Event	Log	in	the	MsiInstaller	system.	The	Filter	Pattern	to	represent
this	is:
[EventType=Application,	Status=Error,
errorcode,system=MsiInstaller,computer,message]

Specify	your	metric	details	as	you	desire.
Create	the	alarm	with	the	same	settings	as	the	Installation	Error	Alarm.
Also	the	Insufficient	data	alarm	may	be	eliminated	by	creating	a	filter	for	all
data	the	same	as	described	in	the	Installation	Error	Alarm.

Other	Alarms	to	Consider
Auto	scaling	is	not	a	panacea	for	continually	running	your	application	in	an
optimum	state.	It	is	too	slow	to	cope	with	massive	spikes	in	load	and	adjust
quickly	enough	and	be	efficient	with	resources.	It	is	good	at	gradually	scaling
out	as	load	gradually	increases	and	the	opposite,	scaling	in	as	load	gradually
decreases.
So	you	need	to	be	warned	when	spikes	in	load	are	occurring.	Some	alarms	to
consider	are

EC2	CPU	utilization	sustained	over	90%	for	maybe	5	mins	and	send	an
email
If	expected	to	be	sustained,	manually	add	desired	instances	to	Web	Server
ASG.

RDS	CPU	utilization	sustained	over	90%	for	maybe	30	mins	and	send	an
email
If	expected	to	be	sustained,	plan	a	time	to	scale	up	the	RDS	instance.

Watch	Load	balancer	error	rate	and	web	server	error	rates
Troubleshoot	cause.	Likely	to	be	solved	by	more	EC2	instances	or	scaling
up	the	RDS.

20.1.2	Procedure	to	follow	when	Upgrading	Your	Application
In	order	to	upgrade	your	application	using	a	new	MSI	you	will	Update	the
LANSA	Stack	using	the	procedure	described	in	the	Cloud	tutorial.	If	you	use
this	method	as	described,	your	EC2	instances	may	be	terminated	by	the	Elastic
Load	Balancer	because	they	fail	to	respond	quickly	enough	to	the	health	check.
A	new	instance	will	be	created	in	its	place,	but	it	lengthens	the	whole	process.
The	best	way	to	ensure	that	no	instances	are	terminated,	nor	new	ones	created,
is	to	suspend	all	processing	in	both	Auto	Scaling	Groups.	This	may	only	be
achieved	using	the	AWS	SDK	or	command	line.	This	example	describes	how	to
do	it	using	the	AWS	command	line.	You	will	first	need	to	install	and	configure	it
as	described	here:	AWS	Command	Line	Installation	Guide	.
Use	the	AWS	console	to	obtain	the	names	of	your	auto	scaling	groups.	Navigate
to	the	EC2	pages	and	then	Auto	Scaling	Groups.	Select	one	of	your	Auto
Scaling	Groups	and	copy	the	name	from	the	Details	tab	sheet:

In	a	Windows	command	prompt	type	the	following:
aws	autoscaling	suspend-processes	--auto-scaling-group-name	testlog3-
WebServerApp-MUV7PWCJ6QXQ-WebServerGroup-8M7FR5N2E41A

Do	the	same	with	the	other	Auto	Scaling	Group.
aws	autoscaling	suspend-processes	--auto-scaling-group-name	testlog3-
DBWebServerApp-1DCEOP4PRK88D-WebServerGroup-1JJVU3Y8HN9P

Now	you	may	upgrade	the	DB	Web	Server,	followed	by	the	rest	of	the	Web
Servers	as	described	in	the	tutorial.	The	Auto	Scaling	Group	will	ignore	all
requests	from	the	Elastic	Load	Balancer.
When	all	installs	have	fully	completed	(ensure	that	the	CPU	utilization	has
returned	to	nearly	zero),	you	may	resume	processing	in	the	Auto	Scaling
Groups:

aws	autoscaling	resume-processes	--auto-scaling-group-name	testlog3-
WebServerApp-MUV7PWCJ6QXQ-WebServerGroup-8M7FR5N2E41A
aws	autoscaling	resume-processes	--auto-scaling-group-name	testlog3-
DBWebServerApp-1DCEOP4PRK88D-WebServerGroup-1JJVU3Y8HN9P

20.1.3	Using	a	Single	Availability	Zone	(AZ)
The	default	stack	created	by	the	LANSA	templates	is	to	create	EC2	instances	in
all	the	Availability	Zones	(AZ)	in	the	current	Region.	Once	the	stack	has	been
created	you	may	easily	alter	it	to	use	a	Single	AZ.	Using	multiple	AZs	provides
better	fault	tolerance	but	this	comes	at	the	expense	of	slower	access	to	the
database	server	from	the	AZ	which	the	database	server	is	not	in.	When	the
Sydney	Region	is	used,	there	are	2	AZs.	Benchmark	tests	achieved	a	20%	speed
increase.	This	is	because	the	network	speed	between	AZs	is	slower	than	the
network	speed	within	an	AZ.	So,	you	may	choose	to	lower	your	costs	by
choosing	to	use	a	Single	AZ	instead.	The	costs	are	lower	because	you	may
require	20%	less	resource	to	be	running	to	support	a	particular	workload.
This	issue	is	exacerbated	in	Regions	which	have	more	AZs.	For	example	the
Virginia	Region	has	4	AZs.	In	this	case	3	out	of	4	of	the	AZs	are	not	the	AZ	of
the	database	server.	Hence	3	out	of	4	(75%)	transactions	are	slower,	as
compared	to	1	out	of	2	(50%)	of	the	transactions	in	Sydney.	Given	that	the
redundancy	provided	by	4	AZs	is	probably	unnecessary,	AZs	need	to	be
removed.	The	same	procedure	below	may	be	used	to	reduce	the	number	of	AZs
from	4	to	2.	When	removing	AZs	from	the	Auto	Scaling	Group,	leave	2	AZs
rather	than	just	the	1.
When	you	create	the	stack,	do	not	specify	extra	web	servers.	Leave	it	set	to	the
default	of	0.	Once	the	stack	is	fully	operational	you	may	make	these	changes.
That	is,	use	the	application	and	test	that	it's	working.
1.		Navigate	to	the	RDS	AWS	console	page.
2.		Locate	the	DB	Instance	and	identify	the	Zone	it	is	running	in,	say	ap-
southeast-2a.	This	is	the	AZ	that	all	the	EC2	instances	will	need	to	be	created
in.

3.		Now	navigate	to	the	Auto	Scaling	Groups	listed	on	the	EC2	AWS	console
page.	You'll	notice	that	both	Auto	Scaling	Groups	are	in	multiple	AZs:

4.		Choose	the	DB	Web	Server	and	edit	the	Auto	Scaling	Group	details.	Identify
the	AZ	you	need	to	remove	(e.g.	ap-southeast-2b)	and	click	the	'x'.	Save	the
Auto	Scaling	Group

5.		Check	the	instance	tab.	If	the	instance	is	in	the	correct	AZ,	for	example	ap-
southeast-2a,	then	you	may	continue	to	the	next	step.	Otherwise	you	will
need	to	wait	for	a	new	instance	to	be	created	in	ap-southeast-2a	and	for	it	to
be	fully	operational	before	you	may	continue.

6.		Do	not	continue	if	the	DB	Web	Server	instance	is	being	re-created	in	the	new

AZ.
7.		Now	modify	the	other	Auto	Scaling	Group	in	the	same	manner.	At	the	same
time	you	may	alter	the	Desired,	Min	and	Max	settings	to	create	some	web
server	instances	in	the	single	AZ.

8.		Alter	the	Elastic	Load	Balancer	by	removing	the	unused	AZ	from	the	Load
Balancer,	in	this	case	ap-southeast-2b.	Click	on	the	Instance	tab.	ap-
southeast-2b	will	probably	have	0	instances.	If	it	doesn't,	check	that	you	have
the	correct	AZ.	It	may	be	in	the	process	of	removing	instances	from	it.	Click
the	action	Remove	from	Load	Balancer:

6.		Finally,	alter	the	Elastic	Load	Balancer	so	that	Cross-Zone	Load	Balancing
is	disabled:

20.1.4	Auto	Scaling	Considerations
These	examples	are	mostly	focused	on	triggering	scaling	events	rather	than
working	out	real-world	settings	for	when	to	scale	up	and	when	to	scale	down.
This	is	because	each	application	and	its	users	create	a	unique	scenario	of
variability	of	load	and	appropriate	maximum	response	times.	Some	applications
may	be	fine	with	maximum	response	times	of	30	seconds	or	more	provided	the
average	stays	below	2	seconds.	Whereas	others	would	want	to	ensure	that	never
occurs	and	hence	scale	out	much	more	quickly.
It	would	be	very	desirable	to	be	able	to	demonstrate	the	auto	scaling,	but	it	takes
20	minutes	to	bring	a	web	server	alive	and	so	a	demonstration	needs	to	take	at
least	60	minutes	to	show	it	scaling	out	and	then	scaling	back.	That	would
usually	be	impractical.	The	tutorials	provide	a	manual	demonstration	of	scaling
that	will	need	to	suffice.
Firstly,	use	a	large	database	instance	that	will	cope	with	the	maximum	expected
load	as	it	cannot	be	scaled	out	without	taking	the	whole	system	down.	Thus	the
number	of	EC2	instances	will	control	response	time	which	the	Auto	Scaling
Group	(ASG)	manages.
These	tests	were	run	in	a	Single	Availability	Zone	(AZ)	stack	rather	than	the
default	Multi-AZ	Stack.	This	should	make	no	essential	difference	to	the	scaling
process	as	the	alarms	are	purely	based	on	CPU	utilization	inside	the	EC2
instances	which	is	not	effected	by	accessing	the	RDS	instance	in	another	AZ.
Yes,	the	average	response	time	is	slower	but	the	amount	of	CPU	used	will	be
about	the	same,	there	will	just	be	some	sub-second	delays	in	execution	which
will	not	change	the	per	minute	CPU	utilization.
The	scaling	works	on	the	average	CPU	utilization	of	the	existing	instances.
Only	the	Web	Server	ASG	is	configured	to	scale	out.	If	there	are	no	existing
instances	in	this	ASG,	there	is	no	average	CPU	utilization	and	so	scaling	cannot
occur.	Thus	there	must	be	at	least	1	instance	in	this	ASG.
Why	do	we	not	just	have	one	ASG?	What	is	the	purpose	of	having	two?	This	is
because	updating	the	database	must	be	managed	by	a	single	instance.	There
cannot	be	more	than	one	instance	responsible	for	changing	tables	otherwise	the
state	of	the	database	stored	on	the	instance	and	the	state	of	the	tables	in	the	RDS
will	not	match.	It's	critical	for	table	updates	like	adding	a	column	that	the	web
server	matches	the	database	server	state.	Hence	there	must	only	be	1	web	server
responsible	for	this.	This	is	what	the	DBWebServer	ASG	exists	for.	To	ensure
that	1	and	only	1	web	server	instance	is	running	which	is	in	control	of	changing

the	database	state.
In	the	CloudWatch	AWS	Console	change	the	WebServerApp	CPUAlarmHigh
from	>70	for	15	minutes	to	>	70	for	5	minutes.	This	will	allow	the	scaling	to
occur	more	quickly.	Also	change	the	WebServerApp	CPUAlarmLow	from	<30
for	15	minutes	to	<30	for	5	minutes.		
Now	change	scaling	policy	for	both	alarms	to	wait	1200	seconds	(20	minutes)
before	allowing	another	scaling	event.	This	must	be	at	least	as	long	as	it	takes	to
get	an	instance	up	and	running	and	also	then	to	positively	affect	the	CPU
utilization.
Reduce	the	ELB	health	check	so	that	an	instance	is	recognized	as	Healthy	as
quickly	as	possible.	The	Timeout	must	be	more	than	most	response	times.
Preferably	more	than	the	maximum	response	time.	In	this	case	15	seconds	may
keep	the	instance	healthy	whilst	allowing	scaling	to	occur	ASAP.	Make	the
Interval	1	second	longer	at	16	seconds,	the	Unhealthy	Threshold	to	the
maximum	of	10	and	the	Healthy	Threshold	to	the	minimum	of	2.	This	takes
health	out	of	the	equation	as	much	as	possible	to	allow	the	ASG	to	scale	as	it
becomes	necessary	without	instances	taking	too	long	to	become	healthy	nor	be
terminated	too	soon	when	under	load.

A	load	test	was	then	run	on	this	LANSA	Stack	with	30	virtual	users	for	43
minutes.	This	scaled	out	from	1	to	3	instances	and	then	once	the	load	finished,
gradually	reduced	back	to	1	instance.

21.	How	To	...	?
21.1	Create	a	Deployment	Version
21.2	Connect	to	the	Required	Server
21.3	Search	Packages	including	an	object
21.4	Back	up	your	Application	Definitions
21.5	Deploy	an	external	ActiveX	control
21.6	Deploy	LANSA	Components	published	for	ActiveX
21.7	Deploy	User	Defined	RDML	BIFs
21.8	Install	Runtime	License	for	Application
21.9	Set	DLL	Version	Information
21.10	Specify	Installation-Specific	Database	Connection	Settings
21.11	Deploy	a	64-bit	Application
21.12	Install	Application	Files	into	a	consistent	schema	name
	
	

21.1	Create	a	Deployment	Version
This	is	the	essence	of	what	the	deployment	tool	is	designed	to	do.	
Simplistically,	the	process	of	creating	the	first	Deployment	Version	in	an
Application	from	beginning	to	end	is	as	follows:
The	crux	of	successfully	deploying	an	application	is	to	Plan	your	Deployment,
including	the	necessary	objects	and	using	the	appropriate	Options	and	Settings
to	define	the	Version.

21.2	Connect	to	the	Required	Server
How	do	you	get	the	correct	Server	Name	if	your	application	has	an	Ancestor
form	that	is	inherited	by	all	forms	and	does	an	automatic	connection	to	the
server	using	the	CONNECT_SERVER	Built-In-Function?
Note:	The	Routing	Table	lroute.dat	is	shipped	with	the	Application.
The	options	available	to	you	are:
1.		Use	a	separate	system	for	development	and	deployment.	This	would	cause
you	to	have	more	than	one	Routing	Table,	allowing	you	to	use	a	"fixed"
symbolic	server	name.	This	option	requires	you	to	move	the	application	to	the
Deployment	server	before	it	can	be	deployed.

2.		Create	two	Route	Tables	in	two	separate	places.	Before	each	Version
creation,	use	the	Communications	Administrator	to	change	the	location	of	the
route	table	to	point	at	the	table	to	be	shipped.	For	this	option,	someone	must
remember	to	change	the	Route	Table	path	before	and	after	each	build.

3.		Create	two	Symbolic	Server	Names	(e.g.	DEV	and	PROD).	Modify	the
Ancestor	Form	to	get	a	Registry	entry	that	will	indicate	the	system	type,	that
is,	DEV	/	PROD.	To	Set	the	Registry	Value,	write	a	function	that	is	run	with
each	install	(after	install	command)	to	put	the	registry	entry	to	indicate	that
this	is	the	production	system	(PROD).	This	means	that	you	could	create	one
route	table	with	both	entries	and	have	this	installed	on	the	target	system.	In
the	development	area	you	would	manually	create	the	Registry	entry	with	the
DEV	value.

Option	3	is	the	most	flexible	as	it	is	possible	to	extend	it	further	to	support	any
number	of	servers.

21.3	Search	Packages	including	an	object
To	check	the	Applications	which	include	a	specific	object	or	group	of	objects
use	Search	Application	on	the	Tools	Menu

Enter	the	object	name,	or	part	of	the	name	and	then	select	a	specific	application
to	search	or	search	all	applications.
Use	the	Find	 	button	to	launch	the	search.	
The	results	can	be	saved	to	a	text	file	using	the	Save	to	File	 	option.
	

21.4	Back	up	your	Application	Definitions
Application	information	is	not	saved	in	the	LANSA	database	but	is	stored	in	the
X_APPS	directory	on	your	system.			Applications	are	identified	by	a	set	of
GUIDs	which	are	generated	when	the	first	Version	is	successfully	built.		This
set	of	GUIDs	will	be	used	to	identify	the	Application	and	facilitate	upgrades	and
patches.		Without	these	GUIDs	you	cannot	upgrade	or	patch	your	software
product.		
While	this	design	allows	flexibility	to	move	and	copy	Applications	easily,	it
does	mean	you	need	to	plan	to	backup	up	this	directory	regularly	to	ensure	your
latest	definitions,	most	importantly	the	GUIDs,	and	templates	will	not	be	lost	in
the	case	of	a	system	crash.
The	Backup	and	Restore	feature	is	available	on	the	Tools	Menu

All	Applications	are	saved	in	the	X_APPS	directory	under	the
\..\X_WIN95\X_LANSA	folder.		Nominate	where	this	directory	should	be
backed	up	to.		Similarly	when	restoring	the	Application	definitions	nominate
where	Applications	are	to	be	restored	from.
It	is	recommended	that	you	schedule	a	regular	back	up	of	your	X_APPS
directory	while	you	are	actively	using	the	Deployment	Tool.

21.5	Deploy	an	external	ActiveX	control
Some	LANSA	applications	will	incorporate	functionality	provided	by	a	3rd-
party	ActiveX	control.		Visual	LANSA	supports	all	standard	ActiveX	Interfaces.
Some	ActiveX	controls	have	comprehensive	installation	programs	to
automatically	register	themselves	on	your	PC	(i.e.	Microsoft	Office	ActiveX
controls	require	Office	to	be	installed	on	the	target	PC),	however	others	are
supplied	as	single	.DLL	or	.OCX	file.	Shipping	the	single	files	to	support	an
ActiveX	control	with	your	application	means	your	distributable	Package	can	be
much	smaller,	however	it	can	add	complexity	to	the	installation	procedure.	
Alternatively	you	can	instruct	users	how	to	manually	install	the	ActiveX	control
as	well	as	your	application.
To	include	an	ActiveX	control	with	your	deployment	Package	(this	only	works
where	a	single	file	is	required)	you	can	define	a	Command	to	Execute	After
Install	to	automatically	register	the	control	for	you.
The	following	example	distributes	the	RICHTX32.OCX	control	with	the
deployment	Package:

Step How	to	do	it

1.	Create	a	batch	file
RICHTX32.BAT

Create	the	batch	file	RICHTX32.BAT:
Move	RICHTX32.OCX	%windir%\System32\
Regsvr32	%windir%\System32\Richtx32.OCX
The	first	line	of	the	batch	file	simply	moves	the
Richtx32.OCX	to	the	Windows	System32	directory
(using	standard	Windows	Environment	Variables).
The	second	line	registers	the	ActiveX	using
Regsvr32.exe

2.	Test	the	batch	file Test	the	batch	file	on	your	own	PC	by	placing	the
DLL/OCX	in	the	same	directory	as	the	Batch	file,	then
executing	it.

3.	Create	a
deployment	Package

Create	your	deployment	Package	using	the	options
relevant	to	your	application.	

4.	Include	the
ActiveX	component

Ensure	your	ActiveX	component	is	included	in	the
Package	by	directly	selecting	it	or	ensure	it	is	included
as	a	cross-reference	object.

5.	Add	non-LANSA
objects	to	support
your	ActiveX
component.

Add	the	Non-LANSA	objects:
RICHTX32.OCX	(this	will	most	likely	be	in	your
Windows\System32	directory)
RICHTX32.BAT	(which	you	created	in	step	1)
Modify	the	installation	path	for	both	objects	to	ensure
they	are	installed	in	the	'Temp	directory'

6.	Set	up	command	to
execute	after
installation

Select	the	Commands	to	execute	and	define	the
following	command	to	execute	after	installation:

7.	Deploy	your
Package.

Save,	build	and	release	your	Package	then	deploy	as
required.

	

	It	is	your	responsibility	to	conform	to	the	licensing	agreements	of
any	ActiveX	control	you	are	distributing.	Some	controls	require
specific	licenses	if	distributed	with	your	application.

21.6	Deploy	LANSA	Components	published	for	ActiveX
When	creating	a	LANSA	application	you	may	wish	to	make	aspects	of	your
application	available	to	other	development	tools	by	publishing	a	selection	of
LANSA	Components	as	ActiveX	controls.	For	information	on	publishing	a
Component	as	an	ActiveX	control	refer	to	ActiveX	Wrapping	in	the	Visual
LANSA	Developer	Guide.
Deployment	of	these	components	requires	that	they	are	registered	on	installation
and	that	a	session	configuration	file	is	created	for	use	when	accessing	these
controls.	These	are	the	steps	to	deploy	a	Component,	register	it	for	ActiveX
usage	on	the	target	system	and	automatically	create	the	session	configuration
file	required	for	it	to	be	executed:

Step How	to	do	it

1.	Create	a
Package

Create	your	deployment	Package	using	the	template	XACTIVEX.	
Ensure	the	Package	options	and	settings	are	relevant	to	your
application.

2.	Add
ActiveX
controls

Using	the	Select	Repository	Objects	dialog,	select	the	LANSA
Component(s)	published	as	ActiveX	controls	and	add	them	to	the
Package.

3.	Modify
the
Execute
after	Install
Commands

Open	the	Commands	to	Execute	after	Install.
Duplicate	the	comment	line	that	has	COMMAND	:	EXECFATAL
and	replace	the	xxxxxxxx	with	the	compiled	name	for	the
component.
To	automatically	create	a	session	configuration	file	in	the	Partition
Execute	directory:	uncomment	all	the	lines	between	the	OPEN	and
CLOSE	commands	and	adjust	the	parameters	to	match	your
installation.	The	configuration	file	contains	X_RUN	Arguments.
The	definition	of	each	X_RUN	argument	can	be	found	in	the
section	Using	the	X_RUN	Command	in	the	Technical	Reference.

4.	Deploy
your
Package.

Save,	build	and	release	your	Package	then	deploy	as	required.

	

its:lansa015.chm::/lansa/depb3_0000.htm

	It	is	your	responsibility	to	deploy	the	non-LANSA	application	using
the	LANSA	component(s)	as	ActiveX	controls.
A	LANSA	license	may	be	required	to	support	the	ActiveX	control	if
SuperServer	functionality	has	been	embedded	in	the	LANSA
component.

21.7	Deploy	User	Defined	RDML	BIFs
Manually	created	User	Define	RDML	Built-In-Functions	ie
UD_YYYYYYYYYYYYYYY	are	not	visible	in	the	User	Defined	Built-In
Functions	section	when	adding	objects	to	a	Deployment	Tool	Package.	They	are
instead	located	in	the	Process/Functions	section.
To	Deploy	to	an	Execution	Environment
To	deploy	the	runtime	DLL	select	the	Built-In-Function	through	the
Process/Function	Option	in	the	Deployment	Tool.
To	Deploy	to	a	Development	Environment
For	Development,	make	sure	you	select	the	option	to	Deploy	to	Development
System	in	the	Setup	Details	(*SYSEXPORT)	so	that	tables	LX_F47	and
LX_F48	are	propagated	to	your	new	environment.	Optionally	you	can	select	the
User	Defined	Built-In-Function	via	the	Process/Function	to	add	the	Built-in
Function's	DLL	to	your	Package	for	deployment	to	another	Development
Environment.

21.8	Install	Runtime	License	for	Application
If	your	installed	application	requires	runtime	licenses	these	must	be	installed	by
executing	the	LANSA	licensing	interface.	
To	provide	a	shortcut	to	the	licensing	interface	in	the	Application	program
group	create	an	entry	in	the	Files	with	Special	Processing	to	run	the	process
*LICENSES.		For	example:
When	the	application	is	installed	the	licensing	interface	can	then	be	accessed
from	the	Application	program	group

To	manually	execute	the	licensing	interface	use	the	following	command:
<sysdir>\Execute>	x_run	proc=*licenses	lang=<language>

21.9	Set	DLL	Version	Information
When	a	LANSA	Object	is	compiled	specific	information	is	generated	into	the
DLL.	To	ensure	your	Application	has	the	correct	information	in	the	shipped
DLLs:
1.		Move	your	source	code	to	the	build	machine.
2.		The	Partition	Security	Officer	Profile	is	needed	to	set	the	DLL	Version	in	the
following	step.
a.		Open	the	Compile	dialog	via	the	Visual	LANSA	Options	>	Settings
>Compile	dialog.

b.		Set	the	DLL	Version	Information	in	the	Compile	options	to	appropriate
values.		The	version	information	must	be	modified	for	each	Version	or
Patch	delivered.

3.		Compile	all	compilable	Application	objects	for	the	first	version	of	the
Application.		For	subsequent	versions	and	patches	only	modified	objects	are
required	to	be	compiled.

4.		Build	the	Version	or	Patch	in	the	Deployment	Tool.
5.		Distribute	MSI	or	MSP	files	to	end	users	for	installation.
For	patches	you	MUST	change	the	version	information	in	order	to	distribute	an
updated	DLL	in	the	Patch.		This	is	a	Microsoft	requirement	as	the	change	in
version	number	triggers	the	patch	builder	to	include	the	object.	One	issue	with
that	is	you	don't	know	precisely	what	has	been	deployed	as	being	able	to	easily
see	the	Version	number	only	hints	at	what	might	be	in	the	Patch,	it	doesn't	tell
you	PRECISELY	what	is	in	the	Patch.	You	actually	have	to	look	at	the	patch
(with	a	Patch	Viewer)	to	verify	the	contents.
The	DLL	Version	Information	is	set	in	the	Visual	LANSA	IDE,	like	this:
Once	generated	into	the	DLL	the	information	is	visible	in	the	DLL's	property
tab	sheet	labelled	'details'	in	Windows	7:
If	you	cannot	see	all	the	DLL	Properties	details	you	need	to	see,	contact	LANSA
support	for	assistance.
Refer	to	the	Compile	options	in	the	Visual	LANSA	User	Guide		from	more
information.

21.10	Specify	Installation-Specific	Database	Connection	Settings
The	MSI	install	will	always	create/update	the	ODBC	DSN	specified	in	the
install.	So	the	installation-specific	database	connection	settings	will	need	to	be
entered	during	the	install.
There	are	two	ways	to	do	this.
1.		The	user	enters	them	in	the	MSI	Setup	the	Local	Database	dialog
					or
2.		An	administrator	writes	a	batch	file	or	script	file	to	pass	the	settings	on	the
MSI	command	line.	For	example:
Msiexec.exe	/i	MYAPP_v1.0.0_en-us.msi	DBII=MYAPPDSN
DBSV=myservername\sqlserver	DBAS=mydatabaseinstance.

	

21.11	Deploy	a	64-bit	Application
If	the	LANSA	build	environment	is	enabled	for	64-bit,	any	Versions	and	Patches
will	include	the	64-bit	runtime	and	selected	objects	during	the	build	processing.
The	build	will	generate	separate	MSIs	(or	MSPs)	for	the	32-bit	install	and	the
64-bit	install.

21.12	Install	Application	Files	into	a	consistent	schema	name
Note:		This	topic	is	only	relevant	for	applications	with	files	deployed	to	a
Windows	database.
When	developing	an	application	with	file	accessing	a	Windows	database	is	it
desirable	to	maintain	the	same	library	(schema	name)	through	the	lifecycle	of
the	application	to	maintain	the	integrity	of	the	database	and	file	data.		While	this
sounds	obvious	it	can	be	problematic	if	not	planned	appropriately.
The	fundamental	issue	relates	back	to	RDML	source	version	control	and	how
various	releases	of	the	application	source	code	are	maintained,	built	and
released.
The	Problem
By	default	LANSA	files	are	defined	and	compiled	in	the	Default	File	Library	of
the	current	Partition.		If	the	application	source	code	is	moved	to	a	different
Partition	or	a	different	LANSA	system,	where	the	partition's	Default	File
Library	is	also	different,	the	next	time	the	file	is	compiled	and	deployed	the
library	(schema	name)	will,	by	default,	be	different.
How	to	assign	a	consistent	schema
1.		BEFORE	deploying	the	first	version	of	the	application,	select	a	schema	name
(library)	to	be	used	for	the	installed	Windows	application	e.g.	XXXDTA.

2.		BEFORE	deploying	the	first	version	of	the	application,	modify	the
application	source	code	to	include	appropriate	DEFINE_OVERRIDE_FILE
commands	to	redirect	the	file	OAMs	to	the	appropriate	LANSA	Library
(schema	name).

