
Visual	LANSA	Feature	Help
Visual	LANSA	Feature	Help

	

	

	

This	file	contains	text	that	responds	as	help	when	you	press	F2	on	a	Visual
LANSA	event	or	component	or	press	the	question	mark	icon	on	the	Feature	tab's
toolbar.
The	text	is	not	intended	to	be	read	as	a	guide	but	has	been	provided	so	that	it	is
selected,	if	appropriate,	in	response	to	a	search	of	the	LANSA	knowledge
database.
	

	

	

Edition	Date:	October	28,	2014
©		LANSA
	



Control	and	Composite
			



Origin
The	variables	specified	in	the	Origin	selector	will	contain	a	reference	the	control
on	which	the	event	was	first	fired.



Handled
The	Handled	selector	allows	a	user	to	stop	routed	events	going	any	further	along
the	parent	chain.		The	default	is	false
True
The	event	is	being	processed	in	this	event	routine	and	should	not	be	routed	to
the	parent.
False
The	event	is	not	being	fully	processed	in	this	event	routine	and	should	be	routed
to	the	parent.



FadeIn	Method
DirectX	Only
FadeIn	is	an	animation	method	that	transitions	a	control's	Opacity	property	from
its	current	value	to	100	over	the	specified	duration.		When	the	animation
completes	the	Visible	property	will	be	True.
Like	all	animations,	it	is	executed	in	a	separate	thread	allowing	other	processing
to	continue.



Delay
Number	of	milliseconds	to	delay	the	processing	of	the	animation.		The	default	is
0.



Duration
Number	of	milliseconds	required	to	complete	the	animation.		Default	is	250.



FadeOut	Method
DirectX	Only
FadeOut	is	an	animation	method	that	transitions	a	control's	Opacity	property
from	its	current	value	to	0	over	the	specified	duration.		When	the	animation
completes	the	Visible	property	will	be	False.
Like	all	animations,	it	is	executed	in	a	separate	thread	allowing	other	processing
to	continue.



Delay
Number	of	milliseconds	to	delay	the	processing	of	the	animation.		The	default	is
0.



Duration
Number	of	milliseconds	required	to	complete	the	animation.		Default	is	250.



Scale	Method
DirectX	Only
Scale	is	an	animation	method	that	transitions	a	control's	ScaleWidth	and
ScaleHeight	properties	from	their	current	value	to	the	specified	value	over	the
specified	duration.			When	the	animation	completes	the	control's	ScaleHeight
and	ScaleWidth	properties	will	match	the	specified	values.
Like	all	animations,	it	is	executed	in	a	separate	thread	allowing	other	processing
to	continue.



ScaleWidth
Target	ScaleWidth	value	for	the	animation.	Default	is	100.



ScaleHeight
Target	ScaleHeight	value	for	the	animation.	Default	is	100.



Delay
Number	of	milliseconds	to	delay	the	processing	of	the	animation.		The	default	is
0.



Duration
Number	of	milliseconds	required	to	complete	the	animation.		Default	is	250.



MouseEnter	Event
DirectX	Only
MouseEnter	is	fired	when	the	mouse	enters	the	outer	bounds	of	a	control.



MouseHover	Event
DirectX	Only
MouseHover	is	fired	when	the	mouse	is	stationary	over	a	control	for	a
predetermined	amount	of	time.		The	event	is	fired	once	and	will	only	fire	again
when	the	mouse	has	left	the	re-entered	the	control.



MouseLeave	Event
DirectX	Only
MouseLeave	is	fired	when	the	mouse	leaves	the	outer	bounds	of	a	control.		It	is
not	fired	on	the	parent	when	the	mouse	enters	the	bounds	of	a	child	control.



Hint	Popup	Property
DirectX	Only
Hint	Popup	allows	a	PopupPanel	(#prim_ppnl)	instance	to	be	used	instead	of	the
default	popup	text	box.	This	gives	the	developer	complete	control	over	the
content	and	format	of	the	hint.
Define_Com	Class(#prim_phbn)	Name(#Button)	Caption('Click')
Hintpopup(#ButtonHintPanel)
Define_Com	Class(#Prim_ppnl)	Name(#ButtonHintPanel)
Content(#MyHintPanelContent)	



Hint	Title	Property
DirectX	Only
When	specified,	the	HintTitle	is	shown	at	the	top	of	the	hint	window	in
emphasized	text.		The	remainder	fof	the	hint	is	shown	below	as	normal.



IsAnimating	Property
DirectX	Only
Used	to	determine	whether	a	control	is	being	animated.
Typically	used	to	prevent	an	animation	being	restarted.
True
The	control	is	not	being	animated
False
The	control	is	being	animated



MouseOver	Property
DirectX	Only
Determines	whether	the	mouse	is	directly	over	a	control.		If	the	mouse	is	over	a
child	control,	MouseOver	will	be	false.
MouseOver	is	useful	when	MouseEnter/Leave	code	is	being	run	to	change	the
appearance	of	a	control,	but	other	factors	are	also	affecting	the	control's	state.
True
The	mouse	is	directly	over	the	control
False
The	mouse	is	not	directly	over	the	control



MouseOverStyle	Property
DirectX	Only
Denotes	the	Style	(#Prim_vs.Style)	to	be	applied	to	a	control	in	the	event	of	the
Mouse	entering	the	physical	bounds	of	the	control.	The	style	is	removed	when
the	mouse	leaves	the	control.
MouseOverStyle	negates	the	need	to	code	many	MouseEnter	and	corresponding
MouseLeave	events	and	allows	for	simple	declaration	instead.



MouseOverStyles	Property
DirectX	Only
Collection	of	Styles	(#Prim_vs.Style)	to	be	applied	to	a	control	in	the	event	of
the	Mouse	entering	the	physical	bounds	of	the	control.	The	styles	are	removed
when	the	mouse	leaves	the	control.
MouseOverStyles	allows	for	more	complex	programmatic	appearance	changes
to	be	coded.		Rather	than	relying	on	the	declarative	single	MouseOverStyle,	the
developer	is	free	to	add	as	many	style	layers	as	required.



Opacity	Property
DirectX	Only
Opacity	denotes	the	appearance	of	a	control	in	terms	of	its	interaction	with	its
background.
The	default	is	100;	entirely	opaque.		No	background	will	be	visible	at	all.
As	the	value	decreases,	more	and	more	of	the	background	will	become	visible
through	the	control.		When	the	value	is	0	the	control	will	be	entirely	transparent
and	only	the	background	will	be	visible.
Note:	a	control	with	opacity	of	0	is	not	visible	to	the	user	but	will	continue	to
function	as	normal	and	is	still	both	visible	and	enabled.



Popup	Property
DirectX	Only
Popup	allows	a	PopupPanel	(#prim_ppnl)	instance	to	be	used	instead	of	the
typical	right	click	popup	menu	(Prim_pmnu).			This	gives	the	developer
complete	control	over	the	content	and	format	of	the	popup.
Define_Com	Class(#prim_trvw)	Name(#Tree)	Popup(#TreePopupPanel)
Define_Com	Class(#Prim_ppnl)	Name(#TreePopupPanel)
Content(#MyTreePopupPanel)



Rotation	Property
DirectX	Only
Rotation	allows	a	control	to	rotate	about	a	given	origin	as	specified	by	the
RotationOriginLeft	and	RotationOriginTop	properties.
Rotation	is	a	measured	in	degrees	and	has	a	range	of	values	from	0	to	359.
Rotation,	like	Scale	and	Skew,	is	a	visual	effect	and	does	not	alter	the
fundamental	size	and	position	of	the	control.		The	left,	top,	height	and	width
properties	maintain	their	value.		Rotated	controls	are	clipped	to	ensure	they	fit
within	the	bounds	of	their	parent	control.



RotationOriginLeft	Property
DirectX	Only
In	conjunction	with	RotationOriginTop,	defines	the	coordinates	of	an	imaginary
point	about	which	a	control	will	rotate	when	the	Rotation	property	is	applied.
RotationOriginLeft	is	a	percentage	and	has	a	default	of	50.



RotationOriginTop	Property
DirectX	Only
In	conjunction	with	RotationOriginTop,	defines	the	coordinates	of	an	imaginary
point	about	which	a	control	will	rotate	when	the	Rotation	property	is	applied.
RotationOriginTop	is	a	percentage	and	has	a	default	of	50.



ScaleHeight	Property
DirectX	Only
In	conjunction	with	ScaleWidth,	defines	the	visible	size	of	the	control	based	on
an	imaginary	point	defined	by	the	ScaleOriginLeft	and	ScaleOriginTop
properties.
ScaleHeight	is	a	percentage.		The	default	is	100.
Scale,	like	Rotation	and	Skew,	is	a	visual	effect	and	does	not	alter	the
fundamental	size	and	position	of	the	control.		The	left,	top,	height	and	width
properties	maintain	their	value.		Scaled	controls	are	clipped	to	ensure	they	fit
within	the	bounds	of	their	parent	control.



ScaleWidth	Property
DirectX	Only
In	conjunction	with	ScaleHeight,	defines	the	visible	size	of	the	control	based	on
an	imaginary	point	defined	by	the	ScaleOriginLeft	and	ScaleOriginTop
properties.
ScaleWidth	is	a	percentage.		The	default	is	100.
Scale,	like	Rotation	and	Skew,	is	a	visual	effect	and	does	not	alter	the
fundamental	size	and	position	of	the	control.		The	left,	top,	height	and	width
properties	maintain	their	value.		Scaled	controls	are	clipped	to	ensure	they	fit
within	the	bounds	of	their	parent	control.



ScaleOriginLeft	Property
DirectX	Only
In	conjunction	with	ScaleOriginTop,	defines	the	coordinates	of	an	imaginary
point	from	which	a	control	will	scale	when	the	ScaleWidth	and	ScaleHeight
properties	are	applied.
ScaleOriginLeft	is	a	percentage	and	has	a	default	of	50.



ScaleOriginTop	Property
DirectX	Only
In	conjunction	with	ScaleOriginLeft,	defines	the	coordinates	of	an	imaginary
point	from	which	a	control	will	scale	when	the	ScaleWidth	and	ScaleHeight
properties	are	applied.
ScaleOriginLeft	is	a	percentage	and	has	a	default	of	50.



SkewLeft	Property
DirectX	Only
In	conjunction	with	SkewTop,	defines	the	appearance	of	the	control	as	though
rotated	around	an	imaginary	point	defined	by	the	SkewOriginLeft	and
SkewOriginTop	properties.
SkewLeft	is	measured	in	degrees.		The	default	is	0.
Skew,	like	Rotation	and	Scale,	is	a	visual	effect	and	does	not	alter	the
fundamental	size	and	position	of	the	control.		The	left,	top,	height	and	width
properties	maintain	their	value.		Skewed	controls	are	clipped	to	ensure	they	fit
within	the	bounds	of	their	parent	control.



SkewTop	Property
DirectX	Only
In	conjunction	with	SkewLeft,	defines	the	appearance	of	the	control	as	though
rotated	around	an	imaginary	point	defined	by	the	SkewOriginLeft	and
SkewOriginTop	properties.
SkewTop	is	measured	in	degrees.		The	default	is	0.
Skew,	like	Rotation	and	Scale,	is	a	visual	effect	and	does	not	alter	the
fundamental	size	and	position	of	the	control.		The	left,	top,	height	and	width
properties	maintain	their	value.		Skewed	controls	are	clipped	to	ensure	they	fit
within	the	bounds	of	their	parent	control.



SkewOriginLeft	Property
DirectX	Only
In	conjunction	with	SkewOriginTop,	defines	an	imaginary	point	about	which	a
control	can	be	skewed	using	the	SkewLeft	and	SkewTop	properties.
SkewOriginLeft	is	a	percentage.		The	default	is	50.



SkewOriginTop	Property
DirectX	Only
In	conjunction	with	SkewOriginLeft,	defines	an	imaginary	point	about	which	a
control	can	be	skewed	using	the	SkewLeft	and	SkewTop	properties.
SkewOriginTop	is	a	percentage.		The	default	is	50.



Style	Property
DirectX	Only
Denotes	the	Style	(#Prim_vs.Style)	to	be	applied	to	a	control.		When	the	Style
property	is	set,	all	Styles	previously	applied	to	the	control	are	removed.
Styles	from	parent	controls	will	be	inherited	dependent	on	value	of	the
VisualStyleOfParent	property.



Styles	Property
DirectX	Only
Collection	of	Styles	(#Prim_vs.Style)	to	be	applied	to	a	control.
Styles	allows	for	more	complex	programmatic	appearance	changes	to	be	coded.	
Rather	than	relying	on	the	declarative	single	Style	property,	the	developer	is	free
to	add	as	many	Style	layers	as	required.



Styles	Collection
DirectX	Only
Collection	of	Styles	(#Prim_Vcol<#Prim_vs.Style>)	to	be	applied	to	a	control.
Styles	collections	allow	for	multiple	styles	to	be	added	to	or	removed	from	a
control	at	run	time.



Style
Style	(#Prim_VS.Style)	reference	to	be	added	to	the	Styles	collection.
If	the	Style	being	added	to	the	collection	is	already	in	the	collection,	the	Add
request	is	ignored.



Add	Method
Add	a	Style	to	the	Styles	collection
If	the	Style	being	added	to	the	collection	is	already	in	the	collection,	the	Add
request	is	ignored.



Remove	Method
Remove	a	Style	from	the	Styles	collection
If	the	Style	to	be	remove	from	the	collection	is	not	in	the	collection,	the	Remove
request	is	ignored.



RemoveAll	Method
Remove	all	Styles	from	the	Styles	collection



MouseOverPart	Property
DirectX	Only
Determines	whether	the	mouse	is	directly	over	a	control	or	any	child	control.		In
effect,	this	determines	whether	the	mouse	is	within	the	physical	bounds	of	the
control.
MouseOverPart	is	useful	when	MouseEnter/Leave	code	is	being	run	to	change
the	appearance	of	a	control,	but	other	factors	are	also	affecting	the	control's
state.
True
The	mouse	is	directly	over	the	control	or	one	of	its	children
False
The	mouse	is	not	over	the	control	or	any	of	its	children



PrivateStyle	Property
DirectX	Only
Denotes	the	Style	(#Prim_vs.Style)	to	be	applied	to	this	control	only.
Styles	are	normally	inherited	by	child	controls,	depending	on	the
VisualStyleOfParent	property.		PrivateStyle	allows	composite	controls	to	have
their	own	styles	without	affecting	the	appearance	of	child	controls.
For	example,	a	group	box	may	need	to	have	a	bold	text	but	normally,	applying
bold	to	a	composite	directly	will	cause	the	both	the	caption	and	contents	to
become	bold.		By	specifying	this	as	a	Private	Style	the	group	box	can	step	out	of
the	style	inheritance	chain.



PrivateStyles	Property
DirectX	Only
Collection	of	Styles	(#Prim_vs.Style)	to	be	applied	to	this	control	only.
Styles	are	normally	inherited	by	child	controls,	depending	on	the
VisualStyleOfParent	property.		PrivateStyle	allows	composite	controls	to	have
their	own	styles	without	affecting	the	appearance	of	child	controls.
Styles	collections	allow	for	multiple	styles	to	be	added	to	or	removed	from	a
control	at	run	time.



Transition	Method
DirectX	Only
Transition	is	a	method	that	animates	the	change	from	one	component	to	another.
The	controls	specified	in	the	To	and	From	parameters	are	switched	from
Visible(True)	to	Visible(False)	respectively.		The	style	of	animation	is
dependent	on	the	TransitionType	property
For	the	best	results,	the	two	controls	should	occupy	the	same	physical	bounds.
Like	all	animations,	it	is	executed	in	a	separate	thread	allowing	other	processing
to	continue.
If	the	animation	is	still	running	when	the	method	is	called	again,	the	animation
will	reset	and	begin	again.