					If	all	file	OAMs	should	be	redirected	to	the	selected	schema	XXXDTA,	the
code	added	may	look	something	like	this:
Use	Builtin(Define_Override_File)	(*PARTDTALIB	*Default	'XXXDTA')	To_Get(#retcode)

3.		Create	the	first	Version	of	the	application	to	be	deployed	including	the	files
to	be	created	in	the	Windows	database.	Ensure	the	selected	files	are
configured	to	install	into	schema	name	XXXDTA	by	creating	a	library
substitution	for	this	value	and	assigning	it	to	the	files.

4.		When	creating	subsequent	Versions	and	Patches	ensure	the	same	library
substitution	value	is	assigned	to	the	selected	files.

For	more	information	refer	to	Lifecycle	of	an	Application	and	Mapping	a	File's
Library	to	a	Fixed	Deployed	Schema.

	
	

Deployment	Tool	Tutorials

The	exercises	in	this	tutorial	assume	that	you	are	an	experienced
Visual	LANSA	developer.

	

Exercise	Structure
The	exercises	are	divided	into	five	groups:
					Set	Up	the	Deployment	Tool	must	be	completed	before	all	other	exercises.
					Deploy	Client	Server	Applications	is	a	group	of	exercises	which	demonstrate
how	to	install	a	client	application	which	will	connect	to	an	IBM	i	server.
Exercises	to	install	Version	1,	Patch	1	and	Version	2	are	included.

					Deploy	a	Stand	Alone	Application	is	a	group	of	exercise	demonstrating	how
to	install	a	local	Windows	application	to	the	desktop.	Exercises	cover	creating
and	installing	Version	1,	followed	by	a	minor	application	change	and	then
creating	and	installing	Version	2.

					Deploy	Applications	using	JIT	has	exercises	which	show	how	to	define	and
install	a	Just	in	Time	Server,	create	and	install	a	client	application	with	JIT
Update,	and	finally	make	an	application	change	followed	by	creating	and
installing	Patch	1	via	the	Just	in	Time	Server.

					Deploy	to	a	Windows	Server	demonstrates	how	to	create	and	install	a
Windows	Data/Application	Server	system	and	then	execute	a	client
application	which	connects	to	the	Windows	Server	application.

Except	for	the	first	exercise	(DTE010	–	Set	Up	the	Deployment	Tool),	each
group	of	exercises	is	standalone	and	can	be	completed	separately.

About	the	Exercises
Introduction
Objects	created	in	these	exercises	use	a	prefix	if	ii_	for	object	names,	where	ii
are	replaced	by	the	students	initials.	If	a	unique	set	of	initials	are	used	both	for
new	component	names	and	for	deployment	Company	and	Application	Name,
then	many	students	could	use	the	same	copy	of	Visual	LANSA.

The	Application	to	be	Deployed
Each	set	of	exercises	deploy	a	supplied	application	which	is	copied	and	then
deployed	using	the	Deployment	Tool.	The	application	maintains	an	employee
file	which	is	part	of	the	shipped	Visual	LANSA	demonstration	material.
Steps	are	included	to	emulate	real	application	development,	covering	installing
Version	1,	changing	the	application	which	is	then	deployed	via	a	Patch.	Making
a	further	change	to	the	application	main	form,	followed	by	creating	and
installing	Version	2.
The	application	is	deployed	as	both	a	client	server	application	which	may
connect	to	an	IBM	i	or	a	Windows	server,	and	also	as	a	standalone	desktop
Windows	application.	A	deployment	using	a	Just	in	Time	server	is	also
included.

Tutorial	versus	Real	World
The	exercises	in	this	tutorial	are	designed	to	simplify	deployment	for	training
purposes	and	to	minimize	the	setup	involved.

Build	Machine
It	is	essential	that	your	own	deployment	uses	a	build	machine.	This	is	a	PC	with
a	Visual	LANSA	installation	which	is	dedicated	to	assembling	and	deploying
applications.	As	well	as	ensuring	that	all	the	latest	and	required	components
have	been	moved	to	this	machine,	the	build	machine	approach	also	ensures	that
Product	Version	and	File	Version	and	GUID	are	all	preserved	and	used	for	the
next	version	or	patch	which	needs	to	be	deployed.	See	the	Visual	LANSA
Administrators	Guide	for	more	information	on	the	reasons	for	using	a	Windows
build	machine.

Deploying	your	own	client	server	to	an	IBM	i	server	application
would	involve:

Deploy	the	server	applications	to	the	IBM	i	server	via	LANSA	export	and

import.
Deploying	the	Windows	client	application	to	a	file	server	or	terminal	server.
Setup	a	shortcut	on	user	desktop	linking	to	the	application	top	level	form	on
the	file	server
Or	setting	up	the	user	desktop	by	running	the	Network	Client	install	file
provided	by	the	file	server	deployment.
Setup	a	Just	in	Time	Server	installation	and	deploy	all	application	client
software	to	the	file	server	linked	to	the	JIT	server.	Subsequent	patches	and
new	versions	can	be	deployed	by	simply	updating	the	JIT	Server	only.

Your	own	deployment	to	a	Windows	server	would	involve:
Use	the	Deployment	Tool	to	deploy	the	Data/Application	server	applications
and	files	to	a	Windows	server.
Optionally	create	and	install	the	client	application	to	a	file	server	or	terminal
server.
Setup	a	shortcut	on	the	user	desktops	linking	to	the	client	application	top
level	form	on	the	file	server
Or	setup	the	user	desktop	by	running	the	Network	Client	install	file	provided
by	the	file	server	deployment
Optionally	create	Data/Application	server	deployment	which	includes	all
client	applications
Set	up	user	desktop	shortcut	to	the	top	level	form	on	the	Data/Application
server.
Or	setup	the	desktop	using	the	Network	Client	install	file	from	the
Data/Application	server	deployment.
Optionally	set	up	a	Just	in	Time	server.
Deploy	both	the	Data/Application	server	applications	and	the	client
application	with	automatic	updates	via	the	JIT	Server.

System	Requirements	for	these	Exercises
The	client	to	an	IBM	i	server	exercises	require	a	partition	on	the	IBM	i	with	the
Personnel	System	files	and	OAMs	from	the	Shipped	Demonstration	material
save	file.	There	are	no	other	server	functions	or	components	required	on	the
IBM	i	server.
The	standalone	Windows	application	exercises	are	all	installed	for	training
purposes	to	the	student's	desktop.	There	is	no	requirement	for	a	Windows	server
in	order	to	complete	the	exercise	installations.
See	the	LANSA	Deployment	Tool	Guide	/Deploy	Client/Server	Applications	for
more	information.
See	also	Deploying	LANSA	Applications	on	IBM	i	guide.

	

Set	Up	the	Deployment	Tool
This	exercise	is	used	as	the	first	exercise	in	all	the	deployment	scenarios	in	this
tutorial.

DTE010	–	Set	Up	the	Deployment	Tool
Objective
To	begin	using	the	Deployment	Tool	by	defining	a	company	and	an	application.
To	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Define	Company
Step	2.	Define	Default	Cross	Reference	Settings
Step	3.	Define	an	Application
Summary

Before	You	Begin
Before	you	begin	the	exercises	you	should	read	at	least	the	following	guides	and
sections:
Windows	Build	Machine	in	the	Visual	LANSA	Administrators	Guide

In	the	LANSA	Application	Deployment	Tool	Guide:
Introduction
What's	New?
Plan	Your	Deployment
Deploy	Client	Server	Applications

its:lansa011.chm::/lansa/l4winsb2_00345.htm
its:lansa022.chm::/lansa/dt_400.htm
its:lansa022.chm::/lansa/l4wdplb1_0005.htm
its:lansa022.chm::/lansa/l4wdplb2_0060.htm
its:lansa022.chm::/lansa/l4wdplb3_0485.htm

Step	1.	Define	Company
1.		Open	the	Deployment	Tool	from	the	Tools	ribbon.

2.		The	main	dialog	lists	all	existing	applications:

3.		Open	Company	Maintenance	from	the	View	menu.

4.		Click	the	New	button	(highlighted	above).	Use	your	initials	to	define	a	"II

Systems"	company.	Complete	the	URL	entries	as	shown	or	use	suitable
URL's	for	your	own	employer.

					Click	OK	to	save	your	company	definition.
					Note:	The	URL	entries	are	optional	and	may	be	left	blank.

5.		Before	closing	this	dialog,	open	the	LANSA	Application	Deployment	Tool
Guide	from	the	Help	menu	and	review	Set	Up	Company	Details	in	the	Configure
Deployment	Tool	section.

5.		Before	closing	this	dialog,	open	this	guide	(LANSA	Application	Deployment
Tool	Guide)	from	the	Help	menu	and	review	Set	Up	Company	Details	in	the
Configure	Deployment	Tool	section.

its:lansa022.chm::/lansa/VLDTool3_0010.htm
its:lansa022.chm::/lansa/VLDTool3_0010.htm

Step	2.	Define	Default	Cross	Reference	Settings
Cross	referencing	allows	you	to	select	an	object	(for	example,	a	Function	or
Component)	for	inclusion	in	a	Version	or	Patch,	and	then	have	all,	or	selected
types,	of	the	related	executable	and	definition	objects	automatically	included	at
build	time.
Any	default	options	defined	here	can	be	overridden	when	editing	the	Version	or
Patch,	but	the	investment	of	time	to	set	up	your	default	values	correctly	can	by-
pass	several	repetitive	steps	in	the	definition	process.
1.		Before	opening	the	Default	Cross	Reference	Options	dialog,	open	LANSA
Deployment	Tool	guide	and	review	Default	Cross	Reference	Settings.

					Note	that	the	cross	referencing	facilities	are	extremely	flexible:
Default	cross	reference	settings	may	be	defined	by	object	type.
Defaults	may	always	be	overridden,	even	when	options	are	not
automatically	prompted.
Cross	Reference	is	always	available	as	objects	are	added	to	a	package,
including	when	there	are	no	default	settings	defined.

					Leave	the	online	guide	open,	you	will	refer	to	it	again	in	a	later	step.
2.		Open	the	Default	Cross	Reference	Settings	dialog	from	the	View	menu:

					Note:	When	you	first	use	the	Deployment	Tool,	no	default	cross	reference
settings	are	defined	for	any	object	type.

3.		Setting	are	defined	by	selecting	one	object	type	at	a	time	and	then	defining
the	cross	referencing	required.	
Select	Forms	and	select	options	to:
a.		Automatically	apply	the	default	options.
b.		Cross	reference	Components.
c.		Select	the	option	to	Cascade	Selection.

its:lansa022.chm::/lansa/l4wdplb3_0055.htm

4.		Select	Reusable	Parts	and	set	the	same	defaults	as	Forms.

5.		Click	OK	to	save	your	settings	and	close	the	dialog.

Step	3.	Define	an	Application
1.		Click	the	New	 	button	on	the	toolbar	to	create	an	application.

2.		Complete	the	form	as	shown,	using	your	initials	and	selecting	your	company:

Application IIPERSON

Description II	Personnel	System

Company II	Systems

3.		Click	Create	to	save	your	application	definition.
					The	New	Version	dialog	will	be	displayed.
4.		Note	that	the	Version	Number	has	been	set	to	1.0.0.	You	could	change	these
values	if	required.
a.		Enter	a	Description:	Version	1
b.		If	you	plan	to	complete	Deploying	Client	Server	Applications,	select
template	XCLTBIF.

c.		If	you	plan	to	complete	Deploy	a	Stand	Alone	Application,	select	template
XALONE

5.		Review	Deployment	Templates	in	the	LANSA	Application	Deployment	Tool
guide.

					Note:

its:lansa022.chm::/lansa/dt_0800.htm

Templates	make	defining	a	package	quicker	and	easier	and	reduce
complexity	by	hiding	non	required	options.
You	can	use	the	templates	supplied	by	LANSA	or	create	your	own
templates	from	scratch	or	by	saving	a	package	definition.
Pre-V13	templates	can	be	converted.

6.		Click	Create	to	continue.	The	Package	Maintenance	dialog	will	open:

7.		Close	the	Package	Maintenance	dialog	and	close	the	Deployment	Tool.

Summary
What	You	Should	Know

Deployment	requires	a	company	to	be	defined,	which	forms	part	of	the
installed	path.
Optionally	About	/	Help	and	Update	URL	may	be	defined	for	company	and
this	information	is	compiled	into	the	DLL	files.
Cross	Reference	rules	can	be	defined	for	all	Repository	objects,	which	will
add	related	objects	to	the	package.
Cross	Reference	rule	can	be	overridden	when	defining	a	package.
A	package	should	always	be	defined	using	a	suitable	template	which	make
deployment	easier	and	quicker.

	

Deploy	Client	Server	Applications
This	section	contains	exercises	that	demonstrate	how	to	deploy	a	client
application	which	accesses	a	Data/Application	Server	system.
The	exercises	to	be	performed	to	complete	this	objective	are:
DTE010	–	Set	Up	the	Deployment	Tool
DTE015	–	Create	Client	Server	Application
DTE020	–	Create	Version	1
DTE025	–	Install	Version	1
DTE030	–	Modify	the	Employees	Application
DTE035	–	Create	a	Patch	for	the	Employees	Application
DTE040	–	Create	Version	2

DTE015	–	Create	Client	Server	Application
Objectives
In	this	exercise	you	will	create	a	copy	of	a	supplied	application.	Later	you	will
make	small	changes	to	this	application	in	order	to	deploy	a	patch	and	then	a	new
version.	This	application	maintains	employee	records	and	was	created	using	the
Visual	LANSA	CRUD	Wizard.
To	achieve	this	objective	you	must:
Use	Visual	LANSA	installed	as	a	Slave	Workstation,	connected	to	an	IBM	i
Master.	The	Employees	Application	will	run	as	a	client	against	the	IBM	i	server.
Step	1.	Import	the	supplied	Employees	Application
Step	2.	Copy	the	supplied	Employee	Application
Step	3.	Test	the	Client	Server	Application
Summary

Before	You	Begin
You	must	have	completed	the	following	exercise:

DTE010	–	Set	Up	the	Deployment	Tool.

Step	1.	Import	the	supplied	Employees	Application

1.		For	this	step	you	will	need	Export	of	the	Employees	Application	forms	and
reusable	parts.	Your	instructor	will	tell	you	where	to	locate	these	export	files.

1.		Download	the	Deployment	Tool	Employee	Application	from	the
lansa022_extrafiles.zip	file	that	you	will	find	in	the	LANSA	Documentation
web	page	(http://www.lansa.com/support/docs/index.htm).	You	will	find	it	in
the	Deploying	LANSA	group	of	guides.	The	file	contains	an	Export	of	the
Employees	Application	forms	and	reusable	parts.

				Extract	the	contents	of	the	zip	file	into	any	convenient	folder.

2.		In	Visual	LANSA	select	the	Tools	ribbon	and	click	on	the	Import	 	button.
Locate	the	folder	containing	the	export	files,	select	file	lxxdir.del	and	click
Open.	The	Contents	to	import	list	should	contain	2	forms	and	four	reusable
parts.	Click	Import	which	will	populate	your	local	repository	with	the
following	components:

					II_CONNECT	–	Connect	to	IBM	i
					II_MAIN	–	Main	Form
					II_BRWSR	–	Object	Browser
					II_DATA	–	Data	Object
					II_EDIT	–	Document	Editor
					II_STORE	–	Data	Store

http://www.lansa.com/support/docs/index.htm

Step	2.	Copy	the	supplied	Employee	Application
1.		On	the	Repository	tab,	locate	the	new	forms	and	reusable	parts.	Use	the
context	menu	to	copy	each	one.	Use	your	initials	in	place	of	II	to	name	each
component.

2.		Select	the	Source	tab	for	each	component	excluding	the	connect	form,	use
Replace	to	change	all	occurrences	of	II_	to	XX_	where	XX	is	your	initials.

3.		Compile	all	six	components.

Step	3.	Test	the	Client	Server	Application
1.		Execute	your	Main	form	(copy	of	II_MAIN)	as	a	DirectX	application.

					It	should	initially	look	like	the	following:

2.		Complete	the	Connect	and	Options	tab	and	click	the	Connect	button.
3.		Use	your	Visual	LANSA	user	and	password.	The	Administrator	button	on
the	Super	Server	Connect	form	runs	the	LANSA	Communications
Administrator,	showing	your	IBM	i	server	details	(server	name	or	IP
Address).

					You	can	look	up	conversion	table	names	from	your	Visual	LANSA	install
configuration.

4.		Select	About	from	the	right	hand	side	toolbar.	In	the	Product	Information
dialog,	select	the	Installation	Details	tab.	Expand	the	InstalledSettings.cfg
entry	and	scroll	down	to	find	the	Translation	Tables	for	your	system:

5.		Enter	these	values	to	the	Options	tab	in	the	Connect	form.
6.		Once	the	server	connection	is	made,	the	connect	form	signals	the	event
uConnectionCreated.	The	main	form	then	loads	the	DataStore
(II_STORE)	component	which	will	populate	itself	from	the	Personnel	file,
PSLMST.	The	browser	component	(II_BRWSR)	on	the	left	of	the	main	form
is	then	populated	with	all	employees.

7.		Double	click	an	employee	in	the	browser	to	display	its	details:

					The	toolbar	buttons	support	Save	and	New.

Summary
What	You	Should	Know

You	should	now	be	ready	to	start	deploying	the	client	Employees
Application.

	

DTE020	–	Create	Version	1
Objective
To	deploy	the	client	application	to	connect	to	the	partition	you	are	using	for
training	on	the	IBM	i	server.	For	training	purposes,	if	you	are	working	in
partition	TRN	you	will	build	a	package	to	install	to	partition	TRN.
If	you	were	deploying	your	application	into	partition	TST	for	example,	then	you
would	have	promoted		your	application	and	files	to	partition	TST.	Your
deployment	PC	would	have	partition	TST	setup	in	Visual	LANSA	and	the	client
application	would	be	checked	out	and	compiled	on	the	deployment	PC.	You
would	then	build	an	install	package	(Version	1)	to	install	the	client	software,
probably	to	a	file	server.	A	Network	Client	install	to	the	end	user's	desktop
would	then	provide	a	shortcut	to	load	and	run	the	client	application	from	the	file
server.
The	target	partition	on	the	IBM	i	server	must	contain	the	following	personnel
system	files:
					PSLMST	–	Personnel
					PSLSKL	–	Personnel	Skills
					DEPTAB	–	Department	Code	Table
					SECTAB	–	Section	Code	Table
					SKLTAB	–	Skill	Code	Table
On	the	IBM	i,	the	demonstration	files	can	be	defined	in	the	partition	using
Partition	Initialize	from	the	Administration	Menu	and	selecting	the	save	file
PERSYS	–	Personnel	demonstration	system.	The	supplied	files	are	set	up	to
support	RDMLX	enabled	applications.
To	achieve	this	objective	you	must	complete:
Step	1.	Add	Routing	Table	to	Application
Step	2.	Define	Version	1
Step	3.	Define	Execution	Parameters
Step	4.	Review	the	Package	Settings
Step	5.	Build	the	Version	1
Summary

Before	You	Begin

You	must	have	complete	the	following	exercises:
DTE010	–	Set	Up	the	Deployment	Tool
DTE015	–	Create	Client	Server	Application

Step	1.	Add	Routing	Table	to	Application
A	client	server	application	requires	a	routing	table	which	LANSA
communications	will	use,	in	order	to	connect	to	the	server.
1.		In	the	Deployment	Tool	main	window,	select	the	II	Personnel	System
application	and	click	the	LANSA	Communications	button	on	the	toolbar.

2.		The	LANSA	Communications	Administrator	dialog	opens:

					An	empty	routing	table	(lroute.dat)	is	created	in	the	package	work	folder
(….\X_PKGWRK).	You	need	to	add	a	routing	entry	suitable	for	the
production	server	with	which	the	installed	application	will	connect.

3.		Click	New	and	complete	the	following	information	to	suit	your	IBM	i	server
and	the	LANSA	Listener	for	the	LANSA	system	being	used	for	training.

					Your	trainer	will	provide	you	with	the	information	required	for	your
workshop.

					Partner	LU	Name:	<a	descriptive	name	for	this	server	connection>
					Fully	Qualified	Name	of	the	Host:	<the	server	name	or	IP	Address>
					Connection	Identifier:	<the	port	number	used	by	the	LANSA	IBM	i
Listener>

4.		Click	OK	to	save	the	new	entry.
5.		Close	the	Route	Information	dialog.

Step	2.	Define	Version	1
1.		Double	click	on	Version	1	for	II	Personnel	System	application	to	open	the
Package	Maintenance	dialog.

2.		Click	on	the	Select	Repository	objects	 	button	on	the	toolbar.

3.		Expand	the	Forms	group,	then	the	alphabetic	group	for	your	initial.	Add	your
main	form	(copy	of	II_MAIN)	to	the	package.	Notice	that	the	entry	contains	a
tick	meaning	that	cross	reference	is	enabled	for	this	component	type.

					Since	the	Cascade	Selection	is	also	selected	in	the	cross	reference	defaults,	it
is	only	necessary	to	include	this	top	level	form	to	create	a	complete
installable	package.	Of	course	depending	on	the	design	of	your	own
applications	you	may	need	to	include	a	number	of	top	level	components	in

order	to	define	a	complete	package.
4.		Click	OK	to	close	the	Select	Repository	object	dialog.

Step	3.	Define	Execution	Parameters
In	this	step	you	will	define	the	execution	parameters	which	determine	the	form,
partition,	language	and	user	which	will	be	used	to	start	the	application	for	the
end	user.	These	are	parameters	for	the	X_RUN	program		which	loads	the
applications	DLLs.
1.		In	the	Package	Maintenance	dialog,	define	each	parameter	by	double
clicking	on	the	parameter	in	the	Required	Execution	group.

					Note.	These	parameters	may	be	prompted	at	run	time	if	required.

2.		Deselect	DBMS	type(DBUT)	–	No	Database.	(An	error	will	occur	if	you
don't	do	this.)

3.		Double	click	on	Form	to	Execute	(FORM):

a.		Enter	your	form	name.
b.		Close	the	Form	to	Execute	dialog.

4.		Follow	the	same	procedure	to	define	the	following	parameters,	making	any
changes	required	for	your	system	and	national	language:

					LANSA	User:	=	<user	id>
					where	<user	id>	is	your	Visual	LANSA	User	Id.
					Leave	all	other	parameters	with	their	default	settings.	Note	the	partition	and
language	will	be	values	for	the	partition	where	you	are	building	the
deployment	package.

5.		The	CRUD	application	must	be	executed	as	a	DirectX	application.	This
requires	a	change	to	the	default	Render	Type	X_RUN	parameter.		The	X_Run
Arguments	 toolbar	button	opens	a	dialog	which	enables	these	to	be
defined.

6.		Open	the	X_Run	Arguments	dialog	and	add	an	entry	RNDR=X.
This	will	ensure	the	application	is	executed	using	DirectX.

7.		Click	OK	to	save	the	changes.

Step	4.	Review	the	Package	Settings
1.		Click	the	Settings	 	button	on	the	toolbar	to	open	the	Package	Settings
dialog.

2.		These	settings	are	defined	by	the	XCLTBIF	template	which	was	used	to
define	this	package.	Notice	that	because	this	package	is	for	a	client
application	it	is	deployed:

without	local	database,
without	execution	database	support,
with	LANSA	Communications	and	Component	Support.

					To	learn	more	about	these	settings	you	should	refer	to	Options	&	Settings.
3.		Notice	that	the	template	includes	a	setting	to	Deploy	LANSA
Communications.	This	allows	the	LANSA	Communications	Administrator	to
be	run	for	the	installed	application.	This	is	not	essential	for	most	users.	An
install	to	a	file	server	would	enable	most	users	to	be	given	a	shortcut	to	the
main	application	form	only.

its:lansa022.chm::/lansa/dt_0180.htm

4.		No	changes	are	required	to	these	settings.

Step	5.	Build	the	Version	1

1.		Save	 	the	package	definition.

2.		Check		 	the	package.	This	is	an	optional	step	which	will	identify	any
errors	in	the	current	package	definition	without	performing	a	build	which
takes	a	lot	more	time.	Errors	will	be	reported	as	Warning	or	Fatal.

					This	message	box	is	shown	when	no	errors	are	found.

3.		Build	 	the	package.	A	progress	bar	is	displayed	while	the	package	build
steps	are	completed.		This	step	may	take	quite	a	long	time.

					The	first	time	that	a	package	is	built	a	Global	Unique	Identifier	(GUID)	is
generated	for	the	package	and	stored	in	a	file.	The	Install	process	identifies
the	application	package	in	the	Windows	registry	using	the	GUID.

4.		When	the	build	is	completed	display	the	build	log	 	.	Filter	to	select	only
the	Fatal	messages	and	you	should	see	no	messages	displayed.

5.		The	build	log	dialog	allows	the	messages	to	be	filtered,	for	example	by
selecting	Completion,	Warning,	Fatal	or	All	messages	only	to	be	display.	You
can	also	search	to	Find	specific	entries	in	the	log.

					If	you	select	Completion	messages,	notice	that	the	shipped	DLLs	include	the
four	reusable	parts	which	the	main	form	depends	on,	as	well	as	the	main	form
itself	(II_MAIN)	and	the	server	connect	form	II_CONNECT.

6.		Warning		messages	(if	any)	should	be	reviewed	but	generally	do	not	require
any	action.	For	example	a	warning	message	is	issued	detailing	the	name	of
the	GUID	file	generated.	If	fatal	messages	are	reported	you	will	need	to
review	the	previous	steps	to	resolve	the	error.	For	example	if	a	component
DLL	is	not	found,	this	will	usually	indicate	the	component	is	not	compiled.

7.		Close	the	Package	Build	log.
8.		Close	the	Package	Maintenance	dialog.

Summary
What	You	Should	Know

How	to	add	Repository	objects	to	the	package	and	how	cross	reference
settings	can	be	used	to	add	dependent	objects.
How	a	template	can	define	most	of	the	settings	required.
How	to	define	a	routing	entry	to	support	connection	to	the	server	used	by	the
client	application.
How	to	define	additional	x_run	arguments
How	to	build	a	package.
How	to	review	the	build	log.

DTE025	–	Install	Version	1
Objective
To	install	Version	1	of	the	II	<your	initials>	Personnel	System	software.
To	achieve	this	objective	you	must	complete:
Step	1.	Locate	the	Install	File
Step	2.	Install	Version	1	of	Personnel	System
Step	3.	Set	Version	1	to	Deployed
Summary

Deploying	Your	Own	Applications
It	is	important	to	understand	that	these	exercises	will	manage	package
definition,	build	and	installation	very	differently	to	your	own	real	applications.
For	example,	your	deployment	package	should	always	be	built	on	a	dedicated
deployment	copy	of	Visual	LANSA.	The	objective	is	to	ensure	that	deployment
of	every	component	is	carefully	controlled	and	the	GUIDs	generated	during	the
build	are	preserved	for	building	future	releases	of	the	application.
Testing	on	a	clean	deployment	PC	will	ensure	that	all	the	required	components
have	been	identified	and	included	in	the	installation.
For	your	own	system,	installation	of	Version	1	of	your	application	could	be	to
an	end	user	desktop	or	to	a	file	server	or	to	a	Terminal	Server,	depending	on
how	you	manage	your	client	software.
For	this	exercise	you	will	install	to	the	partition	you	are	using	for	training.	The
corresponding	partition	on	the	IBM	i	server	must	contain	the	Personnel	files
used	by	this	application.
Your	own	deployment	would	normally	initially	be	to	a	Test	partition.

Before	You	Begin
You	must	have	completed	the	following	exercises:

DTE010	–	Set	Up	the	Deployment	Tool
DTE015	–	Create	Client	Server	Application
DTE020	–	Create	Version	1

Step	1.	Locate	the	Install	File
1.		Find	the	deployment	application	folder	within	the	Visual	LANSA
..\X_APPS	folder	by	clicking	on	the	folder	icon	in	the	Deployment	Tool.

2.		Using	your	initials,	the	deployment	application	folder	is	IIPERSON.
3.		Using	your	initials,	the	Version	1	install	file	(MSI)	will	be:

		IIPERSON_V1.0.0_en-us.msi
4.		If	you	need	to	transfer	your	own	install	file	to	another	machine	or	to	any
media,	you	only	need	to	transfer	the	MSI	file.	No	other	files	or	folders	are
required.

Step	2.	Install	Version	1	of	Personnel	System
1.		Double	click	on	the	MSI	file	to	start	the	installation.	The	Windows	Install
dialog	will	be	displayed:

2.		Click	Next	to	continue.
3.		The	End	User	License	Agreement	dialog	is	displayed.

a.		A	sample	license	agreement	file	is	supplied	in:

								…\x_apps\X_Wix\Content\license.rtf
b.		You	should	edit	or	replace	this	file	to	implement	your	company	licensing
terms	if	necessary.

4.		Select	the	"I	accept….."	check	box	and	click	Next	to	continue.
5.		At	the	Installation	Scope,	select	Install	just	for	you	and	click	Next.

					If	you	are	given	a	choice	(as	above)	select	Install	just	for	you.	This	will
depend	on	whether	you	are	installing	to	Windows	7	or	Windows	8	and
whether	UAC	is	enabled.

					The	following	dialog	will	vary	between	Windows	7	and	Windows	8.	For
example	in	Windows	8,	since	UAC	is	always	enabled,	the	following	dialog
will	be	shown:

					For	Windows	8,	you	would	need	to	install	using	a	Command	Prompt,	started
using	Run	as	Administrator.	Refer	to	msiexec.exe	Command-Line	Options	in	the
Deployment	Tool	Guide.

					For	Windows	8,	you	would	need	to	install	using	a	Command	Prompt,	started
using	Run	as	Administrator.	Refer	to	msiexec.exe	Command-Line	Options	in
this	guide.

6.		Click	Next	to	continue.	The	Destination	Folder	dialog	will	be	shown:

					The	Change	button	allows	an	alternative	folder	to	be	selected.	The	above
image	is	for	Windows	7	and	the	default	path	will	be:
C:\Users\John\AppData\Local\Apps.

					Notice	that	the	recommended	path	includes	the	Company	and	Application
Name:
		.	.	.\II	Systems\II	Personnel	System\

					The	per-user	install	path	will	be	similar	to	the	following:
C:\Users\John\AppData\Local\Apps\II	Systems\II	Personnel
System	Standalone\

7.		Click	Next	to	continue.		The	Choose	Setup	Type	dialog	is	displayed.

					Select	any	option	to	continue.	Currently	any	of	these	options	will	install	the
complete	package.

8.		Click	Install	to	continue.

9.		The	Install	dialog	will	show	progress	with	messages	and	a	progress	bar.

10.		Click	Finish	to	complete	the	installation.

					Note	that	the	Start	II	Personnel	System	Client	Server	check	box	is	selected.
11.	Your	main	form	will	run	and	invoke	the	Super	Server	Connector	form.

					The	Server	Type	defaults	to	IBM	i.	Enter	your	User	ID,	Password	and	Server
Name.

12.	Select	the	Options	tab	which	will	initially	show	the	default	conversion
tables.	You	need	to	enter	the	correct	values	for	your	system,	which	will
depend	on	your	IBM	i	code	page.	For	example	QCHRID	=		37	is	for	a	US
English	system.	The	EBCDIC	to	ASCII	conversion	tables	used	will	depend
on	your	national	language.

					Your	trainer	will	provide	the	correct	values	for	the	system	being	used	for
classroom	training.

					You	can	easily	look	up	this	information	from	your	Visual	LANSA	install
configuration.
To	do	this:
Select	About	from	the	right	hand	side	toolbar.
In	the	Product	Information	dialog,	select	the	Installation	Details	tab.
Expand	the	InstalledSettings.cfg	entry	and	scroll	down	to	find	the	Translation
Tables	for	your	system:

13.	Enter	these	values	in	the	Options	tab	in	the	Super	Server	Connect	form.
14.	Click	Connect.	After	connecting	with	the	server,	the	connect	form	will
close.	The	main	form	then	populates	the	browser	panel	on	the	left	with	all
employees.

					Note:	The	Connect	form	will	save	and	restore	all	entries	except	the
password.

15.	As	before,	you	are	now	able	to	edit	and	save	an	employee	having	selected	it
by	double	clicking	in	the	browser	or	using	the	context	menu	to	Open	the
employee	details	in	the	editor.	The	application	handles	multiple	employees
with	each	open	in	their	own	editor	instance.	A	new	employee	may	be	created
using	a	toolbar	button.	All	changes	are	saved	using	a	toolbar	button.	
The	application	warns	if	closing	and	an	employee	has	been	changed	and	not
saved.

Step	3.	Set	Version	1	to	Deployed
Now	that	Version	1	has	been	successfully	deployed,	you	should	set	the	package
status	to	deployed,	which	prevents	any	changes	being	made	to	the	package.
1.		In	the	main	Deployment	Tool	form,	select	the	Version	1	which	was	just
installed.

2.		Click	the	 		Deployed	button	on	the	toolbar	to	set	the	package	status	to
deployed.

3.		If	you	now	try	to	open	the	package,	the	following	message	box	is	displayed.

4.		To	check	what	objects	were	included	in	Version	1,	use	the	 		Cross
Reference	button	on	the	toolbar	and	select	Cross	Referenced	Objects	tab	to
see	a	list	of	all	objects.

Summary
What	You	Should	Know

How	to	install	using	the	Windows	Installer.
The	default	install	path	used	for	a	per-user	installation.
How	to	set	a	package	to	Distributed.
How	to	review	all	objects	included	in	the	distribution.

DTE030	–	Modify	the	Employees	Application

Complete	this	exercise	if	you	are	deploying	a	client	server	application
or	deploying	a	standalone	Windows	application.	The	changes	to	the
Employee's	Application	are	exactly	the	same	for	both	deployments.

Objective
To	make	a	simple	change	to	the	Employees	Application	which	will	require	a
Patch	to	be	created	to	update	the	deployed	application.
The	real	fields	for	start	date	and	terminate	date	(STARTDTER	and
TERMDATER)	will	be	removed	from	the	application.	These	numeric	dates
have	virtual	fields	defined	over	them,	to	transform	to	and	from	a	DDMMYY	(or
MMDDYY)	format	after	read	and	before	write.	The	real	date	fields	are	in	fact
not	directly	used	by	the	application.
To	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Remove	Real	Start	and	Terminate	Dates	from	the	Editor
Step	2.	Modify	the	Data	Component	(II_DATA)
Step	3.	Modify	the	Store	component	(II_STORE)
Step	4.	Modify	the	Browser	Component	(II_BRWSR)
Step	5.	Re-test	the	Employees	Application
Summary

Before	You	Begin
You	must	first	complete	these	exercises:
DTE010	–	Set	Up	the	Deployment	Tool
DTE015	–	Create	Client	Server	Application
DTE020	–	Create	Version	1
DTE025	–	Install	Version	1

Step	1.	Remove	Real	Start	and	Terminate	Dates	from	the	Editor
In	order	to	make	the	changes	made	visible,	remove	all	code	by	making	it	a
comment	line	(use	Ctrl+W).

1.		Using	your	initials,	open	the	reusable	part	(II_EDIT)	in	the	VL	editor.
2.		In	the	Source	code	use	Find	to	locate	STARTDTER.	The	code	for
TERMDATER	is	at	the	same	location.
a.		Comment	out	the	following	4	lines	of	code	to	remove	the	fields	from	the
user	interface.	

Define_Com	Class(#STARTDTER.Visual)	Name(#STARTDTER)
Componentversion(1)	Displayposition(10)	Height(21)	Left(15)
Parent(#COM_OWNER)	Tabposition(10)	Top(294)	Usepicklist(False)
Width(493)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_STARTDTER)
Attachment(Top)	Manage(#STARTDTER)	Marginbottom(5)	Marginleft(5)
Marginright(5)	Margintop(5)	Parent(#ATLM_Editor)
Define_Com	Class(#TERMDATER.Visual)	Name(#TERMDATER)
Componentversion(1)	Displayposition(12)	Height(21)	Left(15)
Parent(#COM_OWNER)	Tabposition(12)	Top(356)	Usepicklist(False)
Width(493)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_TERMDATER)
Attachment(Top)	Manage(#TERMDATER)	Marginbottom(5)	Marginleft(5)
Marginright(5)	Margintop(5)	Parent(#ATLM_Editor)
	

3.		Comment	the	following	2	lines	from	the	component	Initialize	event	routine.
#STARTDTER	:=	#Document.p_STARTDTER
#TERMDATER	:=	#Document.p_TERMDATER
	

4.		Comment	out	these	two	event	handling	routines:
Evtroutine	Handling(#STARTDTER.Changed)
#Document.p_STARTDTER	:=	#STARTDTER
#EditorModified	:=	True
Signal	Event(Changed)
Endroutine
Evtroutine	Handling(#TERMDATER.Changed)
#Document.p_TERMDATER	:=	#TERMDATER

#EditorModified	:=	True
Signal	Event(Changed)
Endroutine
	

5.		Compile	II_EDIT

Step	2.	Modify	the	Data	Component	(II_DATA)
1.		Open	your	version	of	the	II_DATA	reusable	part	in	the	editor.
2.		Comment	out	these	two	lines:
Define_Pty	Name(p_STARTDTER)	Get(*AUTO	#STARTDTER)
Set(*AUTO	#STARTDTER)
Define_Pty	Name(p_TERMDATER)	Get(*AUTO	#TERMDATER)
Set(*AUTO	#TERMDATER)

3.		Recompile	the	II_DATA	component.

Step	3.	Modify	the	Store	component	(II_STORE)
1.		Open	your	version	of	the	II_STORE	reusable	part	in	the	editor.
2.		Comment	out	the	following	two	lines:
#Document.p_STARTDTER	:=	#STARTDTER
#Document.p_TERMDATER	:=	#TERMDATER

3.		Comment	out	the	following	two	lines	from	the	PopulateProxy	method
routine:
#Proxy.p_STARTDTER	:=	#STARTDTER
#Proxy.p_TERMDATER	:=	#TERMDATER

3.		Comment	out	the	following	two	lines	from	the	ExtractDocument	method
routine:
#STARTDTER	:=	#Document.p_STARTDTER
#TERMDATER	:=	#Document.p_TERMDATER

4.		Recompile	the	II_STORE	component.

Step	4.	Modify	the	Browser	Component	(II_BRWSR)
1.		Open	your	version	of	the	II_BRWSR	reusable	part	in	the	editor.
2.		Comment	out	the	following	two	lines	which	define	the	tree	view	columns:
Define_Com	Class(#PRIM_TVCL)	Name(#TVCL_STARTDTER)
Displayposition(10)	Level(2)	Parent(#Tree)	Sortonclick(True)
Source(#STARTDTER)	Width(30)	Widthtype(Fixed)
Define_Com	Class(#PRIM_TVCL)	Name(#TVCL_TERMDATER)
Displayposition(11)	Level(2)	Parent(#Tree)	Sortonclick(True)
Source(#TERMDATER)	Width(30)	Widthtype(Fixed)
	

3.		Comment	out	the	following	two	lines	from	the	AssignColumnData	method
routine:
#STARTDTER	:=	#Proxy.p_STARTDTER
#TERMDATER	:=	#Proxy.p_TERMDATER
	

4.		Recompile	the	II_BRWSR	component.

Step	5.	Re-test	the	Employees	Application
1.		Execute	your	main	form.
2.		Confirm	that	the	application	runs	correctly	without	errors.
3.		Confirm	that	the	real	start	date	and	terminate	date	(YYMMDD)	are	not
shown	in	the	browser	or	the	details	panel.

4.		Change	and	update	an	employee.
5.		Create	an	employee	and	save	it.

Summary
What	You	Should	Know

Which	components	were	changed	and	what	changed	on	the	user	interface
(browser	and	editor).

DTE035	–	Create	a	Patch	for	the	Employees	Application

Complete	this	exercise	if	you	are	deploying	a	client	server	application
or	deploying	a	standalone	Windows	application.	The	steps	to	follow	to
create	Patch	1	are	exactly	the	same	for	both	of	these	deployments.

Objective
To	create	and	install	Patch	1	which	includes	the	changed	reusable	parts	created
in	DTE030.
To	achieve	this	objective,	you	should	complete	the	following:
Step	1.	Set	DLL	Version	and	Recompile	Changed	Components
Step	2.	Create	a	Patch
Step	3.	Install	the	Patch
Summary

What	is	a	Patch?
A	Patch	is	used	to	deliver	a	set	of	changes	to	a	software	product	that	has	been
installed	using	the	Windows	Installer.	A	software	product	can	be	upgraded	by
installing	a	new	Version	(MSI	file)	or	by	applying	a	Patch	(MSP	file).
A	Patch	is	typically	used	to	apply	modified	compiled	objects,	shortcuts	and
executables.		It	is	not	recommended	to	use	a	patch	to	deploy	database	changes
as	they	are	complex	to	manage	and	can	easily	result	in	a	corrupted	database.
A	Patch	is	identified	by	its	Patch	Number.	The	Patch	number	has	a	direct
relationship	to	the	Version	or	Patch	it	was	based	on,	for	example	Patch	1.0.0.1
would	be	the	first	patch	against	Version	1.0.0.0.
If	a	patch	is	only	to	be	used	to	ship	updated	objects	and	there	are	no	new
objects,	then	nothing	needs	to	be	changed	in	the	Package	Definition.	Just	save
the	Package	and	build	it.	Any	differences	between	the	Version	and	the	current
state	of	objects	will	be	included	in	the	Patch.
A	Patch	is	usually	created	from	the	last	Patch	definition,	so	that	it	includes	any
changes	made	to	the	Package	Definition,	like	the	addition	of	new	objects.
The	order	of	the	application	of	Patches	does	not	change	the	installed	result.	If
Patch	1	contains	MYFORM.DLL	version	1.0.0.1	and	Patch	2	contains
MYFORM.DLL	version	1.0.0.2	then	whether	Patch	1	is	installed	first	or	Patch	2
the	result	is	that	MYFORM.DLL	version	1.0.0.2	is	installed.

Similarly	when	a	Patch	is	uninstalled.	If	Patch	1	is	now	uninstalled,	it	will	only
affect	the	version	of	DLLs	which	it	installed.	As	version	1.0.0.2	is	installed,
uninstalling	Patch	1	will	not	replace	MYFORM.DLL	with	version	1.0.0.0.	It
will	still	be	version	1.0.0.2.	Only	when	Patch	2	is	then	uninstalled	will	it	be
restored	to	version	1.0.0.0.
This	may	sound	neat,	but	it	can	become	complex	to	manage	if	Patches	are
created	which	are	not	cumulative.	Each	Patch	should	include	all	the	changes
that	have	come	before,	or	back	them	out	if	necessary,	and	be	considered	as	the
ONLY	patch	required	to	move	the	installation	to	that	Patch	level.	So	no	matter
what	Patch	level	a	user	has	chosen	to	install,	to	get	to	the	latest	version	they	just
need	to	install	the	latest	Patch.	No	interim	Patches	are	required.	Note:	By
creating	patches	sequentially	from	a	single	build	machine	and	not	restoring	any
objects	to	a	prior	state	will	ensure	that	Patches	are	cumulative.	See	the
Deployment	Tool	guide	for	further	information	on	patches.

Creating	a	Patch
The	process	to	create	a	patch	is	very	simple.	The	patch	is	based	on	the	last
deployed	version.	A	patch	may	include	one	or	more	changes	to	existing
application	components	that	have	already	been	deployed,	or	new	components.
You	modify	one	or	more	components	and	then	build	a	patch	based	on	the	latest
version	deployed	for	this	application.	The	deployment	tool	will	analyze	the
DLLs	and	include	only	new	or	changed	DLLs	in	the	patch.

Before	You	Begin
You	must	have	completed	the	following	exercises:
DTE015	–	Create	Client	Server	Application
DTE020	–	Create	Version	1
DTE025	–	Install	Version	1
DTE030	–	Modify	the	Employees	Application

Step	1.	Set	DLL	Version	and	Recompile	Changed	Components
Note:	This	step	is	necessary	so	that	when	Patch	1	is	built,	the	patch	recognizes
the	changed	DLLs	and	only	these	are	included	in	the	Patch.

To	complete	this	step	you	must	log	in	to	Visual	LANSA	as	the
Partition	Security	Officer.

If	you	are	using	an	Independent	Visual	LANSA	installation,	the	profile
PCXUSER	is	Partition	Security	Officer.
1.		Open	the	Visual	LANSA	Settings	dialog	from	the	File	menu:

2.		Select	the	Compile	icon.	Your	Version	1	install	used	a	product	version
number	of	1.0.0,	which	is	the	default	value.	As	shown,	set	a	File	Version
which	is	one	higher	than	the	current	product	version,	that	is	1.0.0.1	in	this
case.	
Enter	any	suitable	value	for	Copyright,	Trade	Mark	and	Comment.

					For	your	own	deployment	packages,	you	should	manage	Product	Version	and
File	Version	as	necessary	for	each	application	that	you	are	deploying,
depending	on	whether	this	is	a	version	or	a	patch.	This	information	is	then
built	into	every	DLL.

					For	more	information,	refer	to	Set	DLL	Version	Information.
3.		Click	Apply	and	then	OK	to	close	the	LANSA	Settings	dialog.
4.		On	the	Favorites	/	Last	Opened	tab,	select	the	four	reusable	parts	which	you
changed	in	DTE030	–	Modify	the	Employees	Application	and	recompile
them.	The	DLLs	now	contain	the	new	File	Version	information.

5.		To	view	the	information	on	any	DLL,	select	it,	right	click	and	select
Properties	from	the	context	menu.	Select	the	Details	tab:

its:lansa022.chm::/lansa/VLDTool20_0015.htm

Step	2.	Create	a	Patch
Now	that	you	have	recompiled	your	changed	components	with	the	new	File
Version	information,	in	order	to	create	a	patch	there	is	very	little	to	do.	The
patch	is	based	on	the	previous	version,	and	when	built,	an	MSP	file	will	be
produced	containing	only	the	new	or	changed	DLLs	which	were	part	of	the
previous	version.
1.		Open	the	Deployment	Tool.	In	the	main	window,	select	the	Version	1
package	in	the	Personnel	Application.	Use	the	context	menu	and	select
Create	Patch:

2.		Notice	that	the	Create	Patch	dialog	is	headed	Create	as	a	copy	of
Application	IIPERSON	Version	1.0.0.	When	you	build	the	Patch	package	the
differences	between	current	application	components	and	the	last	deployed
version	are	analyzed	and	a	patch	install	file	(MSP)	is	created	containing	only
the	changed	components.

					Accept	the	Patch	number	generated	(1.0.0.1).
3.		Click	OK.
4.		The	Package	Maintenance	dialog	will	open.	Note	that	most	of	the	options

are	disabled.	These	will	be	as	defined	in	the	Version	1	package.
5.		Your	application	changes	have	created	a	new	version	of	four	reusable	parts:
					II_EDIT,	II_STORE,	II_DATA	and	II_BRWSR.
					When	you	build	the	patch	package,	the	deployment	tool	will	analyze	all	the
components	included	in	Version	1	and	create	a	patch	package	install	file
(MSP)	containing	only	the	changes,	in	this	case	the	four	DLLs	list	above.

6.		In	the	Package	Maintenance	dialog,	click	Save.
7.		Check	the	Package.	No	errors	should	be	found.
8.		Build	the	Package.	A	message	box	is	displayed	prompting	a	rebuild	of	the
cross	references.	In	this	case	answer	No,	as	there	have	been	no	changes	to	the
structure	of	the	application.	You	would	need	to	rebuild	the	cross	references	if
your	application	changes	had	introduced	new	components	used	by	the	main
form	II_MAIN.

9.		Review	the	build	log.	You	should	have	no	fatal	or	warning	messages
					If	you	filter	for	Completion	messages,	and	scroll	through	the	build	log	to	find
the	copy	DLLs	steps,	you	will	find	all	the	application	DLLs	are	listed	at	this
stage.

					Note:	If	you	examine	the	contents	of	the	patch	install	file	(MSP)	you	will
find	it	contains	only	the	changed	DLLs.	In	this	case	it	will	contain	only	the
four	changed	DLLs.

					If	you	have	a	utility	such	as	7-Zip	installed	(open	source	software)	you	can
view	the	contents	of	the	MSI	or	MSP	file.

10.	Close	the	Package	Maintenance	dialog.

Step	3.	Install	the	Patch
In	this	step	you	will	follow	essentially	the	same	steps	as	when	you	installed
Version	1	of	the	Personnel	System.
1.		Locate	the	install	file	by	selecting	the	patch	in	the	Deployment	Tool	and	click
on	the	Go	to	folder	 	toolbar	button	to	open	Explorer	at	the	…
\X_APPS\IIPERSON	folder.

2.		Double	click	on	the	patch	file.	e.g.	IIPERSON_V1.0.0.1_en-us.msp
					Note:	This	patch	installs	four	changed	program	files	(DLLs)	and	involves	no
database	changes.	The	application	was	installed	by	Version	1	as	a	per-user
installation.	This	means	that	in	Windows	7	or	Windows	8	the	patch	can	be
installed	by	double	clicking	the	MSP	file.

3.		The	Windows	Installer	will	locate	the	installed	software	and	confirm	that
Patch	1	is	for	the	GUID	as	Version	1.

4.		There	are	fewer	dialogs	to	display	during	a	patch	installation:

5.		Click	the	Finish	button	to	close	the	install	program.
6.		Run	the	Employees	Application.	Notice	that	the	employee	details	panel	now
includes	only	the	virtual	fields	for	start	date	and	terminate	date	in	DDMMYY
(or	MMDDYY)	format.	The	start	date	and	terminate	date	in	YYMMDD
format	are	no	longer	shown	on	the	details	panel	and	they	are	not	included	as
columns	in	the	browse	panel.

Summary
What	You	Should	Know

How	to	set	the	Compile	option	settings	to	increment	Product	Version	/	File
Version.
How	to	create	a	patch	based	on	the	previous	Version.
How	to	install	a	Patch.

DTE040	–	Create	Version	2
Objective
To	make	a	minor	change	to	the	appearance	of	the	application	and	then	create
Version	2	to	install	the	changed	application.

What	is	a	New	Version?
A	new	version	is	created	by	copying	the	original	version.	The	new	version	will
contain	all	the	components	installed	by	the	original	version.	The	Windows
Installer	will	process	a	Version	upgrade	as	a	full	installation.	If	an	earlier
version	is	located	on	the	target	system	the	Windows	Installer	will	un-install	the
older	version	before	installing	the	new	version.

Version	or	Patch	Upgrade?
The	main	advantage	of	a	Patch	is	it	is	much	smaller	and	therefore	more	easily
(more	quickly)	installed.	A	Patch	only	install	changes.	A	Patch	must	detect	an
install	with	the	same	GUID.	See	the	Deployment	Guide	for	more	information.
To	achieve	this	objective,	complete	the	following:
Step	1.	Set	DLL	Version
Step	2.	Enhance	the	Application
Step	3.	Create	Version	2	Package
Step	4.	Install	Version	2
Summary

Before	You	Begin

You	must	have	completed	the	following	exercises:

DTE010	–	Set	Up	the	Deployment	Tool
DTE015	–	Create	Client	Server	Application
DTE020	–	Create	Version	1
DTE025	–	Install	Version	1
DTE030	–	Modify	the	Employees	Application
DTE035	–	Create	a	Patch	for	the	Employees	Application

Step	1.	Set	DLL	Version
1.		Open	the	Visual	LANSA	Settings	dialog	by	selecting	Options	from	the	File
menu.

2.		Select	Compile	options.	Set	both	the	Product	Version	and	File	Version	to
2.0.0.0

					The	Product	Version	and	/	or	the	File	Version	must	be	incremented	before
compiling	the	changed	application.	The	following	values	would	also	be	valid,
for	example:
Product	Version:	2.0.0.0
File	Version:	1.0.0.0

3.		Click	Apply	and	then	OK	to	close	the	Settings	dialog.

Step	2.	Enhance	the	Application
Since	the	main	focus	in	these	exercises	is	to	learn	how	to	use	the	Deployment
Tool,	the	changes	made	in	this	step	will	be	trivial.	The	changes	will	make	it
visually	obvious	that	you're	running	Version	2	of	the	Application.
The	main	form	will	now	use	the	theme	2007Blue	(instead	of	2007Silver).
1.		Open	your	main	form	(copy	of	II_MAIN)	in	the	editor.	Locate	the	following
code,	and	change	it	as	shown.	Changes	are	highlighted	in	red.
*	Determine	our	appearance.
#SYS_APPLN.ThemedForms	:=	True
#SYS_APPLN.Theme	:=	2007Blue
	

2.		Recompile	the	form.
3.		On	the	Favorites	/	Last	Opened	tab	select	your	reusable	parts	(copies	of
II_EDIT,	II_DATA,	II_STORE	and	II_BRWSE)	and	compile	them.

4.		Select	your	connect	form	(copy	of	II_CONNECT)	and	recompile	it.
5.		All	the	application	components	now	have	the	new	Product	Version	and	File
Version	compiled	into	their	DLLs

	

6.		Run	your	main	form	and	confirm	that	the	application	now	uses	the	2007Blue
Windows	theme:

Step	3.	Create	Version	2	Package
This	step	creates	Version	2	for	the	Personnel	System	application.	A	version
always	deploys	the	complete	application	and	replaces	the	existing	installed
application.
1.		Open	the	Deployment	Tool.	Expand	the	Personnel	System,	select	Version	1
and	use	the	context	menu	to	Create	Next	Version:

2.		Enter	Version	Number:	2.0.0	and	a	Description:	Version	2	with	Blue
Theme.

					The	Package	Maintenance	dialog	will	open.

3.		Open	the	Select	repository	objects	dialog,	select	Forms	and	confirm	that	as
per	Version	1,	the	application	objects	are	defined	by	the	main	form	(copy	of
II_MAIN)	and	cross	reference	drill	down,	which	includes	the	reusable	parts
(copies	of	II_EDIT,	II_STORE,	II_DATA	and	II_BRWSE	and	the	form
II_CONNECT).

4.		Click	Save	and	then	click	OK	to	close	the	Package	Maintenance	dialog	and
Save	the	package.

5.		Select	Version	2	and	use	the	toolbar	buttons	to	Check	the	Package	and	then
Build	the	Package.	Click	No	at	the	message	box	"Do	you	want	to	rebuild	list
of	cross	referenced	objects".	In	this	case	this	is	unnecessary.	But	consider	the
situation	where	the	enhancements	made	had	included	adding	a	new	form	or
reusable	parts.	In	this	case	it	would	be	essential	to	regenerate	the	cross
reference	so	that	all	objects	are	included.

6.		When	the	build	is	complete,	check	the	build	log,	filtering	for	Completion
messages.	Scroll	down	to	the	copy	DLLs	step.	Confirm	that	all	your
components	have	been	included:

7.		Close	the	build	log.
8.		In	the	Deployment	Tool	main	window,	select	Version	2	for	the	Personnel
System	application.	Click	the	Objects	Included	in	the	Package	 	tool	bar
button.

					This	form	contains	two	tab	sheets.
Selected	Objects	contains	the	components	which	were	defined	by	the
objects	you	included	in	the	Package	Maintenance	/	Select	repository
objects	dialog.
The	Cross	Reference	Objects	lists	the	objects	included	by	cross	reference
and	cross	reference	drill	down.

The	Delete	option	 	can	be	used	to	remove	objects	from	the	package.	If
any	objects	are	removed	from	the	package,	the	Package	will	need	to	be
rebuilt.
If	any	objects	added	to	the	package	by	cross	reference	are	removed,
rebuilding	the	package	will	regenerate	the	cross	referenced	objects	if	the
option	to	"regenerate	cross	reference"	is	taken.