To
Reference	to	a	Control	(#Prim_Ctrl).
The	control	must	be	parented	to	the	composite.		When	the	animation	complete
the	control	will	be	Visible(True)



From
Reference	to	a	Control	(#Prim_Ctrl).
The	control	must	be	parented	to	the	composite.		When	the	animation	completes
the	control	will	be	Visible(False)



TransitionType
There	are	a	number	of	transition	types.		The	default	is	fade.



Delay
Number	of	milliseconds	to	delay	the	processing	of	the	animation.		The	default	is
0.



Duration
Number	of	milliseconds	required	to	complete	the	animation.		Default	is	250.



RenderStyle
In	conjunction	with	the	RNDR	X_RUN	argument,	the	RenderStyle	properties	of
Form	(#Prim_FORM)	and	Panel	(#Prim_PANL)	determine	how	some	or	all	of
the	application	is	rendered.
The	RNDR	runtime	argument	has	3	possible	values:	W,	M	and	X.		Win32,
Win32	and	DirectX,	and	DirectX.		For	any	of	the	application	to	render	in
DirectX,	the	runtime	argument	must	be	either	M	or	X.
If	the	value	is	W,	DirectX	will	not	be	used	regardless	of	the	value	of	the
properties	specified.
Form	(#Prim_Form)	has	3	possible	values:
					ApplicationThe	RNDR	runtime	argument	value	will	be	used.		This	is	the
default.

					DirectX
The	form	will	use	DirectX	if	the	RNDR	runtime	argument	is	either	M	or	X.

					Win32
The	form	will	be	Win32	regardless	of	the	runtime	setting.

Panel	(#Prim_Panl)	has	2	possible	values:
					Note	that	there	is	no	option	for	a	panel	to	specifically	be	Win32.		Once	a
panel	is	DirectX,	all	child	panels	must	be	DirectX.

					DirectX
The	panel	will	use	DirectX	if	the	RNDR	runtime	argument	is	either	M	or	X.

					Parent
The	panel	will	render	dependent	on	its	parent's	RenderStyle.		This	is	the
default.

The	defaults	of	Application	for	Form	and	Parent	for	panels	allows	DirectX	to	be
implemented	throughout	the	application	with	a	change	to	a	single	runtime
setting.
If	you	only	want	to	enable	DirectX	in	a	piecemeal	fashion,	perhaps	for	a	few
panels	so	that	you	can	incorporate	new	DirectX	controls	and	styles,	change	the
runtime	setting	to	M	so	that	DirectX	is	allowed	and	then	change	the	forms	or
panels	to	be	DirectX	as	required.



Style	(Prim_Vs.Style)
Styles	are	used	to	change	the	appearance	of	a	control.	They	allow	you	to	define
the	color	of	text,	background	colors,	fonts,	borders	and	other	visual	features.
Unlike	Visual	Styles,	which	are	mutually	exclusive,	multiple	Styles	can	be
added	to	a	control	affecting	only	the	features	specified	on	the	style.		If	the	same
feature	of	a	style	is	applied	using	two	different	style	instances,	the	last	one	to	be
applied	will	take	precedence.
Only	foreground	features	are	adopted	by	child	controls	e.g.	Facename	and
TextColor.



BackgroundBrush	Property
DirectX	Only
Reference	to	an	instance	of	a	Brush	(#Prim_vs.Brush)	applied	to	the
background	of	the	control.
Background	features	of	a	Style	are	not	inherited	by	child	controls.		This	ensures
that	a	background	applied	to	a	form	is	not	repeated	verbatim	on	child	controls.
If	both	a	BackgroundBrush	and	NormBackColor	are	specified,	the
BackgroundBrush	will	take	precedence.
The	BackgroundBrush	property	can	be	used	as	shown	in	the	following
Example.
Define_Com	Class(#PRIM_VS.Style)	Name(#BackGround)
Backgroundbrush(#Backgroundbrush)
Define_Com	Class(#PRIM_VS.LinearBrush)	Name(#Backgroundbrush)
Colors(#BackgroundbrushColors)
Define_Com	Class(#Prim_Vs.BrushColors)	Name(#BackgroundbrushColors)
Define_Com	Class(#PRIM_VS.BrushColor)
Name(#BackgroundbrushColor1)	Color(Silver)
Parent(#BackgroundbrushColors)
Define_Com	Class(#PRIM_VS.BrushColor)
Name(#BackgroundbrushColor1)	At(100)	Color(White)
Parent(#BackgroundbrushColors)
	



BorderBottom	Property
DirectX	Only
In	conjunction	with	BorderTop,	BorderLeft	and	BorderRight,	BorderBottom
defines	the	thickness	of	the	border	displayed	around	a	control.
Borders	consume	part	of	the	control	when	applied.		This	is	particularly	relevant
when	applying	a	style	with	top	and	left	borders	on	MouseOver.		The	top	and	left
borders	will	effectively	cause	the	0,	0	coordinates	to	move	resulting	in	child
control	moving	screen	position.
Background	features	of	a	Style	are	not	inherited	by	child	controls.		This	ensures
that	a	background	applied	to	a	form	is	not	repeated	verbatim	on	child	controls.



BorderBrush	Property
DirectX	Only
Reference	to	an	instance	of	a	Brush	(#Prim_vs.Brush)	applied	to	the	border	of
the	control.
Background	features	of	a	Style	are	not	inherited	by	child	controls.		This	ensures
that	a	background	applied	to	a	form	is	not	repeated	verbatim	on	child	controls.



BorderLeft	Property
DirectX	Only
In	conjunction	with	BorderTop,	BorderBottom	and	BorderRight,	BorderLeft
defines	the	thickness	of	the	border	displayed	around	a	control.
Borders	consume	part	of	the	control	when	applied.		This	is	particularly	relevant
when	applying	a	style	with	top	and	left	borders	on	MouseOver.		The	top	and	left
borders	will	effectively	cause	the	0,	0	coordinates	to	move	resulting	in	child
control	moving	screen	position.
Background	features	of	a	Style	are	not	inherited	by	child	controls.		This	ensures
that	a	background	applied	to	a	form	is	not	repeated	verbatim	on	child	controls.



BorderRight	Property
DirectX	Only
In	conjunction	with	BorderTop,	BorderLeft	and	BorderBottom,	BorderRight
defines	the	thickness	of	the	border	displayed	around	a	control.
Borders	consume	part	of	the	control	when	applied.		This	is	particularly	relevant
when	applying	a	style	with	top	and	left	borders	on	MouseOver.		The	top	and	left
borders	will	effectively	cause	the	0,	0	coordinates	to	move	resulting	in	child
control	moving	screen	position.
Background	features	of	a	Style	are	not	inherited	by	child	controls.		This	ensures
that	a	background	applied	to	a	form	is	not	repeated	verbatim	on	child	controls.



BorderTop	Property
DirectX	Only
In	conjunction	with	BorderBottom,	BorderLeft	and	BorderRight,	BorderTop
defines	the	thickness	of	the	border	displayed	around	a	control.
Borders	consume	part	of	the	control	when	applied.		This	is	particularly	relevant
when	applying	a	style	with	top	and	left	borders	on	MouseOver.		The	top	and	left
borders	will	effectively	cause	the	0,	0	coordinates	to	move	resulting	in	child
control	moving	screen	position.
Background	features	of	a	Style	are	not	inherited	by	child	controls.		This	ensures
that	a	background	applied	to	a	form	is	not	repeated	verbatim	on	child	controls.



CornerBottomLeft	Property
DirectX	Only
In	conjunction	with	CornerTopLeft,	CornerTopRight,	and	CornerBottomRight,
CornerBottomLeft	defines	the	radius	of	the	corners	for	a	control.		By	default,	all
corners	have	a	0	radius	and	are	right	angles.
Unlike	borders,	which	change	the	position	of	the	0,0	coordinate,	corners	are	a
visual	effect.		When	applied,	the	background	of	the	control	is	clipped	and	the
control	will	appear	rounded.		However,	foreground	features	are	not	clipped	and
text	may	extend	in	to	corners.
Background	features	of	a	Style	are	not	inherited	by	child	controls.		This	ensures
that	a	background	applied	to	a	form	is	not	repeated	verbatim	on	child	controls.



CornerBottomRight	Property
DirectX	Only
In	conjunction	with	CornerTopLeft,	CornerTopRight,	and	CornerBottomLeft,
CornerBottomRight	defines	the	radius	of	the	corners	for	a	control.		By	default,
all	corners	have	a	0	radius	and	are	right	angles.
Unlike	borders,	which	change	the	position	of	the	0,0	coordinate,	corners	are	a
visual	effect.		When	applied,	the	background	of	the	control	is	clipped	and	the
control	will	appear	rounded.		However,	foreground	features	are	not	clipped	and
text	may	extend	in	to	corners.
Background	features	of	a	Style	are	not	inherited	by	child	controls.		This	ensures
that	a	background	applied	to	a	form	is	not	repeated	verbatim	on	child	controls.



CornerTopLeft	Property
DirectX	Only
In	conjunction	with	CornerBottomLeft,	CornerBottomRight	and
CornerTopRight,	CornerTopLeft	defines	the	radius	of	the	corners	for	a	control.	
By	default,	all	corners	have	a	0	radius	and	are	right	angles.
Unlike	borders,	which	change	the	position	of	the	0,0	coordinate,	corners	are	a
visual	effect.		When	applied,	the	background	of	the	control	is	clipped	and	the
control	will	appear	rounded.		However,	foreground	features	are	not	clipped	and
text	may	extend	in	to	corners.
Background	features	of	a	Style	are	not	inherited	by	child	controls.		This	ensures
that	a	background	applied	to	a	form	is	not	repeated	verbatim	on	child	controls.



CornerTopRight	Property
DirectX	Only
In	conjunction	with	CornerBottomLeft,	CornerBottomRight	and	CornerTopLeft,
CornerTopRight	defines	the	radius	of	the	corners	for	a	control.		By	default,	all
corners	have	a	0	radius	and	are	right	angles.
Unlike	borders,	which	change	the	position	of	the	0,0	coordinate,	corners	are	a
visual	effect.		When	applied,	the	background	of	the	control	is	clipped	and	the
control	will	appear	rounded.		However,	foreground	features	are	not	clipped	and
text	may	extend	in	to	corners.
Background	features	of	a	Style	are	not	inherited	by	child	controls.		This	ensures
that	a	background	applied	to	a	form	is	not	repeated	verbatim	on	child	controls.



Effect	Property
DirectX	Only
Reference	to	an	instance	of	an	Effect	(#PRIM_VS.Effect)
Effects	are	used	to	augment	the	features	specified	on	the	style	with	blurring	or	a
drop	shadow	to	help	present	a	3D	effect.
Background	features	of	a	Style	are	not	inherited	by	child	controls.		This	ensures
that	a	background	applied	to	a	form	is	not	repeated	verbatim	on	child	controls.



ForegroundBrush	Property
DirectX	Only
Reference	to	an	instance	of	a	Brush	(#Prim_vs.Brush)	applied	to	the	foreground
of	the	control.
Foreground	features	of	a	Style	are	inherited	by	child	controls.		This	ensures	that
a	font	applied	by	a	style	to	a	form	will	be	used	consistently	across	all	child
controls.
If	both	a	ForegroundBrush	and	TextColor	are	specified,	the	ForegroundBrush
will	take	precedence.



MaskBrush
Reference	to	an	instance	of	a	Brush	(#Prim_vs.Brush)	applied	to	a	control	to
selectively	apply	transparency.		This	allows	for	controls,	particularly	images,	to
fade	out	and	blend	in	to	the	background.
In	the	case	of	a	linear	brush	with	a	gradient	from	any	color	to	transparent,	the
control	will	be	become	increasingly	transparent.		If	using	a	Visual	Brush,
transparency	will	be	applied	based	on	the	transparency	of	the	image	used	in	the
Visual	Brush.



Brush
Base	class	for	all	Brush	classes	i.e.	Solid,	Linear,	Radial,	Image	and	Visual
Brushes
Brushes	are	used	by	styles	(#Prim_VS.Style)	to	define	the	foreground	and
background	appearance.
See	the	individual	Brush	classes	for	more	detail.



BrushColors
BrushColors	is	a	collector	of	BrushColor	(Prim_Vs.BrushColor)	instances.		This
abstraction	allows	same	set	of	colors	to	be	used	on	multiple	brushes.
BrushColors	uses	BrushColor	instances	to	describe	the	transition	from	one	color
to	another.		Typically,	this	might	be	a	simple	gradient	transition	from	silver	at
the	top	to	white	at	the	bottom,	but	the	number	of	colors	and	the	nature	of	the
transition	are	dependent	on	the	configuration	of	the	specific	class	of	brush	being
used	and	the	definition	of	the	color	instances.
The	sample	below	changes	from	blue	at	the	start	to	red	at	the	end.		This	is
denoted	by	the	use	of	"At(100)"	on	the	second	color	(#Color2)
Define_Com	Class(#Prim_Vs.BrushColors)	Name(#Colors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#Color1)	Color(0:0:255)
Parent(#Colors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#Color2)	At(100)
Color(255:0:0)	Parent(#Colors)

As	the	transition	is	uniform	the	blue	channel	is	decremented	from	255	to	0
while	the	red	channel	increases	from	0	to	255.		The	result	is	that	at	the	mid-
point	the	color	will	be	128:0:128,	which	is	purple.



BrushColor
Used	to	define	a	color	as	part	of	BrushColors	(#Prim_VS.BrushColors)
instance.



At	Property
At	determines	the	point	on	an	imaginary	line	at	which	the	gradient	color	will	be
shown	as	the	color	specified	in	the	Color	property.
At	is	a	percentage.
Define_Com	Class(#Prim_Vs.BrushColors)	Name(#Colors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#Color1)	Color(Silver)
Parent(#Colors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#Color2)	At(100)
Color(White)	Parent(#Colors)



Color	Property
Denotes	the	color	of	the	brush	at	the	point	determined	by	the	At	property.
Color	can	be	any	valid	RGB	value	e.g.	255:0:0	for	red,	or	any	of	a	series	of
predefined	named	colors	such	as	red,	blue,	yellow,	or	transparent.
When	brush	colors	are	being	used	for	a	MaskBrush,	the	color	property	is
evaluated	as	either	Transparent	or	Opaque,	regardless	of	the	color	specified.
The	sample	below	changes	from	White	to	Transparent.		The	result	is	that	as	the
transition	occurs,	the	background	will	become	progressively	more	visible.
Define_Com	Class(#Prim_Vs.BrushColors)	Name(#Colors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#Color1)	Color(White)
Parent(#Colors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#Color2)	At(100)
Color(Transparent)	Parent(#Colors)



Parent	Property
Reference	to	a	BrushColors	(#Prim_Vs.BrushColors)	used	to	collect	individual
color	instances.



Gradient	Brush
Brush	used	to	define	a	gradient	color	using	one	or	more	colors.



Colors	Property
Reference	to	a	BrushColors	(#Prim_VS.BrushColors)	instance.
Defines	the	colors	used	in	the	brush.