9.		Close	the	Objects	included	in	the	Package	dialog.

Step	4.	Install	Version	2

1.		Select	Version	2	and	use	the	Go	to	folder	 		toolbar	button	to	open
Explorer	at	the	application	package	folder	(..\x_apps\IIPERSON)	in	your
Visual	LANSA	install	path:

2.		Double	click	on	the	Version	2	MSI	file	to	run	the	installation.
					Note:	Version	2	installs	new	versions	of	all	forms	and	reusable	parts.	Once
again	it	does	not	involve	any	database	changes,	and	Version	1	was	installed	as
a	per-user	installation.	This	means	that	for	both	Windows	7	and	Windows	8
you	can	install	Version	2	by	double	clicking	the	MSI	file.

3.		You	will	observer	that	installing	a	new	version	is	similar	to	the	initial	install.
For	example,	the	End	User	Licence	Agreement	is	displayed	and	must	be
accepted.

4.		Complete	all	the	install	steps	for	Version	2.	Version	2	will	install	as	a	per-
user	installation,	the	same	as	the	option	used	when	Version	1	was	installed.

5.		Run	the	application	and	notice	that	the	main	form	and	the	connect	form	now
use	the	2007	Blue	theme:

6.		Log	in	to	the	server	and	re-test	the	application.	You	should	find	that	the	only
change	is	to	use	the	2007	Blue	theme.

Summary
What	You	Should	Now	Know

How	to	create	a	Version	2	package,	based	on	Version	1.
How	to	install	a	Version	2	package.

Deploy	a	Stand	Alone	Application
This	section	contains	a	series	of	exercises	to	demonstrate	how	to	deploy	a
standalone	desktop	application.
The	exercises	to	complete	this	deployment	example	are:
DTE010	–	Set	Up	the	Deployment	Tool
DTE045	–	Create	a	Stand	Alone	Application
DTE050	–	Create	Version	1
DTE055	–	Install	Version	1
DTE060	–	Modify	the	Employees	Application
					DTE030	–	Modify	the	Employees	Application
					DTE035	–	Create	a	Patch	for	the	Employees	Application
DTE070	–	Create	Version	2
					DTE040	–	Create	Version	2.	This	exercise	includes	installing	Version	2.
Ignore	reference	to	the	form	II_CONNECT	which	is	not	used	by	the	stand
alone	installation.

	
	

DTE045	–	Create	a	Stand	Alone	Application
Objective
In	this	exercise	you	will	copy	a	supplied	stand	alone	Employee	Application.	It
will	run	locally	on	the	desktop	using	a	local	SQL	Server	database.	Complete	this
exercise	if	you	do	not	have	access	to	an	IBM	i	server	which	would	enable	a
client/server	application	to	be	deployed,	or	if	you	simply	want	to	deploy	a
desktop	application.
Later	you	will	make	small	changes	to	this	application	in	order	to	deploy	a	patch
and	then	a	new	version.
To	achieve	this	objective	you	must	complete	the	following:
Step	1.	Import	the	supplied	Employee	Application
Step	2.	Copy	the	supplied	Employee	Application
Step	3.	Test	the	Stand	Alone	Employees	Application
Summary
Once	you	have	completed	this	exercise,	continue	with	DTE050	–	Create
Version	1.

Before	You	Begin
You	must	have	completed	this	exercises:

DTE010	–	Set	Up	the	Deployment	Tool

Step	1.	Import	the	supplied	Employee	Application
1.		Download	the	Deployment	Tool	Stand	Alone	Employee	Application
(lansa022_extrafiles.zip)	file	from	the	LANSA	documentation	web	page
(http://www.lansa.com/support/docs/index.htm).

2.		Extract	the	zip	file	into	any	convenient	folder.	The	file	contains	an	export	of
the	Stand	Alone	Employee	Application	forms	and	reusable	parts.

3.		In	Visual	LANSA	select	the	Tools	ribbon	and	click	on	the	Import	button.
Locate	the	folder	containing	the	export	files,	select	the	file	lxxdir.del	and
click	Open.	The	Contents	to	import	dialog	should	contain	1	form	and	4
reusable	parts.	Click	Import	to	populate	your	local	repository	with	the
following	components:

					JI_MAIN	–	Main	Form
					JI_BRWSR	–	Object	Browser
					JI_DATA	–	Data	Object
					JI_EDIT	–	Document	Editor
					JI_STORE	–	Data	Store

http://www.lansa.com/support/docs/index.htm

Step	2.	Copy	the	supplied	Employee	Application
1.		On	the	Repository	tab,	locate	the	new	forms	and	reusable	parts.	Use	the
context	menu	to	copy	each	one.	Use	your	initials	in	place	of	JI	to	name	each
component.

2.		Use	Replace	to	change	all	occurrences	of	JI_	to	XX_	where	XX	is	your
initials,	for:
a.		each	component	excluding	the	connect	form
b.		the	source	code.

3.		Compile	all	five	components.

Step	3.	Test	the	Stand	Alone	Employees	Application
1.		Execute	your	main	form	(copy	of	JI_MAIN)	as	a	DirectX	application.

It	should	initially	look	like	the	following:

2.		The	application	initially	loads	all	employee	records	into	the	browser
component,	displayed	on	the	left	hand	side.

3.		Double	click	an	employee	in	the	browser	to	display	its	details.	Multiple
employees	may	be	opened,	each	one	in	its	own	editor	instance.

					The	toolbar	supports	Save	and	New.
4.		The	employee	browser	panel	may	be	floated.	Dock	it	back	on	the	left	hand
side	by	double	clicking	its	Title	bar.

					If	the	browser	panel	has	been	closed	it	may	be	re-opened	by	clicking	the

browser	 	toolbar	button.

Summary
What	You	Should	Know

You	should	now	be	familiar	with	the	application	you	will	use	to	deploy	and
then	modify	and	deploy	the	changes.

DTE050	–	Create	Version	1
Objective
To	create	an	initial	installation	for	a	standalone	Windows	application.	The
package	will	be	defined	using	the	XALONE	template.
To	achieve	this	objective	you	will	complete	the	following:
Step	1.	Create	an	SQL	Server	Database
Step	2.	Define	Version	1
Step	3.	Define	Execution	Parameters
Step	4.	Define	the	Database	Parameters
Step	5.	Review	the	Package	Settings
Step	6.	Build	Version	1
Summary

Deploying	Your	Own	Applications
When	initially	deploying	your	own	applications	you	will	want	to	deploy	to	a	test
partition.
For	training	purposes	you	will	be	deploying	the	application	to	a	new	SQL
database	into	the	partition	which	you	are	using	for	training.	If	your	training
partition	is	TRN,	you	will	deploy	to	TRN.
Since	this	is	a	deployment	to	a	new	database,	as	well	as	the	application,	you	will
include	the	files	used	by	the	application	and	the	file	data.	If	you	were	deploying
another	application	to	this	database	using	the	same	files,	the	files	would	not
need	to	be	included.	If	you	later	needed	to	deploy	changes	to	any	files,	you
would	do	this	by	creating	a	new	version	for	the	application	which	originally
deployed	the	files.
In	this	application,	the	primary	file	is	PSLMST	–	Personnel.	When	you	deploy
LANSA	defined	files,	it	is	important	to	remember	that	validation	rules	and
predetermined	join	fields	will	refer	to	other	files.	For	example,	the	Department
Code	field	in	the	file	PSLMST	must	exist	in	the	lookup	table	DEPTAB.	Your
deployment	must	therefore	include	file	PSLMST	and	also	the	files	it	depends
on.
When	you	are	managing	your	own	application	deployment,	if	you	develop	in
partition	DEV	and	deploy	to	partition	TST,	your	setup	should	include:

a.		Developer	PC	with	Visual	LANSA	using	partition	DEV

b.		A	Deployment	PC	with	Visual	LANSA	using	partition	TST.	Your
application	definition	is	checked	out	to	this	VL	system	via	an	IBM	i
Master	or	a	Master	VCS	system

c.		Deployed	applications	located	on	a	Windows	server,	a	Terminal	Server	or
directly	installed	on	an	end	user	desktop.

Before	You	Begin
You	must	have	completed	the	following:
DTE010	–	Set	Up	the	Deployment	Tool
DTE045	–	Create	a	Stand	Alone	Application

Step	1.	Create	an	SQL	Server	Database
You	must	have	SQL	Server	Management	Studio	installed	to	complete	this	step.
1.		Start	SQL	Server	Management	Studio.	When	prompted	connect	to	the	local
database	server:

2.		Right	click	on	Databases	in	the	Object	Explorer	tree	view	and	select	New
Database:

3.		Enter	a	new	database	name	and	click	OK

4.		You	have	created	a	new	SQL	Server	database	using	default	settings.	You	will
now	create	a	deployment	package	to	install	the	standalone	Windows
application	which	connects	to	this	database.

Step	2.	Define	Version	1
You	defined	your	Personnel	System	application	and	Version	1	in	the	deployment
tool	in	exercise	DTE010	–	Set	Up	the	Deployment	Tool.	You	will	now	complete
the	definition	of	this	Version	1	package	and	then	build	the	package.
Note:	In	DTE010	–	Set	Up	the	Deployment	Tool	you	must	have	created	your
Version	1	package	using	the	XALONE	template.
1.		Open	the	Deployment	Tool	from	the	Tools	ribbon.	Double	click	on	the
Version	1	package	for	the	Personnel	System	application,	to	open	the
Package	Maintenance	dialog.

2.		Click	on	the	Select	repository	objects	 	button	on	the	toolbar.

3.		Expand	the	Forms	group,	then	the	alphabetic	group	for	your	initial.	Add	your
copy	of	the	JI_MAIN	form	to	the	package.	Notice	that	the	entry	shows	a	tick,
meaning	that	cross	reference	is	enabled	for	this	component	type.

					Since	the	Cascade	Selection	option	is	selected	in	the	cross	reference	defaults,
it	is	only	necessary	to	include	this	top	level	form	to	create	a	complete
installable	package.	Of	course	depending	on	the	design	of	your	own
applications,	you	may	need	to	include	a	number	of	top	level	components	in
order	to	define	a	complete	application	package.

4.		Expand	the	Files	group	and	then	files	beginning	P.	Add	file	PSLMST	to	the
package.

5.		Select	the	file	PSLMST	and	click	the	Cross	Reference	 	tool	bar	button.
6.				Select	the	Files	option,	so	that	files	which	the	employee	file	depends	upon
are	included	in	the	package.	For	example	file	look	up	rules	or	predetermined
join	fields	will	mean	that	the	OAM	for	file	PSLMST	accesses	other	files	such
as	DEPTAB	and	PSLSKL.

7.		Also	select	Include	file	data	and	Cascade	selection.	This	means	that	file	data

will	be	included	for	the	additional	files	which	are	included	due	to	cross
referencing.	The	Cascade	selection	option	will	mean	that	other	files	which
the	cross	referenced	files	depend	on,	will	be	included.

8.		Click	OK	to	save	this	setting.
9.		Notice	that	another	toolbar	button,	the	Include	File	Data	button,	enables	files
to	be	deployed	including	their	data.

					This	exercise	will	deploy	to	a	new	database.	This	means	it	is	essential	to
deploy	the	files	with	data.

10.	Select	the	option:	Include	data	(new	files	only).
					Including	the	files	in	the	package	means	that	the	OAMs	for	the	files	will	also
be	added	to	the	package.

11.	Click	OK	to	close	the	Select	repository	objects	dialog.
12.	Save	the	package.

Step	3.	Define	Execution	Parameters
In	this	step	you	will	define	the	execution	parameters	which	determine	the	form,
partition,	language	and	user	which	will	be	used	to	start	the	application	for	the
end	user.	These	are	the	X_RUN	parameters,	which	is	the	program	which	loads
the	application	DLLs.
1.		In	the	Package	Maintenance	dialog,	define	each	Execution	parameter	by
double	clicking	on	the	parameter	in	the	Required	Execution	parameters	group
box.

2.		Double	click	on	Form	to	Execute.

a.		Enter	your	form	name.	Note	that	these	parameters	may	be	prompted
during	installation	if	required.

b.		Close	the	Form	to	Execute	dialog.
3.		Follow	the	same	procedure	to	define	the	following	parameters,	making	any
changes	required	for	your	system	and	national	language.

					Your	trainer	will	provide	alternative	information	if	required.	You	are
deploying	to	the	partition	you	are	using	for	training.

					For	training	purposes	use	the	current	partition	as	the	target	for	deployment.
					User:	=	<user	id>where	<user	id>	is	your	LANSA	user	id.
4.		The	Employees	Application	must	be	executed	as	a	DirectX	application.	This
requires	a	change	to	the	default	Render	Type	X_RUN	parameter.	The	X_Run
Arguments	 	toolbar	button	opens	a	dialog	which	enables	additional	X_RUN
parameters	to	be	defined.
a.		Open	the	X_Run	Arguments	dialog	and	add	an	entry,	RNDR=X.

b.		This	will	execute	the	application	using	DirectX.
5.		Click	OK	to	save	the	changes.

Step	4.	Define	the	Database	Parameters
1.		In	the	Database	group	box,	open	each	of	the	settings	detailed	below.	Set	the
values	shown,	adjusting	for	your	application	and	database.

					Data	Source	Name	=	IIPERSON	(i.e.	your	application	name)

					Select	the	Prompt	during	installation	checkbox.	This	will	allow	changes	to
be	made	during	the	install	if	required.	You	must	also	select	Display	DBMS
Dialog	in	the	MSI	Installation	Settings.	The	XALONE	template	sets	the
Display	DBMS	dialog	to	'Y'.

						Setup	Database	(SUDB)	=	Yes
					Database	Server	Name	=	.\SQLSERVER.	The	database	server	name	was
displayed	when	you	connected	in	SQL	Server	Management	Studio,	in	Step	1.
e.g.	<PC	name>\SQLSERVER

					Database	Name	=	LANSADB11:	the	name	of	the	new	database	which	you
created	in	Step	1.

					Leave	all	other	entries	with	their	default	values.

					Select	the	Prompt	during	installation	checkbox	for	each	of	the	above
parameters.

					The	database	setting	are	likely	to	change	when	installing	on	different
machines.

2.		Click	OK	to	save	the	changes.

Step	5.	Review	the	Package	Settings
1.		Click	the	Settings	 	toolbar	button	to	open	the	Package	Settings	dialog.

2.		These	are	the	settings	defined	by	the	XALONE	template	which	was	used	to
define	this	package.

					Notice	that	because	this	package	is	for	a	Stand	Alone	Windows	application:
					The	Deploy	Execution	Database	Support	option	is	selected.
					The	Deploy	LANSA	Communications	option	is	not	selected.

					To	learn	more	about	these	settings,	refer	to	Options	and	Settings	in	the
LANSA	Application	Deployment	Tool	Guide.

				To	learn	more	about	these	settings,	refer	to	Options	and	Settings.
3.		No	changes	are	required	to	these	settings.

its:lansa022.chm::/lansa/dt_0180.htm
its:lansa022.chm::/lansa/dt_0180.htm

Step	6.	Build	Version	1
1.		Save	 	the	package	definition.

2.		Check	 	the	Package.	This	is	an	optional	step	which	will	identify	any	errors
in	the	current	package	definition,	before	building	the	package.	Errors	will	be
reported	as	Warning	or	Fatal.

					This	message	box	is	shown	when	no	errors	are	found.
3.		Build	 	the	Package.	A	progress	bar	is	displayed	while	the	package	build
steps	are	completed.	This	may	take	some	time.

					The	first	time	that	a	new	package	is	built	a	Global	Unique	Identifier	(GUID)
is	generated	for	the	package	and	stored	in	a	file.	A	message	box	is	displayed
which	reports	details	for	the	GUID	which	has	been	generated.	For	example,
folder:

					…\x_apps\KKPERSON\X_PKGWRK\Guids.txt
	4.		When	the	build	is	completed,	display	the	build	log	 	and	filter	for
Completion	messages..

5.		Notice	the	build	log	dialog	allows	the	messages	to	be	filtered,	for	example	by
selecting	Completion,	Fatal	or	All	messages	only	to	be	displayed.	You	search
for	specific	entries	in	the	log	using	Find.

6.		Scroll	down	to	find	the	copy	DLLs	file	messages.	Notice	the	shipped	DLLs
includes	the	four	reusable	parts	which	the	main	form	(copy	of	II_MAIN)
depends	upon.	The	DLLS	for	the	employee	file	(PSLMST)	and	the	files
which	it	also	depends	on	due	to	file	lookup	validation	rules	and
predetermined	join	fields.	These	DLLs	are	the	OAMs	and	should	include
DEPTAB,	PSLSKL,	SECTAB	and	SKLTAB.	The	file	data	has	also	been
included	for	these	files.

7.		Check	if	any	Fatal	messages	exist.	Warning	messages	may	be	ignored,
depending	on	the	specific	message.	For	example	a	warning	which	concerns
an	image	file	not	found	may	be	ignored,	since	the	image	is	included	in	the
Image	object	DLL	which	is	referenced	in	the	form	or	reusable	part.

					If	fatal	messages	are	reported	you	will	need	to	review	previous	steps	to
resolve	the	error.	For	example,	if	a	component	DLL	is	not	found	it	may	mean
components	are	not	compiled.

8.		Close	the	Package	Build	log.
9.		Close	the	Package	Maintenance	dialog.

Summary
How	to	define	a	package	for	a	standalone	Windows	application.
How	cross	referencing	can	be	used	for	deployed	components	and	files.
The	options	which	the	XALONE	template	includes.

DTE055	–	Install	Version	1
Objective
To	install	Version	1	of	the	Stand	Alone	Employees	Application.
To	achieve	this	objective,	you	will	complete	the	following:
Step	1.	Locate	the	Install	File
Step	2.	Install	Version	1	of	Employee	Application
Summary

Deploying	Your	Own	Standalone	Applications
It	is	important	to	understand	that	the	way	the	exercises	will	manage	package
definition,	build	and	installation	may	be	very	different	to	your	own	applications.
For	example,	your	deployment	package	should	be	built	on	a	special	deployment
copy	of	Visual	LANSA,	which	ideally	should	be	on	another	PC	or	at	least	in	a
special	install	of	Visual	LANSA	on	a	developer's	PC.	The	objective	here	is	to
ensure	that	all	the	required	components	have	been	identified	and	are	all	at	the
required	level.
Installation	of	Version	1	for	your	own	system	could	be	to	an	end	user	desktop	or
to	a	file	server	or	to	a	Terminal	Server,	depending	on	how	you	deploy	your
client	application	software.
Refer	to	the	section	About	the	Tutorials	at	the	start	of	these	exercises	for	notes
on	a	real	Windows	deployment	versus	this	standalone	example.
Since	you	are	deploying	a	standalone	application	to	a	new	database,	you	need	to
deploy	both	the	application,	the	files	it	uses	and	the	file	data.
In	this	exercise	you	will	deploy	a	standalone	Windows	application	to	your
desktop.	It	will	be	installed	as	a	per-user	installation.	This	means	it	is	installed
to	a	path	which	looks	like	this,	substituting	your	values:
C:\Users\<user>\AppData\Local\Apps\<company	name>\<application
name>\
Only	the	current	user	will	be	able	to	run	the	application.
If	you	are	deploying	your	own	standalone	Windows	application,	it	would
usually	be	installed	for	all	users.
In	this	exercise,	if	you	are	using	partition	TRN	for	training,	you	will	deploy	the
application	to	a	new	database	with	a	partition	TRN.

Before	You	Begin

You	must	have	completed:
DTE050	–	Create	Version	1

Step	1.	Locate	the	Install	File
1.		Select	your	Version	1	standalone	Personnel	System.	Click	on	the	Go	to
folder	 		toolbar	button	to	open	Explorer	in	the	deployment	tool	application
folder	(in	the	Visual	LANSA	..\X_APPS	folder).

2.		Using	your	initials	the	deployment	application	folder	is	IIPERSON.
3.		Using	your	initials,	The	Version	1	Windows	install	file	(MSI)	will	be:
		IIPERSON_V1.0.0_en-us.msi

Step	2.	Install	Version	1	of	Employee	Application
1.		The	installer	must	be	able	to	update	the	SQL	Server	database.
					For	Windows	7,	your	user	profile	must	be	in	the	Administrator	group.	You
can	then	install	by	double	clicking	on	the	MSI	file.

					For	Windows	8,	start	a	Command	Prompt	using	Run	as	Administrator.

					Position	to	the	folder:	C:\Program	Files
(x86)\LANSA\x_win95\x_lansa\x_apps\IIPERSON.

2.		Enter	the	following	command	and	then	press	the	Tab	key.
		msiexec.exe	/I	II
where	II	are	your	initials.

					The	MSI	file	name	will	be	completed	for	you.	Your	command	should	now
look	like	this:
		Msiexec.exe	/I	IIPERSON_V1.0.0_en-us.msi

					Press	Enter.	The	Windows	Setup	dialog	will	be	displayed:

3.		Click	Next	to	continue.
4.		The	End	User	License	Agreement	dialog	is	displayed

a.		An	example	license	file	is	supplied	in	folder:
					…\x_apps\x_Wix\Content\license.rtf

b.		You	should	edit	or	replace	this	file	to	implement	your	company	licensing
terms	if	necessary.

5.		Select	the	"I	accept	…."	check	box	and	click	Next	to	continue:
6.		You	can	now	select	the	Installation	Scope.	Select	Install	just	for	you.

					Both	options	will	be	shown	in	Windows	7	provided	the	installer	is	an
Administrator	and	in	Windows	8,	provided	the	installation	was	started	from	a

Command	Prompt	using	Run	as	Administrator.
7.		Click	Next	to	continue.	The	Destination	folder	dialog	will	be	shown:

					The	Change	button	allows	an	alternative	folder	to	be	selected.
					Notice	that	the	suggested	path	includes	the	Company	Name	and
Application	Name:
		.	.	.\II	Systems\II	Personnel	System	Standalone\

8.		Click	Next	to	continue.	The	Setup	the	Local	Database	dialog	is	displayed.

					Notice	that	the	parameters	which	were	set	to	"prompt	during	installation"

could	be	changed	if	required.
					This	installation	must	update	the	database	to	define	the	required	application
files	and	insert	the	file	data.	This	means	that	the	Setup	Database	check	box
must	be	selected.

					An	ODBC	DSN	entry	is	created	named	IIPERSON,	pointing	to	the	database
server	and	database	name	defined	by	the	package.

					There	is	an	option	to	suppress	this	dialog	in	the	package	definition.	But	it	is
rare	that	you	would	not	need	to	offer	the	choice	to	Setup	the	Database.	If
needed	you	can	suppress	this	dialog	by	changing	Display	DBMS	Dialog	to
No:

9.		Click	Next	to	continue.	The	Choose	Setup	Type	dialog	is	displayed:

10.	Select	any	option	to	continue.	Cuurently,	all	setup	types	install	the	complete
package.

11.	Click	Install	to	continue.
					The	Installing	.	.	.		dialog	will	show	progress	with	messages	and	a	progress
bar:

12.	Click	Finish	to	complete	the	installation:

					Note	that	the	Start	II	Personnel	System	check	box	is	selected.
					The	form	will	run	the	standard	Employees	Application	as	a	Stand	Alone
Windows	application.

13.	As	per	the	application	you	tested	earlier,	you	can	now	edit	and	save	an
employee	record	or	create	a	new	employee.	Double	click	an	employee	in	the
browser	list	to	open	it	in	the	editor.	A	number	of	employees	may	be	opened,
each	in	their	own	editor	component	instance.

14.	Select	Version	1	for	the	stand	alone	Personnel	Application	and	click	the
Indicate	the	selected	version	or	patch	has	been	distributed		 	toolbar
button.	Version	1	can	now	no	longer	be	opened	or	changed.

						The	View	all	objects	included	in	the	installation	 		toolbar	button	enables
Selected	Objects	and	Cross	Reference	Objects	in	the	package	to	be	reviewed.

Summary
What	You	Should	Know

How	to	install	a	standalone	Windows	application	as	a	per-user	installation.

DTE060	–	Modify	the	Employees	Application
Objective
To	make	a	simple	change	to	the	Employees	Application	which	will	require	a
Patch	to	be	created	to	update	the	deployed	application.

Before	You	Begin
You	must	have	completed	the	following:
DTE010	–	Set	Up	the	Deployment	Tool
DTE045	–	Create	a	Stand	Alone	Application
DTE050	–	Create	Version	1
DTE055	–	Install	Version	1

Steps
The	changes	required	are	covered	by	the	following	exercises.
Complete	the	following	exercises	in	the	Deploying	Client	Server	Applications
section:
DTE030	–	Modify	the	Employees	Application
DTE035	–	Create	a	Patch	for	the	Employees	Application.	This	exercise	includes
installing	the	patch.

Summary
What	You	Should	Know

How	to	create	a	patch	following	to	deploy	changes	to	the	application.
A	patch	is	based	on	the	previous	version.
Product	Version	and/or	File	Version	must	be	incremented	to	deploy	changed
components.

DTE070	–	Create	Version	2
Objective
To	make	a	minor	change	to	the	appearance	of	the	application	and	then	create
Version	2	to	install	the	changed	application.

Before	You	Begin
You	must	have	completed	the	following:
DTE010	–	Set	Up	the	Deployment	Tool
DTE045	–	Create	a	Stand	Alone	Application
DTE050	–	Create	Version	1
DTE055	–	Install	Version	1
DTE060	–	Modify	the	Employees	Application

Steps
The	steps	for	this	exercise	are	in:
DTE040	–	Create	Version	2	in	the	Deploying	Client	Server	Applications	section.
Ignore	reference	to	the	form	II_CONNECT	which	is	not	used	by	this	stand
alone	deployment.

Summary
What	You	Should	Know

How	to	create	a	new	version	of	an	application	following	changes	made	to	the
application.
A	new	version	is	based	on	the	previous	version.
Product	Version	and/or	File	Version	must	be	incremented	before	recompiling
the	changed	application.	Usually	Product	Version	would	be	incremented.
A	new	version	un-installs	an	existing	application	and	replaces	it	with	the
new	version.

Deploy	Applications	using	JIT
What	is	Just	in	Time	(JIT)	Deployment?
All	packages	associated	with	an	application	are	installed	on	an	Application
Server.	That	is,	the	initial	version	and	any	subsequent	patches	or	new	version.
After	the	initial	installation,	each	time	a	user	launches	the	application,	the
application	first	connects	to	the	Application	Server	to	check	for	any	patches	or	a
new	version.	Any	new	patch	or	version	will	automatically	install	before	the
application	launches.
The	Application	Server	is	simply	a	Visual	LANSA	system,	with	a	Listener	and	a
SuperServer	licence.	A	single	user	licence	is	usually	sufficient	as	it	is	only	used
during	the	JIT	Upgrade	processing.
The	application	install	package	and	all	subsequent	patches	or	new	versions	are
built	as	usual	but	with	the	addition	of	a	Just	in	Time	setting	that	points	to	the	JIT
server.	If	the	JIT	server	is	on	Windows,	the	only	JIT	settings	required	are
Partner	LU	Name	and	User	ID	and	Password.	The	User	ID	and	Password	must
be	for	a	local	or	domain	profile	for	the	server	being	used.
The	exercises	required	for	this	deployment	are:
DTE010	–	Set	Up	the	Deployment	Tool
DTE015	–	Create	Client	Server	Application
DTE075	–	Create	a	Just	in	Time	Server	Installation
DTE080	–	Create	a	Client	Install	Package	with	JIT	Update
					DTE045	–	Create	a	Stand	Alone	Application
					DTE050	–	Create	Version	1
DTE085	–	Install	Client	Application	with	JIT	Update
DTE090	–	Create	a	Patch	for	Client	Personnel	Application	with	JIT	Update

DTE075	–	Create	a	Just	in	Time	Server	Installation
Objective
To	set	up	a	Just	in	Time	server.
To	achieve	this	objective	you	will	complete:
Step	1.	Create	a	JIT	Server	Package
Step	2.	Install	the	JIT	Server	Installation
Summary

Before	You	Begin
You	must	have	completed	the	following:
DTE010	–	Set	Up	the	Deployment	Tool
DTE015	–	Create	Client	Server	Application

Step	1.	Create	a	JIT	Server	Package
1.		Open	the	Deployment	Tool	from	the	Tools	ribbon.
2.		Using	your	initials	for	II,	create	an	application:	IIJITSRV:

					Application:	IIJITSRV
					Description:	JIT	Server	Personnel	System
					Company:	II	Systems
3.		Click	Create	and	the	New	Version	dialog	will	open:

4.		Enter	a	Description:	Version	1	and	select	the	XAPPSV	template.
5.		Click	Create.	The	Package	Maintenance	dialog	will	open.
					The	XAPPSV	template	has	configured	most	of	the	required	settings.	Settings
groups	which	are	not	required	have	been	hidden.	Note	that	Install	Listener:
Yes	is	selected.