Opacity	Property
Opacity	denotes	the	appearance	of	a	gradient	in	terms	of	its	interaction	with	its
background.
The	default	is	100;	entirely	opaque.		Nothing	behind	the	gradient	will	be	visible
at	all.
As	the	value	decreases,	more	and	more	of	the	background	will	become	visible
through	the	control.		When	the	value	is	0	the	control	will	be	entirely	transparent
and	only	the	background	will	be	visible.
When	specified	on	a	control,	opacity	affects	the	whole	of	the	control,	both
foreground	and	background.		When	specified	on	a	brush,	opacity	can	be	used	to
target	either	the	foreground	or	the	background,	allowing	for	a	semi-transparent
background,	but	still	fully	opaque	text.



Spread	Property
Used	to	define	the	appearance	of	the	brush	beyond	the	extent	of	the	brush	colors
or	the	logical	start	and	end	of	the	specific	brush.
Pad
Any	space	before	the	start	or	end	of	the	brush	colors	will	be	filled	with	the
colors	specified	as	the	first	and	last	colors	respectively.
Thus,	in	the	example	below,	where	red	does	not	start	until	20%	of	the	was
across	the	gradient,	the	first	20%	will	be	colored	red.		Similarly,	the	20%	after
blue	will	be	colored	blue.
Define_Com	Class(#Prim_Vs.LinearBrush)	Name(#LinearBrush)
Colors(#LinearBrushColors)
Define_Com	Class(#Prim_Vs.BrushColors)	Name(#LinearBrushColors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#LinearBrushColor1)
At(20)	Color(Red)	Parent(#LinearBrushColors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#LinearBrushColor2)
At(80)	Color(Blue)	Parent(#LinearBrushColors)

Reflect
Any	space	before	the	start	or	end	of	the	brush	colors	will	be	filled	with	a
reflection	of	the	brush.
Repeat
Any	space	before	the	start	or	end	of	the	brush	colors	will	be	filled	with	a	repeat
of	the	brush.



Linear	Brush
A	Linear	Brush	is	used	to	create	a	gradient	color	that	transitions	between	the
colors	specified	in	the	Colors	(#Prim_vs.BrushColors)	property.
Linear	brush	has	start	and	end	coordinates	to	create	an	imaginary	line	that
defines	the	path	the	gradient	will	follow,	allowing	the	gradient	to	be	vertical,
horizontal	or	on	an	angle.



EndLeft	Property
Used	in	conjunction	with	the	EndTop,	StartLeft	and	StartTop	properties	to
define	the	path	and	extent	of	the	brush	evaluation.	EndTop	is	a	percentage.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(100)	EndTop(100)	will
appear	to	travel	diagonally	from	the	top	left	to	the	bottom	right.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(0)	EndTop(100)	will
appear	to	travel	vertically	from	the	top	to	the	bottom.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(0)	EndTop(50)	will	appear
to	travel	vertically	from	the	top	to	half	way	down	the	control.		The	Spread
property	will	determine	appearance	beyond	the	extent	of	the	start	and	end
coordinates.



EndTop	Property
Used	in	conjunction	with	the	EndLeft,	StartLeft	and	StartTop	properties	to
define	the	path	and	extent	of	the	brush	evaluation.	EndLeft	is	a	percentage.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(100)	EndTop(100)	will
appear	to	travel	diagonally	from	the	top	left	to	the	bottom	right.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(0)	EndTop(100)	will
appear	to	travel	vertically	from	the	top	to	the	bottom.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(0)	EndTop(50)	will	appear
to	travel	vertically	from	the	top	to	half	way	down	the	control.		The	Spread
property	will	determine	appearance	beyond	the	extent	of	the	start	and	end
coordinates.
This	collection	of	properties	define	the	line	along	which	a	gradient	color	will
change.	It	has	StartTop	and	StartLeft	co-ordinates,	and	EndTop	and	EndLeft	co-
ordinates.	A	StartLeft	and	StartTop	of	0	refer	to	the	top	left	hand	corner	of	an
area,	and	EndTop	and	EndLeft	of	100	refern	to	100%	across	and	down,	thus	to
the	bottom	right	corner	of	the	area.



StartLeft	Property
Used	in	conjunction	with	the	EndTop,	EndLeft	and	StartTop	properties	to	define
the	path	and	extent	of	the	brush	evaluation.		StartLeft	is	a	percentage.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(100)	EndTop(100)	will
appear	to	travel	diagonally	from	the	top	left	to	the	bottom	right.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(0)	EndTop(100)	will
appear	to	travel	vertically	from	the	top	to	the	bottom.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(0)	EndTop(50)	will	appear
to	travel	vertically	from	the	top	to	half	way	down	the	control.		The	Spread
property	will	determine	appearance	beyond	the	extent	of	the	start	and	end
coordinates.



StartTop	Property
Used	in	conjunction	with	the	EndTop,	EndLeft	and	StartLeft	properties	to	define
the	path	and	extent	of	the	brush	evaluation.	StartTop	is	a	percentage.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(100)	EndTop(100)	will
appear	to	travel	diagonally	from	the	top	left	to	the	bottom	right.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(0)	EndTop(100)	will
appear	to	travel	vertically	from	the	top	to	the	bottom.
A	Brush	defined	as	StartLeft(0)	StartTop(0)	EndLeft(0)	EndTop(50)	will	appear
to	travel	vertically	from	the	top	to	half	way	down	the	control.		The	Spread
property	will	determine	appearance	beyond	the	extent	of	the	start	and	end
coordinates.



Radial	Brush
A	Radial	Brush	is	used	to	create	a	gradient	color	that	transitions	between	the
colors	specified	in	the	Colors	(#Prim_vs.BrushColors)	property.
Radial	Brush	has	Origin,	Center,	and	Radius	coordinates.		The	brush	radiates
from	the	Center	along	the	extent	of	the	Radius	similar	to	Linear	Brush
(#Prim_VS.Linear	Brush)	but	instead	producing	a	circular	pattern.
By	having	the	Origin	and	Center	coordinates	the	same,	the	brush	will	always
appear	as	though	directly	in	front	of	the	view.		However,	changing	the	value
changes	the	shape	and	the	brush	appears	skewed.		A	simple	analogy	is	that	of
looking	at	the	beam	of	a	torch.		A	RadialBrush	can	be	thought	of	as	a	2D	view
of	a	3D	shape.		The	Origin	is	the	position	of	the	torch,	Center	is	the	middle	of
the	light	as	it	shines	on	somthing,	and	Radius	describes	the	width.		If	there	is
sufficient	difference	between	the	origin	and	center,	it	is	no	longer	possible	to	see
the	base,	just	a	"triangular"	side	view	of	the	beam	of	light.
The	example	below	is	a	simple	radial	brush	that	changes	from	red	at	0,	to	blue
producing	a	red	center	and	blue	outer.
Define_Com	Class(#Prim_Vs.RadialBrush)	Name(#RadialBrush)
Colors(#RadialBrushColors)
Define_Com	Class(#Prim_Vs.BrushColors)	Name(#RadialBrushColors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#RadialBrushColor1)
Color(Red)	Parent(#RadialBrushColors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#RadialBrushColor2)
At(100)	Color(Blue)	Parent(#RadialBrushColors)



CenterLeft	Property
In	conjunction	with	the	CenterTop	property	defines	the	start	point	or	middle	of
the	base	of	the	beam.		The	brush	colors	will	emanate	from	this	point.
CenterLeft	is	a	percentage.
Both	CenterLeft	and	CenterTop	have	a	default	of	50.



CenterTop	Property
In	conjunction	with	the	CenterTop	property	defines	the	start	point	or	middle	of
the	base	of	the	beam.		The	brush	colors	will	emanate	from	this	point.
CenterTop	is	a	percentage.
Both	CenterLeft	and	CenterTop	have	a	default	of	50.



OriginLeft	Property
In	conjunction	with	the	OriginTop	property	defines	the	position	of	the	source.	
As	the	Origin	and	Center	diverge	the	shape	of	the	brush	will	tend	become	less
circular	and	more	splayed.
OriginLeft	is	a	percentage.
Both	OriginLeft	and	OriginTop	have	a	default	of	50.



OriginTop	Property
In	conjunction	with	the	OriginLeft	property	defines	the	position	of	the	source.	
As	the	Origin	and	Center	diverge	the	shape	of	the	brush	will	tend	become	less
circular	and	more	splayed.
OriginTop	is	a	percentage.
Both	OriginLeft	and	OriginTop	have	a	default	of	50.



RadiusLeft	Property
In	conjunction	with	the	RadiusTop	property	defines	the	extent	of	the	brush.	
Equal	values	for	RadiusLeft	and	RadiusTop	will	ensure	that	the	brush	is	round,
center	and	origin	values	nothwithstanding.		By	using	differing	values,	the	brush
will	appear	squashed.
RadiusLeft	is	a	percentage.
Both	RadiusLeft	and	RadiusTop	have	a	default	of	50.



RadiusTop	Property
In	conjunction	with	the	RadiusLeft	property	defines	the	extent	of	the	brush.	
Equal	values	for	RadiusLeft	and	RadiusTop	will	ensure	that	the	brush	is	round,
center	and	origin	values	nothwithstanding.		By	using	differing	values,	the	brush
will	appear	squashed.
RadiusLeft	is	a	percentage.
Both	RadiusLeft	and	RadiusTop	have	a	default	of	50.



Solid	Brush
A	Solid	Brush	is	effectively	a	Linear	Brush	(#Prim_VS.LinearBrush)	with	a
single	color.		This	avoids	the	need	to	create	the	colors	(#Prim_VS.BrushColors)
and	color	(#Prim_VS.BrushColor)	and	allows	for	a	simple	definition	on	one
statement.



Color	Property
Denotes	the	color	of	the	brush.
Color	can	be	any	valid	RGB	value	e.g.	255:0:0	for	red,	or	any	of	a	series	of
predefined	named	colors	such	as	red,	blue,	yellow	or	transparent.



Opacity	Property
Opacity	denotes	the	appearance	of	a	gradient	in	terms	of	its	interaction	with	its
background.
The	default	is	100;	entirely	opaque.		Nothing	behind	the	gradient	will	be	visible
at	all.
As	the	value	decreases,	more	and	more	of	the	background	will	become	visible
through	the	control.		When	the	value	is	0	the	control	will	be	entirely	transparent
and	only	the	background	will	be	visible.
When	specified	on	a	control,	opacity	affects	the	whole	of	the	control,	both
foreground	and	background.		When	specified	on	a	brush,	opacity	can	be	used	to
target	either	the	foreground	or	the	background,	allowing	for	a	semi-transparent
background,	but	still	fully	opaque	text.



Image	Brush
An	Image	Brush	is	used	to	apply	an	image	to	a	control	rather	than	colors.
A	typical	use	for	this	would	be	as	watermark	or	background	image	for	an
application.



Alignment	Property
Alignment	determines	where	the	image	is	located	when	it	does	not	fill	the	space
available.		Conversely,	if	the	image	is	too	large	for	the	space,	Alignment
determines	which	portion	of	the	image	is	visible.
Possible	values	are	–	TopLeft,	TopCenter,	TopRight,	CenterLeft,	Center,
CenterRight,	BottomLeft,	BottomCenter	&	BottomRight



Height	Property
Determines	the	height	of	the	image	in	pixels	or	as	a	percentage	dependent	on
the	Units	property.		When	tiled,	this	denotes	the	size	of	each	tile.



Image	Property
Reference	to	an	instance	of	a	basic	LANSA	graphic	component
(#PRIM_FLBX).
This	can	an	enrolled	bitmap	(#Prim_Bmp)	or	icon	(#Prim_Icon),	or	a	bitmap
that	has	been	created	at	runtime.



Left	Property
Specifies	how	far	from	the	left	hand	edge	of	the	control	the	image	is	shown,
either	as	a	specific	number	of	pixels	or	as	a	percentage	of	the	control's	width	as
specified	in	the	Units	property.



Opacity	Property
Opacity	denotes	the	appearance	of	a	gradient	in	terms	of	its	interaction	with	its
background.
The	default	is	100;	entirely	opaque.		Nothing	behind	the	image	will	be	visible	at
all.
As	the	value	decreases,	more	and	more	of	the	background	will	become	visible
through	the	control.		When	the	value	is	0	the	control	will	be	entirely	transparent
and	only	the	background	will	be	visible.
When	specified	on	a	control,	opacity	affects	the	whole	of	the	control,	both
foreground	and	background.		When	specified	on	a	brush,	opacity	can	be	used	to
target	either	the	foreground	or	the	background,	allowing	for	a	semi-transparent
background,	but	still	fully	opaque	text.



Sizing	Property
Describes	how	the	image	is	stretched	or	squashed	to	fit	in	to	the	available
container,	be	it	a	control	or	a	tiled	portion.	The	default	is	None.
None
The	image	is	not	resized	in	any	way
Best	Fit
The	image	is	resized	to	fit	in	the	available	space	while	still	maintaining	its
aspect	ratio.
Fit	Both
The	image	is	resized	to	precisely	fit	the	horizontal	and	vertical	space.		The
aspect	ratio	is	not	maintained.		This	may	result	in	the	image	appearing	stretched.
Cropped
The	image	is	resized	to	fit	the	available	space	while	still	maintaining	its	aspect
ratio.		Once	either	the	horizontal	or	vertical	fits	within	the	control,	not	further
resizing	is	done.		This	may	result	in	some	of	the	image	not	being	visible.



Tile	Property
Describes	how	the	image	is	repeated	within	the	control.	
The	default	is	None.		All	other	enumeration	values	will	result	in	the	image	being
repeated	both	vertically	and	horizontally.
None
The	image	is	not	tiled	in	any	way
Tile
The	image	is	image	repeated	both	vertically	and	horizontally.
MirrorHorizontal
The	image	is	tiled	and	reflected	along	the	vertical	axis.
MirrorVertical
The	image	is	tiled	and	reflected	along	the	horizontal	axis.
MirrorBoth
The	image	is	tiled	and	reflected	along	both	the	horizontal	and	vertical	axes.



Top	Property
Specifies	how	far	from	the	upper	edge	of	the	control	the	image	is	shown,	either
as	a	specific	number	of	pixels	or	as	a	percentage	of	the	control's	width	as
specified	in	the	Units	property.



Units	Property
Denotes	how	the	size	and	position	of	the	image	is	measured.		The	default	is
Percentage
Percentage
All	height,	width,	left	and	top	values	are	measured	as	a	percentage	of	the
control.
Pixels
All	height,	width,	left	and	top	values	are	measured	as	a	specific	number	of
pixels.



Width	Property
Determines	the	width	of	the	image	in	pixels	or	as	a	percentage	dependent	on	the
Units	property.		When	tiled,	this	denotes	the	size	of	each	tile.



Visual	Brush
An	Image	Brush	is	used	to	apply	an	image	to	a	control	rather	than	colors.	
However,	unlike	Image	Brush,	which	uses	a	static	image,	Visual	Brush	uses
another	control.
A	typical	use	for	this	would	be	as	the	image	when	dragging	and	dropping.



Control	Property
Reference	to	an	instance	of	a	Control	(#Prim_CTRL).
As	the	image	seen	is	the	actual	control	itself,	the	control	must	be	realized.	
The	image	is	not	a	snapshot	or	copy	of	the	source	image,	but	rather	a	reference
to	it.		This	means	that	the	image	will	respond	to	changes	made	to	the	control.



Effect
DirectX	Only
Effects	are	used	to	augment	the	features	specified	on	the	style.
There	are	two	types	of	effect:	Blur	(#Prim_VS.Blur)	or	DropShadow
(#Prim_VS.DropShadow)



Blur	Effect
The	blur	effect,	as	the	name	suggests,	is	used	to	blur	a	control.



KernelType	Property
There	are	two	types	of	blur.
Gaussian
This	results	in	a	smoother	blur	with	a	higher	quality.		However,	this	takes	more
processing	to	achieve.
Box
This	results	in	simpler	blur	with	a	lower	quality	that	takes	less	processing.



Radius	Property
Determines	the	blurriness	of	the	blur.



DropShadow	Effect
Drop	shadows	can	be	used	to	make	controls	appear	as	though	floating	above
their	parent	control.		They	can	also	be	used	to	create	a	glow	like	effect,	typically
behind	text,	as	seen	in	the	title	bar	of	an	Aero	theme	Windows	form.
Like	scale	and	rotation,	Dropshadow	is	a	visual	effect	and	does	not	alter	the
fundamental	size	of	the	control.
Controls	with	a	DropShadow	are	clipped	to	ensure	they	fit	within	the	bounds	of
their	parent	control.



BlurRadius	Property
Denotes	the	amount	of	blur	to	be	applied	to	the	shadow.
The	closer	the	value	is	to	zero,	the	less	blurred	the	shadow.



Color	Property
Denotes	the	color	of	the	drop	shadow.
The	default	is	silver.



Direction	Property
In	conjunction	with	the	ShadowDepth	property,	denotes	the	position	of	the	drop
shadow	in	relation	to	the	source	control.
Dropshadow	is	measured	in	degrees.
A	value	of	zero	is	equivalent	to	having	the	light	source	casting	the	shadow	at	9
o'clock.



Opacity	Property
Opacity	denotes	the	appearance	of	a	shadow	in	terms	of	its	interaction	with	its
background.
The	default	is	100;	entirely	opaque.		Nothing	behind	the	shadow	will	be	visible
at	all.
As	the	value	decreases,	more	and	more	of	the	background	will	become	visible
through	the	shadow.		When	the	value	is	0	the	shadow	will	be	entirely
transparent	and	only	the	background	will	be	visible.



ShadowDepth	Property
In	conjunction	with	the	Direction	property,	denotes	the	position	of	the	drop
shadow	in	relation	to	the	source	control.
A	value	of	zero	result	in	the	shadow	being	directly	behind	the	control.



User	Designed	Controls



Tile	(Prim_Tile)
DirectX	Only
Tile	is	a	member	of	a	group	of	list	related	primitive	controls	referred	to	as	User
Designed	Controls.
Tile	organises	individual	design	panels	in	to	a	grid	that	is	the	equivalent	of	a
flow	layout	manager.
UDCs	can	be	manipulated	by	the	use	of	the	typical	LANSA	list	commands
ADD_ENTRY,	UPD_ENTRY	etc.		When	entries	are	added	to	the	list,	an
instance	of	the	design	is	made,	fields	can	be	passed	in,	and	a	corresponding	list
item	is	made.		UDCs	control	the	position	of	the	item	within	the	list,	manage
selection,	focus,	expand/collapse	etc.,	and	communicate	with	the	individual	item
designs	through	a	series	of	predefined	methods	published	on	an	interface
specific	to	the	type	of	UDC.		For	Prim_Tile	this	is	#Prim_Tile.iTileDesign
All	UDCs	use	a	parameterized	type	to	define	the	class	of	the	design	to	be
created	each	time	an	entry	is	added.		This	is	specified	on	the	DEFINE_COM	as
below
Define_Com	Class(#Prim_Tile<#MyTileDesign>)	Name(#Tile)
	

Because	of	the	overhead	of	making	a	reusable	part	instance	compared	to	a
simple	item	for	a	tree	view	(#Prim_TRVW)	or	list	view	(#Prim_LTVW),	UDCs
are	not	designed	to	be	used	with	many	thousand	items.		For	high	volume
scenarios,	other	techniques	are	recommended.



Items	Property
Collection	of	all	the	items	currently	in	the	Tile.



SelectionStyle	Property
Defines	whether	Tile	allows	one	or	more	than	one	item	to	be	selected.
Single
Only	one	item	can	be	selected.
Mulitple
Multiple	items	can	be	selected.



Tile	Event	Item
DirectX	Only
Reference	to	an	instance	of	a	Tile	Item	(#Prim_Tile.iTileItem).
The	item	supplied	on	the	event	is	a	reference	to	the	item	currently	being
processed.	



Add	Method
Rather	than	using	the	typical	LANSA	list	commands,	the	Add	method	allows
different	classes	of	design	to	be	added.
When	the	Add	method	is	used	no	field	values	can	be	passed	to	the	design	using
the	*ListFields	feature.		The	user	is	in	control	of	the	process	and	needs	to	pass
any	data	in	to	the	new	design	instance	programmatically.			
Having	the	ability	to	add	different	types	of	design	makes	dealing	with	complex
UI	requirements	far	simpler.	



Result	Parameter
Reference	to	the	Item	(#Prim_Tile.TileItem)	created	by	the	Add	method.



DesignType	Parameter
Class	of	the	design	instance	to	be	created.
The	class	specified	must	inherit	from	the	class	specified	as	the	parameterized
type	on	the	Tile	DEFINE_COM.



DeleteAll	Method
As	the	name	suggests,	this	method	deletes	all	items	in	the	list.
This	is	equivalent	to	using	the	Clr_list	command.



FindItem	Method
FindItem	calls	the	OnFind	method	on	the	Design	Interface	for	each	item.
Each	Tile	item	is	called	in	sequence,	receiving	the	value	to	be	tested	and
returning	a	boolean	result.		Once	a	positive	result	is	returned,	the	Find	will	end.	
It	can	be	started	again	from	the	item	that	returns	the	result.
Mthroutine	Name(Search)
	
Define_Com	Class(#Prim_Tile.TileItem)	Name(#FoundItem)
Reference(*dynamic)	
Begin_Loop	
#FoundItem	<=	#Tree.FindItem(	#Search	#FoundItem	)	
Leave	If(#FoundItem	*Is	*null)	
	
End_Loop	
Endroutine
	



Result	Parameter
Reference	to	the	first	item	(#Prim_Tile.TileItem)	to	return	a	positive	result.



Key	Parameter
Value	or	object	to	be	searched	for.
Key	is	a	variant	allowing	it	to	carry	any	type	of	value	or	object.	



Item	Parameter
Reference	to	the	Item	(#Prim_Tile.TileItem)	after	which	to	start	the	search.
If	no	StartItem	is	specified,	the	search	will	start	at	the	beginning.



iTileDesign	Interface
The	iTileDesign	must	be	implemented	by	any	reusable	part	that	is	to	be	used	as
a	Design	for	a	Tile	control	(#Prim_Tile).		The	interface	contains	a	series	of
methods	through	which	the	Tile	can	communicate	with	the	design	instance	to
inform	it	of	changes	to	its	state	e.g.	Selection,	Focus	etc.
The	source	below	shows	the	Begin_com	for	reusable	part	implementing	the
appropriate	design	for	Prim_tile	as	well	as	the	*Listfields	feature	which	defines
the	fields	to	be	received	by	the	design	when	it	is	ADD_ENTRY	is	used	to	create
the	item.
Begin_Com	Role(*EXTENDS	#Prim_Panl3	*implements
#Prim_Tile.iTileDesign	*ListFields	#ListFields)

*	Fields	received	as	on	Add_entry
Group_By	Name(#ListFields)	Fields(#Empno	#Surname	#Givename
#Deptment	#Section	#Deptdesc	#Secdesc)
	



OnAdd	Method
OnAdd	is	executed	when	the	design	instance	is	first	added	to	the	list	via	either
ADD_ENTRY	or	use	of	the	ADD	Method.
Any	fields	specified	in	the	*ListFields	feature	of	Begin_Com	Role	parameter
will	have	been	populated	prior	to	the	execution	of	this	method	when	using
ADD_ENTRY.



Tile	Item
Reference	to	the	corresponding	Tile	Item	(#Prim_Tile.TileItem)	created	when
the	design	was	added.



OnDelete	Method
OnDelete	is	executed	when	corresponding	item	is	in	the	process	of	being
deleted.
The	design	instance	will	be	destroyed	as	part	of	the	delete,	assuming	no	other
references	to	the	design	exist.



Tile	Item
Reference	to	the	corresponding	Tile	Item	(#Prim_Tile.TileItem)	being	deleted.



OnDisplaying	Method
OnDisplaying	is	executed	whenever	the	Design	is	about	to	be	in	the	visible
portion	of	the	User	Design	Control.
This	allows	the	user	to	delay	the	processing	of	the	Design	until	it	is	necessary
rather	than	when	it	is	created.		This	is	useful	for	situations	where	the	UDC	has
many	items	or	the	processing	is	relatively	long	running.



Tile	Item
Reference	to	the	corresponding	Tile	Item	(#Prim_Tile.TileItem)	for	the	design
about	to	be	displayed.



OnFind	Method
OnFind	is	executed	when	the	Find	method	is	used	on	the	parent	user	designed
control.
Each	item	is	called	in	sequence,	receiving	the	value	to	be	tested	and	returning	a
boolean	result.		Once	a	positive	result	is	returned,	the	Find	will	end.		It	can	be
started	again	from	the	item	that	returns	the	result.
Mthroutine	Name(OnFind)	Options(*Redefine)
#Result	:=	#Surname.Contains(	#Key	)
Endroutine
	



Result	Parameter
Set	the	Result	to	indicate	whether	the	Find	was	successful.



Key	Parameter
Value	or	object	to	be	searched	for.
Key	is	a	variant	allowing	it	to	carry	any	type	of	value	or	object.	



TileItem	Parameter
Reference	to	the	corresponding	Tile	Item	(#Prim_Tile.TileItem)	for	the	design.



OnItemGotFocus	Method
Executed	when	the	design	instance	becomes	the	focus	instance.
Similar	to	a	list	or	tree,	an	item	becomes	focus	when	the	user	clicks	or	positions
the	cursor	within	the	bounds	of	the	design.
There	is	no	automatic	visual	feedback	when	the	item	gets	or	loses	focus.		The
user	is	responsible	for	adding/removing	styles.



TileItem	Parameter
Reference	to	the	corresponding	Tile	Item	(#Prim_Tile.TileItem)	for	the	design.



OnItemLostFocus	Method
Executed	when	the	design	instance	is	about	to	lose	focus.
There	is	no	automatic	visual	feedback	when	the	item	gets	or	loses	focus.		The
user	is	responsible	for	adding/removing	styles.



TileItem	Parameter
Reference	to	the	corresponding	Tile	Item	(#Prim_Tile.TileItem)	for	the	design.



OnItemGotSelection	Method
Executed	when	the	design	instance	becomes	selected.
Similar	to	a	list	or	tree,	an	item	becomes	selected	when	the	user	clicks	or
positions	the	cursor	within	the	bounds	of	the	design.
There	is	no	automatic	visual	feedback	when	the	item	gets	or	loses	selection.	
The	user	is	responsible	for	adding/removing	styles.



TileItem	Parameter
Reference	to	the	corresponding	Tile	Item	(#Prim_Tile.TileItem)	for	the	design.



OnItemLostSelection	Method
Executed	when	the	design	instance	is	about	to	lose	selection.
There	is	no	automatic	visual	feedback	when	the	item	gets	or	loses	selection.	
The	user	is	responsible	for	adding/removing	styles.



TileItem	Parameter
Reference	to	the	corresponding	Tile	Item	(#Prim_Tile.TileItem)	for	the	design.



OnUpdate	Method
OnUpdate	is	executed	when	UPD_ENTRY	is	used	to	update	the	corresponding
item.



Tile	Item
Reference	to	the	corresponding	Tile	Item	(#Prim_Tile.TileItem)	being	updated.



Tile	Property
Reference	to	the	parent	Tile	(#Prim_Tile)	control



Tile	Item	(Prim_Tile.TileItem)
Tile	Items	are	created	whenever	an	entry	is	added	to	the	Tile	(Prim_Tile)		e.g.
ADD_ENTRY	or	the	Tile	Add	method.	
For	every	item	that	is	added,	a	corresponding	user	defined	Design	instance	is
created	that	provides	the	visual	portion	of	the	control.



Design	Property
Reference	to	a	Tile	Design	(#Prim_Tile.iTileDesign)
Provides	access	to	the	corresponding	Design	instance	created	when	the	entry
was	added	to	the	Tile.



Tile	Property
Reference	to	the	parent	Tile	(#Prim_Tile)	control
	
	

	



Carousel	(Prim_Caro)
DirectX	Only
Carousel	is	a	member	of	a	group	of	list	related	primitive	controls	referred	to	as
User	Designed	Controls.
Carousel	organises	individual	design	panels,	typically	images,	in	to	linear	or
elliptical	sequence	with	only	one	central	design	panel	being	fully	visible
UDCs	can	be	manipulated	by	the	use	of	the	typical	LANSA	list	commands
ADD_ENTRY,	UPD_ENTRY	etc.		When	entries	are	added	to	the	list,	an
instance	of	the	design	is	made,	fields	can	be	passed	in,	and	a	corresponding	list
item	is	made.		UDCs	control	the	position	of	the	item	within	the	list,	manage
selection,	focus,	expand/collapse	etc.,	and	communicate	with	the	individual	item
designs	through	a	series	of	predefined	methods	published	on	an	interface
specific	to	the	type	of	UDC.		For	Prim_Caro	this	is
#Prim_Caro.iCarouselDesign
All	UDCs	use	a	parameterized	type	to	define	the	class	of	the	design	to	be
created	each	time	an	entry	is	added.		This	is	specified	on	the	DEFINE_COM	as
below
Define_Com	Class(#Prim_Caro<#MyCarouselDesign>)	Name(#Carousel)
	

Because	of	the	overhead	of	making	a	reusable	part	instance	compared	to	a
simple	item	for	a	tree	view	(#Prim_TRVW)	or	list	view	(#Prim_LTVW),	UDCs
are	not	designed	to	be	used	with	many	thousand	items.		For	high	volume
scenarios,	other	techniques	are	recommended.



CarouselStyle	Property
A	carousel	can	be	viewed	in	two	ways
Linear
Items	will	be	organised	across	the	screen,	left	to	right	and	equally	spaced.
The	control	will	only	show	as	many	item	as	can	fit	in	the	control.
Elliptical
Designs	will	be	organised	in	an	elliptical	fashion.
The	ellipse	is	sized	to	fit	on	the	screen	and	all	items	will	be	visible.



Items	Property
Collection	of	all	the	items	currently	in	the	Carousel.



NavigationStyle	Property
Buttons
Show	the	default	navigation	buttons.
None
Hide	the	default	navigation	buttons.



Carousel	Event	Item
DirectX	Only
Reference	to	an	instance	of	a	Carousel	Item	(#Prim_Caro.CarouselItem).
The	item	supplied	on	the	event	is	a	reference	to	the	item	currently	being
processed.	



Add	Method
Rather	than	using	the	typical	LANSA	list	commands,	the	Add	method	allows
different	classes	of	design	to	be	added.
When	the	Add	method	is	used	no	field	values	can	be	passed	to	the	design	using
the	*ListFields	feature.		The	user	is	in	control	of	the	process	and	needs	to	pass
any	data	in	to	the	new	design	instance	programmatically.			
Having	the	ability	to	add	different	types	of	design	makes	dealing	with	complex
UI	requirements	far	simpler.	



Result	Parameter
Reference	to	the	Item	(#Prim_Caro.CarouselItem)	created	by	the	Add	method.



DesignType	Parameter
Class	of	the	design	instance	to	be	created.
The	class	specified	must	inherit	from	the	class	specified	as	the	parameterized
type	on	the	Carousel	DEFINE_COM.



DeleteAll	Method
As	the	name	suggests,	this	method	deletes	all	items	in	the	list.
This	is	equivalent	to	using	the	Clr_list	command.