					The	Required	Execution	parameters	include	the	special	value	*licences	for
Process	to	Execute.	This	will	start	the	Server	Licence	application	to	enable	a
SuperServer	licence	to	be	loaded	initially.

					No	changes	are	required	to	the	Required	Execution	Parameters	settings.

6.		Click	on	the	Settings	 		button	in	the	toolbar	to	open	the	Settings	dialog.
					Note:	The	deployment	is	to	a	client	without	a	local	database.	You	would	only
require	a	database	for	a	JIT	server	installation	if	this	system	is	also	the
application	/	database	server	for	the	application	system.	In	this	case	the	server
would	run	the	applications	as	well	as	delivering	upgrade	packages	to	the
desktop	client	part	of	the	application.

7.		Click	OK	to	close	the	Settings	dialog.

8.		Save	the	package	definition	using	the	toolbar	 		button.	Close	the	Package
Maintenance	dialog.

9.		The	JIT	Server	will	install	a	LANSA	Listener.	Before	building	the	package,
you	need	to	complete	the	listener	definition	by	selecting	the	IIJITSRV
application	and	opening	the	Communications	Administrator	dialog	using	the	

		toolbar	button.

10.	Open	the	Listener	dialog	from	the	Advanced	menu.

	

11.	Set	the	listener	Connection	Identifier	(it's	a	Port	number).	A	suitable	value
will	depend	on	what	other	listeners	you	already	have	defined	on	the	target	PC
or	server.	This	exercise	will	install	to	your	desktop.	You	probably	already	a
your	Visual	LANSA	listener	set	to	the	default	setting	of	4545.	For	the	JIT
Server	set	the	value	to	4547	or	any	other	suitable	value.		

12.	Click	OK	to	close	the	Listener	Information	dialog.
13.	Close	the	Route	Information	dialog.	This	will	save	a	listener.dat	file	in	your
package	definition	which	will	be	used	to	configure	the	listener	when	it	is
installed.

14.	This	change	will	prompt	a	message	box,	as	shown:

					You	have	completed	the	definition	of	your	JIT	server	package.
15.	Select	the	Version	1	package	in	your	IIJITSRV	application.	Check	the
package	definition	with	the		 	toolbar	button.	This	should	report	zero
errors.

16.	Build	your	package	using	the	 	toolbar	button.

					After	the	build	is	completed,	the	Package	build	Log	will	be	displayed.
17.	Filter	to	show	All	messages	only	and	scroll	to	the	bottom.

					You	should	have	no	fatal	messages.	The	one	warning	message	concerns	the
allocation	of	a	GUID	to	your	package.

18.	Close	the	Package	Build	Log.

Step	2.	Install	the	JIT	Server	Installation
For	you	own	JIT	Server	installation,	you	would	install	to	a	Windows	server
which	is	part	of	your	office	network	and	accessible	for	all-user	desktops.	For	the
purposes	of	this	exercise	you	will	install	to	your	desktop.
1.		In	the	Deployment	Tool	main	dialog,	select	the	JIT	Server	application
Version	1	and	use	the	Go	to	folder	 	toolbar	button	to	open	Explorer	in	the
…\x_apps\IIJITSRV	folder	within	your	Visual	LANSA	folder.	For
example:
C:\Program	Files
(x86)\LANSA_T13\X_WIN95\X_LANSA\x_apps\IIJITSRV

2a.		For	a	Windows	7	PC,	double	click	on	the	MSI	file	to	start	the	installation.
Your	Windows	profile	must	be	a	member	of	the	Administrator	group.

2b.		For	Windows	8	PC,	start	a	command	prompt	using	Run	as	Administrator:

3.		Navigate	to	the	IIJITSRV	folder,	for	example:
C:\Program	Files
(x86)\LANSA\X_WIN95\X_LANSA\X_APPS\IIJITSRV

4.		Enter	msiexec.exe	/I	II	(where	II	is	your	initials)	and	press	Tab.	The	MSI

file	name	will	be	auto-completed.	For	example:
msiexec.exe	/I	IIJITSRV_v1.0.0_en-us.msi

5.		Then	press	Enter.
6.		The	Microsoft	Windows	installation	program	will	runq,	processing	the	MSI
file.	A	series	of	messages	and	dialogs	will	be	displayed.

7.		Click	Next	to	continue:

					A	sample	RTF	file	is	provided,	containing	a	licence	agreement.	If	required
you	can	edit	or	replace	this	file	to	suit	your	company	requirements.

8.		Select	the	"I	accept	.	.	."	check	box	and	click	Next	to	continue.

9.		Select	the	setting,	Install	just	for	you.	This	is	suitable	for	training	purposes.
					Note:	Your	own	JIT	server	install	would	be	to	a	Windows	server	and	would
need	to	be	installed	for	all	users.

10.	Click	Next	to	continue:

					If	required,	the	install	path	could	be	changed	by	using	the	Change	button	to
select	a	different	folder.

11.	Click	Next	to	continue:

12.	The	Communication	Ports	dialog	will	be	prompted	for	the	JIT	Server
Listener.	This	is	always	prompted	and	overrides	the	value	entered	in	the
package	definition.
Enter	a	suitable	value	for	your	PC.

13.	Click	Next	to	continue:

14.	Select	Typical	and	then	click	Next	to	continue.

					If	required	the	back	button	could	be	used	to	return	to	a	previous	dialog.
15.	Click	Install	to	start	the	installation.

					A	status	bar	is	displayed	while	the	installation	continues.

16.	When	the	install	is	completed,	click	the	Finish	button	to	close	the	install
program.

					With	the	Start	JIT	Server	checkbox	selected,	the	LANSA	Server	Licensing
application	will	be	started.

					The	JIT	Server	requires	a	single	user	SuperServer	licence	to	operate.	Use	the
New	tab	to	install	a	licence	if	you	already	have	one.	A	License	can	be
obtained	via	your	LANSA	vendor.	See	the	LANSA	Support	web	site	for
details	on	product	licensing.	(http://www.lansa.com/support/licensing/)

					The	X_CPU	utility	in	your	Visual	LANSA,	Settings	and	Administration
folder	is	used	to	generate	a	licence	request.

					The	licence	is	supplied	as	an	XML	file,	which	is	loaded	via	the	New	tab	in
the	Server	Licensing	program.	The	licensing	program	records	where	the
licence	is	installed	so	that	it	is	accessible	for	any	LANSA	install	on	this
machine.

					The	licence	is	only	valid	for	the	machine	matching	the	X_CPU	folder	details
.

17.	Your	Just	in	Time	server	installation	is	now	ready	to	be	used.
18.	In	the	main	Deployment	Tool	window,	select	Version	1	for	the	IIJITSRV	Just
in	Time	Server	application	and	click	the	Distributed	 	toolbar	button.	The
package	objects	may	now	be	viewed	using	the	View	all	object	included	in	the
package	 	toolbar	button,	but	the	Package	Maintenance	dialog	may	not	be
opened.

Summary
What	You	Should	Know

How	to	create	a	Just	in	Time	Server	package	using	the	XJITSRV	template.
How	to	define	the	Listener	Port	Number.
The	JIT	server	requires	a	SuperServer	licence.	A	single	user	licence	will
usually	be	suitable.
Any	other	Windows	software	distribution	package	can	also	be	used	to
provide	just	in	time	updates.

DTE080	–	Create	a	Client	Install	Package	with	JIT	Update
Objective
To	create	an	installation	package	for	the	client	server	Employees	Application
which	was	created	in	DTE015.	The	installed	software	will	include	settings	to
access	the	JIT	Application	Server.	Each	time	the	application	is	launched	the	JIT
Server	is	checked	for	packages.	For	example,	if	a	patch	has	not	been	installed
on	this	PC,	then	the	patch	is	applied	before	the	application	is	launched.
To	achieve	this	objective	you	will	complete:
Step	1.	Define	Version	1	Package
Step	2.	Define	X_RUN	Arguments
Step	3.	Define	Required	Execution	Parameters
Step	4.	Define	the	Just		in	Time	Parameters
Step	5.	Review	the	Package	Settings
Step	6.	Add	Routing	Table	to	the	Application
Step	7.	Build	the	Install	Package
Step	8.	Copy	Client	Application	Package	to	JIT	Server
Summary

Before	You	Begin
You	must	have	completed	the	following	exercises:
DTE075	–	Create	a	Just	in	Time	Server	Installation

Step	1.	Define	Version	1	Package
1.		Create	a	new	application	in	the	Deployment	Tool:

Application IICLTJIT

Description II	Client	Personnel	System	with	JIT

Company II	Systems

2.		Click	Create	and	the	New	Version	dialog	will	be	displayed:
3.		Enter	a	Description	of	Version	1	and	select	the	XCLTBIF	template.
					The	Package	Maintenance	dialog	will	open.

4.		Click	the	 	Repository	Objects	button	in	the	toolbar.	In	the	Select
repository	objects	dialog,	expand	Forms	and	select	your	main	form	(copy	of
II_MAIN).	You	can	add	it	to	the	package	by	drag	and	drop,	or	by	double
clicking	it.

					Note	the	tick	shown	beside	the	form.	In	DTE010	Step	2.	Define	Default
Cross	Reference	Settings,	you	defined	default	cross	reference	settings	for
forms	and	reusable	parts,	which	will	automatically	include	all	components
used	by	this	main	form,	and	drill	down	to	include	their	dependents.

5.		Click	OK	to	close	the	dialog.

Step	2.	Define	X_RUN	Arguments
The	client	application	uses	DirectX,	which	means	that	the	X_RUN,	which	is	the
executable	which	loads	your	applications	DLLs,	requires	a	RNDR=X	parameter.

1.		Click	the	 	X_Run	Arguments	button	in	the	toolbar.

2.		Click	OK	to	save	the	change	and	close	the	dialog.

Step	3.	Define	Required	Execution	Parameters

1.		In	the	Required	execution	parameters	group,	double	click	each	value	shown
below,	to	set	a	value,	using	your	initials:

Form	to	Execute II_MAIN

LANSA	User Your	LANSA	profile

					Note:
			The	default	settings	ensure	that	the	current	Partition	and	Language	will	be
used.

				Require	Elevation	should	be	set	to	Yes	if	this	install	needs	Administrator
privileges	to	run.

Step	4.	Define	the	Just		in	Time	Parameters

1.		In	the	Just	in	Time	group,	again	double	click	on	an	entry	to	set	its	value	as
shown	below:

Upgrade	Option New	Versions/Patches

Application	Server	Name JITSERVER

Application	Server	User A	local	user	for	the	PC	or	server	running	the	JIT
Server

Application	Server
Password

Password	for	the	above	user.

2.		Click	 	Save	in	the	toolbar.

Step	5.	Review	the	Package	Settings
1.		Click	the 	Package	Settings	button	on	the	toolbar

2.		The	XCLTBIF	template	has	defined	a	package	which	will:
					Deploy	to	client	without	local	database
					Include	System	definition,	Partition	definition,	omits	Object	Definitions
					Deploy	with	Component	Support
					Deploy	LANSA	Communications

3.		Click	OK	to	close	the	dialog.	No	changes	are	required

Step	6.	Add	Routing	Table	to	the	Application
The	installed	client	application	will	need	two	routing	entries	for	LANSA
communications	in	order	to	connect	to	both	the	JIT	Server	and	the	IBM	i
Data/Application	server.
1.		Select	the	application,	and	click	the	 		Communications	Administrator	on
the	toolbar.

					The	default	lroute.dat	file	in	the	package	work	folder	(…\X_PKGWRK)	is
opened.

2.		Click	New	to	create	entries	for	the	JIT	Server	and	then	click	New	again	to
create	an	entry	for	the	IBM	i	server.

3.		In	the	Host	Route	Information	dialog	define	the	JIT	Server	as	follows:

Partner	LU	Name JITSERVER

Fully	Qualified	Name
of	the	Host	(Address)

If	you	have	a	local	DNS,	enter	the	name	of	your	PC.
Alternatively	enter	the	IP	Address	for	your	PC.

Communications
Method

Must	be	left	as	Sockets

Connection	Identifier This	must	be	the	port	used	for	the	JIT	Server	listener.
The	recommended	value	was	4547.

4.		Click	OK	to	close	the	dialog.
5.		Click	New	to	create	an	entry	for	your	IBM	i	Data/Application	server.
6.		Enter	the	following	information	for	your	IBM	i	Data/Application	server:

Partner	LU	Name <a	descriptive	name	for	this	server	connection>

Fully	Qualified	Name	of	the
Host

<the	IBM	i	server	name	or	IP	Address>

Connection	Identifier <the	port	number	used	by	the	LANSA	system
Listener>***

					***	You	can	look	for	this	information	in	your	Visual	LANSA	/	Settings	and
Administration	folder	/	LANSA	Communications	Administrator.	Alternatively
look	at	the	Listener	job	log	on	the	IBM	i	for	the	correct	LANSA	system.

7.		Close	the	Communications	Administrator	dialog.

Step	7.	Build	the	Install	Package
1.		Check	 	the	package	with	the	toolbar	button.	There	should	be	no	errors
reported.

2.		Build	 	the	package	with	the	toolbar	button.

					A	status	bar	is	displayed	showing	progress.
					When	the	package	build	is	complete,	the	Package	Build	log	is	displayed.
With	All	messages	selected,a	summary	is	shown	at	the	bottom	of	the	log.
Alternatively	you	could	filter	for	Completion	or	Fatal	messages.

3.		There	should	be	no	fatal	messages	shown.	If	you	look	for	the	one	warning
message	you	will	find	this	notifies	that	a	unique	GUID	was	generated.

					If	there	more	other	fatal	or	warning	messages	you	will	need	to	examine	the
log	more	carefully.	For	example	you	will	have	a	fatal	message	if	one	of	your
components	has	not	been	compiled	so	that	its	DLL	file	could	not	be	copied.

4.		Close	the	Package	Build	log.	The	package	is	now	ready	for	distribution.

5.		The	View	All	Objects	in	the	Installation	 	toolbar	button	displays	all	the
objects	included	in	the	package:

					Note	the	Cross	Reference	Objects	tab:	it	shows	the	objects	included	by	cross
referencing.

Step	8.	Copy	Client	Application	Package	to	JIT	Server
In	the	JIT	Server	installation	path	you	must	create	an	application	folder(s)	that
matches	the	application(s)	to	be	supported.
The	Version	1	installation	package	must	then	be	copied	to	the	JIT	Server	before
the	first	client	installation	is	carried	out.	This	MSI	is	not	actually	installed
through	JIT,	but	an	MSI	that	matches	the	client's	MSI	is	required	to	be	present
before	a	version	or	patch	may	be	deployed.
1.		In	Windows	Explorer	navigate	to	the	JIT	Server	installation	on	your	PC.	For
example,	the	path	could	be:
C:\Users\John\AppData\Local\Apps\II	Systems\II	Just	in	Time
Server\X_Win95\X_Lansa\X_Apps

2.		Create	a	folder	with	the	same	name	as	your	application.	For	example:
…\X_Apps\Iicltjit

3.		Copy	the	client	application	with	JIT	install	package	(e.g.
iicltjit_V1.0.0_en-us.msi)	to	the	JIT	Server	application	path	just	created.

				For	example:

Summary
What	You	Should	Know

How	to	define	an	application	package	using	the	XCLTJIT	template,	which
will	check	a	JIT	Server	each	time	the	application	is	launched.
Understand	that	an	application	folder	must	be	created	in	the	JIT	Server
\x_apps	folder	containing	all	MSI	and	MSP	install	files	for	the	application	to
be	supported.
The	Version	1	MSI	file	must	be	copied	to	the	JIT	Server	application	folder,
before	the	application	Version	1	is	installed.

DTE085	–	Install	Client	Application	with	JIT	Update
Objectives
To	install	Version	1	of	the	client	Personnel	System	application	with	Just	in	Time
upgrade	support.
To	achieve	this	objective	you	will	complete:
Step	1.	Locate	the	Install	File
Step	2.	Install	Version	1	of	Client	Personnel	System	with	JIT	Update
Summary
The	install	steps	will	be	the	same	as	an	installation	without	JIT	support.
Once	the	installation	steps	are	complete,	the	JIT	Server	is	checked	before	the
application	is	launched.	This	could	mean,	for	example,	that	a	user	installs
Version	1,	but	as	soon	as	the	application	is	launched,	Patch	1	is	detected	on	the
JIT	Server.	This	patch	would	then	be	installed	before	the	application	is
launched.

Before	You	Begin
You	must	have	completed	these	exercises:
DTE075	–	Create	a	Just	in	Time	Server	Installation
DTE080	–	Create	a	Client	Install	Package	with	JIT	Update

Step	1.	Locate	the	Install	File
1.		In	the	Deployment	Tool,	select	the	Client	Personnel	System	with	JIT	Update
application.	Select	Version	1	and	click	the	Go	to	folder	 	toolbar	button,	to
open	Explorer	at	this	folder:

2.		Using	your	initials,	The	Version	1	install	file,	will	be:
IICLTJIT_v1.0.0_en-us.msi

Step	2.	Install	Version	1	of	Client	Personnel	System	with	JIT
Update
1.		Double	click	on	the	MSI	file	to	start	the	Windows	Install	application.
2.		The	Windows	Setup	dialog	will	be	displayed.
					Press	Enter.	The	Windows	Setup	dialog	is	displayed:

2.		Click	Next	to	continue.
3.		The	End	User	Licence	Agreement	dialog	is	displayed.

					A	draft	licence	agreement	is	supplied	in:
…\x_apps\X-wix\Content\license.rtf

					You	should	edit	or	replace	this	file	to	implement	your	company	licensing
terms	if	necessary.

4.		Select	the	"I	Accept…..	"	check	box	and	click	Next	to	continue.
5.		On	the	Installation	Scope	dialog,	select	Install	for	all	users	and	click	Next.

	When	using	Windows	8,	the	only	option	as	shown	below,	will	be	to	install	as
per-user.

					For	Windows	8,	to	install	for	all	users,	use	msiexec.exe	in	a	command
prompt,	using	Run	as	administrator.

					For	Windows	7	an	all-user	installation	can	be	performed	using	an
Administrator	profile	and	double	clicking	on	the	MSI	file.

					The	application	will	be	installed	into:
C:\Users\John\AppData\Local\Apps\II	Systems\II	Client	Personnel
Application	with	JIT	Update\X_Win95\X_Lansa\X_Apps\dtcltjit

6.		The	Destination	Folder	dialog	allows	the	destination	folder	to	be	changed,	if
required.

					Notice	that	the	suggested	path	includes	Company	and	Application	Name:
…\II	Systems\II	Client	Personnel	Application	with	JIT	Update

7.		Click	Next	to	continue.	The	Choose	Setup	Type	dialog	is	displayed.

8.		Click	any	button	to	continue.
9.		Click	Install	to	continue.

10.	The	Install	dialog	will	show	progress	with	messages	and	a	progress	bar.

11.	Click	Finish	to	complete	the	installation.

					Note	that	the	Start	II	Personnel	System	Client	with	JIT	Update	check	box	is
selected	to	run	the	application	immediately.

12.	The	Package	Upgrade	process	will	run	before	the	application	is	launched.	At
this	stage	the	JIT	Server	application	folder	(\IICLTJIT)	contains	only	the
Version	1	MSI	file,	which	means	an	update	is	not	necessary.

13.	The	main	form	(II_MAIN)	will	run	and	invoke	the	SuperServer	connector
form.

14.	In	the	Connect	to	IBM	i	form,	enter	your	User	ID,	Password	and	Server
Name.

15.	Select	the	Options	tab,	which	will	initially	show	the	default	conversion
tables	as	defined	in	the	connect	form.	You	must	enter	the	correct	values	for
your	system,	which	will	depend	on	your	IBM	i	code	page.	For	example
QCHRID	=	37	for	a	US	English	system.	
The	EBCDIC	to	ASCII	conversion	tables	depend	on	your	national	language.

					You	can	easily	look	up	this	information	from	your	Visual	LANSA	install
configuration:
In	Visual	LANSA,	select	About	from	the	right	hand	side	toolbar.	In	the
Product	Information	dialog,	select	the	Installation	Details	tab.

Expand	the	InstalledSettings.cfg	entry	and	scroll	down	to	find	the	Translation
tables	for	your	IBM	i	system:

														
					Enter	these	values	in	the	Options	tab	in	the	Connect	form.
16.	Click	Connect.	After	connecting	with	the	server,	the	connect	form	will
close.	The	main	form	then	populates	the	browser	panel	on	the	left	with	all
employees

					Note:	The	connect	form	remembers	all	entries	except	password.
17.	As	before,	you	are	now	able	to	edit	and	save	an	employee	having	selected	it
by	double	clicking	in	the	browser	(left	hand	side)	or	using	the	context	menu
to	Open	the	employee	details	in	the	editor	(right	hand	panel).	The	application
handles	multiple	employees	open	in	an	editor	instance.

					A	new	employee	may	be	created	using	a	toolbar	button.	All	changes	are
saved	using	a	toolbar	button.	The	application	warns	if	you	are	closing	and	an
employee	has	been	changed	but	not	saved.

18.	In	the	Deployment	Tool,	select	Version	1	for	the	Client	Personnel
Application	with	JIT	Update	application.	Click	the	Distributed	 	toolbar
button,	to	change	the	package	status	to	Distributed.	Package	Maintenance	can
now	not	be	opened	for	this	package.

Summary
What	You	Should	Know

How	to	install	an	application	package	which	uses	JIT	Update

DTE090	–	Create	a	Patch	for	Client	Personnel	Application	with
JIT	Update
Objective
To	make	a	simple	change	to	the	appearance	of	the	main	form	and	create	a
Patch	1	and	to	install	via	the	JIT	Server.
Form	II_MAIN	will	be	changed	by	altering	its	theme	(color).
When	the	application	Client	Personnel	with	JIT	Update	is	next	run,	the	patch
will	be	automatically	applied	before	the	application	is	launched.
To	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Change	Main	Form	II_MAIN
Step	2.	Create	a	Patch	for	Client	Personnel	System	with	JIT	Update
Step	3.	Update	Application:	Client	Personnel	with	JIT	Update
Summary

Before	You	Begin
You	must	have	completed	exercises:
DTE075	–	Create	a	Just	in	Time	Server	Installation
DTE080	–	Create	a	Client	Install	Package	with	JIT	Update
DTE085	–	Install	Client	Application	with	JIT	Update

Step	1.	Change	Main	Form	II_MAIN
1.		Open	your	main	form	(based	on	II_MAIN)	in	the	Visual	LANSA	editor.
2.		Select	the	Source	tab,	then	select	the	Go	To	tab,	and	expand	the	Routine
group.	Double	click	the
Evtroutine	-	#com_owner.Initialize

			This	will	position	the	editor	to	this	routine.
3.		Change	the	Theme	to	2007Graphite.	Your	code	should	look	like	the
following:
#SYS_sAPPLN.Theme	:=	2007Graphite

4.		Compile	and	run	the	application.	Check	the	change	of	appearance:

					Your	simple	change	represents	a	developer	changing	a	small	part	of	an
application.

					In	a	real	application	you	would	now	move	the	changed	component(s)	to	the
deployment	PC.
Here	the	changed	components	need	to	be	recompiled	after	the	Compile	option
settings	have	been	changed	to	the	next	File	Version.

5.		This	step	requires	Partition	Security	Officer	authority.	If	necessary,	close

Visual	LANSA	and	login	again	with	this	profile.	From	the	File	menu,	select
Options	to	open	the	Settings	dialog.

6.		Select	the	Compile	settings	and	increment	the	File	Version	to	1.0.0.1	as
shown.

					Note:	Exactly	how	Product	Version	and	File	Version	are	used	is	your
decision.	They	are	a	requirement	of	the	Windows	Installer.	To	enable	the
Deployment	Tool	to	work	correctly	when	building	a	patch	or	a	new	version,
you	must	increment	one	or	both	values.

					Clearly,	one	approach	would	be	to	increment	the	Product	Version	for	a	new
Version	and	increment	the	File	Version	for	a	Patch.

7.		Click	Apply	then	OK	to	close	the	LANSA	Settings	dialog.
8.		Close	Visual	LANSA	and	login	again	with	your	developer	profile.	Then
recompile	your	main	form.

9.		The	new	File	Version	value	will	be	stored	in	the	new	DLL	file	for	II_MAIN:
					Locate	the	DLL	in	the	following	path:
C:\Program	Files
(x86)\LANSA\X_WIN95\X_LANSA\x_trn\execute

					where	TRN	is	your	partition.
10.	Use	the	context	menu	(right	click)	to	display	the	file	Properties.	Select	the
Details	tab.

11.	You'll	see	that	the	File	Version	is	now	1.0.0.1.

Step	2.	Create	a	Patch	for	Client	Personnel	System	with	JIT
Update
1.		Open	the	Deployment	Tool,	select	the	IICLTJIT	application.	Select	Version	1
and	use	the	context	menu	to	select	Create	Patch:

2.		Enter	a	Description	of	Patch	1	Graphite	Theme.	Note	that	the	Patch	is
numbered	1.0.0.1

					The	Package	Maintenance	dialog	will	open:

					Note	that	most	options	and	most	settings	are	grayed	out.	Only	the	Selected
objects	and	Special	file	processing	can	be	modified	in	a	patch.	In	this	case,
having	changed	only	the	main	form	(II_MAIN)	there	are	no	modifications
required	to	the	package.

3.		Save	the	package,	Check	it	and	then	Build	it.	When	the	Rebuild	Cross
Reference?	message	box	is	shown,	respond	No,	since	none	of	the	related
components	have	changed.

					Note:	If	the	main	form	now	used	a	new	reusable	part,	you	would	need	to
rebuild	the	cross	reference	so	the	new	component	is	included	in	the	patch	file
(MSP).

					There	should	be	no	fatal	messages.	The	Deployment	Tool	initially	builds	a
new	MSI	file	and	compares	it	with	the	MSI	for	Version	1.	It	then	builds	an
MSP	file	containing	only	the	changes.	In	this	case,	the	MSP	file	will	contain
only	the	changed	main	form	II_MAIN.

4.		Close	the	Package	Maintenance	dialog.
5.		This	step	is	optional	and	is	for	information	only.	If	you	want	to	examine	the
contents	of	an	MSI	or	MSP	file,	if	you	install	a	suitable	zip	utility	such	as	7-
Zip,	then	you	can	display	the	contents	the	file.	For	example:

Step	3.	Update	Application:	Client	Personnel	with	JIT	Update
1.		In	the	Deployment	Tool	main	dialog,	select	Patch	1	for	the	Client	Personnel
System	with	JIT	Update	application	and	click	on	the	Go	to	folder	 	toolbar
button,	to	open	Explorer	in	the	application	folder.

					Copy	the	patch	file	(e.g.	IICLTJIT_V1.0.0.1_en-ms.MSP)	to	the
appropriate	JIT	Server	folder	such	as:
C:\Users\John\AppData\Local\Apps\II	Systems\II	Just	in	Time
Server\X_Win95\X_Lansa\X_Apps\dtcltjit

					You	are	now	ready	to	run	the	application	which	will	be	automatically
updated	with	Patch	1	before	the	application	itself	is	launched.

2.		Run	the	Client	Personnel	Application	with	JIT	Update.
3.		The	Package	Upgrade	Facility	will	contact	the	JIT	Server:

					Patch	1	will	be	applied:

					When	the	update	completes,	the	application	will	be	launched.
4.		The	application	will	now	use	the	2007Graphite	theme:

5.		In	the	Deployment	Tool	select	Patch	1	for	Client	Personnel	Application	with
JIT	Update	application	and	click	the	Distributed	 	toolbar	button	to	set	the
package	status	to	Distributed.	Package	Maintenance	can	no	longer	open	this
package.