FindItem	Method
FindItem	calls	the	OnFind	method	on	the	Design	Interface	for	each	item.
Each	item	is	called	in	sequence,	receiving	the	value	to	be	tested	and	returning	a
boolean	result.		Once	a	positive	result	is	returned,	the	Find	will	end.		It	can	be
started	again	from	the	item	that	returns	the	result.
Mthroutine	Name(Search)
Define_Com	Class(#Prim_Caro.CarouselItem)	Name(#FoundItem)
Reference(*dynamic)
Begin_Loop
#FoundItem	<=	#Tree.FindItem(	#Search	#FoundItem	)
Leave	If(#FoundItem	*Is	*null)
End_Loop
Endroutine
	



Result	Parameter
Reference	to	the	first	item	(#Prim_Caro.CarouselItem)	to	return	a	positive
result.



Key	Parameter
Value	or	object	to	be	searched	for.
Key	is	a	variant	allowing	it	to	carry	any	type	of	value	or	object.	



Item	Parameter
Reference	to	the	Item	(#Prim_Caro.CarouselItem)	after	which	to	start	the
search.
If	no	StartItem	is	specified,	the	search	will	start	at	the	beginning.



FirstItem	Method
Set	the	first	item	in	the	Carousel	to	be	the	focus	item.



Animate	Parameter
True
Animate	the	move	showing	the	some	of	the	items	between	the	current	item	and
the	first
False
Jump	to	the	first	item	without	showing	any	other	items



LastItem	Method
Set	the	last	item	in	the	Carousel	to	be	the	focus	item.



Animate	Parameter
True
Animate	the	move	showing	the	some	of	the	items	between	the	current	item	and
the	last
False
Jump	to	the	last	item	without	showing	any	other	items



MoveToItem	Method
Move	to	the	item	specified	in	the	Position	parameter.



Position	Parameter
Specifies	the	item	to	become	the	active	item.



Animate	Parameter
True
Animate	the	move	showing	the	some	of	the	items	between	the	current	item	and
the	target	item
False
Jump	to	the	target	item	without	showing	any	other	items



NextItem	Method
Set	the	next	item	in	the	Carousel	to	be	the	focus	item.



Animate	Parameter
True
Animate	the	move	to	the	next	item
False
Jump	to	the	next	item	without	animating



PrevItem	Method
Set	the	previous	item	in	the	Carousel	to	be	the	focus	item.



Animate	Parameter
True
Animate	the	move	to	the	previous	item
False
Jump	to	the	previous	item	without	animating



iCarouselDesign	Interface
The	iCarouselDesign	must	be	implemented	by	any	reusable	part	that	is	to	be
used	as	a	Design	for	a	Carousel	control	(#Prim_Caro).		The	interface	contains	a
series	of	methods	through	which	the	Carousel	can	communicate	with	the	design
instance	to	inform	it	of	changes	to	its	state	e.g.	Selection,	Focus	etc.
The	source	below	shows	the	Begin_com	for	reusable	part	implementing	the
appropriate	design	for	Prim_Caro	as	well	as	the	*Listfields	feature	which
defines	the	fields	to	be	received	by	the	design	when	it	is	ADD_ENTRY	is	used
to	create	the	item.
Begin_Com	Role(*EXTENDS	#Prim_Panl	*implements
#Prim_Caro.iCarouselDesign	*ListFields	#ListFields)

*	Fields	received	as	on	Add_entry
Group_By	Name(#ListFields)	Fields(#Empno	#Surname	#Givename
#Deptment	#Section	#Deptdesc	#Secdesc)
	



CarouselItem	Parameter
Reference	to	the	corresponding	Carousel	Item	(#Prim_Caro.CarouselItem)
created	when	the	design	was	added.



CarouselItem	Parameter
Reference	to	the	corresponding	Carousel	Item	(#Prim_Caro.CarouselItem)
being	deleted.



CarouselItem	Parameter
Reference	to	the	corresponding	Carousel	Item	(#Prim_Caro.CarouselItem)	for
the	design	about	to	be	displayed.



Result	Parameter
Set	the	Result	to	indicate	whether	the	Find	was	successful.



Key	Parameter
Value	or	object	to	be	searched	for.
Key	is	a	variant	allowing	it	to	carry	any	type	of	value	or	object.	



CarouselItem	Parameter
Reference	to	the	corresponding	Carousel	Item	(#Prim_Caro.CarouselItem)	for
the	design.



CarouselItem	Parameter
Reference	to	the	corresponding	Carousel	Item	(#Prim_Caro.CarouselItem)	for
the	design.



CarouselItem	Parameter
Reference	to	the	corresponding	Carousel	Item	(#Prim_Caro.CarouselItem)	for
the	design.



CarouselItem	Parameter
Reference	to	the	corresponding	Carousel	Item	(#Prim_Caro.CarouselItem)
being	updated.



Carousel	Items	(Prim_Carousel.iCarouselItems)
Collection	of	all	items	currently	in	the	Carousel	(#Prim_Caro)



Carousel	Property
Reference	to	the	parent	Carousel	(#Prim_Caro)	control



Carousel	Item	(Prim_Carousel.iCarouselItem)
Carousel	Items	are	created	whenever	an	entry	is	added	to	the	Carousel
(Prim_Caro)	e.g.	ADD_ENTRY	or	the	Carousel	Add	method.	
For	every	item	that	is	added,	a	corresponding	user	defined	Design	instance	is
created	that	provides	the	visual	portion	of	the	control.



Book	(Prim_Book)
DirectX	Only
Book	is	a	member	of	a	group	of	list	related	primitive	controls	referred	to	as	User
Designed	Controls.
Book	organises	individual	design	panels	as	though	they	were	pages	of	a	book.
UDCs	can	be	manipulated	by	the	use	of	the	typical	LANSA	list	commands
ADD_ENTRY,	UPD_ENTRY	etc.		When	entries	are	added	to	the	list,	an
instance	of	the	design	is	made,	fields	can	be	passed	in,	and	a	corresponding	list
item	is	made.		UDCs	control	the	position	of	the	item	within	the	list,	manage
selection,	focus,	expand/collapse	etc.,	and	communicate	with	the	individual	item
designs	through	a	series	of	predefined	methods	published	on	an	interface
specific	to	the	type	of	UDC.		For	Prim_Book	this	is	#Prim_Book.iBookDesign
All	UDCs	use	a	parameterized	type	to	define	the	class	of	the	design	to	be
created	each	time	an	entry	is	added.		This	is	specified	on	the	DEFINE_COM	as
below
Define_Com	Class(#Prim_Book<#MyBookDesign>)	Name(#Book)
	

Because	of	the	overhead	of	making	a	reusable	part	instance	compared	to	a
simple	item	for	a	tree	view	(#Prim_TRVW)	or	list	view	(#Prim_LTVW),	UDCs
are	not	designed	to	be	used	with	many	thousand	items.		For	high	volume
scenarios,	other	techniques	are	recommended.



Items	Property
Collection	of	all	the	items	currently	in	the	Book.



NavigationStyle	Property
Buttons
Show	the	default	navigation	buttons.
None
Hide	the	default	navigation	buttons.



Book	Event	Item
DirectX	Only
Reference	to	an	instance	of	a	Book	Item	(#Prim_Book.BookItem).
The	item	supplied	on	the	event	is	a	reference	to	the	item	currently	being
processed.	



Add	Method
Rather	than	using	the	typical	LANSA	list	commands,	the	Add	method	allows
different	classes	of	design	to	be	added.
When	the	Add	method	is	used	no	field	values	can	be	passed	to	the	design	using
the	*ListFields	feature.		The	user	is	in	control	of	the	process	and	needs	to	pass
any	data	in	to	the	new	design	instance	programmatically.			
Having	the	ability	to	add	different	types	of	design	makes	dealing	with	complex
UI	requirements	far	simpler.	



Result	Parameter
Reference	to	the	Item	(#Prim_Book.BookItem)	created	by	the	Add	method.



DesignType	Parameter
Class	of	the	design	instance	to	be	created.
The	class	specified	must	inherit	from	the	class	specified	as	the	parameterized
type	on	the	Book	DEFINE_COM.



DeleteAll	Method
As	the	name	suggests,	this	method	deletes	all	items	in	the	list.
This	is	equivalent	to	using	the	Clr_list	command.



FindItem	Method
FindItem	calls	the	OnFind	method	on	the	Design	Interface	for	each	item.
Each	item	is	called	in	sequence,	receiving	the	value	to	be	tested	and	returning	a
boolean	result.		Once	a	positive	result	is	returned,	the	Find	will	end.		It	can	be
started	again	from	the	item	that	returns	the	result.
Mthroutine	Name(Search)
Define_Com	Class(#Prim_Book.BookItem)	Name(#FoundItem)
Reference(*dynamic)
Begin_Loop
#FoundItem	<=	#Tree.FindItem(	#Search	#FoundItem	)
Leave	If(#FoundItem	*Is	*null)
End_Loop
Endroutine
	



Result	Parameter
Reference	to	the	first	item	(#Prim_Book.BookItem)	to	return	a	positive	result.



Key	Parameter
Value	or	object	to	be	searched	for.
Key	is	a	variant	allowing	it	to	carry	any	type	of	value	or	object.	



Item	Parameter
Reference	to	the	Item	(#Prim_Book.BookItem)	after	which	to	start	the	search.
If	no	StartItem	is	specified,	the	search	will	start	at	the	beginning.



FirstItem	Method
Set	the	first	item	in	the	Book	to	be	the	focus	item.



Animate	Parameter
True
Animate	the	move	showing	the	some	of	the	items	between	the	current	item	and
the	first
False
Jump	to	the	first	item	without	showing	any	other	items



LastItem	Method
Set	the	last	item	in	the	Book	to	be	the	focus	item.



Animate	Parameter
True
Animate	the	move	showing	the	some	of	the	items	between	the	current	item	and
the	last
False
Jump	to	the	last	item	without	showing	any	other	items



MoveToItem	Method
Move	to	the	item	specified	in	the	Position	parameter.



Position	Parameter
Specifies	the	item	to	become	the	active	item.



Animate	Parameter
True
Animate	the	move	showing	the	some	of	the	items	between	the	current	item	and
the	target	item
False
Jump	to	the	target	item	without		showing	any	other	items



NextItem	Method
Set	the	next	item	in	the	Book	to	be	the	focus	item.



Animate	Parameter
True
Animate	the	move	to	the	next	item
False
Jump	to	the	next	item	without	animating



PrevItem	Method
Set	the	previous	item	in	the	Book	to	be	the	focus	item.



Animate	Parameter
True
Animate	the	move	to	the	previous	item
False
Jump	to	the	previous	item	without	animating



iBookDesign	Interface
The	iBookDesign	must	be	implemented	by	any	reusable	part	that	is	to	be	used
as	a	Design	for	a	Book	control	(#Prim_Book).		The	interface	contains	a	series	of
methods	through	which	the	Book	can	communicate	with	the	design	instance	to
inform	it	of	changes	to	its	state	e.g.	Selection,	Focus	etc.
The	source	below	shows	the	Begin_com	for	reusable	part	implementing	the
appropriate	design	for	Prim_Book	as	well	as	the	*Listfields	feature	which
defines	the	fields	to	be	received	by	the	design	when	it	is	ADD_ENTRY	is	used
to	create	the	item.
Begin_Com	Role(*EXTENDS	#Prim_Panl3	*implements
#Prim_Book.iBookDesign	*ListFields	#ListFields)

*	Fields	received	as	on	Add_entry
Group_By	Name(#ListFields)	Fields(#Empno	#Surname	#Givename
#Deptment	#Section	#Deptdesc	#Secdesc)
	



BooklItem	Parameter
Reference	to	the	corresponding	Book	Item	(#Prim_Book.BookItem)	created
when	the	design	was	added.



BookItem	Parameter
Reference	to	the	corresponding	Book	Item	(#Prim_Book.BookItem)	being
deleted.



BookItem	Parameter
Reference	to	the	corresponding	Book	Item	(#Prim_Book.BookItem)	for	the
design	about	to	be	displayed.



Result	Parameter
Set	the	Result	to	indicate	whether	the	Find	was	successful.



Key	Parameter
Value	or	object	to	be	searched	for.
Key	is	a	variant	allowing	it	to	carry	any	type	of	value	or	object.	



BookItem	Parameter
Reference	to	the	corresponding	Book	Item	(#Prim_Book.BookItem)	for	the
design.



BookItem	Parameter
Reference	to	the	corresponding	Book	Item	(#Prim_Book.BookItem)	for	the
design.



BookItem	Parameter
Reference	to	the	corresponding	Book	Item	(#Prim_Book.BookItem)	for	the
design.



BookItem	Parameter
Reference	to	the	corresponding	Book	Item	(#Prim_Book.BookItem)	for	the
design.



Book	Property
Reference	to	the	parent	Book	(#Prim_Book)	control



Book	Item	(Prim_Book.BookItem)
Book	Items	are	created	whenever	an	entry	is	added	to	the	Book	(Prim_Book)
e.g.	ADD_ENTRY	or	the	Book	Add	method.	
For	every	item	that	is	added,	a	corresponding	user	defined	Design	instance	is
created	that	provides	the	visual	portion	of	the	control.



Tree	(Prim_Tree)
DirectX	Only
Tree	is	a	member	of	a	group	of	list	related	primitive	controls	referred	to	as	User
Designed	Controls.
Tree	organises	individual	design	panels	in	to	a	hierarchical	structure	very
similar	to	that	of	tree	view	(#Prim_trvw).
UDCs	can	be	manipulated	by	the	use	of	the	typical	LANSA	list	commands
ADD_ENTRY,	UPD_ENTRY	etc.		When	entries	are	added	to	the	list,	an
instance	of	the	design	is	made,	fields	can	be	passed	in,	and	a	corresponding	list
item	is	made.		UDCs	control	the	position	of	the	item	within	the	list,	manage
selection,	focus,	expand/collapse	etc.,	and	communicate	with	the	individual	item
designs	through	a	series	of	predefined	methods	published	on	an	interface
specific	to	the	type	of	UDC.		For	Prim_Tree	this	is	#Prim_Tree.iTreeDesign
All	UDCs	use	a	parameterized	type	to	define	the	class	of	the	design	to	be
created	each	time	an	entry	is	added.		This	is	specified	on	the	DEFINE_COM	as
below
Define_Com	Class(#Prim_Tre<#MyTreeDesign>)	Name(#Tree)
	

Because	of	the	overhead	of	making	a	reusable	part	instance	compared	to	a
simple	item	for	a	tree	view	(#Prim_TRVW)	or	list	view	(#Prim_LTVW),	UDCs
are	not	designed	to	be	used	with	many	thousand	items.		For	high	volume
scenarios,	other	techniques	are	recommended.



Items	Property
Collection	of	all	the	items	currently	in	the	Tree.



Selection	Style	Property
All
Any	item	in	the	tree	can	be	selected	regardless	of	its	position
Single
Only	one	item	can	be	selected	at	any	given	moment
SameParent
Mulitple	items	can	be	selected	provided	they	are	all	parented	to	the	same	item
SameLevel
Mulitple	items	can	be	selected	provided	they	are	all	parented	to	the	items	with
the	same	parent



Tree	Event	Item
DirectX	Only
Reference	to	an	instance	of	a	Tree	Item	(#Prim_Tree.TreeItem).
The	item	supplied	on	the	event	is	a	reference	to	the	item	currently	being
processed.



ItemCollapsed	Event
An	item	in	the	tree	has	just	collapsed.		All	child	nodes	will	no	longer	be	visible
to	the	user.
This	corresponds	to	the	OnItemCollapsed	Method	of	the	Tree	design	interface
(#Prim_Tree.iTreeDesign)



ItemExpanding	Event
An	item	in	the	tree	is	expanding.		All	child	nodes	will	be	shown	immediately
below	the	expanding	item.
This	corresponds	to	the	OnItemExpanding	Method	of	the	Tree	design	interface
(#Prim_Tree.iTreeDesign)



ItemGotParent	Event
The	ParentItem	property	of	a	tree	item	has	been	assigned	to	either	another	item
in	the	tree	or	null.	
This	corresponds	to	the	OnItemGotParent	Method	of	the	Tree	design	interface
(#Prim_Tree.iTreeDesign)



Add	Method
Rather	than	using	the	typical	LANSA	list	commands,	the	Add	method	allows
different	classes	of	design	to	be	added.
When	the	Add	method	is	used	no	field	values	can	be	passed	to	the	design	using
the	*ListFields	feature.		The	user	is	in	control	of	the	process	and	needs	to	pass
any	data	in	to	the	new	design	instance	programmatically.			
Having	the	ability	to	add	different	types	of	design	makes	dealing	with	complex
UI	requirements	far	simpler.	



Result	Parameter
Reference	to	the	Item	(#Prim_Tree.TreeItem)	created	by	the	Add	method.



DesignType	Parameter
Class	of	the	design	instance	to	be	created.
The	class	specified	must	inherit	from	the	class	specified	as	the	parameterized
type	on	the	Tree	DEFINE_COM.



DeleteAll	Method
As	the	name	suggests,	this	method	deletes	all	items	in	the	list.
This	is	equivalent	to	using	the	Clr_list	command.



FindItem	Method
FindItem	calls	the	OnFind	method	on	the	Design	Interface	for	each	item.
Each	Tree	item	is	called	in	sequence,	receiving	the	value	to	be	tested	and
returning	a	boolean	result.		Once	a	positive	result	is	returned,	the	Find	will	end.	
It	can	be	started	again	from	the	item	that	returns	the	result.
Mthroutine	Name(Search)
Define_Com	Class(#Prim_Tree.TreeItem)	Name(#FoundItem)
Reference(*dynamic)
Begin_Loop
#FoundItem	<=	#Tree.FindItem(	#Search	#FoundItem	)
Leave	If(#FoundItem	*Is	*null)
End_Loop
Endroutine
	



Result	Parameter
Reference	to	the	first	item	(#Prim_Tree.TreeItem)	to	return	a	positive	result.



Key	Parameter
Value	or	object	to	be	searched	for.
Key	is	a	variant	allowing	it	to	carry	any	type	of	value	or	object.	



Item	Parameter
Reference	to	the	Item	(#Prim_Tree.TreeItem)	after	which	to	start	the	search.
If	no	StartItem	is	specified,	the	search	will	start	at	the	beginning.



iTreeDesign	Interface
The	iTreeDesign	must	be	implemented	by	any	reusable	part	that	is	to	be	used	as
a	Design	for	a	Tree	control	(#Prim_Tree).		The	interface	contains	a	series	of
methods	through	which	the	Tree	can	communicate	with	the	design	instance	to
inform	it	of	changes	to	its	state	e.g.	Selection,	Focus	etc.
The	source	below	shows	the	Begin_com	for	reusable	part	implementing	the
appropriate	design	for	Prim_tree	as	well	as	the	*Listfields	feature	which	defines
the	fields	to	be	received	by	the	design	when	it	is	ADD_ENTRY	is	used	to	create
the	item.
Begin_Com	Role(*EXTENDS	#Prim_Panl3	*implements
#Prim_Tree.iTreeDesign	*ListFields	#ListFields)

*	Fields	received	as	on	Add_entry
Group_By	Name(#ListFields)	Fields(#Empno	#Surname	#Givename
#Deptment	#Section	#Deptdesc	#Secdesc)
	



Tree	Item	Parameter
Reference	to	the	corresponding	Tree	Item	(#Prim_Tree.TreeItem)	created	when
the	design	was	added.



Tree	Item	Parameter
Reference	to	the	corresponding	Tree	Item	(#Prim_Tree.TreeItem)	being	deleted.



Tree	Item	Parameter
Reference	to	the	corresponding	Tree	Item	(#Prim_Tree.TreeItem)	for	the	design
about	to	be	displayed.



Result	Parameter
Set	the	Result	to	indicate	whether	the	Find	was	successful.



Key	Parameter
Value	or	object	to	be	searched	for.
Key	is	a	variant	allowing	it	to	carry	any	type	of	value	or	object.	



TreeItem	Parameter
Reference	to	the	corresponding	Tree	Item	(#Prim_Tree.TreeItem)	for	the	design.



OnItemCollapsed	Method
Executed	when	the	corresponding	item	collapsed	through	the	use	of	the
Collapse	method	or	by	setting	the	Expanded	property	to	false.
This	method	allows	the	user	to	change	the	design	appearance	to	indicate	that	the
item	has	collapsed.	E.g.	Show	an	appropriate	collapsed	image.



TreeItem	Parameter
Reference	to	the	corresponding	Tree	Item	(#Prim_Tree.TreeItem)	for	the	design.



OnItemExpanding	Method
Executed	when	the	corresponding	item	is	expanded	through	the	use	of	the
Expand	method	or	by	setting	the	Expanded	property	to	true.
This	method	allows	the	user	to	change	the	design	appearance	to	indicate	that	the
item	has	collapsed.	E.g.	Show	an	appropriate	expanded	image.



TreeItem	Parameter
Reference	to	the	corresponding	Tree	Item	(#Prim_Tree.TreeItem)	for	the	design.



OnItemGotParent	Method
Executed	when	the	corresponding	item's	Parent	is	changed	by	setting	the
ParentItem	Property.Expand
This	method	allows	the	user	to	change	the	design	appearance	to	indicate	that	the
item	has	changed	parent	e.g.	increment	the	left	margin	to	increase	the	indent.



TreeItem	Parameter
Reference	to	the	corresponding	Tree	Item	(#Prim_Tree.TreeItem)	for	the	design.



TreeItem	Parameter
Reference	to	the	corresponding	Tree	Item	(#Prim_Tree.TreeItem)	for	the	design.



TreeItem	Parameter
Reference	to	the	corresponding	Tree	Item	(#Prim_Tree.TreeItem)	for	the	design.



TreeItem	Parameter
Reference	to	the	corresponding	Tree	Item	(#Prim_Tree.TreeItem)	for	the	design.



Tree	Property
Reference	to	the	parent	Tree	(#Prim_Tree)	control



Tree	Item	(Prim_Tree.TreeItem)
Tree	Items	are	created	whenever	an	entry	is	added	to	the	Tree	(#Prim_Tree)		e.g.
ADD_ENTRY	or	the	Tree	Add	method.	
For	every	item	that	is	added,	a	corresponding	user	defined	Design	instance	is
created	that	provides	the	visual	portion	of	the	control.



Design	Property
Reference	to	a	Tree	Design	(#Prim_Tree.iTreeDesign)
Provides	access	to	the	corresponding	Design	instance	created	when	the	entry
was	added	to	the	Tree.



Expanded	Property
The	item	is	expanded.		All	child	items	will	be	visible.



FocusedStyle	Property
Reference	to	a	Style	(#Prim_Vs.Style)	to	be	applied	to	the	design	when	the	item
becomes	the	focus	item.
The	Style	will	be	removed	as	soon	as	the	item	loses	focus.
Mthroutine	Name(OnAdd)	Option(*Redefine)
#TreeItem.FocusStyle	<=	#	MyStyles<Focus>
Endroutine
	



FocusedStyles	Property
Collection	of	Style	(#Prim_Vs.Style)	to	be	applied	to	the	design	when	the	item
becomes	the	focus	item.
The	Styles	will	be	removed	as	soon	as	the	item	loses	focus.



MarginBottom	Property
Defines	the	size	in	pixels	of	the	margin	to	be	applied	to	the	bottom	of	the	item.



MarginLeft	Property
Defines	the	size	in	pixels	of	the	margin	to	be	applied	to	the	left	of	the	item.



MarginRight	Property
Defines	the	size	in	pixels	of	the	margin	to	be	applied	to	the	right	of	the	item.



MarginTop	Property
Defines	the	size	in	pixels	of	the	margin	to	be	applied	to	the	top	of	the	item.



MouseOverStyle	Property
DirectX	Only
Denotes	the	Style	(#Prim_vs.Style)	to	be	applied	to	a	control	in	the	event	of	the
Mouse	entering	the	physical	bounds	of	the	control.	The	style	is	removed	when
the	mouse	leaves	the	control.
MouseOverStyle	negates	the	need	to	code	many	MouseEnter	and	corresponding
MouseLeave	events	and	allows	for	simple	declaration	instead.



MouseOverStyles	Property
DirectX	Only
Collection	of	Styles	(#Prim_vs.Style)	to	be	applied	to	a	control	in	the	event	of
the	Mouse	entering	the	physical	bounds	of	the	control.	The	styles	are	removed
when	the	mouse	leaves	the	control.
MouseOverStyles	allows	for	more	complex	programmatic	appearance	changes
to	be	coded.		Rather	than	relying	on	the	declarative	single	MouseOverStyle,	the
developer	is	free	to	add	as	many	style	layers	as	required.



ParentItem	Property
Reference	to	a	TreeItem	(#Prim_Tree.TreeItem)
By	setting	the	ParentItem	property	items	within	the	tree	can	be	formed	in	to
complex	hierarchies.
TreeItems	cannot	be	parented	to	items	in	different	Trees.



SelectedStyle	Property
Reference	to	a	Style	(#Prim_Vs.Style)	to	be	applied	to	the	design	when	the	item
becomes	selected.
The	Style	will	be	removed	as	soon	as	the	item	loses	selection.
Mthroutine	Name(OnAdd)	Option(*Redefine)
#TreeItem.SelectedStyle	<=	#	MyStyles<Focus>
Endroutine
	



SelectedStyles	Property
Collection	of	Style	(#Prim_Vs.Style)	to	be	applied	to	the	design	when	the	item
becomes	selected.
The	Styles	will	be	removed	as	soon	as	the	item	loses	selection.



Style	Property
Denotes	the	Style	(#Prim_vs.Style)	to	be	applied	to	an	item.		When	the	Style
property	is	set,	all	Styles	previously	applied	to	the	item	are	removed.



Styles	Property
Collection	of	Styles	(#Prim_vs.Style)	to	be	applied	to	a	control.
Styles	allows	for	more	complex	programmatic	appearance	changes	to	be	coded.	
Rather	than	relying	on	the	declarative	single	Style	property,	the	developer	is	free
to	add	as	many	Style	layers	as	required.



Tree	Property
Reference	to	the	parent	Tree	(#Prim_Tree)	control



System	Application	Controls



Focus	Control	Changed	Event
FocusControlChanged	is	fired	whenever	focus	moves	to	a	different	control.
This	is	equivalent	to	the	GotFocus	event	found	on	all	controls	(#Prim_CTRL)



Control	Parameter
Reference	to	the	control	(#Prim_CTRL)	that	is	focus.



Appearance	Property
Reference	to	a	Prim_Vs.Appearance	instance.
The	Appearance	property	provides	a	central	location	for	default	styles	for	each
control	to	be	applied,	either	at	application	startup	or	at	runtime.



Calendar	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	calendar	(#Prim_MTCL)
instances.



CheckBox	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	check	box	(#Prim_CKBX)
instances.



ComboBox	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	combo	box
(#Prim_CMBX)	instances.



DateTime	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	DateTime	(#Prim_CMBX)
instances	including	date	time	fields.



Edit	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	edit	(#Prim_EDIT)
instances.		This	includes	edits	when	used	as	part	of	an	entry	field
(#Prim_EVEF)



Grid	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	grid	(#Prim_GRID)
instances.



GridFocused	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	grid	item	(#Prim_GDIT)
instances	when	they	become	focus	and	the	grid	is	the	focus	control.



GridFocusedInactive	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	grid	item	(#Prim_GDIT)
instances	when	they	are	the	focus	item	but	the	grid	is	not	the	focus	control.



GridSelectedInactive	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	grid	item	(#Prim_GDIT)
instances	when	they	are	selected,	but	the	grid	is	not	the	focus	control.



GridMouseOver	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	grid	item	(#Prim_GDIT)
instances	when	the	mouse	enters	their	bounds.



GridSelected	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	grid	item	(#Prim_GDIT)
instances	when	they	become	selected	and	the	grid	is	the	focus	control.



GroupBox	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	group	box	(#Prim_GPBX)
instances.



Image	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	image	(#Prim_IMGE)
instances.



Label	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	label	(#Prim_LABL)
instances.



List	Box	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	list	box	(#Prim_LTBX)
instances.



ListBoxFocused	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	list	box	item	(#Prim_LBIT)
instances	when	they	become	focus	and	the	grid	is	the	focus	control.



ListboxFocusedInactive	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	listbox	item	(#Prim_LBIT)
instances	when	they	are	the	focus	item	but	the	listbox	is	not	the	focus	control.



ListboxSelectedInactive	Property

Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	listbox	item	(#Prim_LBIT)
instances	when	they	are	selected,	but	the	listbox	is	not	the	focus	control.



ListboxSelectedInactive	Property

Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	listview	item	(#Prim_LVIT)
instances	when	they	are	selected,	but	the	listview	is	not	the	focus	control.



ListBoxMouseOver	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	list	box	item	(#Prim_LBIT)
instances	when	the	mouse	enters	their	bounds.



ListBoxSelected	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	list	box	item	(#Prim_LBIT)
instances	when	they	become	selected	and	the	grid	is	the	focus	control.



List	View	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	list	view	(#Prim_LTVW)
instances.



ListViewFocused	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	list	view	item
(#Prim_LVIT)	instances	when	they	become	focus	and	the	list	view	is	the	focus
control.



ListviewFocusedInactive	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	listview	item
(#Prim_LVIT)	instances	when	they	are	the	focus	item	but	the	listview	is	not	the
focus	control.



ListboxSelectedInactive	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	listview	item
(#Prim_LVIT)	instances	when	they	are	selected,	but	the	listview	is	not	the	focus
control.



ListViewMouseOver	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	list	view	item	(#Prim_
LVIT)	instances	when	the	mouse	enters	their	bounds.



ListViewSelected	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	list	view	item	(#Prim_
LVIT)	instances	when	they	become	selected	and	the	list	view	is	the	focus
control.



Memo	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	memo	(#Prim_MEMO)
instances.



Panel	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	panel	(#Prim_PANL)
instances.



Popup	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	popup	panel
(#Prim_PPNL)	instances.



ProgressBar	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	progress	bar
(#Prim_PGBR)	instances.



PushButton	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	push	button
(#Prim_PHBN)	instances.



RadioButton	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	radio	button
(#Prim_RDBN)	instances.



RadioButton	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	radio	button
(#Prim_RDBN)	instances.



SpeedButton	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	speed	button
(#Prim_SPBN)	instances.



SpinEdit	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	spin	edit	(#Prim_SPDT)
instances.



Tab	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	tab	(#Prim_TAB)
instances.



TrackBar	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	spin	edit	(#Prim_TKBR)
instances.



Tree	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	tree	(#Prim_TRVW)
instances.



TreeFocused	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	tree	item	(#Prim_TVIT)
instances	when	they	become	focus	and	the	tree	is	the	focus	control.



TreeviewFocusedInactive	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	treeview	item
(#Prim_TVIT)	instances	when	they	are	the	focus	item	but	the	treeview	is	not	the
focus	control.