Summary
What	You	Should	Know

How	to	create	a	patch	for	a	changed	application.
Understand	how	to	update	the	JIT	Server	by	copying	the	install	file	to	the
JIT	Server's	application	folder.
Running	the	application	will	check	the	JIT	Server	and	automatically	install
the	patch.

Deploy	to	a	Windows	Server
This	scenario	demonstrates	how	to	create	and	install	a	Windows
Data/Application	Server	system	and	then	execute	a	client	application	which
connects	to	the	Windows	Server	application.	To	do	this,	you	need	to	create	two
Deployment	Tool	applications:
1.		One	application,	the	one	described	here,	is	installed	on	the	server	and
includes	system	variables,	files	(including	message	files)	and	their	OAMs.

2.		The	second	application,	described	in	Deploy	Client	Server	Applications,
must	be	installed	on	each	client	and	includes	the	application's	forms,
processes	and	functions.

To	create	the	Windows	Server	installation,	you	need	to	perform	these	steps:
DTE010	–	Set	Up	the	Deployment	Tool
DTE015	–	Create	Client	Server	Application
DTE020	–	Create	Version	1.	In	this	exercise,	in	Step	1.	Add	Routing	Table	to
Application,	you	need	to	be	aware	you	are	specifying	the	routing	entry	to
connect	to	your	Windows	Server	application.
DTE025	–	Install	Version	1
Exercises	DTE015,	DTE020	and	DTE025	demonstrate	how	to	define	and	install
the	client	application.	This	client	application	will	connect	to	the	Windows	server
installation	defined	in	exercise	DTE095	–	Create	a	Windows	Server	Installation.

DTE095	–	Create	a	Windows	Server	Installation
Objective
To	define	a	package	for	a	Windows	Server	installation	to	provide	the
Data/Application	server	used	in	DTE100	–	Execute	Client	to	Windows	Server
Installation.
To	achieve	this	objective	you	must	complete	the	following:
Step	1.	Define	a	new	SQL	Server	Database
Step	2.	Create	Windows	Server	Installation	Package
Step	3.	Define	the	Repository	Objects	included	in	the	Package.
Step	4.	Define	Required	Execution	Parameters
Step	5.	Define	the	Database
Step	6.	Define	Additional	LANSA	Features
Step	7.	Check	and	Build	the	Package
Step	8.	Install	Windows	Server	Application
Step	10.	Review	Windows	Server	Installation
Summary

Before	You	Begin
You	must	complete	the	following	exercises:
DTE010	–	Set	Up	the	Deployment	Tool
DTE015	–	Create	Client	Server	Application
DTE020	–	Create	Version	1
DTE025	–	Install	Version	1
Exercise	DTE015,	DTE020	and	DTE025	demonstrate	how	to	define	and	install
the	client	application.	This	client	application	will	connect	to	the	Windows	server
installation	defined	in	this	exercise.

Step	1.	Define	a	new	SQL	Server	Database
The	deployed	application	will	use	a	new	database.	The	installation	package	will
define	all	the	required	tables	in	this	new	database.	The	tables	include	the
LANSA	Repository	tables	as	well	as	the	application	table	and	views.
To	complete	this	step	you	must	have	SQL	Server	Management	Studio	installed.
1.		Open	SQL	Server	Management	Studio	and	connect	to	the	database	server
service:

2.		Expand	the	Databases	group	so	that	you	are	aware	what	database	names	have
already	been	used:

3.		Right	click	on	Databases	and	select	New	Database	from	the	context	menu.
4.		Enter	a	suitable	name	for	the	new	database,	for	example:	LANSADB15.

					Click	OK	to	create	the	new	database	using	the	default	configuration.
5.		Minimize	SQL	Server	Management	Studio,	which	you	will	use	again	in	a
later	step.

Step	2.	Create	Windows	Server	Installation	Package
1.		Open	the	Deployment	Tool	from	the	Tools	ribbon	and	create	a	new
application

Application IIWINSRV

Description II	Personnel	System	Windows	Server

Company II	Systems

					The	New	Version	dialog	is	displayed.
2.		Enter	a	Description	of	Version	1	and	select	the	XSRVOTH	template:

3.		Click	Create	to	continue.
					The	Package	Maintenance	dialog	will	be	displayed.
					At	this	point	you	need	to	consider	how	to	define	the	server	portion	of	the
Personnel	Application.	The	elements	of	the	application	which	you	need	to
deploy	to	the	Windows	server	application	will	include	the	following:

The	application	files	and	their	data.
The	OAMs	for	the	files.	These	DLLs	will	be	automatically	included	when
you	add	the	files	to	the	package.

Any	processes	and	functions	which	the	file	OAMs	depend	on.	This	will
include	trigger	and	validation	functions	which	the	OAMs	may	call.
Any	called	server	functions	which	the	client	application	may	call.	There
are	none	in	this	simple	application.

Step	3.	Define	the	Repository	Objects	included	in	the	Package.
1.		Open	the	Select	repository	objects	dialog	using	the	 		toolbar	button.
					Expand	the	Files	group	and	add	the	following	file	to	the	package:

PSLMST	–	Personnel

2.		Select	the	file	in	the	right	hand	list,	and	click	the	Cross	Reference	 	toolbar
button.

3.		Select	these	check	boxes:
Files
Include	File	Data
Processes	and	Functions
Cascade	Selection

					These	options	will:

Include	other	files	used	by	the	selected	file.
Include	file	data	for	the	files	added	by	cross	reference.
Include	processes	and	functions	which	are	used	by	the	file	definitions
Cascade	the	selection	to	other	files	used	by	the	files	added	through	cross

reference.
4.		Click	OK	to	save	these	changes.

5.		Select	the	file	PSLMST	in	the	list,	click	on	the	File	Data	 	toolbar
button:

6.		Select	the	option	Include	data	(new	files	only).	This	option	will	include	data
for	the	file,	if	the	file	does	not	already	exist	in	the	database.

					Note:	Typically	you	would	only	include	data	for	lookup	tables,	for	examples
a	table	containing	a	list	of	USA	States.	Application	data	files	(e.g.	invoices,
orders,	customers	etc)	would	be	empty	files	at	this	stage	so	they	are	deployed
without	data.

7.		With	the	file	in	the	list	selected,	click	the	File	Library	Substitutions	
toolbar	button.

8.		Select	the	PARTLIB	Substitution	Id,	and	click	Select	Library,	which	will	also
close	the	dialog.

					Tables	in	an	SQL	database	are	defined	belonging	to	a	schema	(this	term
varies	depending	on	the	DBMS).	LANSA	uses	the	library	name	to	set	the
table	schema	name.	The	selected	option	will	give	all	files	a	schema	based	on

the	default	file	library	name	for	the	partition	into	which	they	are	deployed.
For	example	a	library	name	of	T13TRNDTA	will	generate	a	SQL	Server
schema	name	of	X3TRNDTA.	The	schema	name	is	limited	to	eight
characters.

					Note:	See	5.2.1.	Mapping	a	File's	Library	to	a	Fixed	Deployment	Schema	in
the	Deployment	Tool	guide.	This	provides	a	full	description	of	the	features
available	for	managing	the	schema	name	used	in	an	SQL	database.

					Note:	See	Mapping	a	File's	Library	to	a	Fixed	Deployment	Schema.	This
provides	a	full	description	of	the	features	available	for	managing	the	schema
name	used	in	an	SQL	database.

9.		Click	OK	to	close	the	Select	repository	objects	dialog.
					You	have	added	the	main	application	file	(PSLMST)	and	all	the	other	files
which	it	depends	upon	through	validation	rules	and	predetermined	join	fields.

its:lansa022.chm::/lansa/VLDTool6_0080.htm

Step	4.	Define	Required	Execution	Parameters
This	step	will	define	the	parameters	needed	for	the	X_RUN	program	which
executes	the	server	application	when	called	by	the	client	application.
1.		Set	each	parameter	by	double	clicking	it	to	open	a	dialog	where	you	set	its
value.	In	many	cases	you	can	also	define	whether	this	parameter	may	be	set	at
run	time.

					Parameters	with	a	value	of	[Current]	will	take	their	value	from	the	LANSA
partition	in	which	the	Deployment	Tool	is	used	to	define	the	package.	In
many	cases	these	parameters	can	be	left	as	[Current].

					Since	this	is	a	server	deployment	there	is	no	process,	function	or	form	to	be
run	initially.

2.		Double	click	User	and	enter	your	Visual	LANSA	user	id.	The	LANSA	job
will	be	identified	by	this	user.

Step	5.	Define	the	Database
This	step	defines	the	database	attributes	which	the	server	application	will
connect	to	and	use.
These	parameters	provide	further	X_RUN	parameters	for	use	when	any	server
application	program	executes.

1.		Notice	that	DBMS	Type	(DBUT)	has	defaulted	correctly	to	MS	SQL	Server.
2.		Enter	the	following	values:

Setup	Database	(SUDB) Yes

Data	Source	Name IIWINSRV

Database	Server	Name .\SQLSERVER	###

Database	Name LANSADB15	***

					###	This	is	the	default	name	given	to	the	SQL	Server	database	server	service.
					***	depends	on	the	name	used	to	define	the	new	SQL	Server	database.
					Select	the	Prompt	during	installation	checkbox	for	each	of	these	parameters
so	that	they	can	be	changed	during	installation	if	necessary.	The	MSI
Installation	Dialogs	group	must	contain	Display	DBMS	Dialog	=	Yes	which
is	true	for	the	template	used	to	create	this	package.

3.		If	the	database	is	using	Trusted	Connections,	then	Database	User	and
Password	are	not	needed.	The	database	connection	will	require	a	valid	local
Windows	user	id	and	password.

Step	6.	Define	Additional	LANSA	Features
This	server	installation	will	need	to	run	a	a	listener	so	that	the	client	can	connect
in	order	to	access	the	database	or	run	called	server	functions.	The	XOTHSRV
template	used	to	create	this	package	has	Installer	Listener	=	Yes.

1.		Save	the	package	definition	and	close	the	Package	Maintenance	dialog.
2.		In	the	main	Deployment	Tool	window,	select	the	IIWINSRV	application.
Select	the	Communications	Administrator	 	toolbar	button.

3.		The	Communications	Administrator	is	used	in	two	ways	by	the	Deployment
Tool:

Defines	a	routing	table	with	the	entries	needed	by	a	client	to	connect	to
one	or	more	servers.	The	routing	table	is	file:	lroute.dat
Defines	a	Listener,	which	the	package	installation	will	set	up	on	the
server.	The	listener	definition	is	held	in	a	file:	listener.dat.

					For	this	server	installation	you	need	to	define	a	listener.
4.		Select	Listener	from	the	Advanced	menu.

					The	server	application	listener	needs	a	Connection	Identifier	(port	number)
which	will	be	unique	on	the	machine	it	is	to	be	installed	onto.	In	this	exercise
you	will	be	installing	the	server	application	to	your	own	PC.	If	you	have	one
copy	of	Visual	LANSA	installed,	you	already	have	one	listener,	normally
using	a	default	Connection	Identifier	of	4545.	If	you	have	completed	the
Deploying	Applications	using	JIT	exercises	you	will	have	another	listener	for
the	JIT	server.	The	suggested	port	number	for	this	was	4547.

					The	LANSA	Listener	is	a	local	Windows	service	and	if	necessary,	you	can
check	how	many	listeners	you	already	have	using	Windows	Control	Panel	/
Administrative	Tools	/	Services:

					Scroll	down	to	find	the	LConnect	entries.	The	example	shown	above	is
unusual.	This	PC	has	a	number	of	Visual	LANSA	installations	as	well	as	a
number	of	deployed	applications.

					If	necessary	you	can	find	the	Communications	Administrator	for	each
LANSA	installation	and	then	find	its	Connection	Identifier.

a.		Enter	any	suitable	value	in	the	Connection	Identifier.	In	most	cases	this
could	be	4546.

b.		Click	OK	to	close	the	Listener	Information	dialog.
c.		Close	the	Route	Information	dialog.

					You	will	see	this	message	box,	after	defining	the	Listener	information:

Step	7.	Check	and	Build	the	Package
1.		Select	the	Version	1	package.	Click	the	Check	 	toolbar	button.	No	errors
should	be	reported.

2.		Select	the	Build	 	toolbar	button.	A	progress	bar	will	be	displayed	as	the
package	is	being	built.

3.		When	the	build	is	complete	the	Package	Build	Log	will	be	displayed.	Filter
for	Fatal	messages.	You	should	have	no	fatal	errors.	You	can	also	use	the
toolbar	checkboxes	to	display	only	Completion,	Warning	or	All		messages.

					A	Fatal	message	will	always	mean	you	need	to	correct	a	problem	and
rebuild	the	package.

					Warning	messages	should	be	reviewed,	but	may	not	always	require	further
action.

					The	following	example	illustrates	a	warning	that	requires	action:

					The	file	PSLMST	–	Personnel	table	appears	to	have	a	missing	View,
PSLMST1.	The	file	probably	needs	to	be	rebuilt	and	the	package	then	re-
built.

Step	8.	Install	Windows	Server	Application
A	Windows	Server	install	will	always	need	to	be	run	using	an	Administrator
profile.	For	your	own	application	you	would	now	install	the	server	application
to	a	Windows	server.	For	training	purposes	you	will	install	it	to	your	PC.
1.		In	the	Deployment	Tool	main	window,	select	the	IIWINSRV	application	and
click	the	Go	to	folder	 	toolbar	button	to	open	Explorer	in	the	application
folder.	For	example:

C:\Program	Files
(x86)\LANSA\X_WIN95\X_LANSA\x_apps\IIWINSRV
2a.		For	Windows	7,	using	a	user	who	is	a	member	of	the	Administrator	group,
double	click	on	the	MSI	file	to	run	it.

2b.		For	Windows	8,	open	a	Command	Prompt	using	Run	as	Administrator:

		Navigate	to	the	application	packages	folder	shown	above.

		Enter	the	command	msiexec.exe	/I	II	then	press	Tab	and	the
MSI	file	name	will	autocomplete,	for	example:	msiexec.exe
/I	IIWINSRV_v1.0.0_en-us.msi	then	press	Enter	to	start
the	install.

3.		A	series	of	Windows	install	dialogs	will	be	displayed:

4.		Click	Next	to	continue.
5.		The	End	User	Agreement	dialog	is	displayed:

					A	sample	end	user	licence	agreement	is	provided	in:

…\x_app\X_Wix\Content\license.rtf
					You	should	edit	or	replace	this	file	to	implement	your	company's	licensing
terms	if	necessary.

6.		Select	the	'I	accept….'	check	box	and	click	Next	to	continue.
					The	Installation	Scope	dialog	is	displayed:

					When	installing	a	server	application,	this	should	always	be	installed	for	All
Users.

7.		Select	the	Install	for	all	users	of	this	machine	radio	button.	Click	Next	to
continue.

					The	Destination	Folder	dialog	is	displayed:

					You	will	notice	that	the	default	install	path	includes	Company	Name	and
Application	Name.

					The	Change	button	allows	you	to	select	an	alternative	install	path.
8.			The	Setup	Local	Database	dialog	is	displayed:

					Notice	that	a	number	of	parameters	are	input	capable	and	may	be	changed,
because	the	Prompt	during	installation	checkbox	was	selected.

9.	It	is	essential	to	be	aware	at	this	point	that	the	Local	Database,	Setup
Database	check	box	must	be	selected.	The	install	will	then	continue	by
defining	and	populating	the	LANSA	repository	tables	and	depending	on	what
options	were	setup	for	the	application	files,	the	install	will	build	the
application	tables	and	views	and	load	the	file	data.

10.	Click	Next	to	continue.
11.	Since	a	Listener	is	being	installed	the	Communications	ports	dialog	is
shown.	Confirm	that	the	port	number	is	as	required.

12.	Click	Next	to	continue.
					The	Choose	Setup	Type	dialog	is	displayed:

13.	Select	any	Setup	Type	and	then	click	Next	to	continue.
					The	Ready	to	Install	dialog	is	displayed:

					This	dialog	shows:
where	the	software	will	be	installed
the	ODBC	System	Data	Source	Name	(DSN)	entry	which	will	be	created
the	database	server	connection	and	database	name	used
a	LANSA	Listener	will	be	installed.

					Note	that	during	the	install	process,	each	dialog	has	a	Back	button	which
allows	you	to	back	out	and	change	earlier	options	which	were	selected.

14.	Click	Install	to	continue	and	a	progress	bar	will	be	displayed	as	the	install
file	is	unpacked	and	run.

					Once	the	install	process	is	complete,	the	Finish	dialog	is	displayed:

15.	Click	Finish	to	close	the	install	program.
16.	In	the	Deployment	Tool	main	dialog,	select	Version	1	in	the	II	Windows
Server	Personnel	System	application	and	click	on	the	Distributed	 	toolbar
button	to	set	the	package	status	to	Distributed.	The	package	can	no	longer	be
opened	in	the	Package	Maintenance	dialog.

Step	10.	Review	Windows	Server	Installation
1.		Switch	to	Microsoft	SQL	Server	Management	Studio	that	was	used	in	an
earlier	step.

2.		On	the	View	menu,	select	the	Refresh	option.	This	should	refresh	the	Object
Explorer	view	on	the	left	hand	side.	If	this	function	seems	unreliable,	close
and	re-open	the	Management	Studio	application.

3.		Expand	the	database	that	you	created	earlier	and	expand	the	Tables	group.

					You	should	find	a	large	number	of	tables	prefixed	LX_DTA	which	is	the
schema	name	for	LANSA	repository	tables.

					The	second	group	of	tables	prefixed	by	X3TRNDTA	(schema	name)	in	the
sample	shown	are	the	application	tables.	Your	schema	name	will	depend	on
your	LANSA	partition	file	library	name.	Schema	name	is	limited	to	eight
characters	so	that	LANSA	shortens	the	library	name	if	necessary.	The	library
name	was	T13TRNDTA	in	this	example.

4.		Right	click	on	the	table	PSLMST	and	select	Edit	Top	200	rows.

					The	file	data	should	be	displayed	on	the	right	hand	side.
5.		Open	Windows	Explorer	and	navigate	to	the	path,	where	<company	name>
and	<application	name>	are	your	values	for	the	Windows	Server	install:

					C:\Program	Files	(x86)\<company	name>\<application	name>
6.		The	following	image	shows	the	main	contents	and	the	organisation	of	the
installed	folders:

Summary
What	You	Should	Know

How	to	define	a	simple	Windows	server	installation.
How	to	install	a	Windows	server	application.
The	main	structure	and	content	of	the	installed	application's	folders.
Both	Windows	7	and	Windows	8	will	allow	Install	just	for	you...	if	the	install
was	run	by	simply	double	clicking	the	MSI	file.
In	Windows	8,	you	must	run	the	install	from	a	command	prompt	started	with
Run	as	Administrator,	in	order	to	Install	for	all	users.

DTE100	–	Execute	Client	to	Windows	Server	Installation
Objective
To	execute	the	client	application	connecting	to	the	Windows	Server	Application
defined	and	installed	in	DTE095	–	Create	a	Windows	Server	Installation.	This
exercise	simply	explains	things	you	should	be	aware	of	and	the	differences	with
execution	against	an	IBM	i	server.

Before	You	Begin
This	small	exercise	explains	how	to	execute	your	client	application	against	a
Windows	server	installation
To	create	the	Windows	server	installation,	complete:
DTE095	–	Create	a	Windows	Server	Installation
In	DTE095,	you	will	have	created	the	client	application	explained	in:
DTE010	–	Set	Up	the	Deployment	Tool
DTE015	–	Create	Client	Server	Application
DTE020	–	Create	Version	1.	In	this	exercise,	in	Step	1.	Add	Routing	Table	to
Application,	you	need	to	be	aware	you	are	specifying	the	routing	entry	to
connect	to	your	Windows	Server	application,	which	is	actually	installed	on	your
PC.		our	routing	entry	will	need	to	be	similar	to:

Partner	LU:	IIWINSRV
Qualified	Name:	localhost
Connection	Identifier:	4546	

The	Connection	Identifier	must	be	the	value	used	to	define	the	listener	for	the
server	installation	in	DTE095	–	Create	a	Windows	Server	Installation.
DTE025	–	Install	Version	1.	Stop	after	the	last	installation	step	at	Step	2.9	and
return	to	this	exercise.

Client	Connecting	to	a	Windows	Server
You	will	find	more	details	on	this	topic	in	this	guide.	For	example	refer	to
Deploy	Client	/	Server	Applications.
If	you	plan	to	implement	your	own	application	with	a	Windows	or	Linux	server
you	must	review	this	material	in	detail.
Following	is	a	high	level	summary	that	covers	only	the	main	concepts:

Windows	Client	Connecting	to	Windows	Server	using
SuperServer	Built	In	Functions
This	is	the	scenario	covered	by	this	group	of	exercises.	It	is	also	the
recommended	architecture	for	all	LANSA	client	server	applications,	whether
the	server	is	IBM	i,	Windows	or	Linux.
The	Windows	Server	LANSA	installation	includes:
The	database,	with	Microsoft	SQL	Server,	Oracle,	MySQL	or	Sybase	SQL
Anywhere	as	the	DBMS.	Note	that	the	licensing	of	this	deployed	DBMS	is	your
responsibility.	See	the	Support	Platforms	document	on	the	LANSA	web	site	for
details	of	the	versions	supported.

The	database	must	contain	the	LANSA	Repository	tables	and	all	of	the
application	tables	and	data.
Visual	LANSA	runtime	software	which	supports	all	the	LANSA	executables.
Object	Access	Modules	(OAM)	for	all	the	application	tables.	These	are
DLLs	created	by	Visual	LANSA	when	each	file	is	compiled.
The	DLLs	for	all	functions	that	may	be	called	by	the	OAMs	as	triggers	or
validation	programs.
The	DLLs	for	all	functions	that	may	be	called	by	the	client	application
(CALL_SERVER_FUNCTION).
A	LANSA	Listener	communicating	with	client	application.
A	SuperServer	(LXX)	licence	must	be	installed	on	the	Windows	server.	See
Product	Licensing	on	the	LANSA	Support	web	page.

The	Windows	client	installation	includes:
Visual	LANSA	runtime	supporting	the	application	executables
The	client	application	as	DLLs
LANSA	communications	software	and	configuration	files	(routing	table,
lroute.dat).

its:lansa022.chm::/lansa/l4wdplb3_0485.htm
http://www.lansa.com/support/licensing/

The	client	may	be	installed	on	the	desktop,	on	a	file	server	or	on	a	virtual
machine	(Citrix	or	MS	Terminal	Server).

Starting	LANSA	Windows	Applications
All	LANSA	Windows	applications	are	launched	by	one	executable	-	x_run.exe.
This	requires	a	number	of	parameters	to	establish	the	runtime	environment	such
as	partition	and	language.	Refer	to	the	Technical	Reference	for	full	details	of
x_run	parameters.
The	x-run	program	may	be	started	using	x_start.exe.	This	executable	has	one
parameter,	the	name	of	a	text	file,	which	contains	the	x_run	parameters.
Deployed	applications	are	provided	with	a	shortcut	that	uses	x_start.
Other	ways	to	provide	parameters	to	x_run	include:

Using	Environment	variables
Using	the	profile	file	x_lansa.pro

Once	again	you	should	see	the	Technical	Reference	for	full	details	about	these
topics.

Controlling	the	Windows	server	runtime	environment
When	a	Windows	client	connects	to	a	LANSA	Windows	server	application,	the
server	application	inherits	its	x_run	parameters	from	the	client.	This	is
convenient	for	some	parameters	such	as	PART=PRD	but	other	client	x_run
parameters	will	be	wrong,	such	as	DBII=*none.	The	DEFINE_ANY_SERVER
built	in	function	has	an	"x_run	exceptional	arguments"	parameter	which	enables
overrides	to	the	parameters	the	server	will	use.	A	special	value	"*server"	can	be
used	here,	to	ensure	the	server	application	starts	with	the	desired	parameters,	for
example,	DBII=*server.	The	SuperServer	connect	form	provided	with	this	set	of
exercises	uses	the	following	x_run	exceptional	arguments	on	the
DEFINE_ANY_SERVER.
DBII=*server	DBUT=*server	DBID=*server
	

These	arguments	enable	the	deployment	package	for	the	Windows	server
application	to	have	Database	settings	which	will	then	be	applied	at	run	time.	

Other	Considerations
When	the	client	connects	to	the	Windows	server	application,	a	database
connection	must	be	established	on	the	server.	If	a	Microsoft	SQL	Server
database	is	configured	to	use	Integrated	Windows	authentication	then	the	client
is	simply	required	to	provide	a	valid	Windows	user	id	and	password	to	start	the
server	application	and	connect	to	the	database.

If	another	DBMS	such	as	Oracle	is	being	used,	you	will	need	to	be	aware	of
how	the	database	authentication	is	configured.

Step	1.		Run	the	Client	to	Windows	Server	Application
1.		Double	click	on	the	II	Personnel	System	icon	on	your	desktop.	The
application's	main	form	immediately	opens	the	SuperServer	connect	form:

2.		Enter	your	Windows	user	id	and	password.
3.		Enter	the	Partner	LU	Name	for	your	Windows	Server	installation.	You	can
use	the	Administrator	button	to	run	the	Communications	Administrator	to
check	for	the	name	you	gave	this	connection.

4.		Select	the	Windows	option	for	Type	of	server.
5.		Select	the	Options	tab	and	enter	the	Data	Source	Name	you	defined	in	the
Database	group	when	defining	the	package.	This	defines	a	System	DSN
entry	in	the	ODBC	configuration	file.	To	check	this,	see	your	Visual	LANSA
Settings	&	Administration	folder	/	32-Bit	ODBC	Administrator.

6.		Click	the	Connect	button.	The	main	form	should	now	load	the	browser	panel
on	the	left	hand	side,	with	all	employees	from	the	file	PSLMST.

					The	client	server	connection	tables	are	not	used	by	the	Windows
DEFINE_SERVER	built	in	function	and	will	be	ignored.

Debugging	Your	Windows	Client	Server	application
If	you	initially	experience	problems	with	connecting	to	your	Windows	server
application	you	should	do	the	following:
1		Look	for	a	X_ERR.LOG.	This	will	be	written	to	the	path	defined	by	the
X_RUN	parameter	TPTH.	The	default	value	for	this	path	is	the	user's
temporary	folder	which	can	be	found	using	the	shortcut	%TEMP%	for	the
path.	You	should	refer	to	the	Technical	Guide	for	more	information	on	how
this	path	is	evaluated.	One	or	more	of	the	following	log	files	may	be	found:
MSIxxx.log
DPinstal.log
LANSAInstallLog.txt
LANSAInstallPermissions.txt
X_err.log
Import.log
InstallTrace.txt	(requires	x_run	parameter	ITRO=Y.	This	may	be	set	globally
in	a	Windows	environment	variable)

2.		Turn	on	tracing	in	the	LANSA	Listener	for	the	Windows	server	application.
See	the	LANSA	Communications	Setup	Guide	for	details	on	how	to	setup
tracing.	A	brief	description	follows.

3.		Turn	on	tracing	in	the	LANSA	application.	Application	level	tracing	is
enabled	by	the	x_run	parameter	ITRO=Y.

Turn	on	Tracing	for	the	LANSA	Listener.
The	Communications	Administration	program	(lcoadm32.exe)	is	installed	to	the
Windows	server	application's	\connect	folder.
1a.		For	Windows	7,	look	in	the	Windows	Start	menu	under	your	company	name
and	application	name.		Double	click	on	the	Communications	Administrator
program.

1b.		For	Windows	8,	use	Search	to	find	Communications	Administrator,	use	the
context	menu	to	Run	as	Administrator.

a.		Select	Listener	from	the	Advanced	menu

b.		Click	the	Log	and	Trace	button.

c.		Use	the	Select	All	button	to	show	all	trace	options	selected,	as	shown	in
the	screen	capture	above.	You	should	refer	to	the	LANSA	Communications
Setup	Guide	for	detailed	recommendations.

d.		Click	OK	to	close	the	Log	and	Trace	Information	dialog.

e.		Use	the	Stop	Listener	button	to	stop	and	the	start	the	listener.