TreeboxSelectedInactive	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	treeview	item
(#Prim_TVIT)	instances	when	they	are	selected,	but	the	treeview	is	not	the
focus	control.



TreeMouseOver	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	tree	item	(#Prim_	TVIT)
instances	when	the	mouse	enters	their	bounds.



TreeSelected	Property
Reference	to	a	Style	(#Prim_VS)	to	be	applied	to	all	tree	item	(#Prim_	TVIT)
instances	when	they	become	selected	and	the	tree	view	is	the	focus	control.



Cursors	Property
Collection	of	standard	cursors	(#Prim_CRSR)	adopted	from	the	Windows
theme.
Cursors	can	be	applied	to	controls	so	that	the	cursor	changes	when	the	mouse
enters	or	leaves	the	bounds	of	a	control.		For	most	situations	Visual	LANSA	will
manage	the	cursor	correctly	without	the	developer	needing	to	change	it.
#Button.Cursor	<=	#sys_Appln.Cursors<Hand>
	



FocusControl	Property
Reference	to	the	control	(#Prim_CTRL)	that	is	focus.



GlassEnabled	Property
Determines	whether	the	application	is	running	in	an	environment	where	a	form
may	have	a	glass	(#Prim_Form.Glass)	appearance.
True
The	form	is	configured	to	have	a	glass	appearance	and	the	application	is
currently	capable	of	running	with	glass.
False
Either	the	form	is	not	configured	to	have	a	glass	appearance	or	the	application	is
currently	incapable	of	running	with	glass.



HelpHandlerProperty
Reference	to	an	instance	of	a	reusable	a	component	that	implements	the
HelpHandler	Interface	(#Prim_App.iHelpHandler)
By	specifying	a	help	handler,	the	developer	can	replace	the	default	F1	help
behavior.



Images	Property
Collection	of	standard	images	(#Prim_BMP)	adopted	from	the	Windows	theme.
Images	are	useful	when	constructing	user	defined	controls,	particularly	user
trees	(#Prim_TREE),	so	that	applications	can	have	a	consistent	look	and	feel.
#ExpandCollapse.image	<=	#sys_appln.Images<ExplorerCollapsed>
	



Operating	System	Property
Name	of	the	operating	system	currently	on	which	the	application	is	executing.



PartitionShortCharLength	Property
Provides	access	to	the	current	partition	short	char.	length	based	on	the
PartitionShortCharLevel	property.



PartitionShortCharLevel	Property
Provides	access	to	the	current	partition	short	char.	level	property.



RenderStyle	Property
Equivalent	to	the	RNDR	X_Run	argument,	RenderStyle	provides	access	to	the
current	rendering	engine	for	the	application
Win32
The	application	is	using	the	Win32	rendering	engine	and	no	DirectX	rendering
is	possible.		This	is	equivalent	to	a	RNDR	value	of	W
Win32AndDirectX
The	application	is	using	the	Win32	rendering	engine	but	supports	the	use	of
DirectX	on	specific	components.		This	is	equivalent	to	a	RNDR	value	of	M
DirectX
The	application	is	using	the	DirectX	rendering	engine	but	supports	the	use	of
Win32	for	specified	forms.		This	is	equivalent	to	a	RNDR	value	of	X



Style	Property
Reference	to	a	Style	(#Prin_VS.Style)	to	be	applied	to	the	whole	application.
The	style	specified	will	be	adopted	by	all	forms	and	reusable	parts.



Styles	Property
Collection	of	Styles	(#Prin_VS.Style)	to	be	applied	to	the	whole	application.
The	styles	specified	will	be	adopted	by	all	forms	and	reusable	parts.



TraceHandlerProperty
Reference	to	an	instance	of	a	reusable	a	component	that	implements	the
TraceHandler	Interface	(#Prim_App.iTraceHandler)
By	specifying	a	trace	handler,	the	developer	can	implement	their	own	tracing
mechanism.



Ribbon	Controls



Ribbon
A	ribbon	is	a	command	bar	that	organizes	a	program's	features	into	a	series	of
tabs	or	sheets	at	the	top	of	a	form.		A	ribbon	combines	the	more	traditional
menu	bar	and	toolbars	into	a	single	control	concept.
Ribbon	examples	can	be	seen	in	the	version	13	LANSA	IDE	and	Microsoft
Office	2007	and	beyond.
Not	all	application	environments	are	suited	to	a	ribbon	and	you	should	consider
carefully	whether	a	ribbon	is	the	best	solution	for	your	requirements.
Ribbons	are	always	as	wide	as	the	component	they	are	being	used	on	and	have	a
fixed	height.



Minimized
True
The	ribbon	is	shown	minimized.		Only	the	sheet	captions	will	be	visible
False
The	entire	ribbon	is	shown.



OpenPage
Reference	to	a	ribbon	sheet	(#Prim_RBBN.Sheet)
Provides	access	to	the	active	ribbon	sheet.



QuickAccessToolbarOnTop
True
The	Quick	Access	Toolbar	is	displayed	above	the	ribbon.		In	forms	with	a	glass
appearance,	the	toolbar	will	appear	in	the	titlebar	area.
False
The	Quick	Access	Toolbar	will	be	displayed	immediately	below	the	ribbon.



Access	Key
Access	Keys	define	shortcut	commands	(F3,	Ctrl+S	etc.,)	and	KeyTips	for
mnemonic	access	to	be	attached	to	specific	controls	on	the	ribbon.



Control
Reference	to	an	instance	of	a	Control	(#Prim_CTRL)	to	which	the	keytip	and
shortcut	will	apply.



Application	Menu
Application	menu	(#Prim_RBBN.ApplicationMenu)	is	shown	on	the	left	hand
side	of	the	popup	displayed	when	the	blue	application	button	is	clicked.
There	are	no	specific	design	rules	and	as	a	result	the	application	menu	is	just	a
plain	panel.		How	it	behaves	and	what	is	shown	is	entirely	down	to	the
developer.
Define_Com	Class(#Prim_rbbn)	Name(#Ribbon)	Displayposition(1)
Height(140)	Left(8)	Parent(#COM_OWNER)	Tabposition(1)	Top(8)
Width(1033)
Define_Com	Class(#Prim_Rbbn.ApplicationMenu)
Name(#ApplicationMenu)	Caption('File')	Displayposition(1)	Height(80)
Keytip('F')	Left(30)	Parent(#Ribbon)	Tabposition(8)	Top(0)	Width(100)
Define_Com	Class(#Prim_Rbbn.ApplicationMenuContent)
Name(#ApplicationMenuContent)	Displayposition(5)	Height(80)
Parent(#Ribbon)	Tabposition(7)	Top(0)
Define_Com	Class(#Prim_Rbbn.ApplicationMenuFooter)
Name(#ApplicationMenuFooter)	Displayposition(4)	Height(20)	Left(30)
Parent(#Ribbon)	Tabposition(6)	Top(0)
	



Caption
The	Application	Menu	Caption	will	be	shown	in	the	blue	application	menu
button,	typically	the	"File"	item.
As	ribbon	keyboard	navigation	is	achieved	through	the	use	of	AccessKeys
(#Prim_RBBN.AccessKey)	and	KeyTips,	there	is	no	need	to	embed	an	&	in	the
text.



Application	Menu	Content
Application	menu	content	(#Prim_RBBN.ApplicationMenuContent)	is	shown
on	the	right	hand	side	of	the	popup	displayed	when	the	blue	application	button
is	clicked.
As	the	content	may	change	entirely	depending	on	what	is	active	on	the
application	content	page	it	may	be	necessary	to	make	many	different	content
instances.		As	with	the	Application	Menu	itself,	Content	is	a	plain	panel	and	the
design	and	behaviour	is	ultimately	down	to	the	developer.
Define_Com	Class(#Prim_rbbn)	Name(#Ribbon)	Displayposition(1)
Height(140)	Left(8)	Parent(#COM_OWNER)	Tabposition(1)	Top(8)
Width(1033)
Define_Com	Class(#Prim_Rbbn.ApplicationMenu)
Name(#ApplicationMenu)	Caption('File')	Displayposition(1)	Height(80)
Keytip('F')	Left(30)	Parent(#Ribbon)	Tabposition(8)	Top(0)	Width(100)
Define_Com	Class(#Prim_Rbbn.ApplicationMenuContent)
Name(#ApplicationMenuContent)	Displayposition(5)	Height(80)
Parent(#Ribbon)	Tabposition(7)	Top(0)
Define_Com	Class(#Prim_Rbbn.ApplicationMenuFooter)
Name(#ApplicationMenuFooter)	Displayposition(4)	Height(20)	Left(30)
Parent(#Ribbon)	Tabposition(6)	Top(0)
	



Application	Menu	Footer
The	Application	menu	footer	(#Prim_RBBN.ApplicationMenuFooter)	is	shown
at	the	bottom	of	the	popup	displayed	when	the	blue	application	button	is
clicked.
As	with	the	Application	Menu	and	Content,	the	Footer	is	a	plain	panel	and	the
design	and	behaviour	is	ultimately	down	to	the	developer.
Define_Com	Class(#Prim_rbbn)	Name(#Ribbon)	Displayposition(1)
Height(140)	Left(8)	Parent(#COM_OWNER)	Tabposition(1)	Top(8)
Width(1033)
Define_Com	Class(#Prim_Rbbn.ApplicationMenu)
Name(#ApplicationMenu)	Caption('File')	Displayposition(1)	Height(80)
Keytip('F')	Left(30)	Parent(#Ribbon)	Tabposition(8)	Top(0)	Width(100)
Define_Com	Class(#Prim_Rbbn.ApplicationMenuContent)
Name(#ApplicationMenuContent)	Displayposition(5)	Height(80)
Parent(#Ribbon)	Tabposition(7)	Top(0)
Define_Com	Class(#Prim_Rbbn.ApplicationMenuFooter)
Name(#ApplicationMenuFooter)	Displayposition(4)	Height(20)	Left(30)
Parent(#Ribbon)	Tabposition(6)	Top(0)
	



Contextual	Group
A	Contextual	Group	can	be	used	to	collect	sheets	(#Prim_RBBN.Sheet)	that
belong	to	a	similar	group,	or	simply	to	display	further	information	about	a	sheet
in	the	title	bar.
Microsoft	Word	uses	contextual	groups	for	features	such	as	Tables.		When	a
table	is	selected	in	the	document	an	additional	pair	of	ribbon	sheets	is	shown.
Define_Com	Class(#Prim_rbbn.ContextualGroup)	Name(#ContextualGroup)
Caption('Contextual	Group')	Parent(#Ribbon)
Define_Com	Class(#Prim_rbbn.Sheet)	Name(#Sheet1)	Caption('Sheet1')
Contextualgroup(#ContextualGroup)	Displayposition(1)	Height(91)	Left(0)
Parent(#Ribbon)	Tabposition(3)	Top(49)	Width(1033)
Define_Com	Class(#Prim_rbbn.Sheet)	Name(#Sheet2)	Caption('Sheet2')
Contextualgroup(#ContextualGroup)	Displayposition(2)	Height(91)	Left(0)
Parent(#Ribbon)	Tabposition(4)	Top(49)	Width(1033)
	



Caption
Text	that	will	be	displayed	as	a	heading	above	the	sheets	that	comprise	the
contextual	group.



Visible
The	visible	property	overrides	the	visible	state	for	all	sheets	that	are	part	of	the
group.
True
All	sheets	that	are	part	of	this	contextual	group	will	be	visible,	unless	the	sheet
is	Visible(False)
False
All	sheets	that	are	part	of	this	contextual	group	will	be	hidden	regardless.



Ribbon	Group

A	Group	is	a	subset	of	a	sheet.		Most	sheets	will	have	several	different	groups
that	organize	the	commands	on	the	ribbon	into	related	subjects.

Controls	can	only	be	shown	on	a	ribbon	if	they	area	parented	to	a	Group

As	with	all	parts	of	a	ribbon,	each	group	is	a	plain	panel.		Design	is	down	the
developer.

Define_Com	Class(#Prim_rbbn)	Name(#Ribbon)	Displayposition(1)
Height(140)	Left(8)	Parent(#COM_OWNER)	Tabposition(1)	Top(8)
Width(1033)
Define_Com	Class(#Prim_rbbn.Sheet)	Name(#Sheet1)	Caption('Sheet1')
Displayposition(2)	Height(91)	Left(0)	Parent(#Ribbon)	Tabposition(1)
Top(49)	Width(1033)
Define_Com	Class(#Prim_rbbn.Group)	Name(#Sheet1Group1)
Caption('Clipboard')	Dialogbutton(True)	Displayposition(1)	Height(91)
Left(12)	Parent(#Sheet1)	Tabposition(1)	Top(0)	Width(100)
Define_Com	Class(#Prim_rbbn.Group)	Name(#Sheet1Group2)
Caption('Styles')	Displayposition(2)	Height(91)	Left(124)	Parent(#Sheet1)
Tabposition(2)	Top(0)	Width(100)
Define_Com	Class(#Prim_rbbn.Group)	Name(#Sheet1Group3)
Caption('Editing')	Displayposition(3)	Height(91)	Left(236)	Parent(#Sheet1)
Tabposition(3)	Top(0)	Width(100)
	



DialogButton	Click	Event
Fired	when	the	group	Dialog	Button	is	clicked.



DialogButton	Property
True
Show	the	dialog	button	in	the	bottom	right	hard	corner	of	the	group
False
Hide	the	dialog	button



Help	Toolbar

The	ribbon	help	toolbar	is	show	in	the	top	right	hand	corner	of	the	ribbon.

As	with	all	parts	of	a	ribbon,	the	Help	Toolbar	is	a	plain	panel.		Design	is	down
the	developer.



Image	Property
Reference	to	a	base	LANSA	graphic	(#Prim_FLBX)
Denotes	the	32x32	image	to	be	displayed	when	the	group	is	collapsed.



Quick	Access	Toolbar
The	Quick	Access	Toolbar	is	shown	on	the	ribbon	on	the	left	hand	side.		It
typically	displays	a	lines	of	small	images	used	for	commonly	used		commands
such	as	Save.		Whether	it	is	shown	above	or	below	the	Ribbon	is	governed	by
the	Ribbon	QuickAccessToolbarOnTop	property.

As	with	all	parts	of	a	ribbon,	the	Quick	Access	Toolbar	is	a	plain	panel.		Design
is	down	the	developer.



Ribbon	Sheet

A	Ribbon	sheet	is	a	container	for	Ribbon	Groups	(#Prim_RBBN.Group).		Sheets
define	the	tabbed	pages	that	comprise	the	ribbon.



KeyTip
KeyTip	is	the	string	used	to	access	a	particular	command	on	the	ribbon	when
using	the	keyboard.
A	Keytip	is	usually	single	character,	typically	the	initial	letter,	but	for	more
complex	ribbons	it	may	be	preferable	to	use	two	characters.



Contextual	Group
Reference	to	the	Context	Group	(#Prim_RBBN.ContextualGroup).
Used	to	collect	sheets	in	to	set	that	can	be	displayed	when	the	Context	Group	is
made	visible.



Table	Layout
DiretX	Only
Table	Layout	divide	a	control	in	to	rows	and	columns	similar	to	a	grid	layout	or
table	in	Microsoft	Word.