2.		Run	your	client	application	to	connect	to	the	Windows	Server	application.
Then	examine	the	trace	file	which	is	produced.	The	listener	trace	file
(lroute.trc)	is	written	to	the	\connect	folder	in	the	Windows	server
application	folder.	For	example:
C:\Program	Files	(x86)\<company	name>\<application
name>\Connect

Turn	on	Application	Level	Tracing
The	x_run	parameter	can	most	easily	be	set	by	defining	an	environment	variable
or	by	adding	the	parameter	to	the	LANSA	profile	file	(x_lansa.pro).
1.		Locate	the	LANSA	profile	file	(x_lansa.pro)	-	for	example,	in	the	x_lansa
folder:

					C:\Program	Files	(x86)\<company	name>\<application
name>\x_win95\x_lansa

2.		Open	the	x_lansa.pro	file	with	Notepad.

3.		Add	an	ITRO=Y	parameter.
4.		Optionally	add	a	TPTH=c:\temp	parameter,	using	any	suitable	folder	name.
The	default	path	is	the	user's	Windows	temporary	folder	path	(%TEMP%).

5a.		Save	the	x_lansa.pro	file,	ensuring	you	use	Save	As	and	select	Save	as	Type
(*.*)	to	prevent	Notepad	adding	txt	as	the	file	type.

5b.		For	Windows	8,	you	must	start	Notepad	using	Run	as	Administrator.
					The	trace	file	will	be	named	x_tracennn.txt	where	nnn	is	a	sequence
number.

Summary
What	You	Should	Know

How	to	run	a	client	application	to	a	Windows	server	application.
How	to	turn	on	application	level	tracing.
How	to	turn	on	tracing	in	the	Listener.
How	to	find	the	Visual	LANSA	x_err.log	file.

Cloud	Tutorials

The	exercises	in	this	tutorial	assume	that	you	are	an	experienced
Visual	LANSA	developer	and	already	have	an	AWS	account	and	have
used	it	to	create	Windows	instances	and	remotely	access	them.

	

About	the	Exercises
Introduction
These	exercise	describe	various	ways	LANSA	may	be	deployed	into	the	Cloud
and	how	you	may	interact	with	your	LANSA	Stack.

The	Application	to	be	Deployed
It's	presumed	that	you	already	have	your	application	packaged	into	an	MSI.

Tutorial	versus	Real	World
The	exercises	in	this	tutorial	are	designed	to	simplify	deployment	for	training
purposes	and	to	minimize	the	setup	involved.

System	Requirements	for	these	Exercises
It	is	presumed	that	you	already	have	an	AWS	account.	If	not,	navigate	to	this	url
and	follow	the	instructions:	aws.amazon.com.
These	exercises	instantiate	Cloud	services	for	which	you	may	be	charged.	You
are	responsible	for	all	such	charges	that	you	may	incur.

http://www.aws.amazon.com

Deploy	A	WAM	Application	into	AWS
This	section	contains	exercises	that	demonstrate	how	to	deploy	a	WAM
application	into	AWS.	If	all	you	need	to	do	is	provision	a	demonstration	of	a
LANSA	Stack,	then	essentially	it's	just	a	few	clicks	and	then	wait	in	the	region
of	45	minutes	for	all	the	parts	of	the	stack	to	be	provisioned.
If	you	need	to	deploy	your	own	application,	then	the	application	must	be
uploaded	first	and	more	care	will	need	to	be	taken	over	the	database	server	type,
the	size	of	the	virtual	machine	instances,	the	number	of	instances	and	security
settings.
The	exercises	to	be	performed	to	complete	this	objective	are:
CTE015	–	Subscribe	to	the	LANSA	Image
CTE030	–	Upload	your	LANSA	WAM	Application
CTE040	–	Create	the	LANSA	Stack
CTE050	–	Watch	the	LANSA	Stack	Scale	In
CTE060	–	Apply	Windows	Updates	to	all	Web	Server	Instances
CTE070	–	Apply	LANSA	Patch	to	all	Web	Server	Instances
CTE080	–	Apply	LANSA	Application	Upgrade	to	all	Web	Server	Instances

CTE015	–	Subscribe	to	the	LANSA	Image
Objectives
In	this	exercise	you	will	subscribe	to	the	LANSA	Image	in	the	AWS
Marketplace	so	that	the	LANSA	Stack	may	use	that	image.	This	image	is	called
an	Amazon	Machine	Image	or	AMI.
Note	1:	This	step	is	not	required	when	using	the	LANSA	Product	Centre	AWS
account.

Before	You	Begin
Obtain	access	to	the	AWS	console	to	use	AWS	Marketplace

Step	1.	Locate	the	LANSA	Scalable	AMI
1.		Go	to	https://aws.amazon.com/marketplace
2.		In	the	search	box	type	"LANSA	Scalable	License"	and	press	Enter
3.		Select	the	LANSA	Scalable	License.	The	LANSA	Scalable	License	AMI
details	are	displayed

4.		Browse	the	page	to	ensure	it's	suitable	for	your	purposes	and	then	click	on
the	Continue	button

5.		Click	on	the	Manual	Launch	tab.
6.		Select	the	AMI	version	appropriate	for	your	LANSA	Application	version.
7.		Click	on	the	Accept	Terms	button
8.		Within	a	few	moments	you	will	be	subscribed

Summary
What	You	Should	Know

How	to	subscribe	to	the	LANSA	image.
This	is	only	performed	once	for	a	specific	Marketplace	image.	You	will	be
able	to	use	the	image	in	any	supported	AWS	region.

CTE030	–	Upload	your	LANSA	WAM	Application
Objective
In	this	exercise	you	will	upload	your	LANSA	WAM	Application	MSI	to	AWS
BLOB	storage	–	S3.	If	you	are	only	interested	in	creating	a	stack	with	the
demonstration	application,	this	step	is	not	required.

Before	You	Begin
You	must	have	access	to	the	LANSA	Image	(AMI)
You	must	have	constructed	your	LANSA	MSI.

Step	1.Create	a	bucket
1.		In	the	AWS	Console	window,	select	S3
2.		Create	a	Bucket	to	store	your	MSI	or	select	an	existing	bucket.	If	you	create
a	new	bucket	use	all	lower	case	letters	as	some	uses	of	S3	names	are	case
sensitive.	In	this	case	'lansa'	has	been	selected.

3.		Create	a	Folder	in	your	bucket	or	select	an	existing	folder.	'cte030'
4.		Select	the	MSI	to	upload	to	S3.

a.		Click	the	Upload	button
b.		Click	Add	Files
c.		Navigate	to	the	directory	where	the	LANSA	MSI	has	been	created
d.		Select	the	MSI	and	click	Open.
					Your	dialog	will	look	something	like	this:

5.		Click	Set	Details	and	then	Set	Permissions.
6.		Check	Make	Everything	Public	or	assign	your	own	custom	permissions.
7.		Click	Start	Upload
8.		When	it's	finished	uploading,	select	the	MSI	and	click	the	Properties	tab	on
the	right	hand	side	to	show	the	URL	(Link)	of	the	MSI	in	S3.	Copy	the	URL
and	save	it	in	a	temporary	document	so	you	can	paste	it	into	the	Template	in
the	next	exercise.

Once	MSI	has	been	uploaded,	click	the	‘Properties	tab	on	the	right	hand	side
under	Permissions	and	set	the	options	as	shown.

Summary
What	You	Should	Know

How	to	upload	your	LANSA	MSI	to	AWS	S3	BLOB	storage	and	retrieve	its
URL	so	you	may	specify	it	when	creating	the	LANSA	Stack.

CTE040	–	Create	the	LANSA	Stack
Objective
In	this	exercise	you	will	use	the	AMI	that	you	authorised	in	exercise	CTE015	to
instantiate	a	LANSA	Stack.

Before	You	Begin
You	must	have	completed	the	following	exercises:
CTE015	–	Subscribe	to	the	LANSA	Image	(if	you	are	not	already	permitted	to
use	the	LANSA	Image)
CTE030	–	Upload	your	LANSA	WAM	Application	(if	you	want	to	deploy	your
own	application.	The	demonstration	does	not	require	this	step)

Step	1.	Select	Template
A	CloudFormation	stack	requires	a	template.	You	will	be	using	the	template:
https://s3-ap-southeast-2.amazonaws.com/lansa/templates/lansa-
master-win.cfn.template.	Copy	this	URL	ready	to	paste	it	into	the	Select
Template	dialog.
1.		In	the	AWS	Console	CloudFormation	window,	select	Create	Stack	or	Create
New	Stack.	Create	New	Stack	is	only	displayed	if	you	do	not	currently	have
any	stacks.

					The	Select	Template	dialog	opens:

2.		Specify	the	name	of	the	stack	e.g.	LansaStack,	select	Specify	an	Amazon	S3
template	URL,	and	then	paste	in	the	template	URL	that	you	have	saved:
https://s3-ap-southeast-2.amazonaws.com/lansa/templates/lansa-
master-win.cfn.template.

3.		Click	Next	to	go	to	the	next	step

Step	2.	Specify	Parameters
Specifying	the	parameters	will	define	how	your	LANSA	Stack	behaves.	It	is	the
most	important	step	in	creating	a	stack	and	needs	to	be	considered	carefully.
But,	the	worst	that	may	happen	is	you	need	to	recreate	the	stack	again.	You	will
see	that	instantiating	a	stack	is	not	difficult	to	do,	but	understanding	the	effects
of	the	various	parameters	and	what	will	suit	your	application	is	another	matter.
Still,	it's	a	great	environment	to	try	it	and	see	what	happens.
The	user	interface	provided	by	AWS	for	CloudFormation	templates	is	very
basic.	The	parameters	are	in	alphabetical	order	in	a	list.	The	most	important
parameters	are	listed	at	the	top	by	prefixing	the	parameter	name	with	a	number
to	ensure	it	displays	in	the	right	order.	All	the	help	text	for	this	dialog	is
provided	on	the	dialog.
1.		The	most	important	parameters	that	you	must	specify	are	(in	template	order):

a.		LansaMSI,	unless	you	are	running	the	demo
b.		DBPassword
c.		WebPassword
d.		KeyName
e.		RemoteAccessLocation
f.		WebPassword

g.		It's	also	advisable	to	change	the	DBUsername	and	WebUser	to	non-default
values

2.		The	description	of	some	of	the	parameters	starts	"Update	Stack:".	These
parameters	are	only	relevant	when	updating	the	stack.	All	the	Trigger
parameters	are	examples	of	this	and	they	have	no	effect	when	creating	the
stack,	so	you	may	safely	skip	them	for	the	moment.	Exercises	using	the
Triggers	are	provided	later	on.

3.		Review	each	of	the	parameters	and	its	help	text	in	the	Specify	Parameters
dialog

4.		Click	Next.

Step	3.	Options	&	Review
1.		On	the	Options	dialog	click	Next

2.		On	the	Review	dialog,	scroll	down	to	the	bottom	and	acknowledge	the
Capabilities	check	box	and	click	Create.

3.		The	stack	will	now	be	created.	This	process	may	take	about	an	hour.

Step	4.	Test	the	Stack
1.		When	the	status	of	the	stack	becomes	Create	Complete,	it	will	be	almost
ready	to	run.	
Click	the	Refresh	button	to	make	sure	the	status	messages	are	up	to	date.	Give
the	web	server	another	10	minutes	to	setup	the	LANSA	application.

2.		Click	on	the	Stack	Name	checkbox	and	the	Outputs	tab	and	then	copy	the
LANSA	web	site	URL.

3.		Open	a	browser	and	paste	in	the	URL.	
For	the	demonstration,	append	this	to	execute	the	WAM	application:	/cgi-
bin/lansaweb?
wam=DEPTABWA&webrtn=BuildFirst&ml=LANSA:XHTML&part=DEX&lang=ENG

4.		A	WAM	should	be	displayed.

Summary
What	You	Should	Know

How	to	instantiate	a	LANSA	stack	in	AWS.

CTE050	–	Watch	the	LANSA	Stack	Scale	In
Objective
In	this	exercise	you	will	change	the	settings	manually	on	the	Auto	Scaling
Group	to	force	the	LANSA	Stack	to	Scale	Out	2	instances	and	then	watch	it
automatically	scale	back	in	again.

Before	You	Begin
You	must	have	completed	the	following	exercises:
CTE040	–	Create	the	LANSA	Stack

Step	1.	Select	Auto	Scaling	Group
1.		In	the	AWS	Console	select	the	EC2	page	and	the	Auto	Scaling	Group	down
the	bottom	of	the	left	hand	column.

2.		At	least	two	scaling	groups	should	be	displayed:	one	name	starts
LansaStack-DBWebServer...	and	the	other	starts	with	LansaStack-
WebServer...	Select	the	latter	Auto	Scaling	Group.	The	Details	tab	should	be
displayed	below	the	list.	If	not,	click	on	one	of	the	icons	circled	in	green	and
ensure	the	Details	tab	is	selected.	Notice	the	Instances,	Desired	and	Min
values	are	1	both	in	the	list	and	the	Details,	and	the	Max	is	150.

					Note:	Do	not	change	LansaStackDBWebServer	settings.	It's	important	that
there	is	1	and	only	1	of	these	instances	running.

3.		Click	Edit	to	change	these	settings.	Set	the	Desired	to	2	and	the	Min	to	2.
This	will	instantiate	an	extra	Web	Server	instance.

4.		Click	Save	to	apply	the	new	settings.	Notice	the	list	is	updated	with	the	new
settings	and	the	Instance	count	is	1.	Within	a	short	time	that	will	change	to	2.
Click	the	refresh	icon	to	see	the	change.

5.		You	may	see	this	instance	initializing	in	the	EC2	Instances	view.	You	have
forced	the	Auto	Scaling	Group	to	create	1	new	instance.

Step	2.	Wait	for	the	Auto	Scaling	Group	to	Scale	Out
1.		You	must	wait	for	the	instance	to	initialize	before	configuring	the	stack	to
Scale	In.	You	may	determine	when	the	instances	are	ready	by	looking	at	the
state	of	the	Load	Balancer.	Navigate	to	the	EC2	Load	Balancers	window	and
select	the	LansaStack	Load	Balancer	and	the	Instances	tab.	You	will	see	that
the	Web	Server	instance	is	OutOfService.	Until	it	is	InService,	the	Load
Balancer	will	not	use	it.	It	takes	something	like	20	minutes	to	fully	initialize
the	demonstration	application.	Your	own	application	may	vary	greatly	from
this.

2.		When	all	3	instances	have	a	Status	of	In	Service	then	you	are	ready	for	the
next	step.

Step	3.	Allow	the	Auto	Scaling	Group	to	Scale	In
1.		Navigate	back	to	the	Auto	Scaling	Group	window.	Select	the	Auto	Scaling
Group	LansaStack-WebServer,	click	on	the	Details	tab	and	click	Edit.	This	is
just	the	same	as	you	did	for	Step	1.

2.		Change	Min	to	0.	This	will	allow	the	Auto	Scaling	to	reduce	the	number	of
running	instances	(Desired	setting)	below	2	if	the	Scaling	Policy	is	satisfied.
Save	the	change.

3.		Click	on	the	Scaling	Policies	tab.	The	policy	names	are	quite	lengthy.	In	the
centre	of	the	name	you	will	see	a	policy	named	ScaleInPolicy.	This	policy	is
set	to	execute	when	the	CPU	Utilization	drops	below	30%	for	60	seconds.
When	that	occurs,	I	instance	will	be	removed	from	the	Auto	Scaling	Group.
Then	there	will	be	a	pause	of	5	minutes	before	another	scaling	activity	will	be
allowed.	This	is	to	stop	thrashing	of	instances	constantly	starting	and
stopping.	In	fact	in	a	production	system	the	execution	policy	is	more	likely	to
average	over	a	longer	period	so	that	dips	of	inactivity	are	averaged	out.

4.		If	you	click	refresh	you	will	probably	see	that	the	Desired	setting	has	been
automatically	decremented	to	1.

5.		A	scaling	activity	has	occurred.	Click	on	the	Scaling	History	tab	and	expand
the	message	using	the	arrow	on	the	left.	You	can	see	the	cause	of	this	scaling
activity.

6.		5	minutes	later	another	scaling	activity	will	occur	and	reduce	the	Desired
number	of	instances	to	0,	triggering	the	last	instance	in	this	Auto	Scaling
Group	to	be	removed	from	service.

7.		You	may	peruse	the	other	scaling	activities	that	have	occurred	and	see	your
user	request	to	force	the	creation	of	the	2	web	server	instances	to	Scale	Out
the	ASG	and	then	the	2	automatic	scaling	events	to	Scale	In	the	ASG.

Summary
What	You	Should	Know

How	to	manually	scale	a	stack	and	how	AWS	performs	scaling	automatically
based	on	Cloud	metrics	you	specify.

CTE060	–	Apply	Windows	Updates	to	all	Web	Server	Instances
Objective
In	this	exercise	you	will	trigger	the	application	of	Windows	Updates	to	all	the
Web	Server	instances.	As	it's	an	exercise	you	may	do	this	at	any	time,	but	with	a
production	system	you	would	schedule	a	time	to	perform	this	maintenance
activity	and	take	the	application	offline	and	perform	tests	to	ensure	your
application	is	still	working	as	expected.

N.B.	The	AWS	Console	status	will	change	to	UPDATE_COMPLETE	when	the
FIRST	part	of	the	process	is	complete.	That	is,	it's	updated	the	definition	of	the
stack.	The	actual	action	you	have	requested	is	not	started	until	the	next	time	the
agent	on	the	EC2	instance	checks	for	changes.	This	occurs	at	1	minute	intervals.
The	action	must	then	be	executed.	For	Windows	Updates	in	particular	this	may
take	a	long	time.	If	you	RDP	into	the	instance	before	it's	complete	it	may	effect
whether	an	update	is	installed	successfully	or	not.	If	a	reboot	is	required	your
RDP	session	will	be	ended.

Also,	only	apply	one	trigger	at	a	time	and	allow	sufficient	time	for	the	action	to
complete	before	applying	another	trigger.

Before	You	Begin
You	must	have	completed	the	following	exercises:
CTE040	–	Create	the	LANSA	Stack

Step	1.	Select	Stack	to	Update
1.		In	the	AWS	Console	CloudFormation	window,	you	will	see	three	stacks
listed.	Click	the	stack	that	bears	just	the	name	of	the	stack	which	you	created
in	exercise	CTE040.	E.g.	LansaStack.

2.		Then	click	Update	Stack:

3.		The	Select	Template	dialog	opens:

4.		Just	click	Next	to	go	to	the	next	step

Step	2.	Specify	Parameters
1.		Click	the	Use	Existing	Value	checkbox	on	the	two	parameters	which	use	it:
DBPassword	and	WebPassword.	You	must	do	this	otherwise	the	Stack	update
will	fail.

2.		Scroll	down	the	list	of	parameters	to	the	TriggerWindowsUpdate	parameter.

2.		Increment	the	value	by	1.	In	this	example,	enter	2	and	click	Next.
3.		On	the	Options	dialog	click	Next
4.		On	the	Review	dialog,	check	the	2	password	parameters	display	ellipsis	and
the	TriggerWindowsUpdate	parameter	is	the	value	you	expect.

5.		Scroll	to	the	end	of	the	Review	dialog	and	acknowledge	the	capabilities,	then
click	Update:

6.		The	list	of	stacks	is	displayed	and	the	stack	you	updated	will	have	a	status	of
UPDATE_IN_PROGRESS.	Within	a	short	time	all	3	stacks	will	show
UPDATE_COMPLETE.	The	Windows	Update	itself	is	not	complete,	just	the
application	of	the	change	to	the	template.

	

Step	3.	Check	that	Windows	Updates	have	been	Applied
1.		To	perform	this	step	you	will	need	to	know	how	to	obtain	RDP	access	to	the
web	servers	and	check	the	Windows	Updates	status	on	the	machine.

Summary
What	You	Should	Know

How	to	apply	Windows	Updates	to	all	the	running	Web	Servers	by	updating
the	LANSA	Stack.

CTE070	–	Apply	LANSA	Patch	to	all	Web	Server	Instances
Objective
In	this	exercise	you	will	trigger	the	application	of	LANSA	Patches	to	all	the
Web	Server	instances.	As	it's	an	exercise	you	may	do	this	at	any	time,	but	with	a
production	system	you	would	schedule	a	time	to	perform	this	maintenance
activity	and	take	the	application	offline	and	perform	tests	to	ensure	your
application	is	still	working	as	expected.

N.B.	The	AWS	Console	status	will	change	to	UPDATE_COMPLETE	when	the
FIRST	part	of	the	process	is	complete.	That	is,	it's	updated	the	definition	of	the
stack.	The	actual	action	you	have	requested	is	not	started	until	the	next	time	the
agent	on	the	EC2	instance	checks	for	changes.	This	occurs	at	1	minute	intervals.
The	action	must	then	be	executed.	How	long	the	action	takes	to	execute	is
dependent	on	what	you	have	asked	it	to	do.	It	may	take	many	minutes.

Also,	only	apply	one	trigger	at	a	time	and	allow	sufficient	time	for	the	action	to
complete	before	applying	another	trigger.

Before	You	Begin
You	must	have	completed	the	following	exercises:
CTE040	–	Create	the	LANSA	Stack
CTE030	–	Upload	your	LANSA	WAM	Application	(but	to	upload	your	patches)
The	patches	for	your	application	must	have	been	uploaded	already.	You	can
follow	the	same	procedure	as	explained	in	CTE030	–	Upload	your	LANSA
WAM	Application	but	instead	of	uploading	the	MSI,	upload	the	patches.	The
same	S3	folder	should	be	used	as	was	used	for	the	MSI.

Step	1.	Select	Stack	to	Update
1.		In	the	AWS	Console	CloudFormation	window,	you	will	see	three	stacks
listed.	Click	the	stack	that	bears	just	the	name	of	the	stack	which	you	created
in	exercise	CTE040.	E.g.	LansaStack.

2.		Then	click	Update	Stack.

					The	Select	Template	dialog	opens:

3.		Just	click	Next	to	go	to	the	next	step

Step	2.	Specify	Parameters
1.		Click	the	Use	Existing	Value	checkbox	on	the	two	parameters	which	use	it:
DBPassword	and	WebPassword.	You	must	do	this	otherwise	the	Stack	update
will	fail.

2.		Scroll	down	the	list	of	parameters	to	the	PatchBucketName,
PatchFolderName	and	TriggerPatchInstall	parameters.

3.		Ensure	the	PatchBucketName	and	PatchFolderName	are	correct.	In
particular	the	PatchFolderName		may	be	just	the	folder	where	the	patches
are	located,	or	a	part	of	the	patch	name	to	restrict	the	installation	to	a	subset
of	the	patches	in	the	directory.	Foer	example	to	install	just	one	patch	specify
the	entire	name	–	"/app/test-patches/AWAMAPP_v1.0.0.2_en-us.msp".	Or	all
the	patches	for	version	1.0.0	-		"/app/test-patches/AWAMAPP_v1.0.0."	(N.B.
include	the	last	'.'.

4.		Increment	the	TriggerPatchInstall	parameter	by	1.	In	this	example,	enter	2

and	click	Next.
5.		On	the	Options	dialog	click	Next
6.		On	the	Review	dialog,	check	the	2	password	parameters	display	ellipsis	and
the	PatchBucketName,	PatchFolderName	and	TriggerPatchInstall	parameters
are	the	values	you	expect.

7.		Scroll	to	the	end	of	the	Review	dialog	and	acknowledge	the	capabilities,	then
click	Update:

8.		The	list	of	stacks	is	displayed	and	the	stack	you	updated	will	have	a	status	of
UPDATE_IN_PROGRESS.	Within	a	short	time	all	3	stacks	will	show
UPDATE_COMPLETE.	The	LANSA	Patch	itself	may	not	have	completed,
just	the	application	of	the	change	to	the	template.

	

Step	3.	Check	that	the	patch	has	been	Applied
1.		To	perform	this	step	you	will	need	to	know	how	to	obtain	RDP	access	to	the
web	servers	and	check	the	LANSA	Application	installation	status	on	the
machine.

Summary
What	You	Should	Know

How	to	apply	LANSA	Patches	to	all	the	running	Web	Servers	by	updating
the	LANSA	Stack.

CTE080	–	Apply	LANSA	Application	Upgrade	to	all	Web	Server
Instances
Objective
In	this	exercise	you	will	trigger	the	application	of	a	LANSA	Upgrade	to	all	the
Web	Server	instances.	As	it's	an	exercise	you	may	do	this	at	any	time,	but	with	a
production	system	you	would	schedule	a	time	to	perform	this	maintenance
activity	and	take	the	application	offline	and	perform	tests	to	ensure	your
application	is	still	working	as	expected.

N.B.	The	AWS	Console	status	will	change	to	UPDATE_COMPLETE	when	the
FIRST	part	of	the	process	is	complete.	That	is,	it's	updated	the	definition	of	the
stack.	The	actual	action	you	have	requested	is	not	started	until	the	next	time	the
agent	on	the	EC2	instance	checks	for	changes.	This	occurs	at	1	minute	intervals.
The	action	must	then	be	executed.	How	long	the	action	takes	to	execute	is
dependent	on	what	you	have	asked	it	to	do.	It	may	take	many	minutes.

Also,	only	apply	one	trigger	at	a	time	and	allow	sufficient	time	for	the	action	to
complete	before	applying	another	trigger.

Before	You	Begin
You	must	have	completed	the	following	exercises:
CTE040	–	Create	the	LANSA	Stack
CTE030	–	Upload	your	LANSA	WAM	Application	(but	to	upload	your	new
MSI)
The	upgrade	for	your	application	must	have	been	uploaded	already.	You	can
follow	the	same	procedure	as	explained	in	CTE030	–	Upload	your	LANSA
WAM	Application.	The	same	S3	folder	should	be	used	as	was	used	for	the	first
installation.
It's	important	to	understand	that	the	DBWebServer	instance	must	be	fully
upgraded	before	attempting	to	update	the	WebServer	stack.	This	is	because	all
database	changes	must	be	applied	only	by	DBWebServer	and	must	be	completed
before	the	WebServer	stack	attempts	to	use	those	changes.
Hence	the	two	nested	stacks	are	updated	rather	than	the	parent	stack.

Step	1.	Select	Stack	to	Update
1.		In	the	AWS	Console	CloudFormation	window,	you	will	see	three	stacks
listed.	Click	the	stack	that	bears	the	name	of	the	stack	which	you	created	in
exercise	CTE040.	E.g.	LansaStack	with	'–DBWebServerApp'	appended.

2.		Then	click	Update	Stack.

					The	Select	Template	dialog	opens:

3.		Just	click	Next	to	go	to	the	next	step

Step	2.	Specify	Parameters
1.		Click	the	Use	Existing	Value	checkbox	on	the	three	parameters	which	use	it:
DBPassword,	DBName	and	WebPassword.	You	must	do	this	otherwise	the
Stack	update	will	fail.

2.		Scroll	down	the	list	of	parameters	to	the	LansaMSI	and	TriggerIcingUpdate
parameters.

3.		Specify	the	URL	of	your	application	upgrade	and	increment	the
TriggerIcingUpdate	value	by	1.	In	this	example,	enter	2	and	click	Next.

4.		On	the	Options	dialog	click	Next
5.		On	the	Review	dialog,	check	the	3	password	parameters	display	ellipsis	and
the	LansaMSI		TriggerIcingUpdate	parameters	are	the	values	you	expect.

6.		Scroll	to	the	end	of	the	Review	dialog	and	acknowledge	the	capabilities,	then
click	Update:

7.		The	list	of	stacks	is	displayed	and	the	stack	you	updated	will	have	a	status	of
UPDATE_IN_PROGRESS.	Within	a	short	time	the	stack	will	show
UPDATE_COMPLETE.	The	LANSA	Upgrade	itself	has	not	completed,	just
the	application	of	the	change	to	the	template.

	

Step	3.	Check	that	DBWebServer	has	been	Upgraded
1.		To	perform	this	step	you	will	need	to	know	how	to	obtain	RDP	access	to	the
web	servers	and	check	the	LANSA	Application	installation	status	on	the
machine.