Table	Column
Used	to	define	the	width	of	columns	as	part	of	a	table	layout.
In	the	example	below	there	are	3	columns.		The	first	is	25	pixels	wide.		The	two
remaining	columns	are	proportional	and	share	the	remaining	space	equally.
Define_Com	Class(#prim_tblo)	Name(#TableLayout)
Define_Com	Class(#Prim_tblo.Column)	Name(#Column1)
Parent(#TableLayout)	Units(Pixels)	Width(25)
Define_Com	Class(#Prim_tblo.Column)	Name(#Column2)
Parent(#TableLayout)
Define_Com	Class(#Prim_tblo.Column)	Name(#Column3)
Parent(#TableLayout)
	



Units
In	conjunction	with	the	Width/Height	properties	determines	the	size	of	the
column/row.
Pixels
The	column/row	will	be	as	wide/high	in	pixels	as	the	value	specified	in	the
Width/Height	property.
Proportion
The	size	is	defined	as	a	proportion	of	the	available	remaining	space	after
columns/rows	with	a	fixed	size	are	evaluated.
In	the	example	below,	Column1	would	use	40%	of	the	available	space	while
Column2	would	use	60%
Define_Com	Class(#Prim_tblo.Column)	Name(#Column1)
Parent(#TableLayout)	Width(2)
Define_Com	Class(#Prim_tblo.Column)	Name(#Column2)
Parent(#TableLayout)	Width(3)
	



Width
In	conjunction	with	the	Units	property	determines	the	width	of	the	column.
Width	is	numeric	and	represents	either	specific	number	of	pixels	or	a	proportion
of	the	available	space.



Table	Row
Used	to	define	the	height	of	rows	as	part	of	a	table	layout.
In	the	example	below	there	are	3	rows.		The	first	is	25	pixels	wide.		The	two
remaining	columns	are	proportional	and	share	the	remaining	space	equally.
Define_Com	Class(#prim_tblo)	Name(#TableLayout)
Define_Com	Class(#Prim_tblo.Row)	Name(#Row1)	Parent(#TableLayout)
Units(Pixels)	Width(25)
Define_Com	Class(#Prim_tblo.Row)	Name(#Row2)	Parent(#TableLayout)
Define_Com	Class(#Prim_tblo.Row)	Name(#Row3)	Parent(#TableLayout)



Height	Column
In	conjunction	with	the	Units	property	determines	the	height	of	the	row.
Height	is	numeric	and	represents	either	specific	number	of	pixels	or	a
proportion	of	the	available	space.



Table	Item
Used	to	determine	the	size	and	position	of	the	control	being	managed	by	the
item.



Column
Reference	to	a	Column	(#prim_tblo.Column)
In	conjunction	with	the	ColumnSpan	property,	defines	the	start	position	and
horizontal	extent	of	the	control	managed	by	the	item.



ColumnSpan
In	conjunction	with	the	Column	property,	defines	the	start	position	and
horizontal	extent	of	the	control	managed	by	the	item.



Row
Reference	to	a	Row	(#prim_tblo.Row)
In	conjunction	with	the	RowSpan	property,	defines	the	start	position	and	vertical
extent	of	the	control	managed	by	the	item.



RowSpan
In	conjunction	with	the	Row	property,	defines	the	start	position	and	vertical
extent	of	the	control	managed	by	the	item.



Touch
Touch	Properties
Touch	Events
Touch	Parameters



Touch	Properties
Touch	Scroll	Property
Touch	Move	Property
Touch	Rotate	Property
Touch	Scale	Property



Touch	Scroll	Property
DirectX	Only
Determines	how	list	controls	such	as	Listview	and	Grid	will	respond	when
swiped.
Both
The	list	will	scroll	both	vertically	and	horizontally.
Horizontal
The	list	will	only	scroll	control	horizontally.
Parent
Default	–	All	touch	move	processing	will	be	directed	to	the	parent	control.	
Touch	events	will	be	processed	as	normal	mouse	events		causing	selection	and
focus	to	fire.	
Vertical
The	list	will	only	scroll	control	vertically.



Touch	Move	Property
DirectX	Only
Determines	how	the	control	will	respond	to	touch	move	processing.
Touch	movements	will	directly	affect	the	Top	and	Left	properties	of	the	control.
Both
The	control	can	be	moved	both	vertically	and	horizontally.
Horizontal
The	control	can	only	move	along	the	horizontal	axis.
Parent
Default	–	All	touch	move	processing	will	be	directed	to	the	parent	control.
Vertical
The	control	can	only	move	along	the	vertically	axis.



Touch	Rotate	Property
DirectX	Only
Determines	how	the	control	will	respond	to	touch	rotation.
Touch	rotation	will	directly	affect	the	Rotation	property	of	the	control.
Yes
The	control	can	be	rotated	using	touch.
Parent
Default	–	All	touch	rotation	processing	will	be	directed	to	the	parent	control.



Touch	Scale	Property
DirectX	Only
Determines	how	the	control	will	respond	to	touch	scaling.
Touch	scaling	will	directly	affect	the	ScaleHeight	and	ScaleWidth	poperties	of
the	control.
Yes
The	control	can	be	scaled	using	touch.
Parent
Default	–	All	touch	scaling	processing	will	be	directed	to	the	parent	control.



Touch	Events
Touch	Start	Event
Touch	End	Event
Touch	Change	Event



Touch	Start	Event
DirectX	Only
Fired	when	the	user	first	makes	physical	contact	with	the	screen.



Touch	End	Event
DirectX	Only
Fired	when	the	user	stops	touching	the	screen.



Touch	Change	Event
DirectX	Only
Fired	repeatedly	between	the	TouchStart	and	TouchEnd	boundaries	to	provide
details	of	the	touch	events.
Having	access	to	the	details	of	a	touch	event	allows	the	developer	to	control	the
nature	of	the	touch	processing.	For	example,	the	following	code	stops	an	image
being	moved	beyond	the	bounds	of	its	parent	control.
Evtroutine	Handling(#Image.TouchChange)
	
#Image.Top	:=	#Image.Top.Bound(	0	(#Com_owner.Height	-	#Image.Height)
)
#Image.Left	:=	#Image.Left.Bound(	0	(#com_owner.Width	-	#Image.Width)	)
	
Endroutine
	



Touch	Parameters
MoveLeft	Parameter
MoveTop	Parameter
ScaleHeight	Parameter
ScaleWidth	Parameter
Rotation	Parameter
Continue	Parameter



MoveLeft	Parameter
DirectX	Only
Returns	the	number	of	pixels	moved	horizontally	for	each	instance	of	the
TouchChange	event.



MoveTop	Parameter
DirectX	Only
Returns	the	number	of	pixels	moved	vertically	for	each	instance	of	the
TouchChange	event.



ScaleHeight	Parameter
DirectX	Only
Returns	the	percentage	scale	height	change	for	each	instance	of	the
TouchChange	event.



ScaleWidth	Parameter
DirectX	Only
Returns	the	percentage	scale	width	change	for	each	instance	of	the
TouchChange	event.



Rotation	Parameter
DirectX	Only
Returns	the	rotation	change	in	degrees	for	each	instance	of	the	TouchChange
event.



Continue	Parameter
DirectX	Only
Allow	touch	processing	to	be	stopped	if	required.
True
Default	–	Processing	will	continue	as	normal.
False
Touch	processing	will	be	halted.


	Visual LANSA Feature Help
	Control and Composite
	Origin
	Handled
	FadeIn Method
	Delay
	Duration
	FadeOut Method
	Delay
	Duration
	Scale Method
	ScaleWidth
	ScaleHeight
	Delay
	Duration
	MouseEnter Event
	MouseHover Event
	MouseLeave Event
	Hint Popup Property
	Hint Title Property
	IsAnimating Property
	MouseOver Property
	MouseOverStyle Property
	MouseOverStyles Property
	Opacity Property
	Popup Property
	Rotation Property
	RotationOriginLeft Property
	RotationOriginTop Property
	ScaleHeight Property
	ScaleWidth Property
	ScaleOriginLeft Property
	ScaleOriginTop Property
	SkewLeft Property
	SkewTop Property
	SkewOriginLeft Property
	SkewOriginTop Property
	Style Property
	Styles Property
	Styles Collection
	Style
	Add Method
	Remove Method
	RemoveAll Method
	MouseOverPart Property
	PrivateStyle Property
	PrivateStyles Property
	Transition Method
	To
	From
	TransitionType
	Delay
	Duration
	RenderStyle

	Style (Prim_Vs.Style)
	BackgroundBrush Property
	BorderBottom Property
	BorderBrush Property
	BorderLeft Property
	BorderRight Property
	BorderTop Property
	CornerBottomLeft Property
	CornerBottomRight Property
	CornerTopLeft Property
	CornerTopRight Property
	Effect Property
	ForegroundBrush Property
	MaskBrush
	Brush
	BrushColors
	BrushColor
	At Property
	Color Property
	Parent Property
	Gradient Brush
	Colors Property
	Opacity Property
	Spread Property
	Linear Brush
	EndLeft Property
	EndTop Property
	StartLeft Property
	StartTop Property
	Radial Brush
	CenterLeft Property
	CenterTop Property
	OriginLeft Property
	OriginTop Property
	RadiusLeft Property
	RadiusTop Property
	Solid Brush
	Color Property
	Opacity Property
	Image Brush
	Alignment Property
	Height Property
	Image Property
	Left Property
	Opacity Property
	Sizing Property
	Tile Property
	Top Property
	Units Property
	Width Property
	Visual Brush
	Control Property
	Effect
	Blur Effect
	KernelType Property
	Radius Property
	DropShadow Effect
	BlurRadius Property
	Color Property
	Direction Property
	Opacity Property
	ShadowDepth Property

	User Designed Controls
	Tile (Prim_Tile)
	Items Property
	SelectionStyle Property
	Tile Event Item
	Add Method
	Result Parameter
	DesignType Parameter
	DeleteAll Method
	FindItem Method
	Result Parameter
	Key Parameter
	Item Parameter
	iTileDesign Interface
	OnAdd Method
	Tile Item
	OnDelete Method
	Tile Item
	OnDisplaying Method
	Tile Item
	OnFind Method
	Result Parameter
	Key Parameter
	TileItem Parameter
	OnItemGotFocus Method
	TileItem Parameter
	OnItemLostFocus Method
	TileItem Parameter
	OnItemGotSelection Method
	TileItem Parameter
	OnItemLostSelection Method
	TileItem Parameter
	OnUpdate Method
	Tile Item
	Tile Property
	Tile Item (Prim_Tile.TileItem)
	Design Property
	Tile Property
	Carousel (Prim_Caro)
	CarouselStyle Property
	Items Property
	NavigationStyle Property
	Carousel Event Item
	Add Method
	Result Parameter
	DesignType Parameter
	DeleteAll Method
	FindItem Method
	Result Parameter
	Key Parameter
	Item Parameter
	FirstItem Method
	Animate Parameter
	LastItem Method
	Animate Parameter
	MoveToItem Method
	Position Parameter
	Animate Parameter
	NextItem Method
	Animate Parameter
	PrevItem Method
	Animate Parameter
	iCarouselDesign Interface
	CarouselItem Parameter
	CarouselItem Parameter
	CarouselItem Parameter
	Result Parameter
	Key Parameter
	CarouselItem Parameter
	CarouselItem Parameter
	CarouselItem Parameter
	CarouselItem Parameter
	Carousel Items (Prim_Carousel.iCarouselItems)
	Carousel Property
	Carousel Item (Prim_Carousel.iCarouselItem)
	Book (Prim_Book)
	Items Property
	NavigationStyle Property
	Book Event Item
	Add Method
	Result Parameter
	DesignType Parameter
	DeleteAll Method
	FindItem Method
	Result Parameter
	Key Parameter
	Item Parameter
	FirstItem Method
	Animate Parameter
	LastItem Method
	Animate Parameter
	MoveToItem Method
	Position Parameter
	Animate Parameter
	NextItem Method
	Animate Parameter
	PrevItem Method
	Animate Parameter
	iBookDesign Interface
	BooklItem Parameter
	BookItem Parameter
	BookItem Parameter
	Result Parameter
	Key Parameter
	BookItem Parameter
	BookItem Parameter
	BookItem Parameter
	BookItem Parameter
	Book Property
	Book Item (Prim_Book.BookItem)
	Tree (Prim_Tree)
	Items Property
	Selection Style Property
	Tree Event Item
	ItemCollapsed Event
	ItemExpanding Event
	ItemGotParent Event
	Add Method
	Result Parameter
	DesignType Parameter
	DeleteAll Method
	FindItem Method
	Result Parameter
	Key Parameter
	Item Parameter
	iTreeDesign Interface
	Tree Item Parameter
	Tree Item Parameter
	Tree Item Parameter
	Result Parameter
	Key Parameter
	TreeItem Parameter
	OnItemCollapsed Method
	TreeItem Parameter
	OnItemExpanding Method
	TreeItem Parameter
	OnItemGotParent Method
	TreeItem Parameter
	TreeItem Parameter
	TreeItem Parameter
	TreeItem Parameter
	Tree Property
	Tree Item (Prim_Tree.TreeItem)
	Design Property
	Expanded Property
	FocusedStyle Property
	FocusedStyles Property
	MarginBottom Property
	MarginLeft Property
	MarginRight Property
	MarginTop Property
	MouseOverStyle Property
	MouseOverStyles Property
	ParentItem Property
	SelectedStyle Property
	SelectedStyles Property
	Style Property
	Styles Property
	Tree Property

	System Application Controls
	Focus Control Changed Event
	Control Parameter
	Appearance Property
	Calendar Property
	CheckBox Property
	ComboBox Property
	DateTime Property
	Edit Property
	Grid Property
	GridFocused Property
	GridFocusedInactive Property
	GridSelectedInactive Property
	GridMouseOver Property
	GridSelected Property
	GroupBox Property
	Image Property
	Label Property
	List Box Property
	ListBoxFocused Property
	ListboxFocusedInactive Property
	ListboxSelectedInactive Property
	ListboxSelectedInactive Property
	ListBoxMouseOver Property
	ListBoxSelected Property
	List View Property
	ListViewFocused Property
	ListviewFocusedInactive Property
	ListboxSelectedInactive Property
	ListViewMouseOver Property
	ListViewSelected Property
	Memo Property
	Panel Property
	Popup Property
	ProgressBar Property
	PushButton Property
	RadioButton Property
	RadioButton Property
	SpeedButton Property
	SpinEdit Property
	Tab Property
	TrackBar Property
	Tree Property
	TreeFocused Property
	TreeviewFocusedInactive Property
	TreeboxSelectedInactive Property
	TreeMouseOver Property
	TreeSelected Property
	Cursors Property
	FocusControl Property
	GlassEnabled Property
	HelpHandlerProperty
	Images Property
	Operating System Property
	PartitionShortCharLength Property
	PartitionShortCharLevel Property
	RenderStyle Property
	Style Property
	Styles Property
	TraceHandlerProperty

	Ribbon Controls
	Ribbon
	Minimized
	OpenPage
	QuickAccessToolbarOnTop
	Access Key
	Control
	Application Menu
	Caption
	Application Menu Content
	Application Menu Footer
	Contextual Group
	Caption
	Visible
	Ribbon Group
	DialogButton Click Event
	DialogButton Property
	Help Toolbar
	Image Property
	Quick Access Toolbar
	Ribbon Sheet
	KeyTip
	Contextual Group

	Table Layout
	Table Column
	Units
	Width
	Table Row
	Height Column
	Table Item
	Column
	ColumnSpan
	Row
	RowSpan

	Touch
	Touch Properties
	Touch Scroll Property
	Touch Move Property
	Touch Rotate Property
	Touch Scale Property

	Touch Events
	Touch Start Event
	Touch End Event
	Touch Change Event

	Touch Parameters
	MoveLeft Parameter
	MoveTop Parameter
	ScaleHeight Parameter
	ScaleWidth Parameter
	Rotation Parameter
	Continue Parameter