2.		Even	if	you	do	not	RDP	into	the	instance	to	check	the	installation	status,	it	is
highly	recommended	to	check	the	CPU	utilization	of	the	EC2	instance	and
ensure	it's	returned	to	near	zero.	This	ensures	that	the	database	upgrade	has
completed.	Only	then	may	you	continue	with	the	process.

Step	4.	Upgrade	the	WebServer	Stack
1.		Once	you	are	certain	that	the	DBWebServer	upgrade	has	completed,	then
repeat	steps	1	to	3	for	the	WebServer	Stack,	whether	or	not	you	have	instances
currently	running	in	that	stack.	All	new	instances	will	install	the	MSI	last	set
in	the	template.	So	it's	important	to	set	it	even	when	the	WebServer	stack	is
empty	of	instances.

2.		Even	if	you	do	not	RDP	into	the	instance	to	check	the	installation	status,	it	is
highly	recommended	to	check	the	CPU	utilization	of	the	EC2	instance	and
ensure	it's	returned	to	near	zero.	This	ensures	that	the	database	upgrade	has
completed.	Only	then	may	you	continue	with	the	process.

Summary
What	You	Should	Know

How	to	upgrade	a	LANSA	application	in	all	the	running	Web	Servers	by
updating	the	two	nested	LANSA	Stacks.
	

Glossary
The	following	terminology	is	used	in	the	Deployment	Tool.

ActiveX
External
component

ActiveX	External	Components	are	ActiveX	controls
provided	by	a	3rd-party.			Visual	LANSA	supports	all
standard	ActiveX	Interfaces.
To	use	an	external	ActiveX	Control	within	the	LANSA
development	environment,	a	corresponding	LANSA
ActiveX	component	is	created.		The	external	program
information	associated	with	the	ActiveX	control	is	identified
within	this	ActiveX	object.
The	ActiveX	control	can	then	be	used	within	Visual	LANSA
much	the	same	as	any	other	Visual	LANSA	component.
For	more	information,	refer	to	ActiveX	Controls	in	the
Visual	LANSA	Developer's	Guide.

ActiveX
wrapped
component

LANSA	Components	can	be	"wrapped"	and	made	available
to	other	vendors	as	an	ActiveX	Control.
The	processing	of	"wrapping"	the	LANSA	component
requires	the	registration	of	the	LANSA	component	and
creation	of	a	supporting	session.cfg	file	in	the	environment
where	the	ActiveX	will	be	used.
For	more	information,	refer	to	ActiveX	Controls	in	the
Visual	LANSA	Developer's	Guide.

Application "Application"	has	a	dual	meaning	in	the	context	of	the
Deployment	Tool.
In	the	first	instance	an	Application	draws	a	boundary	around
the	product	you	have	developed	using	LANSA,
encompassing	all	the	bits	and	pieces	which	comprise	the
Application.		This	is	a	LANSA-developed	Application.
In	terms	of	the	Deployment	Tool	an	Application	is	a	group	of
Packages.	One	or	more	Packages	can	be	linked	under	the
"umbrella"	of	an	Application	in	the	Deployment	Tool.	An
Application	is	distributed	for	download,	rather	than	a
Package.
You	may	have	more	than	one	Application	defined	in	the

its:Lansa013.chm::/lansa/l4wdev07_0010.htm
its:Lansa013.chm::/lansa/l4wdev07_0010.htm

Deployment	Tool	to	deploy	your	LANSA-developed
application.		For	example,	if	you	need	to	deploy	a	client
server	application	you	will	typically	define	a	Deployment
Tool	Application	to	deploy	the	client	side	components	and	a
separate	Deployment	Tool	Application	to	deploy	the	server
side	components.

Application
Server

For	Just	in	Time	deployment,	the	Application	Server	is	the
repository	for	all	released	deployment	packages	and	has	an
active	listener	to	receive	requests	from	Client	(or	Target)
PCs.
When	the	Application	is	launched	on	a	Client	PC	this
initiates	communication	with	the	Application	Server	to
determine	if	updates	to	be	downloaded.		Any	updates	will	be
automatically	applied	on	the	Client	PC	before	the
Application	is	started.

Assembler The	person	selecting	the	deployment	tool	options	&	settings
described	in	this	guide.

Base	Language The	language	to	be	translated	from	when	performing
LANSA	Object	or	Parameter	File	translations	based	on	a
translation	package.
The	language	must	be	defined	in	the	partition	where	the
package	is	installed.

Client	PC Client	PC(s)	are	an	integral	part	of	a	client-server
installation.		Typically	the	Client	PC	accesses	a	database	on
the	server	(rather	than	locally)	and	may	rely	on	the	server	to
perform	some	operations.

Communication
Files

The	communication	files	are	Host	Route	Table	(lroute.dat)
and	Listener	Table	(listener.dat).		These	files	are	maintained
using	the	LANSA	Communications	Administrator	interface.

Corporate
Application
Install

In	a	corporate	environment	it	is	assumed	users	do	not	have
administrative	rights	to	their	PC	therefore	when	installing	an
Application	with	a	database	an	administrator	of	the	machine
is	required	to	set	up	the	shared	database	by	executing	an	"All
Users"	install	of	the	Application	with	Setup	Database	=
TRUE	(i.e.	SUDB=1).

The	end	user	can	then	install	any	subsequent	updates	which
do	not	modify	the	database	using	a	"Per	User"	install.
If	an	end	user	needs	to	be	allowed	to	set	up	the	database	the
Application	deployment	settings	can	be	modified	to	ensure
the	database	setup	is	allowed	OR	the	installation	can	be
executed	from	a	command	line	using	msiexec.exe	and	setting
a	parameter	to	change	Setup	Database	to	TRUE	(i.e.	SUDB=
1).
Refer	to	Personal	Application	Install	for	comparison.

Deployment
Template

In	the	context	of	the	Deployment	Tool	a	Template	is
implements	a	predetermined	set	of	values	for	the	Package's
settings	and	options.		Objects	can	also	be	included	in	a
Deployment	Template.
By	using	Templates,	you	can	reduce	the	number	of	options	to
be	set	each	time	you	wish	to	create	a	package.	You	can	create
a	purpose-built	template	or	save	a	package	as	a	template.
A	number	of	pre-recorded	Templates	are	supplied	with	the
Deployment	Tool.

Developer The	person	who	developed	the	Visual	LANSA	application
being	deployed.	This	person	may	also	be	the	Assembler	of
the	package.

DLL	Upgrade DLL	upgrades	are	no	longer	supported.
The	alternate	approach	is	a	Package	Upgrade.

End	User The	user	of	the	Visual	LANSA	Application.

Globally
Unique
Identifier
(GUID)

A	Globally	Unique	Identifier,	commonly	called	a	GUID,	is	a
unique	reference	number	used	to	identify	software.
GUIDs	are	usually	stored	as	128-bit	values,	and	are
commonly	displayed	as	32	hexadecimal	digits	with	groups
separated	by	hyphens,	for	example	5667BA66-1CC2-442E-
8B80-03288BB8FDC0.

Installer The	person	who	installs	the	package	on	the	end	user's	PC.	
This	person	may	also	be	the	end	user.

Just	in	Time
(JIT)
Installation

Just-in-time	package	installation	ensures	the	latest	changes	to
a	Package-developed	application	are	installed	before	a	user
accesses	the	application.		The	Application	Packages	are
defined	with	appropriate	dependencies,	for	example	install
package	A	before	package	B,	and	then	they	are	installed	on	a
network	server.		When	a	user	starts	the	application	a	check	is
performed	to	see	if	any	upgrades	needs	to	be	installed	before
the	application	is	launched.		Any	packages	not	previously
installed	on	the	client	system	are	autoamtically	installed
according	to	the	pre-defined	dependencies	before	the
application	is	launched.
Only	installing	changes	when	an	application	is	used	has	the
advantages	of:
Saving	on	set	up	time
Ensuring	consistent	application	versions	on	client	systems.

MSI	file MSI	file	is	an		installer	package	file	format	used	by
Windows.MSI	files	are	used	for	installation,	storage,	and
removal	of	applications.	
When	you	successfully	build	a	Version,	an	MSI	file	is
produced.	This	includes	all	the	objects	required	to	install
your	application	whether	it	be	a	server	installation,	a	client
installation,	a	network	client	or	other	variation.

msiexec.exe Msiexec.exe	belongs	to	Windows	Installer	and	is	used	to
install,	modify	or	configure	applications	from	the	command
line	which	are	installed	from	an	MSI	file.

MSP	file An	application	that	has	been	installed	using	the	Microsoft
Windows	Installer	can	be	upgraded	by	reinstalling	an
updated	installation	package	(a	MSI	file),	or	by	applying	a
Windows	Installer	patch	(an	MSP	file)	to	the	application.
An	MSP	file	contains	updates	to	an	application	and	describes
which	versions	of	the	application	can	receive	the	patch.
Servicing	applications	by	delivering	a	Windows	Installer
patch,	rather	than	a	complete	installation	package	for	the
updated	product	can	have	advantages.	A	patch	can	contain	an
entire	file	or	only	the	file	bits	necessary	to	update	part	of	the
file.	This	enables	the	user	to	download	an	upgrade	patch	that

is	much	smaller	than	the	installation	package	for	the	entire
product.		It	is	not	recommended	that	you		include	database
changes	as	they	are	complex	to	manage	and	can	easily	result
in	a	corrupted	database.

Network	Client
Application

A	Network	Client	application	allows	you	to	create	packages
that	do	not	include	LANSA	executable	objects.		Typically,	a
package	for	a	Network	Client	application	will	contain
shortcuts	to	the	server	and	indicate	the	target	platform.		It	is
intended	for	applications	where	the	executables	and	runtime
environment	are	installed	on	a	central	sever	for	shared	use.
A	separate	application	must	be	defined	to	install	the	server
side	components,	that	is,	the	LANSA	runtime	environment,
communications	and	compiled	DLLs	from	functions	and
components.

Package A	package	defines	what	and	how	your	LANSA-developed
Application	will	be	deployed	to	a	user's	PC.
A	Package	is	a	generic	term	to	refer	to	a	Version	or	Patch.

Package
Upgrade

There	is	only	one	type	of	Just-In-Time	Upgrade,	so	this
distinction	-	Package	Upgrade	-	is	superfluous.	See	Just-In-
Time	Installations.

Patch A	Patch	is	used	to	deliver	a	set	of	changes	to	a	software
product	that	has	been	installed	using	the	Windows	Installer.
A	software	product	can	be	upgraded	by	installing	a	new
Version	(MSI	file)	or	by	applying	a	Patch	(MSP	file).
A	Patch	is	typically	used	to	apply	modified	compiled
objects,	shortcuts	and	executables.		A	patch	should	not	be
used	to	deploy	database	changes.
A	Patch	is	identified	by	its	Patch	Number.	The	Patch	number
has	a	direct	relationship	to	the	Version	or	Patch	it	was	based
on,	for	example	Patch	1.0.0.1	would	be	the	first	patch
against	Version	1.0.0.

Personal
Application
Install

In	the	case	of	a	Personal	Application	with	a	database	the	end
user	of	the	application	is	allowed	to	set	up	the	database	for
an	Application.			To	facilitate	this	the	package	must	be	built
with	the	appropriate	Database	Setup	options	OR	the

installation	can	be	executed	from	a	command	line	using
msiexec.exe	and	setting	a	parameter	to	change	the	Setup
Database	Setup	to	TRUE	(i.e.	SUDB=	1).
Refer	to	Corporate	Application	Install	for	comparison.

Primary
Installation

The	main	Application	installation	is	generally	referred	to	as
the	primary	installation	to	distinguish	it	from	the	network
client	installation	which	is	a	small	MSI	file	automatically
created	for	most	primary	installations	and	delivered	by	the
primary	installation.

Target	PC The	PC	where	the	Visual	LANSA	application	is	to	be
deployed.

Template See	Deployment	Template.

Translation
Language

The	language	to	be	translated	to	when	performing	LANSA
Object	or	Parameter	File	translations	based	on	a	translation
package.
The	language	must	be	defined	in	the	partition	where	the
package	is	installed.

Translation
Package

A	translation	package	includes	either	(or	both)	of	the	Deploy
with	Translation	List	or	Translate	Deployment	Parameter
File	options	described	in	Settings	.
When	installed	a	translation	package	will	create	a	desktop
folder	with	two	options:
Install
Translate	Application

The	Translate	Application	option	will	launch	the	Translate
Object	Details	form	supplied	by	LANSA.
The	XTRANSLT	template	provides	a	basis	for	a	translation
package.

X_START The	X_START.SAV	file	stores	any	override	values	to	be
used	in	conjunction	with	an	X_RUN.EXE	command.
Typically,	when	a	package	is	installed	a	desktop	icon	is
created	to	launch	the	application.		This	icon	has	a	LANSA
X_RUN	command	associated	with	it.		The	X_START	file	is

its:lansa022.chm::/lansa/VLDTool6_0050.htm

used	in	conjunction	with	the	X_RUN	to	prompt	for	values
before	launching	the	application	and	to	provide	useful
default	values	to	be	used	on	the	prompt	dialog.		This	can
introduce	flexibility	into	how	and	what	is	launched	when	the
application	is	started.

Version A	Version	is	a	full	install	of	the	software	product.		A	Version
belongs	to	an	Application.
A	Version	is	identified	by	its	Version	Number.	The	Version
Numbering	is	arbitrary	but	subsequent	version	numbers
must	be	greater	than	previous	ones.

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LANSA Application Deployment Tool
	About this Guide
	Who should use this Guide
	How to use this Guide
	Additional Information

	1. Introduction
	1.1 What is the Deployment Tool?
	1.2 The Deployment Model
	1.2.1 What is an Application?
	1.2.2 What is a Version?
	1.2.3 What is a Patch?
	1.2.4 What is a Package?
	1.2.5 What do you need to deploy?

	1.3 Upgrading a LANSA-developed Application previously deployed
	1.4 Who should use the LANSA Deployment Tool?

	2. What's New?
	2.1 A New Deployment Model
	2.2 File Library Automatically set to Partition Library
	2.3 Set File Library
	2.4 Control File Data Loading and Unloading
	2.5 Network Client Installation decided during Installation
	2.6 Runtime always Included in Installation Files
	2.7 Translation Tool integrated into Visual LANSA Tools
	2.8 Unknown objects are no longer dropped when Package is saved
	2.9 Host Route Table and Listener defined at Application Level only
	2.10 Backup or Restore Applications
	2.11 New option Require Elevation
	2.12 New options to install Web Features
	2.13 Options not selected to Prompt during Installation are no longer shown

	3. Plan your Deployment
	3.1 Deployment Tool Environment
	3.1.1 Using a Workstation as a Server

	3.2 Lifecycle of an Application
	3.2.1 Mapping a File's Library to a Fixed Deployed Schema

	3.3 Version or Patch Upgrade?
	3.4 Per-User or Per-Machine Install?
	3.5 Digital Signatures
	3.5.1 Why digitally sign MSI and MSP files?

	3.6 Installation Mode
	3.7 SCCM Integration

	4. Getting Started with the Deployment Tool
	4.1 Deployment Tool Main Window
	4.1.1 File menu
	4.1.2 View menu
	4.1.3 Tools menu
	4.1.4 Main window toolbar

	4.2 Package Maintenance Window
	4.2.1 Package File Menu
	4.2.2 Package Edit Menu
	4.2.3 Package Verify Menu
	4.2.4 Package Maintenance toolbar

	4.3 Help

	5. Configure the Deployment Tool
	5.1 Set up Company Details
	5.1.1 Company Maintenance
	5.1.2 Create a Company

	5.2 Default Cross Reference Settings

	6. Applications
	6.1 Create an Application
	6.2 Change an Application's Details
	6.3 Delete an Application
	6.4 Include Communications Tables

	7. Versions and Patches
	7.1 Create a Version
	7.2 Create a Patch
	7.3 Open a Package
	7.3.1 Edit Installation Options
	7.3.2 Edit Settings
	7.3.3 Change Description
	7.3.4 Associated Template

	7.4 Delete a Package
	7.5 Convert a Pre-V13 Package
	7.6 Save a Package
	7.7 Check a Version or Patch
	7.8 Build a Version or Patch
	7.8.1 Package Build Log

	7.9 Package Distributed

	8. Options & Settings
	8.1 Installation Options
	8.1.1 Execution Parameters
	8.1.2 Additional LANSA Features
	8.1.3 Just in Time
	8.1.4 SuperServer
	8.1.5 Database
	8.1.6 Desktop Settings
	8.1.7 Upgrade Options
	8.1.8 MSI Installation Dialogs

	8.2 Select Repository Objects
	8.2.1 Selected Object Viewer
	8.2.2 Special Considerations for Object Types
	8.2.3 Cross Reference Settings
	8.2.4 Include and Process File Data
	8.2.5 Configure the File Library Substitution
	8.2.6 Configure the Non-LANSA Object Installation Path

	8.3 Settings
	8.4 Application Icon
	8.5 X_RUN Arguments
	8.6 Commands to execute
	8.6.1 Conditions to Control the Execution of a Command
	8.6.2 Valid Commands and Parameters
	8.6.3 Valid Substitution Variables for Command Parameters

	8.7 Languages
	8.7.1 Custom Language Definition

	8.8 Web Designs
	8.9 Files with Special Processing

	9. Deploy LANSA Communications
	9.1 Include Host Route and Listener Tables
	9.2 LANSA Communications Package Settings & Options

	10. Deploy Client / Server Applications
	10.1 Client / Server Deployment Considerations
	10.2 SuperServer Application using Built-In Functions to connect to server
	10.3 SuperServer Application connecting to a Windows or Linux Server
	10.4 SuperServer Application connecting to an IBM i server
	10.5 Network Client Installation

	11. Deploy LANSA for the Web Applications
	11.1 Web Server Deployment
	11.2 Data Application Server with Windows Application Database

	12. Just In Time Upgrade Guidelines
	12.1 Major differences in Package 13 JIT Upgrade
	12.2 Package Upgrades
	12.3 Application Servers
	12.4 Target PCs and the Client Application
	12.5 Application Server Development Life Cycle Recommendations
	12.6 Just In Time Upgrade Recommended Settings
	12.7 Troubleshooting Just in Time
	12.8 Tracing Just in Time Connections
	12.9 Upgrading to Version 13 using JIT Upgrade
	12.10 Customizing Just In Time Package Upgrade

	13. Deployment Templates
	13.1 Create a Deployment Template
	13.2 Review, Change or Delete a Deployment Template
	13.3 Convert a Pre-V13 Template
	13.4 Deployment Template Options & Settings
	13.4.1 Template Installation Options
	13.4.2 Template Option Values and Appearance
	13.4.3 Template Subset Appearance

	13.5 Supplied Deployment Templates
	13.5.1 XACTIVEX - Publish LANSA Component wrapped as ActiveX
	13.5.2 XALONE - Standalone system
	13.5.3 XAPPSV - Set up an Application Server without database for Just In Time Package serving
	13.5.4 XAPPSVDB - Set up an Application Server with database for Just In Time Package serving
	13.5.5 XCLT400 - Client application using SuperServer to connect to an IBM i data server
	13.5.6 XCLT400X - Client application using SuperServer to connect to a RDMLX IBM i data server
	13.5.7 XCLTBIF - Client application using SuperServer Built-In Functions to connect to the data server
	13.5.8 XCLTJIT - LANSA SuperServer application updated by Just in Time
	13.5.9 XCLTOTH - SuperServer application connected to an "Other" data server
	13.5.10 XEXPORT � Export internal definitions
	13.5.11 XOTHOBJ � Deploy Non-LANSA Objects
	13.5.12 XSRVNET - Set up a Network server
	13.5.13 XSRVOTH - Set up an "Other" data server
	13.5.14 XTRNAPP � Translation Application with Object Details for Translation
	13.5.15 XTRNEXP � Export Object Details for Translation
	13.5.16 XWAMENB � Web Enable for WAM Application

	14. Translate a LANSA-developed Application
	14.1 Translate using standalone Translation Application
	14.1.1 Deploy Translation Application including Objects to Translate
	14.1.2 Install Translation Application and Translate Objects

	14.2 Translate with Visual LANSA development environment
	14.2.1 Deploy Objects to Translate
	14.2.2 Run the Translation Application and Translate Objects

	14.3 Load Translations for Appropriate Language

	15. Review your Deployment Package
	15.1 Objects included in Package
	15.2 Search Application
	15.3 Convert pre-V13 Package

	16. Test your Deployment Package
	16.1 Allocate a PC for building your Deployment Packages
	16.2 Allocate the necessary PCs for testing your Deployment Package
	16.3 Troubleshoot the Deployed Application

	17. Install an Application
	17.1 Windows Installer File Install
	17.1.1 Double-click the MSI or MSP file in explorer
	17.1.2 msiexec.exe Command-Line Options
	17.1.3 Administrative Install
	17.1.4 Installation from a Web Browser
	17.1.5 SCCM Integration
	17.1.6 Version Installation Dialogs
	Welcome Dialog
	End-User License Agreement Dialog
	Installation Scope Dialog
	Destination Folder Dialog
	Setup Application Dialog
	Setup Local Database Dialog
	User ID Dialog
	Web Sites for IIS Plugin Dialog
	Web Site Virtual Folders Dialog
	Communication Ports Dialog
	Setup Server Dialog
	Setup Type Dialog
	Verification Dialog
	Progress Dialog
	Completion Dialog

	17.1.7 Patch Installation Dialogs
	Welcome Dialog
	Confirmation Dialog
	Progress Dialog
	Completion Dialog

	17.1.8 Network Client Installation
	17.1.9 Change, Repair or Remove Application
	Re-install MSI File
	Windows Programs and Features

	17.2 Just in Time Install
	17.3 LANSA Import
	17.4 Troubleshoot the Installation

	18. Upgrade an Existing MSI Application
	19. Upgrade an Existing V12 Application
	20. Cloud Customizations
	20.1 Amazon Web Services
	20.1.1 Add Alarms to Your CloudWatch Log Files
	Installation Error Alarm
	MSI installation error
	Other Alarms to Consider

	20.1.2 Procedure to follow when Upgrading Your Application
	20.1.3 Using a Single Availability Zone (AZ)
	20.1.4 Auto Scaling Considerations

	21. How To ... ?
	21.1 Create a Deployment Version
	21.2 Connect to the Required Server
	21.3 Search Packages including an object
	21.4 Back up your Application Definitions
	21.5 Deploy an external ActiveX control
	21.6 Deploy LANSA Components published for ActiveX
	21.7 Deploy User Defined RDML BIFs
	21.8 Install Runtime License for Application
	21.9 Set DLL Version Information
	21.10 Specify Installation-Specific Database Connection Settings
	21.11 Deploy a 64-bit Application
	21.12 Install Application Files into a consistent schema name

	Deployment Tool Tutorials
	About the Exercises
	System Requirements for these Exercises

	Set Up the Deployment Tool
	DTE010 � Set Up the Deployment Tool
	Step 1. Define Company
	Step 2. Define Default Cross Reference Settings
	Step 3. Define an Application
	Summary

	Deploy Client Server Applications
	DTE015 � Create Client Server Application
	Step 1. Import the supplied Employees Application
	Step 2. Copy the supplied Employee Application
	Step 3. Test the Client Server Application
	Summary

	DTE020 � Create Version 1
	Step 1. Add Routing Table to Application
	Step 2. Define Version 1
	Step 3. Define Execution Parameters
	Step 4. Review the Package Settings
	Step 5. Build the Version 1
	Summary

	DTE025 � Install Version 1
	Step 1. Locate the Install File
	Step 2. Install Version 1 of Personnel System
	Step 3. Set Version 1 to Deployed
	Summary

	DTE030 � Modify the Employees Application
	Step 1. Remove Real Start and Terminate Dates from the Editor
	Step 2. Modify the Data Component (II_DATA)
	Step 3. Modify the Store component (II_STORE)
	Step 4. Modify the Browser Component (II_BRWSR)
	Step 5. Re-test the Employees Application
	Summary

	DTE035 � Create a Patch for the Employees Application
	Step 1. Set DLL Version and Recompile Changed Components
	Step 2. Create a Patch
	Step 3. Install the Patch
	Summary

	DTE040 � Create Version 2
	Step 1. Set DLL Version
	Step 2. Enhance the Application
	Step 3. Create Version 2 Package
	Step 4. Install Version 2
	Summary

	Deploy a Stand Alone Application
	DTE045 � Create a Stand Alone Application
	Step 1. Import the supplied Employee Application
	Step 2. Copy the supplied Employee Application
	Step 3. Test the Stand Alone Employees Application
	Summary

	DTE050 � Create Version 1
	Step 1. Create an SQL Server Database
	Step 2. Define Version 1
	Step 3. Define Execution Parameters
	Step 4. Define the Database Parameters
	Step 5. Review the Package Settings
	Step 6. Build Version 1
	Summary

	DTE055 � Install Version 1
	Step 1. Locate the Install File
	Step 2. Install Version 1 of Employee Application
	Summary

	DTE060 � Modify the Employees Application
	Steps
	Summary

	DTE070 � Create Version 2
	Steps
	Summary

	Deploy Applications using JIT
	DTE075 � Create a Just in Time Server Installation
	Step 1. Create a JIT Server Package
	Step 2. Install the JIT Server Installation
	Summary

	DTE080 � Create a Client Install Package with JIT Update
	Step 1. Define Version 1 Package
	Step 2. Define X_RUN Arguments
	Step 3. Define Required Execution Parameters
	Step 4. Define the Just in Time Parameters
	Step 5. Review the Package Settings
	Step 6. Add Routing Table to the Application
	Step 7. Build the Install Package
	Step 8. Copy Client Application Package to JIT Server
	Summary

	DTE085 � Install Client Application with JIT Update
	Step 1. Locate the Install File
	Step 2. Install Version 1 of Client Personnel System with JIT Update
	Summary

	DTE090 � Create a Patch for Client Personnel Application with JIT Update
	Step 1. Change Main Form II_MAIN
	Step 2. Create a Patch for Client Personnel System with JIT Update
	Step 3. Update Application: Client Personnel with JIT Update
	Summary

	Deploy to a Windows Server
	DTE095 � Create a Windows Server Installation
	Step 1. Define a new SQL Server Database
	Step 2. Create Windows Server Installation Package
	Step 3. Define the Repository Objects included in the Package.
	Step 4. Define Required Execution Parameters
	Step 5. Define the Database
	Step 6. Define Additional LANSA Features
	Step 7. Check and Build the Package
	Step 8. Install Windows Server Application
	Step 10. Review Windows Server Installation
	Summary

	DTE100 � Execute Client to Windows Server Installation
	Client Connecting to a Windows Server
	Starting LANSA Windows Applications
	Step 1. Run the Client to Windows Server Application
	Debugging Your Windows Client Server application
	Summary

	Cloud Tutorials
	System Requirements for these Exercises
	Deploy A WAM Application into AWS
	CTE015 � Subscribe to the LANSA Image
	Step 1. Locate the LANSA Scalable AMI
	Summary

	CTE030 � Upload your LANSA WAM Application
	Step 1.Create a bucket
	Summary

	CTE040 � Create the LANSA Stack
	Step 1. Select Template
	Step 2. Specify Parameters
	Step 3. Options & Review
	Step 4. Test the Stack
	Summary

	CTE050 � Watch the LANSA Stack Scale In
	Step 1. Select Auto Scaling Group
	Step 2. Wait for the Auto Scaling Group to Scale Out
	Step 3. Allow the Auto Scaling Group to Scale In
	Summary

	CTE060 � Apply Windows Updates to all Web Server Instances
	Step 1. Select Stack to Update
	Step 2. Specify Parameters
	Step 3. Check that Windows Updates have been Applied
	Summary

	CTE070 � Apply LANSA Patch to all Web Server Instances
	Step 1. Select Stack to Update
	Step 2. Specify Parameters
	Step 3. Check that the patch has been Applied
	Summary

	CTE080 � Apply LANSA Application Upgrade to all Web Server Instances
	Step 1. Select Stack to Update
	Step 2. Specify Parameters
	Step 3. Check that DBWebServer has been Upgraded
	Step 4. Upgrade the WebServer Stack
	Summary

	Glossary

